国際協力事業団

アルゼンティン共和国 エ ネ ル ギ ー 庁

アルゼンティン共和国 火力発電所大気汚染防止対策調査 報 告 書

(要 約)

1994年 9月

ユニコ インターナショナル株式会社 三 洋 テ ク ノ マ リ ン 株 式 会 社

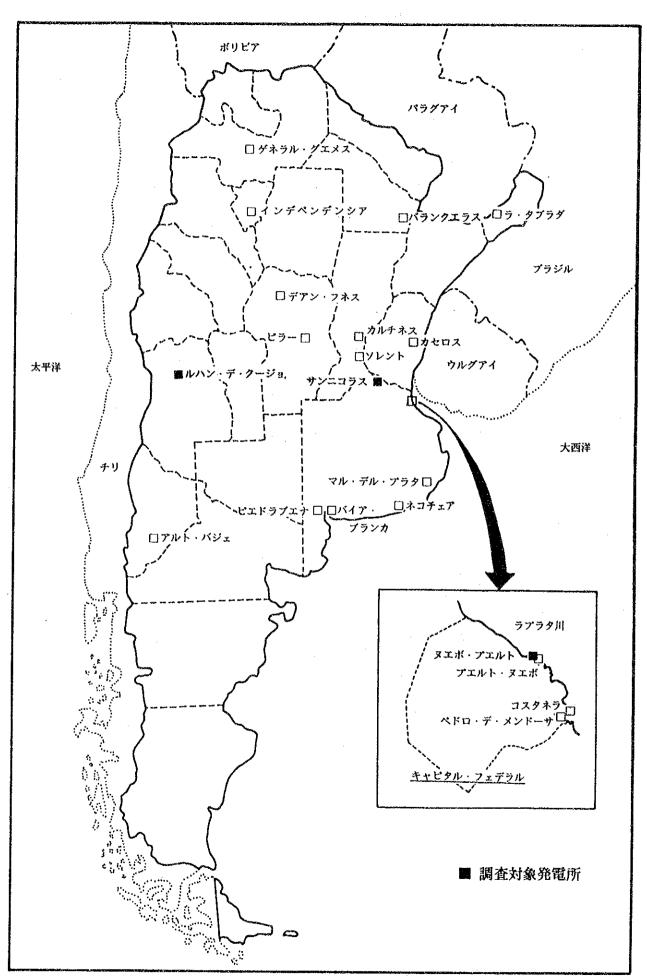
79 19 18ARY

鉱調資 JR

94-124

J頃入 LIBRARY 1115915[9] 国際協力事業団

26833


国際協力事業団 アルゼンティン共和国 エ ネ ル ギ ー 庁

アルゼンティン共和国 火力発電所大気汚染防止対策調査 報告書

(要約)

1994年 9 月

ユニコ インターナショナル株式会社 三 洋 テ ク ノ マ リン 株 式 会 社

アルゼンティン共和国の火力発電所位置図(蒸気タービン発電機)

目 次

				月	
	1 調7	査の概要	1	_	1
	1.1	調査の背景			
	1. 2	調査の目的、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
	1. 3	調査の内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
	1. 0	Bod EF 25 : 1-11	•		h-J
	2 71	レゼンティン共和国の経済・産業状況	2	-	1
	2. 1	マクロ経済の状況	2	-	1
	2. 1. 1	「ア」共和国の概要	2		1
	2. 1. 2	アルゼンティン共和国のマクロ経済の状況	2	-	2
	2. 2	大気汚染防止対策に係る政府のポリシー	2	_	3
	2. 2. 1	大気汚染管理のための基準	2		3
	2. 3	電力セクターの現状	2	-	7
	2. 3. 1	発電設備の概要	2	-	7
	2. 3. 2	火力発電の概要	2	_	12
•	2. 3. 3	中·長期電力供給計画	2	-	16
	3 火力	力発電所による大気汚染の現状	3	_	I
	3. 1	火力発電所の大気汚染防止対策に係る政府のポリシー	3	-	1
	3. 1. 1	大気保全に係る法規制	3	_	1
	3. 1. 2	火力発電所大気環境保全のための管理機関	3	-	3
	3. 1. 3	大気汚染防止に関する調査の実施体制	3	-	4
•	3. 2	モデルプラントのばい煙及び同国大気環境濃度の測定	3		7
	3. 3	火力発電所の排出環境汚染物質の影響評価	3	-	14
	3. 3. 1	短期拡散シミュレーションによる評価	3	-	14
	3. 3. 2	ばい煙総轄評価	3	-	19
	4 火力	力発電所に於ける大気汚染防止対策	4		l
	4. 1	大気汚染防止に係るマスタープランの策定	4	-	1
	4. 2	大気汚染防止に係る政府の役割	4	-	1
	4. 3	大気汚染防止に係る個別発電所の役割	4	-	1
	4. 4	汚染物質低減の為の燃焼技術の改善	4	-	4

目次

		<u>具</u>
	火力発電所のばい煙インスペクションシステムの提案	
	ばい煙監視システムの基本設計	
5. 2	2 プロジェクト実施所要資金の積算	5 - 8
6	ばい煙監視システム事業化の実施スケジュール	6 - 1
7	結論と提言	7 - 1

麦目次

			Ħ	<u>. </u>
表2-2-1	「ア」国の大気汚染管理基準	2	_	4
表2-2-2	Bs As 市の大気汚染管理基準			
表2-2-3	Mendoza州の大気汚染管理基準			
表2-3-1	発電設備の構成と推移			
表2-3-2	主な火力発電所の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
表2-3-3	現在進行中の電源開発地点			
表2-3-4	建設手続きが進行中の電源開発計画			
表2-3-5	2000年における発電状況			
表2-3-6	2000年以降の増加発電電力量			
表2-3-7	開発対象発電ユニットの諸元			
表3-1-1	排ガスに関する排出基準	3	_	2
表3-1-2	排ガス測定項目と測定頻度	3		2
表3-2-1	本測定で採用された分析方法、分析計の概要	3	_	11
表3-3-1	短時間平均拡散濃度計算一覧表	3	-	14
表3-3-2	短時間平均拡散濃度計算における測定局重合濃度	3	_	15
表3-3-3	アルゼンティン共和国に於ける環境汚染物質の排出総量の推定値.	3	-	19
表3-3-4	アルゼンティン共和国環境汚染指標	3	_	19
表3-3-5	世界の地域別社会・経済、エネルギー指標	3	-	21
表3-3-6	OECD諸国の人口、エネルギー消費量	3	-	22
表4-4-1	低過剰空気燃焼による NOxの低減	4	-	6
表5-1-1	必要機材の概要	5	-	5
表5-2-1(1)	プロジェクト実施に必要な所要資金	5	-	9
表5-2-1(2)	分析計別価格表	5	-	10
表5-2-2	プロジェクト実施に必要な職員数	5	-	11

図目次

			Ħ	<u>i_</u>
図2-3-1	アルゼンティン国内の主要電力系統図	2	· -	9
図2-3-2	発電設備の構成と推移	2	-	11
図2-3-3	地域ブロック図	2	-	19
図3-1-1	火力発電所の大気汚染防止に係る組織と運用	3	-	6
⊠3-2-1	ばい煙測定、大気環境測定及びSO2単独測定全体計画	3	-	13
図3-3-1	ヌエボ・プエルト発電所地区	3	_	16
⊠3-3-2	ルハン・デ・クージョ発電所地区	3	-	17
図3-3-3	サン・ニコラス発電所地区	3	-	18
図3-3-4	RELATIONSHIP BETWEEN GDP PER CAPITA AND ENERGY			
	CONSUMPTION FOR REGION OF THE WORLD	3	-	23
図3-3-5	RELATIONSHIP BETWEEN GDP PER CAPITA AND ENERGY			
	CONSUMPTION PER GDP	3	-	23
⊠3-3-6	RELATIONSHIP BETWEEN GDP AND SOX EMISSION	3	-	24
図3-3-7	RELATIONSHIP BETWEEN GDP AND NOX EMISSION	3		24
図3-3-8	RELATIONSHIP BETWEEN GDP AND NOX EMISSION PER GDP	.3	.=	25
፟፟፠፟፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፠፟፞፞፞፞፞፞፞፠፟፟፟፟፟፟፟፟፟	大気汚染防止に係る行政の役割	4	-	2
図4-3-1	大気汚染防止に係る発電会社の役割	4	-	3
図5-1-1	アルゼンティン共和国火力発電所モニタリングステーションの設置	5	-	4
図5-1-2	地域モニタリングシステム概念図	5	_	6
図5-1-3	システム配置図	5	-	7
図6-1	ばい煙モニタリングステーション実施計画スケジュール	6	-	2

1 調査の概要

1.1 調査の背景

アルゼンティン共和国は、1970年から1980年の半ばにかけては、政治の不安定と経済政策の破綻から破滅的なインフレーションと対外債務の増大が続き、その経済発展は長年足踏みを続けたが、現在では新政権の下、公共部門の民営化、交換レートのフローティング、過剰流通性の凍結等経済改革が強力に進められた結果、1992年の卸売物価はマイナス1.8%、消費者物価は 1ヶ月当たり0.5%の上昇に留まり、インフレーションの鎮静化に成功し、経済も徐々に成長、 GDPの伸び率は1991年、1992年ともに約8.5%、1993年は9%とされている。

さらに1992年より積極的に進められてきた国営企業の民営化施策も逐次実行に移され、 これが投資の拡大、生産効率向上に伴う経済成長への寄与、国家財政の健全化へ貢献して いる。

一方、「ア」国の発電設備は合計 16,235MWの設備能力を有し、その需要電力は 39,130 GWh で、火力発電が全体の 50.8%を占め、年間稼働率は 36.5%となっている。火力発電所で使用される燃料は天然ガスが主体であるが、冬期には一般需要家の天然ガスの消費量が増加する為、供給不足が惹起し、重油、石炭が使用される状況となっている。

電力セクターに関しても、1992年以来、積極的に推進してきた民営化がほぼ終了し、発 電所側では、積極的な発電設備の改修、改造を行って収益の向上への努力が伺える状況と なっており、政府側も民営化後の運営管理の為の改革を進めつつある。

「ア」国に於ける大気環境保全に係わる政府機関は天然資源・生活環境省であるが、発足して日が浅い為、その活動も活発ではない。又、州及び市の環境行政も全体としては活動しておらず、ブエノスアイレス州及び市、メンドーサ州など特定の都市の活動がある現状となっている。

係る状況下、電力セクターの政府機関である経済省のエネルギー庁は、民営化に伴い発 電所と締結された契約に従った環境保全条項に対する施策の立案、具体的運営方法を確立 するとともに、これを実行に移す段階に至っている状況である。

この様な状況下、アルゼンティン共和国エネルギー庁は日本政府に対し、係る火力発電 所から排出される環境汚染物質の排出に伴う運営面、技術面に対する技術協力の要請を行 い、両国政府により1992年11月に締結された合意書に基づき、1993年3月、日本政府は国 際協力事業団を通じて技術協力の為調査団を派遣し、「アルゼンティン共和国火力発電所 大気汚染防止計画調査」を開始したものである。

1.2 調査の目的

本調査の目的は、アルゼンティン共和国の大気汚染防止に関する政策とその現状を調査し、民営化が進みつつある状況下、火力発電所のばい煙から排出する環境汚染物質の量的 把握、測定方法などの技術、並びに今後のエネルギー庁の行政的役割について提言を行うとともに、同国に於ける大気汚染に係わる火力発電所の影響の現状及び中・長期的解析を 行うことによって、将来のエネルギー庁の大気汚染防止に係わる施策の提言をも行うことを目的とするものである。

1.3 調査の内容

調査の内容は以下のものを含む。

- (1) 大気汚染防止に関する政策と現状のレビュー
- 1) マクロ経済の現状及び経済開発政策のレビュー
- 2) エネルギー部門に対する国家方針及び現状レビュー
- 3) 大気汚染の現状についての情報収集及びレビュー
- 4) 大気汚染防止についての政策及び規制のレビュー
- 5) 大気汚染防止の将来計画のレビュー
- (2) 大気汚染に関する火力発電所の現状の調査
- 1) 火力発電所概要調査
- 2) 発電所の汚染物質排出の現状調査
- 3) ばい煙排出のモデルプラントの選定
- 4) モデルプラントのばい煙測定
- 5) モデルプラントからのばい煙の環境への評価
- 6) 発電所のばい煙の環境への影響評価

- (3) 火力発電所の大気汚染防止対策の検討
 - 1) 大気汚染防止施策の検討
- 2) 大気汚染防止対策の技術的、経済的検討
- (4) 火力発電所のばい煙測定及び検査体制の確立
- 1) 火力発電所ばい煙検査システムの策定
- 2) 火力発電所ばい煙検査モニタリングシステムの策定
- 3) 所要経費の算定
- 4) 実施スケジュール
- (5) 経済分析
- 1) コスト効果分析
 - 2) 国家経済に対する影響分析

2 アルゼンティン共和国の経済・産業状況

2.1 マクロ経済の状況

2.1.1 「ア」共和国の概要

「ア」国の基礎は1816年にスペイン国王の統治からの独立の実現によって築かれた。独立以降恵まれた農業生産力によって継続して発展を続けた。

特に1910年代には「ア」国の農業生産はめざましい発展を遂げ国際市場に対する農産品の重要な供給国となり、世界でも有数の富裕国としての地位を得た。

国民: 一般的に「ア」国は南米の中でも最もヨーロッパ的な国と考えられており、国民の大多数の生活はヨーロッパの国々のスタイルに非常に近似したものである。人種的にはスペイン及びイタリア人の子孫が多数を占めており、また相当の数のフランス人、ポーランド人、ロシア、独系の人々も含まれている。

1991年の全人口は 3,261万人であった。

社会: 「ア」国の医療施設及び衛生の良い事は良く知られており、これは国民の生活水 準の高い事によって維持されてきており、その為疫病の発生も極めて少ない。

宗教: 国民の大多数はカソリックに属しており、カソリックが国教として受け入れられている。しかし宗教の自由は憲法により保障されている。

教育: 「ア」国の教育水準も大変高く、初等教育は義務教育であり全額国家負担となっている。義務教育期間は 6才から14才となっている。大学の数も多く、Buenos Aires (ブエノスアイレス)、Cordoba (コルドバ)、La Plafa (ラ・プラタ)、Santa Fe (サンタフェ)、Tucuman (ツクマン)、Cuyo (クージョ) 等の大学では他のラテンアメリカ諸国からの学生も学んでいる。また南米諸国の中で文盲が最も少ない事でも知られている。

文化: 「ア」国の文化は完全にヨーロッパ指向であった。基本的には全ての領域でスペインの文化の伝統を受け継いでいる。加えて他のラテンアメリカ諸国でも見受けらる様にフランスの影響が美術と教養に色濃く見られる。

ブエノスアイレスには60以上の美術館、アートギャラリー、劇場コンサートホールがある。

また他の地方の大都市にもその様な文化設備は数多く見られる。

交通: 「ア」国はラテンアメリカ諸国の中では最も鉄道の発展した国で、線路の延長は 40,000kmに達している。また充分舗装されたハイウェイが国の重要都市の間を結ん で建設されている。

さらに航空機の路線も全国に及んでおり、また海運の為の設備も整っている。

2.1.2 アルゼンティン共和国のマクロ経済の状況

緒言:近時のアルゼンティン経済の発展は、メネム大統領に引いられた現政府の経済 政策の成功を明白に示している。以下に示す経済・公共企業省により発表された国内 総生産、総投資と毎年の物価変動に関する記録は過去の経済発展の低迷からの回復を 示している。

総投資(固定)の総合指数

消費者物価指数・年間指数

年	%	年	Ж
1980	5. 0	1987	14.8
1981	-16.3	1988	-2.0
1982	-16.4	1989	-24.4
1983	-0.7	1990	-9.9
1984	-3. 4	1991	25. 1
1985	-17.8	1992	30. 9
1986	15. 2		

GDP成長率

年	%	年	%
1980	1. 5	1987	2. 6
1981	-5. 7	1988	-1.9
1982	-3. 1	1989	-6.2
1983	3. 7	1990	0.1
1984	1. 8	1991	8. 9
1985	-6.6	1992	8.7
1986	7. 3		

期間	一般水準・消費者物価指数
1975	335. 0
1976	347. 5
1977	160. 4
1978	169. 8
1979	139. 7
1980	87. 6
1981	131. 3
1982	209. 7
1983	433. 7
1984	688. 0
1985	385. 4
1986	81. 9
1987	174. 8
1988	387. 7
1989	4923. 6
1990	1343. 9
1991	70.3 (Dec)
1992	17. 5
1993	6.5 (expected)

2.2 大気汚染防止対策に係る政府のポリシー

2.2.1 大気汚染管理のための基準

「ア」国政府は、1973年に「ア」国全体の環境全般に関し、適正な水準を保つための条令 (Decreto) 4858/73 "Preservacion del Medio Ambiente"を制定した。また、大気環境に関しては、同じ1973年に法律 (Ley) 20284/73"Preservacion de los Recursosde Aire"によって大気環境保全のための基準を定めている。

(1) 大気環境保全のための国の法律(Ley 20284/73)

この法律では、

- ・大気汚染の可能性のあるすべての発生源について申告すること
- ・国、州及びBsAs市(ブエノスアイレス市)には、それぞれの管轄区域における監督の権限を付与すること
- ・汚染発生源からの排出が複雑な管轄区域にまたがった場合は、管轄区域間委員会 によって管理運用を行うことなどを定めている。

さらに、汚染物質の濃度及び大気の汚染レベルに関する規定を定めるとともに、地 方に対し各種の固定発生源及び移動発生源からの汚染物質に対する排出許容限度を定 め、公表することを義務づけている。

とくに、汚染物質の濃度については、「平常、注意報、警報、緊急警報」の4つの レベルを定め、必要に応じて汚染地域における操業及び活動の制限、禁止措置に関す る権限を付与するとともに、罰則規定も定めている。

各濃度レベル毎の濃度に関する規定は表2-2-1 に示す。

なお、「ア」国政府における現在の大気環境の管理担当は法律(Ley 20284/73)には国家保健局と定められている。これは現在の天然資源生活環境省(Secretaria de Recursos Naturales y Ambiente flumano)に該当する。

表2-2-1 「ア」国の大気汚染管理基準

濃度VN゙N	zk	常	注意	款報	警	報	緊急	蜂報
項目	濃度	時間	濃度	時間	濃度	時間	濃度	時間
一酸化炭素	10 50	8 1	15 100	8 1	30 120	8 1.	50 150	8 1
窒素酸化物	0.45	1	0. 6 0. 15	1 24	1. 2 0. 3	1 24	0. 4	24
硫黄酸化物	0.03 70*	月 平均	1 0. 3	1 8	5	1	10	1
O3 及び 一般オキシダント	0.10	1	0. 15	1	0. 25	1	0. 40	1
浮遊ふんじん	* 150	月 平均	適用	せず	適用	せず	適用	난 す
降下ばいじん	** 1.0	30 日間	適用	せず	適用	せず	適用	せず

注:濃度の単位は ppm、但し* 印はμg/m³、**印はmg/m³を示す。 一酸化炭素:10mg/m³=8 ppm 窒素酸化物:10mg/m³=5 ppm 硫黄酸化物:10mg/m³=3.8ppm

(2) 地方自治体における法的規制

(a) BsAs市(ブエノスアイレス市)

BsAs市では、国の法律(Ley 20284/73)を受けて、環境汚染防止規定"Ordenanza Municipal 39025/83"を定めている。

大気汚染物質による大気の汚染レベルについては、表2-2-2 に示すとおり、短期 (CAPC) と長期 (CAPL) についてそれぞれ規制値を定めている。この中には国レベルで定めていない鉛についての規制値が付加されている。

なお、BsAs市における現在の大気環境の管理担当は、「環境政策管理総局環境衛生局 (Direction General de Politica y Control Ambiental Directionde de Higiene Ambiental)」である。

表2-2-2 BsAs市の大気汚染管理基準

濃度レバル	並	带
項目	短期	長 期
一酸化炭素	15 mg/r	3 3 mg/m^3
窒素酸化物	0.4 mg/r	m^3 0.1 mg/m^3
硫黄酸化物	0.5 mg/r	3 0.07 mg/m ³
03 及び 一般オキシダント	0.1 mg/r	m ³ 0.03 mg/m ³
浮遊ふんじん	0.500 mg/r	n ³ 0.150 mg/m ³
降下ばいじん	1.0 mg/r	m ² 30 日
俗	0.01 mg/r	n ³ 0.001 mg/m ³

一酸化炭素: 10mg/m³=8 ppm 窒素酸化物: 10mg/m³=5 ppm 硫黄酸化物: 10mg/m³=3.8ppm

(b) Mendoza 州 (メンドーサ州)

Mendoza 州では、BsAs市と同様に国の法律(ley 20284/73)を受けて、大気環境 汚染防止法"Ley 5100/86"を定めている。

大気汚染物質による大気の汚染レベルについては、表2-2-3 に示すとおり、時間 毎の量と濃度で規制値を定めている。この中には国レベルで定めていない鉛と炭化 水素についての規制値が付加されている。

なお、Mendoza 州における現在の大気環境の管理担当は、「環境・都市計画・住宅省環境管理局(Ministerio de Medio Ambiente Urbanismo y Vivienda Direccion de Control Ambiental)」である。

表2-2-3 Nendoza州の大気汚染管理基準

濃度レベル		注意	新	
項目	濃度。 μg/m³	時間	濃度 ppm	時間
一酸化炭素	10 * 40 *	8時間 1時間	9 36	8時間 1時間
窒素酸化物	100 200	1年 24時間	0.05 0.10	1年 24時間
硫黄酸化物	80 260	8時間 1時間	0.03 0.1	8時間 1時間
O3 及び 一般オキシダント	125	[時間	0.06	1時間
浮遊ふんじん	100 260	30日 24時間		
降下ばいじん	1,000 μg/m ²	30日		
鉛	10	30⊟		
炭化水素 (CH4 を除く)	0.19	3時間		
炭化水素 (合計 H/C)	160	3時間		

注:* 印はmg/m3を示す。

一酸化炭素:10mg/m³=8 ppm 窒素酸化物:10mg/m³=5 ppm 硫黄酸化物:10mg/m³=3.8ppm

2.3 電力セクターの現状

2.3.1 発電設備の概要

(1) 電力系統

「ア」国の電源設備は、北部及び西部地域に大容量水力発電所が、中央部地域に原 子力発電所が、また主要都市部周辺地域に大容量火力発電所が分布している。

これらの主要電源設備は、500 KV超高圧 (Ultra-High-Voltage) 送電線を基幹とし、 さらに330 KV, 220 KV, 132 KVの各電圧階級で構成されている全国送電網に接続して いる。

また「ア」国と周辺のウルグアイ共和国 (Republica Oriental del Uruguay)、パラグアイ共和国 (Republica de Paraguay)、ボリビア共和国(Republica de Bolivia) との間に電力系統が連系されている。

「ア」国内の主要電力系統図を図2-3-1 に示す。

(2) 発電設備の推移と現況

「ア」国の発電設備は、水力、火力(蒸気、がスタービン、内燃力)及び原子力発電設備で構成されており、1980年から1993年に至る設備の推移は表2-3-1 及び図2-3-2 に示すとおりである。

発電設備はこの13年間で約1.61倍に増加し、年間約4%の増加率を示している。とくに水力が約1.9 倍、原子力が約2.8 倍と大きな増加率を示しているが、当面の電源の主力は火力であり、火力が発電設備全体の50.8%と過半数を占めている。

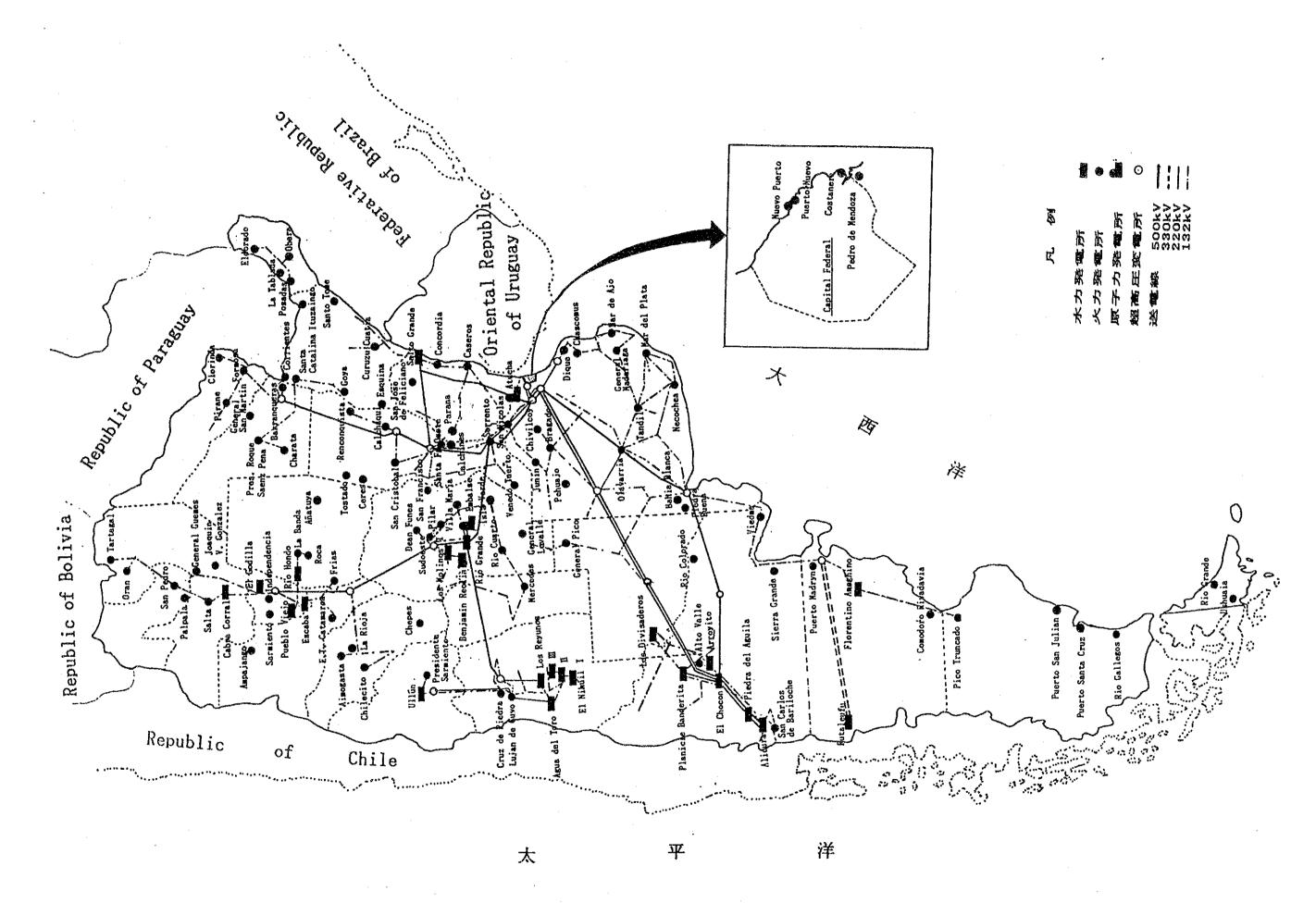


図2-3-1 アルゼンティン国内の主要電力系統図

表2-3-1 発電設備の構成と推移

(単位: ЖУ)

項目	水力		火	力	adus of a tractical	度フも	∧ ⊴1.	
年	N/J	蒸気	カデュヒン	内燃力	火力計	原子力	合 計	
1980	3, 601	3, 818	1, 514	783	6, 115	370	10,086	
1985	5, 967	4, 387	1, 897	725	7,009	1,020	13, 996	
1990	6, 477	4, 874	2, 234	※ 683	7, 791	1,020	15, 288	
1993	6, 970	5, 070	2, 355	※ 820	8, 245	1,020	16, 235	

出典: Energia Electrica 1989/1990 (Secretaria de Energia)

注 :※ 複合型発電機160MWを含む

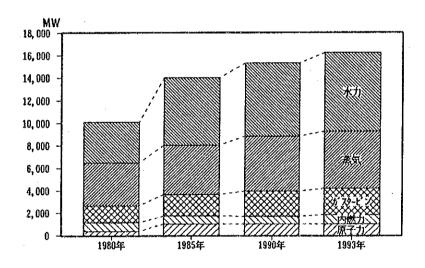


図2-3-2 発電設備の構成と推移

2.3.2 火力発電の概要

(1) 火力発電所の現況

「ア」国における火力発電設備は、蒸気、複合型、ガスタービン、内燃力によって 構成されており、1993年度末における設備容量は8,245 MVに達している。

主な火力発電所の概要は、表2-3-2 に示すとおりであり、1990年現在の発電所数及 びユニット数は、蒸気発電所が21箇所(67ユニット)、複合型発電所2 箇所(4 エット)、 ガスタービン発電所が56箇所(127 エット)、5 MW以上の内燃力発電所が43箇所(252 エット)となっている。

火力発電所の最大ユニット容量は、いずれも蒸気発電機のCostanera 発電所 6号機 とSan Nicolas 発電所5 号機の350 MWである。

表2-3-2 主な火力発電所の概要(1) [1992年]

(1993年3月末現在) 州名 火力発電所名 定格容量 プラント 燃料 型式 機数 (kW) 1, 260, 000 Capital Federal FG STEAN Costanera Nuevo Puerto 420,000 3 FG STEAM Pedro de Mendoza 33,000 3 F STEAM FG Puerto Nuevo 589,000 3 STEAM Pedro de Mendoza 50,000 G. GO 3 T. GAS Dique 152,000 D. G. GO Gran Buenos Aires 8 T. GAS Dock Sud 211,000 8 D. G T. GAS Buenos Aires Bahia Blanca 50,000 STEAM 2 3 F. G. Mar del Plata 90,000 STEAM Necochea 206,000 4 F. G. STEAM San Nicolas 670,000 5 F. G. C. STEAM 2 5 Piedra Buena 620,000 F. G. STEAM Chivilcoy 19, 370 DIESEL General Madariaga 5,599 4 DIESEL Pehua io 6,026 4 DIESEL 8 Tandil 9, 452 DIESEL 2 Bahia Blanca 32,000 G. GO T. GAS Bragado 12,000 1 T. GAS Chascomus 3,400 GO T. GAS 1 Junin 16,000 1 GO T. GAS Mar de Aio 32,000 2 GO T. GAS Mar del Plata 58, 882 3 G. GO T. GAS Olavarria 16,000 G. GO T. GAS Pehuajo 12,000 60T. GAS Catamarca Ampa jango 5, 084 7 DEISEL G E. T. Catamarca 18,000 T. GAS Cordoba F. G. Dean Funes 33,000 1 STEAM 216, 000 Pilar 4 F. G. STEAM lsia Verde 9, 345 3 DEISEL Dean Funes 34,000 2 D. G. T. GAS General Lavalle 46,000 2 D. G. T. GAS Rio Cuarto 34,000 2 D. G. T. GAS San Francisco 40,000 2 D T. GAS D. G. Sudoeste 140,000 T. GAS 4 Villa Maria 51,000 D. G. T. GAS Corrientes Esquina 5,936 DIESEL Goya 9,586 8 DIESEL 8, 268 ltuzaingo DIESEL 8 Santo Tome DIESEL 7, 450 5 Corrientes 16,000 00T. GAS 1 Curuzu Cuatia 2,750 T. GAS 17.300 Gova GO T. GAS 1 Ituzaingo 2,750 T. GAS 1 Santa Catalina GO 78, 200 T. GAS Santo Tome 2,750 GOT. GAS Chaco Barranqueras 45,000 4 STEAM Charata 5, 592 6 DIESEL General San Martin 7, 296 DIESEL 6 Pres. Roque Saenz Pena 8, 169 3 DIESEL Barranqueras 76, 300 5 GOT. GAS Pcia. Roque Saenz Pena 17,000 1 T. GAS Chubut Comodoro Rivadavia 9,000 3 DIESEL Comodoro Rivadavia 6 131, 760 G T. GAS Puerto Madryn 45,600 GAS

^{※ 5.000}k 以下のディーセル火力発電所は除く

表2-3-2 主な火力発電所の概要(2) [1992年]

(1993年3月末現在) 州名 火力発電所名 定格容量 プラント 揪料 型式 機数 (k₩) F Caseros 22, 400 4 STEAM Entre Rios 6,360 DIESEL Concordia 2 DIESEL San Jose de Feliciano 5.584 8 GO T. GAS 15, 400 1 Parana 9 DIESEL Clorinda 8, 190 Formosa 5 DIESEL Formosa 16,000 DIESEL 7, 785 8 Pirane T. GAS 2 D Clorinda 7.400 16,000 D T. GAS Fornosa 1 T. GAS Palpala 35,600 2 D, G Jujuy San Pedro 31, 700 2 G T. GAS General Pico 17,000 T. GAS La Pampa DIESEL 5, 936 6 La Rioja Aimogasta 5,736 5 DIESEL Chepes 7 DIESEL 13,680 Chilecito DIESEL La Rioja 9,610 5 32,000 2 G T. GAS La Rioja Lujan de Cuyo 245,000 3 F. G. STEAM Nendoza STEAM Lujan de Cuyo (1) 31,700 1 G. GO Cruz de Piedra 36,640 T. GAS 108, 060 G. GO T. GAS Lujan de Cuyo (1) STEAM **Misiones** La Tablada (2) 22, 400 Eldorado 7 DIESEL 8,513 DIESEL Posadas 11, 176 4 La Tablada (2) T. GAS 87, 790 4 D T. GAS Obera 35, 200 2 D Alto Valle 30,000 2 F. G STEAM Neuquen Alto Valle 67, 500. 3 G T. GAS DIESEL Rio Negro San Carlos de Bariloche 7,668 4 Viedma 7 DIESEL 11,600 T. GAS Rio Colorado 7, 450 2 GOT. GAS San Carlos de Bariloche 10, 928 G Sierra Grande 36,000 2 G T. GAS 3 Salta General Guemes 245, 000 STEAM Joaquin V. Gonzalez DIESEL 5, 735 5 Oran 9.894 6 DIESEL Joaquin V. Gonzalez GO T. GAS 2,750 1 Oran 4,700 T. GAS 1 Salta 10,500 1 T. GAS T. GAS Tartagal 17,500 3 G San Juan Presidente Sarmiento 31, 500 T. GAS DIESEL

Mercedes

San Luis

7, 780

^{※ 5,000}k W以下のディーゼル火力発電所は除く

表2-3-2 主な火力発電所の概要 (3) [1992年]

(1993年3月末現在)

	and the second second section of the second			1993年3月	个处任人
州名	火力発電所名	定格容量	プ [°] ラント 機数	燃料	型式
		(k¥)			-
Santa Cruz	Puerto San Julian	5, 656	7		DIESEL
	Puerto Santa Cruz	5, 640	4		DIESEL
	Rio Gallegos I	6, 726	5		DIESEL
	Rio Gallegos II	12, 800	4		DIESEL
	Pico Truncado I	43, 600	4	G	T. GAS
	Pico Truncado II	21,000	2	G	T. GAS
Santa Fe	Calchines	40, 000	3	F. G	STEAM
	Sorrento	226, 000	3	F. G	STEAM
	Calchaqui	5, 248	4		DIESEL
	Ceres	5, 866	8		DIESEL
	Reconquista	21, 140	7		DIESEL
	San Cristobal	6, 605	8		DIESEL
	Tostado	5, 104	8		DIESEL
	Venado Tuerto	16, 976	9		DIESEL
	Renconquista	4, 700	1	D	T. GAS
· ·	Santa Fe Oeste	39, 000	2	60	T. GAS
Santiago del Estero	Anatuya	5, 372	7		DIESEL
-	Roca	9, 600	5		DIESEL
•	Frias	32, 000	2	G	T. GAS
	La Banda	16, 000	1	G	T. GAS
Tierra del Fuego	Ushuaia	7, 400	5		DIESEL
	Rio Grande	34, 000	2	G	T. GAS
	Ushuaia	5, 000	2	G	T. GAS
Tucuman	Independencia	80, 000	5	G	STEAM
	Independencia	30, 100	2	G	T. GAS
	Sarmiento	25, 150	2	G. GO	T. GAS
TOTAL		7, 756, 913	451		

^{※ 5,000}k 取以下のディーゼル火力発電所は除く

2.3.3 中·長期電力供給計画

(1) 2000年までの供給計画

現在既に計画が進行している発電所建設計画は、表2-3-3 に示すとおりで、水力発電設備が 1,709MW, 火力発電設備(ガスタービン)が 1,154MW及び原子力発電設備が 745MWの合計 3,608MWが1997年までに運転開始する予定である。

表2-3-3 現在進行中の電源開発地点

発 電 所 名	型式	発電出力 (MY)	運開年月
Piedra del Aguila	水 力	700	1993 1)
: ·		350 350	17/1994 12/1994
Filo Morado	か、スターヒ、ソ	45	1993 1)
Agua del Cajon	カ゛スターヒ゛ソ	90 144	12/1993 9/1994
Loma de la Lata	カ゛スターヒ゛ソ	125 125 125	5/1994 6/1994 7/1994
Casa de Piedra	水力	30 30	6/1994 9/1994
Tucuman	カ゛スターヒ゛ソ	500	1996 2)
Pichi Picun Leufu	水力	83 83 83	1/1997 4/1997 7/1997
Atucha II II	原子力	745	1997
Yacyreta 3)	水 力	ວັນຕາຍຕ່ອງຄວາມຄວາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາມຕາ	44555555555555555555555555555555555555

注 1: 運転中。

注 2:1992年に承認されたが着工に至らなかった。

注 3: 定格出力以下で運転開始予定。

Yacyreta 水力発電所は、表2-3-3に示すとおり、1994年 9月までに3,100MW (155MW ×20ユニット) の開発が予定されている。

さらに現在建設のための手続きが進められている電源開発計画には、表 2-3-4に示すとおり、火力発電設備(ガスタービン) 2 地点 610MWがあり、1990年代後半には運転開始するものと予想される。

表2-3-4 建設手続きが進行中の電源開発計画

発電会社名	型式	発電出力	建設予定地点
Termo Rio. S.A.	カ゛スターヒ゛ソ	450	El Comahue
Sideco S. A.	カ゛スターヒ゛ソ	160	El Bracho (NOA)

従って2000年までに新たに運転開始が見込まれる発電設備は、火力発電設備 2,264 MW、水力発電設備 4,809MW、原子力発電設備 745MWの合計 7,818MWに達するものと予想される。

2000年に必要とする電力供給量は、信頼度 95%の場合、77,973MWで、その発電方式 別発電電力量は、火力が25,274MW、水力が40,939MW、原子力が11,760MWである。

2000年における発電設備容量は、現在の設備がそのまま運転されると仮定すると、表 2-3-5に示すとおり24,053MWと、1993年現在に比較して約 1.5 倍に達するものと予想される。この場合、年間稼働率は火力 27.5%、水力 39.7%、原子力 76.1%と推定される。

表2-3-5 2000年における発電状況

項目		発 電 設 備	(MW)	発電	年 間
	1993年	2000年まで	合 計	電力量	稼動率
	現在設備	に運開予定			
型式		の設備		(GWh)	(%)
火力	8, 245	2, 264	10, 509	25, 274	27. 5
水力	6, 970	4, 809	11, 779	40, 939	39. 7
原子力	1,020	745	1, 765	11, 760	76. 1
合 計	16, 235	7, 818	24, 053	77, 973	37.0*

注:* 参考

なお、2000年における水力発電設備による発電電力量40,939GWhのうち、Yacy-reta 水力発電所の発電電力量は 50%以上を占めるものと計画されている。

(2) 2010年までの供給対策

2000年から2010年に至る増分発電電力量は、信頼度 95%の場合は表 2-3-6に示すとおり 20,7656Whで、すべて火力発電設備で対応する計画となっている。

表2-3-6 2000年以降の増加発電電力量

(信頼度95%の場合)

型式項目	2000年予測値 (GWh)	2010年予測値 (GWh)	差引增分 (GWh)
火 力	25, 274	46, 039	20, 765
水 力	40, 939	40, 939	0
原子力	11,760	11, 760	0

従って2000年以降に運転開始を必要とする火力発電設備は、将来の燃料コスト及び 運転コストが最も有利なガスタービンか複合発電設備が考えられる。

この場合、必要とする火力発電設備は、年間稼働率をどの程度見込むかによって異なるが、例として以下に示すように稼働率を 75%と仮定した場合、2010年までに必要な開発量は約 3,200MWとなる。

この電源設備を構成するユニットの諸元として、標準的な例を表 2-3-7に示す。

表2-3-7 開発対象発電ユニットの諸元

項目	単位	複合型発電	が スタービン発電 ユニット
ユニット容量	MW	300	100~150
平均熱消費量	kcal/kWh	2, 200	2, 700
年間稼働率	%	75	75
使用燃料種別		天然ガス	天然ガス
建設費単価	\$/k\	700	400

将来増設を必要とするこれらの火力電源設備は、図 2-3-3に示す地域ブロックのうち COMAHUE地区と NOA地区に設置する予定であるが、その発電設備の 70%を COMAHUE 地区に、30%を NOA地区にそれぞれ配分する計画となっている。

この比率は、燃料としての天然ガス田の埋蔵量、生産能力と、その地域の電力需要との両方と一致している。

なお、COMAHUE地区の需要にはBsAs地区及び Gran BsAs地区の需要を対象に含んでおり、また、NOA地区の需要にはCENTRO地区及び CUYO 地区の需要を含んでいる。

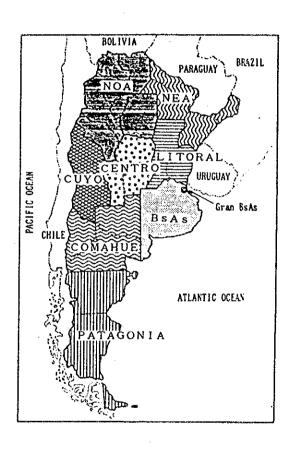


図2-3-3 地域ブロック図

3 火力発電所による大気汚染の現状

3.1 火力発電所の大気汚染防止対策に係る政府のポリシー

3.1.1 大気保全に係る法規制

「ア」国全体の大気環境保全に関しては、2.5.1 項で述べたとおり、1973年に法律(Ley) 20284/73 "Preservacion de los Recursos de Aire" によって大気環境基準が定められており、これを基本として電力セクターでは施行規則 (Resoluciones)を逐次整備している。その一貫として、水力発電所に対しては "Resolución SE N° 718/87"が制定されている。

(1) 火力発電所の環境管理マニュアルの制定

在来型の火力発電所の環境保全に関しては、1990年に施行規則S.E.E. 149/90"Manual de Gestion Ambiental de Centrales Termicas Convencionales" が施行されている。

これは、当時の中央政府管轄下にある在来型の蒸気型火力発電所を対象に、設計から運転に至る各段階において、発電所周辺環境の現状に対し、大気、水、土壌、その他の環境に及ぼす影響要因をあらかじめ考慮して、周辺環境を保全するために必要な具体的な対策を求める内容となっている。

(2) 環境保全マニュアルの改訂(施行規則 SE N° 154/93)

電力セクターの民営化が進められ、従来は中央政府の管轄下にあった発電所は単独 もしくは併合され、発電会社、送電会社、配電会社としてそれぞれ発足することにな った。

そのため、SEは1993年に上記(1) に示した施行規則 149/90 を一部改訂した施行規則 154/93 を制定した。

すなわち、従来の施行規則は民営化以前の火力発電所を対象にしていたが、今後は 中央政府管轄下にあって、運転中もしくは今後運転を開始する発電所を所有するすべ ての企業及び機関に対して適用するように改訂するとともに、大気、水、土壌、その 他の環境要因に対する環境保全目標を定めた条項を廃止して、新たに具体的な目標と 対策を示したものである。

1) 排出基準の制定

火力発電所の煙突から放出される排ガスに含まれるSO₂ 及びばいじんを対象とした排出基準は表3-1-1 に示すとおりである。

燃料 項目 重油 天然ガス 石炭 SO₂ (ng/Nm³) ≤ 1,700 - ≤ 1,700

≤ 140

≤ 6

≤ 120

表3-1-1 排ガスに関する排出基準

2) 排ガスの測定項目と測定頻度

ばいじん (mg/Nm³)

蒸気タービン発電機とガスタービン発電機を対象とした、煙突から排出される排ガスの測定項目と測定頻度は表3-1-2 に示すとおりである。

型式 カ゛スターヒ゛ソ 蒸気タービン発電機 発電機 項目 50MV未満 50MW以上 S02 1回/月 連続 1) 1回/月 連続 1) NOx1回/月 1回/月 ばいじん 1回/月 断続 2) 1回/月

表3-1-2 排ガス測定項目と測定頻度

注:1)連続測定は、記録計付き連続自動測定機による。

2) 断続測定は、断続自動測定機による。

3) NOx 対策

発電機を新設する場合、その出力が50MW以上の蒸気タービン発電機のボイラには低NOx バーナを設置することとなっている。

4) 規定の遵守

火力発電所の設計、建設及び運営の責任を有する企業または機関が上記の規定を遵守しなかった場合は、監督機関は警告を行う。そして、監督機関が定めた期間を過ぎてもこの規定が遵守されない場合は、その原因が解決されるまで、当該発電機の工事または運転の中止を命じることができる。

5) 中央政府管轄以外の発電所の大気汚染防止対策

中央政府管轄以外の州営、協同組合、その他(市営等)が所有している火力発電所に対しては、S.E.E. 149/90 や154/93の規制が適用されないことになる。しかしながら、火力発電所の排ガスによる周辺環境への影響を低減させるという基本方針は、所有者の如何に拘らずすべて同じ条件にあるとの認識から、州営その他の火力発電所を管理しているそれぞれの機関における今後の規制の方針は、中央政府管轄の発電会社に対するものと同一とする方向性にある。

したがって、中央政府管轄以外の発電所についても、施行規則 154/93 に示されている排出基準や排ガス測定など一連の目標と対策を準用する方向に進みつつある。

(3) 関連法規制

火力発電所の大気環境保全に関し、関連する法規制を以下にまとめて示す。

- ①法律(Ley) 24065/92 及び政令(Decreto) 634/91
 - :発電所の再編に伴う役割分担を定めている。
- ②法律(Ley) 21608/77 "Promocion Industrial"
 - :新たに建設されるプロジェクトで、政府の奨励策を受ける場合に、環境に対する影響予測評価を行うことを義務付けている。
 - 法律(Ley) 24051/91及び政令(Decreto) 831/93 "De Residuos Peligrosos"
 - : 工業プロジェクトから発生する有害物質の大気放出についての基準を定めている。

3.1.2 火力発電所大気環境保全のための管理機関

(1) 管理監督機関

電力部門の発電から消費に至る間のそれぞれの部門における運用を適正に管理する

機関として、法律(Ley)24065/92に則り電力行政管理機構(Ente Nacional Regulador de la Electricidad;略称 ENRE)が設立された。

ENREが実施する基本事業は、政令(Decreto) 1398/92 に基づき、管轄区域内における電力の効率的な供給と送電,配電の公共サービスの実施部門に対する監督である。そして、その中には発電,送電,変電,配電の各施設を建設または操業しているときの全般に係る安全と環境保全に関する規定、基準の遵守状況の監督業務が含まれている。

(2) ENREの大気汚染防止に関わる役割

ENREは、施行規則 (Resolucion) SE N° 154/93で定められている火力発電所の大気環境保全のために必要な各種の対策の実施状況を管理する立場にあり、排出基準の達成状況を管理するとともに、各発電所で実施した排ガス測定データを管理するため、発電所から定期的に測定データを提出させる。

また、発電所の排ガス測定業務に対するクロスチェックを行う場合がある。

さらに、各発電所が民営化する際にSEが提出を義務付けた環境診断書(Evaluacion de Impacto Ambiental)の審査を行う。

なお、各発電所で実施する排ガス測定業務に関し、個々の発電所に適した測定方法 や測定機器の選択について、発電会社にアドバイスを行う立場にもある。

3.1.3 大気汚染防止に関する調査の実施体制

電力供給に関連する環境問題の調査を実施するための体制を確立するため、SEは1992年に原子力公団 (Comision Nacional de Energia Atomica;略称 CNEA) との間に技術協力協定を締結した。

(1) 技術協力協定に基づく業務の内容

SEとCNEAの間に締結された技術協力協定は、以下の環境問題の調査に係る計画の共 同策定と実施を目的としている。

- ・発電施設が発生する廃水や排ガスに関する調査
- ・発電所周辺における環境指標の評価
- ・環境モニタリング計器の操作及びデータの解析に係る人材育成事業の展開

(2) ENREとの関連

既に記述したように、SEは電力部門に関連する環境基準の制定を責務の一つとして 有しており、それら基準の遵守の管理はENREが行うことになっている。

したがってSE、CNEA間の技術協力協定によって、廃水や排ガス等の環境問題全般に係る人員、体制と経験を有しているCNEAが環境問題の調査実施体制に組み入れられることにより、ENREが担当している環境対策の監査業務が円滑に遂行できることになる。

(3) CNEAの役割

CNEAは、CNEAとSEとの間に組織された調整委員会 (Comite Coordinador) によって 調整された業務を、直接または第三者を通じて実施するとともに、上記(1) に示した 事業の実施管理を行う。

またCNEAは、SEが設定した「火力発電所から発生する固体廃棄物、排ガス、廃水に係る排出基準」の発電会社における遵守状況を管理するため、ENREが必要と判断する測定を実施する。

(4) 火力発電所大気汚染防止管理体制の現状

上記の各機関の役割を整理し、現状における大気汚染防止管理の運用体制を 図3-1-1 に示す。

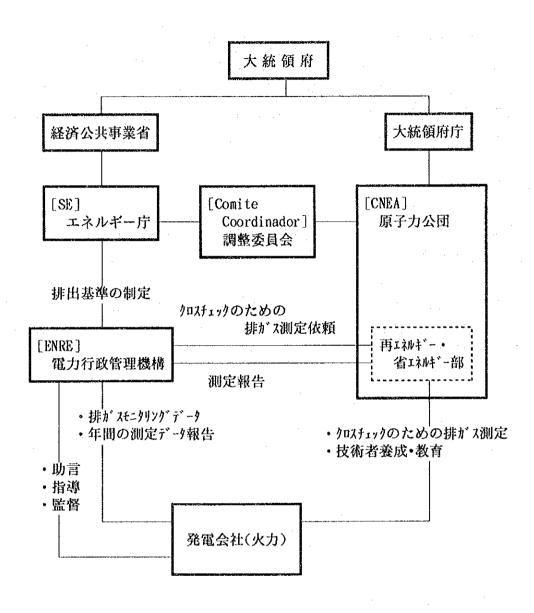


図3-1-1 火力発電所の大気汚染防止に係る組織と運用

3.2 モデルプラントのばい煙及び同国大気環境濃度の測定

(1) 目的

火力発電所のばい煙測定モニタリング・システムを確立する為には、政府による諸 施策の策定とともに、ばい煙に含まれる汚染物質及び周囲大気環境汚染物質の測定・ 分析方法を確立することが重要である。

したがって、両国政府の間で、本調査において、「ア」国火力発電所からモデル・プラントを選定し、このモデル・プラントからのばい煙の測定及び本モデル・プラントの周囲大気環境濃度測定を実施し、これを通じて、本調査の技術面のカウンター・パートであるCNEAに対する技術移転を行うことが合意された。

上記の如く、これらモデル・プラントの環境汚染物質の測定を通じて、「ア」国火力発電所の汚染物質排出の現状把握を行い、環境汚染に対する火力発電所の影響評価を行うことが、本調査の目的でもある。

(2) 測定計画と分析方法の概要

1) 測定対象モデル発電所

以下の三つの火力発電所が、平成 5年 3月 6日から30日まで行われた第一次現地調査時に合意された。

選定理由は以下の通りである。

(a) ヌエボ・プエルト発電所 (タービンNo. 5系列、ボイラーNo. 13系列)

ヌエボ・プエルト発電所は世界でも有数の大都市で、人口も多い首都ブエノス・ アイレスにある。本都市は、都市型の環境汚染が進んでいるといわれており、また、 同発電所は規模も大きいため、本発電所のばい煙の影響評価を行っておくことは、 非常に重要と考えられる為である。

(b) ルハン・デ・クージョ発電所(タービン、ボイラーともに第12号系列)

同発電所は、「ア」国に於いて、典型的な中小規模の発電所であり、また、その

位置する地域が、種々の製造業が立地し、地形的、大気条件的にも特異な環境に位置するため、この発電所の本地域に於ける影響評価が非常に興味あるところから選定されたものである。

(c) サン・ニコラス発電所 (タービン、ボイラーとも第 5系列)

サン・ニコラス発電所は、「ア」国に於いて、唯一の石炭燃料ベースのボイラーを有する発電所であり、石炭燃料は、燃料の多様化の観点から無視出来ない状況に 鑑み、選定の対象となったものである。

また、本発電所では、発電所のばい煙中の SO₂の周囲環境への影響評価の試験を行うことになった。

これは、本地域が地形的にもフラットであり、種々の製造業は、先程のルハン・デ・クージョ発電所と同程度にあるものの、 SO2の発生源は、アセロスパラナ製鉄所程度である為、 SO2単独テストを行うこととなったものである。

2) ばい煙・大気環境測定対象汚染物質

(a) ばい煙の汚染物質

媒煙により放出される汚染物質のうち重要なものは、二酸化硫黄(以下、ここでは、分析技術上の技術用語として以外は、 SO_2 は、大気中で SO_3 へと酸化されるプロセスを経由するために SO_x と表示することとする。)一酸化窒素(これも上記と同様の意味に於いて NO_x と表現する。)及び、ダストである。

したがって、上記三つの汚染物質に、ボイラーの燃焼制御技術上重要なパラメーターである02を加えた項目を測定するものとした。

(b) 大気環境中の汚染物質

一般的に、大気環境汚染物質として測定すべきものは、一次汚染物質としての粒径 100ミクロン以下の浮遊粉じん(SPM)、硫黄化合物(SOx)、窒素酸化物(NOx)、一酸化炭素、ハロゲン化合物、有機化学物質や放射性物質などであり、これに二次汚染物質としてのオゾン、ホルムアルデヒド、アセチル硝酸、過酸化物、光化学スモッグ及び酸性雨などがある。

しかしながら、SO_x、NO_x、浮遊粉じん以外の物質は、今回対象とする固定発生源やボイラー、移動発生源からの排出ガス中には含まれないため、測定対象から除外するものとした。

したがって、これら、 SO_x 、 NO_x 、SPMの汚染物質の測定を計画し、主として、これらの測定技術の技術移転をカウンター・パートであるCNEAに行うこととしたものである。

以上に加え、前にも述べたように、火力発電所のばい煙より排出される SO₂の周囲 環境への影響評価を行うため、 SO₂単独テストを行うこととした。

これを行う対象サイトとしては、サン・ニコラス発電所が推薦された。

この理由は、この地域が、平坦であるという地形学的特徴と、ヌエボ・プエルト、ルハン・デ・クージョ発電所と違い、周辺にはソミサ製鉄所以外、際立った SO₂の発生源がないことにある。

また、この SO₂単独影響評価試験に当っては、この発生源の影響評価に対し、混乱 の因子を持ち込む他の汚染物質の測定は行わないものとした。

3) 本測定で採用された分析方法及び分析計の概要

1992年の7月及び12月に行われた現地調査及び本調査団により行われた3月の第一次調査によると、現在「ア」国には、幅広く使用されている汚染物質測定分析計がほとんどないこと、また、ばい煙の測定や大気環境濃度測定を活発に行っている公的機関もなく、また、民間にもこのような活動はないことが判った。

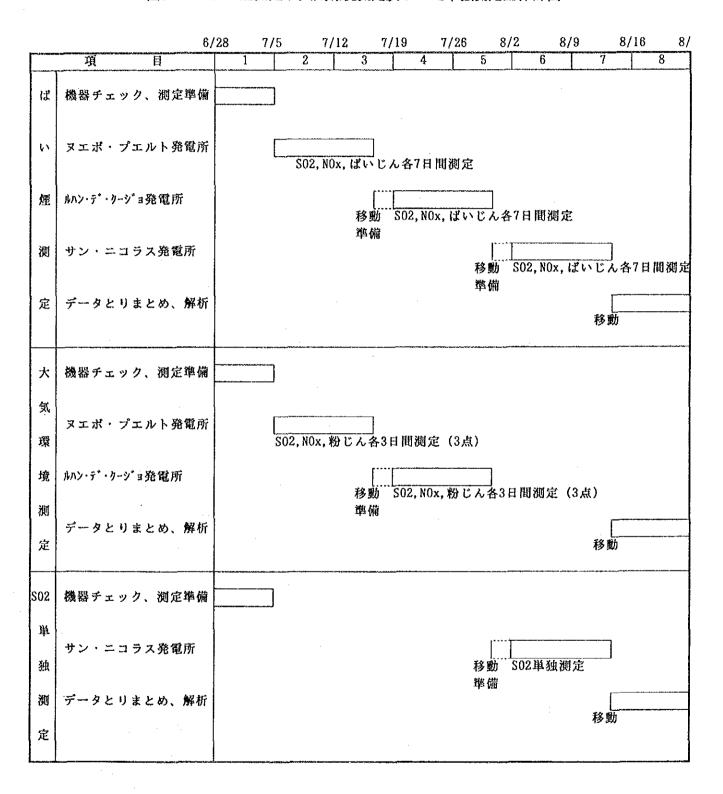
しかしながら、いくつかの火力発電所の中には、発電所の民営化に伴うSEとの契約に従い、活発にモニター計を導入しようとする発電所があることも観測された。したがって、本測定で用いる分析法、分析計としては、原則として、以下の基準によることとした。

(a) 原則として、分析計、試薬、及びその他の支援小機材の調達に障害がない限り、 中南米諸国を含み、米国、ヨーロッパ諸国で一般的に採用されているEPA及びWHO法 を採用することとした。

- (b) 今後、SE及びCNEAが火力発電所のばい煙監視システムを構築し、さらに、自身の 制度上の測定方法を確立するためには、化学分析法が重要であるので、これを中心 とすることとした。
- (c) SOx、ダストの測定を行うためには、重油及び石炭を燃料としていることが好ましく、これを使用する期間は、7月~8月であるので、分析機材の整備はこの時期に間に合うように配慮した。
- (d) 今後、CNEAのスタッフが火力発電所のばい煙検査を行っていくに当り、使い易く 持ち運びが容易なポータブル分析計を選定することとした。また、この際、調査団 には、なじみの薄い分析計であっても、現実にいくつかの火力発電所に導入されつ つあるポータブル分析計があれば、測定値の妥当性の検討をCNEAが将来行う必要が あるので、これらの機材も購入の対象とした。
- (e) また、同時に、大気環境測定に用いられる NOx、SOx、SPMモニターに関しては、 測定期間中に、適切な技術移転が行われることを前提に、「ア」国政府のばい煙・ 大気環境測定に有効に用いられるものを整備することとした。

以上、本測定に採用された主要な分析方法、分析計を要約すると、表 3-2-1のようになる。

表3-2-1 本測定で採用された分析方法、分析計の概要


Welgen	-		The second secon	
		分析方法	分析計	特記事項
1.	ば	い煙測定		
•	1)	· — • · • · •	ポータブル分析計: MSI-2000	SOx, NOx, O ₂ , CO
	2)		自動連続分析計: IRA-107	Sox
	3)		自動連続分析計: NOA-7000	N0x 02
	4)	亚鉛-NEDA法	化学分析法	NOx
	5)		化学分析法	S0x
	6)	重量直接測定法	ダスト・サンプラー	ダスト測定及びNOx、SOx
				化学分析定量用サンフ。リング
	7)	光散乱法	ポータブルダストモニター	ダスト
	8)	化学吸収法	オルザット分析装置	0 ₂ , C0, C0 ₂
•	-4-/	는 153 나는 200 수		
Z.		気環境測定 ザルツマン法	小學八七、哪世头	No.
	1)	リルノマン伝	化学分析:吸収法、エアサンプラー	NOx
	9)	パラロザリニン法	インピッングャーセット: S-601, 8003-2	00-
	۷)	ハブロッリーン伝	化学分析:吸収法、エアサンプラー インピンジャーセット:S-601,8003-2	S0x
	3)	重量直接測定法	1/c /y +~&yr : 5-bul, 8003-2 ハイボリュームエアサンプラー : HVC-1000N	SPM
	4)		1000N 自動連続モニター: BAM-102S	SPM
	5)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	自動連続サイン	NOx
	6)		自動連続分析計:APSA-350E	
	7)	2111 1 124-124 P 11 4-1	自動連続分析計: APDA-350E	SOX SPM
		p 一級吸収伝	日期理就分析計:APVA~35Ub	SPM
3.	支护	爰機材		
	1)	風向風速計	: OSK-15038	
	2)	電子天秤	ダスト・SPM分析用	3100g x 0. lg
	3)	パーソナルコンピューター	環境測定解析、拡散モデル用	IBM-Compatible, 486XL
	4)	分析用試薬	ザルツマン、Zn-NEDA、	
		•	沈澱滴定法用	
	5)	ガラス器具	同上.	
	6)	インキュベーター	同上	
	7)	大気測定車	各種分析計、モニター設置、	
			機材輸送用	

(3) 測定総括スケジュール

測定は、三つのモデル発電所について、合計 8週間で行った。

この総括スケジュール表を図3-2-1 に示した。

図3-2-1 ばい煙測定、大気環境測定及び SO2単独測定全体計画

3.3 火力発電所の排出環境汚染物質の影響評価

3.3.1 短期拡散シミュレーションによる評価

3 発電所で求められた運転条件、測定結果により、短期拡散シミュレーションを行った。 入力データを表3-3-1に、計算結果を表3-3-2、図3-3-1~図3-3-3に示した。

表3-3-1 短時間平均拡散濃度計算一覧表

	発電所名	314° • 7° 11/1	ルハン・テ゛・クーシ゛ョ	サン・ニコラス
項目	(単位)	発電所	発電所	発電所
ボイラ NO.		13	12	5
発電容量	(MW)	110	60	350
東西計算範囲[X]	(m)	50,000	35,000	40,000
南北計算範囲 [Y]	(m)	50,000	35,000	40,000
スタック高さ [HC)] (m)	47	50	120
スタック直径 [D]	(m)	3. 0	4.1	8. 1
(湿り)燃焼ガス	量(Nm3/h)	468,000	271,000	1, 410, 000
出口ガス温度	(℃)	136	116	134
S02排出量	(Nm3/h)	94	72	630
風向	(°)	NE (45)	SW (225)	E (90)
風速	(m/s)	3. 9	1.7	3. 2
温位勾配	(°C/m)		0.0033	
排ガス上昇式名			CONCAWE	
拡散式名			Pasquill-Giffo	ord
大気安定度			D (中立)	
平均化時間	(min)		60	
有効煙突高さ	(m)	182.6	225. 7	390. 8
上昇高さ	(m)	135.6	175.7	270. 8
最大着地濃度	(ppm)	0.006259	0. 006527	0.007345
" 風下距離	(m)	7, 998. 2	11, 061. 4	26, 962. 7

表3-3-2 短時間平均拡散濃度計算における測定局重合濃度

		重合濃度	座標位	立置 (m)
 測定局等名 		(ppm)	X(東西方向)	Y(南北方向)
スエボ・プエルト発電所	: Nuevo Puerto P. P		45, 000	5,000
ボ カ	: Boca	0.000E+00	48, 530	13,530
CNEA	: CNEA - Tandar	0.000E+00	28, 660	4, 250
Eny	: Moron	1. 733E-05	25, 000	15,000
ルハン・デ・クージョ発電房	f: Lujan de Cuyo P.P	_	5, 000	30,000
CNEAクージ 3	: CNEA - Cuyo	5. 01 IE-03	16, 650	17,140
LII市役所	: Munici. LH	1. 141E-05	16, 050	7, 090
公園	: Parque SM	4. 048E-06	12, 630	12,310
スポ゜ーツセンター	: Polideportivo	1. 299E-04	20, 970	21,160
No. 1-237小学校	: Escuela No. 1-237	0. 000E+00	12, 430	32,110
サン•ニコラス発電所	: San Nicolas P.P	-	38, 000	20,000
クラフ゛•ソミサ	: Club Somisa	0.000E+00	38, 560	20, 200
飛行クラブ	: Aero Club	0.000E+00	36, 350	23,580
釣・猟クラブ	: Club CyP	0.000E+00	37, 640	25, 420
キャンプ場	: Camping LyF	0.000E+00	34, 070	23, 210
No. 35小学校	: Escuela No.35	0.000E+00	33, 270	19,760
SN市役所	: Munici. SN	0.000E+00	34, 260	17,920

※座標原点=北西角

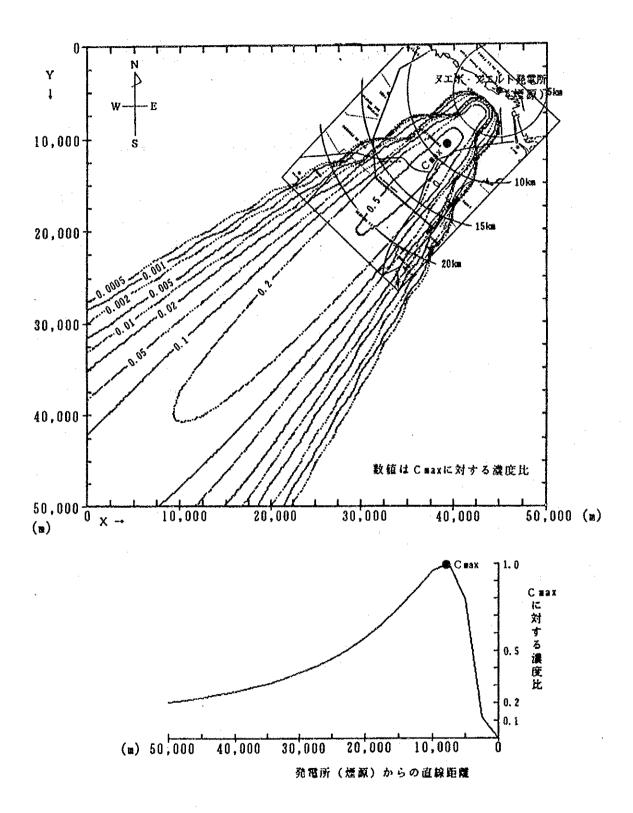


図3-3-1 ヌエボ・プエルト発電所地区

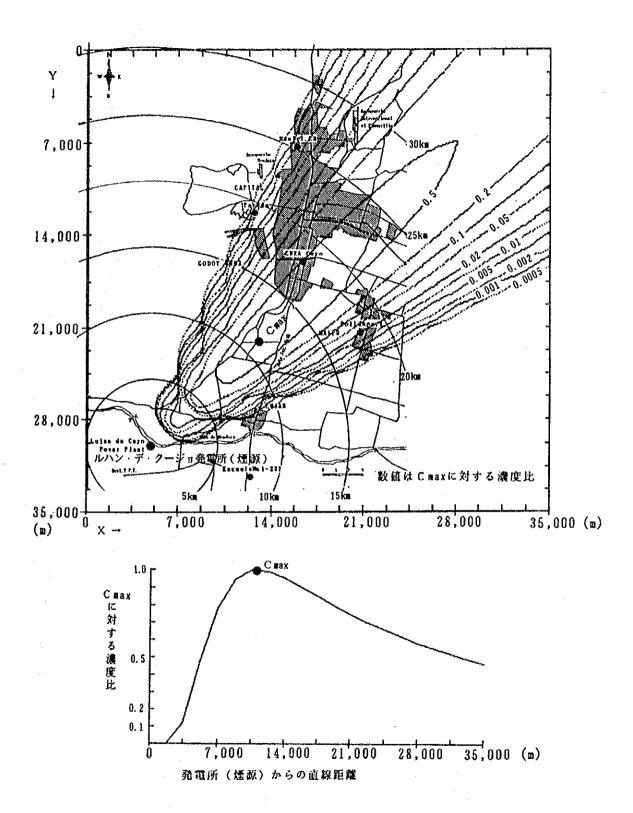


図3-3-2 ルハン・デ・クージョ発電所地区

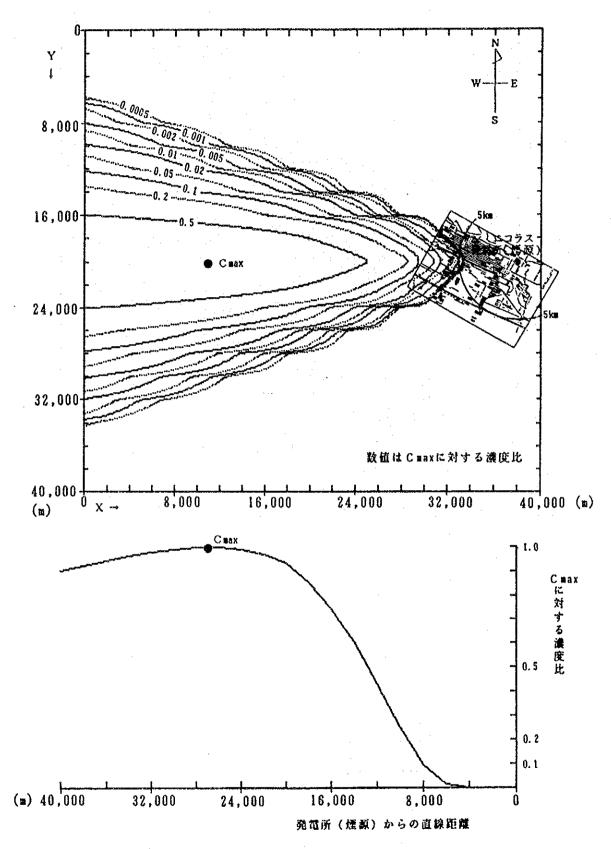


図3-3-3 サン・ニコラス発電所地区

3.3.2 ばい煙総轄評価

(1) 主要サブセクターからの環境汚染物質排出量の推算値

主要製造業に於ける環境汚染物質排出量をSOx、NOx、ダストにつき、排出源データより求めた結果を表3-3-3及び表3-3-4に示した。

表3-3-3 アルゼンティン共和国に於ける環境汚染物質の排出総量の推定値

	S0x	NOx	ダスト
 発電所	38079	71693	
跌銷	11564	8157	88062
石油	3728	1176	
セメント		84950	17900
紙パルプ	13843	5736	4037
自動車		107994	
	67214	279706	109999

表3-3-4 アルゼンティン共和国環境汚染指標

	環境汚染指標	NOx	S0x
GDP(百万US\$)	93260		
総人口(百万)	32.61		
1人当たりGDP(US\$/人)	2860		
1次エネルギー消費量(1000 toe)	34196		
1人当たり1次エネルギー消費量			
(kg-oe/人)	1049		
GDP当たり1次エネルギー消費量			
(toe/GDP)	367		
排出量(toe/年)		279706	67214
l人当たり排出量(kg/人)		8.6	2. 1
GDP当たり排出量 (g/US\$)		3	0.72
NOx推定値(1000トン/年)	302		342
l人当たり排出量(kg/人)	9		10
GDP当たり排出量 (g/US\$)	3		4

(2) 人口、GDPと一次エネルギー消費量との関係

表3-3-5 に世界の一人当たりエネルギー消費量とその年平均伸び率を示した。1987年の世界の一人当たりエネルギー消費量は、1,680kg-oe/人であり、アジア、アフリカ、中東、ラテンアメリカがこれを下回っており、これを経済的地域区分でみると、1987年時開発途上国636kg-oe/人、計画経済圏1,646kg-oe/人、0ECD諸国5,060kg-oe/人である。

図3-3-4 に地域別の一人当たり GDPと一人当たりエネルギー消費量を示した。i.e. 一人当たり GDPが大きいほど一人当たりエネルギー消費量が大きくなることを示している。

図3-3-5 に世界の地域別一人当たり GDPと GDP当たりエネルギー消費量の関係を示した。一般的には、一人当たり GDPが大きいほど GDP一人当たりのエネルギー消費量が小さくなる傾向があり、第二次オイルショック以降の省エネルギー努力によるものと推定される。

「ア」国の状況は、表3-3-6 に示すように一人当たりエネルギー消費量基準では、世界の平均グループ、 GDP当たりエネルギー消費量では、中近東グループに属している。このことは、 GDPの過小評価、又は省エネルギーが予想以上に進んでいると言えるかもしれない。

(3) GDPとSOx排出量の関係

図3-3-6 は、GDPとSOx排出量との関係を示したものである。「ア」国の SOxの一人 あたり排出量は、 2.1kg/人(日本:6.7、米国:83.2、カナダ:144.7、ドイツ:15.7)、GDP 当たり排出量は、0.72g/US\$-GDP(日本:0.5、米国:4.6、カナダ:8.5、ドイツ:1.5) であり、かなり低い値と考えられる。

(4) GDPとNOx排出量の関係

図3-3-7 にGDPとNOx排出量の関係、図3-3-8 に一人当たり GDPと GDP当たりの排出量を示した。「ア」国の NOx排出量は一人当たり、 GDP当たり、それぞれ 8.6kg/人(日本:9.5、米国:79.5、カナダ:74.6、ドイツ:36.3) 3g/US\$-GDP(日本:0.7、米国:4.4、カナダ:4.4、ドイツ:3.5) であり、上記 SOxの場合よりも世界的にかなりのレベルに達しているといえよう。

表3-3-5 世界の地域別社会・経済、エネルギー指標

			※	· 数					%人 在學數語與用	(%) 4	-		48/02		
	~	_ 	- C C C	,	中海水一片三十二	中教學			1		1	13 45 17	18 XX	13/2 = 100 100	
景	(回)	(百万人)	(85P10(KS)	IKS)	(Mitoe)	()(TY .	1	5	Т	- イドグキー 危険機	対対対		40.5	1. 2027
	1975	1987	1975	1987	1975	1987	1975	1987	1975	1987	1975	1987	1987	1987	1987
757	2,196	2,714	1,428	2,644		1,620	56.4	56.7	13.3		17.2	L		185	156
イセアニア	17]	22	138	192		95	4.0	0.4	13		1.2		115	139	25
H-1	119	171	367	476		214	3.1	3.6	3.4		1.2			130	280
R	307	449	274	377		302	7.9	9.6	2.6		3.0			137	167
ファンアメリカニッ	291	384	210	22/	300	487	7.5	8.0	4.8	4.7	5.1	6.1	•	142	158
K	82	270	3,238	4,633	1,868	2,100	6.1	5.6	30.2						112
(B)	343	356	2,323	3,066	1,114	1,317	80	7.4	21.6				25	132	130
ン語・発表	384	422	2,453	3,121	1,387	1,905	6.6	8.8	22.9	20.5		23.7		127	137
日本町	3,896	4.785	10,731	15,232	6,042	8,039	100.0		100.0		,			142	133
	710	767	6,558	9,318	3,381	3,880	18.2		61.1					142	115
に可能な可能	1,372	1.587	2,650	3,582	1,794	2,612	35.2	33.2	24.7		:			135	146
医化剂口证	1,813	2.431	1,523	2,332	868	1,547	46.6		14.2					153	170
医光杆	3,896	4.785	10,731	15,232	6,042	8,039	100.0	-	100.0		,			142	133
	777 - 4787 7	*	1				, de la companya de l			1 3					
	1011	1 ヘヨだり	375.0	マンヨケマ	言いる	GDP単行り	単れり		年平均伸び路	(%) 索込申	1975-187			工术小工	エネギー球性値
5		ָבָּי פַּ	COF	1474	刺流	14/4.一治数量	近数国			1 人当たり		1人当たり	人当たりGDP当たり	対人口	は入口
5 奏	(Mioe)	(%SPS/ \/	7	(kg-oc	3	(toe/'85百万\$	5百万\$)	70	GDP	GDP	消費量	エネルキー	14/14 -		
	1987-'75	1987	1975	1987	1975	1987	1975			1		治数据	治数解	1975-'87	1975-'87
ノイン	583	650	974	472	597	726	613	1.8	5.3	3.4	3.8	2.0		2.1	7.0
みセアルア	21	8,142	9,818	4,332	4,850	532	494	1.2	2.8	1.6	2.1	0.9	9.0	1.8	0.8
1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	34.	3,085	2,782	63	1,252	202	450	3.1	2.2	60	9.3	6.0		3.0	4.2
	171	300	839	586	672	629	800	3.2	2.7	50	4.4	1.1		4.	1.6
	1/8	1,756	1,882	1,062	1,268	605	674	2.3	2.9	9.0	3.9	1.5		1.6	1.3
K I	757	13,563	17,186	7,826	7,789	577	453	1.0	3.0	2.0	1.0			1.0	0.3
	203	6,769	8,622	3,245	3,702	479	429	0.3	23	2.0	1.4			4.7	0.6
ノ語・矢式	518	6,392	7,397	3,614	4,515	565	610	8.0	2.0	1.2	2.7	1.9		3.4	1.3
1.4. F. O. C.	1,997	2,755	3,183	1,551	1,680	563	528	1.7	3.0	1.2	2.4			1.4	0.8
CECD 計画を必要	200	9,231	12,151	4,759	2,060	516	416	9.0	3.0	2.3	1.2			1.8	0.4
日本は一番	20.00	1,932	2,257	1,308	1,646	677	729	1.2	2.5	1.3	3.2		(-D-	2.6	1.2
医 第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	080	25 6	959	478	98	570	6 83	2.5	3.6	1.1	4.9	2.4	1.3	2.0	1.4
日本町	1,997[2,755	3,183	1,551	1,680	563	528	1.7	3.0	1.2	2.4	0.7		1.4	. 0.8

[・]人口、GDP:「石油代替エネルギー利用地球環境影響調査・平成2年3月新エネルギー・産業技術総合開発機構、 (財)日本エネルギー経済研究所」より作成 ・エネルギー: IEA STATISTICS [ENERGY BALANCES OF OECD COUNTRIESY [WORLD ENERGY STATISTICS AND BALANCES] から作成した物で、植物性燃料を含む 1 次エネルギー消費量

表3-3-6 OECD諸国の人口、エネルギー消費量

-			T.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(m. Fr/00			-	-	and the same	d once	H-MIN	-		-	-	-		-	Portace del	ж		-	(Table Spirit	e Pinte	MENCHEN.	- بالانبا	حجحت		· · ·	orași de
χOχ	(kg/		I	79.59				27.94	29.89	48, 52	133 232	26.49	36.34	_		32.72	29.64	58.2	39.4	53.23	11.00	21.24	46.63	28.88	47.81	8	911 75	45.81	540.94) -	9 6
88 X	\g \g \g	Capita)	144.77	23	. 73 85	0	C	11 00	41.66	47, 16	50.84	21.78	15.72	0		49.5	34.87	31.75	17.44	15.85	19.83	0	88	11.0	0.45	56. 52	52	87.89	6	· e		2	· c
žQž	$\stackrel{\sim}{\sim}$		4.4	4		6	6	2.4	2.5	e	4.2	23	က က	•	æ		2.4	6.3 60	3.2	6.0	1.9	63	3.4	60	2	0.7		2,5			· =	6)
Š	/x0s-8)	ŝ		4.6		0	0	(T)	ເນ	က်	4.		 	0	0	6.2	83	2.1	7.		8	G	90	6	9	i.	RR	90.7	6	· e	- C	6	,
Energy		(11USS)	365	306	168	270	273	224	282	202	344	197	232	និ	303	992	167	564	283	230	191	165	284	100	178	203	82	312	270	209	205	249	2
CDP/ A			17, 114	18, 277	13, 923	12, 676	10, 114	11, 368	12, 043	12, 927	13, 306	12, 912	10,461	6, 430	14, 111	7, 963	12.317	15, 185	12, 144	14,561	6. 180	9, 144	13, 742	15, 680	3, 969	12, 705		18, 166	12,250	10, 532	11 285	13, 539	}
Energy	(kg-oe/	Capi ta)	6, 250.4	5, 598. 2	2.343.4	3, 419, 4	2, 761.0	2, 658. 7	3, 401. 1	2,615.0	4, 570.9	2.539.2	2, 426.5	1, 478. 1	4, 268.8	2 116.6	2 053.9	8.571.4	3, 431.2	4, 230.0	1.177.3	1.510.7	3, 906.7	2.934.7	707.8	2,584.9		5, 660.5	3,310.7	2, 203, 9	2.317.7	3.370.8	
×Q×	(1000 tons)		1, 959	19, 800	1, 176			213	297	249	276	1.656	2, 859			115	1. 705	23	585	225	122	826	396	194	2, 642	480	21, 700	12, 600	10, 900	36, 200			
×0×	(1000 tons) (1000 tons) (kg-oe/		3, 800	20, 700	88			121	414	242	302	1. 223	1. 237			174	2,006	22	-259	62	565		213	7	ĸ3	3.813	1, 600	24, 200			·[-		
Consumption of	Snergy by CDP	(TOE/1000 \$US)	0.46	88.38	0.21	0.30	0.24	0.26	5.3	0.27	0.40	0.24	0.28	0.21	0.29	0.30	0.18	0.79	0.33	0.34	0.17	0. 18	0.36	0.20	0. 19	0.24		0.39	0. 29	0.25	0.24	0.30	
Electricity (Garanted	(TTh.)	499. 4	2, 954, 1	791.2	147.1	28.7	49.3	96.8	22.8	53.7	403.0	438.4	34.2	4.5	13.5	207.3	9.6	73.1	116.7	25.7	145.6	143.7	85 85	52.0	310.7	86.3	3, 453.6	175.9	2, 215, 7	1, 741.8	6, 636, 3	11,403.3
CDP	(billion of US\$)	1989	449.2	4, 547.0	1,714.2	213.1	33.8	90.5	119.7	66. 3	65.1	725. 2	822.9	64.5	3.6	28.0	788.5	5.7	180.3	61.6	63.0	355.6	116.7	105.4	219.3	727. 2	9.6	4, 996. 0	246.8	4, 530.8	3, 866. 9	11, 488.0	
Consumption	of Energy	(MTOE/WTEP)	164.06	1, 382, 71	288.51	57.47	සි	20.27	33.88	13.42	22.69	142.60	190.88	14.83	1.08	7.44	118.15	32 %	59.95	17. 88	12.17	55. 73.	33. 18	19. 73	:: &	147.95	25.04	1. 556. 77	66.71	948. 12	794. 19	2 860.11	5, 556, 40
	(1000 km2)		9, 976. 1	9, 372, 6	377.8	7, 586. 9	268.7	83. 9	30.5	43.1	338.0	549.0	356.9	132.0	103.0	70.3	301.2	9%	40.8	324. 2	92.4	504.8	450.0	41.3	789.6	244.8	255.8	19, 348, 8	7, 955. 5	4, 489, 3	2, 368. 4	32, 171, 4	133, 824, 7
Population	(1000)		25.248	248.777	123, 116	16,807	3,343	7, 624	868 %	5. 132	4, 964	56, 160	78, 665	10, 033	253	3,515	57. 525	378	14,849	4. 227	16, 337	88 88 86 86 86 86 86 86 86 86 86 86 86 8	8, 493	6, 723	55, 255	57. 236	23,800	275. 025	20, 150	430, 195	342, 656	848, 486	5, 292, 200
	Country		Canada	NSA MSA	Japan	Australia	N. Zealand	Austria	Belgium	Bennark	Finland	France	Gernany	Greece	celand	Ireland	taly	Luxencourg	Netherlands	Normay	Portugal	Spain	Sreden	Switzerland	Turkey	5	Yugoslavia	N. America	Australia	0330	333	656	Vor1d

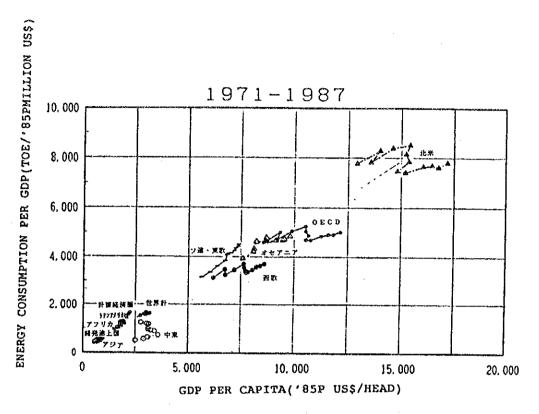
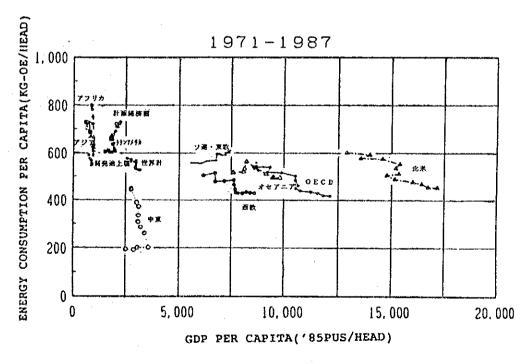



図3-3-4 RELATIONSHIP BETWEEN GDP PER CAPITA AND ENERGY CONSUMPTION FOR REGION OF THE WORLD

EXIS-3-5 RELATIONSHIP BETWEEN GDP PER CAPITA AND ENERGY CONSUMPTION PER GDP

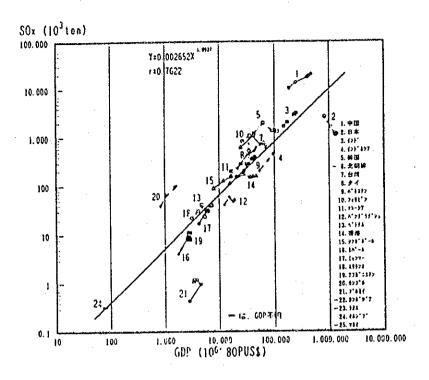


図3-3-6 RELATIONSHIP BETWEEN GDP AND SOX EMISSION

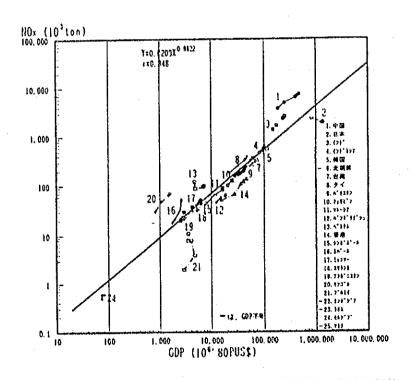


図3-3-7 RELATIONSHIP BETWEEN GDP AND NOX EMISSION

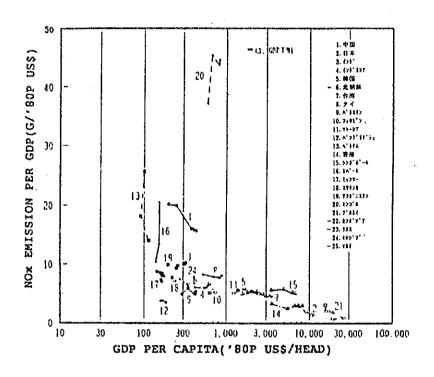


図3-3-8 RELATIONSHIP BETWEEN GDP AND NOX EMISSION PER GDP

4 火力発電所に於ける大気汚染防止対策

4.1 大気汚染防止に係るマスタープランの策定

「ア」国の火力発電所に対する大気汚染防止対策として今後検討が必要と思われる各種の課題を整理し、全体計画として以下に提案を行う。

これらの課題を、行政が検討すべき課題と、発電会社が検討すべき課題とに分けて示したが、「ア」国における電力セクター以外の部門を含めた全国的な大気汚染防止計画と対策は、今後逐次整備されるものと考えられるため、これらと電力セクターの全体計画との整合性を図っていく必要がある。そのため、以下に示す大気汚染防止のための検討課題についても、現状の大気汚染防止対策の進展に合わせて取捨選択していくことが必要と考える。その具体的な内容については"4.2 項"以下に示す。

4.2 大気汚染防止に係る政府の役割

火力発電所による大気汚染物質の排出状況を把握するとともに、将来の動向を予測しな がら最終的には大気汚染防止に係る長期計画を策定し、火力発電所周辺の大気環境の保全 を図ることを目的として、行政が果たすべき役割を図4-2-1 に示す。

4.3 大気汚染防止に係る個別発電所の役割

民営化された火力発電会社は、所有する火力発電所から排出される大気汚染物質による 周辺の大気環境を保全するために、行政から示された各種規制を遵守するとともに、施設 の運転、保守、管理の徹底を図っていく必要がある。また、行政側の指導を受けながら、 関連する地方自治体並びに周辺の発電会社と十分な連携を図っていく必要がある。

このことは、火力発電所の効率の向上、事故の未然防止にも役立つことになり、結果的 に発電会社に大きなメリットをもたらすものと考えられる。

大気汚染防止に係る発電会社が果たすべき役割を図4-3-1 に示す。

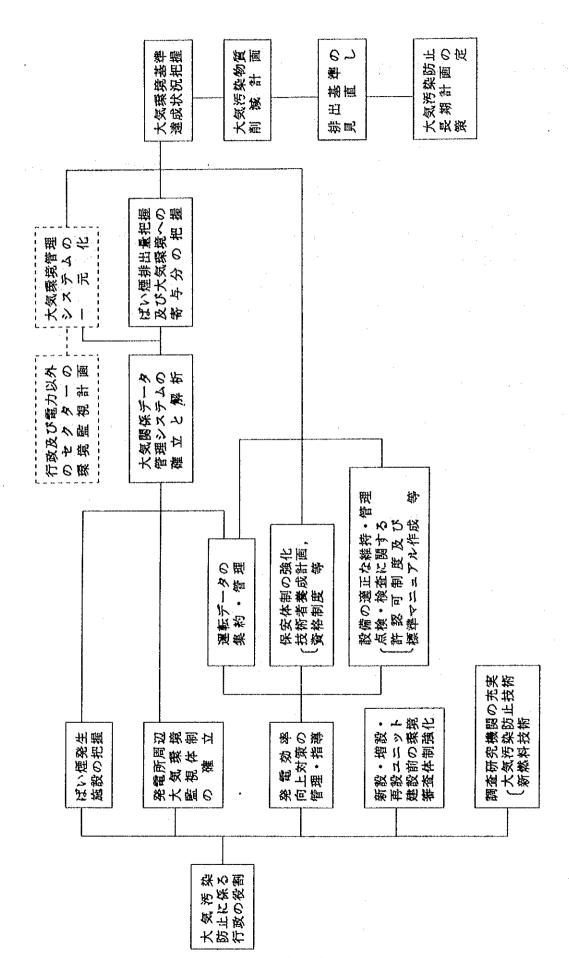
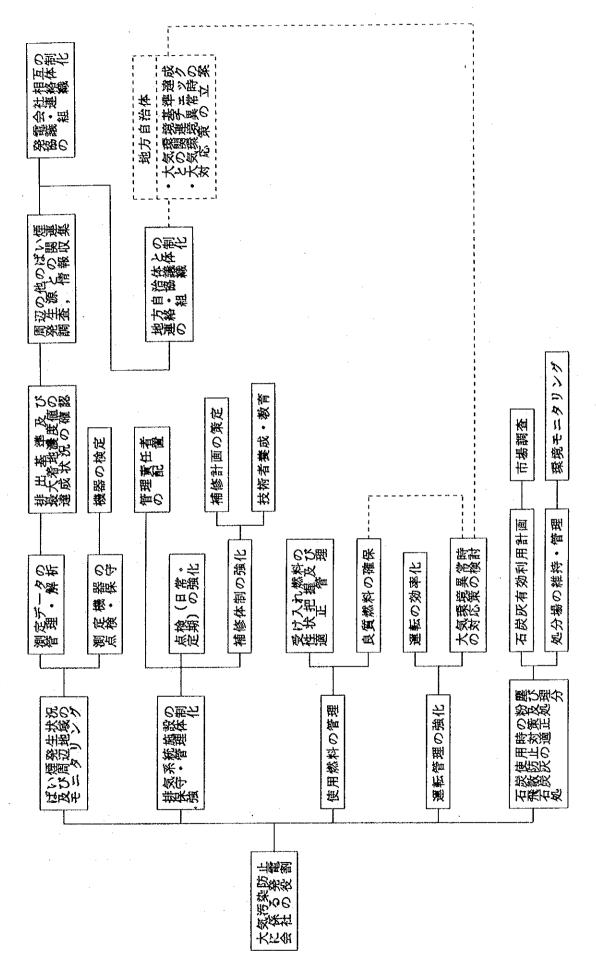



図4-2-1 大気汚染防止に係る行政の役割

大気汚染防止に係る発電会社の役割

図4-3-1

4 - 3

4.4 汚染物質低減の為の燃焼技術の改善

「ア」国共和国のほとんどの火力発電所は1年の中、天然ガスを約9ヶ月、重油を約3ヶ月燃料として使用している。天然ガスは衆知の如く、いわゆるクリーンエネルギーであり、その燃焼排ガス中の汚染物質としては、NOxを除けばSOxは全然問題とならないし、ばいじんも排出基準に抵触する恐れはない。従って、天然ガスを使用する約9ヶ月間はNOx対策のみが必要となる。これに対し、重油を使用する約3ヶ月間はNOxのみならずSOxも、場合によってはばいじんの対策も必要となる。

全般的にいえることであるが、「ア」国の場合、重油を使用する約 3ヶ月間だけの為に諸々のばい煙処理設備を設置することは、経済的に甚だ不利であり、この件は国家レベルのエネルギー政策で改善されるべき問題と考える。したがって、火力発電所のばい煙による大気汚染物質の低減対策を考える場合には、(1)冬季に於ける天然ガスの火力発電所への供給制限を解消するための天然ガス供給ラインの増強計画の具体化、(2)燃料価格政策、(3)以上を踏まえた電源開発計画など国家的政策の立案に関わることとなり、本調査の範囲を逸脱することが懸念される。

ここでは、これらの問題をさておき、現在と同様に 1年の中、約 9ヶ月間は天然ガス、 残り約 3ヶ月間は重油を使用するものとして、その場合に現在課せられているばい煙排出 基準を遵守する為の改善策について述べる。

(a) S0x対策

前述のように、重油を使用する約 3ヶ月間は SOx対策を必要とする。 SO2の排出基準は重油または石炭燃焼の場合1,700 mg/Nm³であり、これは Sの含有量約 1.1%の重油またはS 分約 0.7%の石炭を燃焼した場合の排ガスに相当する。従って、現在の排出基準を遵守する為にはこれらの品質に相当する重油または石炭を使用する方が新規に脱硫設備を設置するよりも有利であると考える。

(b) ばいじん対策

ばいじんに関する現在の排出基準は油燃焼の場合140 mg/Nm³であり、この値は S 分約0.94%の重油を燃焼した場合の排ガスに相当する。EPA (環境保護庁; Environ mental Protection Agency) によれば、重油を燃焼した場合に発生するばいじんの量は重油中の S分に比例して増減する。従って現在の排出基準を遵守する為には S 分約 0.9%以下の重油を使用する方が新規に除じん設備 (EP) を設置するよりも有

利となる。

S分約 0.9%の重油を使用すれば排ガス中のばいじん濃度は、約140 mg/Nm³、 $S0_2$ 濃度は約1.500 mg/Nm³となり、現在の排出基準を守ることができる。

石炭燃焼の場合、ボイラー出口のばいじん濃度は10,000~30,000mg/Nm³になるが、電気集じん装置で脱じんされるのでスタックガス中の濃度は200~600mg/Nm³あるいはこれ以下となる。

(c) NOx対策

現在、「ア」国ではまだ火力発電所に対する NOxの排出基準を制定していない。 しかし NOxがオキシダント生成の重要因子であり、環境汚染、都市公害を惹起する 汚染物質であることは十分に認識されている。この NOxの発生を可能な限り最小限 にすることは、環境保全に寄与するのみならず燃料の節約にもなるので、下記の燃 焼改善を勧めたい。

ボイラー内での燃料の燃焼に伴い発生する窒素酸化物(NOx) は一酸化窒素(NO)と二酸化窒素(NO2) が殆どを占め、しかも通常、 NOxの 95%程度をNOが占めている。燃焼によって生じる NOxには、燃焼用空気の窒素分子が高温条件下で酸素と反応して生成する熱的NOx(Thermal NOx)と、燃料中に含まれる窒素化合物が燃焼時に酸化されて生成する燃料 NOx(Fuel NOx)がある。燃料の種類や燃焼方法によって異なるが、Thermal NOx の全発生 NOxに占める割合はガス燃焼の場合で100%、重・原油で 30~40%、石炭で 10~20%程度である。 Thermal NOxを抑制するには、燃焼温度の低下、酸素濃度の低下、高温域における燃焼ガス滞留時間の短縮等があげられる。

前述の如く Thermal NOxは、燃焼温度が高く、02が多く、高温滞留時間が長いほど多く生成する。燃焼の際に過剰空気を抑制して燃焼ガス中の02を半分程度($2\sim3\%$)に減らせば、 NOxを $10\sim30\%$ 減らすことが可能である。この場合には空気が不足して不完全燃焼を起こすことのないよう、十分の制御が要る。空気比を下げ過ぎるとすすが発生しやすくなる。表 4-4-1に低過剰空気燃焼による発生 NOxの低減状況を示す。

開発途上国では一般に燃焼ガス中の02の測定は行わず、不完全燃焼を避けるために大過剰の空気を用い、このため NOxは表 4-4-1の②程度になることが多い。02を測定して過剰空気を抑制すれば、 NOxを 20~30%減らすとともに、燃料消費を 5~

10%減らすことが可能である。

なお、過剰空気を抑制すれば、 SO3の生成も減らすことができる。 SO3は環境に 悪影響を与えるだけでなく、燃焼炉やボイラーの下流にあるエアヒーターや電気集 じん機 (EP) などの装置を腐食する。また、 SO3は湿式排煙脱硫では十分に除去し 難いので、過剰空気を抑制して減らすことは重要である。

表4-4-1 低過剰空気燃燃による NOxの低減

(単位:NOx ppm)

掠	料	石 炭	重油	ガス
	N(%)	0.7~3	0.1~0.5	0
02投	9 算值(%)	6	4	5
① 標	準 燃 焼	550~800	400~500	300~400
② 空:	気過剰燃焼	600~900	500~600	350~450
③ 低	酸素燃炼	450~650	300~400	200~300

(注) NOx 1ppmは 2mg/m³に相当

前述の如く、燃焼の際に過剰空気を抑制して、燃焼ガス中の残留02を半分程度(2~3%)に減らせばNOxを10~30%減らすことが可能であり、また燃料消費を5~10%減らすことができる。ただし、この場合空気比を下げ過ぎると不完全燃焼を起こし、すすが発生するので十分な燃焼制御をする必要がある。各発電所には自動燃焼制御装置が取りつけられていると思われるので、これにより低過剰空気運転を行い、十分な管理をして、NOxの低減と燃料の節約に努められたい。低過剰空気運転は今後のNOx低減対策の基本となるので、従業員の意識改革と教育、訓練の為にも是非実施することをすすめる。ただし、低過剰空気運転をすれば、ばいじんの濃度が高くなるので、ばいじん排出基準値を越えないよう十分管理する必要がある。

現在、排出されている NOx濃度はガス燃焼、重油燃焼、石炭燃焼の場合、それぞれ(600~900)、(800~1,200)、(1,100~1,800)mg/Nm³になっていると推定されるが、低過剰空気運転をすることにより、それぞれ(400~600)、(600~800)、(900~1,300)mg/Nm³にまで低減可能となる。

(d) 改善案のまとめ

上記の改善案を整理すると次の如くなる。

① 低硫黄燃料の使用

S分0.9%以下の重油または0.7%以下の石炭を使用すること。

② 低過剰空気運転の実施

この改善案による影響としては、コスト面では低硫黄燃料使用によるコスト高の デメリットがあるが、反対に低過剰空気運転による燃料節約のメリットがありデメ リットの相当の分が相殺される。他方、従業員の教育、訓練の面では低過剰空気運 転の実施による意識の改革が大きなメリットとなると思われる。

また NOxの排出量が低減されるので環境改善の効果が期待できる。

5 火力発電所のばい煙インスペクションシステムの提案

5.1 ばい煙監視システムの基本設計

現在「ア」国の火力発電所は、SOx、NOx、ダストの定期的測定を行い、その報告を行う事が義務付けられており、これらの結果を踏まえ、SEとしてはENREを通じて火力発電所から排出される環境汚染物質を常時把握しているが、この調査の一つの提案として、火力発電所から排出される環境汚染物質監視を目的とする地域モニタリングステーションの設置を検討した。

この地域モニタリングステーションの設置は、当然SE単独で行うべき事ではなく、「ア」 国環境庁を始め、経済貿易省、さらには州政府、市役所との連携に基づき実施されるべき 事であるが、一方では環境汚染排出量の寄与率の高い事業所を所管するSEがまず先発的に 実証プラントとして、その実施を進めることは極めて意義の深いこととも理解される。

この地域モニタリングステーションの設置は、SEの行政区画の13地域に設置されることが望ましいと考えられるが、計画の第一ステップとして 3ヶ所の計画を行う事とする。すなわち、SEに中央監視センター(Central Inspection and Monitoring Center)を設置し、3地域に地域環境モニタリングステーション(RMS、Regional Monitoring Station)を設置することにする。

(1) プロジェクトの構成

プロジェクトは以下の要素より構成するものとする。

(a) 地域モニタリングステーション(3 ヶ所)

本ステーションは当該地域のばい煙監視を行う事を目的として、地域の環境汚染物質の大気環境濃度の測定、気象データの収集を行うとともに、地域火力発電所との技術的連携を深める事を目的とし、以下の要素よりなる。

- 測定ステーション建物
- 所要用役施設
- 所要ガス配管設備
- 気象観測用計器
- 化学分析器具

- 各種モニター計
- 観測、測定データ処理装置
- 移動観測車

(b) 中央モニクリングセンター

本中央センターは、火力発電所の環境汚染物質低減に係わる技術支援的機能と「ア」国の火力発電所全体の環境汚染物質のモニタリングを行う機能の二つを持つ ものとする。

- 測定ステーションとスタッフルーム用建家
- ばい煙監視及び大気環境測定用モニター計
- 気象観測用計器
- 観測・測定データ及びデータ処理装置とデスクパブリッシング装置
- 図書室
- 印刷機材
- 主要研究・開発機材

(c) 人的開発計画

今後、SEの計画する火力発電所の環境汚染物質削減・測定技術の向上を計る為に、SE関連スタッフ及び火力発電所のスタッフの為の国内トレーニング、海外トレーニングの実施及び海外との技術協力を考慮することとする。

(2) プロジェクトの内容

(a) 事業実施体制の確立

以上の活動を効果的に行う為には、現在SEの下に行われる活動を組織的にも技術的にも再構築する必要があり、中央モニタリングステーションはSEの技術的推進部隊として、地域のモニタリングステーションは州又は市当局との連携を深めながら、SEの管轄下、地域の火力発電所の環境汚染物質の監視を行う必要があると考えられる。これら事業実施主体の制度的連携の模様を図 5-1-1に示した。

(b) 地域モニタリングステーションの配置

最終的には、SEの行政区割及び気象区分に従い、中分類で 6ヶ所程度が妥当と考

えられるが、フェーズ-1として 3ヶ所の設置を提案する。

- (c) 中央モニタリングステーションの活動内容
- a) 環境規制体系、技術向上の為の公的役割
 - 火力発電所の環境汚染物質排出状況の把握とその寄与率の検討
 - ばい煙・大気環境濃度測定法に関する技術蓄積
 - 環境規制法体系の見直しと整備
 - 環境アセスメント、特に拡散計算体系の提供
 - 2 国間及び多国間に亘る研究協力事業の推進
- b) 個別発電所に対する支援業務
 - 発電所に対する巡回測定サービス
 - 発電所に対する技術診断サービス
 - 分析計及び予備品、部品の供給に関する支援業務
 - 火力発電所の技術者に対するトレーニングの実施
- (c) 地域モニタリングステーションの活動内容
 - 地域に於ける大気環境濃度の連続測定
 - 気象データの観測
 - 地域に於ける巡回測定サービス
 - ばい煙の監視と異常時の警告の発令
 - 当該州政府との協力体制の構築
 - 州政府職員のトレーニングの実施
 - 地域に於ける火力発電所の影響度の評価

(3) 機材計画

上記計画実施に必要な機材の概要を表5-1-1 に、地域モニタリングシステム概念図を図 5-1-2に、システム配置図を図 5-1-3に各々示した。

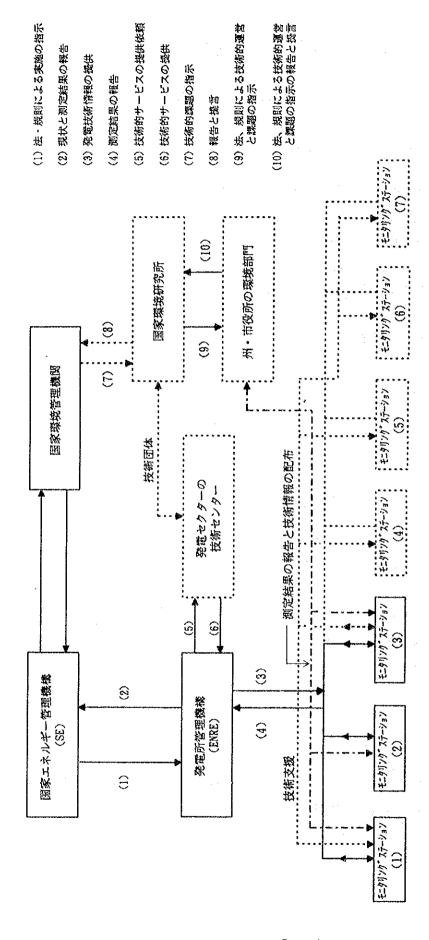


図5-1-1 アルゼンティン共和国火力発電所モニタリングステーションの設置

表5-1-1 必要機材の概要

No	Item (Equipment Name)	Note
1 =	大気COモニター	範囲:0~10/20/50/100 ppm
2	大気802モニター	範囲 : 0~0.1/0.2/0.5/1.0 ppm
3	大気NOxモニター	範囲 : 0~0.1/0.2/0.5/1.0 ppm
4	大気オゾンモニター	範囲: 0~0.1/0.2/0.5/1.0 ppm
5	大気炭化水素モニター	範囲: 0~5/10/20/50 ppmC
6	大気SPMモニター	範囲: 0~0. 25/0. 5/1/5 mg/cm3
7	気象観測モニター	
8 -	モニター用システムラック	
9 -	大気フッ化水素モニター	
10	ハイボリュウムエアサンプラー	
11	ローボリュウムエアサンプラー	
12	スタンドサンプラー	
13	自動純水器	
14 7	電気オーブン	
15 7	電子天秤	200g/0.1mg, 3,200g/10mg, 430g/1mg
16	光電比色計	
17 ረ	化学分析用ガラス器具	
18 /	パーソナルコンピューター	Desktop Computer, Laptop Computer,
		Lazer Type Printer
19	多点レコーダー	
20	大気サンプリング配管	
21 /	スパンガス、ボンベ類	
22 杉	票準ガス発生装置	

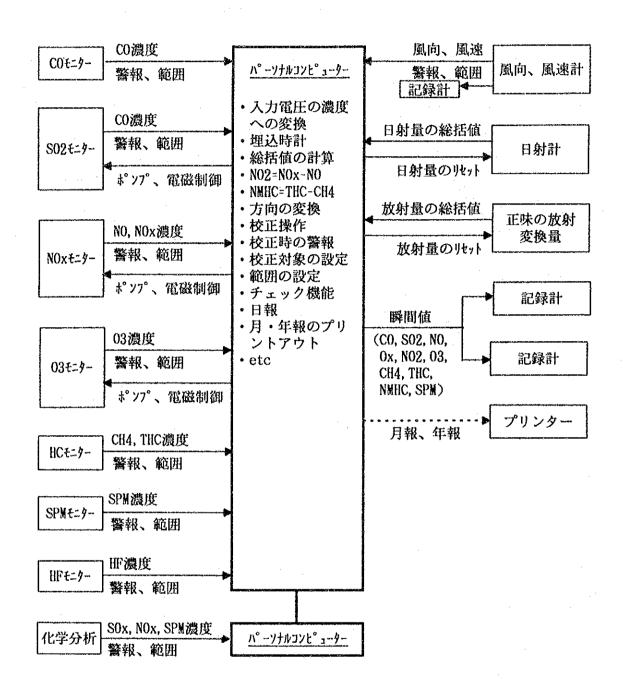
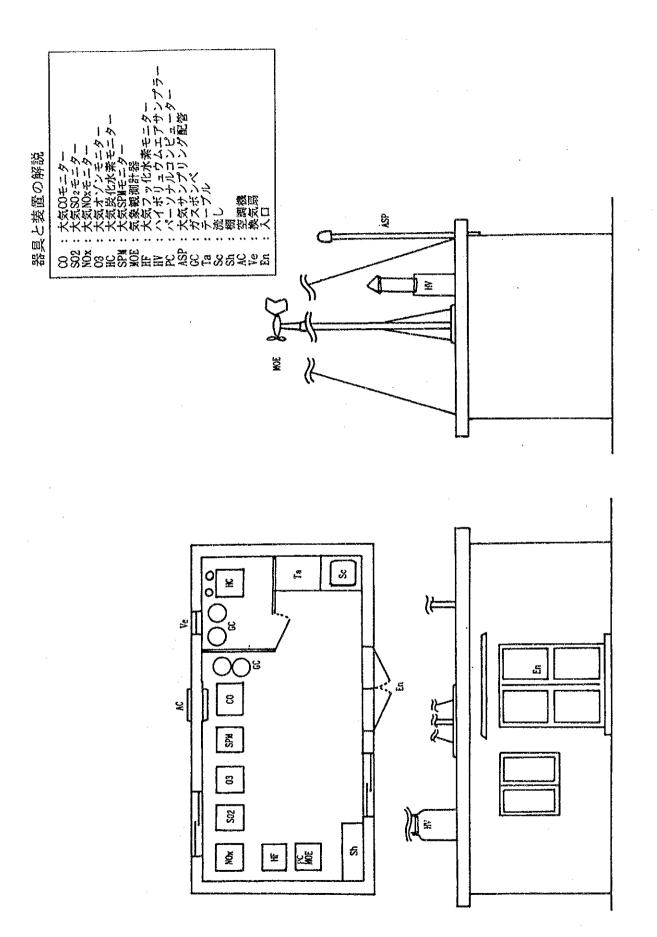



図5-1-2 地域モニタリングシステム概念図

5.2 プロジェクト実施所要資金の積算

プロジェクト実施に必要な所要資金を表 5-2-1に示した。

本プロジェクトの資金計画としては、「ア」国政府(SE)として「ア」国に於ける本プロジェクトの目的及び事業実施体制を明確にしさえすれば、そのプロジェクト目的から、世銀、米州銀行等の多国間援助や日本の日本輸出入銀行、海外経済協力基金、JICA、米国の USAID、独の GTZ等の二国間援助を受けることが出来る可能性もある。

しかしながら、光熱費の負担を伴うステーション建家の転用又は新設、所要人件費の負担は、「ア」国政府によるべきものと考えられる。

(6) 所要総人員

本プロジェクト実施に必要な職員数を表 5-2-2に示した。現在のSE及び関連機関の職員数を考慮すると、本職員の充当は容易に達成されると考えられる。

表5-2-1(1) プロジェクト実施に必要な所要資金

(単価:1000US\$)

番号	品目	合 計
1	ベースコスト	
1-1	機器費	
1-1-1	分析計	1,007
1-1-2	国内輸送	17
1-1-3	据え付け	33
	小 計	1, 057
1-2	土木工事	
1-2-1	工事費	100
	小計	100
1-3	保守費	132
1-4	試運転	17
·	機材費合計	1, 306
1-5	人材開発	
1-5-1	国内トレーニング	100
1-5-2	海外トレーニング	450
1-5-3	海外専門家の受入れ	400
	小 計	950
1-6	コンサルタント雇用費	
1-6-1	設計・管理費	100
1-6-2	海外エンジニアリングコンサルタント費	500
	小計	600
1-7	税金 他	0
	습 計	5, 468

三地域ステーションのプロジェクトコスト総計

1) モニタリングステーション費 (3 x 1000US\$ 1,306): US\$3,918

2) その他(上記 1-5~1-6) : US\$1,550

合 計

US\$5,468

表5-2-1(2) 分析計別価格表

番号	品 目	品目数	単価(US\$)
1	機器費		
1-1	大気C0モニター	1	25,600
1-2	大気S02モニター	1	40, 850
1-3	大気NOxモニター	1	48, 570
1-4	大気オゾンモニター	1	39,090
1-5	大気炭化水素モニター	1	39, 020
1-6	大気SPMモニター	1	37, 450
1-7	気象観測計器	1	50, 580
1-8	モニター用システムラック	1	93, 230
1-9	テレメーター		- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
1-10	大気フッ化水素モニター	l	323, 800
1-11	ハイボリュウムエアサンプラー	l	5, 940
1-12	ローボリュウムエアサンプラー	1	4, 840
1-13	スタンドサンプラー	1	1,820
1-14	自動純水器	1	11,650
1-15	電気オーブン	1	2, 620
1-16	電子天秤 (200g/0.lmg)	1	5, 550
	" (3,200g/10mg)	1	2, 310
	" (430g/lmg)	1	3, 170
1-17	光電比色計	1	6,000
1-18	化学分析用ガラス器具	1	2, 540
1-19	パーソナルコンピューター	2	20,560
	デスクトップコンピューター		
	ラップトップコンピューター		
	レーザータイププリンター		
1-20	多点レコーダー	2	25, 640
2	2年間予備品、消耗品	1	28, 120
3	海上輸送費		11,900
4	輸出梱包費	1	8, 090

表5-2-2 プロジェクト実施に必要な職員数

		発電所	地垣	地域鑑視ステーション		技術	J. =1
		管理機関	(1)	(2)	(3)	センター	小計
1.	プロジェクト部長	2					2
2.	プロジェクトチーフ	2	1	1	1	1	6
3.	化学研究者						1
4.	環境技師		1	l	1	1	4
5.	分析化学者		1	1	1	1	4
6.	化学技術者		1	-	1	1	4
7.	機械技術者		1			1	2
8.	プロセス技術者		1			1	2
9.	分析計技術者		1			1	2
10.	プロジェクトエンジニア	1				-77	
11.	データ処理技術者	1	1	1	1	1	5
12.	事務	1	1			1	3
13.	秘書		1	1	1	1	4
	合 計	7	10	6	6	12	41

6 ばい煙監視システム事業化の実施スケジュール

5 で述べたように、本来「ア」国の地域環境モニタリングステーションは広大な「ア」国の土地を考慮すると、数百~千数百ヶ所のステーションが必要と考えられるが、SEの所管事項は火力発電所のモニタリングである。

従って、中・長期的にはSEの行政区画及び気象区分による 6ヶ所を基礎とし、「ア」国 に於ける他のセクターに対する将来計画及び国と州政府の役割分担を明確にした上での全 体計画に配慮しながら火力発電所の密度を考慮した上で、効率的なステーションの計画が 試されるべきである。

このような状況下に鑑みて、本計画では将来的にも必要と考えられるSEの行政区画及び気象区分のうち、3r所設置するケースをPhase-1、他の 3r所に設置し、SEとし一応のモニタリング計画が完遂するまでのケースを Phase-2とする。これら計画の実施に至る段階は以下の4段階に展開するのが望まれる。

第一段階:SEのエネルギー電力の中・長期計画をベースとし、環境保全施策の具体化の検 討を行政的・技術的に行う

第二段階:上記構想を基礎として、中・長期モニタリング実施の基本計画の策定、国・内 外の関係先へのプレゼンテーション

第三段階:第二段階の進捗状況に従って、モニタリングの実施計画を策定するとともに、 具体計画を実施に移行せしめる段階

第四段階:プロジェクトを実施し、SE側の体制整備、教育、訓練計画を実施する段階

以上の考え方で作成したスケジュール(案)を図6-1に示した。

年度	初年度			2年度	斑			3年度	
	2 4 6 8 10 12		2 4	9	8 10	12	2	4	9
1. Project Proposal to the GOA									
2. Promotion of Technical Assistance	9								
3. Submittance of DFR	FR.								
4. Establishment of SWI									
9 5. Project Planning 8									•
6. Agreement of T.A.		D						4	
7. Project Kick-off	:				:				
8. Project Imprementation		and was a second of the second							
9. Commencement of the SMI					[]				

図6-1 ぱい煙モニタリングステーション実施計画スケジュール

7 結論と提言

(1) 現在の大気環境汚染

現在アルゼンティンでは、火力発電所よりの放出物による問題になる大気汚染は存在しない。しかしながら、ブエノスアイレス市の一部では主として自動車よりの排気、部分的には工業設備よりの排気によると思われる大気汚染問題が存在し、又メンドーサ市の一部では火力発電所を含む工業設備からの排気による粉塵による大気汚染が時折観察されている。

今回のJICA調査団の調査結果では、大規模汚染防止設備を火力発電所に早急に導入する必要性は認められなかった。調査の経過で痛感された点に、現在積極的に進められているSE(エネルギー庁)及びENRE(電力セクター管理機構)の火力発電所の大気環境の保全に関する活動は州及び市の行政の行う大気環境の保全の活動と統合される事が国全体としての大気環境保全のシステムの確立に重要であるという事がある。

今回の報告でも提案され、SE及び関連機関でも開発を続けられている大気汚染のモニターとインスペクションに必要な技術は早急な確立が必要であり、又この技術が他の大気汚染防止に係る諸機関により充分活用される事が必要である。

(2) モニタリングとインスペクション体制の確立

現在の所、アルゼンティンの大気汚染問題は深刻ではないが、近時の全地球的な環境保全に対する国際的な関心の高まり及び世界的な自由貿易に進むに必要な共同経済圏としての共通な環境保全の樹立についての全世界的な動きの中で全ての国は、国家的な規模で現状モニターの組織を整備し、国際的に受け入れ得る方法により信頼出来るデータを集積する必要に迫られている。

本報告によってSEの活動として提案されており、又SEも準備を進めている火力発電 所の大気環境保全に関するモニタリング・インスペクションの体制が、他の政府機関 の積極的な参加を得て国全体をカバーする様に発展する事が望まれる。

(3) 将来の火力発電所の大気環境保全について

現在進行中である経済と産業の根本的な再構築によって、将来の電力セクターを含むエネルギーセクターは、市場経済原理によって機能するとされている。

"成長するアルゼンティン 1993-1995"によって明示された、現政府の経済発展の プログラムは来世紀にかけての急速な経済成長を目指している。

この事は電力を含むエネルギー需要の急速な拡大が予測される。その結果、西暦 2010年までには関係政府機関の情報によれば、現在の倍以上となる可能性が強い。

この様な状況下で、現在大気環境保全に貢献している水力電気、天然ガスの供給の 拡大は増大する需要に対応出来ないと考えられ、その結果は大気の高硫黄重油や石炭 を工業及び発電で利用する状況が出てくる。

しかしその様な燃料の汚染物質の排出に適切な手段が得られなければ、過去に急速な経済発展を見た工業国で経験された様に、工業の集中した地域での極端な大気汚染問題をもたらしかねない。

将来のエネルギーセクター及び諸工業は私企業の手にある事から、環境の保全とコストの削減の調和は複雑な問題を含む。

そこで関係政府機関による適切な時期を得たガイダンスにより、私企業により進められる国の経済発展の活性を保ちながら、環境保全を達成する事が必要となる。

このガイダンスは、長期的な国としてのエネルギーマスタープランと、国内での産業立地政策に基づく必要が有り、さらに組織的に蓄積されたモニターデータにより発生源に対する規制を進めていく国家機関により策定される必要がある。

(4) 国際協力

アルゼンティン政府は、地球規模の環境保全には、モントリオール条約加盟など積極的に参画している。さらに世界的に開放貿易の方向が進められている現在、全ての国には国際社会の成員として地球環境の保全の為に国際的な基準を守る事が義務付けられる方向にある。

この様な点に関心のある人々は、現在米国、メキシコ、カナダが北米自由貿易圏の 確立の為にその成員として共通の環境保全対策の設定に努力している事に注意を向け ている。

この様に国際化が進んでいる地球環境の保全に関して、日本とアルゼンティンの技術協力が実施される事は、環境保全に対する国際協力の上で大変望ましいと考えられる。

