The Project will be completed by following three steps:

- Preparation of design documents,
- Tender and construction contract,
- Execution of the construction work.

The implementation time frame in the Phase I is 4 months for designing, 12 months for construction works, and in the Phase II, 4 months for designing, 12 months for construction works as shown in Table 6-3.

Table 6-3 Project Implementation Time Frame

			<u> </u>		<u> </u>	ļ	<u> </u>	·	<u> </u>	Γ	<u> </u>
Remarks	Site Survey	Design, Tender Documents	Approval of Tender Documents			Dock-B Extension Works	Site Survey	Design, Tender Documents	Approval of Tender Documents		Dock-A Extension Works etc.
12						宋宋京京水给宋宋京京市水水市水市水市水市水市水市水市水市水市水市水市水市水市水市水市水市水市					· · · · · · · · · · · · · · · · · · ·
11						****					***
10						*****					*****
ი						****					***
æ						****					****
7				u))	***					***
9				ization)	ration	* * * *					* * * * *
2		(Home	te)	(Mobil	(Prepa			(Ноше)	(site)	n)	
4		**	** (Site		<u> </u>	******		* *		(Mobilization	***
3		**		****	· · · · · · · · · · · · · · · · · · ·	***		* *	****	(Mobil	***
2	(Site)	******		宋·宋·宋·宋·宋·宋·宋·宋·宋·宋·宋·宋·宋·宋·宋·宋·宋·宋·宋·	***		(Site)	*******		***	*************************************
1	*****	-		****			* *	* *		****	****
		Α.			ر ن			2			
		ъ	. ≪	တ	ы ((+)	Ω,	Œ	≪ 0	ניבו	(II)

Note: D = Detailed Design, C = Construction

CHAPTER 7 PROJECT EVALUATION AND CONCLUSION

CHAPTER 7: PROJECT EVALUATION AND CONCLUSION

7.1 Project Evaluation

Weno Port is one of the most important fundamental infrastructures of Chuuk State, performing real lifeline roles in marine transportation and fishery business, maintaining daily life of Chuuk people and supporting social economy of Chuuk State.

The project plan for the Weno Harbor Extension Project in this report places emphasis on enhancement of commercial port function of Weno Port by expansion and improvement of port facilities in commercial dock area corresponding to 10,000 DWT class international cargo vessels.

The commercial port function of Weno Port consists of the following two components:

- 1) International trade and transport activity
- 2) Domestic marine transport and traffic activity

Present status of port facilities in commercial dock area in this port are in rather inferior condition due to insufficient capacity and deterioration of facilities, being compelled to intermingle above two activities together in a same area causing disorders in port operation.

The proposed project plan aims to improved inconvenient conditions in the commercial port function, and the main constituents of the project works are:

- 1) Dock-A Reformation Works
- 2) Dock-B Extension Works
- 3) Container Handling Improvement Works
- 4) Navigation Aids Improvement Works

Detail plan for each work and expected effects and benefits are summarized below.

(1) Dock-A Reformation Works

The purpose of Dock-A reformation works is to provide mother port berths for three intra-state shipping vessels stationed in Weno Port being operated by Chuuk State, as well as providing an alternate berth of Dock-B for accommodation of 10,000 DWT class international cargo vessel in case of adverse sea condition at Dock-B, and the works consist of three sub-works:

- * Dock-A rehabilitation work
- * Dock-A extension work
- * Small dock works at return wall portion with ramp

1) Dock-A Rehabilitation Works

a) Current Situation

The existing Dock-A which was constructed in 1962 is 91 m long, and since this dock is almost 30 years old, and since the steel sheet-pile in use for this quaywall is rather thinner section, due to rust corrosion developed in long time on the wall, structural stability has been already lowered to a point where failure of entire wall structure is feared for this existing Dock-A.

b) Proposed plan

Reinforce work is proposed to the deteriorated present dock structure by installation of a new sheetpile wall in front of the existing wall for entire wall length.

c) Effects

By the rehabilitation works, the existing degraded Dock-A structure recovers stability and brings forth safety and efficiency for ships in mooring operation and for cargoes in handling works.

2) Dock-A Extension Works

a) Current Situation

The existing Dock-A with 97 m long is suffering from absolute insufficiency of berth length to accommodate vessels stationed in Weno Port. The existing length of Dock-A is good only for accommodation of one of the intra-state boats of Chuuk State, and extension is necessary for simultaneous berthing of two or three boats. Furthermore, for accommodation of a large size international cargo vessel as the alternate berth of Dock-B in case when sea condition is rough at Dock-B taking advantage of existing water depth of Dock-A, extension of Dock-A is required.

b) Proposed plan

Extension of Dock-A toward east by 60 m to make total berth length of Dock-A 157 m is proposed. Also - 9 m dredging of the mooring basin in front of Dock-A is included.

c) Effects

Two of the three intra-state service boats can be accommodated at Dock-A simultaneously in ordinary case, eliminating offshore waiting for berth mooring, and thus leading to decrease of loss of operation costs as well as to improvement of domestic shipping service keeping schedules on time. Cargo handling of international large vessel can be secured at this berth even in most of rough sea days at Dock-B during the months; August through November, contributing for stabilization of import goods supply to Chuuk.

3) Small Dock Works at the Return Wall

a) Current situation

Weno Port have no ramp for landing-craft type vessels, though some of intra-state boats of Chuuk State are LST type to serve for outer islands. Therefore, small boat dock with ramp is required.

b) Proposed plan

The return wall portion at the east end of the extended Dock-A can be used as small boat dock taking advantage of existing water depth in front. At landside end of the small boat dock ramp for landing craft is provided.

c) Effects

Traffic of vehicles to outer islands of Chuuk State can be facilitated through this ramp, benefiting for motorization in outer islands.

(2) Dock-B Extension Works

The purpose of Dock-B Extension Work is to furnish a complete 10,000 DWT class quaywall with -9.0 m water depth and 183 m long berth, and the works consist of following sub-works:

- * Dock-B Extension Works
- * Small Dock Works at the Return Wall portion

1) Dock-B Extension Works

a) Current situation

Existing Dock-B is only 91 m long, being almost one half berth length of a standard 10,000 DWT class berth, despite that this dock was designed to be a - 9 m quaywall. Furthermore, since actual water depth of the existing Dock-B is only -8 to -5 m deep, main international shipping boat is not able to moor on this berth. For this reason at present, most of main vessels for international transport is accommodated at the existing Dock-A of only 97 m long. As the length of this berth is also only one half of a standard berth length, and since the mooring water basin in front of the present Dock-A is very narrow, a lot of danger accompany in mooring mameuverment of a main boat onto this berth. Furthermore

Dock-A and present container yard is separated requiring long distance haul of each container.

b) Proposed plan

With extension of new quaywall of 92 m length, Dock-B will be expanded up to 183 m long dock, satisfying length requirement of 170 m for standard 10,000 DWT berth. The mooring and turning basin area in front of the extended Dock-B will be dredged to - 9 m depth to accommodate 10,000 DWT class boat.

c) Effects

By installation of the main international berth close to the container yard to be expanded in this project, large extent improvement can be achieved in cargo handling efficiency as well as in mooring maneuverment of international trade vessel.

By improvement of this dock, near future introduction of a larger size vessel than—the one in service at present for international transport will be accelerated, and the resulted contribution—for cost down of import and export cargoes not only for Chuuk State—but also for the whole FSM can be expected.

2) Dock-C Replacement Works along New Return Wall

a) Current situation

By extension of Dock-B toward north, the existing Dock-C along present return wall portion which is in use for local shipping will be buried down into proposed yard expansion area. However, a new return wall is to be provided from the north end of the extended Dock-B, and present Dock-C is to be replaced to the new location along the new return wall.

b) Proposed plan

Taking advantage of large water depth along the new return wall for Dock-B extension work, small boat dock of 50 m long is planned here. Water depth along this dock varies from - 9m at west end to - 5 m at east end.

c) Effects

This is a replacement of Dock-C from old location to a new location without significant increase of investment cost, maintaining function of existing Dock-C.

(3) Container Handling Improvement Works

The purpose of the container related works is to improve cargo handling facility corresponding to recent trend of containerization of most of international cargoes in Weno Port, and the works consist of:

Expansion of Container Yard

1) Expansion of Container Yard

a) Current situation

Present yard area for container operation in Weno Port is extremely narrow with available container stack area of only 3,500 m² wide, and thus container handling operation in Weno Port suffer from congestion and inefficiency and hazard.

b) Proposed plan

Expansion of Container yard is proposed over newly reclaimed land area of $5,700 \text{ m}^2$ which can be acquired in behind the extended Dock-B by damping of disposal soil dredged from the mooring basin dredging works.

c) Effects

Expanded container yard becomes 9,200 m² wide and very close to the expanded Dock-B for international container boat, and the container handling operation is expected to be improved to a large extent in view of safety and efficiency.

(4) Navigation Aids Works

The purpose of Navigation Alds Works is to make possible for commercial boats in and out to this port to navigate even at night along with other improvement works in this projects.

1) Current situation

Navigational aids along entrance channel from the North-east Pass to Weno Port are in damaged condition requiring repair works with imported apparatus. Also new markers and lighted aids become necessary along with Dock-A and Dock-B works.

2) Proposed plan

Improvement works on the 6 existing navigation aids along the entrance channel is proposed. Also 2 new markers to indicate boundary limits of the turning basin for Dock-B and 1 lighted aids for approaching Dock-A and Dock-B are included in the plan.

3) Effects

Effects of the whole project can be further magnified by securing safer and more efficient navigation even at night in and around Truck Lagoon and Weno Port.

7.2 Conclusion

As discussed above, sufficient benefits are expected by implementation of the Weno Harbor Extension Project, and its effects are in good concordance with the objectives of the National Development Plan of the Federated States of Micronesia such as reinforcing the economic basis and achieving economic

self-relience. The Project is therefore believed to make contribution toward improvement of living standards of people of Chuuk State by promoting more employment opportunities in Chuuk State. Therefore, it is evaluated appropriate to implement the present Project under a grant aid program.

It is also confirmed that the organization of the Chuuk State Government is satisfactory in terms of personal and financial resources for operation/administration of the Project.

In this connection, it is recommended that training of port managing experts be promoted for enhancement of efficiency of port management and port operation through technical assistance associated with this project.

APPENDICES

		Page
List of Fig	ures	
List of Tab	les	
APPENDIX-1	Basic Design Study Team Members and	
	Site Study Schedule	A-1
APPENDIX-2	Minutes of Discussions	A-6
APPENDIX-3	List of Interviewees	A-18
APPENDIX-4	Statistical and Technical Data	A-20
	(1) Results of Tide Observation and Analysis(2) Detail of Wave Computation for the Case	A-28
	of Ordinary Wind Condition	A-33
	(3) Design Spigmic Intensity	472

LIST OF FIGURES

Figu	re No.	Title	Page
Annei	nd1x-4		
	A-3-1	Tide Curve	A-29
_	A-3-2	Tide Level Chart	A-31
•			V-91
rig.	A-3-3	Calculation Flow of the Rate of Operationable Days	
F14		for Mooring	A-33
_	A-3-4	Fetch Length	A-35
Fig.	A-3-5	Calculation Point of the Rate of Operationable Days	
		for Mooring	A-37
Fig.	Λ -3-6 (1)	Chronological Graph of Wave Height 1989	A-39
Fig.	A-3-6 (2)	Chronological Graph of Wave Height 1990	A-40
Fig.	A-3-6 (3)	Chronological Graph of Wave Height 1991	A-41
Fig.	A-3-6 (4)	Chronological Graph of Wave Height 1992	A-42
Fig.	A-3-7	Locations of Boring Points	A-43
Fig.	A-3-8 (1)	Boring Log. No.1	A-44
Fig.	A-3-8 (2)	Boring Log. No.2	A-45
Fig.	A-3-8 (3)	Boring Log. No.3	A-46
Fig.	A-3-8 (4)	Boring Log. No.4	A-47
Fig.	A-3-8 (5)	Boring Log. No.5	A-48
Fig.	A-3-8 (6)	Boring Log. No.6	A-49
Fig.	A-3-8 (7)	Boring Log. No.7	A-50
Fig.	A-3-8 (8)	Soil Classification Chart and Key to Test Data	A-51
Fig.	A-3-9	Dimensions and Locations of the Thickness Measurement	
		of Steel Sheet Piles at Dock-A and Dimensions	A-53
Fig.	A-5-1 (1)	Survey by Means of Manta Method	A-63
Fig.	A-5-1 (2)	Survey by Means of Quadrat Method	A-63
Fig.	A-5-2(1)	Occurring Species (Quadrat Survey)	A-67
Fig.	A-5-2(2)	Occurring Species (Quadrat Survey)	A-68
Fig.	A-5-2(3)	Occurring Species (Quadrat Survey)	A-69
Fig.	A-5-2(4)	Occurring Species (Quadrat Survey)	A-70
Fig.	A-5-2(5)	Occurring Species (Quadrat Survey)	A-71

LIST OF TABLES

Table No.	Title	Page
Appendix-4		
Table A-2-1	Expenditure on the Gross Domestic Product, 1989	A-20
Table A-2-2	Federated States of Micronesia, National Government Operations, 1985/86-1990/91 /a	A-21
Table A-2-3	Federated States of Micronesia,	
	Chuuk State Government Operations	A-22
Table A-2-4	Type of Goods and Services Exported in US\$,	
	FSM, 1987-1991	A-23
Table A-2-5	Imports by Major SITC Section in US\$ and Percentage (%)	A DA
Table A-2-6(1)	FSM, 1987-1991	A-24
Table A 2 O(1)	FSM, 1987-1991	A-25
Table A-2-6(2)	Merchandise Exports by Type and Destination in US\$,	20
	FSM, 1991	A-25
Table A-3-1	Climatic Data	A-26
Table A-3-2	Average Temperature	A-27
Table A-3-3	Precipitation	A-27
Table A-3-4	Result of Tide Harmonic Analysis	A-30
Table A-3-5	Comparison of Tide Harmonic Constants	A-31
Table A-3-6	Frequencies of Wind Occurrence by Direction and Speed	
m.)	(1980-1992)	A-34
Table A-3-7	Frequencies of Deepwater Wave Occurrence by Direction	A 00
Table A-3-8	and Height (1989-1992) Frequencies of Deepwater Wave Occurrence by Period and	A-36
Table A 5-6	Height (1989-1992)	A-36
Table A-3-9	Wave Height Ratio	A-37
Table A-3-10	Rate of Operationable Days at Dock-A and Dock-B	A-38
Table A-3-11	Records of Vessel Calls and Incoming Cargo in 1991	A-52
Table A-3-12 (1)	Results of the Thickness Measurement of Steel Piles	A-54
Table A-3-12 (2)	Results of the Thickness Measurement of Steel Piles	A-55
Table A-3-12 (3)	Results of the Thickness Measurement of Steel Piles	A-56
Table A-3-12 (4)	Results of the Thickness Measurement of Steel Piles	A-57

Title

Table No.

				Page
Table	A-4-1		Anticipated Incoming Marine Cargo (1991-2003)	Λ-58
Table	A-4-2		Container Storage Area by Cargo Handling Methods	A-59
			$(\mathcal{M}_{\mathcal{A}})_{\mathcal{A}} = \{(\mathcal{A}_{\mathcal{A}}, \mathcal{A}_{\mathcal{A}}) \in \mathcal{A}_{\mathcal{A}} : (\mathcal{A}_{\mathcal{A}}, \mathcal{A}_{\mathcal{A}}) \in \mathcal{A}_{\mathcal{A}} : (\mathcal{A}_{\mathcal{A}}, \mathcal{A}_{\mathcal{A}}) \in \mathcal{A}_{\mathcal{A}} \}$	• : •
Table	A-5-1		The Frequency Characteristics of Current	A-60
Table	A-5-2		The Tidal Type	A-60
Table	A-5-3		The Tidal Constants and Tidal Type at Chuuk	A-60
Table	A-5-4		The Results of Water Quality Survey	A-61
Table	A-5-5	(1)	The Results of Content Tests for Marine Sediments	A-61
Table	A-5-5	(2)	The Results of Elute Tests for Marine Sediments	A-62
Table	A-5-6		The Results of General Survey for Marine Organisms	
			by Means of Manta Method	A-64
Table	A-5-7	(1)	The Results of Detail Survey for Marine Organisms	
		•	by Means of Quadrat Methods	A-65
Table	A-5-7	(2)	The Individual Numbers of Marcrobenthos Species	A-66

APPENDIX-1 (1) Basic Design Study Team Members and Site Study Schedule

	Name	Assignment	Position
Mr.	Masaki Shiomi	Team Leader	Chief of Design Standard Section, Port and Harbor Research Institute, Ministry of Transport, Government of Japan
Mr.	Naota Ikeda	Environmental Assessment Specialist	Senior Engineering Officer, Yokohama Investigation and Design Office, 2nd District Port Construction Bureau, Ministry of Transport, Government of Japan
Mr.	Kenji Maekawa	Project Coordinator	Second Basic Design Study Division, Grant Aid Study & design Department Japan International cooperation Agency (JICA)
Mr.	Ken Ishiguro	Port Facilities Planner	Nippon Tetrapod Co., Ltd.
Mr.	Hitoshi Takemoto	Port Civil Engineer	-ditto-
Mr.	Kiyotaka Sasao	Natural Condition Survey	-ditto-
Mr.	Masafumi Ito	Construction and Cost Estimation	-ditto-
Mr.	Fuminori Nishime	Environmental Survey	-ditto-

Site Study Schedule for Basic Design

Site Study Schedule for Basic Design

	Construction and Cost Estimation	Masafumi Ito							,												70.00	
	Natural Condition	Kiyotaka Sasao	NRT(COS62)- Guam	Guan (COSSS)- Cliunk	Survey Preparation			-				Topographical Survey		,		Soll Investigation			Sounding Survey		,	- 75
	Environmental Survey	Funinori Mishime					,					Survey Preparation	- ditto -	- ditto -		Site Survey	- ditto -	- ditto -	Sea Water Analysis	- ditto -		
d Work Items	Port Civil Engineer	Hitoshi Takemoto									Guam (COSSS) - Chuuk	Preparation for Investigation	its of the Study	Site Study.		Site Study	- ditto -	- ditto -				Data Ansivefe
Itinerary and Work Items	Port Facilities Planner	Ken Ishiguro									and Development		of Inception Report and Discussion on Contents of the Study	,			٠		•	-		
	Project Coordinator	Kenji Maekawa								,	Guam(CO956)- Pohnpel, Courtesy Call to External Affairs, Resources and Development					s Concerned		-	d Site Study		ÿ	i Part
	Environmental Assessment Specialist	Naota Ikeda									Courtesy Call to Extern		Courtesy Call to State Government, Explanation	t and Channel		Discussion on Questionaire with the Officials	,	•	Discussion on Memorandum of Understanding and		agoon and Dublon Port	Site Survey at Pohnoe
	Team Leader	Masaki Shlomi								NRT(C0962)+ Guam	Guam(CO956)- Pohnpel,	Pohnpel (COSS7)- Chuuk	Courtesy Call to State	Site Study at Weno Port and Channel	Team Meeting	Discussion on Question	- ditto -	- ditto -	Discussion on Memorand	Team Meeting	Site Survey at Chunk Lagoon and Dublon Port	Chunk(COS56) - Pohnpel, Site Survey at Pohnpel
	 _		Tue	Med Wed	Thu	F	Sat	Sun	. Won	Tuc	Wed	Thu	Æ	Sat	· Sun	Жоп	· Tue	gg.	, Thu	Fri	Sat	Sun
	Date		Mar.30	8	Apr. 1	2	က	4	. 5	8	7	œ	6	10	=	12	55	14	15	16	13	2
	Day		1	672	65	4	ιo	9	7	80	6	10	=	12	ដ	14	15	16	17	18	13	20

						Itimerary an	Itinerary and Work Items			
Day	Date	به	Team Leader	Environsental Assessment Specialist	Project Coordinator	Port Facilities Planner	Port Civil Engineer	Environmental Survey	Matural Condition	Construction and Cost Estimation
			Masaki Shiomi	Naota lkeda	Kenji Maekawa	Ken Ishiguro	Altoshi Takemoto	Fuminori Wishime	Kiyotaka Sasao	Masafumi Ito
22	19	Won.	Discussion on Minutes of Discussions	of Discussions			Site Study	Site Study		
22	20	Tue	Signing of Minutes of Discussions, Pohnpel (20957) General of Japan in Agana	Discussions, Pohnpel gana	.(COSS?). Gram, Farewell Call to Consulate	all to Consulate	- ditto -	- ditto -	Sounding Soil Survey Investi- gation	
23	21	Wed	Guan	Guam(CO967)- NRT	Guax (CO958) - Chunk	- Chunk	Data Collection	- ditto -		
24	22	星				Site Study	- ditto -	Sea Water Analysis		
23	23	Z				- ditto -	- ditto -	Site Study		
92	24	Sat			. —	- ditto -	- ditto -	- ditto -		NRT(COS62)- Guam
27	25	Sun				Team Meeting				Guam(CO956)→ Chuuk
83	26	Non				Data Collection	Site Study.	Sea Water Analysis		Site Study
83	22	Jae				- ditto -	- ditto -	Site Study	Topographical Survey	- ditto -
8	28	Wed				- ditto -	- ditto -	- ditto -	,	- ditto -
33	29	Thu				- ditto -	Study for Commuter Boat	- ditto -	Data Collection	- ditto -
33	8	Fri				ditto -	- ditto -	- ditto -	- ditto -	- áltto -
8	May 1	Sat	~~~			- ditto -	Data Analysis	- ditto -	- ditto -	- ditto -
32	2	Star		•		Team Meeting and Data Analysis	a Analysis			
33	3	Мон				Data Collection	Data Collection	Data Collection	Data Collection	Site Study
36	4	Tuc				- ditto -	- ditto -	- ditto -	- ditto -	- ditto -
37	5	Je Je	,			- ditto -	- ditto -	- ditto -	- ditto -	Data Analysis
88	9					Chunk(C0957) - Guam		- ditto -	- ditto -	Chrulf- Guas
33	7	Ē				Guam(CO976) - NRT		- ditto -	- ditto -	Guar- NRT
40	80	Sat	····					Chunk(C0957) - Guan	77) - Guan	
41	O	Sun						Guam(CO967) + NRT	37) → SRT	

APPENDIX-1 (2) Draft Report Explanation Team Members and Schedule

	Name	Assignment	Position
Mr.	Masaki SHIOMI	Team Leader	Chief of Design Standard Section, Port and Harbor Research Institute, Ministry of Transport, Government of Japan
Mr.	Kenji TOYAMA	Environmental Assessment Specialist	International Affairs Office, Port and Harbours Bureau, Ministry of Transport, Government of Japan
Mr.	Eiichiro CHO	Project Coordinator	First Project Management Division, Grant Aid Project Management Dept., Japan International cooperation Agency (JICA)
Mr.	Ken ISHIGURO	Port Facilities Planner	Nippon Tetrapod Co., Ltd.
Mr.	Hitoshi TAKEMOTO	Port Civil Engineer	-ditto-
Mr.	Fuminori NISHIME	Environmental Survey	-ditto-

Draft Report Explanation Schedule

Day	Date		ltine	rary
	19	993		
1	Sept.	Sat.	NRT (Tokyo) (CO-962) -> Guam	
2	5	Sun.	Guam (CO-956) -> Pohnpei	
3	6	Mon.	,	Courtesy call to Department of External Affairs of FSM Govt. and explanation of draft report
4	7	Tue.	Pohnpei (CO-957) -> Chuuk	,
5	8	₩ed.		Courtesy call to Chunk State Government and explanation of draft report
6	9	Thu.		Discussion with Chuuk State Government, Preparation of Memorandum
7	10	Fri.	Chunk (CO-958) -> Pohnpei	Signing of Memorandum
8	11	Sat.		Investigation of Pohnpei Port
9	12	Sun.		Team meeting
10	13	Mon.		Discussion with Department of External Affairs of FSM Government Preparation of Minutes of Discussion Mr. Cho departed to Marshall Island
11	14	Tue.		Signing of Minutes of Discussion
12	15	Wed.	Pohnpei (CO-957) -> Guam	
13	16	Thu.	Guam (CO-967) -> NRT (Tokyo)	Courtesy call to Consulate-General of Japan in Agana

MEMORANDUM OF UNDERSTANDING ON BASIC DESIGN STUDY OF THE WENO HABOUR EXTENSION PROJECT IN CHUUK STATE THE FEDERATED STATES OF MICRONESIA

IN WENO, CHUUK STATE, MEETINGS WERE HELD ON THE WENO HARBOUR EXTENSION PROJECT, BETWEEN THE BASIC DESIGN TEAM AND THE CONCERNED OFFICIALS OF THE STATE OF CHUUK, FROM 8TH THROUGH 15TH OF APRIL 1993.

IN THE COURSE OF DISCUSSION AND FIELD SURVEY, BOTH PARTIES HAVE CONFIRMED THAT THE FOLLOWING ITEMS WERE PROPOSED BY THE GOVERNMENT OF THE STATE OF CHUUK IN PRIORITY ORDER:

- 1. Repair of Dock A (-30' deep, 300' long) (Dredging of Mooring Basin)
- 2. Expansion of Container Yard (with Revetment)
- 3. Extension of Dock B (-30' deep, 300' long) (Return Wall 150' long, Slop for landing craft)
- 4. Extension of Dock A (-30' deep, 200' long) (Freight Station, Tugboat)
- 5. Commuter Boat Terminal
 - A. Inner Northern Basin
 - Eastern Apron
 - Mooring Jettys
 - Revetment in Western Side
 - B. Primary Marina
- 6. Miscellaneous
 - Navigation Aids
 - Forklift
 - Revetment in Southern Basin

11115

However, the final components of the Project will be decided after further studies.

Weno Chuuk, April 15, 1993

极是推荐

Mr. Masaki Shiomi Team Leader

Basic Design Study Team

Hon. Sasao H. Gouland

Governor

State of Chuuk

Federated States of Micronesia

MINUTES OF DISCUSSIONS ON BASIC DESIGN STUDY OF

THE WENO HARBOR EXTENSION PROJECT

IN

CHUUK STATE THE FEDERATED STATES OF MICRONESIA

In response to a request from the Government of the Federated States of Micronesia (hereinafter referred to as "FSM"), the Government of Japan decided to conduct a Basic Design Study on the Weno Harbor Extension Project in Chuuk State (hereinafter referred to as "the Project") and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA sent to FSM a study team headed by Mr. Masaki Shiomi, Chief of Design Standard Laboratory, Port and Harbor Research Institute, Ministry of Transport, and is scheduled to stay in the country from March 31 to May 8, 1993.

The team held discussions with the officials concerned of the Government of FSM and conducted a field survey at the study area.

In the course of discussions and field survey, both parties have confirmed the main items described on the attached sheets. The team will proceed to further works and prepare the Basic Design Study Report.

Palikir, Pohnpei, April 20, 1993

10 n 12

Mr. Masaki Shiomi Team Leader

Basic Design Study Team

ЛСА

Mr. John A. Mangefel

Deputy Secretary

Department of External Affairs

Government of the Federated States of

Micronesia

ATTACHMENT

1. Objective

The objective of the Project is to improve and expand port facilities and contribute toward development of economy in Chuuk State and FSM by extension of the Weno Harbor

2. Project Site

The Project site is located in the Weno Harbor, in Weno Island, Chuuk State, FSM as shown in Annex I.

3. Executing Agency

The Department of Transportation and Communications of the Government of FSM is responsible for coordination of the Project. The Department of Transportation and the Department of Planning and Statistics, Chuuk State Government are responsible proponents for the administration and execution of the Project.

4. Items requested by the Government of FSM

After discussions with the Basic Design Study Team, the project items which were finally requested by the FSM side are shown in Annex II. However, the final components of the Project will be decided after further studies.

5. Japan's Grant Aid System

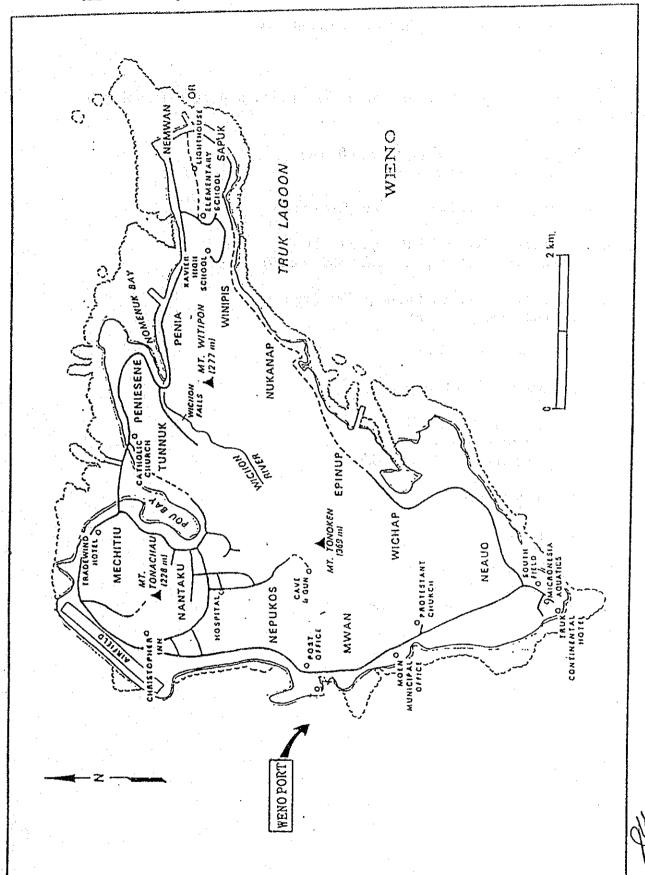
- (1) The Government of FSM has understood the system of Japan's Grant Aid explained by the team.
- (2) The Government of FSM will undertake necessary measures, described in Annex III for smooth implementation of the Project, on condition that the Grant Aid Assistance by the Government of Japan is extended to the Project.

6. Schedule of the Study

- (1) The team will proceed to further site studies in Chuuk State until May 8, 1993.
- (2) JICA will prepare the draft report and dispatch a mission in order to explain its contents in September, 1993.
- (3) In case that the contents of the report is accepted in principle by the Government of FSM, JICA will complete the final report and send it to the Government of FSM in November, 1993.

gm

ms


7. Environmental Protection Consideration

- (1) Implementation of the Project requires authorization of FSM for laws on environmental control.
- (2) The Department of Health Services is responsible for environmental assessment for the Project by laws of FSM.
 - Also Chuuk State Department of Health Services, Division of Environmental Health of Chuuk State is project proponent in respect to environmental control.
- (3) The Project is required to be executed in compliance with the Earth Moving Regulation of FSM.
- (4) The Basic Design Study Report will include one chapter on environmental precaution on the basis of site study by the team.

day

my

Annex I. Project site

mil

Annex II. Items requested by the Government of FSM

The project items requested by the Government of FSM are listed as followings in priority order;

- 1. Repair of Dock A (-30ft deep, 300 ft long) (Dredging of Mooring Basin)
- 2. Extension of Container Yard (with Revetment)
- 3. Extension of Dock B (-30ft deep, 300ft long)
 (Return Wall 150ft long, Slope for landing craft)
- 4. Extension of Dock A (-30ft deep, 200ft long) (Freight Station, Tugboat)
- 5. Commuter Boat Terminal
 - A. Inner Northern Basin
 - Eastern Apron
 - Mooring Jetties
 - Revetment in Western Side
 - B. Primary Marina
- 6. Miscellaneous
 - Navigation Aids
 - Forklift
 - Revetment in Southern Basin

Lan

MA

Annex III. Undertakings of the Government of FSM for Japan's Grant Aids

- 1. To secure the site for the Project.
- 2. To clear the site prior to commencement of the construction.
- 3. To provide outlets for electricity, water supply, telephone, drainage, sewage and other incidental utilities to the Project site.
- 4. To ensure prompt unloading and custom clearance at port of disembarkation in FSM and internal transportation of the materials and equipment for the Project.
- 5. To exempt any equipment, materials and supplies brought into FSM in connection with the performance of the Project from any tax, duties and levies which are imposed in FSM.
- 6. To exempt Japanese nationals concerned with the Project from custom duties, internal taxes and other fiscal levies which may be imposed in FSM with respect to the supply of the products and services under verified contracts.
- 7. To accord Japanese nationals whose services may be required in connection with the supply of products and the services under the verified contract such facilities as may be necessary for their entry into FSM and stay therein for the performance of their work.
- 8. To ensure that facilities under the Grant be maintained and used properly and effectively for FSM.
- 9. To bear all the expenses, other than those to be borne by the Grant, necessary for execution of the Project.
- 10. To bear commissions to the Japanese foreign exchange bank for the banking services based upon the Banking Arrangement.
- 11. To coordinate and solve any related matters which may arise with third party in the Project area during implementation of the Project.

The state of the s

mt-

APPENDIX-2 (2) Minutes of Discussions (Explanation of Draft Report) <Chuuk State Government>

MEMORANDUM OF DISCUSSIONS

ON

BASIC DESIGN STUDY

OF

THE WENO HARBOR EXTENSION PROJECT

IN

CHUUK

THE FEDERATED STATES OF MICRONESIA

(CONSULTATION ON DRAFT REPORT)

In April 1993, the Japan International Cooperation Agency (JICA) dispatched a Basic Design Study Team on the Weno Harbor Extension Project (hereinafter referred to as "the Project") to the Federated States of Micronesia (hereinafter referred to as "FSM"), and through discussions, field survey, and technical examination of the results in Japan, has prepared the draft report of the study.

In order to explain and to consult the Chuuk State side on the components of the draft report, JICA sent to the Chuuk State a study team, which is headed by Mr. Masaki Shiomi, Chief of Design Standard Section, the Port and Harbor Research Institute, Ministry of Transport, and is scheduled to stay in the State from September 7 to 10, 1993.

As a result of discussions the team and the Government of the State of Chuuk have agreed to and accepted in principle the components of the Draft Report by the team.

Weno, Chuuk State, September 10, 1993

恒見雅 村

Mr. Masaki Shiomi

Leader

Draft Report Explanation Team
Japan International Cooperation Agency

(JICA)

Honoraple Sasao H.Gouland

Governor

State of Chuuk, FSM

Minutes of Discussions (Explanation of Draft Report) <FSM Government>

> MINUTES OF DISCUSSIONS ON BASIC DESIGN STUDY OF THE WENO HARBOR EXTENSION PROJECT IN CHUUK STATE THE FEDERATED STATES OF MICRONESIA

(CONSULTATION ON DRAFT REPORT)

In April 1993, the Japan International Cooperation Agency (JICA) dispatched a Basic Design Study team on the Weno Harbor Extension Project (hereinafter referred to as "the Project") to the Federated States of Micronesia (hereinafter referred to as "FSM"), and through discussions, field survey, and technical examination of the results in Japan, has prepared the draft report of the study.

In order to explain and to consult the FSM side on the components of the draft report. JICA sent to FSM a study team, which is headed by Mr. Masaki Shiomi, Chief of Design Standard Section, The Port and Harbor Research Institute, Ministry of Transport, and is scheduled to stay in the country from September 5 to 14, 1993.

As a result of discussions, both parties confirmed the main items described on the attached sheets.

Palikir, Pohnpei, September 14, 1993

Leader

Draft Report Explanation

JICA Team

Mr. John A. Mangefel

Deputy Secretary

Department of External Affairs

Witness:

The Honorable Marcelino Umwed

Lieutenant Governor

Chuuk State

ATTACHMENT

1. Components of Draft Report

The Government of FSM has agreed and accepted in principle the components of the Draft Report proposed by the team.

- 2. Japan's Grant Aid System
 - (1) The Government of FSM has understood the system of Japanese Grant Aid explained by the team.
 - (2) The Government of FSM will take the necessary measures, described in Annex, for smooth implementation of the Project on condition that the Grant Aid assistance by the Government of Japan is extended to the Project.
- 3. The team will make the Final report in accordance with the confirmed items, and send it to Government of FSM in November, 1993.

Mr.

(h) A-16

Jul

Annex:

Necessary measures to be taken by the Government of FSM in case Japan's Grant Aid is executed.

- 1. To provide EIA Approval of the Project before the Exchange of Notes.
- 2. To provide Permit for Earth Moving Works before the Construction Contract.
- 3. To secure the site for the Project.
- 4. To clear the site prior to commencement of the construction.
- 5. To provide outlets for electricity, water supply, telephone, drainage, sewage and other incidental utilities to the Project site.
- 6. To ensure prompt unloading and custom clearance at port of disembarkation in FSM and internal transportation of the materials and equipment for the Project.
- 7. To exempt any equipment, materials and supplies brought into FSM in connection with the performance of the Project from any tax, duties and levies which are imposed in FSM.
- 8. To exempt Japanese nationals concerned with the Project from custom duties, internal taxes and other fiscal levies which may be imposed in FSM with respect to the supply of the products and services under verified contracts.
- 9. To accord Japanese nationals whose services may be required in connection with the supply of products and the services under the verified contract such facilities as may be necessary for their entry into FSM and stay therein for the performance of their work.
- 10. To maintain and use properly and effectively the facilities constructed and equipment purchased under the Grant.
- 11. To bear all the expenses other than those to be borne by the Grant, necessary for execution of the Project.
- 12. To bear commissions to the Japanese foreign exchange bank for the banking services based upon Banking Arrangement.
- 13. To coordinate and solve any related matters which may arise with third party in the Project area during implementation of the Project.

Sin

MM

APPENDIX-3 List of Interviewees

Organization	Name	Position
Consulate-General of Japan	Renzo Izawa Yoshio Koshio Masashi Higuchi	Consulate-General Consul & First Secretary Vice-Consul
<fsm government=""></fsm>		
Department of External Affairs	Resio Moses John Mangfel Epel Ilon Tadao Sigrah Gabriel Aiyn Lorin Robert Jeem Lippwe Ossia Santos Samson Pretrick	Secretary Deputy Secretary Chief of US Relations Deputy Secretary Deputy Secretary Deputy Assistant Secretary Deputy Assistant Secretary Foreign Service Officer Foreign Service Officer
Department of Health Service	Nachsa Siren	EPA Officer
Office of Planning and Statistics	James Mordad	Chief of Planning
Department of Resources and Development	Asterio Takesy	Secretary
Department of Transportation	Robert Weilbacher	Secretary

Organization

Name

Position

<Chuuk State Government>

Governor

Lieutenant Governor

Office of Budget

Department of Education

Department of

Transportation

Department of Public

Works

Office of Planning

and Statistics

Department of Commerce

and Industry

Department of

<Others>

PM&O Line

Kyowa Line

Health Service

Sasao Gouland

Marcellino Umwech

Frank Cholomy

Kangichy Welle

Thomas Narruhn

Leo Lokopwe

Joakin Kaminanga

Krescio Billy

Marion Henry

Joseph Konno

Shuji Hori

Takayuki Suenaga

Yukinobu Seno

Overseas Fishery Susumu Kawakami

Cooperation Foundation

Truk Continental Hotel

Governor

Lieutenant Governor

Director

Director

Director

Deputy Director

Director

Director

Director

Environmental Quality

Control Officer

Micro Commerce Captain

Kyowa Rose Captain

Fisheries Expart

Marine Instructor

APPENDIX-4 Statistical and Technical Data

Table A-2-1 Expenditure on the Gross Domestic Product, 1989

(US\$ Million)

	Chuuk	Kosrae	Pohnpei	Yap	FSM
CONSUMPTION EXPENDITURES BY HOUSEHOLDS					·
Marketed	28.2	8.8	33.0	10.0	80.1
Nonmarketed	16.0	4.8	14.7	7.1	42.7
CONSUMPTION EXPENDITURES					
BY GOVERNMENT	25.5	6.5	34.4	12.8	79.1
GROSS DOMESTIC FIXED CAPITAL FORMATION					,
Private sector	6.7	1.0	4.0	1.7	13.5
Government	10.2	3.2	13.7	3.5	30.7
EXPORTS	2.3	0.5	3.0	1.2	7.0
LESS IMPORTS					
Visible imports FOB	26.3	6.9	30.4	9.1	72.7
CIF	9.2	2.4	10.6	3.2	25.4
Invisible imports	3.7	1.0	4.3	1.3	10.2
GROSS DOMESTIC PRODUCT	49.8	14.6	57.6	22.7	144.8

Table A-2-2 Federated States of Micronesia, National Government Operations, 1985/86-1990/91 /a

(US\$ Thousand)

Total revenue and grants 19,55	6 1986/87	1987/88	1988/89	1989/90	1000 101
Total revenue and grants 19 55			1000,00	1909/30	1990/91
I TO TO TO TO THE OTHER OTHER PARTY IN THE PARTY I TO	8 38,921	48,053	39,503	49,093	42,039
Total revenue 10,96	0 10,688	15,363	20,509	24,077	25,988
Tax 3,61		4,630	4,987	5,112	6,148
Income 1,39		1,831	1,938	1,915	1
Import duties (exc). fuel tax) 74		1,039	1,089	988	1,165
Gross receipts 1,39		1,675	1,868	2,105	2,602
Fuel import duties 7		85	92	104	127
Nontax 7,34		10,733	15,522	18,965	19,840
Fishing rights fees 4,85		7,733	10,322	12,660	12,841
		394	1	560	1
Postal revenue, net 42		1	485		467
Fees and charges 33		177	645	208	244
Investment and interest income 78		1,422	2,729	3,543	4,073
Other 93	1	1,007	1,411	1,994	2,215
Grants 8,59		32,690	18,994	25,016	16,051
1	0 20,718	25,142	13,391	21,639	13,972
Other . 8,59	8 7,515	7,548	5,603	3,377	2,079
Total Expenditure 16,83	25,492	35,054	44,853	34,015	49,150
Current Expenditure 14.79	1 16,206	19,867	21,666	23,317	27,598
Wages and salaries 5,94		6,554	7,581	7,785	8,343
Other purchases of goods and services 8,13		9,549	11,292	13,024	13,646
		0,010	0	0	0
Subsidies and other current transfers 71	- 1	3,764	2,793	2,508	5,609
Public enterprises 69		1,108	993	1,137	1,750
FSM Development Bank	· ·	264	270	230	236
· · · · · · · · · · · · · · · · · · ·		2,392	1,530	1,141	3,623
		1 .	23,187		
		15,187		10,698	15,441
Development expenditure 54		6,124	5,463	2,026	1,246
Capital Transfers 1,49		9,063	17,724	8,672	14,195
• •	924	4,192	1,009	4,537	0
	0	3,000	13,510	1,000	11,029
CFSM transfers to states 1,49	1	1,871	3,205	3,135	3,166
	0 0	0	0	0	0
Net lending	0 0	0	0	0	6,111
Overall balance 2,72	6 13,429	12,999	-5,350	15,078	-7,111
Change in deferred payments (net) 2,538		-2,336	868	-1,498	-702
Cash balance 5,26		10,663	-4,482	13,580	-7,813
Financing -5,26	-13,985	-10,663	4,482	-13,580	7,813
Change in cash, CDs, and equivalents -5,24		-2,133	-6,843	-6,608	8,036
	20,453	-8,209	11,327	-6,584	-4,675
Loan and bank overdraft -2		-501	0	0	1,992
) 0	0	ő	ő	2,460
	3	180	-2	-388	0
Asser 14) modite Thologon In descript		100	٠		

Source: FSM, Trade Bulletin, November 1992

/a Includes the general fund, special revenue fund, capital projects funds, and expenditure trust funds.

Table A-2-3 Federated States of Micronesia, Chuuk State Government Operations

(US\$ Thousand)

	1986	1987	1988	1989	1990	1991
REVENUE AND GRANT						٠
Tax Revenue	2,011	1,691	2,754	3,124	2,814	4,072
Nontax revenue	906	1,790	1,303	5,062	2,770	3,990
External grants	23,301	37,871	44,743	39,841	39,034	44,950
TOTAL REVENUE	26,218	41,352	48,800	48,027	44,618	53,012
EXPENDITURES						
General fund	15,344	19,399	20,348	24,776	22,529	25,437
Special revenue funds	7,925	8,658	16,668	10,707	9,319	14,340
Capital Projects funds	2,949	13,295	11,784	12,544	12,770	13,235
TOTAL EXPENDITURES	26,218	41,352	48,800	48,027	44,618	53,012

Source: FSM, Chuuk State Government

Table A-2-4 Type of Goods and Services Exported in US\$, FSM, 1987-1991

<u></u>					
Type Year	1987	1988	1989	1990	1991
Agriculture Produce:					
Copra	135,800	587,200	589,836	345,742	1,041,418
Bananas	44,042	57,420	88,349	117,254	136,123
Citrus	10,126	9,729	9,688	10,334	4,503
Root Crops	4,816	8,337	6,979	12,205	1,662
Black Pepper	51,300	31,600	483,400	2,967	23,951
Betel Nuts	0	28	90	8,090	8,795
Other Farm Produce	9,409	67,402	33,603	10,127	26,693
Total Agriculture Produce	255,493	761,716	1,211,945	506,719	1,243,145
Marine Products:		i jir ka			
Fish	126,767	416,511	500,637	1,836,259	8,627,680
Trochus Shell/Meat	25,000	764,267	0	627,712	427,603
Crab/Lobsters	7,911	39,727	30,897	109,052	97,761
Other Marine Products	0	8,404	12,482	18,920	5,928
Total Marine Products	159,678	1,228,909	544,016	2,591,943	9,158,972
Others					
Coconut oil/Soap Products Handicrafts, souvenirs, gifts	29,000	50,086	29,443	20,921	43,472
-Purchases reported by sales outlets	218,640	299,376	74,660	105,201	76,176
-Est. purchases where data not available*	275,560	403,580	426,100	462,900	505,060
Other tourist expenditure:			,		
-accommodation, food & beverages and transport.	3,086,700	4,428,120	4,625,955	5,169,120	5,612,220
Total Others	3,609,900	5,181,162	5,156,158	5,758,142	6,236,928
Total Exports	4,025,071	7,171,787	6,912,119	8,856,804	16,639,045

Source: FSM, Trade Bulletin, November 1992

^{* 1989} and 1990 figures are changed due to updated Tourist/Visitor data received

Table A-2-5 Imports by Major SITC Section in US\$ and Percentage (%), FSM, 1987-1991.

			,		
9 Items N.E.C	1,076,529	2,636,452	6,537,764	4,160,138	7,314,900
8 Misc. Goods	6,090,866 14.54	9,995,832 14.76	6,848,175 9,42	7,925,160	8,218,441
Nachinery & Vehicle Manu.	6,640,593 15.85	3,543,859 9,868,033 9,162,728 5,23 14.58 13.53	25,148 3,307,827 12,236,979 11,691,422 0.03 4.55 16.83 16.08	12,542,759 14.95	12,508,805 14.11
Manufac. Ma Goods Ve	6,680,265	9,868,033 14.58	12,236,979 16.83	3.797,652 11,500,142 12,542,759 13,71 14.95	3,661,363 12,757,481 12,508,805 4.13 14.39 12,514.11
5 Chemical	2.976,257	3,543,859	3,307,827	3,797,652 4.53	
Animal & Veg. Oil	41,278	44,766		60,966 0.07	103
3 Petroleum Products	5,042 0.01	4,062,895	7,182,327	225,178 14,485,269 0.27 17.27	133,714 11,691,644 0.15 13.19
2 Crude Materials	$61,128\\0.15$	338,048	182,193 0.25		133,714
l Beverages & Tobacco	5,201,189	11,658,995 17.22	7,394,289 10.17	8,873,560	8,549,492
0 Food	13,116,474	16,389,816 24.21	17,318,665 23.81	20,309,196 24.21	23,794,687
Total	41,889,621 13,116,474	1988 \$ 67,701,424 16,389,816 24.21	1989 \$ 72,724,789 17,318,66	83,880,020 20,309,196 100 24.21	1991 \$ 88,630,630 23,794,68
Year	1987 \$	1988 \$	1989 \$	1990 \$	1991 \$

Table A-2-6 (1) Imports by Last Port of Shipment in US\$, FSM, 1987-1991

<u>ي</u>	781
OTHERS	6,048,
JAPAN	17,077,850
AUSTRALIA	3,315,546
USA Guara	26,355,393
USA Hawaii	1,475,647
USA Main land	34,357,413
Total	88,630,630 34,357,413 1,475,647 26,355,393 3,315,546 17,077,850 6,048,781
Year	1991

Source : Office of Planning and Statistics, Government of the FSM

Note: 1. Petroleum Products imported through Mobil Oil Micronesia, 1987, are not included.

Others include: New Zealand, Taiwan, China, Hong Kong, Philippines, India,
 Thailand, Malaysia, Singapore, France, Switzerland, Indonesia, CNMI, Korea,
 Belau, Poland and Marshall Island

Table A-2-6 (2) Merchandise Exports by Type and Destinations in US\$, FSM, 1991

Descriptions & Destinations	GUAM	SAIPAN	SAIPAN MARSHALL HAWAII		USA	JAPAN	OTHERS	TOTAL
Total Exports	810,562	187,499	810,562 187,499 38,223 117,772 0	117,772	0	9,279,566	98,143	98,143 10,531,765

Source : Office of Planning and Statistics, Government of the FSM

Note: 1. Other Destinations include: Belau, Korea, Singapore, Australia, Italy and New Zealand

Table A-3-1 Climatic Data

NORMALS, MEANS, AND EXTREMES

CHUUK, EASTERN CAROLINE IS., PACIFIC

											7005. 4			****
LATITUDE: 7°27'N L		JAN	FEB	E EL	APR			5 BARO		SEP	ZONE: 1	NOV	DEC	YEAR
TEMPERATURE OF: Normals -Daily Haximum -Daily Hinimum -Honthly		85.4 76.9 81.2	85.5 76.9 81.2	85.8 77.0 81.4	86.2 76.8 81.5	86.6 76.4 81.5	86.9 76.0 81.5	86.7 75.2 81.0	87.0 75.1 81.1	87.1 75.3 81.2	87.0 75.5 81.3	86.8 76.1 81.5	86.0 76.8 81.4	86.4 76.2 81.3
Extremes -Record Highest -Year -Record lowest -Year	41 41	91 1969 69 1990	91 1946 70 1986	94 1946 71 1968	92 1982 71 1967	94 1946 70 1980	93 1957 70 1965	92 1984 70 1974	92 1981 70 1968	93 1981 . 68 1973	92 1981 66 1980	91 1990 70 1990	91 1981 70 1980	94 MAR 1946 66 OCT 1980
NORMAL DEGREE DAYS: Heating (base 65°F)		0	0	0	0	0	0	0	0	. 0	.0	0	. 0	0
Cooling (base 65°F)		502	454	508	495	512	495	496	499	486	505	495	508	5955
X OF POSSIBLE SUNSHINE	31	52	56	57	52	48	47	49	50	47	43	46	46	49
MEAN SKY COVER (tenths) Sunrise - Sunset HEAN NUMBER OF DAYS: Sunrise to Sunset	40	9.1	9.3	9.2	9,1	9,1	9.2	9.1	9.1	9.1	9.1	9.1	9.3	9.2
-Clear -Partly Cloudy -Cloudy Precipitation	40 40 40	0.3 3.7 27.1	0.2 2.9 25.2	0.3 3.2 27.5	0.2 3.8 25,9	0.4 4.1 26.5	0.2 3.7 26.1	0.2 4.2 26.6	0.1 4.5 26.5	0.3 4.0 25.8	0.3 4.1 26.6	0.2 3.8 26.0	0.1 3.3 27.6	2.6 45.2 317.4
Of inches or more Snow, ice pellets, hail	40	19.3	16.2	18.7	20.5	24.6	24.0	24.3	24.5	22.4	23.5	23.8	23.0	264.7
1.0 inches or more	40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.6	0.0	0.0	0,0
Thunderstorms Heavy Fog Visibility	40	0.9	0.3	1.0	1.3	1.7	1,6	1.7	1.3	1.7	2.1	2.3	1.6	17.3
1/4 mile or less Temperature of	40	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0
-Махітит 90° and above 32° and below	40 40		0.1 0.0	0.2 0.0	0.6 0.0	2.1 0.0	2.0 0.0	2.5 0.0	2.8 0.0	3.0 0.0	2.7 0.0	1.7 0.0	0.4 0.0	18.1 0.0
-Minjaum 32° and below 0° and below	40 40	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
AVG. STATION PRESS. (mb)	 	ļ	1009.5	ļ		1009.2	ļ	ļ				1008.2	1008.6	1009.1
RELATIVE HUMIDITY (X) Hour 04 Hour 10 Hour 16 Hour 16 Hour 22	21 40 40 40		81 76 75 80	82 76 75 81	85 79 77 83	86 80 79 85	87 80 78 85	89 80 78 87	89 80 77 87	89 80 77 86	89 80 78 86	87 79 78 85	84 79 79 83	86 79 77 84
PRECIPITATION (inches): Hater Equivalent -Normal -Maximum Honthly -Year -Minimum Honthly -Year -Maximum in 24 hrs -Year	42 42 42	1981 0.96 1959	6,67 15,95 1991 0,56 1983 6,59 1970	9.11 24.02 1967 1.95 1983 8.21 1972	12.76 23.38 1956 3.28 1983 7.16 1989	15.64 28.39 1976 3.80 1983 11.13	12.37 21.72 1950 6.10 1966 7.61 1972	14.32 32.99 1962 2.65 1984 10.07 1962	14.04 25.96 1979 5.37 1949 4.91 1963	13.23 21.17 1955 5.24 1989 6.24 1978	14.68 24.71 1979 4.17 1972 6.55 1968	12.07- 26.12 1962 1.88 1982 10.41 1962	12.59 34.89 1959 3.12 1990 14.92	145.84 34.89 DEC 1959 DEC 1958 FEB 1983 14.92 DEC 1959
Snow, Ice pellets, hail -Maximum Honthly -Year -Maximum in 24 hrs	42	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0,0 0,0	-
MIND:					 		<u> </u>	<u> </u>						<u> </u>
Mean Speed (mph) Prevailing Direction through 1963	26	10,8 NNE	11.3 NNE	10.7 NNE	9.6 NNE	8.6 NNE	7.2 NNE	7.3 SE	7.2 S	7.6 SW	7,7 S	8.0 3NN	9.6 NNE	8.8 NNE
Fastest Hile -Direction (!!) -Speed (MPH) -Year	21 21	Nน 37 1985	\$ 31 1962	NE 34 1978	NE 40 1971	5 78 1971	574 40 1972	NH 41 1962	я 38 1979	SH 50 1972)74 41 1979	N 45 1962	39 1979	S 78 MAY 1971
Peak Gust -Direction [!!] -Speed (mph) -Date	8	SE 53 1987	NE 48 1990	NE 54 1991	NE 55 1990	52 1985	SE 49 1986	SE 46 1989	NH 44 1986	รผ 43 1986	59 1935	\$ 94 1987	SH 47 1986	S 94 NOV 1987

Table A-3-2 Average Temperature

AVER	AGE T	EMPER	ATURE	(deg.	F)	i lexed	сниик	. EASTE	RN CAROI	INE IS.	PACIFIC		
YEAR	JAN	FEB	MAR	APR	MAY	JUNE	JULY		SEP	OCT	NOV	DEC	ANNUAL
1962 1963 1964 1965 1966	81.3 80.0 81.8 80.2 80.1	81.1 80.5 80.7 80.3 81.3	81.5 80.7 81.7 80.0 81.4	82.0 81.2 81.4 80.4 82.0	81,4 81,1 81,1 80,8 81,3	80.9 81.4 81.2 80.1 81.1	80.2 80.8 80.5 79.0 81.1	80.5 80.9 80.2 80.7 81.3	80.8 80.8 80.2 80.5 81.2	81.3 80.9 80.8 80.6 81.4	80.7 81.0 81.4 80.9 81.5	81.1 81.5 80.2 81.3 80.8	81.1 80.9 80.9 80.4 81.2
1967 1968 1969 1970 1971	81.3 81.0 80.7 81.5 81.5	81.3 81.0 80.2 81.9 81.3	80.7 80.8 81.4 82.6 81.5	80.5 80.7 81.0 82.4 81.6	81.5 81.4 81.7 81.8 81.2	80.8 81.5 81.6 81.8 81.0	80.4 80.2 80.7 81.8 80.4	80,1 81,1 81,0 81,6 81,5	80.8 80.9 81.0 81.7 81.1	81.0 81.2 81.4 81.1 81.3	81.2 80.8 81.9 82.1 82.1	81.6 80.8 81.8 81.9 81.7	80.9 80.9 81.2 81.8 81.3
1972 1973 1974 1975 1976	80,9 81.6 81.2 81.6 81.2	80.5 81.2 81.2 81.7 80.8	81.1 82.2 81.6 81.7 81.3	81.0 81.8 81.8 82.2 80.9	81,5 82,2 82,0 81,4 80,9	81.4 82.4 81.4 81.2 80.9	80.7 81.6 81.2 81.0 81.3	80.7 81.8 81.3 81.1 80.7	81.3 81.7 81.5 91.1 80.5	81.6 81.0 81.4 91.0 81.7	82.1 82.2 81.8 80.5 81.6	81.4 81.8 81.7 81.2 81.7	81.2 81.8 81.5 81.3 81.1
1977 1978 1979 1980 1981	81.3 81.3 81.9 81.2 81.0	81.6 81.7 82.2 81.5 82.0	81.4 82.4 81.8 81.8 82.2	82.1 82.1 81.8 82.5 82.6	82.0 82.1 81.9 82.0 83.0	82.5 82.0 82.3 81.8 82.0	81.7 82.4 81.8 80.8 82.7	81.9 82.1 81.3 81.1 82.5	81.7 81.9 82.4 81.5 82.4	82.1 81.8 81.3 80.4 82.3	81.2 81.9 81.6 81.3 82.4	82,2 82,0 81,5 81,2 82,4	81.8 82.0 81.8 81.4 82.3
1982 1983 1984 1985 1986	82.7 80.8 81.4 81.5 81.9	82.2 81.5 81.7 82.6 81.0	81.8 81.8 82.5 82.9 81.7	82.7 82.8 83.3 82.1 82.9	82.4 84.0 83.6 82.8 83.0	82.3 83.4 81.5 82.7 82.6	82.1 81.8 83.8 81.7 82.0	81.9 82.5 81.6 81.9 82.6	82,2 82,6 81,6 81,6	82.0 82.5 81.9 82.4 82.1	82.6 82.7 82.7 82.9 82.0	82.1 82.4 83.1 82.7 81.8	82.2 82.4 82.5 82.3 82.1
1987 1988 1989 1990	81.8 82.3 82.7 82.0 81.4	82.9 81.9 82.9 82.2 80.8	81.8 83.9 82.1 81.9 81.6	81.8 83.7 81.5 82.3 82.2	83.9 82.5 82.0 82.3 82.4	82.7 82.8 81.8 82.1 82.3	81.2 82.7 81.5 81.4 81.9	81.3 82.8 81.5 80.8 82.0	82.6 82.5 82.2 81.9 81.0	83.0 82.1 82.0 82.0	82.8 83.0 82.1 82.1 81.7	82.7 81.9 81.9 82.2 82.2	82.4 82.7 82.0 81.9 81.8
Record Mean Max Min	81.3 85.6 76.9	81,4 85,8 76,9	81.7 86.2 77.1	81.8 86.5 77.0	81,9 85,9 76,7	81.7 87.0 76.3	81.3 87.0 75.5	81.3 87.1 75.4	81.4 87.2 75.6	81.4 87.2 75.7	81.7 87.0 76.3	81.6 86.2 77.0	81.5 86.6 76.4
164.	Air di	et e							in the		· · ·		et eg

Table A-3-3 Precipitation

PRECIPITATION (inches) CHUUK, EASTERN CAROLINE IS., PACIFIC

YEAR	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEP	OCT	NOV	DEC	ANNUAL
1962 1963 1964 1965 1966	7.91 11.27 2.00 13.86 4.61	9.85 7.35 10.80 6.70 1.70	12,77 5,44 2,44 15,30 7,57	6,98 7,41 12,29 8,17 7,53	18.33 8.54 18.45 10.79 13.62	12.27 7.64 9.99 12.17 6.10	32.99 14.01 13.55 25.19 20.11	16.51 18.35 12.47 9.13 12.39	14.64 16.88 16.89 16.97 12.49	9.77 16.61 15.80 9.53 8.88	26.12 7.08 7.85 5.54 8.44	4,26	179.18 130.06 140.25 137.61 121.65
1967 1968 1969 1970 1971	8.04 8.67 1.22 14.80 8.25	6.38 9.23 1.44 11.80 8.63	24,02 13,91 3,82 2,40 9,85	17.21 20.50 11.28 10.43 10.20	15:17 10:00 19:26 18:60 15:33	14,13 14,20 14,91 13,99 13,92	19.90 15.75 16.38 7.49 13.18	17.36 7.77 14.29 12.98 10.63	7.82 12.37 12.26 10.75 14.54	15.80 11.78 10.38 19.04 16.40	15.56 6.91 16.00 8.43 5.20	24.51 10.39 13.57	175.55 155.60 131.63 144.28 134.17
1972 1973 1974 1975 1976	9.83 1.36 10.23 3.71 10.57	10.65 2.30 13.44 3.86 9.37	18.49 4.59 19.75 11.17 5.70	15.79 8.83 11.59 4.25 17.80	16.68 8.95 13.47 17.91 28.39	14.73 10.31 14.83 16.12 12.26	16.68 13.78 12.49 7.35 11.55	11.58 13.18 10.72 13.72 14.74	13.60 11.34 14.33 12.02 15.14	4.17 21.16 20.14 12.24 15.22	7.49 8.59 14.91 17.44 16.09	17,60 8,84 9,99	148.95 122.00 164.74 129.78 163.24
1977 1978 1979 1980 1981	5.73 7.69 13.91	1.93 2.29 4.39 5.96 4.41	8 3; 4 85 7 83 8 14 7 24	11.47 8.17 20.32 6.55 12.54	11.67 13.25 13.91 18.26 6.04	7 07 10 10 19 02 12 88 14 46	9,11 8,40 9,02 17,26 8,44	14.20 14.37 25.96 12.78 10.76	13.94 14.98 10.44 8.50 11.35	16.21 21.21 24.71 18.91 14.48	12.45 12.99 20.97 2.98 9.62	12.47 7.36 18.44	116.09 128.81 171.62 144.57 136.73
1982 1983 1984 1985 1986	7.04 5.16 12.92 16.99 14.40	5.92 0.56 10.10 7.85 14.82	11,21 1,95 8,27 3,64 18,35	8.67 3.28 7.03 16.39 9.45	14.68 3.80 11.05 11.67 10.85	11 99 9 28 7 47 10 21 8 81	11.55 23.09 2.65 12.24 14.92	10.70 12.84 14.88 9.73 8.31	9.38 9.75 5.35 15.81 10.74	6.76 15.32 18.05 7.47 5.60	1.88 12.03 14.58 8.70 12.67	15.17 6.84 12.91	104.39 112.28 119.21 133.61 140.38
1987 1988 1989 1990 1991	9.51 3.46 9.32 12.16 11.42	0.58 6.65 3.85 2.02 15.95	7.69 2.94 7.13 10.72 15.67	19.80 3.49 22.51 12.65 18.92	5.89 16.18 13.47 11.54 16.81	13.34 8.45 10.50 11.22 11.25	14.68 11.41 18.20 10.57 9.91	15.70 10.44 14.43 24.39 9.60	5.36 11.21 5.24 10.89 18.57	7.12 21.17 15.72 9.25 6.14	14.14 8.84 8.94 12.59 10.21	11.86 11.27 3.12	124.70 116.10 140.58 131.12 148.90
Record Mean	8.83	6.39	8,73	12.36	14.55	12,20	13.90	13.58	12.67	13.67	11.55	12.43	140.86

(1): RESULTS OF TIDE OBSERVATION AND ANALYSIS

The study team made tide observation at Weno Harbor for 28 days from April 10 to May 8 using pressure type tide-meter (WLR-7). Tide data were taken every 10 minutes at the position next to Tide Gauge House of Chuuk Weather Station located at the east end of Dock-A. The results of observation and analysis are shown as a tide curve and a tide harmonic analysis result in Fig. A-3-1 and Table A-3-4 respectively.

The tide curve in this region shows a specific pattern of diurnal type with some semi-diurnal variation tide.

According to the results of harmonic analysis for 15 day's observed records, the tide amplitude (Zo) consisting of the sum of main four tide components of M2, S2, K1 and O1 can be obtained to be 0.457 m. And, tide type index "T" that is expressed in (K1+O1)/(m2+S2) as a ratio of diurnal tide components against semi-diurnal tide components is 1.753, which shows a typical characteristics of diurnal tide. Classification of tide type index is as follows:

$1.50 \leq T$	Diurnal Tide
$0.25 \le T < 1.50$	Mixed Tide
T < 0.25	Semi-diurnal

Table A-3-5 shows comparison of tide harmonic constants of main four components between this study and Admiralty Tide Table by British Navy. A very good accord of data from both sources can be seen.

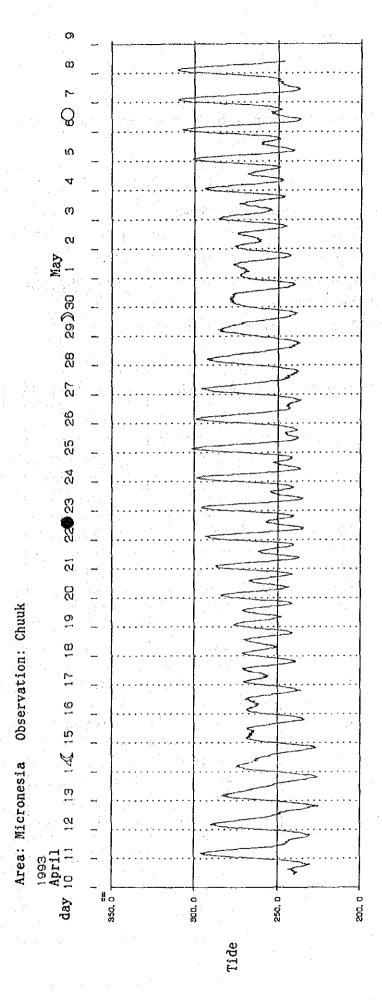


Fig. A-3-1 Tide Curve

Table A-3-4 Result of Tide Harmonic Analysis

Area : Micronesia

Observation point : Chuuk

Latitude : 7' 26' 35"N Longitude : 151' 50' 15"E

Observation period : April 11 - April 25, 1993

Standard time : -10.0 Standard water level: M. S. L.

Component	Amplitude	Lag Angle
Tide	(cm)	(,)
M2	6.8	84.9
S2	9.8	89.7
К2	2.7	89.7
N2	1.5	134.9
K1	16.5	215.7
01	12.6	193.7
P1	5.5	215.7
Q1	3.0	181.9
M4	0.4	11.5
MS4	0.3	99.4
A0	-6.4	

Table A-3-5 Comparison of Tide Harmonic Constants

		142	S2	K1	01	Zo= M2+S2+K1+O1
Observation	Amplitude H (m) Angle K (^o)	0.068 84.9	0.098 89.7	0.165 215.7	0.126 193.7	0.457
Admiralty Tide Table	Amplitude H (m) Angle K (⁰)	0.06 84.9	0.10 89.7	0.18 215.7	$0.11\\193.7$	0.46

Tide chart drawn by use of the amplitude of main four components is shown in Fig. A-3-2 in which the following two conditions have been considered to set up the datum line.

- (a) Each tidal level is arranged from the mean sea level set by Chuuk Weather Station.
- (b) Since the chart datum line of Weno Islands has been set at 2 ft (0.6096 m) below the mean sea level, levels of all kind tide are determined on the basis that chart datum line level is 0.00 m.

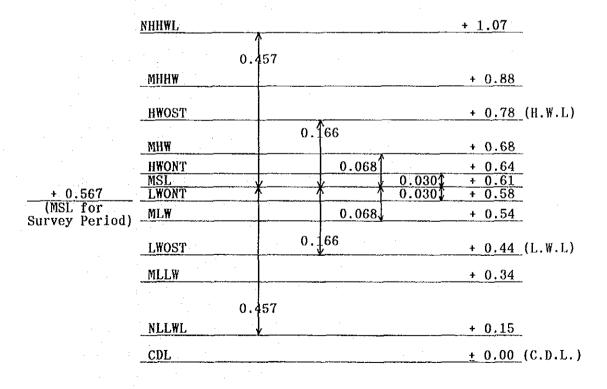


Fig. A-3-2 Tide Level Chart

The above-mentioned 2 ft below mean sea level seems to have been applied from the reason that the mean sea level has seasonal change of 0.126 m due to annual tide period, (Sa + Ssa = 0.126 m at Dublon: source by Hydrographic Department of Japan). When the seasonal change of 0.126 m is added to the summed up amplitude Zo (= 0.457 m), obtained is 0.583 m, which seems to have been rounded to 2 ft (= 0.6096 m).

(2) DETAIL OF WAVE COMPUTATION FOR THE CASE OF ORDINARY WIND CONDITION

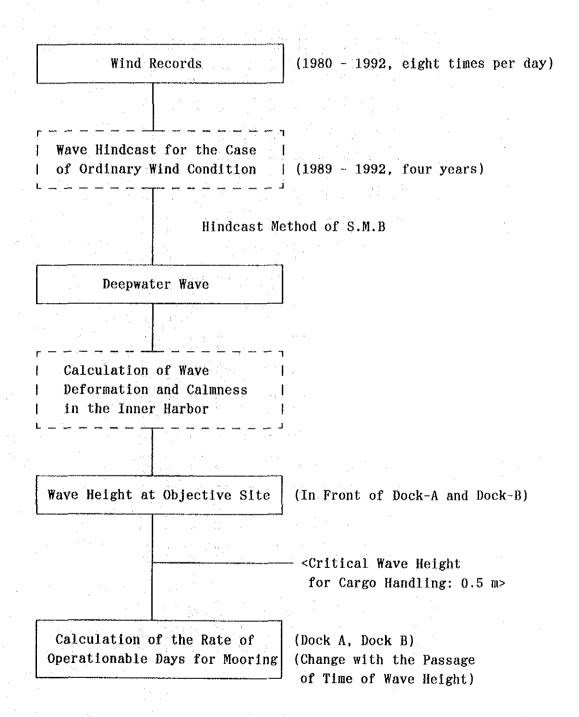


Fig. A-3-3 Calculation Flow of the Rate of Operationable Days for Mooring

Table A-3-6 Frequencies of Wind Occurrence by Direction and Speed (1980-1992)

WIND DIRECTION	U.X.	z	NNE	×	ENE	ω	asa	SS	SSE	6 23	SS#	S.	MSM	æ	ENK	×	XNX	TOTAL	
WIND SPEED(M/S)																	: •		
CALM	2044	00.	- O	9	0 0	40	000	00	00	000	٠.0	0.0	.0	4.0	40.0	00	00	2065	
0.0 - 2.3	e 0	2115	0.20	351	8 4 8 8	3.2	768	1.6	239	211	44.0	0.2	96 6.	127	0 8 8 8	0.5	0.5	1597	
0, 80 10, 64	20.0	1.7	962	3733	10.0	2863 8.2	2.8	862 1.9	290	653	153	2 4 5 4	192	2.0	321	308	243	17127	
5.0 - 7.5	0	0.5	1.7	3619	5.6	2.7	290	98.0	0.0	288 0.8	291 0.8	383	317	1,0	115	0.5	0.1	28.0	
7.5 - 10.0	0	0.0	8 12 12	366	128	2.0	4 T	0.0	•	0.13	92	139	0.2	0.2	0.0 510	0	10.0	3.3	•
10.0 - 15.0	000	10.0	* O	200	0.0	.00		0.0		900	0.1	38		200	0.0	0.0	0	0510	
15.0 - 20.0	00	00	0.0	00	00	T 0	0.0		000	00	000	0.7		0.0		0.0	000		
20.0 - 25.0	00		000	00	00	00	00.	00		00	00	00	00	00	000	00	00	00	
25.0 - 30.0	000	00.	00	00	00	00	00	00		00	00	00		00	00	00	00	40.0	
30.0	00	00	00	00	000	00	000	00		00	00	00	00	00	00	0.0	00	00	
TOTAL	2065	887 2.53	1763	8076 23.2	6124	4983	5.9	1409		1210	2.5	3.3	2.8	1258 3.5		4.1	377	377-34826	-

Fetch Length

Wind Direction	S	SSW	sw	WSW	W	WNW	NW	NNW	N
Fetch Length (km)	9.1	14.8	20.2	22.9	23.0	24.0	22.8	20.1	

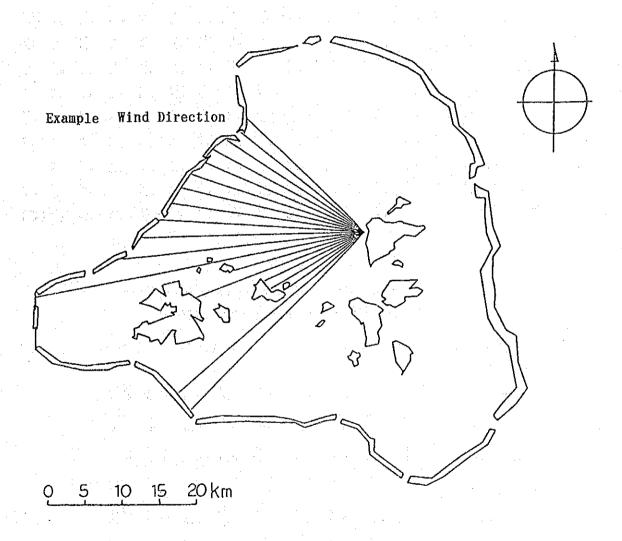


Fig. A-3-4 Fetch Length

Table A-3-7 Frequencies of Deepwater wave Occurrence by Direction and Height (1989 - 1992)

WAVE DIRECTION	Ú.K.	и	NNE	NE	BNB	В	ESE	SE	SSE	s	SST	SW	WSW	₩	AHR	NW	NNW	TOTAL
WAVE RELGHT(m)																•		
CALM	8661 74.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8661 74.1
0.00 - 0.25	0.0	133 1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	232 2.0	80 0.7	99	86 8.0	103 0.9	57 0.5	79 0.7	63 0.5	934 8.0
0.25 - 0.50	0.0	164 1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	290 2.5	129 1.1	152 1.3	136 1.2	144	80 0.7	75 0.6	61 0.5	1233 10.5
0.50 - 0.75	0.0	31 0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45 0.4	47 0.4	116 1.0	112	106	41 0.4	26 0.2	24 0.2	548 4.7
0.75 - 1.00	0.0	0.1	0,0	0.0	0.0	0.0	0.0	0.0	. 0,0	8 0.1	22 0,2	51 0.4	43 0.4	51 0.4	15 0 · 1	9 0.1	6 0,1	216 1.8
1.00 - 1.25	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	18 0.2	0.2	14 0.1	0.0	0.0	0.0	6 0.1	68 0.6
1.25 - 1.50			0.0															
1.50 - 2.00			0 0,0															
2.00 - 2.50			0.8										•					
2.50 -			0.0														0.0	0.0
TOTAL	8661 74.1	339 2.9	0.0	0.0	0,0	0.0	0.0	0.0	0.0	577 4.9	299 2.6	450 3.9	402 3,4	411 3.5	196 1.7	192 1.6	161 1.4	11688 100.0

Table A-3-8 Frequencies of Deepwater wave Occurrence by Period and Height (1989 - 1992)

WAVE PERIOD(s)	CALM	0~ 1	1- 2	2- 3	3- 4	4- 5	5- 6	6-	TOTAL
WAVE HEIGHT(m)									
CALM	8661 74.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8661 74.1
0.00 - 0.25	0.0	0.0	932 8.0	0.0	0.0	0.0	0.0	0.0	934 8.0
0.25 - 0.50	0.0	0.0	73 0.6	1160 9.9	0.0	0.0	0.0	0.0	1233 10.5
0.50 - 0.75	0,0	0.0	0.0	439 3.8	109 0.9	0.0	0.0	0.0	548 4.7
0.75 - 1.00	0.0	0.0	0.0	0.0	214 1.8	0.0	0.0	0.0	216 1.8
1.00 - 1.25	0.0	0.0	0.0	0.0	68 0.6	0.0	0.0	0.0	68 0.6
1.25 - 1.50	0.0	0.0	0.0	0.0	0.1	7 0.1	0.0	0.0	17 0.1
1.50 - 2.00	0.0	0.0	0.0	0.0	0.0	9 0.1	0.0	0.0	9 0.1
2.00 - 2.50	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
2.50 -	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	8661 74.1	0.0	1005 8.6	1601 13.7	401 3.4	18 0.2	0.0		11688 100.0

Table A-3-9 Wave Height Ratio

	and the second of the second	
Incident Wave Direction	Point A	Point B
N ,	0.08	0.58
N N W	0.13	0.72
ИМ	0.26	0.84
WNW	0.37	0.89
W	0.46	0.90
WSW	0.52	0.87
S W	0.53	0.80
SSW	0.33	0.49
S	0.26	0.37

Note: Wave Period 4.0 sec Wave Height Ratio 1.0 is deep sea water height

Point B

Point A

Q 100 200

Fig. A-3-5 Calculation Point of the Rate of Operationable Days For Mooring

Table A-3-10 Rate of Operationable Days at Dock-A and Dock-B

(Unit: %)

	1989	1990	1991	1992	Total
Month	Dock A	Dock A	Dock A	Dock A	Dock A
	Dock B	Dock B	Dock B	Dock B	Total Dock B
	Relief	Relief	Relief	Relief	Relief
	rate	rate	rate	rate	rate
г ч	100	96.77	100	100	99.19
	100	93.55	100	93.55	96.77
	0	3.23	0	6.45	2.42
2	100 100 0	100 100 0	100 100 0	100 100 0	100
ဗ	100	100	100	100	100
	100	100	93.55	100	98.39
	0	0	6.45	0	1.61
4	100	100	100	100	100
	90	96.67	100	100	96.67
	10	3.33	0	0	3.33
5	100	100	100	100	100
	100	96.77	96.77	100	98.39
	0	3.23	3.23	0	1.61
9	100 100 0	100 93.33 6.67	100 96.67 3.33	100	100 97.50 2.50
7	100	100	100	100	100
	100	83.87	93.55	87.10	91.13
	0	16.13	6.45	12.90	8.87
80	96.77	90.32	93.55	87.10	91.94
	83.87	77.42	54.84	41.94	64.52
	12.9	12.90	38.71	45.16	27.42
6	100	96.67	93.33	90	95
	90	77.33	66.67	70	75
	10	23.33	26.67	20	20
10	93.55	100	100	93.55	96.77
	83.87	87.10	80.65	67.74	79.84
	9.68	12.90	19.35	25.81	16.94
면 면	100 93.33 6.67	96.67 70 26.67	96.67 80 16.67	83.33 66.67 16.67	94.17 77.50 16.67
12	100 96.77 3.23	96.77 93.55 3.23	100	100 100 0	99.19 97.58 1.16
Total	99.18	98.08	98.63	96.17	98.02
	94.79	88.77	88.49	85.52	89.39
	4.38	9.32	10.14	10.66	8.62

Note: Relief rate means the difference of rate when Dock A operationable while Dock B is not operationable

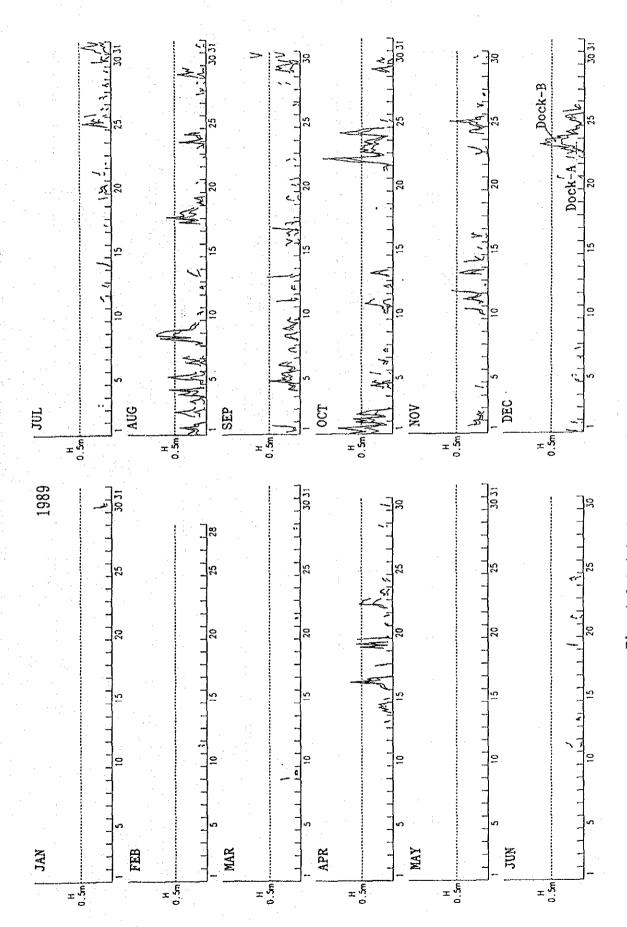


Fig. A-3-6 (1) Chronological Graph of Wave Height 1989

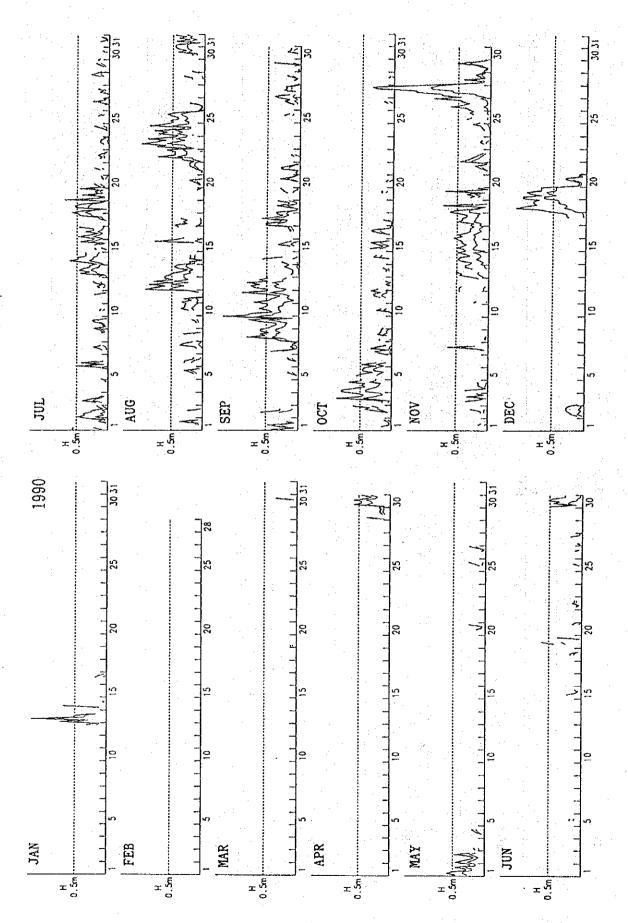


Fig. A-3-6 (2) Chronological Graph of Wave Height 1990

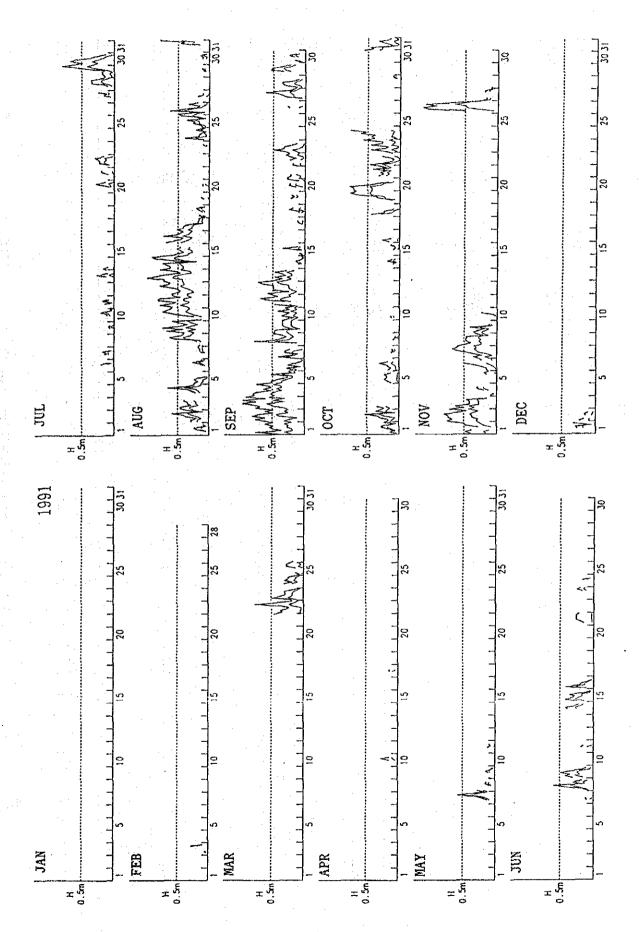
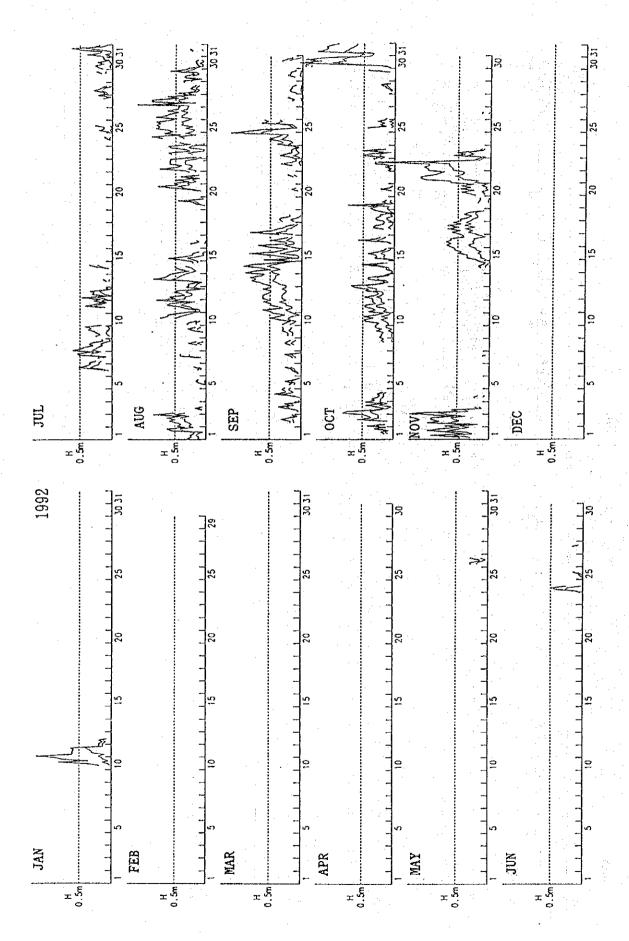
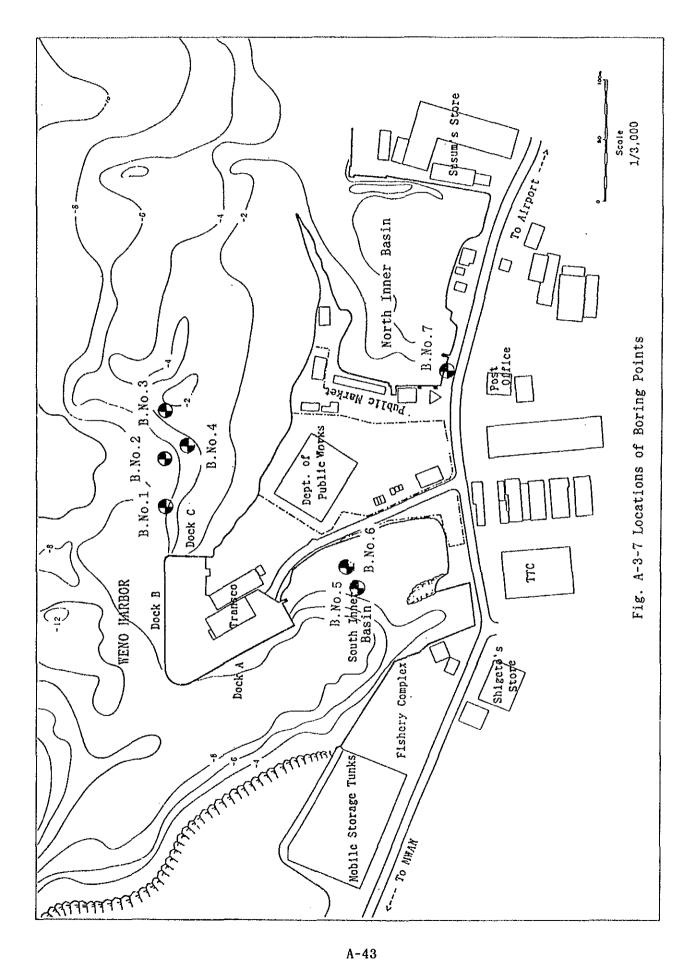
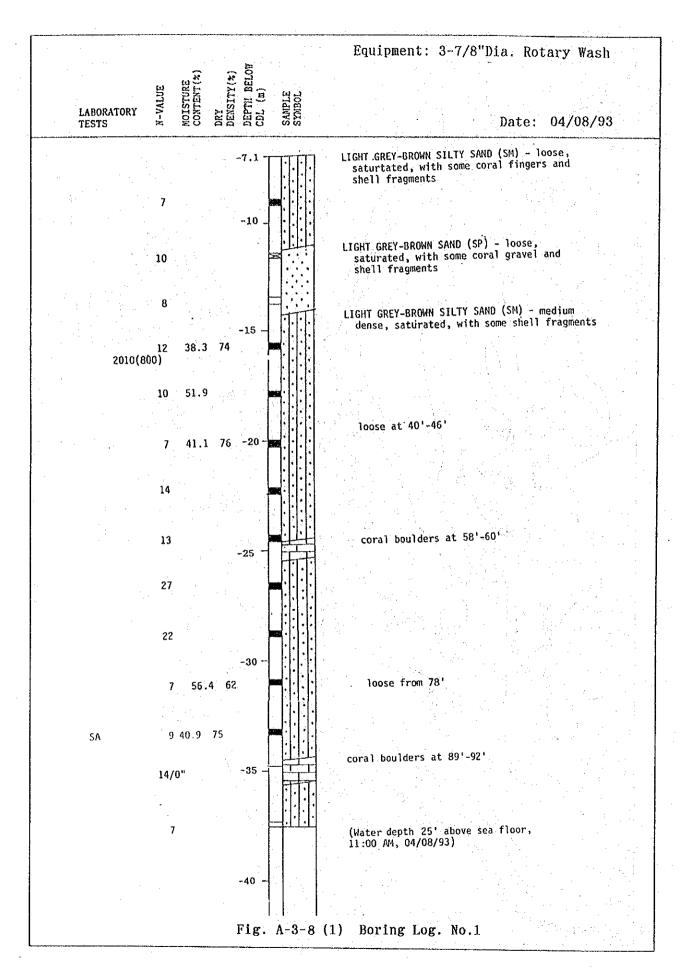
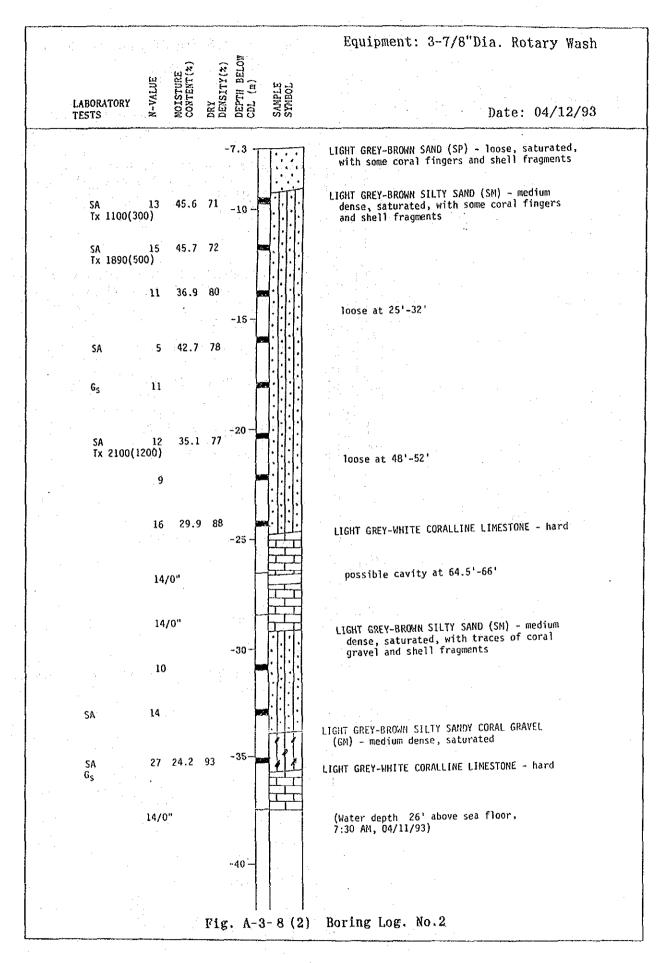
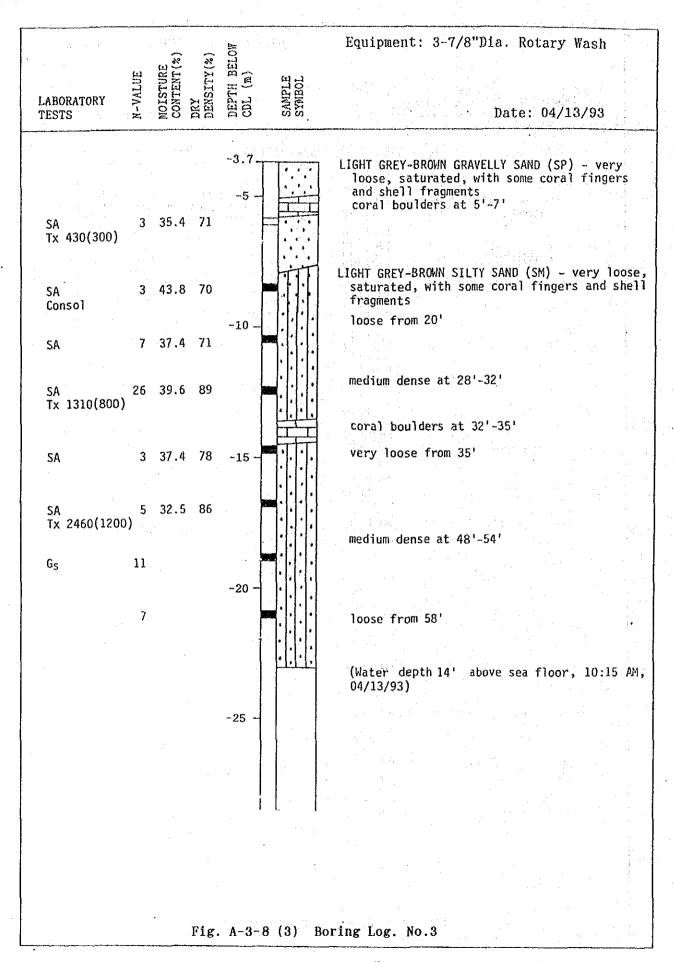
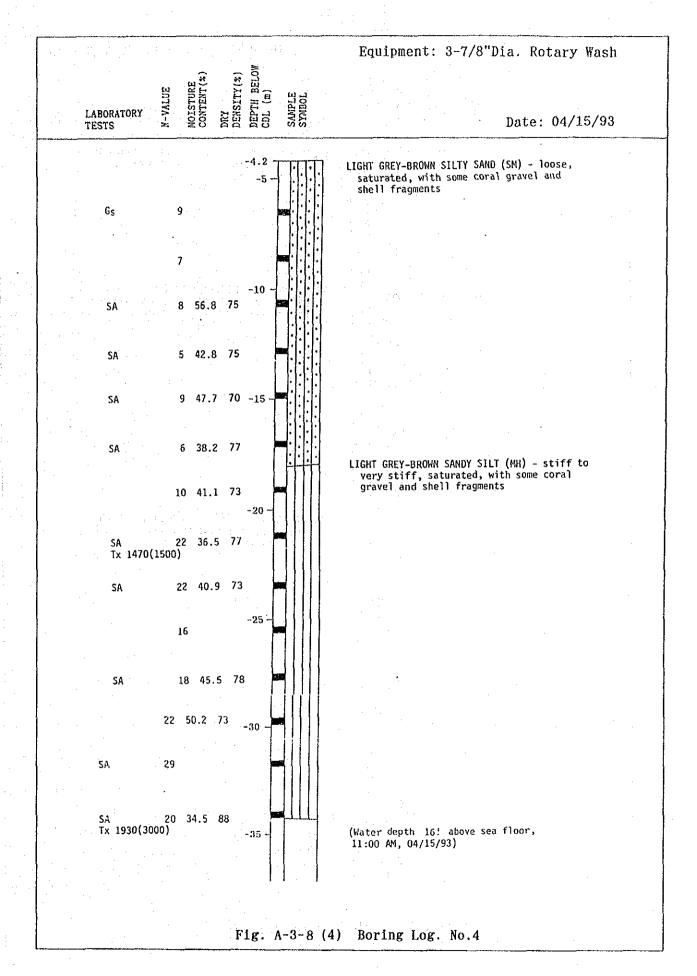
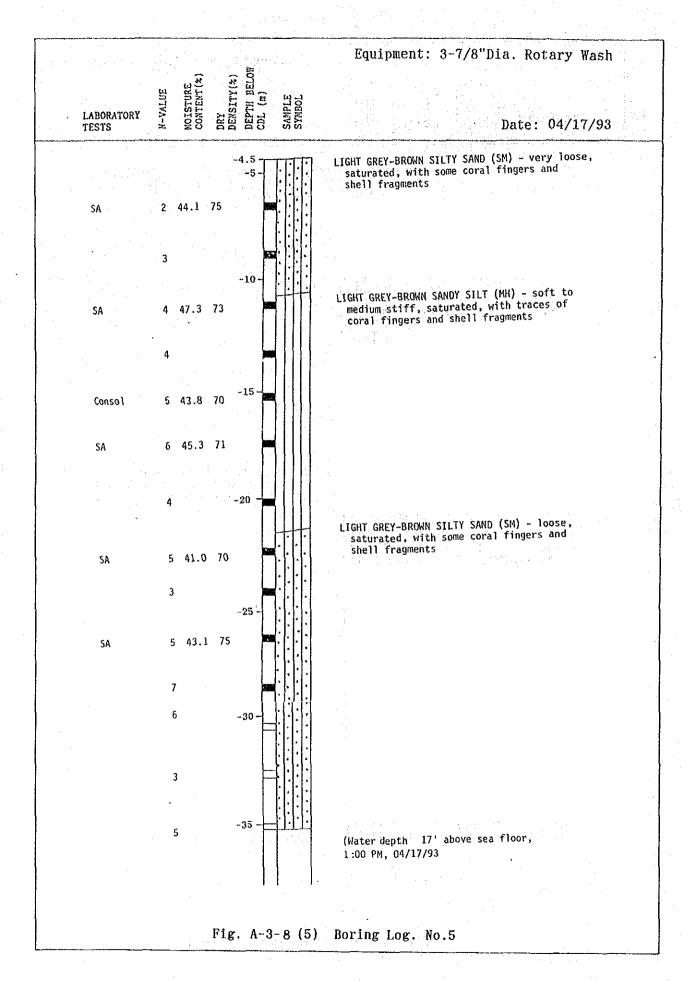
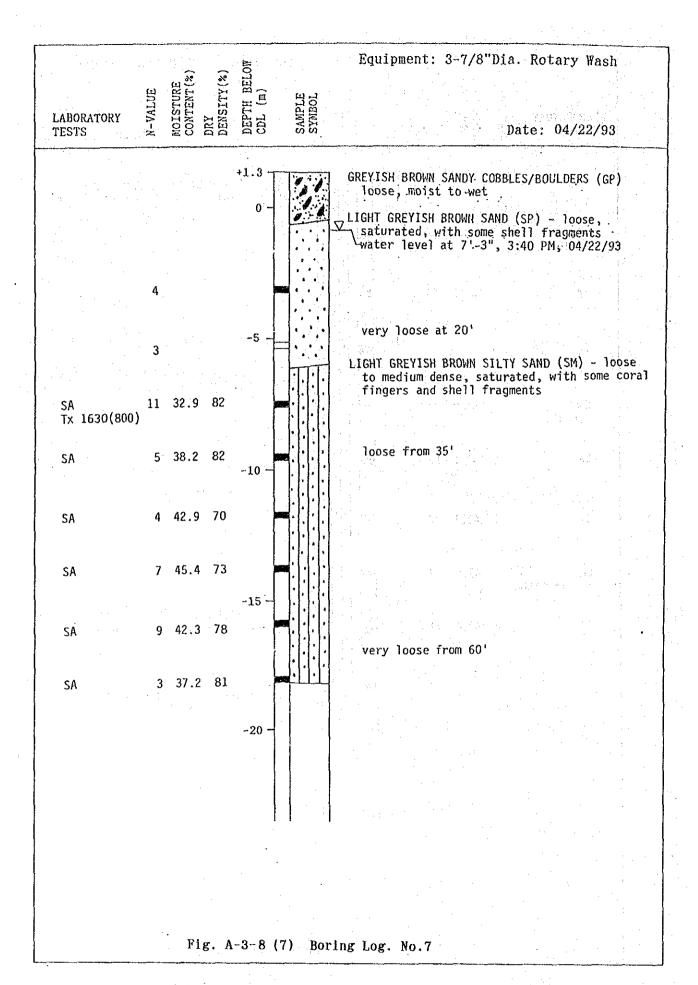


Fig. A-3-6 (3) Chronological Graph of Wave Height 1991


Fig. A-3-6 (4) Chronological Graph of Wave Height 1992





	MAJOR DI	VISIONS			TYPICAL NAMES
S		CLEAN GRAVELS WITH LITTLE OR	GW		WELL GRADED GRAVELS, GRAVEL — SAND MIXTURES
SOIL S	GRAVELS	NO FINES	GP	W Y	POORLY GRADED GRAVELS, GRAVEL— SAND MUXTURES
1 2	MORE THAN HALF COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH	GM	2 3	SILTY GRAVELS, POORLY GRADED GRAVEL— SAND—SILT MIXTURES
GRAINED	No. 7 chira cana	OVER 12% FINES	GC		CLAYEY GRAVELS, POORLY GRADED GRAVEL— SAND—CLAY MIXTURES
GRA 8 W		CLEAN SANDS WITH LITTLE OR	SW		WELL CRADED SANDS, GRAVELLY SANDS
SSE (SANDS	NO FINES	SP		POORLY GRADED SANDS, GRAVELLY SANDS
COARSE HOME THAN H	MORE THAN HALF COARSE FRACTION IS SWALLER THAN NO. 4 SIEVE SIZE	Sands with	SM		SILTY SANDS, POORLY GRADED SAND— SILT MIXTURES
ပိ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OVER 12% FINES	sc		CLAYEY SANDS, POORLY GRADED SAND- CLAY MIXTURES
S S S			ML.		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS, OR CLAYEY SILTS WITH SLIGHT PLASTICITY
SOILS THW \$200 SEVE	SILTS AND		CL		Indrganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
INED SWLER H	DEOLO THEIR COS	3 11441 30	OL.		ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
×α			мн		INORGANIC SILTS, MICACEOUS OR DIATOMAGEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS
7	SILTS AND	CLAYS	СН		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
FINANCE TA	EROD DEL GROAT		ОН		ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGH	LY ORGANI	C SOILS	Pt		PEAT AND OTHER HIGHLY ORGANIC SOILS

UNIFIED SOIL CLASSIFICATION SYSTEM

Sieve Analysis SA Consolidation Consol =

Unconsolidated Undrained Tx Triaxial Compression (psf) Specific Gravity

 G_{S}

■ "UNDISTURBED" SAMPLE

BULK SAMPLE

KEY TO TEST DATA

Fig. A-3-8 (8) Soil Classification Chart and Key to Test Data

Table A-3-11 Records of Vessel Calls and Incoming Cargo in 1991 (In Revenue Tons)

Voyage	Date	Date		Contai	nerized	l	,		Br	eak Bu	lk		All
No. Vessel	Arr'd	Sailed	1.01		FC	L						VEHL	Cargo
			LCL	GEN	REEF	HAZ	STEE	GEN	HAZ	STEEL	OTR	CLES	Rev. Tons
4 Marjon	1/10	1/11	47										47
53 Kyowa Rose	1/11	1/12	378	67				81	i	38		79	643
49 Micro Comm	1/23	1/24	2152	13	46				İ	1		1	2211
48 Micro Indep	1/25	1/25	79	11		4		j					34
54 Kyowa Rose	2/17	2/18	646	196		25	12	80	2	82		62	1105
4 Marjon	2/24	2/25	1633	49	43	43	7						1732
l Caroline Isl	3/1	2/20]				2			·	6	8
48 Micro Indep	3/6	3/7	1962	23	30	20	·				69	[2104
3 Bunga	3/10	3/11	27					3		109	860		999
1 #5 Kendari	3/16	3/17	113		1 1		١	55			1268	\ \	1436
55 Kyowa Rose	3/18	3/19	711	169			21	79	4	97	'	45	1126
50 Micro Conm	3/26	3/28	1763	12	31			69		16	1	33	1929
56 Kyowa Rose	4/20	4/21	731	215				137	23	64		33	1203
49 Micro Indep	5/2	5/3	3205	71	34			1				8	; 3318
7 Marjon	5/5	5/6	270	72		10			١.		40		342
21 Sparkle	5/21	5/22	1006	132	10	17	۸۸		1		48		1204
51 Micro Comm	5/23	5/24	2106	32	18		39	ا مما		.,			2191
57 Kyowa Rose	5/23	5/23	199	172		2		22	2	17	115	111	640
4 Cedrus	5/30	5/31	74	35		Z		9		95		23	238
52 Micro Indep	6/9 6/9	6/10	1764	1018	55				0		077	63	2900
22 Sparkle 7 Marjon	6/16	6/9 6/17	592 2139	107 87	21		7		. 2		27	3	731
4 Sth Clipper	6/21	6/25	2199	. 01	21		1	54 601					2308 601
23 Sparkle	6/26	6/27	506	95		3		OOT.			İ	55	659
50 Micro Indep	7/2	7/3	25	6		Ð						90	31
4 Sea Treas	7/10	7/11	463	265		2		136	4	339	9	145	1363
52 Micro Comm	7/22	7/23	445	25	34	4		100	"	57	3	2	1503 563
4 #5 Kendari	7/25	7/30	110	20	01			31	1	0,	2979	"	3011
25 Sparkle	8/3	8/4	1209	118		28		1	2		56	21	1435
2 Blue Comet	8/17	8/18	52	29		40	. 1	187		٠.	50	21	269
8 Marjon	8/22	8/23	1933	84	27			10,					2044
51 Micro Indep	9/8	9/9	1650	65	38							48	1801
5 Sea Treas	9/11	9/12	937	210	"			2	2	482		14	1647
6 Sea Treas	9/17	9/17	140	21				5		11		6	183
3 Blue Comet	9/18	9/19	99	151			28	131	15	**	10	145	579
53 Micro Comm	9/29	9/30	2090	76	31				1		~~		2197
4 Blue Comet	10/17	10/19	813	312	⁻	9		144	4	30	20	49	1381
9 Micro Comm	10/30	10/31	1698	49		-			_	~			1741
63 Kyowa Rose	11/20	11/21	781	228				144	20	83	89	198	1513
2 Tropical Ace	11/21	11/24									1450		1450
54 Micro Comm	12/9	12/10	2601	177	27								2805
64 Kyowa Rose	12/16	12/17	663	255				102	7	119		185	1331
8 Sea Treas	12/21	12/24	192	32							1367		1815
TOTALS (REV	ENUE TONS)		37894	4679	435	112	115	2045	89	1863	8368	1334	56934

Source: TRANSCO Inc., 1992

Notes:

a) LCL cargo consists of containerized cargo that is unstuffed by local consignees rather than stevedores.
 b) FCL cargo represents incoming containerized cargo which is unstuffed by local stevedors.
 c) Break bulk cargo includes non-containerized cargo such as concrete, beer, mail, chassis trailers, copra.

Dimensions of Steel Sheet Pile at Dock A

Tuno	I	Dimensi	lons (m	n)	Section Modules	Remarks
Type	₩	h:,	t1	t2	(cm ³ /m)	Remains
MZ-38	457	305	12.7	9.53	2,520	US Steel

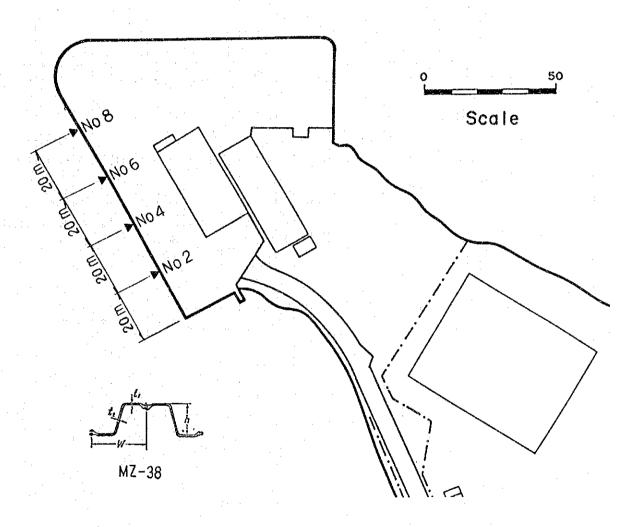


Fig. A-3-9 Dimensions and Locations of the Thickness Measurement of Steel Sheet Piles at Dock-A

Table A-3-12 (1) Results of the Thickness Measurement of Steel Sheet Piles

Site : DOCK A Location of Selected Sheet Piles: No. 2 $\,$

Corrosion	Rate	(mm/year)				- -		0.14						0.11						9.0 0						0.11
Corroded	Thickness	T1-T2(mm)						4.3						3.4					- 1	හ . t	- 1 - 1 - 1					3.5
	T2(mm)	average	8.3	8.9	8. 7	8.6	L . L	8.4	8.4	9.6	8.7	6.6	10.0	9.3	10.2	11.0	10.8	10.5	1.1.9	10.8	8.3	9 6	11.1	6.4	10.4	9.2
	Thickness T	3rd	8.0	8.6	8.1	8.6	8.8		6.4	9.7	9.6	9.8	9.7	1	10.1	1.1.0	10.8	11.6	11:5	-	9.6	0 6	11.4	4.4	10.6	
	Measured T	2nd	8.4	8.8	0.6	8.1	6.4		8.4	9.6	6.9	6.6	10.2	.	10.2	10.7	10.7	10.0	12.2		9.4	10, 2	11.0	4.3	10.4	1
		1st	8.5	₽.6	8.9	9.0	8.0		10.3	9.5	9 6	6 6	10.0-		10.2	11.2	10.8	9.8.	11.9		5.8	9.7	11.0	10.4	10.3	
	Measured	No.	1	2	က	TP	5	average	Ţ	2	3	ţ	5	average	Ţ	2	3	4	5	average		2	3	7	5	average
Original	Thickness	T1(mm)			12.7						12.7						12.7				Tati		12.7	1		
Measured	Location	(m)			-1.0						-2.5						-4.5					-	0.8-			

Table A-3-12 (2) Results of the Thickness Measurement of Steel Sheet Piles

Site : DOCK A Location of Selected Sheet Piles: No.4

	TOTSOITOS	Rate	(mm/year)						0.0						0.09						0.14						0.10
70701	7077700	Thickness	T1-T2(mm)						2.8			· . · : . · : .			2.7						4.4						3.2
		2(四田)	average	10.4	S 6	9.6	9.8	o . o	o .	8.8	0.6	10.3	11.0	10.6	10.0	6.6	10:3	3.3	7.8	10.2	8.8	10.4	10.1	9.3	8.8	8.7	9.5
	•	Thickness 12 (mm	3rd	10.7	6.7	9.8	9 6	10.2	1	7.4	10.4	10.5	11.1	10.6	1	10.2	10.2	3.5	11.0	11.3	1	9.8	10.6	8.8	9.1	8.9	-
		Measured 1	2nd	10.7	9.8	9.6	10.2	9.7	ı	9.6	8.1	10.0	11.1	10.6		10.4	10.6	3.3	6.8	9.6	ı	10.5	10.6	6.6	8.6	8.7	1
			1st	9.8	10.2	9.5	9.5	8.8	-	9.8	8.6	10.5	10.8	10.6	-	9.2	10.2	3.0	5.7	9.7	-	10.7	9.1	9.4	8.9	8.4	1
	7	Measured	No.	-	2	3	*	5	average	₩	2	3.55	7	5	average	1	2	က	.4	5	average	Ţ	2	3	4	S	average
Original	7 1 1 8 1 11 a 1	Inickness	Ti(mm)			12.7						12.7						12.7						12.7			
Moscurad		101	(E)			-1.0						-2.5						-4.5		. ;				0.9-			

Table A-3-12 (3) Results of the Thickness Measurement of Steel Sheet Piles

Site : DOCK A Location of Selected Sheet Piles: No.6

Moseurad	1 6 8 : 8 0						001100	000000000000000000000000000000000000000
30 7 8 9 9 9 9	1 2 2 1 1 2 1						30301100	TOT 00 1 100
Location	Thickness	Measured		Measured Thickness T2(mm)	nickness T		Thickness	Rate
(m)	T1(mm)	No.	181	2nd	3rd	average	T1-T2(mm)	(mm/year)
		v1	10.0	10.1	10.2	10.1		
		2	11.0	10.9	11.3	11.1		
-1.0	12.7	က	10.1	10.0	10.2	10.1		
:		7	7.2	6.8	7.0	1.0		
		5	7.2	7.8	5.7	6.9		
		average	J	1	1	0.6	3.7	0.12
		1	6.9	7.0	6.7	6.9		
		2	6.5	6.3	8.2	6.3		
-2.5	12.7	\$	10.3	10.2	10.3	10.3		
		7	9.4	11.0	9.4	6.6	: · · · · · · · · · · · · · · · · · · ·	
		5	12.4	11.9	11.4	11.9		
		average	-	-	1	9.1	3.8	0.12
		1	10.2	10.3	10.4	10.3		
	· · · ·	2	10.2	10.1	10.2	10.2		
-4.5	12.7	3	3.8	3.8	3.8	3.8		
10 10 10 10		7	09	6 6	8.8	8.2		
		5	10.4	10.6	9.4	10.1		
		average	•	1		8.5	4.2	0.13
		1	9.2	9.3	9.7	9.4		
		2	1. 6	9.8	9.7	9.5		
-6.0	12.7	က	10.1	10.0	10.2	1.0.1		
		7	7 6	9.1	8 6	7.6	****	
		5	10.1	9.4	9.6	9.7		
-		average	1	1.	_	9.6	83.	0.10
								Jan 1997

Table A-3-12 (4) Results of the Thickness Measurement of Steel Sheet Piles

Site : DOCK A Location of Selected Sheet Piles: No.8

Measured Origina	Original						Corroded	Corrosion
Location	Thickness	Measured	1	Measured Thickness	hickness T	72(mm)	Thickness	Rate
(m)	T1(mm)	No.	1st	2nd	3rd	average	T1-T2(mm)	(mm/year)
			9.7	10.6	7 · L	2 6		
		2	10.9	11.0	10.8	10.9		
-1.0	12.7	3.	10.4	10.5	1.0.~3	10.4		
		4	10.8	10.2	10.6	10.5		
		5	8.2	10.4	10.3	10.0		
		average	_	_	I	10.2	2.5	0.08
		1	10.5	10.3	9.9	9.1		
		2	10.6	10.2	10.6	10.5		
-2.5	12.7	3	11.1	11.3	11.4	11.3		
		7	10.2	6.6	11.8	10.6		
		5	7.8	8.2	7.4	7.8		
		average	ì		1	6.6	2.8	60.0
		П	10.6	10.0	9.8	10.1		
		2	4.0	4.7	5.0	4.6		
-4.5	12.7	က	11.0	9.4	7.8	9.4		
_		4	11.0	11.2	11.0	11.1		
		2	10.5	8.5	8.2	9.1	.	
		average	1	ļ		8.8	3.9	0.12
		1	7.7	4.9	8.6	7.5		
		2	10.8	10.4	12.4	11.2		
16.0	12.7	3	11.7	11.9	12.2	11.9		
		4	10.6	7.5	12.2	10.1		
		သ	10.5	10.2	11.0	10.6		
		average	1	ı	i	10.3	2.4	0.08

Table A-4-1 Anticipated Incoming Marine Cargo (1991-2003) (In Revenue Tons)

Year	FCL	LCL	Break Bulk	Total Revenue Tons
1991	37,869	5,335	13,700	56,904
1992	39,081	5,506	14,138	58,725
1993	40,331	5,682	14,591	60,604
1994	41,622	5,864	15,058	62,543
1995	43,037	6,063	15,570	64,670
1996	44,500	6,269	16,099	66,869
1997	46,013	6,482	16,646	69,142
1998	47,578	6,703	17,212	71,493
1999	49,196	6,931	17,798	73,924
2000	50,967	7,180	18,438	76,585
2001	52,801	7,439	19,102	79,342
2002	54,755	7,714	19,809	82,278
2003	56,781	7,999	20,542	85,322
				1

Notes

1992-1994 annual rate of growth is based on 3.2%/annum.

1995-1999 annual rate of growth is based on 3.4%/annum.

2000-2001 annual rate of growth is based on 3.6%/annum.

2002-2003 annual rate of growth is based on 3.7%/annum.

Source: Seaport Master Plan, January 1993

Table A-4-2 Container Storage Area by Cargo Handling Methods

		1 14 1							
Ex.	Cargo Handling Metho (Mashalling Yard)	od Typ	Stora	ainer ge Area	A ₃ 3)	A ₁ 4)/N	A ₃ /A ₁	Remarks	PAC ECO (m ² /
	(habharring xara)	.,,,,	_N 1)	A2 ²⁾	(m ²)	(m ²)	-3/-1		piece)
1	Matzon System	(1) 20	1,000	22,750	17,250	40.0	0.431	(10x10)pieces x 10 Block	
2	tt .	(2) "	1,090	25,112.5	14,887.5	36.7	0.372	Ref.Cont. 1 Block, Dry Cont. 4 Block	41.7
3	H	(3) "	1,290	29,662.5	10,337.5	31.0	0.258	Ref.Cont. 1 Block Dry Cont. 2 Block	54.0
4	l	(4) "	1,200	27,300	12,700	33.3		Dry Cont. 2 Block	
5	35' Transtainer	(1)	960	20,280	19,720	41.1	0.493	Pier Head Line v. Parallel arrangement	35.5
6	tt tı	(2) "	1,092	23,400	16,600	36.6	0.415	Perpendicular arrangement	
7		(1) "	1,200	20,475	19,525	33.3	0.488	Parallel arrangement	
8		(2) "	1,276	22,050	17,950	31.3	0.449		
9	l a c	(1)	1,200	20,280	19,720	33.3	0.493	Parallel arrangement	
10	11 11	(2) "	1,710	25,350	14,650	23.4	0.364		} 27.0
11	133' "	"	1,170	23,985	16,015	34.2	0.400	1	25.0
12	· .	(1) n	630	17,640	22,360	63.5	0.559	Indiana near na marana	
13	i i	(2) "	651	18,968	21,032	61.4	0.526	Perpendicular arrangement	} 88.0
14		(3) 40'	288	17,640	22,360	138.9	0.559	•	
15	and the second s	(4) "	385	17,787	22,213	103.9	0.555		
16		(1) 20	1	13,260	27,990	75.8	0.679	la a sa a	
17		(2) "	550	13,406	27,219	73.9	0.670	Perpendicular arrangement	
18		(1) "	840	17,784	22,216	43.9	0.556	•	
19	1	(2) "	912	16,380	23,620	47.6	0.509	Parallel arrangement	

Source : Introduction for Planning of Port and Harbor,

Japan Construction Technology Association

Note : 1) N: Number of Stock Containers

2) A₂: Storage Area (m²)

3) A₃: Passage Area

4) $A_1: A_2 + A_3$

Table A-5-1 The Frequency Characteristics of Current

Otations	Daule	Dominant	Donasakasa	Average	Range of Most	Frequent Velocity
Stations	Rank	Current Direction	Percentage (%)	Velocity (cm/sec)	Range(cm/sec)	Percentage(%)
C-1	1	NE	42.1	3.5	2 ~ 4	84.2
:	2	NNE	17.8	3.2	4 ~ 6	15.8
C-2	1	NNE	15.8	3.3	0 ~ 2	42.1
0-2	2	NE	13.8	2.5	2 4	36.2
C-3	1	S	25.0	2.4	2 - 4	96.7
(-v	2	SSE	24.3	2.7	4 6	2.0

Table A-5-2 The Tidal Type

Station	(k1+02)	(M2+S2)	Average	e Current	VO	my 1 a m
SCACIUM	(M1+0Z)	(MZ+3Z)	Direction()	Velocity(cm/sec)	K1+01+M2+S2	Tidal Type
C-1	1.4	1.5	51	2.7	0.93	0.93
C-2	2.3	2.7	33	0.6	0.12	0.85
C-3	1.7	1.2	141	2.4	0.83	1.42

Table A-5-3 The Tidal Constants and Tidal Type at Chuuk

Item	K1	01	M2	\$2	Tidal Type
Amplitude	16.5	12.6	6.8	9.8	
Lag ()	215.7	193.7	84.9	89.7	1.753

N 7 26' 35" E 151 50' 15"

Table A-5-4 The Results of Water Quality Survey

Station	Depth (m)	Station Depth Transparency (m)	Water Temperature Salinity (-)	Salinity (-)	H (-)	ty pH *SS (mg/1)	DO COD (mg/l)	COD (mg/1)	(mg/1) $(mg/1)$ $(mg/1)$ $(mg/1)$ $(mg/1)$	NO_2-N (mg/1)	NO3-N (mg/l)	T-P (mg/1)	Turbidity (degree)
St.1	3.9	>3.9	29.0	34.1	8.1	<0.5	6.1	6.1 <0.5	<0.002 <0.01	<0.01	<0.01	0.01	<0.1
St.2	8.0	>8.0	29.0	34.1	8.1	<0.5 6.7		5.0>	<0.002 <0.01 <0.01 <0.01	<0.01	<0.01	<0.01	<0.1
St.3	14.0	10.5	23.2	34.1	8.1	<0.5	l ·	6.3 <0.5	<0.002 <0.01 <0.01	<0.01	<0.01	0.01	<0.1
St.4	3.4	>3.4	29.3	34.1	8.1	<0.5		6.9 <0.5	<0.002 <0.01 <0.01	<0.01	<0.01	<0.01	<0.1
St.5	2.0	>2.0	29.3	34.1	8.1	<0.5	6.4	<0.5	<0.002 <0.01 <0.01	<0.01	<0.01	<0.01	<0.1
St.6	3.5	4.1	29.6	34.3	8.1	<0.5	6.6	<0.5	<0.002 <0.01 <0.01 0.01	<0.01	<0.01	0.01	<0.1

*: less than 0.5 (mg/1) of SS at twenty points around the Planned Area.

Table A-5-5 (1) The Results of Content Tests for Marine Sediments

# ; vu	mora.					ınd
50 CHOC	T codeno	Sand	Sand	Sand	Sand Sand	Sand Sand Sand Fine Sand
(%)	Clay	•	ı	1 1	1 1 1	1 1 1 60 60 100 100 100 100 100 100 100
tribution	Silt	0.5	3.2	3.2	3.2	3.2 3.5 0.2 10.5
Grain Size Distribution (%)	Sand	74.4	28.2 68.6	68.6	68.6 70.7 86.2	68.6 70.7 86.2 71.0
- :	Gravel	25.1	28.2	28.2	28.2	28.2 25.8 13.6 10.0
Ä	(wt% dry)	2.9	3.1	3.1	3.1 2.9 2.6	
Sulfied	(mg/g dry)	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01 <0.01 0.01
Station	TOTO DO C	St.1	St.2	St.2 St.3	St.3 St.3	St.2 St.3 St.4 St.5

Table A-5-5 (2) The Results of Elute Tests for Marine Sediments

									(1711)	(unic:mg/1)		
tation	Cd	હ્ય	Cr6+	As	Нg	R-Hg	Hg R-Hg CN	d-0	PCB	ಕ	Zn.	fi.,
St.7	<0.001	<0.005	<0.02	<0.01	<0.01 <0.0005 ND* <0.01	*Q	-0.01	<0.01	<0.01 <0.0005 <0.01	<0.01	<0.01 0.5	0.5
\$t.8	<0.001	<0.005	<0.02	<0.01	<0.0005	*QN	<0.01	<0.01	<0.02 <0.01 <0.0005 ND* <0.01 <0.001 <0.0005 <0.01 <0.010	<0.01	<0.01	0.2
andard**	0.1	1	0.5	0.5	0.5 0.005 ND* I	ND*		1	0.003	3	o.	15

*: Non-Detection **: Japanese Standard value for marine sediment

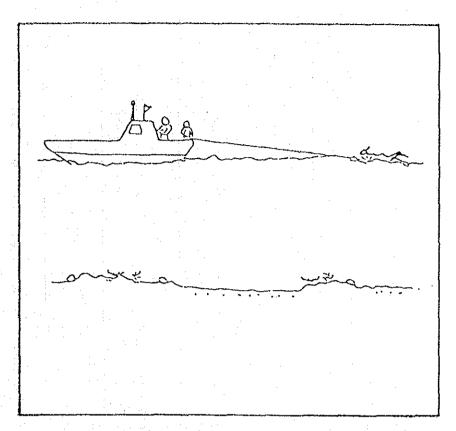


Fig. A-5-1 (1) Survey by means of Manta Method

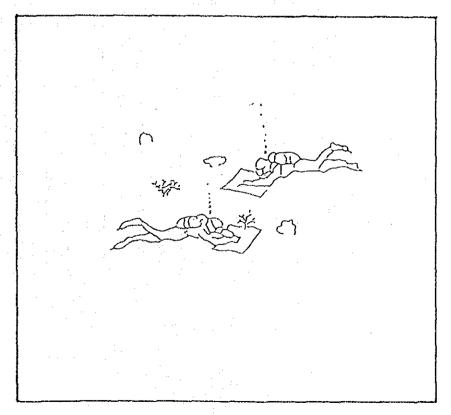


Fig. A-5-1 (2) Survey by means of Quadrat Method

Table A-5-6 The Results of General Survey for Marine Organisms by Means of Manta Method

Line	Nor	North Inner Harbor - Dock B,C		Airport - North Inner Harbor
Organisms	Line I*	Line II*	Line III*	Line IV
Coral Coverage Dominant Sp.	> 5% Massive Porites	> 5% Branch Acropora Massive Porites	> 5% Branch Acropora	> 5% Branch Acropora Massive Porites
Algae Dominant Sp.	Halimeda spp. (on Rocks & Gravels)	Halimeda incrassata on Sandy Bottom)	None	Halimeda incrassata (on Sandy Bottom)
Megarobenthos Dominant Sp.	None	Holothuria atra	Holothuria atra	Моле

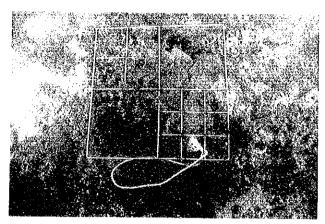
*: Line I located from the center of Dock-C to the mouth of North Inner Harbor (the Beginning Point of Manta Method); Line III located from the center of Dock-B to the Point 20 m offshore of the Beginning Point of Manta Method. Line II located from the offshore corner of Dock-C to the Beginning Point of Manta Method;

Table A-5-7 (1) The Results of Detail Survey for Marine Organisms by Means of Quadrat Method

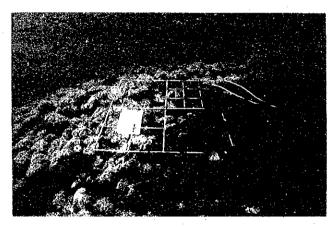
Survey Arca	Corals	Algae	Megarobenthos
	Coverage: 0 - 5% (<1%)	Coverage: 60 - 70% (>50%)	Occurring Sp.: Stichopus chloronotus
	Dominant Sp.: None	Dominant Sp.:Halimeda sp.	Holothuria atra
North Inner			
Harbor	Accounting On Danitas calida	Assurating Co. Dading given	
•	Occurring Sp.:Porites solida	Occurring Sp.:Padina minor, Caulerpa racemosa, C.serrulata	
:		Neomeris annulata, Dictyopteris	
		sp., Codiacea sp. etc.	
	Coverage: 0 - 95% (<5%)*	Coverage: 0 - 95% (<50%)*	Occurring Sp.: Discosma sp., Stycho-
	Dominant Sp.: Corymbose & Table	Dominant Sp.:Halimeda sp.	dactyla gigantea, H. atra, Sticho-
			podidae sp., Polycarpa aurata, Lopha
	Acropora, Massive Porites		cristagalli, Streptopinna
Front Area			saccata, Lambis lambis,
of Dock-C			Tripeneustes gratilla, etc.
	Occurring Sp.: Pocillopora dami-	Occurring Sp.:Padina minor,	
	cornis, Seriatopora hystrix,	Dictyopteris sp., Liagora sp.,	
	Symphyllia sp., Pseudosidera-	Blue-Green Algae, Filamentous	
	strea tayamai	Green Algae, etc.	
	Coverage: 0 - 10% (<1%)*	Coverage: 5 - 80% (80%)*	Occurring Sp.: Synapta maculata,
Front Area	Dominant Sp.: None	Dominant Sp.:Microscopic Algae	H. atra, S. chloronotus, Stichopodida
of Dock-B			sp., Holothuria sp., P. aurata etc.
(Shore)			
	Occurring Sp.:Massive Porites,	Occurring Sp.: Halimeda incrassata	u,
1	Favia laxa, Goniastrea pectinata	H. macroloba, Udotea sp., P. minor	3
		N. annulata, etc.	
	Coverage: 0 -100% (>801%)*	Coverage: 5 - 80% (80%)*	Occurring Sp.: Culucita novaeguineae,
	Dominant Sp.: Acropora formosa,	Dominant Sp.: Halimeda sp.	Lopha cristagalli, Raspailia hirusta,
Front Area	Porites cylindrica, Massive		Polycarpa aurata, Holothuria edulis,
of Dock-B	Porites, Table Acropora, etc.	•	H. atra, Linckia sp., etc.
(Offshore)	mility indicates working		
	Occurring Sp.: Diploastrea	Occurring Sp.: Halimeda incrassata	l ,
	heliopora, Pachyseris rugosa,	H. macroloba, Microscopic Algae	
	Hydnophora rigida, Herpolitha		
	weberi etc.		

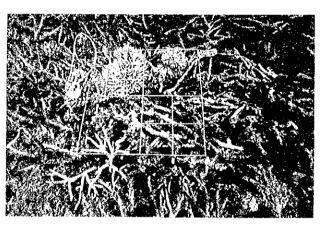

^{*:} The number in parenthesis indicates the coverage at outside of quadrat

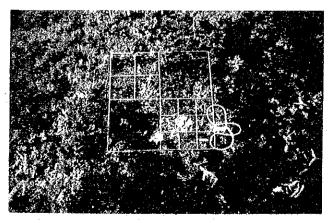
Table A-5-7(2) The Individual Numbers of Macrobenthos Species

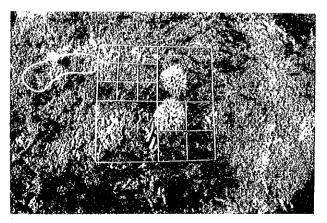

Station Occurring Species	St.1	St.2	St.3	St.4	St.5	St.6
Foramini fera						
Amphistegina radiata	+	+	+	+	32	0
A. lessonii	0	0	+	0	0,	0
A. sp.	0	0	+	+	0	0
Baculogypsina sphaerulata	+	0	0	0	0 .	+
Calcarina spengleri	0	0	0	+	0	0
Heterostegina depressa	+	0	+	0	0	0
Marginopora vertebralis		+	32	+	1	+
Operculina ammonoides	0	0	+	0	0	0
O. venosa	0	0		0	0	0
Peneloplis planatas	0	0	÷	0	0	0
Polychaeta						
Chrysopetalum sp.	1	0	0	0	0	0.
Pisione sp.	0	0	0	0	(1)*	0
Thyposillis sp.	0	1	1	0	0	0
Langerhansia sp.	0	0	- 1	0	0	0
Sphaerosyllis sp.	0	0	0	0	(6)+	0
Exogone sp.	0	0	1	0	0	0
Spioniidae sp.	0	0	0	0	(1)*	0
Armandia sp.	0	1	0	0	0	0
Archaiannelida						
unknown sp.	0	0	0	0	. (13)*.	0
Sipunculida						
unknown sp.	0	3	0	0	0	0

^{+:} Only shell appearing

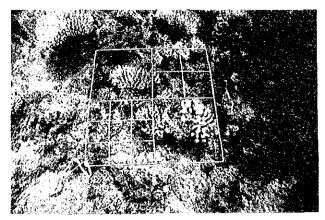

ullet: The number in parenthesis indicates the numbers of Meiobenthos (smaller than Macrobenthos)


North Inner Basin (Stichopus chloronotus, Padina minor)

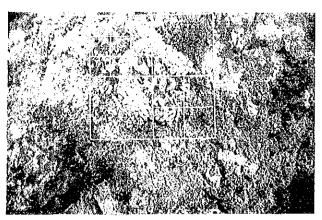

North Inner Basin (Halimeda spp.)


The Front Area of Dock-C (Discosoma sp.)

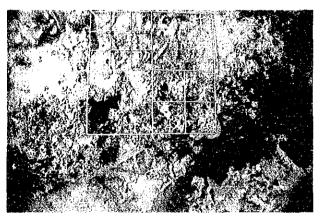
The Front Area of Dock-C (Acropora sp., Pocillopora damicornis)

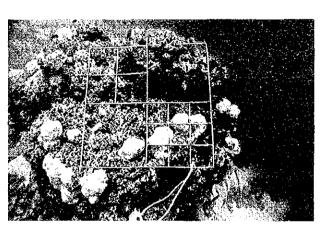


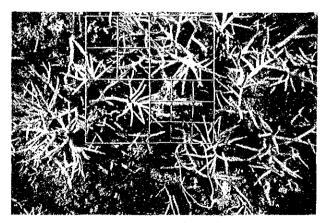
The Front Area of Dock-C (Halimeda sp., Acropora sp.)

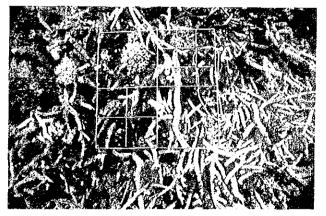


The Front Area of Dock-C (Halimeda sp., Seriatopora hystrix)

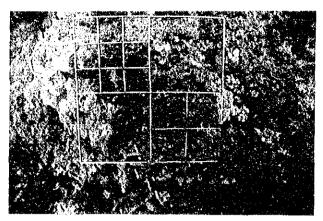

Fig. A-5-2(1) Occurring Species (Quadrat Survey)


The Front Area of Dock-C (Pocillopora eydouxi, Acropora sp.)

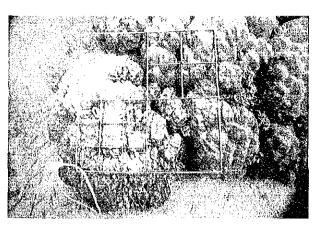

The Front Area of Dock-C (Symphyllia sp.)


The Front Area of Dock-C (Favites abdita, Favia pallioda)

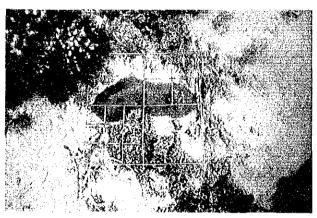
The Front Area of Dock-C (Halimeda sp., Porites sp.)

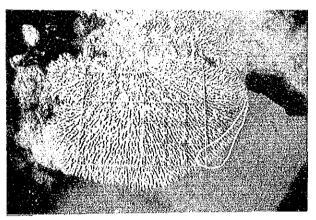


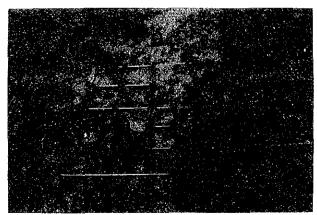
The Front Area of Dock-C (Acropora formosa, Halimeda)



The Front Area of Dock-C (Pocillopora damicornis)

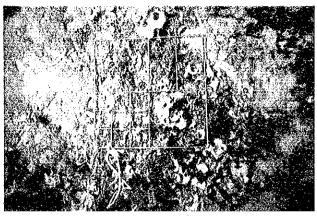

Fig. A-5-2(2) Occurring Species (Quadrat Survey)


The Front Area of Dock-C (Symphyllia sp., Halimeda sp.)

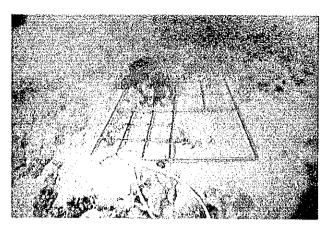

The Front Area of Dock-C (Porites sp., Sabellastarte japonica)

The Front Area of Dock-C (Polyphyllia talpina)

The Front Area of Dock-C (Acropora sp.)

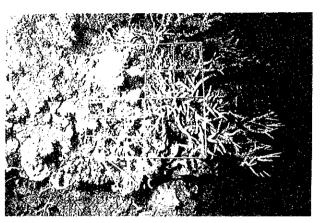


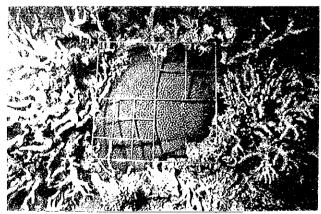
Front Area (Shore) of Dock-B (Halimeda macroloba, H. incrssata)

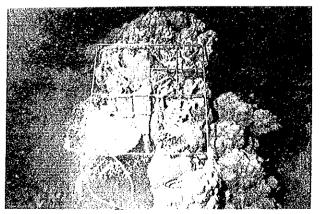


Front Area (Shore) of Dock-B (Porites sp.)

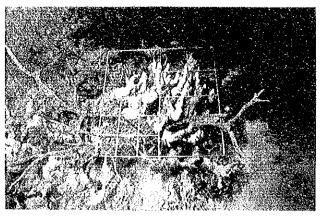
Fig. A-5-2(3) Occurring Species (Quadrat Survey)


Front Area (Shore) of Dock-B (Stichopus chloronotus, padina minor)

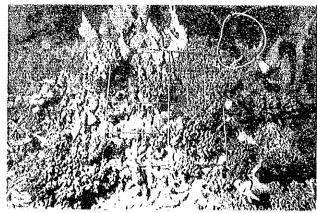

Front Area (Shore) of Dock-B (Udotea sp.)


Front Area (Shore) of Dock-B (Synapta maculata, Padina minor)

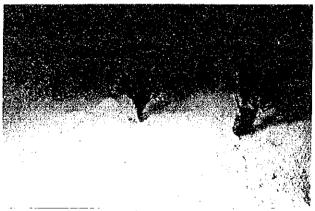
Front Area (Off Shore) of Dock-B (Acropora formasa, Porites sp.)



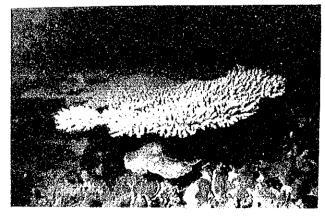
Front Area (Off Shore) of Dock-B (Diploastera heliopora)

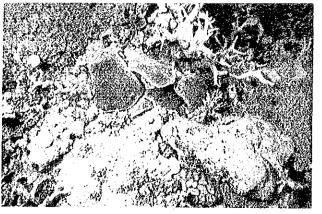


Front Area (Off Shore) of Dock-B (Porites sp., Lopha cristagalli)


Fig. A-5-2(4) Occurring Species (Quadrat Survey)


Front Area (Off Shore) of Dock-B (P. cylindrica, Raspailia hirsuta)


Front Area (Off Shore) of Dock-B (Sinularia sp., Pacyseris sp.)


Front Area (Off Shore) of Dock-B (Halimeda incrssata)

Front Area (Off Shore) of Dock-B (Polyphyllia talpina, Porites sp.)



Front Area (Off Shore) of Dock-B (Acropora sp.)

Front Area (Off Shore) of Dock-B (Zoopilus echinathus)

Fig. A-5-2(5) Occurring Species (Quadrat Survey)

(3): DESIGN SEISMIC INTENSITY

The Islands of Chuuk State are located over the group of dormant volcanoes of the Caroline Islands in the Central Pacific. Truck Lagoon where Weno Island is located is a large lagoon formed inside the crater of a volcano. The volcano is dormant and no records of volcanic activities have been known.

In the State of Chuuk, no earthquake recording has been conducted, and no regulations are in force for design seismic intensity. As no reference seismic data are locally available on which the design of Weno Harbor Extension Project is to be based, the design seismic intensity for use in basic design are presumed as follows.

The U.S. Uniform Building Codes include some descriptions regarding earthquakes in the Central Pacific area since the area was under U.S. trusteeship and Guam Island is a U.S. territory in nearby.

The table of seismic coefficients in the Uniform Building Codes for these areas gives the following data for the Pacific Region.

Caroline Islands	Grade	Coefficient
Pohnpei	0	z=0
Kwajalei (Marshal Is.)	1	z=0.075
Wake Island	0	z=0
Mariana Islands		
Guam	3	z=0.3
Salpan	3	z=0.3
Tinian	3	z=0.3

Presumption for area other than those mentioned above will be made on the basis of interpolation.

Chuuk State is located at about 900 km southeast of Guam, and Pohnpei is about 700 km further east of Chuuk. Chuuk is therefore slightly to the east of the median point of Guam and Pohnpei. The sites mentioned in the table are over the west portion of the expansive Pacific Plate, the western edge of which moves at the eastern side of the Mariana Trench as if to dive under the Philippine Plate. The activities of the Pacific Plate form the deep Mariana Trench and pushed the islands up to the sea level on its west side to form the Mariana Islands. These plate activities cause earthquakes and volcanic activities in the Mariana Islands and in the region in west of the Islands, assigning high seismic coefficients for the area, particularly for Guam.

The East Caroline Islands including Chuuk and Pohnpei and the Marshall Islands are located over the westerly portion of the Pacific Plate Basin. The seismic coefficient will be lower as the location is away from the western edge of the Pacific Plate as shown in the table above. When the seismic coefficient Z for Chuuk State is interpolated from the above table,

$$z = 0.1 - 0.15$$

According to the U.S. Uniform Building Codes, earthquake force V in static lateral load is given from the following equations:

 $V = W \times (Z \times I \times C) / RW$ $C = 1.25 \times S / (T)^{2/3}$ $T = Ct \times (hn)^{3/4}$

wherein

W: Weight of an object

I: Importance factor, I = 1

Rw: Rw = 4

hn: Height of a structure, (assume 50 ft)

Ct: Structure coefficient, Ct = 0.002

S: Ground coefficient, S = 1.2

After substitution of various values in these equations, following coefficients are obtained.

T = Ct x (hn)^{3/4} = 0.002 x (50)^{3/4} = 0.02 x 18.8 = 0.376
C = 1.25 x S /
$$T^{2/3}$$
 = 1.25 x 1.2/0.376^{2/3} = 1.5/0.521 = 2.88

$$Z \times I \times C / Rw = (0.1 - 0.15) \times 1 \times 2.88/4 = 0.072 - 0.108$$

Therefore, slightly larger than the median value of the two limits of Z \times I \times C / Rw = 0.1 is obtained.

As this value is equivalent to seismic coefficient (K) in calculation of soil pressure at the time of earthquake, the design seismic coefficient (K) for this Project is set at 0.1.

