- Religious restriction of working

There are holidays other than public holidays due to religions or customs tradition such as fast Saturday workshop. These activities shall be taken into consideration in the construction schedule.

- Rainy seasons

There are two rainy seasons. As flood often occurs during the rainy seasons, special attention shall be given to the underwater works.

- Customs clearance

It takes almost one month for customs clearance at Mombassa port. Thus, close cooperation and support of the GOK will be indispensable in unloading and custom clearance at Mombasa port in order to expedite the mobilization of personnel and equipment on time.

4.6.3 Construction and Supervisory Plan

After signing of the consultant service agreement, the Consultant shall commence the detailed design including preparation of the tender documents. The Japanese staff, comprising of a Project Manager, a bridge engineer, a foundation engineer, a quantity surveyor and a contract specialist, will undertake these services.

During construction stage, the Japanese resident engineer and other Japanese staff will supervise the work. Responsibilities of the key staff are as follows and the organization of the consultant team is shown in Figure 4.11.

1) Project Manager

He shall be responsible for the management of all services concerning the detailed design, tendering and construction matters.

2) Bridge engineer

He shall be responsible for the detailed design of the bridge superstructure during the design stage, and the supervision of the bridge during the construction stage.

3) Foundation engineer

He shall undertake the design of structures such as foundation, abutments, piers, river bed protection, etc., during the design stage and inspection of foundation soil and supervision of the substructures during the construction stage.

4) Quantity Surveyor

He shall review construction plan for the basic design and estimate the project cost in detail during the design stage.

5) Contract specialist

He shall prepare the tender and the contract documents during the design stage.

6) Resident Engineer

He shall be stationed at the site to manage all services such as the construction schedule, quality control and technical aspects of the work through the construction period.

7) Material Engineer

He shall inspect the materials on quality, strength and supervise the work during the beginning stage of the construction.

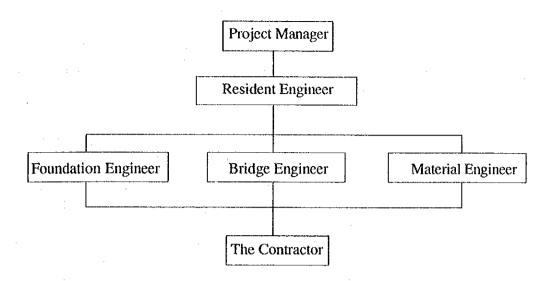


Figure 4.10 Supervision Organization by the Consultant

4.6.4 Procurement Plan

1) Labour market

The project is to be undertaken by a Japanese firm and the construction time is limited. The work then would be carried out in a very tight schedule.

The local contractors have been experiencing small bridge construction but no prestressed concrete works. It would be difficult to recruit operator's or technician with experience of the prestressed concrete work, but skilled and casual labourers will be recruited in Malindi town.

2) Materials

Cement and reinforcing steels are produced in Kenya and were used in the Kilifi bridge construction. Sand and crushed stone for the concrete are available from the same sources as the Kilifi bridge construction used.

Materials for the temporary bridge, and staging for the pile construction will be brought from Japan or other country since it is very difficult and time consuming to get in Kenya in large quantities. Almost all the equipment except for the road construction machine are brought from Japan due to non available in Kenya. Support of the Kenya government will be indispensable in quick clearance at the Mombasa port to avoid delay of the work.

(1) Cement

Portland cement, sulfate resistance cement, low heat cement, etc., in accordance with BS12: 1978 are being produced at Mombasa.

The production capacity has been enough to supply these cements.

(2) Reinforcing bar

Conventional reinforcing bar and high-tensile steel twisted bar conforming to BS4449 are available in Mombasa. These steel were used in the Kilifi bridge construction.

(3) Crushed Stones and Sand for the Concrete

Crushed stones are available from quarry near Jaribuni, which were used in the Kilifi bridge construction. Sand is hauled from the Mjanaheri deposits north of the Sabaki river near Mambrui. This is pure deposit of well graded quartz sand, and also used in the Kilifi bridge construction.

(4) Pavement Material

Asphalt mixture for the pavement is hauled from asphalt plant of a local contractor in Mombasa. Lime for subbase course is also available in Mombasa. Crushed stones for base course are taken from quarry site at Jaribuni or crushed coral stones are available near the construction site.

(5) Structural Steel

Structural steel such as rolled steel, plate, channel are available from several firms at Mombasa. H-section rolled steel and other steel for the temporary bridge will be imported from Japan or other country for use in large quantities.

(6) Other MaterialsProcurement plan for other major material are shown in Table 4.3

Material	In Kenya	From Japan	From other countries	
Prestressing wire/strand		0	Δ	Not manufactured in Kenya, imported from Japan for quality reason
Prestressing bar		0	Δ	- do -
Asphalt concrete mixture	О			Available in Kenya
Timber	0			- do -
Concrete admixture		0	Δ	Not manufactured in Kenya
Expansion joints		0		Not manufactured in Kenya, imported from Japan for ease of construction
Handrail	O			Available in Kenya
Structural steel	O.		La vivi e ven	- do -
Material for temporary bridge & cofferdam		0		Available in Kenya but not possible for bulk purchase in need
Bridge bearings		O	· · · · · · · · · · · · · · · · · · ·	Not manufactured in Kenya

Table 4.3 Purchasing Schedule for Other Material

3) Capacity of the Kenyan contractors

Subletting of the primary part of the works (prestressed concrete work) to the local contractors will not be possible as they have little experience in the bridge constructions of this nature. Some local contractors was sub-contracted approach road construction in the Kilifi bridge construction project.

4.6.5 Implementing Schedule

The Project will start only after signing of the Exchange of Notes mutually agreed upon between the GOK and GOJ. A possible implementing schedule is shown in Figure 4.11.

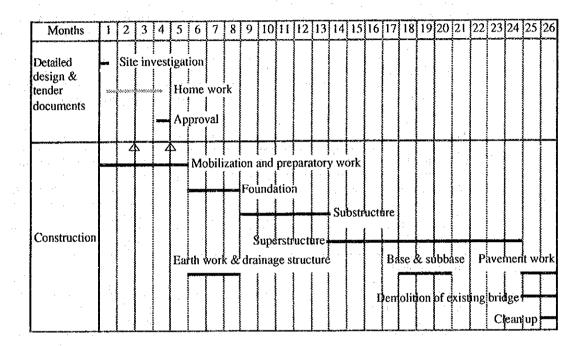


Figure 4.11 Implementing Schedule

1) Detailed Design

The consultant shall carry out the detailed design and prepare the tender and other relevant documents based on the basic design.

2) Tendering

A contractor will be selected from the Japanese contractors through open tender, who are prequalified for competitive tendering for the project. Criteria for prequalification will be discussed with JICA for approval. Prequalification will be carried out by the consultant on behalf of the implementing agency of the GOK.

The tender will be opened and the tender sum will be read in the presence of the tenders with representatives of the client and consultant. The consultant will start contract negotiation with the lowest tenderers in general and prepare the tender evaluation report to submit the GOK for approval.

The contract agreement becomes valid only after verification by the GOJ. The GOK has to conclude banking arrangement (B/A) with an authorized Japanese foreign exchange bank to open an account to receive aid fund from the GOJ and to make payments to the contractor.

3) Construction

The work consists of preparatory work, primary work and appurtenant work. Preparatory work includes preparation of the camp and plant yard to facilitate offices and storage houses, installation of temporary plants such as concrete batching-plant, etc.

Appurtenant work includes approach road, slope protection, river bed protection work, etc.

4.6.6 Scope of the Work

In case of the Project being materialized under the Japan's Grant Aid system, scope of the work by the GOK and by the GOJ was outlined in Section 3.3.6 and 3.3.7 respectively.

The expenditure to be bone by the GOK in connection with the implementation of the Project will be about 9.52 million shillings as shown below.

To secure right-of-way including compensation	1.2 million shillings
To secure camp and plant yard	0.08 million shillings
To remove stay for electric pole	0.3 million shillings
To dismantle part of embankment	3.15 million shillings
Total	4.73 million shillings

CHAPTER 5 PROJECT EVALUATION AND CONCLUSION

CHAPTER 5 PROJECT EVALUATION AND CONCLUSION

5.1 Project Evaluation

As a result of the technical assessment, and socioeconomic and traffic investigation carried out in the Study, the gist of the impact and the effects, which are broadly divided into direct and indirect and could be generated by the Project implementation, are as follows;

1) Direct Impact and Effects

Present Conditions and Problems	Countermeasures taken in the Study	Direct Impact and Effect
1 The existing Sabaki bridge has been severely deteriorated due to chloride attack, and accordingly an allowable vehicle load is presently being restricted upto 15 ton. In the worst case if some of the inside wires were broken, it was reported that the load become about 7 ton. Under these conditions, some of over weighted vehicles are imposed to load and unload their cargo but a few of them are likely passing on the bridge during night time. Rupture of the wires which is a fatal defect of the Sabaki bridge is still in progress. Hence it can be concluded that the Sabaki bridge is in very dangerous condition.	bridge with applying HA & HB (30 Unit) loading in accordance with MOPWH Standard.	derived from balance of maintenance cost for between the existing steel

Present Conditions and Problems	Countermeasures taken in the Study	Direct Impact and Effect
2 Since all the traffic bottlenecks in the southern part of B8 road have been resolved by 1992, the Sabaki bridge having a single lane is the sole bottleneck remaining on B8 road, and is being utilized under one way traffic. It is apparent that the traffic volume in the B8 road increases resulting from the on going the Tana river basin development and eventually Sabaki bridge will become a critical bottleneck.	results, it is applied a double lane bridge of 6.5m carriageway width.	 Under the one way traffic, waiting time, at least 2 min. sometime about 10 min. during peak hour, is imposed to cross the bridge. Due to resolving this problem, both time and operation cost saving are generated. It is also expected to decrease traffic accident, to increase driving comfort, and to reduce driver's physical fatigue.
 The number of pedestrians crossing Sabaki Bridge are about 220 during the peak hour. However, this is dangerous due to the absence of sidewalks for them. The existing bridge opening is inadequate for the design flood discharge. It is therefore possible to be washed away the existing bridge. 	The bridge opening of new Sabaki bridge is designed to accommodate the design	 It is expected to reduce accidents resulting in injury or death. Decreasing probability of the bridge being washed a way generates socioeconomic stability in the study area.

2) Indirect Effects and Impact

The indirect effect and impact derived from the project implementation are likely acceleration of the agricultural development, improvement of the stability of production and transportation schedule, correction of regional disparities, expansion of market spheres, dispersion of the urban population and rationalization of the distribution process in the study area especially in the Tana river basin area. Furthermore, it is expected to improve the stabilization of people's livelihood and national consciousness in the area where the public security is being aggravated, and to strengthen accessibility to the medical and educational facilities in the project area.

5.2 Conclusion

As the existing Sabaki bridge is in a very severe and dangerous condition. It should be replaced urgently by a new one. This scheme is listed in the Third Highway Sector Program and coincides with the basic principles in the current National Plan. Moreover, it is presumed that the project would be implemented without any special problems in Japan's Grant Aid system and after completion the bridge will be maintained properly by the GOK. Taking the above enumerated impact and effects into account, the project implementation, through the cooperation of the Japan's Grant Aid Program, would be very meaningful and thus its early implementation is most desirable.

APPENDICES

APPENDICES

Appendix-I	Member List of Study Team
Appendix-II	Survey Itinerary
Appendix-III	List of Officers Met in KenyaA-4
Appendix-IV	Minutes of Discussions
Appendix-V	Drill Logs
Appendix-VI	Estimated Future Traffic Volume
Appendix-VII	Photos Showing Present Conditions
Appendix-VIII	Assessment of Bridge Length A-24
Appendix-IX	River Water Level at Gauging Station A-36
Appendix-X	Work Sequence

Appendix-I Member List of Study Team

1. Field Survey Mission (from July 25th to August 28th, 1993)

Name	Designation	Title
Masatoshi SASAKI	Team Leader	Manager of Maintenance Div. Ohmishima Operation Office, Third Construction Bureau, Honshu-Shikoku Bridge Authority
Koichi TAKEI	Project Coordinator	Consultant Contract Div.,
Kazumasa TADA	Project Manager	Nippon Koei Co., Ltd.
Nobuyuki SUZUKI	Bridge Designer	Construction Project Consultants, Inc.
Tetsu NAKAGAWA	Natural Conditions Surveyor	Nippon Koei Co., Ltd.
Toshinori TODA	Construction Planner / Cost Estimator	Construction Project Consultants, Inc.

2. Draft Report Mission (from November 8th to November 19th ,1993)

Name	Designation	Title
Masatoshi SASAKI	Team Leader	Manager of Maintenance Div. Ohmishima Operation Office, Third Construction Bureau, Honshu-Shikoku Bridge Authority
Masao SHIKANO	Project Coordinator	Procurement Dep., JICA
		Grant Aid Project Management Dep., JICA
		Second Project Management Div.
Kazumasa TADA	Project Manager	Nippon Koei Co., Ltd.
Nobuyuki SUZUKI	Bridge Designer	Construction Project Consultants, Inc.

Appendix-II Survey Itinerary

First	Servey
-------	--------

	First Servey			
No.	Date	Member	Activities	Stay
1	7/25 (Sun)	Sasaki, Takei, Tada, Suzuki	Leave Narita for Kenya (JL-405)	Paris
2	7/26 (Mon)	Sasaki, Takei, Tada, Suzuki	Move from Paris to Nairobi (AF-484)	On board
3	7/27 (Tue)	Sasaki, Takei, Tada, Suzuki	Arrived at Nairobi Visit to JICA Office Courtesy call to MOPWH Internal meeting of JICA mission	Nairobi
4	7/28 (Wed)	Sasaki, Takei, Tada, Suzuki	Preliminary meeting with MOPWH	Nairobi
	2/20 (TL)	Sasaki, Takei	Moving to Mombasa: Visit to Coastal Provincial Office of MOPWH	Mombasa
5	7/29 (Thu)	Tada, Suzuki	Moving to Mombasa for geological and topographic survey. Investigation of new Nyali Bridge	
6	7/30 (Fri)	Sasaki, Takei, Tada, Suzuki	Investigation of Mtwapa and Kilifi Bridges	Mombasa
		Sasaki, Takei	Site Investigation on Sabaki Bridge Back to Nairobi	
7	7/31 (Sat)	Tada, Suzuki	Meeting with on Geological and Topographic surveyor Back to Nairobi, signing of contract for survey	Nairobi
8	8/01 (Sun)	Sasaki, Takei, Tada, Suzuki Nakagawa	Internal meeting of study team Mr. Nakagawa arrives at Nairobi	Nairobi
9	8/02 (Mon)	Sasaki, Takei, Tada, Suzuki Nakagawa	Meeting with JICA on draft of M/M Discussion with MOPWH on draft of M/M	Nairobi
10	8/03 (Tue)	Sasaki, Takei, Tada All Member	Interview OECF, Nairobi office Discussion with MOPWH on M/M	Nairobi
11	8/04 (Wed)	All Member	Discussion about draft of M/M with MOPWH Internal meeting of study team	Nairobi
12	8/05 (Thu)	All Member	Signing of Minute of meeting Meeting with MOPWH on 2nd site investigation	Nairobi
13	8/06 (Fri)	Sasaki, Takei, Tada	Report to JICA and Embassy of Japan	Nairobi
		Suzuki, Nakagawa	Data collection and meeting with geological and topographic surveyor	
		Sasaki, Takei	Leave Kenya	London
14	8/07 (Sat)	Tada, Suzuki, Nakagawa, Toda	Toda arrives at Narita Internal meeting	Nairobi
15	8/08 (Sun)	Tada, Suzuki, Nakagawa, Toda	Arrangement of collected data	Nairobi
16	8/09 (Mon)	Tada, Toda	Call on JICA, Meeting with Bridge section of MOPWH	Nairobi
	, e a .	Suzuki, Nakagawa	Move to Mombasa, Data collection at MOPWH Coastal Provincial office	Malindi
17	8/10 (Tue)	Tada, Suzuki	Drafting design requirements	Malindi
]		Nakagawa, Toda	Preparation for traffic survey, and quarry site investigation	
18	8/11 (Wed)	Tada, Suzuki	Traffic survey	Malindi
		Nakagawa, Toda	Investigation of existing bridge and quarry site	
19	8/12 (Thu)	Tada, Suzuki	Supervising geological and topographic surveyors	Nairobi
		Nakagawa, Toda	Meeting with Geological and Topographic surveyor Move to Mombasa	Mombasa
20	8/13 (Fri)	Tada, Suzuki	Discussion with MOPWH, bridge section on design Call to Ministry of Finance	Nairobi
		Nakagawa, Toda	Investigation of Nyari, Mtwapa Bridges	Mombasa

First Servey

No.	Date	Member	Activities	Stay
21	8/14 (Sat)	Tada, Suzuki	Data collection	Nairobi
		Nakagawa, Toda	Interview local contractors, Back to Nairobi	
22	8/15 (Sun)	All member	Internal meeting of study team	Nairobi
23	8/16 (Mon)	Tada	Discussion with Ministry of Finance and JICA	Nairobi
2.5	6/10 (WOII)	l aua	Report to embassy of Japan	Namobi
		Suzuki, Nakagawa,	Discussion with MOPWH on basic design requirements	1
	ĺ	Toda	Meeting with geological and topographic surveyor	
24	8/17 (Tue)	Tada, Toda	Leave Kenya	London
	<u> </u>	Suzuki, Nakagawa	Data collection and meeting with bridge section of MOPWH	Nairobi
25	8/18 (Wed)	Suzuki	Preparing memorandum on basic requirement	Nairobi
	L	Nakagawa	Move to Malindi, Inspection of site work of boring and topo. survey	Malindi
26	8/19 (Thu)	Suzuki	Move to Malindi for supplementary investigation of Sabaki bridge	Malindi
		Nakagawa	Investigation of Baricho intake	
27	8/20 (Fri)	Suzuki	Supplementary investigation of Sabaki Bridge	Malindi
		Nakagawa	Call on Mombasa office of Ministry of Water for data collection	Mombasa
28	8/21 (Sat)	Suzuki	Material investigation around project site	Nairobi
	İ	Nakagawa	Back to Nairobi	
29	8/22 (Sun)	Suzuki, Nakagawa	Arrangement of collected data	Nairobi
30	8/23 (Mon)	Suzuki, Nakagawa	Data Collection	Nairobi
		Suzuki, iyakagawa	Meeting with geological and topographic surveyor	INALIOUI
31	8/24 (Tue)	Suzuki, Nakagawa	Hydraulic data collection at Ministry of water	Nairobi
32	8/25 (Wed)	Suzuki, Nakagawa	Signing of memorandum on basic requirement	Nairobi
<i>J</i> 2	6/25 (Wed)	Suzuki, Ivakagawa	Report to MOPWH and JICA office	INATION
33	8/26 (Thu)	Suzuki, Nakagawa	Leave Kenya	Zurich
34	8/27 (Fri)	Suzuki, Nakagawa	Move from Zurich to Narita	on board
35	8/28 (Sat)	Suzuki, Nakagawa	Arrived at Narita	Tokyo

Second Survey

No.	Date	Member	Activities	Stay
1	11/08 (Mon)	Sasaki, Shikano, Tada,	Leave Narita for Kenya (SN 208)	Brussel
		Suzuki		
2	11/09 (Tue)	Sasaki, Shikano, Tada,	Move from Brussel to Nairobi (SN 956)	on board
		Suzuki		
3	11/10 (Wed)	Sasaki, Shikano, Tada,	Arrived at Nairobi	Nairobi
		Suzuki	Visit to JICA office	
			Courtesy call to MOPWH	
4	11/11 (Thu)	Sasaki, Shikano, Tada,	Explanation of Draft Final Report to MOPWH	Nairobi
		Suzuki		
5	11/12 (Fri)	Sasaki, Shikano, Tada,	Call on project manager for Tana Basin Road	Nairobi
			Project, Discussion with MOPWH on M/M	
<u>:</u>	·	Suzuki	Collection of additional data	
6	11/13 (Sat)	Sasaki, Shikano, Tada,	Moving to Malindi	Malindi
		Suzuki	Investigation of existing Sabaki Bridge	
7	11/14 (Sun)	Sasaki, Shikano, Tada,	Investigation of Kilifi and Mtwapa Bridge	Nairobi
		Suzuki	Back to Nairobi	
8	11/15 (Mon)	Sasaki, Shikano, Tada,	Meeting with MOPWH on Draft Final Report	Nairobi
		Suzuki	and draft of M/M, Report to OECF Nairobi office	
9	11/16 (Tue)	Sasaki, Shikano, Tada,	Visit to Account Controller of MOPWH, Signing of M/M	Nairobi
	5 ,	Suzuki	Collection of additional data	
10	11/17 (Wed)	Sasaki, Shikano, Tada,	Leave Kenya for Japan	London
		Suzuki		
11	11/18 (Thu)	Sasaki, Shikano, Tada,	Move from London to Narita	on board
		Suzuki		
12	11/19 (Fri)	Sasaki, Shikano, Tada,	Arrived at Narita	
		Suzuki		

Appendix-III List of Officers Met in Kenya

1. Embassy of Japan

Mr. Masahiko HORIE

Minister Counsellor

Mr. Kiyoshi SAKAI

First Secretary

2. Japan International Cooperation Agency (JICA)

Mr. T. NAGASHIMA

Resident Representative, Kenya Office

Mr. Sumio AOKI

Deputy Director, Kenya Office

Mr. Yuji KASHIHARA

Assistant Resident Representative, Kenya

Office

Mr. Ichiro TAMBO

3. Overseas Economic Cooperation Fund (OECF)

Mr. Shuhei SEYAMA

Ex-Chief Representative, Nairobi Office

Mr. Yoshio NAGAMINE

Chief Representative, Nairobi Office

4. Ministry of Public Works and Housing

Mr. S.S. Lesrima

Permanent Secretary

Eng. S.M. Kiguru

Engineer-in-Chief

Eng. K.M. Kithyo

Provincial Works Officer (Coast)

5. Department of Road

Eng. Mwasi

Chief Engineer

Eng. J.M. Wanyoike

Chief Superintending Engineer

Eng. K. Ndiritu

Chief Superintending Engineer

Eng. D.O. Maganda

Chief Superintending Engineer

Eng. M.O.A. Bajabar

Sr. Superintending Engineer

Mr. J.J. Nyapiedho

Accounts Controller

Mr. H.N. Kiragu

Bridge Engineer

Mr. Sumitaka KURINO

Ex-Superintendent Engineer (JICA Expert)

Mr. Kazuyoshi SAKAI

Superintendent Engineer (JICA Expert)

Mr. Abdul Rahman

District Maintenance Officer

Mr. Ali Duhmy

Officer-in-Chief

6. Ministry of Finance

Mr. Jamen L. Lavuna

Under Secretary

Appendix-IV Minutes of Discussions

MINUTES OF DISCUSSIONS

BASIC DESIGN STUDY ON THE CONSTRUCTION PROJECT OF NEW SABAKI BRIDGE IN THE REPUBLIC OF KENYA

In response to a request from the Government of Republic of Kenya (the Government of Kenya), the Government of Japan decided to conduct a Basic Design Study on the Construction Project of New Sabaki Bridge in the Republic of Kenya and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA sent to the Republic of Kenya the study team, which was headed by Mr. Masatoshi SASAKI, Manager of Maintenance Div., Honshu-Shikoku Bridge Authority, and is scheduled to stay in the country from 27 July to 26 August, 1993.

The team held discussions with the officials concerned of the Government of Kenya and conducted a field survey in the study areas.

In the course of discussions and field survey, both parties have confirmed the main items described on the attached sheets. The team will proceed to further works and prepare the Basic Design Study Report.

Nairobi, August 5,1993

佐木雅钦

Mr. Masatoshi SASAKI Leader Basic Design Study Team JICA Mr. S. S. Lesrima
Permanent Secretary
Ministry of Public Works
and Housing

ATTACHMENT

1. Objective

The objective of the Project is to construct new Sabaki bridge along side the existing one for improvement of the traffic capacity over Sabaki River and for acceleration of development in the Tana River basin, in accordance with The Third Highway Sector Program based on the National Development Plan.

2. Project site

The Project site as shown in Annex-I is located near the existing Sabaki bridge along the B8 road about 8 km north of Malindi in Coast Province.

3. Executing Organization

Roads Department in the Ministry of Public Works and Housing is responsible for the administration and execution of the Project.

4. Items requested by the Government of Kenya

The contents of the request originally made by the Government of Kenya was understood by both sides, that is construction of a new Sabaki bridge, 2 span prestressed concrete box girder bridge totaling 110 m long. The new bridge will be located along side the existing and approximately 25 m down stream from the existing bridge.

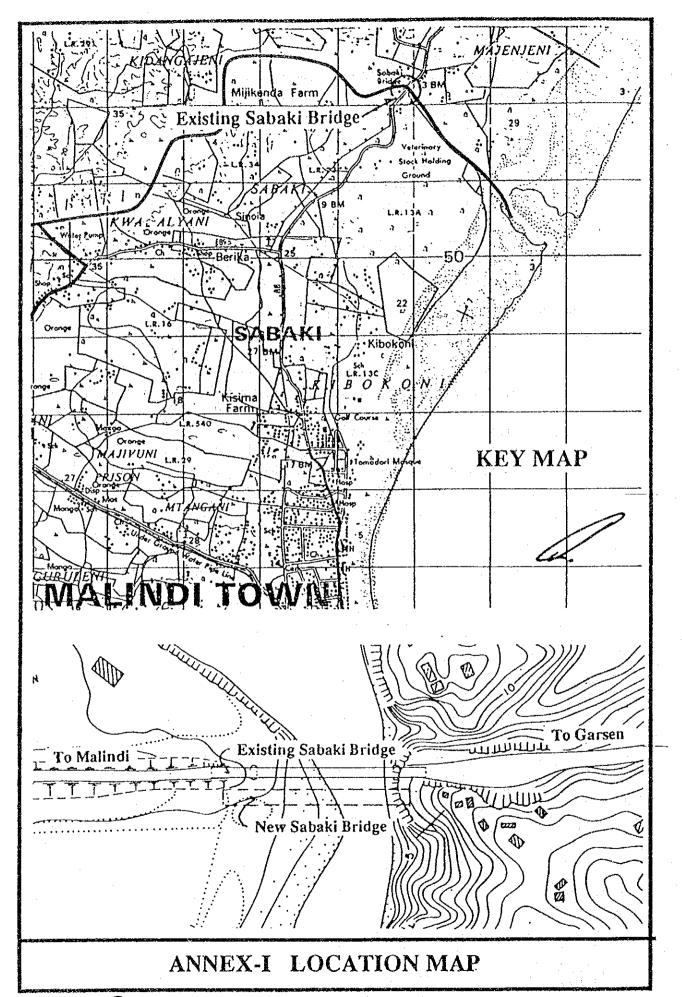
The Kenyan Side strongly requested that the approach road with a minimum length connecting the bridge to the existing road at each side will be incorporated into the Project. The study team will convey the request to Japanese Government for its consideration.

Notwithstanding above clause the final components of the Project will be decided after the further studies.

5. Confirmation of Requested Items

After discussion on above items between the Government of Kenya and the study team, the followings were finally confirmed by both sides.

- 1) Appropriate configurations of the proposed bridge will be finalized based on the results of the study.
- 2) Bridge design will be conducted in accordance with engineering standards acceptable by both sides.


(33)

6. Item requested by the study team

The study team requested MOPW&H to be responsible for refinement of the project scope of Tana Basin Road taking into account final scope of the works for New Sabaki Bridge Construction, in case the latter is executed in Grant Aid program.

- 7. Japan's Grant Aid system
 - 1) The Government of Kenya has understood the Japan's Grant Aid system explained by the team.
 - 2) The Government of Kenya will take necessary measures, described in Annex-II for smooth implementation of the Project, in case that the Project is executed under the Japan's Grant Aid system.
- 8. Schedule of the Study
 - 1) The study team will proceed to further studies in Kenya until 25 August, 1993.
 - 2) JICA will prepare the Draft Report in English, which contains all the study results including the basic design of new Sabaki bridge, and send the study team to Kenya in order to explain the contents of the Draft Report at the beginning of November, 1993.
 - 3) JICA will complete the Final Report in Japan and send it to the Government of Kenya by the end of December, 1993.

ANNEX-II

Following necessary measures should be taken by the Government of Kenya in case that Japan's Grant Aid is executed.

- 1) to provide data and information necessary for the Project.
- 2) to secure land necessary for the execution of the Project and provide enough space for construction, such as temporary offices, working areas, stock pile yards and others.
- 3) to demolish or remove the existing bridge and approach embankment, if required after the execution of works
- 4) to provide facilities for the distribution of electricity, water supply, telephone line and other facilities to the site.
- 5) to bear commission (banking charge) to the Japanese foreign exchange bank for the banking services based upon the Banking Arrangement.
- 6) to exempt taxes and to take necessary measures for customs clearance of the materials, equipment and supplies brought for the project at the ports of disembarkation in Kenya.
- 7) to accord Japanese Nationals whose services may be required in connection with the supply of products and the services under the verified contract such facilities as may be necessary for their entry into Kenya and stay therein for the performance of their work.
- 8) to maintain and use properly and effectively the facilities constructed under the Grant.
- 9) to bear all the expenses, other than those to be borne by the Grant, necessary for the execution of the Project.

A - 9

MINUTES OF DISCUSSIONS BASIC DESIGN STUDY ON THE CONSTRUCTION PROJECT OF NEW SABAKI BRIDGE IN THE REPUBLIC OF KENYA (CONSULTATION OF THE DRAFT FINAL REPORT)

In July, 1993, Japan International Cooperation Agency (JICA) dispatched a Basic Design Study Team on the Construction Project of New Sabaki Bridge (hereinafter referred to as "the Project") to the Republic of Kenya, and through discussions, field survey, and technical examination of the results in Japan, has prepared the draft report of the study.

In order to explain and to consult Kenya on the components of the draft report, JICA sent to Kenya a study team, which is headed by Mr. Masatoshi SASAKI, Manager of Maintenance Div., Honshu - Shikoku Bridge Authority, and is scheduled to stay in the country from November 10 to 17, 1993.

As a result of discussions, both parties confirmed the main items described on the attached sheets.

Nairobi, November 16, 1993

仗土木 雅毅

Mr. Masatoshi SASAKI

Leader,
Basic Design Study Team,
Japan International Cooperation Agency

Eng. S.M Kiguru

Eng.-in-Chief for Permanent Secretary Ministry of Public Works and Housing, Kenya

ATTACHMENT

1. Components of draft final report

The Government of Kenya has agreed and accepted in principle the components of the draft report proposed by the Team.

2. Japan's Grant Aid System

- (1) The Government of Kenya has understood the system of Japan's Grant Aid explained by the Team.
- (2) The Government of Kenya will take necessary measures, described in ANNEX for smooth implementation of the Project, on condition that the Grant Aid Assistance by the Government of Japan is extended to the Project.
- (3) Kenyan side requested that the cost of demolition of the existing bridge would be undertaken by Japanese side if possible.
 The Study Team will convey this request to Japanese Government.

3. Further Schedule

The Team will make the final report in accordance with the confirmed items, and send it to Government of Kenya by February, 1994.

Samp

ANNEX

Following necessary measures should be taken by the Government of Kenya in case that Japan's Grant Aid is executed.

- 1) To provide data and informations necessary for the Project.
- 2) To secure land necessary for the execution of the Project and provide enough space for construction, such as temporary offices, working areas, stock pile yards and others.
- To demolish or remove the existing bridge and part of approach embankment as soon as possible after completion of the Project.
- 4) To provide facilities for the distribution of electricity, water supply, telephone line and other facilities to the site.
- 5) To bear commissions (banking charge) to the Japanese foreign exchange bank for the banking services based upon the Banking Arrangement.
- 6) To ensure prompt unloading and customs clearance at the port of disembarkation in Kenya and internal transportation therein of the products purchased under the Grant.
- 7) To exempt Japanese nationals from customs duties, internal taxes and other fiscal levies which may be imposed in Kenya with respect to the supply of the products and services under the verified contracts.
- 8) To accord Japanese nationals whose services may be required in connection with the supply of the products and services under the verified contract such facilities as may be necessary for their entry into Kenya and stay therein for the performance of their work.
- 9) To maintain and use properly and effectively the facilities constructed under the Grant.
- 10) To bear all the expenses, other than those to be borne by the Grant, necessary for the execution of the Project.
- 11) To coordinate in solving any issues related to the Project which may arise with third parties and inhabitants living around the Project area during implementation of the Project.

Appendix-V Drill Logs

DRILL LOG

HOLE NO. 1 SHEET NO. 1 OF 2

	OJECT		NEW SA	BAKI	BRIDGE	KENY	<u>A</u> :		DEPTH INCLINATION	50.00 m		DANDO 150
	AGE C	ORE	N/A		DATE	FROM 5/	в то 26	/8/93	DRITTE	H. W.	1.0GGED	J. O .
Υ 	рертн	ELEVATION	ROCK TYPE OR	COLUMN	DESCRIPT	TON	BIT & DIAMETER	ROUNDWATER	SAMPLE	SA MPLES	S,P.T. N Values	регти
		ᆸ	FORMATION		Medium dense bro with mica, With root fibres Trece silty clay	top 11s.	2 50mr		2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		10 10 50 1 11 11 11 11 11 11 11 11 11 11 11 11 1	2
	4.00		GAY		Crey, 10cm thick		7	4.00 5.00	\$2 U \$ 81		UIOO B	οws 42 5
1			SAND		Loose and medium greyish brown fi	dense		6. 0 0	81 012 813		16	6
12	B 00				medium.	it an	200mr	7.00 8.00			(7)	7
- Land	# V V							9.00	8 (6 017		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9
		ļ <u>.</u> .						10.00	31.6 81.9		[27]	11
								12.00	920		30	12
1								13.00	122 122		(26	13
13					, ,			15.00	825	44) 23	15
77								17.00	126 125		/30 /27	12
			SAND		Medium dense and light brown/white medium and coers	e angular	150mr	18.00	22		$+$ $\}$	7
1 2 2 1								20,0 0	B 18		72 72	20
22	٠.							21.00	829 830			2
22								23. 0 0	831) 3 6 (3 2	2
7								26.00	832 B32		16	2
1.3					.:			26.00	214		//10	2
24 24		:						27.00	B35	1 1	32	2
L. A								29.00	632		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2

ARQUD is Neck Quality Designation, RQQD=(Total longit of cylindric cares longer than 10 cml/(Total cure longit) = 1007.

#LUNGON VALUE is I/min/m under injection mater pressure of 10kg/cm'

#DEPTH and ELEVATION are in mater

#DIAMETER is in millimeter

CONSULTING ENGINEERS, TOKYO.

r	PROJE	CT	MENT EV	BAKI	BRIDGE _	KENYA			DEPTH	50.00	n ELEVATION	
-	SITE		NEW SA MALINDI	DANI	COORDINATE	1.	:		INCLINATION			DANDO150
ÄV	ERAGE RECOV		N/A	1	DATE	FROM 5/8	TO 26	3/8/93	DRILLEI	H. W.	LOGGED	J. O.
h			ROCK TYPE	Ī			∰ 8.	E .			\$.P. T.	μ,
2	рерти	EL EVATION	OR	COLUMN	DESCRIP	TION	BIT & DIAMETER	ROUNDWATER LEVEL			N	143
ă	130	E	FORMATION	SECTION			BIT	HOU!	SAMPLE No.	SAMPLES	VA LUES 10 30 50	
Н		ы			:		·	<u> </u>				
	-] .	• • • •		:			31. 00	2020			31
	-11	1			Denne light bro							
	- 27		1	1.33	angular coerse;			32.00	840		1 1	32
				· : · · : : ·	fine quartz gre	vel.		33.00				
7	33			: : : :	With rere angul	er and		33.00		7 4 4	3.5	
18		ŀ	SAND		autoround quertz			34.00	8 42			14
			ļ [.]		eendstone frags upto 5cm across		1					- 1
	25	1				,		35.00	1 43	i A	ј ј	
	-			:	With bivalve sh zone 31.00-32.0			36.00		*		26
	.16			<u>:</u> : : : :							38	
	34125	d		<u> </u>			_	37.00				77
				:								
	37			:::: <u>:</u>				38.00	BES		3.6	74
		1		::::	٠			39.00				3 9
				l : : . :	-							
	40	1		1::::				40.00	844		35	4
24			[l.'								
	4		ļ	. : : : : :			1	41.00			هول ا	
	42	1.			Dense and very	iense		42.00				42
			SAND	[.]:.:	light brown med				052			187
	43			1: :	coarse.			43.00	13.1			43
	-	ŀ	Į	::::	:			44.00				
	-66			:::::	,							
1			-			•		45. 00	456			4.5
			· [•			ĺ	OSE			sa iii ii ii ii ii
	44			ļ.: : i				46.00	837			3.6
	47 47] .					47.00				47
	47.5		SULT	* * *	Very compact gre	y with green _] .		960			52
	LB	T			tinge santy re	e lisestone		48.00	851			48
12	-			: : :	Very dense angula	er coerse and			967			
	*2	1	SAND] : : : :	very coarse. Lith rare angular	and munded		49.00	064	14	5 REFUS (50)	9
	20 20.0	d			sandstone and lin	estone					SREFUS	60.77 29 60.77 50 60 00
	-								2 6 6 C 6 6		(\$\$.)	
	\dashv	1			END OF B	ł						
		1			DEPTH (M)		1					
	_		DATE	TIME	HOLE CASIN		4					
	-		6/8/93	18.00	1.00 NIL 8.00 7.70	DRY 1.00	-					1
	1		7/8/93	6.00	8.00 7.70	1.00	1					
		1	8/8/93	6.00	11.00 10.70	1,7.0]					
	-[9/8/93	6.00	12.45 12.20	2.00	1					
		1	19/8/93	6.00	13-50 13.70 18.45 18.20	2.00	┨					
	-	1	12/8/93		18. 45 18. 20		1					
]		13/8/93	6.00	25.00 25.45	2.00]					
	4		14/8/93		27, 45 26.90		1					
	- [15/8/93	6.00	32.75 32.75		-					
	-		24/8/93	6.00	44.00 44.0		†	•				
			26/8/93	6.00	48.00 48.00		1					
	0 0 D : 1		· · · · · · · · · · · · · · · · · · ·		of extindeia cores tenace to		- 	100"	****	DIANT I	COEL CO	1 11.13

RRQD in Rock Quality Designation, RQDm (Total length of cytindric cursa longer than 10 cm)/(Total curs length) x 100% RLUGEON VALUE in Value in motor injection water pressure of 10kg/cm² RDEPTH and ELEVATION are in motor RDAMETER in in millimeter

CONSULTING ENGINEERS, TOKYO.

NIPPON KOEL CO., LTD.

ſ	p	ROJEC	r T	NEW S	ABAKI	BR	IDGE	KENY	A		DEPTH	40.00	m	ELEVATION		
ŀ		SITE		MALINDI		j	COORDINATE	:	:		INCLINATION	VERTIC	AL		DANDO	150
I	AVEI R	ECOVE	CORE	N/A			DATE	FROM 6/8		78/93	DRILLED	F. K .		LOGGED	J.O.	
ſ				ROCK TYPE	COLUMN				BIT &	ROUNDWATER LEVEL	. !		5.P.	. 7 ·		품
ı	DATE	рертн	ELEVATION	OR	i		DESCRIP	TION	AME	UNDWAT		SAMPLES		UES		DEPTH
ľ	F3	۵	213	FORMATION	SECTION	·			10	CKO	SAMPLE		10	30 50) Softenida (Island	
F	/s=-							•	2 5 0 mm							
١	1	1		SAND	l: : : : l		m dense, b			1.00	Q2		ijΝ			
I	2	2.09				ine,	, with mice			2.00						2
١	—			1	::::					3.00						1
l		1								3.00	De l	†	1	6		
١	E				:::::		un dense, b			4.00	37			20		4
١	E.			SAND		III	and medium	•	Į	5.00						s
١					l: : :		sional whit tz fregwent	a limestone,			D o			14		
١	Ĺ					use.	ly upto los			€.00		1 4 6		1 25		6
1	-				:::::					7. 0 0						,,
J.	ľ	7.45							4	" "				23		
1	د ا	4			::::1					8.00	3 3			\.		8
	Ę.,] ;						•	250 mm	9.00						9
1				1					200 mm		0.8	1		739		
ı	. E13				. : :					10.00	020			41		10
ı										11.00	e 2					ū
1	-					M. Ar.		4 4	}		P34			738		1.4
ı	ľ			SAND		pacen	um dense an n fine, wit	hosica.		12.00	024			/14		
Ļ	_[12				: : :		rare grey Limestone f			13.00	625	Α,				13:
ľ	¥ <u>⊢</u> ,				· · · · · · · · · · · · · · · · · · ·	quer'	tz perticle			14.00	626			- X		
l	Ë	1				· 4021.					1038	111		\ \ \ \	5	
	112									15.00	829					15
١	1	}								16.00				/		16
١											032	1 11		(33		
ı	12	1.7.90		 	::::	Donoo	horun fina	with mics	-	17.00	833	4 1		36		1.7
		18,00		SANO		yhite 10 cm	lisestone	, with mica, fragments upto		18.00	805					- 8
9	4				 			4 44					11. 11	(132		-
1	فلغ									19.00) 33		19:
	_E2							,		20.00	837			/		20
ľ	₩,			SAND	[. ::]		a danse bro conse, with			24.00	0 78	11		34		21
							ar fine gra			21.00	0.60	† †		133		21
l	1112				: : ·					22.00	841			135		22
Į	Ę.,									23.00	042					23
F	1									23.00		1	77.7		aat III	
	14	24.00	·····	-	° 0 0				1	24.00		* * * *	J.,,			24
	25				00		i dense erei grey subsnj			25.00	3 2 6					25
l	-				0 0	medium		e, Limestone				1 1		10.00		
	24			CRAVES.	000	30cs#; 1	with rare t	ivalve		26.00	8 4 6 U 67	† ↑ •		\ 20 I		26
L	27					atells	; in sand s	etrix.		27.00	a a a			7		1 27
ľ	4		: -		000	4	ŀ		2 0 0 mm		0 49			134		
	24	28.00		 	0 0 0		Light brown		1 \$ 0 mm	28.00	B 50 D 51	1 4 1			4.5	2.8
	a		: .	SAND		medica	and course onal grey f	:	மும்	29.00	B,52					29
	-							nie graniec baupto 12cm.		30.00	P\$2	1 1 1		 		
_	_	لسسيا							<u></u>	30.00	BS4	ta 🍎 😘 tara jara	F::: :::;	na Kadarila		30

[#]RQD is Rock Quality Designation, RQD=[Total length of cylindric cores lunger than 10 cm]/[Total cure length a 100]// #LUGEON VALUE is 1/min/m under injection water pressure of 10kg/cm²

#DEPTH and ELEVATION are in meter

#DIAMETER is in millimeter

NIPPON KOEI CO., LTD.

CONSULTING ENGINEERS, TOKYO.

LOG FORM-B

P	ROJEC	r	NEW S	ABAK		KENYA			DEPTH		00 m	DRILL RIC		15(
	SITE		MALINDI	·	COORDINATE	:	:		EXCLINATION		TIC AL	LOGGED	4	
/EI	RAGE ECOVE	CORE RY	N/A upto	36.00m	depth; 64% DATE	FROM6/8		18/93	DRILLED		<u> </u>	Loddisb	<u> </u>	
ľ		t	ROCK TYPE	COLUMB			BIT & DIAMETER	GROUNDWATER LEVEL	CORE	- I		5 P T		
	рертн	ELEVATION	OR	COLUMN	DESCRIPT	ION	MEJ	UNDWA	RECOVERY	.∑	Q.	N		
	30	150	FORMATION	SECTION	·		317	30U.	TCR FI	Σ ≪ Ø	& 10	VALUE	S O	- -
	·	ω		ļ.,			-		1182	TT 4 T		2 2		
È.	1 .						1	31.00						111
2	1			:::::			·	31.00	ias I	i Ni		60) REFU	SAC #	
E	1		1	1				22.00				e iii	1 5 sem	ij,
ŭ	4		1.					32.00	186	1 4 1		30) REFU	SAL+	
Ę.	1	•	SAND					33.00	860			5	156mm	∭.
ı.			(Sales)	• • • ::	Very dense light			33.00	18.61	4	¥	601 REFU	SAL	
F		1		1	medium and cogree occasional saxkst	-		34.00	852			c	175 mm	
1	9				Limestone fraggen				763		ii (63) REF4		
Ē,	ٳ			li i i i	Scat.	-	1	35.00	8.5.4	V		S	50 mm	Щ
	1	}] '. '	1				1			73) R & F (
×	36.Q						1 31	36.00	9.66			s	1 7 3 (vn)	₩.
			1	<u> </u>	Moderately weather	red ina basisan	mm	26 70	YPZNI		0	60) R F F G	75mm	
27	4		LIDNESTONE		horizontally mach 5-15cm specing, w	uite erevish	1	36.70 37.00	١		0 30 3	LOWS NO	PERSTRATE	οN
Ļ.					brown silty sand r coarse grained, or		1		, o.		(2			
1	32.00	<u> </u>	ļ	7 8 6			-	38.00		5	30 8	LOWE NO	PENETRATI	ON.
<u></u>			GRAVEL.	0000	Very dense white a			20.00	H A		0			
13	"3a"0		 	1.0.00			┨ . │	39.00			30 B i	ows no	ENETRATION	1
Ē-,	,,,,,] .	SAND	: : : : : : : : : : : : : : : : : : :	Very dense brown coarse, trace fine gravel	arpangular saum and		40.00	N A		N A			
[*	40.05				PSVEI.						108	LOWS NO	PENETRATIO	
		,			END OF	в/н								
	1				22	5,11								11
	1	[{ · · · · · · · · · · · · · · · · · · ·											
_	1] ,	Į										
<u> </u>	1		!											
<u> </u>			Į i					:						
<u> </u>	1		1											iil
- ,			1											
			 	<u> </u>	DEPTH (M)	T	1	;						äŀ
-		l .	DATE	TIME	HOLE CASING	- 								
)		6/8/93	6.00	0.00 NIL	DRY]							
				18.00	4.00 4.00	G.L.]							
_	:	* :	7/8/93	6. 00	7. 00 7. 00	G. L								
Ц				18.00	9.00 7.00	1.00								
-			8/8/93	6.00	13.00 13.00	G. L.								
-				18.00		0.50								-
			9/8/93	6.00 8.00										
\exists			19/8/93	6 0 0										:::}
				18.00	21,00 18,4		1							:::
			12/8/93	6.00			1							iil i
				18,00	24. 00 24. 00	****] [
_			13/8/93		27.00 26.75	·	1 1							#
\dashv				18.00	76.00 28.00									
-			16/8/93		30.00 28.00	 -								
-			17/8/93		33.00 33.00 35.00 34.00		1							-
-	ļļ				36.00 35.60									
	. 1		18/8/93		3 6. 0 0 3 5. 1 0][#
	. [1 8. 00										
_			19/8/93	6.00	40.00 35.10									計
╝				1 8. 00	40.00 35.00	G. L.]	, ·						
-	·]	. 1	20/8/93	6.00	40.00 35.00	G. L.								
-1					1000]							L
-	1			Ì		•	.							
- 1	ļ		1	1			i l							#L
_1					· ·					. 1	14644114461144	111111111111111		TH1 :

RRQD is Rock Quality Designation, RQD={Total length of cylindric cores Jueger than 10 cm}/(Total core length x 100'b alugeon Value is l'min'm under injection water prassure of lokg/cm² a DEPTH and ELEVATION are in mater as DAMETER is in millimeter

CONSULTING ENGINEERS, TOKYO.

NIPPON KOEI CO., LTD.

* HAMMER BOUNCING

LOG FORM-B

[#]RQD is Rock Quality Designation, RQD=(Total length of cylindric cores longer than 10 cm)/(Total core length x 100%

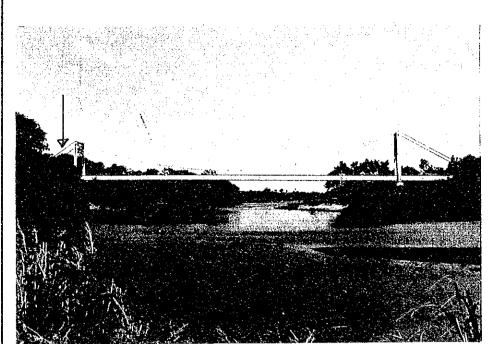
TLUGEON VALUE is t/min/m under injection water pressure of 10kg/em

[#]DEPTH and ELEVATION are in meter #DIAMETER is in millimeter

T.C.R. = Total Core Recovery

F. 1. : Fracture Index

NIPPON KOEI CO., LTD CONSULTING ENGINEERS, TOKYO.


[.] HAMMER BOUNCING.

Appendix VI Estimated Future Traffic Volume

		Non	Normal Traffic	affic			Gene	Generated Traffic	raffic				Total			AADT	Remarks
	(1)	(5)	(3)	· ((5)	(1)	(5)	3	4	(5)	Ξ	(5)	3	3	(5)		÷
1993	126	139	157	37	33											492	THE THE THE TWO
1994	131	143	163	38	34											509	
1995	137	148	170	39	35							•		,		529	
1996	143	153	177	41	36											550	
2.6	149	158	184	43	37	37	40	37	6	7			•			701	New bridge and Malindi -
86	155	160	191	45	38	39	40	38	ο,	∞		•				723	Garsen road completed
66	162	165	199	47	39	41	41	9	0	œ						751	
2000	169	174	207	49	.40	42	44	41	10	∞						784	
01	176	180	215	51	41	4	45	43	10	∞	-					813	
. 20	184	186	224	23	42	46	47	45	11	∞	:					846	
03	192	192	233	22	43	48	48	47	=	0						878	
4	200	198	242	57	4	50	20	48	-	6						606	
05	500	204	252	29	45	52	5	20	12	2						943	
	218	211	262	61	46	55	53	52	12	6						626	
2007	227	218	272	63	47	57	55	54	13	6	284	273	326	76	56	1,015	
•	4.3%	3.2%	4.0%	3.9%	3.2%	25%	25%	20%	20%	20%							Growth rate
											-	1.5	1.5	S	∞	4	P.C.U. factor
											284	410	1,630 608	809	224	224 3,156 P.C.U./d	

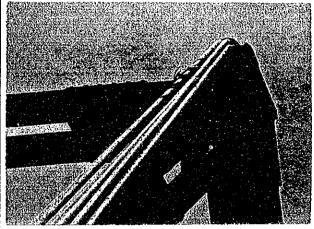
(1) Cars
(2) Light Vehicles
(3) Medium Vehicles
(4) Heavy vehicles
(5) Buses
AADT: Average annual daily traffic
P.C.U.: Passenger Car Unit

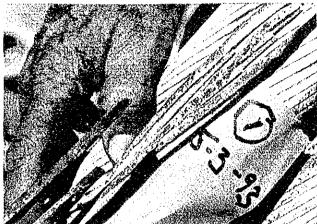
Appendix -VII Photos Showing Present Conditions

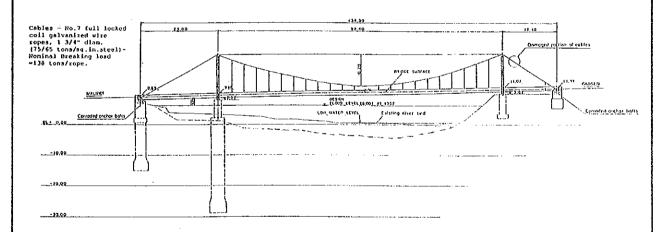
Sabaki bridge viewing from upstream. Wires are broken at the arrow.

Viewing from Malindi side. Sign board showing weight restriction and barrier for traffic control are seen.

Republic of Kenya

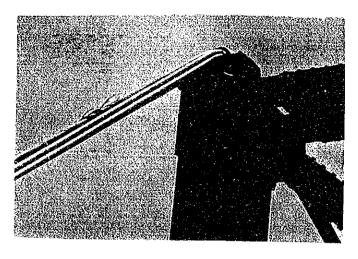

Close view on Malindi side. Pedestrians walk on traffic lane

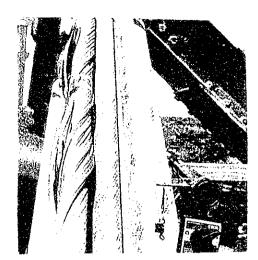



Viewing from upstream on Garsen side. Power line on upstream.

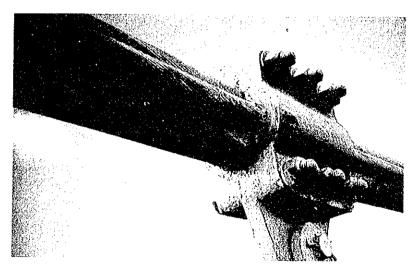
Republic of Kenya

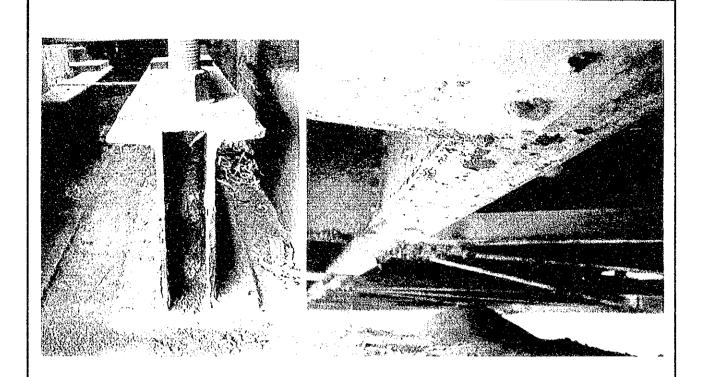
Ropes of broken wires on land side.





Two ropes are in very bad condition (wires broken) and another two ropes are getting serious in corrosion. The remaining is good in appearance.


Republic of Kenya


Ropes of broken wires on sea side

Two ropes are in very bad condition (many wires broken). Another two ropes have extensive corrosion. The remaining have light corrosion only.

No protective paint have been done.

Republic of Kenya

Badly corroded anchor bolts for all bolts.

Rust under stiffening girder plate on Garsen side.

Republic of Kenya

Appendix-VIII Assessment of Bridge Length

1.1 Estimate of design flood discharge

1.1.1 Calculation Method

The following points were considered in determining the method of estimating the design flood discharge at the bridge site:

- 1) Most of the Sabaki river basin consists of semi-arid or arid zones, precipitation is low and the loss of water due to penetration and evaporation is great, so the annual runoff coefficient is an extremely low 2.3% (Revealed by The Study on the National Water Master Plan, JICA 1992). This figure is much lower than the margin of error when the flood discharge is calculated by runoff analysis, so for reasons of precision it is not appropriate to calculate the flood discharge by runoff analysis.
- The water level at the location of the Sabaki bridge has not been measured regularly, and data from a nearby gauging station would have to be used for the flood analysis. However, since the flow capacity of the Sabaki river is low, overtopping occurs between the gauging station and the Sabaki bridge site when the flow is heavy and the plain area is inundated, so that discharge at the location of the bridge is lower than the discharge at the gauging station.
- The highest recorded flood level at the location of the Sabaki bridge was recorded during the flood in November, 1961, at which time the old Sabaki bridge was washed away. There is a records of the maximum water level at the location of the Sabaki bridge at this time, so the largest recorded flood discharge can be estimated.

Considering the above points, the design flood discharge (50-years probable flood discharge) at the location of the Sabaki bridge was calculated using the following procedure:

1) Estimate of the probable 50-years flood discharge (Q50') at key station.

A key station was selected, and a probability analysis of the annual maximum discharge was conducted.

2) Estimate of the largest recorded flood discharge (Qm) at the location of the bridge

Based on the data for the water level at the time of the largest recorded flood at the bridge site, the flood discharge at this time was estimated using nonuniform flow calculation.

3) Estimate of the design flood discharge (probable 50-years flood discharge: Q50) at the bridge site.

The design flood discharge at the bridge site was estimated by determining the expansion rate from the above Q50', Qm and the recorded discharge at a selected gauging station at the time of the largest recorded flood at the bridge site (Qm'). The formula is as follows:

$$Q50 = Qm \times Q50' / Qm'$$

The above estimate procedure is shown on Figure A.VIII.1.

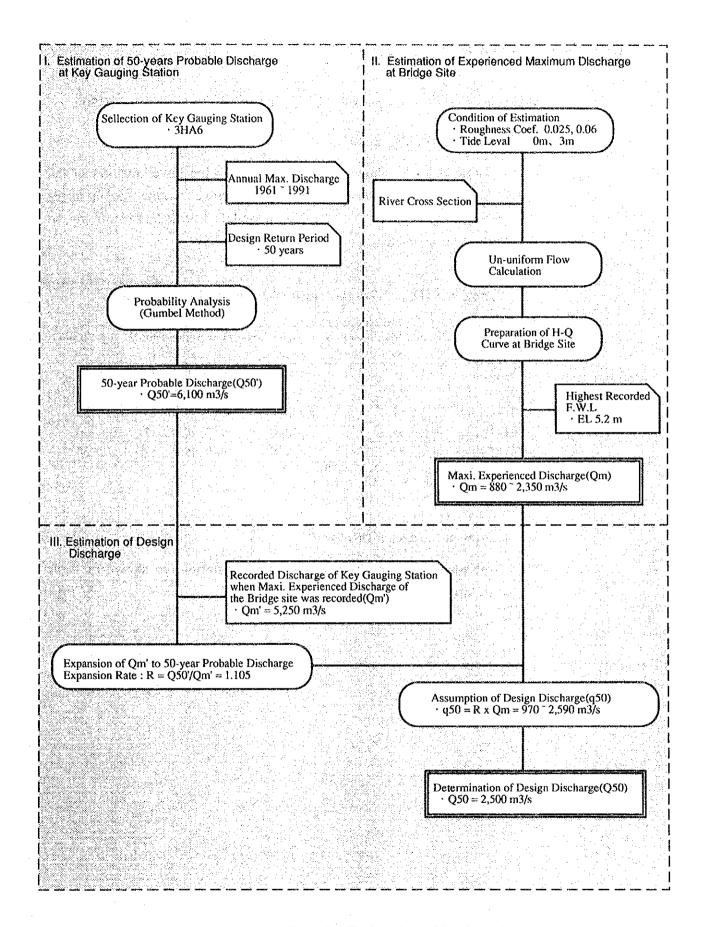


Figure A.VIII.1 Work Flow for Estimation of Design Discharge

1.1.2 Results of estimate

1) Estimate of the 50-years probable flood discharge at the key station (Q50').

(1) Selection of key station

Table A.VIII.1 shows the key stations on the lower reaches of the Sabaki river. 3HA6 is the nearest to the bridge site, the measurements have been taken there over a long period, and little data is missing, so this was selected as the key station.

Table A.VIII.1 Gauging Station Along the Lower Sabaki

Gauging Station	Distance from Mouth (km)	Catchment Area (km²)	Observation Peered (year)	Loss Ration (%)
3НА6	8	38,500	1961 - 1991 (31)	20
3HA8	36	35,700	1973 - 1982 (10)	40
3HA1	39	35,700	1949 - 1951 (3)	85
3НА2	55	35,400	1953 - 1957 (5)	90
3НА3	77	35,200	1951 - 1957 (7)	30

Note: Report on the Hydrology of the Sabaki River, 1973 Study on the National Water Master Plan, JICA 1992

(2) Annual Maximum Discharge

Annual maximum discharges at the key station are shown in Table A.VIII.2.

Table A.VIII.2 Annual Max. Discharge at 3HA6

No.	Year	Gauge Reading (E.L.)	Max. Discharge (m ³ /s)	No.	Year	Gauge Reading (E.L.)	Max. Discharge (m ³ /s)
1	1961	_	5,520	17	1977	4.7	6,400
2	1962	1.5	145	18	1978	3.0	1,500
3	1963	2.6	900	19	1979	3.2	1,800
4	1964	2.2	560	20	1980	2.4	540
5	1965	1.9	340	21	1981	3.9	3,600
6	1966	2.0	400	22	1982	4.1	4,100
7	1967	3.1	1,600	23	1983	1.7	220
8	1968	3.3	2,050	24	1984	3.2	1,800
9	1969	2.2	560	25	1985	2.7	1,050
10	1970	3.1	1,600	26	1986	3.6	2,600
- 11	1971	3.3	2,050	27	1987	1.2	68
12	1972	3.1	1,600	28	1988	3.3	2,050
13	1973	2.5	800	29	1989	3.4	2,150
14	1974	3.2	1,800	30	1990	3.4	2,150
15	1975	3.0	1,500	31	1991	2.3	560
16	1976	3.3	2,050			· · · · · · · · · · · · · · · · · · ·	

(3) Estimate of 50-years Probable flood discharge (Q50') at 3HA6

By using the Gumble Method, a probable 50-years flood discharge (Q50') at 3HA6 was estimated and was about 6,100 m³/sec as shown in Figure A.VIII.2.

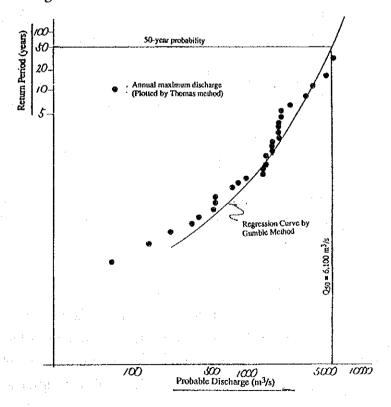


Figure A.VIII.2 Probable Flood Discharge by Gumbel Method

2) Estimate of the largest recorded flood discharge at the bridge site

The largest recorded flood at the location of the Sabaki bridge was in November 1961, at which time the old bridge, located upstream from the existing Sabaki bridge, was washed away. The flood level at this time was recorded as EL 5.2 meters.

Using cross-sections of the river obtained through the river cross section survey, the relationship between the water level and the discharge at the old bridge site is calculated using non-uniform flow calculation, and the largest recorded flood discharge will be estimated under the largest recorded water level.

The initial water level and coefficient of roughness, factors directly affecting the results of the non-uniform flow calculation, were set as follows:

(1) Coefficient of roughness

According to the coefficient of roughness classification for Kenyan rivers in the Roads Department's "Technical Data Manual for Design of Bridges, Volume 2 - Climatological Data", in its lower reaches the Sabaki river is classified as a "major stream - regular section with no boulders or bush", in which case the coefficient of roughness is within the range of 0.025 to 0.06. this value can also be considered appropriate in comparison to the values in Japan's Hydraulic Formula. since specifying the value within this range is difficult due to the lack of studies on the coefficient of roughness of the Sabaki river and the absence of other effective data, here it was decided to conduct the calculations with coefficients of roughness of both 0.025 and 0.06.

(2) Initial water level

The Sabaki bridge is located about 3 km from the mouth of the river, and as such was judged to be in a tidal area. According to records of tide levels in Malindi harbor near the mouth of the Sabaki river, the tide fluctuates between the range of 0 to 3 meters above sea level, so here calculations were conducted with the initial water level set at 0 and 3 meters.

Figure A.VIII.3 shows the relationship between the water level and the discharge at the old bridge site under the above conditions. According to this figure, it is concluded that when the discharge reaches 1,000 m³/s the effect of the initial water level be neglected, and only the coefficient of roughness affects the water level.

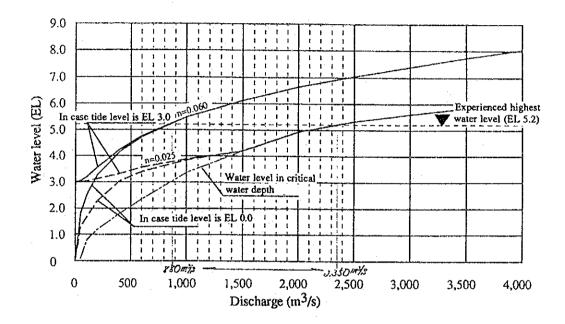


Figure A.VIII.3 Relationship Between Water Level and Discharge (H-Q Curve) at Sabaki Bridge Site

The largest recorded flood discharge (Qm) corresponding to the largest recorded flood level at EL 5.2 meters was estimated at between the range $880 \text{ m}^3/\text{s} < \text{Qm} < 2,350 \text{ m}^3/\text{s}$, depending on the coefficient of roughness.

3) Estimate of the design flood discharge (probable 50-years flood discharge: Q50) at the bridge site.

The largest recorded flood discharge (Qm) at the old bridge site was converted to the design flood discharge using the following formula:

$$R = Q50' / Qm'$$

$$Q50 = Qm \times R$$

Where,

R = Expansion rate

Q50 = Design flood discharge at the bridge site.

Qm = Largest recorded flood discharge at the bridge site = $880 \sim 2,350 \text{ m}^3/\text{s}$.

Q50' = Probable 50-years flood discharge at the key station = $6,100 \text{ m}^3/\text{s}$

Qm' = Recorded discharge at the key station at the time of the largest recorded flood at the location of the bridge = $5,250 \text{ m}^3/\text{s}$.

Thus,

R = 6,100/5,250 = 1.105

$$O50 = (880 - 2,350) \times 1.105 = 970 \sim 2,590 \text{ m}^3/\text{s}$$

Considering the reliability of the measurement data and the possible inaccuracy of the set conditions (coefficient of roughness, etc.), a high value within the above range should be used as the design discharge, so the value of $Q50 = 2,500 \text{ m}^3/\text{s}$ was adopted as the design flood discharge.

1.1.3 Determination of bridge length

1) Estimate of Required Bridge Length

In this section, the water level, velocity and characteristics of the flow (subcritical flow, super-critical flow, critical flow, etc.) at the bridge site are studied by using non-uniform flow calculation and the bridge length and high water level as well as a possibility of demolishing the existing bridge are assessed accordingly.

In the existing bridge, the approach road on the right bank is constructed on the flood plain, thus, strongly disturbing the natural river flow. When designing the new bridge, it is necessary to allow for a sufficient opening so that the design flood discharge can safely flow. This was done by postulating various bridge lengths and determining the flow conditions at the bridge site for the various flow cases using non-uniform flow calculation.

The results of the calculation are shown of Figure A.VIII.4, showing the relationship between the flow condition and bridge length at the bridge site. (Note: These calculations were conducted based on the premise that the existing bridge and the raised ground on which the approach road is constructed have been removed sufficiently so as not to affect the calculations.)

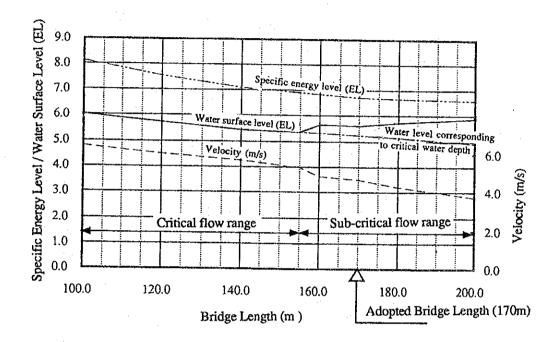
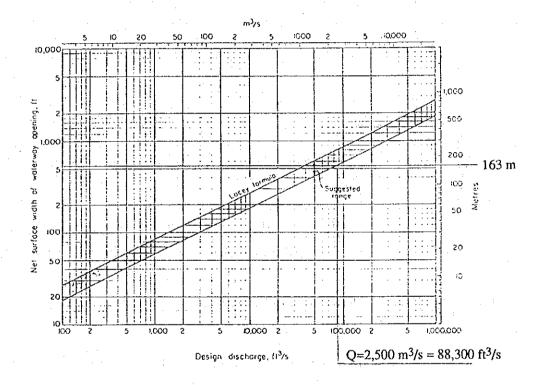


Figure A.VIII.4 Relationship Between Flow Condition and Bridge Length


As can be seen in the diagram, with a bridge length of 160 meters and less, a critical depth arises at the new bridge site and the flow is a critical flow. In this case, the problem arises of increased inundation area upstream of the new bridge due to rising the water level, as well as super-critical flow directly downstream, resulting in scouring. With a length of over 160 meters, the flow is sub-critical and stable.

The rate of increase in the specific energy of the flow also increases below a bridge length of 160 to 170 meters, while the change is more gradual beyond this.

From the above considerations, it was decided to adopt a bridge length of 170 meters, deemed a length at which the flow at the bridge site is essentially stable.

Furthermore, according to the empirical formula for the design discharge and standard bridge length included in the "Guide to Bridge Hydraulics, Road and Transportation Association of Canada", a length of 170 meters is appropriate for a discharge of 2,500 m³/s, as shown on Figure A.VIII.5.

As for the design flood-water level, a lowering of the water surface is generated by a reduced flow section at the bridge site with a bridge length of 170 meters, so the F.W.L. was set to 6.5 meters, interpolating the water levels up- and downstream (See Figure A.VIII.6).

Source: Guide to Bridge Hydraulic, Road and Transportation Association of Canada

Figure A.VIII.5 Lacey's Empirical Formula between Discharge and Waterway Opening

2) Assessment of possibility for demolishing the existing bridge.

The distance between the existing bridge's abutment on the left and right bank is approximately 110 meters, which is quite short when compared to the length of the new bridge, 170 meters, determined above. Since the new bridge will be located only approximately 20 meters downstream from the existing bridge,

the new bridge could suffer adverse effects without a sufficient bridge opening at the existing bridge.

In this section, the flow conditions in the vicinity of the new bridge under the design flood discharge with and without the existing bridge cases are assessed.

The results are shown on Figure A.VIII.6. According to this figure, when the existing bridge is removed (including a part of the approach road on the right bank), the depth is lower than the critical depth at all points in the vicinity of the new bridge, and the water can flow in a sub-critical flow. On the other hand, if the existing bridge is not demolished, a critical depth arises there because of its narrow section and a backwater approximately 1 meter higher than the case without the existing bridge is generated upstream. Also, a super-critical flow is generated downstream and may reach the point of the new bridge. As a result, it was determined that there is a need to demolish the existing bridge, for the following reasons:

- (1) As is an evident from the fact that the water level directly upstream of the existing bridge is above the height of the girder soffit, the specific energy of the flow (water level + velocity head) at the bridge site is already above the girder soffit. This means that the actual water level may rise above the girder soffit in localized places where the velocity is slow, such as on the upstream side of the abutments, and that the water level may rise to the girder soffit if driftwood gets caught, indicating that there is a high risk that the existing bridge may be washed away.
- (2) A critical depth arises at the section of the existing bridge, i.e. backwater is generated and the energy of the flow is greater than without case, creating a hydraulic jump downstream as the super-critical flow changes to a critical flow and the energy dissipates. This super-critical flow and hydraulic jump increase the extent of undermining of the riverbed.

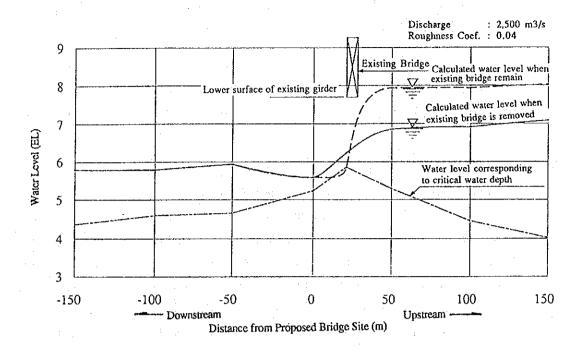
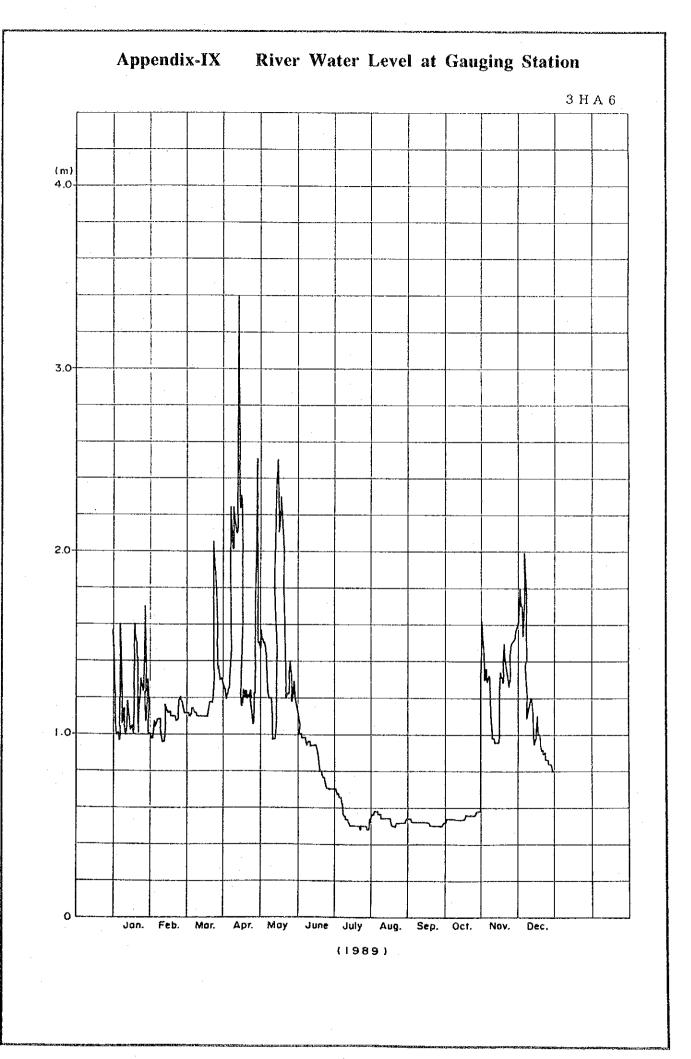
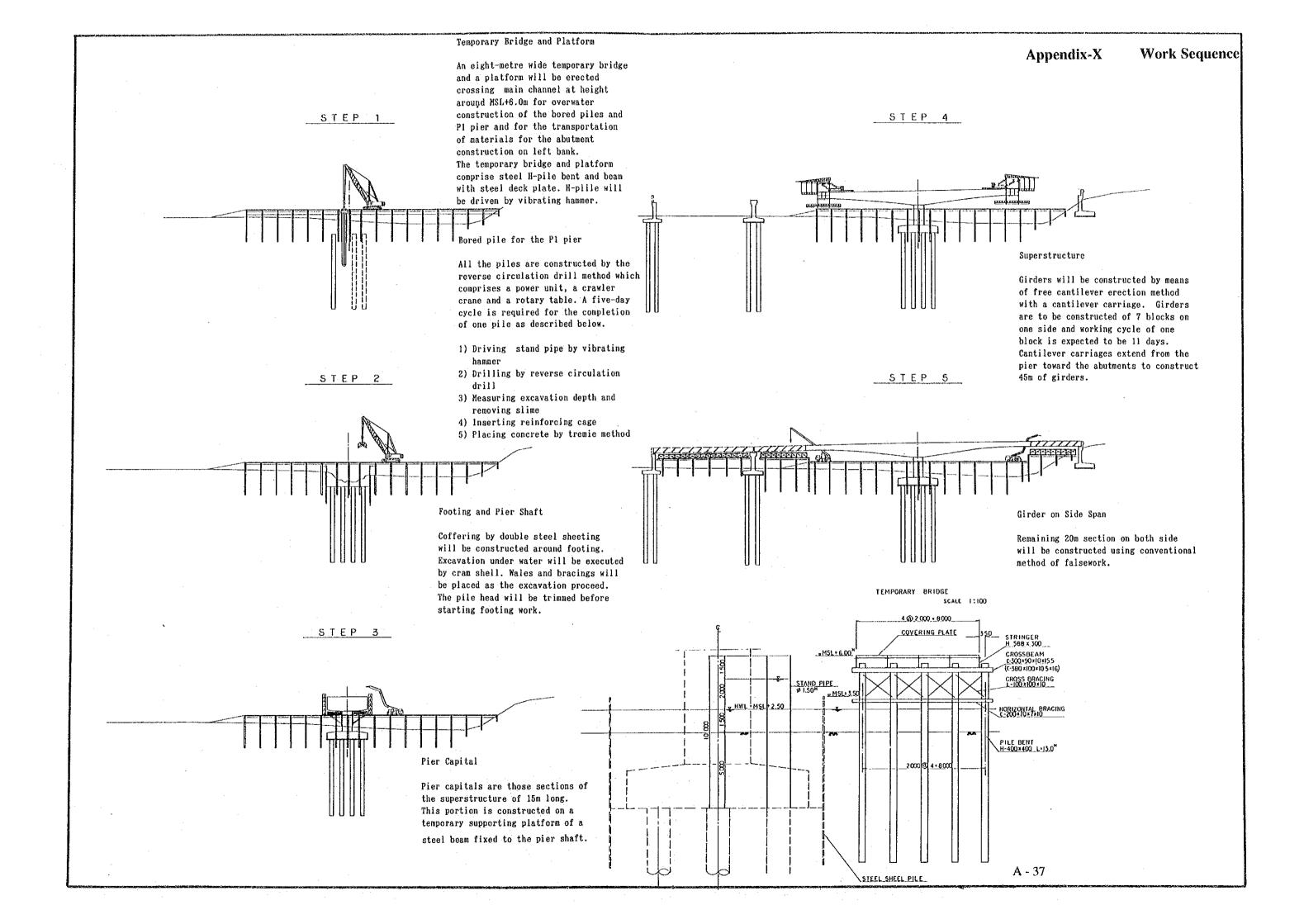




Figure A.VIII.6 Water Surface Profile in Vicinity of Proposed Bridge Site

