AND SAME TRANSPORTATION OF STREET AND A STREET AND A STREET AS A STREET AND A STREET AS A STREET AND A STREET AS A

AMERICAN AND AND AND AND A STREET OF THE STREET STREET,

IDARIEB SALARUE SALERBE SALERBE SALERBANIA.

WIF STANCE OF A TRANSPORT LANGUE BEN

Wat To Sal

What is the

Bill 20 11 6 1

111

TO THE THE PARTY OF THE PARTY O

JAPAN INTERNATIONAL COOPERATION AGENCY THE UNITED REPUBLIC OF TANZANIA TANZANIA ELECTRIC SUPPLY CO.,LTD.

MASTER PLAN STUDY AND PRE-FEASIBILITY STUDY ON DAR ES SALAAM POWER SUPPLY SYSTEM EXPANSION IN THE UNITED REPUBLIC OF TANZANIA

FINAL REPORT

JIGA LIBRARY 1113208[1]

VOLUME III
(APPENDIX)

MARCH, 1994

ELECTRIC POWER DEVELOPMENT CO.,LTD. TOKYO, JAPAN

国際協力事業団

CONTENTS

Final Report - Volume III (Attachment)

		rage
	Minutes of Meeting	A-1
в.	Chapter 5 Related Drawing and Documents	B-1
c.	Other Related Documents	C-1

A. MINUTES OF MEETING

A. Minutes of Meeting

		Page
1.	Minutes of Meeting No. 1 for Master Plan Study on Dar Es Salaam Power Supply System Expansion in the United Republic of Tanzania	
	August 10, 1993	A-1
2.	Minutes of Meeting for Master Plan Study on Dar Es Salaam Power Supply Expansion in the United Republic of Tanzania	
	September 10, 1993	A-16

MINUTES OF MEETING

FOR

MASTEER PLAN STUDY

ON

DAR ES SALAAM POWER SUPPLY EXPANSION

IN

THE UNTED REPUBLIC OF TANZANIA

DAR ES SALAAM, SEPTEMBER 10, 1993

Other

MR. S. L. MHAVILLE

MANAGING DIRECTOR
TANZANIA ELECTRIC SUPPLY
COMPANY LIMITED

MR. HITOSHI KITAZAWA

LEADER OF STUDY TEAM
JAPAN INTERNATIONAL
COOPERATION AGENCY

The Master Plan Study Team (the TEAM) despatched by the Japan International Cooperation Agency (JICA), headed by Mr. Hitoshi Kitazawa visited the United Republic of Tanzania on August 3, 1993 for the purpose of explanation and discussion on the Interim Report and conducting the Pre-Feasibility Study on the Short-term Master Plan of the Dar es Salaam Power Supply System Expansion.

The Interim Report prepared by the TEAM was explained to TANESCO and both parties agreed to the plan as shown in the Minutes of Meeting No.1 signed on August 10, 1993.

Depending on the agreed Short-term Master Plan covering for five (5) years, the TEAM held a series of meeting with TANESCO people concerned and conducted field surveys on the planned sites for the Pre-Feasibility Study from August 18 to September 12, 1993 together with additional members arrived at Dar es Salaam on August 18 and September 2, 1993.

The TEAM will complete the Pre-Feasibility Study in Japan and prepare the Draft Final Report by the end of January 1994. After approval by JICA, the TEAM will visit Tanzania and explain the Report to TANESCO in February 1994.

Followings are the main items of discussion and field survey confirmed by both parties for the Pre-Feasibility Study:

1. 11 kV Feeder Arrangement

New 11 kV feeders from new substations and expanded existing substations are shown in Appendix-1. New 33 kV transmission line to the new substations are also included.

2. 132 kV Transmission Line

132 kV Transmission line route of UBUNGO-ILALA and UBUNGO-F.Z.-3 was surveyed. Line route drawings will be sent to the TEAM after completion in TANESCO.

3. 33 kV Transmission Line

33 kV transmission line route to the New Substations was surveyed and line route maps of the line will be sent to the TEAM after final transfer.

ME

in TANESCO. Some comments on the route are shown in Appendix-2.

4. Required Area for New Substations

Required area for the new substations was surveyed and summarized in Appendix-3. Finalization and acquisition of the area will be done by TANESCO.

5. Designing of Substation

Designing of the new substations will follow the design criteria for MUSASANI and SOKOINE fundamentally and grounding system of the new station will be designed according to the measured specific resistivity summarized in Appendix-4 which shows no problem for actual application. Expansion designing for existing stations will be improved one as much as possible considering good conformity with existings.

6. Telecommunication

For designing of the radio link, the TEAM measured field intensity of the signal for ILALA. Designing of telecommunication radio link for the new substations can be done based on the data shown in Appendix-5 which shows no remarkable problem except KUNDUCHI.

7. Civil

The result of bearing test in the proposed site is summarized in Appendix-6. In the case of 132 kV transmission line, there are some problem and special consideration should be given to designing of the tower foundation but no problem for substation.

8. Environmental Survey

Environmental survey report will be completed by TANESCO and will be sent to the TEAM as soon as possible.

"Th

19K.

9. Economic Analysis

The TEAM collected data related to the economic analysis and further data, if required, will be sent to the TEAM by TANESCO.

10. TANESCO's Scope

At the actual construction of the power system expansion, followings are considered to belong to TANESCO's scope.

- (1) Acquisition of area for substations and transmission lines
- (2) Construction of civil works including foundation of equipment, cable duct, etc.
- (3) Repalcement of pole transformers from 33/0.4 kV to 11/0.4 kV
- (4) Installation of new feeders from TEGETA 132/33 kV substation except for KUNDUCHI new substation
- (5) Construction of transmission lines with supervisors from consultants or contractors

11. Voltage Recording

Voltage Recording in the following 11 kV feeders were planned but not finished. After completion of record, data will be sent to the TEAM. Kunduchi feeder (MBEZI), Industrial feeder (KURASINI), 0-2 and 0-4 feeders (OYSTER-BAY), MK-2 feeder (MIKOCHENI)

12. Fault Record of 132 kV T/L

Fault record of 132 kV transmission lines will be sent to the TEAM after checking the records in the computer.

13. Cost Estimation of 132 kV T/L

Construction cost estimation of the following 132 kV transmission lines in the local currency will be informed to the TEAM.

UBUNGO - ILALA (7.5 km, 25 towers)
UBUNGO - F.Z.3 (8.5 km, 30 towers)

14. List of Appendix

- (1) Appendix-1: 11 kV Feeder Arrangement
- (2) Appendix-2: 33 kV Transmission Lines
- (3) Appendix-3: Required Area for New Substations
- (4) Appendix-4: Soil Resistivity Measurement
- (5) Appendix-5: Result of the telecommunication site survey
- (6) Appendix-6: Result of Bearing Capacity Test

N.K

11 KV FEEDER ARRANGEMENT

(Sept. 5, 1993)

ILALA S.S.	Underground Cable (km)	Overhead Line (km)	Load Interrupter (Pcs)
11 kV D 4	0.2		2
В О	0.2	1.0	2
D 10 (Existing)		0.6	2
33 kV			

TANDALE S.S.	Underground Cable (km)	Overhead Line (km)	Load Interrupter (Pcs)
11 kV TA 1	(0.1)	1.3	1
TA 2	(0.1)	3.3	3
TA 3	(0.1)	0.4	1
TA 4	(0.1)		· · · · · · · · · · · · · · · · · · ·
33 kV		3.3 + 1.2 Con- ductor Upgrade	1

CHANG'OMBE S/S	Underground Cable (km)	Overhead Line (km)	Load Interrupter
11 kV CH 1	(0.1)	0.3	2
CH 2 (K100)	0.2 (0.1)		
CH 3	(0.1)	1.0	1
CH 4	(0.1)	1.0	. 1
33 kV		1.1 + 0.9 = 2	3 (including KURASINI ACB)

MBEZI S.S.	Underground Cable (km)	Overhead Line (km)	Load Interrupter (Pcs)
11 kV			
	·		
	·		·
33 kV	·		

DM

NK.

KUNDUCHI S.S.	Underground Cable (km)	Overhead Line (km)	Load Interrupter (Pcs)
11 KV KU 1	(0.1)	1.0	1
KU 2	(0.1)	1.0	1
KU 3	(0.1)	1.3	1
KU 4	(0.1)	1.3	1 (Total 6)
33 kV		2.8	

KARIAKOO S.S.	Underground Cable (km)	Overhead Line (km)	Load Interrupter (Pcs)
11 kV KA 1	(0.1)	0.9	1
KA 2	(0.1)	1.1	1
KA 3	(0.1)	0.3	1
KA 4	(0.1)	0.4	1
33 kV	0.5	1.6	1

MC

MBAGALA S.S.	Underground Cable (km)	Overhead Line (km)	Load Interrupter (Pcs)
11 kV MB 1	(0.1)	1.4	2
MB 2	(0.1)	1.4	2
MB 3 (Glass Factory)	0.3		1
MB 4	(0.1)	0.5	1 (Total 8)
33 kV		8.5	

TABATA S.S.	Underground Cable (km)	Overhead Line (km)	Load Interrupter (Pcs)
11 kV TB 1	0.1 (0.1)		2
TB 2	0.1		2 (Total 5)
33 kV TB 33-1 TB 33-2		0.1	

DW

1993/9/10 Fri

33KV. SAM

Appendix-2: 33kV Transmission Lines

The following items will be confirmed/collected for the design of 33kV transmission lines.

- 1. Tandale Line
- a. This line will be branched from the pole located near tower No. 21 of existing 132kV transmission line.
- b. Line length

: overhead 3.3km

- c. Number of circuit
- : 1 cct.
- d. Line length of existing 33kV line of which conductor is to be replaced : 1.2km
- e. Present condition of existing 33kV line from which new line will be branched.
- support

: wooden pole

- conductor

: ACSR 50sqmm

- number of circuit : 2cct
- f. Clarification for the scope of this line
- How many circuits are to be replaced : two corcuits
- Study of strength of wooden pole will be required, data/study sheet of existing line will be provided.
- g. Route map
- 2. Chang'ombe Line
- a. FZ-1 \sim Chang'ombe \sim Kurasini (π -connection)
- b. Line length

: overhead 2.0 km (1.1 + 0.9)

- c. Number of circuit : 1 cct.
- d. Present condition of existing 33kV line for which new substation will be connected.
- support

: wooden pole

- conductor

: ACSR 120sqmm

- number of circuit : lcct
- e. Route map
- 3. Kunduchi Line
- a. Name of substations
- 132/33kV S/S : Tegeta S/S
- 33/11kV S/S

: Kunduchi S/S

- b. Location of planned 132/33kV substation : near tower No. 51 of Ubungo-Zanzibar line
- c. New 33kV line will be constructed parallel to 132kV existing line.
- d. Line length

: 2.8 km (1.5 + 1.3)

 $300m \times 5 \text{ span } (132kV \text{ line}) = 1.5km$

- e. Number of circuit : lcct.
- f. Route map
- 4. Kariakoo Line
- a. This line will connect IIala S/S and new Kariakoo substation.
- b. Line length

: overhead 1.6km, cable 0.5km

c. Number of circuit : 1 cct.

- d. Route map
- 5. Mbagala Line
- a. This line will connect Kurasini S/S and new Mbagala substation.
- b. Line length

: will be informed later.

- c. Number of circuit : 1 cct.
- d. Route map
- 6. Tabata Line
- a. Ubungo \sim Tabata \sim FZ-3 (π -connection for one circuit)
- b. Line length

: π -connection only

- c. Number of circuit : 1cct
- d. Present condition of existing 33kV line for which new substation will be connected.
- support

: wooden pole

- conductor

: ACSR 120sqmm

- number of circuit : lcct (double conductor)

REQUIRED AREA FOR NEW SUBSTATIONS (AUG.1993)

After discussion and site survey, following areas are confirmed by TANESCO and Study Team.

[
NEW SUBSTATION	CAPACITY (No. x MVA)	JICA'S REQUEST	TANESCO
TANDALE S.S.	1 x 15 MVA	20m × 20m	
	2 x 15	24 x 24	30 x 40
CHANG'MBE S.S.	1 x 15	20 x 20	
	2 x 15	24 x 24	40 x 30
KUNDUCHI S.S.	1 x 15	20 x 20	
	2 x 15	24 x 24	40 x 20
KARIAKOO S.S.	1 x 15	20 x 20	
	2 x 15	24 x 24	40 x 50
		:	
MBAGALA S.S.	1 x 15	20 x 20	
	2 x 15	24 x 24	40 x 80
			.
TABATA S.S.	1 x 5	15 x 15	
·	2 x 5	18 x 18	35 x 30
		<u> </u>	

Note:

= for future use

SOIL RESISTIVITY MEASUREMENT

Specific resistivity of the soil in proposed new substions was measured for designing of grounding system by the study team and the result are as follows.

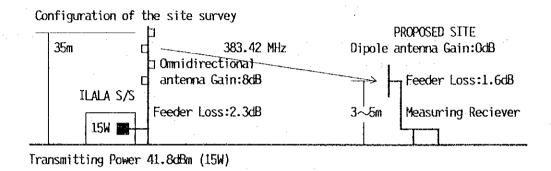
Date: Aug. 27, Sep. 2, 1993

Equipment: SPECIFIC RESISTANCE TESTER Type 3244 YEW

Result: Resistance measuring was done normally twice in different directions and higher, lower values are shown bellow.

Substation Site	Specific	Resis	stivity (Ohm-m)
TANDALE	15.7	_	25.12
CHANG'OMBE	72.22	_	131.88
KUNDUCHI	4.71		5.652
KARIAKOO	53.38		60.916
MBAGALA	94.2	_	309.72
TABATA	10.99	_	15.7

Evaluation: Measured data show that normal design of grounding system can be applied without any additional electrode.



Result of the telecommunication site survey

The study team conducted the site survey on KARIAKOO, CHANG'OMBE, TABATA, TANDALE, MBAGALA and KUNDUCHI. While observing the condition of the surroundings, we measured the field intensity which comes from ILALA S/S and also confirmed the possibility of the SCADA System in ILALA S/S regarding the expansion of this project.

The result and our comments are as follows:

KARIAKOO	field intensity: Cood condition (measured data ay 47dRV)
MAKTAKOO	field intensity: Good condition (measured data av.47dB μ V) site condition: Wide area in the city.
	High buildings stand next to the proposed site.
	comment : It considered to be no problem.
	Constant De no problem
CHANG 'OMBE	field intensity: Good condition (measured data av.55dB μ V)
	site condition: It's surrounded by the factories.
	comment : It considered to be no problem.
TABATA	field intensity: Good condition (measured data av.33dB μ V)
•	site condition : Regidential area. TPTC's subscriber is located near the site
	comment : It considered to be no problem.
TANDALE	field intensity: Good condition (measured data av.34d8 uV)
-	site condition : Regidential area.
	comment : It considered to be no problem.
MBAGALA	field intensity: Good condition (measured data av.26dB uV)
	site condition: It's located next to the factory.
	comment : It considered to be no problem.
KUNDUCHI	field intensity: Low level(measured data av.13dB \(\mu \text{V} \)
	site condition: It's in the farm. There is a gentle hill coming up in front of the proposed site.
	comment : High outgoing power transmitter such as 10W, 8-element YAGI
	antenna, over 20m antenna height are suitable.
	(the existing transmitter for RTU is 6W.)
SCADA System	Adopting the existing SCADA System to each proposed substation.
in ILALA S/S	, , ,
	Software: It's possible to allocate the memory capacity for the proposed
	substation of the above, but version up is needed for the expansion.

NK.

Result of Bearing Capacity Test for proposed site of Substations and Transmission lines

Substations

	Depth	1		l			ļ			
Site		2.0 m		2	.5 m		3.	. 0 m		Remarks
	Tandale	18. 0 ton/п (1. 0 m)	1 ² <							Good condition
	Chang' ombe	12.0 "	<	15. 0	<i>"</i>	<	15. 0	"	<	Good condition
	Kunduchi	15.0 "	<	15. 0	"	<	15. 0	<i>II</i> ·	<	G.W.L. 0.75 m Good condition
	Kariakoo	15.0 "	<	15. 0	"	<	15. 0	"	<	Good condition
	Mbagala	15.0 "	<	15. 0	<i>#</i>	<	15. 0	"	<	Good condition
	Tabata	15.0 "	<	15. 0	"	<	15. 0	"	<	G.W.L. 0.90 m Good condition

Transmission Lines

Ubungo-Ilala Tower No.2	2.5	- 4.0	"	2.5	- 40	"	25	- 4.0	"	Should be considered special countermeasure for the foundation
Tower No. 7-8	15. 0	"	<	15. 0	"	<	15. 0	"	<	Good condition
Ubungo- FZIII WP 32	15. 0	"	<	15. 0	"	<	15. 0	"	<	G.W.L. 0.70 m Good condition
WP 39 - 40	15. 0	<i>"</i>	<	15. 0	<i>"</i>	<	15. 0	"	<	Good condition

NK

MINUTES OF MEETING NU. 1

FUR

MASTER PLAN STUDY

ON

DAR ES SALAAM PUWER SUPPLY SYSTEM EXPANSION

ÌΝ

THE UNITED REPUBLIC OF TANZANIA

The Master Plan Study Team (the TEAM) of JICA, headed by Mr. Hitoshi Kitazawa visited the United Republic of Tanzania on August 3, 1993 for the purpose of explanation and discussion on the interim Report and conducting the Feasibility Study on the Short-term Master Plan covering five(5) years.

The Interim Report prepared by the TEAM was explained to TANESCO and has been discussed from August 4 to August 9, 1993, and both parties have agreed to the attached "THE MASTER PLAN FOR ELECTRIC POWER SYSTEM EXPANSION IN DAR ES SALAAM" as the final plan.

Both parties also agreed to proceed the reasonility Study on the Short-term. Master Plan of five(5) years included in the said Long-term Master Plan as soon as arriving of the other members of the TEAM in the middle of August to Dar es Salaam.

This minutes of meeting is prepared to confirm the basis of the study, and shall not be changed until the end of the study without proper notices to each other.

Attachment: THE MASTER PLAN FOR ELECTRIC PUBER SYSTEM EXPANSION
IN DAR ES SALAAM

AUGUST 10, 1993 DAR ES SALAAM

K. K. TRANGA

DEPUTY MANAGING DIRECTOR (OP.)

TANZANIA ELECTRIC SUPPLY

COMPANY LIMITED (TANESCO)

H. KITAZAWA

LEADER UP STUDY TEAM

JAPAN INTERNATIONAL

COOPERATION AGENCY (JICA)

THE MASTER PLAN

FUR

ELECTRIC POWER SYSTEM EXPANSION IN DAK ES SALAAM

	Name of	Transformer Voitage		Trans. Lapacity
Year	S/S & Line	Transmission Line		
		•		
1994:	: (I)ILALA S/S	33/11 KV !r.	Expan.	1 x 15 MVA
		132/33 KV Ir.	Expan.	1 x 45 MVA
	ILALA LINE	UBUNGO-ILALA	New	132 KV x lcct.
	②TANDALE S/S	33/11 KV 1r.	New	1 x 15 MVA
	TANDALE LINE	Branch from MIKUCHENI	ием	33 KV x lcct.
		- OXZIFKRAX File		
	(3)CHANGOMBE S/S	33/11 KV fr.	New	1 x 15 MVA
	CHANGOMBE LINE	Branch from F2-1	New	33 KV x lcct.
		- KURASINI Line		
	@MBEZI S/S	33/11 KV Ir.	Expan.	l x 15 MVA
	⑤TEGETA S/S	33/11 KV ir.		1 x 15 MVA
	TEGETA LINE	TEGETA-New S/S	ием	33 KV x lcct.
	6)FZ-3 S/S	132/33 KV ir.	Expan.	2 x 45 MVA
	FZ-3 LINE	UBUNGO-F2-3		132 KV x lcct.
	⑦KARIAKOO S/S	33/11 KV Ir.	Ием	l x 15 MVA
	KARIAKOO LINE	ILALA-KARIAKOU	New	33 KV x 1cct.
	(8)MBAGALA S/S	33/11 KV (r.	New	1 x 15 MVA
	MBAGALA LINE	KURASINI-MBAGALA	New	33 KV x 1cct.
	@TABATA S/S	33/11 KV lr.	New	l x 5 MVA
	TABATA LINE	Branch trom UBUNGU	New	33 KV x lcct.
		- FZ-3 Line		

11/1/

M

Year	Name of S/S & Line	Transformer Voltage Transmission Line	* 4	rrans. Capacity
*******	anne ann an Alline agus agus agus agus agus agus agus agus		***************************************	
1998:	MIKOCHENI S/S	33/11 KV ir.	Expan.	1 x 15 MVA
	KIGANBONI S/S	33/11 KV Ir.	Expan.	1 x 5 MVA
2000:	TEMEKE S/S	33/11 kv ir.	New	1 x 15 MVA
	TEMEKE LINE	YOMBO-1EMEKE	New	33 KV x lcct.
	MBURAHATI S/S	33/11 KV ir.	New	1 x 15 MVA
	MBURAHATI LINE	Branch from UBUNGU - ILALA	Иеж	33 KV x lcct.
	KITUNDA S/S	33/11 KV Ir.	New	1 x 5 MVA
	KITUNDA LINE	YOMBO-KI TGNDA	Мем	33 KV x lcct.
	YOMBO S/S	132/33 KV ir.	New	1 x 45 MVA
	YOMBO LINE	FZ-3-YOMBU	New	132 KV x lcct.
	FZ-2 S/S	33/11 kV ir.	expan.	AVM đ x i
	OYSTERBAY S/S		Expan.	1 x 45 MVA
	OYSTERBAY LINE	UBUNGO-UYSTERBAY	ием	132 KV x 1cct.
2002:	KARIAKOO S/S			1 x 15 MVA
	KIGANBONI S/S	33/11 KV ir.	expan.	I x 5 MVA
	KURASINI S/S	132/33 KV (r.	Expan.	1 x 45 mVA
	KURASINI LINE	1MTCANUX-OBMOY	•	132 KV x lcct.
		····· · ···· ···· ···· ···· · · · · ·	: · · · · · · · · · · · · · · · · · · ·	
003:	OYSTERBAY S/S	53/11 KV ir.	Expan.	1 x 15 MVA

1414.

A - 18

Tim

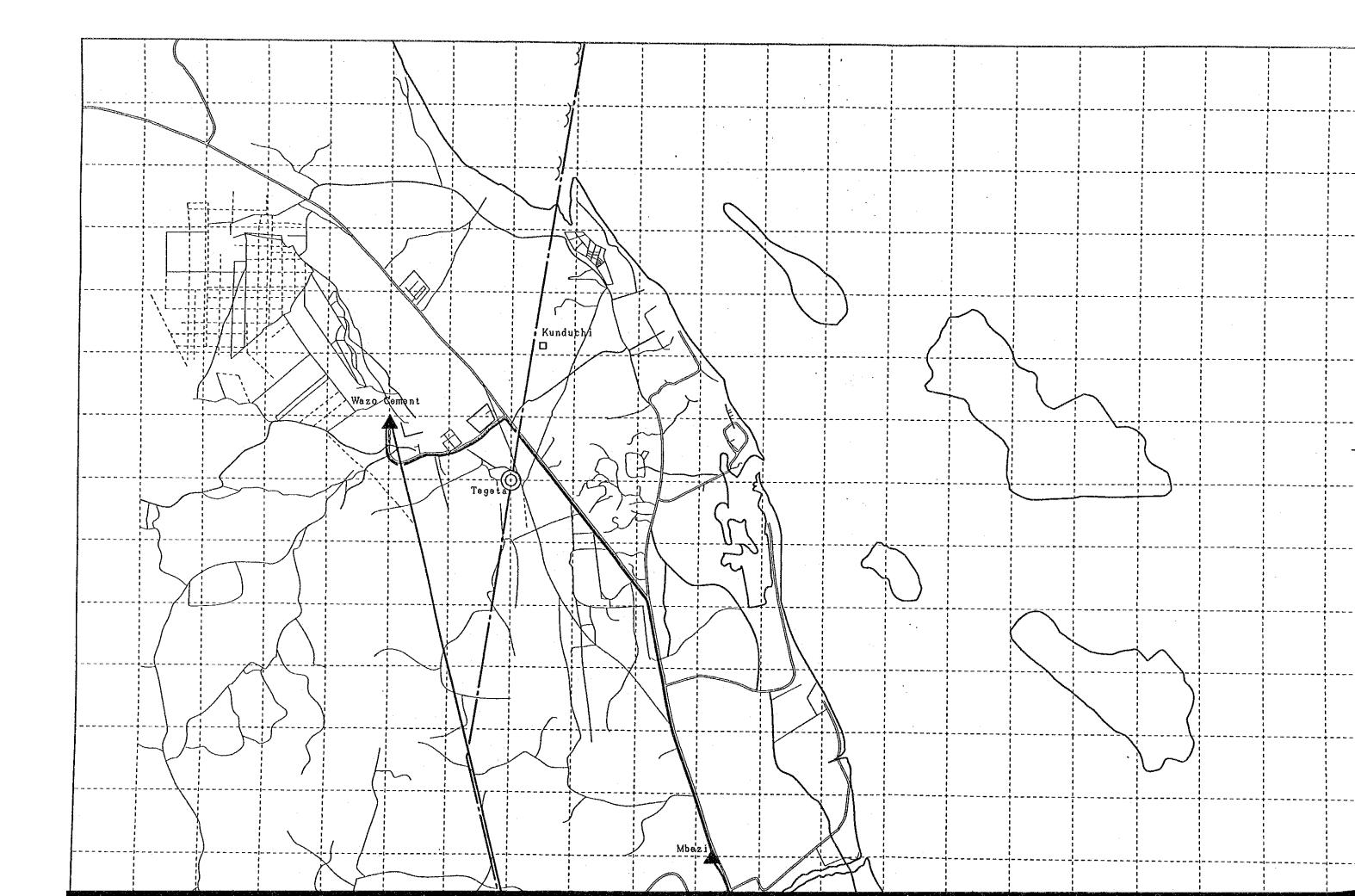
	Name of	Transformer Voltage		Irans. Lapacity
Year	S/S & Line	Transmission Line		
			, <u>e., </u>	
2004:	MBEZI S/S	33/11 KV ir.	Expan.	1 x 15 MVA
		132/33 KV !r.	Expan.	1 x 45 MVA
	MBEZI LINE	ZANZIBAK Line-MBEZI	New	132 KV x lcct.
	MIKOCHENI S/S	33/11 KV Ir.	Expan.	1 x 15 MVA
	CITY CENTER S/S	132/33 KV !r.	Expan.	1 x 45 MVA
	CITY CENTER LINE	ILALA-CITY CENTER	New	132 KV x lcct.
	UPANGA S/S	33/11 XV ir.	New	l x 15 MVA
	UPANGA LINE	CITY CENTER-UPANGA	New	35 KV x loct.
	·····			
2005:	FZ-3 S/S	33/11 KV ic.	Expan.	1 x 15 MVA
2006:	MSASANI S/S	33/11 KV ir.	∟xpan.	1 x 15 MVA
	MBAGALA S/S	132/33 KV ir.	Expan.	1 x 45 MVA
		YOMBO-MBAGALA	new	
				·

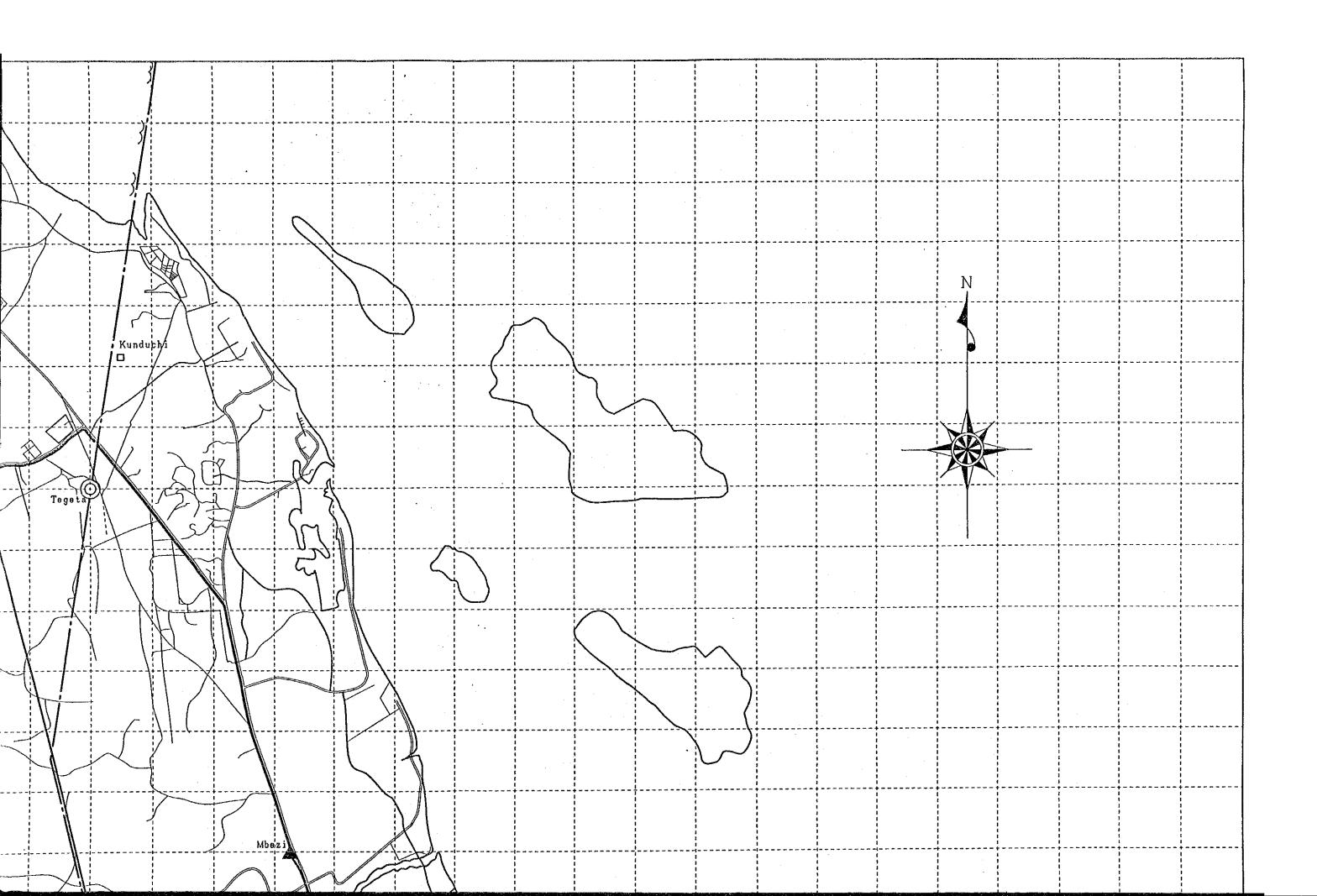
N.K,

JA.

B. CHAPTER 5 RELATED DRAWING AND DOCUMENTS

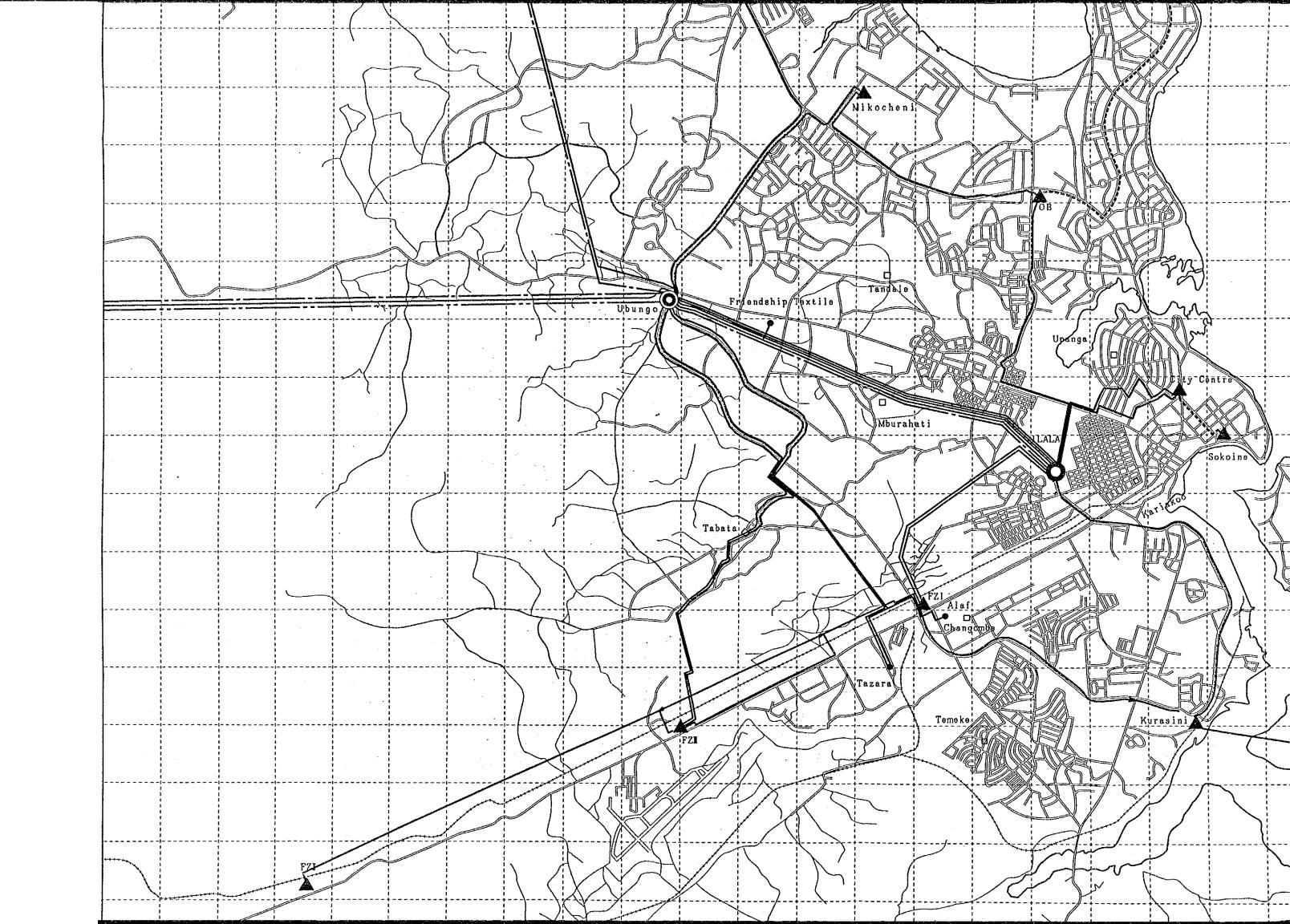
B. Chapter 5 Related Drawing and Documents


Page


1.	List	of D	wings						
1.1	Transmission Lines								
	1.	Fig.	5.3-1 Dar Es Salaam Area Existing Transmission Lines (1) B-1	L					
	2.	Fig.	5.3-2 Dar Es Salaam Area Existing Transmission Lines (2) B-2	2					
	3.	Fig.	5.3-7 Dar Es Salaam Area Transmission Lines (1994) B-3	3					
	4.	Fig.	5.3-8 Dar Es Salaam Area Transmission Lines (1996) B-4	'					
	5.	Fig.	5.3-9 Dar Es Salaam Area Transmission Lines (2000) B-	5					
:	6.	Fig.	5.3-10 Dar Es Salaam Area Transmission Lines (2002) B-6	5					
	7.	Fig.	5.3-11 Dar Es Salaam Area Transmission Lines (2004) B-7	7					
	8.	Fig.	5.3-12 Dar Es Salaam Area Transmission Lines (2006) B-8	3					
	9.	Fig.	5.3-13 Dar Transmission Line Route in Short-Term Plan B-9)					
1.2	Sub	statio	ns						
	1.	Fig.	5.4-8-1 Single Line Diagram of ILALA Substation B-1	L O					
	2.	Fig.	5.4-8-2 Layout of ILALA Substation B-1	l. 1					
	3.	Fig.	5.4-9-1 Single Line Diagram of UBUNGO Substation B-3	L2					
	4.	Fig.	5.4-9-2 Layout of UBUNGO Substation B-3	L3					
	5.	Fig.	5.4-10-1 Single Lien Diagram of TANDALE Substation B-1	1.4					
	6.	Fig.	5.4-10-2 Layout of TANDALE Substation B-	15					
	7.	Fig.	5.4-11-1 Single Line Diagram of CHANG'OMBE Substation B-	16					
	8.	Fig.	5.4-11-2 Layout of CHANG'OMBE Substation B-	1,7					
	9.	Fig.	5.4-12-1 Single Line Diagram of KURASINI Substation B-	18					
	10.	Fig.	5.4-12-2 Layout of KURASINI Substation B-	19					
	11.	Fig.	5.4-13-1 Single Line Diagram of MBEZI Substation B-	20					
	12.	Fig.	5.4-13-2 Layout of MBEZI Substation B-	21					
e ^e	13.	Fig.	5.4-14-1 Single Line Diagram of KUNDUCHI Substation B-	22					
	14.	Fig.	5.4-14-2 Layout of KUNDUCHI Substation B-	2:					

		Page
15.	Fig. 5.4-15-1 Single Line Diagram of FZ III Substation	B-24
16.	Fig. 5.4-15-2 Layout of FZ III Substation	B-25
17.	Fig. 5.4-16-1 Single Line Diagram of UBUNGO Substation	B-26
18.	Fig. 5.4-16-2 Layout of UBUNGO Substation	B-27
19.	Fig. 5.4-17-1 Single Line Diagram of KARIAKOO Substation	B-28
20.	Fig. 5.4-17-2 Layout of KARIAKOO Substation	B-29
21.	Fig. 5.4-18-1 Single Line Diagram of ILALA Substation	B-30
22.	Fig. 5.4-18-2 Layout of ILALA Substation	B-31
23.	Fig. 5.4-19-1 Single Line Diagram of MBAGALA Substation	B-32
24.	Fig. 5.4-19-2 Layout of MBAGALA Substation	B-33
25.	Fig. 5.4-20-1 Single Line Diagram of KURASINI Substation	B-34
26.	Fig. 5.4-20-2 Layout of KURASINI Substation	B-35
27.	Fig. 5.4-21-1 Single Line Diagram of TABATA Substation	B-36
28.	Fig. 5.4-21-2 Layout of TABATA Substation	B-37
29.	Fig. 5.4-22-1 Single Line Diagram of MIKOCHENI Substation	B-38
30.	Fig. 5.4-22-2 Layout of MIKOCHENI Substation	B-39
31.	Fig. 5.4-23-1 Single Line Diagram of KIGAMBONI Substation	B-40
32.	Fig. 5.4-23-2 Layout of KIGAMBONI Substation	B-41
33.	Fig. 5.4-23-3 Layout of KIGAMBONI Substation	B-42
34.	Fig. 5.4-24-1 Single Line Diagram of TEMEKE Substation	B-43
35.	Fig. 5.4-24-2 Layout of TEMEKE Substation	B-44
36.	Fig. 5.4-25-1 Single Line Diagram of MBURAHATI Substation	B-45
37.	Fig. 5.4-25-2 Layout of MBURAHATI Substation	B-46
38.	Fig. 5.4-26-1 Single Line Diagram of KITUNDA Substation	B-47
39.	Fig. 5.4-26-2 Layout of KITUNDA Substation	B-48
40.	Fig. 5.4-27-1 Single Line Diagram of YOMBO Substation	B-49
41.	Fig. 5.4-27-2 Layout of YOMBO Substation	8-50

					Page
42.	Fig.	5.4-28-1	Single	Line Diagram of FZ III Substation	B-5
43.	Fig.	5.4-28-2	Layout	of FZ III Substation	B-52
44.	Fig.	5.4-29-1	Single	Line Diagram of FZ II Substation	B-53
45.	Fig.	5.4-29-2	Single	Line Diagram of FZ II Substation	B-54
46.	Fig.	5.4-29-3	Layout	of FZ II Substation	B-55
47.	Fig.	5.4-30-1	Single	Line Diagram of OYSTER BAY Substation	B-56
48.	Fig.	5.4-30-2	Layout	of OYSTER BAY Substation	B-57
49.	Fig.	5.4-31-1	Single	Line Diagram of UBUNGO Substation	B 58
50.	Fig.	5.4-31-2	Layout	of UBUNGO Substation	B-59
51.	Fig.	5.4-32-1	Single	Line Diagram of KARIAKOO Substation	B-60
52.	Fig.	5.4-32-2	Layout	of KARIAKOO Substation	B-61
53.	Fig.	5.4-33-1	Single	Line Diagram of KIGAMBONI Substation	B-62
54.	Fig.	5.4-33-2	Layout	of KIGAMBONI Substation	B-63
55.	Fig.	5.4-34-1	Single	Line Diagram of KURASINI Substation	B-64
56.	Fig.	5.4-34-2	Layout	of KURASINI Substation	B-65
57.	Fig.	5.4-35-1	Single	Line Diagram of YOMBO Substation	B-66
58.	Fig.	5.4-35-2	Layout	of YOMBO Substation	B-67
59.	Fig.	5.4-36-1	Single	Line Diagram of OYSTER BAY Substation	B-68
60.	Fig.	5.4-36-2	Layout	of OYSTER BAY Substation	B-69
61.	Fig.	5.4-37-1	Single	Line Diagram of MBEZI Substation	B-70
62.	Fig.	5.4-37-2	Layout	of MBEZI Substation	B-71
63.	Fig.	5.4-38-1	Single	Line Diagram of MIKOCHENI Substation	B-72
64.	Fig.	5.4-38-2	Layout	of MIKOCHENI Substation	B-73
65.	Fig.	5.4-39-1	Single	Line Diagram of CITY CENTRE Substation	B-74
66.	Fig.	5.4-39-2	Layout	of CITY CENRE Substation	B-75
67.	Fig.	5.4-40-1	Single	Line Diagram of ILALA Substation	B-76
68.	Fig.	5.4-40-2	Layout	of ILALA Substation	B-77


					Page
69.	Fig.	5.4-41-1	Single	Line Diagram of UPANGA Substation	B-78
70.	Fig.	5.4-41-2	Layout	of UPANGA Substation	B-79
71.	Fig.	5.4-42-1	Single	Line Diagram of FZ III Substation	B-80
72.	Fig.	5.4-42-2	Layout	of FZ III Substation	B-81
73.	Fig.	5.4-43-1	Single	Line Diagram of MSASANI Substation	B-82
74.	Fig.	5.4-43-2	Layout	of MSASANI Substation	B-83
75.	Fig.	5.4-44-1	Single	Line Diagram of MBAGARA Substation	B-84
76.	Fig.	5.4-44-2	Layout	of MBAGARA Substation	B-85
77.	Fig.	5.4-45-1	Single	Line Diagram of YOMBO Substation	B-86
78.	Fig.	5.4-45-2	Layout	of YOMBO Substation	B-87

