6.4.4. Utilities

1) Basic concept of the expansion

To study a plan of utility facilities for the expansion, a comparison is provided in Table 6.4.4-1, which shows the design capacity of existing utility facilities, present consumption of utilities, estimated requirements of utilities for the expansion, and total utility requirements. The study for the expansion of utility facilities has been made in the following points of view:

- · Use the surplus capacity of existing utility facilities as much as possible and effectively.
- · Minimize the modification work of existing utility facilities.
- · Minimize the construction cost for new utility facilities.
- · Consider further expansion of utility facilities.

The results of the study for the expansion plan of utility facilities in accordance with the above points of view are shown below.

- a) Utility facilities that do not require any modification
 - · Raw water treatment station
 - · Recirculation water treatment station (Water treatment stations-I, II, III)
 - · Sewage treatment station
 - · Drainage pumping station
 - · Natural gas station
 - · Water supply facilities for outdoor fire hydrants

- b) Utility facilities that require modification
 - · Yard piping
- c) Utility facilities that have to be newly installed or expanded
 - · New recirculation water treatment station (Water treatment stations-IV, V, VI)
 - · New oxygen shop
 - · Expansion of air compression station
 - · New pumping stations No.8 and No.9 for sewage
 - · New hydrants for fire fighting around RMP

The design capacity, utility requirements, and surplus capacity of utility facilities after the expansion are compared in Table 6.4.4-2. The equipment of utility facilities for the expansion is listed in Table 6.4.4-3.

2) Expansion plan

The expansion plan of utility facilities is summarized below.

a) Water treatment station-IV

Indirect cooling water (ICW) for the new rolling mill plant (RMP) will be supplied and treated in the water treatment station-IV (WTS IV) because the existing water treatment station-I (WTS I) does not have enough capacity for the expansion, so the surplus capacity of ICW in WTS I will be reserved for further expansion.

In order to recycle 1,080 m3/h of ICW for new RMP, facilities consisting of cooling tower, cold well, pumps, etc. will be installed.

Direct cooling water (DCW) for the new and existing rod mill plants and the existing steelmaking plant (SMP) will be supplied and treated in the existing WTS I and DCW for the existing bar mill plant will be supplied and treated in WTS IV. The surplus capacity of DCW for the existing WTS I will be reserved for further expansion.

In order to recycle 590 m3/h of DCW for the existing bar mill plant, facilities consisting of sedimentation basin, pressure filters, cooling tower, cold well, pumps, etc. will be installed.

The space for further expansion is considered in the layout of WTS ${\tt IV}$.

For dehydration of sludge, the existing dehydration system in the WTS I will be used because it has surplus capacity.

These treatment facilities will be installed on the west of the existing WTS $\,\mathrm{I}\,$.

Flow sheet of these facilities is shown in DWG JICA-UT-001 and -002 and general layout is shown in DWG JICA-UT-006.

b) Water treatment station-V

Since the existing water treatment station-II (WTS II) has no surplus capacity of indirect cooling water

(ICW) for the steelmaking plant, water treatment station- V (WTS V) will be installed in the northern part of the existing SMP. Therefore, ICW for SMP will be supplied and treated by WTS II and WTS V.

The existing WTS II will cover the facilities of southern part of SMP consisting of Nos.1, 2, and 3 electric arc furnaces (EAF), Nos.1 and 2 continuous casting machines (CCM), and No.1 ladle furnace (LF), and WTS V will cover the facilities of northern part of SMP consisting of No.4 EAF, No.3 CCM, and No.2 LF.

So the existing WTS II will have the surplus capacity and this surplus capacity of ICW in WTS II will be reserved for further expansion.

In order to recycle 2,440 m3/h of ICW in WTS V, facilities consisting of cooling tower, cold well, pumps, etc. will be installed.

The space for further expansion is considered in the layout of WTS V.

Flow sheet of this station is shown in DWG JICA-UT-001 and -002 and general layout is shown in DWG JICA-UT-007.

c) Water treatment station-VI

Water treatment station-VI will be installed on the east of the existing water treatment station-I to supply and treat the indirect cooling water for the new oxygen shop, additional air compressors and new substation because the existing water treatment station-III has no surplus capacity.

In order to recycle 230 m3/h of ICW in WTS VI, facilities consisting of cooling tower, cold well, pumps, etc. will be installed.

The space for further expansion is considered in the layout of WTS \mbox{WI} .

Flow sheet of this station is shown in DWG JICA-UT-001 and -002 and general layout is shown in DWG JICA-UT-008.

d) Oxygen shop

Since a large quantity of oxygen gas has to be injected into EAF for melting a large quantity of scrap, a new oxygen shop will be installed on the east of the existing WTS I.

The pressure swing adsorption system will be applied to the new oxygen shop instead of the existing cryogenic separation system due to required purity of oxygen gas into EAF and installation cost.

Oxygen gas produced by pressure swing adsorption system will be only supplied into EAF and oxygen gas for other plants will be supplied by the existing cryogenic separation system.

So, surplus capacity of the existing oxygen shop will be reserved for further expansion.

In order to produce 2,400 Nm3/h of oxygen gas, facilities consisting of suction filter, air blower, oxygen gas generation units, oxygen gas compressors, high pressure oxygen holder, etc. will be installed. The space for further expansion is considered in the layout of the new oxygen shop.

The present consumption of nitrogen gas is the same as the design capacity (550 Nm3/h) of nitrogen gas generation unit because nitrogen gas consumption of DRP is increased by the use of nitrogen gas instead of seal gas generated in the DR process due to oxygen rich quality of seal gas. So, this nitrogen gas consumption will be able to be reduced to 450 Nm3/h by producing and using proper seal gas in DRP.

Table 6.4.4-1 shows that the estimated requirement of nitrogen gas is higher than the existing design capacity, but this difference is quite small and the inert gas from the direct reduction plant can be used for purging the DRI bunker of EAF. Therefore, the new nitrogen gas generation unit is not required, but the layout of air compression station considers the space for new nitrogen gas generation unit as further expansion.

Flow sheet of these facilities is shown in DWG JICA-UT-003 and general layout is shown in DWG JICA-UT-009 and -010.

e) Air compression station

Two air compressor units will be added to the existing air compression station to supply the compressed air to the expanded plants because the existing air compression station does not have enough capacity for the expansion.

The new air compressor units will have the same capacity of the existing unit in consideration of easy operation.

In order to supply 4,500 Nm3/h of compressed air, facilities consisting of air compressor units and air receiver tank will be installed.

The space for further expansion is considered in the layout of air compression station.

Flow sheet of this system is shown in DWG JICA-UT-004 and general layout is shown in DWG JICA-UT-009.

f) Pumping stations No.8 and No.9

The pumping stations No.8 and No.9 will be installed around the new oxygen shop and water treatment station—V to transfer the sewage from the plants to the existing sewage treatment station. The pump pit with rough screen and sewage pump will be installed in the pumping station.

g) Hydrants for fire fighting

Hydrants and piping for the fire fighting will be installed around the new RMP.

h) Yard piping

In order to supply utilities to the plants and facilities for the expansion, the following yard piping will have to be modified or installed:

- · Potable water
- · Make-up water
- · Direct cooling water
- · Indirect cooling water

- · Emergency water
- · Sewage
- Drainage
- · Oxygen gas
- · Nitrogen gas
- · Compressed air
- · Natural gas
- · Fire fighting water
- i) Personnel requirement for the expansion facilities

Required personal and organization for utility facilities after the expansion is shown in Table 6.4.4-4.

Table 6.4.4-1 Utility Requirements for Expansion

Station/Shop	Design capacity of existing utility facilities	Present consumption	Estimated requirement for the expansion	Total requirement
1. Raw Water Treatment Station • Raw'water • Make-up water • Potable water	930 m³/h 890 m³/h 50 m³/h	550 m³/h 500 m³/h 20 m³/h	114 m³/h 110 m³/h 4 m³/h	664 m³/h 610 m³/h 24 m³/h
2. Water Treatment Station-I Direct cooling water Indirect cooling water	3,190 m³/h 2,000 m³/h	2,300 m³/h 1,500 m³/h	1,480 m³/h 1,080 m³/h	3,780 m³/h 2,580 m³/h
water 3. Water Treatment Station-II Indirect cooling water 4. Water Treatment	7,150 m³/h	7,150 m³/h	1,890 m³∕h	9,040 m³/h
Station-III Indirect cooling	284 m³/h	284 m³/h	230 m³/h	514 m³/h
5. Sewage Treatment Station • Sewage	500 m³/d	320 m³/d	37 m³/d	357 m³/d
6. Drainage Pumping Station Drainage	1,950 m³/h	290 m³/h	32 m³/h	322 m³/h
7. Oxygen Shop Oxygen gas Nitrogen gas	400 Nm³/h 550 Nm³/h	200 Nm³/h 450 Nm³/h	2,375 Nm³/h 116 Nm³/h	2,575 Nm³/h 566 Nm³/h
 Air Compression Station Compressed air 	12,800 Nm³/h	10,800 Nm³/h	6,570 Nm³/h	17,370 Nm³/h
9. Natural Gas Station Natural gas	50,000 Nm³/h	33,000 Nm³/h	1,660 Nm³/h	34,660 Nm³/h
10. Outdoor Fire Hydrants ·Fire water	240 m³/h	0 m³/h	0 m³/h	240 m³/h

Table 6.4.4-2 Utility Requirements after Expansion

The state of the s	Design		Surplus
	capacity of	·	capacity of
	utility	Utility	utility
Station/Shop	· -	requierment for	facilities
	facilities	the expansion	after the
	for the		
	expansion		expansion
1. Raw Water Treatment			
Station	000 10	CC41 (b	266 m³/h
·Raw water	930 m³/h	664 m³/h	
·Make-up water	890 m³/h	610 m³/h	280 m³/h
· Potable water	50 m³/h	24 m³/h	26 m³/h
2. Water Treatment			
Station-I			
Direct cooling	3,190 m³/h	3,190 m³/h	0 m³/h
water	,		
· Indirect cooling	2,000 m³/h	1,500 m³/h	500 m³/h
water			
3. Water Treatment			
Station-II	:		,
·Indirect cooling	7,150 m³/h	6,506 m³/h	644 m³/h
water			
4. Water Treatment			
Station-III	284 m³/h	284 m³/h	0 m³/h
· Indirect cooling	284 m / m	204 M / II	0 111711
water			
5. Water Treatment			
Station-IV			
·Direct cooling	590 m³/h	590 m³/h	0 m³/h
water			03 0-
· Indirect cooling	1,080 m³/h	1,080 m³/h	0 m³/h
water			
6. Water Treatment			
Station-V			· .
· Indirect cooling	2,440 m³/h	2,440 m³/h	0 m³/h
water		·	
7. Water Treatment		·	
Station-VI			
· Indirect cooling	230 m³/h	230 m³/h	$0^{\circ} \text{ m}^3/\text{h}$
water	·		
	·	·	
8. Oxygen Shop (PSA)	2 200 11 11	2 400 22-342	300 Nm³/h
·Oxygen gas	2,700 Nm³/h	2,400 Nm³/h	71 MM 00'C
9. Air Compression			
Station			
·Compressed air	6,400 Nm³/h	4,500 Nm³/h	1,900 Nm³/h

Table 6.4.4-3 Equipment List

Equipment List

PLANT: UTILITY FACILITIES

NO.	EQUIPMENTT	Q' TY	MAIN SPECIFICATION
UT-100	WATER TREATMENT STATION-IV		·
UT-110	Indirect Cooling Water System		
UT-111	Cooling tower	1	Type: Cross flow and film type Capacity: 1,080 m³/h Filling: Hard PVC
UT-112	Cold well	1	Capacity: 400 m³ Material: Reinforced concrete
UT-113	RM supply pump for ICW	1+1	Type : Centrifugal, end suction Capacity : 1,190 m³/h Head : 55 m
UT-114	Diesel pump for RM	1	Type : Centrifugal, end suction Capacity : 400 m³/h Head : 45 m Engine power : 100 HP
UT-115	Head tank for RM	1	Capacity : 70 m ³ Material : Reinforced concrete
UT-116	Chemical dosing units	1 lot	Corrosion inhibitor dosing unit Scale inhibitor dosing unit pH controller dosing unit

NO.	EQUIPMENTT	Q' TY	MAIN SPECIFICATION
UT-120	Direct Cooling Water System		
UT-121	Colling tower		Type: Cross flow and splash type Capacity: 590 m³/h Filling: Polypropylene
UT-122	Cold well	1	Capacity: 450 m³ Material: Reinforced concrete
UT-123	RM supply pump for DCW	1+1	Type : Centrifugal, end suction Capacity : 640 m³/h Head : 45 m
UT-124	Sedimentation basin	1	Capacity: 1,000 m ³ Material: Reinforced concrete Accessories: Oil skimming equipment, Oil pump, Separated oil pit, etc.
UT-125	Sludge renover	2	Type : Moving submerged pump
UT-126	Sedimentation treated water basin	1	Capacity: 300 m³ Material: Reinforced concrete Accessories: Air bubbling unit
UT-127	Filter feed pump	2 + 1	Type : Centrifugal, end suction Capacity : 330 m³/h Head : 25 m
UT-128	Pressure filter	4	Type: Dual media type, vertical Size: 2,800 x 3,050 SH Vessel material: Carbon steel

NO.	EQUIPMENT	Q' TY	MAIN SPECIFICATION
UT129	Backwash pump	1 + 1	Type : Centrifugal, end suction Capacity : 540 m³/h Head : 20 m
UT-130	Baçkwash blower	1 + 1	Type : Rotary blower Capacity : 7 Nm³/min Pressure : 5,000 mmAq
UT-131	Sedimentation sludge pit	1	Capacity: 6 m³ Material: Reinforced concrete
UT-13 2	Thickener	1	Type : Center shaft sludge scraper Capacity : 190 m³
UT-133	Backwash water storage basin	1	Capacity : 200 m³ Material : Reinforced concrete Accessories : Sludge scraper
UT-134	Backwash water transfer pump	1 + 1	Type: Slurry pump Capacity: 55 m³/h Head: 10 m
VT-135	Coagulation tank	1	Capacity : 3.3 m³ Material : Carbon steel Accessories : Agitator
UT-136	Constant head tank	1	Capacity: 100 lit Material: Carbon steel
UT-137	Sludge storage basin	1	Capacity: 30 m³ Material:Reinforced concrete Accessories: Agitator

PLANT: UTILITY FACILITIES

NO.	EQUIPMENTT	Q' TY	MAIN SPECIFICATION
UT-138	Sludge feed pump	1 + 1	Type : Slurry pump Capacity : 6 m³/h Head : 30 m
UT-139	Sludge pump-I	1+1	Type: Submerged pump Capacity: 6 m³/h Head: 6 m
UT-140	Sludge pump-II	1+1	Type: Slurry pump Capacity: 8 m³/h Head: 9 m
UT-141	Sludge pump-III	1 + 1	Type: Slurry pump Capacity: 5 m³/h Head: 27 m
UT-142	Chemical dosing units	1 lot	Flocculant dosing unit Polymer dosing unit pH controller dosing unit
UT-150	Auxiliary System		
VI-151	Piping with accessories	1 lot	
UT-152	Instrumentation	1 lot	
UT-153	Electrical equipment	1 lot	

NO.	EQUIPMENT'	Q' TY	MAIN SPECIFICATION
UT-154	Modification work for connecting points on existing system	1 lot	
UT-200	WATER TRATMENT STATION-V		
VT-210	Indirect Cooling Water System		
UT-211	Colling tower	1	Type: Cross flow and film type Capacity: 2,440 m³/h Filling: Hard PVC
UT-212	Cold well	7	Capacity: 800 m³ Material: Reinforced concrete
UT-213	Hot well	1	Capacity: 200 m³ Material: Reinforced concrete
UT-214	S.M. supply pump - 1	2 + 1	Type: Centrifugal, end suction. Capacity: 990 m³/h Head: 40 m
UT-215	S.M. supply pump - 2	1 + 1	Type : Centrifugal, end suction Capacity : 700 m³/h Head : 40 m
UT-216	Hot water transfer pump	2 + 1	Type : Centrifugal, double suction Capacity : 1,080 m³/h Head : 15 m

NO.	EQUIPMENTT	Q' TY	MAIN SPECIFICATION
UT-217	Chemical dosing units	1 lot	Corrosion inhibitor dosing unit Scale inhibitor dosing unit pH controller dosing unit
UT-220	Auxiliary System		
UT-221	Piping with accessories	1 lot	
UT-222	Instrumentation	1 lot	
UT-223	Electrical equipment	1 lot	
UT-224	Modification work for connecting points on existing system	1 lot	
ni-300	WATER TREATMENT STATION-VI		
UT-310	Indirect Cooling Water System		
VT-311	Colling tower	1	Type: Cross flow and film type Capacity: 230 m³/h Number of cells: 1 Filling: Hard PVC

PLANT: UTILITY FACILITIES

NO.	EQUIPMENT	Q' TY	MAIN SPECIFICATION
ሀገ-312	Cold well	1	Capacity: 150 m³ Material: Reinforced concrete
UT-313	Cooling water supply pump	1 + 1	Type: Centrifugal, end suction Capacity: 250 m³/h Head: 45 m
UT-314	Chemical dosing units	1 lot	Corrosion inhibitor dosing unit Scale inhibitor dosing unit pH controller dosing unit
UT-320	Auxiliary System		
VT-321	Piping with accessories	1 lot	
UT-322	Instrumentation	1 lot	
UT-323	Electrical equipment	1 lot	
UT-324	Modification work for connecting points on existing system	1 lot	
UT-400	OXYGEN SHOP		

Authieur		T	
NO.	EQUIPMENT	Q' TY	MAIN SPECIFICATION
UT-401	Oxygen gas generating unit	3	Type: PSA method Capacity: 900 Nm³/h Accessories: Air blowers, Vacuum pumps, Receiver tanks, Suction filters
UT-402	Oxygen compressor	3 + 1	Type: Reciprocating type Capacity: 900 Nm³/h Discharge pressure: 10 kgf/cm².G
UT-403	High pressure oxygen compressor	1 + 1	Type: Reciprocating type Capacity: 950 Nm³/h Discharge pressure: 30 kgf/cm².G
UT-404	High pressure oxygen holder	1	Type : Vertical type Capacity : 40 m³ Storage pressure : 30 kgf/cm².G
UT-405	Overhead crane	1	Lifting weight: 3.5 t Span: 20 m
UT-410	Auxiliary System		
UT-:411	Piping with accessories	1 lot	
UT- 412	Instrumentation	1 lot	
UT-413	Electrical equipment	1 lot	

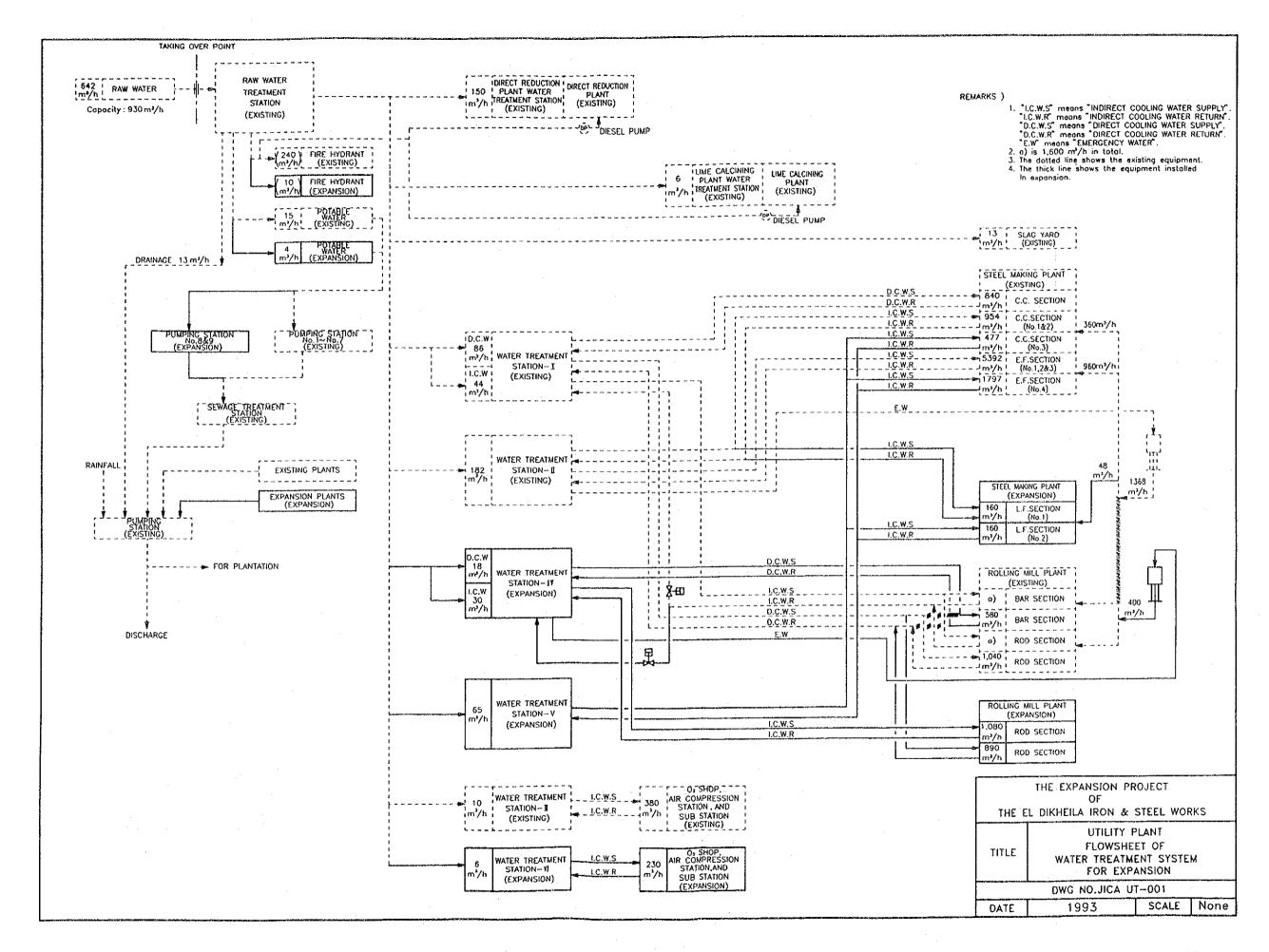
PLANT: UTILITY FACILITIES

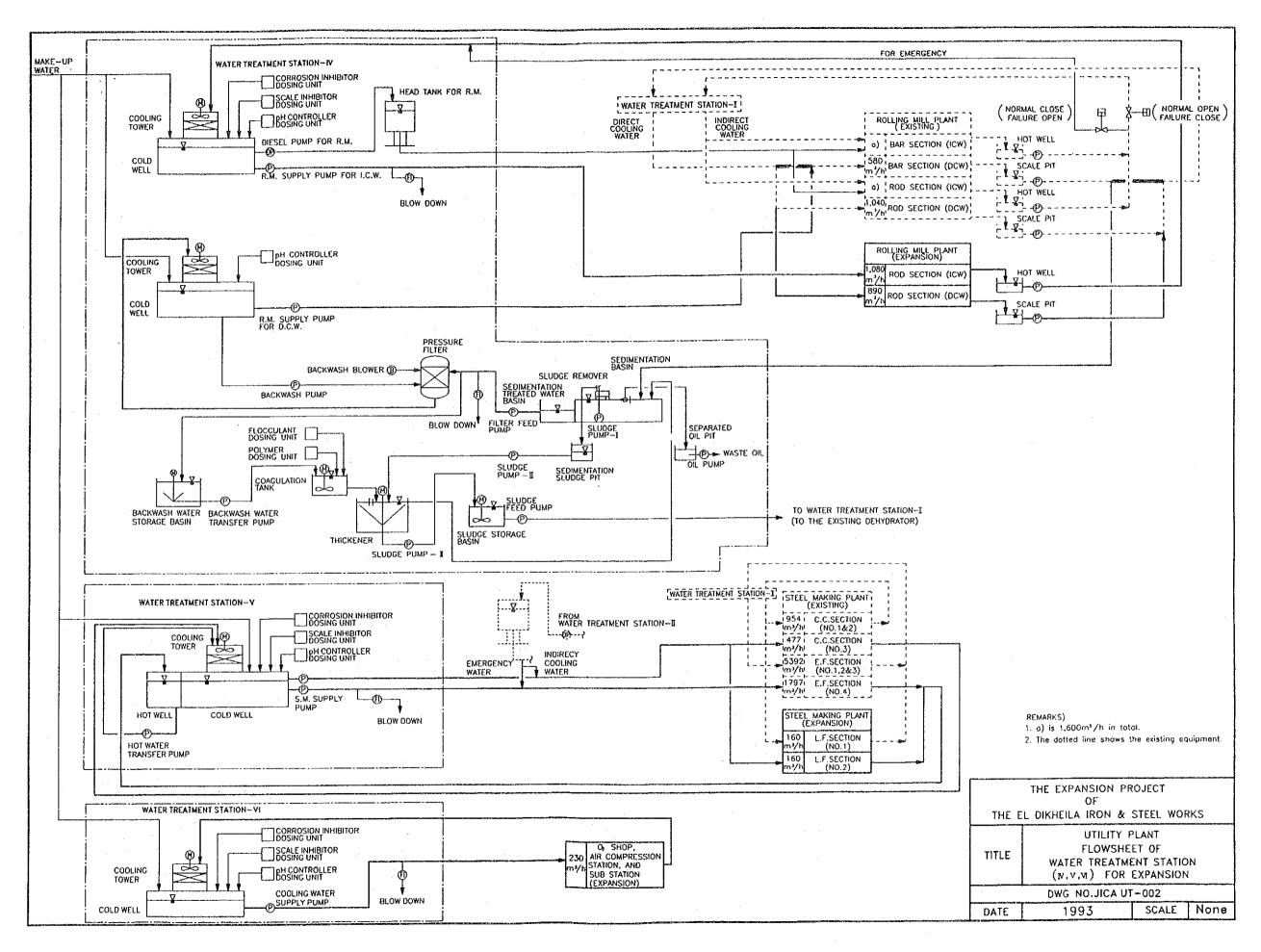
NO.	EQUIPMENTT	Q' TY	MAIN SPECIFICATION
UT-500	AIR COMPRESSION STATION		
UT-501	Air, compressor unit	2	Type: Centrifugal type Capacity: 3,200 Nm³/h Pressure: 7.0 kgf/cm².G
UT-502	Air receiver tank	1	Type: Vertical type Water capacity: 20 m³ Storage pressure: 7.0 kgf/cm².G
UT-510	Auxiliary System		
UT-511	Piping with accessories	1 lot	
UT-512	Instrumentation	1 lot	
UT-513	Electrical equipment	1 lot	
UT-514	Modification work for connecting points on existing system	1 lot	
UT-600	OUTDOOR FIRE HYDRANTS		

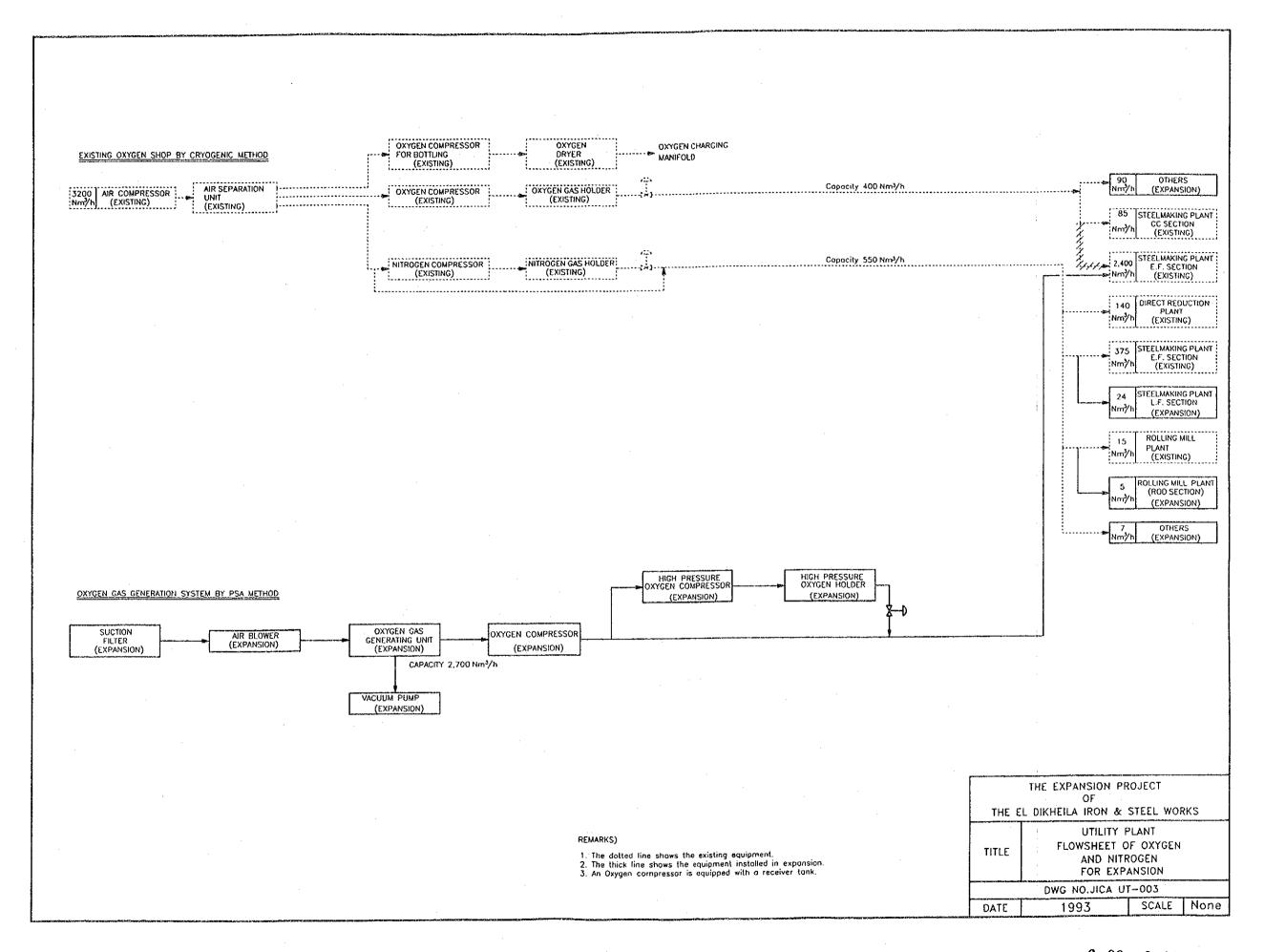
PLANT: UTILITY FACILITIES

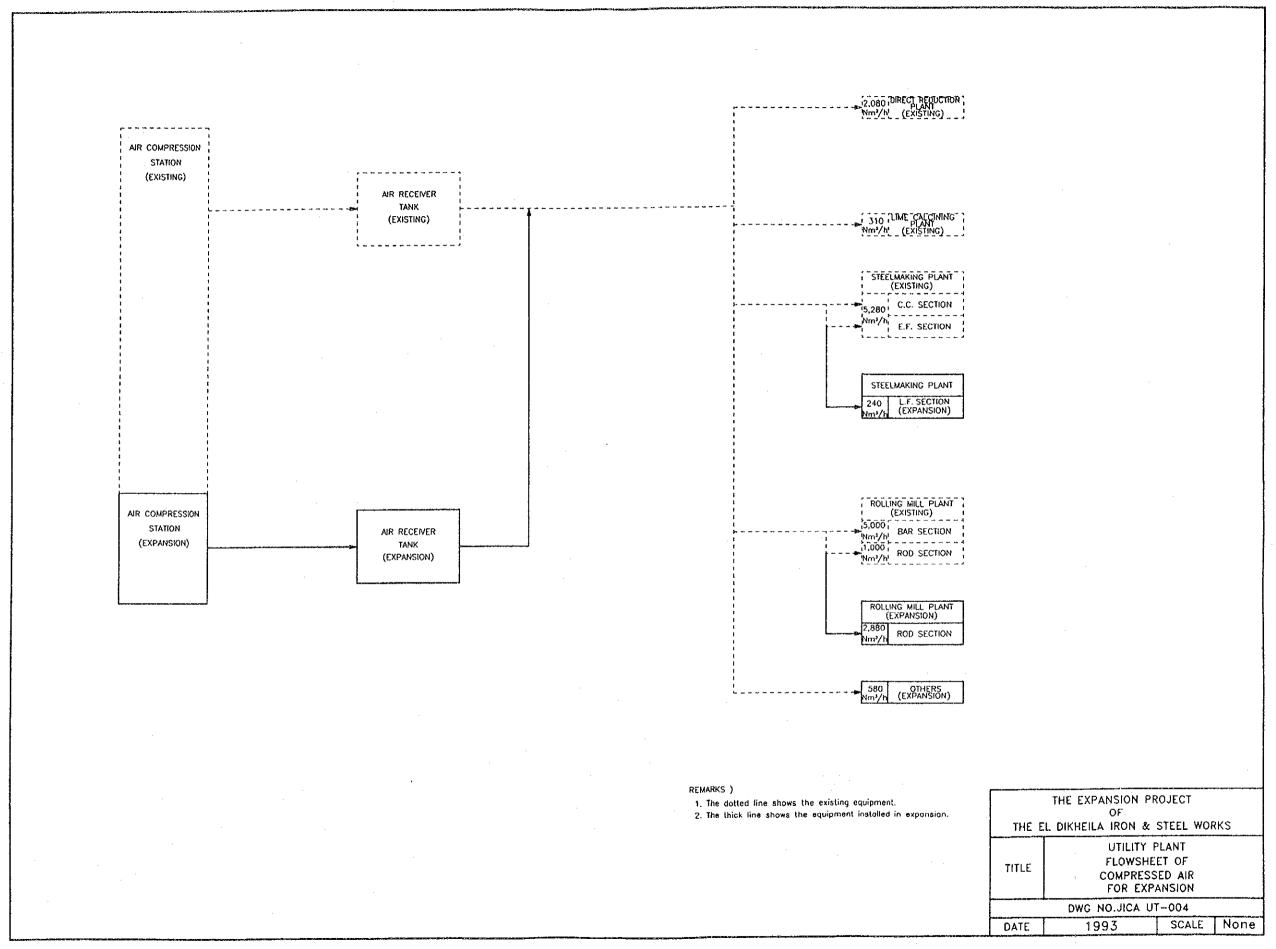
NO.	EQUIPMENTT	Q' TY	MAIN SPECIFICATION
UT-601	Hydrant	3 sets	Type : Stand post type with inlet valve Accessories : Hose with nozzle and hose box
UT-602	Block valve	2	Type: 300A post indicator type Material: Ductile iron
UT-610	Auxiliary System		
UT-611	Piping with accessories	1 lot	
UT-612	Modification work for connecting points on existing system	1 lot	
UT-700	SEWAGE TREATMENT STATION AND DRAINAGE PUMPING STATION		
UT-701	Pump pit	2	Capacity: 4 m³ Material: Reinforced concrete
UT-702	Rough screen	2	Type : Bar screen
UT-703	Basket	2	Type : Box type

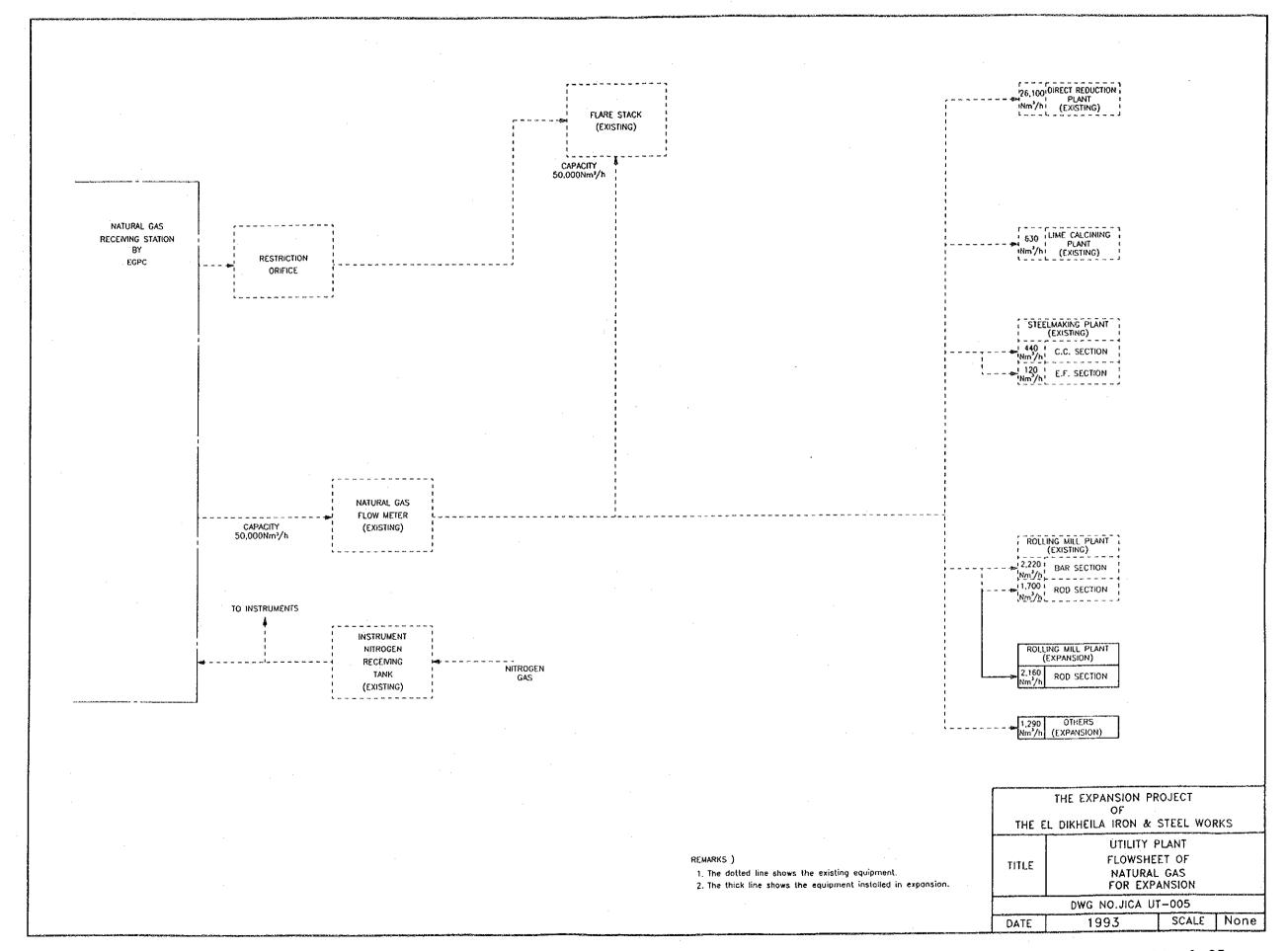
quipment	List		PLANT: UTILITY FACILITIE
NO.	EQUIPMENTT	Q' TY	MAIN SPECIFICATION
UT~704	Sewage pump	4	Type : Submersible type Accessories : Quick discharge connector
UT-705	Pump lifting hanger	2	Type: Self-standing pipe
ሆነ-710	Auxiliary System		
UT-711	Piping with accessories	1 lot	
UI-712	Instrumentation	1 lot	
መ-713	Electrical equipment	1 lot	
UT-800	YARD PIPING		
UT-801	Make-up water piping with accessories	1 lot	
UT-802	Portable water piping with accessories	1 lot	

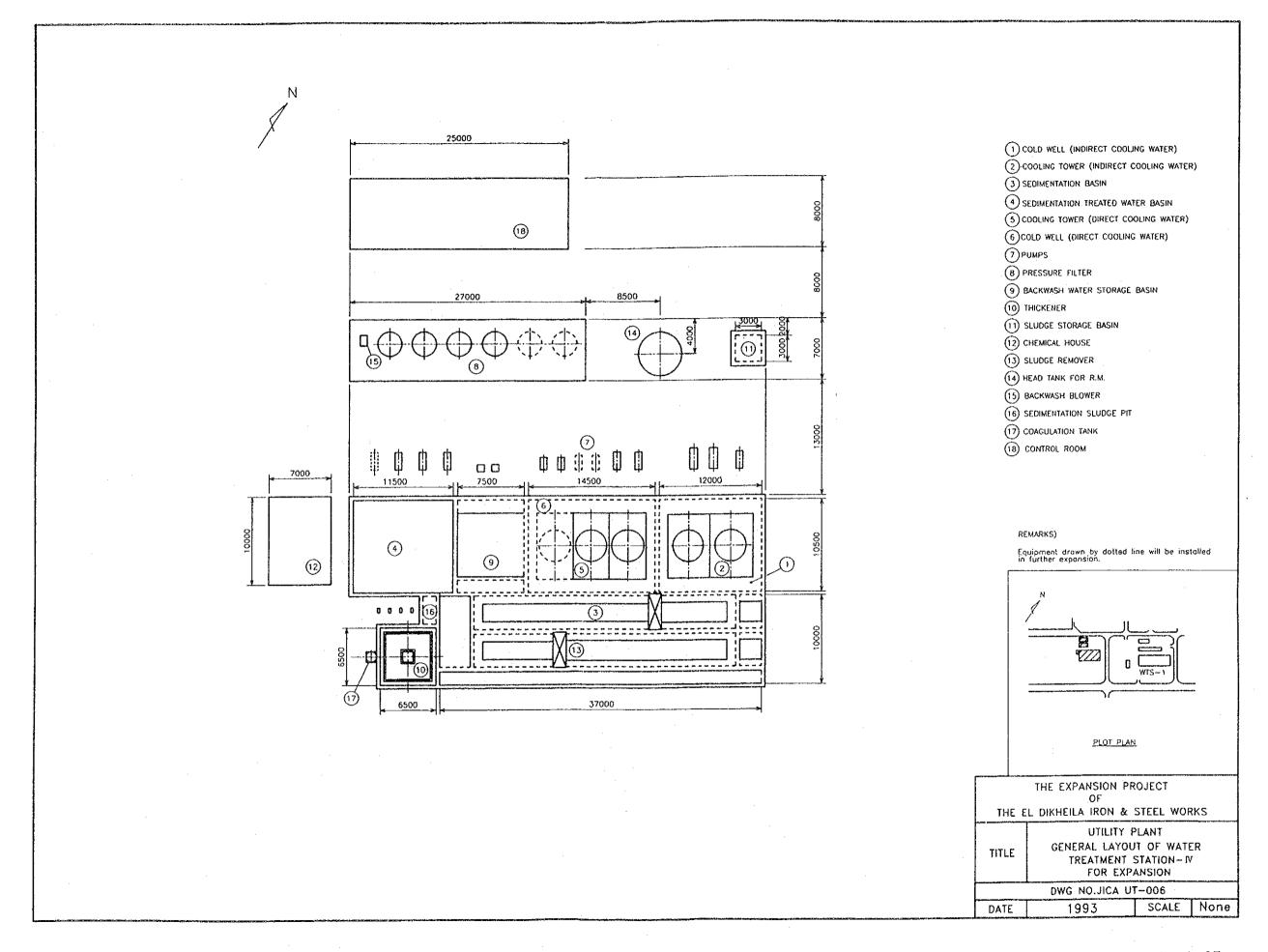

PLANT: UTILITY FACILITIES

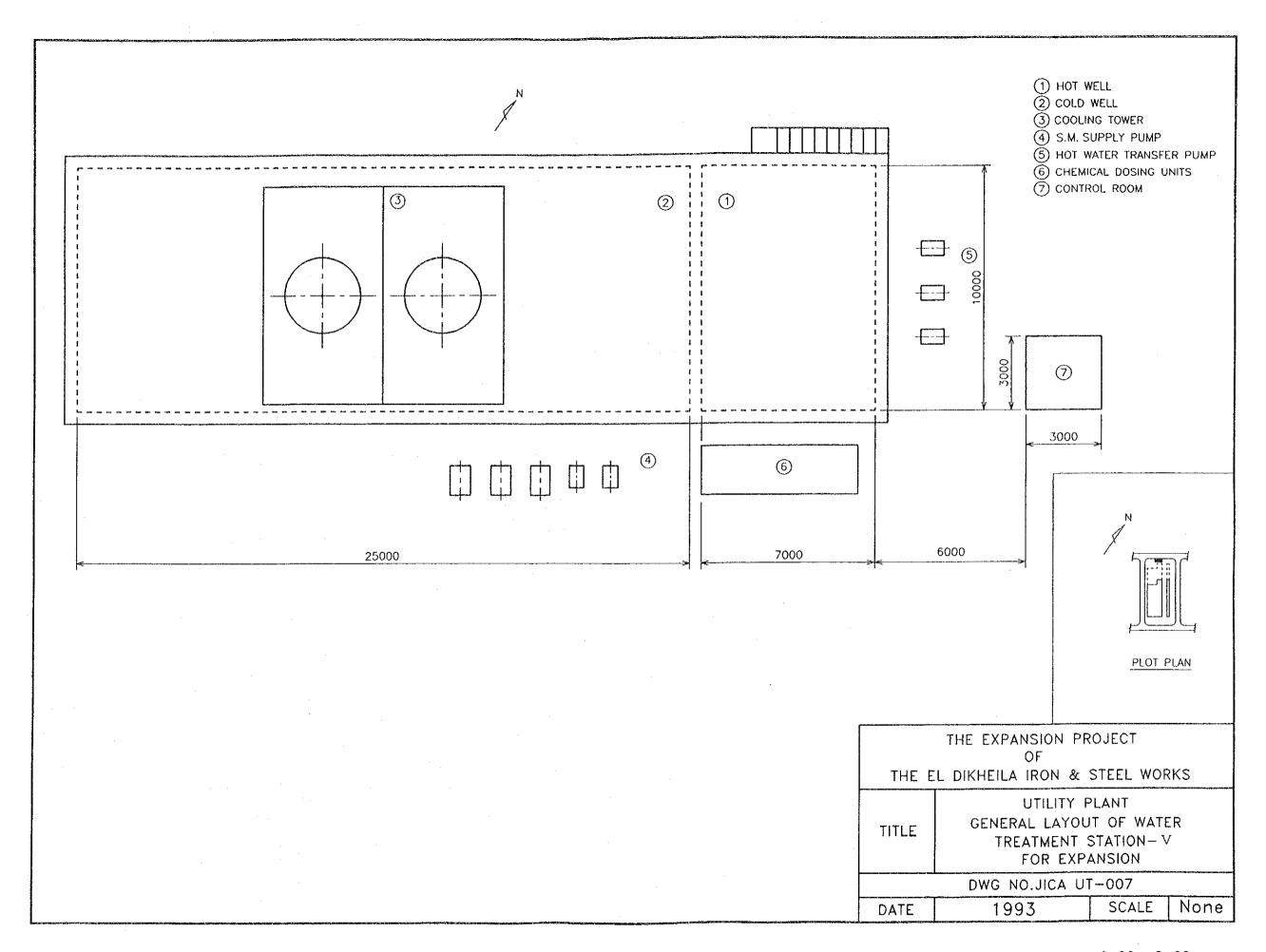

NO.	EQUIPMENT	Q' TY	MAIN SPECIFICATION
UT-803	Direct cooling water piping with accessories	1 lot	
UT-804	Indirect cooling water piping with accessories	1 lot	
UT-805	Emergency water piping with accessories	1 lot	
UT-806	PSA oxygen gas piping with accessories	1 lot	
UT-807	Sewage water piping with accessories	1 lot	
UT-808	Natural gas piping with accessories	1 lot	
UT-809	Connection piping with accessories	1 lot	
UT- 810	Structures (Rack and Stanchion)	1 lot	

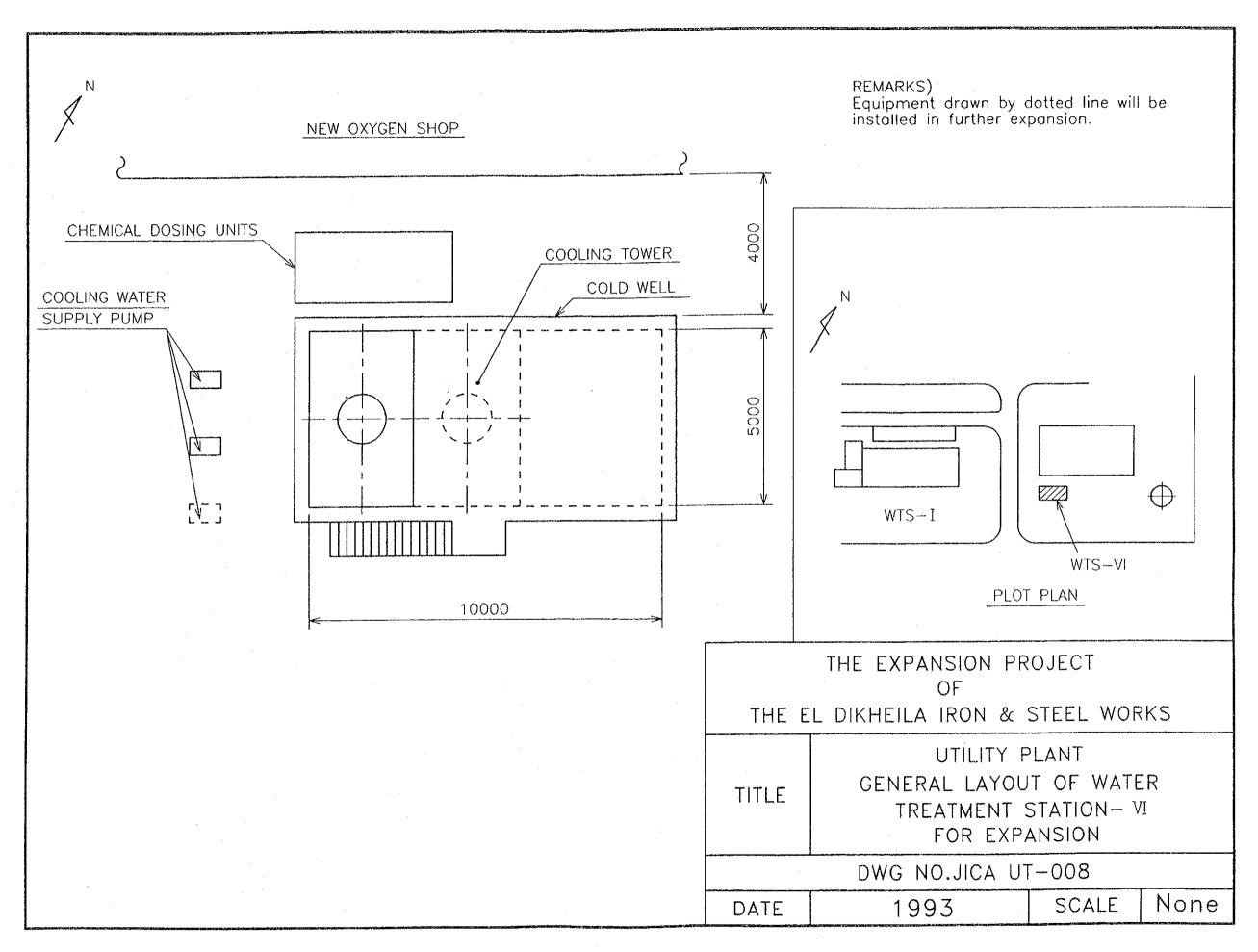

Personnel of Utility Facilities

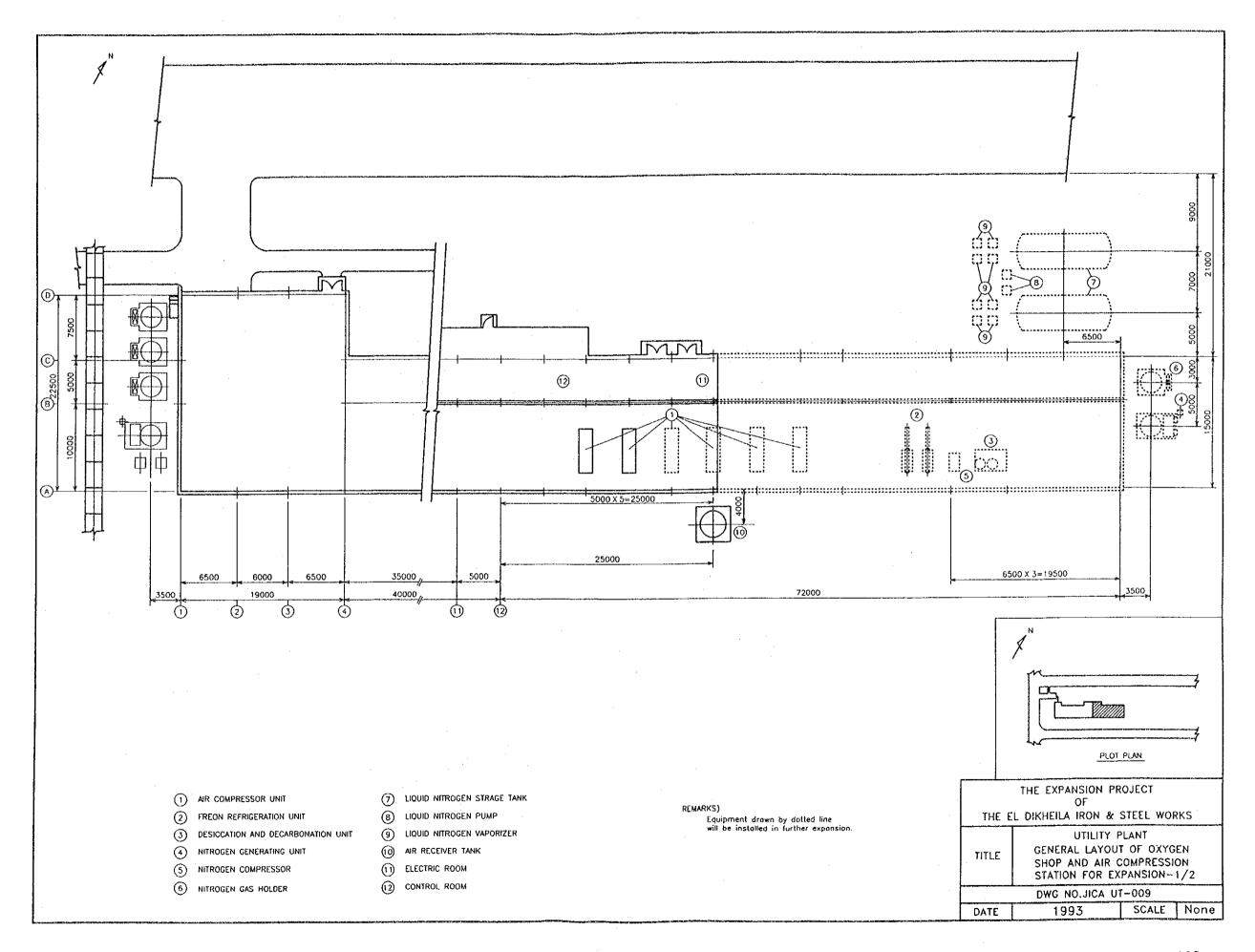

			Exis	Existing				Œ	For the expansion	expans	sion			Afte	After the expansion	subdixe	ion	
	₹	SM ASM	Э	[34	AF	М	SIM	ASM	Œ	ĹŦŧ	AF	X	SM	MSA	EI.	F	AF	:3:
Utility facilities	•	-																
Water			2	1	17	28						12			2	+	≓	읔
Ceas				+	77	16					ᅒ	8	-		*	V	8	24
Maintenance				-	1	10			-		Ţ	17			-	,	2	14
Subtotal	+	4	17	3	6	175					IJ	24	-	,	17	m	14	78
Total				72					ଷ	6					101	,		

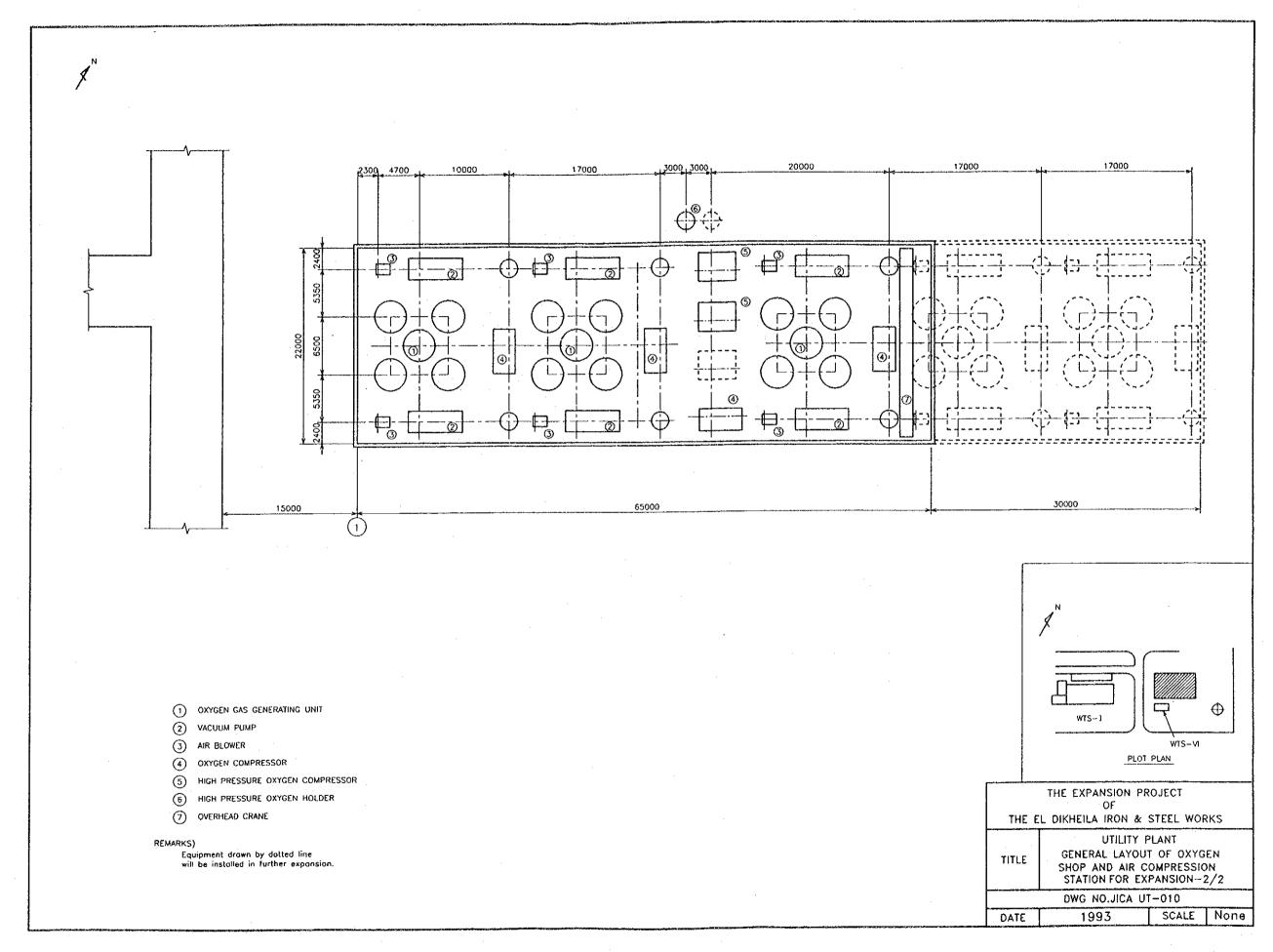

SM : Section manager
ASM : Assistant section manager
E : Engineer
F : Foreman
AF : Assistant foreman
W : Worker











6.4.5. Power receiving and substation facilities

1) Outline

This section covers expansion plan for the scope of substation facilities which refer to the following items:

Power distribution

- * 220kV Receiving system
- * 220 kV/33 kV Step-down transformers 33 kV Distribution system
- * 33 kV/6.6 kV Step-down transformers 6.6kV Distribution system Emergency power system

Communication system Load lighting Ancillary facilities

Of the expansion items of the works, the following are taken up as major factors to determine expansion plan for the substation scope.

- a) Construction of new SMP consisting of two 70-ton LF (ladle furnace)
- b) Addition of one strand in Rod Mill plant
- c) Construction of new Water Treatment Station IV for SMP and Rod.
- d) Construction of new oxygen shop and air compression station

e) Expansion of warehouse and product dispatching yard

Most of the existing facilities in the substaion scope have been designed, provided and installed in anticipation of their expansion related to the abovementioned plant expansions.

The substation items marked * above do not need any expansion, being capable of feeding additional loads.

Some minor expansion and modification, however, will be necessary for the rest of the substation items as foreseen in the previous project.

2) Distribution scheme

a) Power demand for production

Table 6.4.5-1 indicates estimated power demand for each plant and works after the expansion.

The power demand requires the present network of distribution to be expanded as shown in heavy line on single line diagram DWG-PW002.

The expansion plan features:

- (1) 3 new 33 kV lines for new NO.1 LF, No.2 LF and Rod Mill (One line for each load)
- (2) Rolling mill (referring to the combination of Bar Mill and Rod Mill) will be equipped with an additional 33 kV/6.6 kV receiving transformer. This third transformer is for back-up purpose

in case one of two 3 kV/6.6 kV working transformers gets out of order.

(3) 4 new 6.6 kV lines for new WTS IV and new oxygen shop (dual lines per station)

b) Emergency power

Expansion results in increase of emergency loads as well as normal production loads. Estimate of additional emergency power is shown in Table 6.4.5-2. Total of required emergency power for the portion of expansion amounts to about 345 kW, which will be accommodated by the present emergency generators.

3) Design basis

The design for the expansion should be done on the same design basis as that for the existing facilities in respect of standards, requirements, and arrangement of equipment. This idea is of importance to allow operators and maintenance men to handle both existing and new facilities in the same understanding.

Fundamental requirements include:

a) Power distribution

- (1) Receiving voltage conditions
 - (a) Receiving voltage: 220 kV, 2 phase, 50 Hz

directly grounded

(b) Fluctuation: $220kV \pm 10\%$

550Hz ± 2% normally

(c) Short circuit capacity of 220 kV system

Max. 15,000MVA (40kA at 220kV) Min. 4,000MVA (10kA at 220kV)

(2) Distribution design data

Phase/

System Volt.	<u>wire</u>	Grounding	*Short circuit
	* .	•	capacity
AC 33 kV	3/3	100A resistance	25kA at 36kV
AC 6.6 kV	3/3	10A resistance	40kA at 7.2kV
AC 380 V	3/3	direct grounded	
AC 220 V	3/4	direct grounded	-

^{*} Each equipment to be capable of withstanding interrupting current for minimum one sec.

(3) Insulation level

System	<u>Bil</u>	Low frequency
AC 33kV	170kV	70kV (1 minute)
AC 6.6kV	60kV	'20kV (1 minute)
Less than	4004	2kV
AC600V		

(4) Ambient temperature40°C for indoor equipment (except diesel generator)45°C for outdoor equipment

(5) Circumstances

	Frequencey
Sand storm	2.2 days/year
Cloud of dust	7.2 days/year
Salty wind from seashore	3 km distant from site
	most of all the year.

b) Communication system

- (1) In-works telephone
 Handsets of a given type to be used
- (2) Public address
 Speakers of a given type to be used
- (3) Power telephone Subscriber stations of a given type to be used
- (4) Fire alarm

 Modification of indication board
- (5) Clock distribution
 Clock of a given type to be used

Note: Given type refers to that of the existing equipment.

e) Road lighting

- (1) Area to be illuminated

 Main road passing the area in the scope of
 works expansion, and some part of perimeter roads
 of new plants
- (2) Lighting arrangement
 Lighting fixtures to be located every 50 m along
 one side of the load

d) Ancillary facilities

(1) Scope

Warehouse and product dispatching yard

(2) Power supply
Lighting fixtures, power tools, cranes to be fed
through 380V or 220V system

e) Data logging system

This system will be introduced aimed at the following advantages in connection with fault and operation records of the distribution system and reports for energy and electricity balances.

- (1) To relieve operators of trouble for gathering readings on meters and other data.
- (2) To quickly obtain accurate data.
- 4) Location and cabling plan

Spaces for the installation of new equipment and cabling route will be provided as follows:

- a) Feeding switchgear (see layout drawing DWG-PW-001)
 - (1)33 kV feeders for 33 kV lines of ROD No.2, NO. 1 LF and No. 2 LF.

Existing 33 kV metal-clad switchgear panel will be extended over the future space.

- (2) However spare parts, etc. are placed here at present. Therefore, the equipment room will be extended to ensure the storage space for spare parts and the testing area for the circuit breakers and relays.
- (3) 6.6kV feeders for 6.6kV lines of new WTS IV 1 and 2, and new 2 OXYGEN 1 and 2.

Existing 6.6kV metal-clad switchgear panel will be extended over the future space.

b) Cabling route:

- (1) ROD No.2 33kV line
 To run in parallel with ROD No. 1 33kV line
 through the existing cable tunnel
- (2) No.1 LF and No.2 LF 33kV lines

 New cable will be laid in the cable tray supported by the building structure around south end of the SMP main building, branching from the existing cable tunnel (No. 1 LF). Another cable will be laid in the cable tray supported by the building structure similarly after crossing the future main building area by the new cable tunnel, extending from the existing cable tunnel(NO.2 LF).
- (3) New WTS IV 1 and 2 6.6kV lines and emergency line

 New WTS IV will be situated about 100 meters west of the present WTS I. They will be taken through the same route as the existing cables for the existing station up to there. Then they will be passed through a burried route up to the new station.
- (4) New 2 oxygen 1 and 2 6.6kV lines

 New cables will be laid underground along the existing cables to oxygen shop from the main substation.

5) Equipment list

Table 6.4.5-3 shows the equipment required for the expansion in the substation scope in accordance with the above items 1) to 4).

Table 6.4.5-1 Electricity Balance after Expansion

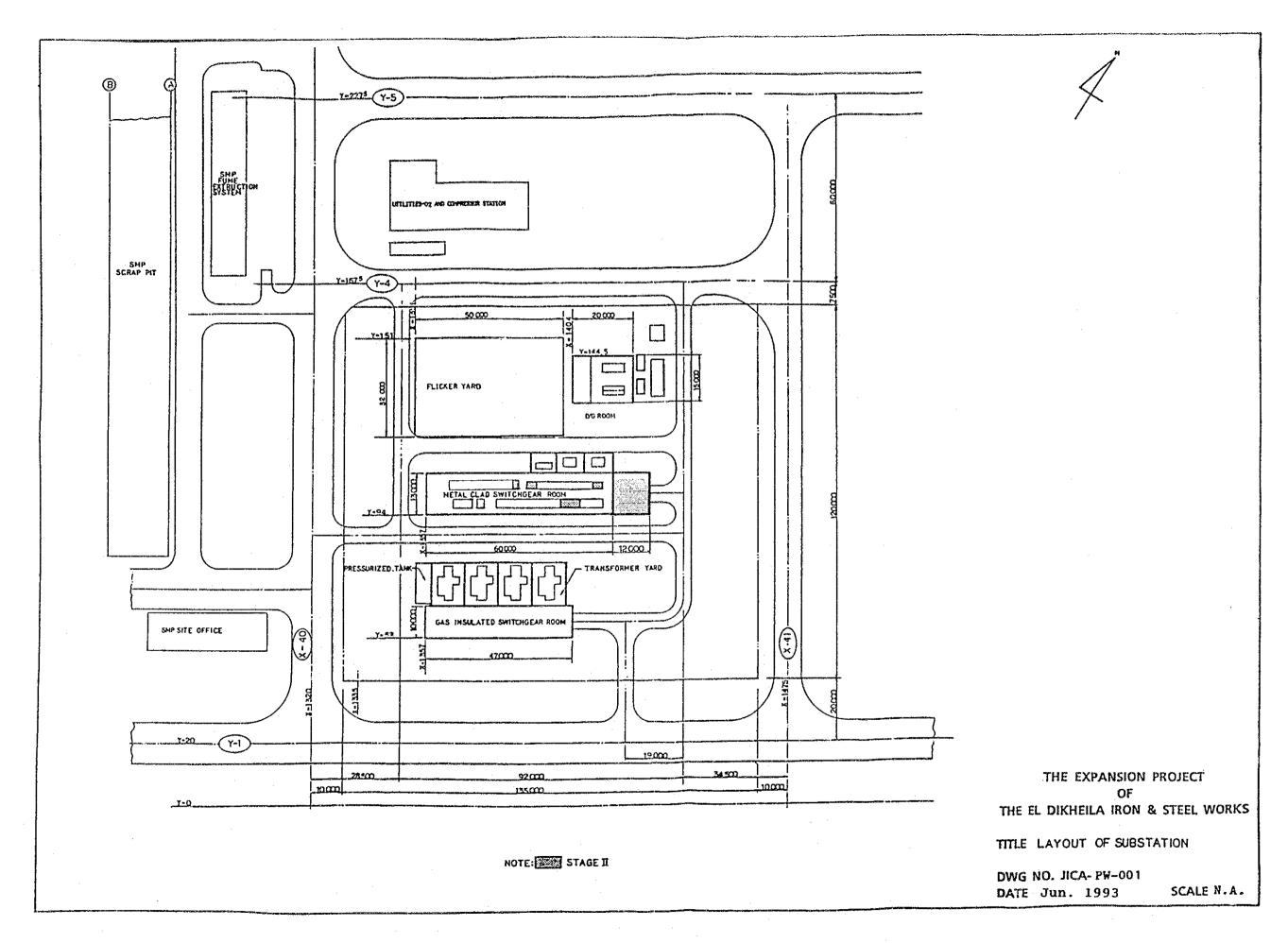
Plant	Unit cons. kWh/t	Production x 10°t/y	Operating Hr h/y	Average Power kW	Load Factor	Demand Power kW
DRI	110	, 776.4	7,680	11,100	6.0	12,400
Lime Calcining	9	64.9	7,680	50	6 0	009
SMP (EAF, CC)	578	1,545.6	7,680	116,300	0.1	166,200
BAR	6.09	559.9	6,398	5,300	٥.٣	7,600
ROD	100.8	938.4	6,700	14,100	6.0	20,200
Utilities and services			7,680	10,300	٥. ن	11,400
Total				157,600		218,400

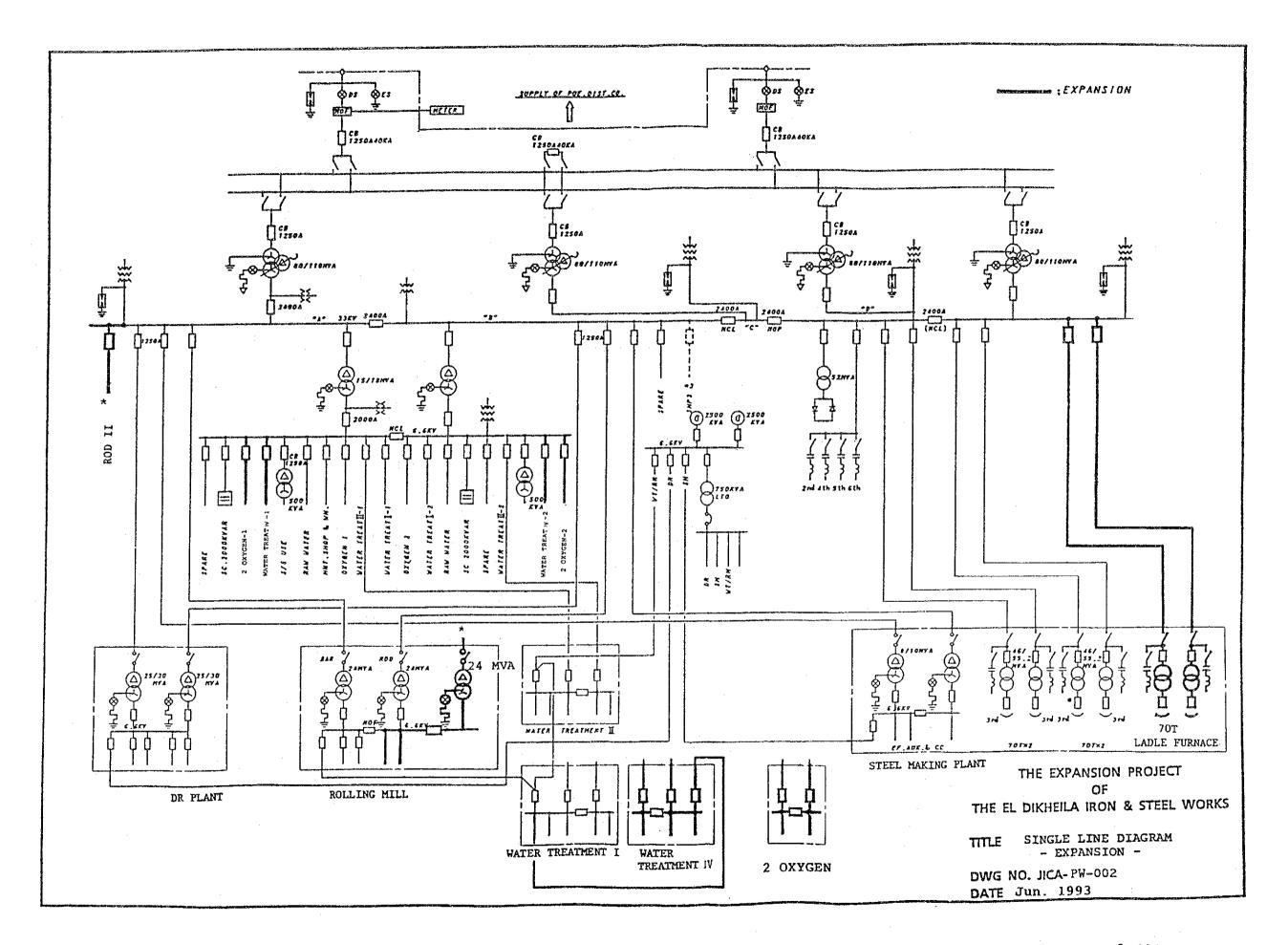
The given diversity factor of total load to demand factor is 1.1, and works overall demand is $218,400~\mathrm{kW}$ / 1.1 = 198,500 kW

Table 6.4.5-2 Emergency Load Increase

Plant	Motor	Control	Lighting,	Total
Tanc	kW	k₩	kW	kW
Direct reduction	0	0	0	0
Steelmaking	332	10	0	342
Rolling mill	_	15	10	25
Utilities	109	45	18	172
Total	441	70	28	539
Estimated actual loads				345

Table 6.4.5-3 Equipment List of Substation


	REMARKS														
PLANT:Substation (1)	MAIN SPECIFICATION		Metal clad switchgear	Indoor type	CB-36kV,1250A,25kA (1 sec.)	3 Feeders:	33kV No.1 33kV No.5 BUS BUS	-ROD No.2 -No.1 LF -No.2 LF		Metal clad switchgear	Indoor type	CB-7.2kV, 1250A, 40kV	1 Feeders:	6.6kV No.1 BUS 6.6kV No.2 BUS -New Water treat- ment IV-1 ment IV-2	-2 Oxygen-1 -2 Oxygen-2
	Q' ty		m							コ					
EQUIPMENT LIST	EQUIPMENT	33kV Equipment	Feeder Panel						6.6kV Equipment	Feeder Panel					
	ĝ								 2		-				


Table 6.4.5-3 Equipment List of Substation

	REMARKS	100 mm 1								
PLANT:Substation (2)	MAIN SPECIFICATION		Computer based control and monitoring system	Addition of protection relays and control switches etc.				33kV, 6.6kV, 400V	Including:	Cable head material and supporting material
	۵. دپ	,	·	-	 		·	 -		·
EQUIPMENT LIST	EQUIPMENT	Data Logging System	Supervising Control and Data Acquisition System	Supervisory Control Panel		. •		Cable & Materials Power Cable		
	S.	m						.		

Table 6.4.5-3 Equipment List of Substation

	PEMARKS					less than 10% to 15%	ု ဝှာ ၊	u op i	l op l						
PLANT:Substation (3)	MAIN SPECIFICATION					Addition of terminal stations	- do -	- do -	- op -	Addition		For part of expansion	[ու]յւգիսց։	Distribution, lighting, crane power feeding and fire alarm system.	Covering items 1 to 6 above.
	Q' ty			•								-		-	
EQUIPMENT LIST	EQUIPMENT	Control Cable	Grounding Wire and	Steel and Other	Communication Systems	In-works Telephone	Public Address	Power Telephone	Fire Alarm	Clock Distribution	Road Lighting	Lighting apparatus and wiring	Ancillary Facilities	Electrical Equipment for Warehouse I	Spare Parts
	Š				Ŋ						w		<u>.</u>		ω

6.4.6. Maintenance facilities

1) Facilities

In CHAPTER 5, facilities of maintenance shop of El Dikheila Works and its maintenance system are discussed. By utilizing those facilities and system in full, maintenance work required after the expansion can be performed smoothly with some reinforcement which eliminates the bottlenecks. Outline of the equipment to be reinforced is described below, and a list of the equipment is shown in Table 6.4.6-1, also Fig. 6.4.6-1 and Fig. 6.4.6-2 show new maintenance shops and a layout of the equipment, respectively.

a) Mechanical

- (1) Existing maintenance shop does not have sufficient space to perform scheduled repairs of spare parts and units taken apart from lines. Therefore, new maintenance shop will be built for and/or disassembling of spare parts and units. The building will be located on the south offabrication shop, and two 10-ton overhead travelling crances and necessary machine tools for repairs will be installed.
- (2) Machine tools which work at high operation rate and necessary ones for manufacturing spare parts in the Works will be provided.
- (3) Purchase of measuring instruments
 For checking of spares and units which are
 maintained in the new shop, and for inspection of
 purchased spares, some measuring instruments will
 be purchased.

b) Electrical

- (1) A new maintenance shop for electrical maintenance work such as management of electrical spare parts and repair of air-conditioning and communication facilities will be built on the south of existing repair shop. The new building (28m×15m) will be equipped with a five-ton hoist.
- (2) A set of special tools for maintenance of air conditioning will be provided.
- (3) One forklift for cable drum handling will be provided.

2) Personnel plan

The expansion project under study consists mainly of new construction of two LFs in SMP, one strand for Rod mill in RMP and utility plants required in relation with those facilities. Increase of maintenance personnel is planned by taking those plants into consideration as shown in Table 6.4.6-2.

Table 6.4.6-1 Maintenance Shop Equipment List (1/2)

Note			MANAGEMENT OF THE STREET	
Main Specification	20m × 30 m = 600 m2 For overhaul & assembling Capacity 10 t	28 m × 15 m = 420 m2 For electrical spare parts and air-con, communication system repair Swing over bed: 460 mm Center distance: 1,000 mm Main motor: 3.7 kW	Swing over bed: 560 mm Center distance: 2,500 mm Main motor: 7.5 kW	Table working surface: 1,370 mm × 310 mm Main motor: 5.5 kW
Q'ty	← N		•	-
Equipment	Building and crane Building for mechanical repair OH-service crane for the above		Lathe (2.5 M)	Universal milling machine
No.	MS-100 -101 -102	-103 MS-200	-202	-203

	Table 6.4.6-1 Maintenance	Sho	Shop Equipment List (2/2)	
No.	Equipment	Q1 ty	Main Specification	Note
MS-204	Slotting machine	ŧ	Ram stroke: 310mm, Table dia.: 550 mm dia.	
-205	Small boring machine		Main motor: 3.7 kW	
		-	Spindle diameter: 100mm	
			Head stock vertical	
			travel:1000 mm	
			Table cross traverse: 1,400 mm	
	:		Table logitudinal travel:	
			800mm	
-206	Internal grinding machine	-	Internal diameter:6 mm~200 mm	
			Grinding stoke: 200 mm	
			Max. table stroke: 500 mm	
-207	Surface plate	· 	300 mm × 1,500 mm × 2,000 mm	
-208	Measuring tool		Inspection for purchased spare	
7			parts	
MS-300	Equipment for electrical	lot		
	repair			
-301		_	Capacity: 3 t	
-305	Special tools for air-	, -	Gas welder kit	
	conditioning equipment	lot	Cleaner for air-con equipment	
			Vacuum pump	
			Others	
-303	5t hoist for new E/M shop		Capacity: 5 t	
			Hoist motor: 5 kW	

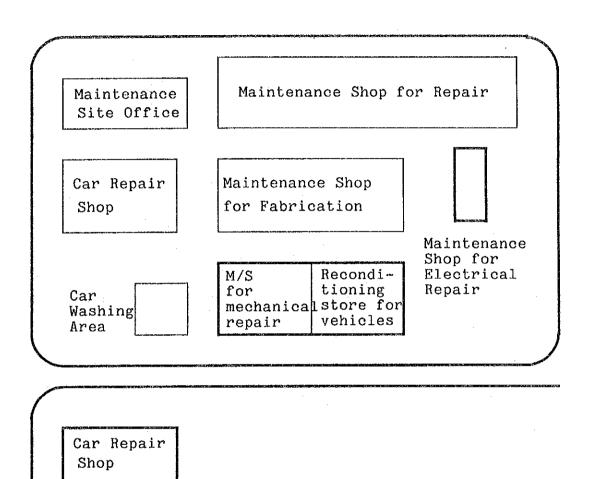


Fig. 6.4.6-1 General Layout of the Maintenance Shop Building

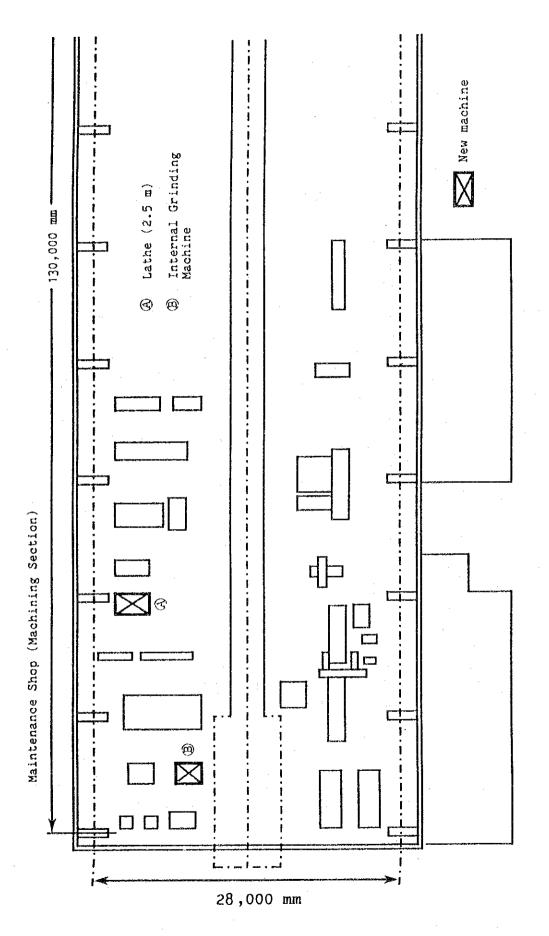
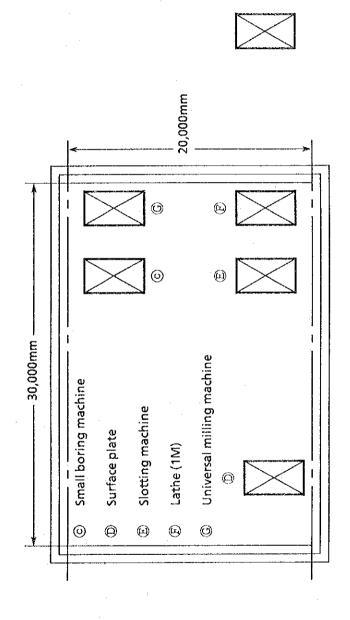



Fig. 6.4.6-2 (1/2) Layout of New Machine

New machine

Fig. 6.4.6-2 (2/2) Layout of New Machine

Table 6.4.6-2 Personnel Plan of Maintenance

Section / Branch		Afte	r expan	sion	
Work Grop	ASM	Е	F	AF	W.
Coordination	·				:
Planning	3	12		1	2
Mechnical	·				
DRP	. 1	2	1	5	15
SMP	1	3	1	15	52
RMP	2	4	2	10	34
Repair	1	9	4	34	166
Electrical					·
DRP	1	2	1	5	16
SMP	1	3	1	6	33
RMP	1	4	1	6	36
PW	. 1	. 2	1	6	18
Instrum.	1	4	1	5	27
Repair	1	3	3	10	46

6.4.7. In-works transportation facilities

1) Outline

a) Basic concept of the expansion project

In 1992, ANSKD produced 1.035 million tons of rebar, and the handling amount such as raw materials, byproducts and products was more than four times as that. Section in charge of in-works much as transportation greatly assisted this sharp production increase through the material handling. Materials to be handled and transported within the Works vary greatly in kinds as well as in shape and volume. Facilities vary in kind or handling quantity of materials, and also working condition varies between facilities.

In the expansion project, facilities of In-works transportation will be expanded in proportion to the production increase, and the actual working ratio of vehicles managed by ANSDK will be referred to.

Table 6.4.7-1 shows working hour and working rate of vehicles per unit.

b) Volume of materials to be handled

Table 6.4.7-2 shows the actual amount of main in 1992. materials to be handled in the Works Although the amount of each material is proportional to production, the ratio of handling quantity between after and before expansion is corrected by the unit consumption revised when it is different between after and before expansion. The rate in the table is a rate of handling amount (t/y) between after and before expansion.

2) Expansion plan

Considering the material flow after the expansion and the capacity of existing facilities, expansion of facilities is planned as given below.

a) Transport vehicles and related equipment

The number of existing equipment and that of additional equipment required in the expansion are shown in Table 6.4.7-3.

b) Scrap yard

As existing scrap yard will not be sufficient for a large quantity of purchased scrap, re-arrangement of the existing yard (30,000m²) and a new scrap yard with space of 14,400m² which is located on the north side of slag yard will be provided.

c) Indoor warehouse

With the increase of materials, a new warehouse and expansion of the existing warehouses are planned as mentioned below.

(1) Warehouse for brick

A new warehouse with space 3,450m² will be built on the north side of the existing warehouse for brick.

(2) Warehouse for spare parts

To cope with the increase of spare parts of equipment and to be convenient for the inventory control, space of 1,600m² will be reserved in the brick warehouse with partition.

(3) Warehouse for additives

As the space for additives will be shortage, the warehouse will be expanded 3m in width and 10m on east side.

d) Products yard

In line with increase of production, about 20,000m² of products yard (capacity about 17,000s ton of rods) will be constructed on the south side of Bar mill plant.

e) Slag yard

As increased quantity of slag will be generated, a slag yard having the same capacity as that of the existing one will be provided.

f) Truck weighing station

The existing equipment is adequate and no increase will be planned.

g) Vehicle repair shop

Considering the increase in the number of vehicles since the start-up of ANSDK and also the fact that repair of existing vehicles will be more frequent as they get old in years, a new vehicle repair shop will

be constructed. The scale and contents of the shop will be the same as those of existing one. After the expansion, 2 vehicles maintenance groups will be organized. One is in charge of existing car repair shop and another one is for the new car repair shop. Both groups will have 30 personnel including assistant foreman instead of 34 personnel of existing group.

h) Warehouse for vehicle spare parts

To cope with the increase of vehicles, a warehouse for vehicle spare parts will be built at the south of the existing parking area.

The equipment list is shown in Table 6.4.7-4.

3) Personnel plan for In-works transportation

Personnel plan for in-works transportation after the expansion is shown in Table 6.4.7-5.

Table 6.4.7-1 Working Hours and Rate of Transportation Facilities

NO.	Vehicle Type	Q'ty	Specification	Monthly Hours /Unit	Daily Hours/ Unit	Working Rate/ Unit
1	Forklift in auxiliary	2	3.5 ton	110	4.4	90 %
2	Forklift in brick	2	2.5 ton	24	1.0	20 %
3	Forklift for carrying	1	1.5 ton	19	0.76	15 %
4	Wheel loader	7	1.5 m3 bucket	208	8.3	56 %
5	Mini-wheel loader	1	0.2 m3 bucket	6.5	0.25	
6	Crawler shovel	5.	2 m3 class	66.85	2.7	55 🗲
7	Power breaker	2	1.2 m3 bucket class	108.3	3.6	73 %
8	Bulldozer	2	16 ton angledozer	85.9	3.4	69 %
9	Self-loading dump truck	. 4	45 ton slag pot	206	6.9	46 %
10	Dump truck (scrap)	11	14 ton scrap	231.2	9.2	187 %
11	Dump truck (slag)	12	14 ton tall gate door	112	4.5	92 🕻
12	Dump truck for silty wastes	5	14ton tall gate seal type vessel	132.2	5.3	108 🐒
13	Dump truck for oxide ferrous fines	14	14ton tall gate door type vessel	137	5.5	112 %
14	Small dump truck	1	4ton tall gate door	25.25	1.00	20 %
15	Flat deck truck crane	1	3.5 ton	80	3.2	65 %
16	Flat deck truck	7	15ton body length 8m	58.3	2.3	48 %
17	Vacuum dumper	1	4 ton	47	1.9	38 %
18	Water sprinking car	1	15 ton tank	106	4.2	85 %
19	Lorry for refueling	1	4ton hose length 20m	104	4.1	83 %
20	Double-cab truck	2	Capacity 6 persons	117	4.7	96 %
21	Crawler mounted crane	5	35 ton	313	10.4	212 %
22	Suzuki patrol jeep	1		88	3.5	71 %
23	Trailer	1	35 ton low-bed type	13	0.5	10 %
24	Dump truck with crane	.1	4 ton	76	3	61 %

Table 6.4.7-2 Material Transported and the Quantity (1/2)
(Data in 1992)

NO.	MATERIAL	QUANTITY t/y	Unit t/BTt	Rate EXP/ EXST
* 3 * 4 * 5 * 6 7 8 9 10 11 12 *13 *14	CLUSTER DRI DUST REMET (SEMI PRO.) MID. OXIDE FINES OXIDE FINE DRI RECLAIMING DRI (PILI. & TR. FER.) REMET (PILING) PILING O. FINES PILLING AT H.B.I. LUMP ORE (L. & P.) OXIDE FINES OXIDE THICKENER CAKE.	89,372 40,071 12,079 10,497 11,633 2,779 67,542 225,738 42,828 34,948 40,000 13,126 34,948 25,971 92,155 107,702	0.078 0.035 0.010 0.009 0.010 0.002 0.059 0.196 0.037 0.030 0.035 0.011 0.030 0.023 0.080 0.094	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
*17	LCP	66,648	0.058	1.35
*18	LIME STONE	6,607	0.006	1.35
19	LIME STONE FINES	44,385	0.039	1.35
*20	COBBL CUT (BAR) SCRAP (BAR) SCALE (BAR) - WET. SCRAP (ROD)	9,219	0.008	1.06
*21		6,012	0.005	1.06
*22		7,196	0.006	1.06
*23		10,293	0.009	1.72
*24		6,753	0.005	1.72
25	PTD-PTCD ARRANGEMENT LEVE. (BD) B. STORE SCALE. (PTCD)	20,000	0.017	1.35
26		90,000	0.078	1.35
27		57,584	0.050	1.35
28 29 30 31 32	MJ & OTHER AL. KABMI (PRO. & T. BIN) H.B.I. ARRANGE. AT YARD M.J. CLEANING AT ANSDK OTHER	438 28,769 7,446 1,500 196,171	0.000 0.025 0.006 0.001	1.00 1.00 1.00 1.35 1.35

Table 6.4.7-2 Material Transported and the Quantity (2/2)
(Data in 1992)

[]				
			Unit	Rate
NO.	MATERIAL	QUANTITY t/y	t/BT-t	EXP/
			0,21	EXST
	SMP			
33	PURCHASED SCRAP	240,035	0.208	2.32
34	FLUORSPAR	39	0.000	1.35
35	Fe-Mn	11,711	0.010	1,20
36	Fe-Si	4,783	0.004	1.22
37	COKE BREEZE	4,457	0.004	4.64
38	AI	99	0.000	1.35
39	FURNACE/LADLE-BRICK	15,033	0.013	1.24
40	GUNNING MATERIAL	8,416	0.007	1.17
41	ELECTRODE	4,718	0.004	1.39
42	HOT SLAG (EF)	160,580	0.139	1.35
43	HOT SLAG (LADLE)	51,106	0.044	1.35
44	FURNACE WASTE BRICKS	5,040	0.004	1.24
45	LADLE WASTE BRICKS	4,200	0.004	1.76
46	DUST (EF)	30,764	0.027	1.35
47	SCRAP (CC)	7,600	0.007	1.35
48	TUNDISH WASTE BRICKS	2,795	0.003	1.35
49	TUNDISH SLAG	3,374	0.003	1.35
50	SCALE (CC)	5,489	0.005	1.35
51	SCRAP (CONT. WITH SLAG)	25,628	0.022	1.35
52	SLAG COLD	163,384	0.142	1.35
53	SCRAP - SLAG	15,029	0.013	1.35
54	COBBLE CUT (BAR)	2,118	0.002	1.06
55	METTL (CC)	1,043	0.001	1.35
56	INGOT (CC)	805	0.001	1.35
57	BRIQUETTE	21,753	0.019	1.00
58	PRO. FINES	7,367	0.006	1.00
59	H.B.I.	134,139	0.116	1.03
60	UNLOADING SCRAP	60,293	0.052	2.32
61	SLAG EAF (TR POTS)	14,568	0.013	1.35
63	DOLOMITE	0	0.000	1.35
64	ARRANGEMENT AT SLAG	623,372	0.368	1.35
65	PILING SCALE	19,438	0.017	1.35
66	PILING AT C.S.Y.	15,000	0.013	2.32
67	LOADING H.B.I.	134,139	0.116	1.03
68	LOADING SCRAP	240,035	0.208	2.32
69	PILING AT O.S.Y.	116,232	0.101	2.32
70	LOADING DRY & BRI & CLS.	123,056	0.107	1.00
71	ARRANGEMENT AT WH/1 & 3	60,000	0.052	1.22
72		3,357	0.003	1.00
		<u> </u>	<u> </u>	

^{*} Rate: ton/year of billet production after expansion divided by ton/year of existing billet production

Table 6.4.7-3 Equipment List for In-works Transportation (1/3)

TR-100 Vehicles (Transportation Section)				
			Existing	
101 Fork lift car	20	3.5 ton	20	
102 Wheel loader		1.5 m3 bucket	11 (W. Shovel)	
103 Excavator loader	.	3.5 m3 bucket	5 (C. Shovel)	
104 Power breaker	<u></u>	Breaker operating weight 1.5 ton	2	
105 Self loading dump truck		45 ton	ন	
106 Dump truck for Cold Slag	_	14 ton	12	
107 " Sonap	-	14 ton	11 000	
108 " Scale		14 ton	5 7 5	
109 " Oxide	<u></u>	14 ton	7 7	
110 Flat deck truck with crane	-	6 ton	23	
111 Vacuum dumper	-	6 ton	_	
112 Refuse dump truck with crane		with 3 ton hydraulic crane		
113 Vacuum cleaner	·	4 ton brush type	0	
114 Magnet crawler crane	*	35 ton	6 (C. Crane)	
115 Water sprinkling car		15 ton (14,500 & water tank)	1 (W. Car)	
116 Lorry for refueling		6 ton (7,000 & fuel tank)	* -	

Table 6.4.7-3 Equipment List for In-works Transportation (2/3)

No.	Equipment	Q'ty	Main Specification	Remarks
TR-150	Container			Existing
151	- For light weight refuse	20	Capacity: 1.2 m3	20
152	- For heavy weight refuse	20	Capacity: 1.2 m3	20
153	- For burnt lime	ı	Capacity: 20 ton	(Sealed type)
TR-200	TR-200 Vehicles (Products Shipping Section)			
201	Ram type fork lift car	ال	4 ton (high-lift type)	0
202	Tractor and trailer	-	5 th wheel load 16 ton, payload 35 t	Q
TR-300	Building for transportation			
301	301 - For car repair shop	-	28 m x 36 m (with equipment as same as the existing one)	28 B X 36 B
302	- For vehicle spare parts			
TR-400	Building for warehouse			
701	- For brick material	-	46 m × 75 m	45 H X 190 H
705	- For spare parts	- -	20 m x 80 m (Space reserved in the	; ;
			brick)	17 B X 35 B
403	- For additives	, ⊶	зв x 150 в + 10 в x 23 в	15 B X 150 B

Table 6.4.7-3 Equipment List for In-works Transportation (3/3)

No.	Equipment	0.ty	Main Specification	Remarks
TR-500	Slag yard for hot slag			
TR-600	TR-600 Products dispatching yard	,-	20,000 m2	
TR-700	TR-700 Scrap yard 1) New scrap yard 2) Existing scrap yard		120 m x 120 m 100 m x 200 m	to be rearranged
TR-800	TR-800 Limestone storage yard	·-	日 O S X 日 O t	

Table 6.4.7-4 Equipment List of Vehicle Repair shop

Description	Number
Vehicle service	One complete unit
Engine service	# · · · · · · · · · · · · · · · · · · ·
Electric & battery service	_ " _
Machine service	
Lubricant service	11
Body and frame service	. 17 ************************************
Painting service	n
Tire service	n +445 mani
Crane (5 ton)	One unit
Other tools	One complete unit

Table 6.4.7-5 Personnel Plan for In-works Transportation

Section/Branch		After expansion						
Work Group	SM	ASM	Е	F'	AF	W		
Coordination	1	1	5					
Raw Materials	1	2	7	2	3	26		
Machinery & Supplies	1	4	23	2	5	23		
Transportation	1]						
Vehicle Repair	[1	3	3	6	79		
Transportation		1	3	5	16	150		
	[
]							
Product Shipping	1	2	6	7	24	157		
***************************************					[

6.4.8. Analysis and inspection facilities

As a backup for the production facilities such as DR plant, SMP, and RMP (Bar mill & Rod mill), there are the analysis and inspection facilities which perform analysis and inspection as shown in Tables 5.2.11-1 and 5.2.11-2.

As various production facilities are expanded and the production increases, frequency of analysis and inspection will increase so much that the existing analysis and inspection facilities cannot cope with the situation. It is considered necessary to add one carbon and sulphur determinator, one emission spectrometer, and one complete set of tools for preparation of samples.

The existing one line of sample transportation system for transporting samples from SMP will be insufficient and one more system will be required.

And it is recommended to provide an oil analyzer of portable type for checking the deterioration of lubrication oils.

The existing 100-ton compression tester will be used exclusively for the bending test and so a 70-ton tensile testing machine should be added for the tensile testing.

In line with increased frequency of analyses, it is considered necessary to permit automatic feedback data communication between the host computer at SMP and the FEP at A&I Dept.

Additional equipment required for the expansion is shown in Table 6.4.8-1.

Relocation of the existing equipment in the building will provide the space for the above equipment for the expansion.

The number of the personnel in the analysis and inspection facilities will be increased by 18 after the expansion.

Table 6.4.8-1 Equipment List for Expansion

RKS			and and and and and and and and and and 			
REMARKS						
MAIN SPECIFICATION	Spectrometer : Concave diffraction grating in Paschen-Runge mounting	Application : For analyzing total Fe of sponge iron as major job and others	Actual : 30 sec. analysis time	Consisting of: Analyzer, control console, induction furnace, AC stabilizer, computer interface unit and transformer	Type : Vertical hydraulic loading type	Max. capacity : 70 tons Grip-to-grip : Max. 1000 mm distance
QTY			, ~~		 -	
EQUIPMENT	Inductively coupled plasma emission spectrometer (ICP)		Carbon and sulphur determinator		70-t tensile testing machine	
NO.	ę.co		N		m	

	1					
REMARKS						
MAIN SPECIFICATION	Type : One way, plant air, non-carrier type Sample size : 35/30 mm dia. x 70 mm	No. of stations: 1 - Laboratory 2 - LF stations	Type : Handy labo type	Application : For analyzing water content, acid number and contamination	Type : Dry cutting type Cutting capa. : 75 mm dia. and 55 mm square in steel	
QTY	1 lot		,			
EQUIPMENT	Sample transportation system		Oil analyzer		Abrasive cut-off machine	
NO.	a t		ഗ		9	

NO.	EQUIPMENT	QTY	MAIN SPE	SPECIFICATION	REMARKS
.	Double head pedestal	2	Type : Dou	Double head disc type	
	(Bench type		Wheel size : 205 mm	mm dia. x 19 mm	
			2 - For LFs		
∞	Double head pedestal belt grinding		Type : Dou	Double head, endless belt, dry type	
	macnine		Belt size : 915	5 m × 100 mm in width	
			Belt speed : 520	, mm	
0	Sample grinder		Type : Dou	Double head disc type	
			Wheel size : 205	5 mm dia. x 19 mm	
			Grinding : Fer material bri	Ferrovanadium, hot briquette iron	

NO.	EQUIPMENT	QTY	MAIN SPECIFICATION	REMARKS
10	Electrical equipment	1 lot	Consisting of: Materials for wiring work, rack/duct, grounding, analytical data feedback system, etc.	
	Analytical data feedback system	1 lot	The existing AI5100 analytical data feedback system will be modified as follows: 1. To receive the answer-back of the SMP's computer. 2. To enable the system to treat the data of additional analyzers	
<u>n</u>	Instruments	1 10 t	of addictions and the pipes, installation me	

6.4.9. Civil engineering and building work

List of civil engineering structure (foundation work, floor pavement, roads and sewerage) and buildings required in relation with construction and expansion of production facilities and ancillary facilities are shown in Tables 6.4.9-1 to 6.4.1-12.

Table 6.4.9-13 shows volume of major works of civil engineering and building work.

Foundation Lists

MAINTENANCE SHOP	Table 6.4.9-6	Table
IN-WORKS TRANSPORTATION FACILITIES	Table 6.4.9-5	Table
POWER DISTRIBUTION SYSTEM	Table 6.4.9-4	Table
UTILITY SUPPLY SYSTEM	Table 6.4.9-3	Table
ROD MILL PLANT	Table 6.4.9-2	Table
STEELMAKING PLANT	Table 6.4.9-1	Table

Table 6.4.9-1 Foundation List for STEELMAKING PLANT

Item	Description			Concrete Volume
Foundation for buildings	- Spread Foundation - Ancillary Building Foundation		3 sets	$\frac{210\mathrm{m}^3}{100\mathrm{m}^3}$
Foundation for machinery and	- Modification of E.A.F. - Modification of Ladle Transfer Car		4 sets	200 m ³
equipment	- Ladle Furnace - Ladle Furnace Blectric room		2 sets 2 sets	630 m^3 420 m^3
	·	70t	1 set	170 m ³
	- Scrap Bucket Transfer Car - Scrap Truck Scale	50t 70t	2 sets 2 sets	120 m ³
Culverts Floor slabs	- Piping Tunnel - Ground Floor Slab			$260\mathrm{m}^3$ $430\mathrm{m}^3$
Others				360 m ³
Other civil work	- Road and Paving Bituminous base course (5.0 cm thick) - Pipe Installation		$2,000~\mathrm{m}^2$	
	. Drainage pipe for storm water (Concrete pipe Ø 200-300 mm)	÷	200 m	

Table 6.4.9-2 Foundation List for ROD MILL PLANT

Item	Description		Concrete Volume
Foundation for buildings	-Spread Foundation	16 sets	660 m ³
Foundation for machinery and equipment	- Billet Yard . Billet storage yard . Billet transfer car	33,000t (Common use of Bar Mill Plant) 70t	.t) 780 m³ e 260 m³
	-Mill Yard . Intermediate mill (2) . Finishing mill	4 stands 10 stands	$630\mathrm{m}^3$ $910\mathrm{m}^3$
	Water cooling zone Laying head Stelmor Reforming tub & coil loading station Coil compacting station	1 set	300 m ³ 120 m ³ 570 m ³ 820 m ³ 190 m ³
Culverts	- Cable Culvert	100 m	540 m ³
Floor slabs	- Ground Floor Slabs		$140\mathrm{m}^3$
	-Others		200 m3
Other civil work	- Roads and Paving . Bituminous base course (5.0 cm thick) . Crushed stone paving - Pipe Installation . Drainage pipe for storm water (concrete pipe Ø 200-Ø300 m/m)	4,260 m ² $5,700 \mathrm{m}^2$ te pipe Ø 200-Ø300 m/m) $310 \mathrm{m}$	
	. Sanitary sewage pipe (P.V.C Ø150 m/m)		

Table 6.4.9-3 Foundation List for UTILITY SUPPLY SYSTEM

Item	Description		Concrete Volume
Foundation for buildings	-Oxigen and Air Compression Main Building . Water Treatment Station No. 4 . Electrical equipment room	$930 \mathrm{m}^2$	270 m ³ 240 m ³
	. Chemical storage building . PSA shop building . Water Treatment Station No. 5	$70\mathrm{m}^2$ 1980 m ²	100 m ³ 600 m ³
	. Electrical equipment room	$200\mathrm{m}^2$	$250 \mathrm{m}^3$
Foundation for machinery and equipment	-Water Treatment Station No. 4 50 x 21 x 3.5 - Water Treatment Station No. 5		2,000 m ³
: 1	12.5 x 7 x 4 - Water Treatment Station No. 6		$350 \mathrm{m}^3$
	$10 \times 6 \times 3$ - Head Tank 4 - Oxigen Shop and Air Compression Station		200 m ³ 450 m ³ 700 m ³
	- Yard Piping - Others		550 m ³
Other civil work	- Road and Paving . Bituminous base course (5.0 cm thick) . Asphalt curbs	$4900\mathrm{m}^2$	
	- Pipe Installation . Sleeve pipe concrete pipe . Sanitary sewage	720 m	

Table 6.4.9-4 Formation List for POWER DISTRIBUTION SYSTEM

Item	Description	Concrete Volume
Foundation for building	- MCSG Building	430 m ³
Other civil work	-Roads and Paving . Bituminous base course (5.0 cm thick) . Crushed stone paving	100 m ² 300 m ²
	- Pipe Installation . Drainage pipe for storm water (concrete pipe $\varnothing 200~\mathrm{m/m}$)	100 m

Table 6.4.9-5 Foundation List for IN-WORKS TRANSPORTATION FACILITIES

Item	Description	Con	Concrete Volume
Foundation for buildings	- Warehouse for Additive - Warehouse for Brick - Warehouse for Vehicle Spare Parts - Car Repari Shop - Reconditioning Store		500 m ³ 1,100 m ³ 700 m ³ 600 m ³ 300 m ³
Foundation for machinery	- Slag Yard - Others		800 m ³ 400 m ³
Other civil work	- Road and Paving 1) Product dispatching yard . Bituminous base course (5.0 cm thick) . Crushed stone paving 2) Warehouse for additive . Bituminous base course (8.5 cm thick) 3) Scrap storage yard . Crushed stone paving 4) Car repair shop . Bituminous base course (5.0 cm thick) 5) Slag yard . Bituminous base course (8.5 cm thick) 5) Slag yard . Crushed stone paving 6) Lime storage yard . Crushed stone paving Bituminous base course	8,000 m ² 12,000 m ² 600 m ² 34,400 m ² 1,550 m ² 11,100 m ² 1 800 m ²	

- Pipe Installation . Drainage pipe 6200 m/m)

Table 6.4.9-6 Foundation List for MAINTENANCE SHOP

Concrete Volume	$600\mathrm{m}^2 \qquad \qquad 300\mathrm{m}^3$ use $420\mathrm{m}^2 \qquad \qquad 210\mathrm{m}^3$	$100\mathrm{m}^2$	150 m
Description	- Maintenance Shop for Repair - Electrical Maintenance Wrokshop and Warehouse	-Roads and Paving . Bituminous base course (5.0 cm thick) - Pipe Installation . Drainage pipe for storm water (concrete pipe Ø200 m/m)	•
Item	Foundation for buildings	Other civil work	

Building Lists

STEELMAKING FLANT	ROD MILL PLANT	UTILITY SUPPLY SYSTEM	POWER DISTRIBUTION SYSTEM	IN-WORKS TRANSPORTATION FACILITIES	MAINTENANCE SHOP	VOLUME OF MAJOR WORKS OF CIVIL & BUILDING WORKS
Table b.4.9-7	Table 6.4.9-8	Table 6.4.9-9	Table 6.4.9-10	Table 6.4.9-11	Table 6.4.9-12	Table 6.4.9-13
Tabl	Table	Tabl	Tab1	Table	Table	Tabl

Table 6.4.9-7 Building List for STEELMAKING PLANT

Name of Building	No. of	No.	No. 1st of Floor	Building Height	Dimension Dimension	Building Total Area Floor	g Total Floor	Structure Roofing Siding	e Roofing	Siding
	Samorma	TOOT I	GL+(m)	GL+(m) GL+(m)	(m)x(m)	(sq.m)	(sq.m)			
Main Building										
- Ladle aisle	, -1	н	0.4	31.5	20x40	800	800	Ø	MS	MS
Subtotal	, - 1					800	800			
Ancillary Building										
- LF Electric Room	Ø	63	05	11.0	10x10	300	009	RC	RCS	RC
- LF Operation Room	Ħ	, ⊣	7.5	11.0	5 x 5	23	25	RC	RCS	RC
-Fuel Storage House	r-d Q	H	4.0	4.3	4.2x5.5	22	22	RC	MS	RC
- LF Additive Feeding House	, , ,	 4	0.4	15.0	8.5x17.0	145	145	တ	MS	MS
Subtotal	ເດ						492	792		
Total	7						1,292	1,592		
	وجريدها والمتعدد فيجافى				فالمارية والمراورة والمراو					

Abbreviation: S. Steel, RC: Reinforced Concrete, MS: Metal Sheet, RCS: Reinforced Concrete Slab, MB: Masonry Brick

Table 6.4.9-8 Building List for ROD MILL PLANT

Name of Building	No. of Buildings	No. of Floors	lst Floor Level	No. No. 1st Building I of Floor Height I ildings Floors Level	Dimension Dimension	Building Total Area Floor Area	g Total Floor Area	Structure	Structure Roofing Siding	ing guit
ويوزندند ووون باروور بالجديد وودنده			GL+(⊞)	GL+(B)	(m)x(m)	(sq.m)	(sq.m)			
Billet Storage Yard		- -4	0.4	19.2	40×56	2,240	2,240	ß	-	ı
Coil Storage Yard	H	- -4	0.4	18.8	28x80	2,240	2,240	တ	MS M	MS
Total	63					4,480	4,480			

Abbreviation: S: Steel, RC: Reinforced Concrete, MS: Metal Sheet, RCS: Reinforced Concrete Slab, MB: Masonry Brick

Table 6.4.9-9 Building List for UTILITY SUPPLY SYSTEM

Name of Building	No. of	No.	No. 1st of Floor	Building Height	Dimension Dimension	Building Total Area Floor	g Total Floor	Structur	Structure Roofing Siding	Siding
4	samonne	10017	GL+(m)	GL+(m) GL+(m)	(m)x(m)	(sq.m)				
W.T.SIV E.E.R.	1	11	0.4	4.4	8x25	200	200	RC	RCS	RC
W.T.SIV Chemical Storage		63	0.4	11.8	7x10	70	140	RC	RCS	RC
W.T.SVE.E.R.	₽	, ⊷4	0.4	4.4	10X20	200	200	RC	RCS	RC
O ₂ & Air Compression - Main Building	y-d	₩	4.0	7.9	15x62	930	930	ያ ተ ዊ	S+RC MS	MS+RC
O ₂ & Air Compression - PSA shop	H	H	9.4	ထ	22x90	1,980	1,980	സ + ജ	S+RC MS	MS+RC
Tota]	ເດ					3,380	3,450			

Abbreviation: S: Steel, RC: Reinforced Concrete, MS: Metal Sheet, RCS: Reinforced Concrete Slab, MB: Masonry Brick

Table 6.4.9-10 Building List for POWER DISTRIBUTION SYSTEM

Name of Building	40:	of of	1st Floor	to. No. 1st Building f of Floor Height	Dimension Dimension	Building Total Area Floor	g Total Floor	Structur	Structure Roofing Siding	diding
	3	S10014	GL+(m)	GL + (m)	(m)x(m)	(m.ps)	Area (sq.m)			
MCSG Building	1	r-I	0.4	4.8	13x12	156	156	RC & S RCS	RCS	MB
Total	r-1					156	156			

Abbreviation: S: Steel, RC: Reinforced Concrete, MS: Metal Sheet, RCS: Reinforced Concrete Slab, MB: Masonry Brick

Table 6.4.9-11 Building List for IN-WORKS TRANSPORTATION FACILITIES

Name of Building	No. of	No.	1st Floor	No. 1st Building of Floor Height	Dimension Dimension	Building Total Area Floor	r Total Floor	Structure Roofing Siding	Roofin	g Siding
	sämmina	2001 4	GL+(m)	GL+(m)	(m)x(m)	(sq.m)	(sq.m)			
Warehouse for Additive	rd	Н	0.4	9.2	10x23+ 150x3	680	680	S+RC	MS	MS+RC
Warehouse for Bricks	purel	Ħ	0.4	6.6	46x75	3,450	3,450	w	MS	MS
Warehouse for Spare parts	П	∺	4.0		20x80	1,600	1,600	Modification of existing warehouse	cation of ex warehouse	xisting
Car Repair Shop - Car repair shop - Warehouse for vehicle spare parts	1 1 arts	ਜਜ	4.0		28x36 28x50	1,008	1,008	യ യ	MS	MS
-Reconditioning Store	tore 1	ᆏ	0.4		20x30	009	009	Ø	MS	MS
Tota]	9					8,738	8,738			

Abbreviation: S. Steel, RC: Reinforced Concrete, MS: Metal Sheet, RCS: Reinforced Concrete Slab, MB: Masonry Brick

Table 6.4.9-12 Building List for MAINTENANCE SHOP

Name of Building	No. of	S & E	lst Floor	No. 1st Building of Floor Height	Dimension Dimension	Building Total Area Floor	g Total Floor	Structur	Structure Roofing Siding	Siding
	sguiding	1000 H	GL+(m)	GL+(m)	(m)x(m)	(m.ps)	Area (sq.m)			
Maintenance Shop for Repair	7	H	0.4	12.6	20×30	009	9009	മ	MS	MS
Electrical Maintenance Shop for Repair	ref	H	9.4	4.2	15x28	420	420	RC.	RCS	MB
Total	64					1,020	1,020			•

Abbreviation: S. Steel, RC: Reinforced Concrete, MS: Metal Sheet, RCS: Reinforced Concrete Slab, MB: Masonry Brick

Table 6.4.9-13 VOLUME OF MAJOR WORKS OF CIVIL & BUILDING WORKS

ITEM FACILITY	EXCAVA- TION M3	CONCRETE M3	RE-BAR TON	EMBEDDED STEEL TON	STRUCT. STEEL TON	ROOFING M2	SIDING M2	PIPE INSTALL M	BIT. BASE COURSE M2
1. D.R.P.	ومستدنان فالمراجع والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج		والناقسات فالمدارة والمدارة وا						
2. S.M.P.	7,500	5,000	560	117.0	300	1,250	2,900	200	2,000
3. R.M.P.	19,400	6,200	520	90.0	790	2,900	2,000	310	4,260
4. UT									
1) UT-02	2,100	310	22	6.2	16	250	200	50	100
2) UT-COMP	8,400	099	48	15.0	64	1,000	800	100	200
3) UT	14,000	6,600	620	50.0	0	0	0	570	4,600
UTSUB-TOTAL 24,500	. 24,500	7,570	069	71.2	80	1,250	1,000	720	4,900
5. SUBSTATION	2,000	350	35	5.0	13	0	0	100	100
6. TRANSPORT- ATION	6,400	2,840	244	180.0	174	5,033	518	1,510	18,000
7. MAINTE- NANCE SHOP	1,590	610	62	5.0	06	760	760	150	730
8. CAR REPAIR SHOP	4,500	1,600	230	14.0	440	3,900	3,500	240	2,400
9. ADMI FACILITIES	0	0 ,	78	0.0	0	0 ,	0	0	320
TOTAL	65,890	24,170	2,419	482.2	1,917	15,093	10,678	3,280	32,710

6.5. Infrastructure

6.5.1. Supply of natural gas

1) Consumption

As stated in Section 5.3.1, the present natural gas consumption is approximately 33,000 Nm3/h. The entire consumption after the expansion will be 35,000 Nm3/h.

2) Supply source of natural gas for the expansion project

The present contract between ANSDK and EGPC assures the supply up to 2002. And the supply capacity of this pipeline and receiving capacity of EGPC stationed in ANSDK is both 92,000 Nm3/h, which is sufficient for the expansion project.

3) Facilities for supplying natural gas

The existing receiving capacity in ANSDK is designed at 50,000 Nm3/h. Therefore, it is not necessary to modify or expand the facilities.

4) Heavy hydrocarbon in natural gas

The heavy hydrocarbon in the natural gas affects, especially, even the existing DR plant operation/production as expalined in Section 5.3.1. In addition, it is very difficult to predict the heavy hydrocarbon quantities contained in the natural gas after the expansion.

Therefore, it is very necessary for ANSDK to study how to solve this problem jointly with EGPC because the problem has already appeared since October 1990.

6.5.2. Industrial water supply

The existing supply capacity of Alexandria Water Authority is 2,000 m3/h, which is sufficient. The existing receiving capacity is 930 m3/h, which need not be increased because this capacity will meet the required quantity of approximately 642 m3/h for the expansion.

Here, it is very important to secure stable supply of water. In summer the demand in Alexandria City naturally increases and the demand in EI Alamain area to the west of Alexandria is rapidly increasing due to the resort development there. As a result, pressure drop and stop of water supply would frequently occur at ANSDK in the summer.

Considering these conditions, ANSDK needs to open negotiations with Alexandria Water Authority for raising the pumping capacity.

6.5.3. Power supply

d) Start-up

Forecasted pwer demand in Egypt (MW) 2000 1996 a) Total generating capacity 13,030 15,340 b) Average demand (excluding ANSDK) 5,850 7,410 c) Maximum demand (excluding ANSDK) 9,000 11,400 2) Forecasted pwer demand in Alexandria area (MW) 2000 1996 1,813 a) Total generating capacity 1,213 1,066 b) Average demand (excluding ANSDK) 845 1,640 c) Maximum demand (excluding ANSDK) 1,350 Plan of new power plant in Alexandria area 3) Sidi-Krir a) Location 2 x 300 MW b) Capacity 1993/1994 c) Start of installation

4)	Estimated	power	demand	for	the	expansion
----	-----------	-------	--------	-----	-----	-----------

•		Maximum power	Instantaneous	Annual
		demand(15 min.)	max. load	Consumption
		(kW)	(kW)	(kW)
a)	Expansion	198,500	256,800	1,190.7
b)	Without	168,500	218,500	1,013.4
	expansion			

1997/1998

5) Idea on power supply for the expansion project at ANSDK

The EAF process consumes a huge quantity of electric power, compared with other processes. Therefore, additional power supply from EEA is essential for expansion project. It takes normally a long time to

increase the power supply capacity. It is recommended that ANSDK will start negotiation with EEA for the supply of increased power as soon as the expansion plan is fixed so that the expansion of ANSDK will be included in EEA's future plan.

6.5.4. Mineral jetty and stock yard

As discussed in Section 5.3.4, the mineral jetty and stock yard have been satisfactorily operated at present.

For the expansion project, the capacities of the mineral jetty and stock yard need not be expanded because a new DR plant is not planned to be installed.

However, it is important for ANSDK to study how much coal will be handled in future with IMC, since it is necessary to expand or rearrange the stock yard if a new DR plant is installed.

6.6. Organization and Personnel Plan after the Expansion

1) Organization

The expansion plan is based on increased production of re-bar, that is, 1.5 times the present production by addition of two ladle furnaces, one strand of wire rod mill, and plant support facilities.

However, there is no necessity to change the existing organization.

2) Personnel

Personnel plan after the expansion is shown in Table 6.6-1.

Table 6.6-1 MANPOWER REQUIREMENT (1/2)

	<u> </u>			2	38	17				5.4						277		56	23	228					1,133	35	77	661	396		207	20			157	
	AF				6			5		ম						31		3	5	23					185	Q	σ	88	62		30	9			24	
	Щ				N	ş.				,						13		2	2	6					62	9	J.	27	ħ7		6	2			-	
	m		m		27	10	17	7	İΊ	2	31	9	12	5	5	43	5	7	23	7		18	14	4	31	Ŋ	17	6	11	2	30	7	ন	12	9	,
	ASM		2	,	8	1	2	2	2	1	9	2	7	,	1	10	-	2	ħ	2	-	ম	3		11	2	1	7	3	1	11	ď	٣	3	2	l
	SM		,	,	5	*	,	-	1	1	3	ļ	1			7	1		,	1		2		, -	77			,	,-		ম	,	1	1		
Phase-1	MO			+	,											۳						1			1											
Ph	рем	3																																		
	GM	1																																		
	JMD	ı.																																		
	СМО	-										-														-		-								
	SEC. TOTAL	 		-		27	7	75	7	33		12	15	۲-	9		-	1.17	58	270	2		18	9	} —	58	61	790	17.0	m		89	ω	16	197	2
	DEP. TOTAL 1	9	9	9	06						4.1					379						25			1,472						292					
	SECTION		TOP MANAGEMENT AFFAIRS	-	1	GENERAL AFFAIRS	1 (1)	LABOUR & WELFARE		>-		BUDGET & COST CONTROL	ر ر	FINANCE	AUDITING (SUB-SECTION)		COORDINATION	HAW MATERIALS	MACHINERY & SUPPLY		LABOR RELATIONS(SUB-SEC)		NALES.	BILL COLLECTION		MINERAL JETTY	URP	a X	a.W.	LABOR RELATIONS(SUB-SEC)		TECHNICAL COORDINATION	PRODUCTION CONTROL	COMPUTER	PRODUCT SHIPPING	
	DEPARTMENT	O. TOP MANAGEMENT									4.FINANCE					S PHRCHASTNG &	⊢					८ ५०१ म			7 PRODUCTION		W				NOTITOTION &	CONTROL & TECHNICAL	NOTENTRAL			

Table 6.6-1 MANPOWER REQUIREMENT (2/2)

							Id.	Phase-1						
DEPARTMENT	SECTION	DEP. TOTAL	SEC. TOTAL	СМО	JMD	Æ	DGM	D.W.	SE	ASM	(LI)	្រ	AF	扫
9.MAINTENANCE &		734						-	7	16	54	19	119	521
UTILITIES	MAINTENANCE COORDINATION		19							m	12			2
ning school	MECHANICAL MAINTENANCE		363						,	Ŋ	18	œ	64	267
	ELECTRICAL MAINTENANCE		245							9	18	80	38	17.
	utilities								-	-,	ħ	۲	16	78
	LABOR RELATIONS(SUB-SEC)		m							,	2			
10.CONSTRUCTION	CONSTRUCTION	m							-	2	3			Ī
11. RESEARCH	RESEARCH	5						-		, _	2			
	ANSDK TOTAL	3,018	·	-	1		3	10	30	72	243	105	374	2,178

CHAPTER 7. CONSTRUCTION SCHEDULE

7.1. Organization for Execution of Construction Work

7.1.1. Basic policy

Construction period of a steelworks is very long, and in general it takes 30 to 36 months from supply contract of equipment to start-up of the works. If basic designing is required and bidding is added, 50-56 months are required from the decision to implement the project to the commencement of production of products.

A project can never be repeated under the same condition and besides the process under which the project is executed is not always freely controlled. In order to carry out the project, keeping predetermined budget and schedule, under uncertain and changeable conditions, a strong organization which can exercise powerful driving force and solve problems efficiently is indispensable. This role should be played by the enterprise of the project and consultant engineers.

Since the present project is to expand the existing Works in accordance with a plan made in advance, economic and financial effect of execution of the project is very high and it is hoped that the project is completed as soon as possible.

7.1.2. Consultant engineering

As consultant engineers, companies which have experiences and actual records of planning and constructing modern steelworks and can provide plant operation guidance after the completion is desirable. At present, Egyptian staffs

are engaged in the plant management under the consultancy Japanese staffs at E1Dikheila Works. But the 1995 and when the consultancy agreement expires in expansion project is completed, the Japanese staffs will It is considered that by that time, technical transfer will be completed and no external management staffs are necessary, but to cope with troubles early in the start-up, a part of consultancy jobs provided so far should be included in the scope of engineering. of work of consultant engineering in this project will be as follows:

- 1) Basic design
- 2) Supply contracts
- 3) Preparation of design drawings (Civil engineering and building structures)
- 4) Construction works management
- 5) Start-up operation (Immediately after start-up)

7.1.3. Preparatory stage

Though this project is to expand El Dikheila Works of ANSDK in private sector, it is executed to supplement shortage of rebars in Egypt. In view of its contribution towards the Egyptian economy through its ripple effects such as saving foreign currency, enhancement of employment opportunity and development of peripheral industries in Egypt, the project should be given encouragement as one of national projects. In particular, at its preparatory stage when it is going to be executed, a strong support and assistance from the Egyptian Government, its agency and public sector is necessary. Matters which must be decided at the stage include the following.

- Approval and guarantee by the governmental agency on financing from international financing institutions
- Allocation of foreign exchange for repayment of loans and purchase of raw materials and materials
- Agreements for supply and price of power, natural gas and industrial water
- Exemption or reduction of customs duties on imported materials and equipment for construction and operation

For the purpose of solving these problems early and realizing the project, it is proposed that EI Dikheila Expansion Project Steering Committee be established by those concerned. ANSDK will chair and manage the meeting as the enterprise of the project.

7.1.4. Execution of basic engineering

Another important matter to be carried out in the preparatory stage is basic engineering. With the object of developing and materializing the feasibility study, basic engineering will make detailed study on alternative plans proposed in the F/S and conditions assumed in the F/S and endorse a concrete plan. Therefore, the basic engineering should cover every field: follow-up of market research, determination of production process, planning of practicable and detailed processes, up-dating of construction expenses and operation cost, and financial and economic analyses.

The result of basic engineering is expected to play a decisive role in obtaining the final approval on execution of this expansion project from the Egyptian Government, investors or overseas official financial institutions such as the World Bank, OECF, EXIM Bank and others.

7.1.5. Preparation for tender

If the project is executed with financing from official organizations (e.g. World Bank and OECF), rules of those financial institutions will be applied to the supply contract of the equipment and works for the project. Major items controlled by those rules will include public notice of tender, pre-qualification of bidders participating in the tender, tender documents, and obtaining of approval of successful bidders. This is another important job which should be done following the basic engineering.

7.2. Construction Schedule

7.2.1. Basic policy

1) Start-up of main plants

Start-up of main plants such as SMP and ROD is determined to be the same time by taking into consideration the learning period until full operation and the material balance.

Other ancillary facilities will be started up in timing not to cause inconvenience to the start-up of the main plants.

2) Construction period

The period required from CIF contract to start-up is set to be 28 months for both SMP and ROD.

3) Preparation and tender period

All contracts for this project will be made through limited international tender, and it is assumed that preparation of bidding to signing contract takes 6 months.

7.2.2 Overall construction schedule

Table 7.2-1 shows the overall schedule for the expansion project based on the above premises. Start-up date of main plants is assumed as follows:

SMP: August 1, 1996 RMP: August 1, 1996

7	able 7.2-1 IMPLEM EL DIKHEILA IRON	E N A N	T D	A T S	Ί (Τ Ι	O N E E	L	C E W (1E)R	D U K S	L E	: - E	ΧР	Αì	٧S	10	N	p	RΟ	J]	ЕС	Τ			J	1 (A	F	/ 5			-		in cina	Da J	ATE ICA	: 1 STU	1 JU DY	NE TEA!	1993 (MATE PARTY
NO.	ITEM			,	1 (9	3						·		9 9								1		19				- [:	-	T					9 9					-
no.	A J, Auf & P &	4	5	6	7	8	9	10	11	12 1	2	3	4	5	6	7	8 8	9	10 1	.1 1	2 1	2	3	4	5	6	7	3 9	1	0 11	12	1	2	3	4 1	5 6	7	8	9 :	10 1	1 1
1.	PREPARATION AND BIDDING STAGE							7-			(CONT	RAC	T																											
2.	CONSTRUCTION												ŒSI	GN			MANU	IFA:	CTUR	?TNG	•				:				SHI	PPIN	₹G		INS	TALI	ATIO) N	ST	ART 1	UP		
2-1	STEELMAKING											•	ESI			-	MANI	+		-										ING	 - C		_	TAL		_					
2-2	ROLLING MILL (ROD)											;	-		ESI			-	MANU	+-		ING					SHI	PPIN		+-() —	LLA					+-@				
2-3	UTILITIES									,							SICA		TITLE TO			NUFA	CTI:	оты	_		0111	-0	+	PING		NST.			(V)						
2-4	SUB-STATION															•	SIGN	1	DE	STC.		I OF T			FACI	י ד סווי	NC -		1111	+-() -	PPI			0	Ant	UN.				
2-5	TRANSPORTATION																		•	SIG	714						110				-			\circ							
2-6	MAINTENANCE SHOP					٠							:					•	SIGN	-		\dagger			TURI	-						PPI	10	0	I NLI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	WY (
2-7	ANALYSIS																	•	SIGN			+			RING							ING)		OUT	JO W	(CD7/				
2-8	C/B WORK												— .W(BIL	1ZA	1100	I)政S	LGN		E	XCAV					+	ETE	WUK.	K.	-			-		NG W	ORK (
2-9	INSTALLATION																					***************************************	₩	OBI	LIZA	TIO	N	-0	-]	NST	ALL	ATIC	IN						
-10	INLAND-T/R																						9 -	ові	LIZA	TIO	N			IN	LAN	D TI	RAN	SPOF	TAT	ION	+-@				
											-																		· ·										- Committee - The Committee -		

CHAPTER 8. CALCULATION OF CONSTRUCTION EXPENSES

8.1. Division of Supply Contracts and Method of Supply

All the equipment and works required for execution of the project are supplied, in principle, by supply contracts entered through international competitive bidding, and the scope of work covered by each division of supply contracts is set as given below.

1) Supply of equipment

Supply of equipment & their appurtenances, materials such as steel frame stand/brick/cable/piping, consumables for 6 months after start-up, and spares for one year after start-up, CIF Alexandria port. Supervision for installation works.

2) Inland transportation of equipment

Customs clearance of equipment, transportation of the equipment from Alexandria port to the site, and their unloading and deposit in bonded area in the site.

Their transportation and delivery from the bonded area to respective construction sites.

3) Installation works of equipment

Assembly and installation works of equipment, and wiring and piping works.
Supporting service for trial run of the equipment.

4) Civil engineering and building works

Foundation, plant building, warehouses and roads and sewerage works

8.2. Calculation of Capital Cost

8.2.1. Estimation basis

The capital costs consist of the following categories and estimated on international price level in 1993.

The capital costs are expressed in U.S.dollars, for which international procurements and domestic purchases in Egyptian pounds are converted to U.S.dollars by the following rates:

1 U.S.dollar = LE 3.35

1 U.S.dollar = Yen 115.76

1 U.S.dollar = DMK 1.65

8.2.2. Supply of equipment

Equipment cost consists of equipment, auxiliary facilities, materials such as steel frame, brick, cable and piping, spare parts for normal one year operation and consumables for six months start-up operation and supervision for installation work, and is calculated on CIF Alexandria port basis with reference to the prices tendered for construction of the existing facilities by taking into consideration the change in price factors in these past years mainly in prices of industrial goods and the change in exchange rate of currency and also reference estimates obtained from several makers.

8.2.3. Field work

Cost of field work consists of inland transportation of equipment including cost of customs clearance,

installation work of equipment and civil and building work.

Regarding the cost of field work, unit price of each item is set considering the results of the site survey and existing facilities construction, and the total construction expenses are calculated according to BQ method. Construction equipment is found available in Egypt, but is basically to be imported considering the timing of construction and tight schedule.

8.2.4. Engineering fee

The cost of engineering services consists of costs such as man-day fee expense incurred on execution of the following work:

- 1)Procurement services
- 2)Preparation of design drawing for civil engineering and building structures
- 3) Consultancy services for construction work
- 4) Consultancy services for commissioning

8.2.5. Contingency

As the reserve fund for construction cost in the expansion project, the following contingency is provided.

1) Import taxes

The rate of import taxes levied on imported equipment and materials is assumed to be 5% of the CIF price except the following:

1. Construction equipment and materials for temporary

structures to be re-exported after completion of construction works

These are assumed to be exempted.

2.Materials used permanently in civil work

These are assumed to be calculated in accordance with the customs tariff in Egypt.

The rates of tariff on major materials are shown below. The amount of tariff is assumed to be calculated by converting the CIF price into Egyptian pounds at the exchange rate of LE 3.35/U.S.dollar.

Rolled steel:	Sections	20%
	Steel pipe	20%
	Other steel pipe	30%
	Steel frame and processed	
	rolled steel	50%
	Bolts and nuts	30%
Glass:	3mm or thinner wire glass	20%
•	3-5 mm	30%
	5mm or thickner	50%
Building flooring:		60%

2) General sales tax

The general sales tax is levied in accordance with the General Sales Tax Law in Egypt and is calculated by multiplying the total of costs of equipment and additional imported dues by 10% for imported equipment

and by multiplying costs of equipment by 10% for local equipment.

3) Price increase

For the escalation case, the construction costs are calculated by taking into account the price increase from 1993 through the construction periods.

The rate of price increase is assumed to be 4% per year for the international purchase. Though the domestic level within Egypt would rise, price increase is to be 5% in U.S.dollar basis for local procurement.

4) Other contingency

To complement the accuracy of construction costs, 5% each for the equipment and the field work is provided.

8.3. Summary Sheet of Construction Cost

The construction costs of the expansion project estimated based on the above premises are shown in Table 8.3-1 for without-escalation case and Table 8.3-2 for with-escalation case.

As shown in these tables, the construction cost of the expansion project is about U.S.\$192 million for without-escalation case and is about U.S.\$212 million for with-escalation case.

Civil and building materials will be basically procured from the local market and the local procurement of the equipment is desired as much as possible at the execution stage so that the expansion project would be competitive.

Table 8.3-1 Summary of Capital Cost Estimation (Without Escalation Case)

Unit: 1000 USD

2,297 10,000 O 8,409 63,445 12,770 192,194 33,598 7,667 38,847 153,347 Eч 35,810 4,571 2,317 3,854 194 2,653 335 10 13,934 8,409 0 0 697 12,770 21,876 Total **,...**] 6,971 58,874 36,502 29,744 O 0 0 16,971 156,384 2,103 8,357 2,044 1,789 139,413 10,000 ш 23,353 3,495 3,730 279 5,422 552 19,858 993 2,502 0 N.A. Н & Building 2,878 10,399 1,260 1,932 2,595 309 2,502 0 376 7,521 Ν.Α. ᆔ Civil 12,954 617 617 0 2,470 4,538 2,133 126 2,827 243 12,337 N.A. ĹĽ 3,726 3,686 3,686 1,832 1,22 1,22 1,22 0,032 0,032 585 585 0 12,281 O 11,696 N.A. ⊱ Installation 138 2,901 2,763 138 O 0 N.A. щ 82,473 3,0823 1,0823 1,46 6,94 0,98 9,380 8,933 744 2 tr tr O O N.A. Ŀı 55,989 25,323 25,701 1,831 5,466 1,732 0 6,090 5,907 12,770 146,560 121,793 24,767 ы Equipment (CIF) 22,510 2,358 183 3,650 5,907 1,110 0 12,770 18,860 N.A. 니 22,631 22,331 24,591 1,831 5,466 1,732 5,907 5,907 O 124,050 118,143 N.A. [24 Contingency Price C Physical G Grand Total Eng. Fees Sales tax Sub-Total Imp. tax Total DRP SMP ROD UT PW TR

Table 8.3-2 Summary of Capital Cost Estimation (With Escalation Case)

Unit: 1000 USD

33,598 2,297 1,010 2,379 1,799 10,000 8,409 12,770 63,445 58,513 153,347 7,667 211,860 19,666 Ę--1 23,874 13,934 1,998 37,808 4,571 2,317 3,854 697 8,409 194 2,653 0 12,770 Total ы 17,668 0 174,052 58,874 8,357 34,639 29,744 2,103 139,413 6,971 0 1,789 10,000 Ĺ. 25,912 19,858 6,054 5, 422 5,522 5,522 2,559 3,730 993 2,502 4,065 N.A. ₽ Civil & Building 11,392 993 376 2,502 3,871 1,260 1,932 2,595 309 7,521 N.A. 니 12,337 2,183 14,520 2,133 126 2,827 243 1,566 617 2,470 N.A. ĹĿ 13,913 3,726 3,686 3,686 1,832 1,822 1,822 0 2,217 1,632 585 5 0 11,696 N.A. ₽ Installation 3,359 596 0 2,763 458 138 N.A. ᆈ 10,554 9 7 9 8 0 7 9 8 0 1,621 2,773 2,823 3,020 8,933 1,174 417 0 N.A. بعا 55,989 25,323 25,701 1,831 5,466 1,732 12,770 5,907 40,242 162,035 6,090 15,475 121,793 N.A. Ę--1 Equipment (CIF) 2,358 19,407 547 183 23,057 1,110 00000 3,650 5,907 2,770 N.A. ټې 53,631 29,141 24,591 5,466 1,732 1,751 14,928 20,835 138,978 5,907 118,143 N.A. (IL Contingency Price C Physical C Grand Total Sales tax Eng. Fees Sub-Total Imp. tax Total DRP SMP ROD UT PW TR

9. PRODUCTION COST AND FINANCIAL ANALYSIS

- 9.1. Caluculation of Production Cost
- 9.1.1. Assumption for costing
- 1) Costing method
- a) Process cost accounting

Process cost accounting is adopted by setting the production processes and auxiliary processes.

Production processes

Direct reduction process(DRP)
Lime calcining process(LCP)
Steelmaking process(SMP)
Bar mill process(BAR)
Rod mill process(ROD)

Auxiliary processes

Electric power
Natural gas
Compressed air
Oxygen and nitrogen gas
In-works transportation
Car repair shop
Analysis and inspection
Maintenance shop

In the process cost accounting, total costs of variable and fix costs incurred in each process are

estimated and are regarded as the production cost of the respective process.

As for the production processes, the production cost of a preceding process is added to the production cost of the following process as its raw material cost. Similar calculations are repeated for the succeeding processes until the production cost of final products is obtained.

b) Distribution of auxiliary process costs

The criteria for distribution of the auxiliary process costs are shown in Table 9.1-1. No mutual distribution is assumed among utility processes.

Table 9.1-1 Criteria for Distribution of Auxiliary Process Costs

Process	Criteria for distribution
Electric power	Distributed in proportion to
	the quantity of services
Natural gas	ditto
Compressed air	ditto
Oxygen and nitrogen gas	ditto
Water	ditto
In-works transportation	ditto
Car repair shop	Distributed to in-works
	transportation only
Analysis and inspection	Equally distributed among
•	all the production processes
Maintenance shop	Distributed in proportion to
-	the acquisition costs of fixed
	assets

c) Variable and fixed costs

Variable and fixed costs for each process are

discriminated in Table 9.1-2.

Table 9.1-2 Discrimination of Variable and Fixed Costs

Description	Discrimination
Variable costs	Raw materials costs, supply costs such as refractories and other manufacturing supplies, by-product costs and utility costs
Fixed costs	Labor costs, depreciation costs, repair costs, and general expenses

2) Estimation basis

a) Exchange rate

The conversion rate to U.S.dollars from other currencies is assumed as follows:

1 U.S.dollar = LE 3.35

1 U.S.dollar = YEN 115.76

1 U.S.dollar = DMK 1.65

Note: The rates at the end of March 1992

b) Price level

Production cost is basically estimated in U.S.dollars based on actual price ANSDK carried out in the latest six months or in 1992 in accordance with the results of discussion with counterparts with the exception of the

capital cost for the expansion facilities described in CHAPTER 8.

The above price is managed with the following assumption in the case with escalation.

(1) Domestic purchase

Escalation is applied with annual rate of 5% until the year of start-up of the expansion project.

(2) International purchase

Escalation is applied with annual rate of 4% until the year for start-up of the expansion project.

3) Raw materials prices

The unit prices of raw materials is set on the basis of actual purchase prices carried out by ANSDK in 1992 and detailed in Table 9.1-3.

Table 9.1-3 List of Raw Materials Prices
Unit: US \$/ton

Item	Price
Imported	
Oxide pellet	43.43
Scrap	130.47
H.B.I.	126.61
Fe-Mn	534.90
Fe-V	12,629.52
Electrode	2,512.44
Fettling materials	319.53
Furnace brick	1,399.24
Ladle brick	1,047.57
Tundish brick	607.18
Domestic	
Limestone	5.91
Burnt lime	22.39
Scrap	118.24
Fe-Si	537.95
Aluminum	1,611.94
Burnt dolomite	72.84
Lump coke and powder coke	95.19

Note 1: Prices of imported goods consist of CIF, import taxes calculated by the following rates and charges, but exclude the general sales tax.

Note 2: Prices of domestic goods consist of CIF and charges, but exclude the general sales tax

Import taxes rate

		· · · · · · · · · · · · · · · · · · ·	
Oxide pellet	5%	Electrode	10%
Scrap	5	Fettling materials	10
H.B.I.	5	Furnace brick	15
Fe-Mn	5	Ladle brick	15
Fe-V	5	Tundish	15

4) Utilities prices

The unit prices of electricity, natural gas and water is set on the basis of the purchase prices in the latest six months obtained from ANSDK as detailed in Table 9.1-4.

Table 9.1-4 Purchase Prices of Utilities
Unit: US\$

Item	Prices
Electricity	0.0205/kWh
Natural gas	0.0773/Nm3
Water	0.0931/m3

Note: All prices exclude the general sales tax.

Natural gas is managed as imported goods.

The unit prices of compressed air and oxygen/nitrogen gas is estimated by taking account of the total cost such as depreciation cost, repair cost, labor cost and other costs related to the plant.

5) Labor cost

The labor costs such as salaries, wages, bonuses, welfare expenses and other expenses related to the employees are set on the basis of actual results carried out by ANSDK in 1992 and classified in Table 9.1-5.

Table 9.1-5 Labor Cost by Class

Unit: US\$/person, year Welfare Payroll Class 18,205 670 Deputy general manager 1,005 13,755 Department manager 832 10,753 Section manager 674 7,863 Assistant section manager 609 5,643 Engineer, asst. engineer and specialist 4,302 855 Foreman, asst. foreman

6) By-products

and worker

The price of return scrap recovered from SMP and RMP is assumed to be equal to the local price of domestic scrap purchased in Egypt.

For the sales of scale, lime fine and other byproducts, the transfer and disposal costs are assumed to be equal to the sales price.

Therefore, the sales amount and transfer and disposal costs are not calculated.

7) Repair costs and special costs

The 3% of the aquisition cost of production and auxiliary plants is assumed to be the annual repair and maintenance cost including repairing materials cost, labor cost and other relative costs.

Regarding the equipment which is in use more than 15 years since start-up, repair and maintenance cost is to be 6% of the acquisition cost, because smooth and

effective operation of such equipment can be maintained for more than 30 years by due and proper maintenance instead of reconstruction.

The general sales tax is calculated by multiplying the said repair and maintenance costs by 10%.

Special repair costs are considered for DRP and LCP.

8) Depreciation

The fixed assets are classified into eight categories and the depreciation is calculated by straight line method with the depreciation period as shown in Table 9.1-6.

The fixed assets depreciated fully are assumed to be managed as follows:

a) The fixed assets except vehicle and tools

Special depreciation for replacement is calculated in accordance with Egyptian Accounting Standards. The rate for such depreciation is 50% of ordinary depreciation rate during a period of use.

b) Vehicle and tools

Vehicle and tools are re-invested every depreciation period.

The existing facilities as fixed assets are calculated in U.S.dollars after conversion to U.S.dollars by exchange rate of 1 U.S.dollar = LE 3.35 in accordance with balance sheet as of December 31, 1992 as shown in Table 9.1-6.

Table 9.1-6 Depreciation Period and Fixed Assets (Existing Facilities)

Unit: US\$

Description	Deprecia- tion period	Acquisition cost	Book value Dec.31,199
Production plant Auxiliary plant Factory building Office building and	15 year 15 33 50	310,784 38,031 156,430 25,520	183,296 22,332 129,701 21,273
company house Vehicle Tool Furniture and office equipment Land	5 4 10	18,440 5,107 3,569 12,123	3,035 197 1,690

9) General expenses

General expenses such as rental fee of mineral jetty, consultant fee, insurance premium and other miscellaneous expenses are estimated.

9.1.2. Production plan

1) Financial projection period

Financial projection covers the period of twenty-three years from the year 1993.

Financial projection year is calendar year basis, that is, from January through December.

2) Production plan

The production plan is shown in Table 9.1-7 for the without expansion case and Table 9.1-8 for the expansion project.

Table 9.1-7 Production Plan for the Without Expansion 1000 t/y

	1993	1994	1995	1996-
DRP DRI	776.4	ħ.977	776.4	776.4
LCP Burnt Lime	41.1	7.1	1.1	ц. 1
SMP Molten Steel Billet (Normal) " (Short length)	1,171.9	1,171.9 1,142.6 2.9	1,171.9	1,171.9 1,142.6 2.9
BAR Bar (Normal) (Short length)	529.4 7.7	5.44.6 8.0	559.9 8.2	559.9 8.2
Rod	7.445	544.7	7. 44S	544.7

Table 9.1-8 Production Plan for the Expansion Project

1000 t/y

	1993	1994	1995	1996	1997	1998-
DRP DRI	1.927	776.4	776.4	776.4	776.4	776.4
LCP Burnt Lime	41.1	41.1	41.1	38.0	64.9	64.9
SMP Molten Steel Billet (Normal) " (Short length)	1,171.9 1,142.6 2.9	1,171.9	1,171.9 1,142.6 2.9	1,038.2	1,585.2 1,545.6 3.9	1,585.2 1,545.6 3.9
BAR Bar (Normal) (Short length)	529.4 7.7	544.6	559.9 8.2	559.9 8.2	559.9	559.9
Rod	544.7	544.7	544.7	456.2	898.2	938.4

9.1.3. Manufacturing costs

Manufacturing costs are calculated in accordance with the financial projection case as shown in Table 9.1-9.

Table 9.1-9 Financial Projection Cases

Case 0-1	Case 0-2	Case 1-1	Case 1-2
Without expansion		With ex	pansion
without escalation Base case	with escalation	without escalation Base case	with escalation

In this section, manufacturing costs are summarized for the year before the expansion and the year of full production after the expansion for the cases without escillation in Table 9.1-10.

For information, output data is attached in APPENDIX 1 for all cases.

Table 9.1-10 Manufacturing Costs by Process (With Expansion, Without Escalation)

Unit: U.S.\$/ton

		e vocana samene comer commence a material de Chief de de	
		1995	1998
DRP	Fixed cost	22.4	22.0
	Variable cost	92.8	93.0
	Total cost	115.2	115.0
LCP	Fixed cost	27.2	16.0
	Variable cost	20.8	21.0
	Total cost	48.0	37.0
SMP	Fixed cost	19.6	19.6
	Variable cost	179.6	181.2
	Total cost	199.2	200.8
BAR	Fixed cost	10.6	10.2
	Variable cost	212.0	214.1
	Total cost	222.6	224.3
ROD	Fixed cost	13.7	12.6
	Variable cost	208.8	211.0
	Total cost	222.5	223.6

9.2. Financial Analysis

9.2.1. Basic policy for financial analysis

In the present financial analysis, the profitability of investments for the expansion facilities is analyzed and evaluated in net effects (profitability after the expansion facilities - profitability in the existing facilities).

The financial analysis of the existing facilities is made in reference to the expansion facilities only. The financial analysis is managed with the following methods:

- 1) Analysis and evaluation with regard to the following financial statements:
 - a) Manufacturing cost sheet
 - b) Profit and loss statement
 - c) Cash flow
 - d) Balance sheet
- 2) Evaluation in effects of total investment and equity with the internal rate of return
- 3) Sensitivity analysis
- 9.2.2. Financial projection case

The financial analysis is made in the financial projection case as shown in Table 9.2-1 and managed with the following conditions:

1) Without escalation case

This is the case that any inflation is not considered and cost calculation and financial projection are made in price level described in CHAPTER 8 CALCULATION OF CONSTRUCTION EXPENSES for construction costs, in price level described in Section 9.1. Calculation of Manufacturing costs for Production Cost and in price level in most recent six months at field survey in March 1993 for sales prices of products.

2) With escalation case

This is the case that inflation is estimated at the price level mentioned in above 1) by the escalation rate as shown in Table 9.2-2 covering a period until the year of start-up of the expansion facilities.

Table 9.2-1 Financial Projection Case

Case 0-1	Case 0-2	Case 1-1	Case 1-2
Without e	expansion	With ex	pansion
without escalation	with escalation	without escalation	with escalation

Table 9.2-2 Escalation Rate (Year rate)

Description	Escalation rate
Domestic cost/expense	5%
Import procurement	4
Product sales price	In the proportion of sales
	in domestic and export

9.2.3. Assumption for financial analysis

In the present financial analysis, the profitability of investments for the expansion facilities is analyzed and evaluated on the basis of construction costs and manufacturing costs already described, taking account of the following assumptions:

1) Financial projection period

Financial projection covers the period of 23 years (20 years after the start-up of the expansion facilities from 1993) and financial projection year is calendar year bases, that is, January to December.

2) Sales price of products

Sales prices of products are assumed as shown in Table 9.2-3.

Table 9.2-3 Sales Price of Products

(Unit: US\$/ton)

	Without escalation	W	ith esc	alatio	on .
Description	Case 0-1	Cas	e 0-2 /	Case	1-2
	/Case 1-1	1993	1994	1995	1996~
Bar	320.1	335.7	351.9	369.0	386.9
Rod	320.1	335.7	351.9	369.0	386.9
Short length bar	291.0	304.5	319.7	335.7	352.6
Billet	258.3	271.2	284.7	299.0	314.0

Note) Billet includes short length billet.

3) Selling expenses

Selling expenses for sales are assumed to be nil because of customers taking over the purchased products at the products stock yard of steelworks.

4) General and administrative expenses

Labor costs, depreciation costs for office buildings and company houses, and other costs associated with the following affairs and departments are estimated as general and administrative expenses:

- a) Top management affairs
- b) External relation dept.
- c) Administration dept.
- d) Finance dept.
- e) Purchasing and transportation dept. except transportation section

- f) Sales dept.
- g) Production control and technical coordination dept. except laboratories and inspection
- h) Construction dept.
- i) Research dept.

And also the consulting costs for the operation of the existing facilities are estimated as general administrative expenses.

5) Corporate income tax

The expansion facilities are assumed to be exempted from corporate income tax for ten years after the subsequent year of the start-up of the expansion facilities under the provision of Investment Law No.230/1989 of Egypt as the existing facilities.

After the tax-exemption period, corporate income tax is estimated by rate of 32% to taxable income in compliance with Corporate Income Tax Law of Egypt.

6) Dividends payable

The amount equal to 9% of year end balance of paid-up capital in the current year is assumed to be distributed in the subsequent year to investors as dividend.

9.2.4. Fund requirement

1) Equipment fund

The payment schedule of the equipment funds described in CHAPTER 8 CALCULATION OF CONSTRUCTION EXPENSES is assumed as shown in Table 9.2-4 and Table 9.2-5.

Table 9.2-4 Payment Schedule of Equipment Fund Case 1-1 (Without escalation)

									Ī					(Unit:	Unit:1000US\$)
Description	Total	1993	1994	1995	1996	1897	1998	1999	2000	2001	2002	2003	2004	2002	2006
Equipment cost	121,793		24,380	78,891	18,442										
Installation cost	11,696			3,891	7,805			•							
Civil & building cost	19,858		5,050	12,783	2,025					•			·		
Engineering fee	10,000		6,391	936	2,673		•								
Contingency	28,847		3,530	10,770	2,414		348	1,471	1,733	1,733	1,733	1,733	1,733	1,386	263
Total	Total 192,194	0	0 39,331 107,371	107,371	33,359	0	348	348 1,471	1,733	1,733	1,733	1,733	1,733	1,386	263

Note: Contingency was allocated by year according to the payment of equipment cost, installation cost, and civil and building cost.

Table 9.2-5 Payment Schedule of Equipment Fund Case 1-2 (With escalation)

					1									(単位:	7:+CS\$)
Description	Tota!	1993	1994	1995	1996	1897	1998	1999	2000	2001	2002	2003	2004	2002	2006
Equipment cost	121,793		24,360	78,991	18,442										
Installation cost	11,696			3,891	7,805			•		-					
Civil & building cost	19,858		5,050	12,784	2,024				••••		1				
Engineering fee	10,000		6,391	936	2,673										
Contingency	48,513		5,823	22,602	6,620		371	1,625	1,924	1,924	1,924	1,924	1,924	1,553	288
Total	Total 211,860	0	0 41,624 119,204	119,204	37,564	0	371	1,625	1,924	1,924	1,924	1,924	1,924	1,553	299
			,					-				***************************************	-		

Note: Contingency was allocated by year according to the payment of equipment cost, installation cost, and civil and building cost.

2) Pre-production cost

The costs and expenses to be incurred in the expansion facilities before the start-up of expansion facilities are estimated as pre-production costs.

The pre-production costs with the payment schedule are shown in Table 9.2-6 and Table 9.2-7.

In this financial projection, only labor costs of fresh employees employed during a period of three months before the start-up of the expansion facilities are estimated as pre-production costs. Training before operation for the expansion facilities is assumed to be unnecessary because of the existing facilities having been operated for more than ten years since the start-up. The pre-production costs are amortized equally during a period of ten years after the start-up of the expansion facilities in account of deferred assets.

Table 9.2-6 Pre-production Cost and Payment Schedule Case 1-1 (Without escalation)

(Unit: 1000US\$)

Description	Total	1993	1994	1995	1996
Labor cost	798	0	0	0	798

Table 9.2-7 Pre-production Cost and Payment Schedule
Case 1-2 (With escalation)

(Unit: 1000US\$)

Description	Total	1993	1994	1995	1996
Labor cost	1,057	0	0	0	1,057

3) Additional working capital fund

The working capital fund yearly increasing before the year 1998 when the normal production of the expansion facilities will be reached is estimated as shown in Table 9.2-8 and Table 9.2-9 in the following assumptions:

a) Cash on hand

Minimum necessary amount for operation after the expansion of facilities is estimated as follows and surplus fund in excess of minimum necessary amount during the year is appropriated for the additional working capital fund in the year:

(Unit: 1000US\$)

Case 1-1 (Without escalation): 12,534

Case 1-2 (With escalation): 14,363

Any surplus fund including surplus fund after making appropriation for the above-mentioned additional working capital fund in projection years is assumed to be made short-term deposits with year interest rate of 3%.

On the other hand, shortage in minimum necessary amount is also assumed to be raised on short-term loans with year interest rate of 5%.

b) Accounts receivable-trade

Collection of sales amount is assumed to be made upon shipment of products.

The resulting accounts receivable-trade are estimated to be nil at the year end.

c) Advances to suppliers

The amount for one month quantity of raw materials and supplies including manufacturing supplies and other repair parts to be consumed in the subsequent year is assumed as year end balance.

d) Raw materials

The quantity for one month to be consumbed in the subsequent year is assumed as year end inventories.

e) Semi-finished products

The quantity for a half month products in the year is assumed as year end inventories.

f) Finished products

The quantity for one month products in the year is assumed as year end inventories.

g) Accounts payable-trade

Payments for purchase of raw materials and supplies including manufacturing supplies and other repair parts are assumed to be made until receipt of goods. The resulting accounts payable-trade are estimated to be nil at the year end.

h) Accounts payable-others

Payments for dividends are assumed to be made in the subsequent year and other transactions are assumed to be made upon cash payments.

Table 9.2-8 Yealy Additional Working Capital Fund Case 1-1 (Without escalation)

(Unit: 1000US\$)

		01170010	000047
Description	1996	1997	1998
Account receivable-trade	0	0	0
Advances to supplies	5,183	-0	0
Inventories: Raw materials	5,506	0	. 0
Semi-finished products	0	354	-345
Finishied products	1,059	5,702	696
Accounts payable-trade	0	0	0
Accounts payable-others	-1,845	-500	-58
Total	9,903	5,556	293
Appropriation of surplus fund	0	0	0
Total of additional working capital	9,903	5,556	293

Table 9.2-9 Yealy Additional Working Capital Fund Case 1-2 (With escalation)

(Unit: 1000US\$)

Description	1996	1997	1998
Account receivable-trade	0	0	0
Advances to supplies	59,89	0	0
Inventories: Raw materials	6,291	0	0
Semi-finished products	0	401	 391
Finishied products	1,074	6,637	800
Accounts payable-trade	0	0	0
Accounts payable-others	-2,088	-583	~33
Total	11,266	6,455	376
Appropriation of surplus fund	0	0	376
Total of additional working capital	11,266	6,455	0

4) Interest during construction period

The interest on long-term debts raised for the expansion facilities during construction period is assumed to be amortized equally during a period of ten years after the start-up of the expansion facilities after appropriation to deferred assets as is the case with preproduction cost. Yearly interest during construction period is estimated as shown in Table 9.2-10.

Table 9.2-10 Yealy Interest during Contruction Period (Unit: 1000US\$)

Description	Total	1993	1994	1995	1996
Case1-1 Without escalation	22,807	0	2,597	11,701	8,509
Case 1-2 With escalation	25,007	0	2,753	12,859	9,395

5) Total investment fund

As a result of estimation based on the assumptions, the total investment fund is shown in Table 9.2-11.

Table 9.2-11 Total Investment Fund

(Unit: 1000US\$)

	Case 1-1	Case 1-2
Description	Without	With
	escalation	escalation
Equipment	192,194	211,860
Pre-production cost	798	1,057
Additional working capital	15,752	17,721
Interest under construction	22,807	25,007
Total	231,551	255,645

9.2.5. Fund raising

1) Capital

As in the case of the existing facilities, 30% of the total investment for the expansion facilities is assumed to be managed with paid-up capital.

The amount of necessary paid-up capital is as follows:

(Unit:1000US\$)

Case 1-1 (Without escalation): 69,471

Case 1-2 (With escalation): 76,693

2) Long-term debts

The balance of the total investment after deduction of paid-up capital is assumed to be managed on long-term loans with terms and conditions as follows:

a) Interest year rate: 9.0%

b) Loan period : 10 years

c) Grace period : 3 years

3) Hedging of foreign currency fluctuation on long-term debts

Though it is difficult to mention to hedging of foreign currencies fluctuation at present stage because of not being decided by currencies on long-term debts, the following hedging (minimizing) is considered in general:

- a) Swapping to stabilized currency in international money market
- b) Forward exchange contract in international foreign exchange market
- c) Direct settlement with foreign currency earned by export of products

The above-mentioned hedging including other method should be examined and reconsidered concretely after making sure of trend in international money market and foreign exchange market and the best hedging should be decided.

4) Schedule of fund demand and raising

Fund demand and raising schedule for the expansion facilities is shown in Table 9.2-12 and Table 9.2-13.

Table 9.2-12 Schedule of Fund Demand and Raising Case 1-1 (Without escalation)

39,331 107,371 2,597 11,701 0 41,928 119,072 13,075 17,909 28,853 101,163	1996 33,359 798 9,303 8,509 8,509 52,569 20,505		1996 1897 1998 33,359 9,903 5,556 293 8,509 52,569 5,556 641 20,505 5,556 641	1996 1897 1998 33,359 348 798 348 9,903 5,556 293 8,509 5,556 641 20,505 5,556 641 32,064 5,556 641	1996 1897 1998 1998 33,359 348 1,471 798 2,556 293 8,509 5,556 641 1,471 20,505 5,556 641 1,471 32,064 5,556 641 1,471	1996 1897 1998 2000 33,359 348 1,471 1,733 798 293 1,471 1,733 8,509 5,556 641 1,471 1,733 20,505 5,556 641 1,471 1,733 32,064 5,556 641 1,471 1,733	1986 1987 1998 2000 2001 33,359 348 1,471 1,733 1,733 798 29,903 5,556 293 8,509 641 1,471 1,733 1,733 20,505 5,556 641 1,471 1,733 1,733 32,064 1,471 1,733 1,733	1986 1987 1998 2000 2001 2002 33,359 348 1,471 1,733 1,733 1,733 798 29,903 5,556 293 1,471 1,733 1,733 1,733 8,509 5,556 641 1,471 1,733 1,733 1,733 20,505 5,556 641 1,471 1,733 1,733 1,733 32,064 1,471 1,733 1,733 1,733	1986 1897 1998 2000 2001 2002 2003 33,359 348 1,471 1,733 1,733 1,733 1,733 9,903 5,556 293 1,471 1,733 1,733 1,733 20,509 5,556 641 1,471 1,733 1,733 1,733 20,505 5,556 641 1,471 1,733 1,733 1,733 20,505 5,556 641 1,471 1,733 1,733 1,733
		5, 556	1997 1998 348 5,556 293 5,556 641 5,556 641	1997 1998 1999 348 1,471 5,556 293 5,556 641 1,471 5,556 641 1,471	1997 1998 2000 348 1,471 1,733 5,556 293 5,556 641 1,471 1,733 5,556 641 1,471 1,733 5,556 641 1,471 1,733	1997 1998 2000 2001 5,556 293 1,471 1,733 1,733 5,556 641 1,471 1,733 1,733 5,556 641 1,471 1,733 1,733 5,556 641 1,471 1,733 1,733	1997 1998 2000 2001 2002 348 1,471 1,733 1,733 1,733 5,556 293 1,471 1,733 1,733 1,733 5,556 641 1,471 1,733 1,733 1,733 5,556 641 1,471 1,733 1,733 1,733	1897 1998 2000 2001 2002 2003 5,556 293 1,471 1,733 1,733 1,733 1,733 5,556 641 1,471 1,733 1,733 1,733 1,733 5,556 641 1,471 1,733 1,733 1,733 1,733 5,556 641 1,471 1,733 1,733 1,733 1,733	1997 1998 2000 2001 2002 2003 2004 20 5,556 293 1,471 1,733 1,733 1,733 1,733 1,733 1,733 1,733 5,556 641 1,471 1,733 1,733 1,733 1,733 1,733 1,733 1,733 5,556 641 1,471 1,733 1,733 1,733 1,733 1,733 1,733

Table 9.2-13 Schedule of Fund Demand and Raising Case 1-2 (With escalation)

				,	,		3000	(11011)						(Unit	(Unit: 1000US\$)
Description	Total	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2008
Demand:															
Equipment	211,860		41,624	119,204	37,564		371	1,625	1,924	1,924	1,924	1,924	1,924	1,553	299
Pre-production cost	1,057				1,057										
Additional working	17,721				11,266	6,455									
capital Interest under	25,007		2,753	12,859	9,385										
Computation Demand total	255,645	0	44,377	132,063	59, 282	6,455	371	1,625	1,924	1.924	1.924	1.924	1,924	1,553	299
Raising:						~ -									
Capital	76,693		13,787	19,779	23,204	6,455	371	1,625	1,924	1,924	1,924	1,924	1,924	1,553	286
Long-term loan	178,952		30,590	112,284	36,078										
Raising total	255,645	0	44,377	132,063	59, 282	6,455	371	1,625	1,924	1,924	1,924	1,924	1,924	1,553	266