表5-7-14 窒素酸化物自動測定機の仕様 [

(1/2)

		型 式	GPH-74M	232
項	iĦ	測定原理		←
		DOVE	78.71.712.6124	
	1	測定範囲およびレンジ切り換えの有無	NO, NO2, 0~0.1, 0.2, 0.5ppm	←
		手動・自動別	手動及び自動切換	←
性	2	繰返し性(再現性)(3回、フルスケールに対し)	±2%以内	~~
	3	ドリフト(24時) a. ゼロ(フルスケールに対し)	a. ±2%以内	←
能		b. スパン(フルスケールに対し)	b. ±2%以内	
	. 4	直線性(指示誤差)(フルスケールに対し)	士4%以内	← -
関	5	試料大気流量に対する安定性(規定流量)	土7%以内/10日	←
	6	電源変動に対する安定性	土1%以内	. ←
係		(電圧変動±10%の場合、フルスケールに対し)		
	7	流量い。川計の誤差(規定流量に対して)	±2%以内	6
	8	吸収発色瓶の捕集率(N020.1-2ppmによる)	97%以上	99%以上
	9	テレメータ出力	DC 0~1V	€
	1	試料大気導入管 外部配管 a. 材質	a. テフロン	*
		b. 内径	b. 7mm	←
弒	2	試料大気導入管 内部配管 a. 材質	a. テフロン	←
料		b. 内径	b. 4mm	
採	3	除じんフィルタ a. 材質	a. テフロン	←
取		b. 外 径	b. 55mm	b. 47mm
時	4	流量計 a. 種類	a. 70-1形面積流量計	←
間		b. 目盛範囲	b. 50~600m1/min	b. 30~300ml/min
		c. 採取流量付近の最小目盛	c. 10ml/min	c. 5ml/min
	5	試料大気吸引ポンプの容量	∦98L/min	約5L/min
		·		
		ko iznitus	FC : 00	50.
		採気時間	55min 30sec	56min
ا بد		採気流量 液量	300m1/min	200m1/min
ガ			42m1	30m1
ス吸		吸収液 a. 組成 (20 L中の試薬量)	a. スレファニル酸 100g 酢酸 1000m1	(
収収		(20 に中の政衆無)	酢酸 1000m1 N-1ナフチルエチレンジ・アミン	-
関				
係		b. 液使用方法	二塩酸塩 lg b. 循環式	
UK		c. タンク容量	D. 1/11 現入 c, 201.	
	İ	1		↓ / / ↓
		d. 温度補償機構	d. 分析部内20℃で温度調整	d. 分析部内25℃で温度調整
			•	

<u></u>			型 式	GPII-74M	(2/2)
JE	(H		測定原理		€.N6
-34		PROFESSIONE PROFESSIONE PROFESSION AND ASSOCIATE AND ASSOCIATED AS	1/4/XL/3/Y/12	7/2/30/00/2012	and the state of t
				1/0 >	
	1	セル	a. 長さ	a. ※140.6mm	a. 終340mm
			b. 形	b. 円筒形	←
比			c. 容量	c. 彩M2m1	c. 約25ml
			d. 材質	d. 塩ビ硬質ガラス(セル窓)	d. パイレックス
也	2	光電球	a. 規格	a. 発光ダイオード:550nm 幅25nm	a. 発光ダイオード:555nm 幅25nm
			b. 使用電圧	b. 2~3(50mA)n° /以点灯	b. 30mAn° 水本点红
関			c.寿命(連続使用)	c. 1年以上	c. 10年以上
	3	受光部	a. 規格	a. シリコンプレーナ形受光タ゚イオード	a. シリコンフォトダイオード
係			b. 使用電圧	b.	b.
.			c. 寿命(連続使用)	c. 半永久	c. 10年以上
	4	干渉フィルタ	a、波長域	a.	a,
			b. 材質	b.	b.
		暖機時間		2 時間	4 時間
	2	せずいスパン校正機相		a. 自動t u点調整	<i>-</i>
そ			b. スパン	b. 手動スパン調整	←:
	3			AC 100V ±10%	←
の	4	消費電力		余过200VA	AV081€%
	5	重量		約125kg(201吸収液含む)	#J110kg
他	6			500 x 460 x 1580	570 x 500 x 1550
	7	湖定可能周囲温度	〔 (室内)	0~40°C	5~35℃
		على العالم ا العالم العالم			

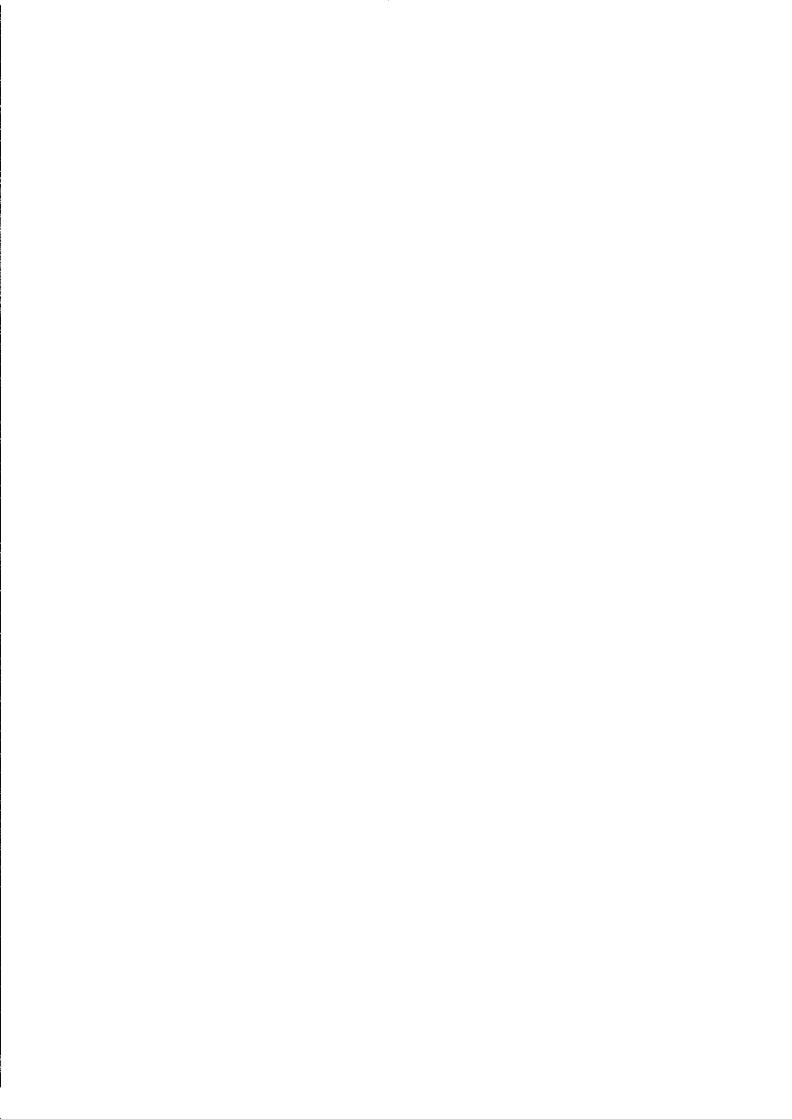
表5-7-15 窒素酸化物自動測定機の仕様 II

(1/2)

l		发 坚	NX-18	APNA-3100
項	目	測定原理		←
	1	測定範囲およびレンジ切り換えの有無 手動・自動別	NO, NO2, 0~0.1, 0.2, 0.5ppm (NO1. 0ppm有)手動及び自動切換	手動及び自動切換
性	2	繰返し性(再現性)(3回、フルスケールに対し)	土2%以内	← -
	3	ドリフト(24時) a. ゼロ(フルスケールに対し)	a. ±2%以内	
能		b. スパン(フルスケールに対し)	b. ±2%以内	· ·
	4	直線性(指示誤差)(フルスケールに対し)	土4%以内	←
関	5	試料大気流量に対する安定性(規定流量)	土7%以内/10日	←-
	6	電源変動に対する安定性	士1%以内	. ←
係		(電圧変動±10%の場合、フルスケールに対し)		
	7		土4%以内	~
	8	吸収発色瓶の捕集率(NO20.1-2ppmによる)	98%以上	95%以上
	9	テレメータ出力	DC 0~1V	DC 0~1V (0~16mA, 4~20mA)
	1	試料大気導入管 外部配管 a. 材質	a. テフロン	←
		b. 内径	b. 6mm	←
活	2	試料大気導入管 内部配管 a. 材質	a. テフロン	←
料		b. 内径	b. 4mm	←
採	3	除じんフィルタ a. 材質	a. テフロン	←
取		b. 外径	b. 47mm	b. 55mm
時	4	流量計 a. 種類	a. 面積流量計	a. 7叶 面積流量計
間		b. 目盛範囲	b. 50~500ml/min	←
		c. 採取流量付近の最小目盛	c. 10ml/min	←
	5	試料大気吸引ポンプの容量	5L/min	←
		採気時間	56min	←-
	•	採気流量	300ml/min	200ml/min
ガ	- 1	液量	60m1	40ml
ス		吸収液 a. 組成	a. スルファニル酸 100g	
吸		(20 L中の試薬量)	酢酸 1000ml	←
収			N-1ナフチルエチレング・アミン	
関			二塩酸塩 lg	←
係		b. 液使用方法	b. 循環式	←
		1	c. 20L	←-
			d. 分析部内20℃で温度調整	←

(2/2)

	-			111 10	(2/2)
項	Ħ		型 式 測定原理	NX-18 吸光光度法	APNA-3100 ←
坝	.17		的人上所是 ····································	双兀声度法	
					AND THE PARTY OF T
比	1		a, 長さ b. 形 c. 容量	a. 35mm b. 円筒形 c. 2.8ml	a. 20mm
色	2	光電球	d,材質 a、規格 b.使用電圧	d. 塩ビ硬質ガラス窓 a. 発光ダイオード b. 5V	d. 塩ビ硬質ガラス a. 発光ダイオード:555nm b. 1~2Vパルン点灯
関係	3	受光部	c.寿命(連続使用) a.規格 b.使用電圧	c. 1年以上 a. ツコン受光がイート* b.	b.
	4	干渉フィルタ	c. 寿命 (連続使用) a. 波長域 b. 材質	c. 半永久 a. 565nm b. 金属干渉フィルタ	a. b.
1	l			2 時間	(- -
	2	t'u·スパン校正機構装		a. 自動t*D点調整	4
そ	Ĺ	eraleventame	b. スパン	b. 手動M°ン調整	(
_	3	電源電圧		AC 100V ±10%	←
0	4	消費電力	·	400VA	350VA
ΛJ.	5	量量		¥j80kg	約125kg
他	6 7	寸法 測定可能周囲温度(室内)	450 x 500 x 1730 5~35℃	550 x 450 x 1650 0~40°C


(1/2)

		型式	TGAH-203	
項	Ħ	測定原理	吸光光度法	
性能関係	- 1	手動・自動別 繰返し性(再現性)(3回、フルスケールに対し) ト*リフト(24時) a. セ*ロ(フルメケールに対し) b. スパン(フルスケールに対し) 直線性(指示誤差)(フルスケールに対し) 試料大気流量に対する安定性(規定流量) 電源変動に対する安定性 (電圧変動±10%の場合、フルスケールに対し) 流量レバル計の誤差(規定流量に対して) 吸収発色瓶の捕集率(N020、1-2ppmによる)	NO, NO2, 0~0.1, 0.2, 0.5ppm 手動及び自動切換 ±2%以内 a. ±2%以内 b. ±2%以内 ±4%以内 ±10%以内/10日 ±1%以内	
武	1 2	試料大気導入管 外部配管 a. 材質 b. 内径 a. 材質 a. 材質	a. テフロン b. 6mm a. テフロン	
料採取時	3	b. 内径 除じんフィルタ a. 材質 b. 外径 流量計 a. 種類	b. 4mm a. テフロン b. 45mm a. 而積流量計	
世間	ļ	かた は	a. magacan b. 50~600ml/min c. 10ml/min 2L/min	
ガス吸		採気時間 採気流量 液量 吸収液 a. 組成 (20 L中の試薬量)	56min 22sec 300ml/min 20ml a. スルファニル酸 100g 酢酸 1000ml	
双 関 係		b. 液使用方法 c. タンク容量 d. 温度補償機構	N-1ナ	

(2/2)

			Date The Carrier of			(2/2)
			型 式	1 .		
頂.	E		測定原理	吸光光度法		
7.7.4			为 以 及正加《主	1GAN-203 172@(24) n. 18.2		
Total and the second						
比	1	七ル	a. 長さ b. 形 c. 容量	a. 15mm b. 円筒形 c. 20ml		
色	2	光電球	d. 材質 a. 規格 b. 使用電圧	d. 硬質が ラス a. 6V 1Aタングステンランプ b. DC 4.5V		
関係	3	受光部	c. 寿命(連続使用) a. 規格 b. 使用電圧	c. 3ヶ月以上 a. CdS光伝導セル b. DC 2~5.8V		
	4	干渉フィルタ	c. 寿命(連続使用) a. 波長域 b. 材質	c. 半永久 a. 545nm b. 金属干渉フィルタ		
2	1 2	暖機時間 セ゚ロ・スパン校正機構装		2 時間 a. 自動をT点調整	. :	
その		電源電圧 消費電力	b. スパン	b. 手動ひ [*] ン調整 AC 100V ±10%		
0)	5	加州		約150VA 約110kg		
他	6 7	寸法 测定可能周囲温度	(室内)	525 x 485 x 1415 0~40℃:但し温度変化 5℃		·

第6章 ばい煙監視システム事業化の実施スケジュール

第6章 ばい煙監視システム事業化の実施スケジュール

第5章で述べたように、本来「ア」国の地域環境モニタリングステーションは広大な「ア」国の土地を考慮すると、数百~千数百ヶ所のステーションが必要と考えられるが、SEの所管事項は火力発電所のモニタリングである。

従って、中・長期的にはSEの行政区画及び気象区分による 6ヶ所を基礎とし、「ア」国 に於ける他のセクターに対する将来計画及び国と州政府の役割分担を明確にした上での全 体計画に配慮しながら火力発電所の密度を考慮した上で、効率的なステーションの計画が 試されるべきである。

このような状況下に鑑みて、本計画では将来的にも必要と考えられるSEの行政区画及び 気象区分のうち、3ヶ所設置するケースをPhase-1、他の 3ヶ所に設置し、SEとし一応のモニタリング計画が完遂するまでのケースを Phase-2とする。これら計画の実施に至る段階 は以下の4段階に展開するのが望まれる。

第一段階:SEのエネルギー電力の中・長期計画をベースとし、環境保全施策の具体化の検 討を行政的・技術的に行う

第二段階:上記構想を基礎として、中・長期モニタリング実施の基本計画の策定、国・内 外の関係先へのプレゼンテーション

第三段階:第二段階の進捗状況に従って、モニタリングの実施計画を策定するとともに、 具体計画を実施に移行せしめる段階

第四段階:プロジェクトを実施し、SE側の体制整備、教育、訓練計画を実施する段階

以上の考え方で作成したスケジュール(案)を図6-1 に示した。

Froject Proposal to the GOA		မ									
1年目 2年目 2年日 2 4 6 8 10 12 2 4 6 8 10 12 2 2 2 4 6 8 10 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3年目	4							:		.
1年目 2年目 2年目 2 4 6 8 10 2		2				•				·.	
1年目 2年目 2 4 6 8 10 12 2 4 6 8 3		12									
1年目 2年目 2年日 2 4 6 8 10 12 2 4 6 8		10								N	
1年日 2 4 6 8 10 12 2 4	Ш	∞.				<i>:</i>					:
1年目	2年	တ္									
1年目 2 4 6 8 10 12 2 4 6 8 10 12 3 3 3 3 3 3 3 3 3		4									
1年目		2							\triangleright		
2 4 6 8 60A Assistance \[\times \text{TR} \\ \times \		12			7		. ·	D,			
2 4 6 2 4 6 8 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		10		and district to the state of th							
s GOA Ssistance	ш	80									
cook Assistance	1年	9			F.	•	•			• .	
c GOA Assistance		4			-					••	
Project Proposal to the GOA Project Proposal to the GOA Promotion of Technical Assistance Submittance of DFR Establishment of SMI Project Planning Agreement of T.A. Project Kick-off Project Implementation Commencement of the SMI		2	L.I		\triangleright		\triangleright				
Project Proposal to the GOA Project Proposal to the GOA Promotion of Technical Assist Submittance of DFR Establishment of SMI Project Planning Agreement of T. A. Project Kick-off Project Limplementation Commencement of the SMI				cance							
Project Proposal to the Project Proposal to the Promotion of Technical Submittance of DFR Establishment of SMI Project Planning Agreement of T.A. Project Kick-off Project Implementation Commencement of the SMI Commencement of the SMI			e 00A	Assist							
Project Proposal Project Proposal Submittance of D Establishment of Project Planning Agreement of T. A Project Kick-off Project Implement	舟	田	to th	hnical	⊘ :	SWI				tation	the SMI
Project Promotion Submittanc Submittanc Froject Plancement Project King Project King Project Imp			oposa1	of Tec	e of D	ent of	anning	of T.A	ck-off	plemen	nt of a
Proj Proj Proj Proj			ect Pr	otion	ittanc	blishm	ect Pla	ement (ect Ki	ect im]	encemei
1/ 1/ -:			. Proj	. Prom	. Subm	. Esta	. Proj		. Proj	. Proj	. Comme
6 - 2	V	-	⊢	2	ന	ਚਾਂ		9.	7.	∞	တ်

図6-1 ばい煙モニタリングステーション実施計画スケジュール

第7章 大気汚染の防止に関する費用(コスト)と 便益(ベネフィト)の解析

第7章 大気汚染の防止に関する費用(コスト)と便益(ベネフィト)の解析

7.1 序

過去数十年各種の環境保全に係る問題を抱える各国の中央政府や州政府の行政担当部門 は常に民族又は地域の経済的な発展を阻害する事なしに環境の保全を望ましい水準に保つ 為に必要な最適の決定を見出す事に多くの困難を経験して来た。

言い換えるならば、地域の発展に必要なインフラストラクチャーの建設や工業の拡大のプロジェクトに対して自然及び社会環境を完全に保持する様な厳しい規則を制定するならばその為のコストの増加がそれ等のプロジェクトの実施自体を不可能になるまでになる事も考えられる。従って行政府はそれ等プロジェクトが環境を維持しかつプロジェクトも実現し得る様な適切な規則を制定しなければならない。その様な規制の決定の基準は環境を望ましい水準に保つ為の費用と便益の解析によるべきである。

現在まで、農業用水の整備による地域の農業生産性の向上の経済的な分析や道路の整備によりその道路を利用する自動車が受ける便益の分析に使用されて来た様な手法と同様な手法を確立する為の努力が続けられて来た。

しかし、環境問題に関する費用対便益分析の歴史は短く、その為行政機関に実際のデシ ジョンに適用可能であるとして広範囲に受け入れられている標準的な手法はいまだ確立さ れていない。

さりながら、環境保全の費用と便益を金銭的な数値に表し(MONETARY EVALUATION)その経済性を判断する手法はこの数年発達し、いくつかの国で実際的な事例に適用されて来ている。

1990年にOECDが行った、環境対策の上記手法による環境対策の費用・便益の分析の実施例についての調査の結果は次の様になっている。

表7-1-1 便益評価(金銭価値)の実施例

	SWE	NETH	NOR	FIN	G	UK	AUS	USA	POR	ITA	JPN
国家的損失評価 特殊な汚染の被害	-	х	_		x		(*)	Х	(*)	***	
空気	(*)	х	х	*	х	_	_	Х	*		X
水	(*)	х	х	х	х	Х	-	х	*	х	_
土壌/土地	-		-	(*)	х	(*)	_	X	*	Х	
毒物	(*)	(x)	-	*	<u>-</u> ·	. 	- .	х	(*)	_	-
騒音	. •	X	X	(*)	х	(*)	. –	(x)	-	х	
廃物	-	\mathbf{x}^{1}	-	·(*)		÷-		х	*	X	-
石油漏洩	-	-		(x)		-	_	х	*		-
その他	-	~ '	. – . Š į	毎洋保護	-		÷	-		· _	
環境資源の評価							•				
湿地	-	_		*	_	Х	*	х	-		-
森林	Х	-	_ 2	(x)	X	(x)	· X	х	*	х	_
海岸地带	_	-	, min	(x)	-	-	-	χ .	(x)	х	-
野生/自然	*	-	X.	*	x 3 .	(*)	(x)	x		X	
魚類資源	(*)	. –	х	(x)	*	-	_		-	-	-
リサイクル	-	X	-	*	-	x	(x)	-	(*)	х	· x
汚染の持つ収ク分析											
生命		-	_	(*)	_	х	_	х		_	
汚染	-	-		*	_		-	х		_	
生態環境	-		_	(*)	_	(*)	х	(*)	_		

注) 1:農業廃棄物

2:進行中

3:近い将来

出典:Benefit Estimates Environment Decision OECD Paris 1992

又、同時にOECDの行なった、上記の金銭的評価による分析が行なわれた場合の用途についての調査の結果は次の様になっている。

OECDの加盟各国から寄せられた "Monetary Valuation of Benefit"手法が利用された用途についての情報が分析されその結果は以下の様である。

各国に送られた用途に関する分類は次の様であった。

- * 環境に関する関心を高める
- * デシジョンメイクに対する影響をあたえる
- * どの様なデシジョンが必要かの検討
- * 行なわれたデジョンの正当化

表7-1-2 費用-便益分析の行なわれた水準とその機能

機能な	k準	環境に関心を 高める	決定に対し 影響を与える	決定の内容を 特定する	決定の 正当化
政	策	Yes	可能性有り	多分可能性なし	多分可能性ない
法	規	Yes	可能性強い	可能性有り	可能性有り
プロシ	111	No	Yes	可能性強い	可能性強い

7.2 環境対策の金銭的評価による費用-便益分析手法の概略

色々な方式が開発され現在も利用されている。 以下には、大気汚染の費用と便益の分析に適用が可能とされている方式を説明する。

(1) 代替市場の推定 (Revealed Preference Approach)

環境と言った直接に取り引きされる市場の無い物について、その環境の変化によって影響される物やサービスについての市場を見い出す。その例として不動産の取引きにおいてはその周辺の大気環境が影響する事が見い出されており、その価格への影響をもって環境の改善(劣化)をMonetary Valueに評価する。また大気環境の変化によりその地域の住民が健康的な環境地域に旅行に出る事(回数)の増減を Monetary Value として捕らえる。

(2) 市場を質問票の使用により設定(Stated/Expressed Preference Approach)

環境の改善(劣化)に対して関係者が喜んで支出をする価格またはその代償として 受取る事を望む代償を直接の意見聴取により見い出す。(Contingent Valuationとも 言われる)

(3) 投薬と効き目の関係による設定 (Dose-Responce Data Linkage)

環境水準の単位変化による影響が確定できる関係を見い出す事により環境改善(劣化)の効果をMONETARY Valueとして捕らえる。

7.3 費用(Cost)と便益(Benefit)の近似的解析 (アルゼンティンに於いての大気汚染対策の導入に係る)

前節に述べた手法によりブエノスアイレス地域での大気汚染対策の導入が行なわれる場合の費用と便益についての近似的な解析を試みる。今回の分析に利用されるデーター類はブエノスアイレスにて収集されたものでは無く、OECDの報告書に採録されている報告によっているので結果の数値はそのままブエノスアイレスに適用出来るとは言えないが、大略のインデイケーションとしての意味は有ると考える。

(OECD ENVIRONMENTAL POLICY BENEFIT; MONETARY VALUATION 参照)

7.3.1 旅行費用評価

この考え方は大気汚染が進行した場合にその地域住民が地域外の健康的な環境に年間に何回か旅行をする事を望む様になるのでそのコストを持って環境のMONETARY VALUEとすると言う事で、どの位の人がこの様な行動に出るかと言った点についての推定が難しい。一方他の CONTINGENT VALUATION METHODによった VALUATIONとも近い結果を得られる事も知られている。

「極めてラフな近似として首都圏の人口約 350万人として(60万所帯)平均所得/所帯 20,000 US\$/Yearとし年 2回 1週間程度の旅行を行い、年間の旅行費用を所得の 10%とし、全所帯の内半数がその様な旅行をすると考える。

600,000 X 2,000 X 0.5 = 600 million U.S. dollerが得られる。

またその旅行期間内の所帯の失った得られた筈の所得を加えると

(TWO WEEK) $\frac{1}{24}$ X 20,000 X 600,000 X 0.5 = 250 million U.S. doller

総計 850 millionとなる。

7.3.2 構築物腐蝕損失

大気汚染の増加時にSOx、NOx等の酸性物質の大気中の量が増加した場合、建物の表面の 傷み、金属部分の腐蝕が加速される事は良く知られている。 オランダ、ドイツ、U.S.A.で行われた調査によれば 1983 dollerで

Pollution level at 1980's

			1975	1985	1980-1984
EC チーム	推定	3-14 \$/capta/Y	$S0x(\mu g/m^3)$	S0x	$N0x(\mu g/m^3)$
オランダ	8-15	\$/capt/Y アムス	34	16	45
ドイツ	15	\$/capt/Y ベルリン	95	67	60
U.S.A	28	\$/capt/Y ニューヨーク	43	37	65

もし15\$/capt/Yearとすればバイレス地区では 3百万 x 15\$ = 45 millionUS\$/Yearが見込まれる事になる。この状況が10年続くとすれば、 450 million U.S.\$となる。

7.3.3 不動産価格に対する大気汚染の影響

一般に大気汚染の影響とその他の環境劣化の要因(騒音、道路コンジェスチョン)が複合して働く場合が多くこれらを分離して評価するのは困難である。

U.S.A. で行われた調査の結果は次表の様になっている。

表7-3-1 空気汚染の不動産価格の影響

	年.		価格の効果%
都市 a) 不!	動産データ	汚染	
b) 汚	染 量		汚染増加 %
St-Louis	1960	硫酸化物	0. 06-0. 10
	1963	浮遊粒子	0. 12-0. 14
Chicago	1964-67	粒子と硫酸化物	0. 20-0. 50
	1964-67		•
Washington	1970	粒子	0.05-0.12
•	1967-68	オキシダント	0. 01-0. 02
Toronto-Hamilton	1961	硫酸化物	0.06-0.12
Philadelphia	1960	硫酸化物	0.10
	1969	粒子	0. 12
Pittsburgh ⁱ	1970	ダストと硫酸化物	0. 09-0. 15
	1969		
Los Angeles ⁱ	1977-78	粒子とオキシダント	0. 22
•	1977-78		was

^{1.} これらの試案では、弾性値の一部は分析値で出ない形の汚染又は分析値としてはあまり意味のない値となる形の汚染による物である事は明白である。この多因子の相関については文献に記載されている。

出典: Freeman (1979b), Brookshire et al. (1982)

一般的に見るとSOxまたは浮遊粉じんの増加割合に対してその1/20~1/10%土地価格が低

下しているという事が言える。

今ヴェノスアイレス首都圏200平方キロメートルの 10%を宅地とすれば $4,000 \times 10^6$ m² = 10^6 エーカーとなりその宅地価格は10,000 US\$/Aとすれば、総額10Billion \$となり、汚染レベルが 100%変化した場合 (minus)土地価格としての変化は、0.5-1.0Billion U.S. dollerの MONETARY VALUEの変化という事になる。

7.3.4 まとめ

大気汚染の防止による便益は最大で年850 million U.S.\$が"Travel Cost"手法によって得られ、又10年間で450 million U.S.\$が"Building Currosion"手法により推定される。Building Currosion"の中にブエノスアイレスにある多くの歴史的な建物や、芸術性の高い建物や彫像の損傷をも含めて考えると年間の損傷は45 million U.S.\$を大幅に越すと考えねばならない。現在の急速な経済発展が21世紀の初頭まで継続すれば、当然エネルギー消費も増大し、適切な対策が取られなければ大気汚染による土地の価値の下落が起る可能性が有り、将来西暦2010年までにエネルギー消費は現在の2倍に達すると予測されるので、その価値の下落が500~1,000 million U.S.\$になる可能性も否定出来ない。従って将来大気汚染の防止の為に行われる大気汚染防止の為の投資は数億 U.S.\$までは正当化されると考えられる。

第8章 結論と勧告

第8章 結論と勧告

(1) 現在の大気環境汚染

現在アルゼンティンでは、火力発電所からの環境汚染物質による問題になる大気汚染は存在しない。しかしながら、ブエノスアイレス市の一部では主として自動車よりの排気、部分的には工業設備よりの排気によると思われる大気汚染問題が存在し、又メンドーサ市の一部では火力発電所を含む工業設備からの排気による粉塵による大気汚染が時折観察されている。

今回のJICA調査団の調査結果では、大規模汚染防止設備を火力発電所に早急に導入する必要性は認められなかった。調査の経過で痛感された点に、現在積極的に進められているSE(エネルギー庁)及びENRE(電力セクター管理機構)の火力発電所の大気環境の保全に関する活動は州及び市の行政の行う大気環境の保全の活動と統合される事が国全体としての大気環境保全のシステムの確立に重要であるという事がある。

今回の報告でも提案され、SE及び関連機関でも開発を続けられている大気汚染のモニターとインスペクションに必要な技術は早急な確立が必要であり、又この技術が他の大気汚染防止に係る諸機関により充分活用される事が必要である。

(2) モニタリングとインスペクション体制の確立

現在の所、アルゼンティンの大気汚染問題は深刻ではないが、近時の全地球的な環境保全に対する国際的な関心の高まり及び世界的な自由貿易に進むに必要な共同経済 圏としての共通な環境保全の樹立についての全世界的な動きの中で全ての国は、国家 的な規模で現状モニターの組織を整備し、国際的に受け入れ得る方法により信頼出来 るデータを集積する必要に迫られている。

本報告によってSEの活動として提案されており、又SEも準備を進めている火力発電 所の大気環境保全に関するモニタリング・インスペクションの体制が、他の政府機関 の積極的な参加を得て国全体をカバーする様に発展する事が望まれる。

(3) 将来の火力発電所の大気環境保全について

現在進行中である経済と産業の根本的な再構築によって、将来の電力セクターを含むエネルギーセクターは、市場経済原理によって機能するとされている。

"成長するアルゼンティン 1993-1995"によって明示された、現政府の経済発展の プログラムは来世紀にかけての急速な経済成長を目指している。

この事は電力を含むエネルギー需要の急速な拡大が予測される。その結果、西暦 2010年までには関係政府機関の情報によれば、現在の倍以上となる可能性が強い。

この様な状況下で、現在大気環境保全に貢献している水力発電、天然ガスの供給の 拡大は増大する需要に対応出来ないと考えられ、その結果は高硫黄重油や石炭を工業 及び発電で利用する状況が出てくる。

しかしその様な燃料の汚染物質の排出に適切な手段が得られなければ、過去に急速な経済発展を見た工業国で経験された様に、工業の集中した地域での極端な大気汚染間題をもたらしかねない。

将来のエネルギーセクター及び諸工業は私企業の手にある事から、環境の保全とコストの削減の調和は複雑な問題を含む。

そこで関係政府機関による適切な時期を得たガイダンスにより、私企業により進められる国の経済発展の活性を保ちながら、環境保全を達成する事が必要となる。

このガイダンスは、長期的な国としてのエネルギーマスタープランと、国内での産業立地政策に基づく必要が有り、さらに組織的に蓄積されたモニターデータにより発生源に対する規制を進めていく国家機関により策定される必要がある。

(4) 国際協力

アルゼンティン政府は、地球規模の環境保全には、モントリオール条約加盟など積極的に参画している。さらに世界的に開放貿易の方向が進められている現在、全での国には国際社会の成員として地球環境の保全の為に国際的な基準を守る事が義務付けられる方向にある。

この様な点に関心のある人々は、現在米国、メキシコ、カナダが北米自由貿易国の 確立の為にその成員として共通の環境保全対策の設定に努力している事に注意を向け ている。

この様に国際化が進んでいる地球環境の保全に関して、日本とアルゼンティンの技術協力が実施される事は、環境保全に対する国際協力の上で大変望ましいと考えられる。

APPENDIX

APPENDIX 1 「ア」国への供給機材リスト

Appendix 1 「ア」国への供給機材リスト

アルゼンティン共和国への供給機材リスト

User	02, CO, NO, SO2	NOx. 02		805	3
SPECIFICATION	02, CO, NO, SO2	NOx:Chemiluminescence O2:Zirconia Method		SO2:Infrared Absorption Method(Ratio Method)	Dust:Light Scattering of Near Infrared Ray
	2	62)	222442222222222222222222222222222222222	N N N	8888888
QUANTITY (set)					
MANUFACTURE	IS#	SHIMADZU Co.		SHIMADZU Co.	SHIBATA SCIENTIFIC TECHNOLOGY Ltd.
EQUIPWENT [MODEL]	Portable Analyzer for Flue Gas Gas Analyzer[#S] 2000]	or Conbustion Exhaust[NOA-7000]	1)NO(240ppm:3.6 liter) 2)NO(986ppm:3.6 liter) 3)O2(0.1ppm:3.6 liter) 4)N2(Research:3.6 liter) Gas Sampling Probe[GSR 100] Gas Sampling Unit(Pretreatment Set)[CFP-301] Recorder[US-211] 1)Recording Paper(3pcs.)[Na1008Z40] 2)Ink Set(Goolors)[SA100p:4755568] 3)Ink Pad[10079] 1 (**Memory Card[630-04358-01] Step Down Transformer[B-2] SO2 Absorbent(185g)[630-00731-01] NH3 Absorbent Set(6pcs.)[638-52383] Ozone Deactivator Catalyst[638-65232] Reaction Tube(NO2 -+NO)[638-5242-01] Drain Separator Set[638-93092]	Infrared Continuous Gas Analyzer[IRA-107] Standard Gas 1)SO2(200ppm:3.6 liter) 2)SO2(490ppm:3.6 liter) Gas Sampling Unit(Pretreatment Set)[CFP-301]*(1.2-2) Gas Sampling Probe[GSR 100]*(1.2-3) Recorder[US-211]*(1.2-4) 1)Recording Paper(3pcs.)[No.1008240] 2)Ink Set(6colors)[SA100p:4T55568] 3)Ink Pad[100791]	Portable Dust Particle Monitor[AP-710N] Hand-held Computer[EPSON HC-45] Compact Printer[EPSON C-40] Recorder Down Transformer for Computer(HC-45)[300AE] Down Transformer for Printer[SE-100]
ITEM No.	1.1.1	2 1.2 1.2-1	1. 2-2 1. 2-3 1. 2-4 1. 2-5 1. 2-6 1. 2-9 1. 2-10 1. 2-10	60 60 60 60 60 60 60 60 60 60 60 60 60 6	4 1.4 1.4-1 1.4-2 1.4-3 1.4-4

アルゼンティン共和国への供給機材リスト

ITEM No.	EQUIPMENT [MODEL]	MANUFACTURE	QUANTITY (set)	SPECIFICATION	User
1.4-5 1.4-7 1.2-8	Ribon Cassette Roll Paper Paper for Recorder(2 × 3pcs.)[E9653BQ]		∞ m ∞		
5 1.5	Automatic Equal-Velocity Flue Gas Suction Device [Automatic Equal-Velocity Flue Gas Suction Device]	SEIBATA	2	Practical Equal-Velocity	ばいじん
1.5-1		TECHNOLOGY	2	Suction quantity of Fioward :1. 0-50 liter/min	c
1.5-2	32A]	ltd.	67		
1.5-3			7		
1.5-4		OKANO WORKS	2	_ u_*.	
	1)Sampling Tube 1,000mm[ES-302S]	Ltd.	2		
	2)Connector Pipe[ES-LN-10] 3)Connector Pipe[FP-1]		(D =		
	4)Pitot Tube Western-type 8 \(\phi\) [EWK-1S]			×	
-	5)Pitot Tube L-type 8 ϕ [EL-18]		4		
1.5-5	Sampling Tube for Moisture with Heater	•	2	,	ar anno sa
1.5-6	Dust Collecting Tube	•	2		
1.5-7	Suction Nozzle Set[EP-25N]		2		-constant
1.5-8 2-0	Sliy Flange(for 4B, SS)		63		
G	Handy Vise(100mm)		ic.		
1:0:1	N-11ermocouple				
	1) A-Thermocouple(3. $2 + 4$), 100Bm) [ESK-10]		7		
L F	L/R = 100000000000000000000000000000000000		7	•••	******
1.5-11	Holder for Clindrical Filter-Paper[ESP-25H]		2		
1.5-12	Packing of Holder for Clindrical Filter-Paper (3pcs.)		40		
1.5-13	Ribbon Weater		2	· • • • • • • • • • • • • • • • • • • •	
1.5-14	Slide Regulator(for Ribbon Heater)[SD-242]		2	. 4 000-	
1.5-15	Tool & Tool Box		2	·	
1.5-16	Recording Paper(Roll Paper)[NR-440]		4		
1.5-17	Ink Ribbon(Ribbon Cassette)[ERC-05]		c.		
1.5-18	Vacuum Hose(6 & X 18mm × 10m)		_		
1.5-19	Pretreatment Set		2		
1.5-20	Cooling Water Bath with Clumps		2	•	
_					

アルガンティン共和国への供給機材リスト

<u> </u>			et eren eren eren eren eren eren eren er		4		THE RESERVE OF THE PERSON OF T		A. CORD, Talkard Co., and an all an all and an all an all and an all an all and an all and an all and an all an all and an all an all and an all an all an all and an all an a	Andrew I palabelle	
User		数でん	数ろう		大気サンプラー		NOX	20S	Υ Κ		
SPECIFICATION		Dust Particle Concentration : B-Ray Absorption	500-1,200 liter/min with Automatic Constant Flow		Double Diaphragm System Air Sampler		Nox:Chemiluminescence	\$02:Ultraviolet Fluorescence	Dust: β-Ray Absorption		
		£.	රා සේ								
		30 30 14 1	20 10 10 10 10 10	(C)	707	ည်ကမ	22	p-ret			
QUANTITY (set)											
띮		Ltd.	Ltd.		Ţ	3					
MANUFACTURE		SHIBATA SCIENTIFIC TECHNOLOGY	SEIBATA SCIENTIFIC TECHNOLOGY	Argentina:	SETENTIFIC SCIENTIFIC TECHNOLOGY	Argentina: Argentina: Argentina: Argentina:	SKIBATA S.T. Argentina: RORIBA Ltd.	HORIBA Ltd.	BORIBA Ltd.		
ITEM NO. EQUIPMENT (MODEL)	. Air Pollution Monitoring Analyzer	-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-	High Volume Air Sampler[HVC-1000N] 2-1 Filter Paper(50pcs. 203 × 253mm) 2-2 Particle Separator 2-3 Filter Paper(50pcs. 126 × 168mm, with slit) 2-4 Motor Brush for Repair 2-5 Paint for Maintenance 2-6 Carrier(300kg Use) Orifice Meter	2-8 Electric Cord with Socket(20m)	3-1 Stand Sampler[S-601] 3-1 SPC Midget Impinger G-1 Set(10pcs.) 3-2 Dry Battery(30pcs.) 3-3 AC/PC Adantoy(Wodel:1469](1 000ma-188)		4 Impinger Set(6pcs.)[8003-2] 5 Shelter (for Stand Sampler) 6 Ambient NOx Monitor[APNA-350E] Colline Col	ΨV	8 Am		
ITEN	2.	6 2.1 2.2.2.2.2.1.2 2.1.2.2.3.2.1.4.4.1.5.1.5.1.5.1.5.1.3.3.1.4.4.1.5.1.4.4.1.5.1.5.1.4.4.1.5.1.5.1	<u> </u>	2.2	დ <u>თთეთ</u> ოთი	2.2.2.2. 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	9 2.4 1 2.5 1 2.6	12 2.7	જાં		
L							16		<u> </u>		

アジがソアィン共哲国への供給核なリスト

User					- sion			e e e e					~~~							*******	•				W REAL					******	********		(=1) = ,			********			
-		Š.						•••		600	3	-	- _																				 -						
SPECIFICATION		NO2:Ambient Air								SOS-Ambient Air	7 TY 2110 TO BY: 300																NOX-Fline Gas												
						c	3									2, 7				2.5											P-4	'							
			ι'n	11	·	≺ ¢	. c	7	- -1		ç	· 45.	କପ	2	10	ຄວ	2	Parent.	က	က	2		_	_	-	-		_	_	•	2	2	I	2	1		-	I	
(set)			1g×10×	5000×	250g×	1 000m3 ×	7. 000 III	2008	500g ×		500g ×	250g X	500g X	25g ×	$10g \times$	1,000ml ×	1,000m1 ×	500g ×	500g×	500ml ×	250g×	1,000g×	200g ×	200g×	1,000m1 ×	1.000ml ×		1.000m1 ×	500g ×	0	250g×	250g ×	1	100g×	500g×		500g ×		
			Japan: WAKO	Japan: WAKO	Argentina: MERK	Argentina.	Argentina.	AI generale mean	Japan:		Japan: WAKO	Argentina: MERK	Japan: WAKO	Japan: WAKO	Japan: WAKO	Argentina:	Argentina:	Argentina:	Japan: WAKO	Japan:WAKO	Argentina:	Argentina:	Japan: #AKO	Japan: WAKO	Japan:WAKO	Argentina:		Argentina:	Argentina:)	Argentina:MERK	Argentina: MERK	ļ	Japan:WAKO	Argentina:		Argentina:WERK		
	Unemical Analysis Apparatus	Chemical Reagent for Salzman Method	N-1-Naphtylethylenediamine	Sulfanilic Acid		Acetic Acid	4	-	rotassium reimanganate	Chemical Reagent for Pararosaniline Method	Mercury (II) Chloride		Potassium Chloride	Ethylendiamine Tetra Acetic Acid Disonum Salt	Pararosaniline Hydrochloride	Hydrochloric Acid		Hydrogen Sulfite		lfate Solution	liate	:72	ne	Sotuple Starch	Thosphoric Acid		Chemical Reagent for Zn-NEDA Method				rihydate		: Acid*(3.1.3)	Zinc, Powder		nediamine*(3.1.1)	Potassium Nitrate	Sodium Nitrite*(3.1.4)	
o		 က်	, ;	3.1.2		(r)	ςς: -	- u		දා භ	3.2.1		3.2.2	හ රෝ හෝ	3.2.4	က လ က	တ လုံ ကုံ	2.5.	00 m	0 io	ر د د د د	5. 2. 10	5. 2. 13	77 77 6	5. 1.3 5. 1.3		3.2.	3.2.1	3.2.2	3.2.3	3.2.4	3.2	3.2.6	3.2'.7		ο c ο c	3.7.3	3.2.11	

アルゼンティン共和国への供給機材リスト

:Flue Gas
2 1 02. CO2. CO:Flue Gas
1,000ml × 100g × 500g ×
Argentina: MERK Argentina: Argentina: Argentina: Argentina: Argentina: Argentina:
t-Apparatus 5)
Chemical Reagent for Orsat-Apparatus Potassium Hydroxide Ammonia Pyrogallol Sodium Chloride Hydrochloric Acid*(3.2.5) Methyl Orange Cuprous Chloride Ammonium Chloride Chemical Reagent for Analyzer Calcium Chloride
emicel Rea Potassium Ammonia Pyrogallol Sodium Chl Hydrochlor Cuprous Ch Ammonium C

アルガンティン共和国への供給機材リスト

		and and the	oir m	marker (m.)m.	(property)				******	, alle X		-	-							4 = 74 =		-Courbon		***************************************	wat,Cafe		*****	***	***	-								-CALLES	and the second	***	
User																																									
													_					_																							
CATION																																									
SPECIFICATION																																									
																				_	>	e u	3								-					· · · · · ·					
	12	-	ιΩ	1		တ	2		~	10		5	10		10	10	=	: £	, rc	ייי		ີເ	3 6	3	ıņ	20	<u></u>	67	2	က	ന	က	ന	4	LC:	,	2	~	- 2		
rITY (set)																																									
QUANTITY (se																																									
TURE																										٠															
MANUFACTURE	SHIBATA	SHIBATA	SHIBATA			SHIBATA	Δ		Argentina:	SHIBATA		SHIBATA	SHIBATA		SHIBATA	SHIBATA	SHIBATA	SHIBATA	SHIBATA	SHIRATA	SHIBATA	CHIRATA	SHIBATA		SHIBATA	SHIBATA	SHIBATA	SHIBATA	SHIBATA	SHIBATA	SHIBATA	SHIBATA	SHIBATA	Argentina	Argentina:		Argentina:	Argentina:	Argentina:	Argentina:	
	罗	8	罗			贵	A&D		γĽ	<u>B</u>		S	<u>E</u>		罗	<u> </u>		<u> </u>	5	5	J	7	5 5		B	B	<u>155</u>	訝	<u></u> 55	B	罗	罗	<u>8</u>	Ar	Ar		14.	14	Ar	Ar	
																										<u>-</u> -															
DEL.]																										× 90шш, 10 pcs.															
EQUIPMENT [MODEL]						3, 1g)	_											(21R)					9)Seal Tape(0.1mm × 13mm × 15mm)			■06 × 9			(bcs.)	24pcs.]				Ç,	_		(e)	(az	(e)		
EQUIPME					get Set	×21型	FX-3000				uipment				(snou	M-85A)	9305)	Mask(11	ri 8-1)				X 13 🖺		loth	[88RH:25			Wipe, 72	Towel, 2	(EXX	િ		Om lite	liter)		rge siz	ddle si	all siz		
		se Set	2-62]	t Type)	Sottle	Hose (9	alance[for Eq			t's	rd resi	asses (M	zgle(X-	ective	lt(Mido	250)	. 1	No.10)	0. 1mm	(0	sting C	ilter [ခွ	žę.	er(Kim	er(Kim	Sheet (3	ookg üs		le(1, 00	le(250m		rush(La	rush(Mi	nsh(S⊞		
	de	3)Maintenance Set	Flow Meter[IP-62]	Gas Meter(Wet Type)	Gas Mashing Bottle Set	Pressure Gas Hose(9 × 21mm, 1m)	Electronic Balance[FX-3000]		ormer	.v	Storage Case for Equipment	1)54L case	2)30L case	Protector Sets	<pre>1)Helmet(hard resinous)</pre>	2)Safety Glasses(MM-85A)	3)Safety Goggle(X-9305)	4)Dust Protective Mask(1121R)	5)Safety Belt(Midori B-1)	6)Glove(MK-250)	7)Ear Muffle	8)Ear Plug(No.10)	1 Tape	Wiscellaneous	1)Heat-resisting Cloth	2)Thimble Filter	3)Teflon Tube	4)Silicon Tube	5)Paper Wiper(Kim Wipe, 72pcs.)	6)Paper Wiper(Kim Towel, 24pcs.]	7)Plastics Sheet(3 × 3m)	8)Carrier(150kg Use)	9)lope(20m)	Plastic Bottle(1,000m liter)	Plastic Bottle(250m liter)	Washing Brush	 Washing Brush(Large size) 	2)Washing Brush(Widdle size)	3)Washing Brush(Small size)	Washing Tub	
	2)Blade	3)Mai	Flow	Gas Me	Gas Wa	Pressu	Electr	SIIdac	Transformer	Plug Set	Storag	1)541	2)30I	Protec	1)He1	2)Saf	3)Saf	4)Dus	5)Sat	6)610	7)Ear	8)Ear	9)Sea	Miscel	1)Hea	2)Thi	3)Tet	4)Sil	5)Pat	6)Par	7)Pla	8)Gr	9)lor	Plasti	Plasti	Washir	1)Was	2)Was	3)Was	Washir	
ITEM No.			3.21.	3.22	3.23	3.24	8 8 8	97.70	3.27	33.28	3, 29			3.30										3.31				. ,	-		•			3. 32	3.33	3.34				3. 33.	
II				ന് (•		က်						•				က်										က	ന്	ന്				ന്	

アルガンアィン共和国への供給機材リスト

	Gas
	Flue Gas
	Gas
	ue Gas
	x:Flue Gas
	SOx:Flue Gas
	24. ¢
	50g× 300m liter × 500m liter ×
SHIBATA SHIBATA Argentina: Argentina: Japan: Japan:	SHIBATA SHIBADZU SHIBATA SHIBATA Japan:KANTO SS
SHIB SHIB Arger Arger Japar Japar Japar	SHIMA SHIMA SHIBA Janar
	્ય
r) r) c) cylinder cylinder \$\phi\$ 110mm)	Gas Cylinder Holder(2pcs. Use) JIS Precipitation Titration Apparatus Flask(300m liter, Triangular) N/100 Barium Acetate Solution
e(deep t 00m lite 50m lite ter 1er(02:1 r Oxygen per(5B: per(5C: 500pcs.)	Gas Cylinder Holder(2pcs. Use) IS Precipitation Titration App Flask(300m liter, Triangular) N/100 Barium Acetate Solution
1)Tupperware(shallow type) 2)Tupperware(deep type) 2)Tupperware(deep type) Syringe 1)Syringe(100m liter) 2)Syringe(50m liter) 2)Syringe(50m liter) Safety Pipetter Glass Funnel 0xygen Cylinder(02:100%) Regulator for Oxygen Cylind Filter Paper 1)Filter Paper(58: \$\phi\$ 110mm 2)Filter Paper(50cs.) Vcuume Grease(50g)	Gas Cylin JIS Precip Flask(30 N/100 Ba
ი დ დიდიდ დდ ა დ დიდიდი დი ა დ დადიდი დი ა დ დ 24.4 4.44 24.45 25.45 26.45 27	

アルガンティン共和国への供給機材リスト

4. Miscellaneous Supporting Equipmes 4.1 Analyzer Transportation Vehicle[4.2 Incubator(300 liter)[32/2,132/2] 4.3 Wind System[OSK-15038] 4.3-2 Recording Paper A.4-3 Recording Pener[AT 80486-33Dx] 4.4-1 Mother Board 4.4-2 Monitor[14'V6A] 4.4-3 Printer[Deskjet HP550C] Plotter[Hiplot 7200 Summgraphia Hard Disk Drive(240Mb)[240ATLP Software[MS-DOS v. 6.0, Windows 4.5 Orsat-Apparatus 4.6 Tool Set 4.7 Reel of Electric Cord (1000 lise)	Trafic TAIC] SalawTUM]	Ar:Renault Ar:Peabody OTAKEIKI OTAKEIKI OTAKEIKI Ar:(QUANTUM) Ar:(QUANTUM) Ar:(Hewlette Packard) Ar:(Guston Instrument) Ar:(QUANTUM) Ar:(Asment) Ar:(Asment) Ar:(Asment) Ar:(Asment) Ar:(Asment)	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Max Capacity:1,410kg Volume:300 liter	
70 Pe 71 In An	Trafic TAIC] SquanTUM]	Ar:Renault Ar:Peabody OTAKEIKI OTAKEIKI OTAKEIKI OTAKEIKI Ar:(QUANTUM) Ar:(QUANTUM) Ar:(Hewlette Packar Ar:(QUANTUM) Ar:(QUANTUM) Ar:(QUANTUM) Ar:(Auston Instrum) Ar:(Auston)	L 62 L 63	Max Capacity:1,410kg Volume:300 liter	
#1 D D	cs] S QUANTUM]	Ar:Peabody OTAKEIKI OTAKEIKI OTAKEIKI Ar: COMPU CENTER) Ar: (QUANTUM) Ar: (Samsung) Ar: (Hewlette Packar Ar: (Houston Instrum Ar: (QUANTUM) Ar: (QUANTUM) Ar: (QUANTUM) Ar: (QUANTUM)	© ™ ZI ™ ™	Volume: 300 liter	
F 9 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	cs] S QUANTUM] v.3 etc.]	OTAKEIKI OTAKEIKI OTAKEIKI Ar: (COMPU CENTER) Ar: (QUANTUM) Ar: (Samsung) Ar: (Hewlette Packar Ar: (Houston Instrum Ar: (QUANTUM) Ar: QUANTUM) Arsentina:	m 23 m m	<u> </u>	Cold storage of
Pg 77 78	cs] QUANTUM] v.3 etc.]	OTAKEIKI OTAKEIKI Ar: (COMPU CENTER) Ar: (QUANTUM) Ar: (Samsung) Ar: (Hewlette Packar Ar: (Houston Instrum Ar: (QUANTUM) Ar: QUANTUM) Arsentina:	17		Sample/Reegent Meteorological
g <u>2 2 %</u>	ss] S QUANTUM] v. 3 etc.]	Ar: (COMPU CENTER) Ar: (QUANTUM) Ar: (Samsung) Ar: (Hewlette Packar Ar: (Houston Instrum Ar: (QUANTUM) Ar: QUANTUM) Argentina:	P-M		observations
<u> </u>	ve(240Mb)[240ATLPS QUANTUM] OS v. 6.0, Windows v. 3 etc.]	Ar:(Mouston instrum Ar:(QUANTUM) Argentina:	କ [୍]		PC Colour Monitor Colour Printer
		4r.Stonffpr	ent) 1		Plotter Software Software
		SHIBATA	03	02, CO2, CO:Flue Gas	a sone and an analysis
		Argentina:			
	(100V Use)	Argentina: SHIBATA	7.7		CONTINUES OF THE
				·	
					A MANAGEMENT CONTRACTOR
one management in a set set of		eschial a silent declaration of			
					мбоозновий учественняй деятельного подделжений деятель

付表 1 (1) 供与機器のシステム概要 1.1 ばい煙測定用ポータブル分析計 [MSI-2000] 몂 名 測定原理 : 定電位電解法 O 2 NO: 定電位電解法 SO2: 定電位電解法 フローシート PROBE WATERTRAP THERMOCOUPLE WIRE -10' HDSE SENSOR HOUSING -PUMP -DISPOSABLE FILTER DESICCANT COMBUSTIBLES SENSOR SD2 GAS EXHAUST -0 PRESSURE SENSOR CO SENSOR

- NDX

SENSOR

DXYGEN SENSOR

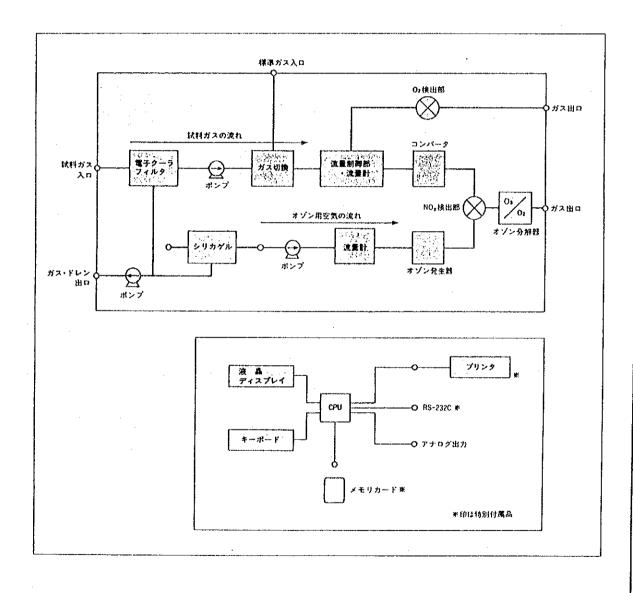
GAS ENTERS HERE-

COVER -

付表1(2) 供与機器のシステム概要

品 名 1.2 燃焼排ガス用NOx, O2測定装置 [NOA-7000] 測 定 原 理

NOx: 常压式化学発光法


試料ガス中のNOと空気から生成したオゾン(03)を反応槽内で混合し、その一部が励起状態のNO2 となり、このNO2 が基底状態に戻るときに放射する

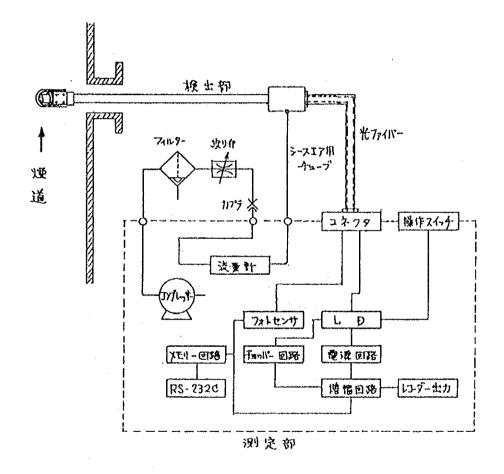
光を測定してNO濃度を測定する。

02 : ジルコニア法

安定化ジルコニアの両端に電極を設けて高温中に置き、ジルコニア両端の酸素濃度の違いにより、測定ガス中の酸素濃度を測定する。

フローシート

ᇤ 名 1.3 SO2ガス 濃度 連続 測定 装置 [IRA-107]測定原理 SО2: 单光源二光束非分散赤外線吸収法 ガス分子固有の赤外線吸収効果を利用して、試料ガス中の802の濃度を 連続測定する。 フローシート ゼロガス入口 スパンガス入口 フィルタ日 サンブル ガス入口 電磁弁 | | 出力信号 | 0~IVDC |または0~I6mADC |または4~20mADG -- F## J. ニードル弁 ドレンポット --£.j.} ドレンポット ACI00V ▼002 吸収器 ガス出口く (オーバフロー) 乗分析計のパージ回路 (ニードル弁と CO2 吸 収器)は、CO2の1000ppm以下のレンジの分析 JRA-107フローシート 計のとき使用します。 煮 は、自動校正の場合に使用します。(特別付展品) ■はSO」が試料ガス中に含まれるとき使用します。 (特別付属品)

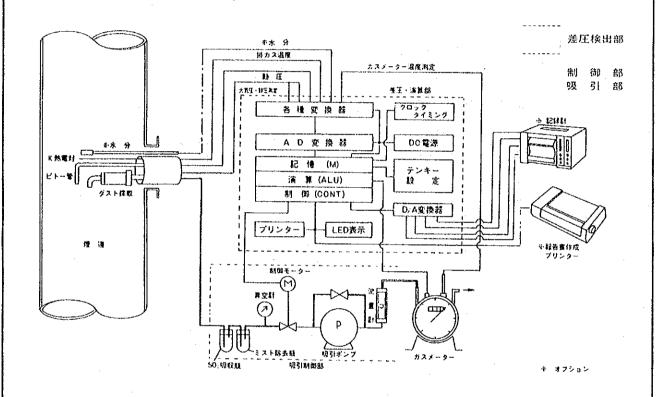

----- A1 - 12 ----

50 名 1.4 ポータブルばいじん濃度計 $[\Lambda'P-710N]$

測定原理

ばいじん:近赤外光散乱方式による相対濃度

浮遊粉じんに光を照射したとき、粉じんの物理的性質が同一である場合 は、粉じんによる散乱光量は粉じんの質量濃度に比例する、という原理 を応用して、浮遊粉じんの相対濃度を測定する。

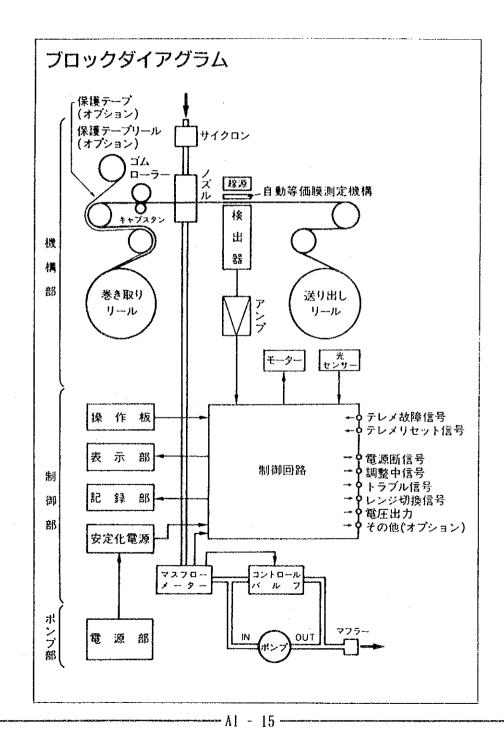

品名

1.5 煙排ガス自動等速吸引装置 [ダスタックサンプラー:ESA-302CT-20N]

測定原理

マイコンによる等速吸引流量制御方式:

煙道の流速変化をピトー管で、排ガス温度変化を熱電対で検出し、あらかじめテンキーにより入力していた各条件(ピトー管係数,水分値等)との演算により等速吸引流量(qm1)を算出し、パルス発振式ガスメーターの流量(qm2)がqm1と等しくなるように自動的にコントロールする。



ᄪ 名 2.1 β線式質量濃度計 [BAM-102S]

測定原理

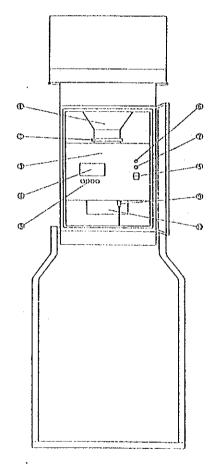
粉じん: B線吸収法

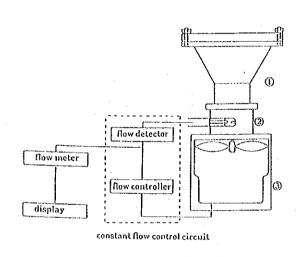
B線は電子の流れであるために、物質を透過する際、物質内の電子と散 乱、衝突を起こして吸収される。この吸収量はβ線のエネルギーが一定 ならば、物質の重量に比例し、粉じんの粒径・成分・分散・色等に影響 を受けない。 本装置は、このβ線吸収方式を利用して、 ろ紙に捕集した 粉じんの重量をβ線の吸収量から求め、質量濃度 (mg/m3) として表示 する相対濃度を測定する。

付表1(7)

딞 名 2.2 ハイボリューム・エアサンプラー [HVC-1000N]

様 等 仕


ポンプ方式:整流子モーター直結ダブルブロアー


大気中に浮遊する粉じんやばいじんの試料をフィルターに捕集(吸引、 ろ過)し、捕集前後のフィルターの質量差を天秤で秤量して大気中の浮 遊粉じん、ばいじん濃度を求める。

自動定流量装置により、捕集量の増加による流量の低下をおさえる。 機能には、瞬時流量表示、積算流量表示、タイマー機能、停電対策機能 がある。

分粒装置により粒子径10μm以上と以下に分けて捕集もできる。

フローシート

Block diagram of constant flow device

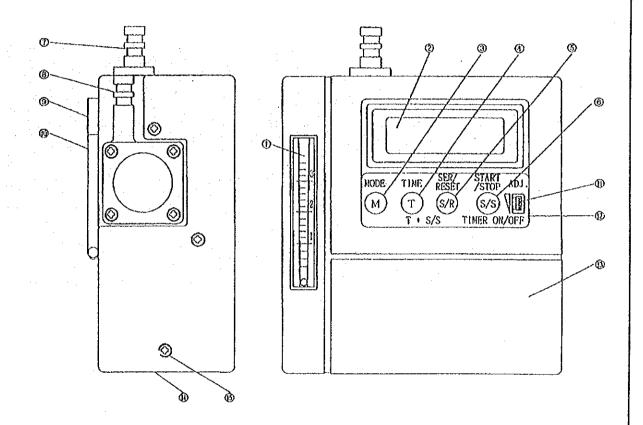
- (1) filter paper
- (2) detector
- (3) motor of pump

Name of components

- ① filter holder
- @ adapter for assembly
- (1) potentiometer
- (4) display
- (5) control switches
- © potentiometer
- ① fuse holder
- (8) main switch
- 9 plug for power supply
- @ pump unit

名 밂

2.3 スタンド・サンプラー [S-601]


仕 様 等

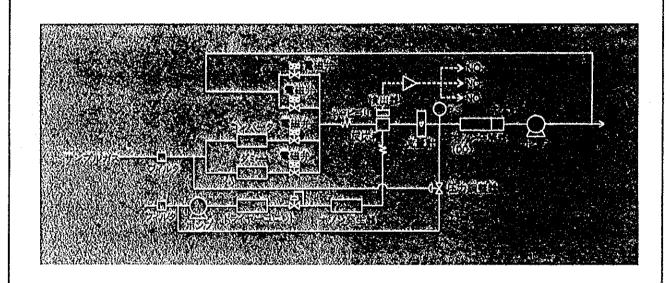
ポンプ方式: ダブル・ダイヤフラム式

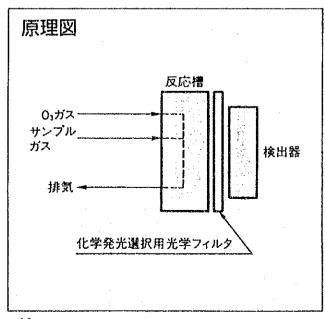
環境中の特定物質など、有害粒子状物質、あるいはガス・蒸気状物質の 液体捕集用サンプラーである。

内蔵タイマーによるタイマーサンプリングが可能である。

フローシート

- ① 流量計
- ② 液晶表示部
- ③ モード切換スイッチ
- ④ 時間設定切換スイッチ
 - ⑤ 時間設定, 動作時間 リセット・スイッチ
 - ⑥ スタート/ストップ・スイッチ ⑩ 三脚取付ネジ
 - ⑦ 排気口

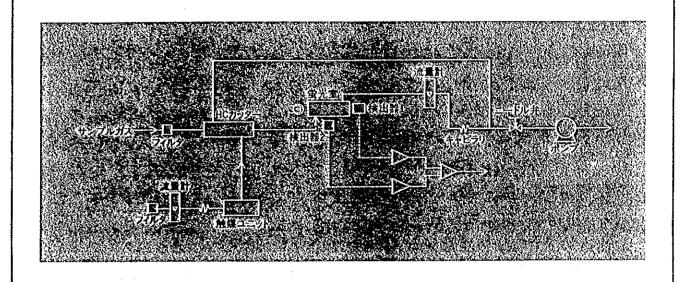

- 8 吸引口
- ⑨ インピンジャー固定位置
- ⑩ ベルト・フック
- ⊕ ADJ. トリマー
- ⑫ スライド・カバー
- 10 バッテリー・ケース
- ₲ バッテリー固定ビス

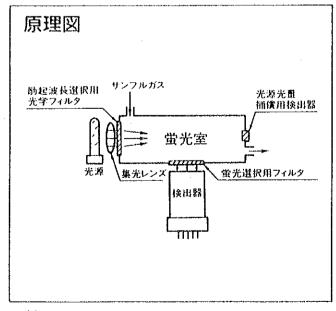

---- Al - 17 ---

딞 名 2.6 大気汚染監視用NOx測定装置 [APNA-350E]

測定原理

NOx: デュアルクロスモデュレーション方式セミ減圧化学発光法 (CLD) NOとオゾン(03)との反応によって発生するNO2の一部が励起状態になり 、基底状態のNO2 に移る際に化学発光(600~3,000nm)を生じる。 発光強 度はNO分子の量に比例するので、発光強度を測定することにより試料が ス中のNO濃度を測定する。NO2 は還元コンバータによりNOに変換して測 定する。つまり、試料ガスをコンバータに通して測定したNO× 濃度と、 コンバータを通さずに測定したNO濃度の差としてNO2 濃度を測定する。

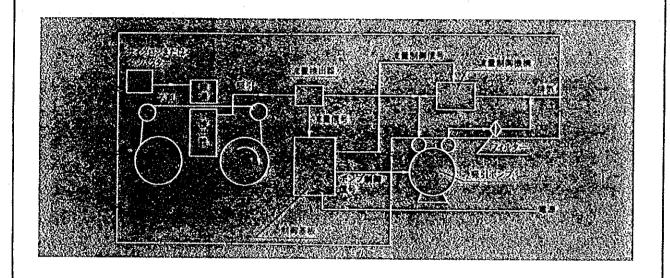

付表 1 (10) 供与機器のシステム概要


品 名 2.7 大気汚染監視用SO2測定装置 [APSA-350R]

测定原理

SO2: 紫外線蛍光法(UVH)

試料ガス中のSO2 が紫外線を吸収して生じる励起状態SO2 から発生する 蛍光(220~420nm)を測定し、その強度の変化からSO2 の濃度を求める。

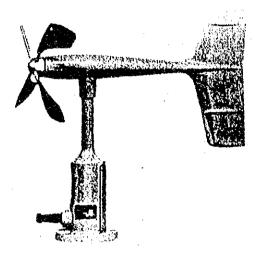

付表 1 (11) 供与機器のシステム概要

品名

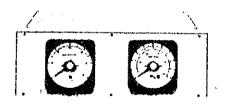
2.8 大気汚染監視用ダスト測定装置 [APDA-350B]

測定原理

粉じん(浮遊粒子状物質(SPM)): プラスチックシンチレータ方式、β線吸収法 測定周期の最初にろ紙のバックグランドのβ線吸光度を測定し、一定流 量の試料ガスを吸引し、ろ紙上に浮遊粒子状物質(SPM)を捕集する。 捕集したSPM のβ線吸光度を連続測定して途中経過を出力し、測定周期 の最終値が平均濃度となる。


付表 1 (12) 供与機器のシステム概要

ᄪ

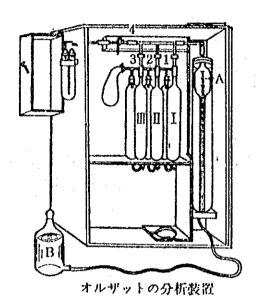

4.3 プロペラ型自記風向風速計 [OSK-15038E]

測定原理

風向センサー : 尾翼同調制御風速トランスミッター: 直流発電機

OSK 15038

付表 1 (13) 供与機器のシステム概要


品 名 4.5 オルザット分析装置

测定原理

CO, CO2, O2: 吸収法

煙道内から採取した試料ガスを各吸収液に吸収させて、 その体積の減少量から各成分を定量する。

各成分の吸収液は、COはアンモニア性塩化第一銅溶液、CO2 は水酸化カリウム溶液、O2はアルカリ性ピロガロール溶液である。

----- A1 - 22 ----

APPENDIX 2 環境汚染物質測定関連分析法のマニュアル

Appendix 2 環境汚染物質測定関連分析法のマニュアル

Following documents were handed over to SE.

(1) 環境汚染物質関連分析規格

JIS

- 1) JIS K0103: Methods for Determination of Sulfur Oxides in Flue Gas
- 2) JIS K0104: Methods for Determination of Oxides of Nitrogen in Flue Gases
- 3) JIS Z8802: Methods of Measuring Dust Concentration in Flue Gas

EPA

- 4) EPA Subchapter C Part 50 Appendix A
 - : Reference Method for the Determination of Sulfer Dioxide in the Atmosphere (Pararosaniline Method)
- 5) EPA Subchapter C Part 50 Appendix B
 - : Reference Method for the Determination of Suspended Particulate Matter in The Atmosphere (High-Volume Method)

(2) 環境汚染物質分析方法参考規格

<u>JIS</u>

- 1) JIS K0050 : General Rules for Chemical Analysis
- 2) JIS K0095: Methods for Sampling of Flue Gas
- 3) JIS K0115 : General Rules for Molecular Absorptiometric Analysis
- 4) JIS K0301: Methods for Determination of Oxygen in Flue Gas
- 5) JIS K0004 : Sulfur Dioxide (Standard Reference Gas)
- 6) JIS B7952 : Continuous Analyzers for Sulfur Dioxide in Ambient Air
- 7) JIS B7981 : Continuous Analyzers for Sulfur Dioxide in Flue Gas

- 8) JIS K0001: Nitrogen Monoxide (Standard Reference Gas)
- 9) JIS B7953 : Continuous Analyzers for Oxides of Nitrogen in Ambient Air
- 10) JIS B7982 : Continuous Analyzers for Oxides of Nitrogen in Flue Gas
- 11) JIS K0901: Form, size and performance testing methods of Filtration Media for Collecting Airborne Particulate Matters
- 12) JIS Z8814: Low Volume Air Samplers and Methods for Measuring Mass Concentration of Airborne Dust by the Low Volume Air Samplers
- 13) JIS B7954 : Automatic Monitors for Suspended Particulate Matter in Ambient Air

EPA

- 15) EPA Subchapter C Part 53 Subpart B
 - : Procedures for Testing Performance Characteristics of Automated Methods SO₂, CO, O₃ and NO₂
- 16) EPA Subchapter C Part 50 Appendix F
 - : Measurement Principle and Calibration Procedure for the Measurement of Nitrogen Dioxide in the Atmosphere (Gas Phase Chemilumineseence)

<u>who</u>

- 17) WHO Chapter 2: Sulfure Dioxide
- 18) WHO Chapter 4: Nitric Oxide and Nitrogen Dioxide
- 19) WHO Chapter 1: Suspended Particulate Matter
- (3) 「ア」国へ供与された分析計の取扱説明書
 - 1) NOx-O₂ Gas Analyzer : NOA-7000
 - 2) Infrared Continuous Gas Analyzer: MODEL IRA-107
 - 3) Infrared Gas Analyzer : MODEL URA-107
 - 4) Portable Dust Particle Monitor : MODEL AP-710N
 - 5) Dust Sampler : MODEL ESA-302CT-20N
 - 6) β -Ray Attenuation Mass Monitor : MODEL BAM-102S
 - 7) High Volume Dust Sampler : MODEL HVC-1000N

8) Stand Sampler

9) Ambient NOx Monitor

10) Ambient SO₂ Monitor

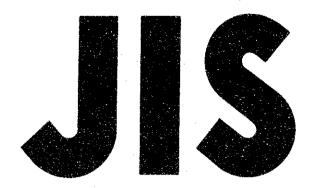
11) Ambient Particulate Monitor

12) Wind System

: MODEL S-601

: MODEL APNA-350E

: MODEL APSA-350E


: MODEL APDA-350E

: MODEL OSK-15038

APPENDIX 3 環境ばい煙分析に関する補足説明書

Appendix 3 環境ばい煙分析に関する補足説明書

- 1. 硫黄酸化物測定法
- Ⅱ. ばい煙中のダスト濃度測定法
- Ⅱ. 大気中の懸濁粒子の自動分析法
- N. ばい煙中のダストの粒径分布測定法

K 0004

二酸化硫黄標準ガス

JIS K 0004-1992

平成4年3月1日 改正

日本工業標準調査会 審議

(日本規格協会 発行) - A3-I-[

- 1. 適用範囲 標準物質は、特定の計測器のためにのみ限定されることなく広範囲に使用されるよう配慮されるべきで、この標準ガスも、計測器の目盛定め及び 目盛校正用 並びに 校正用ガス調製装置の原料用ガス、化学分析における標準などにも使用できるものとした。
- 2. 用語の意味 標準物質は、国家標準に求源性のあるものとの考えに基づき、それぞれを明確に定義した。
 - (1) 二酸化硫黄標準ガス この規格でいう二酸化硫黄標準カスは、ISO や OIML で定義づけしている "認証標準物質" に基づいて国家標準に求源性をもっていること、公的検査機関によって その品質が確かめられたものであることを明確にした。
 - (6) 二酸化硫黄基準標準ガス一次標準 この二酸化硫黄基準標準ガス一次標準は、高純度ガス二次標準を混合して 公的検査機関が調製したものであるが、混合ガスのキログラム原器的なものであることから、基準標準ガス一 次標準と名付けた。
- 3. 種類(記号) 及び 等級 種類は、JIS K 0055 (ガス分析装置校正方法通則) で規定されている校正点や、現在の計測器の測定レンジ 及び 公害計測以外で必要と思われる濃度等を勘案し、20 濃度とした。

記号に対する濃度範囲は、SD-P 60 以上は上限濃度の -10% まで、SD-P 50 以下は、上限濃度の -20% まではよいとした。例えば SD-P 2000 の場合は、1800 ppm から 2000 ppm の値のものであればよい。

等級は、質量標準の分銅に等級があるのと同じ考え方から、日常分析用として多量に使用し、精度もそれ相当のものでよいなどを考慮し、高精度、一般1級、一般2級の3種類とした。

なお、その等級別の主な適用例を解説表に示す。

解説表 等級別の主な適用例

等級	適用例
髙格度標準ガス	地方自治体の取締りにおける測定用 環境証明事業所における測定用 公共性の高い企業における"証明上の計量"に使用する濃度計の日盛校正用 計器メーカーにおける濃度計の目盛定め及び、日盛校正用 その他 信頼性の高い測定を必要とする場合
一般標準ガス1級	校正用ガス調製装置の原料ガス 校正用ガス調製装置による発生ガスの濃度確認
一般標準ガス2級	上記以外の一般用

5. **高圧ガス容器 及び 弁** 標準ガスは、高圧ガス取締法の適用を受ける。したがって容器 及び 弁は、この法に規定されたものを用いなければならない。これらの容器は通常、標準ガス用として特別に作製されたものではないので、濃度を長期間にわたって安定に保持させるためには、容器の内面を研磨するなどの処理を行わなければならない。規格では、特にその処理について規定はしていないが、前述の工業技術院標準部の委託調査研究や通商産業省計量課の委託調査研究 (53~55 年度) の結果から、内面超研磨後、金めっき処理、ガス処理することなどによって低濃度でも比較的安定に維持することが可能になった。

なお、アルミニウム合金製高圧ガス容器は、55 年度、高圧ガス取締法の一部改正によって、通常のマンガン鋼製高圧 ガス容器と同様に使用できるようになった。

ステンレス鋼製の高圧ガス容器用弁は、濃度に対する影響が少ないが、これらの弁は、現在法律では、すべて検定済 みのものでなければならない。

- 6. 調製及び充てん 標準ガスの調製方法は、圧力比法、流量比法などいろいろあるが、ここでは特に限定はしなかった。標準ガスの品質として最も重要視する点は、濃度の正確さと安定性である。 濃度は、8.1(2) 濃度の表示値で規定したように、基準標準ガスによって濃度値の決定を行うので、調製方法よりもむしろ容器内で均一に混合されていることの方が重要である。この均一にする方法の例としては、
 - 1. 充てん後,容器を横倒しに置き,室温で24~48時間放置する。
 - 2. 容器を傾斜させ、下部を 40°C 位に温める。
 - 3. 充てん後の容器を横倒しにし、回転させる。

などの方法がある。

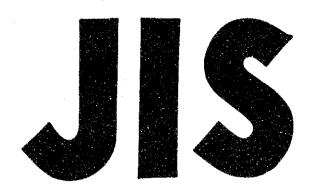
7. 品質

- 7.3 **充てん圧力** 表示圧力の ±10% としたのは、確認検査などで 使用するガスの消費量も一応考慮したためである。
- 7.5 有効期限 標準ガスは、その濃度が長期間変化なく使用できることが理想であるが、現時点では まだ問題があるので、工業技術院標準部の委託調査研究の結果を基に有効期限を設けた。
 - 注 (*) 残圧が 15 kgf/cm² 以下になったら使用してはいけないとしたことは、淡度が長期間変化しないように、容器内を高濃度のガスで処理するため、内圧が減少することによる処理ガスの影響が現われないよう考慮したものである。 使用者側から、もっと低い値でもよいのではないかとの意見もあったが、根拠にし得るデータがなく、今回は、経験に基づき、暫定的に 15 kgf/cm² とした。

8. 試験方法

- 8.1(1) 分析計 現在よく使用され、応答性が迅速で、かつ、再現性のよい4機種を選定した。
- 8.1(2) **濃度の表示値** 濃度の表示値は、国家標準に求源性があるよう 8.1 で選定した機器を用い、JIS K 0055 (ガス分析装置校正方法通則) に従って公的検査機関によって管理されている基準標準ガス二次標準を基準として、表示することとした。

表示値の有効数字は、通常3けたが限度であり、1 ppm 以下は、分析計の精度や経時変化などから2けた表示にせざるを得なかった。


- 8.2 ガス漏れ試験方法の注(*) 発泡液などを そのままにしておくとガスを取り出した際、 濃度変化を生じるおそれがあるので、必ず、よくふきとるなどして清浄にしておかなければならない。
- 8.3 充てん圧力試験方法 高圧ガス取締法では、"常用の温度において 圧力が 10 kgf/cm² 以上となる圧縮ガスであって、現にその圧力が 10 kgf/cm² 以上であるもの、 又は 温度 35°C において圧力が 10 kgf/cm² 以上となる圧縮ガスを高圧ガス"と定義している。したがって 35°C における充てん圧力の値を明示することにした。
- 9. 検 定 JIS K 0501 (化学標準物質通則) では、 化学標準物質の使用者に対する信頼性の向上を図る目的から、 濃度の確定値等に対して国の監督指導下にある第3者機関が証明を行うこととし、規格中に検査機関名を加えた。
- また、ISO の認証標準物質 (Certified Reference Material) の定義でも、前述のように、"認証を行う組織によって発行された証明書 又は その他の文書を添えたもの"となっており、その証明の一環として検定の項を設け、検定に合格したものだけが、標準ガスであるとした。
- 9. (1) **濃度の偏差** 高精度標準ガスの場合は、原理の異なる 2 種類の分析計で測定を行い、いずれも $\pm 1.0\%$ 以内でなければならない。

- 10. 取り扱い上の注意審項 標準ガスは、高圧ガス取締法の適用を受ける。また、一方これは標準物質でもあるので、 その取り扱いについては、十分留意しなければならない。
 - (1) 保管方法 湿度変化の少ない場所に保管することが望ましい。

また、反応性の強い有害ガスであるため、特に使用後は、漏れのないことを確認し、保管場所の換気にも十分留意する必要がある。 更に 300 m³以上を貯蔵するときは、 法に基づく技術基準に従って貯蔵所を設置し、 都道府県知事の許可を受けた上で貯蔵しなければならない。

- (2) ガスの取り出し ガスの取り出しの注意事項を本文中に規定したが、なお次の諸点にも留意すること。
 - 1. 圧力調整器は、標準ガスの種類ごとに専用とする。また取付けの際には、取付口のごみなどを清掃する。
 - 2. 圧力調整器の減圧機構内のガス置換を完全に行うこと。
 - 3. 配管は、できるだけ短いことが望ましい。
 - 4. 残圧について留意すること。
- (3) 容器の取り扱い 容器は 10 l で 約 15~18 kg, 40 l 及び 47 l のものでは 約 60~70 kg あるので, 取り扱う際は, 安全靴をはくなどして, 安全対策には十分留意すること。

UDC 543.275.3:628.511.1:662.613.13

Z 8808

排ガス中のダスト濃度の測定方法

JIS Z 8808-1992

平成 4 年 3 月 1 日 改正

日本工業標準調査会 審議

(日本規格協会 発行) ∧3-Ⅱ-1

4、 測定位置、測定孔及び測定点

4.1 測定位置 測定位置を選定するに当たって、ダクトの屈曲部分や断面形状の急激に変化する部分を避ける 理由は、このような位置では流れの乱れ、ときには逆流もあって、正確な流速の測定及びダスト試料の採取がで きないからである。

次に、測定作業が安全かつ容易な場所を選ぶとしているが、これは一般にダクトは高い位置にある場合が多く 危険なため、必要に応じ適当な足場を作り、測定作業を安全かつ容易に行うことができるようにするのが望まし い。

なお、本体4.1に述べた条件に合致する測定位置は、現実には選びにくい場合が多い。このような場合には、 次のような目安によって選定する。

- (1) できるだけ長い直管部。この場合、なるべく水平よりも垂直の直管部がよい。
- (2) 極端な紋りや屈曲の部分に近い位置は避け、その位置から少なくともダクト直径又は縦寸法の1.5倍以上 離れた位置。この場合、できるだけ遠く離れたほうがよい。

昭和38年制定の規格では、なるべく流速が5 m/s以上の場所を選ぶとしていたが、実際の現場では5 m/s以下の位置しか選ぶことができない場合がある。流速が5 m/s以下ではピトー管による流速の正確な測定が困難であるが、最近、後述するような気体流速計を用いれば正確な測定が可能となることもあって、この表現は用いていない。

4.2 測定孔 測定孔の大きさ、形状及び取付け位置は、測定上重要である。測定孔は、通常内径100 mm程度としているが、種々の測定器具を挿入するため、これより小さければ挿入しにくくなり、一方、あまり大きいと、測定器具を挿入した後の空気の漏れ込みや排ガスの漏出を防止することが困難となる。しかし、大規模ダクトにおける測定操作の便宜上から、今回の改正によって内径を100~150 mm程度とした。

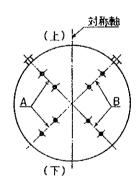
なお、挿入する器具と測定孔との透き間は、耐熱材などを用いて密閉することを規定した。

測定孔は、測定時にふたを開け、測定時以外はふたをしておく。このため、ふたをボルトで締め付けるか、ふ たにねじを切り、締め付ける。排ガス中に腐食性ガスが含まれる場合は、ボルト締めの方が好適である。

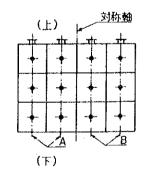
4.3 測定点 測定位置を選定した後、ダクト内にダストがたい積したり固着している状況を調べ、ダストがたい積している場合は、その状態が安定していることを確認した上で、排ガス流路の幾何学的形状を求め、本体の規定によって、原則としてダクト断面をその形状と大きさとに応じて適当数の等断面に区分し、区分断面ごとに測定点を定める。

測定点を定める基本的な考え方は、ダクト断面における平均流速や平均ダクト濃度を、できるだけ少ない測定点で、しかもできるだけ小さい誤差で測定することにある。

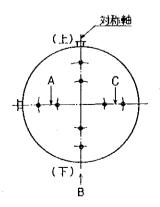
昭和38年制定の規格では、ダクト面積が大きくなるほど測定点も多数必要になっていたが、昭和52年の改正によって最大測定点数を20点に抑えることにした。すなわち、円形断面の場合は、直径が4.5 mを超えれば測定点は20点となるが、それ以上直径が大きくなっても測定点数を20点に限定して等区分する。長方形及び正方形断面の場合は、断面積が20 m²以上になると測定点は20点以上になるが、区分された一辺の長さ1≤1 mにこだわらず、原則として断面積を20に等区分する。その他の断面形状の場合も、上記に準じて測定点を20点にする。このように、最大測定点数20点に抑えたのは、20点以上になると、種々の排がス条件の測定に極めて長時間を要し、かえって排がス条件の変動の影響を直接受けることになることと、一方、過去の測定実績から数十点の流速及びダスト濃度を20点に減少しても両者の平均値間には、さほど差がないこととが認められているからである。そこで、極端な偏流現象がない限り、測定点を20点以上にする必要はない。ただし、特に集じん装置の性能測定など精密な測定を必要とする場合や、偏流の影響を無視できない場合には、測定点を20点以上にすることを妨げるもりのではない。

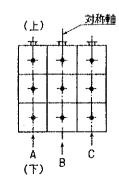

次に、ダストの種類、濃度、ガスの流れ状態及びダクトの大きさによっては、上記の規定どおりに測定点を決定しなくても平均流速及び平均ダスト濃度が求められる場合もある。このような場合には、測定点の数を省略化することができる。一般に、直線状のダクトで、ダスト濃度が低く、流速の分布がダクト中心に対して対称とみなせるような場合が少なくない。

そこで、備考で次のように規定した。


- (1) 小規模ダクト (断面積0.25 m²以下) の場合は、断面内の中心点を代表点とし、これを測定点としてよいとした。この場合のダクトは、正方形断面なら一辺の長さは0.5 m以下、円形断面なら直径0.56 m以下となる。この程度の小規模ダクトでは、過去の測定例からダクト中心点と、規定による4点の測定点の平均値とは ほとんど差がない場合が多いことが認められている。しかし、明らかに中心点が4点の平均値と異なる場合は、規定どおり4点とする。
- (2) 測定断面において、本体7.3の規定によって測定した流速の分布が比較的対称とみなし得た場合には、水平ダクトでは垂直の対称軸に対して片側をとり、垂直ダクトでは $\frac{1}{4}$ 断面をとり、測定点数をそれぞれ最小 $\frac{1}{2}$, $\frac{1}{4}$ に減らしてもよいとした。この場合、流速分布が比較的対称というのは、対称軸に対して比較すべき測定点相互の流速の差が おおむね10 %以内のときである。
 - (a) 水平ダクトでは、垂直の対称軸に対して左右いずれか片方をとるが、ダクト下方のダスト濃度が高い場合が多く、前述のとおり、円形ダクトでは垂直方向から45°傾斜して直交する直径上に測定点をとると、解脱図3に示すA線又はB線上の測定点をとればよく、 $\frac{1}{2}$ になる。しかし、対称軸上に測定点がある場合は、測定点数は $\frac{3}{4}$ となる。長方形又は正方形断面のダクトでは、解脱図4に示すように、垂直方向の区分断面数が偶数に区分されている場合は、対称軸に対してその片方に測定点をとればよく、 $\frac{1}{2}$ になるが、奇数に区分されている場合は、対称軸上に測定点がくるため測定点数は $\frac{1}{2}$ にならず、それ以上になる。

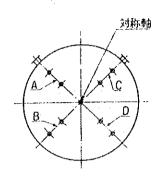
解説図3 円形断面の水平ダクトの場合の例


解説図4 長方形又は正方形断面の水平ダクト の場合の例

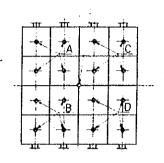

測定点は、A線又はB線 上のものとする。

(1) 偶数区分の場合 測定点は、A線又 はB線上のものと する。

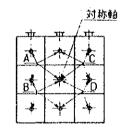
測定点は, (A線及びB線) 又は (C線及びB線) 上のものとする。



(2) 奇数区分の場合 測定点は、(A線 及びB線) 又は(C 線及びB線)上の ものとする。 (b) 垂直ダクトでは、解脱図5に示すように、円形ダクトの場合は、ダクト中心線を対称軸とすると、直交する直径のいずれか一方の半分側 (半径線上) に測定点をとればよく、¹4になる。長方形又は正方形断面ダクトでは、解脱図6に示すようにダクト中心線を対称軸とすると、両方とも偶数に区分されている場合は測定点数は¹4となるが、いずれか一辺が奇数に区分されている場合は測定点数は¹4以上となる。


解脱図5 円形断面の垂直ダクトの場合の例

解説図6 長方形又は正方形断面の垂直ダクト の場合の例


対称軸

測定点は、A線、B線、 C線、D線上のいずれ か一つとする。

(1) 偶数区分の場合 測定点は、A、B、 C、Dのいずれか 一つとする。

(2) 奇数区分の場合 測定点は、A、B、 C、Dのいずれか 一つとする。

(3) あらかじめこの規格によって求めた濃度分布の測定結果が得られており、その中の一つ又は数個の測定点で平均ダスト濃度が求められていることが確認された場合は、その測定点を代表点として測定してよいとした。

このような代表点として、あらかじめ各測定点のダスト濃度を測定した結果、平均ダスト濃度と同じ濃度が得られた測定点を採用するが、次の機会にダスト濃度を測定する場合、代表点として使用できる条件は、排ガスの流速、ダスト濃度などが代表点を決めた時点の値とほとんど変わっていないということである。上記の条件が著しく変化している場合は適用することはできない。大体の目安としては、排ガスの流速について前回との相違が10%以内程度で、ダクト内のダストのたい積や固着状態もあまり変化がなく、発生源の操業条件(燃料の種類及び使用量、原料の種類及び使用量など)もあまり変わっていない場合に限り適用できるものである。

- 5. 排ガス温度の測定 排ガス温度は、ピトー管による排ガス流速の計算に際して排ガスの密度を求める場合 と、排ガスの流量及び等速吸引流量の計算の場合とにも必要である。このほか、測定に使用する器材を選定する ため、排ガス温度を最初に測定する必要がある。
- 5.1 測定点 測定点は、本体4.3の規定によって選定する。ただし、温度分布が比較的平たんであることが確 認されている場合には、測定点の数を減らすことができる。その日安としては、前回の測定データにおいて相隣 る位置での測定値が±5 %以内にある場合であるが、排ガス温度の測定は簡単であるから、なるべく全部測定し たほうがよい。
- 5.2 測定装置 種々の形式の温度計があるが、繁用されているものは液体封入ガラス製温度計及び電気式温度 計である。前者は,不活性ガスを封入した水銀温度計(水銀の沸点=357 ℃)が多く使用され,500 ℃まで測定 できるものがある。後者は、熱電温度計と抵抗温度計との2種類に大別される。

熱電温度計については、JIS C 1602 (熱電対)を参考として排ガスの温度に応じて選択すればよいが、排ガ スの温度は通常1000 ℃以下であるため、クロメル-アルメル (K) が便利である (解脱衷1零照)。

構成材料の記号 旧記号 素線径 常用限度(1) 過熱使用限度 (2) (参考) 1 500 1 700 В 0,50 1 600 R 1 400 0,50 S 0.65 K CA 650 850 1.00 750 950 1 050 1,60 850 1 100 2,30 900 3,20 1 200 1 000 E CRC 0.65 450 500 1.00 500 550 1,60 550 2,30 600 750 3,20 700 800 IC J 0.65 400 500 1,00 450 550 500 650 1,60 2,30 550 750 750 3,20 600 T CC 0.32 200 250 0.65 200 250 1,00 250

解説表1 熱電対の使用限度

300

350

^{1.60} 常用限度とは、空気中において連続使用できる温度の限度をいう。 注(¹)

⁽²⁾ 過熱使用限度とは、必要上やむを得ない場合に短時間使用できる温 度の限度をいう。

抵抗温度計は、白金線、サーミスタなどの抵抗体を用い、温度による抵抗の変化(温度係数)から温度を測定するものである。測定範囲は、白金抵抗温度計が-180~500 ℃、ニッケル抵抗温度計が-50~150 ℃、サーミスタ温度計が-100~350 ℃程度である。

なお、これらの電気式温度計は、使用する前に校正しておく必要がある。

5.3 測定方法 測定器具は、測定孔から挿入し、測定器具の感温部を測定点に一致させる。この場合、測定孔 と測定器具との間の透き間は、完全に密閉する必要があり、石綿布、ぼろきれなどでふさぐ。もし、空気の漏れ 込みがあれば排ガスは冷却され、温度が低く測定されるので注意を要する。

なお、排ガスが有害ガスや可燃性ガスの場合は、特に保安上の注意及び対策を必要とし、必要に応じて完全密 閉用のガスシール用アクッチメントを使用することが望ましい。

また、煙道内の正圧が大きく、ガス温度が高い場合には、ガスが突出して火傷を負う可能性もあり、安全上 留意する必要がある。

これらの注意及び対策は、排ガス温度以外の他のすべての測定にも共通する事項である。

温度の測定は、測定によって排ガスの温度を検出するまで若干時間がかかるものがあるので注意する。

なお、排ガス温度は、各測定点の温度を平均して求める。

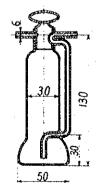
6. 排ガス中の水分量の測定 排ガスの密度 (排ガスの組成分析及び密度計による場合), 乾き排ガス流量の計算及び等速吸引流量の計算には、排ガス中の水分量が必要である。したがって、通常、排ガス温度の次に測定する。

旧規格において吸湿管法と共に規定されていた凝縮器法は、現在ほとんど使用されていない実状を考慮して、 今回の改正によって削除した。

また、水分試料採取装置として新たに項を起こし、装置を構成する各部の構造及び機能について規定した。なお、ガス吸引部及び吸引流量測定部は、旧規格のダスト試料採取装置の項で規定していたものを引用した。

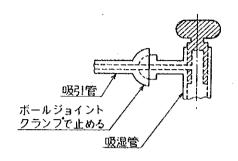
6.1 吸湿管による方法

6.1.1 測定点 測定点は、本体4.1に規定する測定断面で、ダクトの中心に近い点を選ぶように規定している。 排ガス中の水分量は、測定断面内では場所による変化はほとんどなく、均一に分布しているとみなされるので、 中心点付近だけの一点測定でよいことにしている。


6.1.2 水分試料採取装置

(1) 水分試料採取部

(a) 吸湿管は、解説図7に示すシェフィールド形吸湿管が多く用いられている。このほか、U字管も使用することができる。


解説図7 シェフィールド形吸湿管

単位 mm

(b) 吸湿管とガスの吸引管との連結には、解脱図8に示すボールジョイントを使用すると取扱いが容易になる。

解説図8 ボールジョイントの使用例

(2) ガス吸引部

- (a) ガス吸引部は、吸引流量調節弁をもつ排ガスの吸引装置と、これをSO_xによる腐食から保護するためのSO₂吸収額及びミスト除去瓶とからなる。
- (b) SO₂吸収瓶は、3 %の過酸化水素水を入れたものであり、ミスト除去瓶はSO₂吸収瓶からのミストを除去するため、ガラス繊維又は脱脂綿を充てんしたものを用いる。
- (c) SO,の吸収液は、長時間使用するとその効果が減少するため、適宜交換する必要がある。
- (d) 吸引装置の吐出し側は、真空ポンプなど油を使用する場合には油ミストが発生するので、流量計を保護するために油ミスト除去器を設ける。

(3) 吸引流量測定部

(a) 吸引流量測定部は、原則として積算流量計(ガスメータ)を吸引量の測定に用い、瞬間流量計としての 絞り流量計又は面積流量計は吸引流量の確認のために用いる。ただし、最近、ガスメータを積算及び瞬 間流量計として同時に測定できるように自動化したものもあり、これを使用することもできる。

また、積算流量計として乾式ガスメータを用いる場合は、前段に吸湿装置を配置することによって水 分を十分に除去しておく必要がある。

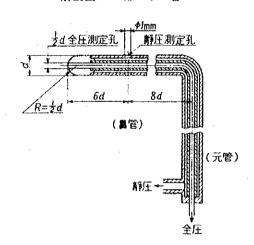
(b) 水分量測定の場合には、吸引流量が小さいため、ガスメータの読みを秒時計で測定することによって容易に瞬間流量を知ることができるので、瞬間流量計は省略することができる。

6.1.3 測定方法

- (a) 吸湿管は、測定孔にできるだけ近く置き、吸引管と吸湿管とは直結できるようにする。
- (b) 吸湿管内に充てんする吸湿剤は、試料ガスから水蒸気だけを吸収し、他の成分を吸収しないものを選ぶ必要がある。例えば、CO₂を含むガスに対し、酸化バリウム、酸化カルシウム、酸化アルミニウム、シリカゲルなどは使用してはならない。燃焼排ガスに対して通常使用されるものは粒状の無水塩化カルシウムであるが、吸湿によって表面が潮解し、ガスの流れを悪くすることがあるので、外部からよく観察しながら吸引する必要がある。

7. 排ガスの流速及び流量の測定 排ガスの流速は、等速吸引流量、平均ダスト濃度及び排ガス流量の計算に必要であり、普通形試料採取装置を用いる場合は、水分量の次に測定する。

排ガス流速の測定には、ピトー管を用いる方法が一般に広く用いられるが、備考として、JIS T 8202 (携帯用熱式風速計) に規定する熱式風速計のほか、新たにカルマン渦流速計などの気体流速計を使用できることを追加した。これらの気体流速計を追加したのは、必ずしも燃焼排ガスだけでなく、環境空気を吸引する場合もあること、5 m/s (与動圧約10 Pa {1 mmH $_2$ O}) 以下の低流速ではピトー管で測定するのが困難であるが、これらの気体流速計では、かなりの低速度まで測定可能なこと、排ガス中の硫黄酸化物及び窒素酸化物に対する排出規制との関連からも一定の使用実績をもっていること、などを考慮したからである。


しかし、後述するようにこれらの気体流速計は、気体の温度、圧力、組成などの影響を受けるものがあり、指 示値を補正する必要があり、ピトー管による測定値を用いて補正しなければならない。

また、ダストが検出部に付着すると、その影響を受けて指示値が大きな誤差を生じるおそれもあり、使用に際しての注意が必要である。

7.1 測定点 測定点は、本体4.3の規定によって選定する。

7.2 測定装置

(1) ピトー管は、解脱図9に示すJIS B 8330 (送風機の試験及U検査方法) に規定されたL形のものを用いる。この場合、ピトー管係数c=1.0としてよい。

解説図9 L形ピトー管

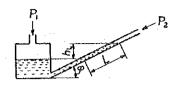
しかし、ダスト濃度が数十 g/m³x以上のような高濃度になると、排ガスの密度変化に影響するため正確な測定はできないことがあり、注意を要する。

また、L形ピトー管の圧力測定孔がダストによって閉そくを起こし、測定が不可能になる場合もある。 一方、測定孔のスリーブが長いためL形ピトー管をダクト内に挿入できない場合もある。このような場合 は、ピトー管係数の分かった別の特殊ピトー管を用いる。ただし、この種のピトー管は、静圧の絶対値が 大きい場合は、ピトー管係数が変わる点に注意する。

解説図10は、ダスト測定の分野で、従来から使用されている特殊ピトー管 (ウェスタン形) の一例を示したもので、この種のピトー管では、ピトー管係数はc=0.85前後である。ピトー管係数は、製作精度によって±2 %程度の相違を生じる。特殊ピトー管を使用する場合は、試験風洞によってピトー管係数を測定したものを用いることが必要である。

なお、腐食性のガスに使用する場合は、ステンレス鋼製のピトー管を用いるのが望ましい。

解説図10 特殊ピトー管の例


(2) 排ガス流速の測定には、ピトー管のほか、備考でピトー管によって校正された携帯用熱式風速計及びカル マン温流速計などを用いてよいこととした。これらの気体流速計の特徴は、流速を直示するため測定が簡 単で、かつ、連続的に測定できること、及び5 m/s以下の燃焼排がスの測定に利用できることである。し かし、これら気体流速計は、排ガスの性状 (温度、圧力、組成など) 及びダストの性質 (特に付着性) に よって、指示値が影響を受けることがあるので、注意しなければならない。一般に、これらの気体流速計 は、空気を測定対象とするものが多く、流速の指示は空気を用いて目盛ってあるものが多い。したがっ て、燃焼排ガスに使用する場合は、上述の排ガスの性状の影響を受けるため、ピトー管による測定値と比 較して補正しなければならない。更にダストの付着の影響を受けるため、その洗浄対策はもちろん、影響 の補正も必要となるが、この場合の補正は極めて困難であり、付着条件に左右されることが考えられる。 また、燃焼排ガスについても、ピトー管と比較し補正曲線を作るといっても, 5 m/s以上の流速範囲で しか補正できず、その補正も同一ガスの流れ系の中で流速の異なる数点を見いだすことは極めて困難であ る。そこで、1~2点の測定結果から、外挿的に補正曲線を作る方法もあるが、気体流速計の特性によって 流速と出力との関係が零点を通る直線関係にあるかどうかが問題になり、信頼性に問題がある。ある種の 気体流速計では、上記の方法によって補正可能なものがあるが、これらの厳密な試験によって補正できて も、排ガスの性状が異なる場合は、別途上記と同様の検討が必要となるため、使用上かなり制限されるの はやむを得ない。

したがって、これらの気体流速計の使用に際しては、十分な検討と必要な補正をして慎重に使用すべきである。現在、使用可能と考えられる気体流速計として、携帯用熱式風速計 (JIS T 8202)、カルマン渦流速計、翼車式流速計、加圧噴流空気を利用する流速計などがある。携帯用熱式風速計は、高温用(400~700 ℃)のものも市販されている。カルマン渦流速計は、排ガスの性状(温度、組成、圧力など)の影響を受けないのが特徴といわれているが、定置式のものが多い。翼車式流速計には、タービン式などがある。これらの流速計は、既に重油燃焼排ガスの流速測定にしばしば利用されている。加圧噴流空気を利用する流速計には、噴流前方2点間の圧力差又は2本の吹出し空気管の圧力差によるバイパス部への空気の流れを検出するものなどがあるが、使用例は少ない。これらの気体流速計は、流速が直接指示されるほか、連続記録可能のものが多い。

(3) 圧力計として解脱図11に示す傾斜マノメータは、排ガスの動圧を拡大して読み取る利点があり、広く使用されている。傾斜マノメータの拡大率は、傾斜角によって変化するが、10倍に拡大して用いる場合が多く、この値に固定したものもある。傾斜マノメータは単管式のため、水管と水タンクの断面積の比は、100倍以上なければ測定精度に影響するので注意を要する。使用に際しては、基準の水柱と比較して拡大率も調べておくことが望ましい。

また、使用時には支持台は確実に水平を保つ必要がある。このほか、ゲッチンゲン形、アスカニア形などの圧力計もある。

解説図11 傾斜マノメータの例

 $h_L = L\sin\varphi$

ー方、U字管のマノメータは、圧力差が大きい場合に用いられる。

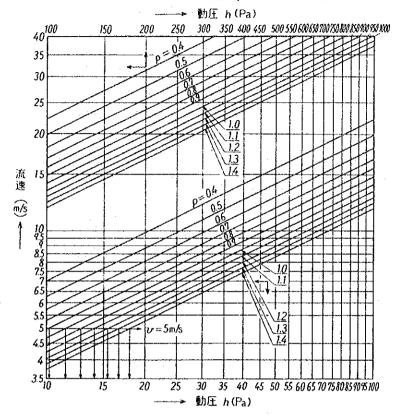
マノメータに用いる液体として、一般に蒸留水又はイオン交換水が用いられる。しかし、動圧の拡大率を大きくした場合や冬季寒冷地での凍結防止のためなどには、水より比重が小さく比較的低温でも凍結しないアルコールやトルエンなどが用いられる。このような水以外の液体を用いる場合には、その物理的性質、特に使用温度付近における比重は正確に調べておき、得られた測定値を水柱に換算しなければならない。 次に、圧力を電気量に変換指示する圧力計は、種々の原理を利用したものがあり、圧力の検出にベローズ、タイアフラム、沈鐘、ストレンゲージなどを用いるものや、液柱の高さをマグネットスケール、光電管などで検出する方式のものがある。いずれも圧力を電気量に変換する機構をもっており、圧力の指示、記録が可能である。後述する自動式平衡形試料採取装置の圧力計には、この種のものが使用されている。

また、一定時間ごとの圧力の変動を自動測定し、平均化して、指示、記録する演算機構を備えたものもあり、変動する動圧の測定には極めて便利である。さらに、動圧から流速の計算を自動的に行い指示するものもあり、この場合は、排ガスの密度を入力して流速を演算できるようになっている。

7.3.1 排ガスの動圧の測定方法 測定孔からピトー管を測定点まで挿入し、ピトー管は全圧測定孔を排ガスの 流れ方向に正しく直面させ、マノメータに現れる動圧を読み取り、測定点の位置とともに記録する。

ピトー管のガスの流れに対する偏りは、10°以内とする。全圧測定孔がガスの流れ方向と一致した場合に最大の動圧値がマノメータに現れるから、測定に際して、最大動圧値が得られるように、ピトー管の方向を決めてから測定する。

ガスの傷流が大きく、上記のようにして求めたピトー管の方向が、ダクト中心に対し10°以上の傾きを示す場合は、傾斜角より動圧を補正する方法もあるが、実際には困難であり、動圧自身も変動して測定がしにくく、誤差も大きくなるので、(a)整流板を設ける、(b)測定点を増やし、迅速に測定する。(c)測定回数をなるべく多くしてその平均値をとる、など測定上の配慮を必要とする。


流速測定はダストを含む排ガス中で行われるから、L形ピトー管の静圧測定孔はダストで閉そくしやすいので、数点の測定ごとに取り出して調べ、清掃する。

また、閉そくが短時間で生じる場合は、前記の特殊ピトー管を用いたほうがよい。

動圧の測定には通常、解脱図11の傾斜マノメータを用いて、これを10倍に拡大して読み取るものであるから、今回の改正によって、原則として動圧は1 Pa $\{0.1 \text{ mmH}_2O\}$ の単位まで読み取ることを規定した。動圧の測定値として、どうしても二けたはとる必要がある。しかし、動圧が200 Pa $\{=20 \text{ mmH}_2O\}$ 以上という高い値となる場合は、傾斜をもっと大きくとるか、U字形マノメータを使わざるを得ないので、この場合は1 Pa $\{0.1 \text{ mmH}_2O\}$ の単位まで読み取らなくてもよい。

ピトー管による動圧の測定は、マノメータによるほか、前述の差圧変換器を用いて電気的に指示、記録する方法もある。最近、一定時間の動圧測定値を自動的に平均して指示、記録する形式の装置も市販されており、動圧の測定が、現場では脈動するとか、時間的に変動して非常に測定しにくく、誤差を生じやすい場合には、このような方法が有利である。ただし、差圧変換器の特性に注意し、精度、再現性などはよく確かめて使用する必要がある。

解説図12に、ρ=0.4~1.4 kg/m³の範囲における動圧と流速の関係を示す。

解説図12 動圧と流速との関係 (ρ=0.4~1.4の場合)

7.3.2 排ガスの静圧の測定方法 静圧は、L形ピトー管及び静圧管では、静圧導管にU字形マノメータを接続し、動圧の測定と同時に行うことができる。静圧は、測定断面内では ほとんど一定であるから、適当に測定点数を減らしてもよい。ピトー管の鼻管の方向は、動圧測定の場合と同様にする。

特殊ピトー管 (ウェスタン形) の静圧測定孔を用いて静圧を測定する場合は、次の式によって求めることができる。

 $P_s = P_1 - c^2 P'_d$

ここに、Ps:排ガスの静圧 (kPa) {mmHg}

R:特殊ピトー管で測定された全圧の読み (kPa) {mmHg}

c: ピトー管係数

 P'_a :特殊ピトー管で測定された動圧の読み (kPa) $\{mmHg\}$

マノメータには水又は水銀を入れて測定する。静圧又は全圧を単独に測定する場合は、マノメータの片方を大気に開放し、片方に静圧又は全圧導管を接続すればよい。

一般に、集じん装置の入口及び出口側ダクトにおいては、装置の圧力損失特性の監視の目的で、ダクトの側壁 に静圧孔を設けて測定している場合が多い。

今回の改正によって、**備考と**してこの静圧値を利用することができることにしたが、測定に際しては、静圧孔のダクトによる目詰まりに注意する必要がある。

7.3.3 排ガスの密度の求め方 排ガスの密度 ρ を求めるには、そのガスの標準状態 (温度0 \mathbb{C} , 気圧101.3 kPa $\{760~\text{mmHg}\}$) における密度 ρ 。を求め、本体7.3.3に示す式 (6) を用いてダクト中の湿り排ガスの状態の密度に換算する必要がある。

ρωを求めるには、参考の規定を含めて次の3種類の方法がある。

(1) 排ガスの組成分析結果から算出する例 ガス組成分析方法としては、JIS K 2301 (燃料ガス及び天然ガスー分析・試験方法)の燃焼ガスを対象としたヘンペル式分析方法又はオルザット式分析方法がある。この方法によって燃焼ガスを分析すると、SO2などのような酸性ガスはすべてCO2として分析されるが、通常の燃焼ガスでは、CO2以外の酸性ガスは含有量が低いので、この方法によって組成分析を行ってよい。

例えば、排ガス中の水分量 x_0 は、本体6.1の規定によって測定した結果 x_0 =10.6 %で、この乾き排ガスの組成をJIS K 2301によって分析した結果、 CO_2 =12.1 %、 O_2 =8 %、CO=0.1 %、 N_2 =79.8 %であったとすると、この場合の ρ_0 は、次の式で算出される。

$$\rho_0 = \frac{1}{22.4 \times 100} \left[\frac{100 - 10.6}{100} (12.1 \times 44 + 8.0 \times 3.2 + 0.1 \times 28 + 79.8 \times 28) + 10.6 \times 18 \right] = 1.29 (kg/m^3s)$$

この場合、各ガスの分子量は、CO2=44、O2=32、CO=28、N2=28として計算した。

(2) ガス密度計による測定値から求める例 ガス密度を測定する方法には、ガス天びん法、ガス柱法、流出法、風圧法、音響法などがある。JISでは、JIS K 2301に燃料ガスを対象としてプンゼン-シリング法(流出法)、及び比重瓶法が規定されている。

これらは、いずれも被測定ガスをいったん容器内に封入し、手動操作によって測定する方法である。これらのほかに風圧法を利用し、被測定ガスの比重又は0 ℃、101.3 kPa {760 mmHg} における密度を連続指示記録することのできる実用計器 (ラウターガス密度計) がある。

例えば、排ガス中の水分量 $_{N}$ が12.0%、ガス密度計によって測定された ρ_{a} が $1.42~kg/m^{3}_{N}$ であったときは、 ρ_{a} は次の式で算出される。

$$\rho_{\rm 0}\!=\!1.42\!\times\!\frac{100-12.0}{100}\!+\!0.805\!\times\!\frac{12.0}{100}\!=\!1.35~{\rm kg/m^3_N}$$

(3) 固体燃料及び液体燃料を空気中で燃焼した場合に%=1.30 kgf/m³nとして求める例 本体7.3.3の参考で、このような場合、%=1.30 kgf/m³nとしてよいとした理由は、各種の固体及び液体燃料の理論燃焼排がスの%値が1.30前後であり、空気の%が1.29であるから、空気比が変わってもほとんど影響を受けないためである。しかし、固体又は液体燃料を空気で燃焼させる場合でも、加熱反応に用いられて%の異なるがスを発生する場合、又は乾燥に用いられて蒸発した水分を伴う場合などは、この値を用いることはできない。

以上、3種類の方法を示したが、これらの方法によって求めた α から、排がスの温度、圧力及び大気圧によって、実際のダクト中の排がスの ρ を算出する。一般には、参考で示したような燃焼排がスの場合は、 $\gamma_0=1.30$ kgf/ m^3 _Nとして計算できるため便利である。

なお、ρの値は、ピトー管を用いた場合の流速の計算に必要であるため、実際には流速の測定に先立って求めておく。

7.3.4 排ガスの流速の計算 排ガスの流速は、従来単位を用いると、排ガスの動圧及び排ガスの単位体積当たりの重量とから、次の式によって計算される。

$$v = c\sqrt{\frac{2gh}{\gamma}}$$

ここで、動圧hの単位は、 kgf/m^2 であるが、これは数値としては mmH_2O と合致し、計算にはマノメータで求めた mmH_2O で表される数値をそのまま使用することができる。この場合、mmをmに換算したりすると大きな計算間違いを起こすので注意を要する。

なお、計算の具体例については、解説付表3の流速測定記録例の中で示した。

7.4 排ガス流量の求め方 排ガス流量は、標準状態 (0 ℃, 101.3 kPa {760 mmHg}) に換算した湿り排ガスの流量として表す。排ガスの流速とダクト断面積との積によって求める方法のほか、燃焼計算によって排ガス流量を求めることもできる。この方法は、本体6.2に規定する燃料単位量当たりの湿り排ガス量Gと、本体7.4に規定する1時間当たりの燃料消費量Wから算出するものである。ただし、外気の漏れ込みや、排ガスの漏れがある場合は誤差を生じるので使用できない。Wを求める場合の液体又は気体の燃料の使用量は、JIS Z 8762 (紋り機構による流量測定方法) などによって測定する。

なお、乾き排がスの流量は、湿り排がスの流量から水分量を差し引いて求める。

8. ダスト試料採取装置

- 8.1 ダスト試料採取装置の種類 従来、この装置は1種類しかなかったが、その後、平衡形吸引ノズルを装置の一部として組み込み、操作を自動化したダスト試料採取装置が広く普及してきた。そこで、この装置を平衡形試料採取装置とし、普通形吸引ノズルを用いるものを普通形試料採取装置として2種類に分け、それぞれ装置の構成及び各部の構造、機能について規定した。
- (1) **普通形試料採取装置** あらかじめ各種の予備測定 (排ガスの温度,水分量,流速など) によって,等速吸引流量を求める必要がある。したがって,操作はかなり複雑であり,排ガスの条件が安定した場合に適用する。
- (2) **平衡形試料採取装置** 等速吸引流量を求める必要がなく、通常、自動化された装置であるから操作は著しく簡単であり、排ガス条件の変動がある場合にも適用できる。装置の構造及び機能は、上記の普通形と共通する部分も多いが、機構は複雑になっている。
- 8.2 普通形試料採取装置 旧規格のダスト試料採取装置と同じである。
- 8.2.1 普通形試料採取装置の構成 本体図8に示す各部から構成される。旧規格のバイパスコックは、吸引流量調節弁と名称を変更した。

本体図8(1)の1形は、ダスト捕集器がダクト内にあるため、温度低下による凝縮を防ぐための保温又は加熱が不要であり、一般に広く利用されている。

本体図8(2)の2形は、ダスト捕集器をダクト外に置くため、排ガス温度が100 ℃以下の場合は、冷却によって排ガス温度が露点以下にならないように、吸引管を含めてダスト捕集器を保温又は加熱する必要がある。

また、ダスト捕集後は、吸引ノズルからダスト捕集器に至る吸引管内に付着したダストを払い落とすか、又は 洗い流して蒸発乾固し、捕集ダストに加えなければならない。したがって、操作が複雑な上、付着したダストの 完全な回収ができない場合もあり、取扱いには注意を要する。

しかし、爆発性又は中毒性の排ガスで、危険防止のために特殊なアタッチメントを必要とする場合や、高温の 排ガスで1形では試料採取中に捕集ダストの再燃焼又は加熱減量を起こすおそれがある場合は、2形によるほうが 望ましい。

次に、スクラバの排ガスでミストを多量に含む場合は、ダスト捕集器のドレン捕集器だけではミストを捕集できないことがあるので、SO₂吸収瓶の前にドレン (凝縮水) 捕集瓶を設けるか、又は後述するインパクタ付ダスト捕集器を用いるようにする。

普通形試料採取装置は、全体にわたってガス及び空気の漏れがあってはならない。そのため各部の締付け部、接続部、配管などの気密の保持、材質に注意する。装置の漏れ試験は、厳密には吸引ノズルの口を密閉し、真空ポンプとミスト除去瓶との間に水銀マノメータ (差圧33.3 kPa {250 mmHg} の測定が可能なもの)を取り付け、真空ポンプを作動させて差圧4.0~6.7 kPa {30~50 mmHg} 程度の負圧とし、1分間に0.13 kPa {1 mmHg} 以下の漏れがなければよいとする。しかし、この試験方法はかなり面倒なため、完全とはいえないが、吸引ノズルの口をふさいで吸引ポンプを作動させ、ガスメータの指針が停止していればよいとする簡単な漏れ試験方法がある。通常は、後者の方法によって漏れのチェックをしておくとよい。

8.2.2 ダスト捕<mark>築部 本体図9</mark>に示す。このうちドレン捕集器は、排ガス中の水分量が少ない場合は省略して もよい。

(1) 吸引ノズル 旧規格では、普通形と平衡形の2種類に分けていたが、今回の改正によって両者の名称を廃止して、両者に共通する先端部分を吸引ノズルと呼称するように規定した。

吸引ノズルの構造及び寸法は、旧規格とほとんど同じであるが、新たに追加した項目は、吸引ノズルの 内径を0.1 mmの単位まで正確に測定することと、材料を規定したことである。吸引ノズルの内径 (断面 積) は、等速吸引流量の計算と関係があり、正確な値を必要とするため、ノギス又はダイヤルゲージを用 いて測定する。吸引ノズルの材料は、耐熱及び耐食性が要求されるので、硬質ガラス、シリカ製が一般に 広く用いられており、まれにステンレス鋼製を用いる。このほかの材料を用いる場合は、上記の材料と同 程度の耐熱、耐食性及び強度をもつ必要がある。

なお、排ガス中にふっ素を含む場合は、上記の材料では腐食されるため、ふっ業樹脂製のものを用いる。

吸引ノズルの先端は、本体図10のように30度以下に仕上げる場合は、破損しやすいため、わずかに丸 味をもたせるようにする。

吸引ノズルの長さは特に規定していないが、短かすぎるとダスト捕集器による排ガスの流れの乱れの影響を受け、測定誤差の原因となる。

また、吸引ノズルの曲がりの部分は、本体図11のようにダストの付着を避けるように緩やかに曲げるのが望ましい。

- (2) ダスト捕集器 田規格とほとんど同様であるが、次の点を追加した。
- (2.1) ダスト構集器の性能及び種類 ダストの捕集率は99 %以上としているが、これは0.3 µmの粒子を99 %以上捕集できることを条件とする。この捕集率は、JIS K 0901に規定する記号A1のものに該当し、その試験方法も規定されている。

また、使用中に化学変化を起こさないことが必要であり、例えば排ガス中の硫黄酸化物などの影響を 受けない材質を選択することが大切である。

(2.2) ろ紙を用いるダスト捕集器 上記のJIS K 0901が昭和56年に制定され、ろ紙の形状、寸法、材質、性能、性能試験方法などを規定しているので、この規格にも引用した。円形ろ紙の寸法は、旧規格では規定していなかったが、新たに有効直径(実際にろ過する面積の直径)を30 mm以上とした。これは後述するように、今回の改正によって円形ろ紙のダスト捕集量を、原則として1 cm²当たり1 mgから0.5 mgへ変更したため、全捕集量が少なくとも数mgになるよう考慮したからである。有効直径30 mmの場合は、全ダスト捕集量は3.5 mg程度になる。

円形及び円筒ろ紙を用いたタスト捕集器の例を,本体図12及び図13に示したが、円筒ろ紙とそのホルタの寸法例のうち、旧規格の寸法の大きい2種類は現在作られていないので削除した。

なお、ろ紙ホルダは、解脱図13及び解脱図14に示すように、小型化したものや、破損を防ぐためステンレス鋼で作ったものもある。

(e) 吸湿率は、主として使用する吸湿剤の量に対するガスの吸引流量に関係する。解脱表2はU字管2個を直列に用い、各U字管の吸湿量と吸引流量との関係を求めたものである。この結果から、吸湿量は1段、吸引流量は吸湿剤1 g当たり0.1 L/min以下であれば十分と考えられる。したがって、吸湿剤10 gを用いれば、吸引流量は1 L/min以下となる。吸湿管は、安全のため原則として2個直列に用いることとした。

解脱表2 吸湿の実験結果例

(吸湿剤として無水塩化カルシウムを使用した場合)

U字管直径	ガス吸引流量			吸湿量 mg/L _s		吸湿率 · %	吸湿率 %	ガス吸引時間	
mm	L/min cm/s		L/min•g	第1段	第2段	1段目/1+2段目	2段目/1+2段目	min	
10	2.0	43	0.122	9,95	0,11	98.9	. 1,1	30	
10	1.5	32	0.092	.13 6	0,17	98.8	1.2	35	
10	1.0	22	0,062	13,1	0.31	97.7	2,3	30	
10	0.5	11	0,031	11.6	0,25	97.9	2.1	45	
20	2,0	11	0,125	7,55	0.16	97.9	. 2,1	30	
20	1,5	8	0.091	9.67	0,22	97.7	. 2.3	30	
20	1.0	5,3	0,063	7,35	0.21	97.1	2.9	30	
20	0,5	2.7	0.032	7.12	0.23	96.7	3.3	30	

- (d) ガス温度が低いほど吸湿効果は大きいので、吸湿管を冷却するための水槽を用いるが、氷槽を用いればなお効果的である。
- (e) 吸引したガス量を測定するために乾式ガスメータを使用した場合の計算式は、湿式ガスメータを使用した場合の式と類似するので本体からは削除したが、次の式を用いればよい。

$$x_{\rm w} = \frac{\frac{22.4}{18}m_{\rm a}}{V'_{\rm m} \times \frac{273}{273 + \theta_{\rm m}} \times \frac{P_{\rm a} + P_{\rm m}}{101.3} + \frac{22.4}{18}m_{\rm a}} \times 100$$

ここに、 な: 排ガス中の水蒸気の体積百分率 (%)

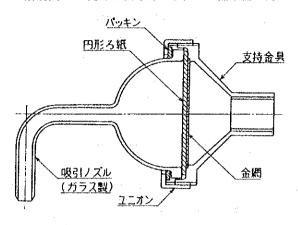
ma: 吸湿水分の質量 (max-max) (g)

V'm:吸引した乾きガス量 (乾式ガスメータの読み)(L)

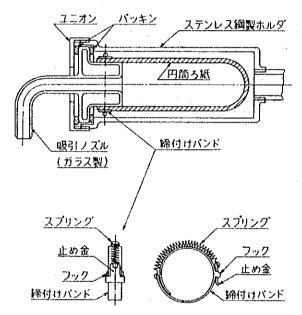
 θ_m : がスメータにおける吸引ガスの温度 (\mathbb{C})

Po: 大気圧 (kPa) {mmHg}

 $P_{\rm m}$: ガスメータにおけるガスのゲージ圧 (kPa) $\{{\rm mmHg}\}$


参考 単位としてmmHgを用いる場合,式の中の101.3は,760とする。

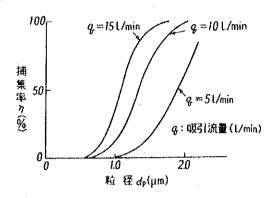
なお、乾式ガスメータは、SO₂などの腐食性ガスを含まない排ガスの測定の場合、又はSO₂吸収瓶の後でガスを乾燥させた場合に使用できることに留意する。


6.2 **計算から求める方法** この方法は、使用燃料の量と組成及び送入空気の量、湿度などから計算によって排 ガス中の水分量を求めるが、あらかじめこれらの値が分かっている場合に限り、計算法を採用することができ る。

次に、水その他の溶液を用いて排ガスを洗浄又は冷却するスクラバの後流ダクトにおいては、しばしば排ガス中にミスト (水滴) が共存するが、この場合に吸湿管法によって水分量を測定すると、ミストを蒸気状の水分と分離することが困難なため、水分量を過大に測定し、正確な水分量が得られない。このような場合に対して、備考2.で計算式から求めることを規定した。すなわち、排ガス中の水分がその温度で飽和しているという前提条件の下に飽和水蒸気圧から求めるもので、排ガス温度100 ℃以下の場合に限り適用できる。

解脱図13 円形ろ紙を用いるダスト捕糞器の例

解説図14 円筒ろ紙ホルダの例


ろ紙ホルダの材料については、吸引ノズルと同様の材料を用いるように新たに規定した。

次に、今回の改正で、スクラバの排ガスのように、ミストを多量に含む場合のダスト捕集のため、新たに本体図14に示すインバクタ付ダスト捕集器を**備考**で追加した。

このインパクタ付ダスト捕集器 (*) は、粒径2 µm以上のミスト及びダストを慣性衝突によって分離捕集するインパクタ方式の原理を利用し、円筒ろ紙で捕集する前に、あらかじめ粗大なミスト及びダストを衝突板で捕集するよう工夫したものである。吸引ノズルから吸引したガスは、吸引ノズルの後端を絞って内径2 mmとしたジェットノズルから、8 mm離れた衝突板に衝突させ、粒径2 µm以上のミスト及びダストを分離捕集し、貯留槽 (内容積約4 ml) 内に流下、保持させる。一方、捕集されなかった粒径2 µm以下の微細なミスト及びダストは、通気孔を通って後方の円筒ろ紙で捕集するようにしている。したがって、従来円筒ろ紙で直接捕集するために起こるろ紙の破損、目詰まり、ミストの吹き抜け又はミストがろ紙内にたまることを防止する効果がある。

このダスト捕集器は、解脱図15に示すように、等速吸引流量qが10 L/min以上であれば、理論計算上、粒径2 μmの粒子を100 %捕集でき、5 L/minでは約50 %捕集できる。したがって、等速吸引流量が10 L/min前後となるような内径をもつ吸引ノズルを選ぶことによって、粗大な粒子が多い通常のミストをほとんど分離捕集することができる。使用に際しては、吸引ノズルとろ紙ホルダとの接合部をバルカテープなどを用いて気密にする。

なお、貯留槽の内容積は約4 mlで限界があり、それ以上にミスト及びダストを捕集すると、通気孔から円筒ろ紙の方へ流出するので、捕集量が4 ml以上にならないように注意する。一般には、1~2 ml 捕集すれば十分である。

解説図15 インパクタ付ダスト捕集器の性能例

(2.3) ダストチューブを用いるダスト捕集器 この捕集器は、ろ過材の充てん要領が難しく、ダスト捕集量も 多いため、採取時間が長くなり、捕集ダストの組成分析には利用しにくいなどの問題点があり、現在ほ とんど使用されていない。

繊維径は7~10 μmとしているが、一般に繊維径が小さいほど捕集率は高くなるため、これより小さくても差し支えない。

また、ダストチューブの寸法例は、本体図15に示したが、これより小さいものでもよい。ただし、 捕集率99 %以上を確保する必要があり、充てん率を0.25 g/ml以上にするのはかなり難しいので注意 を要する。

押さえ板及び押さえばねは、耐熱、耐食性をもつ材料、例えばアスペスト板やステンレス鋼製のばねを用いるとよい。

(2.4) ダスト捕集器の選定 本体表3のろ過材の性能は、JIS K 0901に規定する記号を引用し、具体的な数値で示した。

ろ過材質は、排ガスの条件(温度、湿度、SO_x、NO_xなど)に適したものを選ぶ必要があり、本体**表**3のほか、排ガス中のSO_x、NO_xなどによるろ過材への吸着及び反応は、測定誤差の原因となるため、それらの影響を受けないふっ素樹脂、シリカ繊維などを選び、ガラス繊維は影響を受けるので使用しないようにする。

(3) 支持金具・ドレン捕集器・連絡管 使用する材料は、耐熱、耐食性を考慮して、一般に広く用いられているステンレス鋼を用いるよう新たに規定した。ステンレス鋼は、JIS G 4303 (ステンレス鋼棒) が該当するので引用した。

また、これと同等以上の耐熱、耐食性及び強度をもつものを採用した。

- (a) 支持金具 一般にステンレス鋼製のものを用いる。パッキングは、耐熱、耐食性をもつアスペスト製が 適しているが、排ガス温度が100 C以下の場合は、ゴム製などでもよい。
- (b) ドレン捕集器 排ガス中にミスト、水分量が多い場合は必要であるが、それが少ない場合は省略しても よい。逆に、それが過大でドレン捕集器だけでは捕集できない場合は、連絡管の後にドレン捕集瓶を追 加することもある。ただし、前述のインパクタ付ダスト捕集器を用いれば、ドレン捕集器及びドレン捕 集瓶を省略することができよう。
- (c) 連絡管 通常ステンレス鋼製のパイプ1~1.5 m程度のものを用い、必要に応じて継ぎ足す。 なお、硬質ガラス管を用いる場合もあるので、**備考**で追加した。
- 8.2.3 ガス吸引部 水分試料採取装置のガス吸引部と同じである。最近、グスト濃度の低下に伴い、吸引流量の大きいポンプ (100 L/min程度) が使用されているが、この場合には流量計も大容量のものが必要となる。

また、等速吸引流量を一定にする流量安定化装置が実用化されている。

8.2.4 吸引流量測定部 等速吸引流量及び吸引ガス量を測定するため、瞬間流量計及び積算流量計(ガスメータ)を用いる。最近、ガスメータによる流量計測を自動化したものがあり、瞬間流量及び積算流量を同時に測定できる利点がある。

8.2.5 普通形試料採取装置の自動化について 最近,等速吸引流量の計算を自動化し,吸引流量を自動的に制御する普通形試料採取装置が自動等速吸引装置と称して市販されている。この装置は、等速吸引流量の計算に必要な項目のうち、一部の項目(排ガスの動圧、温度など)を自動的に測定し、他の項目は予備測定で得られた値を用いて等速吸引流量を自動的に算出し、それに合わせて吸引流量を制御するようにしている。つまり、排ガス条件のうち、一部の変化量をとらえて等速吸引流量を求めており、自動的に測定している項目以外は、変わっていないという前提条件の下に成り立っており、予備測定時と同じ安定した排ガス条件に限って使用できることに注意する必要がある。

したがって、平衡形試料採取装置とは理論的に全く異なり、普通形試料採取装置の操作を自動化したもので、 前者のように排ガス条件の変動に応じて等速吸引ができるものではない。

また、この装置は平衡形試料採取装置と同様に、ブラックボックス的な性格のものであるため、今後 広く普及した場合は、装置の適用条件、機構、性能及び性能試験方法について規定することが必要になろう。この装置を使用する場合は、少なくとも本体9.4(2)(b)に規定する等速吸引の相対誤差に適合するかどうかを、測定現場で確認しておく必要がある。

8.3 平衡形試料採取装置 旧規格の平衡形吸引ノズルを装置の一部として組み込んだダスト試料採取装置で、 測定点における排ガスの動圧又は静圧と、吸引ガスのそれとが等しくなるように吸引流量を調節すれば、等速吸 引が実現するという原理を利用したものである。

この装置は、一般に上記の操作が完全に自動化されており、等速吸引流量を求める必要がないため、極めて簡単にしかも迅速にダスト試料を採取することができる。さらに、排ガス流速の変動はもちろん、その他の排ガス 条件の変化にも自動的に追従して等速吸引ができるため、正確なダスト濃度の測定値が得られる利点がある。

8.3.1 平衡形試料採取装置の構成 本体図16(1)及び(2)に示すように、排ガスの動圧又は静圧を利用した 動圧式と静圧式の2種類がある。この装置は、普通形試料採取装置と同様に三つの部分から構成されており、共 通する部分もかなり多く、等速吸引機構と流量制御器以外はほとんど同じである。

装置の全接合部は、ガス及び空気の漏れがあってはならない。漏れ試験も普通形と同様にして行うが、接合部分が多く、圧力を利用するため、吸引ノズル以後の吸引系統と、圧力測定系統は切り離して漏れ試験を行う必要がある。

8.3.2 ダスト捕集部

- (1) **吸引ノズル及びダスト捕集器** ダスト捕集器は、前述のとおりである。吸引ノズルは、静圧式の場合、本体図17(2)に示すように、吸引ガスの静圧を測定する内部静圧測定孔を設けている。
- (2) **等速吸引機構** 田規格の平衡形吸引ノズルに該当するが、ノズル以外に排がスと吸引がスの動圧 (差圧) 又は静圧を測定するピトー管などの器具も附属するため、これらをまとめて等速吸引機構と名称を改め た。

等速吸引機構は、利用する圧力によって動圧式と静圧式に分けられる。動圧式は、排ガスの動圧をピトー管で測定し、吸引ガスの動圧は、ピトー管に代わり、吸引ノズルの口径と等しいベンチュリ管を用いて絞り前後の差圧を測定する。静圧式は、排ガスの静圧をピトー管 (静圧管) で測定し、吸引ガスの静圧は吸引ノズル内の内部静圧孔で測定する。

なお、各圧力の測定孔と圧力計とを接続するために用いる圧力用導管は、ステンレス鋼管を用いるが、 耐熱ゴム管でもよい。

なお、ダクト外の部分は、温度が低いため普通のゴム管やビニル管などを用いる。次に、動圧式及び静 圧式の等速吸引の原理について述べる。

(a) 動圧式 動圧式は、排ガスの動圧と吸引ガスの動圧 (差圧) とが等しい場合は、両方の流速が等しいという原理に基づいて等速吸引を行うものである。本体図17(1)に示すように、吸引ノズルに近接して設けたピトー管によって排ガス動圧を測定し、ダスト捕集器に接続した吸引ノズルと同一内径のベンチュリ管によって、吸引ガスの差圧を測定する。両圧力が等しい場合は、次の式に示すとおり、両流速も等しくなり、等速吸引の状態となる。

いま, Pa: 測定点の排ガスの動圧 (Pa)

ρ: 測定点の排ガスの密度 (kg/m³)

v: 測定点の排ガスの流速 (m/s)

Pa: ペンチュリ管内の絞り前後の差圧 (Pa)

ρn: ベンチュリ管内の吸引ガスの密度 (kg/m³)

ц: ベンチュリ管内の吸引ガスの流速 (m/s)

c: ピトー管係数 (一)

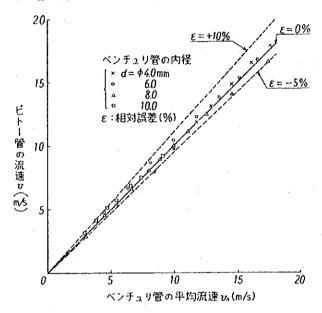
α:ベンチュリ管の流量係数(一)

ε: 圧縮性による補正係数 (一)

とすれば、排ガス及び吸引ガスの流速は、次の式で示される。

$$v = c\sqrt{\frac{2P_{\rm d}}{\rho}}$$
, $v_{\rm n} = \alpha \cdot \epsilon \sqrt{\frac{2P_{\rm n}}{\rho}}$ ここに、 $\rho \simeq \rho_{\rm n}$, $\epsilon = 1$ とみなしてよいから、 $\sqrt{2/\rho} = \sqrt{2/\rho_{\rm n}} = K$ とおくと、 $v = c \cdot K\sqrt{P_{\rm d}}$, $v_{\rm n} = \alpha \cdot K\sqrt{P_{\rm n}}$ となる。そこで、 $c = \alpha = 1$ であれば $v = K\sqrt{P_{\rm d}}$, $v_{\rm n} = K\sqrt{P_{\rm n}}$

となり、 $P_0 = P_0$ の場合は、 $v = v_0$ となり、等速吸引が成立する。


ただし、 $c=\alpha$ となる条件が必要であるが、標準ピトー管ではc=1であるから、 $\alpha=1$ となるようなベンチュリ管を用いればよい。 $\alpha=1$ となるようなベンチュリ管は、通常の大きな差圧を発生するものとは逆に、小さい差圧を発生する特殊なもので、現在、内径4~12 mm、 $\alpha=1\pm0.05$ 程度のものが作られており、実用的に十分な精度をもっている。

解脱図16は、内径4~10 mmのベンチュリ管について、その差圧とピトー管の動圧とを等しくした場合の両流速の測定結果を示したもので、ピトー管の流速に対する相対誤差は、いずれも±5 %以内である。

なお、各内径ごとの吸引可能な流速範囲をとれば、±2 %以内となる。したがって、等速吸引の相対 誤差-5~10 %以内に十分入るため、実用可能である。

解説図16 動圧式平衡形試料採取装置の性能例

(ピトー管の動圧とペンチュリ管の平均差圧を等しくした場合)

この動圧式は、ピトー管の流速測定範囲の排ガス流速には十分使用できるが、低流速の動圧が5 Pa {0.5 mmH₂O} 以下の場合は、ピトー管係数が変化し測定誤差が大きくなるおそれがあり注意を要する。この点は、ピトー管による流速の測定に共通する性能である。

実際には、標準形ピトー管に代わり、特殊ピトー管 (ウェスタン形) を用いる場合が多く、ピトー管 係数に応じて電気的に係数を補正する機構を設けている。

また、ベンチュリ管も吸引ノズルの内径に合わせて交換する必要がない共通ベンチュリ管があり、差 圧を電気的に補正できる機構を設け、吸引ノズルだけ交換できるように便利にしたものもある。

(b) **静圧式** 静圧式は、排ガスの静圧と吸引ガスの静圧とが等しい場合は、両方の流速が等しいというベル ヌイの定理に基づいて等速吸引を行うものである。本体図17(2)に示すように、吸引ノズルに近接し て設けたピトー管によって測定点の排ガスの静圧を測定し、吸引ノズルの入口近くに設けた内部静圧孔 によって吸引ガスの静圧を測定する。両圧力が等しい場合は、次の式に示すとおり両流速も等しくな り、等速吸引の状態となる。

いま、Ps: 測定点の排ガスの静圧 (kPa)

ρ: 測定点の排ガスの密度 (kg/m³)

v:測定点の排ガスの流速 (m/s)

Pa: 吸引ノズル内の吸引ガスの静圧 (kPa)

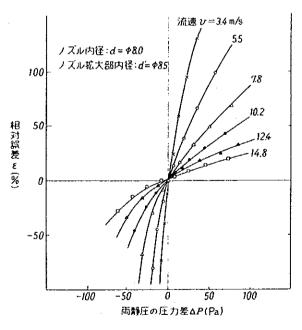
ρα: 吸引ノズル内の吸引ガスの密度 (kg/m³)

い: 吸引ノズル内の吸引ガスの流速 (m/s)

K:吸引ノズル入口の圧力損失係数(一)

La:吸引ノズル先端から内部静圧孔までの圧力損失 (kPa)

とすれば、ベルヌイの定理によって、次の式のように示される。


$$\frac{v^2}{2} + \frac{P_s}{\rho} = \frac{v_n^2}{2} + \frac{P_n}{\rho_n} + K \frac{v_n^2}{2} + h_n$$

ここで、 $\rho=\rho_{\rm n}$ とみなしてよいから、 $K\cdot v_{\rm n}^2/2$ 及び $k_{\rm n}$ が無視できる場合は、 $v=v_{\rm n}$ とするには、 $P_{\rm s}=P_{\rm n}$ とすればよい。

しかし、実際にはK・m²/2及びLは無視できないため、補正が必要となる。そこで、この補正を必要としない吸引ノズルが開発され、実用化しており、本体図17(2)はその一例で、吸引ノズル先端直後の内径をわずかに拡大することによって、圧力の損失を回復させ、上記の補正の必要がないように工夫されている。

このほか、特殊な参照静圧管を用いて、吸引ノズルの圧力損失に代わって排ガスの静圧を逆に補正して測定するものや、吸引ノズルの外側に排ガスの静圧を測定する外部静圧孔を設けたもの(内部静圧孔は、上記と同じ。)などがある。

解説図17は、吸引ノズル先端直後の内径をわずかに拡大した内径8 mmのものを用いて、試験風洞によって3.4~14.8 m/sの流速に設定し、両静圧を等しくなるように吸引した場合 ($\Delta P=0$ Pa) と、両静圧間に $\Delta P=-50\sim100$ Paの圧力差が生じるように吸引した場合の測定結果を示したものである。 $\Delta P=0$ Paの場合は、両流速間の相対誤差 ϵ は0 %であるが、 $\Delta P=10$ Pa以内のわずかな差でも、流速が低い場合は10 %以上の誤差を生じるため、両静圧は十分に一致するよう注意しなければならない。

解説図17 静圧式平衡形試料採取装置の性能例

(3) **圧力用導管** 等速吸引機構で測定した圧力を圧力計まで伝送する導管で、ダクト内の部分は耐熱、耐食性が必要であり、一般にステンレス鋼管を用いる。ただし、排ガス温度があまり高くなければ耐熱ゴム管でもよい。ダクト外の部分は、温度が低いため普通のゴム管又はビニル管などでよい。

なお、ダスト捕集部には、排ガス温度を測定するため、温度の検出部を併設するものが多いので、**備考**

で規定した。

- 8.3.3 ガス吸引部 普通形試料採取装置と同じSO₂吸収瓶、ミスト除去瓶、吸引装置、吸引流量調節弁のほか、 圧力計及び流量制御器(自動の場合)から構成される。
- (1) **圧力計** 本体7.2(2)に規定するものを用いるが、自動の場合はすべて圧力変換器によって圧力を電気 信号に変換し、指示及び比較するようにしている。

なお、この装置の原理上、圧力は最小1 Pa {0.1 mmH₂O} まで正確に測定できることが必要であり、 測定精度の維持及び保守管理に注意する。

- (2) 吸引流量調節弁 排ガス及び吸引ガスの両圧力が等しくなるように、吸引流量を調節する弁で、自動の場合は、次の流量制御器の制御信号によって、弁に取り付けた電動機を駆動して弁を開閉し、流量を自動的に調節する。取付け位置は、吸引ポンプの前か吸引ポンプのバイバス部分とする。
- (3) 流量制御器 自動の場合に、吸引流量を制御する信号を発信するもので、両圧力を演算比較して差があれば等しくなるように、吸引流量調節弁の開閉及び停止信号を発する。

この装置の附属計器として、両圧力を示す指示圧力計、両圧力の平衡状態を示す圧力平衡指示計、排が ス温度計などを備えることができるが、これらは装置の作動状態を確認するのに便利である。このうち、 少なくとも圧力指示計又は圧力平衡指示計は、設置することが望ましい。このほか、吸引流量が不足する 場合、警報を発するものや、圧力及び温度を記録する端子を備えたものもある。

- 8.3.4 吸引流量測定部 普通形試料採取装置と同じものを用いる。
- 8.3.5 平衡形試料採取装置の使用上の注意事項 この装置は、機構が複雑なため、使用に際しては、次の点に注意する。
- (1) ダスト捕集部は、ダクト内に挿入した後、排ガス温度になじむように、吸引ノズルを排ガスの流れと逆向 きにして数分間待機し、ダスト試料を採取する。ダクトが小さく、ダスト捕集部の一部がダクト外にある 場合は、本体8.2.1に規定する2形に準じて保温又は加熱する。
- (2) 高濃度のダスト及びミストを含む排ガスの場合,等速吸引機構の圧力測定孔の目詰まりが起きやすいので 注意する。
- (3) ダスト捕集部及び吸引流量調節弁は、使用後によく清掃する。特に、腐食性の排がスを吸引した場合は、 水洗してよく乾燥しておく。
- (4) 装置の性能を確認するため、附属書の3.2(2)の規定によって、使用する吸引ノズルについて、あらか しめ作動状態及び性能をチェックするのが望ましい。
- (5) その他の部分の保守管理は、普通形試料採取装置の場合と同じである。
- 8.4 平衡形試料採取装置の性能及び性能試験方法 この装置は、現場で直ちに等速吸引によってダスト試料を採取できる機能をもっているが、等速吸引の性能は本体9.4(2)(b)に規定する-5~+10 %以内でなければならない。したがって、その確認のために性能を試験する必要がある。この性能試験方法は、本体と内容が別項目であるので、別途附属書において規定した。
- 9. ダスト試料の採取方法 旧規格の記述順序を変更し、実際にダスト試料を採取する場合の手順に従って、分かりやすく述べることにした。すなわち、初めに測定点、採取方法を選定し、採取のために必要な準備をし、次に採取する順序とした。

また、ろ紙とダストチューブによる採取は、共通する点が多いので、分けずにまとめて述べた。

- 9.1 測定点 本体4.3の規定による。
- 9.2 ダスト試料の採取方法の種類
- (1) 各点採取法 測定点が少ない場合に適し、各測定点のダスト濃度が得られるため、濃度分布が分かり、代

表点を求めることができる。

- (2) 移動採取法 測定点が多い場合、又はダスト濃度が低い場合に適し、採取時間を短縮できる利点がある。 測定点間の移動はできるだけ早くする。
- (3) 代表点採取法 各点採取法によってあらかじめ求めた平均ダスト濃度が得られる測定点を代表点として採取する方法で、最も簡単で時間がかからない利点がある。しかし、操業条件又は排ガス条件が変われば、新たに代表点として使用できるかどうかを確認する必要がある。

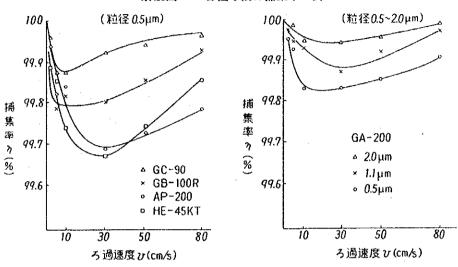
以上の各採取法のうち、測定点の数及び排ガスの条件を考慮して、最も適切なものを選定する。

- 9.3 ダスト試料の採取準備 初めに普通形試料採取装置を用いる場合に必要な等速吸引流量を求め、続いて普通形及び平衡形の両試料採取装置に共通するダスト捕集器について、採取前に準備すべき事項を述べた。
- 9.3.1 **等速吸引のための吸引流量の計算** 普通形試料採取を用いる場合は、あらかじめ等速吸引に必要な吸引流量 (L/min) を計算しなければならない。計算式は、本体9.3.1の式 (11) に示すとおりである。

この式 (11) で、吸引ノズルの内径dは、排ガスの流速及び吸引ポンプの吸引流量 (L/min) 及びダスト捕集器のろ過速度 (原則として0.5 m/s以下) を考慮して選定しなければならない。通常、排ガス流速が大きい場合は、吸引ノズルの内径は小さいものを、逆に排ガス流速が小さい場合は、内径の大きいものを選ぶようにする。

内径が大きい吸引ノズルを用いるほど、吸引流量も大きくなり、短時間でダスト試料を採取できるが、現在広く用いられている吸引ポンプの定格容量は約50 L/minで、ろ過材及び流路の抵抗によって実際には20~30 L/min程度の吸引流量しか得られない点に注意する必要がある。

また、ろ過速度はろ紙の強度を考慮して0.5 m/s以下としたが、ろ紙が破損しなければ、後述するように0.5 m/s以上としても差し支えない。選んだ吸引ノズルの内径をもとに計算した結果、吸引可能の流量であればよいが、もし、不足すれば、より小さい内径のもので再度計算し、適否を判断する。


計算式のうち、d以外の各項目は、予備測定で求めた排がスの温度、水分量、流速、吸引ガスの温度及び圧力などを用いて計算する。つまり、ダスト試料を採取するときの排ガス条件は、上記の各測定値を得たときと変わっていないという前提条件が必要である。したがって、試料採取時は排ガス条件が安定していることが必要で、もし、排ガス条件が変わっていれば、測定誤差の原因となるため注意を要する。

解説表3に、 $x_w=10$ %、 $P_s=0$ kPa $\{mmHg\}$ 、 $\theta_m=20$ Cの条件で、円筒ろ紙 $(\phi25\times90)$ を用いた場合の等速吸引流量の計算例を示すので参考にされたい。

解説要3 ダスト捕集器に円筒ろ紙を用いた場合の吸引ノズルの内径と排ガス流速から等速吸引流量を計算した例

9.3.2 ダスト捕集器の準備

(1) ろ紙及びダストチューブを通るガスの見掛け流速 (ろ過速度) は、原則として0.5 m/s以下としているが、 解説図18に示すように、0.5 m/s以上でも捕集率は99 %以上である。したがって、前述のとおりろ紙の 破損及びダストの目詰まりによる吸引流量の低下がない限り、0.5 m/s以上として差し支えない。

解説図18 各種ろ紙の捕集率の例

ろ過速度は、等速吸引流量と関連して、吸引ノズル口径、ろ紙及びダストチューブの寸法を決める場合 に必要であり、等速吸引流量を計算又は予測し、使用できるダスト捕集器を選定する。

(2) ろ過材は、排ガスによって加熱されると、吸着している水分、又は不純物などが揮発して質量が変化、減少する場合がある。したがって、排ガス温度が100 ℃以下の場合は、ダスト試料採取前に105~110 ℃で恒量となるまで乾燥器で十分乾燥し、乾燥剤を入れたデシケータ内で室温まで冷却後、天びんで ひょう量しておく。

なお、排ガス温度が100 ℃以上の場合は、それと同程度又はそれ以上の温度で恒量となるまで加熱し、 上記と同様にして ひょう量しておく。

ろ過材の加熱による減量は、測定誤差の原因となるため、採取前の加熱乾燥処理が必要である。現在、 800 ℃で加熱処理したシリカ繊維製円筒ろ紙が市販されているが、使用に際しては、上記と同様の加熱処理をしておく必要がある。

なお、後述するように、硫酸ミストなどの補正を行う場合は、250 ℃程度で加熱処理をしておかなければならない。特にダスト濃度が低く、排ガス温度が高い場合は、ろ紙の加熱減量が測定値に与える影響が大きいので、加熱処理は必ず行う必要がある。

ろ過材は、ふっ素樹脂製以外は吸湿性があり、捕集したダストも一般に吸湿性が大きいので、ひょう量の際は、ひょう量瓶を用いて密封し、湿度の影響を避けるようにするのが望ましい。

今回の改正によって、後述するように、ろ紙のダスト捕集量を大幅に減少した。そこで、ひょう量誤差を極力少なくするため、湿度の影響を受けないように相対湿度50%前後の安定した環境でひょう量するのが望ましい。

また、使用する天びんも感量0.1 mg以下のもの、例えば0.01 mgの天びんを用いるようにした。これは、ロウボリウムエアサンプラによる粉じん濃度の測定方法を規定したJIS Z 8814 (ロウボリウムエアサンプラ及びロウボリウムエアサンプラによる空気中浮遊粉じん測定方法) と同じ ひょう量の方法である。

9.4 ダスト試料の採取 旧規格では、ろ紙及びダストチューブを用いる測定方法を別々に述べていたが、重複

する部分が多く、また、普通形及び平衡形の両試料採取装置でも同じ要領で試料を採取するので、今回の改正に よって両者を統一して述べることにした。

- (1) ダスト試料採取の準備が終わると、ダスト捕集器をダスト試料採取装置に装着し、装置全体の気密を漏れ 試験によって確認する。現場では、この確認をしない場合が案外多いので注意を要する。
- (2) ダスト試料の採取は、等速吸引によって排ガスを吸引し、ダストをろ過捕集する。採取要領は、本体9.4 (2)に示すとおりである。

測定孔からダスト捕集部をダクト内に挿入又は引き出す場合は、必ず吸引ノズルの向きを排ガスの流れ の方向と逆向きにして行う。これは、ダストが吸引ノズル内に飛び込んでくるのを防ぐためである。

測定点に吸引ノズルが到達すると、吸引ノズルを排ガスの流れに正しく直面させ、吸引ポンプを作動させて等速吸引を行う。この要領は本体9.4(2)(a)及び(b)に示すが、普通形試料採取装置を用いる場合は、瞬間流量形で流量を読み取るか、又は積算流量形を利用して秒時計で吸引流量を計算し、速やかに等速吸引流量に合わせる。

なお、吸引開始と同時にガスメータで吸引量の測定を開始する。試料採取中に、捕集ダストによって ろ過抵抗が増加し、吸引流量が低下する場合は、流量を調節して常に等速吸引流量を正確に保持するよう にする。

平衡形試料採取装置を用いる場合は、自動の装置は吸引開始とともに自動的に等速吸引の状態になり、 排ガス条件が変動しても追従する。手動の装置では速やかに両圧力が等しくなるよう吸引流量を調節し、 採取中も同様にして両圧力を一致させる。

(3) 吸引ガス量は、採取すべきダストの捕集量によって決めるが、それにはグストの濃度が分かっていなければならない。しかし、実際には不明の場合が多く、過去の測定例又は類似の発生源のデータから推定する 以外に方法がない。

大体のダスト濃度が分かっていれば、次の式によって吸引ガス量の概算ができる。

 $V = (m \times 1000)/C$

ここに、 V: 吸引ガス量 (L)

m: 捕集すべきダストの質量 (mg)

C: ダスト濃度 (mg/m³_N)

ただし、このVは標準状態 (0 °C、101.3 kPa {760 mmHg}) の値とすべきものであるから、厳密には排ガスの温度、圧力で補正する必要がある。

今回の改正によって、大幅に変更した点は、ろ紙によるダストの捕集量を大きく削減したことである。 ばいじんの排出基準の改正 (昭和57年) の影響もあって、最近のダスト濃度は、解脱**要4**に例示するよう に、かなり低下しており、旧規格のままでは採取時間が非常に長くなるなどの問題点が生じてきた。こう した事情をも考慮して、ダストの捕集量を大幅に $\frac{1}{2}$ ー $\frac{1}{4}$ へ削減した。ただし、ダストチューブの場合は、 容器自身が重いので、捕集量を減らすと測定誤差が大きくなるため、現行どおりとした。

解説表4 火力発電用ポイラ排ガス中の

ダスト濃度測定値例

単位 mg/m³s

燃料の種類	平均值	最大值
ガス	0,1~0,2	1
ナフサ	1	2,5
原油	1,5	6
重油	2	6

ろ紙のダスト捕集量の削減を可能にした理由として、その後のろ過材の改善に伴う安定性の向上が挙げられるが、前述のとおり、ひょう量精度を上げる対策も含めて、総合的にダスト捕集量の適正な測定ができるものと判断したからである。したがって、ろ紙の取扱い及び保守管理には、十分注意する必要がある。

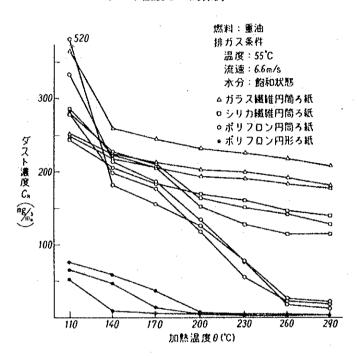
- (4) 試料の採取が終わると、ダスト捕集器をダクト外に取り出すが、前述のとおり吸引ノズルを排ガスの流れ と逆向きにした時点で吸引量を測定し、吸引ポンプは止めないでダスト捕集器をダクト外に引き出した後 停止する。これは、ダクト内が負圧の場合、ポンプを止めると捕集したダストが吸引ノズルから飛び出す ことがあるので、それを防ぐためである。
- (5) ダスト捕集器は、装置から取り外し、付着した水分を除くため、105~110 ℃で1時間乾燥し、採取前と同様にして、ひょう量する。この場合、吸引ノズルに付着しているダストを無視できない場合は、そのままる紙と同様に乾燥して ひょう量し、次にダストを払い落として吸引ノズルをひょう量し、その差から付着したダストの質量を求め、捕集したダストに加える。
- (6) 排ガス中に硫黄酸化物を含む場合は、排ガス温度が酸露点以下になると硫酸ミストを生じ、ダストと共に捕集され、ダスト浪度が高くなる誤差を生じる。ダストの定義から明らかなように、硫酸ミストは除く必要があり、旧規格でも備考によって補正できるようにしていた。しかし、その補正方法は解説で述べ、本体では規定していない。その後、補正方法について研究が進み、実用的な方法も確立されてきた。そこで、今回の改正によって、次の加熱揮散による補正を本体とし、更に備考で化学分析による補正を規定した。

加熱揮散による補正は、硫酸ミストと化学反応を起こさない ろ紙を用いてダストを捕集し、捕集後250 ℃程度で約2時間加熱して硫酸ミストを揮散させ、ひょう量する方法である⁽³⁾。このため、採取前のろ紙は、250 ℃程度で加熱処理して ひょう量しておく必要がある。

ろ紙は、ふっ素樹脂製、ふっ素樹脂をバインダとするシリカ繊維製 (複合ろ紙)、硫酸で処理したアルミナバインダを含むシリカ繊維製、バインダを含まないシリカ繊維製などを用いる。硫酸で処理する方法は(****)、アルミナバインダと硫酸との反応を防止するために考案されたもので、例えば、2N-H₂SO、で30分間 超音波浸水し、軽く水洗いした後、ろ紙を徐々に加熱し、白煙が生じなくなるまで250 ℃で加熱し、フリーの硫酸を揮散させ、その後、300 ℃で3時間加熱して処理する方法がある。ダスト捕集後の加熱処理及び ひょう量は、上記と同じであるが、24時間以内に行う必要がある。

加熱揮散による補正は、割合簡単なため日常の測定には適しているが、捕集後に250 ℃で加熱するため、加熱によって減量を起こすダストの場合には不適当である。ただし、通常の燃焼過程を経たダストは未燃分が著しく少なく、ほとんど250 ℃程度では加熱減量を起こさないことが知られており、適用範囲は広いものと考えられる。

一方、**備考**の化学分析による補正は、ダストを捕集したろ紙中の硫酸分を温水によって抽出し、SO₄²² として定量後、捕集ダストの質量から差し引く方法である。SO₄²の定量は、JIS K 0103 (排ガス中の硫 黄酸化物分析方法) に規定する中和法又は比濁法によるが、イオンクロマト法でもよい。これらの方法でも、捕集ダストは250 ℃で加熱処理をしておく必要がある™。しかし、化学分析による補正は、硫酸塩を含むダストのほか、中和法では酸性物質を含めて差し引くおそれがあるので、このような物質を含む場合には、適用できない。


以上、二つの補正方法を採用したが、加熱揮散法が化学分析法より簡単であり、はん(汎)用性も高いと考えられる。

このほか、ダスト捕集器全体を200 ℃前後に加熱してダストを捕集する方法もあるが、加熱装置が必要なため複雑となり、更に、採取中に硫酸ミストを十分揮散し得ない可能性があるので、一般的な方法とはいえず、採用しなかった。

硫酸ミストの補正方法の適用に際しては,排ガスの条件,ダストの性状などに注意して適用する。いず

れの方法を用いるにしても、測定値の記録において、補正方法を明示しておく必要がある。

解脱図19は、湿式排煙脱硫後の排ガス中のダストを各種のろ紙を用いて捕集し、加熱揮散のため加熱温度を110~290 ℃に変えて測定した例である⁽³⁾。ガラス繊維製及びアルミナバインダを含むシリカ繊維製の円筒ろ紙は、硫酸と反応して250 ℃程度で加熱しても硫酸分が揮散しないことを示している。一方、ふっ素樹脂製のポリフロン円形ろ紙は200 ℃でほぼ一定となり、同じく円筒ろ紙は内部に液滴があるため、250 ℃程度で一定となり、ろ過材と硫酸との反応及び吸着がないため加熱揮散による補正が可能なことを示している。

解説図19 各種ろ紙による捕集ダストの乾燥温度と ダスト濃度との関係例

解脱喪5は、アフタバーナ付排煙脱硫後の排かス (140 ℃) 中のダスト濃度をふっ素樹脂製円筒ろ紙 (No.89R) と、硫酸で処理し不活性化したアルミナバインダを含むシリカ繊維製円筒ろ紙 (No.88RH) とを用いて測定した例である™。250 ℃に加熱乾燥後の濃度は、両ろ紙ともほぼ同一の値が得られており、硫酸による処理が有効なことを示している。

No.	吸引ガス量	ダスト濃	变 (g/m³ _N)	使用ろ紙			
	(m³ _N)	110 °C	250 ℃				
l	0,357	0,198	0,012	No.89R (ふっ案樹脂製)			
2	0.547	0.158	0.011	No.89R (ふっ素樹脂製)			
3	0,497	0.034	0,006	No.89R (ふっ素樹脂製)			
4	0,568	0.098	0,009	No.89R (ふっ素樹脂製)			
5	0,597	0,201	0,011	不活性化ろ紙 (硫酸処理)			
6	0,586	0.238	0.007	不活性化ろ紙 (硫酸処理)			
7	0.572	0.221	0,009	不活性化ろ紙 (硫酸処理)			
8	0,582	0,199	0.010	不活性化ろ紙 (硫酸処理)			
9	0.538	0,246	0.008	不活性化ろ紙 (硫酸処理)			
10	0,538	0.212	0,006	不活性化ろ紙 (硫酸処理)			

解脱表5 加熱揮散法による測定結果

- (7) ダスト試料採取装置の2形によってダストを捕集した場合は、吸引ノズルからダスト捕集器までの吸引管内に付着したダストを無視できないため、適当な方法(例えば、ナイロンのブラシ)で払い落とすか、水などで洗い流して蒸発乾固し、捕集ダストに加える必要がある。
- (8) 多量にミストを含む排ガスの場合は、前述のインパクタ付ダスト捕集器を用いて捕集するとよい。 なお、この捕集器を用いない場合は、連絡管の後にドレン捕集瓶を接続し、捕集したドレンは蒸発乾固 して捕集ダストに加える。ただし、この場合は、ろ過材を通ってミストが流出するため、ろ紙では破損す るおそれがあり注意を要する。
- 9.5 吸引ガス量の測定方法 吸引ガス量の測定にはガスメータを用い、等速吸引流量の確認には瞬間流量計を用いる。湿式ガスメータは、1回転5 L又は10 Lのものがよく用いられるが、測定範囲に限界があるので注意を要する。

なお、ガスメータは水準器によって正しく水平に保ち、水は標線まで入れる。寒冷地では水の凍結を防ぐよう 保温する。

測定要領は、本体9.5に規定するとおりで、瞬間流量計はガスメータで補正しておく。ガスメータには湿式と 乾式があり、通常は湿式を用いるが、乾式を用いるときは、ガスメータの前に水分を吸収する乾燥剤を入れた容 器を接続する必要がある。吸引したガス量は、本体9.5(4)の式(12)によって、標準状態に換算しなければな らない。

なお、乾式ガスメータは検定品がないため、湿式ガスメータで校正する必要がある。

- 10. **ダスト濃度の計算** ダスト濃度は、標準状態に換算した乾き排ガス1 m³N中に含まれるダストの質量(g)で表すが、排ガスの状態によって種々のダスト濃度の表し方がある。
- 10.1 各測定点の乾き排ガス中のダスト濃度 各点採取法による各測定点ごとのダスト濃度の計算方法である。 ただし、1個のダスト捕集器ですむ移動採取法及び代表点採取法の場合は、その計算値を全断面の平均ダスト濃度とする。

なお、複数の代表点採取法の場合は、その平均値を平均ダスト濃度とする。

10.2 全断面の乾き排ガス中の平均ダスト濃度 各点採取法によってダスト濃度を測定した場合は、平均値を 得るため本体10.2の規定によって計算する。

また、複数のダスト捕集器による移動採取法の場合は、上記に準じて計算する。この場合、1個のダスト捕集器で採取した各断面の面積を合計した面積とし、ガス流速は各断面の流速の平均値をとって計算する。

10.3 ダスト濃度測定値のまとめ方 今回の改正によって、ダスト濃度の計算に必要なダストの質量及び吸引 ガス量は、有効数字3けたまでとり、ダスト濃度は有効数字2けたに丸めることにした。これは、大気汚染防止法 の排出基準との関係から要請されており、環境庁通達に基づいて3けた目は切り捨てる。

次に、**参考**として、実際のダクト内の排ガス状態におけるダスト濃度の表し方を示した。このようなダスト濃度は、集じん装置の集じん率の測定にしばしば用いられる。

10.4 排ガス中の酸素濃度によるダスト濃度の補正方法 昭和57年に改正された ばいじんの排出基準では、残存酸素濃度(排ガス中の酸素濃度)によって、ダスト濃度を補正する ばい煙発生施設が定められており、次の式によって計算する。

$$C = \frac{21 - O_n}{21 - O_s} \cdot C_s$$

ここに, *C*: ダスト濃度 (g/m³_N)

On:施設ごとの標準酸素濃度(%)

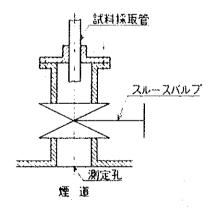
O。: 残存酸素濃度 (%)

C_s: JIS Z 8808によって測定したダスト濃度 (g/m³_N)

O₆は、ばい煙発生施設の種類と規模によって定められた標準酸素濃度で、大気汚染防止法施行規則第4条及び同別表第2に規定する。O₆は、環境庁告示、環大規第191号(昭和57年5月13日付)によって、オルザットガス分析装置又はこれと同等の測定値が得られる酸素濃度分析装置を用いて測定するように定めている。後者の酸素濃度分析装置は、JIS B 7983(排ガス中の酸素自動計測器)が該当するので参照されたい。

なお、O_sの測定位置は、ダスト試料の採取口と同じか、又はこれに極めて近い位置とし、ダスト試料の採取時間における平均的な値を得る。ただし、それが困難な場合は、ダスト試料採取の各1回の前後に測定し、それ ちの平均値をとるように定めている。

- 11. ダスト流量の計算 排ガス中のダスト流量は、集じん率の測定に用いるほか、ダストの排出係数として利用されている。ダスト流量は、JIS B 9910 (集じん装置の性能測定方法) に引用されている。
- 12. 測定値の配録 ダスト濃度の測定条件、各項目の測定結果などを記録しておく。この記録は、個々の測定結果にそれぞれ意味があり、相互に関係があるので、測定値の誤りや計算のミスなどもチェックすることができる。

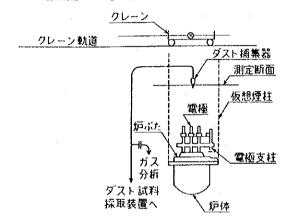

また、過去の測定例とも比較でき、発生源施設の改善にも利用される。したがって、単にダスト濃度だけ記録 するのは適当ではない。

なお、平衡形試料採取装置を用いて測定した場合は、予備測定が省略できるため、必ずしも全項目について記録しなくてもよい。

13. その他の注意奪項

(1) 排ガスが有審でダクト内が正圧、又は爆発性ガスでダクト内が負圧の場合 二酸化硫黄などの有害ガスを含んでダクト静圧が正圧の場合、また、一酸化炭素などの爆発性(有害)ガスなどを含む排ガスでダクト内の静圧が負圧の場合は、解脱図20に示すようなガスシール用のアタッチメントを使用するのが望ましい。このような危険な排ガスにおける測定では、次の点を考慮する必要がある。

解説図20 ガスシール用アタッチメントの例



- (a) 測定足場を広く、しっかりしたものとする。
- (b) 測定者は、必ず2名以上とし、安全ロープを用いることが望ましい。
- (c) 風向きを調べ、風上で測定する。
- (d) このアタッチメントを用いる場合、Naガスでパージすれば、より安全である。
- (e) 爆発性ガスが負圧で、2形による場合、吸引ノズルを固定することになるので、ダストによる目詰まり を清掃するためのN₂ガスをパージ用に準備する。

(2) **開放形電気炉のようにダクトがない場合** ダクトがない場合は、本体によるダスト濃度の測定を厳密に行うことはできない。しかし、実際には、こうした場合の測定が必要となることもある。

このような場合の測定方法として、仮のダクトを設ける方法もあるが、それが困難な場合は、解脱図21に示すように、炉から発生するダストが仮想のダクトに吸い込まれて上昇するものとし、この仮想ダクトを本体のダクトと考え、ガス流速、ダスト濃度を測定する。この場合のダスト試料採取は、室内気流、上昇気流の速度、乱れなどを考慮して、大口径の吸引ノズルを選び、吸引ノズルロにおける上昇気流の流速に応じた等速吸引を行う。炉頂における発生ガス量は、測定断面におけるCOの分析値と、カーボン電極の消耗量及び溶鉄中の炭素含有量の減量から計算で求める。

また、開放形のパグフィルタでは、ハイポリウムエアサンプラを用いてダスト濃度を測定することもできるが、正確な測定値は求め難い。

解説図21 電気炉における測定位置の例

(3) ダスト濃度が変動する場合 発生源施設の操業状態によって、ダスト濃度が時間的に変動する場合は、代表点採取法によって一定期間中のダスト濃度を等間隔時間ごとに分けて測定し、平均値を求める。この場合、ダスト濃度の変動が周期的な場合は、上記の測定を各周期ごとに数回繰り返して平均すれば、更に厳密なダスト濃度が得られる。詳細は、JIS B 9910の解脱を参照されたい。

また、ダスト濃度の変動が周期的でない場合も、上記の方法に準じて単位時間ごとのダスト濃度を求めて平均すればよい。

なお、昭和46年8月25日付の環境庁大気保全局長 通達によって、次のように示している。

"ばい煙試料の採取時期は、一工程の期間内とし、測定値はこの期間の平均値とする。一工程とは、平 炉、電気炉のように、一溶解期間が定まっているものはこの期間とする。また、集じん機のつち(槌)打ち による周期的変動がある場合は、その変動を考慮した平均値とする。しかし、一工程が非常に長い場合は 測定が実際上困難なので、一工程を適切に代表する期間を選んで測定する。

一工程の周期が不明確の場合は、平均適度が把握されるような時期において、おおむね次のような採取時間と回数により行う。"

採取時間	採取回数
~20分	5回程度
20~40 5}	40
40~60分	30
60分	20

いずれにせよ、ダスト濃度又は排ガス条件が時間的に変動する場合は、それが周期的又は非周期的であっても、普通形試料採取装置を用いる場合は、予備測定に時間を要し、実際に等速吸引によるダスト試

料の採取が著しく困難か又は不可能となる。そこで、このような場合は、自動の平衡形試料採取装置を用いれば、排ガス条件の変動にも追従して等速吸引が可能となるので、この装置によって測定するのが望ま しい。

14. 水の飽和水蒸気圧衷及びダスト濃度測定記録例 吸引ガス量の計算などに必要な水の飽和水蒸気圧尺を解脱付表1 [SI単位 (kPa) によるもの] と解説付表2 [従来単位 (mmHg) によるもの] に、普通形試料採取装置によるダスト濃度の測定記録例を解説付表3、解説付表4及び解説付表5に示す。

附属書 平衡形試料採取装置の性能及び性能測定方法 平衡形試料採取装置(以下, 装置という。)は、旧規格の平衡形吸引ノズルを装置の一部として組み込んだ試料採取装置として完成されたもので、操作を自動化した装置が広く普及してきた。しかし、装置の構造及び性能について、特に規定されておらず、装置の普及に伴いユーザから種々の苦情が出ているものもあり、性能について厳しく規定するよう要望されていた。そこで、今回の改正によって、新たに装置の構造、機能について本体8.3に規定するとともに、性能及び性能試験方法についても、本体8.4に示すように、附属書によって規定することにした。

- 1. 適用範囲 この附属書は、装置の性能とその試験方法を規定したものである。
- 2. 装置の性能 この装置は、等速吸引によるダストの試料採取ができるものでなければならない。したがって、その性能は、本体9.4(2)(b)に規定する等速吸引の相対誤差として-5~+10%以内に合致することが必要である。もし、この性能を満足できなければ、実用に適しないものとする。
- 3. 性能試験方法
- 3.1.1 試験条件 一般の計測器と同様の試験条件を規定した。
- 3.1.2 試験装置 試験装置のうち、特殊なものは試験風洞であり、静圧式の装置はこれがなければ正確な性能の試験ができない。動圧式の装置も、同様に試験風洞で性能試験ができるが、理論的に必ずしも試験風洞がなくても試験することができる。
- 3.2 等速吸引の相対誤差試験方法 原則として、動圧式及び静圧式の両装置とも、試験風洞を用いて試験するようにしているが、上記のとおり、動圧式は特に試験風洞を用いなくてもよく、また、一般のユーザでは試験風洞を設けることは容易ではない。したがって、試験風洞を用いない方法でもよいことにした。日常の性能チェックには、後者の方法によって試験することが望ましい。
- (1) 試験風洞を用いる試験方法 主としてメーカによる試験方法である。特に静圧式は、この方法によるべきである。

試験は、一定の流速(A)に設定した状態(ピトー管によって流速を測定する。)で、装置によって等速 吸引を行い、吸引ノズル内の流速(B)は、附属のガスメータの吸引流量からノズルの断面積で除して求 め、相対誤差を計算する。この場合、ダスト捕集器には、ろ紙を装着しておく(以下、すべて同じ条件と する。)。

このほか試験風洞では、流速を試験中に変えて、流速の変動に対する装置の追旋性についても調べることができる。すなわち、自動の装置を用い、一定流速にして等速吸引を行っている状態から、その流速を急激に約±50 %程度変化させた場合、装置は変化した流速に対して等速吸引を行うよう自動的に制御するが、この場合の応答時間は、短い方がよく、90 %応答は、10秒以内が望ましい。

(2) 試験風洞を用いない試験方法

(a) 動圧式の装置 自動の場合の試験方法で、装置のピトー管の全圧孔 (又は圧力用導管) に一定の圧力を ゴム球などで与えると、大気圧との差が動圧として作用するので、附属の圧力計で動圧を測定する。こ の動圧を与えれば、装置は直ちにベンチュリ管の差圧がそれと等しくなるように吸引流量を自動的に調 節するから、等速吸引の状態となる。そこで、(1) と同様にして吸引ノズル内の流速 (B) を求める。一方、与えた動圧から本体7.3.4の規定によって流速 (A) を求め、相対誤差 (C) を計算する。ただし、空気の重量は、**備考**の式 (2) による。

この試験では、流速 (A) は実際に空気が流れている場合の流速ではないが、理論的に動圧から計算されるため、空気の流速として差し支えない (以下、同じ。)。

- (b) **動圧式の装置(手動の場合)** 一定の吸引流量で大気を吸引し、そのときのベンチュリ管の差圧hを附属の圧力計で測定する。吸引ノズル内の流速 (B) は、(1) と同様にして求める。一方、差圧hをビトー管によって測定した動圧とみなして流速 (A) を (a) と同様にして求め、相対誤差 (C) を計算する。
- (c) **静圧式の装置** この装置はすべて自動である。この試験方法は試験風洞に代わる簡易な試験であり、操作には注意を要する。その理由は、大気の流れを発生させる方法として、扇風機又はブロワなどを用いるので、安定した流れを得ることが困難であり、測定誤差を生じやすいからである。

試験は、附属のピトー管によって発生した空気の流れの動圧を別の圧力計で測定し、この動圧から流速 (A) を求める。装置は、流れの静圧に吸引ノズル内の静圧が等しくなるように吸引流量を自動的に調節するから、等速吸引の状態となる。そこで、(1) と同様にして吸引ノズル内の流速 (B) を求め、相対誤差 (C) を計算する。

4. その他の試験 本体の附属書では、装置の総合的な性能として等速吸引の相対誤差だけを規定したが、このほかに、個々の性能として等速吸引の精度を左右する圧力計の性能が重要な項目となっている。したがって、附属の圧力計は、標準的なゲッチンゲン形、アスカニア形などの圧力計と比較して、その性能を確認することが望ましい。この装置は、いわゆるブラックボックス的な性格のものであり、その性能は、他の一般計測器と同様に、ときどきチェックしておく必要がある。

引用文献

- (1) 宮島,石岡、田森、森、金子:大気汚染学会誌、20,96 (1985)
- (2) 小暮、田森、今上:公害、20, 2 (1983)
- (3) 松浦, 鈴木, 飯豐, 田森, 小暮: 公害, 12, 47 (1977)
- (4) 間,三沢:公害と対策,18,4(1982)
- (5) 鈴木,星野,内藤,鈴木:公害と対策、18,6(1982)

					. W. 1.1 1X	(1/6 €)			į,	其位 mmHg
温度					$\frac{1}{10}$, °C				
	.0	.1	.2	.3	.4	.5	,6		.8	9
50	92.51	92.97	93,43	93,89	91.36	94,82	95,29	95,77	96,24	96,72
51	97,20	97.68	98,16	98,64	99.13	99,62	,	100,60	1	
52	102.09	102,59	103,10	103,60	104,11	104,62		105,64	1	106,68
53	107.20	107.72	108,24	108,76	109.29	109.82		110.89		111,97
54	112.51	113.05	113.59	i	114,69	115 24	1	116 36		117, 48
55	118,04	118,60	119,16	119,73	120,31	120,89		122_05	122,63	123,21
56	123,80	124, 40	124,99	125,58	126,18	126,78	127,38	127, 99	128,60	129,21
57	129,82	130,44	131,06	131,68	132,30	132,92	133,55	134 18	134,81	135_15
58	136,08	136,72	137,36	138,01	138,66	139,31		140,62	141,28	141.91
59	142,60	143.27	143,94	141,61	145,28	145,96	146,64	147.32	148.00	148,09
60	149,38	150,07	150,77	151.47	152,17	152.87	153,58	154,29	155,00	155, 71
61	156, 13	157,15	157.87	158,59	159,32	160,06	160,80	161.58	162,28	163,02
62	163,77	164.52	165,27	166.02	166,78	167,54	168,30	169,07	169,84	170,61
63	171;38	172,16	172,94	173,73	174,52	175,31	176,10	176,90	177,70	178,50
64	179.31	180,11	180,92	181,74	182,56	183,38	184,20	185_03	185.86	186,70
65	187,54	188,38	189,22	190,06	190,91	191,77	192,63	193,49	194,35	195, 42
66	196,09	196,96	197.84	198,72	199,60	200_48	201,37	202,26	203 16	201:06
67	204.96	205,87	206,78	207,69	208,61	209.53	210,45	211.37	212.30	213,23
68	214,17	215,11	216,06	217,01	217,96	218,91	219.87	220.83	221.79	222.76
69	223,73	224,71	225,69	226,67	227.66	228,65	229.65	230,65	231.65	232_65
70	233.7	231.7	235.7	236.7	237.8	238,8	239.8	240.9	211.9	242,9
71	243,9	245.0	246.0	247.1	248,1	249.2	250,3	251.4	252.4	253,5
72	254,6	255,7	256,8	257.9	259.0	260,1	261.2	262,3	263,5	264.6
73	265.7	266.8	268,0	269.1	270,3	271.4	272,6	273,7	274,9	276.0
7.4	277,2	278.4	279,5	280,7	281,9	283.1	281.3	285,5	286.7	287.9
75 74	289.1	290,3	291,5	292,8	294.0	295,2	296,5	297.7	298,9	300,2
76 77	301,4	302.7	303.9	305.2	306,5	307.7	309.0	310.3	311,6	312.9
78	314.1	315,4	316,7	318.0	319,3	320.7	322.0	323.3	324.7	326.0
79	327.3 341.0	328,7 342,4	330.0 343.8	331.4 345.2	332.7	334.1	335.5	336.8	338,2	339.6
		ļ	i	Ì	346,6	348.0	349.4	350.8	352,2	353,7
80	355.1	356,5	358.0	359.4	360.9	362.4	363.8	365_3	366.8	368.3
81	369.7 384.9	371.2	372.7	374.2	376.7	377.3	379.8	380,3	381.8	383,4
82 83	361.9 400.6	386,4	388,0	389,5	391.1	392,7	391.2	395,8	397,4	399.0
84	416,8	402,2 418,4	403.8 420.1	405,4 421,7	407.0 423.4	408,6 425,1	410.3 426.8	411.9 428.5	413,5 430,2	415.2
85	433.6	435,3		ľ	i		j			431.9
86	150.9	452.6	437.0 454.4	438,7	440,5	412.2	443.9	445.7	417.4	449,2
87	468.7	470,5	472.3	456,2 474,1	458,0 476,0	459.7	461,5	163,3	465.1	466.9
88	487.1	489.0	490.9	492.7	491,6	477,8	479,7	481.5	483 4	485.2
89	506,1	508,0	510.0	511.9	513.9	496,5 515,9	498,4 517,8	500.3 519.8	502.3 521.8	501,2 522,8
90	525,76	527,76	529,77	531.78	533,80	535,82	537, 86	539,90	i	
91	546 05	548,11	550 18	552,26	554, 35	556,44	558,53	560,64	541 95 562 75	544,00
92	566, 99	569, 12	571 26	573,40	575,55	577,71	579,87	582,04	í	564,87
93	588,60	590,80	593 00	595,21	597,43	599,66	601,89	601,13	584,22	586,41
94	610,90	613, 17	615,44	617.72	620,01	622,31	624,61	626,92	606,38 629,24	608,64 631,57
95	633,90	636,24	638,59	640,94	643.30	645,67	618.05	650.43	652,82	655,22
96	657 62	660,03	662, 45	664,88	667,31	669,75	672,20	674.66	677.12	679,59
97	682,07	684.55	687,01	689,54	692.05	694.57	697,10	699,63	702,17	704,71
98	707,27	709,83	712,40	714,98	717,56	720,15	722,75	725.36	727,98	730,61
99	733,24	735,88	738 53	741,18	743,85	746,52	719.20	751.89	754 58	757.29
100	760,00	762,72	765,45	768,19	770,93	773,68	776.44	779,22	782 00	784.78
101	787,57	790,37	793 18	796,00	798.82	801,66	804,50	807.35	810,21	813.08

									Political de la Maria della Ma	単位 к/:			
温度		1/10 ℃											
ŗ	.0	.1	.2	.3	.4	.5	.6		8,	.9			
0	0,6105	0,6150	0,6195	0,6241	0,6286	0,6333	0,6379	0,6426	0,647.3	0,6515			
1	0,6567	0,6615	0,6663	0.6711	0,6759	0.6809	0.6858	0,6907	0,6958	0,7007			
2	0.7058	0.7109	0,7159	0,7210	0,7262	0.7314	0.7366	0,7419	0,747.3	0.752 6			
3	0.7579	0.7633	0.7687	0.7742	0,7797	0.785 1	0.7907	0.7963	0.8019				
4	0,1313	0,8191	0.1031	0.8306	0.8365	0,8423	0,8483	0,8543	0,8603	0,8663			
-1	0,0104	0,6191	0.024.9	0.0500	0.0000	i	0,0100	0,0010	ì	1			
5	0,8723	0.8785	0,8846	0.8907	0,8970	0.9033	0,909 5	0,9158	0,9222	0,928 (
6	0,9350	0.9415	0,9481	0.9546	0,9611	0,9678	0.9745	0.9813	0.9881	0,994			
7	1,002	1,009	1,016	1.022	1,030	1,037	1.044	1,051	1,058	1,065			
8	1,073	1 080	1,087	1,095	1.102	1,110	1,117	1,125	1,132	1,140			
9	1,148	1,156	1,164	1,171	1,179	1,187	1,195	1,203	1,211	1.219			
10	1.228	1 236	1,244	1,253	1,261	1 269	1,278	1,286	1,295	1.304			
11	1,312	1.321	1,330	1,3388	1,3478	1,3567	1,3658	1 374 8	1,3839	1,3998			
12	1,4023	1 411 6	1,4209	1 430 3	1,4397	1,4492	1,4587	1,4683	1,4779	1,487 6			
13	1,4973	1.5072	1,5171	1,5269	1,5369	1,5471	1.557 2	1,5673	1,5776	1,5879			
14	1,5981	1,6085	1,6191	1,6296	1,6401	1,6508	1.6615	1,6723	1 683 1	1,6940			
15			1,7269	1,7381	1,7493	1,7605	1,7719	1,7832	1,7947	1,806			
1	1,7049	1,7159 1,8293	1,8410	1.8529	1,8648	1.8766	1,888 6	1,900 6	1,9128	1.924			
16	1,8177		1,9618	1 974 4	1,9869	1,9994	2,0121	2,0249	2 037 7	2,050			
17	1,937 2	1 9194	1	L		1	2,0121	2,1560	2,1694	2,183			
18 19	2,063 4 2,196 8	2,0765 2,2106	2,089 6 2,224 5	2,1028 2,2383	2,1160 2,2523	2,1293 2,2663	2,1426	2,1300	2,3090	2,323			
		ļ ·								<u> </u>			
20	2,3378	2,3523	2,3669	2,3815	2.3963	2,4111	2,4261	2.4110	2,4561	2,471			
21	2,4865	2,5018	2,5171	2,5326	2,5482	2,5639	2,5797	2,595 5	2.6114	2,627			
22	2,6434	2,6595	2,6758	2,6922	2,7086	2,7251	2.7418	2.7584	2,7751	2,791			
23	2,8088	2 825 9	2,8430	2,8602	2,8775	2,8950	2.9124	2,9300	2,9478	2.965			
24	2,9834	3,0014	3.0195	3 037 8	3,0560	3,0744	3,0928	3,1113	3,1299	3,1483			
25	3,1672	3,1860	3,2049	3,2240	3,2432	3,2625	3,2820	3,3016	3,3213	3,341			
26	3,3609	3,3809	3 400 9	3,4211	3.4413	3,4616	3,4820	3,5025	3,5232	3,544 (
27	3,5619	3,5860	3,6070	3,6282	3,6196	3,6710	3,6925	3,7141	3,7358	3,757			
28	3,7796	3,8016	3,8237	3,8460	3.8683	3,8909	3,9135	3,9363	3,9593	3,9823			
29	4,0054	4 028 6	4,0519	4,0754	4.0990	4 122 7	4,1466	4,1705	4,1945	4,2186			
30	4,2429	4,267.2	4,2918	1.3164	4.3411	4 365 9	4,3908	4,4159	4,4412	4,4667			
31	4,4923	4 518 0	4,5439	4 569 8	4,5958	4,6219	4,6482	4.6745	4,7011	4,7279			
32	1,7517	4.7816	4.8087	4 835 9	4.8632	4,8907	4,9184	4,9341	4,9740	5,002 (
33	5,0301	5,0585	5,0869	5,1154	5,144.1	5,1730	5,2020	5,2312	5,2605	5,2898			
34	5,3193	5,3490	5,3788	5,4088	5,4390	5,4693	5,4997	5,5302	5,5609	5,5918			
35	5,6229	5,6541	5,6854	5,7169	5,7485	5,7802	5.8122	5.8443	5,8766	5,908 8			
36	5,9112	5,9739	6,0067	6,0396	6,0727	6,1060	6,1395	6,1731	6,2070	6,241 (
37	6,2751	6,3093	6,343 7	6,3783	6,4131	6.4480	6,4831	6,5183	6,5537	6,5893			
38	6 625 1	6,6609	6,696.9	6,7330	6,7693	6,8058	6.8425	6 879 4	6.9166	6,954			
39	6.9917	7,0294	7.0673	7,1053	7,1434	7 181 7	7,2202	7,2589	7,2977	7,3367			
40	7,3759	7.414	7,454	7.491	7,534	7,574	7,614	7.654	7,695	7,737			
41		7.819	7,861	7,902	7.943	7,986	8.029	8,071	8,114	8.157			
	7,778		1 .		1	8,417	8,461	8,505	8.549	8,594			
42	8,199	8,242	8,285	8,329	8,373		:	8,961	9,007	9.054			
43 44	8.639 9.101	8,685 9,147	8,730 9,195	8,775 9,243	8.821 9.291	8,867 9,339	8,914 9,387	9,435	9,007	9.034			
								•					
45 16	9.583	9 633	9,682	9,731 10,24	9,781 10,29	9,831 10,35	9,882 10,40	9.933 10.45	9,983 10,51	10,03 10,56			
46	10.09	10_14	10.19			1	10.40	10.43	11,05	11,10			
47	10.61	10,67	10.72	10 78	10,83	10.88							
48	11,16	11,22	11.27	11,33	11,39	11,45	11.50	11,56	11,62	11,68			
49	11.74	11,79	11.85	11.91	11,97	12,03	12.09	12.15	12.21	12,27			

					10011300-					単位 kl'a
温度					1 10	Ċ				
${}^{\mathbb{C}}$.0	.1	.2	.3	4	.5	.6	1.7	.8	,9
5()	12,33	12,39	12,46	12.52	12,58	12.64	12.70	12.77	12,83	12.89
51	12,96	13.02	13,09	13, 15	13.22	13.28	13.347	13,412	13,479	13.511
52	13,611	13,678	13,746	13,812	13,880	13.948	14,016	14,081	14, 154	14,223
53	14, 292	14.361	14,431	14,500	14,571	14,641	14,712	14,781	14,856	1
54	15 000	15.072	15, 144	15,217	15,291	15,364	15.439	15 513	15,588	15,663
	Ì		ļ							1
55	15,737	15,812	15,887	15,963	16.040	16.117	16,195	16,272	16,349	16,427
56	16,505	16,585	16 664	16,743	16.823	16,903	16,983	17 064	17,145	17,227
57	17,308	17,391	17,473	17,556	17,639	17,721	17.805	17,889	17,973	
58	18,143	18,228	18,313	18,400	18,486	18.573	18,660	18,748	18,836	18,924
59	19,012	19,101	19,190	19,280	19,369	19,460	19,550	19,641	19,732	19,824
60	19,916	20,008	20,101	20, 194	20,288	20,381	20,476	20,570	20,665	20,760
61	20,856	20,952	21,048	21 144	21,241	21,340	21,438	21,542	21,636	21,734
62	21,834	21,934	22.034	22,134	22,236	22,337	22,438	22,541	22,643	22,746
63	22,849	22,953	23,057	23,162	23,267	23,373	23,478	23,585	23,691	23,798
64	23,906	24,013	24 121	24,230	24 339	24, 449	24,558	24,669	24,779	24,891
	1	:							1	i .
65	25,003	25,115	25,227	25,339	25,453	25,567	25,682	25,797	25,911	26,054
66	26,143	26,259	26,376	26,494	26,611	26,728	26,847	26,966	27.086	27,206
67	27 326	27.417	27,568	27.690	27.812	27.935	28,058	28,180	28,304	28 428
68	28,554	28,679	28,806	28,932	29,059	29,186	29.314	29 442	29,570	29,699
69	29,828	29,959	30,090	30,220	30,352	30,484	30,617	30,751	30,884	31,017
70	31,16	31,29	31,42	31,56	31,70	31,84	31,97	32 12	32,25	32.38
71	32,52	32.66	32,80	32,94	33,08	33,22	33,37	33.52	33,65	33,80
72	33.91	34.09	34,24	34,38	34,53	34,68	34,82	34,97	35,13	35,28
73	35 42	35.57	35,73	35,88	36,04	36,18	36,34	36,49	36,65	36,80
74	36,96	37,12	37,26	37.42	37,58	37,74	37,90	38,06	38,22	38,38
75	38,54	38,70	38,86	39,04	39,20	39,36	39,53	39,69	39,85	40,02
76	40.18	40,36	40.52	40,69	40,86	41,02	41,20	41.37	41.54	41.72
77	41.88	42,05	42.22	42,40	42,57	42.76	42.93	43,10	43.29	43.46
78	43 64	43,82	44,00	44.18	44,36	44,54	44,73	44,90	45,09	45,28
79	15 46	45,65	45,84	46,02	46,21	46,40	46,58	46.77	46,96	47,16
		1				i	l '			
80	47, 34	47,53	47.73	47,92	48,12	48,32	48,50	48.70	48.90	49.10
81	19, 29	49,49	49,69	49,89	50,22	50.30	50.64	50.70	50,90	51.12
82	51.32	51,52	51.73	51.93	52,14	52,36	52,56	52.77	52.98	53.20
83	53,41	53,62	53.81	51.05	54,26	51,48	54,70	54,92	55,13	55,36
84	55,57	55,78	56,01	56,22	56,45	56,68	56,90	57,13	57,36	57,58
85	57,81	58,04	58,26	58.49	58,73	58,96	59,18	59,42	59,65	59.89
86	60,12	60,34	60,58	60,82	61.06	61,29	61,53	61.77	62 01	62,25
87	62,49	62.73	62.97	63,21	63,46	63.70	63,95	64, 19	64,45	64.69
88	64,94	65,19	65,45	65,69	65,94	66,19	66,45	66.70	66.97	67,22
89	67,47	67,73	67.99	68,25	68,31	68,78	69.03	69.30	69,57	69.70
90	70,096	70,362	70.620	20.000	71 167	7) (27)	71,709	71 001	70.054	70 507
1		i -	70,630	70,898	71,167	71,437		71,981	72,254	72,527
91 92	72,801 75,592	73,075 75,876	73,351 76,162	73,629 76,447	73,907 76,734	74,186 77,022	74,465	74,746	75,027	75,310
93	78,474	78,767	79,060	79.355	79,651	79,948	77,310 80,245	77,599 80,544	77,890	78, 182
93 94	81,447	81,749	82,052	82,356	82,661	82,968	83,274	80,544 83,582	80,844 83,892	81 145 84 202
-									03,674	01,202
95	84,513	84,825	85,138	85,452	85, 766	86,082	86,400	86,717	87,036	87,355
96	87,675	87,997	88,319	88,643	88,967	89,293	89,619	89.947	90,275	90,605
97	90,935	91,266	91,598	91,931	92,266	92,602	92,939	93,276	93,615	93,954
98	94,295	94,636	94,979	95,323	95,667	96,012	96,359	96,707	97,056	97,407
99	97,757	98,109	98,463	98,816	99,172	99,528	99,885	100,24	100,60	100.96
100	101,32	101,69	102,05	102,42	102,78	103.15	103,52	103,89	104,26	104.63
101	105,00	105.37	105.75	106,12	106,50	106.88	107.26	107.64	108.02	108,40
				,		.00,00	.0			100, 10