(3) Air pollution and control conditions in Mendoza province

Inspection of atmospheric environment in Mendoza province is performed by the measuring plants in 11 places arranged in the areas centering around Gran Mendoza conforming to the environmental control plan of province.

In this area, in the south side of capital, the steelworks, petroleum refining plants, metal works, thermal power plants, etc. and in the north side, the large scale fixed discharge sources such as cement works, etc. are located so as to sandwich the capital of overpopulation area where is in the geographical feature of basin type.

This area is also the geographical important position of traffic, so that the traffic of large scale vehicles is heavy.

The current conditions and problems and the countermeasures of atmospheric environment in Mendoza province are shown below. These are divided in two category 1) moving sources and 2) the fixed sources.

(a) Air pollution due to moving sources (Vehicles)

1) Areas to be problem

Gran Mendoza, in particular, central portion

- 2) Type of contamination
 - Suspended particle type substances
 - Often smog formation is observed under specific weather condition

3) Causes

- For "suspended particle", the exhaust gas from the diesel engine occupies 60%, (in the digits, the means of public transportation occupy 40%)
- For "happen of smog phenomena", the exhaust gas from gasoline engine occupies 70%

- 4) Actions
 - The second term reorganization of transportation system
 - Betterment of regulation of traffic (Enating of traffic law)
 - Countermeasure of diesel engine emission by use of Calalyst
 - Changing over to natural gas engine vehicles from diesel engine vehicles (Public transportation vehicle)
- (b) Air pollution due to fixed generation sources
 - Areas of problem Industrial zone, in particular, Mendoza metropolitan area and other limited areas
- 2) Types of contamination

The physical and chemical contamination mainly caused by sulfur compounds and particles which contribute the local atmospheric contamination and smog formation in the Metropolitan area

- 3) Causes
 - Calcium Carbide particles, metallic silicone, particles of Calcium Silicate particles of manganese iron, etc. exhausted from metallugical works
 - Sulfur oxides from petroleum refining plants
 - Particles from cement works (The degree is law)
 - Lead from battery manufacturing works etc.
- 4) Actions
 - Installation of the suitable treatment plan depend on the results monitoring of flue gas
 - Submission of report on pollution including plan of the treatment measure
 - Application of Ley 5100 related to limit and term of discharge
 - Introduction of advanced measuring instruments and simulation software

(4) Others

In the recent atmospheric environment in Argentina, the air pollution due to the mobile sources caused by automobiles is obviously increasing in particular.

The recent trend related to the phenomenon mentioned above is concluded based on the information obtained during the site investigation.

Measurement of exhaust gas from automobiles in the atmospheric environment of Rosario

To grasp the impact to the atmospheric environments in the adjecent area of trunk roads due to automobiles, we have investigated the black smoke in the exhaust gases from automobiles centering around the National Rosario University (Universidad Nacional de Rosario) in the trunk roads from Rosario to San Nicolas of south.

It is said that the Environment Department in Rosario City uses the report of this investigated results to the air pollution preventive measures for public large scale automobiles.

Chapter 3 CURRENT CONDITIONS AND COUNTERMEASURES OF AIR POLLUTION BY THERMAL POWER PLANTS

Chapter 3. Current Conditions and Countermeasures of Air Pollution by Thermal Power Plants

3.1 Governmental Policy Related to Air Pollution Preventive Measures of Thermal Power Stations

3.1.1 Laws and Regulations Related to Atmospheric Environmental Protection

For atmospheric environmental protection on whole country of Argentina, as mentioned in item 2.5.1, the atmospheric environmental standards have been determined in 1973 by the law (Ley) 20284/73 "Preservacion de los Recursos de Aire", and the power sectors arrange the enforcement regulations (Resoluciones) in turn conforming to the standard.

As a part of these regulations, for the thermal power stations, "Resolución SE N° 718/87" has been enacted.

(1) Enactment of environmental control manual on thermal power plant

For the environmental protection on thermal power plant of conventional type, the enforcement regulation Resolución S.E.E. 149/90 "Manual de Gestion Ambiental de Centrales Termicas Convencionales" has been enforced in 1990. The content of this enforcement regulation is to define the concrete measures required to maintain the atmospheric environments of power plant at satisfactory level by considering the factors influence the air, water, soil, and other environments at each step from the design to the operation for construction of the steam turbine thermal power plant of conventional type under the control of central government.

(2) Revision of environmental protection manual (Resolución SE Nº 154/93)

> The privatization of power sector is advanced, and most of the thermal power plant which were under the control of cen tral government are already privatized and the privatization of the transmission companies and distribution companies fol-

lowed.

Therefore, SE revised a part of enforcement regulation 149/90 shown above (1), and enacted the enforcement regulation 154/93 in 1993.

Namely, the conventional enforcement regulations were applied for the thermal power plant before privatization, however, in future, the enforcement regulations will be developed so as to be applied for all enterprises and organs holding the power plant under the control of central government, and during the operation or will start the operation, together with abolition of provisions which determined the targets of environmental protection to the air, water, soil, and other environmental factors to show the concrete targets and countermeasures newly.

(a) Enactment of emission standards

The emission standards for SO_2 and the dust included in the flue gas exhausted from stacks of thermal power plant are shown in Table 3-1-1.

Table 3-1-1 EMISSION STANDARDS RELATED TO FLUE GAS

Items	Fuels	Fuel oil	Natural gas	Coal
so2	(mg/Nm ³)	≤ 1,700		≤ 1,700
Dust	(mg/Nm ³)	≤ 140	≤ 6	≤ 120

(b) Measuring items and frequency of flue gas

The measuring items and frequency of flue gas exhausted from stacks for steam turbine generators and gas turbine generators are shown in Table 3-1-2

Table 3-1-2 MEASURING ITEMS AND FREQUENCY OF FLUE GAS

Types	Steam turbin	ne generators	Gas turbine
Items	Less than 50 MW	More than 50 MW	generator
so ₂	Once/month	Continuously 1)	Once/month
NOx	Once/month	Continuously 1)	Once/month
Dust	Once/month	Periodically 2)	Once/month

Notes: 1) The continuous measurement shall be performed using the continuous automatic measuring instrument with recorder.

 The intermittent measurement shall be performed using the intermittent automatic measuring instrument.

(C) Countermeasures for NO.

When a plant (unit) is installed newly, for the boiler of steam turbine generater whose output is more than 50 MW, a low NO_x burner shall be installed.

(d) Observation of regulations

When enterprises or organs having the responsibility of design, construction, and operation of thermal power plant did not observe the regulations above, the jurisdictional organ shall give the warning. Even when the term determined by the jurisdictional organ has passes, if this regulation is not observed, the jurisdictional organ can instruct the stop of the work or the operation of the corresponding generator until the causes are dissolved.

(e) Air pollution preventive measures for power plant except for the power plant under the control of central government

For the thermal power plant which are possessed by the provinces, cooperative societies, and other organizations (City management, etc.) except for the plant

under the control of central government, the regulations of S.E.E. 149/90 or 154/93 are applied, if they are interconnected. And all basic policies to reduce the influence to the atmospheric environments due to the flue gas from the thermal power plant are in the same conditions regardless of owners. From this recognition, the future policies of regulations in each organ who controls the province managed thermal power stations or other thermal power stations are in the same direction as the policies for power companies under the control of central government.

Therefore, for power stations except for the plant under the control of central government, the future policies for regulations are advanced in the direction to apply correspondingly the serial targets and countermeasures such as emission standards or flue gas measurement, etc. shown in the enforcement regulation 154/93.

(3) Laws and regulations concerned

For the atmospheric environmental protection of thermal power plant, laws and regulations concerned are shown below;

- Law (Ley) 24065/92 and governmental ordinance (Decreto) 634/91 These law and ordinance determine the partial charge of role accompanied by reorganization of power plant.
- 2) Law (Ley) 21608/77 "Promocion Industrial" For the project to be constructed newly, when receiving the government encouragement plan, this law obliges to perform environmental impact predicting assessment.
- 3) Law (Ley) 24051/91 and governmental ordinance (Decrete) 831/93 "De Residuos Peligrosos" These law and ordinance determine the standard for emission of contaminants generated from the industrial projects to the air.

- 3.1.2 Management Organs for Atmospheric Environmental Protection of Thermal Power Plant
- (1) Management and supervision organs

As an organ to control the operation in each section from the power generation to the consumption of power sections properly, the Electrical Power Administrative Management System (Ente Nacional Regulador de la Electricidad, ENRE) was established conforming to the law (Ley) 24065/92. The basic enterprise that ENRE performs is the supervision for execution sections of public services, which includes, effective supply, transmission, and distribution of power, in the jurisdiction area conforming to the governmental ordinance (Decreto) 1398/92.

In the supervision functions, the responsibility of setting up required regulations and standards related to the general safety and environmental protection is included, when each facility of power generation, transmission, transformation, and distribution is constructed or operated.

(2) Role of ENRE related to air pollution protection

ENRE is obliged to control the execution of various measures required for atmospheric environmental protection of thermal power plant determined by the enforcement regulation (Resolucion SE N° 154/93 including annexture regarding the air pollution control for privatization) and ENRE instructs the periodic presentation of measured data from power plant to control the flue gas data obtained in each power plants together with control the achievement condition of emission standards.

Also, ENRE may perform the cross check to the flue gas measurement of power plant.

In addition, ENRE performs examination of environment assessment report submitted by the power plants (Evaluacion de Impacto Ambiental) whose presentation is obliged by SE when each power plants is privatized.

ENRE is also in the situation to advice the power plant for selection of measuring methods and measuring instruments

suited to each power plants for the flue gas measuring performed by each power plants.

3.1.3 Execution System of Investigation Related to Air Pollution Prevention

In order to establish the system to perform the investigation of environmental problems related to power supply, SE concluded the technical cooperative agreement with the Argentine Atomic Energy Commission (Comision Nacional de Energia Atomica CNEA) in 1992.

(1) Contents of the technical cooperative agreement

The purpose of the technical cooperative agreement concluded between SE and CNEA is common creation and execution of the plan related to the investigation of the following environmental problems.

- The investigation related to drain or flue gas generated from the power generating facilities.
- Evaluation of environmental condition in the surounding area of power plants
- Deployment of talents related to the operation of measuring instruments for environmental monitoring and the data analysis.
- (2) Relevance between SE and ENRE

As mentioned above, SE has the obligation for the enactment of environmental law and standards related to the power sector, and management of observation for these law and standards shall be performed by ENRE.

Therefore, according to the technical cooperative agreement between SE and CNEA, the inspection of environmental measurement for which ENRE is responsible can be performed smoothly by incorporating the inspection work into the investigation system of environmental problem by CNEA who has the personnel, system, and experience related to the whole environmental problems, such as, drain or flue gas, etc.

(3) Role of CNEA

CNEA performs through the Department of the New Sources and Rational use of Energy Department the work entrusted by the coordinative committee (Comite Coordinador) organized between CNEA and SE directly or through a third party, and performs management of the work shown in (1) above simultaneously.

CNEA also performs the measurement, for which ENRE judges necessary, to manage the observation condition in power companies, for the "emission standards related to solid wastes, flue gas, and drain generated from thermal power plant" set by SE.

- 3.2 Measurement of Pollutants from Flue Gas and in the Ambient Air in the Selected Model Plants
- 3.2.1 Outline of the Measurement of Pollutants from Flue Gas and in the Ambient Air
- (1) Objective of Measurement

In order to develop a monitoring system for flue gas emission of power plants, it is very important to establish a standard procedure of measurement and analysis of pollutants in flue gas of the stack and in the area around the target emission source together with set-up of institutional measures by the Government.

Therefore, it was agreed by the both Government through several discussions that actual measurement of pollutants from selected model plants and in the ambient air around the area of these shall be conducted by the Study Team in cooperation with CNEA, counterpart organization of the Government of Argentina, and that technology transfer on overall technology of monitoring of pollutant emission from flue gas shall be carried out from the Team to CNEA.

In addition to the above, through the actual measurement, it is clear that investigation of the present state of pollutants emission from the thermal power plants shall be carried out to understand a contribution of pollutant emission from the thermal power sector to the air pollution level of the country.

- (2) Plan and Procedure of Measurement
- 1) Targeted Model Plants

The following three thermal power plants have been selected as candidates for a model plant based on the first field Survey conducted from 6 to 30 of March, 1993.

(a) Nuevo Puerto Power Plant (Number 5 Unit for Turbine, 13 Unit for Boiler)

Nuevo Puerto Plant is located in the Federal Capital, that is one of the biggest cities in the world and its capacity is relatively large, and also, Nuevo Puerto is one of the biggest thermal power plants in view of their capacities, therefore, it is considered that its impact of emission from these shall be investigated as a typical model in the BSAS which is in an urban type air pollution.

(b) Lujan de Cuyo Power Plant (Number 12 Unit)

Lujan de Cuyo plant is deemed as one of the typical small and medium scale power plant in Argentina and its location characteristics of the area where various kind of manufacturing industries are located are also very interesting and its impact and influences to the area should be studied.

(c) San Nicolas Power Plant (Number 5 boiler, Turbine 5 Unit)

San Nicolas Plant is the only one coal-fuel power plant in Argentina, the use of coal can not be ignored at this moment, in view of the necessity of diversification of energy sources, and it is agreed that SO_2 impact test shall be conducted in this plant in consideration of the topographical characteristics of the land around the plant and non-existence of emission sources of SO_2 excluding ACEROS PARANA steel plant.

2) Pollutants to be Measured for Flue Gas and in Ambient Air

(a) Pollutants in Emission from Flue Gas-

Important pollutants from flue gas emission are sulfur-

ic dioxide (hereinafter referred to as SOx excluding in the analytical definition in this report, because this SO_2 is converted to SO_3 in the process of oxidation in the air), Nitrogen Monoxide (hereinafter referred to as NOx as same in case of SOx) and Dust.

Therefore, it was determined that these three pollutants including oxygeon as an important parameter for operational control of combustion of boiler shall be measured and analyzed in the measurement of flue gas for the model plants.

(b) Pollutants in the Ambient Air

In general, air contaminants to be measured for the ambient air are primary air pollutants composed of fine particles less than 100 μ m, sulfur compound (SOx), oxides of nitrogen (NOx), carbon monoxide, halogen compounds, organic compounds, and radioactive compounds and secondary air pollutants consists of ozone, formaldehyde, peroy acetyl nitrate, photochemical smog and acid mist etc.

However, any other pollutants except SOx, NOx, and dust were deleted to our measurement because these are not included in our target stationary sources, boiler and/or secondary air pollutants to be generated together with other stationary or mobile sources.

Therefore, measurement of these pollutants (SOx, NOx, and Suspended particulate matter, SPM) was planned with the major aim contributing to technology transfer from the Study Team to CNEA.

In addition to the above, impact test of SOx emission from a thermal power plant was planned to evaluate how much impact of stack emission was observed in the surrounding area of the plant. Regarding the site, San Nicolas plant was recommended as a model plant for this test because topographical condition is desirable in view of its flatness of land and there are few other stationary sources except Acero Parana Steel plant against the recognition of existence of many complicated condition for other sites of Nuevo Puerto and Lujan de Cuyo Plant and only SOx measurement shall be conducted among the target pollutants to eliminate any other measurement which may disturb to exact evaluation of the impact of emission source.

 Outline of Analytical method and Analyzers utilized in the measurement

During the site survey conducted in July and November in 1992 and the first survey by this Study Team, it was found that there are few instrument analyzers popularily used in Argentina and also there are few institutional organizations and/or private research institutes which are conducting actively a measurement of pollutants in ambient air and also from emission sources.

However, it was observed in several thermal power plants which are actively going to introduce the instrument to monitor the emission of flue gas in accordance with the agreement with SE concerning on a privatization of the power plant.

Therefore, in principle, analytical methods and analyzers to be utilized in this measurement are determined in accordance with following criteria:

- (a) EPA and/or WHO popularly used in the USA and European countries including some Latin American countries shall be adapted if there are no obstacles in the procurement of the instruments and/or small supporting equipment or chemical reagents.
- (b) Chemical analysis methods shall be a major method because they are very important for the Government of

- Argentina to promote and establish a further institutional set-up of own measurement procedures.
- (c) Instrument analyzers shall be arranged and prepared in consideration of the time when fuel oil for boiler are converted to natural gas due to characteristics of the present system in the power plants.
- (d) Portable instrument analyzers are principally selected in consideration of easy transportation and inspection promotion by the CNEA staff and also, some portable analyzer being introduced to some thermal power plants are provided in view of necessities of internal checking of measured value of pollutants by the power plants and consultation of difficulties on the analyzer.
- (e) It was decided by the Japanese Government that analyzer to be needed for a further promotion of measurement of pollutants from flue gas and in the ambient air shall be provided to the Government of Argentina if these analyzers will be technically transferred to the counterpart during the measurement period and being effectively used in the counterpart for NOx, SOx, and SPM monitor.

Major analytical methods and analyzers used in this measurement are shown in Table 3-2-1.

Table 3-2-1 OUTLINE OF ANALYTICAL METHODS AND ANALYZERS UTILIZED IN THE STUDY

Analysis method	: Analyzer	: Remarks
1. Measurement of Flue Gas		
1)Electro-chemical	Portable Analyzer MSI-2000	SOx, NOx, O ₂ , CO
2)Infrared Absorption	Auto-mated Conti- nuous analyzer	SOx

	IRA-107	
3)Chemiluminescence	Auto-mated Conti- nuous Analyzer	NOx,02
	NOA-7000	
4)Zinc-NEDA	Chemical Analysis	NOx
5)Precipitation Titration	Chemical Analysis	SOx
6)Direct Weight Measurement	Dust Sampler	Dust,Sampling NOx,SOx
7)Light Scattering	Portable Dust Monitor	Dust
8)Chemical Absorption	Orsat Apparatus	0 ₂ , co, co ₂
2. Measurement of Ambient Air		
1)Saltzman	Chemical Analysis	NOx
	Absorption:	
	Air Sampler and	
	Impinger set	
	S601, 8003-2	
2)Pararosaniline	Chemical Analysis	SOx
	Absorption:	
	Air Sampler and	
	Impinger set	
	S-601, 8003-2	
3)Direct Weight	High Volume Air	SPM
Measurement	Sampler	
	HVC-1000N	
4)Beta-Ray	Auto-mated Continuous	SPM
Absorption	Monitor	
	BAM-102S	
5)Chemiluminescence	Auto-mated Continuous	NOx
	Monitor	
	APNA-350E	
6)Ultraviolet Absor-	Auto-mated Continuous	SOx
ption	Monitor	
	APSA-350E	
7)Beta-Ray	Auto-mated Continuous	SPM
Absorption	Monitor	
·	APDA-350E	
	APDA-350E	

3 - 13

.

3. Supporting Equipment		
1)Wind Speed Meter	Propeller type	Wind direction and speed
2)Electric Balance	3100gr x 10mg	for chemical analysis
3)Personal Computer	486, IBM Compatible	for data analysis and simulation
4)Chemical Reagent	Zinc-NEDA, Precipi- tation Titration, Saltzman, Pararosanil	ine
5)Glass Ware	Same as above	
6)Incubator		for cooling and storage of sample
7)Transportation Vehicle	Renault	for circular measurement ser- vices to the plants

(3) Overall Schedule of Measurement

Measurement was conducted for eight weeks at three model plants. The overall schedule is shown in Figure 3-2-1.

	Activities	Veek	1	2	3	4	5	6	7	8
		Date	7/2 7/	7/10	7/23	7/30	8/8	8/13	8/20	8/27
Measurement of Flue Gas	Preparation Wor including check Instruments Nuevo Puerto Lujan De Cuyo San Nicolas Summarization o and Analysis	ing of] S0x, N0x a	[Tran		d Dust Ma in SO on	easuremen x,NOx and		
Measurement of Ambient Air	Preparation Worl including check Instruments Nuevo Puerto Lujan De Cuyo Summarization of and Analysis	ing of		<u>502, N0x, Si</u>	Trans	nent (eac NOx,SPM M sportation Preparatio	ersurenen	t (each 3	days) Transpor	tation
SO2 Impact Test	Preparation Work including checki Instruments San Nicolas Summarization of and Analysis	ng of					Transpor	deasurement tation paration	nt	tation

Figure 3-2-1 MASTER SCHEDULE FOR MEASUREMENT OF FLUE GAS AND AMBIENT AIR IN THE TARGETED WODEL THERMAL GENERATION PLANTS

3.2.2 Outline of Laws, Regulations, Standards and Analytical Method concerning Measurement made in Process of This Study

The measurement of flue gas and ambient air is internationally made in accordance with provisions by the Environmental Protection Agency (referred to as "EPA"), the World Health Organization (referred to as "WHO"), the Japan Industrial Standers (referred to "JIS"), and American Standards for Testing Materials (referred to as "ASTM"). The following points should be noted from the viewpoint of desirable testing methods to be adopted by Argentina in future.

- a) The method should be recognized as internationally acceptable standard.
- b) The implementation should be easy and produce accurate results.
- c) The backing-system method for correcting and repairing measurement instruments should be provided within Argentina.

Based on these considerations, we have studied instruments measuring and analyzing flue gas and other air pollutants in Argentina as described below. The study on flue gas-measuring instruments mainly focuses on an automatic continuous analysis to be supported by a chemical (manual) analysis method, while the study on analytical tools measuring ambient pollutants focussed on a chemical (manual) analysis method to be supported by an automatic continuous analysis.

(1) Flue Gas Measurement

1) SOx

As Table 3-2-2 shows, EPA, WHO and JIS provide method for measuring SOx in flue gas, of which the EPA standards admit the automatic continuous methods by way of the infrared absorption method and ultra-violet fluorescent method, while a chemical analysis method is not admitted, the WHO standards, which are not selective measurement methods, admit the automatic continuous method like the solution conductivity method and electrochemical method, while the chemical analysis method is not admitted. Consequently, IRA-107 type, which is an infrared absorption method, has been chosen because it is being widely used by petrochemical factories and thermal power stations in Argentina with acceptable accuracy. Furthermore, MSI-2000, which is a portable analyzer of the electrochemical methods accepted by WHO, has also been used.

Since neither EPA nor WHO stipulates a chemical analysis method, an appreciate method has been chosen among JIS, of which neutralization titration method is not accurate enough and turbidimetric method tends to produce errors depending upon conditions producing barium sulphate. On the other hand precipitation titration method is accurate because it dose not rely on conditions producing barium sulphate and is easy to operate. For these reasons, precipitation titration method has been chosen which can be chosen as SE's future analytical method.

Incidentally in Argentina, studies and examinations into SOx-analyzing methods of internationally acceptable standards should be continued in future mainly by technical team in SE.

2) NOx

For methods to analyze SOx in flue gas, the EPA method, WHO method, JIS method and ASTM method are available (Table 3-2-3). The EPA accepts an automatic continuous analysis by way of the Chemiluminescence method, but not a chemical analysis, WHO accepts only the Chemiluminescence method as a selected method, as well as an electro chemical method and the fluorescent method though they are not selected measurement methods. The WHO accepts Saltzman Method and Detecting Column Method as a selected measurement method. Consequently, NOA-7000, which is a Chemiluminescence accepted by EPA and WHO, has been chosen as an automatic continuous analyzer. MS-2000 has also been chosen, because it is an electrochemical method accepted by WHO and by German DIN as a portable analyzer.

As regards a chemical analysis method, Saltzman Method of WHO is unsuitable for measuring NOx in flue gas because it measures nitrogen dioxide only and dose not measure nitrogen Being a semi-quantitative analyzer, Detecting monoxide. Column Method is inaccurate. Therefore, a chemical analysis method has been chosen among the JIS methods, of which Saltzman Method measures nitrogen dioxide only as the WHO The PDS method (Phenol disulphon dioxide light method dose. absorption method) needs complicated operations and skills. On the other hand, the Zn-NEDA method (Zinc reduction, naphthyl-ethylene diamine light absorption method) is simple and accurate, requiring attention to the reduction ratio due to difference is quality of zinc powder. Therefore, this method has been chosen because it can be one of methods to be adopted by SE in future.

Incidentally in Argentina studies and examinations into NOxanalyzing methods of internationally accepted standards should be continued in future mainly by technical team in SE. The PDS method, which ASTM covers, may be one of methods to be looked at.

3) Dust

As Table 3-2-4 shows, WHO, JIS and ASTM provide flue gas analyzing methods, the WHO standards do not include the selected measurement methods but accept light scattering method, which is an in-plant type. The method, however, requires detecting devices covering a whole conduct of smoke duct and smoke stacks, and therefore is not an appropriate method for monitoring flue gas. On the other hand, the direct measurement method of dust weight provided by JIS simultaneously measures speed, temperature, moisture of flue gas streams, allows discretion in deciding the number of sampling sites and is a simple manual analytical method with an extensive range of applications. Therefore, this method has been chosen, because it may be one of SE's future analytical tools. The principle of this method is the same with that of the dust weight measuring method stipulated by In addition, a portable dust monitor, which is light ASTM.

scattering method and AP-710N have also been chosen. Incidentally in Argentina, studies and examinations into dust-analyzing methods of internationally accepted standards should be continued in future mainly by technical team.

(2) Measurement of Ambient Pollutants

1) SOx

The method for analyzing atmospheric SOx is provided by EPA, WHO, JIS and ASTM as Table 3-2-5 shows. EPA accepts pararozaniline method as a chemical analyzing method and Infrared absorption method and ultra-violet fluorescent method as an automatic continuous analytical method as well. WHO accepts pararozaniline method and acid titration method (hydrogen peroxide method) as a chemical analysis method. WHO also accepts the automatic continuous analytical method by way of the solution conductivity method electrochemical method and the chemiluminescence method although they are not selected measurement methods.

As regards the chemical analysis method, WHO's acid titration method is affected by co-existing substances and is not accurate. Therefore, pararozaniline method has been chosen as both EPA and WHO accept it. As an automatic continuous analyzer, APSA-350E, which is ultra-violet fluorescent method accepted by EPA, has been chosen. The SOx-measuring methods used internationally are listed below.

a. Solution Conductivity Method

The method is designated by Japan for constant monitoring and known for its good sensitively.

b. Pararozaniline Method

This is the US reference method, has few disturbants and good selectivity. The method is selected by EPA, WHO and ASTM.

c. Ultra-violet Fluorescent Method

This method is most extensively used in the US and other countries as an automatic continuous analyzer for constant monitoring and is a selected method of EPA.

d. Acid Titration Method (hydrogen peroxide method)

The method is designed in the UK and selected by WHO.

2) NOx

Among the methods to measure ambient NOx, EPA, WHO, JIS and ASTM have been looked at as Table 3-2-6 lists. EPA accepts an automatic continuous analysis method by way of the chemiluminescence method, but does not accepts a chemical analysis methods, WHO accepts saltzman method, detecting column method and Jacob Hocheizer method as chemiluminescence methods, although the last is not a selected method. WHO also accepts a chemiluminescence method as an automatic continuous method and spectrophotometric method, electrochemical method and so forth, which are not selected measurement methods. Detecting column method is semi-quantitative and inaccurate. Jacob Hocheizer method used to be the US reference method Therefore, saltzman method has been but no longer is used. chosen being the most extensively used. As an automatic continuous analyzer, APNA-350E has been chosen, which is a chemiluminescence method accepted by both EPA and WHO. Incidentally the NOx-measuring methods used internationally are listed below;

a. Saltzman Method

The method is designed by Japan for constant monitoring and is known for its few disturbants. It is the selected method of WHO and ASTM.

b. Chemiluminescence

This is the reference method of the US and is most extensively used as an automatic continuous analyzer for constant monitoring. This is the selected method of EPA and WHO.

c. Jacob Hocheizer Method

The method used to be the US reference method but is not used any longer.

3) SPM

As Table 3-2-7 shows, the methods provided by EPA, JIS and ASTM have been looked at EPA's only accepted manual analyzing method is the high volume method. WHO accepts, as manual analyzing methods, the high volume/weight method, EPA high volume method, OECD reflection ratio method, OECD weight method and ASTM penetration rate method. In addition, as automatic continuous analyzing method, WHO accepts a beta ray absorption method though it is not a

selected measurement method.

As a manual method, WHO's high volume/weight method, EPA's high volume method and OECD's weight method and designed to catch dust with a filter and measure the weight. Their principle is the same with the EPA method. The OECD's reflection ratio method and ASTM's penetration rate method measure filter's blackness is terms of a reflection rate and penetration rate respectively, and therefore do not directly measure quantity of dust. Therefore, the high volume method has been chosen as it is accepted by both EPA and WHO. As an automatic continuous analyzer, APPA-350E has been chosen as it is a beta ray absorption method accepted by WHO.

Incidentally, dust-measuring methods used internationally are listed below;

a. High Volume Method

The method is designed by the US and is most extensively used internationally. It is a selected method of EPA and WHO.

b. OECD's Weight Method

The method is designed by UK and other OECD countries and is selected by WHO.

c. Filter Blackness Method (Penetration Rate Method)

This is ASTM's designed measuring method and WHO's selected method.

d. Beta Ray Absorption Method

This Japan's designed method for constant monitoring and is accepted by WHO.

Table 3-2-2 METHODS FOR DETERMINATION OF SOX IN FLUE GAS

Neut Zati titr		Principie	Measuring Range	Interferences	Repeatability	Treatment time Linearlity Flow Rate Warming-up or Resonce time	Linearlity	Flow Rate Variation	Tarming-up		Zero-drift	Valtage Zero-driftSpan-drift Variation	Recarks
zati titr	Neutrali-	SOX in flue gas are absorbed by H202 to		NO does not inter-				1017 10 101		101141			
titr	zation	form N2SO4. The H2SOM is neutrally titrated	· · · ·	fere.	Coefficient	Approximately							
	titration	with NaOB and the concentration of SOv is	70-9200	CN9 stadionae anci.		. 1							110 VK
			0007_01	- rend emitted the	OI VELIALION	1 112.							JIV RETDOG
Unerical acti	aethod	deterained	đđ	tive interference			•	,	ı	•	•	J	
				in more than PH5.5	Less than 1%		:	•		_			
		SOx in flue gas is absorbed by H202 to form		Coexistence of Cl-									
Analysis Prec	Precipi-	H2SO4. The H2SO4 reacts with (CH3COO)2Ba		10ag. 0032- 5mg.	Coefficient			_		-			
tati	tation	and forms precipitute of BaSO4. In this	140-700	NO3- 5mg, NO2- 2mg	of variation	Approximately							
titi	titration	process excess Ba2+ react with arsenaro []]	BDG	is permissible.		l br.	1	•	,	,	ı	•	JIS Method
reti	rethod	and blue complex is formed. The concent-		P043- as little as	Less than 1%								
		ration of S0x is determined from the amount		1 mg produces posi-									
		of (CH3COO)2Ba titrated.		tive interference.									
		SO2 absorbs infrared radiation at wavelength				10 sec.		within		vithin			
Infi	Infrared	7300 na. Using this property of SO2 the	0-2000	A positive inter-	vithin ±0.3%	(Fast)	within 1%			±0.5%	within	within	EPA Kethod
BDSC	absorption	concentration of S02 in a sample gas is	add	fering gas is water of max. scale	of max. scale	45 ain.	for 0-500		45 ain.	for AC	±1%/dav	±1%/dav	JIS Kethod
syst	system	measured with a non-dispersion type infrared		vapor and CO2.		(Slow)	200			100V			
Continuous		gas analyzer.						1./ain		+ 10V			:
Ultra-	- 21	This method is to measure photoelectrically								within	within	within	
viol	violet	the change of absorption by SO2 of ultra-	0-2000	A positive inter-	within ±2%					<u>89</u> 1+	+2%	+2%	•
abso	absorption	violet light at mavelength of 280-320 nm and	ndd	fering gas is NO2	of max.scale	4 min.	,	,		of max.	of nax.	of max,	EPA Kethod
syst	system	to find the concentraiton of SO2 contained								scale	scale	scale	
Amalysis		in sample gas.											
		SO2 in flue gas passes through a gas sensor.											
Elec	Electro-	The gas sensor is electrochemical trans-											
chen	chemical	ducer. They generate electric current whose	0-4000		5% of max.	60 sec.	l pom for		30 ain.				THO Kethod
syst	system	size depends on the SO2 concentration.	BQQ	•	scale		0-4600 ppm	,			1	,	DIN Verhod
		These signals are analyzed by the											
	-	electronics,											

Table 3-2-3 NETROD FOR DETERNINATION OF NOX IN FLUE GAS

Wethod	<u></u>	Principle	Measuring	Interferences	Measuring Interferences Repeatability	Treatment time	Linearlity	Flow Rate Faraing-up	araing-up	Valtage	Zero-drift	Zero-drift Span-drift	Remarks
			Range			or Response time		Variation	Tige	Variation			
		NOX in flue gas are absorbed into the absor-											
D. WORTS		bing liquid in the presence of 03 to be											
	2n-NEDA	converted to NO3. NO3- is reduced to NO2-	5-250			Approximately							
Chenical	aethod	with zinc powder and reacted with Sulfani-	bpa	•	1	20 ain	•	ı	,	ı	1	,	JIS Method
		lagide and naphthylethylenedizaine. Then							•				
-		the absorbance of azo dye obtained by the											
		diazotization coupling reaction is aeasured.											
		NOx in flue gas are absorbed into the											
Analysis		absorbing liquid in the presence of 03 to											
	SQ4	be converted to NO3 The solution thus	50-1600			Approximately							JIS Method
	nethod	obtained is reacted with phenol disulfonic	Ddd		•	2hr	1	•	1	,	'	ŧ	ASTN Kethod
		acid and its absorbance is obtained from						·			-		
		the luminous liquid.											
		NO reacts with 03 and forms NO2. Then NO2											
	Chemilumi-	returns from an excited state to ground		A negative			within	+2%		+1 *	within	within	EPA Method
~ ~ ~	nescence	state. it emits near infrared radiation.	0-2000	intertering	within ±0.5%	20-60 sec.	1+ 2%	of max.		of max.	+1	1+ 1.5%	THO Method
	system	The chemiluminescent intensity is propor-	ndd	gas is CO2	of max scale		of aax.	scale		scale	of aax.	of EEX	JIS Kethod
Continuous	-10	tional to the concentration of NO at wave-					scale				scale	SCALe	
		lengths between 590 and 875 nm.								1			
		NO absorbs infrared radiation in the		A positive							ei thin	within	
	Infrared	vicinity of wavelength 5300 nm.	0-2000	interfering	within ±2%	vithin 2 ain.		+2%		+1%	±2%	1+2%	
	absorption	NO contained in a sample gas is measured	add	gas is water	of max. scale			of max.	١.	of max.	of max.	of max.	JIS Method
	system	with a non-dispersion type infrared gas		vapor and				scale		scale	scale	scale	
Analysis		analyzer.		co2.									
	•	NO in flue gas passes through a gas sensor.											
	Electro-	The gas sensor is electrochemical trans-											
	chcaical	ducer. They generate electric current whose	0-1000		±5% of max.	60 sec.	I ppu for		30 ain.				THO Method
	system	size depends on the NO concentration.	Ърда	•	scale		0-1000 ppm			ı	•	1	DIN Nethor
		These signals are analyzed by the											
		electronics.						<u>.</u>					

Table 3-2-4 METHODS FOR DETERMINATION OF DUST CONCENTRATION IN FLUE GAS

		-	BITT TAAMAN		hit in Jindon if In - A 194 - Star to - A Shirming and wat a fair that the star and a share the start manage				-				
			Range			or Response time		Variation	Time	Variation			
		Insert the suction nozzles of sampling											
		apparatus for dust into the duct through the			Coefficient								
		acesuring holes and place the tips of the			of Variation								
Kanual	Dust	nozzles to meet the measuring points.	0-10		×2-9					within			JIS Method
nalysis	Analysis Measuring	Aspirate the flue gas according to equal	ag/a3	•		2hr.	•	±5%/hr	15 min.	+ 2%	,		ASTIR Method
	Method	velocity aspiration and obtain the dust											
		concentration by quantity of the dust											
		collected by filtering with dust collector	• • • • •										
		and the volume of gas sucked in it.											
		Sample is introduced in a dark charber and											
ntinuou	Continuous Light	is radiated by a light beam. The light is	0-10				vithin	within		within	uíthin	eithio	VRC Method
nelysic	s Scattering	Analysis Scattering scattered by particle. The intensity of the	बह/त्व3	ŗ	within ±2%		$\pm 20\%$	±5%/dav 3hr.		+1% for		+ 9% for	TIS Mathod
	System	scattered light is measured and the mass								AC 100V	PLAN SCALE	Tay crait	
		concentration of dust is obtained.											

Table 3-2-5 KETHODS FOR DETERMINATION OF SO2 IN THE ATMOSPHERE

Coefficient of variation 4.6% within ±2% of max.scale within ±2% of max.scale of max.scale	Method		Principle	Measuring	Interferences	Repeatability	Treatment time	Linearlity	Linearlity Flow Rate Warming-up Valtage Zero-driftSpan-drift	larming-up	Valtage	Zero-drift	Span-drift	Reparks
The SQ2 in the air reacts with potassiumA positive inter- tetrachloromacromatercurate solution to form a tetrachloromacromatercurate solution to form a infrarrow and formaldehyde to form on pararosamiline and formaldehyde to form on pararosamiline anticitie its subbled through a dilute petentic form for form and formaldehyde to anticitie its suboled through a dilute beten diato and oxidizad to anticitie form with anticitie form the solution can be estimated by titration with alkali.A positive inter- 				Range			or Response time		Variation	Time	Variation		, [.]	
Chemical The complex is reacted with perveomalizine A positive inter- fering gas is NO2. Chemical The complex is reacted with perveomalizine A positive inter- setNO and formaldehyde to form on permosaniline aretyl solfonic acid. The optical density of this species is determined spectrophoto- metrylication. The aris supplex is bubbled through a dilute betring 200 where SO2 is absorbed and oxidized to interference. NH3 A positive inter- ference by heavy of this species is determined spectrophoto- metrically of resulting Analysis Acidi- scill. How aris supplex is bubbled through a dilute metrically. A positive inter- ference by heavy of the aris supplex is bubbled through a dilute metrical form H2SOM. The acidity of resulting A positive inter- ference. NH3 Analysis Acidi- scill. HO2OM produce metrically. A positive inter- ference. NH3 Analysis Acidi- scill. HO2OM produce metrically. A positive inter- interference. Analysis Analysis A mailysis A maily seasure interference. A maily seasure interference. Analysis Britrated radiation at wave ultraviolet light. 0-0.5 Broations produce metry A maily seasure interference. Analysis Mualysis Mualysis A maily seasure absorption the concentration of sulf at a sample gas is adsorbutered A maily seasure metry			The SO2 in the air reacts with potassium											
Pararos- anilin monochlorosulfomatomercurate complex. Ferring gas is NO2. Chemical anilin The complex is reacted with pararosaniline attyl solfonic acid. The optical density of this species is determined spectrophoto- metryl solfonic acid. The optical density of the aristally. If ferring gas is NO2. Analysis methyl solfonic acid. The optical density of this species is determined spectrophoto- metric If the series is determined spectrophoto- metric If the series is determined spectrophoto- metric Analysis Acidity of resulting the acidity of resulting produces negative interference. If the concentration interference. Analysis Acidity and the acidity of resulting allali. Doubled through a dilute produces negative interference. Ditra- This is a method to continuously measure violet If the concentration of sulfer dioxide in violet If the concentration of sulfer dioxide in the gas Dutra- This is a method to continuously measure violet 0-0.5 arromatic hydro- mater vapor and violet Dutra- This is a method to continuously measure violet 0-0.0.5 arromatic hydro- materic Dutra- This is a method to continuously measure violet 0-0.0.5 arromatic hydro- materic SO2 gas absorbed in the sole Dol.0.5 arrometric hydro- materic 0-0.0.5 <th></th> <td></td> <td>tetrachloromercurate solution to form a</td> <td></td> <td>A positive inter-</td> <td>Coefficient</td> <td>Coefficient Approximately</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>			tetrachloromercurate solution to form a		A positive inter-	Coefficient	Coefficient Approximately							-
Chemical anilin The complex is reacted with pararosaniline 13-1130 Masking by EDTA arethod and formaldehyde to form on pararosaniline 12/133 prevents inter- activity species is determined spectrophoto- activity of this species is determined spectrophoto- methyles 13-1130 Masking by EDTA Analysis Analysis Analysis prevents inter- activity of transitive of transitive inter- solution can be estimated by titration with activity of resulting activity of resulting 120000 produce Analysis Analysis Analysis arcuastive inter- activity of transitive inter- solution can be estimated by titration with activity interference. 1000 5 arcuastive inter- interference. Analysis alkali. D-0.5 arcoastive inter- interference. 5 Analysis alkali. D-0.5 arcoastive inter- interference. 5 Analysis alkali. D-0.5 0 5 5 Analysis alkali. D-0.5 arcoastive inter- interference. Analysis alkali. D-0.5 5 5 5 Analysis alkali. D-0.5 0-1330 5 5 5 </th <th></th> <td>Pararos-</td> <td>aonochlorosulfonatomercurate complex.</td> <td></td> <td>fering gas is NO2.</td> <td>of variation</td> <td>2 hr.</td> <td></td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td>EPA Method</td>		Pararos-	aonochlorosulfonatomercurate complex.		fering gas is NO2.	of variation	2 hr.			·				EPA Method
acthodand formaldehyde to form on pararosaniline $\mu_{R}/A3$ prevents inter- activity solfonic acid. The optical densityacthyl solfonic acid. The optical density $\mu_{R}/A3$ prevents inter- actuality.acthyl solfonic acid. The optical density $\mu_{R}/A3$ prevents inter- actuality.AnalysisAcidi- H202 where SQ2 is absorbed and oxidized to solution can be estimated by titration with actuality of resulting $\mu_{R}/A3$ ference by heavy actaisAnalysisAcidi- H202 where SQ2 is absorbed and oxidized to solution can be estimated by titration with actuality active inter- alkali. $\mu_{R}/A3$ ference. M33AnalysisAcidi- titration with actor $\mu_{R}/A3$ ference. M33Analysisactor solution can be estimated by titration with alkali. $\mu_{R}/A3$ ference. M33Analysisactor solution can be estimated by titration with tug/a3 $\mu_{R}/A3$ ference. M33AnalysisAcidi- titration of sulfer dioxide in tug/a3 $0-0.5$ arrows produce positive inter- tug/a3Continuous systemSO2 gas absorbs infrared radiation at wave- terror $0-0.5$ arrows produce togas absorbs infrared radiation at wave- targases are systemAnalysisSO2 gas absorbs infrared radiation at wave- system $0-0.5$ $0-0.50$ $0-0.50$ Analysis $0-0.50$ $0-1300$ $0-1300$ $0-1300$ Analysis $0-0.50$ $0-1300$ $0-1300$ $0-1300$ Analysis $0-1300$ $0-1300$ $0-1300$ $0-1300$ Analysis		anilin	The complex is reacted with pararosaniline	13-1130	Masking by EDTA			ŧ	1	ı			ı	THO Method
arthyl solfonic acid. The optical densityference by heavy aethyl solfonic acid. The optical densityference by heavy aetals.netrically.netrically.netrically.netrically.AnalysisAcidi-R202 where SO2 is abobled through a diluteDetection ECI. HNO3 and noduceAnalysisAcidi-R202 where SO2 is abobled through a diluteDetection ECI. HNO3 and noticeAnalysisAcidi-R202 where SO2 is abobled through a diluteDetection ECI. HNO3 and noticeAnalysisAcidi-R202 where SO2 is aboobed and oxidized tolimitaetricfour HSSO4. The acidity of resulting1000positive inter- interference.aetricsolution can be estimated by titration with albali. $\mu g/n3$ ference. M33albali.Diltra-This is a method to continuously measure0-0.5arromatic hydro- interference.Ultra-This is a method to continuously measure0-0.5arromatic hydro- interference.Illuoreamboled the concentration of sulfer dioxide in violet0-0.5arromatic hydro- interference.Continuoussystemultraviolet light.0-0.5arromatic hydro- interference.Analysisabsorptionultraviolet light.0-0.5arromatic hydro- interference.Analysisabsorptionultraviolet light.0-0.5arromatic hydro- interference.Analysisabsorbs infrared radiation at wave- basorption0-0.5arromatic hydro- interference.Analysisabsorbs infrared radiation at wave- baso	·	aethod	and formaldehyde to form on pararosaniline	14 g/m3	prevents inter-	4. 6%								ASTN Nethod
Analysis of this species is determined spectrophoto- metrically. metals. Analysis Acidi- metrically. The air sample is bubbled through a dilute metric Evence. R03 and limit Evence. Analysis Acidi- metric HZO2 where SO2 is absorbed and oxidized to solution can be estimated by titration with actric Init CH3000H produce initeri- metric actric form HZSO4. The acidity of resulting actric 1000 positive inter- interference. Jlali. Jlali. 2000 produces negative interference. Ultra- This is a method to continuously measure violet 0-0.5 arroms produce interference. Ultra- This is a method to continuously measure violet 0-0.5 arroms produce interference. Continuous system ultraviolet light. 0-0.5 arroms produce arbors infrared radiation at wave- interference. Continuous system ultraviolet light. 0-0.5 produces are arbors produce Analysis metry emetric from the solution at wave- system 0-0.5 produce interfe- system Analysis Infravolet light. 0-0.5 0-1330 prous gases are arbor ard coconduct- system			aethyl solfonic acid. The optical density		ference by heavy									
metrically. metrically. metrically. Analysis Acidi- H202 where SO2 is absorbed and oxidized to limit EHEODH produce Maalysis Acidi- H202 where SO2 is absorbed and oxidized to limit EHEODH produce aethod solution can be estimated by titration with µg/a2 ference. NH3 alkali. Diltion can be estimated by titration with µg/a2 ference. NH3 alkali. Diltion can be estimated by titration with µg/a2 ference. NH3 alkali. Diltion can be estimated by titration with µg/a2 ference. NH3 ultra- This is a method to continuously measure 0.0.5 arrows produces violet the concentration of sulfer dioxide in 0-0.5 arrows produce Violet the concentration of sulfer dioxide in 0-0.5 arrows produce fluoro- aabient air with fluorescence intensity µg/a3 ference. fluoro- aabient air with fluorescence intensity µg/a3 ference. fluoro- abit from the SO2 may aborbed in diluted 0-0.5 gravers are fluoro- absorption			of this species is determined spectrophoto-		setals.		-							
AnalysisThe air sample is bubbled through a diluteDetectionECO. HNO3 andAnalysisH200° where SO2 is absorbed and oxidized tolimitCH3000H produceaetricform H2S04. The acidity of resulting1000positive inter-aethodsolution can be estimated by titration with $\mu_g/a3$ ference. NH3aethodsolution can be estimated by titration with $\mu_g/a3$ ference. NH3aethodsolution can be estimated by titration with $\mu_g/a3$ ference. NH3aethodsolution can be estimated by titration with $\mu_g/a3$ ference. NH3aethodsolution can be estimated by titration with $\mu_g/a3$ ference. NH3ultra-This is a method to continuously measure $0-0.5$ aromatic hydro-ultra-This is a method to continuously measure $0-0.5$ aromatic hydro-tituoro-the concentration of sulfer dioxide in $0-0.5$ aromatic hydro-futurortastin $\mu_g/a3$ carbons producefuturorsystemultraviolet light. $\mu_g/a3$ ring gases arelontinuoussystemultraviolet nordispersion type infrared $\mu_g/a3$ ring gases areabsorptionthe concentration of SO2 in a sample gas is $\mu_g/a3$ ring gases areabsorptionthe concentration of SO2 in a sample gas is $\mu_g/a3$ ring sase areabsorptionthe solution SO2 is oxidated and $0-0.000$ positive interference.absorptionthe solution SO2 is oxidated and $0-0.000$ positive interference.<	[aetrically.											
Analysis Acidi- H202 where SO2 is absorbed and oxidized to form H2SO4. The acidity of resulting Init CH3C00H produce notice inter- interference. MH3 aethod solution can be estimated by titration with alkali. µg/m3 ference. MH3 aethod solution can be estimated by titration with alkali. µg/m3 ference. MH3 Ultra- This is a method to continuously measure violet µg/m3 produces negative interference. Ultra- This is a method to continuously measure violet 0-0.5 aromatic hydro- the concentration of sulfer dioxide in violet 0-0.5 aromatic hydro- tative inter- by aromatic hydro- terfore Continuous system ultraviolet light. 0-0.5 aromatic hydro- terfore So2 gas absorbs infrared radiation at wave- labsorption branking this property of SO2 0-1330 positive interfe- terce. Analysis system ultraviolet light. ference. MG Analysis absorption ultraviolet light. ference. MC Analysis gas absorbs infrared radiation at wave- absorption length 7300 ma Ultra- ter vapor and co2 ference. MC A				Detection										
actric form H2SO4. The acidity of resulting 1000 positive inter- acthod solution can be estimated by titration with µg/a3 ference. MH3 albali. anthod solution can be estimated by titration with µg/a3 ference. MH3 ultra- This is a method to continuously measure method metroference. Hater vapor and Ultra- This is a method to continuously measure 0-0.5 aromatic hydro- Ultra- This is a method to continuously measure 0-0.5 aromatic hydro- fluoro- the concentration of sulfer dioxide in 0-0.5 aromatic hydro- fluoro- the concentration of sulfer dioxide in 0-0.5 aromatic hydro- fluoro- the concentration of sulfer dioxide in 0-0.5 aromatic hydro- fluoro- the concentration of sold in a wave- hg/a3 carbons produce fluoro- sathen air with fluorescence intensity µg/a3 aromatic hydro- fluoro- sathen air with fluorescence intensity µg/a3 aromatic hydro- fluoro- sathen air with fluorescence intensity µg/a3 aromatic hydro- fluoro- Sold sold fligh		Acidí-	H202 where S02 is absorbed and oxidized to	liait	CH3COOH produce									
aethod solution can be estimated by titration with μg/μ3 ference. ME3 alkali. alkali. produces negative Ultra- This is a method to continuously measure interference. Ultra- This is a method to continuously measure method to continuously measure Violet the concentration of sulfer dioxide in 0-0.5 aromatic hydro- fluoro- ambient air with fluorescence intensity u.2/m3 carbons produce fluoro- ambient air with fluorescence intensity u.2/m3 carbons produce fluoro- ambient air with fluorescence intensity u.2/m3 carbons produce fluoro- ambient air with fluorescence intensity u.2/m3 carbons produce fluoro- ambient air with fluorescence intensity u.2/m3 carbons produce fluoro- ambient air with fluorescence intensity u.2/m3 carbons produce fluoro- ambient air with fluorescence intensity u.2/m3 carbons produce fluoro- ambient air with fluorescence intensity u.2/m3 carbons produce fluoro- solution SO2 matrix/matrix ference. fluoro- solut		actric	form H2S04. The acidity of resulting	1000	positive inter-	١	hproximately							<i></i>
alkali. alkali. produces negative Ultra- This is a method to continuously measure interference. Ultra- This is a method to continuously measure ifater vapor and violet the concentration of sulfer dioxide in 0-0.5 aromatic hydro- fluoro- ambient air with fluorescence intensity µ2/43 carbons produce fluoro- ambient air with fluorescence intensity µ2/43 carbons produce fluoro- ambient air with fluorescence intensity µ2/43 carbons produce fluoro- ambient air with fluorescence intensity µ2/43 carbons produce fluoro- ambient air with fluorescence intensity µ2/43 carbons produce foontinuous system ultraviolet light. ference. Soc gas absorbs infrared radiation at wave- hc. ference. absorption the concentration of SOC in a sample gas is µ2/43 ring gases are absorption masured with a non-dispersion type infrared co2. CO2. Analysis gas analyzer. foothoce foothoce foothoct file SOC macus of subsorbed in diluted 0-0:000 positive interference. foothoct file SOC macus of the onoreitation SOC solution soc <th></th> <td>aethod</td> <td>solution can be estimated by titration with</td> <td>μg/113</td> <td>ference. NH3</td> <td></td> <td>1 hr.</td> <td>•</td> <td>1</td> <td>ı</td> <td></td> <td>ł</td> <td>ı</td> <td>THO Kethod</td>		aethod	solution can be estimated by titration with	μg/113	ference. NH3		1 hr.	•	1	ı		ł	ı	THO Kethod
Interference.interference.Ultra-This is a method to continuously measureinterference.Ultra-This is a method to continuously measureIf ater vapor andvioletthe concentration of sulfer dioxide in $0-0.5$ aromatic hydro-fluoro-tablent air with fluorescence intensity $\mu_{\rm g}/a3$ carbons producefluoro-tablent air with fluorescence intensity $\mu_{\rm g}/a3$ carbons producefluoro-tablent air with fluorescence intensity $\mu_{\rm g}/a3$ carbons producefluoro-tablent 7300 nm. Using this property of SO20-1330horstrinelength 7300 nm. Using this property of SO20-1330horstrinethe concentration of SO2 in a sample gas is $\mu_{\rm g}/a3$ absorptionthe concentration of SO2 in a sample gas is $\mu_{\rm g}/a3$ horstrinethe sample gas is $\mu_{\rm g}/a3$ formulationstater vapor andAnalysisThe SO2 in the air is absorbed in dilutedftcl. C12. C02. NO2forduct-fi2SO4-H2O2 solutionSO2 is oxidated andend H2S produceforduct-fi2SO4-H2O2 solutionSO2 is oxidated andpomantricconverted into H2SO4. Weasurement of thepomfternce.systemincrease of electric conductivity of thepomfternce.increase of electric conductivity of thepomfternce.systemH2SO4 gives the concentration of SO2.SO2stire forduce			alkali.		produces negative							-		
Ultra-This is a method to continuously measureRater vapor and totoletvioletthe concentration of sulfer dioxide in fluoro-0-0.5Rater vapor and aromatic hydro-fluoro-ambient air with fluorescence intensity metro $0-0.5$ Raromatic hydro- aromatic hydro-fluoro-ambient air with fluorescence intensity metro $0-0.5$ Raromatic hydro- aromatic hydro-fluoro-ambient air with fluorescence intensity metro $0-0.5$ Raromatic hydro- aromatic hydro-fluoro-ambient air with fluorescence intensity metro $0-0.5$ Raromatic hydro- tensity inter-fontinuoussystemultraviolet light. $0-0.5$ Carbons produceSoc gas absorbs infrared radiation at wave- labsorptionbooth light. $0-0.50$ Positive interfe- tence.AnalysisSoc gas absorbs infrared radiation at wave- absorption μ_{g}/n_{3} ring gases are tence.Analysisgaseralyzer. μ_{g}/n_{3} ring gases are tence.Analysisgaseral/ser. μ_{g}/n_{3} ring gases are tence.Analysisfree concentration of SO2 in a sample gas is system μ_{g}/n_{3} ring gases are tence.Analysisfree concentration of SO2 in a sample gas is system μ_{g}/n_{3} ring gases are tence.Analysisfree concentration of SO2 in a sample gas is system μ_{G}/n_{3} ring region are tence.Analysisfree concentration SO2 is oxidated and antric $0-0.000$ positive inter- tence.forduce <th></th> <td></td> <td></td> <td></td> <td>interference.</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					interference.	-								
violetthe concentration of sulfer dioxide in robust0-0.5aromatic hydro- aromatic hydro- arbient air with fluorescence intensity0-0.5aromatic hydro- carbons produce positive inter- ference.fluoro-ambient air with fluorescence intensity $\mu g/a3$ carbons produce positive inter- ference.fluoro-ambient air with fluorescence intensity $\mu g/a3$ carbons produce positive inter- ference.fluoro-systemultraviolet light. (0.1330) positive interfe- positive interfe- interfe- absorptionfluoro-SO2 gas absorbs infrared radiation at wave- linfrared (0.1330) (0.1330) positive interfe- positive interfe- asses are asses are assesAnalysisSo2 gas absorbs infrared radiation at wave- absorption $\mu g/a3$ ring gases are the concentration of SO2 in a sample gas is asses are asses $\mu g/a3$ ring gases are asses are asses are the concentration of SO2 in a sample gas is assesAnalysis $\mu g/a3$ $\mu g/a3$ ring gases are the concentration of SO2 in a sample gas is asses $\mu g/a3$ Analysis $\mu g/a3$ $\mu g/a3$ ring gases are the concentration of SO2 in a sample gas is asses $\mu g/a3$ Analysis $\mu g/a3$ $\mu g/a3$ $\mu g/a3$ $\mu g/a3$ Analysis $\mu g/a3$		Ultra-	This is a method to continuously measure		Water vapor and						within	within	within	
fluoro-ambient air with fluorescence intensity $\mu g/a^3_3$ carbons producemetryemitted from the SO2 molecules excited bypositive inter-continuoussystemultraviolet light.ference.ContinuousSO2 gas absorbs infrared radiation at wave-ference.SO2 gas absorbs infrared radiation at wave-nordise interfe-Infraredlength 7300 nm. Using this property of SO20-1330Positive interfe-absorptionthe concentration of SO2 in a sample gas is $\mu g/a^3_3$ ring gases areAnalysisgas analyzer.COnduct-RSO4.H2O2 solution. SO2 is oxidated andRC02. CO2. NO2Conduct-RSO4.H2O2 solution.SO2 is oxidated andand H2S produceattricconverted into H2SO4. Measurement of the0-2000positive inter-systemincrease of electric conductivity of thepomference.H2SO4 gives the concentration of SO2.SO2.SO200positive inter-		violet	the concentration of sulfer dioxide in	0-0.5	aromatic hydro-	within ±2%	within	within			±1% for	±1% for ±2ppb/day±2ppb/day	±2ppb/day	
metry cmitted from the SO2 molecules excited by positive inter- ference. Continuous system ultraviolet light. ference. SO2 gas absorbs infrared radiation at wave- Infrared SO2 gas absorbs infrared radiation at wave- length 7300 nm. Using this property of SO2 0-1330 Positive interfe- water vapor and water vapor and CO2 Analysis messured with a non-dispersion type infrared system messured with a non-dispersion type infrared as analyses messured with a non-dispersion type infrared cO2 mess are water vapor and cO2 Analysis messured with a non-dispersion type infrared system mess are water vapor and cO2 mess and cO2 Analysis messured with a non-dispersion type infrared system mess are water vapor and cO2 meter vapor and cO2 Analysis messured with a non-dispersion type infrared system mess are vapor and cO2 meter vapor and cO2 Analysis mess of solution SO2 is oxidated and onduct- system 0-2000 positive inter- pon Analysis metric converted into H2SQ4. Wesurement of the increase of electric conductivity of the pon pon H2SM gives the concentration of SQ2. MB3 produces nega-		flucro-	ambient air with fluorescence intensity	μg/a3.	carbons produce	of max scale	3 ain.	±2X of		120 m in.	AC 100V	of BBX.	of rax.	EPA Method
Continuous system ultraviolet light. ference. SO2 gas absorbs infrared radiation at wave- Infrared SO2 gas absorbs infrared radiation at wave- length 7300 nm. Using this property of SO2 0-1330 Positive interfe- water vapor and water vapor and positive interfe- measured with a non-dispersion type infrared system 761.012, C02, N02 Analysis Resured with a non-dispersion type infrared gas analyzer. RG1, C12, C02, N02 002 Analysis Conduct- R2S04.H2O2 solution. SO2 is oxidated and and H2S produce and H2S produce And H2S produce and H2S produce system increase of electric conductivity of the increase of electric conductivity of the system 0-2000 positive inter- pon		metry .	emitted from the SO2 molecules excited by		positive inter-			REX. SCOLO			± 10V		scale	ACCUPATION NO.
SO2 gas absorbs infrared radiation at wave- Infrared length 7300 nm. Using this property of SO2Positive interfe- absorption the concentration of SO2 in a snapple gas is water vapor and gases are gas analyzer. $\mu_{\rm g}/n_{\rm S}$ Fing gases are water vapor and CO2.Systemmeasured with a non-dispersion type infrared gas analyzer. $\mu_{\rm g}/n_{\rm S}$ $\mu_{\rm g}/n_{\rm S}$ $\mu_{\rm g}/n_{\rm S}$ The SO2 in the air is absorbed in diluted $\mu_{\rm g}/n_{\rm S}$ $\mu_{\rm G}/n_{\rm S}$ $\mu_{\rm G}/n_{\rm S}$ $\mu_{\rm G}/n_{\rm S}$ The SO2 in the air is absorbed in diluted $\mu_{\rm G}/n_{\rm S}$ $\mu_{\rm G}/n_{\rm S}$ $\mu_{\rm G}/n_{\rm S}$ $\mu_{\rm G}/n_{\rm S}$ Conduct- $\pi_{\rm SO4}$ - $\pi_{\rm SO2}$ solution.SO2 is oxidated and and $\pi_{\rm C}$ $\mu_{\rm G}/n_{\rm C}$ $\mu_{\rm C}/n_{\rm C}$ systemincrease of electric conductivity of the increase of electric conductivity of the poar $p_{\rm M}$ forence. $\pi_{\rm SO4}$ gives the concentration of SO2. $N_{\rm HS}$ $N_{\rm HS}$ produces nega-	Continuous	system	ultraviolet light.		ference.							_,		2049-
Infrared length 7300 nm. Using this property of SO2 0-1330 Positive interfe- interfe- absorption absorption the concentration of SO2 in a sample gas is system nagases are water vapor and gas analyzer. non-dispersion type infrared nagases are vapor and pass analyzer. The SO2 in the air is absorbed in diluted RCL. C12. CO2. NO2 CO2 CO2. NO2 and RCL. C12. CO2. NO2 and RCS produce Conduct- R2S04-H2O2 solution. SO2 is oxidated and aetric 0-20000 positive inter- pre system HESO4 gives the concentration of SO2. NHS produces nega- ference.			SO2 gas absorbs infrared radiation at wave-									within	within	
absorption the concentration of SO2 in a sample gas is /4g/m3 ring gases are system measured with a non-dispersion type infrared water vapor and gas analyzer. (CO2, NC2, NC2, NC2, NC2, NC2, NC2, NC2, NC	<u></u>	nfrared	length 7300 nm. Using this property of S02	0-1330	Positive interfe-	within ±2%	within		within		within	1+2%	+ 2%	(
systemmeasured with a non-dispersion type infraredwater vapor andgas analyzer.CO2.Ras analyzer.CO2.The SO2 in the air is absorbed in dilutedHCL. C12. CO2. NO2Conduct-H2SO4-H2O2 solution. SO2 is oxidated andand H2S producenetricconverted into H2SO4. Measurement of the0-20000positive inter-systemincrease of electric conductivity of theppmference.H2SO4 gives the concentration of SO2.ND3ND3	<u></u>	bsorption	the concentration of SO2 in a sample gas is	μg/a3	ring gases are	of max scale	4 cin.	1	±2% of		±1X of	of nax.	of max.	EPA Method
gas analyzer. CO2. Resolution Solution Solution The SN2 in the air is absorbed in diluted HCL CL2. CO2. NO2 Conduct- H2S04-H2O2 solution SO2 is oxidated and Conduct- H2S04-H2O2 solution SO2 is oxidated and aetric converted into H2S04. Measurement of the 0-20000 system increase of electric conductivity of the ppm H2S04 gives the concentration of S02. NH3 produces nega-	<u>v</u> i	ysten	measured with a non-dispersion type infrared		water vapor and				aax. scale		Rax. scale	scale	scale	
The SO2 in the air is absorbed in diluted HCL CL2, CO2, NO2 t- H2SO4-H2O2 solution. SO2 is oxidated and and HCS produce converted into H2SO4. Measurement of the 0-2000 positive inter- increase of electric conductivity of the ppa ference. H2SO4 gives the concentration of SO2. NH3 produces nega-	Analysis		gas analyzer.		C02.									
t- H2S04-H202 solution. S02 is oxidated and and H2S produce converted into H2S04. Measurement of the 0-2000 positive inter-increase of electric conductivity of the ppa ference. H2S04 gives the concentration of S02.			The SO2 in the air is absorbed in diluted		HC1. C12, C02, N02									
converted into H2SO4. Measurement of the 0-2000 positive inter- increase of electric conductivity of the ppm ference. H2SO4 gives the concentration of SO2.		Conduct-	H2SO4-H2O2 solution. S02 is exidated and		and H2S produce	-		within			within	within	wîthin.	-25-L-74
increase of electric conductivity of the ppa ference. 12304 gives the concentration of SO2. NH3 produces nega-		aetric	converted into H2SO4. Measurement of the	0-2000	positive inter-	within ±2%	within	±4% of	within		±1% of	±2%/day	±2%/day	WHO Method
		system	increase of electric conductivity of the	BOd	ference.	of max scale	5 ain.	aax. scale	max. scale ± 7%/10days	1	Eax. scale of max.	of max.	of nax.	JIS Method
			H2S04 gives the concentration of S02.		NH3 produces nega-							scale	scale	
tive interference.					tive interference.							i		

Table 3-2-6 METHODS FOR DETERMINATION OF NO2 IN THE ATMOSPHERE

**	poutar	Principle	Measuring	Interferences	Repeatability	Repeatability Treatment time Linearlity Flow Rate Warming-up Valtage Zero-driftSpan-drift	Linearlity	Flow Rate	araing-up	Valtage	Zero-drift	Span-drift	Remarks
	· · · ·		Range			or Response time		Variation	Tine	Variation			
		NO2 contained in the sample gas is made to											
		pass through the absorbing luminous liquid. Detecti	Detection									1 112 1016 102 1-2-	
Chenical		Saltzmann The absorbance of azo dye obtained by the	limit	03 and NO produce		Approximately							THO Method
Analysis	sis method	coupling reaction with sulfanilic acid and	9400 µ g/a	9400 μg/ag interference	1	20 ain.		•	ı	1	1	1	JIS Method
		naphthyl ethylene diamine is measured and											
		thereby the concentration of NO2 is deter-											
		wined.						•					
		NO reacts with 03 and forms NO2. When NO2											
5	Cheailuai	Chemilumi return from an excited state to the ground					within			±1% for within	within	within	EPA Kethod
	nescence	state. it emits near infrared radiation.	0-0.5	A negative inter-	within ±2%	within 180 sec.	±2% of	1	•	AC 100V	±2nnb/dav ±2%/dev	+ 9%/dav	WKO Kethod
Contin	Continuoussystem	The chemiluminescent intensity is propor-	edd	fering gas is CO2. of max.scale	of max.scale		tax.scale					of nax.	IIS Kethod
		tional to the concentration of NO at										srale Srale	ASTK Wethow
		wavelengths between 590 and 875 nm.											
	Spectro-	Spectro- It is a method of simultaneously and conti-											
Analy	sis photometr	Analysis photometry nuously measuring the NO and NO2 contained	0-0-2	03 produces			within	within		within	within	within	WHO Method
	system	in the ambient air by the spectrophotometry	edd	interference.	within ±2%		+1 \$ 2	±7%/10days 2 hr.	2 hr.	4 1%	1+ 1-2%	20 20 +1	JIS Wethod
		that uses Saltzmann Reagent as a absorbing	_					,			I		
		reagent.				-							

Table 3-2-7 METHODS FOR DETERMINATION OF SPM IN THE ATMOSPHERE

Method	po	Principle	Measuring	Interferences	Repeatability	Messuring InterferencesRepeatability Treatment time Linearlity Flow Rate Marwing-up Valtage Zero-driftSpan-drift	Linearlity	Flow Rate	Tarwing-up	Valtage	Zero-drift	Span-drift	Reaarks
			Range			or Response time		Variation	Time	Variation			
	High-	SPM in ambient air is collected with a		Loss of vola-	oss of vola- Coefficient	•		within					EPA Method
	voluae	high-volume air sampler (flowrate: 1.1-1.7	2-750	ties produces	ties produces of variation 30 min.	30 min.	•	0.02	1	ı	,	1	THO Method
Kanual	acthod	a3/ain.) After collection, the weight of	μg/a3	negative	3.0%	• •		2 3/ain.					ASTN Nethod
		the filter paper is acasured.		error					ļ				
		SPM in air is collected using a diaphagm				•	Linear for						
Analysis	Analysis Filter	suction pump with a nominal rating of 55	0.05-0.3		Collection		absorbance						THO Method
	soiling	1/min. After collection, the darkness of	5	1	Coefficient	30 ain.	of	i	,	،	ł	ı	ASTW Method
	aethod	the stain produced by drawing air through	absorbance		0.97-0.99		0.05-0.3						
		filter paper is measured photometrically.											
	Beta-ray	The muss of SPM is obtained from the	0-5000				"within	within		vithin	within	within	WHO Kethod
	absorption	absorption increase of the absorption amount of B-ray	µ2/a3	•	within ±2%	60 sec.	十 10%	±5%/10days 1-2 hr.	1-2 hr.	± 2%	±2% for	±3% for	JIS Method
nonutuo	Continuous system	due to particles collected on filter paper									DEX. SCELC	MAX. SCHIC MAX. SCHIC	
		Sample is introduced into a dark charber and	1										
Analysis Light	Light	is radiated by a light beam. The light is	0-10000				within	within		within	within	within	<u>`.</u>
	Scattering	Scattering scattered by SPM. The intensity of the	28/23	P	within ±2%	,	土20%	±5%/day	3 hr.	±1% for	±2% for	±2% for	JIS Method
	system	scattered light is seasured and the mass				-				AC 100V	nux scale	max scale max scale	
1		concentration of SPM is obtained.						· ·					

- 3.2.3 Results of Measurement of Pollutants from Flue Gas and in Ambient Air
- (1) Flue Gas Measurement

All results of measurement were summarized in from Appendix 10 showing these concentration of pollutants from flue gas to study and verify the relationship between the measurement value.

1) Difference of the measured value.

Regarding the differences of values measured between the analysers and chemical titration method, many issues will be caused from the target circumstances at such measurement. In such cases following issues shall be verified for each objectives of the problems;

- (a) Proprietary errors caused by the said analytical method adopted as described in the Table 3-2-2 to 3-2-7, summarized error and precision for the analyser and supplementary explanation on the analysis method compiled in Appendix-3 shall be verified for the measured value.
- (b) Regarding the process consideration on the fuel storage including analysis data of the fuel, fuel supply, combustion, including combustion condition like fuelair ratio, workmanship of IDF or FDF the flue gas line and leakage volume of air in to the process etc shall be verified totally for the analysis of the difference between the two analysers.
- (c) In general, automated continuous recording analysers shows rapid fluctuations of the detected value around $\pm 20 \pm 30$ % depending on the system of the flue gas line.
- (d) However, it should be noted that there is no difference of the measured value for O_2 , NOx, SO_2 etc in the radius direction of the duct and stacks, because a perfect mixing is achieved concerning to the flue gas stream when there is no air leakage is observed around

the neibour. Regarding the concentration of dust, there are big differences of concentration of dust even in the radius direction of the duct. Therefore it is very important for a position of sampling to be installed in the duct where there is no obstacles to make a gas stream as uniform velocity distribution in the duct line.

(e) Therefore, difference between the various analyser measured shall be analysed individually taking into many causes in cordiderations.

Regarding the measured values in this study, only one sampling nozzle is installed against to our request to the power station due to the miscellaneous reasons, therefore it is very difficult to clarify the reason of the differences.

However, it is observed that measurement values in the almost consecutive time, as shown in the measurement data the difference between the value is almost equal in ±30%.

In addition to the above, some reason to the difference of the measured value are presented concerning to some procedure of the analysis;

2) Reduction ratio and quality of zinc in Zn-NEDA method

(a) Examination of reduction ratio and quality of zinc powder

The quality of zinc powder needs to be carefully examined, because the reduction of nitrate ion with zinc powder is a critical step in Zn-NEDA method. The particle size and reducing rate of zinc powders vary, as some of them are not manufactured for application to nitrate reduction. Therefore, it is important to measure reducing rate when a new zinc powder is used in the procedure.

(b) Reduction ratio in JIS standards

JIS K0104 (Analytical Method for Oxides of Nitrogen in Exhaust Gas) specifies that the reduction ratio of zinc powder used in Zn-NEDA method is not less than 90%. The annotations of the standards refers to considerable variation in the reduction ratio of various kinds of zinc powder as shown in Table 3-2-8.

Zinc	Powder	Addition of zinc powder (g)	Absorbance	Reduction ratio (%)
	A	0.5	0.150	39.9
		1.5	0.297	79.0
	в	0.5	0.116	61.1
		1.5	0.068	36.2
	C	0.5	0.283	100.3
	· .	1.5	0.281	99.6

Table 3-2-8 EXAMPLES OF REDUCTION RATIO

Table 3-2-9 shows how the particle and type of zinc powder affects absorbance. Judged from the result, it is recommendable to use a zinc powder to be specified for use of nirogen oxide analysis and containing particles not greater than 5 μ m in particle size about 50% by weight.

Table 3-2-9 DIFFERENCE IN ABSORBANCE BY PARTICLE SIZE OF ZINC POWDER

Zinc type	weight less than 5µm	Absorbance
Special grade, min 90%	59.0	
General grade, min 85%	30.0	0.353
Reagent general grade	51.0	0.385
Special grade, min 99%	45.3	0.371

(C) Zinc powder used in the field survey

Two kinds of zinc powder, one procured in the Argentina and the other manufactured in Japan, were used in the field survey. Their influence on absorbance is compared in the following Table 3-2-10.

Table 3-2-10 COMPARISON BETWEEN ARGENTINE AND JAPANESE ZINC POWDERS

Zinc powder	Absorbance		
	NO2 concentration	NO_2 concentration	
	20 µl	40 µl	
Argentine	0.025	0.054	
Japanese	0.277	0.572	

The zinc powder procured in the Argentina exhibited lower absorbance (reduction ratio) than that manufactured in Japan. The Japanese zinc powder is made specifically for application to the measurement of nitrogen oxides. The Argentine zinc powder is for general, analytical purposes. Zinc powders for general analysis are not uniform in particle size and unsuitable for nitrate reduction. A zinc powder made for the measurement of nitrogen oxides needs to be obtained for future assessment work in the Argentina.

3) NO₂ absorption ratio by JIS standars

(a) Absorption Ratio

JIS B7953 (Continuous Analysers for Oxides of Nitrogen in Ambient Air) specifies that the NO₂ absorption ratio by Saltzman method is not less than 97% under the following conditions:

- condition 1) NO₂ concentration: 152-181 μ g/m³ (standard gas)
 - 2) flow velocity: 0.4 1/min
 - 3) sampling time: 60 minutes
 - 4) the nozzle of an absorption bottle is a glass filter the pore diameter of which is not more than 60 μm .

According to Annotations of Analytical Methods for Environmental Assessment (edited by Japan Association for Environmental Assessment and Analysis), the test result of NO_2 absorption ratio under the above conditions showed a high average value of 99.2% as given in Table 3-2-11. No problem is expected in collecting NO_2 , if flow velocity and the efficiency of glass filter is standardized.

Table 3-2-11 NO₂ ABSORPTION RATIO

Target Sample	A	в	С	D	E A	verage
Absorption RAtio	99.8	99.0	99.6	98.7	98.7	99.2

(b) NO2 absorption ratio by WHO standards

Selected Methods of Measuring Air Pollutants of WHO prescribes the conditions for measurement by Saltzman method as following:

- condition: 1) NO_2 concentration: not more than 9400 $\mu\text{g/m}^3$
 - 2) flow velocity: 0.3-0.6 1/min
 - 3) sampling time: not more than 2 hours
 - 4) the nozzle of an absorption bottle is a glass filter the pore diameter of which is not more than 60 µm.

The WHO standards do not contain NO2 absorption ratio. But, the original literature, Saltzman, Anal. Chem. 26(1954), gave NO_2 absorption ratios of 94-99%, which are as high as those in the JIS strandards.

(C) Absorption ratio obtained in this experiment

Followings are the conditions for measurement by Saltzman method in this field survey:

condition: 1) NO₂ concentration: 0.6-14 μ g/Nm³ (measured values of ambient air)

2) flow velocity: 1.5-2.0 1/min

- 3) sampling time: 18-24 hours
- 4) the nozzle of an aborption bottle is a glass filter the pore diameter of which is about 1 mm.

The test result of NO2 absorption ratio obtained under the above conditions in Mendoza are shown in Table 3-2-12.

Date	Place	NO2	(µg)	Rati	0(%)
	Α	Sample	B Sample	A Sample	B Sample
July,23	CNEA	5.19	3.14	62.3	37.7
July,23	Municipalidad	5.79	4.58	55.8	44.2
July,27	CNEA	9.65	4.10	70.2	29.8
July,27	Polideportivo	3.86	2.90	57.1	42.9
July,27	Municipalidad	3.74	1.69	68.9	31.1
Ave	rage		· · · · · · · · · · · · · · · · · · ·	63	37

Table 3-2-12 NO2 ABSORPTION RATION IN MENDOZA

The result shows that the absorption ratios are considerably worse than those in the test by the JIS standards. The comparison between the conditions for testing the efficiency of the JIS standards and those of this field survey follows.

(a) NO₂ concentration

JIS adopts a standard gas with 152-181 $\mu\text{g/m}^3,$ but this field survey dealt with ambient air with 0.6-14 μ q/m³. Low NO2 concetrations mean excess N-1naphthylethylenediamine, which reacts with NO2, in terms of equivalent. Therefore, they would not contribute to lowering the absorption ratio. Rather, the problem is rooted in the fact that the initial value of NO₂ concetration was unknown because a standard gas was not used in the test. The calculated values of NO₂ concentration are obtained by dividing measured values by Saltzman coefficient (the ratio of the amount of NO_2 - formed by the reaction of NO_2 with Saltzman reagent to that of initially present NO_2). The calculated values vary by the value of Saltzman coefficient. JIS adopts 0.84 and WHO uses 0.74.

(b) Flow velocity

Flow velocity in this field survey was 1.5-2.0 l/min, adjusted by flow rate control cock, which is about four times as great as those specified in JIS or WHO; it is

0.4 1/min for JIS and 0.3-0.6 1/min for WHO. Faster flow is generally believed to lower the absorption ratio. Consideration for the prevention of clogging, the accuracy of suction pumps, and the accuracy as well as turn-down ratio of flow meters led to the minimum flow velocity setting at 1.5-2.0 1/min in this field survey.

(c) Sampling time

It was set at 18-24 hours in this field survey, which is longer than 60 minutes for JIS or no more than 2 hours for WHO. Although sampling time does not directly affect the absorption ratio generally, sampling for a long time could lower the absorption ratio, if it allows contamination with foreign materials or colorization by sunlight. Sampling time was set around 24 hours in this field survey in order to obtain values for one full day.

(d) Pore diameter of nozzle

It is not more than 60 μ m in either JIS or WHO. However, because a midget impinger was adopted as an absorption bottle, a nozzle with the pore diameter of about 1 mm was chosen in this field survey. Generally speaking, pore diameter is very important in a gasliquid reaction; a larger pore diameter reduces the contact area between gas and liquid, and the absorption ratio. An easy-to-operate midget impinger was chosen as an absorption bottle in this field survey in order to facilitate a swift transfer of technology.

These factors led to the judgement that the absorption ratio needs to be corrected in this field survey. The survey team performed a test of the absorption ratio under the same conditions as those of this field survey before setting out for the second field survey, because the team did not believe that the test performed in the Argentine was sufficient for determining the absorption ratio. The test result gave an average absorption ratio of 65% as shown in Table 3-2-13. This is believed to be appropriate as the absorption ratio under the conditions, because it is close to the absoption ratio of 63% obtained in the field test in the Argentine.

Therefore, it has been decided to divide by the absorption ratio of 0.65 all measured values of NO_2 concentration of ambient air under the aforementioned conditions (all the values of NO_2 concentration of ambient air in this report are those after divided by 0.65).

	Item	NO ₂ (μ	.g) C	ollection Ra	tio(%)
Run		A Sample	B Sample	A Sample	B Sample
1		14.1	7.2	66.2	33.8
2		12.6	5.4	70.0	30.0
3		11.8	7.2	62.1	37.9
4	· · ·	10.7	6.3	62.9	37.1
5		12.8	7.3	63.7	36.3
	Averag	e		65	35

Table3-2-13 RESULT OF EXAMINATION OF NO2 ABSORPTION RATIO

(e) Future issues

It is believed that there is room for further examination of the absorption ratio by Saltzman method, because the transfer of techonology was done in a limited period of time in this field survey; it is desirable to test the collection ratio of a target component in advance and select the equipement and conditions for test that best suit the local environment, when monitering ambient air in the Argentine in future.

(2) Ambient Air Measurement

All results of measurement were summarized in Table 3-2-14, Table 3-2-15(1)-(3), and Table 3-2-15(4)&(5).

1) Measurement of atmospheric concentrations in Buenos Aires

Using a meteorological data already obtained and computation data on a short-term simulation, and assuming a northerly wind, the following three measurement sites were designated, and they are:

- Boca located 6.0 km south of the power plants
- CNEA in San Martin, 11.1 km west of the power plants where an R&D Institute of the Atomic Power Authority is located, and

- Morón, 16.1 km west of the power plants

Measurement results, indicated lower values than informations collected before for both NOx and SOx as shown in Table 3-2-14. To be specific, Boca had the highest value of 28.9 μ g/Nm³ for SOx, but other sites (8.5 km away from the power plants) gave lower values than the maximum landing concentration, i.e. 6.3 μ g/Nm³, calculated on the simulation. This result appears to have been caused by frequent changes in the direction of wind.

Eighty to ninety percent of a total of 5,600 thousands of automobiles of Argentina is driven in Buenos Aires and, therefore, the NOx value was suspected to run high, but its highest value was 25.8 μ g/Nm³ in Moron and 17.3 μ g/Nm³ on average. As regards SPM, the highest value was 90 μ g/Nm³ in Moron and 60 μ g/Nm³ on average, and both NOx and SPM meet the regulatory standards of the state and the country.

 Measurement of atmospheric concentrations in the city of Mendoza

Selection of atmospheric measurement sites in the city of Mendoza was assisted by the Environmental Bureau of the city, which led to selection of the following five measurement sites: (refer to Figure 3-2-2).

a. CNEA, 19.1 km NNE of the Power Plants

b. Municipalidad, 20.3 km NNE of the Power Plants

c. Park, 21.0 km NNE of the Power Plants

d. Polideportivo, 20.3 km NE of the Power Plants

e. Escuela, 9.9 km ES of the Power Plants

With regard to SOx data, a branch office of CNEA located 19.1 km NNE of the station had the highest value of 13.0 μ g/Nm³, though the average was 3.4 μ g/Nm³, which is far below the country's and Mendoza's standards. It should be kept in mind, however, that temperatures ran low in Mendoza when measurement was done and that the low temperature have contributed to the lower value, particularly, when the absorption ratio, which was described before, is taken into consideration.

Concerning NOx, the highest value is observed, as expected, at the city office, 20.3 km NNE of the power plants where traffic is very heavy with average being 3.6 μ g/Nm³. These values, nevertheless, meet the standards of the country as well as the city.

As regards SPM, 24-hour measurement at the three sites, i.e. CNEA, the city office and the park, showed 240, 250 and 190 μ g/Nm³ respectively, which are considered to be on the high side.

In view of the fact that the country's standard is 150 μ g/m³ and that Mendoza's standards are 100 μ g/Nm³ for a monthly average and is 260 μ g/Nm³ for the daily average SPM is the most serious problem in the city of Mendoza.

 Measurement of atmospheric concentrations in the city of San Nicolas

Through the cooperation of San Nicolas power plants, the following six sites were choosen near the power plants for measurement of atmospheric concentrations:(refer to Figure 3-2-3).

- Acero Parana premises, 0.7 km E of the San Nicolas power plants
- Flying Club premises, 4.2 km SSW of the power plants
- C&P Club, 6.6 km S of the power plants
- Camping Site, 5.1 km SSW of the power plants
- Escuela, 4.9 km W of the power plants
- City Office, 4.7 km NW of the power plants

This particular measurement of atmospheric concentration was meant for the impact of SOx only and, therefore, the only SOx value was measured, which produced a value of 11.2 ppb at its highest level at a point 4.2 km south-south-west of the power plants. The average concentration there is equally on the high side as proven at the Flying Club and the C&P both located 6.6 km south of the power plants. All these data can be taken to prove the impact of the power plants when the direction of wind during the measurement activity is considered.

However, both the highest and average measurement results well meet the standards of the country. The city of San Nicolas has a lower SOx concentration than the above three cities and the situation in the city is not bad at all.

When the environmental capacities of the three cities are studied, however, a good governmental administrative guidance needs to be in place so the current status will not aggravate any further. Comparisons in atmospheric concentrations with a global level will be described in section 3.3. To put it another way, the status is being maintained at the level of the outcome of atmospheric preservation efforts that ecologically advanced countries have made by working on environmental pollution prevention for many years.

Table 3-2-14 RESULT OF MEASUREMENT ON POLLUTANT CONCENTRATION

(1993)

									(1000)	
and an an an and a second s		Susper	nded		:					
	Item	Pertic	ulate	Matter	Silf€	r di ()xide	Nitro	ogen di	i Oxi
			(mg/Nn	13)		(μg/N	lm3)		(μg/N	lm3)
AREA	Station	Av.	Max.	Min.	Av.	Max.	Min.	Av.	Max.	Mir
BUENOS AIRES		0.06	0.09	0.01	6.0	12	3.3	9.4	14	4.
MENDOZA		0.14	0.25	0.03	1.4	5.4	0.2	1.8	5.3	0.
SAN NICOLAS	_		—	-	0.8	4.4	<0.2	_	-	
ALL AREA		0.12	0.25	0.01	1.4	12	<0.2	3.9	14	0.
BUENOS AIRES	CNEA	0.07	0.07	0.07	4.3	5.3	3.3	8.3	11	4.
	Boca	0.01	0.01	0.01	12	12	12	8.1	8.1	8.
	Moron	0.09	0.09	0.09	5.0	5.0	5.0	14	14	14
MENDOZA	CNEA Cuyo	0.17	0.24	0,08	3.3	5.4	0.6	1.2		·
	Munici. LH	0.17	0.25	0.12	1.6	2.7	0.4	3.2	5.3	1.
	Parque	0.10	0.19	0.03	1, 1,	2.0	0.4	1.2	1.6	0.
	Polideport	0.16	0.21	0.08	0.6	0.8	0.5	1.8	2.9	0.
i	EscuelaNo.1-237	0.10	0.15	0.04	0.6	1.1	0.2	1.4	1.8	0
SAN NICOLAS	Club Somisa	-	-		1.0	2.7	<0.2	-	-	
·	Aero Club	-	-		1.4	4.3	<0.2			-
	Club C y P	-	-		0.3	0.5	<0.2	-	-	_
	Camping L y F	-		-	0.9	4.4	<0.2	-	-	_
	Escuela No.35	_		-	0.3	0.6	<0.2		-	
	Munici. SN		-		0.9	2.5	<0.2			
lote		leasur	ement	Date:						
	BUENOS AIRES	13~	16⁄Ju	l y						
	MENDOZA	22~	28⁄Ju	lу						
	SAN NICOLAS	3~	12/Au	gust						

	Item	Suspended	Sulfer	Nitrogen
		Perticulate	di Oxide	di Oxide
		Matter		- -
Station	Date	(mg/Nm3)	$(\mu g/Nm3)$	(μg/Nm3)
	$22\sim$ 23/JULY	0.19	3.8	anana
CNEA Cuyo	$26\sim$ 27/JULY	0.24	5.4	
	$27 \sim 28$ /JULY	0.08	0.6	1.2
	22~23/JULY	0.14	1.6	5.3
Munici.LH	$26 \sim 27 / JULY$	0.25	2.7	2.9
- -	27~28/JULY	0.12	0.4	1.5
······································	22~23/JULY	0.09	0.8	1.6
Parque	26~27/JULY	0.19	2.0	1.3
:	27~28/JULY	0.03	0.4	0.6
	22~23/JULY	0.19	0.5	1.7
Polideport	$26 \sim 27/JULY$	0.21	0.8	2.9
	27~28/JULY	0.08	0.6	0.7
	22~23/JULY	0.11	0.2	1.8
EscuelaNa1-237	26~27/JULY	0.15	0.5	1.6
	$27 \sim 28 / JULY$	0.04	1.1	0.9
	Average	0.14	1.4	1.8

Table 3-2-15 (1) RESULT OF MEASUREMENTS ON POLLUTANT CONCENTRATION IN MENDOZA (1993)

	Item	Suspended	Sulfer	Nitrogen
		Perticulate	di Oxide	di Oxide
		Matter		
Station	Date	(mg/Nm3)	$(\mu g/Nm3)$	(μg/Nm3)
	13~14/JULY	0.07	5.3	4.8
CNEA	14~15/JULY	0.07	3.3	11
н. Н	15~16/JULY	0.07	4.3	9.0
Boca	15~16/JULY	0.01	12	8.1
Moron	15~16/JULY	0.09	5.0	14
	Average	0.06	6.0	9.4

Table 3-2-15 (2)RESULT OF MEASUREMENTS ON POLLUTANT
CONCENTRATION IN BUENOS AIRES (1993)

Table 3-2-15	(3)	RESULT OF MEASUREMENTS ON POLLUTANT
	· · ·	CONCENTRATION IN SAN NICOLAS (1993)

						•		
Date	3~4	4~5	5~6	6~7	9~10	10~11	11~12	Avera
Station	/AUGUST							
Club Somisa	—	2.7	0.4	< 0.2	0.4	1.9	< 0.2	1.(
Aero Club	3.0	1.6	< 0.2	< 0.2	4.3	0.6	< 0.2	1.4
Club C y P	< 0.2	< 0.2	0.4	< 0.2	0.3	0.5	< 0.2	0.3
Camping L y F	< 0.2	4.4	< 0.2	< 0.2	0.7	0.6	< 0.2	0,9
Escuela Na35	< 0.2	< 0.2	< 0.2		0.5	0.6	< 0.2	0.3
Munici. SN	< 0.2	< 0.2	1.1	2.5	0.4	1.1	0.7	0.9
Average	0.8	1.6	0.4	0.7	1.1	0.9	0.3	0.8

.

		•	
Divection	Frequency	max. Velocity	ave. Velocity
		(m/sec)	(m/sec)
N	12	2.4	1,2
NNE	1.	1.7	1.7
NE	2	1.4	1.2
ENE	1	3.7	3.7
Е	0	· <u></u>	-
ESE	· 0	→	_
SE	0		
SSE	1	0.8	0.8
S	10	2.0	1,1
SSW	0	·	-
SW	- 4	4,2	3.0
WSW	15	3.7	2,4
W	. 13	3.2	1.4
WNW	7	2.9	1.5
NW	1	1.5	1.5
NNW	_ 1	0.5	0.5
		4.2	1.7

Table 3-2-15 (4)SUMMARY OF WIND DIRECTION AND VELOCITY
(LUJAN DE CUYO PLANT)

Table 3-2-15 (5)SUMMARY OF WIND DIRECTION AND VELOCITY
(SAN NICOLAS POWER PLANT)

.

Divection	Frequency	max. Velocity	ave. Velocity
		(m/sec)	(m/sec)
N	0		
NNE	- 19	6.1	4.1
NE	8	5.6	4.4
ENE	15	7.2	4.3
Е	16	4.3	1.9
ESE	9	4.3	3.2
SE	6	3.5	2.5
SSE	6	2.6	2.1
S	24	8.0	4.7
SSW	31	8.8	5.3
SW	10	3.1	2,3
WSW	35	8.8	4.3
W	9	3.8	2.7
WNW	23	5.0	2.7
NW	8	3.3	2,3
NNW	1	2,4	2.4
		8,8	3.7

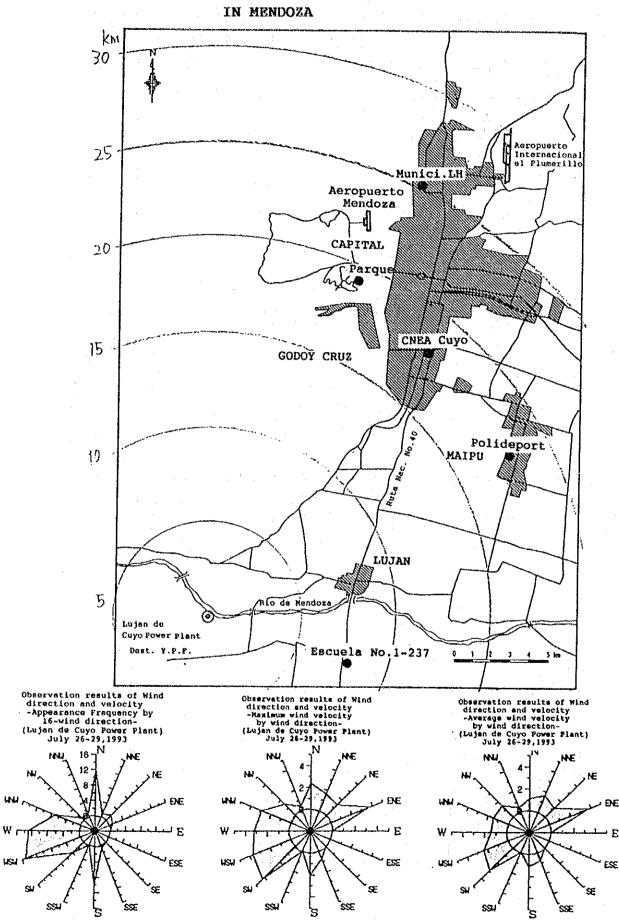
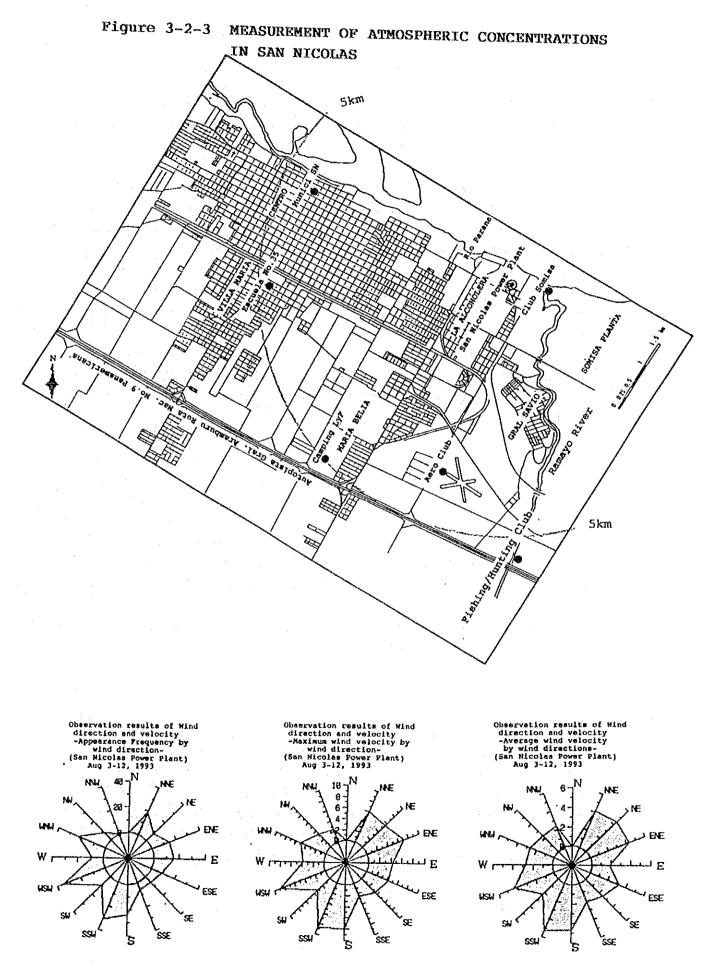



Figure 3-2-2 MEASUREMENT OF ATMOSPHERIC CONCENTRATIONS IN MENDOZA

Followings are short comments by the Survey team on results of the measurement itself and instructional recommendations for further utilization of these by the government of Argentina.

- 2) In consideration of abundant analyzers provided to the government of Argentina, i.e. five kinds of analyzers for flue gas measurement, six kinds of monitors for measurement of ambient air together with various supporting instrument and analyzers, it is considered that monitoring of the emission from the thermal power plant will be easily commenced from now on.
- 3) However, it may be reviewed that a screening test and/or indepth preparation of the measurement prior to the start-up of actual measurement might be more considered and prepared for this survey.
- 4) Therefore, it is recommended that all information on the analyzers such as, instruction manual, maintenance manual including list of spare parts, list of analyzer, standard manuals for chemical analysis, EPA standard, etc. shall be systematically compiled and further a receipy for analysis shall be prepared by the CNEA by itself, for an important analyzers and analytical method in español.
- 5) Regarding the individual analyzers, following comments shall be presented at this moment:

-MSI-2000;

This instrument was provided because many power plants are interested in and many were introduced already. However, there are many issues to be clarified, i.e. reproducibility, performance of gas cooler, maintenance, calibration etc. It can be said that these instrument shall be located as a handy and screening monitor prior to the detail measurement of chemical analysis and/or other instruments.

-NOA-7000;

Among many instrument analyzers, this chemiluminescence analyzer was selected because of its high performance, high functioning, easiness of maintenance and for necessities of measurement of wide range of concentration of NO for emission from flue gas.

-IRA-107;

There are four type of auto-mated analyzer i.e. a) infrared b) conductmetric c) ultraviolet fluorescence d)constant potential electrolysis. Among these, infrared absorption system has been developed as a automated analyzer due to its high performance reliability for elimination of disturbing components. This instrument also, is applicable for measurement of pollutants from flue gas for incinerators.

-Dust Monitor;

In the measurement of dust concentration in the flue gas, it is very important to measure the concentration of dust to cover the whole area of duct or stack due to the difference of gas Velocity.

At this moment, there is no instrument analyzer to meet the objective of these.

Therefore, determination of location of sampling point and measurement of flow rate, temperature, flow speed and flow rate of wet/dry basis are essential information in the measurement of dust.

Also this analyzer enable to take a sample for NOx and SOx, therefore, it can be said that this analyzer shall be a basic analyzer for measurement of pollutants from flue gas.

-AP-710N;

This analyzer is based on light scattering method and does not provide data for mass quantity of dust in flue gas, therefore, it is necessary to make a comparison data to

direct measurement of weight of dust from dust monitor mentioned as above.

These co-relation between the aboves was presented in the Appendix-3.

-Zn-NEDA;

At first, chemical analysis method was determined as Saltzman method because similar method was approved by EPA for the determination of NO_2 in ambient air.

However, in order to cover wide range of NO concentration in flue gas, there was a fear that conversion of NO to NO_2 will be decreased depending on the concentration of NO. (conversion rate:60 to 70% for 80ppm of NO, and 50% for

200ppm of NO).

Therefore, Zn-NEDA method was finally adopted for chemical analysis method because it can apply to a wide range of NO concentration and sensitivity is more excellent than PDS method especially, analysis can be completed within two and half hours.

However, most important point in this analysis is a quality of zinc powder of which reduction rate shall be higher than 90%.

More detailed comparison test using Japanese product and Argentine is needed and technical hearing with manufacturer of powder shall be held by the technical team of SE.

-High Volume Air Sampler;

Almost similar method of SPM measurement is stipulated in Appendix-B in Sub-Chapter-C of EPA and in Chapter 1 in "Selected Method of Measuring Air Pollutants" of WHO. This apparatus is based in almost same principle. Especially remarkable point on maintenance and operational view are filter, carbon brush and supervision of running time.

-Stand Sampler;

This sampler is to get sample for measurement of SOx and NOx for designated period.

In this sampler, important point of measurement are a) supervision of flow rate and b) determination of absorption liquid.

Under the given environmental conditions, screening test of flow rate and absorption liquid volume or settling of number of impingers are needed.

3.2.4 Comparison and review of atmospheric pollution in Argentina with a global level

The current ecological problems, which were one of the major issues at the "Ecology Summit" held in Brazil in 1992, have been recognized as an important element in discussions free trades as well as on issues surfacing in the relationships between the developed and developing countries. In this context, it is significant to understand where Argentina stands in terms of the level of atmospheric contamination on the global standard. This is needed from the standpoint of export promotion for the country's economic development that is currently considered as the most important issue.

While measurement of atmospheric concentrations performed in this particular survey is just an example, further consideration will be attempted based on the data so far obtained.

(1) Atmospheric standards in each country of the world

Atmospheric standards for SOx, NOx, SPM, etc. in each country of the world are given in Table 3-2-16(1),(2). Some countries have different ideas of setting standards, that is to say, different definition of data, and, therefore, simple comparisons cannot be easily made, but it is necessary to understand data even on a rule of thumb basis. Atmospheric concentrations for SO₂, NOx and SPM in OECD countries are given in Table 3-2-17(1)-(3).

Table 3-2-16 ENVIRONMENTAL STANDARDS OF VARIOUS COUNTRIES

	ଞ			CO(PPa		Sans	10 tosynti	Photosynthetic Oxidant - Ox (ppa)	dant	Susp	Suspended particles material SPN(ng/m3)	rticles (mg/c3)	Other	Definitions
		Ĕ	Bonth 24hr	8hr 11	ır 30¤in∐5≞in		-	Year 24hr Shr		The 130ain 10umCut Year 24hr	Year	24hr 1hr	ي 1	
		0.5	 	63 01	' 		•	•	0.1	-	•	• • •	- NOX, TSP, Falling sont	Kaxigum allowable limit
99 1	0.03) 0.0	04- (0. 1- 06 0. 2)	- -	់ ន	1	-		•	0-1	100%	1	0.1	0. 2	Standards desirable for protection of human hasith. Government's target, hounal assessment cade on the basis of 2% elimination value or 28% value (for MX only).
0	0. 053	۰ 	1	6 X	•	- Ozone	· .	1 1	6.	- 20%	0.05	0. 15	Po	Standards that provide adoquate protection of Brandards that provide adoquate protection of Brandshow of Momente
0	0. 053	•	•	•	•	- 0zone	•			20%	0.05	0.15	- Pb	Standards nooded to protect general public's relfare from harmful inpact construed to be related to atmospheric pollutants.
														Except standards relating to annual average, the above standard should not be exceeded sore than once a year.
0	0.053	0.2	4 1	9 33	,	- 0zone	•	, ,	0.1	205	0.05	0. 15	- TSP, Satoke	Except standards relative to annual average.
0	0. 053	0.1		82 6		 	'	r	0.1	203	0.05	0. 15	- TSP, Szoke	The address talkate should full be exceeded more than once.
	- 0.02	2 0.1	- 3	- 4	·	- 0zooc	ŀ	0.0	0		•		- 157	
	- 0.11		ı. ,	8 11	(2hr value 1)		•	- 0	- 0.2	•		 	- TSP, As, Pb, Scoke	24-bour limits for SO2 and TSP, and S0-min limits for Ox and As should not be exceeded more
0	0. 027 0. 08	8	0	' '	4	- Ozore	•	0.0	0.1	,		 	LSP -	When were a year, year is not reservence. 30-min limit for SN2 and annual average limit for CD have been set which are given in]-hour and comthy summer contener average.
	•	0.2	1	8 8		- Ozone	•	- 0.1	0.1	50%	0. 05	0. 15	- TSP. Pb. Folliog sont	and and the second of the seco
°.	0. 144 0. 29	9 0.6	, , ,	, ,		. 	-	0.1 0.1	. 			L.	- Pb, TSP, Saote	
		0.2	1	13 -	•		•	•					dSL	Por Av the Mavion mits standards are lived
0	0. 021 0. 05	0.2	- 2		\$	- Ozone	1	, 0.0	- 0.1		a .			30-min the marked vid standard are investigated is given in 1-hour column.
	•	•	-	•	•). 	' .			 	- 137 and other Totaling 360	30-min liuit for 302 has been set which is given in 1-bure column
	0. 05	0.2	• •	ໍ ສ	•	•	0.0	•	, , ,	•	•	•	ж ж	
	- 0.05		οσ	91 32	1	- 0zone		•	0.1				TSP, R2S, NIS, CJ2, NARC, Pb	24-hour limits for SN2 and SNP should not be ex- ceeded more than once a year, and 1-hour limit for SN2 should not be exceeded more than two rinnes in W Avec under now concretent
- 1	0. 05	•			-	 					•	-	52	
	0, 05	0. ¢		9 35	+	- Ozone	1	 	0.2			 	- 1SP. P2	CO and CO limits should not be exceeded more than once a year and 20 hour for SO2 and 122 sho- uld not be exceeded more than two frame a month
- 1	י 	0.2	•	17 44	•	-	•	•	0.1				- 157	
-1	0.05	0.3		9 35		- 020he		- 0.1	0.1	20%	50% 0.07 0.13		- TSP. Ph	
1	· 0.03	0.1		6 G		- Ozone		•	0.1		•		- YOK TSP	Tourism, historical and preserved spots.
	Contraction of the second seco		-	,										

Wenth 21ht 30hr 10hr 30hrin15ai					
ත · ත	60404 P	UX (1000) Vesel OAbel Cher [164 [906:10]	International States 1 the	Other Substance	Definitions
. o	Ozone	- -	0.1 (30mi	TSP, NO, Pb	Given as one of the conditions for approving
• 6			value ()		installation and operation of certain facilities No suspension of operation is to be requested by neighboring poople on account of environmental
. б				-	destruction, once formal approval is granted.
			1 1 1 1 1 1	Smoke, TSP, inorganic Pb	
2 4	9 - 0zone	- 0.1	1	TSP, Snoke	30-sin limit for NO2 and annual average limit for CO have been set, which are given in columns of Labour and monthly operate accountion.
72 t = -				TCD	TTATTATION POLICE CALINE TANK TO TATTATION
.	· · · · · · · · · · · · · · · · · · ·	,	•	TSP.All Hyd- rogen sulfa- tes.Falling	24-hour data are assessed on 33% of annual data, and 1-hour data except CO on 93% of data of 30 days. Separate standard is set for SO2 for areas
- 9 26	52 87 Ozote	0. 05-0. 075 - 1	50% 0.07	24 substances	other than towns and large villages. The standards are to be used as bookground info-
		ç -		including Ca trichloro- ethylene	The summarks are to used as decaycant mixed reation and guidance for tisk panagement deci- sions: particularly when administrators set up standards. They are lights below which human health will not be hurt. fors of them are set up by WU's European resional office.
•	1	•	, , ,	SP due to black smoke process	Standards used as a guide value. The limits refer to a median value of 1-hour data and a 98% value for NO2. The former is given in the column of annual vareage and the latter in daily verses essentiation.
10 52	- Dzone	- 0.0	, , ,	H2S, NOX, TSP, Pb, Falling soot	24-hour value of Ox is scheduled to be replaced with 4-6 hour value.
- 20	,	- 0.1		TSP, NOX, HC, NH3, H2S, Pb	
- 3		•	•		
, 55 1	•		1	42 15p	Long-range target for maximum allowable concent- ration. 1-hour lisit should not be exceeded nore than once a nonth and 8-hour lisit should not be exceeded nore than once a vear.
1 1 1	•	1 1 3		Benzene	Standards used as a guide value. 50% 95% and 98% values of 24-hour data are set for SO2, and 96% and 50% values of 1-hour data set for NO2. Both data given in the table are 98% values.
23 23	•	- 0.0	1 1 3	135 I	This is a long-range target and is to be a con- centration level that should serve as Congress
- 13	•	0.0150.025 - 0.1 -	4 4	ŝ	Provention, Multicles, 100, unpointed artes. This is a concentration level intended to pro- perly protect soil, rater, plants, materials, anicals, landscope individual conforts and weitare assinst harmful innear.
- - - -	•	20 20 1	•	TSP	This is a concentration level to which pollu- tants are to be reduced without delay so as to avoid atmospheric deterioration that damages general life patterns and ultimately cause serious ricks of which waith

.

Then the standards are expressed in unit other than those applied for Japan's standards, numbers have been converted in terms of Japan's units.

Table 3-2-17(1) CONCENTRATION OF SO2 Selected Cities, 1975 - 1990

	Cat	City or Area	Measuresent Nethod	No. Stations	1980 base reference			ی کا کارب راندو کر مر	Pala	tiva (tratio					,
	(a)		Nethod		(ug/p3)	1975	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
Canada		National	Coulocetric c.	58	23.7	-	100	89	89	67	78	67	68	55	68	68	•
b)		NONTREAL HANILTON	Coulocetric c. Coulocetric c.	5	40. 8 35. 5	-	100 100	92 89	66 89	44 96	42 110	49 68	44 59 ·	37 51	37 68	44 87	-
		VANCOUVER	Coulosetric c.	3	19.2	-	100	72	87	73	73	89	82	78	83	83	-
		DORSET	Coulosetric c.	<u>ī</u>	13.1(1983)	·		- 1		100	40	20	20	20	20		-
USA		National	Pulsed fluor.con		28. 8	136	100	91	91	82	91	82	82	76	76	•	-
o)		NET YORK	Pulsed fluor.com		37.5	115	100	104 78	113	105 - 65	107 71	98 57	93 51	89 46	87 48	-	-
		LOS ANGELES DENVER	Pulsed fluor.com Pulsed fluor.com		21.8 23.0	:	100 100	in	74 96	107	87	65	72	40	74		-
	B, G.		Tursed Treation	ĩ	2.9	-	100	100	100	100	100	100	-	-	- `	· -	-
Japan		Kational	Conduct. cont	38	38.0	134	100	92	89	68	66	61	55	55	50	~	+
c.d)		TOLYO	Conduct. cont	20	48.0	125	100	90	88	63	56	52	48	48	40	•	-
		KAWASAKI	Conduct. cont	.7	38. 0 20. 0	158 100	100 100	97 95	- 87 90	79 90	76 95	68 90	63 80	68 75	68 65	-	-
	C B. G.	KANAZAWA	Conduct. cont Conduct. cont	11	13.0	162	100	100	108_	92	85	85	92	92	100	. <u>.</u>	· _
Austria		VEINNA	Pulsed fluor.	16	69.0		100	83	75	61	57	67	57	54	33	32	-
		LINZ	Pulsed fluor.	9	32.0	-	100	100	81	75	-	-	88	-	-	-	- 1
		TOSCHENDORF	Pulsed fluor.	<u> </u>	19.0(1983)					100	68	-	-		-		
Belgius		National	Acid. Titr. cont.	- 5	50.0	-]	109 109	106 107	86 74	94 - 81	112 105	92 91	86 86	60 60	56 63	-	2
c)		BRUXELLES ANTWERPEN	Acid. Titr. cont.		63.0	-	100	105	81	89	83	67	67	49	49		
		LIEGE	Acid. Titr. cont.		56.0	-	100	: 82	64	61	82	77	66	43	39	-	-
	P. C.	SIC. D. POT. LIEGE	Acid. Titr. cont.	1	8.0		100	225	188	138	238	250	225	150	125	-	
Densark		COPENHACEN	KON icp. Filter	3	31.0		100	58	74	81	84	84	61	-	68	58	-
Finland		TANGE HELSINKI	KON inp. Filter Flourescence UV	<u>1</u> 5	11.0		100	<u>69</u> 92			73	<u>56</u> -	<u>55</u> 88	48 73	<u>40</u> 81	- <u>23</u> 54	48
1)			Flourescence W	ĩ	59.0	175	100	98	102	68	56	69	29	31	19	12	iž
.,		LANTI	Flourescence UV	2	30.0(1984)	-	~		-	-	100	100	67	63	-	-	-
		SODANKYLA	Cloricetry	1	6.0	33	100	83	<u>50</u>	50	<u>62</u>	72	67	67	50	33	43
France		National	4-6464	- 10	54.0(1982)	100	100	80	100	- 69	64	94 61	83 56	81 53	59 40	63 49	57 43
		PARIS ROUEN	Acidimetry Acidimetry	13 19	89. 0 70. 0	129 90	100	70	76 69	59	55	53	53	56	53	50	41
1. A.		NANTES	Acidizetry	20	39.0	113	100	70	87	73	53	50	47	37	33	40	40
Gertany	A	BERLIN (Vest)	-	15	90.0	106	100	86	9]	74	73	74	72	84	57	68	-
c)		FRANKFURT	. •	1	71.0	156	100	105	101	80	72	86	77	89	48	38 38	•
		GELSENX IRCHEN	-	1	95. 0 18. 0	105 78	100 100	87 94	- 82 94	77 83	78 94	92 100	77 89	68 78	41 33	35 56	- <u>-</u>
Ireland		DEUSELBACK		13	42.0	198	100	162	105	119		79	112	83	67		
11010404		CORK	-	6	31. 0	110	100	-	-		-	52	113	17	61	-	-
		GALWAY	· •	4 -	14.0	-	100			-	-	43	64	71	57	-	• •
		AGHADA, CORK	Conduct/Fluor. c.	1	93.0		<u>100</u> 100	93	95	<u>-</u>		·	<u> </u>	47	53	<u>-</u>	<u> </u>
Italy g.h)	А В	ROXA NELANO	Conduct, cont.		201.0	121	100	89	63	2	55	43	42	28		-	-
B' 117		PESCARA	Conduct. cont.	ĩ	31.0	-	100	-	. •	-	294	-	2		-	-	
Luxezboury		National	Acidinetry	12	37.0	165	100	100	89	57	<u>5</u> 9	51	46	59	42	41	38
Netherl.		National	Fluorescence UV	.8	32.3		100	112	86	85	-	-	91	64	53 58	52	-
i)	X B	AMSTERDAM RIJNNOND	Fluorescence UV Fluorescence UV	10 10	25.0 44.1	136	100	103 101	85 89	78 84	78 86	63 76	54	54 66	50 65	44 55	-
		UTRECHT	Fluorescence UV	4	24.0	-	100	125	88	92	-	· -	-	-	-		
	B. C.	-	Fluorescence UV		19.0		100	119	83	91	102	- 86	95	60	56	48	. <u>.</u>
Norway	N	National	Colorizetry n.c.	23	20. 9	119	100	90	73	71	74	72	67	56	47	44	20
c, o)		OSLO DODOCRIINA	Coloritetry n.c.	2	35.5	134	100 100	89 130	57 61	44 78	46 117	42 109	35 83	36 104	61	87	43
	B C	PORSCRUNN KRISTIANSAND	Coloripetry n.c. Coloripetry n.c.	1	11.5 11.5	-	100	91	104	126	109	83	91	87	61	57	52
	В. С	-	KOX 1so. Filter	<u>6</u>	1.2	-	100	137	59	100	125	96	133	107	62	65	
Por tugal	٨	LISBOA	Acid. titr. n. c.	- 11	44.0	82	100	77	17	80	73	70	61	70	98	-	~
n)		BARREIRO/SEIXAL		5	225.0	44	100	79 127	45	48 79	45	37 : 6	39 64	40 83	55 138	- 182	-
		PORTO BRAGANCA	Acid. titr.n.c.	. 8	47.2	50	160 100	95	102 105	58	55 58	89	- m	137	1.00	401	
Steden	A. 0.	GOTEBORG	Fluorescence UV	2	24.0	171	100	138	79	76	104	92	71	79	54	46	
e, j)	В	STOCKHOLM	Fluorescence UV	5	42.0	140	100	102	71	64	64	50	55	43	33	19	-
-	C	SUNDSVALL	Fluorescence UV	1	36.0	200	100	83	58	78	56	+	61 70	67	36	38	÷
0-74	<u>B. C.</u>	RORVIX	Colorisetry Fluor, W cont.		9.2 43.0(1981)		100	72	<u>91</u> 114	61	<u>-70</u> 107	83	<u>76</u> 88	<u>63</u> 70	<u>49</u> 63	<u>59</u> 53	42
Switzerl	л В	ZURICH BASEL	Fluor. UV cont.	1	13. 0(1961) 38. 0		100	79	100	95	82	. 95	87	-	45	47	37
		DUEBENDORF	Fluor, W cont.	· 1	31.0	94	100	87	100	81	84	113	81	90	58	55	36
	B. G.	PAYERNE	Fluor. UV cont.	1	11.0	73	100	109	82	73	55	91	82	73	55	5	36
Turkey	Å	ANKARA	Gas Bubbler	3	208.0	-	100	105	123	74	64	63 100	59	75	125 360	75 353	:
(q	B C	KOCAELI Eskisehir	Gas Bubbler Gas Bubbler	2	47.0(1985) 137.0(1985)	2	-	-	-	2	245	100 100	183 69	277 86	81	353 97	-
UK	Ň	National	Acida Titr. cont	. 175	48.0	141	160	104	84	82	79	76	74	73	68	68	÷
c, k, n)		LONDON	Acid. Titr. cont	. 23	70.0	168	100	97	87	-70	71	60	64	56	56	53	-
	B	NETCASTLE	Acid. Titr. cont	. 1	69. 0	162	100	96	109	58	58	58	55	. 86	52 27	-	*
	ç	BRISTOL	Acid. Titr. cont	. 1	64. 0	119	100	103	66	81	83	95	61 61	45		29	•
Vugor 1		LITTLE HORKESLI	Colorizetry n.c.	· · · · ·	28.0 128.0	214	100	79	64 76	- 71 77	95 77	<u>114</u> 78	<u>61</u> 96	<u>39</u> 114	<u>36</u> 84		113
Yugosl @)	A B	BEOGRAD ZENICA	Acid. Titr. cont	. i	154.0	-	100	120	109	137	125	121	113	105	107	77	110
- •	C .	CELJE	Acid. Titr. cont		143.0	-	100	92	80	87	76	72	58	57	35	41	35
	R.G.	PUNTIJARKA	. ·		16.0(1985)	-	-		-	-		100			75	50	ومجتيره

NOTES

NUTES:
a) Categories: N - country network, national trend; A - city in which a notable portion (5-10%) of the national population is concentrated; B - city in which a significant number of inhabitants are considered to be exposed to the highest level of pollutants in 1980; C - city with residential and service function and with intermediate level of pollutants; B.C. - selected station representing the background concentration.
b) Wassurecent under the tcaperature of 15.6 degrees below zero.
c) Fiscal year, concencing 1st April.
d) Operating texperature 20 degrees Celsius.
e) Rate for Sundsvall refer to city centre.
f) 1989 data for Tange refer to April 1988 - April 1989.
g) Country did not give the zeans for whole region: data represent weighted averages of specific monitoring stations.
h) Pescara; operating term of stations is one sixth of a whole year. Milano, Roca: 1981 and 1982 data are Secretariat estimates based upon national report data.
i) Ansterdau 1975: year concenting January; otherwise year concenting April.
j) Wonsurected red for Outpoter to Warch, except for B.G.
k) Wassurecent cethed follows the British Standard 1747 Part. 3.
l) Tarpere 1979 and 1980: some data were obtained by automatic analyzer; Sodankyla: number of measurements per year ranges from 34 to 54.
e) Bata for cities that refer to cane station only, represent intermediate pollution level.
n) Break in time series between 1975 and 1980.
o) For Mey York, Los Angeles and Denver; break in time series between 1981 and 1982.
p) Instrumental conductory method since 1987.
3 - 54

Table 3-2-17(2) CONCENTRATION OF NO2 Selected Cities, 1975 - 1990

Cat City or Area Yeasurecent No 1980 base (a) Method Stations reference Relative Concentration (X) 982 1983 1984 1985 1986 92 88 96 88 87 88 83 83 86 (ug/m3) 47.2 1980 1981 Canada National MONTREAL Chesilupinesc. 83 91 93 Cheat luniuese 2 54.7 87 91 NARILTON ChepilupInesc. 51.9 Chemilurinesc. Chemilurinesc. 50.0(1979) 52.6 66.2 VANCOHVER 93 <u>94</u> 89 <u>86</u> 89 USA National 98 92 j) Å NET YORK Chemiluminése. 95 100 . LOS ANGELES Cheniluninesc. 96.1 110 122 123 <u>100</u> 102 95 DENVER Chepilupinesc. 54.3 Sodium Arsenite 98 94 <u>100</u> 91 86 102 97 100 100 <u>5.0</u> 58.0 Vational Japan b, c) 105 89 Saltznann 20 95 88 TOXYO Saltzsano 66.0 51.0 27.0 100 93 89 89 93 Saltzeann 93 KANAZAWA Saltzeann Saltzmann Cheziluzinesc. 12.0 148 67 83 Ġ. 16 VEINNA Austria Cheniluninesc. 42.0 YOSCHENDORF <u>5(1982)</u> 53. 0 63. 0 Cheziluginesc. Ĝ. 102 National BRUXELLES Chemilum cont. Chemilum cont. Belgiun ъ) Chesilus, cont. Chesilus, cont. ANTEERPEN 48. 0 LIEGE 42.0 53 85.0 80.0(1982) Chemilum, cont. 100 89 COPENHAGEN RELSINKI Pensark g) A Finland A Cheziluz, cont. Chemilum, cont. Chemiluminesc. 42.0(1988) 70.0(1982) 76 10(France National 88 109 126 DUNKERQUE Cheailuainesc. 42.0 97 CAEN Cheniluninesc. 34.0 NANTES DONON BERLIN (Vest) Chesilusinesc. 17.0(1986) 129 98 74 Chemiluminesc. .0(1985) 35.0 54.0 109 G. <u>25</u> 131 Cereany k) 100 91 87 FRANKFURT -94 GELSENX IRCHEN 87.0 77 -DEUSELBACK 13.0 42.6 39.8 96 114 106 129 C. Chemilum cont. Chemilum cont. Netherl. e) 102 114 142 National ANSTERDAM **RUNYOVE** Chemilum cont. Chemilum cont. 40. 3 45. 0 98 113 127 UTRECHT 22.3 55.5(1986) 70.0(1982) 84 87 Cheailun, cont. Colorinetry m.c. <u>100</u> 95 99 National Norvay 121 92 _ h. d) 051.0 Colorisetry n.c. DRAIDIEN Colorigetry a.c. 73.0(1985) STRAVANCER Colorizetry n.c. 80 0(1986) 3.8(1986) 28.0 Colorizetry n.c. 43 93 G. LISBOA Fortugal Sodium Arsenite 18. 0(1982) 28. 0(1982) BARREIRO/SEIX GOTEBORG <u>94</u> 154 <u>494</u> 221 <u>100</u> 100 121 i) <u>67</u> 96 Cheziluz cont. Steden STOCKHOLN SUNDSVALL Chemilum cont. Chemilum cont. h, f) 43.0(1982) 73 71 . 52.0(1982) RORVIX ZURICH Chezil/Saltzm.c. 6.9(1982) 59.0(1981) <u>81</u> 93 98 98 102 <u>86</u> 98 98 $\frac{77}{100}$ Chemilum cont. Chemilum cont. Switzerl 98 100 RASEL 32.0(1981) DUEBENDORF Chemilus, cont. 51.0 PAYERNE LONDON Chesilus, cont. 0(1985) 98 105 ΰX ¥ C Cheailuainesc. 64.1 -STEVENACE Chegiluginesc. 33 9 m B. C. Cheziluzinesc. 13.0(1977)

KOTES:

a) Categories: X - country network, national trend; A - city in which a notable portion (5-10%) of the national population is concentrated; B - city in which a significant number of inhabitants are considered to be exposed to the highest level of pollutants in 1980; C - city with residential and service function and with intercediate level of pollutants; B.G. - selected station representing the background concentration.

b) Fiscal year, correncing 1st April.c) Operating texperature 20 degrees Celsius.

c) Operating texperature 20 degrees Celsius.
d) Data for Drazen and Strawancer refer to heavy traffic area.
e) Konitoring period from April to March.
f) Data for Sundsvall refer to city centre.
g) Konitoring period from Pebruary to December.
h) Konitoring period from Cobber to March, except for R.C.
i) Break in tice series between 1980 and 1981. 1981-85 data for Lisboa refer to 1 station only which represents redium and concentration level. 1981-85 data for Series to respectively representing the highest redium and concentration level. 1981-85 data for Barreiro refer to 3 stations respectively representing the highest, cedims and lovest concentration level.

New York, Los Angeles and Denver: break in time series between 1981 and 1982. k) Data for cities that refer to one station only represent interediate pollution level.

Table 3-2-17(3) CONCENTRATION OF PATICULATES Selected Citles, 1975 - 1990

*****	Cat	City or Area	Reasurement	No.	1980 base	,				(manuta) (194		64 /080906		********			
	(a)		liethod	Stations	reference (ug/e3)	1975	1980	1981	Rela 1982	tive C 1983	oncent 1984	ration 1985	1986	1987	1988	1989	1990
Canada	N	National		85	67.0		100	87	11	71	6\$	64	64	72	66	65	- aktivita
b)	Å.	NONTREAL	EPA Hi-Yol Sanoler	8	82.0 102.0	•	100 100	88 85	77 98	74 93	65 75	59	62	65	55 78	55	-
	BC	HANILTON YANCOUVER	EPA Hi-Yol Sampler EPA HI-Yol Sampler	. 3	68.0	-	100	88	75	93 59	51	63 63	76 59	73 65	54	83 53	-
	B. G.	KENORA	EPA Hi-Yol Sampler	÷ .	2.2	-	100	n	86 78	86	100	123	÷.,	-	-		-
USA	N	National	Gravisetry	1750	64.2	 90	100	94 95	78 89	77 85	80 88	76	75	77	79	•	-
c, j)	A B	NEV YORK LOS ANGELES	Graviaetry Graviaetry	: 39 18	56. 3 90. 4		100 100	105	\tilde{n}	n 11	88 94	89 93	82 85	85 90	88 93	· -	-
	Ĉ	DENVER	Gravicetry	n	102.4	· `	100	89	76	78	87	80	70	69	70	-	-
	<u>B. C.</u>	VESA VERDE	Gravicetry	1	15.0	87	100	100	87	60	73	73	53	60	53	•	
· · · ·	H A	National TOXYO	B-ray absorption L. Scatt/B-ray abs.	17 7	47.0(1982) 48.0	169	100	- 108	100 106	94 98	98 108	94 110	104 121	104 123	100 110	:	-
	B	KATASAKI	L. Scatt/B-ray abs.	. 8	48.0(1982)	100			100	96	96	88	- 98	106	58		-
	Ĉ.	KANAZAVA	L Scatt/B-ray abs.	2	25.0	108	100	92	104	92	84	80	100	108	104		-
Austain	<u>B. C.</u>	- VEINNA	B-ray absorption B-ray absorption	12	31.0(1982) 52.0(1988)		·	•	100	74	84	<u></u>	$\underline{\pi}$	81	<u>94</u> 100	- 90	<u> </u>
Austria	Å 8	LINZ	B-ray absorption	21 . 9	77.0	-	100	87	106	- 99	-	-	73	-	- 100	30	-
	N	National		5	105.0	-	100	106	86	\$6	106	98	80	70	79		-
	Å	BRUXELLES	OECD Filter-Soiling		. 156. 0	~	100 100	107 104	61 97	66 92	71 127	59 95	60 86	50 69	56 76	-	-
	B C	ANTRERPEN Liege	OECD Filter-Soiling OECD Filter-Soiling		103.0	· -	100	104 96	97 95	100	100	- 83	81	78	85	-	-
	B. C.	-	OECD Filter-Soilin		79.0		100	110	116	108	200	125	106	90	109		-
	Å	COPENHAGEN	Gravisetry	3	57.0(1982)			-	190	91	109	112	100		139		
	A B	HELSING TAXPERE	EPA Bi-Yol Sampler Bi-Yol Sampler	5	63.0(1979) 126.0(1982)	- 31	100	95 118	103 100	113		· .	119	113 100	124 96	111 89	102 72
	č	RAUWA	Low-Yol Sampler no.	i	16.0(1975)	100	-	-	-	-	-	-	- 1	100		-	•
	B. C.	SODANKYLA	Low-Yol Sampler nc.	1	8.0	63	100	88	75	63	100	75	100	100	88	63	70
France	N	National PARIS	cont.	- 13	54.0(1985) 51.0	-	-	- 98	- 92	- 90	- 92	100 \$6	85 90	80 90	61 57	78 67	-
h)	А Б	ROUEN	cont.	6	25.0	311	100	108	108	84	68	100	72	120	198	116	-
	Ċ	NANTES	cont.	8	14.0	257	100	107	79	114	100	136	129	129	-	-	~
Gereany	¥.	BERLIN (Vest)	- .	5	\$8.0	119	100	78	87	112	122	127 93	128	97 97	92	98	- .
r)	B C	FRANKFURT Gelsenktrchen	-	- 1	73.0 102.0(1982)	- 04	100	36	37 100	67 65	47 71	93 75	79 73	- 88	83 68	69 81	-
	B. C.	DEUSELBACK		i	41.0	100	100	93	115	98	95	93	93	85	63	76	-
Ireland	k	DUBLIN	OECD Black Scoke	13	43.0	102	100	•	-	•	-	105	137	123	119	-	•
ኪ t)	B · C	CORK GALWAY	OECD Black Spoke OECD Black Spoke	€ ▲	20.0 16.0	110	100 100	-	2	-	2	165 75	150 63	215 75	220 69	-	-
	Ď. G.	AGEADA, CORK	OECD Black Spoke	i	3.0	÷	100	-	-	-	-	-	-	333	167	-	-
Italy	Å	ROMA	Gravizetry	1	139.4	105	100	-	÷	-	-		-	-	-	-	-
_k.D	B C	NILANO PESCARA	Low-Yol Sampler c. EPA Mi-Yol Sampler	3	140.0 104.0	-	100 100	81 104	11) 98	95 -	80 83	95	- E .	-	1		-1
Luxeabourg		National	Reflectosetry	12	17.0	218	100	100	88	59	76	88	88	100	82	100	106
Nether1.	A	AWSTERDAM	EPA Hi-V. Sampler c.		66.0	106	100	101	95	95	98	96	B0	68	66	62	-
<u>a)</u>	B N	RIJANOND-Rott National	EPA Hi-Y. Saapler c. OECB Black Ss. n. c.	2	<u>64.0</u> 23.6		100	100 94	<u>91</u> 80	90 83	<u>99</u> 94	\$6 35	<u>84</u> 85	78 77	- 85	<u></u>	
Norvay n, r)	Å	OSLO	OECD Black Ss. n. c.	2	30.0	137	100	122	98	96	98	93	81	87		-	-
	В	PORSGRUNN	OECD Black Sa. n. c.	1	29.5	-	100	80	66	73	81	59	66	47	75	53	-
Portugal	<u>c</u>	KRISTIANSAND LISBOA	OECD Black Sa. n. c. Seoke Shade	<u>i</u>	18.5 232.0	70	100	<u>89</u> 90	78 85	<u>92</u> 83	<u>92</u> 65	<u>86</u> 71	<u>- 89</u> 51	95 76	76 87		
v)	A B	BARREIRO/SELXAL	Saoke Shade	5	27.1	76	100	-	-	-	-	-	694	624	631	-	-
	C	PORTO	Szoke Shade	. 8	48.2	74	100	112	106	107	47	47	. 50	46	-	27	-
Steden	<u>B. C.</u>	BRAGANCA	OECD Filter-Soilin	- 3	<u>28.7(1983</u> 8.0	200	100	200	113	<u>100</u> 100	<u>87</u> 113	113	100	100	- 88	-	<u> </u>
չուստո թ.գ.ս)	A B	STOCKEOLN	OECD Filter-Soilin		12.0		100	125	100	108	125	108	133	142	-	-	_
	c	SUNDSVALL	OECD Filter-Soilin	g ì	17.0	63	100	106	-	-	82	-		-	-	· -	-
Altern	<u>B. C.</u>	RORY IX	OECD Filter-Sollin		7.1	s	100	<u>54</u> 100	92	<u>51</u> 107	76	70	70 109	70	<u>70</u> 83	<u>56</u> 98	83
Switzerl o)	A B	ZURICH BASEL	Grav. Hi-Vol Snaple Grav. Ri-Vol Snaple		46.0(198) 52.0(1982		-	- 100	109	107	85	96	105	100	50 73	86 86	83 73
	c	DUEBENDORF	Grav. Bi-Vol Sample	r 1	42.0(1981) 40	-	100	112	114	110	124	124	110	93	112	88
	<u>B. C.</u>	PAYERNE	Grav. Hi-Yol Sample	r	33.0	100	100	105	112	121	118	136	136	121	97	112	103
Turkey ()	A B	ANKARA KOCAELI	•	2	88.0 33.0(1985) - -	109	99 -	142	99 -	61	65 100	113 92	125 146	140 142	116 150	-
	C	ESKISERIR		i	44.0(1985	2	-	-	-	-	-	100	100	106	110	120	-
u	N	National	OECD Black Saoke	175	19.1	169	100	120	89	94	81	81	80	77	71	69	-
d, 1, 5)	A B	LONDON NETCASTLE	OECD Black Scoke OECD Black Scoke	23 1	21.0 28.0	171 214	109 100	114 107	95 89	95 89	8ô 75	71 79	71 68	76 86	90 71	71	
	Ĉ	BRISTOL	OECD Black Snoke	1	16.0	172	100	100	83	122	122	100	78	67	61	-	
	<u>B. C.</u>	LITTLE PORKESLEY	OECD Black Spoke	<u> </u>	9.0	<u> </u>	100	111	89	100	100	89	78	89	100	75	-
Yugosi	A B	BEOGRAD ZENICA	OECD Filter-Soilin OECD Filter-Soilin		62.0 64.0	-	100 100	85 95	84 85	81 88	81 78	81 73	74 53	100 42	102 63	106 88	106 55
r)	C	CELJE	OECD Filter-Sollin		48.0		100	- 88 - 88	71	- 90 90	79	13	- 55 - 54	92 92	63	56	50 \$0
											_						

NOTICS:

a) Categories: N - country network, national trend; A - city in which a notable portion (5-10%) of the national population is concentrated; B - city in which a significant number of inhabitants are considered to be exposed to the highest level of pollutants in 1880; C - city with residential and service function and with intereediate level of pollutants: B.G. - selected station representing the background concentration.
b) Sampling protocol changed in 1983.
c) Annual genetric means. Site of background station for 1981-83 differs from earlier years. Particulates smaller than 60 us.
d) Fiscal year consenting its April.
e) Particulates smaller than 10 us.
f) Beta-ray absorption method since 1987.
g) Paticulates smaller than 10 us.

f) Beta-ray absorption method since 1987.
g) Paticulates scaller than 7 us.
h) Black scoke.
i) Total suspended matter.
j) New York, Los Angeles and Denver: break in time series between 1981 and 1982.
k) Pescara 1981 and 1982: Secretariat estimates based on national report.
l) Roce: year comparing October; particulates scaller than 20 us.
k) Ansterdam 1975: year comparing January; otherwise, year comparing April. Amsterdam: scapping is 24 hours every 3 days.
n) National, Porsgrunn and Kristiansand; measurement months are February, May, August, and November; particulates scaller than 20 um.

n) National, Porsgrunn and Kristiansand; neasuresent souths are February, Kay, August, and than 20 um. o) Data for Duebendorf (Zuerich) follow British standard 1747, Part 2. p) Except for B.G. conitoring period; October to March (winter season). q) Particulates smaller than 2 um. r) Data for cities that refer to one station only represent interediate pollution levels. s) Reasuresent sothod follows the British Standard 1747. t) Particulates granulater then 20 um. u) Data for Sundsvall refer to city centre. v) Lisbua and Porto: break in the series between 1975 and 1980. 3 - 56

Given below are the status of major countries:

(2) U.S.A.

In the U.S.A., the Clean Air Act (CAA) revised in 1977 dictated that the National Ambient Air Quality Standard (NAAQS) be reviewed at least once every five years, and that additionally all the NAAQS's put in effect to date be reviewed by end-December, 1980, but the task was delayed to a great degree, and even currently no division has been given.

The NAAQS for SOx is given in the following Table, which must be legally met by end-1995.

NAAQS FOR SO2

	Primary atmos- pheric standard	Secondary atmos- pheric standard
three hours average *1	· · · · · · · · · · · · · · · · · · ·	0.5 ppm (1300 μg/m ³)
24 hours average *1	0.14 ppm (365 µg/m ³)	-
annual average (Arithmetic)	0.03 ppm (80 µg/m ³)	-

Note : *1 not to be exceeded more than once per year

The primary atmospheric standard stipulated in the NAAQS of the U.S.A. is a standard that allows human health to be protected and maintained, and the standard, in principle, must be attained within three years. The secondary atmospheric standard is a standard that needs to be in place in order to protect public welfare (like animals, plants, damages to properties, etc.). The standard for NO_2 has been left untouched to date since it was reviewed in 1985. Therefore, a proposal was made that a short-term standard be set up, but its set-up was postponed until new research

results are made available.

For SPM, the TSP (Total Suspended Particulate) had been in use in the past, but its revisions on July 1, 1987 were incorporated into the TSP so that particles with a diameter of less than 10 μ m (D₅₀)(PM₁₀) should be regulated because adverse effects on health was observed in the deep part of lungs which were caused by particles with a short diameter.

At the same time, the 24-hour average value and the annual average value of the primary atmospheric standard have been revised from 260 μ g/m³ and 75 μ g/m³ to 150 μ g/m³ and 50 μ g/m³ respectively, but the secondary atmospheric standard has remained unchanged. Reasons for the revision include the following:

- In the 140 250 μ g/m³ range, statistically significant reversible impact is observed on children's lung functions.
- No impact is observed on children's lung functions at 125 $\mu q/m^3$
- There is a possibility for impact on health even when PM_{10} is lower than 250 µg/m³, etc.

The final version of the CAA submitted in 1990 stipulates a two-tier implementation of the CAA, i.e. the primary version in 1997 and the secondary version in the year 2000 in order to restrict an annual emission at 8,900 thousand tons of SO_2 or below out of all thermal power stations by the year 2000. In other words, in the first stage of the reduced emission policy for SO_2 to be implemented beginning in 1995, an emission standard of 4.5 kg $SO_2/10^6$ kcal is scheduled to be applied at 110 thermal power stations in operation in 21 states in the east and mid-west region of the country where SO_2 discharge is relatively low.

In the second stage to be running by the year 2000, the total annual emission of SO_2 throughout the country shall be within 8,900 thousand tons by applying an emission standard of 2.16 kg $SO_2/10^6$ kcal to approximately 800 thermal power

stations. The EPA regulations concerning the NOx emission standard at thermal power stations provide a definition of the Overfire Air method based on an NOx emission standard tentative plant for thermal power stations using coal, gas and oil. The definition says, "The Overfire Air method is a device equipped with an air intake at the top section of a burner so as to keep the amount of NOx generated in its burning process at a minimal level" and the facility mounted with this device is broken into two categories of:

a) both TFU (Tangentially Fired Unit) and WFU (Wall-Fired Unit), or

b) only TFU installed and WFU being excluded.

The EPA has announced the following NOx emission standard tentative plan regulating thermal power stations using coal, gas and oil:

- a) 0.81 kg /10⁶ kcal for CFT (Coal-Fired Tangential) Unit
- b) 0.90 kg /10⁶ kcal for CFDBW (Coal-Fired Dry Bottom Wall) Unit
- c) 1.26 kg $/10^{6}$ kcal for a coal burnt boiler except a) and b) above
- d) 0.36 kg /10⁶ kcal for GOT (Gas/Oil Tangential) Unit
- e) 0.54 kg /10⁶ kcal for GOW (Gas/Oil Wall) Unit
- f) 0.99 kg $/10^6$ kcal for a gas/oil burnt boiler except d) and e) above

Currently, however, no consensus has been reached by power stations with regard to the above EPA proposals, because the Over Fire method is thought to be four to eight time more expensive than the low NOx burner.

(3) Japan

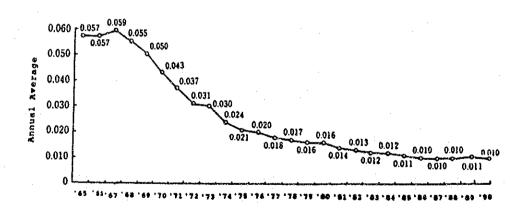

In Japan, progress has been made year after year in meeting the general atmospheric measurement standards that pertain to the standards given in Table 3-2-16(1), and the performance progress is shown in Table 3-2-18(1) through 3-2-18(3). The current status of Japan's environmental pollution control policies are detailed in Appendix-7. The standards for SOx, NOx and SPM are being met due to installation of de-SOx, de-and de-facilities necessitated by more rigorous restrictions on stationary sources. NOx discharge is increasing, however, mainly out of mobile sources like cars, consequently, regulations concerning types of automobiles are being institutionalized leading to prohibition of use of automobiles other than low-NOx cars.

Table 3-2-18(1) HISTORICAL RECORD OF SOX FOR ENVIRONMENTAL QUALITY STANDARD (EQS)

(At Standard Environmental Ambient Air Monitoring Station)

Items/Year	1984	1985	1986	1987	1988	1989	1990
Number of stations	1623	1609	1608	1603	1601	1599	1602
Number of stations cleared of EQS	1614	1603	1600	1596	1596	1591	1598
Achievement (%)	99.4	99.6	99.5	99.6	99.7	99.5	99.8

Remarks: Excluded of Stations of which effective measure time is less than 6000 hrs/y

Remarks: "Annual average" means value of simulation of hourly measurements over one year divided by total hours of measurement Same meaning for the Figure herein after in Figure 1.1 - 1.4

Figure 3-2-4(1) HISTORICAL ANNUAL ARITHMETIC AVERAGE OF ANNUAL AVERAGE OF SO₂ AT CONTINUING 15 MONITORING STATIONS

Table 3-2-18(2) HISTORICAL RECORD OF NOX FOR ENVIRONMENTAL QUALITY STANDARD (EQS) OF STANDARD ENVIRONMENTAL AMBIENT AIR MONITORING STATION

Year	19	86	198	7	198	8	198	9	199	0
Average value of daily average covering 98% of the measurement	Numbers of Station	*	Numbers of Stations	\$	Numbers of Stations	%	Numbers of Stations	*	Numbers of Stations	ż
Higher than 0.06ppm	34	2.6	80	6.0	55	4.1	65	4.8	87	6.4
0.04ppm and higher- 0.06ppm and lower	307	23.2	342	25.8	370	27.7	350	25.8	359	26.2
Lower than 0.04ppm	980	74.2	902	68.2	912	68.2	942	69.4	921	67.4

.

Remarks: Excluded by the criteria same as Table 1.1

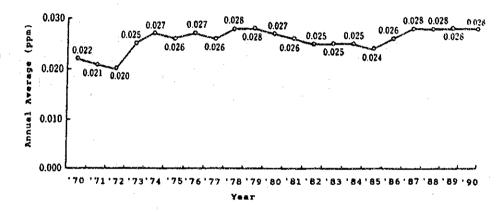
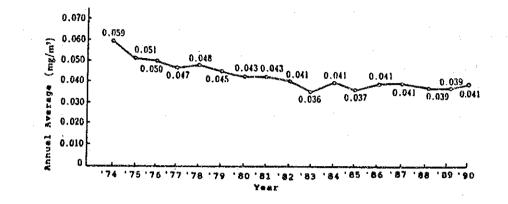
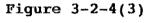




Figure 3-2-4(2) HISTORICAL RECORD OF ARITHMETIC AVERAGE OF ANNUAL AVERAGE OF NO2 AT CONTINUING 15 MONITORING STATIONS (Standard Environmental Ambient Air Monitoring Stations)

Table 3-2-18(3) ACHIEVEMENT OF ENVIRONMENTAL QUALITY STANDARD SPM BASED ON LONG-TERM EVALUATION

Items/Year	1982	1983	1984	1985	1986	1987	1988	1989	1990
Number of stations	353	465	607	755	855	958	1095	1203	1282
Number of stations cleared of EQS	173	293	304	393	486	504	515	784	552
Achievement (%)	49.0	63.0	50.1	52.1	56.8	52.6	47.0	65.2	43.1

HISTORICAL RECORD OF SIMPLE AVERAGE OF ANNUAL AVERAGE VALUE OF SPM AT CONTINUING 40 MONITORING STATIONS (Standard Environmental Ambient Air Monitoring Stations)

- 3.3 Evaluation of Impact of Air Pollutants from the Thermal Power Plants in the Country
- 3.3.1 Estimation of Pollutants Emitted from the Thermal Power Plant in the Country
- (1) Methodology of Evaluation of Impact of Air Pollution from the Thermal Power Plant

Flowchart for explanation of methodology of evaluation of impact of air pollution from the thermal power plant are shown in Figure 3-3-1 and detail parameters in the flowchart required for the evaluation were explained followings:

Data on major sub-sectors(No.(2) and No.(9) in the Figure 3-3-1)

In order to estimate total quantity of pollutants emitted from the sub-sectors, it is necessary to obtain these, emission from combustion facility and from main process, if there are any.

Therefore, emission from sub-sector will be calculated by (a) SOx and NOx emission factor for energy used by eliminating of process use energy and (b) emission from target process.(Table 3-3-1,3-3-2)

If energy consumption data are not available, these shall be estimated from the energy consumption ratio per unit production.

For these data sources, Steel Industrial Center, ADEFA, Consejo Tecnico de Inversions, Argentine Petrochemical Institute, Association of Cellulose and Paper Manufactures(AFCP), etc. shall be utilized in the estimation.

 Data on emission from transportation Vehicles (No.(3) and No.(10) in Figure 3-3-1)

Meanwhile, emission from vehicle sector is very complicated,

and it seems difficult to estimate these in the area where there is no data base on vehicles like in Argentina.

However, in order to evaluate an impact of emission from thermal power plant, order of magnitude of estimation of emission from vehicle be considered inevitable because apparently there are huge emission from vehicle especially in Federal Buenos Aires, Rozario, and so on.

Therefore, at least, annual fuel consumption classified by passenger car, track, bus, light ban and their traffic volume and also annual fuel consumption classified by gasoline, LPG, diesel oil shall be deemed necessary including parameters on performance of vehicle prevailing in urban area.

3) Rated capacity and fuel consumption of power plants (No.(4) in Figure 3-3-1)

List of all power plants in the country was shown in Figure 3-3-1. From this table, total emission of SOx, NOx, Dust was estimated on the assumption that generation efficiency, sulfur contents are 33%, 1.0% respectively.

4) Investigation of Meteorological Data (No.(7) in Figure 3-3-1)

Meteorological data required for calculation of short term, especially for long term dispersion model are wind speed, wind direction, temperature gradient, atmospheric stability etc.

Among these, latter two parameters are still not found in our project, therefore, method of estimation of these parameters and further necessary activity of CNEA regarding collection of meteorological data for long term shall be requested.

 (19) Review of Argentine pollution compared with international present status (20) Recomendation on long term policy control for power sector (18) Evaluation of impact of power plants in Argentina on environmental condition in Argentina (17) Indicative index (14) Recomendation on measurement of pollutants in flue gas in the model plant (15) Recomendation on pollutants in ambient air (16) Recomendation on improvement of combustion facility (13) Estimation of total emission of pollutants from Argentina long term concentra-tion of pollutants in major states in Argentina (9) Estimation of pollutant emission by sub-sector (11) Total emission of pollutants for major states in (10) Estimation of 12) Estimation of vehicle emission Argentina (5) Measurement of poilutants from flue social & (8) Investigation of combustion facility in the target plants Data on emission Ś (7) Investigation of meteorological data (1) Related social & economic Statistics (4) Rated capacity 8 fuel consumption of power plants (6) Measurement of pollutants in the ambient air from transportation vehicles gas in target power major (2) Data on sub-sectors plants ල

Figure 3-3-1 MAJOR EVALUATION FLOW DIAGRAM FOR IMPACT OF AIR POLLUTION OF POWER PLANTS IN ARGENTINA

				CONVE	RSION SECTOR)R				NANUFACTUR	MANUFACTURING SECTOR			TRAN	TRANSPORTATION	
					Petroleum	Power			Steel	Chemical &	Non-Netal			•		
		Briguet Cokes		Gas Fac.	Refinery	Plant	Others	Consumer	Plant	Petroleum	Processing	Others	Aerial	Road	Rail Fav	Shipping
Coal	kg/ton		1.37	I. 55		19.5	15.5	15.5	15.5	15.5	15.5	15.5			15.5	
Lignite	kg/ton					19.5				15. C	15.5	15.5			i.	
Cokes	kg/ton			1.77				1.77		17.7	17.7	17.7			17.7	17.7
Briquet	kg/ton											10				
BKB	kg/ton						<u> </u>	· · · ·								-
Cupola Gas	kg/10*10ca1			0.001		0.01		0.01	0.01							
Cokes Gas	kg/10*10ca1			3.00		38	38	38	38	38	38				-	
Gas Fac.	kg/10*10ca1					0.01	0.01	0.01	0.01	0.01	0.01	0.01				
Natural Gas	kg/10*10ca1			0. 000092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092	0.0092				0.0092
Crude 0il	kg/ton			2	0.45	20	20	20	20	20	20	20				20
Not	kg/ton				0.013	0.013				0.013						
Refinery Oil	kg/ton				0.46			<u> </u>				_				
Refinery Gas	kg/ton			0.0013		0.013	0.013	0.013		0.013	0.013	0,013				<u></u>
DAT	kg/ton			0.00136		0.0136	0.0136	0:0136	0.0136	0.0136	0.0136	0.0136		0.0136		
Aerial Gasoline	kg/ton												0.8			
Automobile Gasoline						20		20	20	20	20	20	20	20	20	20
Jet Fuel	kg/ton				-								3.2			
Kerosine	kg/ton					20		20	20	20	20			20		20
Light 0il	kg/ton			20		20	20	20	20	20	20	20	20	20	20	20
Fuel 0il	kg/ton			20		20	20	20	20	20	20		20	20	20	20
Naphtha	kg/ton			0.1				F4			••					
Others	kg/ton				e~~4			1								
	:															

Table 3-3-1 SULFUR OXIDES EMISSION FACTOR (SOKEF)

Remarks : SOxEF, means Emission factor of SOx

					EKSION SECTOR					MANUFACIUN	MANUFACTURING SECTOR			NUNI	IKANSPOKIATION	
					Petroleum	Power		Sef1-	Steel	Chemical &	Non-Metal					
:	8	Briquet Cokes Gas Fac.	Cokes	Gas Fac.	Refinery	Plant 0	Others (Consumer	Plant	Petroleum	Processing	Others	Aerial	Road	Rail Way	Shipping
						i				-			•		ı	
	kg/ton			0.75		9.95	9.95	7.5	7.5	. 7. 5	7.5	7.5			7.5	
Lignite kg/	kg/ton					8.46				6.38	6.38	6.38				
	kg/ton			0.9				ai	2.5	Ĝ	6	5			5	co,
Briquet kg/	kg/ton											7.5				
- -	/ton										· .					
	kg/10*10cal		1-	0.031		0.44		0.31	3.18						<u> </u>	
	kg/10*10cal			0. 229		3.26	3.26	2.29	5.89	2.29	2.29	2.29				
	kg/10*10cal	<u></u>				0.44	0.44	0.31	3.18		0.31	0.31			-	
as set	kg/10*10ca1	<u>.</u>		0.0224		4.4	4.4	2.24	2.24	2.24	2.24	2.24		17-17° 21-2		2.24
Crude Oil kg/	kg/ton	<u> </u>		2.19	0.24	7. 24	7.24	5.09	5.09	5.09	5.09	5.09		_J. n		5.09
NOL KE/	kg/ton					6.2				2.52				·		
Refinery Oil kg/	kg/ton				0.24											
Refinery Gas kg/	kg/ton			0.063		0. 75	0.75	0.53		0.53		0.53				
	/ton			0.263		3.74	3.74	2.63	2.63	2.63	2.63	2.63		20.3		
Aerial Gasoline kg/	/ton									- -			10.5		·	
Automobile Casoline kg/	/ton					16.71	<u> </u>	16.71	16.71	16.71	16.71	16.71	16.71	31.7	16.71	16. 71
Jet Fuel kg/	kg/ton	<u></u>											10.5			
Kerosine kg/	kg/ton					21. 23		7.46	7.46	7.46	7.46	7.46		27.4		54.13
Light Oil kg/	/ton			9.62		27.37	27.37	9.62	9.62	9.62	9.62	9.62	54.13	27.4	54.13	54.13
 .'	kg/ton			5.84		10	10	5.84	5.84	5.84	5.84	5.84	54.13	27.4	54.13	54.13
Naphtha kg/	/ton			1.46		16		7.34	7.34		• •					
Others kg/	kg/ton					10	10	5.84		5.84	5.84	5.84	-,			
							•••									

Remarks: NOXEF means Emission factor of NOX

.

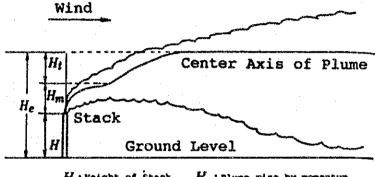

•

Table 3-3-2 NITROCEN OXIDES EMISSION FACTOR (NOXEF)

3.3.2 Calculation of Short and Long Term Concentration of Pollutants by the Thermal Power Plant in the Targeted Area

(1) General Characteristics of Flue Gas Dispersion

Plume is emitted from a stack into the air with its stack exit velocity. Hot gas emitted from a stack without wet type de- SO_x facilities continues to rise up due to buoyance caused by the density difference between flue gas and the ambient air is drifted by wind horizontally and gradually is dispersed (Figure 3-3-2).

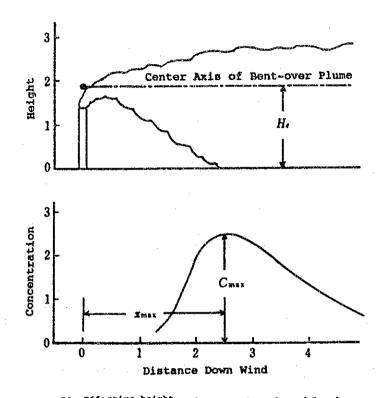
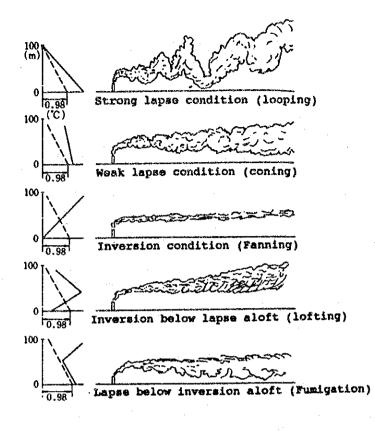

H: Height of Stack H_m : Plume rise by momentum H_t : heightby bouyancy H_e : Effective height of Stack

Figure 3-3-2 PLUME RISE AND DISPERSION PATTERN OF BENT-OVER PLUME

As indicated in the figure, the effective stack height is defined as the sum of the actual stack height and the height of rising up of the emitted gas.

As shown in Figure 3-3-3, the pollutants in flue gas does not fall down on the ground near the stack on the leeward. The concentration of pollutants becomes gradually higher as the distance from the stack increases and then gradually lower because of dispersion of the pollutants.


As shown in Figure 3-3-3, the concentration of pollutants reaches the maximum at some distance from the stack on the leeward. This distance is called the maximum concentration distance (Xmax) and the concentration at that distance is called the maximum concentration of pollutants (Cmax).

He. Effective height Cmax: Maximum Ground Level Concentration Xmax: Distance Down wind with Maximum Ground Level Concentration

Figure 3-3-3 DISPERSION PETTERN OF BENT-OVER PLUME AND GROUND LEVEL CONCENTRATION

The dispersion of flue gas depends on the atmospheric conditions, i.e. wind velocities, changes of wind directions, vertical gradients of atmospheric temperatures and condition of atmospheric stabilities etc. Figure 3-3-4 shows types of dispersion and the characteristic features of these types are shown in Table 3-3-3.

---- Environmental lapse rate

Figure 3-3-4 TYPES OF PLUME BEHAVIOR DEPENDING ON LOCALIZED AIR STABILITY

		, ,	· .				
Table	3-3-3	RELATIONSHIP	BETWEEN	ATMOSPHERIC	STABILITY	AND	PLUME
		BEHAVIOR					

Plume Shape	Atmospheric stability	Blume Debauten and Changetantata
	Action spines in stability	Plume Behavior and Characteristics
Looping	Strong lapse condition	Looping: It is a type of plume which has a wavy
		character. It occurs in a highly unstable
		atmosphere because of rapid mixing. The high
		degree of turbulence helps in dispersing the plume
		rapidly but high concentrations may occur close to
		the stack if the plume touches the ground.
Coning	Weak lapse condition	Coning: It is a type of plume which is shaped like
		a cone. This takes place in a near neutral
		atmosphere (adiabatic condition) when the wind
		velocity is greater than 32 km/h. However, the
		plume reaches the ground at greater distances than
		with looping.
Fanning	Inversion condition	Fanning: It is a type of plume emitted under
		extreme inversion conditions. The plume, under
		these conditions will spread horizontally, but

		little, if at all vertically. Therefore, the
		prediction of ground level concentrations is
		difficult here.
Lofting	Inversion below lapse aloft	Lofting: Lofting occurs when there is a strong
		lapse rate above a surface inversion. Under this
		condition, diffusion is rapid upward, but downward
		diffusion does not penetrate the inversion layer.
		Under these conditions, emissions will not reach
		the surface.
Fumigation	Lapse below inversion aloft	Fumigation: It is a phenomenon in which pollutants
		that are aloft in the air are brought rapidly to
		ground level when the air destabilizes.

(1) Empirical Formula of Plume Rise

The height of rise of plume is calculated as mentioned in the previous section. The concentration of pollutants in flue gas from a stack is calculated on the assumption that pollutants are emitted from a point at the effective stack height. Various formulae have been proposed to calculate the plume rise. The following are most widely used.

1) Bosanquet, Carey and Halton's Equation

$$Hm = \frac{4.77}{1 + \frac{0.43u}{V\sigma}} \cdot \frac{\sqrt{Qv1 \cdot Vg}}{u}$$

Ht = 6.37g
$$\cdot \frac{Qvl \cdot \alpha T}{u^3 T_1} (log \cdot J^2 + \frac{2}{J} - 2)$$

$$J = \frac{u^2}{\sqrt{QvI \cdot Vg}} \quad (0.43 \sqrt{\frac{T_1}{g(d\theta/dz)}} - 0.28 \frac{Vg}{g} \cdot \frac{T_1}{\alpha T}) + 1$$

Hm : Plume rise by stack exit velocity (m)
Ht : Plume rise by buoyancy (m)
u : Mean wind velocity (m/sec)
Vq : Exit velocity (m/sec)
Qv1: Effluent gas volume at temperature T₁ (m³/sec)

 T_1 : Temperature at which density of flue gas is equal to atmospheric density (k)

 αT : Temperature difference between flue gas and T_1 (°C) g : Local acceleration due to gravity (=9.81 m/sec²) d θ/dz : Gradient of potential temperature in atmosphere (°C/m) dt

 $(0^{\circ}C/m, \tau d + \frac{dt}{dz})$

- *1 In case of calculation of Effective stack height for SO₂ total emission control, the formulae above shall be as follows;
 - Ht = Ho + 0.65 (Hm + Ht)Ho : Actual Stack Height (m)
 - 2) Moses and Carson

 $\alpha H = (C_1 v g D + C_2 Q_H^{1/2})/u$

Atmospheric Stability	c ₁	c ₂
Stable	-1.04	0.145
Neutral	0.35	0.171
Unstable	3.47	0.33

3) Briggs's formulae (No wind)

 $\alpha H = 1.4 Q_{H}^{1/4} (d\theta/dz)^{-3/8}$

4) CONCAWE and Brummage's formulae

$$\alpha H = 0.175 Q_{\rm H}^{1/2}/u^{3/4}$$

aH : Plume rise (m)

- vq : Exit velocity (m/sec)
- D : Stack outlet diameter (m)
- u : Average wind velocity at stack outlet height (m/sec)

d0/dz:Temperature Gradient (°C/m)

Q_H :Exhaust Heat Capacity (cal/sec, J/sec)

- (2) Estimation of Dispersion Parameters
 - 1) Pasquill's method

Pasquill classified atmospheric stability into 5 classes from A to F by the combination of a ground wind velocity, a solar radiation and a cloud amount. He estimated dispersion parameters αy and αz theoretically from many results of tracer experiments (Table 3-3-4, Figure 3-3-5, 3-3-6).

Table 3-3-4

-4 PASQUILL'S STABILITY CLASSIFICATION

Surface Wind		Day ti	me	Day&Night	Night	
Speed		nsolati cal/cm ²		Thickly Cloudy	Upper Cloud (5-10) Middle&Low	Cloud (0-4)
(m/s)	>50	49-25	<24	(8-10)	(5-7) 0-5 Net Flux $(cal/cm^2/2)$	>5
<2 2-3 3-4 4-6 >6	A A-B B C C	A-B B B-C C-D D	B C C D D D	D D D D D	E D D D D	F E D D

* 1 cal/cm² = 8.57 x 10^{-2} W/cm²

Note;	A:	strongly unstable	В:	unstable
	C:	weakly unstable	D:	neutral
	E:	weakly stable	F:	stable

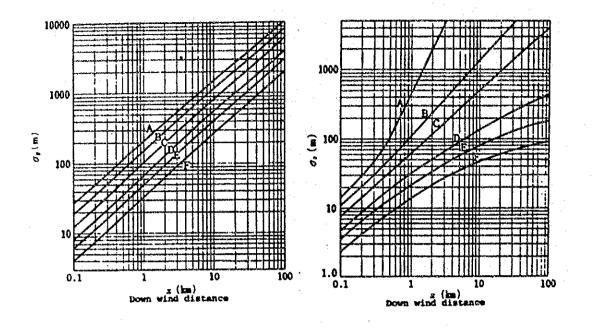


Figure 3-3-5 Pasquill's Horizontal Direction Width 6y

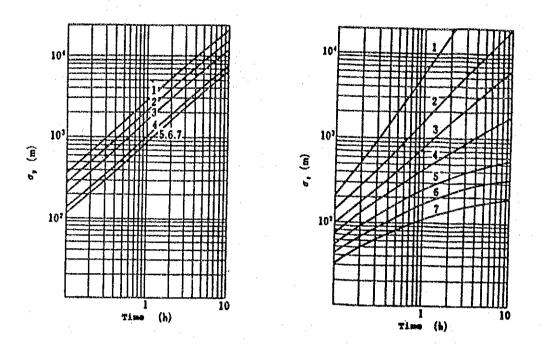
Figure 3-3-6 Pasquill's Vertical Direction Plume width 6x

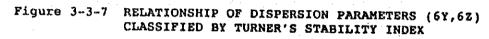
2) Turner's Method

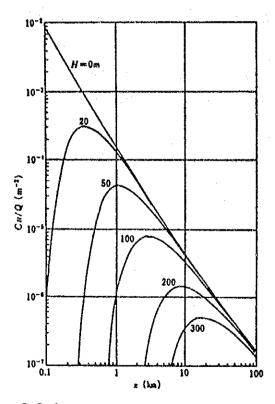
The Turner's method is similar to the Pasquill's method. He classified the atmospheric stability into 7 classes as shown in Table 3-3-5 by combining an altitude of the sun, a cloud amount and a ground wind velocity. The dispersion parameters for each class are obtained as functions of dispersion time as shown in Figure 3-3-7, 3-3-8, and 3-3-9.

Table 3-3-5

TURNER'S STABILITY CLASSIFICATION


Wind Speed (Knot)*1	4	3	Ind 2	ex of	Total 0	Inso -1	olation -2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 2 2 2	1 2 2 2 2	2 2 3 3 3	3 3 4 4 4	4 4 4 4 4	6 6 5 5 4	7 7 6 6 5
8, 9 10 11 ≥12	2 3 3 3	3 3 4	3 4 4 4	4 4 4	4 4 4	4 4 4 4	5 5 4 4


 $*1 \ 1 \ knot = 0.52 m/sec$


- - (a) radiation index is calculated with following table
 - (b) in case of cloud $\leq 5/10$, be used of radiation index bellow
 - (c) in case of cloud ≥ 5/10, radiation index shall be corrected as follows:
 - Height of cloud bottom < 7000 ft; reduction 2 from radiation index Height of cloud bottom ≥ 7000 ft; i)
 - ii) reduction 1 from radiation index
 - iii) Cloud 10/10; rediation of 1
 - iv) No correction of radiation value except above
 - in case, corrected value is less than 1, it should be 1 V)

Radiation index	Height of sun
4 3 2 1	$a > 60^{\circ}$ $60^{\circ} \ge a > 35^{\circ}$ $35^{\circ} \ge a > 15^{\circ}$ $15^{\circ} \ge a$
$Cm = \frac{2Q}{e\pi uHe^2} \left[\frac{Cz}{Cy} \right]$	
$Xm = \left[\frac{He}{Cz}\right]^{2/(2-n)}$	
Cm : Maximum ground leve Q : Emission volume of Cy, Cz, n: Dispursion pa u : Wind velocity (m/se	plume (m ⁹ /sec) arameter of sutton

- : Wind velocity (m/sec) He : Effective height of stack (m)
- Xm : Distance to Cm point (m)
- π : Ratio of the circumference

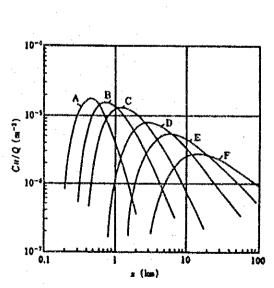


figure 3-3-8 AXIAL GROUND LEVEL CONCENTRATION FOR DIFFERENT EFFECTIVE STACK HEIGHTS He (U: WIND SPEED, Q: EMISSION RATE)

Figure 3-3-9

RELATIVE DILUTION RATIO (CU/Q) ON THE CENTRAL AXIS PLUME BY STABILITY INDEX

3) Sutton's Method

Sutton assumed that the dispersion parameters are proportional to powers of x (distance on the leeward) and proposed the following formula.

 $\sigma y = (Cy/\sqrt{2})x^{1-n/2}$ $\sigma z = (Cz/\sqrt{2})x^{1-n/2}$

Where Cy, Cx, n are Sutton's dispersion parameters which depend on atmospheric conditions such as atmospheric stability.

An Example of A Simulation Programme of Dispersion

There are two kinds of programmes for calculation of atmospheric dispersion: Programmes for short tern and programmes for long term such as half a year or one year.

(1) Range

Ranges (m) in east-west and north-south are input. The area is divided into 20 equal subareas.

(2) Source conditions

Position of flue gas source (X, Y). Actual stack height Ho (m). Diameter D (m). Amount of wet flue gas (Nm^3/hr) . Temperature of flue gas (°C). Amount of emitted pollutants (Nm^3/hr)

(3) Position of measurement place

Beside coordinates of the mash points mentioned in (1), if you measure concentrations at other points, the coordinates of these points are also input.

(4) Meteorological conditions

Wind direction (North is taken as 0° and the direction is measured clockwise. For example, the north wind is 0° and the east, wind is 90°). Wind velocity (m/sec). Temperature gradient

(°C/m).

(5) Calculation of dispersion

1) Selection of plume rise formula

- (a) Bosanguet 1
- (b) CONCAWE
- (C) Moses Carson
- (d) Briggs (Caln)
- (e) Briggs (Windy)

2) Selection of dispersion formula

- (a) Sutton
- (b) Pasquill Gifford
- (c) Sigma
- (d) Puff (Linear)

3) Input of parameters of the plume rise formula

If the Moses - Carson or the briggs (Windy) is selected for the formula of plume rise, the parameters in the formula must be input.

4) Input of parameters of dispersion formula

(a) Pasquill or Puff formula

Select the class of atmospheric stability. Input the time (in minute) to average the concentration (Pasquill formula). Input the time duration (in minute) of calm state (Puff formula).

(b) Sutton or Sigma formula

Input the dispersion parameters.

The Puff formula (Linear) is applied when calm and

other formulae when windy.

5) The maximum concentration of pollutants and the maximum concentration distance

When the parameters of the dispersion formula are input, the maximum concentration of pollutants and the maximum concentration distance are calculated and are displayed. Input data, concentrations from each stack, a simplified concentration distribution chart, a detailed concentration distribution chart etc. can be printed.

The above is an outline of the atmospheric dispersion calculation for a short term. Details of a long term model is not exploited here. However, it is necessary to pay attention to the following points.

- (a) Frequencies of occurrence of each stability by wind velocity class during the observation period are input for 16 wind directions (N°S°NNW) and calm.
- (b) Atmospheric stability is chosen from among 11 classes; A, A-B, B, B-C, C, C-D, D, D-E, E, F, G and is input.

A personal computer provided through this project is equipped with programs for the short term and long term models of EPA. These programs perform the same calculations as mentioned above.

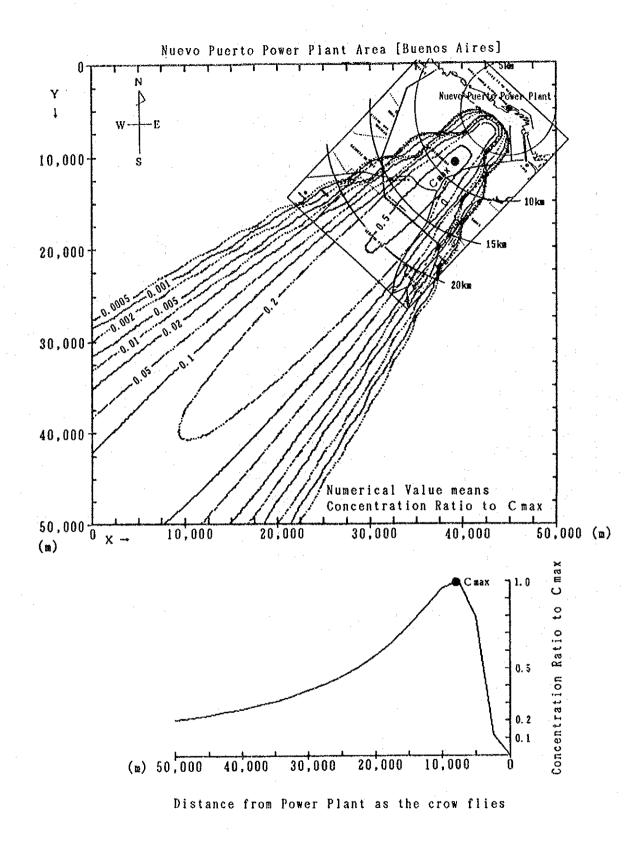
Calculation for the 3 Candidate Plants

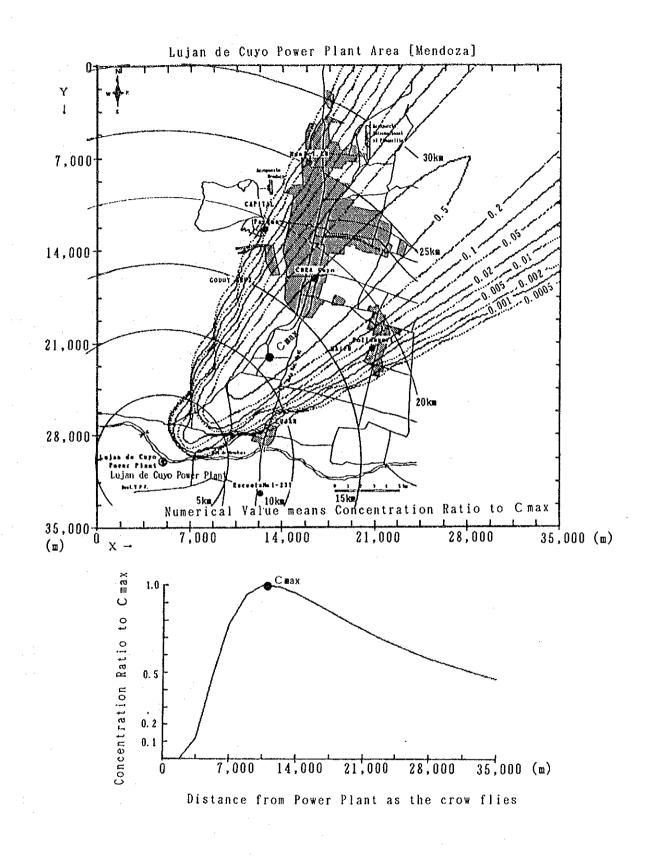
(1) Input data

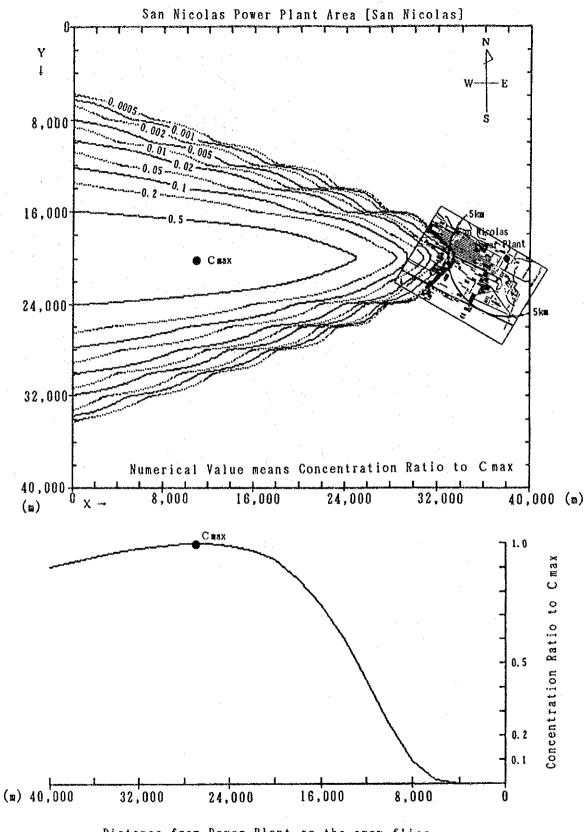
Table 3-3-6 shows input data for the 3 candidates.

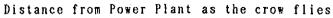
(2) Output data

Table 3-3-7 shows output data for the 3 candidates.


Table 3-3-6 PARAMETERS FOR CALCULATION OF SHORT TERM DISPERSION MODEL


Power Plant		Nuevo Puerto	Lujan de Cuyo	San Nicolas
ltem	(Unit)			
Boiler No.		13	12	5
Power Generation	(NW)	110	60	350
Ranges in East-West [X]	(m)	50, 000	35, 000	40, 000
Ranges in North-South [Y]	(m)	50,000	<u> 35, 000</u>	40,000
Stack Height [HO]	(m)	47	50	120
Stack Diameter [D]	(m)	3	4.1	8.1
Amount of Flue Gas (Wet)	(Nm3/h)	468, 000	271, 000	1. 410, 000
Flue Gas Temperature	(°C)	136	116	134
Amount of Pollutants (SO2)	(Nm3/h)		72	630
Wind Direction	(°)	NE (45)	S¥ (225)	Е (90
Wind Speed	(m/s)	3.9	1.7	3. 2
Potential Temperature Gradient	(℃/m)		0. 0033	· · ·
Plume Rise Formula			CONCAWE	
Dispersion Formula			Pasquill-Gifford	
Atmospheric Stability	·····		D (Neutral)	
Nean Diffusion Time	(min)	·	60	
Effective Stack Height	<u>(m)</u>	182.6	225. 7	390.8
Smoke Rising Height	(m)	135. 6	175. 7	270. 8
C max: Naximum Ground Concentration	(ppm)	0.006259	0. 006527	0.007345
Distance from source to C max point	(11)	7, 998, 2	11, 061, 4	26, 962, 7


Table 3-3-7 OUTPUT DATA FOR THE 3 CANDIDATES


n Mahadalah kanan dari dari dari bertar bertar bertar dari dari dari dari dari dari dari da	Concentration	Locati	0 0
	of		(m)
	Superposition	X:	Y:
Place	(ppm)	East-West	North-South
Nuevo Puerto P.P		45,000	5,000
Boca	0. 000E+00	48, 530	13, 530
CNEA-Tandar	0. 000E+00	28, 660	4, 250
Moron	<u>1. 733E-05</u>	25,000	15,000
Lujan de Cuyo P.P		5,000	30,000
CNEA-Cuyo	5. 011E-03	16, 650	17, 140
Munici. LH	1.141E-05	16,050	7,090
Parque SM	4.048E-06	12,630	12, 310
Polideportivo	1.299E-04	20, 970	21, 160
Escuela No. 1-237	0. 000E+00	12, 430	32, 110
San Nicolas P.P	-	38,000	20,000
Club Somisa	0.000E+00	38, 560	20, 200
Aero Club	0.000E+00	36, 350	23, 580
Club CyP	0.000E+00	37,640	25, 420
Camping LyF	0. 000E+00	34, 070	23, 210
Escuela No. 35	0.000E+00	33, 270	19, 760
Munici. SN	0. 000E+00	34, 260	17, 920

* Location [X=0, Y=0] Corresponds to NW Corner

3.3.3 Estimates of pollutant emissions in major sub-sectors

While the data needed for estimating pollutant emissions in major sub-sectors were not made available systematically, the data are indispensable for consideration of impact of flue gas emission out of thermal power plants. Therefore, an attempt was made to estimate the pollutant discharge based on the data collected during the on-site survey.

(1) Steel and Nonferrous Metals Industries

The industrial sector producing basic metals generates altogether about 7.3% of the GDP in industrial manufacturing (at 1970 prices), occupying some 22,000 workers directly and another 80,000 indirectly. Steal production capacity by companies, potential plant capacity and operable capacity for hot-rolling plant and for cold-rolling plant by companies are shown in Table 3-3-8(1) to (3), respectively.

Sector and Companies	Potential Installed Capacity	Operating Capacity
Reduction	0 F.H	0.400
- Blast Furnace - Pig-iron	3, 544	3, 483
	2, 434	2, 373
Zapla Blast Furnaces ACEROS PARANA	184 (1)	123
TANET S. A.	2, 250	1, 870
	50	50
- Direct reduct sponge-iron	1, 100	1, 110
Acindar S. A.	700	700
SIDERCA	410	410
Steel Manufacture - solid crude	6, 228	4, 890
- Electric Furances	2, 398	2, 268
Aceros brabado S. A. C. I. F.	210	210
Acindar S. A.	1, 338	1, 338
SIDERCA	760	540
Establec. Altos Hornos Zapla	70	70
Molded foundry steel parts	110	110
- LD Oxygen Converters	3, 600	2, 500
ACEROS PARANA	3,600 (2)	2, 500
- Thomas Conventional and Thomas OBM Oxygen	0.000 (2)	2, 000
Converters	270	122
Establec. Altos Hormos Zapla	270	122
istuite. Altos holmos impla	210	144
Continuous Tapping - crude steel	3, 985	3, 470
Aceros Bragado S. A. C. I. F.	1, 050	1,050
SIDERCA	600	415
ACEROS PARANA		

Table 3-3-8(1) STEEL PRODUCTION CAPACITY - BY COMPANIES

- Thousand tons yearly -

(1) Depending on Netal Charge

(2) Non-aggregable maximum capacities. Joint use limited to availabilities of pig-iron and oxygen.

Source: Steel Industrial Center

Table 3-9-8(2) STEEL PRODUCTION CAPACITY - BY COMPANIES POTENTIAL PLANT CAPACITY AND OPERABLE CAPACITY

Sector/Company	Potential Plan Capacity	Operable Capacity
Doutly finished made mouth and		
Partly finished goods - rough-cast	0.140	1.015
- Partly finished good - rough-cast	3, 140	1,645
Aceros bragado S. A. C. I. F.	120	65
Acindar S. A.	240	240
Establecimiento Altos Hornos Zapla	180	150
ACEROS PARANA	2,600 (1)	1, 190 (4)
- Finished goods	4. 398	4, 120
Non-flat	2, 473	2, 195
Aceros Bragado S. A. I. C. F.	138	120
Acindar S. A.	1, 245	1, 245
Establecimiento Altos Hornos Zapla	257	137
La Cantabrica S. A.	170	170
ACEROS PARANA	250	110
Acerias Coronel Pringless S.A.	2	2
Aceros Puesto Viejo S.A. (ex-Met. Palpala)	20	20
Arian Netal	3. 5	3.5
Barreiro Roberto O.	1.5	1.5
Establecimiento Devoto	3	3
Establecimiento Metalurgico San Jose SAICF	20	20
Erviti Hnos. e Hijos S. A. C. I.		1
Fernandez y Geranio	3.5	3.5
Fortunato Bonelli & Cia. Ind. Met. SAICF	80	80
Laminacion Ferreyra S. A.	25	25
Laminacion S. R. L.	4.2	4.2
Lamitecnica S. A.	1.5	1.5
Laminacion Las Heras S. A.	2.5	2.5
Netalurgica Nunso	3	3
Matini y Sinal SACIFIA	2	2
Navarro S. A.	70	70
Rosati y Cristofaro SAIC (San Nicolas)	55	55
Rauna S. A. (ex Planta Don Bosco Ros. & Cristofaro)	7	7
Sipar Laminacion de Aceros S. A.	75	75
Sociedad Industrial Argentina S.A.	15	15
lamifal SAIC	9.4	9.4
Laminacio Gigante Hnos.	1.2	5.4 1.2
Pecoraro Antonio e Hijos SRL	1. 2.	1. 2
Perfilam SRL	1.4	1.4 1.1
Raimundo Miguel C. e Ilijo S. A.	1.1	
Talleres Dos SAIC	2 I	1.2
Flat Products	4	4
	1, 500	1, 500
Acindar S. A. (Flejes)(tapped steel)	100	100
ACEROS PARANA (Chapas - Sheet Steel)	1,400	1,400 (2)
Seamless steel tubing	525	525
SIDERCA	525	525

- Hot-Rolling Production -

(1) Due to limited steel supply, 1,300,000 in steel bars and 1,300,000 billets

(2) Capacity subject to mixture of required thickeness and sizes

(3) Under normal operating at 18 shifts weekly and standard mix production

(4) Due to limited steel

Table 3-3-8(3) COLD-ROLLING PRODUCTION

Cold-rolling Producion	Potential Plan Capacity	Operable Capacity
Cold-rolling Production	1585	1420
- Sheet Steel	1475	1310
Adabor S. A.	40	25
Propulsora Siderurgica S. A. I. C.	735	735
ACEROS PARANA	700	550 (1)
- Tape Steel		
Cancrias Argentinas Metales y Afines		
CANAR S. A.	7	7
Fortuny Hnos. y Cia. S. A.	7	7 -
Hermac S. A. I. C.	12	12
Laminfer S. A.	24	24
Laminacion Basconia S.A.	14	14
ILFA Industrias Metalurgica S.A.	25	25
Sataz y Alcarez S. A.	. 7	7
Trafilam S. A. I. C.	12	12
inplate	110	110
ACEROS PARANA	110	110 110

- Thousand tons/yearly -

(1) Capacity subject to real mix of required sizes and thickness and depending upon supply of base material

Source: Steel Industrial Center

PLANTS	·
STEEL	. •
FOR	
FACTOR	· · · · ·
NOISSIWA	· .
able 3-3-9	
Table	

.

			 .		Effluent SOx	×		Effluent NOx			Effluent Dust	lst
	Production	re Exhaust Gas Volume) i une			Emission per unit	:		Emission per unit			Emission per unit
Process	(ton/day)			Conc.	Flow Rate	Rate product (ton)	Conc.	Flow Rate	product (ton)	Conc.	Flow Rate	product (ton)
		(Nm3/ton-product) (IOK-N/hr)	(10K-N/hr)	(mdd)	(Na3/hr)	(Nm3/ton-product)	(ndd)	(Nm3/hr)	(Nm3/ton-product)	(bpg)	(Na3/hr)	unit/ton-product
Cokes Plant	13600	650-750	366-425				(100-300ppm)		37-128 0.065-0.225-cokes (case: coal to cokes) 567	(case: coa	l to cokes) 567	lke/ton-cokes
Incineration	43200	3,000-3.400	540-610	400-650	2160-3960	-6 -6 L	200	501		20-100 20-100	000	
						1	2		00.00.00		001-704	IO1/8776-CT
3 - 89	58800	1,000-1,200	288-346				30-100	36-144	0.03-0.12	50-30	14.4-17.7 (=0.005g/Nm3)	26-30g/steel-ton
Mill	32800	120-steel-ton							· · · · · · · · · · · · · · · · · · ·	15-20		0.15-0.24/steel-ton
		(furnace type)	7.5						· .	30-80	3.75	3.75 0.15-0.44kg/steel-ton
		(non furnace type)						· · · · · · · · ·			(=0.05g/NE3)	
Rolling												
	19680	19680 182-350-Block-ton	15-29	ł	0- 74	74 0-0.09-Block-ton	60-475	8-136 (8-136 0.01-0.17-Block-ton			
	32800	32800 280-700-Sheet-ton	38-96	I	0-736	0-239 0-1. 75-Sheet-ton	60-400	27-384 (27-384 0.02-0.28-Sheet-ton			
Total for Seel Plant 1.2 Mt	1.2 Mt	: 1, 368. 5-2, 645Nm3/hr	р Ц	; 13,890-16,000\m3/	: 00Nm3/ton		; 1, 280-2, 106Ma3/hr	SNm3/hr		1, 1 <u>4</u> 7-1,	i, 147–1, 076kg/hr	

(2) Chemical Industry

Given in Table 3-3-5 is a list of companies in Argentina producing major chemicals with their addresses, starting dates of operation and their nominal production capacity (tons/year).

Shown also are the data on steam consumption per unit of production (tons of steam/ton of product), power consumption per unit of production (KWH of power/ton of product) and fuel consumption per unit of production (MMBtu of fuel/ton of product). All of them are related to pollutants from utilities needed for production. These values of consumption per unit of production for each chemical industry process are in line with average values widely applicable to other countries and sourced from licenser catalogs, general publications, etc. that have been made public.

As a next step, Table 3-3-10 was used to obtain the total pollutant emission from the whole chemical industry, and in that effort table 3-3-10 was used for the amount of pollutant discharge per unit emitted from energy sources used for utilities.

The following assumptions were made for calculation of the discharge coefficient for this table:

*	Heavy oil based energy	: 10300 kcal/kg
*	Natural gas based energy	: 10500 kcal/kg
*	Coal based energy	: 6500 kcal/kg
*	Sulfur content in heavy oil	: 1%
*	Boiler efficiency	
	Heavy oil	: 85%
	Natural gas	: 83%
	Coal	: 75%
*	Power generation efficiency	:-36%

A star mark denotes other assumed parameters, to which generally accepted values were applied.