are of a long span type. It costs an enormous investment to modify them into those that are of a short span type.

- 3) The exact data of frequency of lightning strokes, actual results of lightning damage and lightning resistant effect of the overhead ground wires are unknown.
- 10.6.2 11 kV Distribution Line Construction Works for Newly Constructed or Modified Substations
 - (1) Summary of work plan (short-term for 5 years)

See Tables of the summary of work plan and load change-over plan for each substation.

Study to be implemented in 1994.

1) TANDALE S/S: new construction (15 MVA x 1)

Construction of new TA1, TA2 and TA3 feeders must be carried out and in addition, the load must partly be separated from the following feeders for change-over. See Table 10.6.2-1 and Fig. 10.6.2-1.

Mikocheni S/S: MK2 & MK3

Oyster bay S/S: 02 & 04

Ilala S/S : D10

Ubungo S/S : U2

2) CHANG'OMBE S/S: new construction (15 MVA x 1)

Construction of new CH1, CH2, CH3 and CH4 feeders must be carried out and in addition, the load must partly be separated from the following feeders for change-over. See Table 10.6.2-2 and Fig. 10.6.2-1.

Ilala S/S : D3 & D7

FZ-I S/S : F2 & F5

3) ILALA S/S: No. 5 bank

Change-over of D3 feeder of No. 3 bank and D9 feeder of No. 4 bank to newly constructed No. 5 bank must be carried out. The load must partly be separated from the U1 feeder of Ubungo S/S for change-over. See Table 10.6.2-3 and Fig. 10.6-2-1.

4) MBEZI S/S: expansion of capacity (7.5 MVA to 15 MVA)

Change-over of MB1, MB2 and MB3 feeders of the existing bank (7.5 MVA \times 1) to newly installed transformer (15 MVA \times 1) must be carried out. See Fig. 10.6.2-1.

Study to be implemented in 1996

1) KUNDUCHI S/S: new construction (15 MVA \times 1)

Construction of new KU1, KU2, KU3 and KU4 feeders must be carried out and in addition, the load must partly be separated from the following feeder for change-over. See Table 10.6.2-4 and Fig. 10.6.2-2.

Mbezi S/S : MB2

2) KARIAKOO S/S: new construction (15 MVA x 1)

Construction of new KA1, KA2 and KA3 feeders must be carried out and in addition, the load must partly be separated from the following feeders for change-over. See Table 10.6.2-5 and Fig. 10.6.2-1.

Ilala S/S : D1, D2 & D9

Kurasini S/S : Port

City Centre S/S: C5

In addition, shutdown D8 feeder of Ilala S/S must be reused for newly constructed No. 5 bank.

3) MBAGALA S/S: new construction (15 MVA x 1)

Construction of new MG1, MG2 and MG3 feeders must be carried out and in addition, the load must partly be separated from the following feeders for change-over. See Table 10.6.2-6 and Fig. 10.6.2-3.

Kurasini S/S : Kilwa road

4) TABATA S/S: new construction (5 MVA x 1)

Construction of new TB1 and TB2 feeders must be carried out and in addition, the existing 33 kV power supply load must partly be separated for change-over to the 11 kV power supply. See Table 6.2-7.

Table 10.6.2-1 TANDALE S/S load change-over plan

Substation feeder	Tr facility cap for estimated d		Before taking counter- measures		After taking counter- measures
Tandale	Estimated demand	(kW)		From MK2 (+)317 From MK3 (+)473	790
•		(A)	:	From MK2 (+) 21 From MK3 (+) 31	52
TA1	Tr facility capacity	(kVA)		From MK2 (+)615 From MK3 (+)3,420	4,035
	Estimated demand	(kW)		From 04 (+)1,022 From U2 (+)976 From D10 (+)860	2,858
		(A)		From 04 (+)57 From U2 (+)64 From D10 (+)57	178
TA2	Tr facility capacity	(kVA)		From 04(+)1,134 From U2 (+)1,515 From D10(+)1,130	3,779
	Estimated demand	(kW)		From MK2 (+)311	311
		(A)		From MK2 (+)20	20
TA3	Tr facility capacity	(kVA)		From MK2 (+)2,245	2,245
Mikocheni	Estimated demand	(kW)	3,958	To TA1 (-)317 From MK3 (+)57 To O2 (-)309	3,389
		(A)	260	To TA1 (-)21 From MK3 (+)4 To 02 (-)20	223
MK2	Tr facility capacity	(kVA)	7,675	To TA1 (-)615 From MK3(+)415 To 02 (-)600	3,875
	Estimated demand	(kW)	1,649	To TA1 (-)473 To MK2 (-)57 To TA3 (-)311	808
		(A)	108	To TA1 (-)31 To MK2 (-)4 To TA3 (-)20	53
МКЗ	Tr facility capacity	(kVA)	11,920	To TA1 (-)3,420 To MK2 (-)415 To TA3 (-)2,245	5,840
Oyster bay	Estimated demand	(kW)	3,029	From MK2 (+)309	3,338
		(A)	199	From MK2 (+)20	219
02	Tr facility capacity	(kVA)	2,515	From MK2 (+)600	3,115
	Estimated demand	(kW)	3,652	To TA2 (-)1,022	2,630
4		(A)	240	To TA2 (-)57	183
04	Tr facility capacity	(kVA)	4,805	To TA2 (-)1,134	3,671
Ilala	Estimated demand	(kW)	4,230	To TA2 (-)860	3,370
		(A)	278	To TA2 (-)57	221
D10	Tr facility capacity	(kVA)	5,560	To TA2 (-)1,130	4,430
Ubungo	Estimated demand	(kW)	3,008	To TA2 (-)976	2,032
		(A)	197	To TA2 (~)64	133
U2	Tr facility capacity	(kVA)	4,670	To TA2 (-)1,515	3,155

Table 10.6.2-2 CHANG'OMBE S/S load change-over plan

Substa		Tr facility cap		Before taking counter-	Detail of change-over	After taking counter-
				measures	0	measures
Chang'	ombe	Estimated demand	(kW)		From D3 (+)1,240 From F5 (+)349	1,589
			(A)		From D3 (+)81 From F5 (+)23	104
	CH1	Tr facility capacity	(kVA)		From D3 (+)1,815 From F5 (+)2,415	4,230
	•	Estimated demand	(kW)		From F2 (+)963	963
			(A)		From F2 (+)63	63
	CH2	Tr facility capacity	(kVA)		From F2 (+)3,750	3,750
		Estimated demand	(kW)		From K3 (+)2,342	2,342
			(A)		From K3 (+)154	1.54
	СН3	Tr facility capacity	(kVA)		From K3 (+)6,215	6,215
			(kW)		From F2 (+)423 From K4 (+)1,294	1,717
			(A)		From F2 (+)23 From K4 (+)85	108
	CH4	Tr facility capacity	(kVA)		From F2 (+)1,645 From K4 (+)3,015	4,660
Ilala		Estimated demand	(kW)	3,750	To CH1 (-)1,240	2,150
			(A)	246	To CH1 (-)81	165
	D3	Tr facility capacity	(kVA)	5,495	To CH1 (-)1,815	3,680
		Estimated demand	(kW)	2,638	To F5 (-)1,426	1,212
			(A)	159	To F5 (-)86	73
ERAT MENTAL SALES	D7	Tr facility capacity	(kVA)	2,460	To F5 (-)1,330	1,130
F2-1		Estimated demand	(kW)	2,764	To CH2 (-)963 To CH4 (-)423	1,378
			(A)	182	To CH2 (-)63 To CH4 (-)23	96
	F2	Tr facility capacity	(kVA)	10,760	To CH2 (-)3,750 To CH4 (-)1,645	5,365
		Estimated demand	(kW)	1,134	To CH1 (-)349 From D7(+)1,425	2,211
			(A)	74	To CH1 (~)23 From D7 (+)86	137
	F5	Tr facility capacity	(kVA)	7,845	To CH1 (-)2,415 From D7(+)1,330	6,670

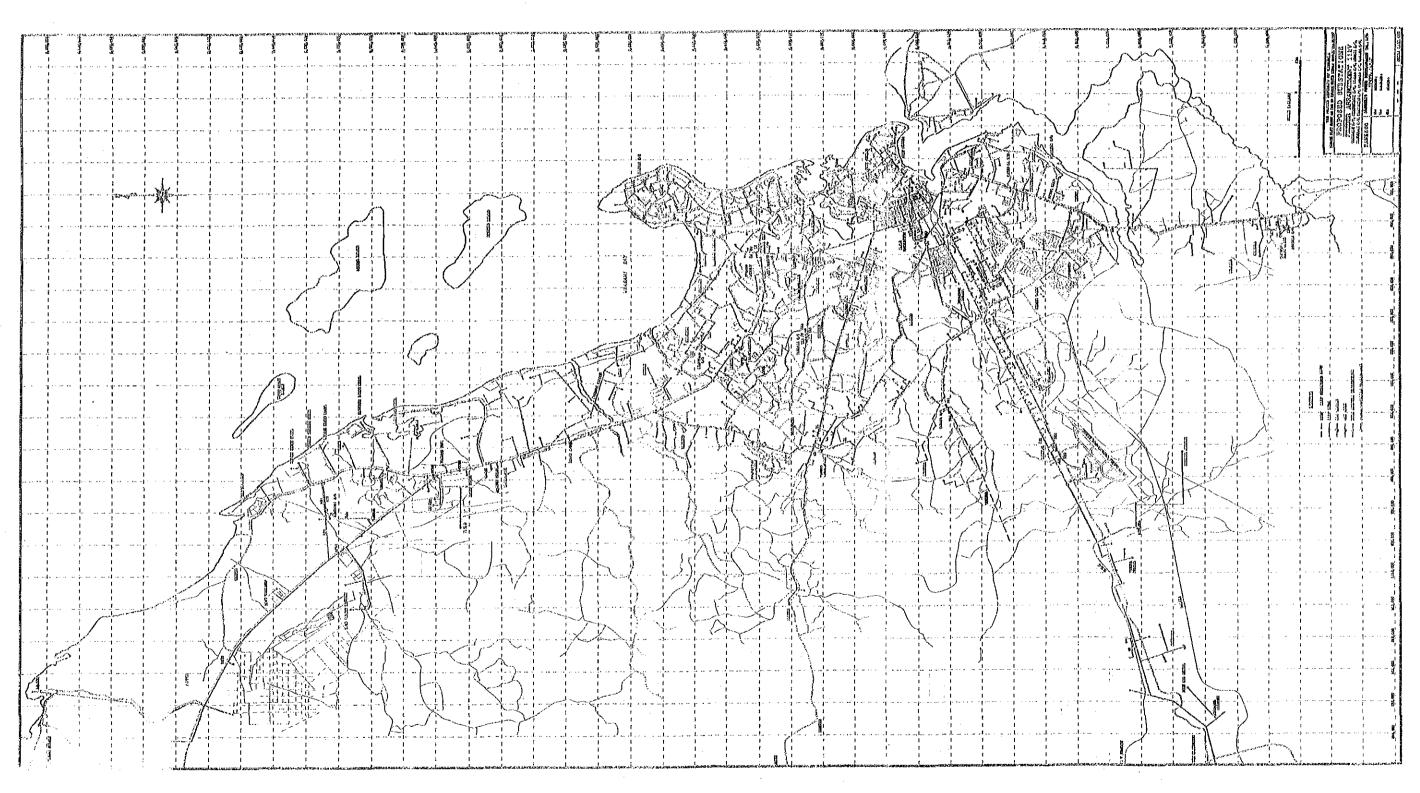
Table 10.6.2-2 CHANG'OMBE S/S load change-over plan

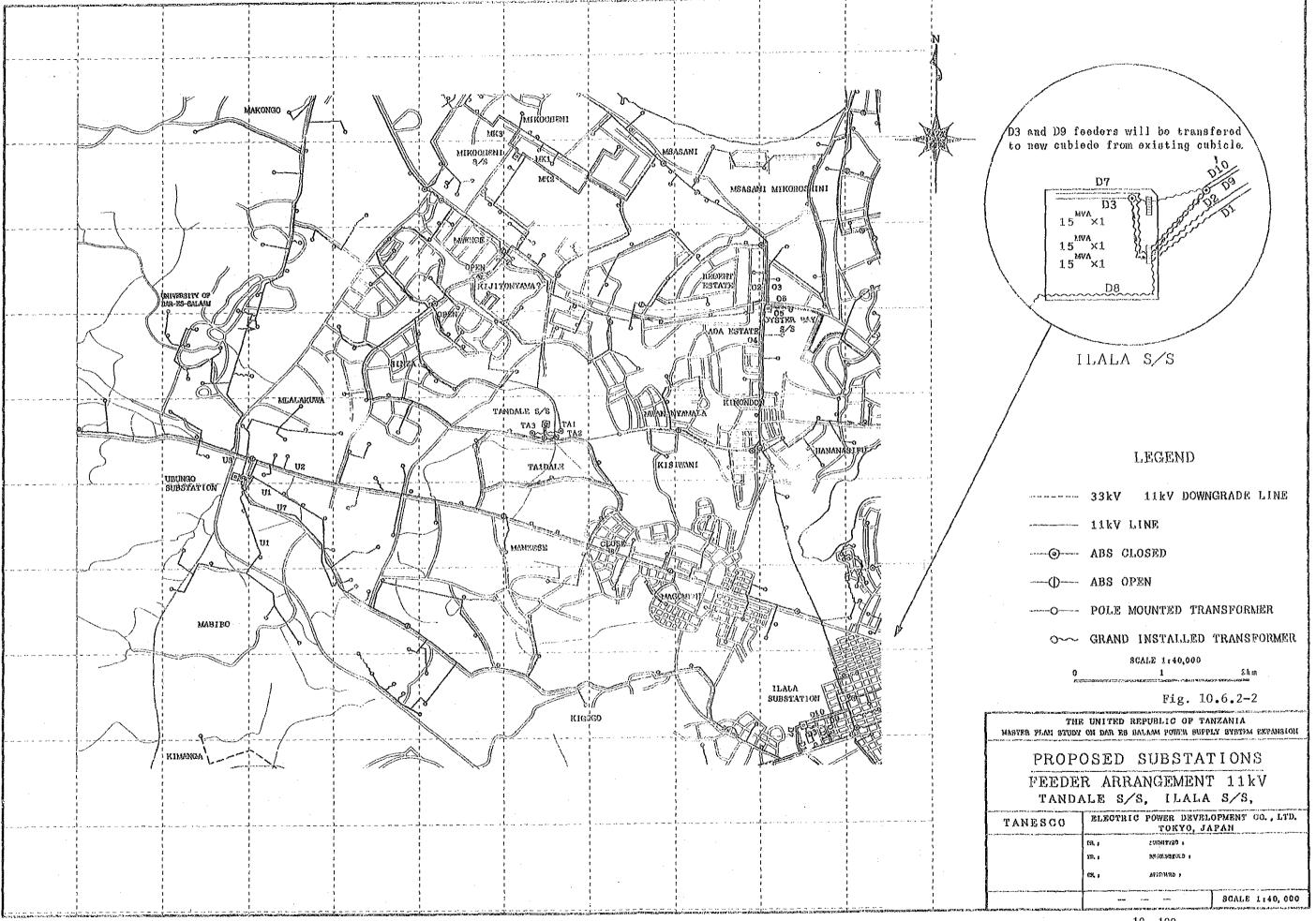
Substation feeder	Tr facility capacity for estimated demand		Before taking counter- measures	•	After taking counter- measures
Kurasini	Estimated demand	(kW)	3,498	To CH3 (-)2,342	1,156
	(A)		230	To CH3 (-)154	76
Industrial	Tr facility capacity	(kVA)	9,310	To CH3 (-)6,215	3,095
	Estimated demand	(kW)	4,812	To CH4 (-)1,294	3,518
<i>1.</i>		(A)	316	To CH4 (-)85	231
Kilwa road	Tr facility capacity	(kVA)	11,210	To CH4 (-)3,015	8,195

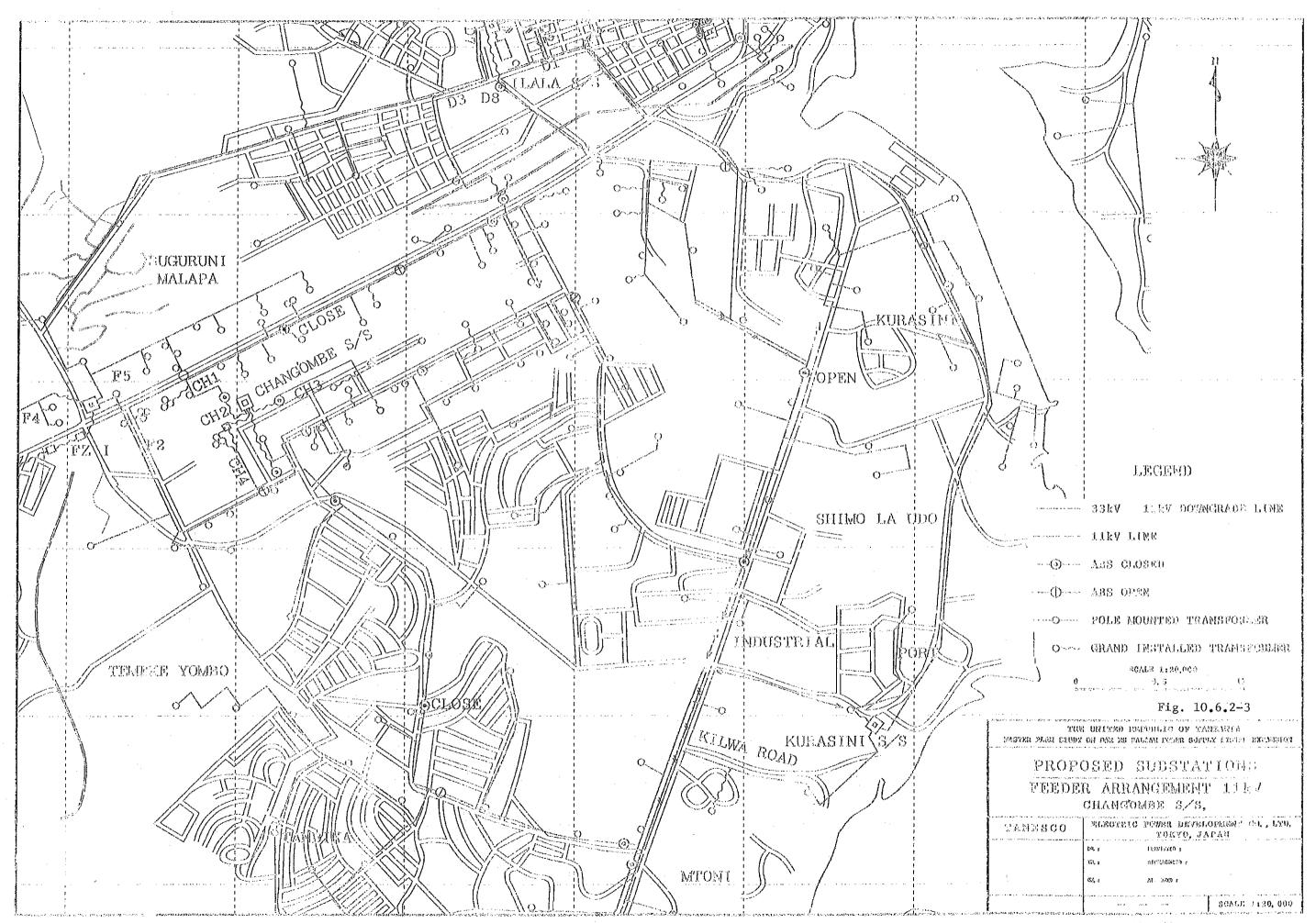
Table 10.6.2-3 ILALA S/S load change-over plan

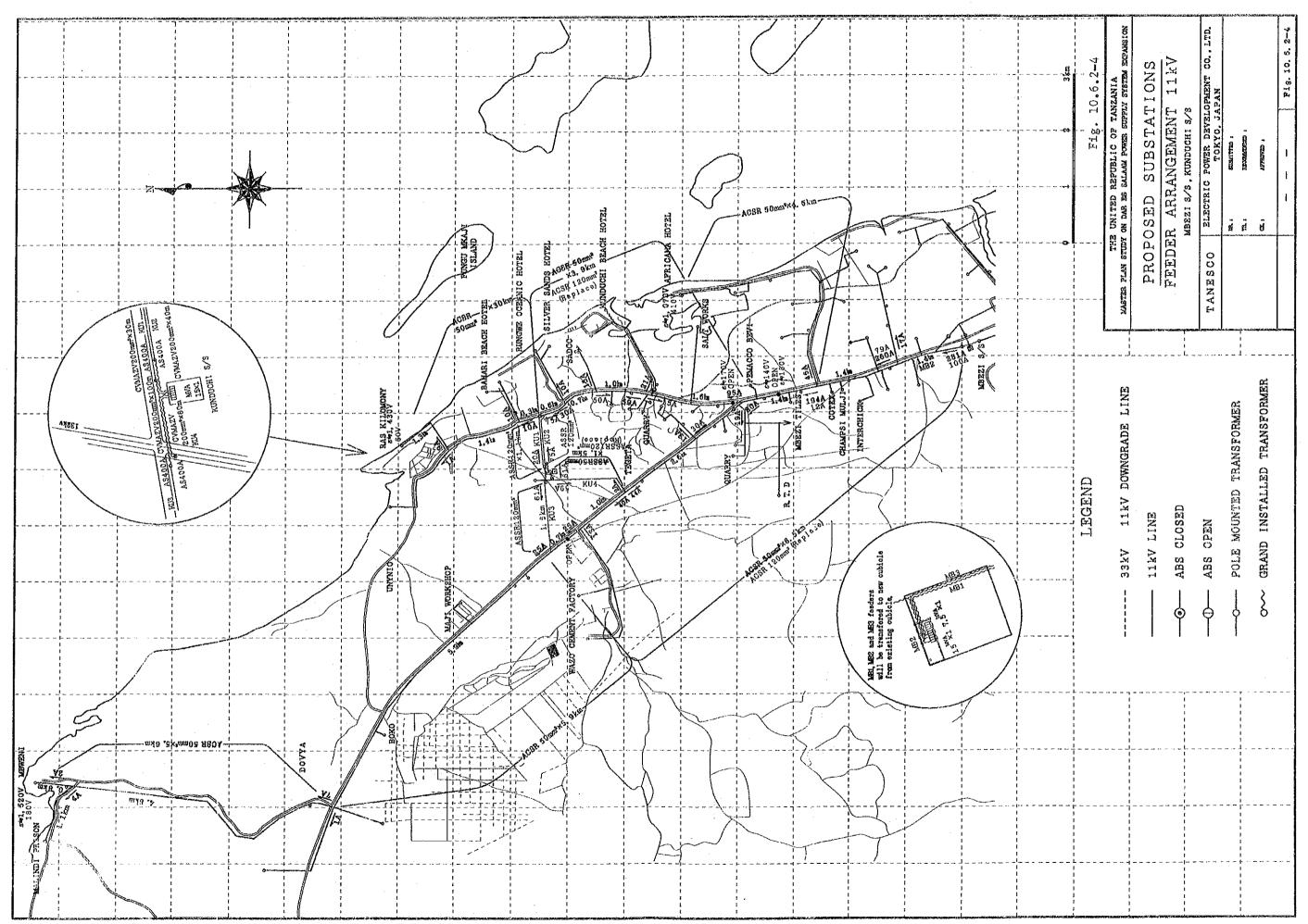
Subst		Tr facility cap		Before taking counter- measures	<u></u>	After taking counter- measures
Ilala		Estimated demand	(kW)	2,559		2,559
No.3	Bank		(A)	168		168
	D1	Tr facility capacity	(kVA)	5,695		5,695
	:	Estimated demand	(kW)	2,349		2,349
			(A)	154		154
	D2	Tr facility capacity	(kVA)	3,215		3,215
		Estimated demand	(kW)	3,750	To Ilala No.5 bank (-)3,750	0
			(A)	246	To Ilala No.5 bank (-) 246	0
	D3	Tr facility capacity	(kVA)	5,495	To Ilala No.5 bank (-)5,495	0
Ilala		Estimated demand	(kW)	1,212	From U1 (+)1,234	2,446
No.4	Bank		(A)	73	From U1 (+) 81	154
	D7	Tr facility capacity	(kVA)	1,130	From U1 (+)3,055	4,185
		Estimated demand	(kW)	6,384	To Ilala No.5 bank (-)6,384	0
			(A)	419	To Ilala No.5 bank (-) 419	0
	D9	Tr facility capacity	(kVA)	5,430	To Ilala No.5 bank (-)5,430	0
		Estimated demand	(kW)	4,230		4,230
			(A)			
	D10	Tr facility capacity	(kVA)	5,560		5,560
Ilala		Estimated demand	(kW)		From Ilala No.3 bank (-)3,750	3,750
No.5	Bank		(A)		From Ilala No.3 bank (-) 246	246
	D3	Tr facility capacity	(kVA)		From Ilala No.3 bank (-)5,495	5,495
	j	Estimated demand	(kW)		From Ilala No.4 bank (-)6,387	6,387
			(A)		From Ilala No.4 bank (-) 419	419
	D9	Tr facility capacity	(kVA)		From Ilala No.4 bank (-)5,430	5,430
Ubunge	o	Estimated demand	(kW)	3,762	To D7 (-)1,234	2,528
			(A)	247	To D7 (-) 81	166
	U1	Tr facility capacity	(kVA)	9,310	To D7 (-)3,055	6,255

Table 10.6.2-4 KUNDUCHI S/S load change-over plan

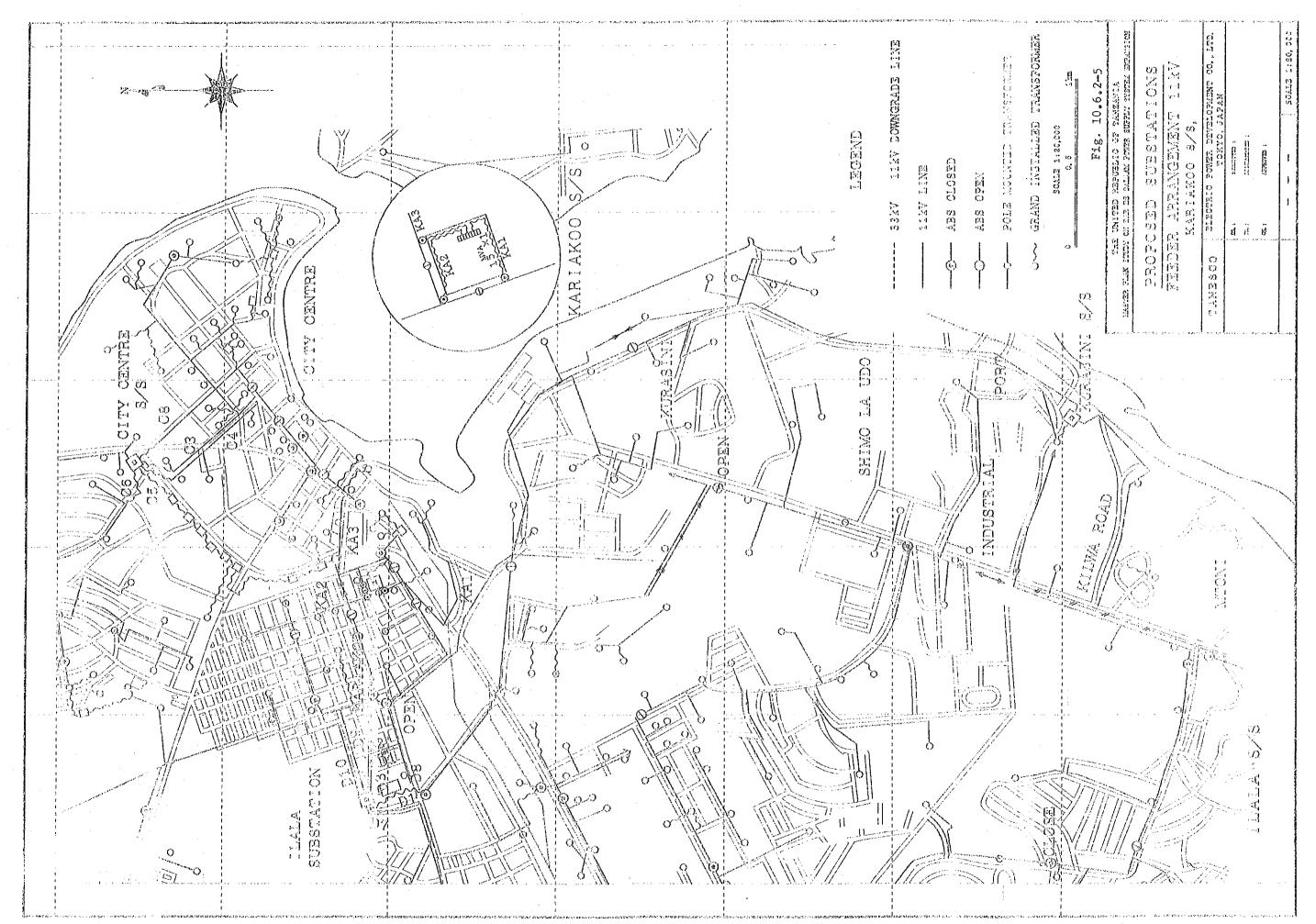

Substa feed		Tr facility cap for estimated d		Before taking counter- measures	· · · · · · · · · · · · · · · · · · ·	After taking counter- measures
Kundu	chi	Estimated demand	(kW)		From Kunduchi (+)305	305
			(A)		From Kunduchi (+)20	20
=	KU1	Tr facility capacity	(kVA)		From Kunduchi (+)650	650
		Estimated demand	(kW)		From Kunduchi (+)1,142	1,142
·			(A)		From Kunduchi (+)75	75
	KU2	Tr facility capacity	(kVA)		From Kunduchi (+)2,525	2,525
·		Estimated demand	(kW)		From Kunduchi (+)381	381
		e telepoto e la companya	(A)		From Kunduchi (+)25	25
	KU3	Tr facility capacity	(kVA)		From Kunduchi (+)1,790	1,790
•		Estimated demand	(kW)		From Kunduchi (+)930	930
	· .		(A)		From Kunduchi (+)61	61
	KU4	Tr facility capacity	(kVA)		From Kunduchi (+)4,000	4,000
Mbezi		Estimated demand	(kW)	4,282	To Ku1 (-) 305 To Ku3 (-) 380 To Ku2 (-)1,143 To Ku4 (-) 930	1,524
			(A)	281	To Ku1 (-) 20 To Ku3 (-) 25 To Ku2 (-) 75 To Ku4 (-) 61	100
	MB2	Tr facility capacity	(kVA)	13,810	To Ku1 (-) 650 To Ku3(-)1,790 To Ku2 (-)2,525 To Ku4(-)4,000	4,845

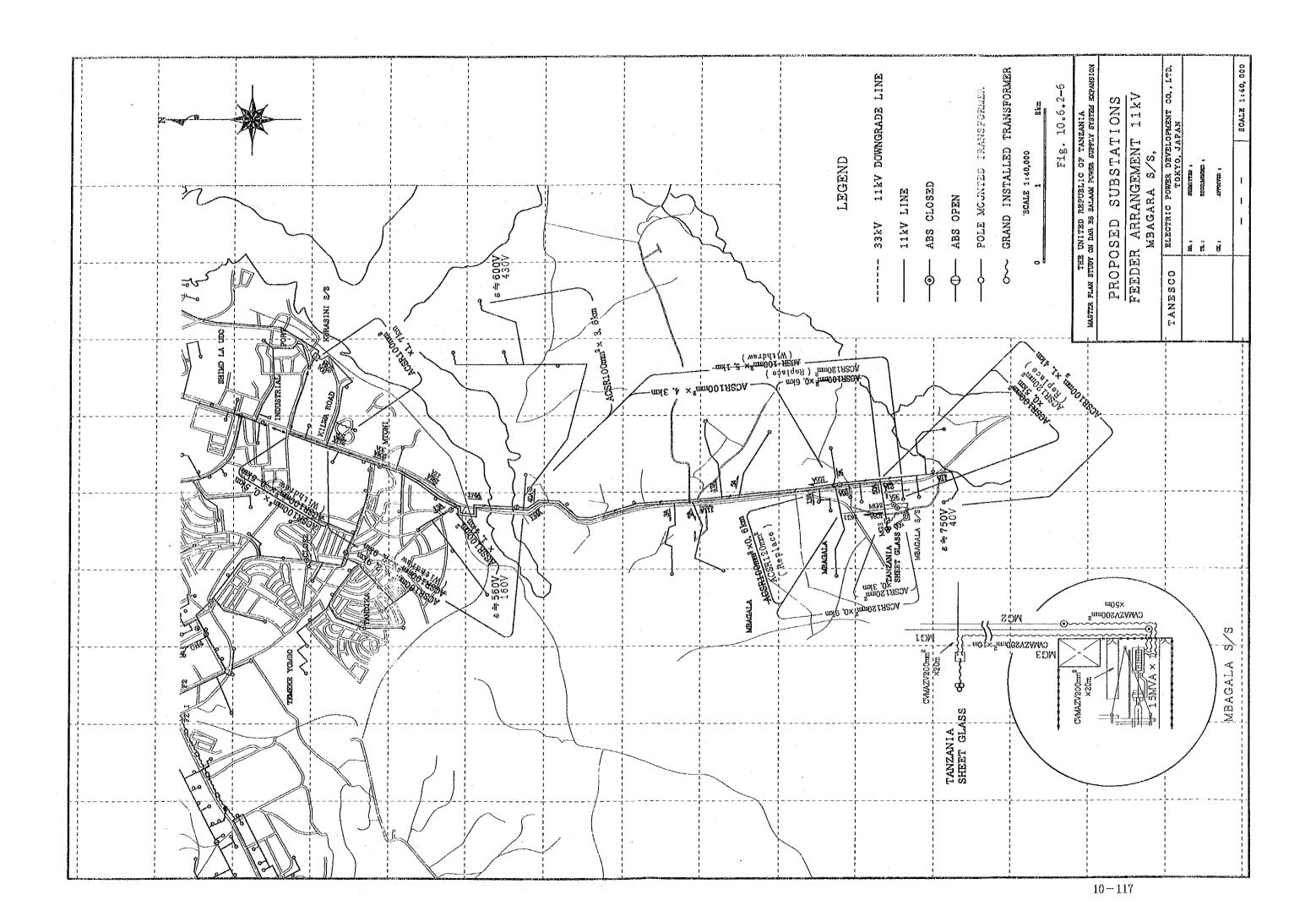

Table 10.6.2-5 KARIAKOO S/S load change-over plan

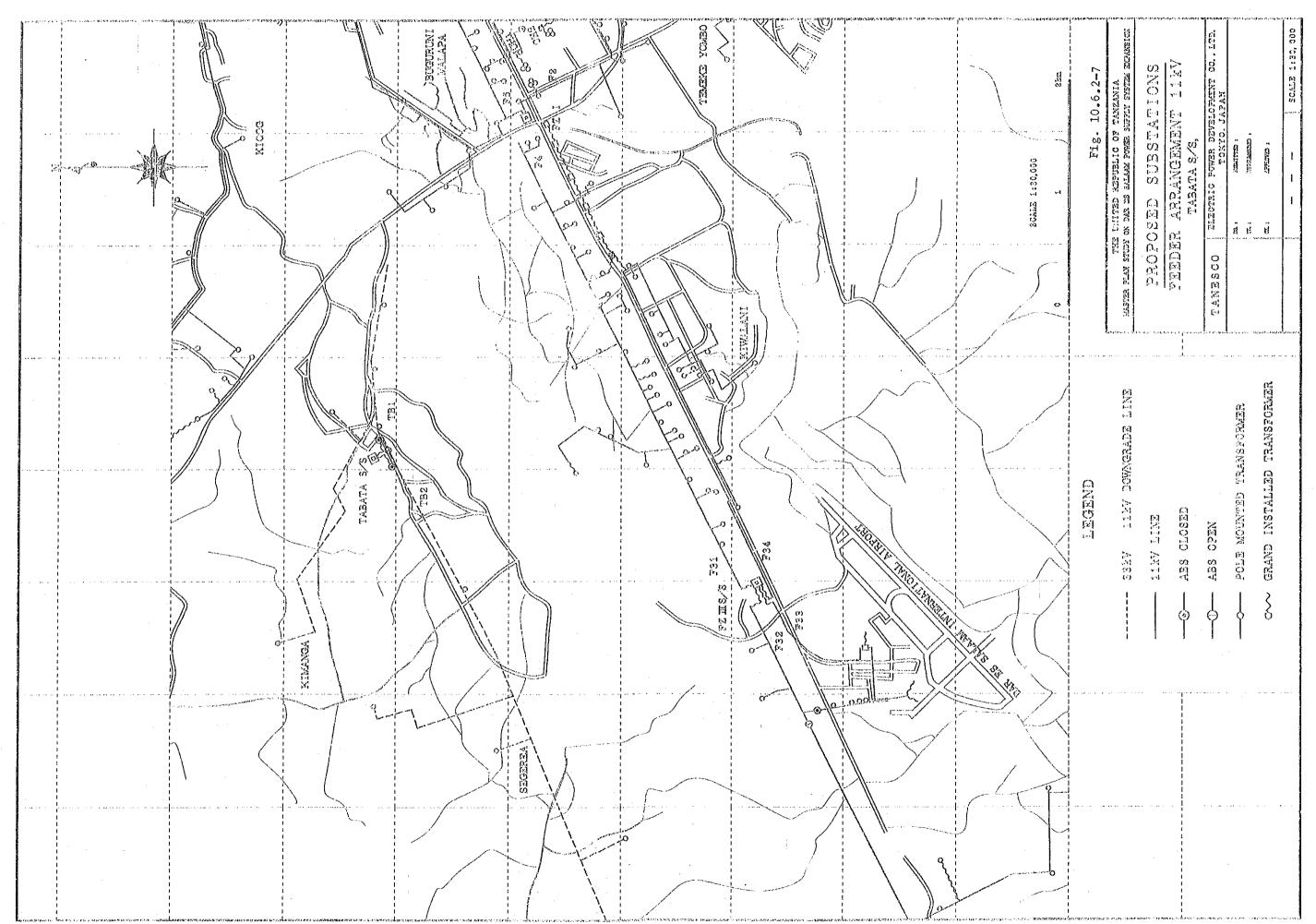

Substation feeder	1		Before taking	Detail of change area	After taking
reeder for estimated		ешапо	counter- measures	.	counter measure
Kariakoo	Estimated demand	(kW)		From D1(+)1,463 From Port(+)996 From D2 (+)336 From C5 (+)200	2,995
		(A)		From D1 (+)96 From Port (+)65 From D2 (+)23 From C5 (+)21	205
KA1	Tr facility capacity	(kVA)		From D1(+)3,255 From Port(+)950 From D2 (+)400 From C5 (+)500	5,100
	Estimated demand	(kW)		From D9 (+)1,991	1,991
		(A)	•	From D9 (+)131	131
KA2	Tr facility capacity	(kVA)		From D9 (+)1,515	1,515
	Estimated demand	(kW)		From D2 (+)846 From D9 (+)2,142	2,988
		(A)	:	From D2 (+)55 From D9 (+)140	1.95
KA3	Tr facility capacity	(kVA)		From D2 (+)1,000 From D9 (+)1,630	2,630
Ilala	Estimated demand	(kW)	2,860	To D2 (-) 90 To KA1 (-)1,463 To D8 (-)1,307	0
		(A)	188	To D2 (-) 6 To KA1 (-) 96 To D8 (-) 86	0
D1	Tr facility capacity	(kVA)	6,355	To D2 (-)200 To KA1 (-)3,255 To D8 (-)2,900	0
	Estimated demand	(kW)	2,624	From D1 (+) 90 To KA3 (-) 846 To KA1 (-)336	1,532
		(A)	172	From D1 (+) 6 To KA3 (-) 55 To KA1 (-) 23	100
D2	Tr facility capacity	(kVA)	3,100	From D1 (+)200 To kA3 (-)1,000 To KA1 (-)400	1,900
		(kW)	7,136	To KA2(-)1,991 To KA3(-)2,142	3,003
		(A)	468	To KA2 (-)131 To KA3 (-)140	197
D9	Tr facility capacity	(kVA)	5,430	To KA2(-)1,515 To KA3(-)1,630	2,285
Ilala	Estimated demand	(kW)		From D1 (+)1,307	1,307
No.5 Bank		, (A)		From D1 (+)86	86
D8	Tr facility capacity	(kVA)		From D1 (+)2,900	2,900
Kurasini	Estimated demand	(kW)	3,266	To KA1 (-)996	2,270
	<u> </u>	(A)	214	To KA1 (-) 65	149
Port	Tr facility capacity	(kVA)	3,115	To KA1 (-)950	2,165
City	Estimated demand	(kW)	4,638	To KA1 (-)200	4,438
Center		(A)	304	To KA1 (-) 21	283
C5	Tr facility capacity	(kVA)	7,300	To KA1 (-)500	6,800

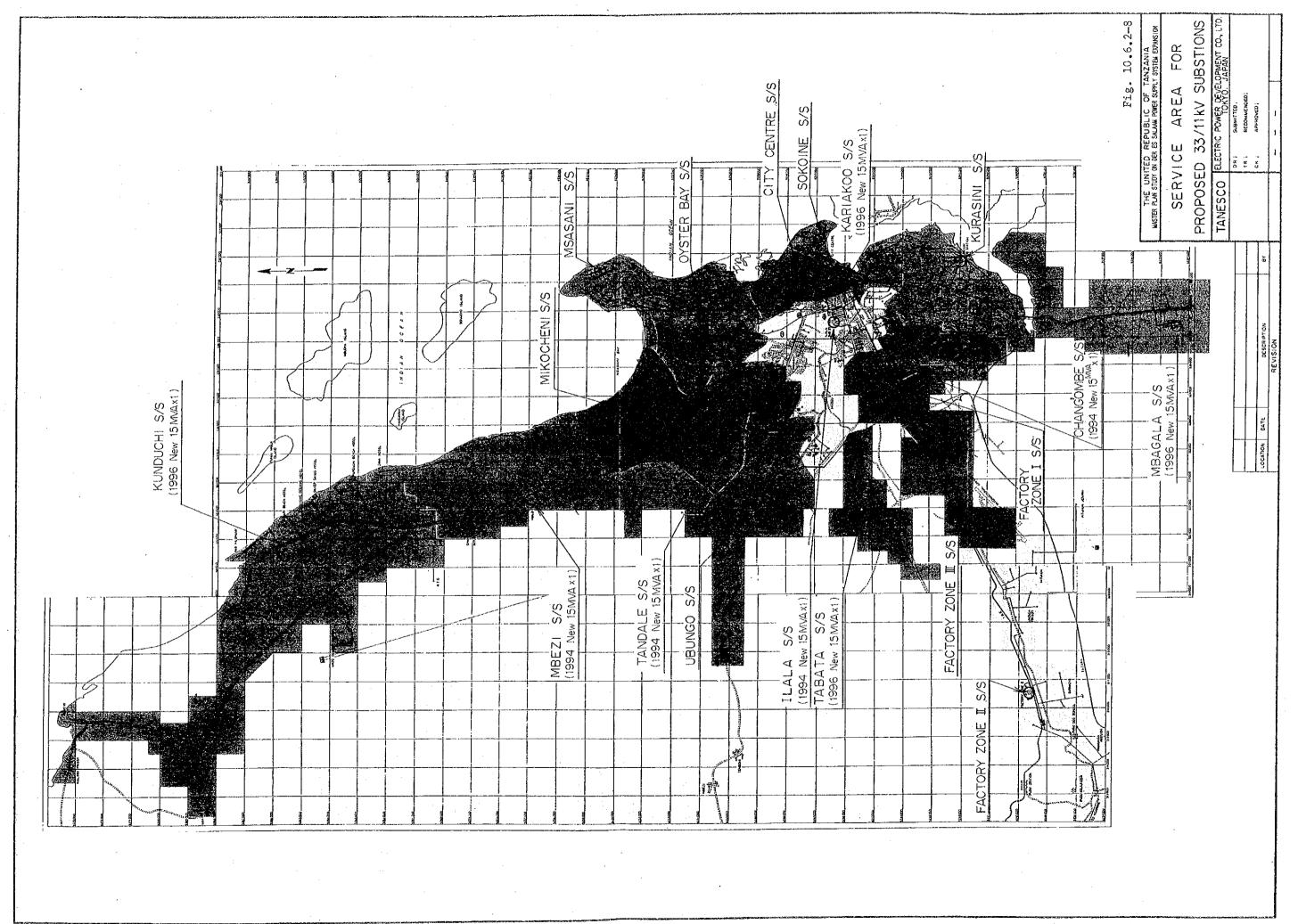

Table 10.6.2-6 MBAGALA S/S load change-over plan

Substation feeder	Tr facility cap		Before taking counter- measures	9	After taking counter- measures
Mbagala	Estimated demand	(kW)		From K4 (+)1,655	1,655
		(A)		From K4 (+)108	108
MG1	Tr facility capacity	(kVA)		From K4 (+)3,245	3,245
	Estimated demand	(kW)		From K4 (+)536	536
		(A)		From K4 (+)36	36
MĢ2	Tr facility capacity	(kVA)		From K4 (+)1,050	1,050
	Estimated demand	(kW)		From K4 (+)765	765
		(<u>A</u>)		From K4 (+)50	50
MG3	Tr facility capacity	(kVA)		From K4 (+)1,500	1,500
Kurasini	Estimated demand	(kW)	4,180	To MB1 (-)1,655 To MB2 (-) 536 To MB3 (-) 765	1,224
		(A)	274	To MB1 (-) 108 To MB2 (-) 36 To MB3 (-) 50	80
Kilwa road	Tr facility	(kVA)	8,195	To MB1 (-)3,245 To MB2 (-)1,050 To MB3 (-)1.500	2,400









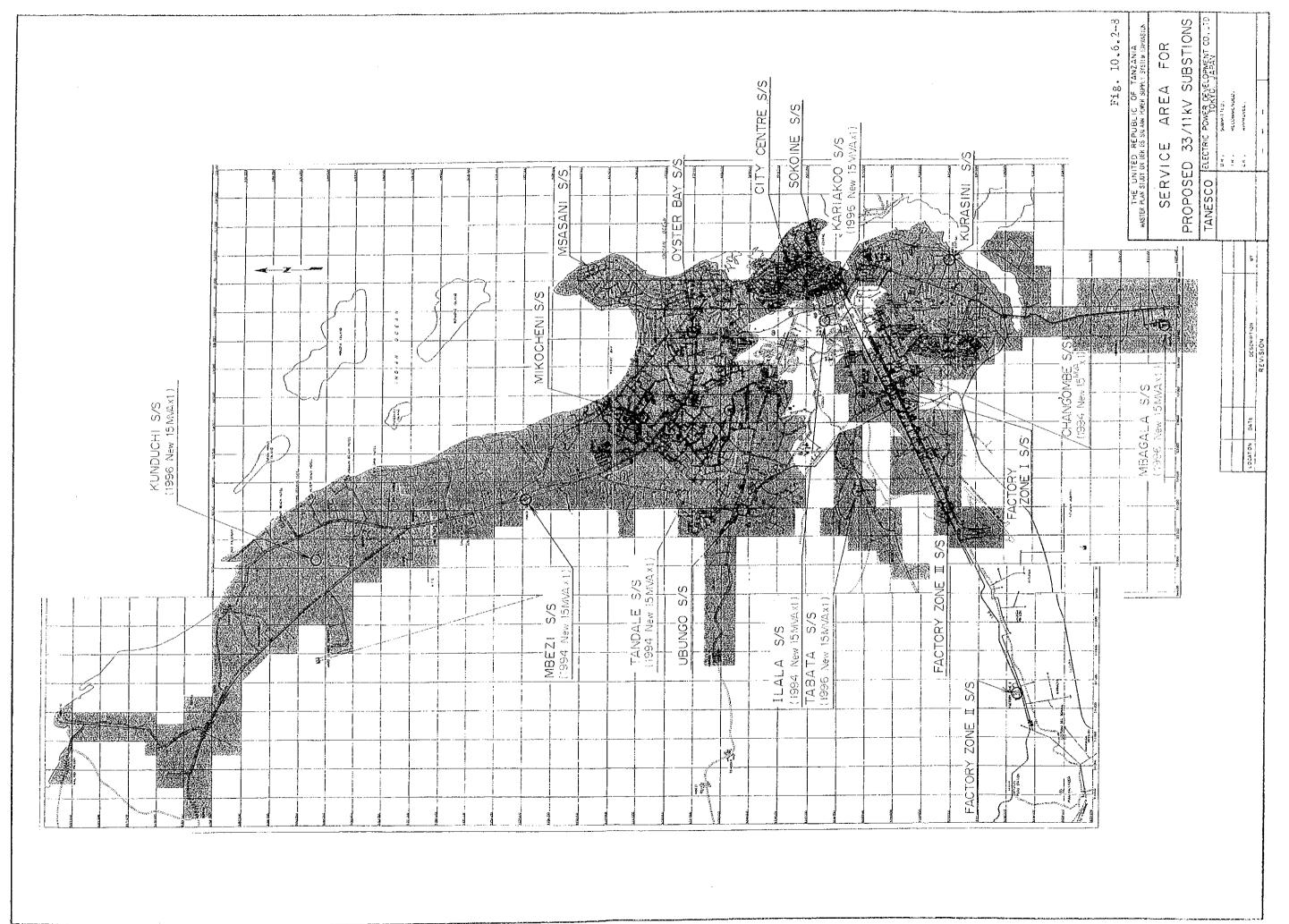


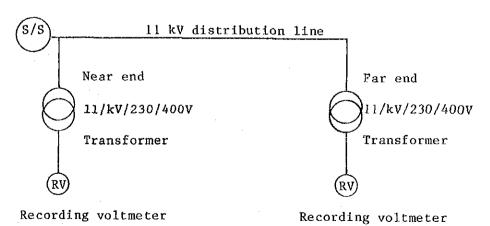
Table 10.6.2-7 33/11 kV bank load status
Distribution substation expansion - related works

				Befor	e takin	g counte	rmeasures			After	taking	counterm	easures							
ear	Substation expansion		Feeder circuit (cct)	Demand area (km2)	Feeder area (km2/ cct)	Demand (kW)	Load density (kW/km2)	Feeder load (kW/cct)	Feeder circuit (cct)	Demand area (km2)	Feeder area (km2/ cct)	Demand (kW)	Load density (kW/km2)	Feeder load (kW/cct)			Rema	rk		
lans o be mple-		LE new ruction	-	·		_	-	-	3	10.8	3.6	3,959	367	1,320		Feeder (cct)	Demand area (km2)	Feeder area (km2/ cct)	Demand (kW)	Feede load (kW/ cct)
ented 1 994		Mikocheni	4	17.6	4.4	12,811	728	3,203	4	10.8	2.7	11,401	1,056	2,850	Before counter- measures	19	70.9	3.73	64,171	3,37
		Oysterbay	5	10.1	2.0	18,300	1,812	3,660	5	9.8	2.0	17,587	1,795	3,517	After counter-	- 19	3.22	3.22		2,91
:		Ilala	6	19.3	3.2	23,829	1,235	3,972	6	17.5	2.9	22,969	1,137	3,828	measures			(-)		
		Ubungo	4	23.9	6.0	9,231	386	2,308	4	22.0	5.5	8,255	375	2,064	Balance	(+)3		0.51		(-)46
		'OMBE new ruction x 1	- 94			_	-	~	4	6.8	1.7	6,611	972	1,653	Before counter-	12		4.55		3,17
		Ilala	6	17.5	2.9	22,969	1,137	3,828	6	16.0	2.7	21,729	1,358	3,622	After	After counter- 16	54.6		38,101	
		FZ-I	3	7.4	2.5	3,898	527	1,299	3	5.1	1.7	2,163	424	721	counter- measures			3.41		2,38
		Kurasini	3	29.7	9.9	11,234	378	3,745	3	26.7	8.9	7,081	265	2,360	Balance	(+)4		1.14		(-)79
	t .	additional llation x 1	6	16.0	2.7	21,729	1,358	3,622	6	18.7	3.1	21,537	1,152	3,590	Before counter- measures	1	43.1	3.3	32,147	2,47
		Ubungo	4	22.0	5.5	8,255	375	2,064	4	17.7	4.4	7,021	397	1,755	counter-	L		3.3		2,4
		FZ-I	3	5.1	1.7	2,163	424	721	3	6.7	2.2	3,589	536	1,196	measures Balance					
		extension A x 1Â15MVA	3	70.4	23.5	8,270	118	2,757	3	70.4	23.5	8,270	118	2,757						

Table 10.6.2-7 33/11 kV bank load status
Distribution substation expansion - related works

				Befor	e takin	ig counte	rmeasures	<u></u>		After	taking	countern	neasures							
Year	1	bstation pansion	Feeder circuit	Demand area	Feeder area (km2/	Demand	Load density (kW/km2)	Feeder load	Feeder circuit	Demand	Feeder		Load density	Feeder load (kW/cct)			Rema	rk		
Plans to be imple-	I .	CHI new ruction	(cct)	(km2) -	cct)	(kW)	(KW / KMZ)	(RW/GCL)	4	44.2	11.1	2,758	62	690		Feeder (cct)	Demand area (km2)	Feeder area (km2/ cct)	Demand (kW)	Feeder load (kW/ cct)
mented in 1996	Ł I	Mbezi	3	70.4	23.5	9,240	131	3,080	3	26.2	8.7	6,482	247	2,161	Before counter- measures	3	70.4	23.5	9,240	3,080
, 															After counter- measures	7		10.1		1,320
1															Balance	(+)4		13.4		1,760
	4	KOO new ruction x 1	••	_	_	_	-	_	3	3.4	1.1	7,974	2,345	2,658	counter-	1		3.3		3,196
		Ilala	6	18.7	3.1	25,239	1,350	4,207	7	14.7	2.1	18,779	1,277	2,683	measures After		49.6		47,944	
		Kurasini	3	26.7	8.9	7,909	296	2,636	3	27.7	9.2	6,913	250	2,304	counter- measures	1		2.6	:	2,523
		City Centre	6	4.2	0.7	14,796	3,523	2,466	6	3.8	0.6	14,478	3,810	2,413	Balance	(+)4		(-) 0.7		(-)673
		LA new ruction	- :		_			_	3	15.5	5.2	2,956	191	985	Before counter- measures	3	27.7	9.2	6,913	2,304
		Kurasini	3	27.7	9.2	6,913	250	2,304	3	12.2	4.1	3,957	324	1,319	After counter- measures	1		4.6		1,152
																		(-) 4.6		(-)
	TABAT const 15MVA	ruction		-	-		_	_	2	8.5	4.3	1,716	202	858	Balance To modit		/ servic		ers to 11	1,152 kV

(2) 11 kV distribution line voltage measurement


To grasp the actual situations of the voltage drop in the 11 kV distribution line, the voltage measurement was conducted with cooperation from TANESCO as to the feeders shown in Table 10.6.2-8 below, which are conceivably suffering from the large voltage drop.

		Measu	rement po	int	(Ref.) Actual results		
Substation	Feeder	Near end	Far end	Total	of voltage drop (V) in 1991		
Mbezi	MB2	1	1	2	Max 180 A 1,860 V		
Kurasini	Kilwa-Road	1	1	2	Max 231 A 420 V		
Oysterbay	03	1	1	2	Max 296 A 1,090 V		
Oysterbay	04	1	1	2	Max 177 A 710 V		
Mikocheni	MK2	1	1	2	Max 190 A 880 V		
Total	5	5	5	10	-		

Table 10.6.2-8 Voltage Measurement Plan

Note: The actual results of voltage drop in 1991 are calculated from the actual results of the maximum load current.

1) Recording voltmeter attached points

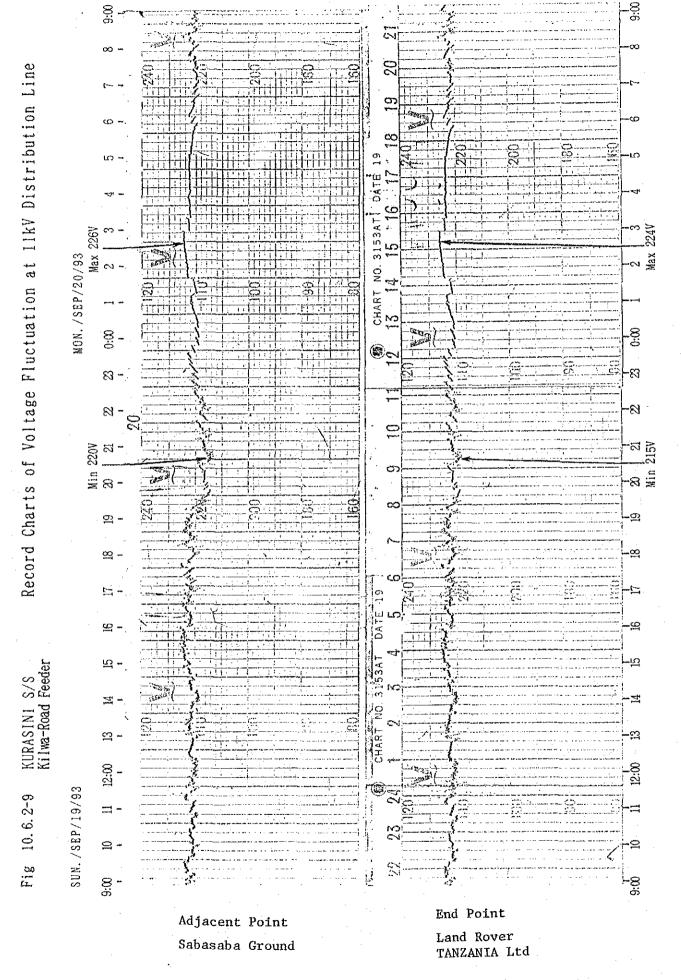
2) Results of measurement

See Table 10.6.2-9, Fig. 10.6.2-8 to 10.6.2-12.

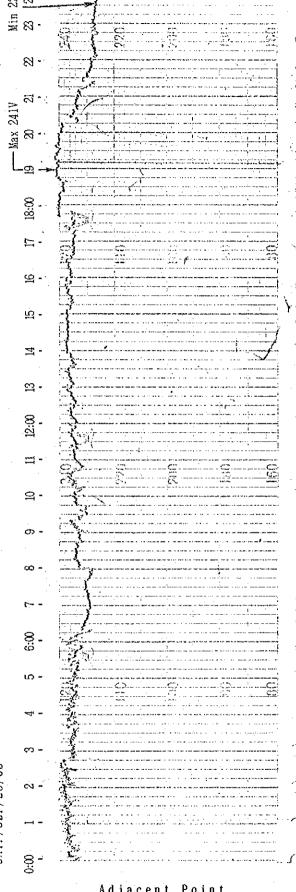
Table 10.6.2-9 Measurement of the system voltage on 11 k/V dristribution lines

······		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
				Trans-			Measuring rec	Conversion t		
Name of				former	Measuring		·	primary si		
Sub-	Feeder	Meas	iring Points	capacity	Period	Max. voltage	Min. voltage	Voltage	Voltage	Remarks
stations	recucz	, acao	31.1.8	Tap		(V)	(V)	drop	fluctua-	
Stations				Position				(V)	tion (V)	
						•				a.
		Vicinity	•		'93.8.22(Thu.)					5
Mbezi	MB2	j		(Tap 2)	-9.1 (Thu.)	(11,000) 230	(10,570) 221		430	Refer to
				1	i .					Fig.10.6.2-8
4		End		500 kVA	'93.8.22(Thu.)		8/26(Thu.) 19:40		400	•
			Ndege Beach	(Tap 5)	-9.1 (Thu.)	(9,920) 228	(9,440) 217	Max. 1,130	480	
		Vicinity		500 kVA	'93.9.14(Tue.)			1	207	Refer to
Kurasini	Kilwa-Road		Sabasaba Ground	(Tap 2)	-9.21(Tue.)	(10,809) 226	(10,522) 220	- -	287	Fig.10.6.2-9
							00000	9/19(Sun.) 20:30		rig.10.0.2-9
	•	End	Land Rover	200 kVA	'93.9.14(Tue.)			1 1	392	
			TANZANIA Ltd	Tap 5	-9.21(Tue.)	(9,749) 224	(9,357) 215	Max. 1,165	392	
			Drive in			010510 10 00	9/25(Sat.) 23:30			
:	1	Vicinity	TANESCO Estate	315 kVA		9/25(Sat.) 19:00	1 ' '	1	717	Refer to
	03		Pole No 5E2	Tap 2	-10.11(Mon.)	(11,526) 241	(10,809) 220	-1	<u>'-'</u> -	Fig.10.6.2-1
			***	100 1771	100 0 04 (5-1)	9/25(Sat.) 19:00	9/25(Sat.) 23:30	9/25(Sat.) 19:00		128,2000
_		End	Texco Flats	100 kVA			1 ' '	1	670	
Oysterbay			Pole No 13W1	Tap 2	-10.11(Mon.)	(11,207) 230	(10,017) 222	114111		
		771-1-1-1-	Ada Estate	315 kVA	,03 10 11/Mon)	10/24/8110 \ 5.30	10/24(Sun.) 12:30			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	vicinity	Pole No 6EA	Tap 2	-10.25(Mon.)			İ	478	Refer to
	04		Mwananyamala	180 2	-10.25(11011.)	1		10/24(Mon.) 5:30		Fig.10.6.2-1
		End	'A'	100 kVA	93.10.11(Mon)	10/24(Sun.) 5:30	10/24(Sun.) 12:30	1 ' '		
		End	Primary School	Tap 2	-10.25(Mon.)				478	
			TITHELY OCHOOL							
Mikocheni	MK2	Vicinity	TPDC House	500 kVA	93.10.25(Mon)	10/28(Thu.)13:30	10/28(Thu.) 20:30		1	
TITYOCHERY	TIKE		Staff	Tap 2	-11.11(Thu.)		-		526	Refer to
			Mwananyama							Fig.10.6.2-1
		End	'B'	315 kVA	93.10.25(Mon)	10/28(Thu.)13:30	10/28(Thu.) 20:30			
			Primary School	Tap 2	-11.11(Thu.)			Max. 334	478	

(Note) 1. Tap position in parenthesis shows assumed position.


2. Max. voltage and min. voltage in parenthesis show converted voltage to the primary side.

3. Primary side voltage is converted without inner voltage drops of transformer


4. Transformer tap ratio

Tap Position	Primary Side (V)	Secondary (V)
1	11,330	
2	11,000	
3	10,670	230/400
. 4	10,340	
5	10,010	


F. 39

End Point Texco Flats Pole No 73W1 -¤

Adjacent Point Drive-in TANESCO Estate Pole No 5E2

Adjacent Point

Ada Estate Pole No 6EA End Point

Mwananyamala'A' Primary School

10 - 135

Primary School

Table 10.6.3-1 Details of major materials for 11 kV distribution line in 1994

		<u> </u>			Overhead	line						Underground lin	e
		Con	crete po			n pole	AC	SR	Air break switch	Lightning arrester	Cable CVMAZV	Multi-circuit switch	Termination treatment
		14-100	14-70	12-50	13m	11m	120mm2	OC-120	400A	(piece)	3x185mm2 (m)	400A x 3 cct (set)	chelate (pair)
		(pole)	(pole)	(pole)	(pole)	(pole)	(m)	(m)	(set)	(prece)	(111)	(300)	1,59.1.7
TANDALE S	5/S		}										
new	•												
construct	TA1	7	<u> </u>			66	8,800	2,900	2	6	200		2
	TA2			ļ		3	300	100	3	9	100		2
	TA3	3		 					3	9	100		22
	183	<u>-</u> -											
	02					10	1,100	400					
	MK2		<u> </u>			4	600		1	3			
	MK3					10	1,100	400					
	U2					6	900						
	Subtotal	10				99	12,800	3,800	9	27	400		6
CHANG'OMB													•
new								1					
construct	ion												
	CH1	7					900	300	3	9	100		22
	CH2	3								3	400	11	5
•	CH3	15					2,000	700	2	6	100		22
	CH4	3							2	6	400		3
	F5					10	1,800	600		<u> </u>			
										<u> </u>			
	Subtotal	28				10	4,700	1,600	7	24	1,000	1	12
ILALA S/S	3		ł										
additiona	ıl	1						· .				:	
installat	ion			<u> </u>				<u> </u>		<u> </u>			<u> </u>
•	D3					<u> </u>		ļ	11	3	70		22
	D7		<u> </u>						11	3		<u> </u>	
•	D9			<u> </u>				 	11	3	30		2
		ļ		ļ	ļ	<u> </u>	ļ	 -	 	 	100		4
	Subtotal					<u> </u>	<u> </u>	 	3	<u> </u>	100	 	
MBEZI S/S													
Expansion	1		<u> </u>	<u> </u>		<u> </u>		 		 	100		2
	MB1		ļ	<u> </u>			<u></u>	 	11	3	100		2
	MB2			ļ					11	3	100	 	2
	MB3		 	 				 	11	3	100		
-		<u> </u>	 	 	<u> </u>	ļ		 	+	+	300		6
	Subtotal		 	1	ļ		<u> </u>		3	9	300	 	
To	otal	38	<u></u>			109	17,500	5,400	22	69	1,800	111	28

Table 10.6.3-1 Details of major materials for 11 kV distribution line in 1996

		<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Overhead	1ine					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Underground lin	
		Con	crete po			n pole	AC	SR	Air break switch	Lightning arrester	Cable CVMAZV	Multi-circuit switch	Termination treatment
		14-100	14-70	12-50	13m	11m	120mm2	OC-120	400A	(piece)	3x185mm2 (m)	400A x 3 cct (set)	chelate (pair)
		(pole)	(pole)	(pole)	(pole)	(pole)	(m)	(m)	(set)	(brece)	7111	(Set)	(pail)
KUNDUCHI	s/s			İ									
new			İ										
construc													-
	KU1	19					2,500	800	2	6	30	<u></u>	2
	KU2		<u> </u>			27	11,000	3,700	11	3	40		2
	KU3	26				6	5,000	1,600	11	3	100		2
	KU4		<u> </u>			61	20,900	7,000	11	3	80		2
	Subtotal	45				94	39,400	13,100	5	15	250		8
KARIAKOO new						_							
construc	tion]						_		
COHSCIUC	KA1	1.	11	22				5,700	5	15	100		2.
	KA2		3	5	-			1,200	3	9	100		2
	KA3	 	6					900	3	9	100		2
	KAS		0	ļ			·	300	ļ <u>J</u>				Ì
·	D8			8			1,300		1	3	800		4
							<u> </u>						
	Industrial								1	3			
	Subtotal		20	35			1,300	7,800	13	39	1,100		10
MBAGALA													
new	•							·		•		·	
construc	tion	}											
	MG1	19					3,300	1,200	2	6	100		2
	MG2	19					3,800	1,300	1	3	200		22
	MG3									3	400	1	
	Subtotal	38		 			7,100	2,500	3	12	700	1	9
TABATA S		1 35					1						
new													
construc				<u> </u>		ļ							2
	TB1		ļ	<u> </u>	2	<u> </u>	}	ļ	2	6	200		2
	TB2	ļ <u>.</u>	ļ	<u> </u>	2	ļ <u>.</u>		 	1	3	100		
	Subtotal				4				3	9	300		4
							47.000	00.400		75	2,350	1	31
1	lotal	83	20	35	4	94	47,800	23,400	24) /3	2,330	<u> </u>	T

10.6.3 Specifications of Major Equipment and Materials

(1) Supporting structure

In the existing facilities, steel pipe poles are now in use in the center of the urban district while wooden poles are in use in the outskirts thereof and other districts. The concrete poles are not in use at all.

During the survey, it was found here and there that the steel pipe poles have rusted at the ground level being reduced in the plate thickness but are still in use as they are with insufficient supporting strength.

In view of it, the concrete poles should hereafter be exclusively used which are superior in all aspects to other poles like in design strength, total costs, maintenance, etc. Hence, the use of steel pipe poles should be limited only to the inevitable occasions.

1) Applicable types

- (a) Concrete pole: To be used in the places where the design strength is particularly needed like in urban districts or in places where two circuits of outgoing line from a substation must firmly be supported.
- (b) Wooden pole: All other districts than mentioned above.

2) Specifications

(a) Concrete pole (JIS-A-5309)

		Dim	ension		Design load				
Nominal size	Top dia- meter (mm)	Bottom dia- meter (mm)	Ground level dia- meter (mm)	Depth from ground level to bottom (m)	Height of loading point from ground level (m)	Load (kg)	Moment at ground level (kg-m)		
12-50	190	265	252	2.1	9.65	500	4,825		
14-70	190	377	345	2.4	11.35	700	7,945		
14-100	220	407	371	2.7	11.05	1,000	11,050		

(b) Wooden pole

Material: Oregon pines with creosote application

Pole length (m)	Top diameter (cm)	Diameter at ground level (m)
11	19 or over	26.5 or over
13	21 or over	30.5 or over

3) Assembling

As for the wire arrangement of 11 kV distribution line, various wire assembling has been done so far such as horizontal, vertical and triangular arrangements. However, the horizontal arrangement which enables simple lead-in wire arrangement from the pole transformer should exclusively be used hereafter as the standard type.

In addition, the low cost light weight arm (for general use) should also be used hereafter.

See the standard assembling drawings (Assembling type 1 to 4).

(a) Applicable type

- (i) 1.8 m; for drawing-in assembling
 To be used for 11 kV distribution line drawing-in arm.
- (ii) 1.8 m : for anchor assembling
 To be used for 11 kV distribution line anchor arm and for section switch mounting arm.

(2) Overhead wire (JEC130)

1) Applicable type

ACSR 100 mm^2 and ACSR 50 mm^2 are mostly used for the 11 kV overhead lines, CU25 mm^2 is also partly used. Covered wires are not used at all.

In this study, ACSR 120 mm² is planned to be used for the main sections as the standard type. In addition, covered wires should also be used as necessary from the point of view to enhancing the reliability of power supply as well as securing the safety of the facilities.

2) Specifications

		Type		
			Bare wire	Covered wire
Item			ACSR	ACSR-OE
	Nominal cr	oss section	120	120
Electric conductor	Stranded cable	Aluminium	30/2.3	6/SB*
	setup (wire/mm)	Steel	7/2.3	1/4.2
	Outside di	ameter (mm)	16.5	13.6
			4. 4	
Vinyl insu	lator thick	ness (mm)	~	1.6
Finished o	utside diam	eter	100	
(approx. m	m)			16.8
Electric c	onductor te	nsion load		
(kg)			5,540	3,300
20°C elect	ric conduct			
(Ω/km)		0.216	0.250	
,	timated wei			
(kg/km)			540	555

(3) Insulator (ANSI C 29.5)

1) Applicable type

In the existing facilities, the 11 kV pin insulators and suspension insulators (254 mm x 146 mm) are in use in two insulator string respectively.

Hereafter, however, the solid-core insulators should be used. This is because they cost almost the same prices while increased or enhanced performance is much expected from them.

(4) Section switch (MLBS)

As before, the applicable specifications shall be as follows:

1) Specifications

Rated voltage : 12 kV
Rated current : 400 A
Rated frequency : 50 Hz

BIL : 95 kV

Power-frequency withstand voltage : 31.5 kV Rated short-time current (1 sec) : 12.5 kV

(5) Lightning arrester (JEC 203)

As before, the applicable specifications shall be as follows:

1) Specification

Rated voltage : 14 kV

Power-frequency firing potential : 21 kV

Lightning impulse firing potential : 50 kV

Nominal discharge current : 5 kA

Discharge voltage : 50 kV

(6) 11 kV CVMAZV cable (JIS, IEC)

As before, the applicable specifications shall be as follows:

Number of cores : 3 cores

Nominal cross section : 200 mm²

Insulator length : 5.5 mm

Finished outside diameter : 80 mm

Electric resistance (20°C) : 0.0933 (Ω/km)

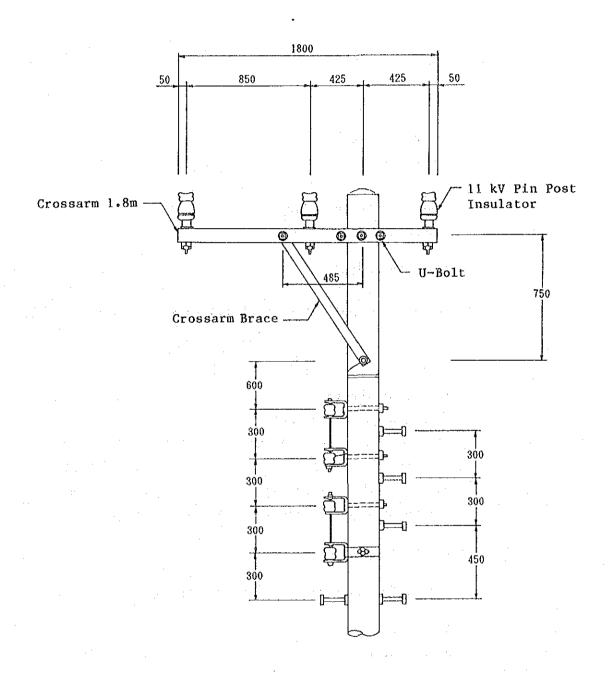
Insulation resistance : 2,000 (M Ω -km) or over

Power-frequency withstand voltage: 26 kV/10 min Lightning impulse withstand voltage: 140 kV/3 times

(7) Multi-circuit switch (IEC)

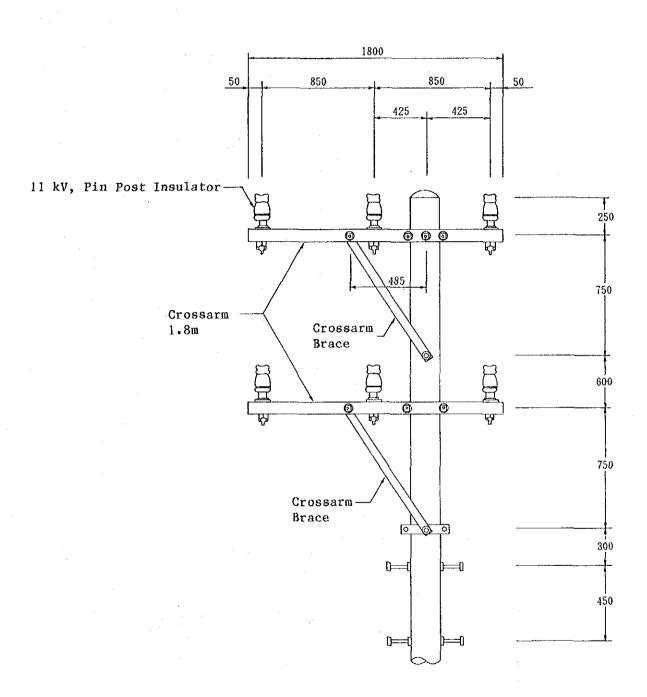
As before, the applicable specifications shall be as follows:

Rated voltage : 12 kV

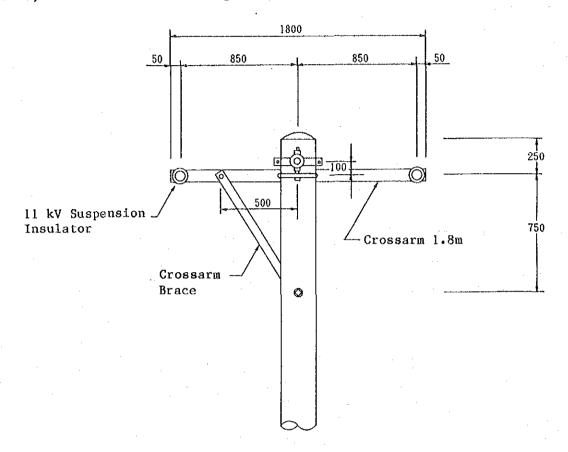

Rated current : 400A x 3 circuits

BIL : 75 kV

Rated short-time current : 12.5 kA (1 sec)


Type: 1

11kV, Single Circuit, Standard Pole Assembling for Intermediate Pole (Concrete Pole)


Type: 2

11 kV, Double Circuit, Standard Pole Assembling for Intermediate Pole (Concrete Pole)

Type: 3

11 kV, Standard Pole Assembling for Deadend Pole (Concrete, Wooden Pole)

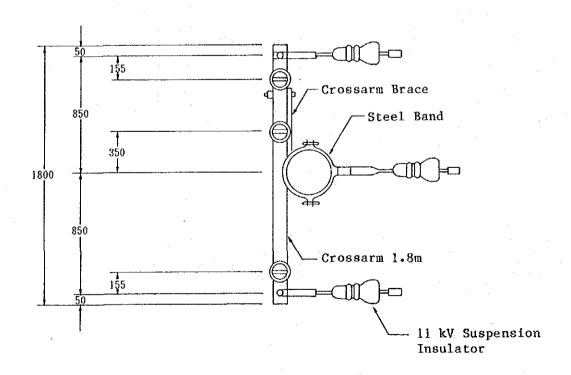
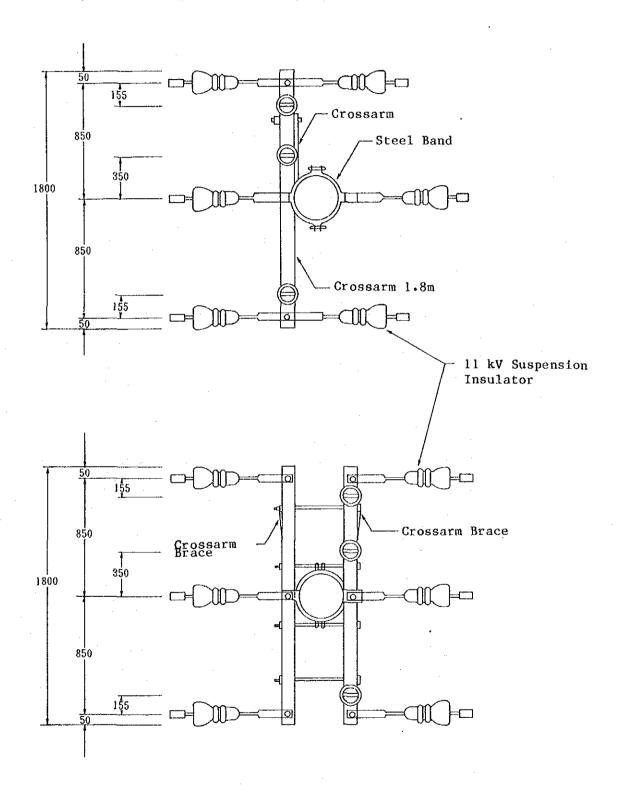



Fig.10.6.3-4

Type: 4

11 kV, Standard Pole Assembling for Deadend (Double) Pole (Concrete, Wooden Pole)

10.6.4 Effects of Improvements

The effects of improvements on the 11 kV distribution facilities owing to the implementation of the expansion plan (short-term for 5 years) are as shown below in Table 10.6.4-1.

Table 10.6.4-1 Effect of improvements (short-terms for 5 years)

		. `	Amount of	Amount of reduction in	
	}				
				impeded power	
Year	Su	bstation	in annual		kemark
			power	accidental	
		·	loss	power inter-	
			(MWH)	ruption (MWH)	
·		TANDALE S/S		70	
	l	3 cct new	6,912	70	
	New	construction			
	Construc-	CHANG'OMBE S/S			
	tion	4 cct new	4,844	59	
		construction			01 - 37 - 0
1994		ILALA S/S			Change-over No.3
	1 '	2 cct change-over	333	•	bank 1 cct and No.4
	installa-	between banks			bank 1 cct to No.5 ban
	tion and	MBEZI S/S			Expansion of 7.5 MVA
·	expansion	3 cct change-	-	•	to 15 MVA Change-over
		over			to 3 cct new bank
		KUNDUCHI S/S			· .
		4 cct new	1,428	26	
		construction			
·		KARIAKOO S/S	÷		() indicates 1 cct
		3 cct new		1414	new construction to
	New	construction	3,276	66	Ilala S/S to be shown
1996	Construc-	(1 cct new			otherwise
	tion	construction)	·	*	· · · · · · · · · · · · · · · · · · ·
		MBAGALA S/S			
		3 cct new	1,384	17	
		construction			:
		TABATA S/S			Change 33 kV line to
		2 cct new	. , -	-	11 kV
	L	construction			
Total		8 places			,
		20 cct new	18,177	238	
		construction		:	

(1) Effect on annual reduction in power loss

The annual reduction in the power loss in 11 kV feeders owing to the construction of new substations and additional installation and expansion of existing substations are as shown below. See Table 10.6.4-4 Comparison of effects of improvements on 11 kV distribution lines - Distribution substation expansion-related works.

1) 1994 plan

- (a) Tandale S/S new construction-related work
 - Annual reduction in power loss = (1,066 kW 277 kW) x8,760 hour x 10^{-3} = 6,912 (MWh)
- (b) Chang'ombe S/S new construction-related work

 Annual reduction in power loss = $(1,319 \text{ kW} 766 \text{ kW}) \times 8,760 \text{ hour } \times 10^{-3} = 4,844 \text{ (MWh)}$
- (c) Ilala S/S new construction-related work

 Annual reduction in power loss = $(165 \text{ kW} 127 \text{ kW}) \times 8,760 \text{ hour } \times 10^{-3} = 333 \text{ (MWh)}$

2) 1966 plan

- (a) Kunduchi S/S new construction-related work

 Annual reduction in power loss = (182 kW 19 kW) x8,760 hour x $10^{-3} = 1,428 \text{ (MWh)}$
- (b) Kariakoo S/S new construction-related work

 Annual reduction in power loss = (598 kW 224 kW) x

 8,760 hour x 10^{-3} = 3,276 (MWh)

Charles in the Calendary

(c) Mbagala S/S new construction-related work

Annual reduction in power loss = (191 kW - 33 kW) x 8.760 hour x 10^{-3} = 1.384 (MWh)

(2) Effect on reduction in impeded power supply due to accidental service interruption

Service interruptions to users are classified into the following three cases:

- (a) Accidental service interruption due to repercussions exerted from an accident in the power supply system on the upstream side of the distribution substations or caused by the defective distribution facilities ranging from the 11 kV distribution lines to service wires to the users.
- (b) Scheduled shutdown of power supply in respect of the maintenance service or repair works for the transmission, substation and distribution facilities.
- (c) Service interruption on a rotation basis due to lack of supply power.

It is expected that the implementation of this expansion plan will produce effects one after above service interruptions.

Accordingly, though it may be difficult in some aspects to quantitatively grasp the produced effects, an estimate is made herewith premising the following conditions.

In view of the purpose and setup of this study, the above estimate for the produced effects should be limited to that:

(a) the cause of the above (a) Accidental service interruption is only limited to the defective distribution facilities related to the 11 kV distribution lines and thus the power supply system on the upstream side of the distribution substations and low-tension wires beyond the pole transformers are excluded.

- (b) is excluded from the estimated since the frequency of the scheduled shutdown of power supply largely depends on the actual situations of the facilities, construction methods and technique and moreover there still remain unclear points.
- (c) is also excluded from the estimated like (b).
- Impeded power supply estimate due to accidental service interruption

It is known that the accidental service interruption is caused by various factors such as the deterioration in the quality of the facilities as well as weather conditions like a typhoon, thunderstorm, etc.

In this expansion study, the importance is principally attached to the construction of new 33/11 kV distribution substations and additional installation and expansion of the existing 33/11 kV distribution substations as well as to the construction of new 11 kV feeders and change-over of loads with an eye to taking necessary countermeasures to cope with the increase in demand in the future. However, since the repair works for the deteriorated facilities aiming at eliminating the latent causes of accidents are not included in this study, it is difficult to expect from this study the remarkable reduction in the occurrence of the accidents. Instead, it may be expected that the amount of the impeded power supply per accidental service interruption will remarkably be reduced. is because the line distance/cct is shortened as a result of the implementation of this expansion study in which the load of the 11 kV feeders of the existing substations located adjacent to the new substations are partly separated for change-over.

- (a) Calculation of effect on reduction in impeded power supply
- (i) Concept of calculation and prerequisite

The improvement effect, the annual reduction in the impeded power supply, is calculated herewith from the following equation.

In this event, the basic data are derived from the actual results contained in the [Survey Report on Dar Es Salaam Transmission and Distribution Lines, January, 1985].

Annual reduction in impeded power supply due to accidental service interruption = annual impeded power supply (before countermeasures - after countermeasures).

Annual impeded power supply = [annual frequency of accidents/cct x demand in service interruption region x duration of service interruption (trouble shooting time + restoration time)] x total number of feeders available in all planned regions.

Where; the above equation premises the following:

(a) Frequency of accidents/cct after taking countermeasures is reduced in proportion to the reduction in the line distance but the number of feeders are inversely increased and thus the remarkable reduction in the accidents is difficult to expect as a whole in this study.

The frequency of the accidents due to deteriorated facilities after taking countermeasures is taken for the value that is calculated by subtracting 3% from the actual result of 1984 though it might threaten to increase in the future due to progress of secular deterioration but provided however that the minimum necessary repair works will be continuously and indispensably conducted every year by TANESCO.

(b) The duration of a service interruption is taken for the value that is calculated by subtracting 10% from the average duration in the actual cases in anticipation of the effect to be exerted from the installation of new line switches though it is almost impossible to make an accurate quantitative estimate of the duration of the service interruption since it is largely depends on the actual situations of the distribution facilities, maintenance service setup, level of skilled workers, etc. and moreover it is necessary to enhance each of these factors to shorten the duration and in addition there still remain unclear points.

(ii) Actual results of accidental service interruption

Source: [Survey Report on Dar Es Salaam Transmission and Distribution Liens, January, 1995]

Table 6.4-2 Summary of service interruption in 1983 (in the region including those four substations)

Substation name	Number of feeders in operation (A)	Number of 11 kV feeder CB. trips (B)	(B) / (A) (1)
Oysterbay	5	57	11.4
City Centre	4	45	11.3
Ilala	5	45	9.0
Factory Zone I	4	22	5.5
Total	18	169	9.4

Note: (1) (B)/(A) = annual average frequency per user of service interruption due to 11 kV feeder C.B trip.

Table 10.6.4-3 Summary of service interruption in April, 1984

				APP-1	
		Actual results of service interruption			
Substation	Number of			4 	Duration per
name	feeders in				each service
•	operation	Feeder	Frequency	Time	interruption
		name	(times)	(min)	(min)
Ilala		D2	1	47	47
		D9	2	422	211
		D10	2	75	38
•	6	3 cct	5	544	109
Oysterbay		02	3	391	130
,		03	1	113	113
		05	2	47	24
	5	3 cct	6	551	92
FZ-I		F2	1.	6	6
	<i>e</i> .	F4	2	373	187
		F5	1	26	26
	3	3 cct	4	405	101
Kurasini		Industrial	1	95	95
		Kilwa	3	151	50
	3	2 cct	4	246	62
Ubungo		U2	. 5	1,887	377
		U 3	1	10	10
		ប់6	1	- 6	6
	4	3 cct	7	1,903	272
City Centre	6	C2	11	33	33
Mbezi	3	MB2	3	237	79
Total of					
seven S/S	30	16 cct	30	3,919	131

- (iii) Annual reduction in impeded power supply after taking countermeasures
- (1) Basic data estimate

Based on the actual results of the accidents taken place in 1984 as well as the following estimate, the effect of improvements is calculated:

- Annual frequency of accidents/cct

Based on the actual results of April, 1984, but excluding the Ubungo S/S U2 feeder accidents (5 times for 1,887 min) which seem to be very particular cases, the annual frequency of accidents is presumed to be 25 times per month almost on average.

Prior to the Adoption of Countermeasures

Annual accident incidence/cct = $\frac{25 \text{ times } \times 12 \text{ months}}{30 \text{ cct}}$ = 10 times

After the Adoption of Countermeasures

Annual accident incidence/cct = 10 x 97%

= 9.7 times

(3% reduction against precountermeasure incidence)

- Power outage time/cct times

 Anticipated in the same manner as above

 Pre-countermeasure power outage time/cct times

 - = 68 minutes

Post-countermeasure ... 10% reduction against precountermeasures = 61 minutes

- Loss factor

Loss factor = Average power loss (kW) x 100% Maximum power loss (kW)

- = 40% (predicted value)
- (2) Annual reduction in power interference

1994 Plan (from Table 10.6.4-4)

- Tandale S/S (3 cct new construction)

Prior to the adoption of Countermeasures

Annual power interference level

= 10 times/cct x 3,377 kW x 0.4 x 1.13 hrs x 19 cct x 10^{-3} = 290 (MWH)

After the Adoption of Countermeasures

Annual power interference level

= 8.4 times/cct x 2,917 kW x 0.4 x 1.02 hrs x 22 cct x 10^{-3} = 220 (MWH)

Reduction in annual power interference level

- = 290 220
- = 70 (MWH)

- CHANG'OMBE S/S (4 cct new construction)

Prior to the Adoption of Countermeasures

Annual power interference level

= 10 times/ccgt x 3,175 kV x 0.4 x 1.13 hrs x 12 cct $\times 10^{-3} = 172$ (MWH)

After taking countermeasures:

Annual impeded power supply

= 7.3 times/cct x 2,381 kW x 0.4 x 1.02 hours x 16 cct $\times 10^{-3}$ = roughly 113 (MWh)

Annual reduction in impeded power supply = 172 - 113 = 59 (MWh)

1996 plan (from Table 10.6.4-4)

- Kunduchi S/S (4 cct new construction)

Before taking countermeasures:

Annual impeded power supply

= 10 times/cct x 3,080 kW x 0.4 x 1.13 hours x 3 cct x 10^{-3} = roughly 42 (MWh)

After taking countermeasures:

Annual impeded power supply

= 4.2 times/cct x 1,320 kW x 0.4 x 1.02 hours x 7 cct x 10^{-3} = roughly 16 (MWh)

Annual reduction in impeded power supply = 42 - 16 = 26 (MWh)

- Kariakoo S/S (4 cct net construction) including Ilala 1 cct new construction

Before taking countermeasures:

Annual impeded power supply

= 10 times/cct x 3,196 kW x 0.4 x 1.13 hours x 15 cct x 10^{-3} = roughly 217 (MWh)

After taking countermeasures:

Annual impeded power supply

= 7.7 times/cct x 2,523 kW x 0.4 x 1.02 hours x 19 cct $\times 10^{-3}$ = roughly 151 (MWh)

Annual reduction in impeded power supply = 217 - 151 = 66 (MWh)

- Mbagala S/S (3 cct new construction0

Before taking countermeasures:

Annual impeded power supply

= 10 times/cct x 2,304 kW x 0.4 x 1.13 hours x 3 cct x 10^{-3} = roughly 31 (MWh)

After taking countermeasures:

Annual impeded power supply

= 4.9 times/cct x 1,152 kW x 0.4 x 1.02 hours x 6 cct x 10^{-3} = roughly 14 (MWh)

Annual reduction in impeded power supply = 31 - 14 = 17 (MWh)

Table 10.6.4-4 Comparison of effects of improvements on 11 kV distribution lines Distribution substation expansion - related works

Y					Befo	re takir	g counte	rmeasure	S			After	taking	counterm	easures			
e a r	Sul	ostation	Feeder	Mair ACSR (mm2)	n line Distance (km)	Max (Amps)	Loss Number of systems	Power (kW)	Loss (kW)	Voltage drop (V)	Main ACSR (mm2)	line Distance (km)	Max (Amps)	Loss Number of systems	Power (kW)	Loss (kW)	Voltage drop (V)	Remarks
	TANDALE S/S			(nuite)	1 10117	(vanpo)	0,000											
	15MVA x 1				1											· · · · · · · · · · · · · · · · · · ·		
ŀ											120	2.0						
İ	New		TA1								100	1.3	52	0.4	790	5_	110	
ł	construc	:-	TA2								100	3.56	178	0.4	2,858	2.5	290	
	tion		TA3								100	3.66	20	0.4	311	1	40	ļ
		MIKOCHENI	s/s												0.000		F (0	
			MK2	100		260	0.4	3,958	290	1,200	100	5.6	223	0.4	3,389	60	540 90	
	Existing		MK3	100	4.8	108	0.4	1,649	2.2	230	100	3.7	53	0.4	808	3	90	
	Substa-	OYSTERBAY					ļ <u>.</u>					ļ	010	0 /	2 220	70	330	
	tions		02	100		199	0.4	3,029	67	320	100	4.22	219	0.4	3,338 2,630	72	510	
1	,		04	Cu 25	3.8	240	1.0	3,652	359	960	Cu 25	2.64	183	1.0	2,630	12	310	
9		ILALA S/S					ļ			750	100	0.26	221	0.4	3,370	27	310	
9			D10	100	6.51	278	0.4	4,230	199	750	100	3.36	221	0.4	3,370	21	3.0	
4		UBUNGO S/					ļ	. 0 . 0 . 0	129	720	100	3.9	133	0.4	2,032	14	230	
		U2		100	8,36	197	0.4	3,008	129	720	100	3.9	133	0.4	2,032		230	Improve
		ubtotal						19,526	1,066						19,526	277		loss 789kW
⊦	CHANG'OMBE S				<u> </u>		 	45,520	2,000									
	15MVA x 1	7.5					:										<u> </u>	
- 1	ISMVA A I			<u> </u>							120	0.3						
	New		CH1								100	1.5	104	0.4	1,589	6_	70	
	construc		CH2										63	0.4	963	2	30	
	tion						1				120	0.9						
ŀ	72	•	СНЗ					<u> </u>			100		154	0.4	2,342	43	130	
			CH4								100	4.8	108	0.4	1,717	45	190	ļ
		ILALA S/S	500V							<u> </u>				ļ <u>.</u>			1.00	
	· .		D3	100		246	_	3,750	134		100	2.3	165	0.4	2,510	15	160	ļ
	Existing		D7	100	2.95	159	0.4	2,638	37	220	100	2.1	73	0.4	1,212	8	100	
	Substa-	FZ-I S/S	500V							<u> </u>	ļ <u>.</u>				1 270	3	60	
	tions		_F2	100		182		2,764	10				96			9		
.			<u>F5</u>	100	3.2	74	0.4	1,134	3	90	100	3.2	137	0.4	2,211	7	1 130	<u> </u>
		KURASINI	S/S 500V	ļ					ļ 	1 010	100	1 2 2	76	0.8	1,156	5	100	
			ndustrial			230		3,498	798				231			630		
		4. 1	ilwa road	1 100	8.5	316	0.4	4,812 18,596	337 1,319		700	0.3	231	1	18,596			Improve loss
i L		Subtotal		i				10,050	2,319					ļ				553kW
		Total						38,122	2,385						38,122	1,043		Improve loss 1,342kV

Table 10.6.4-4 Comparison of effects of improvements on 11 kV distribution lines Distribution substation expansion - related works

Y			**************************************			Befo	re takin	g counte	rmeasure	S			After	taking	counterm	easures			
e a r		Subs	tation	Feeder	Mair ACSR (mm2)	line Distance (km)	Max (Amps)	Loss Number of systems	Power (kW)	Loss (kW)	Voltage drop (V)	Main ACSR (mm2)	line Distance (km)	Max (Amps)	Loss Number of systems	Power (kW)	Loss (kW)	Voltage drop (V)	Remarks
	15MV	A S/S A x 1 tional ins	tallation																
1 9		Existing	ILALA S/S																Change- over from No.3 bank to No.5 bank
9 4		Substa- tions		D3 D7	100	2.1	73	0.4	1,212	8	100	100	6.1	154	0,4	2,444	82	480	Change- over from No.4 bank to No.5
			ubungo s/	D9 S U1	100	7.4	247	0.4	3,762	157	780	100	4.7	166	0.4	2,530	45	330	
		S	ubtotal	_ V +	400			× 1.71	4,974	165						4,974	127		Improved loss 38kW
		Т	otal						43,096	2,550						43,096	1,170		Improved loss 1,380kW

Table 10.6.4-4 Comparison of effects of improvements on 11 kV distribution lines Distribution substation expansion - related works

			ļ	·	Befor	re takin	g counte	rmeasure	8			After	taking	counterm	easures			
		tation	Feeder	Main ACSR (mm2)	line Distance (km)	Max (Amps)	Loss Number of systems	Power (kW)	Loss (kW)	Voltage drop (V)	Main ACSR (mm2)	line Distance (km)	Max (Amps)	Loss Number of systems	Power (kW)	Loss (kW)	Voltage drop (V)	Remark
KU	NDUCHI S/S									,	120	1.1					<u></u>	
			KU1			·					100	3.3	20	0.4	305	1	60	
	New										120	1.05	75	0.4	1,142	4	0	
	construc-		KU2								100 120	3.5 1.5	13	0.4	1,142	<u> </u>	<u> </u>	
	tion		KU3								100	11.5	25	0.4	381	2	0	
											120	1.6	<i>c</i> 1		000		140	
		LADERY OLO	KU4								100	3.3	61	0.4	930	4_	140_	
	Existing Substa- tions	MBEZI S/S	MB2	50	20.3	281	0.4	4,282	182	1,510	100	7.4	100	0.4	1,524	8	410	
		total						4,282	182						4,282	19		Impro loss 163kW
KA	RIAKOO S/S														· · · · · · · · · · · · · · · · · · ·			<u> </u>
	New		V A 1								120 100	1.9 1.8	184	0.4	2,995	50	280	
	new construc-		KA1								120	0.3						
	tion		KA2								100	0.6	131	0.4	1,991	6	60	
			***								120 100	0.2	195	0.4	2,988	10	50	
			KA3								100	0.8	193	0.4	2,900	10		Load
								·										zero after compl ing chang
		ILALA S/S	D1	100	5.45	188	0.4	2,860	77	440								over
			D2	100	6.05	172	0.4	2,624	71	440	100	1.6	100	0.4	1,532	13		
			D8				 				100	2.9	86	0.4	1,307 3,003	17 22	160 120	
	Existing	TITE A C TNT	D9	100	2.53	468	0.4	7,136	221	510	100	1.4	197	0.4	3,003	44	120	
	Substa-	KURASINI	Port	100	4.32	214	0.9	3,266	177	630	100	2.9	149	0.9	2,270	69	300	
		CITY CENT	RE S/S														1	
		<u> </u>	C5	CV 185	2.2	304	0.4	4,638	52	190	CV 185	1.8	283	0.4	4,438	37	150	Impro
	Su	btotal						20,524	598						20,524	224		loss 374kW
MB	AGALA S/S						-				400	1 ,	ļ	 	 			-
	More		MC 1	•							120 100	1.4 7.9	108	0.4	1,655	21	430	
	New construc-		MG1				 				120	0.8						
	tion		MG2				ļ				100	1.2	36	0.4	536	1	40	-
			140.0						<u> </u>		CV MAZV 200	0.4	50	0.4	765	0.3	10	
	Existing	KURASINI	MG3				 	 			200	0.4	30	 	, , , ,	"		
	Substa- tions	KORDINI	Kilwa RI	100x2	9.52	274	0.4	4,180	191	750	100	5.2	80	0.4	1,224	11	160	
		btotal						4,180	191						4,180	33		Impro loss 158k
	To	tal			·			28,986	971						28,986	276		Impro loss 695kV

(3) Effect on improvement of voltage

Owing to the construction of new substations and additional installation and expansion of the existing substations (short-term for 5 years), the excess voltage drop of the feeders that undertake the load change-over among other feeders of the adjacent existing substations to the above newly constructed or modified substations will be entirely improved.

(See Table 10.6.4-5 and Table 10.6.4-6)

Table 10.6.4-5 Voltage drop adequacy factor

Year	Plan	Number of feeders	Adequate number of feeders	Adequacy factor (%)
		(A)	(B)	(B)/(A)x100
1994	Before counter- measures After counter-	13	8	69.2
	measures	20	20	100.0
1996	Before counter- measures After counter-	6	3	50.0
	measures	17	17	100.0

Voltage drop limit for 11 kV distribution line

	Area division	Voltage drop limit (V)
	A area	500
Normal	B area	1,000
In an	A area	900
emergency	B area	1,900

Note: A area: Districts covering major government and municipal

offices an important installations

B area: Other districts than the above.

Table 10.6.4-6 Improved status of voltage drop

Y	Service				Befor	e taki	ng			taking	
е	division				count	ermeas	ures	· c		measur	es
а	(voltage	Substation	Feeder	500V	1,000		Adequacy	500V	1,000		Adequacy
r	drop	name	name	or	or	0ver	factor	or	or	0ver	factor
-	limit)			under	1	1,000		under		1,000	
	3. 1.111 C /	Ilala	D3	OK	44400	21000	<u></u>	OK			1 7 2
	1	rrara	D7	OK				ок			
				OK	370			OK			
			D10		NO						
		Kurasini	Industrial			NO		OK			
			Kilwa road		NO			OK			
	A area	FZ-I	F2	OK				OK			
' I			F5 .	OK .				OK			
1	500V	Chang'ombe	CH1					OK			
			CH2				·	OK			
			СНЗ					OK			
	1	(New con-	CH4					OK		•	
1		struction)	:					010			
				4	2	1	57.1	11			100.0
9		Subtot		-4			3/.1	11	OK		100.0
9	i	Mikocheni	MK2			NO			OK.		
4]		MK3	OK				OK			
		Oysterbay	02	OK				OK			
			04		OK .				OK		
	B area	Ubungo	U1		OK		·	OK			:
		·	U2		OK			OK			
1	1,000V	Tandale	TA1					OK			
	1,0001	*********	TA2					ΟK			
		(New con-	TA3					OK			
								OK			
	ŀ	struction)					00.0		2		100.0
	l	Subtot	a1	2	3	1	83.3	7.			100.0
		Total		6	5	2	69.2	18	2		100.0
		Ilala	D1	OK							
			D2	OK -				OK			
			D8					OK			
ł			D9		NO			OK			
		Kurasini	Kilwa road					OK			
	i		Port		NO			oK_			
	A area	City	C5	OK				OK			
	A alea	- 1	05	O.K		,		010			
	F0.017	centre	77 4 7					017			
	500 V	Kariakoo	KA1					OK.			·
		٠.	KA2				İ	OK		,	
1	į.		KA3					OK			
9		Mbagala	MG1					OK			
9	. [-	MG2					OK			
6	1		MG3					OK			
		Subtot		3	2		40.0	12			100.0
İ		Mbezi	MB2	-		NO		OK			
ļ		11000T	1102			0		O.K.		. '	:
	n	V	77774					OΨ		<u> </u>	
	B area	Kunduchi	KU1					OK			
			KU2	1	1			OK			ł
ļ	1,000V		KU3					OK)
			KU4					OK			
į		Subtot	al			1	0.0	5			100.0
. [Total		3	2	1	50.0	17	l	l .	100.0

(4) Maximum voltage drop of 11 kV distribution line and power loss

An example of Kunduchi S/S 4 cct new construction:

Based on Fig. 10.61-4-1 Kunduchi S/S new construction (before countermeasures/after countermeasures) current distribution drawing, the maximum voltage drop and power loss are calculated as shown below:

Maximum voltage drop

- Line intermediate section voltage drop

The voltage drop can be calculated from the following equation presuming that the load is uniformly imposed on the line section:

$$\varepsilon_{xy} = \int_{3}^{3} x^{\frac{\tau e(Ix + Iy) \ell}{2}} [V]$$

Еху		Voltage drop between x and y	[V]
Ix		Current flown into the line section	[A]
Iу		Current flown out of the line section	[A]
l		Distance of the line section	[km]
τe ≔	$rcos\theta$	+ xsin $ heta$ Equivalent resistance	$[\Omega/\mathrm{km}]$

- Line end section voltage drop

$$\varepsilon_{xy} = \sqrt{3} \times \frac{\tau e}{2}$$
 [V]

- Line total voltage drop

The total voltage drop up to the line end ϵ is the sum of the voltage drop in each section.

$$\varepsilon = \sum \varepsilon_{xy} \qquad (V)$$

- 1) Maximum voltage drop before taking countermeasures
 - (a) Mbezi S/S MB2 feeder

The equivalent resistance τe of ACSR 50 mm² is 0.6474 [Ω/km].

1. MBWENI point

$$V_{AB} = \sqrt{3} \times \frac{0.6474 \times (281 + 277) \times 1.4}{2} = 438$$
 (V)

$$V_{BC} = \sqrt{3} \times \frac{0.6474 \times (260 + 240) \times 1.4}{2} = 392$$
 (V)

$$V_{cp} = \sqrt{3} \times \frac{0.6474 \times (194 + 175) \times 1.4}{2} = 290 \quad (V)$$

$$V_{DE} = \sqrt{3} \times \frac{0.6474 \times (80 + 66) \times 1.1}{2} = 90 \quad (V)$$

$$V_{EF} = \sqrt{3} \times \frac{0.6474 \times (66 + 42) \times 1.5}{2} = 91 \quad (V)$$

$$V_{FG} = \sqrt{3} \times \frac{0.6474 \times (40 + 38) \times 1.0}{2} = 44$$
 (V)

$$V_{GH} = \sqrt{3} \times \frac{0.6474 \times (25 + 8) \times 6.6}{2} = 12$$
 (V)

$$V_{HI} = \sqrt{3} \times \frac{0.6474 \times (7 + 6) \times 4.8}{2} = 35$$
 (V)

$$V_{11} = \sqrt{3} \times 0.6474 \times 4 \times 1.1 = 5$$
 (V)

$$\varepsilon = \Sigma \varepsilon_{xy} \qquad (V)$$

$$= V_{AB} + V_{BC} + V_{CD} + V_{DE} + V_{EF} + V_{FG} + V_{GH} + V_{HI} + V_{IJ} \qquad (V)$$

$$= 1.520 \qquad (V)$$

2. RAS KILOMONY point

$$V_{DK} = \sqrt{3} \times \frac{0.6474 \times (95 + 80) \times 1.6}{2} = 157$$
 (V)

$$V_{KM} = \sqrt{3} \times \frac{0.6474 \times (59 + 40) \times 1.7}{2} = 94 \quad (V)$$

$$V_{MN} = \sqrt{3} \times \frac{0.6474 \times (30 + 20) \times 0.9}{2} = 25 \quad (V)$$

$$V_{NO} = \sqrt{3} \times \frac{0.6474 \times (10+10) \times 1.4}{2} = 16$$
 (V)

$$V_{oP} = \sqrt{3} \times 0.6474 \times 9 \times 1.3 = 13$$
 (V)

$$\varepsilon = \sum \varepsilon_{xy}$$
 (V)

$$= V_{AB} \sim V_{CD} + V_{DK} \sim V_{OP} \qquad (V)$$

3. AFRICANA HOTEL point

$$V_{CQ} = \sqrt{3} \times 0.6474 \times 46 \times 4.6 = 237$$

$$\varepsilon = \sum \varepsilon_{rr} \qquad (V)$$

$$= V_{AB} \sim V_{BC} + V_{CQ} \qquad (V)$$

$$= 1.070 \qquad (V)$$

- 2) Maximum voltage drop after taking countermeasures The equivalent resistance $\tau e = \text{of ACSR } 120 \text{ mm}^2 \text{ is } 0.410 \text{ } [\Omega/\text{km}].$
- (a) MBEZI S/S MB2 feeder
- 3. AFRICANA HOTEL point

$$V_{AB} = \sqrt{3} \times \frac{0.410 \times (100 + 96) \times 1.4}{2} = 97$$
 (V)

$$V_{BC} = \sqrt{3} \times \frac{0.410 \times (79 + 58) \times 1.4}{2} = 68$$
 (V)

$$\varepsilon = \sum \varepsilon_{xy}$$
 (V)

$$\varepsilon = V_{AB} + V_{BC} + V_{CQ}$$

$$\Rightarrow$$
 410 (V)

- (b) KUNDUCHI S/S KU1 feeder
- 2. RAS KILOMONY point

$$V_{ST} = \sqrt{3} \times 0.410 \times 20 \times 1.1 = 16$$

$$V_{TN} = \sqrt{3} \times 0.6474 \times 20 \times 0.3 = 7$$

$$\varepsilon = \Sigma \varepsilon_{XY}$$

$$= V_{ST} + V_{TN} + V_{NO} + V_{OP}$$

$$= 60$$

$$(V)$$

- (c) KUNDUCHI S/S KU2 feeder
- 5. Demarcation point from KU4

$$V_{ST} = \sqrt{3} \times 0.410 \times 75 \times 1.7 = 91 \qquad (V)$$

$$V_{ML} = \sqrt{3} \times 0.410 \times 65 \times 0.7 = 32 \qquad (V)$$

$$V_{LK} = \sqrt{3} \times \frac{0.410 \times (50 + 36) \times 1.0}{2} = 31 \qquad (V)$$

$$V_{KD} = \sqrt{3} \times \frac{0.410 \times 15 \times 1.6}{2} = 9 \qquad (V)$$

$$\varepsilon = \sum \varepsilon_{IJ} \qquad (V)$$

$$= V_{SM} + V_{ML} + V_{LK} + V_{KD}$$

$$= 170 \qquad (V)$$

- (d) KUNDUCHI S/S KU3 feeder
- 1. MBWENI point

$$V_{SR} = \sqrt{3} \times 0.410 \times 25 \times 1.5 = 27$$

$$\varepsilon = \Sigma \varepsilon_{xy} \qquad (V)$$

$$= V_{SR} + V_{RH} \sim V_{HJ}$$

$$= 180 \qquad (V)$$

(e) KUNDUCHI S/S KU4 feeder

$$V_{sr} = \sqrt{3} \times 0.410 \times 59 \times 1.5 = 63$$
 (V)

$$V_{FE} = \sqrt{3} \times 0.410 \times 44 \times 1.5 = 47$$
 [V]

$$V_{ED} = \sqrt{3} \times \frac{0.410 \times (30 + 26) \times 1.1}{2} = 22$$
 (V)

$$V_{DU} = \sqrt{3} \times \frac{0.410 \times 7 \times 0.9}{2} = 2$$
 (V)

$$\varepsilon = \Sigma \varepsilon_{xy} \qquad (V)$$

$$= V_{SF} + V_{FE} + V_{ED} + V_{DU}$$

= 140 (V)

Power loss

- Line intermediate section power loss

$$\omega xy = \frac{N}{3} \tau \frac{I^2x + Ix Iy + I^2y}{1,000} \ell$$
 [kW]

 ωxy ... Power loss between x and y where [kW]

[km]

Iy ... Current flown out of the line section

 ℓ ... Distance of the line section

- Line end section power loss

$$\omega xy = \frac{N}{3} \tau \frac{I^2x}{1,000} \ell \quad [kW]$$

- Line total power loss

$$\omega = \Sigma \omega x y$$
 [kW]

- Annual power loss

[kWH]

where; G: Loss factor

H: Annual power supply hours $(365 \times 24 = 8,760\%)$

1) Power loss before taking countermeasures

MBEZI S/S

MB2 feeder

The resistance of ACSR 50 mm² is 0.5426 $[\Omega/km]$.

$$\omega_{AB} = \frac{0.5426 \times (281^2 + 281 \times 277 + 277^2)}{1,000} \times 1.4 = 177.40$$
 (kW)

$$\omega_{BC} = \frac{0.5426 \times (260^2 + 260 \times 240 + 240^2)}{1,000} \times 1.4 = 142.51 \quad (kW)$$

$$\omega_{\text{CD}} = \frac{0.5426 \times (194^2 + 194 \times 175 + 175^2)}{1,000} \times 1.4 = 77.64$$
 (kW)

$$\omega_{DF} = \frac{0.5426 \times (80^2 + 80 \times 42 + 42^2)}{1,000} \times 2.6 = 16.26$$
 (kW)

$$\omega_{FG} = \frac{0.5426 \times (40^2 + 40 \times 38 + 38^2)}{1,000} \times 1.0 = 2.48$$
 (kW)

$$\omega_{GR} = \frac{0.5426 \times (25^2 + 25 \times 25 + 25^2)}{1,000} \times 0.7 = 0.71 \quad (kW)$$

$$\omega_{RH} = \frac{0.5426 \times (25^2 + 25 \times 8 + 8^2)}{1,000} \times 5.9 = 2.85 \text{ (kW)}$$

$$\omega_{\rm H\,I} = \frac{0.5426 \times (7^2 + 7 \times 6 + 6^2)}{1,000} \times 4.8 = 0.33 \text{ (kW)}$$

$$\omega_{11} = \frac{0.5426 \times 4^2}{1,000} \times 1.1 = 0.0095 = 0.01$$
 (kW)

$$\omega_{DK} = \frac{0.5426 \times (95^2 + 95 \times 80 + 80^2)}{1.000} \times 1.6 = 19.99 \quad (kW)$$

$$\omega_{\text{KL}} = \frac{0.5426 \times (59^2 + 59 \times 55 + 55^2)}{1,000} \times 1.0 = 5.29 \text{ (kW)}$$

$$\omega_{LM} = \frac{0.5426 \times (40^2 + 40 \times 40 + 40^2)}{1,000} \times 0.7 = 1.82 \text{ (kW)}$$

$$\omega_{MN} = \frac{0.5426 \times (30^2 + 30 \times 20 + 20^2)}{1,000} \times 0.9 = 0.93 \text{ (kW)}$$

$$\omega_{NO} = \frac{0.5426 \times (10^2 + 10 \times 10 + 10^2)}{1,000} \times 1.4 = 0.23 \quad (kW)$$

$$\omega_{\text{OP}} = \frac{0.5426 \times 9^2}{1,000} \times 1.3 = 0.06 \quad \text{(kW)}$$

$$\omega_{\text{cq}} = \frac{0.5426 \times 46^2}{1.000} \times 4.6 = 5.28 \quad \text{(kW)}$$

The total power loss is obtained as follows:

$$\omega = \sum \omega_{xy} \qquad (kW)$$

$$= \omega_{AB} + \omega_{BC} + \omega_{CD} \quad \cdots \quad \omega_{LR}$$

$$= 453.79 \qquad (kW)$$

Hence, the annual power loss comes to:

$$W = 453.79 \times 0.4 \times 8,760 \times 10^{-3} \text{ (MWH)}$$
$$= 1,590 \text{ (MWH)}$$

2) Power loss after taking countermeasures

KUNDUCHI S/S

The resistance of ACSR 120 mm² is 0.252 [Ω/km]. The resistance of ACSR 50 mm² is 0.5426 [Ω/km].

(a) KU1 Feeder

$$\omega_{ST} = \frac{0.252 \times (20^2 + 20 \times 20 + 20^2)}{1,000} \times 1.1 = 0.33$$
 (kW)

$$\omega_{\text{TN}} = \frac{0.5426 \times (20^2 + 20 \times 20 + 20^2)}{1,000} \times 0.3 = 0.20 \quad \text{(kW)}$$

$$\omega_{NO} = 0.23 \text{ (kW)}$$

$$\omega_{OP} = 0.06 \text{ (kW)}$$

The total power loss is obtained as follows:

$$\omega = \sum \omega_{xy} \qquad (kW)$$

$$= \omega_{ST} + \omega_{TN} + \omega_{NO} + \omega_{OP}$$

$$= 0.82 \qquad (kW)$$

Hence, the annual power loss comes to:

$$W = 0.82 \times 0.4 \times 8,760 \times 10^{-3} \text{ (MWH)}$$
$$= 2.87 \text{ (MWH)}$$

(b) KU2 Feeder

$$\omega_{\text{SM}} = \frac{0.252 \times (75^2 + 75 \times 75 + 75^2)}{1,000} \times 1.7 = 7.23 \quad \text{(kW)}$$

$$\omega_{\text{ML}} = \frac{0.252 \times (50^2 + 50 \times 36 + 36^2)}{1,000} \times 1.0 = 1.41 \quad \text{(kW)}$$

$$\omega_{LK} = \frac{0.252 \times (50^2 + 50 \times 36 + 36^2)}{1,000} \times 1.0 = 1.41 \quad (kW)$$

化乳酸化异氯酸二甲二氢二氢重新二氯化物 人名英巴斯斯特斯 医斯

$$\omega_{KD} = \frac{0.252 \times 15^{\frac{1}{2}}}{1,000} \times 1.6 = 0.09 \text{ (kW)}$$

The total power loss is obtained as follows:

$$\omega = \sum \omega_{xy} \qquad (kW)$$

$$= \omega_{SM} + \omega_{ML} + \omega_{LK} + \omega_{KD}$$

$$= 10.97 \qquad (kW)$$

Hence, the annual power loss comes to:

$$W = 10.97 \times 0.4 \times 8,760 \times 10^{-3}$$
$$= 38.44 \text{ (MWH)}$$

(c) KU3 Feeder

$$\omega_{SR} = \frac{0.252 \times (25^2 + 25 \times 25 + 25^2)}{1,000} \times 1.5 = 0.71 \quad (kW)$$

$$\omega_{\rm RH} = 2.85$$
 (kW) $\omega_{\rm H\,I} = 0.33$ (kW) $\omega_{\rm I\,J} = 0.01$ (kW)

The total power loss is obtained as follows:

$$\omega = \sum \omega_{xy} \qquad (kW)$$

$$= \omega_{SR} + \omega_{RH} + \omega_{H1} + \omega_{1J}$$

$$= 3.9 \qquad (kW)$$

Hence, the annual power loss comes to:

$$W = 3.9 \times 0.4 \times 8,760 \times 10^{-3}$$

= 13.67 (MWH)

(d) KU4 Feeder

$$\omega_{sf} = \frac{0.252 \times (59^2 + 59 \times 59 + 59^2)}{1,000} \times 1.5 = 3.95 \quad (kW)$$

$$\omega_{FE} = \frac{0.252 \times (44^2 + 44 \times 43 + 43^2)}{1,000} \times 1.5 = 2.15 \quad (kW)$$

$$\omega_{EU} = \frac{0.252 \times 30^2}{1,000} \times 2.5 = 0.57$$
 (kW)

$$\omega_{FG} = \frac{0.252 \times (15^2 + 15 \times 13 + 13^2)}{1.000} \times 1.0 = 0.15$$
 (kW)

$$\omega_{GZ} = \frac{0.5426 \times 13^2}{1.000} \times 2.7 = 0.25$$
 (kW)

The total power loss is obtained as follows:

$$\omega = \sum \omega_{xy} \qquad (kW)$$

$$= \omega_{sy} + \omega_{yz} \cdots + \omega_{Gz}$$

$$= 7.07 \qquad (kW)$$

Hence, the annual power loss comes to:

$$W = 7.07 \times 0.4 \times 8,760 \times 10^{-3}$$
$$= 24.77 \text{ (MWH)}$$

(e) MBEZI S/S MB2 Feeder

$$\omega_{AB} = \frac{0.252 \times (100^2 + 100 \times 96 + 96^2)}{1,000} \times 1.4 = 10.17 \quad \text{(kW)}$$

$$\omega_{\text{BC}} = \frac{0.252 \times (79^2 + 79 \times 58 + 58^2)}{1,000} \times 1.4 = 5.01 \quad \text{(kW)}$$

$$\omega_{cu} = \frac{0.252 \times 12^2}{1,000} \times 0.6 = 0.02$$
 (kW)

$$\omega_{cq} = 5.28$$
 (kW)

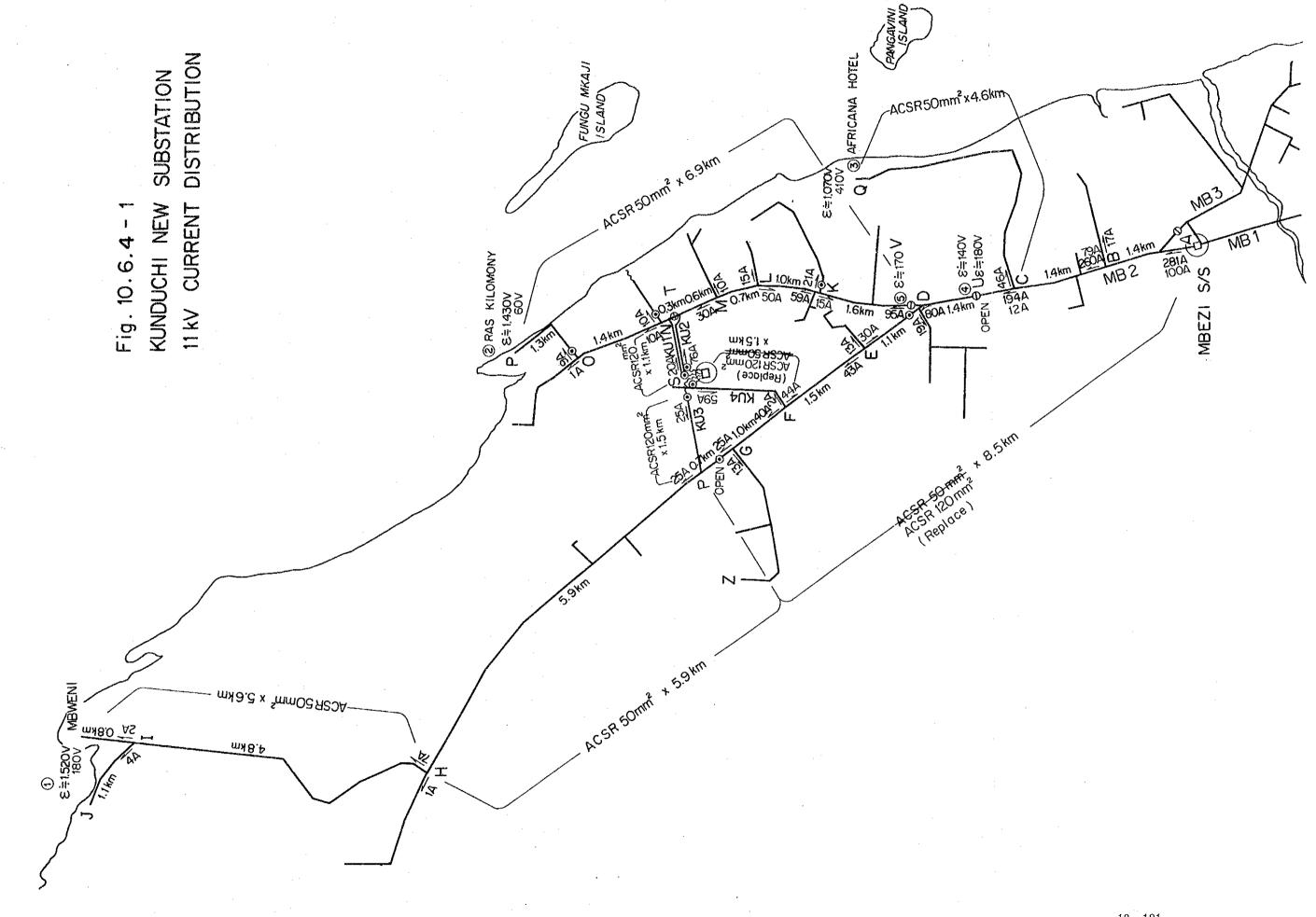
The total power loss is obtained as follows:

$$\omega = \sum \omega_{xy} \qquad (kW)$$

$$= \omega_{AB} + \omega_{BC} + \omega_{CU} + \omega_{CQ}$$

$$= 20.48 \qquad (kW)$$

Hence, the annual power loss comes to:


$$W = 20.48 \times 0.4 \times 8,760 \times 10^{-3}$$
$$= 71.76 \text{ (MWH)}$$


(3) Reduction in power loss

Annual reduction in power = annual power loss (before countermeasure - after countermeasures)

$$= 1.590 - (2.87 + 38.44 + 13.67 + 24.77 + 71.7)$$

≒ 1.438 (MWH)

10.7 FEEDER MAINTENANCE TELECOMMUNICATIONS SYSTEM

In consideration of the facility setup, installation space, operator's works and management of maintenance service at the new substations, it is preferable that the SCADA system equivalent to the existing one should again be used for the new stations. As for the feeder maintenance telecommunications systems, they must be provided to the extent that the existing systems should partly be extended to match such use.

(1) SCADA system

The following measures should be taken for the host computer of Ilala substation.

- Hardware: Vacant extension slots are still available in the existing facilities and thus requisite sheets should be inserted.
- 2) Software: Memory storage capacity is still available for each substation but it should be used to store additional monitor items after modification of the program.

It should be noted herewith that both the hardware and software of the SCADA system may frequently be upgraded from now on and thus in most cases, it may presumably be very difficult to modify or extend the old versions in the future. For this reason, in case the commencement of this study is postponed, the details of the works should be subject to review.

(2) Feeder maintenance telephone

Presently, an independent telephone number is assigned to each substation and thus communication is available over telephone by dialing either from the control room of Ilala station or each substation as necessary. The same sort of assignment of the telephone number should likewise be done for the new substations with the installation of the same telephone and cradle as the existing ones.

CHAPTER 11 CONSTRUCTION WORK PLAN

Chapter 11 Construction Work Plan

			Page
11.1	Construction	Procedures	11-1
11.2	Organization	setup for Construction Work	11-1
11.3	Construction	Schedule	11-2

CHAPTER 11 CONSTRUCTION WORK PLAN

The present state of the power supply facilities for the Dar Es Salaam City region that is the subject of the preliminary design may be said that it has been much improved beyond our expectations as compared to that in ten years ago. Nonetheless, from a point of view of the long-term perspective of the future of Tanzania, it is not enough yet. Presently, there still exist in Tanzania frequent accidental service interruptions or burning of electric equipment due to considerable variations in the supply voltage. In view of it, it is still strongly desired that the construction of new facilities and additional installation or modification of the existing facilities should be implemented without a moment's delay.

To conduct the construction works exactly and safely, it is recommended that the construction procedures, organization setup and construction work schedule should be planned as shown below.

11.1 CONSTRUCTION PROCEDURES

The construction works should be carried out on a semi-full-turnkey basis where all works are executed under the direct management of TANESCO as a rule but as for the construction of new substations and additional installation and modification of the existing substations, the assembly and adjustment of the equipment except for the civil works thereof, should be undertaken by the respective makers. In addition, the construction works of the transmission lines and substations should be carried out step by step and moreover the construction work of the distribution lines should be carried out concurrently in the respective construction sites that are divided to match the respective power supply areas which each substation under this is scheduled to undertake.

11.2 ORGANIZATION SETUP FOR CONSTRUCTION WORK

Since the construction works under this study are carried out in accordance with the facility expansion plan, the most part of them is the new construction works and thus the modification, repair and

replacement works of the existing facilities are rather less.

Despite the situations, those works inevitably call for frequent scheduled shutdown of power supply due to the inclusion of such additional installation and modification works of the existing facilities. In addition, the target region of the scheduled shutdown of power failure involves among others the urban areas such as the government and municipal office district and business district, as well as densely built-up surrounding residential districts. Under the circumstances, it may presumably be rather difficult to secure an ample shutdown time.

For this reason, it is indispensable to include in the construction organization setup a special team dedicated to the preparation of the design documents, work schedule table, work procedure manuals, etc. so that the construction group can perform the works very efficiently thereby enabling the execution of the exact construction works in the minimum scheduled shutdown time as well as securing the safety of the construction works.

It should be noted further that in this study, all vehicles are equipped with a VHF transceiver or the like to facilitate the communications and secure instruction measures, which are the extremely important factors in the process of the construction and moreover allow the construction works to be carried out more efficiently.

11.3 CONSTRUCTION SCHEDULE

By taking into account the above-mentioned construction procedures and organization setup, the construction schedule is temporally established as shown in Table 11-1.

Table 11-1 Construction Schedule

		1 9 9 4				1 9 9 5									1 9 9 6																		
	1	2 3	4	5 6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11 12
SUBSTATION :																						<u> </u>											
1. Ilala S/S																									 		ļ	ļ				_	_
2. Ubungo S/S 132kV																																_	
3. Tandale S/S															ļ			ļ								<u>.</u>							
4. Chang'ombe S/S																										ļ							
5. Kurasini S/S																												ļ					
6. Mbezi S/S																												ļ. 	ļ				\perp
7. Kunduchi S/S				-		<u> </u>																											
8. Kariakoo S/S																								Ĺ						L			
9. Mbagala S/S																	<u></u>											 -	ļ				-
10. Tabata S/S												,					<u> </u>																
11.																			-						<u> </u>	ļ							
TRANSMISSION LINE :						ļ	1	ļ				-													-		 						
1. Ubungo-Ilala 132kV Line																					-							1					
2. Tandale S/S 33kV Line																																	
3. Chang'ombe S/S 33kV Line																												-					
4. Ubungo-F.Z.M 132kV Line			 											-	 																		
5. Kunduchi S/S 33kV Line					- -	 	1								-																		
6. Kariakoo S/S 33kV Line							 																										
7. Mbagala S/S 33kV Line						1																						1	+				
8. Tabata S/S 33kV Line			+	<u> </u>	-		1.	ļ											-														
			 			-									-	 												-					
DISTRIBUTION LINE :			ļ				-	ļ <u>.</u>		•					<u>. </u>	ļ	ļ										<u> </u>					-	_
I. Ilala S/S 11kV 2cct			ļ		ļi		ļ					: 						-					-	-	ļ	-	-	-	-			-	
2. Tandale S/S 11kV 3cct							ļ						<u>.</u>			ļ							ļ			ļ		ļ	 				
3. Chang'ombe S/S llkV 4cct							.:									<u> </u>	ļ ·	ļ .				<u> </u>			ļ		<u> </u>					_	
4. Mbezi S/S 11kV 3cct																	ļ				<u> </u>			-			-	-					
5. Kunduchi S/S 11kV 4cct			ļ				-									<u> </u>					<u> </u>	ļ			-	+	-		-				
6. Kariakoo S/S 11kV 3cct			<u> </u>				<u></u>																_							-			
7. Mbagala S/S 11kV 3cct																								<u> </u>	-								
8. Tabata S/S 11kV 2cct											:										ļ	ļ		ļ				<u> </u>	<u> </u>				

CHAPTER 12 CONSTRUCTION COST

Chapter 12 Construction Cost

		Page
12.1	Prerequisites for Construction Cost Estimation	12-1
12.2	Foreign Currency and Local Currency Portion	12-2
12.3	Construction Cost Estimation	12-3

CHAPTER 12 CONSTRUCTION COST

In this study, the construction cost is obtained by directly calculating the itemized rough construction cost in respect of substations, 132 kV and 33 kV transmission lines, 11 kV distribution lines, vehicles and tools, etc.

12.1 PREREQUISTES FOR CONSTRUCTION COST ESTIMATION

To calculate the construction cost, the following conditions are taken into account:

(1) Unit price of construction equipment and materials

As for the FOB price, the prices in 1992 are adopted and in addition, the rise in prices is included but the import duties of Tanzania is excluded.

(2) Transportation cost and insurance

The transportation cost includes the domestic transportation cost in Tanzania as well as the ocean freight, and moreover the insurance is added to the above FOB prices mentioned in (1) thus making them into CIF prices.

(3) Labor cost

The construction equipment and material costs are determined after due consideration being given to the TANESCO's current standard labor costs as well as to the actual results obtained in the similar projects in Japan.

The cost estimation for the works related to the construction of substations is done on a semi-full turnkey basis.

(4) Contingent expense

manager and the state of the st

15% each of the foreign and local portions is appropriated for the contingent expense.