Fluvaquents and is divided into seven(7) sub-series by reaction, organic materials, variant etc. They are deep soils and are characterized by a very dark gray, clay or clay loam A horizon overlying a gray or light gray clay C horizon. The lithologic discontinuity reaction is strongly acid.

9) Tak Bai series : Ta

The Tak Bai series is fine loamy, mixed, acid, isohyperthermic. Typic Tropaquepts. They are deep soils and characterized by a light gray silty clay loam or clay loam cambric B horizon. Brownish mottles occur throughout the profile, red mottles may occur in the deeper subsoil at depth approximately below 80 cm from the soil surface. Reaction is medium to very strongly acid.

10) Thon Sai series: Ts

The Thon Sai series is fine loamy, mixed, acid, isohyperthermic, Sulfic tropic Fluvaquents and is divided into three(3) sub-series by variant. They are deep soils and are characterized by a dark brown, dark grayish brown or very dark grayish brown A horizon overlying a strongly acid to very strongly acid over medium to strongly acid.

Table E-2 Description of soil map unit in development zone (1)

Mapping unit	Symbols	Description
1.	Ba-ly/a2	Bang Nara loamy, pH 4.5-4.9
5.	Cb-ly/al	Chon Buri loamy, pH 5.0-5.5
7.	Cyi-ly/a3	Chain Yai loamy, pH 4.0-4.4 fibrist, pH 4.0-4.4
9.	Cyi-o. sub-ly/a3	Chain yai organic substratum variant, loamy, pH 4.0-4.4
10.	Cyi-r. sub-ly/a4	Chain yai riverine substratum variant. loamy, pH <4.0
11.	Cyi & Mu-ly/a4	Chain yai and Muno complex, lomay, pH <4.0
13.	Kd-oi/a2	Kab Daeng fibrist, pH 4.5-4.9
14.	Kd-oi/a3	Kab Daeng fibrist, pH 4.0-4.4
15.	Kd-oi/a4	Kab Daeng fibrist, pH <4.0
16.	Kd-str-oe, ly/a2	Kab Daeng stratified, hemist, and Kab Daeng loamy, complex, pH 4.5-4.9
19.	Mu-ly/a4	Muno loamy, pH <4.0
20.	Nw-oi/d1, m, a2	Narathiwat fibrist, OM>100-150cm over marine clay substratum, pH 4.5-4.9
21.	Nw-oi/d2, m, a2	Narathiwat fibrist, OM>150-200cm over marine clay substratum, pH 4.5-4.9
22.	Nw-oi/d1&d2, m, a3	Narathiwat fibrist, OM>100-150cm and OM>150-200cm complex, over marine clay substratum, pH 4.3-4.4 substratum, pH 4.0
24.	Nw-oi/d3, m. a2	Narathiwat fibrist, OM>200-300cm over marine clay substratum, pH 4.5-4.9
25.	Nw-oi/d3, m, a1&a2	Narathiwat fibrist, OM>200-300cm over marine clay substratum, pH 5.0-5.5 and pH 4.5-4.9 complex

Table E-2 Description of soil map unit in development zone (2)

Mapping unit	Symbols	Description
26.	Nw-mk-oi/bs, a4	Narathiwat moderately thick variant, fibrist, over marine sand substratum, pH <4.0
30.	Pti-ly/al	Pattani loamy, pH 5.0-5.5
33,	Ra-ly/a2	Rangae loamy, pH 4.5-4.9
34.	Ra-1y/a3	Rangae loamy, pH 4.0-4.4
35.	Ra-m. sub-ly/a2	Rangae marine clay substratum,
		loamy, pH 4.5-4.9
36.	Ra-o-oi/a3	Rangae organic surface variant,
		fibrist, pH 4.0-4.4
37.	Ra-o, sub-ly/a2	Rangae organic surface variant,
		loamy, pH 4.5-4.9
38.	Ra-ly & Kd-oi/a3	Rangae loamy and Kab Daeng
		fibrist complex, pH 4.0-4.4
40.	Ta-ly/a2	Tak Bai loamy, pH 4.5-4.9
49	Ts-ly/a3	Thon Sai loamy, pH 4.0-4.4
51	Ts-o-oe/a3	Thon Sai organic surface variant, hemist, pH 4.0-4.4

Remarks: By referring the data of DLD semi-detailed soil map of Narathiwat Province 1:25,000(1985)

a1; pH5. 5-5. 0, a2; pH4. 9-4. 5, a3; pH4. 4-4. 0, a4; pH4. 0>

dl;peat depth 100-150cm, d2;peat depth 150-200cm, d3;peat depth 200cm<

Oi; peat is fibrist, mk; peat layer is moderately thick,

m;marine clay. bs;beach sand, ly;loamy.

Table B-3-1 Physical property of soil in the study area

Series name	Groundwater table(cm)	Drainage	Permeability	Flooding frequency
				Troquency
Bangnara	150	poor	slow	yearly
Chon Buri	150	poor	moderate	yearly
Chian Yai	75	very poor	slow	yearly
Kab Daeng	50	very poor	slow	yearly
Munoh	75	poor	moderate	yearly
Narathiwat	50	very poor	slow	yearly
Pattani	20	poor	slow	yearly
Rangae	100	very poor	slow	yearly
Tak Bai	30	poor	slow	yearly
⊁ Thon Sai	100	very poor	slow	yearly

Remarks

Source:Soil Information System by Mr. Taweesak Vieansilp and staff. Soil survey and classification Division DLD(1991).

* mark: This series occupy in F/S area.

Permeability; high

>15cm/hour

moderate

0.5-15cm/hour

slow

<0.5cm/hour

Table E-3-2 Bulk density of soil samples in Narathiwat, Thailand.

	Bulk density	Nater content by drv soil #
Bacho 2 1 0- 20 cm	0.13	556
2 0- 20	0.13	\$\$6
3 20- 40	0.13	690
2 20- 40	0.11	802
2 10- 60	0.11	53
6 10- 60	0, 10	878
7 60- 80	0. 11	815
5 60- 30	0.09	989
9 00-100	0. 12	356
10 30-100	0, 13	778
Bacho 10 1 0- 20 cm	0.19	406
2 0~ 20	0.21	399
3 20- 40	0. 12	750
4 20- 40	0.13	702
5 40- 60	0.09	998
6 10- 60	0.10	909
7 60 - 80	0.11	881
8 60- 80	0.12	303
9 80-100	C. 03	1140
10 80-100	0.10	973
Runoh Settlement	* - *** *	:
Shallow peat 1 0-15 cm	0.40	450
2 6-15	0.45	532
Hunoh Settlement		
Deep deat 1 0-15 cm	0.31	1050
2 0-15	0.31	1210

Sources: Kyuma et al. 1992. Coastal lowland ecosystems in southern Thailand and Malaysia

Table E-3-3 Soil texture of soil series in development area(1)

Series		horizon		Particle-size		Soil texture
name	No.	cm cm	Sand	Silt	Clay	
Bangnara	1.	0 ~ 15	33. 0	42. 0	25. 0	Light Clay
	2.	$15 \sim 24$	40.0	28. 0	32.0	Light Clay
	3,	24 ~ 55	33.0	29, 0	38. 0	Light Clay
	4.	55 ~ 85	34.0	26, 0	40.0	Light Clay
	5.	85 ~ 100	44. 0	24. 0	32.0	Light Clay
Chon Buri	1.	0 ~ 17	65. 0	28. 0	7. 0	Sandy Loam
	2.	17 ~ 32	68. 0	26, 0	6.0	Sandy Loam
	3.	32 ~ 62	62.0	20.0	18.0	Sandy Clay Loam
•	4.	62 ~ 85	53.0	23. 0	24.0	Clay Loam
	5.	85 ~ 100	51.0	26, 0	23, 0	Clay Loam
	6.	100 ~ 150	54.0	22. 0	24. 0	Clay loam
Chian Yai	1.	0 ~ 11	54. 0	39. 0	7.0	Loam
	2.	11 ~ 41	2. 4	47. 0	50.6	Heavy Clay
	3.	41 ~ 60	8.5	46. 6	44. 9	Silty Clay
	4.	$60 \sim 100$	27. 1	18. 5	54.4	Heavy Clay
	5.	100 ~ 140	79. 6	18, 9	1.5	Sandy Loam
Munoh	1.	$0 \sim 18$	10. 4	75, 4	14. 2	Silt Loam
	2.	18 ~ 37	28. 5	38, 7	32.8	Light Clay
	3.	$37 \sim 63$	24.7	33. 2	42. 1	Light Clay
	4.	63 ~ 80	21.7	37, 2	41. 1	Light Clay
	5.	80 ~110	20, 8	52. 3	26. 9	Silty Clay
	6.	110 ~150	31.7	43. 0	25. 3	Light Clay
Pattani	1.	0 ~ 9	22, 2	45. 2	32.6	Silty Clay
•	2.	9 ~ 16	13. 2	59, 2	27, 6	Silty Clay
	3.	$16 \sim 27$	75. 4	16. 3	8.3	Sandy Loam
	4.	27 ~ 47	93. 6	5. 4	1.0	Loamy Sand
	5.	47 ~ 68	84. 0	14.5	1, 5	Sandy Loam
	6.	68 ~ 90	12. 2	62.3	25, 5	Silty Clay
	7.	90 ~110	94.8	4.2	1.0	Sand

Table E-3-3 Soil texture of soil series in development area(2)

Series		horizon	Pa	rticle-size	· ·	Soil texture
name	No.	cm cm	Sand	Silt	Clay	
Rangae	1.	$0 \sim 10$	26. 0	27, 5	46. 5	Heavy Clay
	2.	10 ~ 25	25. 5	26. 0	48.5	Heavy Clay
	3.	25 ~ 62	1. 2	11.3	87.5	Heavy Clay
	4.	62 ~ t	29. 6	9.4	61.0	Heavy Clay
Tak Bai	1.	$0 \sim 19$	13. 0	65 . 0	22. 0	Silty Clay Loam
	2.	19 ~ 63	11.0	58. 0	31.0	Silty Clay
	3.	63 ~ 90	23. 0	38. 5	38, 5	Light Clay
Thon Sai	1.	$0 \sim 13$	46.8	32. 7	20.5	Clay Loam
	2.	$13 \sim 32$	38, 8	33, 7	27.5	Light Clay
	3.	32 ~100	46. 4	32. 1	21, 5	Clay Loam

Remarks

Source: Writed out from data of soil series in Thailand Sand: 2-0.05mm, Silt: 0.05-0.02mm, Clay: <0.002mm

Table E-4-1 Physical and chemical properties of the Histosols in Thailand.

Properties	Organic soil material	Underlying material		
		sandy	loamy or clayey	
	245 1 107		nd	
%moisture at saturation	245 - 1,107	nd	nd = d	
Hydr.conduc. (cm/sec)	0.001 - 0.032	nd	nd 	
Bulk density (gm/cc)	0.10 - 0.32	nd	nd 	
loss on ignition (%)	85 - 99	nd	nd	
pH 1:1 H ₂ O	3.4 - 4.4	4.6 – 5.8	2.7 – 4.6	
1:1 KCl ₂	2.3 - 3.4	3.6 – 4.6	2.7 - 4.4	
1:1 CaCl ₂	2.8 - 3.8	3.9 – 4.8	2.6 – 3.6	
Organic carbon (%)	24 - 80.0	0.3 - 1.0	0.9 – 8.6	
Nitrogen (%)	0.7 - 1.9	0.01 - 0.1	0.1 - 0.3	
CEC (me/100g soil)	66 – 192	2.1 - 4.1	13.7 - 23.2	
Exchangeable cations				
Ca (me/100g soil)	0.9 - 10.8	0.1 - 1.0	0.4 - 1.0	
Mg (" ")	0.6 - 6.7	0.1 - 0.9	0.6 - 2.7	
Na (" ")	0.3 - 3.4	0.2 - 0.9	0.3 - 0.9	
K("")	0.1 - 0.9	< 0.1	0.1 - 0.2	
Base saturation (%)			• •	
by CEC	2 – 15	18 - 70	6 - 12	
by Sum of cations	2 – 12	10 - 22	3 - 16	
Bray II-P (ppm)	18 - 94	7 – 23	9 - 31	
Al (N-KCl soluble,				
me/100 g soil)	0.4 - 9.9	0.2 - 2.1	2.3 - 7.5	
Free Fe (%)	0.1 - 0.8	< 0.1	0.1 - 0.4	
DTPA (extractable)				
Cu (ppm)	0.1 - 0.3	nd -	лd	
Zn (ppm)	0.1 - 2.0	nd	nd	
Fe (ppm)	260 – 386	nd	nd	

Sources: Kyuma et al. 1992. Coastal lowland ecosystems in southern Thailand and Malaysia

Table E-4-2 Chemical analysis of Narathiwat series.

Characteristics	: .	D	epth (cm)
Characteristics	0-10	10-30	30-50	50-100
pH (1:1 H ₂ O)	3.4	3.4	3.5	3.8
EC (dSm ⁻¹)	0.64	0.41	0.24	0.31
OM (%)	70.61	76.44	90.02	92.40
OC (%)	40.96	44.34	52.21	53.60
Total N (%)	1.23	0.86	0.87	0.80
CEC (me/100 g soil)	132.18	138.79	128.63	113.37
Exch.Ca (mc/100 g soil)	3.00	2.77	0.26	0.36
Exch.Mg (me/100 g soil	7.39	5.94	5.25	6.01
Exch.Na (me/100 g soil)	1.15	1.07	1.46	1.12
Exch.K (me/100 g soil)	0.64	0.30	0.21	0.20
Ext.Al3+ (me/100 g soil)	1.86	0.86	0.43	0.45
Active Fe (%)	0.18	0.07	0.03	0.03
Soluble Cl (me/L)	1.47	1.96	0.98	0.98
Soluble SO_4^{2-} (me/L)	1.33	1.40	1.01	1.09
Extr.S (ppm)	305	399	260	167

Sources: Kyuma et al. 1992. Coastal lowland ecosystems in southern Thailand and Malaysia

Table E-4-3 Chemical analysis of Munoh series.

Characteristics		Dep	th (cm)	
3	0-10	10-30	30-50	50-100
pH (1:1 H ₂ O)	3.8	3.6	3.7	2.5
EC (dSm ⁻¹)	0.82	0.38	0.48	10.10
OM (%)	22.65	7.42	4.69	3.04
OC (%)	13.14	4.30	2.72	1.76
Total N (%)	0.53	0.05	0.11	0.09
CEC (me/100 g soil)	25.93	9.66	14.24	8.39
Exch.Ca (me/100 g soil)	1.68	0.45	0.17	0.26
Exch.Mg (me/100 g soil)	0.15	0.12	0.20	1.38
Exch.Na (me/100 g soil)	0.31	0.17	0.20	0.05
Exch.K (me/100 g soil)	0.16	0.07	0.10	0.03
Ext.Al $^{3+}$ (mc/100 g soil)	3.42	5.11	7.21	24.60
Active Fe (%)	0.46	0.11	0.15	0.98
Soluble Cl (me/L)	2.45	0.49	0.98	4.89
Soluble SO ₄ (me/L)	4.02	3.47	4.49	380.31
Extr.S (ppm)	460	118	281	3191

Sources: Kyuma et al. 1992. Coastal lowland ecosystems in southern Thailand and Malaysia

Table E-4-4 The variation of sabsidence in the peat soil(surface:cm)

Location Year →	Year →	1983	1984	1985	1986	1987	1988	1989	1990	1991	sinking per year
Bacho	_	0	0	0	<u>ئ</u>	-12	-14	-16	-54	- 53	-
	¢3	7	0	-13	7-	-11	_ ဌ	-11	-13	-16	2
	က	ဇၣ	0	-	7	-18	-26	-36	-39	-39	വ
	7	က	82	2	က	-31	-31	-33	-38	-39	ம
	ഹ	ဌာ	0	0	-2	-11	တ္	-12	-19	-18	2
	ave.	2 7	4	· -	-2	-17	119	-22	-83	-33	4
		2	က်	0	ī	9	ි . ග	∞	<u>م</u>	ស	Ι.
To Daeng	2	ကု	ကု	-11	i	-10	-1	-17	9-	ნ-	
	က	- 3	14		ı	9	φ.	6-	င်	83	0
-	₹"	ကို	0	-28	1	-19	-19	(82)	(6)	(82)	ı
	വ	် မှာ -	0	12	ŀ	ı	36	9	ល	2	0
	ave.	2	63	9		7	23	င္မာ		င္-	0
		7-	0	-4	-13	-33	-35	-33	-35	-34	7-
Kab Daeng	50 C1	(-75)	0	Ţ	ဇှ	9-	ကု	φ	-10		1
	ave.	-5	0	င္ပ	φ,	-20	-18	-21	-21	-23	က

Remarks : Source; Making from the data of Pigoolthong Development Study Centre in Thailand ()mark is no calculation

Table B-4-5 Pyrite content and acidity of soil in Narathiwat Province

Code	Pyrite (%)	Total S	pH (H ₂ 0)	pH (1n NaCl		Actual Acidity on)(me/100g)	Acidty
Phikul thong	2. 42	2, 00	4. 90	3, 55	1. 90	4. 36	51, 71
Plot 1	3, 34	2.28	5.05	4.60	1.80	1.61	90. 30
2	2. 38	1. 75	6. 20	5, 90	2, 20	0	60. 68
3	3, 36	2, 33	4. 70	4, 15	1. 85	2. 74	77, 81
4	3, 93	2. 80	4. 30	3, 95	1. 95	2. 42	80, 26
5	3. 61	2, 50	5, 60	4. 40	1. 90	2. 10	89. 10
6	3. 43	2, 43	4, 10	3, 70	1. 85	5, 16	90. 65
Kalugo	1.64	1. 41	4. 20	3. 60	1, 95	4, 52	96. 62

Remarks: source is data analyzed by Pikulthong center(1992).

Table B-6 Soil profile in Bacho F/S area (1)

Pit BC-1

Ban:Nikomsahakorn Bacho, Tambon:Khok Khain, Amophoe:Muang, Changwat:Narathiwat
Physiography:Swampy, Parent Material:Organic soil material
Natural Vegetation or Land Use:Melaleuca Leucadendron, fern, grasses
Soil Series:Narathiwat series, Ground Water Depth:60cm

Horizon	Depth(cm)	Horizon Description
0i1	0- 30	Black(10YR 2/1) fibric material; massive structure; many charcoal fragment, extremely acid(field pH <4.5)
0i2	30- 60	Black(10YR 2/1) fibric material; massive structure; extremly acid (field pH <4.5)
0i3	60-110	Black(10YR 2/1) fibric material; massive structure; very coarse fibric material; extremely acid(field pH <4.5)
Cg1	110-130	Grayish yellow brown(10YR 5/2)silt loam, massive structure; slightly sticky, slightly plastic; extremely acid (field pH <4.5)
Cg2 (Bh)	130 1	Dark brown(10YR 3/3) loamy sand; massive structure; non sticky, non plastic; strongly acid(field pH 5.5)

Table E-6 Soil profile in Bacho F/S area (2)

Pit BC-2

Ban:Nikomsahakorn Bacho, Tambon:Khok Khain, Amophoe:Muang, Changwat:Narathiwat Physiography:Swampy, Parent Material:Organic soil material Natural Vegetation or Land Use: Fern, grasses and Melaleuca Leucadendron, Soil Series:Narathiwat series, Ground Water Depth:150cm

Horizon	Depth(cm)	Horizon Description
0i1	0- 30	Black(7.5YR 2/1) fibric material; massive structure; man y fine and medium of fern roots; very strongly acid(field pH 4.5).
0i2	30-60	Black(7.5YR 2/1) fibric material; massive structure; som e root rot; very strongly acid(field pH 4.5).
0i3	60-90	Black(10YR 2/1) fibric material; some root rot; very strongly acid(field pH 4.5).
0i4	90-190	Black(10YR 2/1) fibric material; very coarse fibric material; massive structure; strongly acid(field pH 5.5).
Cg	190+	Grayish yellow brown(10YR 5/2) silt loam; massive struct ure; slightly sticky; strongly acid(field pH 5.5).

Table E-6 Soil profile in Bacho F/S area (3)

Pit BC-3

Ban:Nikomsahakorn Bacho, Tambon:Kaluwonue, Amophoe:Muang, Changwat:Narathiwat Physiography:Swampy, Parent Material:Organic soil material

Natural Vegetation or Land Use: Melaleuca Leucadendron.

Soil series: Narathiwat series, Groun

Ground Water Depth: 50cm

Horizon	Depth(cm)	Horizon Description
Oil	0- 30	Black(10YR 2/1) fibric material; massive structure; very srtongly acid(field pH 4.5).
0e	30-55	Black(10YR 2/1) hemic material; massive structure; extremely acid(field pH <4.5).
Cgl	55-85	Olive black(5Y 3/2) loam; massive structure; slightly st icky slightly plastic; extremely acid(field pH <4.5).
Cg2 (Bh1)	85-110	Grayish yellow brown(10YR 4/2) sandy loam; massive structure; non sticky, non plastic; extremely acid (field pH <4.5).
Cg3 (Bh2)	110-150	Dark brown(10YR 3/3) sandy clay loam; massive structure; slightly sticky, slightly plastic; strongly acid(field pH 5.5).

Table B-6 Soil profile in Bacho F/S area (4)

Pit BC-4

Ban:Nikomsahakorn Bacho, Tambon:Khok Khain. Amophoe:Muang, Changwat:Narathiwat Physiography:Swampy, Parent Material:Organic soil material Natural Vegetation or Land Use: Melaleuca Leucadendron, fern, grasses, reed Soil Series:Narathiwat series, Ground Water Depth: 50cm

Horizon	Depth(cm)	Horizon Description
0i1	. 0- 30	Black(10YR 2/1) fibric material; massive structure, comm on fern and grasses root; extremely acid (field pH<4.5)
0i2	30- 70	Black(10YR 2/1) fibric material; massive structure; many coarse and medium melaleuca roots; extremely acid (field pH<4.5)
Cg1	70-100	Olive black(5Y 3/2) silt loam; massive structure; strong ly acid (field pH5.5)
Cg2 (Bh)	100-130	Grayish yellow brown(10YR 4/2) loamy sand; massive structure, medium acid (field pH6.0)

Table E-6 Soil profile in Bacho F/S area (5)

Pit BC-5

Ban:Nikomsahakorn Bacho, Tambon:Kaluwonue, Amophoe:Muang, Changwat:Narathiwat
Physiography:Swampy, Parent Material:Organic soil material
Natural Vegetation or Land Use: Melaleuca Leucadendron, fern, grasses
Soil Series:Narathiwat series, Ground Water Depth:150cm

Horizon	Depth(cm)	Horizon Description
0e	0- 25	Black(7.5YR 2/1) hemic material; massive structure; extremely acid (field pH<4.5).
Cg1	25- 45	Yellowish brown(10YR 5/6) and dull yellow orange(10YR 7/2) sand; massive structure; non sticky, non plastic; strongly acid (field pH5.5).
Cg2	45- 70	Brownish black(10YR 3/1) loamy sand; massive structure; non sticky, non plastic; strongly acid (field pH 5.5).
Cg3	70-100	Brownish gray(10YR 5/1) loamy sand; massive structure; non sticky, non plastic; medium acid (pH6.0).
Cg4	100+	Dull yellow orange(10YR 7/2) loamy sand; many medium dis tinct bright yellowish brown(10YR 6/8) mottles; massive structure; non sticky, non plastic; medium acid (field pH6.0).
·		

Table B-6 Soil profile in Bacho F/S area (6)

Pit BC-6 (Pikulthong oil palm experiment field)

Ban: Nikomsahakorn Bacho, Tambon: Kaluwonue, Amophoe: Muang, Changwat: Narathiwat

Physiography: Swampy, Parent Material: Organic soil material

Natural Vegetation or Land Use: Oil palm, fern, grasses

Soil Series: Narathiwat series. Ground Water Depth: 90cm

Horizon	Depth(cm)	Horizon Description
011	0- 35	Black(10YR 2/1) fibric material; massive structure; many fine and medium of ferns and grasses root; extremely acid (field pH<4.5).
0e	35- 75	Black(10YR 2/1) hemic material; massive structure; some large root and very large root; extremely acid (field pH <4.5).
0i2	75+	Black(10YR 2/1) fibric material; massive structure; many large and very large root; very strongly acid(field pH 4.5)
· .		

Table E-6 Soil profile in Bacho F/S area (7)

Pit BC-7

Ban: Nikomsahakorn Bacho, Tambon: Kaluwonue, Amophoe: Muang, Changwat: Narathiwat

Physiography: Swampy, Parent Material: Organic soil material

Natural Vegetation or Land Use: Fern, reed, grasses, Melaleuca Leucadendron.

Soil Series: Narathiwat series,

Ground Water Depth:130cm

Horizon	Depth(cm)	Horizon Description
0e	0- 2/10	Black(10YR 2/1) hemic material; massive structure; extre mely acid (field pH<4.5).
Cg1	2/10-18/20	Dark brown(10YR 3/3) loamy sand; massive structure; non sticky, non plastic; extremely acid (field pH<4.5).
Cg2	18/20-35/40	Dark brown(10YR 3/3) and dull yellow orange(10YR 7/2) lo amy sand; massive structure; non sticky, non plastic; ex tremely acid (field pH<4.5).
Cg3	35/40-60	Brownish black(10YR 3/2) and brown(10YR 4/6) loamy sand; massive structure; non sticky, non plastic; slightly aci d (field pH6.5)
Cg4	60-90	Light gray(10YR 8/1) sand; massive structure; non sticky non plastic; strongly acid (field pH5.5).
Cg5	90-130	Dull yellow orange(10YR 7/2) and bright yellowish brown(10YR 7/6) loamy sand; massive structure, non sticky, non plastic; medium acid (field pH 6.0)
Cg6	130-160	Light gray(10YR 8/1) loamy sand; massive structure, non sticky, non plastic; slightly acid (field pH 6.5)

Table E-6 Soil profile in Bacho F/S area (8)

Pit BC-8

Ban: Nikomsahakorn Bacho, Tambon: Kaluwonue, Amophoe: Muang, Changwat: Narathiwat Physiography: Swampy, Parent Material: Organic soil material

Natural Vegetation or Land Use: Reed. Grasses and Melaleuca Leucadendron,

Soil Series: Narathiwat series, Ground Water Depth: 80cm

Horizon	Depth(cm)	Horizon Description
0e	0- 3/5	Black(10YR 2/1) hemic material; massive structure; extre mely acid (field pH<4.5).
Cgl	3/5-30	Dull yellow orange(10YR 6/3) and light Dull yellow orang e(10YR 7/2) sand; massive structure; non sticky, non pla astic; strongly acid (field pH5.5).
Cg2	30-50	Brownish black(10YR 3/2) to grayish yellow brown(10YR 4/2) loamy sand; common fine brown(7.5YR 4/6)mottles, mass ive structure; non sticky, non plastic; medium acid (fie ld pH6.0).
Cg3	50-140	Grayish yellow brown(10YR 6/2) loamy sand; many medium and coarse bright brown(7.5YR 5/8) mottles; massive structure non sticky, non plastic; strongly acid (field pH 5.5)
Cg4	140+	Light bluish gray(5B 7/1) sand; massive structure; non sticky, non plastic; slightly acid (field pH6.5)
1 market 1 m		

Table B-6 Soil profile in Bacho F/S area (9)

Pit BC-9

Ban: Nikomsahakorn Bacho, Tambon: Kaluwonue, Amophoe: Muang, Changwat: Narathiwat

Physiography: Swampy, Parent Material: Organic soil material

Natural Vegetation or Land Use: Melaleuca Leucadendron.

Soil Series: Narathiwat series,

Ground Water Depth: 80cm,

Horizon	Depth(cm)	Horizon Description
0i1	0- 25	black(10YR 2/1) fibric material; massive structure; one very large root, extremely acid (field pH<4.5).
0i2	25- 55	Black(10YR 2/1) and dull yellowish brown(10YR 4/3)fibric material; massive structure; extremely acid (field pH< 4.5)
Cg1	55-80	Dark grayish yellow(2.5Y 4/2) silt loam; massive structure; slightly sticky, slightly plastic; strong acid(field pH5.5).
Cg2	80+	Brownish gray(10YR 4/1) sand; massive structure; non sticky, non plastic; strongly acid(field pH5.5).

Table E-6 Soil profile in Bacho F/S area (10)

Pit BC-10

Ban:Nikomsahakorn Bacho, Tambon:Kaluwonue, Amophoe:Muang, Changwat:Narathiwat Physiography:Swampy, Parent Material:Organic soil material

Natural Vegetation or Land Use: Melaleuca Leucadendron.

Soil Series: Narathiwat series. Ground Water Depth: 40cm

	•	
Horizon	Depth(cm)	Horizon Description
0i1	0- 20	Black(10YR 2/1) fibric material; massive structure; very coarse fibric material; extremely acid (field pH<4.5).
0i2	20- 40	Black(10YR 2/1) fibric material; massive structure; extremely acid (field pH<4.5).
Cg1	40- 80	Dull yellow orange (10YR 6/3) loamy sand; massive struct ure; non sticky, non plastic; slightly acid (field pH6.5).
Cg2	80-110	Brownish gray(10YR 4/1) loamy sand; massive structure; non sticky, non plastic; slightly acid (field pH6.5)

Table B-6 Soil profile in Bacho F/S area (11)

Pit BC-11

Ban:Nikomsahakorn Bacho, Tambon:Khok Khain, Amophoe:Muang, Changwat:Narathiwat

Physiography: Swampy, Parent Material: Organic soil material

Natural Vegetation or Land Use: Melaleuca Leucadendron. Test field

Soil Series: Narathiwat series, Ground Water Depth: 150cm

	·	
llorizon	Depth(cm)	Horizon Description
0 i	0- 25	Black(7.5YR2/2) fibric material; massive structure; very coarse fibric material; extremely acid (field pH<4.5).
0e	25- 50	Very dark redish brown(5YR 2/3) hemic material ;massive structure; extrmely acid (field pH<4.5).
0 i	50-170	Brownish black (5YR 2/2) fibric material massive struct ure; strongly acid (field pH 5.5).
Cg	170+	Dark brown (10YR 3/4) silt loam; massive structure; slig htly sticky; strongly acid (field pH5.5)

Table E-7 Area of land use in F/S area (ha)

waste land natural forest melaleuca forest pasture paddy field oil palm(DlD field) coconut cashw nut vegetable para-rubber forest	Bacho in so	Kab Daeng area(ha) index(%)	MuNo-Kokn ha 67 9 35 4 128 17 374 52 15 2 15 2	ai index .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .	2 0 0
road canal village	33 0.1	6 1.1 12 2.3 -	10 19 36 5.	4 0 0	19 0.5 64 1.7 36 0.9
other	ı	ı			
Total	2 840	500 100 0			000

Remark: The data surveyed by JICA team at Oct. 1992

Table E-8 Soil profile in Kab Daeng F/S area (1)

Pit KD-1

Ban:Khoh Kraduk mu, Tambon:Prison, Amophoe:Tak Bai, Changwat:Narathiwat, Physiography:Swamy, Parent Material:Organic soil material,

Natural Vegetation or Land Use: Melaleuca Leucadendron, grasses,

Soil series: Kab Daeng series

Ground Water Depth: 40cm

Horizon	Depth (cm)	Horizon Description
0e1	0- 10	Brownish black(10YR 3/1) and dull yellowish brown(10YR 4/3)hemic material; massive structure, many fine grasses road; some soil crack; strongly acid(field pH 5.5).
0e2	10- 30/45	Black(10YR 2/1)hemic material; massive structure; many fine grasses root; some soil crack; very strongly acid(field pH 5.0)
0e3	30/45-50/55	Brownish black(10YR 3/2) and black (10YR 2/1) hemic material; massive structure; some root rot and soil crack; very strongly acid(field pH 5.0).
0e4	50/55-75/80	Black(10YR 2/1)hemic material; massive structure; some ro ot rot; very strongly acid(field pH 5.0).
Cg	75/80+	Dark olive gray(5GY 4/1)silty clay loam;massive structur some root rot; slightly acid(field pH 6.5)

Table E-8 Soil profile in Kab Daeng F/S area (2)

Pit KD-2

Ban: Khoh Kraduk mu, Tambon: Priwan, Amophoe: Tak Bai, Changwat: Narathiwat, Physiography: Swamy, Parent Material: Organic soil material.

Natural Vegetation or Land Use: grasses,

Soil series: Kab Daeng series Ground Water Depth: 160cm

Horizon	Depth(cm)	Horizon Description
0el	0- 15/25	Black(7.5YR 2/1) hemic material; massive structure; very strongly acid(field pH 5.0) (0-4cm many fine grasses root)
0e2	15/25-45/50	Black(10YR 2/1) hemic material; massive structure; some large root; very strongly acid(field pH 5.0)
0e3	45/50-80/90	Brownish black(10YR 3/1) hemic material; massive structure; some very large root; very strong acid(field pH 5.0)
0i1	80/90-160	Brownish black(10YR 3/1) and dark brown(10YR 3/3) fibric material; massive structure; many soft large roots; strong acid(field pH 5.5).
0i2	160-240	Black(7.5YR 2/1) fibric material; massive structure; slightly acid (field pH 6.5)
Cg	240+	Marine clay;massive structure; slightly acid (field pH 6.5) (by augor).

Table E-8 Soil profile in Kab Daeng F/S area (3)

Pit KD-3

Ban:Sapom, Tambon:Kaluwonue,

Amophoe: Muang, Changwat: Narathiwat,

Physiography: Swamy.

Parent Material:Organic soil material,

Natural Vegetation or Land Use:grasses. Melaleuca Leucadendron,

Soil series: Narathiwat series,

Ground Water Depth: 120cm,

Horizon	Depth(cm)	Horizon Description
0e1	0- 5/10	Brownish black(10YR 3/2) hemic material; massive structure; very strongly acid (field pH 5.0).
0e2	5/10-50	Brownish black(2.5Y 3/2) hemic material; massive structure slightly acid (field pH 6.5).
011	50-70/75	Black(10YR 2/1) and brownish black(10YR 3/1)fibric mater ial; massive structure; slightly acid (field pH 6.5).
0i2	70/75-90/100	Black(10YR 2/1) and brownish black(10YR 3/1)fibric mater ial; massive structure; some spot of marine clay; slightly acid (field pH 6.5).
0i3	90/100-120/	Brownish black(10YR 3/1)fibric material; massive structure; some spot of marine clay; slightly acid (field pH 6.5)
Cg	120/140+	Dark greenish gray(5G 4/1) silty clay loam; massive structure; slightly acid (field pH 6.5).
e e		

Table B-8 Soil profile in Kab Daeng F/S area (4)

Pit KD-4

Ban:Sapom, Tambon:Kaluwonue, Amophoe:Muang, Changwat:Narathiwat, Physiography:Swamy, Parent Material:Organic soil material, Natural Vegetation or Land Use:Melaleuca Leucadendron, fern, reed, grasses, Soil series:Narathiwat series, Ground Water Depth: 115cm

Horizon	Depth(cm)	Horizon Description
0el	0-12/20	Black(10YR 2/1) to brownish black (10YR 3/1) hemic mater ial; massive structure; many fine and medium roots; some soil cracks; extremely acid(field pH 4.5>).
0e2	12/20-40/45	Brownish black (10YR 3/1) hemic material; massive struct ure; some root rot; some soil crack; extremely acid (pH 4.5>).
0e3	40/45-80/90	Dark brown(10YR 3/3) and brownish black (10YR 3/1) hemic material; massive structure; some root rot; extremely ac id (field pH 4.5>).
0e4	80/90-110/	Brownish black (10YR 3/1) hemic material; massive struct ure; some root rot; extremely acid (pH 4.5>)
Cg	110/115+	Dark olive gray(5GY 4/1) silty clay loam mixed with some organic soil; slightly acid (field pH 6.5).

Table E-9 Soil profile in MuNo-Koknai(1)

Pit TD-1

Ban:Khok Nai. Tambon:Pron. Amophoe:Tak Bai. Changwat:Narathiwat
Physiography:marginal swamp. Parent Material:Old marine deposite
Natural Vegetation or Land Use:Melaleuca Leucadendron
Soil series:Munoh series Ground Water Depth:100cm

Horizon	Depth (cm)	Horizon Description
Ар	0-15/25	Graynish yellow brown (10YR 5/2) silt loam, common fine Distinct bright reddish brown(7.5YR 5/6) mottle; moderat
		e medium and coarse subangular blockystructure; slightly sticky, slightly plastic; many fine root; very strongly acid (field pH 4.5) abrupt, wary boundary
Bg1	15/25-55	Grayish yellow brown(10YR 4-5/2)silty clay loam, common fine prominent reddish brown(5YR 4/6) mottles; strong very coase subangular blocky structure, slightly sticky, plastic; some roots rot; very strongly acid(field pH 4.5); gradual, smooth boundary
Bg2	55-70/80	Grayish yellow brown(10YR 5/2)silty clay; common medium prominent yellow(2.5Y 8/6)mottle[jarosite]; moderate coarse subang ular blocky stracture; sticy, plastic; many roots rot; some soil crack; very strongly acid (field pH 4.5); abrupt, wany boundary
BCg	70/80-100/11	Dark bluish gray(5BG 4/1)silty clay loam [pyrite]; many medium and coarse prominent yellaw(2.5Y 8/6)[jarosite]; massive structure; slightly sticky, slightly plastic; so me mica flake; very strongly acid (field pH 4.5); gradua 1, wary boundary
Cg	100/110+	Dark bluish gray(5BG 4/1)silty clay loam [pyrite]; no mottle; massive structure; many mica flakes; slightly acid (field pH 6.5) by augor

Table E-9 Soil profile in MuNo-Koknai(2)

Pit TD-2

Ban:Khok Nai, Tambon:Pron, Amophoe:Tak Bai, Changwat:Narathiwat Physiography:marginal swamp, Parent Material:Old marine deposite Natural Vegetation or Land Use:Grasses and reedes Soil series:Munoh series Ground Water Depth:150cm

llor i zon	Depth(cm)	Horizon Description
Ag	0- 12/15	Grayish yellow brown(10YR 5/2) silty clay loam; some mot tlees in root pores, strong coase subangular blocky structure; sticky, plastic; many soil cracks; very strong ac id(field pH 4.5); gradual, smooth boundary.
Bg1	12/15-45	Grayish yellow brown(10YR 5/2) silty clay loam; many med ium distinct dark brown(7.5YR 3/4) to brown(7.5YR 4/4) m ottles; strong coase subangular blocky structure; sticky plastic; many soil cracks; very strong acid(field pH4.5); gradual, smooth boundary.
Bg2	45-60/70	Grayish yellow brown(10YR 5/2) silty clay loam; many med ium distinct dark brown(7.5YR 3/4) to brown(7.5YR 4/4) m ottles; strong coase subangular blocky structure; sticky plastic; many soil cracks; very strong acid(field pH4.5); gradual, smooth boundary.
BCg	60/70-110	Grayish yellow brown(10YR 5/2) silty clay loam; common f ine prominant yellow(2.5Y 8/6)mottles; few fine dark red dish brown(2.5YR 3/6) and bright brown(7.5YR 5/6)mottles; massive structure; slightly sticky, slightly plastic; m any mica flakes; some soil clacks; very strong acid(fie 1d pH 4.5); gradual, smooth boundary.
Cg	110+	Dark bluish gray(5B 4/1) silty clay loam; massive struct ure; many mica flakes, slightly acid(field pH 6.5) by au gar (220cm+ some shell fragment).

Table B-9 Soil profile in MuNo-Koknai(3)

Pit TD-3

Ban:Khok Nai, Tambon:Pron, Amophoe:Tak Bai, Changwat:Narathiwat
Physiography:marginal swamp, Parent Material:Old marine deposite
Natural Vegetation or Land Use:Abandan paddy field, Melaleuca Leucadendron
Soil series:Munoh series Ground Water Depth: 60cm

Horizon	Depth(cm)	Horizon Description
Ap	0- 15/20	Brownish black(10YR 3/1) silty clay loam; strong coase subanglar blocky structure; slightly sticky, slightly plastic; slightly acid(field pH 6.5); abrupt, wary boundary
Bg1	15/20-40	Grayish yellow brown(10YR 6/2) silty clay loam, common fine distinct bright brown(7.5YR 5/8)mottles; strong coase subanglar blocky structure; sticky, plastic; very strongly acid (field pH 4.5); gradual, smooth boundary.
Bg2	40-65	Grayish yellow brown(10YR 6/2) silty clay; common fine d istinct bright yellowish brown(10YR 6/8)mottles; common medium subangular blocky structure; sticky, plastic; ver y strongly acid(field pH 4.5); gradual, smooth boundary.
BCg1	65-90	Grayish yellow brown(10YR 6/2) silty clay loam, common fine distinct bright yellowish brown(10YR 6/8)mottles; massive structure; slightly sticky, slightly plastic; ve ry strongly acid(field pH 4.5); gradual, smooth boundary.
BCg2	90-130	Grayish yellow brown(10YR 5/2) silty clay loam, many med ium prominant yellow (2.5Y 8/6) mottles; massive structure; very strongly acid(field pH 4.5).
Cg	130-200	Dark olive gray(5GY 4/1) silty clay loam; massive struct ure;(by augar).

Table E-9 Soil profile in MuNo-Koknai(4)

Pit TD-4

Ban:Khok It, Tambon:Pron. Amophoe:Tak Bai. Changwat:Narathiwat
Physiography:marginal swamp. Parent Material:Old marine deposite
Natural Vegetation or Land Use:Abandon paddy field, Melaleuca Leucadendron
Soil series:Munoh series Ground Water Depth:150cm

Horizon	Depth(cm)	Horizon Description
Ap	0- 10/13	Very brownish black(10YR 3/2) silt loam; strong coarse s ubangular blocky structure; slightly sticky, slightly plastic; many soil cracks; very strongly acid(field pH 4.5); gradual, smooth boundary.
Bg1	10/13-18/20	Brownish gray(10YR 4/1) and light gray(10YR 7/1) to brown ish gray(10RY 6/1) silty clay loam; common fine distinct bright brown(7.5YR 5/6) mottles; strong coarse subangula r blocky structure; slightly sticky, slightly plastic; some soil cracks; very strongly acid(field pH 4.5); grad ual, smooth boundary.
Bg2	18/20-45	Grayish yellow brown(10YR 5/2) silty clay loam; many med ium distinct bright brown(7.5YR 5/6) mottles; strong coarse subangiar blocky structure; slightly sticky, slightly plastic; some soil cracks; extremely acid(field pH<4.5); gradual, smooth boundary.
Bg3	45-80/90	Grayish yellow brown(10YR 5/2) silty clay loam; many med ium prominent dull reddish brown(5YR 4/4) mottles; moder ate medium subanglar blocky structure; some soil cracks; extremely acid(field pH<4.5); abrupt, some boundary.
BCg	80/90-140	Gray(5Y 6/1) to light gray(5Y 7/1) silty clay loam; comm on medium distinct yellow orange(7.5YR 8/8) and many med ium prominant yellow(2.5Y 8/8) mottles; massive structure; slightly sticky, slightly plastic; very strong acid (
Cg	140-200	field pH 6.5). Greenish gray(5G 5/1) silty clay loam; massive structure; no mottled; some shell fragment; slightly acid (field pH 6.5) by augar.

Table E-9 Soil profile in MuNo-Koknai(5)

Pit TD-5

Ban:Khok Ku Wae

Tambon:Pron.

Amophoe: Tak Bai, Changwat: Narathiwat

Physiography:marginal swamp,

Parent Material:Old marine deposite

Natural Vegetation or Land Use: Abandon paddy field Melaleuca Leucadendron

Soil series:Rangae series

Ground Water Depth:150cm<

Horizon	Depth(cm)	Horizon Description
Ap	0- 10	Brownish black(10YR 3/2) silt loam; massive structure; common fine and medium roots; very strongly acid(field pH 5.0); abrupt smooth boundary.
Bg1	10-30	Dull yellow brown(10YR 6/3) silty clay loam; few fine fa int bright yellowish brown(10YR 6/8)mottles; some soil c racks; strong coarse subangular blocky structure; slight ly sticky slightly plastic some soil cracks; very strong
• .		acid(field pH 4.5); gradual smooth boundary.
Bg2	30-60	Grayish yellow brown(10YR 5/2)silty clay; common fine bright brown(7.5YR 5/6) mottles; strong blocky structure; sticky, plastic; some soil cracks; very strong acid(field pH 4.5); gradual, smooth boundary.
Bg3	60-90	Dark grayish brown(2.5Y 5/2) silty clay loam, common fin e brown(7.5YR 4/4) mottles; moderate coarse subangular blocky structure; sticky, plastic; some soil cracks; com mon mica flakes; very strong acid(field pH 4.5); gradual smooth boundary.
Cg	90-140	Dark olive gray(5GY 4/1) silty clay loam; common medium prominant brown(7.5YR 4/4)mottles occured in root pores; massive structure; slightly sticky slightly plastic; man y mica flacks; slightly acid(field pH 6.5).

Table E-9 Soil profile in MuNo-Koknai(6)

Pit TD-6

Ban:Khok Nai, Tambon:Pron, Amophoe:Tak Bai, Changwat:Narathiwat Physiography:marginal swamp, Parent Material:Old marine deposite Natural Vegetation or Land Use:Melaleuca Leucadendron Soil series:Munoh series Ground Water Depth: 80cm

Horizon	Depth (cm)	Horizon Description
Ар	0-10	Black(10YR 2/1) loam, common fine moderate medium and coarse subangular blocky structure; slightly sticky, slightly plastic; some fine root; very strongly acid (field pH 3.2).
Bg1	10-50	Grayish yellow brown(10YR 5/2)silty clay, strong very coarse subangular blocky structure, slightly sticky, plastic; some roots rot; very strongly acid(field pH 3.4); gradual, smooth boundary
•		
BCg1	50-80	Grayish yellow brown(10YR 5/2)silty clay; common medium prominent yellow(2.5Y 7/8)mottle[jarosite]; moderate coarse subangular blocky stracture; sticky, plastic; many roots rot; some soil crack; very strongly acid (field pH 2.7),
BCg2	80+	Gray(7.5Y 4/1)silty clay [pyrite]; many medium and coarse prominent yellow(2.5Y 7/8)[jarosite]; massive structure, lightly sticky, slightly plastic; some mica flake; very strongly acid(field pH 2.9); gradual, wary boundary.

Table E-9 Soil profile in MuNo-Koknai(7)

Pit TD-7

Ban:Khok Nai, Tambon:Pron, Amophoe:Tak Bai, Changwat:Narathiwat Physiography:marginal swamp. Parent Material:Old marine deposite Natural Vegetation or Land Use:Abandan paddy field, Soil series:Munoh series, Ground Water Depth: 60cm, Leaching test field

Horizon	Depth(cm)	Horizon Description
Ар	0- 23	Brownish black(10YR 3/2) silty clay; strong coarse subangular blocky structure; slightly sticky, slightly plastic; slightly acid(field pH 4.5).
Bg1	23- 55	Grayish yellow brown(10YR 5/2) silty clay, common fine yellowish brown(10YR 5/8)mottles; strong coarse subangul ar blocky structure; sticky, plastic; very strongly acid (field pH 4.5); gradual, smooth boundary.
Bg2	55~ 85	Grayish yellow brown(10YR 5/2) silty clay; common fine d istinct yellowish brown(10YR 5/8)mottles; common medium subangular blocky structure; sticky, plastic; very strongly acid(field pH 4.5); gradual, smooth boundary.
BCg	85†	Dark brown(10YR 3/3) silty clay, common fine distinct yellow(2.5Y 7/8)mottle[jarosite]; massive strucyure; very strongly acid(field pH 4.5); gradual, smooth boundary; some soil clack.

Table E-10 Soil dressing materials

					2				
No. Location	Latitude	Longitude	Geographical position	Soil pH (H ₂ O) (KCI)		BC mS/cm	Presumptive reserves (1,000t)	e Quality	Remarks
1. Ban Ka Yo Ma	N6 32 07	E101 38 48	Mountain foot	5.1	ლ 	0.007	650	Cood	Dig out site
2. Ban Ka Rae	N6 27 21	E101 41 05	Hill(Tertiary chert)	4.6	တ က်	0.013	3, 575	Good	Dig out site
3. Ban Pu Ta	N6 24 06	E101 46 15	Hill(colluvium)	4.6	8	0.015	1, 300	Good	Dig out site
4. Bukepalat	N6 22 53	E101 41 56	Hill (colluvium)	4.3	3.6	0.013	3, 250	Fair	Road site
5. Ban Ya Mu	N6 19 54	E101 43 32	Alluvial plain	4.4	3.6	0.026	15,600	Fair	Dumping ground
6. Ban Tan Young Mug	N6 18 18	B101 43 47	Hill(colluvium)	4.3	8.8	0.020	610	Fair	Upland field
7. Ban Che Mong	N6 13 20	B101 51 09	Hill(colluvium)	5.1	4.0	0.008	7,312	Good	Road site
8. Ban Kawa	N6_02_16	53	Dilluvial upland	4.9	4.0	0.007	65,000	Good	Upland field
9. Sungaikolok	N6 03 54	E102 01 46	Dilluvial upland	ი ი	3.6	0.120	12, 350	Poor	Lateritic soil
10. Ban Se Ta Mat	N6 07 07	£101 55 57	Hill(sand dune)	4.2	4,0	0.023	44,850	Fair	Pond, pasture
11. Ban Ba Ke Ya Mu	N6 31 53	E101 43 36	Mountain foot	4.9	4.1	0.012	1,924	роод	near Bacho
			Total				156, 421		
			Within available				79, 761		

Remark: Survey at Oct. 1992

Cheaper soil dressing materials can be obtained from the near-by swamps, but most of the fertile soils in these areas are used for paddy cultivation or para-rubber production, making it difficult to obtain good soil dressing materials. On the other hand, soil materials found in the dig out sites on the hills surrounding the swamps are unsuitable for soil dressing due to the presence of gravels which are rather appropriate for road construction.

Therefore, we surveyed the upland areas and the foot of mountains in search of appropriate soil dressing materials. The results of the survey is shown in table E-10 and figure E-5. The analysis in the table is based on pH values pending results of the quality analysis of the soil materials.

As seen from the table, the lateritic soil used for making road has a high acidity(<pH4) and is therefore unsuitable as a dressing material. It is observed that in good soils, about 1m depth from surface is suitable for dressing. Past 1 m depth, there are gravels. The potential reserves which are judged good are about 80,000,000 ton and the peat soil in the F/S area cover about 3,200ha. If the soil dressing is 20cm deep, 800 ton are necessary to cover all the area; therefore, the amount of soil dressing is sufficient.

The cost of transportation of soil materials is 400 Baht per 8(eight) ton(average distance 5(five)km). Therefore, the total cost is 4(four) hundred million. Adding up the cost of lime dust for neutralization is necessary. As described above, the improvement by soil dressing is very expensive.

Ideally, the materials of soil dressing should include liming materials such as the Dolomite. Soil dressing is the best way to correct some synthetically related problems found particularly in fibric peat. However, these technics of soil improvement should be applied to intensive agriculture in parts of the development zone, because they are very expensive. On the other hand, lateritic soil found at nearby mountains sites can provide significant improvement on soil dressing but it is necessary to take into account

transportation costs. Before its use as a material, the lateritic nature of the soil should be analyzed. The most available material is sandy soil from sand dune but it is so poor in nutrients and has a loose structure making the mixing with fibric peat unsuitable.

_	į
Ξ	ı
7	Ì
>	ł
핓	ı
8	
· 5	1
ä	1
_	ì
- 53	l
٠š	ı
-	۱
2	
ىە	
The	l
[
	i
_	
-11	ı
E-11	ı
-	ı
ğ	ı
~	ł
F	3
	1

							Table E-31		pnysical	i ne pnysical property -(1.)	11)	
CODE	рертн	HORIZON		USDA Grading	ing	Tex-		Bulk	Moisture Perme-		Corresponding permeability	
NO.	cm.	l	Sand >0.05	Silt 0.05~0.002	Clay 0.002>	ture		Density	Content	ability	classes	Remarks
BC-1-4	110~130	Cg1	13.3	29.9	56.8	HC	•		,	ŀ		1. BC shows that all samples are collected from
BC-1-5	130+	Cg2	90.5	3.5	0.9	LS	,	•	•	ı	ı	Bacho area.
BC-3-3	55~85	Cg1	80.4	12.6	7.0	ST	•	1		Ì		2. Corresppondings Permeability Class
BC-3-4	85~110	Cg2	83.5	5.7	10.8	SL	ŧ	·	,	1	,	Class Hydraulic Conductivity
BC-3-5	110~150	Cg3	80.5	5.8	13.7	SF	•			t		cm/hr
BC-4-3	70~100	Cg1	65.0	12.8	22.2	SCL	r		•	ī		very slow <0.125
BC-4-4	100-130	Cg2	73.1	10.0	16.9	SCL	•	,	•	1		slow 0.125~0.5
BC-5-2	25-45	Cg1		ı	•	,	25~29	0.37	10.1	25.8	very.rapid	moderate slow 0.5~2.0
BC-5-3	45-70	Cg2	95.8	3.2	1.0	S	50~54	0.47	16.7	2.83	moderate	moderate 2.0~6.25
BC-5-4	70~100	Cg3	626	1.6	2.5	S	t		,	1		moderate rapid 6.25~12.5
BC-5-5	100+	Cg4	94.2	4.8	1.0	S				ı.	•	rapid 12.5~25.0
BC-7-2	2/10~18/20	Cg1	93.7	4.3	2.0	S			. 1			very rapid >25.0
BC-7-3	18/20~35/40	Cg2	94.8	3.7	1.5	S	25~29	1.42	1.9	9.53	very.rapid	* If the soil is peat (i.e.O horizon), texture
BC-7-4	35/40~60	Cg3	93.9	4.1	2.0	S	50~54	1.55	13.9	4.91	moderate	could not determined.
BC-7-5	0609	Cg4	80.4	8.6	11.0	ST			,	1		
BC-7-6	90~130	Cg5	97.0	1.9	1.0	S	•	ı		,		
BC-7-7	130~160	Cg6	91.5	2.5	0.9	S			ı	ŀ		
BC-8-2	3/5~30	Cg1	95.7	0.8	3.5	S	10~14	1.53	12.8	1.13	very.slow	
BC-8-3	30~20	Cg2	93.0	4.0	3.0	S	45-49	1.63	18.8	5.35	moderate	
BC-8-4	50~140	Cg3	85.0	1.5	13.5	LS	1		t	ı	1	
BC-8-5	140+	Cg4	89.9	4.7	5.5	LS	ī	ı	ı	•	•	
BC-9-3	55~80	Cg1	54.2	12.3	33.5	Lic	r	1	•			
BC-9-4	\$0 5	Cg2	90.3	6.7	3.0	S	·	ι			•	
BC-10-1	0~50	ő	t		ı		5~6	0.32	185.2	1	moderate	
BC-10-2	20~40	05	,	•	•		25~29	0.21	345.2	27.09	very.rapid	
Remark: [Remark: Determined by DLD	DLD										

E-41

CODE DEPTH											Corresponding	
		HORIZON		USDA Grading	ing	Tex-	Core			erme-	permeability	
			Sand >0.05	Silt 0.05~0.002	Clay 0.002>	ture	Depth	Density	Content	ability	classes	Remarks
KD-1-1 0~10		Oe1	٠,	,	•	ι	9	0.37	46.8	22.65	Rapid	1. KD shows that all samples are collected from
KD-1-2 10-30/45		Oe2		1		t	15~19	0.76	0.06	14.22	Rapid	Kab Daeng area.
KD-1-3 30/45~50/55	-	Oe3		,			50~54	0.43	146.4	13.96	Rapid	
KD-1-4 50/55-75/80		2	r	•	ı	1	60~64	0.42	129.0	ı	many holes(rd)	many holes(rd) 2. Corresppondings Permeability Class
KD-1-5 75/80+		Cg]	,	1		,		•	,	,		Class Hydraulic Conductivity
KD-2-1 0~15/25		0e1	,	1	,	ŧ	10~14	0.36	149.3		many holes(rd)	cm/hr
KD-2-2 15/25~45/50		Oe2	1	• •			35~39	0.23	289.8	51.74	very.rapid	very slow <0.125
KD-2-3 45/50-80/90		Oe3		1	•		. 1				•	slow 0.125~0.5
KD-2-4 80/90-160		Oil	,	•					•	. 1	,	moderate slow 0.5~2.0
KD-2-5 160-240	•	Oi2	٠.		٠.	1	•	t		•	1	moderate 2.0~6.25
KD-3-1 0-5/10		Oe i	1	ŕ		ı	ŧ			•	. 1	moderate rapid 6.25~12.5
KD-3-2 5/10~50		Oe2	,	•			15~19	0.38	149.7		many holes(rd)	rapid 12.5~25.0
KD-3-3 50-70/75		Oil	•	•			55~59	0.23	311.2	19.85	Rapid	very rapid >25.0
KD-3-4 70/75-90/100		Oi2	1	•		•	ı	•	•	i	•	* If the soil is peat (i.e.O horizon), texture
KD-3-5 90/100~120/140		Oi3		. •		t	•		1	1	,	could not determined.
KD-3-6 35/40-60		SS		•	•	. •	,	1		ı	•	
KD-4-1 0-12/20		Oe1	,	ı			6-10	0.45	119.3	i	many holes(rd)	
KD-4-2 12/20-40/45		Oe2		•	•		35~39	0.19	328.9	71.56	very.rapid	
KD-4-3 40/45-80/90		Oe3		,	,		70~74	0.39	156.8	•	many holes(rd)	
KD-4-4 80/90-110/115		250	•				•	•	,	•	. •	
KD-4-5 110/115+		Cg	·	•	•	1	1		•	1		

Remark: Determined by DLD

(3)
>
ب
prorecty
≒
ĭ
Ω
~
ి స
٠ž
>
굗
4
The Physical
드
_
7
⇁
Cable E-11
o)
四
त्त
_

		ected from		SS	tivity					-						texture												
	Remarks	samples are coll	, zi	Permeability Cla	Hydraulic Conductivity		, w	<0.125	0.125-0.5	0.5~2.0	2.0-6.25	6.25~12.5	12.5~25.0	>25.0		t (i.e.O horizon),	ined.											
	K	1. TD shows that all samples are collected from	Muno-Koknai area	2. Corresppondings Permeability Class	Class H			very slow	slow	moderate slow	moderate	moderate rapid	rapid	very rapid		* If the soil is peat (i.e.O horizon), texture	could not determined											
Corresponding	permeability classes	moderate	mod.rapid	moderate	, ,	. 1	modslow	very.rapid	mod.rapid	. •	t.	moderate	mod.rapid	,	•	F	."	1	mod.slow	very.rapid	Rapid	moderate	ı	1	•	very.rapid	Rapid	
	Perme- ability	5.98	6.81	2.61		•	0.54	35.01	9.90	1		2.40	8.14	,	,		•	t	1.01	15.86	12.53	4.39	ı	ı	,	47.00	20.49	
,	Moisture Perme- Content ability	43.6	31.2	454		•	29.4	24.9	45.2			4. 4.	39.5	ı	,	4		:	139.2	34.1	51.6	66.2	r		158.8	33.1	0.44	
	Bulk Moisture Density Content	0.88	1.31	1.11	r	1	1.13	1.27	1.09	1	•	1.04	1.24	,	. 1	1	ŧ	1	0.94	1.26	86.0	68.0	•		0.64	1.32	1.12	
(Core Depth	0-4	40~44	70~74		•	9	36~40	65~59	•	٠,	2~7	25~29		٠.	ı	,		3~7	30~34	60~64	130~134			25~29	45~49	70~74	
8	rure		Sicl	SiC	SiL	SiCL	SiC	Sic	Sic	SiC	SiCL	SiC	SiC	SiC	SiC	SiC	SiC		SiCL	SiC	SiC	SiC		HC	HC	Sic	SicL	
	Clay		34.9	39.5	25.0	23.5	39.7	35.2	33.5	39.0	22.8	4.4	40.0	32.1	33.9	36.6	30.4		17.6	34.0	43.8	36.8	•	45.2	48.5	36.2	23.9	
· · ·	OSDA Grading Silt Clay 0.05-0.002> 0.002>	١.	62.6	58.2	67.4	67.1	57.0	58.8	61.0	56.8	72.1	52.9	59.5	65.7	4	60.9	66.1	·.	78.0	59.1	51.0	56.4	•	51.5	48.0	57.6	59.3	
-	Sand 0.0.		2.5	2.3	7.6	9.4	. eg	9.9	5.5	4.2	5.1	2.7	0.5	2.2	2.0	2.5	3.5	•	4,	6.9	5.2	8.9	ı	3.3	3.5	6.2	16.8	
	HOKIZON	Ag	Bg1	Bg2	BCg	S	Ą	Bgl	Bg2	BCg	S S	Αp	Bg1	Bg2	BCg1	BCg2	S	Αp	Bg1	Bg2	Bg3	BCg	Cg	ΑĎ	Bg1	Bg2	Bg3	
	cm.	0~15/25	15/25~55	55~70/80	70/80~80/110	80/110+	0~12/15	12/15-45	45-60/70	60/70~110	11Q	0~15/20	15/20-40	40~65	65-90	90~130	130~200	0~10/13	10/13~18/20	18/20-45	45~80/90	80/90~140	140~200	0~10	10-13	30~60	0609	
400	NO.	10-1-1	TD-1-2	TD-1-3	TD-1-4	TD-1-5	TD-2-1	TD-2-2	TD-2-3	TD-2-4	TD-2-5	TD-3-1	TD-3-2	TD-3-3	TD-3-4	TD-3-5	TD-3-6	TD-4-1	TD-4-2	TD-4-3	TD-4-4	TD4-5	TD-4-6	TD-5-1	TD-5-2	TD-5-3	TD-5-4	

Remark: Determined by DLD

Table E-12 The chemical property -(1)

1							Ř	BASE E	EXCHANGE	NGE	CAPACITY AND	Ĭ¥ Ľ		CATION (milli equiv/100g)	(milli e	ouiv/1(BASE SATURATION	ATURAT	% NOI.		
MOISTURE	AOISTU	哥	អ្ន	ပ	Z	1				1	SUM	EXTR		CEC	GEC		ĺ				Δ.	M
HORIZON AIR TO	AIR T		m.mho/cm			Z/O	౮	Mg	×	Na (C	(Ca+Mg+ ACID	ACID	SUM	SOIL	200	Ca/Mg	Mg/K	(C)/E)	(B/C)	(BX100)	p.p.m.	p.p.m.
OVEN DRY	OVEN D	Ϋ́	1:5	%	%						K+Na)				CLAY			X100	X100	/(B+A)	(BRAY	(AMMON
%	%										(B)	€	(B+A)	(j							No.2)	ACETATE)
Oil 13	13	13.2	0.25	54.8 *	1.46	37.5	4.3	7.8	0.30	8.0	13.2	39.8	53.0	162.2	•	0.55	26.0	3	∞	25	14	108
0i2 14	77	14.2	0.18	55.6 *	1.69	32.9	3.1	2.9	0.30	0.8	7.1	49.8	56.9	159.2		1.07	1.6	7	4	12	6	80
013		13.1	0.25	53.3 *	1.21	44.0	4.	3.1	0.20	9.0	5.3	38.6	43.9	141.1		0.45	15.5		4	12	7	38
Cg1		8.8	0.09	5.5	0.16	34.4	8.0	1.5	0.10	0.3	2.7	19.1	21.8	17.4	30.6	0.53	15.0	S	16	12	6	40
Cg2 (0.5	0.95	0.7	0.02	35.0	0.3	0.2	0.04	0.2	0.7	8.2	8.9	2.0	33.3	1.50	5.0	15	37	∞.	7	4
0:1	6	26.2	0.27	56.5 *	1.38	40.9	1.3	15.9	0.40	80	19.4	48.0	67.4	207.7	•	0.08	39.8	-	Ø.	29	13	96
0i2	-	10.9	0.30	57.2 *	1.06	54.0	0.55	5.5	0.20	1.5	7.8	43.4	51.2	188.4		0.10	27.5		4	15	æ	38
0:3		11.2	0.19	\$7.0 *	1.21	47.1	9.0	8.4	0.10	4.	10.5	42.0	52.5	143.7		0.07	84.0	0	7	. 20	2	33
Oi4		4.2	0.22	55.1 *	1.11	49.6	2.4	18.6	0.10		22.4	32.5	£.9	136.4	1	0.13	186.0	7	16	4	. 2	43
					٠	÷			÷					٠								
ő		12.2	0.15	43.4 *	1.30	33,4	2.8	2.0	0.20	9.0	5.6	45.3	51.1	117.4	1	1.40	10.0	2	5	11	16	62
ಂ		11.1	0.11	36.8 *	0.98	37.6	1.8	1.3	0.10	0.5	3.7	36.6	40.3	114.6		1.38	13.0	.01	'n	ο.	4	28
Cg1		3.0	0.07	0.9	0.10	0.09	0.2	0.2	0.05	0.2	0.7	17.3	18.0	16.8	240.0	1.00	4.0	, ⊶	4	4	9	. 11
Cg2		1.6	0.05	4	0.03	0.03 146.7	0.2	0.1	0.05	0.2	9.0	9.1	6.6	4.9	45.4	2.00	2.0	4	. II	9	9	11
Cg3		4.	0.56	4.	0.03	0.03 46.7	0.5	0.5	90.0	0.2	1.0	11.1	12.1	5.4	39.4	2.50	3.3	σ,	81	00	50	15
																-						
Oil		1.4	0.04	52.4 *	1.25	41.9	3.1	0.4	0.10	9.0	4.2	44.8	49.0	148.7		7.75	0.4		m	Q,	16	39
0.12		1.3	0.30	55.4 *	1.20	46.2	2.4	4.2	0.10	8.0	7.5	45.6	53.1	161.7		0.57	42.0		5	14	۳.	47
Cg1		4	0.12	3.8	0.05	0.05 76.0	1.0	1.5	0:04	0.4	2.9	9.2	12.1	7.4	33.3	0.67	37.5	14	40	24	5	10
Cg2		8.0	0.27	9.0	0.01	0.01 60.0	0.7	1.2	90:0	0.4	2,4	4.0	6,4	2.9	17.2	0.58	20.0	24	8	37	7	12
		١.										:										

Note; % Organic carbon with * analysed by loss-on ignition method

; Determined by DLD ;BC:Bacho area, TD; Muno-Koknai area

9	
property -(2)	
The chemical 1	
E-12	
[able]	

								1		* -													
							1		BASE E	XCHA	EXCHANGE CAPACITY	APACI	TY AND		NOIL	CATION (milli equiv/100g)	nv/100g	ĺ	BASE SATURATION	URATIO	% %		. *
LABO	LABORATORY		MOISTURE	EC	Ö	z					S	SUM E	EXTR	J	CEC	CEC				:		Δ,	×
CODE	DEPTH	HORIZON AIR TO		m.mho/cm.			Z.	రే	Mg	*	Na (Ca-	(Ca+Mg+ A	ACID S	S WAS	SOIL	100G Ca	Ca/Mg N	Mg/K C	Ca/(C) (F	(B/C) (BX	(BX100) p	p-p.m.	p.p.m.
NO.	Ġ.		OVEN DRY	1:5	%	8%					X	K+Na)			ช	CLAY		- 1	X100 X	X100 /(B	/(B+A) (B	(BRAY (,	(AMMON
			%									(B)	3	(B+A)	0						£	No.2) A	ACETATE)
BC-5-1	0-25	ಂ	11.7	1.77	\$0.8 *	1.12	45.4	4.1	3.8	0.10	0.4	8.4	49.6	58.0 1	159.4		1.08	38.0	ش	5	14	9	47
BC-5-2	25-45	Cg1	0.2	0.02	0.3	0.01	30.0	0.3	0.07	0.03	0.2	9.0	1.9	2.5	1.0		4.29	2.3	30	>100	25	7	4
BC-5-3	45-70	Cg2	1.1	0.03	6'0	0.01	90.0	0.2	0.06	0.03	0.3	9.0	7.0	7.6	2.8 2	280.0	3.33	2.0	7	21	∞	13	4
BC-54	70-100	Cg3	0.4	0.03	0.2	1.		0.1	0.05	0.04	0.2	0.4	2.2	2.6	6.0	36.0	2.00	1.3	11	43	15	12	\$
BC-5-5	100+	Cg4	0.5	0.02	0.1	11	Ē	0.5	90.0	0.04	0.2	0.5	1.5	2.0	1.0 1	100.0	3.33	1.5	50	20	25	17	9
			,																				!
BC-6-1	0-35	ë	14.5	0.17	55.8 *	1.21	46.1	4	31.6	0.40	8.	18.2	45.7	63.9 2	233.9		0.38	29.0	7	∞;	78	14	108
BC-6-2	35-75	o	11.6	0.07	56.6 *	1.08	52,4	2.6	10.5	0.01	1.3	14.4	40.8	55.2	151.8		0.25 1(1050.0	2	6	. 52	m	23
BC-6-3	75+	Oi2	14.0	0.34	£8.6	1.26	44.4	16.5	25.0	80.0	1.4	43.0	41.0	84.0 1	153.6		99.0	312.5	11	28	51	m	33
					٠																		
BC-7-1	0.2/10	ဝိ	5.9	0.14	29.7 *	99.0	45.0	1.6	1,4	0.01	0.3	3.3	33.6	36.9	26.7		1,14	140.0	33	9	6	78	29
BC-7-2	2/10-18/20	Cg]	6.3	0.03	1.9	0.04	47.5	0.2	0.1	0.03	0.3	9.0	9.5	10.1	8.3	415.0	2.00	3.3	2	∞	9	2	5
BC-7-3	18/20-35/40	Cg2	0.2	0.02	4.0	0.01	40.0	0.2	0.04	0.04	0.2	0.5	2.8	3,3	1	73.3	5.00	1.0	18	4	15		7
BC-74	35/40-60	Cg3	9.0	0.03	0.95	0.02	47.5	8.9	0.02	0.05	0.2	7.1	9'.	14.7	3.3	165.0 34	340.00	0.4	>100	>100	48	9	9
BC-7-5	06-09	Cg4	1.3	0.03	60:00	0.01	0.6	6.0	0.3	0.10	0.4	1.2	2.3	3.5	1.9	17.3	1.33	3.0	21	63	8	7	32
BC-7-6	90-130	Cg5	0.1	0.02	0.01	•	•	0.2	0.04	0.05	0.2	0.5	0.1	9.0	6.0	0.06	5.00	8.0	22	54	83	~	5
BC-7-7	130-160	Cg6	0.4	0.02	* 60.0	٠	•	0.3	0.2	0.05	0.2	8.0	1.2	2.0	9.0	10.0	1.50	4.0	20	>100	38	7	14
					٠																		
BC-8-1	0-3/5	೦	2.6	0.40	36.9 *	0.72	51.3	4.	2.3	0.10	0.5	7.1	31.8	38.9	81.7		1.83	23.0	5	6	18	27	35
BC-8-2	3/5-30	Cg1	0.8	0.05	0.4	0.00	100.0	0.2	0.05	0.04	0.2	0.5	2.0	2.5	7.2 2	205.7	4.00	1.3	ю	7	20	~	8
BC-8-3		Cg2	0.8	0.03	5.0	0.01	20.0	6.0	0.1	0.04	0.2	0.7	5.3	6.0	1.5	50.0	4.00	2.5	27	49	12	∞	∞
BC-8-4	50-140	Cg3	1.2	0.03	0.1	7	•	0.3	0.1	0.04	0.3	0.7	2.1	2.8	3.1	23.0	3.00	2.5	10	24	56	7	10
BC-8-5	140+	Cg4	9.0	0.02	0.09	1.1		0.3	0.1	90.0	0.4	6.0	1.8	2.7	1.4	25.5	3.00	1.7	21	61	32	4	8
,						.																	

Note: % Organic carbon with * analysed by loss-on ignition method: Determined by DLD.

_
9
¥
>
~~
ခု
l property
5
_
ď
Æ
둤
chemica
ပ
2
The (
•
π
E-12
e
۾
Table
٠.

Ca Mg K Na CCA+Mg+ ACID SUM SOIL 100G Ca/Mg/Mg/K Ca/(C) (B/C) (B/C) (B/C) P K 44 5.9 0.30 1.1 11.7 52.2 63.9 187.2 - 0.75 19.7 2 6 18 4 19 2.1 2.5 0.20 1.3 43.0 49.3 144.7 - 0.75 19.7 2 6 18 16 90 2.1 2.5 0.20 1.3 43.0 49.3 144.7 - 0.84 12.5 1 4 13 4 1 4 13 4 1 4 13 4 1 4 13 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4									BA!	EX EX	CHAN	GE C	BASE EXCHANGE CAPACITY AND CATION (milli equiv/100g)	Y AN	D CAT	TON (r	nilli eq	uiv/100	g)	BASE S.	BASE SATURATION %	% NOI	•	
K Na (Ca+Mg+ ACID SUM SOIL 100G Ca/Mg/ Mg/K Ca/CJ (BK) (BK) Pp.m. Pp.m. <th< th=""><th>LABORATORY MOISTURE EC C N</th><th>EC C</th><th>EC C</th><th>EC C</th><th></th><th>z</th><th></th><th></th><th>•</th><th></th><th></th><th></th><th>1</th><th>EXTR</th><th> -</th><th>CEC</th><th>CEC</th><th></th><th></th><th></th><th></th><th></th><th>Δ.</th><th>×</th></th<>	LABORATORY MOISTURE EC C N	EC C	EC C	EC C		z			•				1	EXTR	 -	CEC	CEC						Δ.	×
5.9 0.30 1.1 1.1 5.2 6.3 1.1 1.1 5.2 6.3 1.8 7 1.0 7 1.1 7 8.2 7 1.2 6.1 8.4 1.2 6.3 4.3 6.3 4.4 7 9.7 1.2 6 1.8 1.6 2.5 0.20 1.5 6.3 43.0 49.3 144.7 - 0.84 12.5 1 4 13 1 0.5 0.06 0.4 2.16 19.3 21.5 18.3 54.6 2.40 8.3 7 12 10 1 0.2 0.02 0.2 1.02 2.6 3.6 0.0 3.00 10.0 67 >100 2 4 7.3 0.30 0.8 13.6 4.5 58.1 100.4 - 0.71 24.3 4 11 23 4 8.0 0.05 0.5 0.5 1.5 0.5	DEPTH HORIZON AIR TO m.mho/sm. C/N Ca	HORIZON AIR TO m.mho/cm. C/N	m.mho/em.	m.mho/em.				S	:	Μg		_	3+Mg+		SUM	SOIL	100G	Ca/Mg	Mg/K	(Ca/(C)		BX100)	p.p.m.	p.p.m.
5.9 0.30 1.1 11.7 52.2 63.9 187.2 - 0.75 19.7 2 6 18 16 2.5 0.20 1.3 1.1 11.7 52.2 63.9 187.2 - 0.75 19.7 2 6 18 16 2.5 0.20 1.5 6.3 43.0 49.3 144.7 - 0.84 12.5 1 4 13 1 0.5 0.06 0.4 2.16 19.3 21.5 18.3 54.6 2.40 8.3 7 12 10 1 0.2 0.02 0.2 1.02 2.6 3.6 0.9 30.0 10.00 67 >100 28 1 0.2 0.02 1.02 2.6 3.6 0.7 1 4 11 2 4 8.0 0.05 0.5 1.2 0.7 1.4 1.2 1.50 5.0 5.0 5.	cm. Oven dry 1:5 % %	%	%	%		%							K+Na)				CLAY			X100			(BRAY	(AMMON
5.9 0.30 1.1 11.7 52.2 63.9 187.2 - 0.75 19.7 2 6 18 16 2.5 0.20 1.5 6.3 43.0 49.3 144.7 - 0.84 12.5 1 4 13 1 0.5 0.06 0.4 2.16 19.3 21.5 18.3 54.6 2.40 8.3 7 12 10 1 0.2 0.02 0.2 1.02 2.6 3.6 0.00 3.00 10.00 67 >100 1 1 7.3 0.30 0.8 13.6 44.5 58.1 119.4 - 0.71 24.3 4 11 23 18 1 8.0 0.05 0.5 13.25 38.8 52.1 100.4 - 0.59 160.0 5 13 25 4 0.2 0.04 0.0 0.3 1.5 1.5 1.50 5.0 25 62 51 1 1.7 0.03 0.2 3	%	2%	%										(B)	(A)	(B+A)	<u>(</u>)							No.2)	ACETATE)
2.5 0.20 1.5 6.3 43.0 49.3 144.7 - 0.84 12.5 1 4 13 1 0.5 0.06 0.4 2.16 19.3 21.5 18.3 54.6 2.40 8.3 7 12 10 1 0.2 0.02 0.2 1.02 2.6 3.6 0.9 30.0 10.0 67 >100 1 7.3 0.30 0.8 13.6 44.5 58.1 119.4 - 0.71 24.3 4 11 23 18 8.0 0.05 0.5 13.25 38.8 52.1 100.4 - 0.59 160.0 5 13 25 4 0.2 0.74 0.7 1.4 1.2 - 1.50 5.0 56 51 1 1.7 0.03 0.2 3.33 7.8 11.1 5.4 - 0.82 56.7 26 62 <	0-25 Oil 19.5 0.44 54.2 * 1.22 44.4 4	19.5 0.44 54.2 * 1.22 44.4	0.44 54.2 * 1.22 44.4	54.2 * 1.22 44.4				4	4.		0.30	1.1	11.7	52.2	63.9	187.2		0.75	19.7	2	9	18	16	06
0.5 0.06 0.4 2.16 19.3 21.5 18.3 54.6 2.40 8.3 7 12 10 1 0.2 0.02 0.2 1.02 2.6 3.6 0.9 30.0 30.0 10.0 67 >100 1 7.3 0.30 0.8 13.6 44.5 58.1 119.4 - 0.71 24.3 4 11 23 18 8.0 0.05 0.5 13.25 38.8 52.1 100.4 - 0.59 160.0 5 13 25 4 0.2 0.74 0.7 1.4 1.2 - 1.50 5.0 25 62 51 1 1.7 0.03 0.2 3.33 7.8 11.1 5.4 - 0.82 56.7 26 62 30 3	25-55 Oi2 11.6 0.30 55.3 * 1.73 32.0 2	11.6 0.30 55.3 * 1.73 32.0	0.30 55.3 * 1.73 32.0	55.3 * 1.73 32.0	1.73 32.0	_	_	2	:		0.20	1.5	6.3	43.0	49.3	144.7		0.84	12.5	-	4	13	-	40
0.2 0.02 0.2 1.02 2.6 3.6 0.9 30.0 3.00 10.0 67 >100 28 1 7.3 0.30 0.8 13.6 44.5 58.1 119.4 - 0.71 24.3 4 11 23 18 8.0 0.05 0.5 13.25 38.8 52.1 100.4 - 0.59 160.0 5 13 25 4 0.2 0.04 0.2 0.74 0.7 1.4 1.2 - 1.50 5.0 25 62 51 1 1.7 0.03 0.2 3.33 7.8 11.1 5.4 - 0.82 56.7 26 62 30 3	55-80 Cg1 5.2 0.06 0.9 0.09 10.0 1	5.2 0.06 0.9 0.09 10.0	0.06 0.9 0.09 10.0	0.9 0.09 10.0	0.09 10.0	_	_	-	7		90.0	6,0	2,16	19.3	21.5	18.3	54.6		8.3	7	12	10		12
7.3 0.30 0.8 13.6 44.5 58.1 119.4 - 0.71 24.3 4 11 23 18 8.0 0.05 0.5 13.25 38.8 52.1 100.4 - 0.59 160.0 5 13 25 4 0.2 0.04 0.2 0.74 0.7 1.4 1.2 - 1.50 5.0 25 62 51 1 1.7 0.03 0.2 3.33 7.8 11.1 5.4 - 0.82 56.7 26 62 30 3	80+ Cg2 0.4 0.02 0.6 0.04 15.0 0.	0.4 0.02 0.6 0.04 15.0	0.02 0.6 0.04 15.0	0.6 0.04 15.0	0.04 15.0	15.0		Ó	ve.		0.02	0.7	1.02	2.6	3.6	6.0	30.0		10.0	19	>100	28		S
8.0 0.05 0.5 13.25 38.8 52.1 100.4 - 0.59 160.0 5 13 0.2 0.04 0.2 0.74 0.7 1.4 1.2 - 1.50 5.0 25 62 1.7 0.03 0.2 3.33 7.8 11.1 5.4 - 0.82 56.7 26 62	0-20 O1 9.1 0.37 48.8 * 1.55 31.5 5	9.1 0.37 48.8 * 1.55 31.5	0.37 48.8 * 1.55 31.5	48.8 * 1.55 31.5	1.55 31.5			S	2		0.30	8.0	13.6	44.5	58.1	119.4		0.71	24.3	4	I	23	18	100
0.2 0.04 0.2 0.74 0.7 1.4 1.2 - 1.50 5.0 25 62 1.7 0.03 0.2 3.33 7.8 11.1 5.4 - 0.82 56.7 26 62	20-40 O2 8.1 0.17 38.7 * 0.86 45.0 4	8.1 0.17 38.7 * 0.86 45.0	0.17 38.7 * 0.86 45.0	38.7 * 0.86 45.0	0.86 45.0	_	_	4	7.		0.05	0.5	13.25	38.8	52.1	100.4	•	0.59	160.0	ξΩ	13	25	4	16
1.7 0.03 0.2 3.33 7.8 11.1 5.4 - 0.82 56.7 26 62	40-80 Cg1 0.3 0.01 0.3 0.01 30.0 (0.3 0.01 0.3 0.01 30.0	0.01 0.3 0.01 30.0	0.3 0.01 30.0	0.01 30.0	30.0		_	33		0.04	0.2	0.74	0.7	1.4	1.2	1	1.50	5.0	25	62	51		7
	80-110 Cg2 0.9 0.02 1.9 0.03 63.3	0.9 0.02 1.9 0.03 63.3	0.02 1.9 0.03 63.3	1.9 0.03 63.3	0.03 63.3	63.3		I	1.4		0.03	0.2	3.33	7.8	11.1	5.4		0.82	56.7	26	62	30	3	5

Note: % Organic carbon with * analysed by loss-on ignition method; Determined by DLD

_
€
Y
property
chemical
The
E-12
able

	×	mrd d	(AMMON	ACETATE)	80	28	28	15	20		104	23	61	41	45	5	40	14	10	19	13	12	47	22	20	28	
					22	5	4	7	S		23	4	7	3	4	15	7	r1		т	- -4	4	∞	2	-	∞	
	ρ.	p.p.m	(BRAY	No.2)						•																	
NOI %		(BX100)	/(B+A)		7	Φ.	7	S	17		23	11	12	38	62	26	21	20	14	14	17	6	19	13	12	20	
TURAT		(B/C)	X100		4	ť	S	9			13	4	4	16	35	10	15	10	15	37	· .	22	7	\$	7	88	
BASE SATURATION		Ca/(C)	X100		2	!	2	7	1		σ	71	, 4	4	11	ĸ	∞	5	∞	21	۲'n	11	4	ĸ	7	14	:
					2.3	8.0	14.0	21.0	41.0		10.7	18.0	31.0	203.0	202.0	86.0	13.0	27.0	390.0	19.5	33.0	26.0	31.0	26.0	28.0	270.0	
1v/100		Ca/Mg Mg/K			2.00	1.25	1.07	0.71	0.59		3.28	1.4	0.55	0.32	0.50	0.42	2.15	1.48	1.46	1.92	1.39	1.15	1.61	25	0.75	0.20	
ılli eq	CEC	100G	CLAY				e a		. •		,			•	,		,	. •		•				. 1	,		ļ
ION (F	CEC	SOIL		(<u>)</u>	83.6	72.4	72.0	75.7	•		113.6	143.2	128.9	175.9	91.9	125.3	66.3	75.0	8.89	35.5	153.3	27.4	129.0	95.4	85.9	22.6	
CAT	Ŭ	SUM		(B+A)	45.2	41.8	52.3	83.5	82.1		64.7	45.7	48.1	73.5	51.1	48.9	45.3	36.6	70.9	6.68	58.4	6.99	49.3	46.8	50.3	98.4	
Y ANE	EXTR			(A)	42.2	39.3	48.9	79.2	68.4		49.8	40.6	42.4	45.3	72.2	36.1	35,6	29.1	9.09	76.9	50.0	6.09	39.8	40.7	44.4	78.5	
BASE EXCHANGE CAPACITY AND CATION (milli equiv/100g)	SUM E	(Ca+Mg+ ACID	K+Na)	(B)	3.0	2.5	3.4	4.3	13.7		14.9	5.1	5.7	28.2	31.9	12.8	2.6	7.5	10.3	13.0	8.4	6.0	9.5	6.1	5.9	19.9	
GE CA	80	Na (Ca	×		9.0	9.0	0.4	9.0	0.5		6.0	0.6	8.0	4	1,4	0.5	1.3	0.7	0.65	1.4	0.4	0.3	1.3	0.7	6.0	0.4	
CHAN		X			0.3	0.1	0.1	0.1	0.2		0.3	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.01	0.2	0.1	0.1	0.1	0.1	0.1	0.1	
SE EX		Μg			0.7	8.0	1.4	2.1	8.2		3.2	1.8	3.1	20.3	20.2	8.6	5.6	2.7	3.9	3.9	3.3	2.6	3.1	2.6	2.8	16.2	
BA		ű			1.4	1.0	1.5	1.5	8		10.5	2.6	1.7	6.4	10.2	3.6	5.6	4.0	5.7	7.5	4.6	3.0	5.0	2.7	2.1	3.2	
		CN			22.3	29.1	30.7	42.3	45.0		15.7	30.5	42.9	39.8	31.8	33.0	25.4	58.2	•		46.1	47.9	24.9	43.9	38.9	52.9	
	z	·	<i>8</i> %		1.43	0.95	0.45	0.64	0.16		2.58	0.98	1.01	1.00	0.73	0.10	1.55	0.72	0.45	0.32	0.28	0.14	1.38	0.77	0.55	0.17	to chow
	U		%		31.9 *	27.6 *	13.8 *	27.1 *	7.2		40.5 *	* 6.62	43.3 *	* 8.68	23.2 *	3.3	39.4 *	* 6 17	15.3 *	19.5 *	12.9 *	* 1.9	34.3 *	33.8 *	21.4 *	00.6	
	EC	m.mho/cm.	1:5		0.35	0.38	2.19	8.51	9.76		0.19	0.23	0.29	1.09	9.66	3.52	4.71	0.43	0.39	10.11	4.07	5.69	0.47	0.41	0.27	3.50	1000
	URE		DRY		6.6	6.8	7.4	18.3	7.3		15.6	8.4	16.7	13.8	10.1	5.3	10.8	4.0	6.7	8.6	5.3	4.5	8.4	7.6	7.4	12.3	14
	MOISTURE	AIR.	OVEN DRY	%				-			-		red	,4	-		-								-		*
	: '	HORIZON AIR TO			Oe1	Oe2	063	0 29	స్ట		Oe!	Oe2	063	Oil	Oi2		o 0	Oe2	Ö	0.12	Oi3	S	oe1	0e2	0e3	8	Popularies
	RY	DEPTH	cm.		0-10	10-30/45	30/45-50/55	50/55-75/80	75/80+		0-15/25	15/25-45/50	45/50-80/90	80/90-160	160-240	240+	0-5/10	5/10-50	50-70/75	70/75-90/100	KD-3-5 90/100-200/140	-140+	0-12/20	12/20-40/45	40/45-80/90	110/115	Note . 9. Granning and and the house of the manufacture of the second
	LABORATORY	DE	ថ		0		30/45										9			70/75	90/100	120-140+			40/45	-06/08	6
	LABC	CODE	N O		KD-1-1	KD-1-2	KD-1-3	KD-1-4	KD-1-5		KD-2-1	KD-2-2	KD-2-3	KD-2-4	KD-2-5	KD-2-6	KD-3-1	KD-3-2	KD-3-3	KD-3-4	KD-3-5	KD-3-6	KD-4-1	KD-4-2	KD-4-3	KD-4-4 80/90-110/115	Note

Note: % Organic carbon with * analysed by loss-on ignition method: Determined by DLD

_
<u>(S</u>
\neg
property
The chemical
The
E-12
Fable

								1														
	; ;				,	:	i	Ä	BASE EX	EXCHANGE		CAPACITY		AND CATION (milli equiv/100g)	E N	li equiv	(100g)	BASE	BASE SATURATION	MOITA		
LABC	KATORY		MOISTURE	<u>임</u>	U	Z.					SUM	E E	Ĕ.	CEC	CBC ::	Ü					ß,	×
CODE	DEPTH	HORIZON	AIR TO	m.mho/cm.			Z Z	రొ	Mg	*	Na (Ca+Mg+		ACID SUM	M SOIL	, 100G		Ca/Mg Mg/K	Ca/(C)	(B/C)	(BX100)	p.p.m.	p.p.m
Ö	œ.		OVEN DRY	1: 5	%	ь%					K+Na)	Ĉ			CLAY	>-		X18	X100	(B+A)	(BRAY	(AMMON
			200								(B)		(A) (B+A)	A) (C)							No.2)	ACETATE)
TD-1-1	0-15/25	Ag	4.8	0.62	9.1	0.54	16.9	5.4	6.0	0.1	0.4	6.8 3	31.8 38	38.6 28.5	. 5	90.9	0.6 00	19	24	18	80	30
TD-1-2	15/25-55	Bgl	2.3	0.38	1.3	0'02	18.6	9.0	6.0	0.1	0.3	1.9 1	15.2 17	17.1 9	9.8	28.1 0.67	7. 9.0	9	19	111	М	29
TD-1-3	55-70/80	Bg2	4.9	0.51	1.7	0.09	18.9	0.8	1.1	0.1	0.4	2.4	19.3 21.7		5.1 13	12.9 0.73	73 11.0	16	47	11	e	25
TD-1-4	TD-1-4 70/80-100/110	BC_g	4.9	3.31	2.8	0.10	28.0	1.3	1.7 (0.04	0.3	3.3 6	62.0 65	65.3 14	4.5 5	58.0 0.76	76 42.5	6	23		7	∞
TD-1-5	100/110+	င္လ	4.0	2.67	5.2	66.0	5.3	5.3	7.0 (0.05	0.3	12.7 3	36.9 49	49.6 13.7		58.3 0.7	0.76 140.0	39		26	77	
												•					-					
TD-2-1	0-12/15	Ag	3.8	0.63	6.1	0.23	26.5	0.5	1.2	0.1	0.4	2.2 2	27.3 29	29.5 22.2		55.9 0.42	12.0	7	10	7	14	20
TD-2-2	12/15-45	Bgl	2.4	0.56	1.1	90.0	18.3	::	1.4	0.1	0.3	2.9	16.6 19	19.5	9.7 2	27.6 0.79	79 14.0	II	30	15		. 26
TD-2-3	45-60/70	Bg2	2.4	0.45	1.0	90'0	16.7	8.0	2.8	0.1	0.2	3.9	16.6 20	20.5 10.4		31.0 0.29	9 28.0	∞	38	8 19	m	32
TD-2-4	60/70-110	BCg	3.8	0.62	7.	0.07	20.0	1.4	2.2	0.1	0.3	4.0 1	18.8 22	22.8 12	12.5 3;	32.1 0.64	22.0	11	32	2 . 18		36
TD-2-5	110+	స్త	3.5	2.21	3.2	0.08	40.0	8.2	22.0	0.1	0.4 3(30.7 2	20.3 51	51.1 18.1		79.4 0.37	7 220.0	45	>100	09 (21	76
														: •								
TD-3-1	0-15/20	Αp	3.0	0.81	5.2	0.19	27.4	1.3	1.7	0.1	0.4	3.5 2	28.0 31	31.5 18.5		41.7 0.76	76 17.0	7	. 19	11	01	. 17
TD-3-2	15/20-40	Bgl	2.4	0.64	8.0	90'0	13.3	1.4	1.8	0.1	0.3	3.6 1	17.5 21.1		9.4 2	23.5 0.78	18.0	15	38	17		21
TD-3-3	40-65	Bg2	2.7	0.59	8.0	0.05	16.0	1.4	1.7	0.1	0.3	3.5 1	16.7 20	20.2	8.5 20	26.5 0.82	17.0	16	4	. 17	+ 4	20
TD-3-4	65-90	BCg1	2.5	0.72	8.0	90.0		1.5	1.9	0.1	0.4	3.9 1	17.2 21.1		9.4 2	27.7 0.79	9 19.0	. 16	4	18		20
TD-3-5	90-130	BCg2	3.8	1.31	1.7	0.08	•	2.4	3.0	0.1	9.0	6.1 2	25.0 31.1	_	2.7 3,	34.7 0.80	30.0	19	48	20	7	15
TD-3-6	130-200	రి	4.0	2.30	2.5	0.08	31.3	0.6	17.0	0.1	0.8 20	26.9 2	22.8 49	49.7 15	5.8 5	52.0 0.2	0.53 170.0	57	>100	54	18	59
TD-4-1	0-10/13	Αp	3.7	68.0	9.1	0.52	17.5	2.6	2.1	0.2	0.5	5.4 2	27.5 32	32.9 22.0	. 0.	1.24	4 10.5	12	25	16	13	52
TD-4-2	10/13-18/20	Bg1	2.6	0.40	4.1	0.14	29.3	1.7	1.2	0.1	0.3	3.3	16.1 19	19.4 . 11.0		62.5 1.42	12.0	15	30	17	m	15
TD-4-3	18/20-45	Bg2	2.3	0.30	9.0	0.05	12.0	2.2	1.7	0.1	0.3	4.3	12.3 16	16.6 9	9.8	28.8 1.2	1.29 17.0	22	4	1 26	1	29
TD 4-4	45-80/90	Bg3	4.3	0.49	8.0	90.0	13.3	3.5	3.1	0.2	0.4	7.2	17.9 25.1	.1 14.1		32.2 1.13	3 15.5	.23	51	. 29	;	54
TD-4-5	80/90-140	BCg	5.2	2.03	1.6	0.08	20.0	4.0	4.1	0.1	0.3	8.5 3	32.5 41	41.0 17.3		47.0 0.98		23	49		•	18
TD-4-6	140-200	ညီ	4.0	1.34	2.50	0.08	31.3	8.6	14.7	0.3	0.7	25.5	12.4 37	37.9 16.6	9	0.67	57 49.0	59	>100	. 67	20	110
Note	O Organic carb	**************************************	# papplaced #	1000		4000	.	:														

Note: % Organic carbon with * analysed by loss-on ignition method; Determined by DLD

9
٣
property
The chemical
The
E-12
Table

								BA	SE EX	CHAN	BASE EXCHANGE CAPACITY AND CATION (milli equiv/100g)	ACITY	AND	CATI	ON (mi	li equiv	/100g)	BAS	E SATT	BASE SATURATION %	8		
LABOR	LABORATORY		MOISTURE EC	23	ပ	Z					S	SUM E	EXTR	J	200	CEC		 			. ⁶⁴ 		×
CODE	DEPTH	HORIZON	AIR TO	m.mho/am.			CS	౮	Mg	*	Na (Ca	(Ca+Mg+ ACID		SUM	SOIL	ڻ ص	100G Ca/Mg Mg/K	₹ Ca	(<u>0</u>	Ca/(C) (B/C) (BX100)	00) p.p.m.		p.p.m.
ON ON	cii.		OVEN DRY 1: 5	1: 5	%	%					Ϋ́	K+Na)			ប	CLAY		×	X 001X	X100 /(B+A)	A) (BRAY		(AMMON
			20								V	(B)	(A) (B+A) (C)	3+A)	(C)						No.2)		ACETATE)
TD-5-1	0-10	Ap	9.1	0.39	0.39 24.2 * 1.13	1.13	21.4	1.0	0.7	0.3	21.4 1.0 0,7 0,3 0,5 2.5 45.2 47.7	2.5	45.2		49.9 110.4 1.43 2.3	10.4	.43	2.3	5	5	5	. 02	102
TD-5-2	10 - 30	Bgl	3.0	0.07	2.4	0.12	20.0	0.7	9.0	0.1	0.3	1.7	13.4 15.1		10.5 21.6 1.17	21.6		0.9	. 7	16	1(e(φ.	16
TD-5-3	30 - 60	Bg2	2.6	0.06	2.3	0.08	28.8	1.2	1.0	0.1	0.3	5.6	11.1 13.7	13.7	8.7	24.0 1.20		10.0	14	30	19	် က	18
TD-5-4	06 - 09	Bg3	2.8	0.51	8	0.07	25.7	1.7	1.4	0.1	0.4	3.6	16.1 19.7	19.7	10.3	43.1 1.21	.21 1	14.0	17	35	. 81	∞	35
TD-5-5	90 - 140	Cg	4.3	2.61	2.40 0.08	80.0	30.0	3.3	3.3 5.0 0.03		0.3	9.6	39.7	48.3	8.6 39.7 48.3 23.5 188.0 0.66 166.7	0.88	3.66 16	5.7	14	37	18	Ó	4
,				•															-				

Note: % Organic carbon with * analysed by loss-on ignition method: Determined by DLD

Table E-13 The chemical property -(1)

						1 2100	, CI-		12.1	י כרוכי	(T)				٠		
CODE	DEPTH	EC HORIZON m.mho/ SATURN	EC m.mho/	SATURN	TOS	UBLEOC	ATTON A	SOLUBLE OCATION AND ANIONS IN SOIL EXTRACT (me/lite)	NS IN SC	IL EXTR	ACT (me/		KCI extr. Al		DTPA. extr p.p.m.	ь.	
NO.	cm.		cm.	%	Na+	K+	Ca++	Mg++	טֿ	SO4=	CO3= F	اج ا	me/100g. soil	ъе	Min	C	Zn
BC-1-4	110~130	Cg1	0.36	48.9	1.08	0.11	0.76	1.10	0.80	1.3	0	0	8.65	11.14	0.22	0.41	0.10
BC-1-5	130~160	Cg2	7.83	18.2	0.48	0.01	3.91	8.55	3.60	121.3	0	0	4.24	365.40	2.35	0.46	0.51
BC-3-3	55~85	Cg1	0.19	31.2	0.52	0.04	0.36	0.44	09.0	96.0	0	0	3.96	56.84	0.81	0.18	0.39
BC-3-4	85~110	Cg2	0.26	23.8	0.59	0.07	0.38	0.63	0.80	1.03	0	0	1.88	38.40	0.65	0.11	60.0
BC-3-5	110~150	Cg3	3.08	26.9	0.83	0.19	2.20	4.17	8.32	32.87	0	0	4.70	264.90	0.92	0.10	0.15
													٠				
BC-4-3	70~100	Cg1	0.98	31.6	2.26	0.05	1.68	8.63	1.17	3.34	0	0	1.61	284.60	0.68	0.21	0.19
BC-4-5	100~130	Cg2	1.96	29.8	3.48	0.10	4.01	8.24	1.42	8.97	0	0.17	0.92	251.20	0.19	0.13	0.08
D																	
BC-5-2	25~45	Cg1	0.17	22.7	0.35	0.03	0.31	0.36	0.79	0.77	0	0.08	0.42	4.98	0.02	0.07	0.18
BC-5-3	45~70	Cg2	0.16	25.1	0.17	0.04	0.39	0.29	0.45	0.49	0	0	0.42	3.62	0.01	0.09	90.0
BC-5-4	70~100	Cg3	0.17	22.5	0.17	0.04	0.55	0.53	0.65	0.67	0	0.08	0.10	7.06	0.002	60.0	0.01
BC-5-5	100+	Cg4	0.08	26.0	0.33	0.03	0.02	0.04	0.58	0.21	0	0	0.08	9.61	0.02	0.04	0.09
BC-7-2	2/10~18/20	Cg1	0.17	26.9	0.25	0.05	0.20	0.50	0.65	1.00	0	0	1.59	18.55	0.03	0.10	0.10
BC-7-3	18/20~35/40	Cg2	0.17	22.8	0.35	0.05	0.11	0.22	0.71	0.61	0	0.08	0.57	3.55	0.02	0.13	0.20
BC-7-4	35/49~60	Cg3	0.19	23.6	0.34	0.10	0.25	0.26	0.58	0.63	0	0	1.01	4.02	0.03	0.10	0.11
BC-7-5	06~09	Cg4	0.14	29.8	0.56	0.09	0.14	0.21	0.41	0.38	0	0.08	0.51	26.58	0.33	0.01	90.0
BC-7-6	90~130	Cg5	0.17	23.8	0.24	0.07	0.47	0.30	0.36	0.95	0	0	0.10	2.89	0.01	0.05	90.0
BC-7-7	130~160	Cg6	0.13	25.7	0.38	0.09	0.16	0.19	0.35	0.32	0	0	0.20	16.86	0.25	0.05	0.12
. ;		:															

Remark: Determined by DLD

BC: Bacho area, KD: Kab Daeng area, TD: Muno-Koknai area

_
(2)-/
Ť
property
pro
nical
The chemical
The
3
E-13
Table E

		Zn		0.05	0.23	0.02	90.0	0.09	0.04	0.08	0.00
Ħ.	ئىر	Cu		0.07	0.17	0.05	0.05	0.11	0.08	0.08	0.08
DTPA . ехт.	p.p.m.	Mn	٠	90.0	0.16	0.15	0.07	0.10	0.12	0.19	0.68
I		Fe		28.24	55.10	23.20	30.20	433,30	146.80	13.50	17.58
KCI	extr. Al	ne/100g.	soil	0.35	0.32	0.55	0.34	4.07	0.48	0.07	t T
		HCO3- me/100g.		0	0.08	0.17	0.08	0.17	0.08	0.08	0.25
	SOLUBLE OCATION AND ANIONS IN SOIL EXTRACT (me/litre)	CO3= F		0	0	0	0	0	0	0	0
	IL EXTR	SO4= (1.70	0.39	0.13	0.45	1.68	0.68	1.35	1.52
	NS IN SO	i i	.	0.53	0.44	0.39	0.52	0.95	0.17	0.65	0.58
	ND ANIO	Mg++		0.93	0.41	0.14	0.08	1.13	0.38	0.89	1.85
	ATTON A	Ca++]		1.70	09.0	0.29	0.20	0.69	0.34	0.35	0.45
	BLE OC	K+		60.0	0.03	0.02	90.0	0.03	0.03	0.04	0.03
	SOLI	Na+		0.38	0.28	0.59	1.03	1.58	0.87	0.23	0.24
	ATURN _	8%		22.0	24.9	27.2	25.5	35.5	26.6	24.7	28.0
EC	m.mho/ S	cm.		0.54	0.17	0.13	0.20	0.41	0.22	0.15	0.21
	HORIZON m.mho/ SATURN			cg1	cg2	cg3	cg4	ca 1	cg2	cg1	cg2
	DEPTH	cm.		3/5~18/20	30~20	50~140	140~160	55~80	+08	40~80	80~110
	CODE	NO.		BC-8-2	BC-8-3	BC-8-4	BC-8-5	BC-9-3	BC-9-4	BC-10-3	BC-10-4

Remark: Determined by DLD

	ĺ		Zn			61.30
			ű			0.45
	DTPA. extr	p.p.m.	Mn Cu Zn		•	188.92
			Fe			5477.10
-	KCi	extr. Al	K+ Ca++ Mg++ Cl- SO4= CO3= HCO3- me/100g.	soil		0 54.46 15477.10 188.92 0.45 61.30
		re)	1CO3-			0
-(3)		ACT (me/lit	CO3= F			0
ble E-13 The chemical property -(3)		SOLUBLE OCATION AND ANIONS IN SOIL EXTRACT (me/lifre)	SO4=			0.08 7.28 88.01 148.6 1800.45
mical p		S NI SNO	ជ			148.6
The che		AND ANY	Mg++			88.01
-13 1		ATTON /	Ca++			7.28
Table E		UBLEOC	Κ +			
ŗ	٠	SOL	Na+			41.9 3.26
		SATURN	%			41.9
	EC	m.mho/	cm.			37.07
		HORIZON				<u>හ</u>
		DEPTH	cm.			75/80+
		CODE	NO.			KD-1-5

Remark: Determined by DLD

Table E-13 The chemical property -(4)

•		:		4														
	Zn	0.92	0.41	0.57	6.87	56.63		0.86	0.27	0.26	0.41	4.70		0.99	0.36	0.33	0.58	
) H	ರೆ	0.74	0.38	0.71	11.68	1.52	•	0.70	0.20	0.39	0.54	0.07		0.97	0.21	0.18	0.38	
DTPA. extr.	M	3.02	3.35	4.31	25.64	318.50		6.03	4.59	4.67	9.15	204.72		5.95	5.68	5.00	6.95	:
	e e	202.38	151.01	77.06	1773.36	1049.79		117.60	104.40	86.53	54.08	364.30	٠	158.30	60.74	63.02	83.10	
KCI extr. Al	me/100g. — soil	11.71	5.94	7.44	39.43	16.74		9.42	6.65	7.19	8.79	4.50		10.50	6.40	5.96	7.17	
	303-	0	0	0	0	0		0	0	0	0	0		0	0	0	0	
T (me/litre	CO3= H	0	0	0	0	0		0	0	0	0	0		0	0	0	0	
SOLUBLE OCATION AND ANIONS IN SOIL EXTRACT (me/lite)	SO4=	20.58	6.77	11.28	742.70	405.31		18.27	11.22	9.00	14.71	235.90		28.14	15.66	18.43	34.73	
NS IN SO	_ี	21.30	0.45	0.58	36.92	31.28		10.49	0.78	0.39	1.04	13.28		1.93	4.73	1.75	15.34	
AND ANIC	Mg++	0.26	6.17	8.24	33.65	133.08	-	13.95	11.30	9.16	16.48	65.64		13.83	13.61	16.98	10.01	
ATION,	Ca++	2.99	1.87	2.41	10.63	25.50	-	3.63	2.65	2.39	3.87	25.60		5.81	4.49	5.06	5.45	
UBLEOC	Κ ,	0.17	0.16	0.15	0.05	0.05		0.11	0.17	0.20	0.24	0.04		0.07	0.13	0.14	0.15	
SOLI	Na+	1.39	0.91	1.04	0.56	0.43		1.24	1.00	08.0	1.35	1.43		2.04	1.87	1.87	2.30	
ATURN	%	49.2	49.8	50.5	41.4	41.5		47.4	49.8	47.4	46.9	41.7		48.4	49.5	48.4	47.7	
EC m.mho/s	cm.	2.80	1.40	1.68	19.59	15.81		2.87	2.80	2.01	2.59	13.29		3.08	2.56	2.52	3.01	1
EC HORIZON m.mho/ SATURN		Ag	Bg	Bg2	Bcg	S		Ag	Bg1	Bg2	Bcg	S		Ap	$\mathbf{Bg1}$	Bg2	Bcg1	
DEPTH		0~15/25	15/25~55	55~70/80	TD-1-4 70/80~100/110	100/110+		0~12/15	12/15~45	45~60/70	60/70~100	110~130+		0~15/20	15/20~40	40~65	06~59	
CODE	NO.	TD-1-1	TD-1-2	TD-1-3	TD-1-4	TD-1-5		TD-2-1	TD-2-2	TD-2-3	TD-2-4	TD-2-5		TD-3-1	TD-3-2	TD-3-3	TD-3-4	1

Remark: Determined by DLD

Table E-13 The chemical property -(5)

		Zn	.	2.76	1.63	0.49	0.45	5.50	2.17		0.97	0.33	0.83	1.44	23.80
נ		ට්.		0.04	1.86	0.47	0.53	0.57	1.40		0.33	1.29	4.41	2.10	1.64
DTPA. extr.	p.p.m.	Mn		2.80	3.34	1.14	4.45	17.15	60.16		2.91	4.86	2.94	4.83	302.07
I		ਮੁ		212.58	80.91	41.60	52.16	358.85	318.55		221.21	44.46	171.50	314.40	659.33
KCI	extr. Al	ne/100g.	SOIL	5.42	4.43	5.04	5.87	19.75	0.59		8.66	4.82	4.02	5.76	19.34
		HCO3- me/100g.		0	0	0	0.07	0	0.85		0	0.15	0.17	0	0
	T (me/litr	C03= I		0	0	0	0	0	0		0	. 0	0	0	0
	SOLUBLE OCATION AND ANIONS IN SOIL EXTRACT (me/litre)	SO4=		33.49	13.91	5.64	15.22	225.43	126.32		3.92	17.82	293.26	12.97	359.49
	NS IN SO	ರ		0.95	0.45	0.58	0.71	6.01	1.68	•	1.29	0.84	0.52	1.51	18.75
	ND ANIO	Mg++		23.48	12.73	5.41	3.78	41.21	80.35		3.95	69.0	0.90	9.11	59.11
	A TION A	Ca++		11.81	7.76	3.94	8.82	22.28	26.67		1.29	0.03	0.39	2.89	23.17
	UBLE OC	K+		60.0	0.09	0.14	0.31	0.03	0.49		0.74	0.03	0.05	0.28	0.04
	SOL	Na+		2.56	1.19	1.09	2.13	0.48	5.43		7.62	0.36	0.39	0.81	0.29
	ATURN	%		48.1	42.4	46.6	44.3	42.0	43.4		58.7	49.9	44.5	42.3	42.4
EC	m.mho/ S	cm.		3.29	1.96	1.26	2.41	10.21	8.11		1.12	2.17	2.52	2.31	15.39
	HORIZON m.mho/ SATURN			Ap	Bg1	Bg2	Bg3	Bcg	Ç		Ap	Bg1	Bg2	Bg3	Cg
	DEPTH	cm.		0-10/13	10/13~18/20	18/20-45	45~80/90	80/90~140	140~200		0-10	10~30	30~60	06~09	90~140
	CODE	NO.		TD-4-1	TD-4-2	TD-4-3	TD-4-4	TD-4-5	TD-4-6		TD-5-1	TD-5-2	TD-5-3	TD-5-4	TD-5-5

Remark: Determined by DLD

(1) Bacho area

The mineral soil under the peat layer in the Bacho F/S area is generally sandy with few portions of low clay and loamy sand content. It is therefore generally characterized by a good percolation with few expections as in the case of the Cord No. BC-8-2. This cord located in a runway showed a very slow percolation due probably to soil compaction in the area.

Fibric peat layers show a very good percolation, but hemic peat layers which the decomposition is almost complete tend to show lower percolation. With respect to chemical properties, the top soil is strongly acid with pH values amounting to less than 4.5. The total carbon content ranges generally between $30\sim60\%$ with most values recorded between $50\sim60\%$. The total nitrogen content ranges between $0.9\sim1.8\%$, with most values recorded between $1\sim1.5\%$; the mineral soil under the peat shows values less than 0.1%.

The C/N Ratio tends to be high due to humus leaching throughout the layers.

The Cation exchange capacity (CBC) of peat soil shows about more than 100, but the exchangeable calcium and potassium are low and the base saturation percentage is less than 50%, but the exchangeable magnesium is higher than other bases and is found extremely high in the cord No. BC-6 location. This area coincides with the palm oil growing area where the application of chemical fertilizer is high. The exchangeable aluminium of deeper layers is relatively low except in some areas. The available phosphorus of the layers is generally low and amounts to less than 3mg/100g soil. Sulfate ions are mainly found below in the cords No. BC-1 and BC-3 which are located nearby the conservation zone. It is observed that places of high concentrations of sulfate ions correspond also to places of high concentrations of released iron(Fe).

(2) Kab Daeng area

The percolation in the Kab Daeng F/S area is also very good similarly to that in the Bacho F/S area.

With respect to chemical properties, the field pH is 5.5 and is higher than the Bacho F/S area except in some parts(the north part has pH values less than 4.5). The total carbon content is less than 50%, and the total nitrogen content is less than about 1% except in the top soil. The C/N ratio is low particularly in the Hemic peat which is nearly completely decomposed. The CEC ranges between 60 and 180 meg/100 g soil, but in the cord No. KD-2 it is higher than 100 meq/100g soil. The exchangeable calcium and potassium is low, but the Mg/K ratio exceeds 2 in all cases showing unexpectedly a higher magnesium than potassium concentration. The base saturation percentage is fairly low and amounts to less than 50%. The available phosphorus is extremely low amounting to less than 10 mg/100 g soil similarly to the Bacho F/S area. The sulfate ion concentration is very high in the substratum under 80 cm depth and may probably affect the upper layers. However, no definite inference can be made concerning this point pending the results of the analysis. It is worthy noting that in the Bacho area similar high sulfate ion concentrations in the substratum did not affect much the upper layers.

When the soil is dry, the sulfate ions in the substratum rise toward the top soil; therefore, a careful management to keep the soil wet is necessary throughout the year. The ion concentration in the mineral soil under the peat is higher than the Bacho area, this reason is considered due to the clayey soil in the Kab Daeng area.

On the other hand, trace elements such as ferrous iron, manganese and zinc are

highly available while copper is present in small concentrations.

The samples of potential acid sulfate soil are not yet analysed but the results are expected to be similar to those of the essentially actual acid sulfate or acid sulfate soils.

(3) Mu No-Kounai area

The clay content is approximately more than 25%. But the percolation is somewhat good and particularly that of the second layer is rapid due to the presence of cracks. Jarosites are made from oxydized pyrite by this way.

With respect to chemical properties, the field pH is less than 4.5, but the pH of the Cg layers existing beyond 1m depth is pH 6.5, which is high. high pH soil become highly acidic when dry, therefore the existence of potential acid sulfate soil including pyrite can be expected in these layers. The total carbon content is approximately less than 10% and the top soil is higher The total nitrogen content is less than 0.1% except in the than the subsoil. top soil. The CEC of the top soil and layers underneath is approximately less The top soil is rich in organic matter. than 20me/100g soil. The exchangeable calcium and potassium is low and exchangeable magnesium relatively The substratum(Cg horizon) is high in calcium and magnesium and shows high. a high pH. The exchangeable aluminium is generally high. The available phosphorus is generally low and amounts to less than 10mg/100g soil but it is The water soluble high in the top soil and relatively in the Cg layer. sulfate ions are somewhat high particularly in the substratum. The trace elements such as iron and manganese are relatively high and copper and zinc relatively low.

Table E-14-1 Limestone composition for Agriculture from Ratapcom District, Songkhla province

Source of	of o			≥ €				mdd		3e		%			
Limestone	one	Al	F G	Mg	*	Ca	S		Mn	න ට ට	Calcite	Boron oxide	Pyrite	Other	Kinds
Rug-geat Mt.	at Mt.	 	0.4	တ (ဂ်	6.3	27.9	180	2570	370	80.8	92, 7-100 98, 0	0-1.5	l	-	Reef Limestone Calcarenite
Kuha	Mt.	0.3-	0.1-	ţ	tr- 0.1	36. 1- 39. 1	10-	290-	530	76.3-87.0	90-91.9	ι	4, 2-9, 8	1.9	Calcilutite
		1.7-2.4	0.5	tr- 0.3	0.1	36.3- 36.6	10-	3400-	510- 805	75. 9- 83. 5	57.0-81.6	1		1.9(Clay) 0.6(Quartz)	Breciated Limestone
Pra	Mt.	1.0-	0.3-	tr- 0.5	0.1-	32. 7- 37. 9	240- 1580	125-	50-	70.2-84.4	90, 8-94, 4	0-0.4	2, 4-3, 0	0.2-0.4 (Quartz) 0-1.0(Clay) 0.1-0.3(Carbon)	Calcilutite
Wang	Mt.	1.3-	0.2-	0.6-	0.8-	32.6- 35.6	225	95-	50-	76. 7- 89. 6	85. 2-94. 0 92. 0	2.6-3.8	1 1	2.4-2.6(Quartz) 0-2.0(Apatite) 4.6(Quartz)	Calcilutite Calcarenite
Nuo	Mt.	1. 4	0.3	1.0	0.4	35.7	435	370	40	83.7	78.0	4.6		3.4 (Quartz) 12.2 (Tremolite) 1.8 (Diopside)	Marble

Source; A study on physical chemical and mineralogical properties of limestone for agriculture in the southern part of Thailand, 1982 by Pojanee Moncharoen etal. Remarks: C. C. E = Total neutralizing power.

Table E-14-2 Sources of lime and their neutralizing values in CaCO $_{\mbox{\scriptsize 3}}$ equivalent

Material	Primary ingredients	Neutralizing value
Burned Lime	CaO	179
Hydrated Lime	Ca (OH) 2	136
Dolomite	CaMg(CO ₃) ₂	109
Calcic	CaCO 3	100
Basic slag	CaSiO ₃	86

Source: Kamarudin, 1988

Table E-14-3 The calibrations for lime requirement

Woodruff buffer	Lime req	uirement	Woodruff buffer	Lime requ	irement	
solution pH	kg/rai	kg / ha	solution pH	kg / rai	kg / ha	
6. 9	156	975	5. 4	2, 496	15, 600	
6.8	312	1, 950	5, 3	2, 652	16, 575	
6.7	468	2, 925	5, 2	2, 808	17, 550	
6. 6	624	3, 900	5.1	2, 964	18, 525	
6. 5	780	4, 875	5. 0	3, 120	19, 500	
6, 4 936		5, 850	4. 9	3, 276	20, 475	
6.3	1, 092	6, 825	4, 8	3, 432	21, 450	
6. 2	1, 248	7, 800	4.7	3, 588	22, 425	
6. 1	1, 404	8, 775	4. 6	3, 744	23, 400	
6. 0	1, 560	9, 750	4. 5	3, 900	24, 375	
5, 9	1, 716	10, 725	4.4	4, 056	25, 350	
5, 8	1, 872	11, 700	4.3	4, 212	26, 325	
5. 7	2, 028	12, 675	4, 2	4, 368	27, 300	
5. 6	2, 184	13, 650	4. 1	4, 524	28, 275	
5.5	2, 340	14, 625	4. 0	4, 680	29, 250	
			3.9	4, 836	30, 225	

Remark : Lime mean CaCO₃

Table E- 14-4 Requirement of lime stone for concerning the series in the pilot area

series	mapping	·	pH 5			pH 6.5	
	unit	Area(ha)	ton/ha	Req. (ton)	Area(ha)	ton/ha	Req. (ton)
Narathiwat	22	822	25	20, 550	822	30	24, 660
	25	24	28	672	24	38	912
	26	2, 165	30	64, 950	2, 165	44	95, 260
Munoh	19	256	20	5, 120	256	30	7, 680
	·						
Rangae	33	64	12	768	64	15	960
: '	34	288	16	4, 608	288	20	5, 760
	35	80	12	960	80	15	1, 200
	:				'		
Kab daeng	14	36	20	720	36	35	1, 260
					!		
Thon Sai	49	145	12	1, 740	145	14	2, 030
,	: .	3, 880	_	100, 088	3, 880	-	139, 722

Remak:1)Source is the data by DLD

pH 2:never determined for L.R.

²⁾ Total neutralizing power in limestone; about 80%.

³⁾Lime requirement used Woodruff method.

E-14-5 Determination of total potential and actual acidity.

Methods

Total acidity of the soil was determined by titration up to pH 5.5 with NaOH of a sample suspended in a NaCl solution(1 mol/l), in a soil/solution ratio of 1/5 by volume or 1/2.5 by mass. pH measurements were done with an Orion Digital Ionalyzer, model 801A. Total acidity at pH 5.5 was read from the titration curves. Potential acidity of the samples was determined after they were oxidized, actual acidity was determined of the fresh or freeze-dried samples.

Titration methods

Four titration methods were tested:

- 1. 'Slow titration' of the soil suspension. Different amounts of NaOH solution were added to 20 ml subsamples of the soil suspension. After various time steps(immediately after titration, after 1 h, 24 h, 48 h and 1 week), the pH of all subsamples was measured and titration curves were drawn;
- 2. 'Fast titration' of the soil suspension. Subsamples(100 ml) of the soil suspension were rapidly titrated by small additions of NaOH solution. After each addition the suspension was homogenized and the pH measured. Additions were continued until pH between 6 and 7 was reached;
- 3. 'Back titration' of the suspension. After fast titration of the soil suspension to pH 6-7 and a 24 h waiting period(during which the pH dropped to 5.5-6), the suspension was back titrated with a HCl solution to pH 5.0-5.

 5. After another wait of 24 h the pH was measured again;

4. 'Fast titration' of the soil extract. Subsamples(50 or 100 ml) of the soil suspension were extracted twice with a NaCl solution(1 mol/1). The extract was titrated fast.

Oxidation method

After suspending the soil sample in a NaCl solution(1 mol/1), in a soil/solution ratio of 1/5 by volume or 1/2.5 by mass, the suspension was oxidized with 30 % H₂O₂ at room temperature or on a moderately warm waterbath. Hydrogen peroxide was added until the mineral soil material became clear gray to clear brown coloured and no foam existed or was formed upon adding further H₂O₂. A possible surplus of H₂O₂ was evaporated by heating briefly on a boiling waterbath. The suspension was then brought to the original volume by evaporation or by addition of water.

Further chemical analyses

Pyrite was measured as Fe after extraction by HNO₃. Non-pyrite iron was excluded by a pretreatment with a HF/H₂SO₄ mixture. Water-soluble plus exchangeable sulphate and jarosite were determined turbidimetrically as sulphate, after successive extractions by EDTA. 3Na(0.1 mol/1) and by HCl (4 mol/1) (Begheijin et al. 1978).

Elemental sulphur was determined turbidimetrically as colloidal sulphur after

extraction with acetone and exchange of acetone by water.

Source:

Selected Paper of Dakar Symposium on Acid Sulfate soils. ILRI publication 44Dakar, Senegal, January 1986.

Edited by H. Dost Publication 44 International Institute for land Reclamationand Improvement/ILRI P.O. Box 45, 6700 AA Wageningen, the Natherland, 1988.

E-14-6 Lime Requirement (Woodruff method)

1. Reagents

Preparation of Woodruff's buffer solution

- 1. Weigh 40.0 g of calcium acctate(Ca(OAc)₂) into a beaker, and dissolve in approximately 300 ml. of distilled water.
- 2. Weigh 8.0 g Para-nitrophenol into a beaker, and dissolve in approximately 300 ml. of hot distilled water.
- 3. Mixed solution from (1) and (2), shaking as they are combined, and add 350 ml. of distilled water, again shaking as the addition is made and leave it over night.
- 4. Adjust to pH 7.00 with 1.2 g sodium hydroxide(NaOH) using the standardized pH meter.

2. Procedure

Weigh 10 g of air-dry soil into 50 ml. beakers, add 10 ml. of distilled water, mix or stir, let stand and read soil pH in water. Add 10 ml. of the woodruff's buffer solution to the soil suspensions after pH values in water are read. Mix or stir, and let the suspensions stand 30 min. before determining the pH measured Value.

Select and record the amount of lime required to bring the soil to the pH you choose to lime the soil base on the calibrations which have been already calibrated(see table). E-16-2 Method of the leaching test in laboratory

(1) Purpose; To get the supplemental data of field test.

(2) Method

- 1) Experimental soil Samples
 - No. 1 Surface soil of Muno series
 - No. 2 Soil including Jarosite of Muno series
 - No. 3 Peat soil of Narathiwat series
- 2) Soil:water ratio = 1:2, collect 10 leaching sample replications
- 3) Determination

Measurement of pH, EC, Alkaline consumption(designate the titration of 0.1M NaOH in 400ml leachate).

4) Preparation and process of experiment Soil is passed through 2mm diameter (sieve of 2mm) and 2 replications of test.

(a) Tube test

Place 200g of soil in a tube of top cross section about 40 cm² with wool filter in bottom and drop tube(5 times) from 5cm height, to allow a uniform packing of soil. Then place paper of filtration on top of soil (to prevent disturbing soil when pouring).

l

Pour slowly distiled water into tube equipped with a stopper(screw pinch cook).

Beging the leaching(speed less than 400ml/1hour controlled by the screw pinch cook stopper).

1

Receive in 500 ml beaker with 400ml marking.

.

When the leaching solution reaches 400ml, stop leaching (at that time, keep saturated condition into tube to prevent oxidation of pyrite).

Ļ

Determination of leachate(take 10 \sim 100ml as concentration to titration in Alkaline consumption).

(b) Beaker test

Place 100g soil and water 200ml(by measuring cylinder)in 500ml beaker.

1

Mix soil well by glass stick(about 3 min).

1

Let alone until making the upper clear solution (about 30 min at room temperature).

l

Decant upper clear solution to another beaker.

Î

Determination of leachate (the same as the tube test).

Remark; After going home the experimentalist should keep saturated conditions into the tube to prevent oxidation of pyrite.

At the end of the leaching, the soil sample can be air dried at room temperature about one week (oxidative condition). After that, leaching experiments can be carried out similarly as the above.

Table E-15 Result of leaching test in laboratory(tube) (2)

	es of		pli			EC(mS)		1/10 1	M NaOll (litratio	n
lea	ching	2	2	Ave.	2	2	Ave.	2	2	Ave.	
	1 :	3, 2	3. 1	3. 2	1. 27	0.87	1.07	34. 4	17.6	26. 0	
	2	3, 5	3, 6	3, 6	0. 28	0.18	0. 19	3, 5	2.0	2.8	
W	3	3. 5	3. 6	3.6	0. 22	0.17	0. 20	3. 2	2. 1	2.7	
е	4	3. 5	3. 7	3. 6	0. 16	0, 11	0.13	2. 3	1.3	2.3	
t	5	3, 6	3.6	3.6	0.14	0.10	0.12	2.0	1.2	1.6	
	6	3.7	3, 6	3. 7	0.12	0.09	0.10	1.8	1. 3	1.6	
	7	3. 7	3, 8	3.8	0.12	0.07	0.10	1.6	1. 2	1.4	
	8	3. 6	3.8	3. 8	0. 10	0.06	0.08	1.5	1.0	1.3	
	9	3. 6	-	- -	0.09	-		1.4		_	
	10	3. 6		-	0.09	-	_ ·	1.4	_	-	
	Total	-	_	_		-	:	_	· _	_	
Af	1					_	_		_	_	
te	2	_		_	-	_	_	_	_	_	
r	3	_	_	_	; - ·	_	_		-	_	
	4	-	-	_	-	_	_		· _ · .	-	
d	5	_	-	-	. –		_	-	·	·	
r y	Total				-	- .	· .	-	-	-	

Table E-15 Result of leaching test in laboratory(tube) (3)

	nes of		рH			1/10 M NaOH titratio				
tea	ching	3	3	Ave.	3	3	Ave.	3	3	Ave.
	1	3. 6	3. 9	3. 8	0, 33	0. 10	0. 22	7, 8	3, 5	5, 7
	2	3. 9	3, 8	3. 9	0. 23	0. 11	0. 17	8.6	2. 2	10.8
W	3	4. 0	3. 9	4.0	0.11	0.12	0.12	8, 0	4.6	6. 3
е	4	4. 0	4. 0	4.0	0. 13	0.06	0.10	7.2	3.0	2. 1
t	5	4.0	3.8	3, 9	0. 08	0.07	0.08	4.9	2. 9	3, 9
	6	3. 7	3.8	3.8	0.05	0.03	0.04	3, 9	2. 2	3. 1
	7	3, 8	4. 1	4.0	0.08	0.07	0.08	6.6	2.6	4.6
	8	3. 9	4.0	4.0	0. 05	0.03	0.05	4.6	1.7	3, 2
	9	4, 2	4. 0	4. 1	0.05	0.04	0.05	3. 4	3. 3	3.4
	10	4.0	4.0	4.0	0.07	0.03	0.05	8.3	1.5	4. 9
•	Total		_	_	_	-		63. 3	27. 5	48. 0
Af	1	3. 7	4. 0	3. 9	0. 08	0.05	0, 07	6.4	2. 0	4. 2
te	2	3. 7	4. 1	3. 9	0. 05	0.03	0.04	3. 4	1.5	2.5
r	3	3, 8	3.9	3.9	0.05	0. 05	0.05	4, 7	2.0	3. 4
	4	4.0	4.0	4.0	0. 04	0.05	0.05	3. 3	1.2	2. 3
d	5	4. 0	4. 0	4. 0	0. 05	0.04	0. 05	3, 2	1, 0	2. 1
r y	Total	 ;	· _	-	_	_	_	21. 0	7. 7	14.5

Table E-16 Result of leaching test in laboratory(beaker)(1)

	nes of		рH			EC (mS)	1/10	M NaOH	titration
lea	ching	1	1	Ave.	1	1'	Ave.	1	1	Ave.
	1	3. 3	3. 3	3, 3	1, 40	1. 43	1. 42	60 0	60.0	60. 0
	2	3. 3	3, 3	3. 3	1. 20	1. 20	1. 20	50.4	48.8	49.6
W	3	3, 4	3.4	3. 4	0. 82	0, 80	0.81	29. 6	32. 8	31. 2
e	4	3.4	3.5	3.5	0.72	0.64	0.68	20.0	24. 0	22.0
t	5	3.5	3.5	3.5	0.53	0.60	0.57	15.0	16, 1	15. 6
	6	3, 5	3.5	3. 5	0.46	0.48	0.47	12. 9	12.0	12. 5
	7	3. 6	3.6	3.6	0. 37	0.40	0. 39	10.3	9.4	9. 9
	8	3, 6	3. 6	3.6	0, 29	0.36	0, 32	7.4	8. 2	7.8
	9	3.6	3.6	3.6	0. 28	0.30	0. 29	6.3	6.6	6.5
	10	3.7	3.7	3.7	0. 23	0.20	0.22	5. 6	6.0	5.8
	Total	-		_	-	<u></u>		217.5	223. 9	220. 9
Af	1	3, 7	3. 7	3.7	0. 20	0. 21	0. 21	5. 3	5. 6	5.5
te	2	3. 7	3. 7	3.7	0.18	0.18	0.18	5.0	5. 4	5. 2
r	- 3	3. 6	3. 7	3. 7	0, 19	0. 21	0. 20	4.8	5.0	4. 9
	4	3. 7	3.7	3. 7	0. 17	0.19	0. 18	4.6	4.7	4.7
d	5	3, 7	3. 7	3.7	0. 15	0. 17	0. 16	4.7	4.8	4.8
r y	Total		-		· <u>-</u>	_	<u>.</u>	24. 4	25, 5	25, 1

Remarks No. 1 : Surface soil of Muno series

Testing:Oct.-Nov.1992

No. 2 : Soil including Jarosite of Muno series

No. 3: Peat soil of Narathiwat series

Table E-16 Result of leaching test in laboratory(beaker)(2)

	es of	:	рН			EC(mS))	1/10 1	d NaOH	titration
lea	ching	2	2	Ave.	2	2	Ave.	2	2	Ave.
	1	3. 2	3, 2	3. 2	1.00	1.00	1.00	26. 4	27. 2	26. 8
	2	3. 2	3. 3	3. 3	0.85	0.76	0.86	16.8	20.8	18.8
W	3	3. 3	3. 3	3. 3	0, 56	0.63	0.60	10.4	13.6	12.0
е	4	3. 4	3. 4	3. 4	0.45	0, 40	0.43	5. 6	5. 6	5. 6
t	5	3.4	3.4	3.4	0.44	0, 38	0.41	7.3	5.8	6.6
	6	3.4	3. 5	3. 5	0.39	0.37	0.38	5.8	5.0	5. 4
	7 %	3.5	3. 5	3. 5	0. 24	0.26	0, 25	3. 2	3. 5	3.4
	8	3.6	3.6	3.6	0, 20	0, 22	0. 21	2.4	3. 0	2. 7
	- 9	3.5	3, 5	3. 5	0. 23	0.23	0.23	2.8	3. 1	3, 0.
	10	3.6	3. 6	3. 6	0.18	0. 20	0. 19	2. 2	2. 6	2. 4
	Total	-		<u>-</u>	-	_	-	82. 9	90, 2	86. 7
Af	1	3. 7	3, 6	3, 7	0. 16	0. 18	0. 17	2. 2	2. 4	2. 3
te	-2	3.7	3. 6	3, 7	0.14	0.17	0.16	1.8	2, 2	2. 0
r	3	3. 7	3, 6	3. 7	0. 15	0.18	0. 17	1.6	1. 9	1.8
	4	3. 6	3.6	3. 6	0.13	0. 15	0. 14	1.4	1.5	1.5
d	5	3. 7	3. 6	3. 7	0. 12	0. 13	0. 13	1.5	1.8	1.7
r y	Total		- .	· –	_	_	-	8. 5	9. 8	9. 3

Table E-16 Result of leaching test in laboratory(beaker)(3)

	es of	1.5	рН			EC(mS)		1/10	M NaOH	titratio	n
iea	ching	3	3.	Ave.	3	3	Ave.	3	3	Ave.	
	1	3. 4	3, 5	3, 5	0. 25	0. 25	0. 25	6. 4	7. 2	6. 8	
	2	3. 7	3, 7	3, 7	0.16	0.16	0.16	4.9	4. 4	4, 7	
W	3	3.7	3. 7	3.7	0.12	0.13	0.13	3. 9	4, 2	4.1	
e	4	3, 8	3.8	3. 8	0. 11	0.11	0.11	3.6	3. 3	3.5	
t	- 5	3. 7	3.7	3.7	0. 10	0.11	0.11	4.3	4. 3	4.3	
	6	3.8	3.8	3.8	0.09	0.09	0.09	4.5	4.0	4.3	
	7	3. 9	3.9	3. 9	0.08	0.08	0, 08	3. 2	3.0	3. 1	
	8	4.0	4.0	4. 0	0. 07	0.07	0.07	3. 4	3. 4	3.4	
	9	4.0	4.0	4.0	0.06	0.06	0.06	3. 2	3, 3	3. 3	
	10	4. 1	4. 1	4.1	0, 05	0.05	0.05	2.4	2, 2	2.3	
	Total	_	_	-		-	~	39. 8	39, 3	39. 6	
٩f	1	4. 0	4. 1	4. 1	0. 04	0. 05	0, 05	2, 3	2, 2	2. 3	
te	2	4.0	4. 1	4.1	0.04	0.04	0.04	2.0	1. 9	2.0	
r	3	4. 0	4.0	4.0	0.04	0.05	0.05	1.8	1.8	1.8	
	4	4.0	4.0	4.0	0. 03	0.04	0, 04	1.5	1.6	1.6	
d	5	4. 0	4.0	4. 0	0. 02	0. 03	0.03	1.7	1.8	1.8	
r ÿ	Total			_		-	-	9. 3	9, 3	9. 3	

Table E-17 Land Suitability Classification for Economic Crops of Thailand

		• •		Land :	suitabi	lity rat	ngs	
Kind of	Symbol	Range of		5 class	es	3	classes	3
limitation		limitation	1 v	ery wel	l suit.		iited	
		·] W	ell suit	ted ·		orly su	iited
			. 111 m	od. wel	l suit.	<u> 111</u> w	rsuited	
		,	IV p	oorly si	uited			
			V u	nsuited				
	:		р	К	F	Ř	С	L
Soil reaction	8	0 - 4.0	1 γ.	1 V	*	*	¥	¥
(average soil		4.0 - 4.5	-	111	*	¥	¥	¥
depth 0-30 cm.)		4.5 - 8.0	_	-	*	¥	¥	*
		8.0 - 8.5	-	11	*	*	*	*
Consolidated	C	< 15	V	γ	٧	111	<u> 111</u>	111
layer		15 - 25	Įγ	17	V	111	<u> 111</u>	<u>11</u>
(soil depth cm.)		25 - 50	111	111	14	11	<u>11</u>	
		50 - 100	_	-	111.	-		-
Soil drainage		very poorly drain.	_	٧	V	<u>111</u>	111	*
•		poorly drained	_	IV	V	111	111	*
	ď	somewhat poorly	-	111	1111	~	-	¥
		moderlately well	17	-	- '	-	-	¥
		well drained	17	-	-	-	~	*
		somewhat excess.	17	IV	ŢΥ	-	-	*
		excessively well	1 1	٧	17	11	-	*
Gravels		sversge > 80	V	Ą	х	χ	Х	111
(% by volumn)		soil 40 - 80	. 18	14	Х	х	Х	11
	g	depth 15 - 40	. 111	HF.	X	Х	Х	-
:	:	0-30 cm. 5 - 15			Х	X	Х	
		average > 80	Х	Х	V	<u>11</u>	<u> </u>	X
· · · · · · · · · · · · · · · · · · ·		soil 40 - 80	X	Х	14	11	111	Х
		depth 15 - 40	Х	Х	111	-	-	X
		0-75 cm. < 15	Х	Х			-	X
Jarosite	j	0 - 40 cm.	ΙV	*	V	111	11	*
And the second		40 - 100 cm.	111	*	1 1 1	11	_	¥

Land Suitability Classification for Economic Crops of Thailand

Xind of limit.	Symbol	Range	of limition	(P)	(א)	(F)	(R)	(C)	(L)
Mutrients status		averag	e toxicity	1	*	Х	Х	Х	11
		soil	L.&Mg<25%	¥	*	Х	Х	Х	<u> </u>
	'n	depth	very low	*	*	Х	х	χ	l
		0-30 с	m low	11	11	Х	Χ.	. Х	<u> </u>
		averag	e toxicity	χ	χ	* *	¥	*	*
		soll	L.&Mg<25%	χ	. х	¥	11	* *	Х
	;	depth	very low	Х	X .	*.	11	<u>11 -</u> :	χ.
		0-100 с	m. low	Х	X.	11	*	*	х
Organic layer	O		> 40	Ą	γ.	γ	111	111	*
(depth cm.)	·		20 - 40	Į V	17) ¥	. <u>11</u>	11 .	*
Permeability	p		rapid	1 V	*	*	*	*	*
		1	medium	111	* *	*	*	*	*
			sand loamy sand	J V	1 V	Х	χ	Х	*
		ave.	silt	I V	-	Х	Х	χ	*
			sandy loam	111	111	Х	χ	Х	*
Texture	5		sil, l,scl	П	÷	Х	Х	Х	*
			poor struc- ture clay	*	[1]	χ	X	χ	*
			sandy	Х	Х	17	Ш	-	*
		parti cle	coarse loamy	Х	χ	111	-	-	¥
		1 1	sandy + cemen	ted Bh			-		
		class	50-100 cm.	Х	Х	*	*	11	*
			50 cm.	Х	Х	٧	111	111	. 11
			massive clay	Х	χ.	*	11	*	1

Land Suitability Classification for Economic Crops of Thailand

Kind of limit.	Symbol	Range	e of limition	(P)	()()	(F)	(R)	(C)	(L)
Salinity	x	ave.	> 16,000	γ	γ	, х	х	χ	Х
(д S)		soil	10,000-16,000	γ	γ	χ	х	χ	Х
		depth	7,000-10,000	1 V	٧	χ	χ	Х	χ
		0-30	5,000-7,000	1 7	γ	χ	Х	χ	Х
		cm.	4,000-5,000	111	Ų	Х	Х	Х	Х
			2,500-4,000	111	<u> 1</u> V	Х	х	X	Х
			2,000-2,500	11	111	Х	х	Х	X
			> 16,000	х	χ	·γ	111	111	1.11
		ave.	10,000-16,000	х	χ	V	111	11	111
		soil	7,000-10,000	х	χ	V	111	11	111
		depth	5,000-7,000	Х	Х	γ	111	11	11
•		0-100	4,000-5,000	Х	χ	V	111	11	11
•		cm.	2,500-4,000	χ	Х	14	11		_
			2,000-2,500	х	Х	111	11	-	-
		ļ							
Erosion	e	very	severely	*	Ų	V	111	111	111
		seve	ely eroded	*	ĮŸ	ΪV	11	11	11
		mode	ately eroded	*	111	111-	-		-
Flood hazard	ſ	flood	i > 6 m.	Х	Х	χ	Х	χ	111
		flood	i 3-6 m.	х	Х	χ.	Х	Х	11
		flood	i every year	V	γ.	Х	Х	Х	Х
:		flood	i 7-9/ 10 year	ĵ V	Х.	χ	Х	Х	χ
		flood	i 4-6/ 10 year	111	χ	Х	. х	χ	Х
		flood	1 1-3/ 10 year	13	χ	χ	. , х	χ	Х
		floor	1 1/ 2 year	Х	١٧	χ	Х	Х	Х
			1 2/ 5 year	Х,	111	Х	Х	Х	Х
		flood	1 1/ 5 year	Х	11	Х	Х	<u> </u>	Х
		flood	l > 1/ 5 year	Х	Х	V	111	111	Х
		11000	1 > 1/ 10 year	Х	χ	14	11	11	Х
•		flood	i > 1/ 15 year	Х	Х	111	<u> </u>		χ
		flood	i > 1/ 25 year	Х	X	11	-	_	Х
Risk of damage	70	sei	verely	*	ΙV	1 A ·	*	11	*
by drought		nec	liún	*	Ш	111	*		*
		s)	ghtly	#	11	11	*		*
						i i			

Land Suitability Classification for Economic Crops of Thailand

Kind of limit.	Symbol	Range of limition	(P)	(N)	(F)	(R)	(C)	(L)
Rockiness or	r	> 90	V	γ.	V	1111	111	111
Stoniness		50-90	¥	Ų	γ	11	111	
(percent)		40~50	¥	γ	Ų	<u> </u>	111	<u>11</u> 1
		25-40	ĮV	γ.	1.Α		11	-
		10-25	111	-14	Ш	·	-	
		2-10	11	Ш	11 -	_		-
Topography or		rolling-very steep	γ	*	*	*	*	*
% slope	1	high topography pos	 ition					
•		low water storage	y	ŧ	*	*	ŧ	*
		40-50 % flat						:
		nearly flat < 3 %	14	*	*	*	*	*
		50-80 % flat and				- :		
		slope ≤ 3 %	111	*	* *	*	*	*
		> .75	v	γ	V	111	111	111
		50-75	V	γ	γ		111	111
4.5		35-50	V	V	JV	<u> </u>	111	111
		25-35	V	V	111	11		11
		20-25	٧	y	111	1	11	-
		16-20	V	IV	111	_	_	
		8-16	V		-	_	_	_
	·	4-8	V	11		_	_	_
		3-4	. Y		-	-	-	-
Risk of water	W	very severely	V	*	*	*	*	*
shortage		serevely	IV	¥	*	*	*	¥
		moderately	- 111	*	*	*	*	¥
•		slightly	:11	*	*	*	*	*

Remark P : Paddy

C : Coconut

N: Nonflooded annual crop

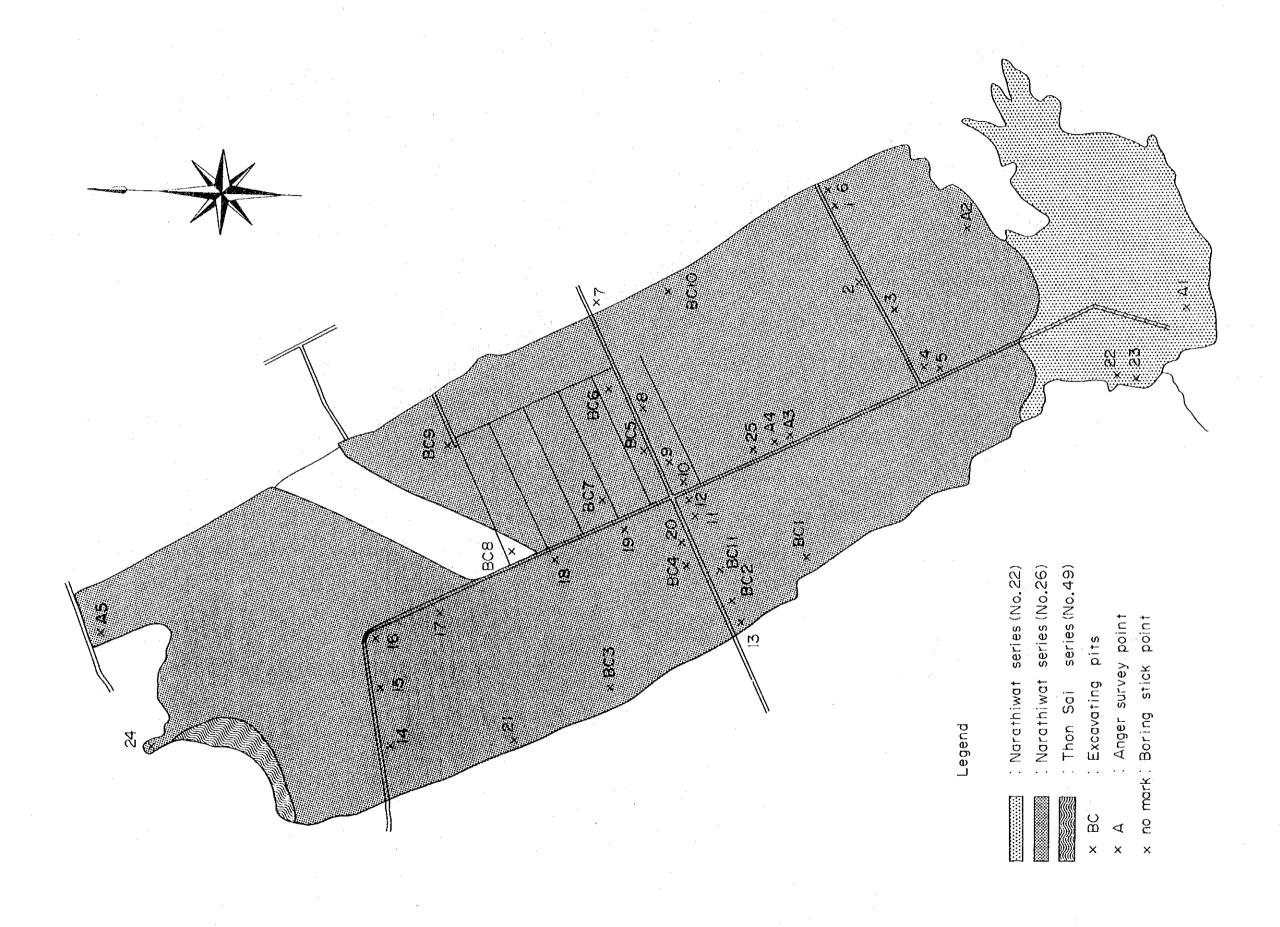
L: Permanent pasture

F: Fruit trees

-: no limiting factor

R : Para-rubber

X : other parameter


★ : no data

Soil Survey and Classification Division, Land Development Department, Ministry of Agriculture and Cooperative, Bangkok, Thailand.

Table E-18 Three phases distribution

Horizon	4	Mu No- Koknai leachi	ching tes	ng test field		4	Васьо	Bacho test field	יסי	
	L (cm)		-	Phase (%)		(cm)			Phase (%)	
		Bulk density	Solid	Solid Liquid Gaseous	Gaseous		Bulk density	Solid	Solid Liquid	Gaseous
П	0~53	0.84	38.9	45.0	16.1	0 ~25	0.33	29. 6	57.9	12.5
Ħ	23~22	1.25	48.9	48.3	1.9	25 ~50	0.37	33.7	62.2	
Ħ	55~85	1.21	46.3	48.5	2	59 ~170	0.22	20.3	74.1	.c 9
Ν	%22 √22	1. 15	44.5	53.8	1.7	170 ~	1.64	63.1	36.9	0

Remark: Soil sampling date; Oct. 5, 1992 and Oct. 20(Bacho).

Soil series and soil survey points in Bacho F/S area <u></u> 日 Figure

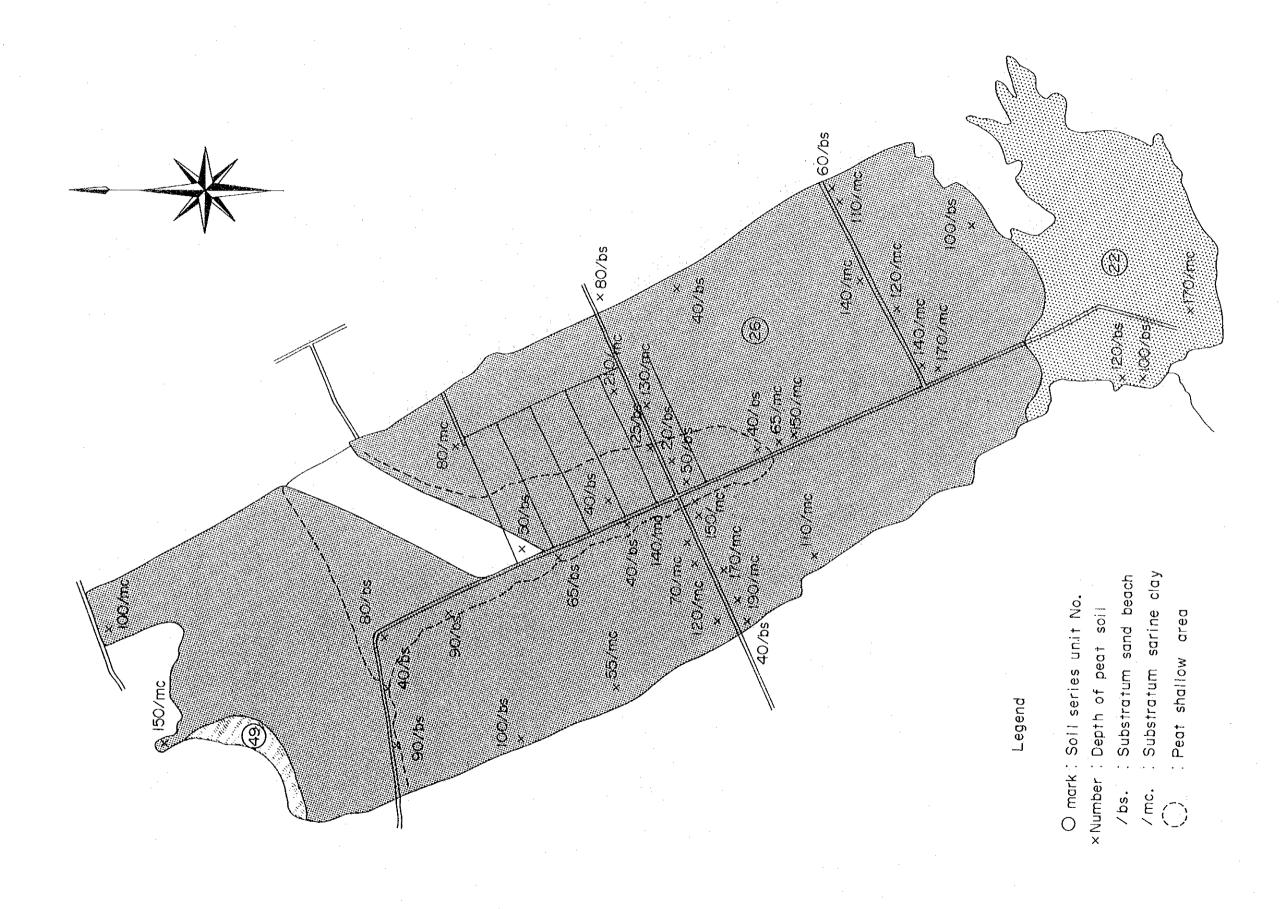
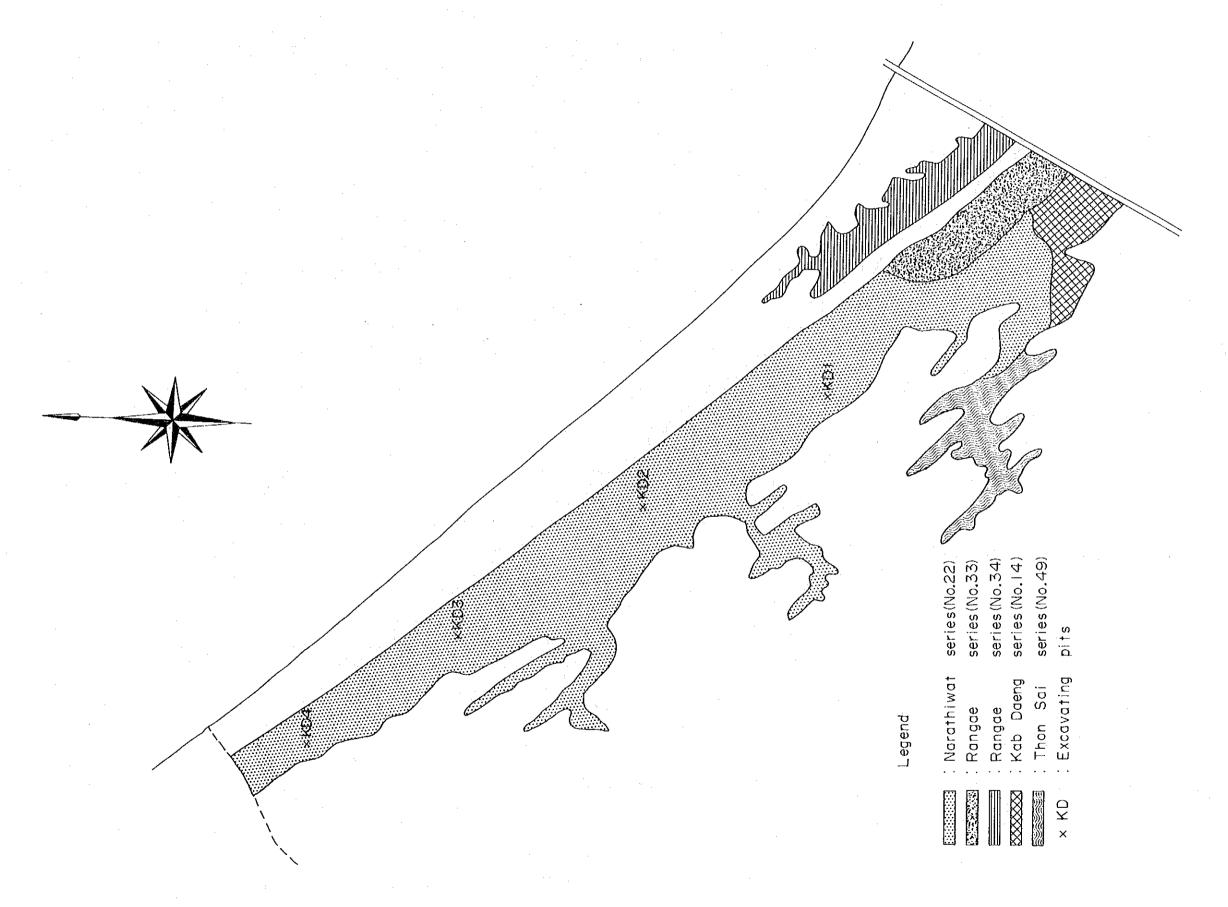
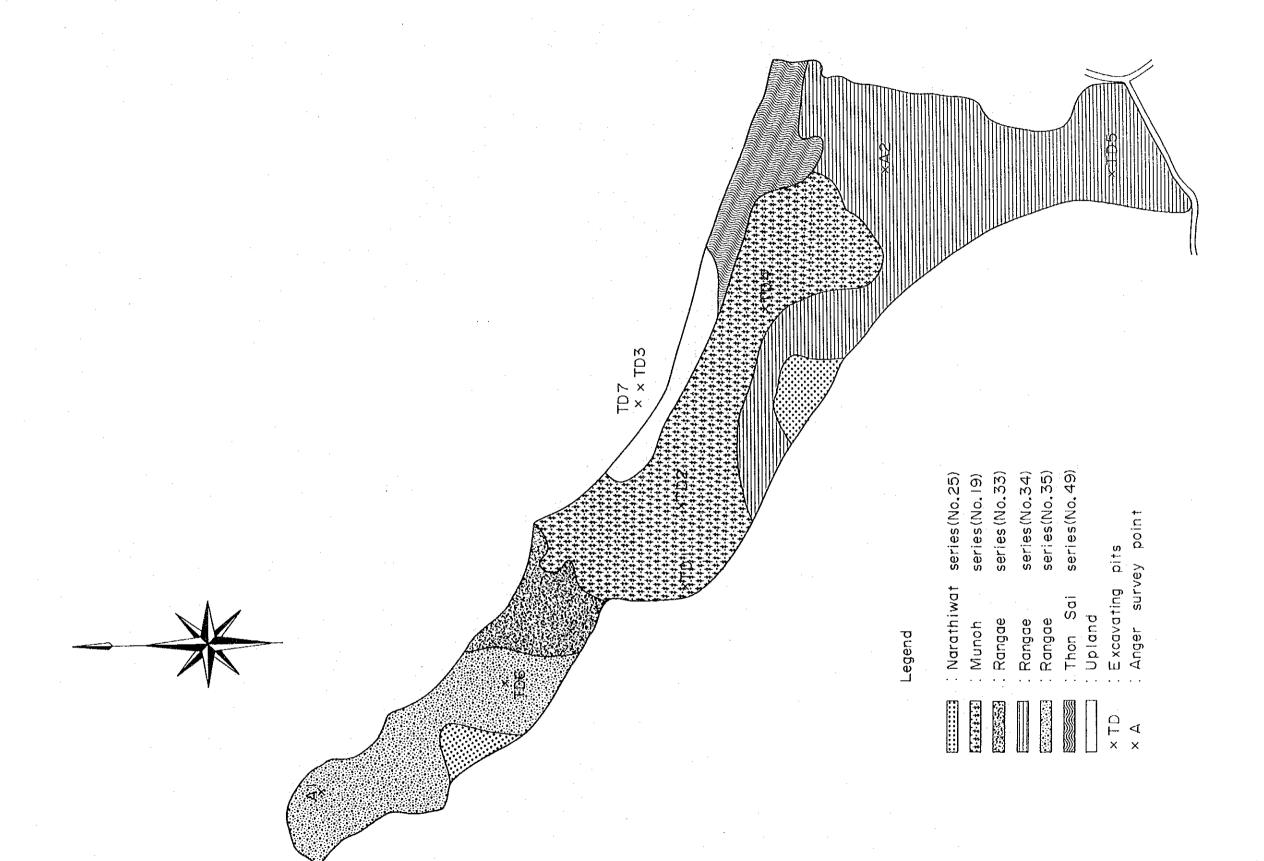




Figure E-2 Depth of peat soil in Bacho F/S area

Soil series and soil survey points in Kab Daeng F/S area Figure E-3

Soil series and soil survey points in Mu No-Koknai F/S area Figure E-4

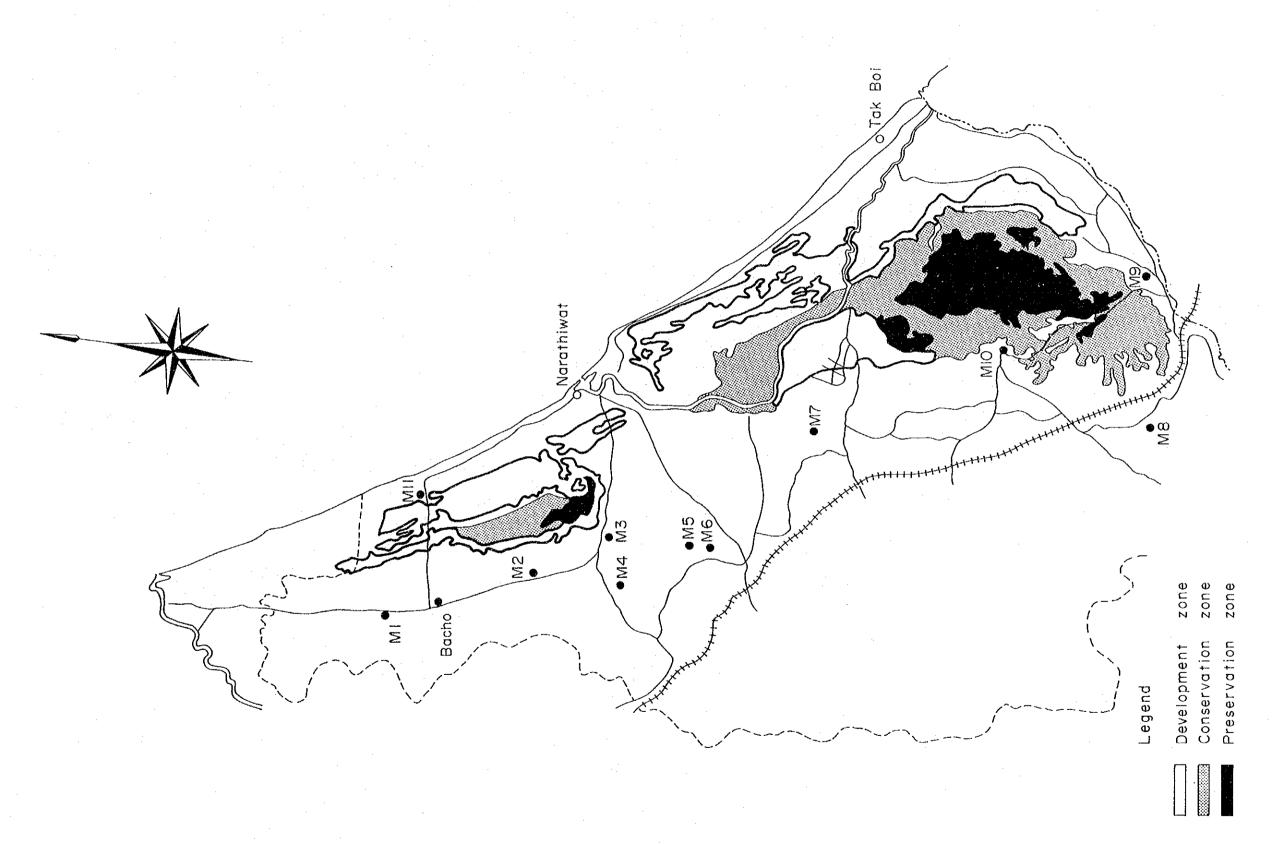


Figure E-5 Survey points of soil dressing materials

Figure E-6_ Land use in Development zone

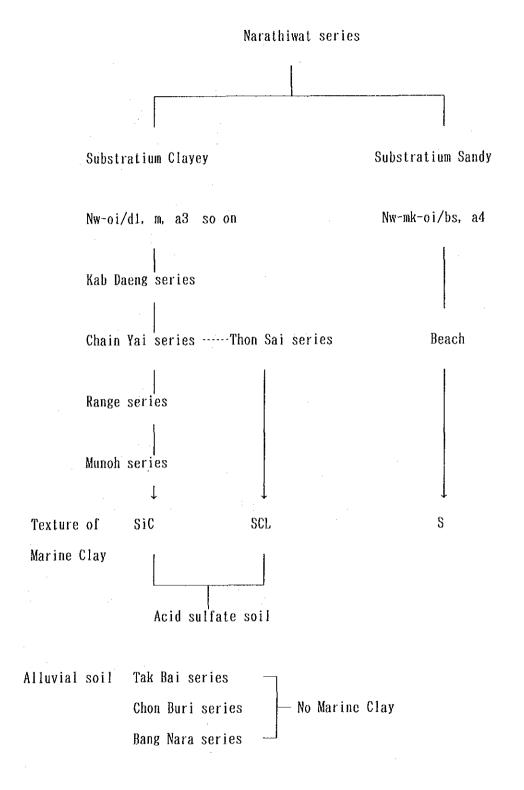
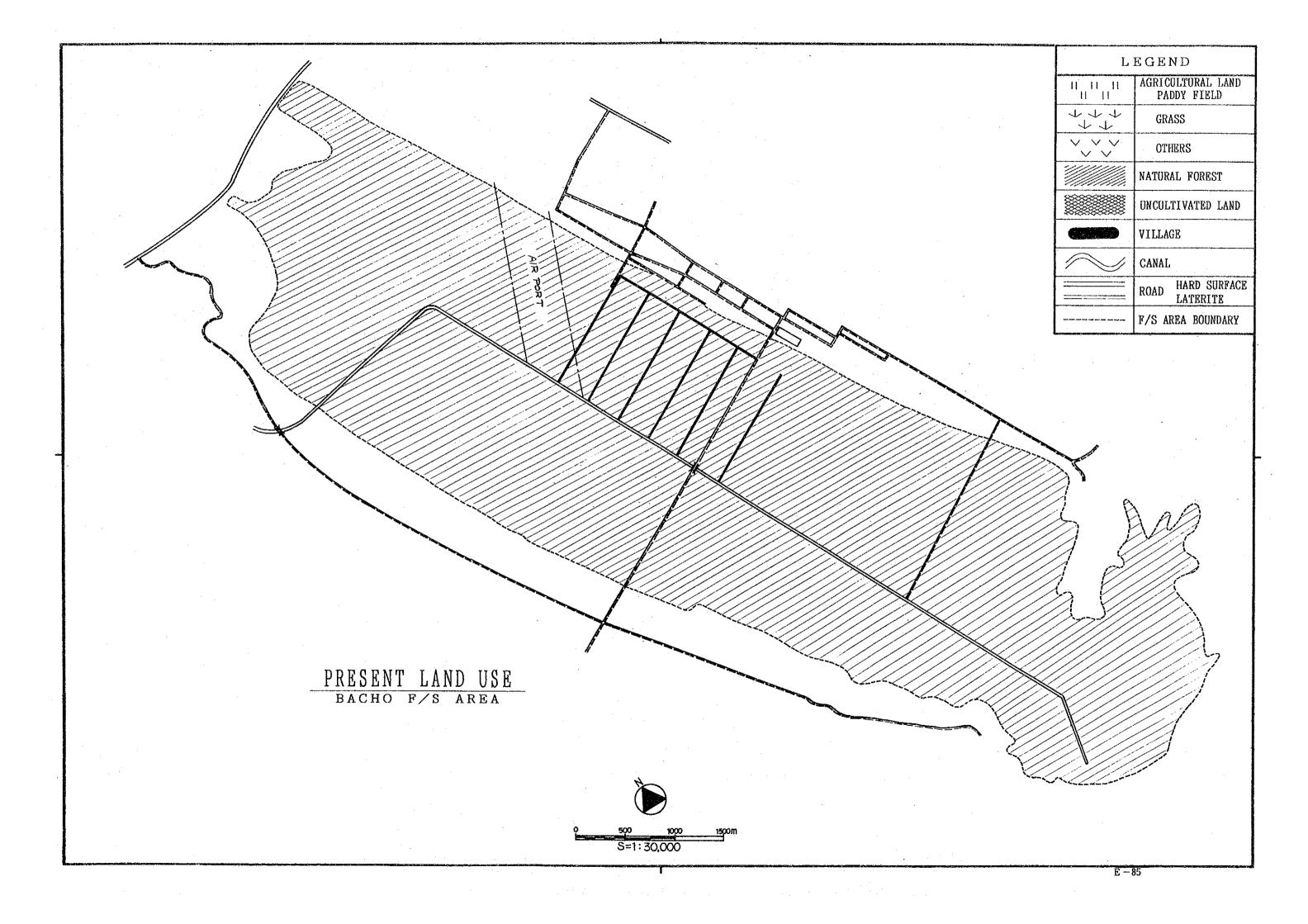
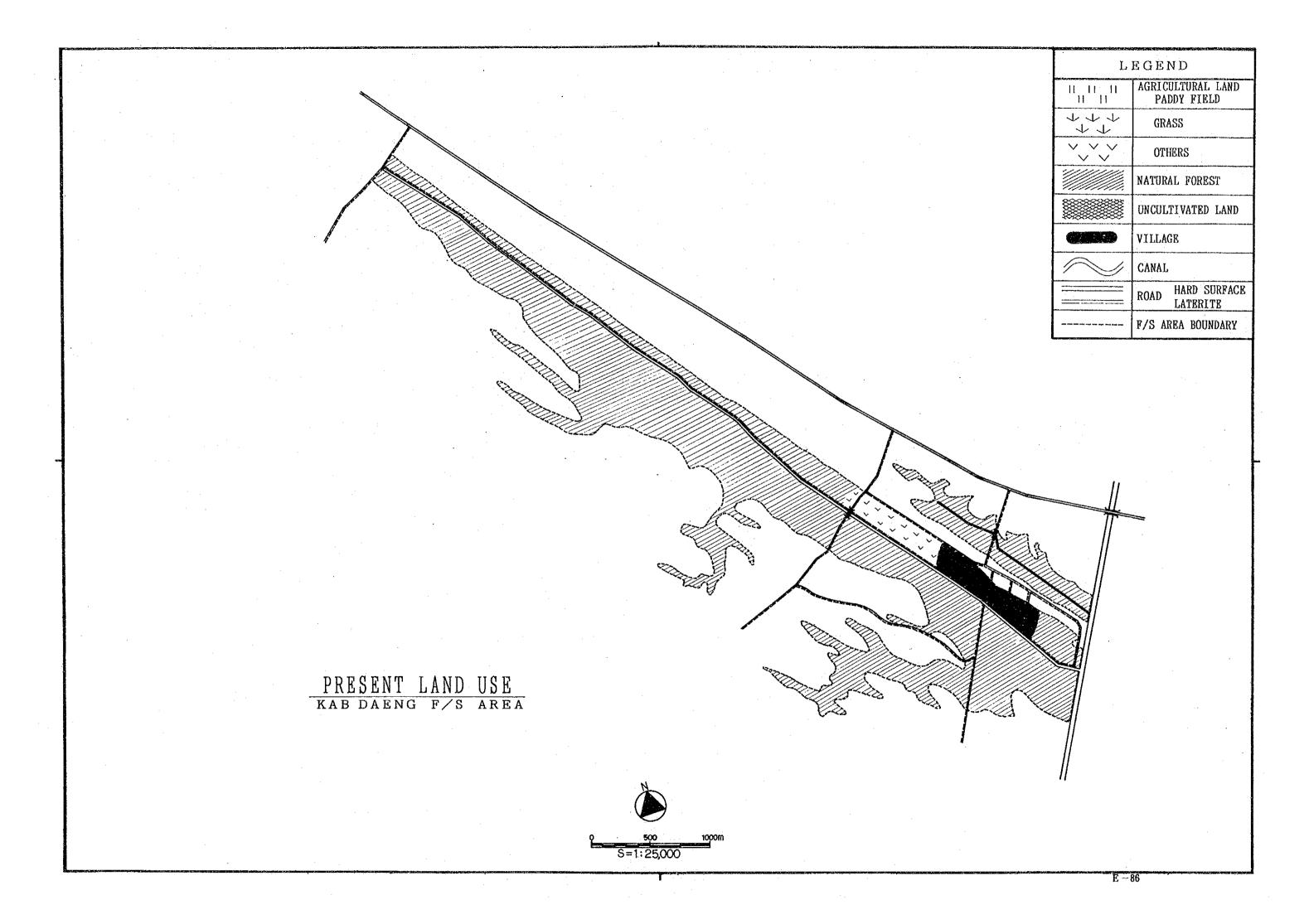
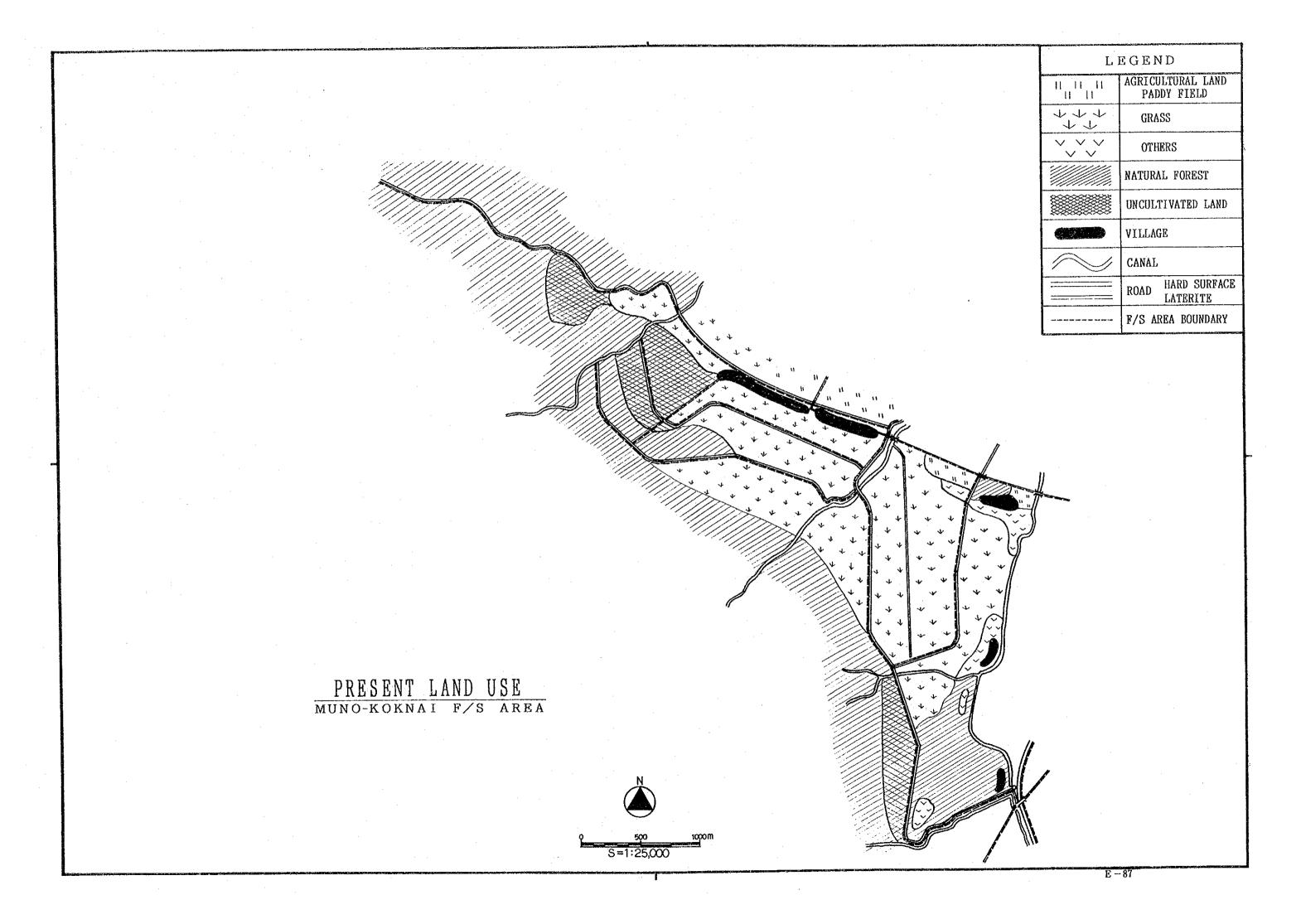





Figure E-7 Succession of soil series in swamp area

Remark:By referring the data of DLD semi-detaild soil map of Narathiwat Province

APPENDIX F. AGRICULTURE

APPENDIX F. AGRICULTURE

LIST OF TABLES

			Page
Table	F-1-1	Production of Paddy Rice, Thailand	F-1
Table	F-1-2	Production of Paddy rice, Narathiwat	F-2
Table	F-2	Production of Ground Nut	F-3
Table	F-3	Production of Mung Bean	F-3
Table	F-4-1	Production of Para Rubber	F-4
Table	F-4-2	Production, Area and Yield of Para Rubber	F-5
Table	F-5-1	Production of Coconut	F-6
Table	F-5-2	Production, Area and Yield of Coconut	F-7
Table	F-6	Planted, Damaged and Harvested Area,	
		Production and Yield of Vegetables	$\mathbf{F} - \dot{8}$
Table	F-7	Planted Area, Production, Yield and	
		Prices of Fruits (1988/89)	F-9
Table	F-8	Number of Livestocks	F-10
Table	F-9	National Reserved Forest in Narathiwat	F-11
Table	F-10-1	Inland Fresh Water Animals	
		in Narathiwat Province	
Table	F-10-2	Registered Aqua-Breeders	F-12
Table	F-11-1	Production, Area and Yield of para Rubber	F-13
Table	F-11-2	Production, Area and Yield of Rambutan,	
		Langson and Cashewnut (1991/92)	F-14
Table	F-11-3	Production, Area and Yield of Paddy	F-15
Table	F-11-4	Production, Area and Yield of Coconut	F-15
Table	F-11-5	Production, Area and Yield of string Bean,	
		Sweet Corn and Water Melon	F-16
Table	F-11-6	Production, Area and Yield of Durian,	
		Longkong and Mangostein	F-17
Tabla	Tr_12_1	Polation Potwoon Chan and ny	TD 10

Table	F-12-2 Relation Between pH of Soil and Water	F-19
Table	F-13-1 Cropping Guide (Food Crop)	F-20
Table	F-13-24 Cropping Guide (Vegetables)	F-21
Table	F-13-56 Cropping Guide (Food Crop)	F-24
Table	F-13-79 Cropping Guide (Vegetables)	F-26
Table	F-13-10 Cropping Guide (Tree)	F-29
Table	F-13-11 Cropping Guide (Fruit Tree)	F-30
Table	F-13-12 Cropping guide (Fruit)	F-31
Table	F-13-1316 Cropping Guide	
	(Fruit Crop and Vegetables)	F-32
Table	F-13-1725 Cropping Guide (Fruit Tree)	F-36
		: .

TABLE F-1-1 PRODUCTION OF PADDY RICE, THAILAND

			Second + Major_			Second	-{C		-	Major	.1	
۲. ده ۲.	Aria Planted Ha	ia Harested	.a Harested Production	Yield	Aria Planted H	.a Harested Production Yield	roduction	Yield	Aria Planted Ha	ia Harested Production	Production	Yield
	,000rais	,000rais	,000tons kg/	kg/rai	,000rais	,000rais	,000tons kg/rai	kg/rai	,000rais	,000rais	,000tons	kg/rai
1.1981/82	59,970	56,908	17,774	312	3,578	3, 553	2,017	588	56,312	53,353	15,758	295
2.1982/83	60,134	55,875	18,879	302	3,963	3,901	2,104	539	58,171	51,975	14,774	284
3.1983/84	62.596	80,038	19,549	326	4,481	4,410	2,606	591	58,115	55,828	16,942	305
4.1984/85	62,329	60,183	18,805	331	4,415	4,412	2,630	596	57,915	55,774	17,272	310
5.1985/86	63,422	81,457	20,284	330	3,985	3,981	2,334	588	59,437	57,476	17,930	312
8.1986/87	61,571	57,463	18,868	328	3,628	3,627	2,042	563	57,943	53,836	16,826	313
7.1987/88	58,888	57,169	18,428	322	4,564	4,505	2,771	615	54,324	52,664	15,658	297
8.1988/88	64,677	91,912	21,263	343	5,308	5,264	3,381	642	59,372	58,648	17,882	316
8.1989/90	64,439	81,744	20,801	334	5,244	4,587	2,124	485	59,195	57,177	18,477	323
10.1990/91	61,910	54,949	17,193	313	3,705	3,848	2,291	828	58,205	51,303	14,902	290
Average	61,894	58,770	18,072	325	4,287	4,187	2,430	580	57,699	54,583	16,642	305
		(9,403ha)	a) (2,028k	28kg/ha)		(870ha)	(3,627	(3,627kg/ha)		(8,733ha)		(1,906kg/ha)

SOURCE: Agricultural Statistics of Thailand Crop Year 1983/84,1987/88,1990/91.

TABLE F-1-2 PRODUCTION OF PADDY RICE, NARATHIWAT

		Second + Major	- Major			Second	puc			Major	<u> </u>	
Year	Aria	i. s			Ar	Aria			Å	Aria		
	Planted	Harested	Production	Yield	Planted	Harested	Production Yield	Yield	Planted	Harested	Production	Yield
<u> </u>	rais	rais	tons	kg/rai	rais	rais	tons	kg/rai	rais	rais	tons	kg/rai
1.1981/82	2:17,343	198,440	47,710	240	4,663	4,663	2,119	454	212,680	193,777	45,591	235
2.1982/83	185,943	185,886	82,119	334	2,151	2,151	1,030	479	183,792	183,735	61,089	332
3.1983/84	232,308	167,715	50,623	302	4,242	4,242	1,981	467	228,068	165,473	48,642	294
4.1984/85	231,412	206,751	68,123	329	13,186	13,186	5,274	400	218,226	193,565	62,849	325
5.1985/86	173,797	156,268	53,600	343	2,983	2,983	1,160	389	170,814	153,285	52,440	342
6.1986/87	155,630	122,666	35,487	289	5,804	5,804	1,776	306	148,826	116,862	33,711	288
7.1987/88	197,394	172,522	60,585	351	5,635	5,106	2,482	488	191,759	167,416	58,103	347
8.1988/89	218,249	201,971	68,816	341	19,188	15,139	7,963	526	192,572	188,832	60,853	326
9.1989/90	207,720	203,364	52,683	259	8,659	8,605	3,316	385	189,061	194,759	49,367	253
10.1990/91	104,228	103,734	33,897	327	1,520	1,520	620	408	102,708	102,214	. 33,277	326
Average	192,402	171,932	53,364	310	6,803	6,340	2,772	437	186,950	165,792	50,592	305
		(27,507ha)	:	(1,940kg/ha)	•	(1,014ha)		(2,734kg/ha)		(26,527ha)		(1,907kg/h)

SOURCE: Agricultural Stateties Thailand Crop Year 1983/84,1987/88,1990/91.

TABLE F-2 PRODUCTION OF GROUND NUT

THAILAND

NARATHIWAT

			: .					
Year	٨r	and the second second			i.	ria		
	Planted	llarested	Production	Yield	Planted	Karested	Production	Yield
	,000rais	,000rais	,000tons	kg/rai	rais	rais	tons	kg/rai
1.1981/82	764	733	147	200	194	182	23	128
2.1982/83	781	734	145	178	718	686	105	153
3.1983/84	783	753	147	174	351	351	49	140
4.1984/85	820	781	172	220	3,151	3,119	772	248
5.1985/88	779	758	171	227	1,862	1,584	383	245
6.1986/87	790	781	169	217	, 	·	· <u>-</u>	
7.1987/88	763	736	162	219	643	618	148	239
8.1988/89	771	737	164	222	1.256	1,091	268	244
9.1989/90	763	752	161	215	152	152	33	217
10.1990/91	760	734	161	200			-	.
Average	775	750	160	213	1,041	970	222	229
		(120ha)	(1,33	33kg/ha)		(155ha)	(1,4)	32kg/ha)

SOURCE: Agricultural Statistics of Thailand Crop Year 1983/84,1987/88,1990/91.

TABLE F-3 PRODUCTION OF MUNGBEAN

THAILAND

NARATHIWAT

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
Year	Ar	ia	•		λı	ria	•	
	Planted	Harested	Production	Yield	Planted	Harested	Production	Yield
	,000rais	,000rais	,000tons	kg/rai	rais	rais	tons	kg/rai
1.1981/82	3, 040	2,881	284	99	245	67	20	299
2.1982/83	3,034	2,775	281	101	518	163	34	209
3.1983/84	3,022	2,803	288	103				
4.1984/85	3, 280	3,017	352	117	-	· –	_	-
5.1985/86	3,426	3,307	323	98	-	-		-
8.1988/87	3, 170	3,081	301	98		· →	-	
7.1987/88	2,900	2,735	267	98	180	160	13	81
8.1988/89	2,964	2,888	333	115			-	
9.1989/90	3,205	3,102	356	115	204	204	17	83
10.1990/91	2,808	2,674	303	113	-	-		-
Average	3,850	2,924	309	108	281	149	21	141
		(408ha)	(6	80kg/ha)		(24ha)	(87	5kg/ha)

SOURCE: Agricultural Statistics of Thailand Crop Year 1983/84,1987/88,1990/91.

TABLE F-4-1 PRODUCTION OF PARA RUBBER

			National Le	vel			Naratiwat P	rovince	
			Area				Area		
No.	Year	Planted (1000 rai)	Narvested (1000 rai)	Production (1000 ton)	Yield (kg/cai)	Planted (1000 rai)	Harvested (1000 rai)	Production (1000 ton)	Yield (kg/rai)
1	1981/82	9, 867	7, 933	508	64. 0				
2	1982/83	10,001	8, 862	576	65. 0				
3	1983/84	10, 143	8, 864	594	67.0	[}		}	
4	1984/85	10, 254	8, 572	617	72. 0				
5	1985/86	10, 288	8, 821	113	87. 6				
б	1986/87	10, 346	9, 001	811	90. 1				
7	1987/88	10, 399	9, 253	891	98. 3	<u> </u>			
8	1988/89	10, 577	9, 247	862	93. 2				
9	1989/90	10, 822	10, 063	1, 048	104.1				
10	1990/91	10, 996	10, 273	1, 097	106.8				
	Kean	10, 369	9, 089	118	85. 6				!

Source: Agricultural Stastics of Thailand, Grop Year 1990/91, MAC

TABLE F-4-2 PRODUCTION, AREA AND YIELD OF PARA RUBBER (1991/1992)

		Local Vareit	y			Hyblid Yac	eity	
	Planted				Plan	ted Area	Harve	sted Area
District	Production	Area	Yeild	Production	Area	Yeild	Area	Yeild
	(ton)	(rai)	(ton/rai)	(ton)	(iai)	(ton/rai)	(rai)	(ton/rai)
Narathiwat	682, 720	5, 020	136	4, 662, 110	32, 072	145	24, 409	191
Takhai	87, 055	757	115	597, 978	3, 147	190	2, 151	278
Dajah	277, 200	2, 640	105	1, 628, 000	16, 163	101	6, 512	250
Yingo	131, 355	973	135	8, 858, 925	52, 833	168	39, 373	225
Rangae	3, 447, 702	33, 801	102	20, 475, 074	105, 687	194	81, 574	251
Ruso	58, 880	512	115	23, 198, 400	155, 039	150	128, 880	180
Waeng	6, 116, 280	50, 969	120	6, 975, 670	53, 381	131	30, 329	230
Sungai Kolok	1, 379, 620	12, 542	110	2, 445, 120	13, 055	187	9, 056	270
Sungai Padi	550, 050	5, 790	95	14, 880, 672	70, 677	211	68, 892	216
Srisakorn	809, 990	7, 570	107	27, 128, 663	125, 627	216	95, 861	283
Sukirin	979, 800	9, 798	100	4, 226, 400	52, 416	18	23, 480	180
Cha-Naì	6, 351, 070	51, 131	110	9, 692, 750	72, 536	134	38, 111	250
Total	20, 871, 722	188, 109	111	124, 769, 762	152, 633	166	549, 288	227

TABLE F-5-1 PRODUCTION OF COCONUT

			National Le	yel			Naratiwat P	rovince	
			Area				Area		
No.	Үеаг	Planted	Harvested	Production	Yield	Planted	Harvested	Production	Yield
:		(1000 rai)	(1000 rai)	(1000 ton)	(kg/rai)	(1000 rai)	(1000 rai)	(1000 ton)	(kg/rai)
l	1981/82	2, 373	1,720	887	515.7				
2	1982/83	2, 443	1,738	1, 076	619.1				
3	1983/84	2, 451	1, 754	1, 102	628. 3	: :			
4	1984/85	2, 511	1, 853	1, 128	608.7				ē
5	1985/86	2, 593	1, 915	1, 226	640. 2			·	
6	1986/87	2, 586	2, 045	1, 280	625. 9		•		
: 7	1987/88	2, 545	2, 072	1,311	632. 7				
8	1988/89	2, 490	2, 106	1, 378	654. 3	1			
9	1989/90	2, 481	2, 190	1, 437	656. 2				
10	1990/91	2, 455	2, 163	1, 426	659. 3			4	in the second
:	Mean	2, 493	1, 956	1, 225	626. 3		: - tu		

Source: Agricultural Stastics of Thailand, Crop Year 1990/91, MAC

TABLE F-5-2 PRODUCTION, AREA AND YIELD OF COCONUT (1991/1992)

		Planted		Harvested	•
District	Production	Area	Yeild	Area	Yeild
	(kg)	(rai)	(kg/rai)	(rai)	(kg/rai)
Narathiwat	8, 008, 472	16, 011	500	14, 614	541
Takbai	16, 975, 200	23, 715	716	21, 219	80
Bajah	4, 854, 800	12, 468	389	10, 788	450
Yingo	1, 860, 000	4, 150	448	3, 700	50:
Rangae	7, 641, 600	4, 776	1, 600	4, 776	1, 600
Ruso	1, 879, 200	2, 439	770	2, 349	800
Waeng	239, 200	547	437	520	46(
Sungai Kolok	126, 000	317	397	210	600
Sungai Padi	2, 168, 320	1, 744	1, 243	1, 694	1, 280
Srisakorn	976, 640	1, 055	926	896	1, 090
Sukirin	Ö	0	0	0	. (
Cha-Na i	258, 400	316	818	304	850
Total	44, 987, 632	67, 538	666	61, 070	737

TABLE F-6 PLANTED, DAMAGED AND HARVESTED AREAS, PRODUCTION AND YIELD OF VEGETABLES

		4.1								
	Plante	d .	Damage	d	llavest	ed	Produ	ction	Yiel	d
Crop Name	Area	(rai)	Area	(rai)	Area	(rai)	(t	on)	(kg/r	ai)
	87/88	88/89	87/88	88/89	87/88	88/89	87/88	88/89	87/88	88/89
Short Cucumber	1, 117	1, 515	198	54	919	1, 461	993	1, 826	1, 081	1, 250
Yard Long Bean	926	1, 376	187	109	739	1, 267	438	820	593	847
Angled Loofah	287	538	1	61	286	477	114	321	399	873
Water Spinach	48	504	0	31	48	473	24	267	490	565
Hot Papper	180	296	3	59	177	239	164	301	924	1, 260
Chilli	175	113	δ	7	169	106	114	78	672	738
Bottle Gourd	49	68	0	0	49	68	25	45	504	694
Chinese Pakchai	65	47	0	0	65	47	137	35	2, 059	747
Water Convelvulus	0	42	0	31	0	- 11	0	7	0	600
Chinese Kale	44	34	2		42	33	32	39	752	1, 185
Pampkin	19	30	0	10	19	20	42	50	2, 211	2, 485
Mutiplt Onion	17	10	1	. 0	16	10	45	7	2, 836	650
Ginger	11	0	0	0	11	0	16	0	1, 481	0
Shallot	10	. 0	0	0	10	0	10	0	1	0
White Gourd	8	7	0	0	8	7	3	, 5	328	717
Tomato	0	4	0	0	- 0	4	. 0	3	0	750
Long Cucumber	74	7	3	0	71	7	81	7	1, 145	1, 000
Chinese Cabbage	1	3	0	0	-1	. 3	1.	3	1,000	1, 000
Cabbage	2	. 0	0	0	2	0	2	0	3, 200	. 0
Baby Corn	0	1	0	0	0	l	0	0	0	150
Califlower	1	0	0	0	1.	0	l	0	1, 200	0
Lettuce	51	0	0	0	51	0	22	0	437	0

Source : Agricultural Statistical Analysis Sub-Division

Planning Division

Depertment of Agricultural Extension

TABLE F-7 PLANTED AREA, PRODUCTION, YIELD AND PRICES OF FRUITS (1988/89)

		Plan	ted Area (r	ai)	Average	Total		Farm gate	price (bat	h/kg)
Name o	f fruits		not.		Yield	Prodet n	Early	Яid	Late	
		Breeding	Breeding	Total	ig/rai	(ton)	Season	Season	Season	Average
	Total	25, 821	5, 631	31, 452	2, 200	56, 811	0	0	0	0
	Chani	808	337	1, 145	1, 189	961	18. 6	17	18. 66	18. 09
	Kanyao	614	687	1, 301	1, 922	1, 180	15. 66	13. 33	15	14. 66
Durian	Mon Thang	1, 395	1, 221	2, 616	1, 263	1, 762	22. 12	19. 8	23	21. 64
	Kradum	2	1	3	2,000	4	12	10	11	11
	Miscell.	23, 002	3, 385	28, 387	2, 300	52, 905	6	5	6	5. 67
	Total	26, 973	4, 417	31, 390	1, 819	49, 077	. 0	0	0	0
Rambutan	Rongrian	4, 252	3, 224	7, 476	2, 250	9, 588	7. 6	5. 8	6. 6	6. 67
	Miscell.	22, 721	1, 193	23, 914	1, 651	39, 489				
Longkong		18, 329	13, 071	31, 400	1, 556	28, 520	42. 41	33	39. 83	38. 41
Lang Sat		9, 614	94	9, 708	1, 190	11, 441	11.41	9. 16	11. 25	10. 61
Mangoste) n	2, 238	965	3, 203	1, 568	3, 509	8. 37	δ	7. 37	7. 25
Kluai Kha	ni	907	36	943	792	718	5. 8	5. 8	5. 8	5. 8
	Total	571	45	817	769	439	0	0	0	0
Pummels	Thonadi	6	4	10	400	2	1	7	7	7
	Miscell.	565	42	607	773	437	5. 5	4. 16	4. 33	4. 65
	Total	32	5	37	930	30	0	0	0	0
Santol	Native	24	5	29	950	23	2	2	2	2
	Miscell.	8	0	8	870	7				
Snake Fru	it	20	0	20	130	3	18 15 15			16
Cardamon		0	5	5	0	0	0	0	0	0

Note: The unit of production of Kluai Khai is in hand.

The unit of production of Mangosteen is in fruit(s) or in piece(s).

Source: Agricultural Statistic Analysis Sub-Division

Planning Division

Department of Agricultural Extension

TABLE F-8 NUMBER OF LIVESTOCKS

(Narathiwat level)

(unit:heads)

year	Buffaloes	Trend	Cattle	Trend	Swine	Trend	Chicken	Trend	Duck	Trend
1981	14, 820	1.00	85, 099	1. 00	10, 866	1.00	-	_		
1982	15, 406	1.04	90, 485	1. 06	13, 186	1. 21	_	_	_	-
1983	15, 905	1.07	96, 190	1. 13	9, 579	0.88	-		-	<u>-</u>
1984	12, 261	0.83	72, 043	0.85	17, 460	1.61	-	⊷ .	:,	- ·
1985	13, 533	0.91	74, 530	0. 88	12, 773	1. 18	770, 838	1.00	_	
1986	13, 679.	0.92	74, 614	0.88	11, 916	1.10	718, 917	0.93		
1987	13, 827	0.93	73, 305	0. 86	11, 126	1. 02	655, 962	0.85	40, 985	1.00
1988	14, 062	0. 95	72, 966	0. 86	4, 615	0. 42	226, 572	0.29	41, 599	1. 01
1989	14, 200	0. 96	77, 044	0. 91	3, 836	0. 35	284, 592	0. 37	41, 312	1. 01
1990	12, 389	0.84	78, 518	0. 92	3, 340	0, 31	319, 923	0. 42	53, 950	1. 32
Mean	14, 008	1.00	79, 479	1. 00	9, 870	1.00	496, 134	1.00	44, 462	1.00

Source: Agricultural Statistics of Thailand Crop Year 1990/91

(National Level)

(unit:heads)

year	Buffaloes	Trend	Cattle	Trend	Swine	Trend
1981	85, 620	1.00	327, 180	1.00	3, 224, 090	1.00
1982	86, 560	1.01	356, 683	1. 09	3, 252, 504	1. 01
1983	103, 150	1. 20	381, 582	1. 17	3, 145, 210	0. 98
1984	129, 744	1. 52	418, 689	1. 28	3, 180, 622	0. 99
1985	133, 934	1.56	411, 787	1. 26	3, 479, 709	1. 08
1986	144, 678	1.69	396, 722	1.21	3, 332, 773	1. 03
1987	153, 334	1. 79	401, 503	1. 23	3, 259, 885	1. 01
1988	164, 116	1. 92	391, 187	1. 20	3, 403, 928	1. 06
1989	178, 031	2. 08	395, 259	1. 21	3, 554, 682	1. 10
1990	173, 143	2. 02	404, 312	1. 24	3, 815, 626	. 1. 18
Mean	135, 231		388, 490	1. 00	3, 364, 903	1. 00

Source: Agricultural Statistics of Thailand Crop Year 1990/91

TABLE F-9 NATIONAL RESERVED FOREST IN NARATHIWAT

No.	Name	Location (Amphur)	Area (ha)
1	Loo Buo La Soa	Rangae	2, 100. 00
2	Bangnara #2	Sungai Padi, Tak Bai, Sungai Kolok	28, 616. 00
3	Ko Si Ko	Tak Bai	1, 026. 40
4	Do Ngo	Tak Bai	2, 634. 96
5	Bangnara #1	Rangae	9, 400. 00
6	Buket Ta Ware	Rangac, Sungai Padi	3, 056, 00
7	Teuk Kao Rue Sao	Rangae	3, 138, 88
8	Teuk Kao Rue Sao	Ruc Sao, Yingao, Bajo, Range	13, 649, 92
9	Buket Ta Mong	Rangac, Sungai Padi	1, 388. 96
10	Ka Lu Bi	Rangae	388. 92
11	I Sa Tea	Rangae	100. 00
12	Du Ngao	Yingao	96. 48
13	Kao Tanyong	Muang	429. 92
14	Kao Somnak	Waeng, Sukirin	200. 00
15	Kao Mala	Waeng	16, 900. 00
16	Krue Sua	Sungai Padi	1, 400. 00
17	Bu Kae Ta Ware #1	Rue So	5, 060. 96
18	Tae Kae	Rue So	430.00
19	Left Rimyo #1	Sukirin, Janae	20, 000. 00
20	Right Sei Buri	nd	1, 300. 00
	Total		111, 317. 40

Note: The all data of the forest on being prepared for preservation : 72,234 ha Source: Marketing data of Narathiwat, 1990

TABLE F-10-1 IN LAND FRESH WATER ANIMALS IN THE NARATIWAT PROVINCE

. :	
-	
٠.	
9	
Ŏ,	
4	
œ	
œ	
1988-1991	
·¤	
TOI	
4	
2	
ä	
.8	
hi	
4	
ı Water.	
ď	
≥	ļ
Ę	
esh	
ŗ	
뜨	
ਵੰ	
نب	1
6	1
Value of th	
Ξ	
Š	
	-

	ρ	nemarks				٠								٠.			
	1991	Value	(Baht)	1,434,150	8,769,600	3,181,450	716,940	1.089,720	366,625	185,920	425,775	469,250	1.130,750	1.275,300	25,800	789,125	16,997,405
	SE	Product	(kg)	31,870	250,560	10,615	23,898	36,324	10,475	6,640	12,165	18,770	45,230	7,085	1.720	31,565	486,917
1661 - 0061 II	1990	Value	(Baht)	1,659,870	4,809,330	341,440	401,730	629,580	215,880	176,700	195,350	883,225	779,720	673,500	101,800	1,228,475	12,096,600
TITITIALS TEOL	16	Product	(kg)	36,886	106,874	8,536	13,391	20,986	6,168	5,890	7,814	25,235	38,986	4,490	5,090	49,139	329,485
aide of the litest Water Ammais from 1300 - 1331	1989	Value	(Baht)	1,605,510	4,523,568	484,840	330,660	508,950	223,545	193,340	164,000	746,445	1,082,700	884,880	70,650	1,473,500	12,292,588
א שותב מז מוב	Τ.	Product	(kg)	35,678	94,241	12,121	11,022	16,965	6,387	6,905	6,560	21,327	43,308	4,916	4,710	58,940	323,080
	1988	Value	(Baht)	2,902,500	4,937,500	541,600	213,000	399,870	150,000	166,200	698,200	114,125	1,515,000	994,000	104,000	1,522,500	14,258,995
	-	Product	(kg)	64,500	98,750	13,540	7,100	16,350	5,000	5,540	17,455	4,565	50,500	6,630	5,200	50,150	345,280
	Fresh Water Animals			1. Smakehead fish	2. Catfish	3. Tiger mandid	Common silver barb	5. Nile Tilapia	6. Cinnib caro	7. Sepat Siam	8. Swamp eel	9. Cat fish-Black ear	 Miscelleneous fish 	 Gaint freshwater prawn 	 Small shrimp 	 Other aquatic animals 	Total
			I											•	, 1	!	į

Source: Naratiwat Provincial Office

TABLE F-10-2 REGISTERED AQUA-BREEDERS

	Area m ²	948,673 m ²
No. of Breeders	Ponds	3,315
No. o	Farms	2,604
	Tambon	73
Amnhoe		Total
Ŋ		

Source: Naratiwat Provincial Office

TABLE F-11-1 PRODUCTION, AREA AND YIELD OF PARA RUBBER (1991/1992)

	Loc	al Variety			Hybl	id Variety	y		
District	Production	Planted	Yield	Production	Planted	l Area	Harvested Area		
	(kg)	Area (rai)	Area (kg/rai)		Area (rai)	Yield (kg/rai)	Area (rai)	Yield (kg/rai)	
Narathiwat	682,720	5,020	136	4,662,110	32,072	145	24,409	191	
Takbai	87,055	757	115	597,978	3,147	190	2,151	278	
Bajah	277,200	2,640	105	1,628,000	16,163	101	6,512	250	
Yingo	131,355	973	135	8,858,925	52,833	168	39,373	225	
Rangae	3,447,702	33,801	102	20,475,074	105,687	194	81,574	251	
Ruso	58,880	512	115	23,198,400	155,039	150	128,880	180	
Waeng	6,116,280	50,969	120	6,975,670	53,381	131	30,329	230	
Sungai Kolok	1,379,620	12,542	110	2,445,120	13,055	187	9,056	270	
Sungai Padi	550,050	5,790	95	14,880,672	70,677	211	68,892	216	
Srisakorn	809,990	7,570	107	27,128,663	125,627	216	95,861	283	
Sukirin	979,800	9,768	100	4,226,400	52,416	81	23,480	180	
Cha-Nai	6,351,070	57,737	110	9,692,750	72,536	134	38,771	250	
Total	20,871,722	188,109	111	124,769,762	752,633	166	549,288	227	

TABLE F-11-2 PRODUCTION, AREA AND YIELD OF RAMBUTAN, LANGSON AND CASHEWNUT (1991/1992)

		RAI	MBUTAN			
			Planted	T		
District	Production	Ratio		Ratio	Yeild	Ratio
District	(kg)	(%)	Area	(%)	(kg/rai)	(%)
			(rai)			
Narathiwat	461,490	1	524	2.7	1,139	Ì
Takbai	10,800	1	41	0.2	1,543	· .
Bajah Yingo	584,500 1,823,150		899	4.7	779	
Rangae	7,500,792		2,292 6,750	11.9 35.2	820 1,357	
Ruso	2,132,790		779	4.1	1,385	
Waeng	889,600		818	4,3	1,600	.}
Sungai Kolok	197,255		408	2.1	861	•
Sungai Padi	901,000		593	3.1	1,700	
Srisakorn	1,945,050		1,324	6.9	2,197	
Sukirin	2,011,200		4,288	22.3	800	
Cha-Nai	894,900		513	2.7	1,627	
Total/Average	19,282,527		19,229	100.0	1,306	
		LA	NGSON			·
	Production	Ratio	Planted	Ratio	Yeild	Ratio
District]	Area			ł
	(kg)	(%)	(rai)	(%)	(kg/rai)	(%)
Narathiwat	0		0	0.0		
Takbai	11,259		27	1.3	1,251	
Bajah	57,950		61	2.9	950	
Yingo	40,000		59	2.9	1,000	
Rangae Ruso	333,928 198,720		424 184	20.4 8.9	938 1,080	!

Waeng Sungai Kolok	328,100 81,104		418 192	20.2 9.3	850 548	
Sungai Padi	588,350		287	13.9	2,050	
Srisakorn	210,000		210	10.1	1,000	}
Sukirin	34,800		76	3.7	600	
Cha-Nai	146,400		132	6.4	1,200	<u> </u>
Total/Average	2,030,611		2,070	100.0	1,091	
<u> </u>		CASI	HEWNUT			
	Production	Ratio	Planted	Ratio	Yeild	Ratio
District	(kg)	(%)	Area	(%)		1
	(Ag)	(70)	(rai)	(%)	(kg/rai)	(%)
Narathiwat	501,250		2,260	41.1	250	
Takbai	573,500		1,497	27.3	500	
Bajah Vingo	372,400		1,633	29.7	245	
Yingo Rangae	12,000		0 60	0.0	-	
Ruso	-		0	1.1 0.0	200	
Waeng	1,630		9	0.2	170	
Sungai Kolok	2,300		10	0.2	230	
Sungai Padi	2,100	·	21	0.4	100	
	· -		0	0.0	-	
Cha-Nai					• •	
				i		<u> </u>
Srisakorn Sukirin	2,100 - - - -	·			100	

TABLE F-11-3 PRODUCTION, AREA AND YIELD OF PADDY (1991/1992)

District	Production (kg)	Ratio (%)	Planted Area (rai)	Ratio (%)	Yeild (kg/rai)	Ratio (%)
Narathiwat	7,085,754		22,074	9.6	321	
Takbai	18,398,731		38,251	16.7	481	
Bajah	8,749,328		22,904	10.0	382	
Yingo	9,903,222		26,838	11.7	369	
Rangae	23,034,914		71,537	31.4	322	
Ruso	4,360,608		12,978	5.7	336	
Waeng	1,919,846		4,694	2.1	409	
Sungai Kolok	727,650		1,890	0.8	385	
Sungai Padi	7,360,320		19,680	8.6	374	
Srisakorn	1,156,540		3,004	1.3	385	
Sukirin	27,072		64	0.0	423	
Cha-Nai	1,940,800		4,852	2.1	400	
Total/Average	84,664,785	100.0	228,766	100.0	370	100.0

TABLE F-11-4 PRODUCTION, AREA YIELD OF COCONUT (1991/1992)

District	Production (kg)	Planted Area (rai)	Yeild (rai)	Harvested Area (rai)	Yeild (ton/rai)
Narathiwat	8,008,472	16,011	500	14,614	548
Takbai	16,975,200	23,715	716	21,219	800
Bajah	4,854,600	12,468	389	10,788	450
Yingo	1,860,000	4,150	448	3,700	503
Rangae	7,641,600	4,776	1,600	4,776	1,600
Ruso	1,879,200	2,439	770	2,349	800
Waeng	239,200	547	437	520	460
Sungai Kolok	126,000	317	397	210	600
Sungai Padi	2,168,320	1,744	1,243	1,694	1,280
Srisakorn	976,640	1,055	926	896	1,090
Sukirin	0	0	0	0	0
Cha-Nai	258,400	316	818	304	850
Total/Average	44,987,632	67,538	666	61,070	737

TABLE F-11-5 PRODUCTION, AREA AND YIELD OF STRINGBEAN, SWEET CORN AND WATER MELON (1991/1992)

		STRI	NGBEAN		<u> </u>	
	Production	Ratio	Planted	Ratio	Yeild	Ratio
District			Area	1 - 1		1 :.
- 1	(kg)	(%)	(rai)	(%)	(kg/rai)	(%)
Narathiwat	85,579		19	0.6	6,583	
Takbai	-		10	0.3	-	
Bajah	81,000		14	0.5	6,750	1
Yingo	41,250		85	2.7	5,500	
Rangae	5,538,750		715	23.0	5,550	
Ruso	1,098,042		160	5.1	8,646	
Waeng	702,450	, v	378	12.2	3,150	
Sungai Kolok	022 200		0	0.0	·	
Sungai Padi	355,500		395	12.7	1,000	
Srisakorn Sukirin	1,288,800		0 787	0.0	0.400	
Cha-Nai	3,742,500		544	25.4 17.5	2,400 7,500	
Total/Average	12,933,371		3,107	100.0	5,466	<u> L</u>
<u> </u>		SWEET	CORN 100			
	Production	Ratio	Planted	Ratio	Yeild	Ratio
District	1		Area		and the second	I.
	(kg)	(%)	(rai)	(%)	(kg/rai)	(%)
Narathiwat	174,564		39	.3	4,476	
Takbai	265,452		132	11.3	2,011	i
Bajah	98,970		30	2.5	3,299	Ì
Yingo	373,381	•	61	5.2	6,121	
Rangae	916,484		389	33.1	2,356	
Ruso	96,164		116	9.8	829	
Waeng	426,384		56	4.7	7,614	
Sungai Kolok	30,702		17	1.4	1,806	
Sungai Padi	147,913		.59	5.0	2,507	Ì
Srisakorn	216,200		115	9.7	1,880	
Sukirin Cha-Nai	486,530		110 56	9.3	4,423	
	364,000			4.7	6,500	
Total/Average	3,596,744		1,180	100.0	3,048	<u> </u>
	·	WATER		T		·
	Production	Ratio	Planted	Ratio	Yeild	Ratio
District	(kg)	(%)	Area			
	(v.R)	(10)	(rai)	(%)	(kg/rai)	(%)
Narathiwat	294,120		129	11.6	2,280	1
Takbai	802,752		339	30.5	2,368	.]
Bajah	229,658	ļ	73	6.5	3,146	1
Yingo	428,280		172	15.4	2,490	
Rangae	276,000		115	10.3	2,400	1
Ruso	34,800		29	2.6	1,200	<u> </u>
Waeng	334,400	. !	160	14.3	2,090	1
Sungai Kolok	130,176		32	2.9	4,068	
Sungai Padi Srisakorn	117,382		38	3.4	3,089	
Sukirin	10 155		0	0.0	0.00-	1
Cha-Nai	10,155 64,400		5 23	0.4	2,031	
~-1W A 1 LLA	04,400			2.1	2,800	<u>L</u>
Total/Average	2,722,123	1	1,115	100.0	2,441	

TABLE F-11-6 PRODUCTION, AREA AND YIELD OF DURIAN, LONGKONG AND MANGOSTEIN (1991/1992)

		ומ	URIAN			
District	Production (kg)	Ratio (%)	Harvested Area (rai)	Ratio (%)	Yeild (kg/rai)	Ratio
Narathiwat Takbai Bajah Yingo Rangae Ruso	64,925 9,000 92,400 50,400 1,407,834 432,674		173 24 730 163 1,573 670	0.0 0.0 0.0 0.0 0.0	1,855 1,800 700 600 1,566 1,562	
Waeng Sungai Kolok Sungai Padi Srisakorn Sukirin Cha-Nai Total/Average	1,824,000 37,116 1,252,800 837,000 16,800 2,068,500 8,093,449	100.0	826 70 582 1,360 509 1,181	0.0 0.0 0.0 0.0 0.0 0.0	3,200 1,031 2,880 1,350 480 2,100	100.0
Total/Average	6,095,449		IGKONG	100.0	1,300	100.0
District	Production (ton)	Ratio (%)	Harvested Area (rai)	Ratio (%)	Yeild (ton/rai)	Ratio (%)
Narathiwat Takbai Bajah Yingo Rangae Ruso	1,028,300 96,427 1,141,950 682,000 6,753,600 851,724	3.5 0.3 3.9 2.3 23.2 2.9	565 58 993 1,240 5,628 708	2.9 0.3 5.1 6.4 28.9 3.6	1,820.0 1,662.5 1,150.0 550.0 1,200.0 1,203.0	137.3 125.4 86.8 41.5 90.5 90.8
Waeng Sungai Kolok Sungai Padi Srisakorn Sukirin Cha-Nai	634,380 212,504 4,270,500 1,388,660 1,808,000 10,310,000	2.2 0.7 14.6 4.8 6.2 35.4	654 263 2,190 1,274 1,808 4,124	3.4 1.3 11.2 6.5 9.3 21.1	970.0 808.0 1,950.0 1,090.0 1,000.0 2,500.0	73.2 61.0 147.1 82.2 75.5 188.6
Total/Average	29,178,045	100.0	19,505 GOSTEIN	100.0	1,320.3	100.0
District	Production (ton)	Ratio (%)	Harvested Area (rai)	Ratio (%)	Yeild (ton/rai)	Ratio (%)
Narathiwat Takbai Bajah Yingo Rangae Ruso	49,842 54,681 247,040 63,600 341,341 120,950	2.2 2.5 11.1 2.9 15.3 5.4	39 33 193 53 341 112	2.1 1.7 10.2 2.8 18.0 5.9	1,278.0 1,657.0 1,280.0 1,200.0 1,001.0 1,079.0	110.1 142.8 110.3 103.4 86.2 93.0
Waeng Sungai Kolok Sungai Padi Srisakorn Sukirin Cha-Nai	158,000 157,035 646,200 103,500 115,500 172,900	7.1 7.0 28.9 4.6 5.2 7.8	158 145 359 115 165 182	8.3 7.7 18.9 6.1 8.7 9.6	1,000.0 1,083.0 1,800.0 900.0 700.0 950.0	86.2 93.3 155.1 77.5 60.3 81.8
Total/Average	2,230,589	100.0	1,895	100.0	1,160.7	100.0

TABLE F-12-1 RELATION BETWEEN CROP AND PH

		<u>p I</u>	Ī	E. C. (1	nS/cm)
Location	Crop Name	H ₂ O	KC1	1:2	
1.Munu(S)	Foage Crops	3.6	3.5	0.94	
2.Munu(N)	Foage Crops	3.7	3.6	0.41	•
3.Kab Daeng	Pineppe	4.7	3,4	0.12	
4.Kab Daeng	Paddy rice	3.9	3.4	0.36	
5.Ban khok kathom	Long Bean	· ·			•
	Egg plant etc.	3.9	3.5	0.74	
6.Bacho mu4	Chilli				
	Egg plant etc.	4.2	3.5	0.17	
7.Bacho mu4 No Lime	·	3.3	2.6	0.18	
8.Bacho.Burrapek	Nanking shallot		4	* .* •	
	Chilli etc.	5.7	5.3	0.31	
9.Bacho.Burrapek N	o Lime	3.1	3.1	0.62	
10.Bacho.Banton (So	il dressing)				
•	Durian,Banana	5.5	4.1	0.02	:
Sab	soil Peat Soil	4.3	3.9	1.37	
11.Bacho.Banton	Coconut	4.4	3.7	0.06	*
		•			

Source: JICA team investigation 10,1992.

TABLE F-12-2 RELATION BETWEEN PH OF SOIL AND WATER

		рŀ	Ī	E. C. (mS/cm)	
Treatment	Crop Name	H ₂ O	KCl	1:2	
		Soil(Water)	Soil(Water)	Soil (Water)	
L ₁ C ₁ F ₁	Long Bean	5.27	5.15	1.492	
L ₁ C ₀ F ₀		4.15	3.91	1.194	
L ₀ C ₁ F ₀		3.98	3.74	0.651	
L 0 C 0 F 1		3.60	3.40	0.709	
Lo Co Fo		3.72	3.52	0.455	
<u> </u>			·····-································		
Non Lime	Paddy rice				
No drainage		5.26(3.80)	4.25	0.135(0.52)	
2 Week		5.45(3.85)	4.30	0.063(0.42)	
4 Week		5.35(4.61)	4.30	0.111(0.18)	
6 week		5.33(4.38)	4.18	0.063(0.14)	
1/2 Lime (1.1t/rai)	Paddy rice				
No drainage		5.98(4.16)	4.65	0.058(0.18)	
2 Veek		5.79(-)	4.65	0.075(0.12)	
4 Week		6.01(5.67)	4.80	0.048(0.15)	
6 week		6.10(4.70)	4.66	0.058(0.25)	
Lime weight	Paddy rice				
1/2Lime		5.54(4.10)	4.56	0.276(0.75)	
1/4Lime		5.02(3.82)	4,35	0.237(0.65)	
1/8Lime		4.69(3.71)	4.31	0.198(0.60)	
Non Lime		4.45(3.53)	3/92	0.194(0.62)	

Source: JICA team investigation 10,1992.

TABLE F-13-1 **CROPPING GUIDE (Food Crop)**

Crops Name:

Paddy Rice

(Variety)

3.

Sowing Time 1.

1st Sep. ~30th Oct.

Seeding 25~30 days

2. Transplanting time

30th Sep. ~30th Oct.

Planting pattern

Row width× Spacing $25 \,\mathrm{cm} \times 25 \,\mathrm{cm} =$

25,600

plant/rai

Seed Rate

5 kg/rai

4-5 Baht/kg

Fertilizers Input 5.

(1) Before Sowing

Lime stone 1.92 - 4.8 kg/rai

Offical

Farmers

Clayey Soil 16 - 20 - 0

25~30 kg/rai 10 kg/rai Offical

Farmers

Sandy Soil 16-16-8

25~30 kg/rai 10 kg/rai

(2) Flower-bud-appearing stage

Urea 10 kg/rai

Irrigation Interval 2 Time

before transplanting → drain water out

before harvesting 10 days

Pest Control (Agricultural Chemicals name)

Furadan (stern worm) Sowing 3-5 kg/rai

8. Harvesting Mar.~Apr.

Average Production 9.

420 kg/rai

10. Cropping Season

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1st Sep. \sim 30th Apr.

Source:

Agricultural Station

TABLE F-13-2 CROPPING GUIDE (Vegetables)

Crops Name: S

Sweet Corn

(Variety)

1. Sowing Time

all year round

2. Transplanting time

all year round

3. Planting pattern

row width spacing 75 cm × 50 cm = 4,266 plant/rai

4. Seed Rate

4 kg/rai

500 Baht/kg

5. Fertilizers Input

(1) Before Sowing

Lime stone

kg/rai

N15:P15:K15

25 - 30 kg/rai

(2) Flower-bud-appearing stage

Urea

25

kg/rai

6. Irrigation Interval

cultivate - harvest

7. Pest Control (Agricultural Chemicals name)

Disease injury -

Metalaxyl + Maucozeb (Metalaxyl MZ 72)

Insect injury

- Carbofuran (Furandan 3% G)

8. Harvesting

70 days

9. Average Production

4,000 - 8,000 kg/rai

10. Cropping Season

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

← all year →

3~4 times (70 days/times)

Source:

Agricultural Station

TABLE F-13-3 CROPPING GUIDE (Vegetables)

Crops Name:

Bady Corn

(Variety)

Sowing Time

Feb. - Oct.

Transplanting time 2.

1st Feb. ~ 15th Sep.

row width spacing

3. Planting pattern $50 \text{ cm} \times 50 \text{ cm} = 6,400 - 12,800 \text{ plant/rai}$

Seed Rate

3-4 kg/rai

100 Baht/kg

Fertilizers Input

(1) Before Sowing

Lime stone

kg/rai

N15:P15:K15

25 - 30

kg/rai

(2) Flower-bud-appearing stage

Urea

25

kg/rai

Irrigation Interval

start cultivating - harvest

7. Pest Control (Agricultural Chemicals name)

Disease injury -

Metalaxyl MZ 72

Insect injury

Carbonfuran (Furandan 3% G)

Harvesting

Jun. ~ Oct.

Average Production

1,013 kg/rai

10. Cropping Season

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

sowing time

Source: Agricultural Station