

A-20

MJBC-29 100 m-20														
$\begin{array}{\|c\|c\|c} \hline \frac{0}{6} & \text { 要 } & \text { MOMBRE } \end{array}$	OESCRIPCION	VEta						resultado del analisis						
$\begin{array}{\|c\|c\|c} 3 & 3 & 0 \\ 5 & 3 & 0 \\ \hline & 0 & 0 \\ \alpha & 0 & 0 \\ \hline \end{array}$					$\begin{aligned} & \mathrm{Sn} \\ & \% \end{aligned}$			Zn $(\%)$	$\begin{aligned} & \mathrm{Pb} \\ & (\%) \end{aligned}$	Ag (9,1)	Au (Q 0 (1)			
10×0 ments	 treinamite ot la metyecte sevial			1										
			+	1										
				1										
				1										
			1											
				1										
				+										
				1										
				1 										
	cantaxa tous pe patca								$\begin{aligned} & \text { in } \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{gathered} \text { 等 } \\ \substack{\text { a } \\ \hline \\ \hline} \end{gathered}$		- \times m	
	 		1 1 1 1	+										
			\bigcirc	1										
			1	1							,			
			1 	1										
			1	1										

A--37

MJBC-34

$$
\begin{aligned}
& \text { Qz: quarzo } \\
& \text { Kf: felspoto potasico } \\
& \text { Pl: plagioclasa } \\
& \text { Bi: biotita } \\
& \text { Ho: hornblenda } \\
& \text { To: turranina } \\
& \text { Ma: magnetita } \\
& \text { Zn: circon } \\
& \text { Sh: esfen } \\
& \text { Ap: apatita } \\
& \text { Mu: muscovita } \\
& \mathrm{Ch}: \text { clorita } \\
& \text { Se: sericita } \\
& \mathrm{Ca}: \text { carbonita } \\
& \text { (): abundante } \\
& \mathrm{O}: \text { mediano } \\
& \triangle: \text { poco } \\
& \text { © : raro }
\end{aligned}
$$

A-2 Resultado de observacion microscopia de rocas

No.	Numero de muestra	Ubicacion	$\begin{gathered} \text { Numero } \\ \text { de } \\ \text { roca } \end{gathered}$	Minerales													
				Qz	Kf	P1	Bi	Ho	To	Ma	Zn	Sh	Ap	Mu	Ch	Se	Ca
	S-12	MJBC-25, 34 m	$\mathrm{Fi}-\mathrm{Ss}$	(0)	\triangle	\triangle	\triangle				-			\triangle			
2	S-13		Ss	(0)					-	-	-			\triangle			
3	S-14	" ${ }^{\prime \prime}$-25. 109 m	Fi-Ss	(0)	\triangle	\triangle	-			-	-		-	\triangle	-		-
4	S-15	"/ -26, 56 m	Fi-Ss	\bigcirc	-	-			-	-	-	-	-		-		
5	S-16	"	Fi-Ss	\bigcirc										\bigcirc			
6	S-17	" $-23,3 \mathrm{~m}$	Fi-Ss	(\triangle	\triangle		-	-		*			\triangle	-		
7	S-18	contera	Fi-Ss	(0)	\triangle	\triangle		\triangle	-		-	-		\triangle	-		
8	S-19	WJBC-34 150m	Silt	(0)					-		-		-	\bigcirc	\triangle		
9	S-20	" ${ }^{\prime \prime}-32$ 209m	Silt	\bigcirc					-		-		-		\triangle		
10	S-21	"	Silt	\bigcirc					-				-	\bigcirc			

Sp：esfalerita
Ga：galena
PO：pirrotina
Ap：arsenpirita
Mc：चarcasita
Cs：casiterita
Es：estanina
Fr：frankeita
Cp：calcopirita
Mg：magnetita
Ag：mineral－plata
Si：silicato
Sd：siderita
Ca：carbonita

	3	\checkmark	（0）	O		\bigcirc	（0）	（0）	＜		4	O	10	0			$\triangle 1$	O	\bigcirc	\checkmark	$<$	\triangleleft	\checkmark	\checkmark	＜	©	\checkmark	\triangleleft	＜	\triangleleft	（0）	－	
$\begin{array}{\|c} 10 \\ 0 \\ 0 \\ 0 \end{array}$	\％		（0）	O		O																											
	$\ddot{\sim}$	（0）	（o）	O		O	\checkmark	\checkmark	O	）	\checkmark	\checkmark	\triangleleft	\checkmark	O		4	O		－	－	－	－	く	$<$	$<$	－	－	－	－	$<$	－	
	8																									－	－	－	－				
	${ }^{\circ}$																										－						
	\mathcal{O}	－		－			－	－				－	\triangle	－	＜		－	O	\checkmark	－		\checkmark		－		－	－	－	－		－	－	
	品																																
$\stackrel{\circ}{4}$	㷩			－			－				－	－	－						－	－		－				－	－		－			－	
E	3													－	－				－	．				－								－	
$\begin{array}{\|} \stackrel{\otimes}{\otimes} \\ \stackrel{\otimes}{\otimes} \end{array}$	\cdots	－		く		\checkmark		\checkmark	\checkmark			－	\checkmark						－	－	－			$<$	－	－	－	\checkmark	－	－	－	－	
$\stackrel{\rightharpoonup}{\mathbf{N}}$	8		4			\checkmark	－	－				－	－	－	4	＜	\checkmark		－		－	4	\checkmark	－	－	－	\checkmark		－	4	－	－	
品	O			－								－		－	（0）	（0）	（）	（）	（o）	（0）	（0）	（0）	（2）	－		－					－	O	
	号	\checkmark	4	（0）	（0）	（o）	$\triangleleft 1$	0	（0）	（0）	O	（o）	©	O		$<$			\bigcirc	O	O			0	0	0	（o）	4	－	（1）	－	O	
	\mathfrak{G}	－		－		\checkmark	－	\checkmark	＜	$1<$	\checkmark	\checkmark	－	－							－				－	－	－	（0）	－	－	－	－	
	¢	\checkmark	－	0		\bigcirc	\triangle	－	O	\bigcirc	（）		－	（0）		O	O		0	\checkmark		（0）	\checkmark	（）	\checkmark	$<$	\checkmark	\checkmark	（o）	－	－	（）	
			$\left\lvert\, \begin{gathered} \text { 日 } \\ \underset{\sim}{3} \\ \underset{~}{\text { a }} \end{gathered}\right.$				$\left\lvert\, \begin{gathered} \text { 呙 } \\ \stackrel{y}{c} \\ \stackrel{7}{1} \\ \stackrel{1}{2} \end{gathered}\right.$								$\begin{gathered} \text { 㫛 } \\ \stackrel{\rightharpoonup}{9} \\ \vdots \end{gathered}$	$\stackrel{y}{8}$				$\begin{gathered} 9 \\ a \\ N \\ \text { a } \\ i \\ i \end{gathered}$			界		$\begin{array}{\|c} 0 \\ \Delta \\ 0 \\ \vdots \\ \vdots \\ 0 \end{array}$			$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	0 0 0 S	$\dot{0}$ 0 0 0 \vdots 0	$\stackrel{\infty}{\underset{\sim}{\underset{\sim}{c}}}$		
		$\begin{array}{\|c} c o \\ 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \underset{\sim}{N} \\ & \vdots \\ & \end{aligned}$	$\left\lvert\,\right.$		$\begin{aligned} & \underset{\sim}{2} \\ & \vdots \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}\right.$	$\left.\begin{gathered} \overrightarrow{3} \\ \vdots \\ a \end{gathered} \right\rvert\,$	$\begin{gathered} \infty \\ \infty \\ 1 \\ \hline \end{gathered}$	$\begin{array}{ll} 2 & m \\ c & m \\ 2 \end{array}$		∞		$\left\|\begin{array}{c} \infty \\ 0 \\ \vdots \\ a \end{array}\right\|$	$\begin{gathered} c \\ 1 \\ a \end{gathered}$	∞ n n n		$\begin{aligned} & \infty \\ & \infty \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 穴 } \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{gathered} -7 \\ \dot{1} \\ \hline \end{gathered}\right.$	$\begin{aligned} & \text { y } \\ & \text { y } \\ & \hline 1 \end{aligned}$	$\begin{gathered} m \\ \dot{1} \\ \hline \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { zy } \\ & \text { á } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { or } \\ & \dot{1} \\ & \dot{\alpha} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \infty \\ \dot{\alpha} \\ \dot{\alpha} \end{gathered}\right.$	$\underset{\substack{2}}{\stackrel{\rightharpoonup}{2}}$	$\frac{\infty}{\hat{1}}$	$\left\|\begin{array}{l} \infty \\ \dot{1} \\ \dot{a} \end{array}\right\|$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} -r \\ 0 \\ 0 \\ 2 \end{gathered}$	$\begin{aligned} & \text { u } \\ & \dot{1} \\ & 0 \end{aligned}$	com	
9		\cdots	\sim	∞		－	irs	\cdots	${ }^{1-}$	∞	∞	on	－	F	\sim	2		－	$\xrightarrow{-1}$	\bigcirc	\cdots	\cdots	$\stackrel{-1}{-1}$	요	\cdots	N	\％	N	\％	$\stackrel{1}{\circ}$	－	$\stackrel{\infty}{\sim}$	

A-4(2) Fotografias de microscopia de seccion delgada de minerales

P-46
-46
Sp: Esfarelita
CS: Casiterita
Py: Pirita

Abreviaciones

Mt : Magnetita St: Estannita
C: Uarcasita Aps: Arsenopirita Gg : Mineral ganga
0 : Pirotina

Qz: Cuarzo

$\mathrm{P}-49$

P-49

P-50

P-53

A-4(2) Fotografias de microscopia de seccion delgada de minerales

A-4(1) Fotografias de microscopia de seccion delgada de minerales
Abreviaciones
Sp : Esfarelita
Cs : Casiterita
Py : Pirita

$$
\begin{array}{ll}
\text { Mt : Magnetita } & \text { St: Estannita } \\
\text { Aps: Arsenopirita } & \text { Cg: Mineral ganga }
\end{array}
$$

A-4(1) Fotografias de microscopia de seccion delgada de minerales

A-5 (1) Resultado de analisis de minerales

A-5 (2) Ressultado de analisis quimico de minerales

No	Numero. de Muestra	Numero de taladro	Profud. (m)	Ancho analizado (cm)	Sn (\%)	Zn (\%)	$\begin{aligned} & \mathrm{Pb} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Ag} \\ & (\mathrm{~g} / \mathrm{t}) \end{aligned}$	Nota
32	Q-32	\#JBC-26	188.00-	50	0.07	0.05	0.00	1	caja
33	Q-33	" "	188.50-	50	0.05	0.08	0.00	4	"
34	Q-34	" "	189.00-	50	0.10	0.06	0.00	3	"
35	Q-35	" "	$189.50-$	50	0.05	0.07	0.09	26	"
36	Q-36	" "	190.00-	50	0.07	0.07	0.09	2	"
37	Q-37	"	$190.50-$	50	0.07	0.06	0.09	2	"
38	Q-38	"	191.00-	50	0.05	0.06	0.00	0	"
39	Q-39	" "	191.50	50	0.25	0.08	0.00	1	"
40	Q-40	" "	$192.00-$	50	0.12	0.11	0.09	6	"
41	Q-41	" "	$192.50-$	50	0.12	0.12	0.00	20	"
42	Q-42	" "	204.00-	60	0.07	0.14	0.00	0	falla
43	Q-43	WJBC-25	130.22-	100	0.05	0.13	0.00	0	falla
44	Q-44	UJBC-24	342.90-	60	0.19	0.39	0.14	35	falla
45	Q-45	" "	$395.40-$	20	0.05	0.21	0.01	6	veta
46	Q-46	MJBC-22	131.00-	80	0.02	0.60	0.09	3	veta
47	Q-47	"	123.50-	100	0.05	0.57	0.01	12	caja
48	Q-48	"	124.50-	100	0.03	0.26	0.09	10	falla
49	Q-49	" "	125.50-	100	0.07	0.48	0.01	20	"
50	Q-50	" "	126.50-	100	0.20	0.64	0.00	6	"
51	Q-51	"	127.50-	100	0.07	0.45	0.00	13	"
52	Q-52	" "	128.50	100	0.05	1.02	0.00	20	"
53	Q-53	"	129.50	100	0.05	0.90	0.00	14	"
54	Q-54		130.50	100	0.05	0.55	0.09	8	"
55	Q-55	\#JBC-22	$76.30-$	100	0.05	1.02	0.15	40	"
56	Q-56		$77.30-$	100	0.05	0.19	0.00	6	"
57	Q-57	" "	$78.30-$	100	0.02	1.76	0.19	20	"
58	Q-58	"	79.30	100	0.10	3.84	0.06	24	"
59	Q-59	"	80.30-	100	0.17	0.12	0.02	10	"
60	Q-60		81.30-	100	0.07	0.30	0.03	14	"
61	Q-61	\% JBC-23	134.00-	40	0.19	10.44	0.03	76	veta
62	Q-62	M JBC-27	231.60 -	50	0.05	0.50	0.09	12	veta

A-5 (3) Resultado de analisis quimico de minerales

No		Numero de taladro	Profud. (ii)	Anchó analizado (cm)	Sn (\%)	$\begin{aligned} & \mathrm{Zn} \\ & (\mathbb{X}) \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & (\mathbb{X}) \end{aligned}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	Nota
63	Q-63	MJBC-27	232.10-	50	0.05	1.15	0.01	10	veta
64	Q-64	" "	$232.60{ }^{-}$	50	0.03	1.64	0.27	101	"
65	Q-65	"	$233.10-$	50	0.04	0.48	0.05	26	"
66	Q-66	"	233.60-	50	0.05	12.36	0.17	104	"
67	Q-67	" "	234. $10-$	50	0.05	11.92	0.28	82	"
68	Q-68	"	234.60-	60	0.05	19.44	0.24	130	veta
69	Q-69	" "	$236.80-$	100	0.05	0.74	0.16	26	caja
70	Q-70	" "	303.90-	50	0.02	3.72	0.14	148	veta
71	Q-71	WJBC-23	91.50-	50	0.05	1.71	0.35	126	veta
72	Q-72	" "	92.00-	50	0.13	0.20	0.01	4	"
73	Q-73	" "	92.50-	50	0.07	0.23	0.09	46	"
74	Q-74		93.00-	50	0.05	0.06	0.02	4	"
75	Q-75	HJBC-29	170.20-	50	0.05	6.44	0.28	162	veta
76	Q-76	" "	170.70-	50	0.05	1.09	0.47	102	"
77	Q-78	" "	171.20-	50	0.05	1.37	0.40	164	"
178	Q-78	" "	171.70-	50	0.02	0.62	0.36	126	"
79	Q-79	" "	172.20-	50	0.12	0.52	0.21	18	"
80	Q-80	" "	172. $70-$	50	0.07	0.88	0.10	20	"
81	Q-81	" "	203. 20-	30	0.03	0.96	0.05	24	"
82	Q-82	WJBC-29	331. 35-	45	0.07	10.36	0.06	240	"
83	Q-83	" "	333.50-	50	0.07	2.94	0.02	45	"
84	Q-84	" "	334.00-	50	0.25	4. 65	0.05	45	"
85	Q-85	" "	334. 50-	75	1.08	6.72	0.23	45	"
86	Q-86	WJBC-34	$56.00-$	8	1.19	5.07	0.01	45	veta
87	Q-87	" "	63.90-	53	0.78	7.28	0.01	16	"
88	Q-88	" "	64.70	62	0.71	8.64	0.02	15	"
89	Q-89	" "	108.00-	35	0.07	6. 33	0.00	1	"
90	Q-90	" "	$116.40-$	80	0.04	1.68	0.02	16	"
91	Q-91	" "	117.50-	72	0.11	5.14	0.00	1	"
92	Q-92	" "	122.60-	30	0.11	10.32	0.00	1	"
93	Q-93	" "	124.90-	32	0.14	5.56	0.01	16	"

A-5 (4) Resultado de analisis quimico de minerales

No	Numero de Muestra	Numero de taladro	Profud. (m)	Ancho analizado (cm)	Sn (\%)	Zn (\%)	$\begin{aligned} & \mathrm{Pb} \\ & (\not) \end{aligned}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	Nota
94	Q-94	HJBC-34	123.40-	46	0.05	9.55	0.00	16	veta
95	Q-95	" "	139.60	105	0.48	7.28	0.00	1	"
96	Q-96	"	$145.70-$	28	0.66	1.57	0.00	308	"
97	Q-97	"	147.00-	65	0.32	11.72	0.00	16	"
98	Q-98	"	$148.30-$	65	0.09	2.48	0.00	16	"
99	Q-99	" "	154.00	30	0.11	2.66	0.00	1	"
100	Q-100	" "	163.20-	25	0.34	13.12	0.00	15	"
101	Q-101	"	166.30-	40	0.06	1.33	0.00	45	"
102	Q-102	" "	169.60-	67	0.09	0.60	0.01	16	"
103	Q-103	" "	230.30-	20	0.04	3.36	0.00	30	"
104	Q-104	"	288.30-	20	0.25	14.63	0.00	45	"
105	Q-105	" "	298.30-	35	0.02	5.81	0.00	45	"
106	Q-106	MJBC-32	8.70	70	0.92	3.92	0.01	16	"
107	Q-107		$53.00-$	8	0.82	6.16	0.13	75	"
108	Q-108	". "	125.40-	5	0.41	18.62	0.00	135	"
109	Q-109	" "	128.70-	5	0.06	0.60	0.00	120	"
110	Q-110	"	151.95-	20	0.09	4.69	0.00	60	"
111	Q-111	" "	176.45-	30	0.46	21.63	0.00	103	"
112	Q-112	" "	180.70-	20	0.09	6.23	0.00	30	"
113	Q-113	" "	191.60-	35	0.09	7.21	0.00	16	"
114	Q-114	" "	$201.80-$	20	0.11	14.28	0.00	44	"
115	Q-115	" "	$204.80-$	60	0.02	9.13	0.00	74	"
116	Q-116	"	208.45-	65	0.09	14.14	0.00	74	"
117	Q-117	"	$210.30-$	100	0.36	14.63	0.00	89	"
118	Q-118	"	212.30-	100	0.27	13.44	0.08	60	"
119	Q-119	" "	213.90-	45	0.36	5.39	0.01	88	"
120	Q-120	VJBC-28	$113.00-$	85	0.15	6.55	0.71	99	veta
121	Q-121	"	116.30-	100	0.07	1.86	0.78	248	caja
122	Q-122	"	182.75-	80	0.06	0.37	0.05	20	veta
123	Q-123	"	$232.10{ }^{-}$	40	0.12	11.31	0.57	98	"
124	Q-124	" "	233.25-	100	0.10	1.36	0.17	50	net work

A-5 (5) Resultado de analisis quimico de minerales

No	Numero de Muestra	Numero de taladro	Profud. (n)		Sn (*)	$\begin{aligned} & \mathrm{Zn} \\ & (\%) \end{aligned}$	Pb (\%)	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	Nota
125	Q-125	" "	234. 25-	100	0.08	1.37	0.43	98	net work
126	Q-126	"	235. 25-	100	0.12	1.62	0.08	50	"
127	Q-127	" "	236.25-	95	0.06	1.31	1.11	48	"
128	Q-128	" "	244.65-	60	0.19	1.61	1.49	99	veta
129	Q-129	" "	260.80-	90	0.07	2.73	0.72	148	"
130	Q-130	" "	261.80-	90	0.15	1.59	0.10	43	"
131	Q-131	HJBC-32	243, 40-	80	0.47	0.34	0.01	30	veta
132	Q-132	" "	250.85-	50	4.05	2.58	0.01	36	"
133	Q-133	"	$266.00-$	70	0.65	25.66	0.01	129	"
134	Q-134	" "	278.70 -	60	0.52	0.46	0.02	40	"
135	Q-135	"	$313.00-$	80	0.77	28.34	0.01	62	"
136	Q-136	" "	$313.80-$	80	0.81	28.90	0.01	70	"
137	Q-137	" "	$314.60-$	80	0.52	15.37	0.01	51	"
138	Q-138	" "	339.30-	40	0.46	19.25	0.01	50	"
139	Q-139	"	342. 45-	30	0.20	6.07	0.01	47	"
140	Q-140	MJBC-30	203.60-	40	0.12	6.22	0.15	100	veta
141	Q-141	"	209.15-	25	0.08	6.83	0.76	149	"
142	Q-142	" "	236.75-	40	0.06	0.12	0.01	74	"
143	Q-143	KJBC-33	125.30-	100	0.10	0.87	0.03	23	ramo
144	Q-144	"	126.30-	100	1.02	7.00	0.06	84	"
145	Q-145	" "	129.80-	40	0.30	11.16	0.08	47	"
146	Q-146	" "	148.50-	25	0.44	12.64	0.05	49	"
147	Q-147	"	307.10-	50	0.53	13.44	0.03	20	veta
148	Q-148	" "	307.60-	50	0.44	9.24	0.03	19	"
149	Q-149	" "	308.10-	50	0.47	14.02	0.03	21	"
150	Q-150	"	308.60-	60	0.63	14.99	0.03	20	"

A-6(1) Los Resultados de Analisis Quimico, \%

No.	Muestra	2 n	Pb	Sn	Fe	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$
1	Cabeza (A)	2.32	0.67	0.04		265
2	Cabeza (B)	2.08	0.69	0.03		224
3	Cabeza (C)	2.45	0.66	0.04		250
4	Holienda (1) +200	2.12	0.51	0.01		342
5	Nolienda (1) -200	2.04	0.90	0.06		294
6	Holienda(2) +200	1.68	0.32	0.03		194
7	molienda (2) -200	2.04	0.70	0.08		245
8	Nolienda (3) +200	2.04	0.34	0.01		195
9	Holienda (3) -200	1.96	0.85	0.04		295
10	Molienda (4) +200	1.80	0.31	0.02		194
11	Holienda (4) -200	1.76	0.80	0.02		290
12	Granza (A)	1.32	0.78	0.02		291
13	(B)	1.40	0.70	0.02		272
14	Flot. bulk, Espuna 1	1.20	2.65	0.03		664
15	2	9.05	0.70	0.04		649
16	3	7.20	0.55	0.10		286
17	4	4.00	0.20	0.10		175
18	Cola	1.72	0.10	0.02		85
19	Bulk(2), Espuma 1	1.36	2. 62	0.04		638
20	2	8.99	0.89	0.04		695
21	3	9.83	0.62	0.16		550
22	4	9.95	0.50	0.10		506
23	Cola	1.44	0.07	0.02		61
24	Bulk(3). Espura 1	2.13	2.54	0.01		572
25	2	3.25	1.65	0.02		790
26	3	3.30	0.70	0.02		485
27	4	3.45	0.30	0.10		483
28	Cola	1.64	0.06	0.04		90
29	Bulk (4), Espuma 1	0.85	3.25	0.02		682
30	2	9.97	1.33	0.03		651
31	3	9.41	0.32	0.04		530
32	4	9.50	0.20	0.08		524
33	Cola	1.70	0.16	0.04		92
34	Bulk(5), Espuma 1	2.23	4.27	0.05		999
35	2	3.22	0.65	0.04		344
36	3	3.40	0.50	0.03		295
37	4	3.60	0.20	0.05		279
38	Cola	1.50	0.08	0.05		72
39	Bulk(6), Espuma 1	1.00	2. 62	0.02		640
40	2	5.70	0.86	0.10		605
41	3	6.30	0.48	0.04		365
42	4	6.80	0.25	0.04		277
43	Cola	1.70	0.08	0.04		99
44	Bu1k(7), Espuma 1	0.90	2.82	0.02		645
15	2	5.20	1.10	0.04		740
46	3	6.20	0.55	0.07		475
47	4	6.50	0.30	0.08		410
48	Cola	1.80	0.08	0.04		85
49	Bulk (8), Espuma 1	3.82	4.63	0.04		1290
50	2	3.90	0.65	0.03		390

A-6(2) Los Resultados de Analisis Quinico

No.	\%uestra	2 n	Pb	Sn	Fe	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$
51	Bulk(8), Espuma 3	3.55	0.36	0.02		285
52	4	3.50	0.20	0.04		148
53	Cola	1.50	0.08	0.04		82
54	Bulk(10), Espuma 1	1.00	3.00	0.02		670
55	2	5.20	1.15	0.02		695
56	3	5.95	0.40	0.02		550
57	4	6.40	0.30	0.04		368
58	Cola	1.74	0.10	0.04		81
59	Planta, Cola de jig	0.86				98
60	Conc, Mag.	3.07				148
61	Cabeza, Flot. bulk	16.63				123
62	Espuma, Flot. bulk	26.61				198
63	Cola Flot. bulk	6.74				99
64	Cola Limp.bulk	12.85				108
65	Conc. Mag.	18.96				124
66	In Concentrado	46.47				198
67	Cola de Zn Flot.	12.83				197
68	Cola de Zn limp.	29.32				141
69	Espuma, bulk (A) +200	2.45				589
70	+325	2.12				548
71	-325	2.09				634
72	Espuna, bulk (B) +200	2.82				490
73	+325	2.20				686
74	-325	2.46				689
75	Cola, bulk +100	2.07				97
76	$+200$	2.85				99
77	+325	2.98				124
78	-325	2.20				97
79	Zn Flot. Espumabulk	5.50				558
80	Cola (A)	0.30				94
81	(B)	0.30				99
82	Espuma, primaria	6.82				650
83	Cola	0.70				223
84	Espuma, 1ra limp	11.96				1470
85	Cola	3.50				123
86	Espuma, 2da 1 imp	17.27				1965
87	2	7.80				1250
88	Cola	8.10				950
89	Zn(2) Espuma, bulk	5.34				532
90	Cola (A)	0.30				52
91	(B)	0.32				56
92	Espuma, primaria	9.06				825
93	Cola	0.52				155
94	Espuma, lra 1imp	13.34				1470
95	Cola	5.90				348
96	Espuma, 2da limp	13.93				1889
97	2	24.20				1274
98	Cola	5.70				480
99	2n(3) Espuma, bulk	9.86				812
100	Cola (A)	0.16				99

A-6(3) Los Resultados de Análisis Qufmico

No.	muestra	2 n	Pb	Sn	Fe	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$
101	Zn(3) Cola (B)	0.16	0.10		30.24	64
102	Espuma, primaria	25.47	8.50		24.20	1812
103	Cola	0.94	0.25		36.45	241
104	Espuma, 1ra limp	27.82				1911
105	Cola	15.53				1391
106	Espuma, 2da 1imp	24.62	16.15		22.96	1984
107	Cola	35.64	9.20		28.30	1735
108	Espuma, 3ra limp	28.81	17.88		21.55	2354
109	2	24.90	10.33		25.72	2030
110	Cola	17. 13	2.38		28.30	1322
111	Zn(4) Espuma, bulk	5.88				568
112	Cola 1	0.30				80
113	2	0.28				61
114	Espuma, primaria	18.34				1460
115	Cola	0.40				177
116	Espuma, Ira limp	21.04				2328
117	Cola	14.50				260
118	Espuma, 2da 1 imp	22.10				2915
119	2	11.75				2044
120	Cola	9.35				1330
121	Zn(5) Espuma, bulk	6.62				569
122	Cola A	0.21				73
123	B	0.24				51
124	Espuma, primaria	23.80				1750
125	Cola	0.56				166
126	Espuma, 1ra limp	27.20				2667
127	Cola	20.05				738
128	Espuma, 2da limp	30.50				3050
129	2	19.61				2588
130	Cola	17.37				928
131	Py Flot. Conc. 1	0.49	0.26		10.03	153
132	2	1.11	0.62		36.04	307
133	3	0.80	0.70		33.10	242
134	Cola	0.44	0.42		29.07	155
135	Bulk(10) Espuma 1	5.30				392
136	2	7.34				1223
137	3	5.20				1075
138	4	3.95				880
139	Cola	0.25				75
140	Bu1k(11) Espuma 1	6.00				491
141	2	9.20				995
142	3	8.82				1085
143	4	5.34				1213
144	Cola	0.35				82
145	Bulk(12) Espuma 1	3.35				536
146	2	14.55				1164
147	3	12.88				1225
148	4	9.95				1030
149	Cola	0.32				90
150	Bulk(13) Espuma 1	10.30				688

A-6 (4) Los Resultados de Análisis Quimico

No.	Muestra	2 n	Pb	Sn	Fe	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$
151	Bulk(13), Espuma 2	1.96				540
152	3	5.80				490
153	4	2.95				395
154	Cola	0.31				75
155	Bulk (14), Espuma 1	9.00				641
156	- 2	2.90				677
157	3	1.82				446
158	4	1.96				350
159	Cola	0.24				49
160	Espuma bulk (Lab.)	8.53				634
161	Espuma bulk(plant)	28.79				99
162	Hezcla	17.55				335
163	Cola (Lab)	0.35				75
164	Cola (planta)	2.10				38
165	2n Cola, primaria	4.47				228
166	Cola, 1ra limp	24.61				398
167	Cola, 2da 1imp	35.10				492
168	Cola, 3ra limp	19.76				766
169	Zn Concentrado 1	50.74				725
170	2	49.32				1025
171	Completiva, Esp. Pb	2.40	18.42		17.30	1645
172	Cola	2.28	0.20		29.53	143
173	Pb Espuma, Ira limp	4.05	40.48		11.80	4168
174	Cola	1.10	0.98		27.30	155
175	Pb Concentrado	4.23	53.71		9.68	5443
176	Cola, 2da limp	3.62	10.89		21.72	1110
177	2n Cola, primaria	1.94	0.32		38.45	202
178	Cola, Ira limp	21.64	0.38		28.85	577
179	Cola, 2da limp	25.40	1.63		22.92	933
180	Zn Concentrado 1	48.98	2.49		16.20	2150
181	- 2	38.97	1.43		18.59	1247
182	Py Concentrado 1	0.20	0.18		41.07	46
183	2	0.41	0.27		37.02	148
184	Cola, final	0.15	0.06		26.41	49
185	Completiva Granza	1.58	0.45		32.46	243
186	Pb Espuma, primaria	2.18	17.93		20.50	1856
187	Cola	2.15	0.19		28.64	139
188	Cola, Ira limp	2.32	1.53		24.68	424
189	Cola, 2da limp	2.47	4.98		24.42	721
190	Cola, 3ra limp	3.95	17.77		21.72	2506
191	Pb Concentrado	4.75	47.47		13.03	4397
192	Zn Espuma, primaria	26.05	0.88		26.65	1190
193	Cola	0.81	0.20		43.55	135
194	Cola, Ira limp	10.87	0.21		35.78	283
195	Cola, 2da limp	11.31	0.57		32.60	538
196	2 C Concentrado 1	48.64	2.05		13.72	2641
197	2	45.22	0.62		15.60	1774
198	Py Concentrado 1	0.29	0.15		34.48	49
199	- 2	0.47	0.22		32.15	198
200	Cola, final	0.17	0.67		26.10	44

$$
\mathrm{A}-61
$$

A $\rightarrow 6$ (5) los Resultados de Analisis Quimico

No,	Nuesta	$A u(g / t)$	$\mathrm{Cu}(\%)$	$\mathrm{Sb}(\%)$	$A S(\%)$	$\mathrm{S}(\%)$
1	Cabeza Inicial	0.24	0.02	0.03	0.09	14.19
2	Pb Concentrado	0.60	0.09	0.23	0.37	18.68
3	2 n Concentrado	0.60	0.42	0.07	0.25	32.39
4	Py Concentrado	0.05	0.01	0.06	0.29	39.42
5	Cola Final	0.12	0.005	0.06	0.06	1.70

A-7 Lista del Equipo Usado en Las Pruebas

Nombre	Tipo	Hechura
Trituradora	Tipo de BLAKE	DENYER, USA
Chancadora		BICO, USA
Holino de Bola	65mm(dia.) $\times 300 \mathrm{ma}$ (largo)	DENYER, USA
Celda de Flotacion	Tipo D-2, 2kg(capacidad)	DENYER, USA
Hedida de pll	Tipo HY-10P	TOADEXPA, JAPON
Filtro	FP-10	DENYER, USA
Secador	Electrotermico	

A-8(1) Resultado de analisis de EPMA

No.	1			2			3			4			5		
Muestra	P-47			P-49			P-49			P-49			P-49		
Mineral	Piragilita			Canfildita			Fraibergita			Piragilita			Stefanita		
Cu wt.\%	-	-	-	0.00	0.00	0.00	14.45	13.91	14.81	-	-	-	-	-	-
Ag	58.92	59.49	59.36	72.76	72.73	73.44	32.22	32.56	30.15	59.54	59.95	61.18	69.32	69.82	70.02
Fe	-	-	-	0.03	0.03	0.08	4.81	5.03	5.58	-	-	-	-	-	-
Zn	-	-	-	0.48	0.40	1.04	0.85	0.82	0.76	-	-	-	-	-	-
Pb	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sb	20.88	22.25	22.17	0.00	0.00	0.00	25.55	25.37	25.45	22.38	22.16	21.00	11.43	11.39	11.41
Sn	-	-	-	9.84	9.75	9.68	0.18	0.23	0.11	-	-	-	-	-	-
S	17.76	17.11	16.56	16.75	16.95	16.96	20.30	20.44	20.76	15.81	16.95	15.50	18.80	17.13	17.72
W03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sn02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Si02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ti02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A1203	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MnO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mg0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ca0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	97.56	98.84	98.10	99.86	99.85	101.20	98.36	98.36	97.60	97.73	99.06	97.69	99.54	98.34	99.15

Whad әp s!s!iteur әp opeztnsวy (2)8-甘

No.	6		7			8			9			10		
Muestra	P-49		P-50			P-53			P-39			P-39		
Mineral	Stefanita		Miragirita			Estanita			Rutila			Estanita		
Cu wt.\%	-	-	-	-	-	26.93	26.42	26.70	-	-	-	27.24	26.60	27.42
Ag	67.34	65.54	41.58	42.08	40.51	0.00	0.00	0.00	-	-	-	0.00	0.00	0.00
Fe	-	-	-	-	-	13.58	13.06	13.06	-	-	-	13.91	14.12	14.11
Zn	-	-	-	-	-	1.04	2.08	1.06	-	-	-	1.86	1.76	1.65
Pb	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sb	17.12	17.11	37.33	37.14	39.29	0.00	0.00	0.00	-	-	-	0.00	0.00	0.00
Sn	-	-	-	-	-	27.54	27.16	27.26	-	-	-	25.10	24.95	25.25
S	13.88	13.98	18.97	18.64	19.45	29.69	30.05	28.42	-	-	-	30.47	29.94	30.50
W03	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sn02	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Si02	-	-	-	-	-	-	-	-	2.08	0.00	1.55	-	-	-
Ti02	-	-	-	-	-	-	-	-	95.88	99.10	92.88	-	-	-
Al203	-	-	-	-	-	-	-	-	1.65	0.05	1.36	-	-	-
Fe 0	-	-	-	-	-	-	-	-	0.62	1.05	1.53	-	-	-
MnO	-	-	-	-	-	-	-	-	0.00	0.00	0.01	-	-	-
Mgo	-	-	-	-	-	-	-	-	0.12	0.01	0.04	-	-	-
Ca0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	98.33	96.62	97.89	97.85	99.25	98.77	98.76	96.51	100.35	100.21	97.37	98.58	97.37	98.93

A-8(3) Resultado de analisis de EPMA

No.	11			12			13		
Muestra	P-39			P-40			P-26		
Mineral	Fluorida*			Oxida de Fe			Wolframita		
Cu wt.\%	-	-	-	-	-	-	-	-	-
Ag	-	-	-	-	-	-	-	-	-
Fe	-	-	-	-	-	-	-	-	-
Zn	-	-	-	-	-	-	-	-	-
Pb	-	-	-	-	-	-	-	-	-
Sb	-	-	-	-	-	-	-	-	-
Sn	-	-	-	-	-	-	-	-	-
S	-	-	-	-	-	-	-	-	-
W03	-	-	-	-	-	-	75.55	74.45	75.49
Sn02	-	-	-	0.13	0.07	0.05	-	-	-
Si02	33.37	32.41	32.61	-	-	-	-	-	-
Ti02	0.04	0.04	0.03	-	-	-	-	-	-
Al203	53.44	54.89	55.41	-	-	-	-	-	-
Fe 0	0.22	0.39	0.57	94.54	92.91	83.40	17.02	18.89	17.26
MnO	-	-	-	0.18	2.02	4.60	8.03	6.55	7.66
MgO	0.12	0.18	0.27	0.10	3.99	2.98	-	-	-
CaO	0.01	0.02	0.02	0.29	1.90	2.72	-	-	-
F	12.91	13.02	13.41	-	-	-	-	-	-
Total	100.10	100.94	102.32	95.34	100.88	93.74	100.59	99.90	100.41

*:AlSi02(F, OH)3

