Part III Construction Material Data

Table of Contents (1/2)

```
Summary of Soil Test(BL, BH)
2
    Initial Condition data for Triaxial Compression Test(UU)
    Loading data of Triaxial Compression Test(UU)
    Mohr's Stress Diagram of Triaxial Compression Test(UU)
    Initial Condition data for Triaxial Compression Test(CU)
    Loading data of Triaxial Compression Test (CU)
7
    Mohr's Stress Diagram of Triaxial Compression Test(CU)
    Initial Condition data for Triaxial Compression Test(UU)
8
Q
    Loading data of Triaxial Compression Test (UU)
    Mohr's Stress Diagram of Triaxial Compression Test(UU)
10
    Initial Condition data for Triaxial Compression Test(CU)
11
    Loading data of Triaxial Compression Test (CU)
12
13
    Mohr's Stress Diagram of Triaxial Compression Test(CU)
14
    Diagrams of Cohesion and Internal Friction Angle
15
    Summary of Soil Test(TP1, TP2)
16
    Summary of Soil Test(TP3, TP5)
17
    Summary of Soll Test(TP6)
18
    Summary of Soil Test(TP7)
19
    Summary of Soil Test(Camp Well)
20
    Diagram of Plasticity Index and Liquid Limit
21
    Specific Gravity Test(TP1: depth of 1.0 m)
22
    Specific Gravity Test (TP1: depth of 3.0 m)
23
    Specific Gravity Test (TP2: depth of 4.0 m)
    Specific Gravity Test (TP2: depth of 8.0 m)
24
    Specific Gravity Test(TP3: depth of
25
                                         3.0 m)
    Specific Gravity Test(TP3: depth of
26
                                         7.0 m)
    Specific Gravity Test(TP5: depth of 3.0 m)
27
28
    Specific Gravity Test(TP5: depth of 5.0 m)
    Specific Gravity Test(TP5: depth of 10.0 m)
29
30
    Specific Gravity Test(TP6: depth of 3.0 m)
31
    Specific Gravity Test(TP6: depth of 5.0 m)
32
    Specific Gravity Test(TP7: depth of 3.0 m)
33
    Specific Gravity Test(TP6: depth of 10.0 m)
34
    Specific Gravity Test(TP7: depth of 5.0 m)
35
    Specific Gravity Test(TP7: depth of 10.0 m)
36
    Specific Gravity Test(Camp Well: depth of 5.0 m)
37
    Specific Gravity Test(Camp Well: depth of 8.0 m)
    Specific Gravity Test (Camp Well: depth of 11.0 m)
38
39
    Natural Water Contents (TP1, TP2, TP3)
40
    Natural Water Contents (TP4, TP5, TP6)
    Natural Water Contents(TP7, Camp Well)
41
42
    Gradation Analysis (TP1: depth 1.0 m)
43
    Gradation Analysis (TP1: depth 3.0 m)
44
    Gradation Analysis (TP2: depth 4.0 m)
45
    Gradation Analysis (TP2: depth 8.0 m)
46
    Gradation Analysis (TP3: depth 3.0 m)
    Gradation Analysis (TP3: depth 7.0 m)
47
48
    Gradation Analysis (TP5: depth 3.0 m)
49
    Gradation Analysis (TP5: depth 5.0 m)
50
    Gradation Analysis (TP5: depth 10.0 m)
51
    Gradation Analysis (TP6: depth 3.0 m)
52
    Gradation Analysis (TP6: depth 5.0 m)
    Gradation Analysis (TP6: depth 10.0 m)
```

Table of Contents (2/2)

```
54
   Gradation Analysis (TP7: depth 3.0 m)
55
   Gradation Analysis (TP7: depth 5.0 m)
   Gradation Analysis (TP7: depth 10.0 m)
56
   Gradation Analysis (Camp Well: depth 5.0 m)
57
   Gradation Analysis (Camp Well: depth 8.0 m)
58
   Gradation Analysis (Camp Well: depth 11.0 m)
   Liquid Limit & Plastis Limit(TP1: depth 1.0 m & 3.0 m)
   Liquid Limit & Plastis Limit(TP2: depth 4.0 m & 8.0 m)
61
62
   Liquid Limit & Plastis Limit(TP3: depth 3.0 m & 7.0 m)
   Liquid Limit & Plastis Limit (TP5: depth 3.0 m & 5.0 m)
63
   Liquid Limit & Plastis Limit (TP5: depth 10.0 m)
64
   Liquid Limit & Plastis Limit(TP6: depth 3.0 m & 5.0 m)
65
66
   Liquid Limit & Plastis Limit(TP6: depth 10.0 m)
   Liquid Limit & Plastis Limit (TP7: depth 3.0 m & 5.0 m)
67
   Liquid Limit & Plastis Limit(TP7: depth 10.0 m)
68
69
   Liquid Limit & Plastis Limit(Camp Well: depth 5m & 8m)
   Liquid Limit & Plastis Limit (Camp Well: depth 11.0 m)
```

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

SAME	PLE NO.	(N'DE L'ÉCHANTILLON)		BL	BL	ВН	ВН	
SAM	PLE DEP	TH (PROFONDEUR DE L' ÉCHANTILLON)	(m)	~	~	~	~	~
,	GRAVEL	(GRAVIER)	(%)					
	SAND	(SABLE)	(%)					
N ETRIE	SILT	(SLY)	(%)					
GRADATION GRANULOMÉTRIE)	CLAY	(ARGILE)	(%)					
GRAN	MAX. DI	AMETER (DIAMÈTRE MAX.)	(ener.)					
	COEFFIC	CIENT OF UNIFORMITY CIENT O' UNIFORMITÉ) UC			:			
	COEFFI (COEFFI	CIENT OF CURVATURE CIENT DE COURBURE)						
7.0	LIQUID	LIMIT (LIMITE DE LIQUIDITÉ) wi	(%)					
CONSISTENCY (CONSISTANCE)	PLASTIC	C LIMIT (LIMITE DE PLASTICITÉ) $w_{\mathfrak{g}}$	(%)				***	
ONSIS	PLASTIC	CITY INDEX (INDICE DE PLASTICITÉ) ID						
ပြင်			:					
*								
				·				
SPE	CIFIC GRA	VITY OF SOIL (POIDS SPÉCIFIQUE DU SOI	_)Gs	2.638	2.638	2.689	2.689	
ATE AL)	WATER	CONTENT (TENEUR EN EAU) w	(%)	16.7	16.7	20.4	20.4	
RAL STATE	WET D	ENSITY (DENSITÉ HUMIDE) 7. (g/m³)	2.017	2.027	2.012	2.032	
NATURAL ETAT NAT	VOID R	ATIO (INDICE DES VIDES) e		0.526	0.519	0.609	0.593	
		OF SATURATION (DEGRÉ DE SATURATION)		83.8	84.9	90.1	92.5	
	UNCONFINED COMPRESSION COMPRESSION UNIAXE	COMPRESSIVE STRENGTH (RESISTANCE à LA COMPRESSION)	ka/on²)					
(0.0	MPRES APRES UNIAX	MODULUS OF ELASTICITY (MODULE D' ÉLASITICITÉ) E50 (A	(4/om²)					
RTIES (VES)	₹8 8	SENSITIVITY RATIO (INDICE DE SENSITIVITÉ) SI	:					
CANK	**	TYPE OF TEST (TYPE DE L' ESSA)) * * *	עט	cυ	υU	CU	
SAL F	(2)		ig/om²)	2.26	Co /\0	3.29	Co 1.3	
MECHANICAL PROPERT (PROPRITÉS MÉCANIQU		ANGLE OF INTERNAL FRICTION (ANGLE DE FROTTEMENT INTERNE)	(*)	23.8	0.398	20.8	cu/p 0.727	
ME((PRC	ATON	YIELD STRESS OF CONSOLIDATION (LIMITE D'ÉLASTITÉ DE CONSOLIDATION)	y(kg/ _{om} 2)	·			~~~~
	CONSOLIDATON CONSOLIDATION	COMPRESSIÓN INDEX (INDICE DE COMPRESSION) Co		 	· ·		·	
	0 0 N		,					

(BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE (LE TRAIT AU DESSUS DU SYMBOL MONTRE LA PRESSION DE L'EAU INTERSTITIELLE.)

	AXIAL COMPRESSION							(U) CU		EPORTING E RAPPORT)
	E OF SURVEY & LOC DMINATION DE L'ENQUÊTE E		g to California de la la la departación de propositivo de la conferencia de la conferencia de la conferencia de	MEMV	E-ELE	PROJECT		DATE (DATE)		
	PLE NO. & DEPTH E L'ÉCHANTILLON ET PROFI	ONDEUR)	BL			(n	n~ m)	(ESSAI PAR)		ng ng thiết thiết thiệt thiệt thiết thiệt th
	SAMPLE CHANTILLON)		DISTURBED DIS NTACT REM			TYPE OF AF				
	SHAPED WITH TRIMMER OTHER() CC				DURING CON	OF DRAINAGE ISOLIDATION DRAINAGE CONSOLIDATION	DRAINAGE S	NAGE, DOUBLE PAPER DRAIN SMPLE, DRAINA AIN EN PAPIER	GE DOUBLE,	
	PROPERTIES: (PROPRIÉTÉS)		SIFICATION SIFICATION)		Gs	2.638	<i>w</i> ≀		% w,	%
SPEC	DIMEN NUMBER (NUM	IÉRO DU S	PÉCIMEN)			Na /	Na 2	Na 3	Na 4	No.
:	OLIDATION PRESSURE		DE_CONSOLIDA			0.5	1.0	2.0	3.0	
SPECIMEN SPÉCIMEN)	HEIGHT (HAUTEUR)			H. 	.(om)	10.01	10.09	10.04	10.08	ļ
SPECIMEN SPÉCIMEN	DIAMETER (DIAMETI			D 	(om)	5 0 3	5.03	5.03	5.04	ļ
	VOLUME (VOLUME)). . 		V	(cm ³)	198.9	200.5	199.5	201.1	ļ +
ו מי	WEIGHT (POIDS)			W 0	(9)	403.1	403.3	403.4	403.4	
OTIO	WET DENSITY (DEN	ISITÉ HUMIC)E) 	у	(g / om 3)	2.027	2.011	2.022	2.006	
CONDITIONS ONS INITIALES	WATER CONTENT (TENEUR EI	NEÁU)	w o	(%)	16.7	16.7	16.7	16.7	<u> </u>
INITIAL	VOID RATIO (INDICE	DES VIDE	3)	е.	·	0.519	0.531	0.523	0.535	
E Q	DEGREE OF SATURA	TION (DEGR	É DE SATURATK	ON)Sr	(%)	84.9	83.0	84.2	82.3	
ŚO.	CONSOLIDATION TIM	E (TEMPS	DE CONSOLIDA	TION)						
DATA SE CON	DRAINED VOLUME (VOLUME D	J DRAIN)	Δ۷	(om ³)					
	VOID RATIO AFTER CONSO	LIDATION (IN	DICE DES VIDES AI	PRĚS CONS	OLIDATION) e			<u> </u>		<u></u>
CONSOL	ROOM TEMPERATUR	RE (TEMPÉ	RATURE DU LO	CAL)	(℃)					

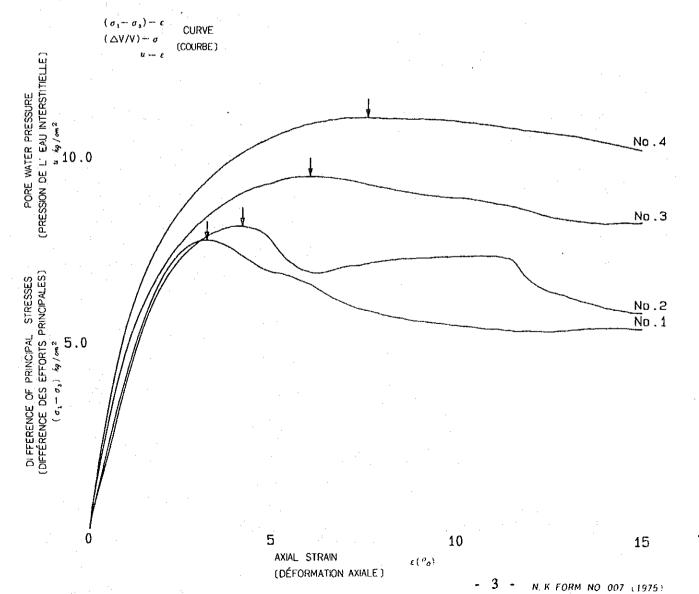
TIME-DRAINED VOLUME CURVE FOR CONSOLIDATION (COURBE TEMPS-VOLUME DRAINÉ POUR CONSOLIDATION)

DRAINED VOLUME (cm⁸)

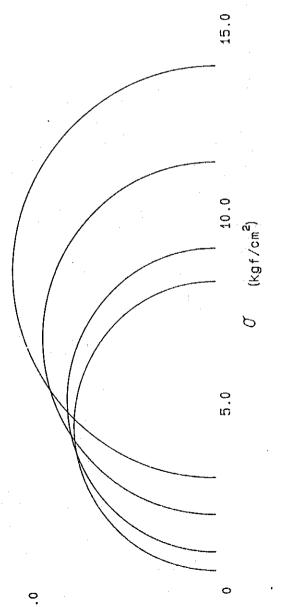
0.1

100

2


ELAPSED TIME (TEMPS ÉCOULÉ)

10


(min.)

TRIAXIAL COMPRESSION (ESSAI DE COMPRESSION TRIA			cu (ÚÚ)	CD CD	FOR REPORTING (POUR LE RAPPORT)
NAME OF SUVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	MEMVE-ELE	PROJECT		DATE (DATE)	Dillicit (C.C.)
SAMPLE NO. & DEPTH. (N°DE L°ÉCHANTILLON ET PROFONDEUR):	BL		m ~ m · !	TESTED BY (ESSAL PAR)	

CHARGEMENT (TAUX DE COMPRESSION) / 0 % /min SPECIMEN NUMBER (NUMÉRO DU SPÉCIMEN) Na 1 Na 2	DYNAMOMÉTRIQUE; No 3 No 4 No.
CONSOLIDATION PRESSURE (PRESSION DE CONSOLIDATION) $(\frac{\lambda_{q/\text{om}^2}}{})$ 0.5 1.	.0 2.0 3.0
$(\sigma_1 - \sigma_3)_f (kg/cm^2)$ 7.795 8.1	179 9.521 11.122
$= u_f(kq/\sigma m^2) \cdot e_f$	
Somme (%) Λ(Λ/Λ) · 1 V Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ	
ϵ_I (%) 3.20 4.1	18 6.01 7.58
ELAPSED TIME TO FAILURE (min) (TEMPS DE RUPTURE)	
MODULUS OF ELASTICITY Eso(1/4/cm²) (MODULE D'ÉLASTICITÉ)	
ROOM TEMPERATURE (TEMPÉRATURE DU LOCAL) (°C)	

					- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		****			
	KIAL COMPRESSION I DE COMPRESSION	•			•	MOHR)	\	CU CD	FOR REP (POUR LE	
	F SURVEY & LOCALITY ION DE L'ENQUÊTE ET LOCALITÉ)	MEMV	E-ELE PROJEC	r.			DATE (DATE)			(40000197794-97 639-1)
	E NO. & DEPTH CHANTILLON ET PROFONDEUR	10 BL		(m ~	. m)	TESTED B (ESSAL PA			
									-	
	RMALLY CONSOLIDATED NSOLIDÉE NORMALEMENT)	Cu =	kg/om², φu≔		•	C, =	,	g / om 2	φ' =	•
75 14 1	ER-CONSOLIDATED R-CONSOLIDÉ)	C =	kg/om^2 , $\phi =$		•	C. =		kg/om²	, ø =	•

0.0

C

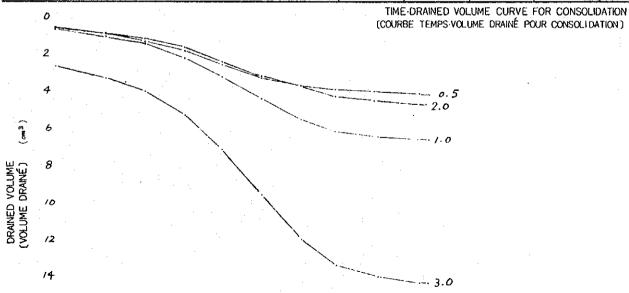
(kgf/cm²)

4 - N. K. FORM NO. 008 (1975)

TRIAXIAL COMPRESSION TEST (INITIAL CONDITION : CONSOLIDATION DATA) (ESSAI DE COMPRESSION TRIAXIAL (CONDITION INITIALE; DONNÉES DE CONSOLIDATION)) CÜ CD (POUR LE RAPPORT)											
NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)		MEMVE-ELE				DATE (DATE)	Carlight Pane Selver ann sam y eagen yn 17 gegydd yn 12 gynnau gyn 19 dei y fellig y flydd y Carligh y 19 dei y				
SAMPLE NO. & DEPTH (N' DE L' ÉCHANTILLON ET PROFONDEUR)	BL		(m ~	nı)	TESTED BY (ESSAI PAR)					
		:									

SAMPLE (ÉCHANTILLON)	UNDISTURBED DISTURBED (INTACT REMANIÉ)		TYPE OF APPARATUS (TYPE DE L'APPAREIL)	
SHAPED WITH (MISE EN FORME PAR)	TRIMMER OTHER() (TRANCHEUSE AUTRE())	CONDITION OF DRAINAGE DURING CONSOLIDATION CONDITION DE DRAINAGE (PENDANT LA CONSOLIDATION)	SINGLE DRAINAGE, DOUBLE DRAINAGE, PAPER DRAIN (DRAINAGE SIMPLE, DRAINAGE DOUBLE, DRAIN EN PAPIER
			-	

PROPERTIES: (PROPRIÉTÉS) CLASSIFICATION (CLASSIFICATION)


Gs 2.638

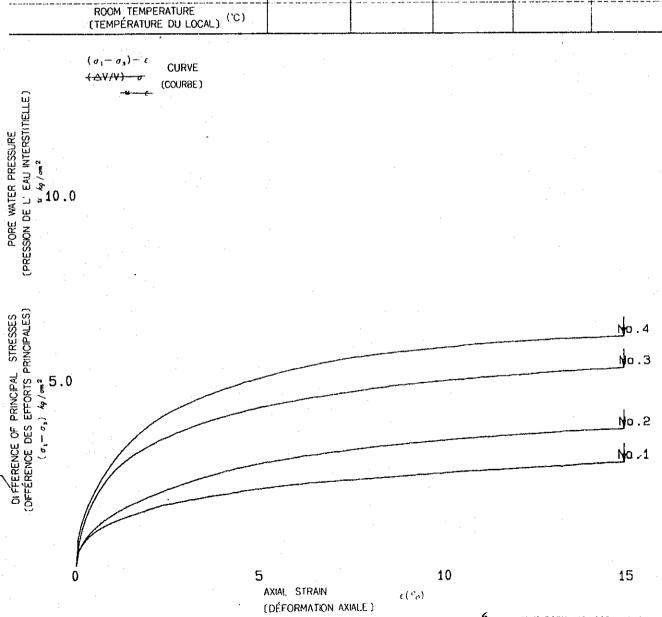
w.

%

ç

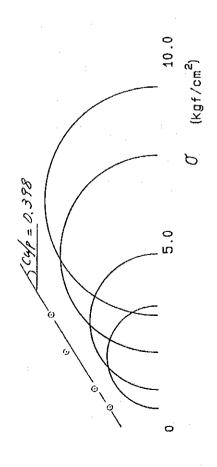
SPE	CIMEN NUMBER (NUMÉRO DU SPÉCIMEN)	No. /	No 2	Na 3	Na 4	Να
CONS	OLIDATION PRESSURE (PRESSION DE CONSOLIDATION) (49/om²)	0.5	1.0	2.0	3.0	
EN)	HEIGHT (HAUTĚUR) H. (∞)	10.06	10.06	10.04	10.08	
SPECIMEN SPÉCIMEN)	DIAMETER (DIAMETRE) D (0%)	5.01	5.01	5.02	5.03	
	VOLUME (VOLUME) V . (cm3)	1983	198.3	198.7	200.3	
ິ່ທ	WEIGHT (POIDS) W. (9)	403.2	403.3	4029	403.3	
DITION	WET DENSITY (DENSITÉ HUMIDE) y (9/om3)	2.033	2.034	2.028	2.013	
	WATER CONTENT (TENEUR EN EAU) w. (%)	16.7	16.7	16.7	16.7	
	VOID RATIO (INDICE DES VIDES) e.	0.514	0.514	0.518	0.529	
INITIAL (CONDI	DEGREE OF SATURATION (DEGRÉ DE SATURATION)Sr (%)	85.7	85.7	85.0	83.3	
SOL.	CONSOLIDATION TIME (TEMPS DE CONSOLIDATION)	76	78	75	77	
DATA SE CON	DRAINED VOLUME (VOLUME DU DRAIN) △V (ເ∞n³)	4.3	6.7	4.8	14.4	
ଧ୍ୟ ।	VOID RATIO AFTER CONSOLIDATION (INDICE DES VIDES AFRES CONSOLIDATION)		:			
CONSI	ROOM TEMPERATURE (TEMPÉRATURE DU LOCAL) (°C)					

0.1


10

100

1000


ELAPSED TIME (TEMPS ÉCOULÉ)

	XIAL COMPRESSION DE COMPRESSION TRI				UU CÜ	CD CD		FOR REPORTING (POUR LE RAPPORT,
-	OF SUVEY & LOCALITY TION DE L'ENQUÊTE ET LOCALITÉ)	MEMVE	-ELE PROJE	СТ		DATE (DATE)		
	NO. & DEPTH CHANTILLON ET PROFONDEUR I	BL		; m ~	m)	TESTED (ESSAL PA		and the state of t
OADING M ETHOOE DE CHARGEMEI	RATE OF COMPRES	RMATION - CONTRÔLE	DES CONTRAINTES		E DE L'A	CAPACITY INNEAU IMOMÉTRIQUE)	5-00 hg
······································	SPECIMEN NUM (NUMÉRO DU SPI		No 1	No 2	No 3	3	io. 4	No
	CONSOLIDATION PRESSU (PRESSION DE CONSOLID	RE ATION) ^{(Ag/om²})	0.5	1.0	2	.0	3.0	
	$(\sigma_1 - \sigma_3)_{\tilde{f}}$ (2.752	3.664	5.	326	6.17	7
ET.)	u j (kg / cm ²)) •e _f						
AT PEAK U SOMMET)	A , · (△V/V) (%)						
(AC)	εţ	(%)	15.00	15.00	15	.00	15.0	0
	ELAPSED TIME TO FA (TEMPS DE RUPTUI	NLURE (min) RE)						
	MODULUS OF ELASTICITY (MODULE P'ÉLASTICITÉ)	E 50 (kg/cm2)						
	ROOM TEMPERATUR (TEMPÉRATURE DU I		T					

	RIAXIAL COMPRESSION SSAI DE COMPRESSION					UU (CÚ CD ÜO (CE	FOR REPORTING (POUR LE RAPPORT)
	ME OF SURVEY & LOCALITY MINATION DE L'ENQUÊTE ET LOCALITÉ)	ME	MVE-ELE PROJE	CT		DATE (DATE)	marangan canangan ga ani masi Sani kanang dahir mga ka padi Ahbarta ca Sani dahirik sebi
	MPLE NO. & DEPTH L'ÉCHANTILLON ET PROFONDEU	R) <i>B L</i>		(m~ m	TESTED BY (ESSAL PAR)	
7 (S)	NORMALLY CONSOLIDATED (CONSOLIDÉE NORMALEMENT)	Cu ==	hg/om², φυ=	•	C' =	= kg/o=	$\phi^2, \phi' =$
SCOPE (ETEND)	OVER-CONSOLIDATED (SUR-CONSOLIDÉ)	C =	kg/om^2 , $\phi =$		C, =	= kg/a	m², φ' =

15.0

10.0

ر (kgt√cm^ح م

7 - N. K. FORM NO. 008 (1975)

15.0

- Chairman				·		The State of the Principle of the Princi	Company of the Compan			
	RIAXIAL COMPRESSI ESSAI DE COMPRESSION						•	CO CE	FURE	REPORTING LE RAPPORT)
	ME OF SURVEY & 1.00 NOMINATION DE L'ENQUÊTE E			MEMVE-	ELE P	ROJECT		DATE (DATE)		epotentia (n. 1800).
	MPLE NO. & DEPTH DE L'ÉCHANTILLON ET PROF	ONDEUR)	ВН			(m ~ m)	TESTED BY		
(SAMPLE ÉCHANTILLON)		DISTURBED+D INTACT RE)	TYPE OF A				
	SHAPED WITH IISE EN FORME PAR)		R OTHER)))	DURING CO	OF DRAINAGE NSOLID ATION DRAINAGE CONSOLIDATION	DRAINAGE	INAGE, DOUBL PAPER DRAIN SIMPLE, DRAIN VAIN EN PAPIER	N AGE DOUBLE.
	PROPERTIES: (PROPRIÉTÉS)		SIFICATION SIFICATION)		<u> </u>	s 2.689	w		<u>%</u> w,	%
	CIMEN NUMBER (NUM					Na /	No. 2	Na 3	No. 4	Na
	SOLIDATION PRESSURE		DE CONSOLID		kg/om2)	0.5	1.0	2.0	3.0	
SPECIMEN SPECIMEN 3	HEIGHT (HAUTEUR)	-		Н,	(om)	10.03	10.02	10.01	10.04	
PEC	DIAMETER (DIAMETE			D	(om)	5.02	5.03	5.02	5.03	
농골	VOLUME (VOLUME)			V	(03)	199.7	199.1	198.1	199.5	
NS (WEIGHT (POIDS)			w .	(9)	400.3	400.5	400.8	400.7	
INITIAL CONDITIONS (CONDITIONS INTIALES	WET DENSITY (DENS	SITÉ HUMID	E)	γ	(9/om³)	2.005	2.012	2.023	2.009	
SNS	WATER CONTENT (T	ENEUR EN	EAU)	w o	(%)	20.4	20.4	20.4	20.4	
TAL STAL	VOID RATIO (INDICE	DES VIDES)	е,		0.615	0.609	0.600	0.612	
≅ 8	DEGREE OF SATURAT	ION (DEGRÉ	DE SATURAT	lON)Sr	(%)	89. Z	90.1	91.4	89.6	
ATA CONSOL.	CONSOLIDATION TIME	(TEMPS (DE CONSOLIDA	ATION)						
DATA DE CON	DRAINED VOLUME (V	OLUME DU	DRAIN)	Δ۷	(om 3)			·		·
CONSOL.	VOID RATIO AFTER CONSOL	IDATION (IND	ICE DES VIDES A	PRÉS CONS	CLIDATION) e				 	†
N N	ROOM TEMPERATURE	(TEMPÉR	RATURE DU L	OCAL)	('C)				†	

TIME-DRAINED VOLUME CURVE FOR CONSOLIDATION (COURBE TEMPS-VOLUME DRAINÉ POUR CONSOLIDATION)

DRAINED VOLUME (VOLUME DRAINÉ) (⊶3

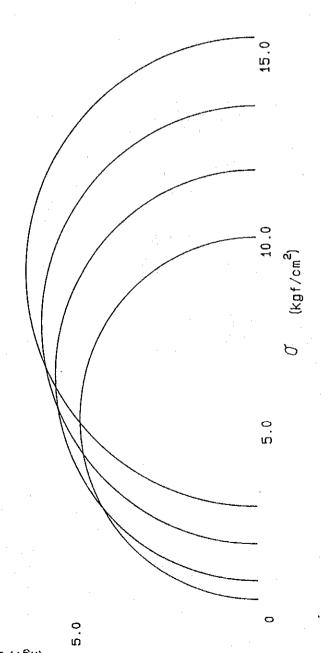
0.1

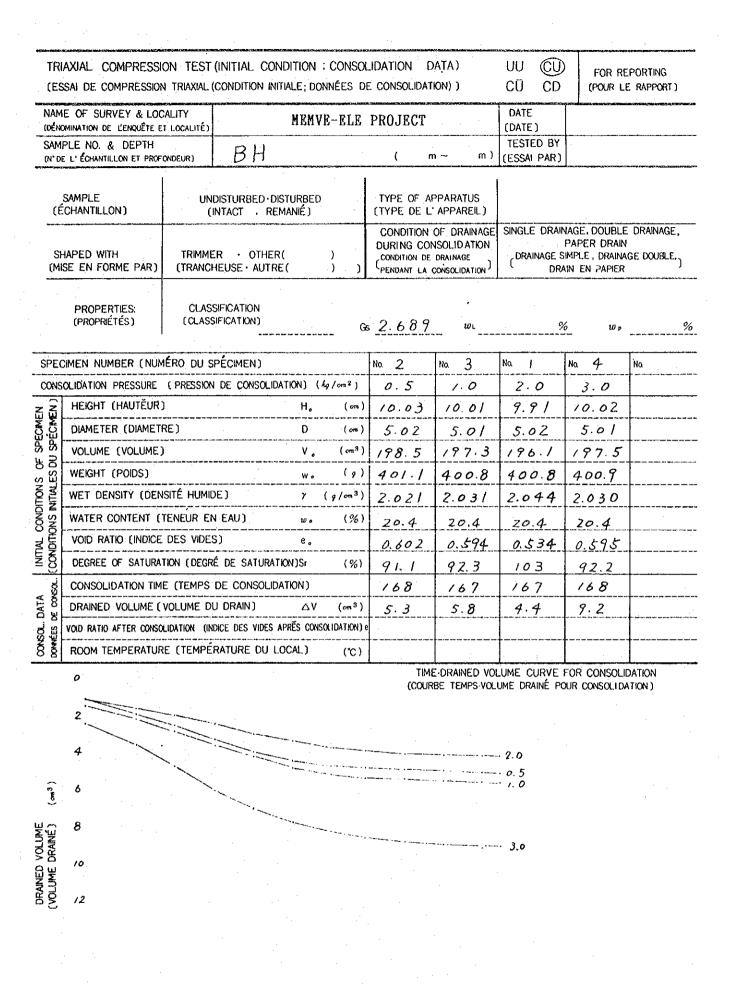
10

1000

	XIAL COMPRESSION I DE COMPRESSION TRI				`~	DD D	1	R REPORTING IR LE RAPPORT
	OF SUVEY & LOCALITY	MEM	VE-ELE PRO	DJECT		DATE (DATE)	Action of the Association of the	·
SAMPLE	ENO & DEPTH ÉCHANTILLON ET PROFONDEUR)	ВН		(m ~	. 1	TESTED BY ESSAI PAR)		
OADING M ÉTHODE DE CHARGEME	RATE OF COMPRES	MATION-CONTRÖLE	DES CONTRAINTE		NG RING CA TÉ DE É ANNI DYNAMO			500 hg
:	SPECIMEN NUM (NUMÉRO DU SPI		No. 1	Nα 2	No 3	No	4	No.
	CONSOLIDATION PRESSU (PRESSION DE CONSOLID	RE ATION) (kg/om²)	0.5	1.0	2.0	3	3.0	
:	$(\sigma_1 - \sigma_3)_f$ (kg / cm ²)	9.743	11.065	, 11.8	100 13	2.647	
:T.)	u f (kg/om²)	·e /			T		·	
AT PEAK (U SOMMET)	A _/ •(ΔV/V) (%)	- 		†			†
AT (AU	εſ	(%)	4.06	5.07	7.69	12	2.92	
	ELAPSED TIME TO FA (TEMPS DE RUPTUI	ILURE (min)	— — » — , , , , , , , , , , , , , , , , , ,					
	MODULUS OF ELASTICITY (MODULE P'ÉLASTICITÉ)	E 50 (hg / om 2)						
	ROOM TEMPERATUR (TEMPÉRATURE DU I	E (°C)	· · · · · · ·					+
(PRESSION DE L'EAU INTERSTITIELLE) " hp/m² 01	$ (\sigma_1 - \sigma_3) - \varepsilon $ $ (\Delta V/V) - \sigma $ $ (COUR) $ $ (COUR) $							No . 4
(DIFFÉRENCE DES EFFORTS PRINCIPALES) (a_1 - a_1) 4p/om² G1	.0							<u>N</u> o . 1

AXIAL STRAIN


(DÉFORMATION AXIALE)


15

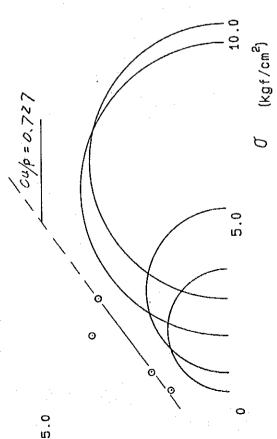
10

 $\epsilon({}^{o}{}_{o})$

	RIAXIAL COMPRESSION T SSAI DE COMPRESSION	· · · · · · · · · · · · · · · · · · ·				E MOHR)	OÙ CD	FOR REPORTING (POUR LE RAPPORT)
	ME OF SURVEY & LOCALITY OMINATION DE L'ENQUÊTE ET LOCALITÉ)	ı	1EMVE-ELE	PROJI	ECT		DATE (DATE)	THE CONTRACTOR OF SECULAR PROPERTY OF SECURAR PROPERTY OF SECURATION PRO
	MPLE NO. & DEPTH E. L.' ÉCHANTILLON ET PROFONDEUR		BH	:	(jm~	m)	TESTED BY (ESSAL PAR)	
A CO	NORMALLY CONSOLIDATED (CONSOLIDÉE NORMALEMENT)	Cu≕ :	kg / ora 2,	φu=	•	C' =	kg / om	,², φ' =
SCOPE (ETEND	OVER-CONSOLIDATED (SUR-CONSOLIDÉ)	C =	kg/om².	φ ==	•	C =	kg / on	$\phi' = $

ELAPSED TIME (TEMPS ÉCOULÉ)

0.1

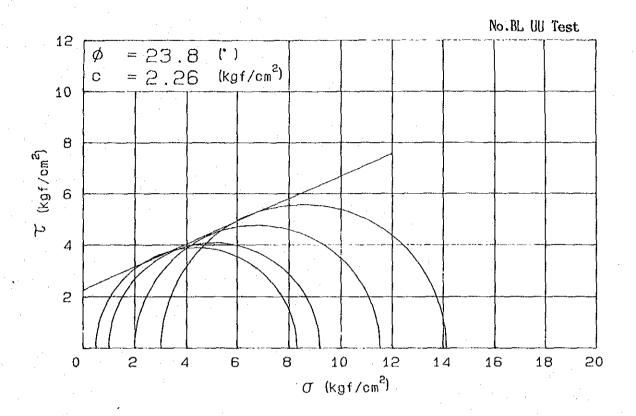

100

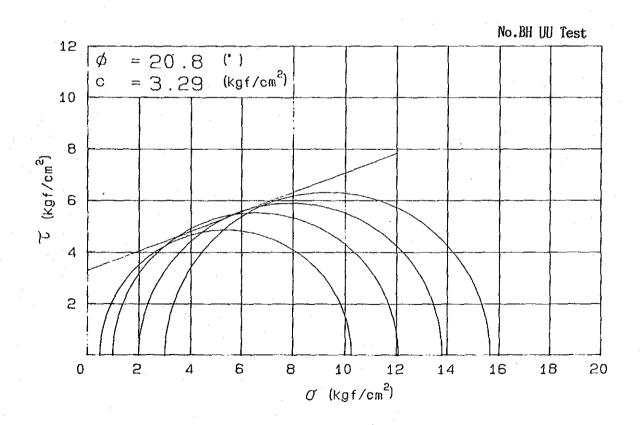
Charles and the rest of		Market of what exists a second arrange was pre-				L)
	XIAL COMPRESSION TEST (LOAN DE COMPRESSION TRIAXIALE (DONNÉ			UU (CU) CŬ CD		FOR REPORTING (POUR LE RAPPORT)
(DENOMINA	NO & DEPTH	IVE-ELE PRO	JECT	DATE (DATE TESTE	_) ·	
(N. DE F.	ÉCHANTILLON ET PROFONDEUR) BH		(m~	m) (ESSAI	PAR)	
LOADING N MÉTHODE DE CHARGEME	RATE OF COMPRESSIN	DES CONTRAINTES	1	NG RING CAPACITY TÉ DE L'ANNEAU DYNAMOMÉTRIQ		500 4
	SPECIMEN NUMBER (NUMÉRO DU SPÉCIMEN)	No 2	No. 3	No. 1	No. 4	No.
	CONSOLIDATION PRESSURE (PRESSION DE CONSOLIDATION) (Ag / om 2)	0.5	1.0	2.0	3.0	
	$(\sigma_1 - \sigma_3)_f (kg/cm^2)$	3.290	4.431	7.915	7.42	0
ET)	u _f (kg/om²)·e _f			<u> </u>		
AT PEAK (AU SOMMET)	A _f ·(ΔV/V) _f (%)					
(AU	ε, (%)	15.00	15.00	14.98	15.0	0
	ELAPSED TIME TO FAILURE (min) (TEMPS DE RUPTURE)					
	MODULUS OF ELASTICITY E 50(hg/om²) (MODULE D'ÉLASTICITÉ)					
	ROOM TEMPERATURE (TEMPÉRATURE DU LOCAL)					·
ELE)	$(\sigma_1 - \sigma_1) - \epsilon$ CURVE $(\triangle V/V) - \sigma$ (COURBE) $u - \epsilon$					
FRESSORE AU INTERSTITIELLE) ,/om²						
ONE WAIER FRES	0.0					
PORE WAIER (PRESSION DE L'E			·			No.1
ALES)						
DIFFERENCE OF PRINCIPAL SIRESSES (DFFÉRENCE DES EFFORTS PRINCIPALES) (0,-0,) 6,/0,2	.0					J - 2
EFFO						<u>N</u> o.3
CE DES EI						No.2
DI FFERE (OFFEREN						
			:			
		IXIAL STRAIN DÉFORMATION AXI	ε(%) ALE)	10		15

- 12 - N. K FORM NO 007 (1975)

the state of the s	A Company of the Comp		-	THE RESERVE OF THE PARTY OF THE		franti
TRIAXIAL COMPRESSION T			MOHR)	UO ÜO (ADDIED LE DECOGOT	nove
NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	MEMVE-ELE	PROJECT		DATE (DATE)		
SAMPLE NO. & DEPTH (N' DE L' ÉCHANTILLON ET PROFONDEUR	BH	(m~	m)	TESTED BY (ESSAL PAR)		
NORMALLY CONSOLIDATED (CONSOLIDÉE NORMALEMENT) OVER-CONSOLIDATED	$Cu = \frac{kq}{\sigma^2}.$	φu==	C ==	kg /	σπ² φ' =	
S OVER-CONSOLIDATED	$C = \frac{kq}{\sigma^2},$	φ = ·	C, =	kg /	ϕ^2 , $\phi' = \phi'$	

15.0




0.0

([×]g1√cm²)

- 13 - N. K. FORM NO. 008 (1975)

MEMVE-ELE PROJECT

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

SAMF	LE NO.	(N'DE L'ÉCHANTILLON)		TP-1		TP-Z		
SAME	PLE DEP	TH (PROFONDEUR DE L'ÉCHANTILLON)	(m)	1.0 ~	3.0~	4.0 ~	8.0 ~	~
	GRAVEL	(GRAVIER)	(%)	<u>چ</u>	ુ	Z	0	
	SAND	(SABLE)	(%)	3 डे	/3	2.0	62	
E A	SILT	(SILT)	(%)	1/	27	18	25	
GRADATION GRANULOMÉTRIE)	CLAY	(ARGILE)	(%)	53	57	60	13	
GRAN	MAX. DI	AMETER (DIAMÈTRE MAX.)	(mm)	9,52	4.76	4.76	2,00	
		CIENT OF UNIFORMITY CIENT D'UNIFORMITÉ)	Uc		_		2/0	
	COEFFIC	CIENT OF CURVATURE CIENT DE COURBURE)	Uc				4.6	
¥	LIQUID I	LIMIT (LIMITE DE L'IQUIDITÉ)	w. (%)	72.0	104.0	98.0	41.8	
CONSISTENCY (CONSISTANCE)	PLASTIC	LIMIT (LIMITE DE PLASTICITÉ)	wp (%)	26,7	37.1	36.0	23.8	
SONSIS	PLASTIC	CITY INDEX (INDICE DE PLASTICI	TÉ) Ip	45,3	66.9	62.0	18.4	
00								
**								
SPE	CIFIC GRA	VITY OF SOIL (POIDS SPÉCIFIQUE	DU SOL)Gs	2.658	2.7/5	2.726	2.632	
F. C.	WATER	CONTENT (TENEUR EN EAU)	w (%)	22.43	38.81	31.69	18.58	
NATURAL STATE ETAT NATURAL)	WET D	ENSITY (DENSITÉ HUMIDE)	γ _ι (g/m³)			_		
AT N	VOID R	ATIO (INDICE DES VIDES)	e					
(E &	DEGREE	OF SATURATION (DEGRÉ DE SATUR	ATION)Sr(%)					
	CONFINED MPRESSION APPRESSION UNIAXE	COMPRESSIVE STRENGTH (RESISTANCE À LA COMPRESSION MODULUS OF ELASTICITY (MODULE D' ÉLASITICITÉ)	Qu (kg/cm²) E50 (kg/cm²)	1		-		
TIES (ES)	DATON (NOTAC COMPRESCAND) * 1 . 5 (NOTAC COMPRESCAND)	(MODULE D' ÉLASITICITÉ) SENSITIVITY RATIO (INDICE DE SENSITIVITÉ)	SI					
OPER	業業	TYPE OF TEST (TYPE DE L'	ESSAI)***					
MEC PR	(1)	COHESION (COHÉSION)	C (Ag/om²)					
ANICA	(2)	ANGLE OF INTERNAL FRICTION (ANGLE DE FROTTEMENT INTERI	νΕ) φ (°)					
MEC	NO DE	YIELD STRESS OF CONSOLIDATION (LIMITE D'ELASTITÉ DE CONSOLIDA		X				
	CONSOLIDATON (CONSOLIDATION)	COMPRESSION INDEX (INDICE DE COMPRESSION)	Cc					
	CONS							
				:				

(BAR OVER THE SYMBOL SHOWS THE MEASUREMENT OF PORE WATER PRESSURE (LE TRAIT AU DESSUS DU SYMBOL MONTRE LA PRESSION DE L'EAU INTERSTITIELLE.)

FOR REPORTING (POUR DE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

SAME	PLE NO.	(N°DE L'ÉCHANTILLON)		Tp-3		TP-5		
SAM	PLE DEPI	TH (PROFONDEUR DE L'ÉCHANTILLON)	(m)	3.0~	7.0 ~	3.0 ~	5.0~	10.0~
	GRAVEL	(GRAVIER)	(%)	3	10	. 0	0	o
0	SAND	(SABLE)	(%)	26	53	39	32	42
GRADATION (GRANULOMÉTRIE.)	SILT	(SLT)	(%)	19	22 ,	7	2/	38
DATIO	CLAY	(ARGILE)	(%)	<i>\$</i> 2	15	54	47	20
GRAN	MAX. DI	AMETER (DIAMETRE MAX.)	(mm)	9,52	9.52	2.00	2.00	2.00
)	COEFFIC (COEFFIC	DENT OF UNIFORMITY DENT D'UNIFORMITÉ)	Uc		350	_		120
	COEFFIC	DIENT OF CURVATURE CIENT DE COURBURE)	Uc	-	3.9	_	-	0.6
	LIQUID 1	LIMIT (LIMITE DE LIQUIDITÉ)	w (%)	95.5	45.5	102.0	84.0	50.5
CONSISTENCY (CONSISTANCE)	PLASTIC	LIMIT (LIMITE DE PLASTICITÉ)	wp (%)	33,≥	30,6	30,5	3/,3	29./
NSIST	PLASTIC	ITY INDEX (INDICE DE PLASTICIT	€) lp	62,3	14.9	71.5	54.7	21.4
88								
				······································				
*								
SPE	CIFIC GRA	VITY OF SOIL (POIDS SPÉCIFIQUE I	DU SQL)Gs	2.7/0	2.797	2.669	2.665	2.622
出口	WATER	CONTENT (TENEUR EN .EAU)	w (%)	28.74	33.56	25,93	28.91	33,23
NATURAL STATE (ETAT NATURAL)	WET D	ENSITY (DENSITÉ HUMIDE)	γ, (g/m³)		<u> </u>			
TURAL AT N	VOID R	ATIO (INDICE DES VIDES)	ę					
(ET A	DEGREE	OF SATURATION (DEGRÉ DE SATURA	(%) Sr(%)					
	888 282	COMPRESSIVE STRENGTH (RESISTANCE À LA COMPRESSION)	Qu (kg/om²)					
	JNCONFINED COMPRESSION COMPRESSION UNIAXE	MODULUS OF ELASTICITY (MODULE D' ÉLASITICITÉ)	E50 (kg/om²)					
STES JES)	388 388	SENSITIVITY RATIO (INDICE DE SENSITIVITÉ)	St					
SOPER	**	TYPE OF TEST (TYPE DE L'	ESSAL)***					
A P.	(1)	COHESION (COHÉSION)	C (kg/om²)					
MECHANICAL PROPERTIES (PROPRITÉS MÉCANIQUES)		ANGLE OF INTERNAL FRICTION (ANGLE DE FROTTEMENT INTERN	E) å (")					
MEC	N O	YIELD STRESS OF CONSOLIDATION (LIMITE D' ÉLASTITÉ DE CONSOLIDA						
	OLIDA	COMPRESSION INDEX (INDICE DE COMPRESSION)	Cc					
	CONSOLIDATON							

FOR REPORTING (POUR DE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

SAM	PLE NO.	(N°DE L'ÉCHANTILLON)		79-6				
SAM	PLE DE	PTH (PROFONDEUR DE L' ÉCHANTILLON)	(m)	3,0~	5.0~	10.0~	~	~
	GRAVE	L (GRAVIER)	(%)	0		0		
5	SAND	(SABLE)	(%)	40	41	29		
GRADATION GRANULOMÉTRIE)	SILT	(SILT)	(%)	7	6 ,	37		
ADATIC VULOS	CLAY	(ARGILE)	(%)	53	5-2	34		
GRA		IAMETER (DIAMÈTRE MAX.)	(mm)	2.00	4.76	da, S		
	COEFFI (COEFF	CIENT OF UNIFORMITY ICIENT D'UNIFORMITÉ)	Uc		<u> </u>	_		
	COEFF (COEFF	ICIENT OF CURVATURE ICIENT DE COURBURE)	U'c	tiras				
Ή	LIQUID	LIMIT (LIMITE DE LIQUIDITÉ)	wı (%)	90.0	96.0	90.5		
CONSISTENCY (CONSISTANCE)	PLASTI	C LIMIT (LIMITE DE PLASTICITÉ)	wp (%)	29,2	32.7	39.6		
CONSI	PLASTICITY INDEX (INDICE DE PLASTICITÉ) Ip			62.8	63,3	50.9		
*	- 			**;=======		ļ		
]						·		
SPEC		VITY OF SOIL (POIDS SPÉCIFIQUE	DU SOL)Gs	2.687	2.691	z.683		
NATURAL STATE (ETAT NATURAL)		CONTENT (TENEUR EN EAU)	w (%)	25.29	25./5	44.68		
AL SI	WET DENSITY (DENSITÉ HUMIDE) 7, (g/m³)							
TAT I		NATIO (INDICE DES VIDES)	е .					
2 8	DEGREE	OF SATURATION (DEGRÉ DE SATUR						
	SSS P	COMPRESSIVE STRENGTH (RESISTANCE A LA COMPRESSION	Qu (kg/om²)		ļ			
S C	UNCONFINED COMPRESSIO COMPRESSIO UNIAXE	MODULUS OF ELASTICITY (MODULE D' ÉLASITICITÉ)	E50 (hg/om²)					
ERTE	∍ 88	SENSITIVITY RATIO (INDICE DE SENSITIVITÉ)	St					
PROP	※ ※ (1)	TYPE OF TEST (TYPE DE L'						
ES M	(2)	COHESION (COHÉSION)	C (kg/om²)					
MECHANICAL PROPERTI (PROPRITÉS MÉCANIQUE	75	ANGLE OF INTERNAL FRICTION (ANGLE DE FROTTEMENT INTERN		· · · · · · · · · · · · · · · · · · ·				
(PR	AATON JATION	YIELD STRESS OF CONSOLIDATION (LIMITE D' ÉLASTITÉ DE CONSOLIDA	TION) Py(*9/om²)					
	CONSOLIDATON (CONSOLIDATION)	COMPRESSION INDEX (INDICE DE COMPRESSION)	∞		:			
	8 8							
<u></u>				:				

**CLASSIFICATION (CLASSIFICATION)

*** (1): DIRECT SHEAR (CISAILLEMENT), (2): TRIAXIAL COMPRESSION (COMPRESSION TRIAXIAL)

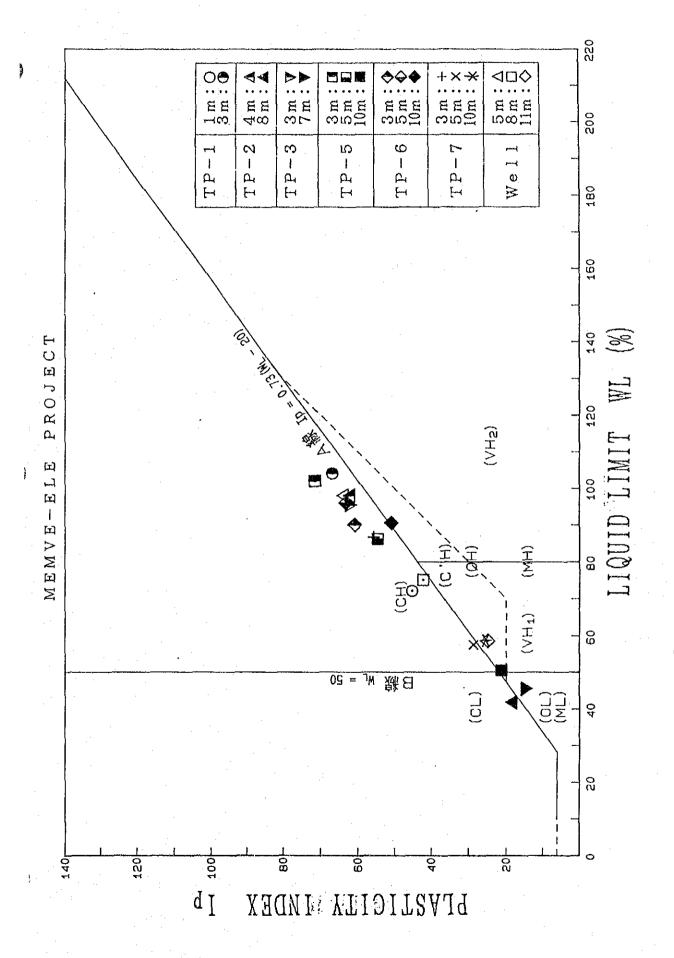
****UNCONSOLIDATED, UNDRAINED CONSOLIDATED, UNDRAINED CONSOLIDATED, DRAINED; CD.:

(NON CONSOLIDÉ, NON DRAINÉ); CD.:

FOR REPORTING (POUR DE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT


- :								
SAMI	PLE NO.	(N'DE L'ÉCHANTILLON)		TP-7				
SAMI	PLE DEP	TH (PROFONDEUR DE L'ÉCHANTILLON)	· (m)	3.0~	5.0~	100-	~	~
	GRAVEL	(GRAVIER)	(%)	0	o	0		
	SAND	(SABLE)	(%)	0	40	37		
ETRE	SILT	(SILT)	(%)	62	27.	35		
GRADATION GRANULOMÉTRIE)	CLAY	(ARGILE)	(%)	38	33	28		
(GRAI		AMETER (DIAMETRE MAX.)	(mm)	0.42	2.00	2,00		
	COEFFI (COEFFI	CIENT OF UNIFORMITY CIENT O' UNIFORMITÉ)	Uc	_				
	COEFFI (COEFFI	CIENT OF CURVATURE CIENT DE COURBURE)	U'c			-		
رن ج	LIQUID	LIMIT (LIMITE DE LIQUIDITÉ)	wı (%)	86,5	57.5	58.7		
CONSISTENCY (CONSISTANCE)	PLASTIC	LIMIT (LIMITE DE PLASTICITÉ)	w _p (%)	30.7	28.7	33./		
SONS	PLASTIC	CITY INDEX (INDICE DE PLASTICIT	8.22	2.8.8	25.6	ļ	 	
*							 	
					<u> </u>	<u> </u>		
SPEC	CIFIC GRA	VITY OF SOIL (POIDS SPÉCIFIQUE D	U SOL)Gs	2.737	2,649	2.642		
ATE ALJ	WATER	CONTENT (TENEUR EN EAU)	w (%)	25.30	23.68	38.68		
AL ST	WET D	ENSITY (DENSITÉ HUMIDE)	γ, (g/m³)					
NATURAL STATE ETAT NATURAL)		ATIO (INDICE DES VIDES)	e					
		OF SATURATION (DEGRÉ DE SATURA						
	TINED ESSION SSYON XE	COMPRESSIVE STRENGTH (RESISTANCE À LA COMPRESSION) MODULUS OF ELASTICITY (MODULE D' ÉLASITICITÉ)					ļ	
S) S)	NCON CMPRI CMPRE	SENSITIVITY RATIO	E50 (kg/on²)				<u> </u>	
PERTI	20Q	(INDICE DE SENSITIVITÉ) TYPE OF TEST (TYPE DE L' E	St					
MECHANICAL PROPERTIES (PROPRITÉS MÉCANIQUES)	(1)		C (kp/om²)					
	(2)	ANGLE OF INTERNAL FRICTION (ANGLE DE FROTTEMENT INTERNE		'	-	-		
MECH	NO O	YIELD STRESS OF CONSOLIDATION (LIMITE D'ÉLASTITÉ DE CONSOLIDAT	10012 Py(kg/ost2)		:			
- t	ALIDATI	COMPRESSION INDEX	Cc			· 	 	
	CONSOLIDATON (CONSOLIDATION)	CHANGE OF COM LEGISLA						
					 		<u> </u>	
				1			<u> </u>	<u> </u>

FOR REPORTING (POUR DE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

SAMI	PLE NO.	(N'DE L'ÉCHANTILLON)		Wall				
SAM	PLE DEP	IH (PROFONDEUR DE L' ÉCHANTILLON)	(173)	5.0 ~	8.0~	110	~	-
	GRAVEL	(GRAVIER)	(%)	0	0	0		
	SAND	(SABLE)	(%)	23	3/	34,0		
GRADATION (GRANULOMÉTRIE)	SILT :	(SILT)	(%)	2.3	30	49,0		
DATIC	CLAY	(ARGILE)	(%)	54	39	17,0		
GRAI		AMETER (DIAMETRE MAX.)	(mm.)	2.0	4.76	2.00		
	COEFFIC (COEFFIC	IENT OF UNIFORMITY CIENT O'UNIFORMITÉ)	Uc					
		CIENT OF CURVATURE CIENT DE COURBURE)	U'c					
×Ψ	LIQUID 1	IMIT (LIMITE DE LIQUIDITÉ)	wı (%)	98.0	35.0	58.5		
STENC	PLASTIC	LIMIT (LIMITE DE PLASTICITÉ)	w _p (%)	34,2	32,7	33,5		
CONSISTENCY (CONSISTANCE)	PLASTIC	ITY INDEX (INDICE DE PLASTICIT	E) lp	63.8	42,3	25,0		
**.	· · -							
<u> </u>								
SPE	· · · · · · · · · · · · · · · · · · ·	VITY OF SOIL (POIDS SPÉCIFIQUE	4.5.4.	2.7/2	2.679	2.692		
TATE RAL)	 -	CONTENT (TENEUR EN EAU)	w (%)	36.00	22.90	30,00		
SAL S NATU		ENSITY (DENSITE HUMIDE)	γ _t (g/m ¹)					
NATURAL STATE ETAT NATURAL)	ļ	ATIO (INDICE DES VIDES) OF SATURATION (DEGRÉ DE SATUR	6 				-	
	· '	COMPRESSIVE STRENGTH (RÉSISTANCE À LA COMPRESSION			·			
	2 K K K H	(RESISTANCE A LA COMPRESSION MODULUS OF ELASTICITY (MODULE D' ÉLASITICITÉ)	Eso (kg/cm²)	1			-	
S) S)	UNCONFI COMPRE COMPRES UNIAX	SENSITIVITY RATIO	St				-	
PERT	**	(INDICE DE SENSITIVITÉ) TYPE OF TEST (TYPE DE L'						
PRO	(1)	COHESION (COHÉSION)	C (kp/om²)					
ANICA	(2)	ANGLE OF INTERNAL FRICTION (ANGLE DE FROTTEMENT INTERN	 F) Ø (°)	†- -				
MECHANICAL PROPERTIES (PROPRITÉS MÉCANIQUES)	N Q	YIELD STRESS OF CONSOLIDATION (LIMITE D'ÉLASTITÉ DE CONSOLIDA	TION) Py(*9/cm²	1				
	OLIDAT OLIDAT	COMPRESSION INDEX (INDICE DE COMPRESSION)	Cc.	<u> </u>		; 		
	CONSOLIDATION (CONSOLIDATION)							
-	:							

LOCATION	MENVE-ELE	PROJECT	DATE		The control of the same appropriate principle
SAMPLE N	10. TP-1	1.0	TESTED B	Υ	T T. p. 100 de l'Alle L'Allende Verralementes à
Determin	nation NO.	1	2	3	4
No. of Pycnome	eter	/	7	//	
Wt. of Pycnome	eter Wf in g	35.072	42.777	41.367	
Wt. (Pycnometer	+water) W'a in g	139.527	144.599	143.133	
Temperature of (corresponding v	calibration with W'a) T' °C	11	//	//	
Wt. (Pycnomete	r+soil+water) W, in g	146.000	151.215	150.481	
Temperature of (corresponding	Calibration to W_b) T °C	12	12	/2	
Weight of dry	No, of Container	/	7	//	
Soil	Wt.(Container +dry soil) in g	39 478	47.634	47.049	
W _o	Wt. Container in g	29.074	36.980	35.284	
	W _o , in g	10.404	10.654	11.765	· · · · · · · · · · · · · · · · · · ·
Deflocculating a amount	gent and its				··································
*Wt. (Pycnomete calculated for	er + water) T°C W, in g	139.516	144.588	143.122	
$W_0+(W_a-W_b)$	in g	3.920	4.027	4.406	
Deflocculant cor	rection				
$W_0+(W_a-W_b)$	corrected				. :
Specific Gra-G (To	$C) = \frac{W_o}{W_o + (W_o - W_b)}$	2.654	2.646	2.67	
Coefficient for t correction		1.0004	1.0004	1.0004	
Specific Gra- _{G (1} vity at 15°C	5°C)=K×G(T°C)	2.655	2.647	2.671	
Mean	value	Specific	gravity (15°C) =	2.658	

^{*&}quot; W_a " is determined from the diagram peculiar to each pycnometer.

LOCATION	MENVE-ELE F	ROJECT	DATE		
SAMPLE N	10. <u>7<i>P</i> - 1</u>	3.0	TESTED BY	**************************************	
Determin	ation NO.	1	2	3	4
No. of Pycnome	ter	,6	, 9	21	
Wt. of Pycnome	eter Wø in g	42.197	42.859	41.077	
Wt. (Pycnometer	+ water) W'a in g	142.767	144.786	143.762	
Temperature of (corresponding v	calibration with W'a) T' °C	//	//	//	
Wt. (Pycnomete		149.137	150.774	150.220	
Temperature of (corresponding		, 2	/2	12	
Weight of dry		16	. 9	21	
Soil	Wt.(Container +dry soil) in g	46.226	46.438	45.469	
W _o	Wt. Container in g	36.11/	36.940	35.23b	
	W _o in g	10.115	9.498	10.233	
Deflocculating a amount	gent and its			tula di di suppressioni di suo sa,	
*Wt. (Pycnomet calculated for	er + water) T°C W _a in. g	142.756	144.775	143.751	
$W_0 + (W_a - W_b)$	in g	3.73 4	3. 4 99	3.76 4	
Deflocculant cor	rection				·
$W_0 + (W_a - W_b)$	corrected				
Specific Gra-G (T vity at T°C G (T	$^{\circ C)} = \frac{W_o}{W_o + (W_o - W_b)}$	2.709	2.714	2.719	
Coefficient for t	K	1.0004	1.0004	1.0004	
Specific Gra- G (1 vity at 15°C	15°C)=K×G(T°C)	2.710	2.715	2.720	
Mean	value	Specific	gravity (15°C) =	2.715	

^{*&}quot;Wa" is determined from the diagram peculiar to each pycnometer.

LOCATION	MEMVE-ELE	PROJECT	DATE		
SAMPLE N	10. TP-2	4.0	TESTED BY		
Determin	ation NO.	1	2	3	4
No. of Pycnome	eter	23	24	3 /	
Wt. of Pycnome	eter Wø in g	45.601	40.208	39, 912	
Wt. (Pycnometer	r+water) W'a in g	146.351	144.341	142.139	
Temperature of (corresponding	calibration with W'a) T' °C	11	, /	11	
Wt. (Pycnomete		152.497	150.905	149 125	
Temperature of (corresponding	Calibration to W _b) T °C	/3	,3	13	
Weight of dry	No. of Container	23	24	3/	
Soil	Wt.(Container +dry soil) in g	49.412	44.628	45.134	
$\mathbf{W}_{\mathbf{o}}$	Wt. Container in g	39.660	34.200	34.090	
,	W ₀ in g	9.752	10.428	11.044	
Deflocculating a amount	agent and its			·	
*Wt. (Pycnomet calculated for	er+water) T°C W _a in g	146.328	144.317	142 116	
$W_0 + (W_a - W_b)$	in g	3.583	3.840	4.035	
Deflocculant con	rrection				
$W_0 + (W_a - W_b)$	corrected				
Specific Gra-G (T	$^{\circ C)} = \frac{W_o}{W_o + (W_o - W_b)}$	2.722	2.716	2.737	
Coefficient for correction	K	1.0003	1.0003	1.0003	
Specific Gra- G (vity at 15°C	15°C)=K×G(T°C)	2.723	2.717	2.738	
Mean	value	Specific	gravity (15°C) =	2.726	

*"Wa" is determined from the diagram peculiar to each pycnometer.

LOCATION	MEMVE-ELE P	ROJECT	DATE		
1	10. <u>TP - 2</u>		TESTED BY		
Determin	ation NO.	1	2	3	4
No. of Pycnome	eter	32	33	37	
Wt. of Pycnome	eter Wf in g	39.884	38.028	41.468	
Wt. (Pycnometer	+ water) W'a in g	142.013	140.697	143.614	
Temperature of (corresponding	calibration with W'a) T' °C	//	//	//	
Wt. (Pycnomete	r+soil+water) W _b in g	149. 630	148.525	151.627	·
Temperature of (corresponding		/3	/ 3	13	
Weight of dry	No. of Container	32	33	37	
Soil	Wt.(Container +dry soil) in g	46.278	44.673	48.328	
W _o	Wt. Container in g	33.941	32.014	35.368	
	W _o in g	12.337	12.659	12.960	
Deflocculating a	agent and its				
*Wt. (Pycnomet calculated for	er+water) T°C W _n in g	141.990	140.674	143.591	
$W_0 + (W_a - W_b)$	in g	4.697	4.808	4.924	,
Deflocculant con	rrection				
$W_0 + (W_a - W_b)$	corrected				· · · · · · · · · · · · · · · · · · ·
Specific Gra-G (T	$^{\circ C)} = \frac{W_{\bullet}}{W_{\bullet} + (W_{\sigma} - W_{b})}$	2.627	2.633	2.632	
Coefficient for correction	temperature K	1.0003	1.0003	1.0003	
Specific Gra- G(15°C)=K×G(T°C)	2.628	2.634	2.633	
Mean	value	Specific gravity $(15^{\circ}C) = 2.632$			

^{*&}quot;Wa" is determined from the diagram peculiar to each pycnometer.

%1	
140	

LOCATION	MEMVE-ELE	PROJECT	DATE		rat funcional sido placifo, decumbrat Comptibilidad de employaçõe que <u>empresa com com</u> com comptibilidad de employações de em
SAMPLE 1		3.0	TESTED BY	7	The state of the s
Determin	nation NO.	1	2	3	4
No. of Pycnome	eter	4-2	43	48	
Wt. of Pycnom	eter W _f in g	43.591	39.280	45.665	
Wt. (Pycnomete	r+water) W'a in g	144.362	143.037	145.755	
D	with W'a) T' °C	11	11	//	
Wt. (Pycnomete	er+soil+water) W _b in g	149 789	148.70/	151.322	
Temperature of (corresponding	Calibration to W _b) T °C	/ 3	13	13	
Weight of dry	No. of Container	1?	43	48	
Soil	Wt.(Container +dry soil) in g	45.982	42.408	48.510	
.W _o	Wt. Container in g	37.819	33.396	39.647	
	W _o in g	8.163	9.012	8 - 863	
Deflocculating a amount	gent and its			***	-
*Wt. (Pycnomete calculated for	er+water) T°C Wain g	144 339	143.013	145.732	
$W_0+(W_a-W_b)$	in g	3.0 / 3	3.324	3,273	
Deflocculant cor	rection				
$W_0 + (W_a - W_b)$			A CONTRACTOR OF THE PROPERTY AND		
Specific Gra-G (To vity at T°C		2.709	2.7//	2708	
Coefficient for t correction	K	1.0003	1.0003	1.0003	
Specific Gra- vity at 15°C G(1	5°C)=K×G(T°C)	2.710	2.712	2.709	
Mean	value	Specific 1	gravity (15°C) =	2.710	

^{*&}quot;Wa" is determined from the diagram peculiar to each pycnometer.

No.		
140,	 	

LOCATION MEMVE-ELE I	PROJECT	DATE		
SAMPLE NO. 7P-3	7.0	TESTED BY	Υ	
Determination NO.	1	2	3	4
No. of Pycnometer	5	8	9	
Wt. of Pycnometer Wf in g	35.273	33.307	37.012	
Wt. (Pycnometer + water) W'a in g	142.883	142.385	140.599	
Temperature of calibration (corresponding with W'a) T' °C	11	//	11	
Wt. (Pycnometer+soil+water) What in g	148.596	149.330	147.197	
Temperature of Calibration (corresponding to W_b) T °C	16	16	76	
Weight of dry No. of Container	5	8	9	
Soil Wt.(Container + dry soil) in g	38.028	38.128	41.536	
Wt. Container in g	29.004	27.235	31.163	
₩ _o in g	9.024	10.893	10.373	
Deflocculating agent and its amount		Ania - 11 - 12 - 12 - 12 - 12 - 12 - 12 - 1		,
*Wt. (Pycnometer + water) calculated for T°C W _a in g	142.812	142.313	140.530	
$W_0 + (W_a - W_b)$ in g	3,240	3.876	3.706	
Deflocculant correction				
$W_0 + (W_a - W_b)$ corrected				
Specific Gra- $G(T^{\circ}C) = W_{\circ} + (W_{o} - W_{o})$ with at $T^{\circ}C$	2.785	2.81	2.799	
Coefficient for temperature K	0.9998	0.9998	0.9998	
Specific Gra-G(15°C)=K×G(T°C)	2.78 4	2.809	2.798	
Mean value	Specific	gravity (15°C) =	2.797	

^{*&}quot;Wa" is determined from the diagram peculiar to each pycnometer.

No.____

LOCATION	MEMVE-ELE	PROJECT	DATE		
SAMPLE N	TOF	3.0	TESTED B	Υ	
Determin	nation NO.	1	2	3	4
No. of Pycnome	eter	12	15	22	
Wt. of Pycnom	eter Wø in g	33.715	34.058	3,3.958	
Wt. (Pycnometer	r+water) W'a in g	137.164	146.126.	142.721	
Temperature of (corresponding	calibration with W'a) T' °C	- / /	11	11.	
Wt. (Pycnomete	r+soil+water) W _b in g	143.099	152.907	149.189	
Temperature of (corresponding		16	10	16	
Weight of dry	No. of Container	12	15	22	
Soil	Wt.(Container +dry soil) in g	37.267	38.357	38.014	
w.	Wt. Container in g	27.643	27.410	27.575	
	W _o in g	9.624	10.947	10.439	in the second
Deflocculating a	agent and its			- MAN AND BOOK	
*Wt. (Pycnomet calculated for	er+water) T°C W _a in g	137.096	146.052	142.649	
$W_0 + (W_a - W_b)$	in g	3.621	4.092	3.899	
Deflocculant con	rrection				
$W_0 + (W_a - W_b)$	corrected				والمعالم المعارف المعارف المراجع
Specific Gra-G (T vity at T°C	$^{\circ C}) = W_{\bullet} + (W_{\sigma} - W_{\delta})$	2.658	2.675	2.677	
Coefficient for correction	K	0.9998	0.9998	0.9998	
Specific Gra- G(15°C)=K×G(T°C)	2.657	2.674	2.676	
Mean	value	Specific	gravity (15°C) =	= 2.669	

^{*&}quot;Wa" is determined from the diagram peculiar to each pycnometer.

LOCATION	MENVE-BLE	PROJECT	DATE		
1	10. 1 P = 5		TESTED B	Υ	:
Determin	nation NO.	1	2	3	4
No. of Pycnome	eter	25	27	30	
Wt. of Pycnome	eter W _f in g	33.687	34.90/	43.145	
Wt. (Pycnometer	r+water) W'a in g	137.065	145.363	146.089	
Temperature of (corresponding)	calibration with W'a) T' °C	11	//	//	
Wt. (Pycnomete		145.780	154.386	154.081	
Temperature of (corresponding	Calibration	16	16	16	
Weight of dry	No. of Container	25	27	30	
Soil	Wt.(Container +dry soil) in g	41.290	42.845	50.207	
W _o	Wt. Container in g	27.226	28.306	37.306	
	W _o in #	14.064	14.539	12.901	
Deflocculating a	igent and its		<u>1</u>		
*Wt. (Pycnomet calculated for	er+water) T°C Wain g	136.997	145.290	146.021	
$W_0 + (W_0 - W_b)$	in g	5.281	5.443	4.841	
Deflocculant cor	rrection				
$W_0+(W_a-W_b)$	corrected				
Specific Gra-G(T vity at T°C G(T	$^{\circ C}) = \frac{W_o}{W_o + (W_o - W_b)}$	2.663	2.67/	2.665	
Coefficient for t	temperature K	0.9998	0.9998	0.9978	
Specific Gra- vity at 15°C	15°C)=K×G(T°C)	2.662	2.670	2.664	
Mean	value	Specific	gravity (15°C) =	= 2.665	

*"Wa" is determined from the diagram peculiar to each pycnometer.

LOCATION	MENVE-ELE	PROJECT	DATE	appearance of the control of the con	
SAMPLE N	$10. \qquad TP-5$	10.0	TESTED B	Y	<u> </u>
Determin	nation NO.	1	2	3	4
No. of Pycnome	eter	35	36	40	
Wt, of Pycnom	eter Wf in g	44.579	54.525	49.454	
Wt. (Pycnomete	r+water) W'a in g	146.277	151.731	147.545	
Temperature of (corresponding	calibration with W'a) T' °C	//	11	//	
Wt. (Pycnometer		155.323	160.837	157.118	
Temperature of (corresponding		16	16	16	
Weight of dry	No. of Container	35	36	40	
Soil	Wt.(Container +dry soil) in g	53.329	63.630	59.190	
\mathbf{W}_{0}	Wt. Container in g	38.596	48.811	43.617	
	W _o in g	14.733	14.819	15.573	
Deflocculating a	agent and its				
*Wt. (Pycnomet calculated for	er+water) T°C W _a in g	146.210	151.667	147.480	
$W_0 + (W_a - W_b)$	in g	5.620	5.649	5.935	
Deflocculant co	rrection				
$W_0 + (W_o - W_b)$	corrected				
pecific Gra-G (T	$^{\circ}C) = \frac{W_{\bullet}}{W_{\bullet} + (W_{\bullet} - W_{b})}$	2.622	2.623	2.624	
Coefficient for correction	and the second contract of the second contrac	0.9998	0.9998	0.9998	
	15°C)=K×G(T°C)	2.621	2.622	2.623	
Mean	value	Specific	gravity (15°C) =	= 2.622	

 $^{*^{\}alpha}W_{\alpha}$ is determined from the diagram peculiar to each pycnometer.

No					
1101	-	 	-	-	

LOCATION	MEMVE-ELE NO. $TP-6$	and the substitute and the substitute of	DATE TESTED BY		
SAMPLE P	NO. :				
Determin	nation NO.	1	2	3	4
No. of Pycnome	eter	46	52	51	
Wt. of Pycnome	eter Wf in g	41.882	39.687	51.933	
Wt. (Pycnometer	r+water) W'a in g	144.654	145.547	150 198	
Temperature of (corresponding	calibration with W'a) T' °C	//	//	11	
Wt. (Pycnomete	r+soil+water) W _b in g	152.907	154.722	157.716	
Temperature of (corresponding	Calibration to W _b) T °C	16	16	16	
Weight of dry	No. of Container	46	52	5/	
Soil	Wt.(Container +dry soil) in g	49.595	48.320	58.380	
$\mathbf{W}_{\mathbf{o}}$	Wt. Container in g	36.334	33.583	46.327	
	W _o in g	13.261	14.737	12.053	<u> </u>
Deflocculating a	agent and its				
*Wt. (Pycnomet calculated for	er+water) T°C W _a in g	144.586	145.477	150.133	
$W_0+(W_n-W_h)$	in g	4.940	5.492	4.470	
Deflocculant co	rrection				
$W_0 + (W_\sigma - W_b)$	corrected				
Specific Gra-G(T	$^{\circ C)} = \frac{W_{\bullet}}{W_{\bullet} + (W_{\sigma} - W_{b})}$	2.684	2.683	2.696	
Coefficient for correction	K	0.9998	0.9998	0.9998	
Specific Gra- G(vity at 15°C	i5°C)=К×G(Т°С)	2.683	2.682	2.695	· · · · · · · · · · · · · · · · · · ·
Mean	value	Specific	gravity (15°C) =	2.687	

^{*&}quot;Wa" is determined from the diagram peculiar to each pycnometer.

LOCATION	MENVE-ELE	PROJECT	DATE	marino camando menocama montenario	
SAMPLE N	10. 7 P - b	5.0	TESTED B	Y	
Determin	nation NO.	1	2	3	4
No. of Pycnome	eter	61	63	64	
Wt. of Pycnome	eter Wf in g	44.481	42.331	39.160	
Wt. (Pycnometer	r+water) W'a in g	145.449	143.993	148.679	
Temperature of (corresponding	calibration with W'a) T' °C	//	//	11	
Wt. (Pycnomete		151.424	150.088	155.868	
Temperature of (corresponding		16	16	16	
Weight of dry	No. of Container	61	63	64	
Soil	Wt.(Container +dry soil) in g	48.129	46.127	44.303	
W_{o}	Wt. Container in g	38.498	36.332	32.761	
	₩ _o in g	9.631	9.795	11.542	
Deflocculating a	agent and its	·			
*Wt. (Pycnomet calculated for	er + water) T°C W _a in g	145.382	143.926	148.606	
$W_0 + (W_0 - W_b)$	in g	3.589	3.633	4.280	
Deflocculant con	rrection				
$W_0 + (W_a - W_b)$	corrected				AANSAN OO
	$^{\circ C}) = \frac{W_b}{W_b + (W_a - W_b)}$	2.683	2.696	2.697	·
Coefficient for correction	K	0.9998	0.9998	0.9998	
Specific Gra- vity at 15°C	15°C)=K×G(T°C)	2.682	2.695	2.696	
Mean	value	Specific	gravity (15°C) =	= 2.691	

^{*&}quot;Wa" is determined from the diagram peculiar to each pycnometer.

No.____

LOCATION	1 MEMVE-ELE	PROJECT	DATE		
SAMPLE 1	NO. $TP-7$	3.0	TESTED B	Y	***************************************
Determin	nation NO.	1	2	3	4
No. of Pycnome	eter	6	17	4/	
Wt. of Pycnom	eter Ws in g	33.746	47.613	45.475	
Wt. (Pycnometer	r+water) W'a in g	134.561	147.515	145.548	
Temperature of (corresponding	calibration with W'a) T' °C	//	11	//	
Wt. (Pycnomete	r+soil+water) W _b in g	141.626	153 926	150.448	
Temperature of (corresponding		16	16	16	
Weight of dry	No. of Container	Ь	/7	4/	
Soil	Wt.(Container +dry soil) in g	38.577	51.719	47.616	
W _o	Wt. Container in g	27.359	41.501	39.792	
	W _o in g	11.218	10.218	7.824	
Deflocculating a	gent and its				
amount					
*Wt. (Pycnomete calculated for	er+water) T°C W"in g	134.494	147.449	145.482	
$W_0+(W_a-W_b)$	in g	4.086	3.741	2.858	
Deflocculant cor	rection				
$W_0 + (W_a - W_b)$	corrected		The second distriction of the second		
	$C) = \frac{W_o}{W_o + (W_o - W_b)}$	2.7 4 5	2.731	2.738	
Coefficient for to correction	emperature K	0.9998	0.9998	0.9998	
Specific Gra- vity at 15°C	5°C)=K×G(T°C)	2.744	2.730	2.737	
Mean	value	Specific	gravity (15°C) =	2.737	

^{*&}quot; W_a " is determined from the diagram peculiar to each pycnometer.

LOCATION	MEMVE-ELE P	ROJECT	DATE		
SAMPLE N	0. <u>TP-b</u>	70.0 TESTED BY			
Determin	ation NO.	1	2	3	4
No. of Pycnometer		140	141	21.7	
Wt. of Pycnometer Wf in g		47.638	46.955	43.384	
Wt. (Pycnometer + water) W'a in g		158.796	156.580	156.400	
Temperature of calibration (corresponding with W's) T' °C		//	//	//	
Wt. (Pycnometer+soil+water) Wb in g		162.990	162 418	163.302	
Temperature of (corresponding		16	16	16	
Weight of dry	No. of Container	140	141	217	
Soil	Wt.(Container +dry soil) in g	47.552	49.1665	48.186	
W _o	Wt. Container in g	40.743	40.247	37.075	
	Wo in g	6.809	9.418	11.111	
Deflocculating agent and its amount		No. and the Control of the Control o			Arriad Malarit and Affilia VIII (1990).
*Wt. (Pycnometer + water) calculated for T°C W _a in g		158.722	156.507	156.325	· ·
$W_0+(W_a-W_b)$ in g		2.541	3.507	4.137	
Deflocculant correction					
$W_0 + (W_a - W_b)$ corrected					
Specific Gra- $G(T^{\circ}C) = W_{\bullet} + (W_{a} - W_{b})$ vity at $T^{\circ}C$		2.68	2.685	2.688	
Coefficient for temperature correction K		0.9998	0.9998	0.9998	
Specific Gra- vity at 15°C G(15°C)=K×G(T°C)		2.679	2.684	2.687	,
Mean	value	Specific	gravity (15°C) =	2.683	

^{*&}quot;W" is determined from the diagram peculiar to each pycnometer.

SPECIFIC GRAVITY TEST

LOCATION	MENVE-ELE	PROJECT	DATE		
	vo. <i>TP</i> - 7	5.0	TESTED BY	,	
Determin	nation NO.	1	2	3	4
No. of Pycnome	eter	38	164	218	· · · · · · · · · · · · · · · · · · ·
Wt. of Pycnome	eter Wf in g	44.262	33.590	36.657	
Wt. (Pycnometer	r+water) W'a in g	145.047	137.619	153.776	
Temperature of (corresponding	calibration with W'a) T' °C	11	11	11.	
Wt. (Pycnomete	r+soil+water) W, in g	151.567	143.479	161.398	
Temperature of (corresponding	Calibration to W _b) T °C	17	٧7	17	
Weight of dry	No. of Container	38	164	218	
Soil	Wt.(Container +dry soil) in g	49.168	37.188	42.379	
$\mathbf{W_o}$	Wt. Container in g	38.544	27.638	29.999	
	Wo in g	10.624	9.550	12.380	
Deflocculating a	agent and its				
*Wt. (Pycnomet calculated for	er + water) T°C W _a in g	144.963	137.533	153.679	
$W_0+(W_n-W_b)$	in g	4.020	3.604	4.661	
Deflocculant con	rrection				
$W_0 + (W_a - W_b)$	corrected				
Specific Gra-G (T vity at T°C	$^{\circ}C) = \frac{W_{\bullet}}{W_{\bullet} + (W_{\sigma} - W_{b})}$	2.643	2.650	2.656	
Coefficient for correction	temperature K	0.9997	0.9997	0.9997	
Specific Gra- vity at 15°C G(15°C)=K×G(T°C)	2.642	2.649	2.655	
Mean	value	Specific :	gravity (15°C) =	2.649	

^{*&}quot;Wa" is determined from the diagram peculiar to each pycnometer.

LOCATION	MEMVE-ELE	PROJECT	DATE	deliner statute delines visitati a - in 1844 - 1844 de utanonia.	
SAMPLE N	10. <u>TP-7</u>	10.0	TESTED BY		****
Determin	ation NO.	1	2	3	4
No. of Pycnome	eter	114	118	135	
Wt. of Pycnome	eter W/ in g	44.858	42.707	43.381	
Wt. (Pycnometer	+water) W'a in g	151.158	149.278	147.430	
Temperature of (corresponding)	calibration with W's) T' °C	11	11	,,	
Wt. (Pycnomete	r+soil+water) W _b in g	156.094	157. 573	156.061	
Temperature of (corresponding	Calibration to W _b) T °C	17	/7	17	
Weight of dry	No. of Container	114	118	135	
Soil	Wt.(Container +dry soil) in g	43.201	47.230	47.347	
W _o	Wt. Container in g	35,130	33.72 4	33.32 4	
	W _o in g	8.071	13.506	14.023	
Deflocculating a	gent and its				
*Wt. (Pycnomet calculated for	er + water) T°C W _a in g	151.070	149.190	147.344	
$W_0 + (W_a - W_b)$	in g	3.047	5.123	5.306	
Deflocculant cor	rection				
$W_0 + (W_a - W_b)$	corrected				
Specific Gra-G(T vity at T°C	$^{\circ}C) = \frac{W_{\bullet}}{W_{\bullet} + (W_{a} - W_{b})}$	2.649	2.636	2.643	,
Coefficient for t correction	K	0.9997	0.9997	0.9997	
Specific Gra- G (1 vity at 15°C	5°C)=K×G(T°C)	2.648	2.635	2.642	
Mean	value	Specific gravity (15°C) = 2.642			

^{*&}quot;Wa" is determined from the diagram peculiar to each pycnometer.

No	
----	--

LOCATION	MEMVE-ELE	PROJECT	DATE		and the second s
SAMPLE N	IO. WELL.	5.0	TESTED BY		
Determin	ation NO.	1	2	3	4
No. of Pycnome	ter	49	50	53	
Wt. of Pycnome	eter Wø in g	39.684	40.425	43.270	
Wt. (Pycnometer	+ water) W'a in g	142.046	142.544	146.004	
Temperature of (corresponding v	calibration with W'a) T' °C	11	11	//	
Wt. (Pycnomete	r+soil+water) W _b in g	145.576	146.709	149.833	
Temperature of (corresponding	Calibration	13	13	,3	
Weight of dry	No. of Container	49	50	5.7	
Soil	Wt.(Container +dry soil) in g	39.221	41.622	43.636	
W _o	Wt. Container in g	33.591	34.995	37.524	
· · · · · · · · · · · · · · · · · · ·	W _o in g	5.630	6.627	6.112	
Deflocculating a amount	gent and its		·		
*Wt. (Pycnomet calculated for	er + water) T°C W _a in g	142.023	142.521	145.981	
$W_0 + (W_a - W_b)$	in g	2.077	2.439	2.260	
Deflocculant cor	rection				
$W_0 + (W_a - W_b)$	corrected			ado ado a francis de la compansión de la c	
Specific Gra-G (T vity at T°C	$^{\circ C)} = \frac{W_{\bullet}}{W_{\bullet} + (W_a - W_b)}$	2.711	2.717	2.704	
Coefficient for to	K	1.0003	1.0003	1.0003	
Specific Gra- vity at 15°C G(1	15°C)=K×G(T°C)	2.712	2.718	2.705	
Mean	value	Specific gravity (15°C) = 2.7/2			

^{*&}quot;Wa" is determined from the diagram peculiar to each pycnometer.

SPECIFIC GRAVITY TEST

tenusia nt si	DDO YDAM	<u> </u>		
LOCATION MENVE-ELE		DATE		
SAMPLE NO. WELL	8.0	TESTED BY		
Determination NO.	1	2	3	4
No. of Pycnometer	54	55	56	
Wt. of Pycnometer Wf in g	44.417	49.586	46.614	
Wt. (Pycnometer + water) W'a in g	144 627	148.156	146.370	
Temperature of calibration (corresponding with W'a) T' °C	11	11		
Wt. (Pycnometer+soil+water) W _h in g	148.832	152.820	151.237	
Temperature of Calibration (corresponding to W_b) T °C	13	13	/3	magayatan salah e 4 - keman dalam ba asar et kan
Weight of dry No. of Container	54	<i>\$5</i>	56	
Soil Wt.(Container + dry soil) in g	45.569	51.137	48.672	
Wt. Container in g	38.812	43.648	40.889	
W _o in g	6.757	7.489	7.783	·
Deflocculating agent and its amount	· · · · · · · · · · · · · · · · · · ·			
*Wt. (Pycnometer + water) calculated for T°C W _a in g	144.604	148.134	146.347	
$W_0 + (W_a - W_b)$ in g	2.529	2.803	2.893	:.
Deflocculant correction				
$W_o + (W_e - W_b)$ corrected				
Specific Gra- $G(T^{\circ}C) = W_{\bullet} + (W_{a} - W_{b})$ vity at $T^{\circ}C$	2.672	2.672	2690	
Coefficient for temperature correction K	1.0003	1.0003	1.0003	
Specific Gra- vity at 15°C G (15°C)=K×G (T°C)	2.673	2.673	2.691	
Mean value	Specific	gravity (15°C) =	2.679	

*"Wa" is determined from the diagram peculiar to each pycnometer.

SPECIFIC GRAVITY TEST

LOCATION	4 MENVE-ELE	PROJECT	DATE		
SAMPLE N	NO. WELL	:10	TESTED BY	<u> </u>	
Determin	nation NO.	1	2	3	4
No. of Pycnome	eter	57	58	102	
Wt. of Pycnom	eter Wf in g	44.924	39.995	51.108	
Wt. (Pycnometer	r+water) W's in g	147.495	143.848	156.219	
Temperature of (corresponding	calibration with W', T' °C	//	, ,	1/	-
Wt. (Pycnomete	W _b in g	152.868	150.228	162.785	
Temperature of (corresponding		/3	13	13	
Weight of dry	No. of Container	57	58	102	
Soil	Wt.(Container +dry soil) in g	47.488	44.308	54.624	
W _o	Wt. Container in g	38.791	34.007	44.028	
	W _o in g	8 697	10.301	10.596	:
Deflocculating a amount	gent and its		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
*Wt. (Pycnomete calculated for	er + water) T°C W _a in g	147.472	143.824	156.195	
$W_0+(W_a-W_b)$	in g	3.301	3 897	4.006	
Deflocculant cor	rection				
$W_0+(W_\sigma-W_b)$	corrected				
	$\mathbf{W}_{e} = \mathbf{W}_{e} + (\mathbf{W}_{a} - \mathbf{W}_{b})$	2.635	2.643	2.645	
Coefficient for to	emperature K	1.0003	1.0003	1.0003	
Specific Gra- G (19 vity at 15°C	5°C)=K×G(T°C)	2.636	2.644	2.646	
Mean	value	Specific g	ravity (15°C) =	2.642	

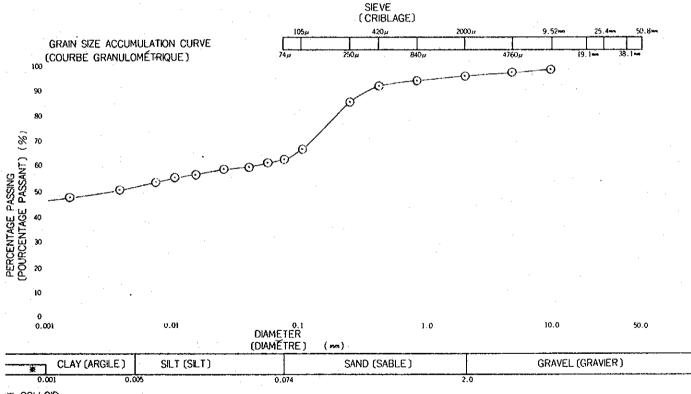
*" W_a " is determined from the diagram peculiar to each pycnometer.

WATER CONTENT OF SOIL

No.____

Date	Sample No.	Mean water		Calc	ulation	
		content %	WW 12.94	DW	WW 1497	DW
	TD - /	·		TW		TW
	TP-/		DW 10.55 W.	W.	<i>DW 13.83</i> W _w	W.
	1.0 m	22.43	No	w_22.65	No.	w_22.70
		<u> </u>	1	DW	WW	DW
				TW	DW	TW
			DW 12.54.	W_{\bullet}	W.	<i>W</i> ,
			No	w 21.93	No.	w
·				DW		DW
	TP-1			TW		TW
		58.07	DW 10.95	W.	DW 8.94 W.	
	3.0 m	38.8 /	No.	w 40.55	No	
		<u> </u>		DW	WW	<u>w_38.YS</u> DW
	ļ	:)		DW	TW
			DW 13.78	TW		
			W _w	W.	W _o	W.
			No	w_36.94_	No	w
			WW 11.96	DW	WW 1437	DW
	TP-Z	,	DW 9.09	TW	DW 10.85	TW
	4.0 m	31.69	W_{v}	W.	We	<i>W</i> .
******			No	w <u> 31.57</u>	No	w_32.44_
			WW 17.59	DW	WW	DW
			DW 13.4≥	TW	DW :	TW
	:		W_{w}		W _w	<i>W</i> ,
			No	w 31.07	No.	w
	700		WW 17.18.	DW	WW 15.91	DW
	TP-2		DW 14.58	TW	DW 1334	TW
	8.0 m	18.58	W.	W_{\bullet}	W_{ω}	W
			No	w_17.83	No	w <u>19.27</u>
			WW 13.30	DW	WW	DW
			DW 11.21	TW	DW	TW
•			W _w	<i>W</i> .	$W_{\mathbf{r}}$	W.
			No	w_/8.64	No	. w
			WW 18.16	DW	WW /2.//	DW
	TDS			TW	DW 9.34	TW
	TP-3	-004	DW 14.09	W.	W _w	<i>W</i> .
	3.0 m	z8.74	No	w 28.89	No	w_29.66
	<u> </u>		WW 11.49	DW	WW	DW
				TW	DW	TW
		-	DW 9.00 W.	<i>W</i> .	W 10	W.
			No	w_27.67	No	
	+	1	122222	DW	1	DW
	TP-3			TW		TW
			DW 8.04			W ₁
	7.0 m	33.56	W.	W.	W _w	
			No	w_3/,97	No.	<u>w 33.79</u>
			WW 17.70	DW	WW	DW
		1	DW 13.12	TW	DW	TW
			W_{w}	W_{\bullet}	W_{ν}	W_{\bullet}

ĎW	(Wt. dry soil		TW(Wt. contain	$\frac{\text{ntainer}}{\text{er}} \times 100 = \frac{W}{W}$	(Wt. of water) (Wt. of dry soil)	× 100=Water Content
Date	Sample No.	Mean water content %		Calcu	lation	
			WW 19.15	DW	WW 846	\overline{DW}
	TP-5		DW 15.21	TW	DW 6.72	TW
	1	- 405	Ww	W.	W	<i>W</i> ,
	3.0 m.	25.93	No	w_25.90	No	w 25.89
			WW 1250	DW	ww	DW
			DW 9.92	TW	DW	TW
			Wo	W	W_{r}	W.
			No	w_26.0/	No	w
			WW 22.66	DW	WW 1748	DW
	TP-5		DW 1760	TW	DW 13.56	TW
	_{~ ^}	- B O /	W	W.	W _v	W_{\bullet}
,	. 5.0 m	28.9/	No	w_ ≥8,75	No	w_28.9/
		*****	WW 15.19	DW	W W	DW
			DW 11.77	TW	DW	TW
			W.	W.	Wu	<i>W</i> .
			No	w 29.06	No	w
			WW 21.93	DW	WW 18.06	DW
	TP-5		DW 16.52	TW	DW 1356	TW
	} ·		W.,	W.	W	<i>W</i> .
	10.0 m	33.23	No.	w 32.75	No	w_33.19
	<u> </u>	<u>. </u>		DW	ww	DW
				TW	DW	TW
			DW 15.62	W.	W.	<i>W</i> .
-	:			w 33.74	No.	
	<u> </u>	1	No	DW		w DW
	70 /				TOTE	TW
	TP-6		DW 14.83	TW		W.
	3.0 m	25.29	Ww	<i>W</i> .	W_{w}	
-]]	No	w_25,42_	No	w_25.36
			WW 18.14	DW	WW	DW
			DW 1450	TW	DW	TW
			W _w		W _E	<i>W</i> .
			No	w_25.10	No	w
		\	WW 16.30	DW	WW 9.82	DW
13	TP-6		DW 13.02	TW	DW 7.84	TW
	5.0 m	25.15	Ww	W.	W_{\bullet}	W
	3.0 ///		No	w_25.19	No	w_25.26_
			WW 12.95	DW	ww	DW
			DW 10.36	TW	DW	TW
		}	W _w	W_{\bullet}	W _w	<i>W</i> .
			No	w_25.00	No	
			WW 15.79	DW	WW 1426	\overline{DW}
	TP-6		DW 10.95	TW	DW 9.80	TW
			W _w	W_{\bullet}	W.	W_*
	10,0 m	44.68	No	w 44.20	No	w 45.51
			WW 9.80	DW	WW	DW
	1		DW 6.79	TW	DW	TW
		·	··· * * / /			
	1 .		W	W_{\bullet}	W_{ω}	W_{*}


		Mean wate		ontainer) iner) × 100=-) ^ 100—Content
Date	Sample No.	content %		Cale	culation	
			WW 12.3/	DW .	WW 13.49	DW
	TP-7		DW 9.80	TW	DW 10.94	TW
	3.0 m	25.30	W ₁₀	<i>W</i> .	W.,	W.
			No	w_25.6/	No	w_23.3 /
			WW 11.72	DW	WW	DW
-			DW 9.23	TW	DW	TW
			Ww	<i>W</i> .	· W	W.
			No	w 26.98	No	w
			WW 16.87	DW	WW 11.60	DW
	TP-7		DW 13.67	TW	DW 9.37	TW
	5.0 m	23.68	W_{ω}	<i>W</i> .	W_{ω}	W.
		25,00	No	w_23.4./	No	w_23.80
			WW 12.73	DW	WW	DW
			DW 10.28	TW	DW	TW
			$W_{\mathbf{v}}$	<i>W</i> .	Ww	W.
			No	w_23.83	No	_ w
	T- 0		WW 16.20	DW	WW 21.08	DW
	TP-7		DW 11.63	TW	DW 15.20	TW
	10.0 m	38.68	$W_{\mathbf{v}}$	W.	W_{\bullet}	W.
:	, 0, 5 ,,		No	w_39.29_	No.	w_38,68
			WW 1741	DW	WW	DW
			DW 12.61	TW	DW	TW
			$W_{\mathbf{v}}$	W.	W _v	W.
		•	No.	w_38.07	No.	w
			WW 8.88	DW	WW 10.67	DW
	WELL		DW 6.52	TW	DW 7.88	TW
	'		W_{ω}	W.	W.,	W.
	5.0 m	36,00	No	w_36.20	No	w_3\$.4/_
			1	DW	WW	DW
				TW	DW	TW
·	·		DW 4.67	W.	W _E	
			No	w_36.40	No	
			1	DW	1	
	WELL		**************************************	TW		DW
	i i	3 \ Q A	DW 7.06	<i>I W</i>	DW 5.71	TW
	8.0 m	22.90	No		W _w	<i>W</i> .
		· · · · · · · · · · · · · · · · · · ·		w 23.23 DW	No	w_22.42
					WW DW	DW
			DW 9.6.7.	TW	DW W	TW
-				<i>W</i> .	W _w	<i>W</i> .
			No	w 23.06	No	w
	WELL			DW	WW 10.88	DW
		20.00	DW 9.05	TW	DW 8.37	TW
	11.0 m	30.00	W _w	<i>W</i> .	W _w	<i>W</i> .
<u> </u>			No	w_29.94	No	w_29.99
			WW 16.09	DW	WW	DW
			DW 12.37	<i>TW</i>	DW	TW
		:	Ww	<i>W</i> .	$W_{\mathbf{v}}$	W.
		454-6	No	w_30.07	No	w_

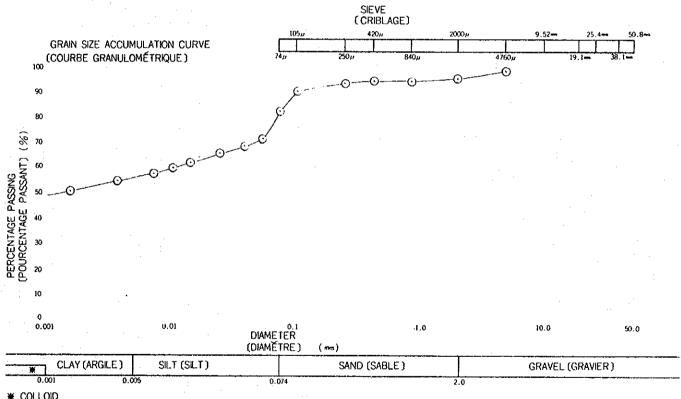
GRADATION ANALYSIS FOR REPORTING (POUR LE RAPPORT) (ANALYSE GRANULOMÉTRIQUE) NAME OF SURVEY & LOCALITY DATE MEMVE-ELE PROJECT (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ) (DATE) TESTED BY SAMPLE NO. & DEPTH (1,0 m~ TP-1 (ESSAI PAR) (N' DE L'ÉCHANTILLON ET PROFONDEUR)

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs > 658

VE AGE;	GRAIN SIZE (==) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
	TOTAL PASSING(%) (TOTAL PASSANT)				. :	100	99.2	96.5	95.4	93.0	86.5	68.4	64.4
WETER (ÉTRIE)	GRAIN SIZE(==) (GRANULOMÉTRIE)	0.0548	0.0390	0.0249	00145	00/02	0.0073	00037	00015				
HYDROM (AREOM	TOTAL PASSING(%) (TOTAL PASSANT)	63,2	61.1		58.2		55.2		49.3				

★ COLLOÏDE


	4.76mm <	1 %	MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	9.52 mm
22	4.76~2.00mm	Z %	60% DIAMETER (DIAMÉTRE60%)	0.025 mm
PROPORTION (PROPORTION)	2.00~0.42mm	4 %	30% DIAMETER (DIAMÉTRE 30%)	— mm
25.0	0.42~0.074mm	29 %	10% DIAMETER (DIAMETRE 10%)	mm.
a. E.	0.074~0.005mm	11 %	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)	
	0.005mm>	53 %	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	

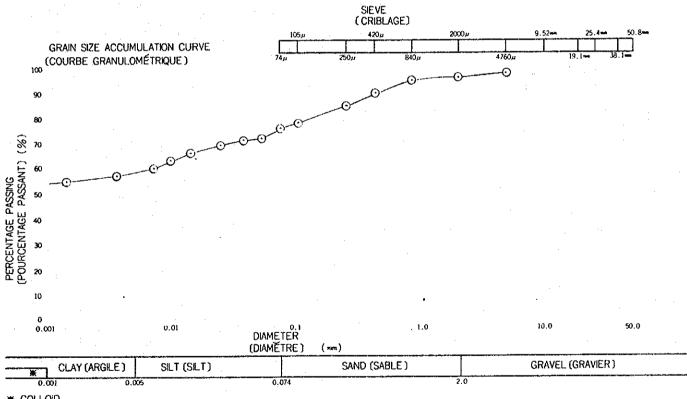
The second secon	GRADATION ANAL	YSIS		FOR REPORTING
(A	(POUR LE RAPPORT)			
NAME OF SURVEY & LOCALITY (DÉMONINATION DE L'ENQUÊTE ET LOCALITÉ)	MEMVE-ELÉ	PROJEC	T DATE (DATE)	d tradition de la commentation d
SAMPLE NO. & DEPTH (n' de l'échantillon et profondeur)	TP~1	(3.0 m~	TESTED BY m) (ESSAI PAR)	

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY
(PQIDS SPÉCIFIQUE) Gs 2.7/5

Щ.	ΑŒ.)	GRAIN SIZE (+++) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
ES ES	CCRIBL	TOTAL PASSING(%) (TOTAL PASSANT)						100	96.8	96.3	95.8	94.5	919	83.8
METER	(ÉTRIE)	'GRAIN SIZE(***) (GRANULOMÉTRIE)	0.0536	0.0382	0.0241	00/40	0.0/00	0007/	00036	0.00/5				-
HYDRO,	윤	TOTAL PASSING(%)	73.4						5-6.2	৫/ .১				

★ COLLOIDE)


	4.76mm <	ms < O % MAXMUM DIAMETER (DIAMETRE MAXIMUM)				கை
22	4.76~2.00mm	3	%	60% DIAMETER (DIAMĚTRE60%)	0.009	ותיכונ
ORTION)	2.00~0.42mm	1	%	30% DIAMETER (DIAMETRE 30%)		mm.
PROP((PROP(0.42~0.074mm	/2	%	10% DIAMETER (DIAMETRE 10%)		men.
c. c.	0.074~0.005mm	27	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)		
	0.005mm>	57	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)		

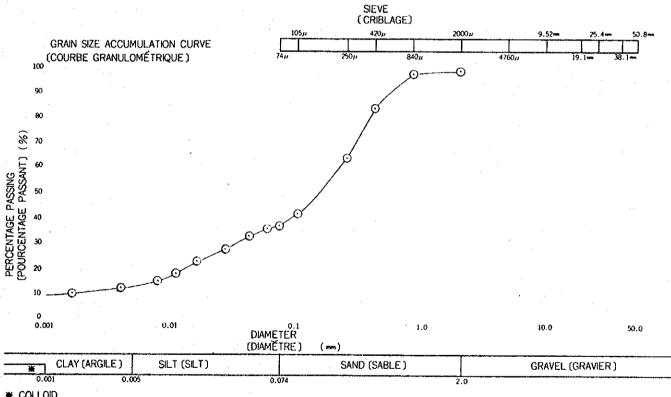
GRADATION ANALYSIS FOR REPORTING (POUR LE RAPPORT) (ANALYSE GRANULOMÉTRIQUE) DATE NAME OF SURVEY & LOCALITY MEMVE-ELE PROJECT (DATE) (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ) TESTED BY SAMPLE NO. & DEPTH (ESSAL PAR) (40 m~ TP-2 (N' DE L ÉCHANTILLON ET PROFONDEUR)

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs > 726

É É	GRAIN SIZE (+++) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0,105	0.074
SE	TOTAL PASSING(%) (TOTAL PASSANT)						100	98.3	96.7	92.3	87.3	803	78.4
VETER (ÉTRE)	' GRAIN SIZE(****) (GRANULOMÉTRIE)	0.0524	0.0373	0.0236	00/37	0,0098	00070	0.0035	0.0014				
HYDROM (AREOM	TOTAL PASSING(%) (TOTAL PASSANT)		_						57.3	·			

* COLLOÏDE)


	4.76mm<	0	%	MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	4.76	riyert.
7 9	4.76~2.00mm	Z	%	60% DIAMETER (DIAMETRE60%)	0.005	Tiri)
RTIO	2.00~0.42mm	б	%	30% DIAMETER (DIAMETRE 30%)		mm
PROPO (PROPO	0.42~0.074mm	14	%	10% DIAMETER (DIAMETRE 10%)		nsm.
a &	0.074~0.005mm	18	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)	France Lab	
	0.005mm>	60	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)		

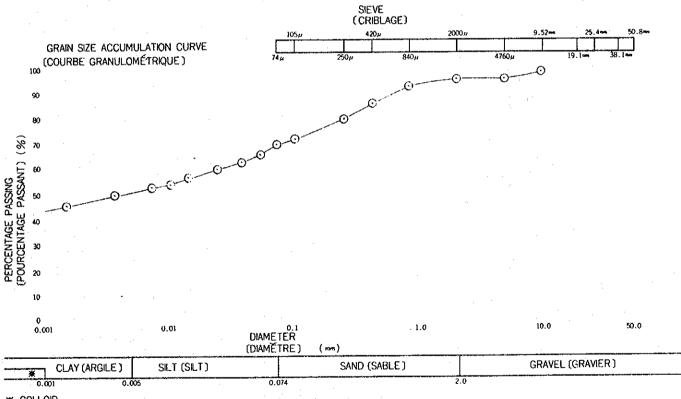
(A	GRADATION ANAL NALYSE GRANULOMÉ	, 0.0	AMAMERY (COMMON TO THE Association and collections	FOR REPORTING (POUR LE RAPPORT)
NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	MEMVE-ELE	PROJECT	DATE (DATE)	«Бикону» (Чен шинин кончинской портостической разрови
SAMPLE NO. & DEPTH (N° DE L'ÉCHANTILLON ET PROFONDEUR)	TP-2	(8.0 m~ m)	TESTED BY (ESSAL PAR)	

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs 2632

/E Agg.	GRAIN SIZE () (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
	TOTAL PASSING(%) (TOTAL PASSANT)							100	99.1	84.5	64.5	433	38.4
MÉTER MÉTRIE)	GRAIN SIZE(***) (GRANULOMÉTRIE)	0.0589	00422	00269	0,0157	0.0/1/	0.0079	00040	0.0016				
HYDRO (ARÉO	TOTAL PASSING(%)	•	33.6			19.4	16.0	12.8	11.2				

* COLLOIDE)


		4.76mm<	0	%	MAXMUM DIAMETER (DIAMÈTRE MAXIMUM)	2.0	mm
	2	4.76~2.00mm	0	%	60% DIAMETER (DIAMĚTRE60%)	0.21	men,
ORTON	S S	2.00~0.42mm	15	%	30% DIAMETER (DIAMETRE 30%)	0.031	Tim.
PROP(00 00 00 00 00 00 00 00 00 00 00 00 00	0.42~0.074mm	47	%	10% DIAMETER (DIAMÈTRE 10%)	0.00/	mm
	E	0.074~0.005mm	25	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)	≥/0	
		0.005mm>	/3	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	4.6	

GRADATION ANALYSIS (ANALYSE GRANULOMÉTRIQUE) NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ) SAMPLE NO. & DEPTH (N' DE L ÉCHANTILLON ET PROFONDEUR) FOR REPORTING (POUR LE RAPPORT) TOTALE (POUR LE RAPPORT) TESTED BY (ESSAI PAR)

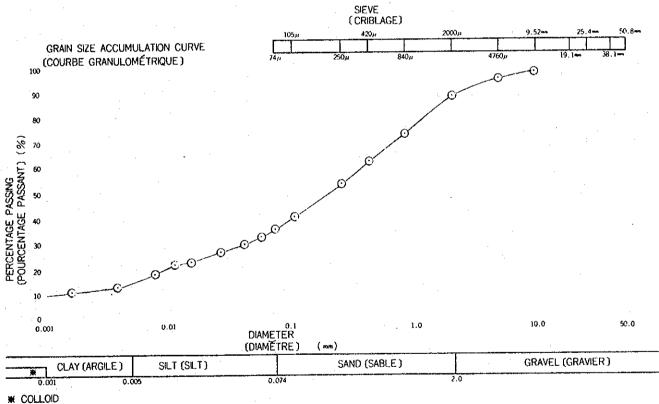
PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs 2.7/0

أ	يَ لِ	GRAIN SIZE () (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9,52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
١	בור בלי מילול	TOTAL PASSING(%) (TOTAL PASSANT)					100	97.4	97.1	94.4	86.9	81.1	73.1	70.6
	ROMETER:	GRAIN SIZE(***) (GRANULOMÉTRIE)	0.0536	0.0382	00243	00142	0.0101	00072	0.0036	0.00/5				
	~ 7		67.0	64.0	61.1	58.2	<i>55</i> .3	53.9	\$1.0	46.6				

★ COLLOID

(COLLOIDE)


	4.76mm<	3		MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	2.52	ग्राध्या
	4.76~2.00mm	0	%	60% DIAMETER (DIAMÉTRE60%)	0.022	men.
DRTION)	2.00~0.42mm	10	%	30% DIAMETER (DIAMETRE 30%)	_	men.
PROPO (PROPO	0.42~0.074mm	16	%	10% DIAMETER (DIAMÉTRE 10%)	—	пыл.
P (F)	0.074~0.005mm	19	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)		
	0,005mm>	\$2	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	******	

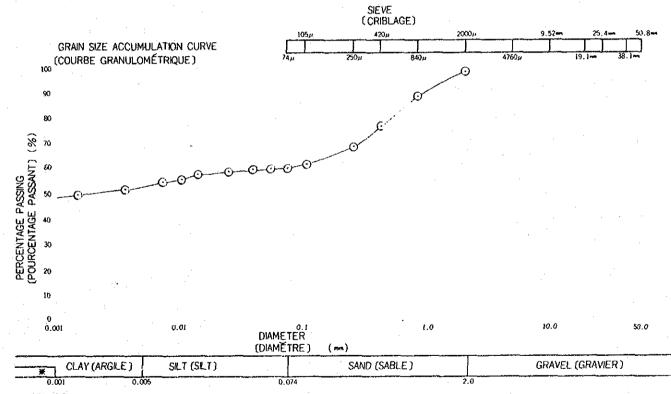
(A)	GRADATION ANAL NALYSE GRANULOMÉ		And the state of t	FOR REPORTING (POUR LE RAPPORT)
NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	MEMVE-ELE	PROJECT	DATE (DATE)	
SAMPLE NO. & DEPTH (N' DE L'ÉCHANTILLON ET PROFONDEUR)	TP-3	•	(ESSAL PAR)	

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs 2787

m ஐ	GRAIN SIZE (***) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
SIEVE (CHBLAGE	TOTAL PASSING(%) (TOTAL PASSANT)					100	97.3	90.0	749	63.9	55.3	4/5	37.3
YDROMETER (ARÉOMÉTRE)	GRAIN SIZE(***) (GRANULOMÉTRIE)	0.0572	0.0407	0.0259	00151	0.0/07	0.0076	0.0038	0.00/6				
HYDRON (AREON	TOTAL PASSING(%)			ł .	24.2		194	13.8	12.				

★ COLLOÏDE)


	4.76mm<	. 3	%	MAXMUM DIAMETER (DIAMÈTRE MAXIMUM)	9.52	n.
_	4.76~2.00mm	7	%	60% DIAMETER (DIAMÉTRE60%)	0.35	tr.
PROPORTION (PROPORTION)	2.00~0.42mm	26	%	30% DIAMETER (DIAMETRE 30%)	0.037	#6
30PO	0.42~0.074mm	27	%	10% DIAMETER (DIAMETRE 10%)	0.00/	m
<u>r</u> <u>e</u>	0.074~0.005mm	22	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)	350	
	0.005mm>	15	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	3.9	

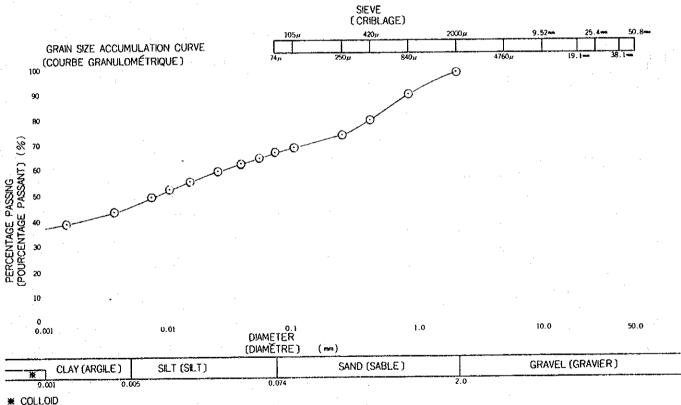
GRADATION ANALYSIS (ANALYSE GRANULOMÉTRIQUE)		FOR REPORTING (POUR LE RAPPORT)
NAME OF SURVEY & LOCALITY MEMVE-ELE PROJECT (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	DATE (DATE)	
SAMPLE NO. & DEPTH	TESTED BY (ESSAL PAR)	

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY (POIDS SPÉCIFIQUE)	Gs	2.6	63	.
	T			7

Į,	AGE.)	GRAIN SIZE (==) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4:76	2.00	0.84	0.42	0.25	0.105	0.074
SEV	GRABEL.	TOTAL PASSING(%) (TOTAL PASSANT)							100	90.1	2 <u>7.5</u>	69.9	630	61.4
METER	(ÉTRIE)	GRAIN SIZE(***) (GRANULOMÉTRIE)	0.0544	0.0388	0.0245	0.0/42	00101	0.0072	00036	0.0015				
HYDRO	(AREO	TOTAL PASSING(%) (TOTAL PASSANT)		61.0		58.6			,	\$1.1				

₩ COLLOIDE)


	4.76mm <	0	%	MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	20
_ =	4.76~2.00mm	0	%	60% DIAMETER (DIAMETRE60%)	0.025
ORTION	2.00~0.42mm	22	%	30% DIAMETER (DIAMÉTRE 30%)	
PROPC (PROPC	0.42~0.074mm	17	%	10% DIAMETER (DIAMETRE 10%)	
اه ه	0.074~0.005mm	7	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)	
	0.005mm>	54	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	

GRADATION ANALYSIS FOR REPORTING (ANALYSE GRANULOMÉTRIQUE) (POUR LE RAPPORT) DATE NAME OF SURVEY & LOCALITY PROJECT MEMVE-ELE (DATE) (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ) TESTED BY SAMPLE NO. & DEPTH (ESSAL PAR) TP-5 (5.0 m~ (N° DE L ÉCHANTILLON ET PROFONDEUR)

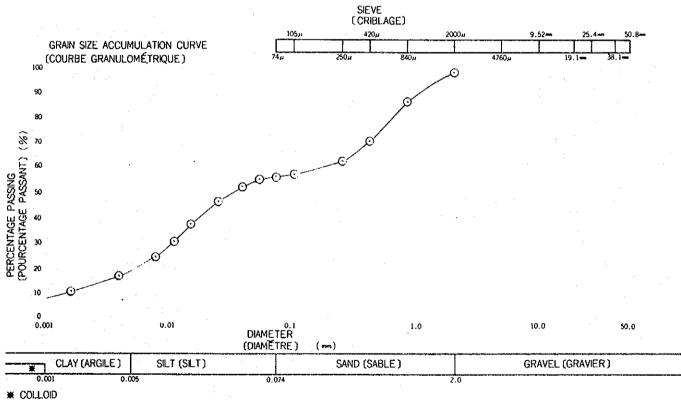
PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs 2.665

ق س	GRAIN SIZE (***) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
	TOTAL PASSING(%) (TOTAL PASSANT)							100	91.4	80.8	74.6	69.6	68.4
(ETER	GRAIN SIZE(>>) (GRANULOMÉTRIE) TOTAL PASSING(%) (TOTAL PASSANT)	0.0548	0.0390	0.024-7	00/45	00/03	0.0073	0.0037	0.00/5				
HYDRO.	TOTAL PASSING(%) (TOTAL PASSANT)	65.8	ŀ	l .	_	1	50.9	44.9	40.4			<u> </u>	

★ COLLOID

(COLLOIDE)


	4.76mm<		MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	2.0 mm
_	4.76~2.00mm	0 %	60% DIAMETER (DIAMÉTRE60%)	0024 mm
ORTION	2.00~0.42mm	19 %	30% DIAMETER (DIAMETRE 30%)	 सर्गा
PROPO (PROPO)	0.42~0.074mm	13 %	10% DIAMETER (DIAMETRE 10%)	
E E	0.074~0.005mm	2/ %	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)	
	0.005mm>	47 %	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	

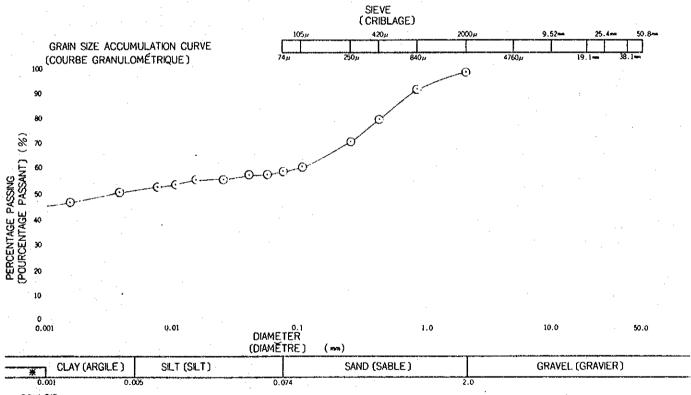
(A	GRADATION NALYSE GRAN	ANAL ULOMÉ	., 0.0				FOR REPORTING (POUR LE RAPPORT)
NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	MEMVE-I	ELE	PROJEC	СТ	DATE (DATE)	a Company	
SAMPLE NO. & DEPTH (N'DE L'ÉCHANTILLON ET PROFONDEUR)	TP-5		(10.0 m~	m.)	TESTED BY (ESSAI PAR)		

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs 2622

F A	GRAIN SIZE (===) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
S S	TOTAL PASSING(%) (TOTAL PASSANT)							100	87.5	21.9	644	58.9	\$7.5
METER	.GRAIN SIZE(===) (GRANULOMÉTRIE)	00543	0.0390	0.0251	0.0150	0.0/08	0.0078	00040	0.0016		 		
1 8 9	TOTAL PASSING(%)	57.4	1		39.2	i i	257	18.4	123				

(COTTOIDE)


	4.76mm<	0	%	MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	2.0	min,
7 9	4.76~2.00mm	0	%	60% DIAMETER (DIAMÉTRE60%)	0.14	सभा
PROPORTION	2.00~0.42mm	28	%	30% DIAMETER (DIAMETRE 30%)	0.0/	##
ROPC	0.42~0.074mm	14	%	10% DIAMETER (DIAMÈTRE 10%)	0.00/2	mes
1 6	0.074~0.005mm	38	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)	/20	••
	0.005mm>	20	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	0.6	

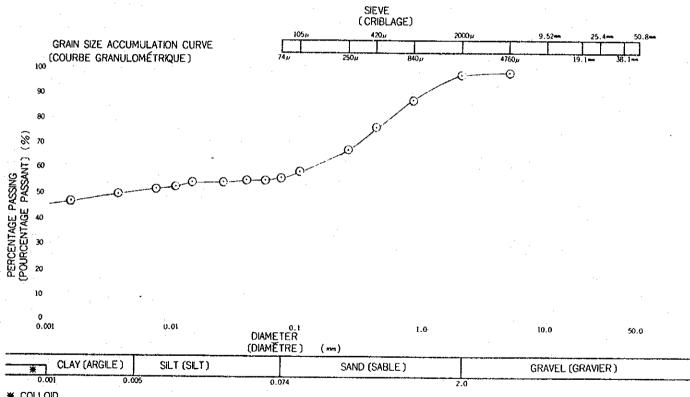
GRADATION ANALYSIS (ANALYSE GRANULOMÉTRIQUE) NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ) SAMPLE NO. & DEPTH (N' DE L ÉCHANTILLON ET PROFONDEUR) TP - 6 (3,0 m ~ m) FOR REPORTING (POUR LE RAPPORT)

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs 2687

SIEVE (CRIBLAGE)	GRAIN SIZE () (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
	TOTAL PASSING(%) (TOTAL PASSANT)		-					100	92.8	81.3	71.8	61.9	<i>\$9</i> .7
WETER MÉTRE)	GRAIN SIZE(>>>>) (GRANULOMÉTRIE)	0.0556	00396	00251	00146	00/03	0.0073	0.0037	0.0015				
HYDRO	TOTAL PASSING(%) (TOTAL PASSANT)	58.6	58.6	56.9	56.9	<i>\$5</i> ,2	<i>53.</i> 5	\$1.7	48.3				

* COLLOID

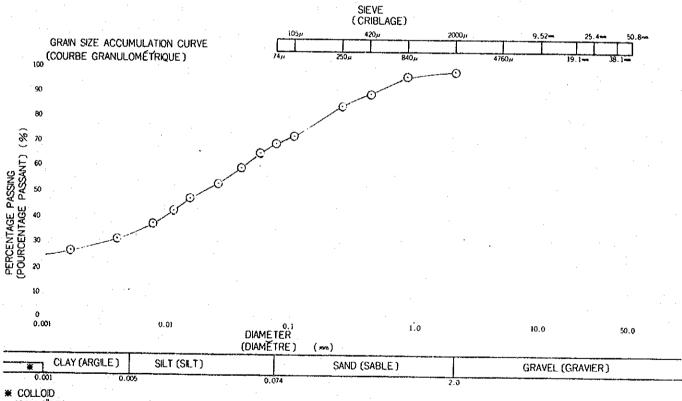

(COLLOIDE)

	4.76mm <	0	%	MAXMUM DIAMETER (DIAMETRE MAXIMUM)	M) 2.0 "	
7 7	4.76~2.00mm	0	%	60% DIAMETER (DIAMETRE 60%)	0.07	mes
PROPORTION (PROPORTION)	2.00~0.42mm	19	%	30% DIAMETER (DIAMETRE 30%)		#1471
POPC POPC	0.42~0.074mm	2	%	10% DIAMETER (DIAMÈTRE 10%)		mm,
a a,	0.074~0.005mm	7	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)		,
	0.005mm>	53	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)		

(A	GRADATION ANAL NALYSE GRANULOMÉ	10.0	COM/COMPOSAN/COMMONA/ANDERSON AND COMPOSAN/COMPOSAN/COMPOSAN/COMPOSAN/COMPOSAN/COMPOSAN/COMPOSAN/COMPOSAN/COMP	FOR REPORTING (POUR LE RAPPORT)
NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	MEMVE-ELE	PROJEC	T DATE (DATE)	The second manages of the second seco
SAMPLE NO. & DEPTH (N° DE L'ÉCHANTILLON ET PROFONDEUR)	TP-6	(5.0 m~	m) (ESSAL PA	9,1

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs 2.69/

/E AGE3	GRAIN SIZE (==) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
	TOTAL PASSING(%) (TOTAL PASSANT)						100	99.1	88.8	77.5	691	60.0	578
METER 4ÉTRE)	GRAIN SIZE(m.) (GRANULOMÉTRIE)	0.0548	0.039/	0.0247	0.0144	0.0/02		-		77.0	- <u></u>		97.0
18.20	TOTAL PASSING(%) (TOTAL PASSANT)	57.0	\$7.0						48.0				

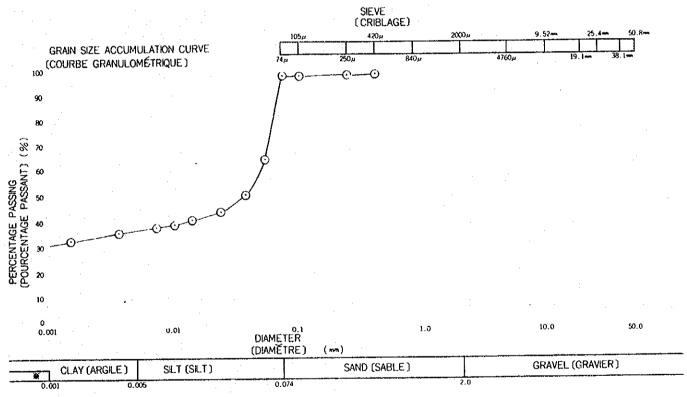

(COLLOIDE)

	4.76mm<	0	%	MAXMUM DIAMETER (DIAMETRE MAXIMUM)	4.76	ml-m
zź	4.76~2.00mm	/	%	60% DIAMETER (DIAMETRE60%)	0./	#WK
ORTION	2.00~0.42mm	2/	%	30% DIAMETER (DIAMÈTRE 30%)		mm
PROP(0.42~0.074mm	20	%	10% DIAMETER (DIAMETRE 10%)		mm
2	0.074~0.005mm	6	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)		
	0.005mm>	\$2	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)		

(A	GRADATION ANALYSIS NALYSE GRANULOMÉTRIQUE)	FOR REPORTING (POUR LE RAPPORT)
·	MEMVE-ELE PROJECT DATE (DATE)	дун болжон хүрлөр болдон хүрлөр болдон хүр хүрдэг хүр
SAMPLE NO. & DEPTH (N°DE L ÉCHANTILLON ET PROFONDEUR)	TP-6 (10.0 m- m) (ESSAI PAR)	

SPECIFIC GRAVITY (POIDS SPÉCIFIQUE) Gs 2683

VE.	GRAIN SIZE (***) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
	TOTAL PASSING(%) (TOTAL PASSANT)		· · · · · · · · · · · · · · · · · · ·					100	97.8	91.4	85.7	74.4	7/4
METER		0.0552	0.0393	0.0251	0.0147	00/05	00075	0.0438	0.00/6		* /		
HYDRO	TOTAL PASSING(%) (TOTAL PASSANT)	67.2		· ·	48.9	44.0	39.1	32.6	<i>≥</i> 7.7				

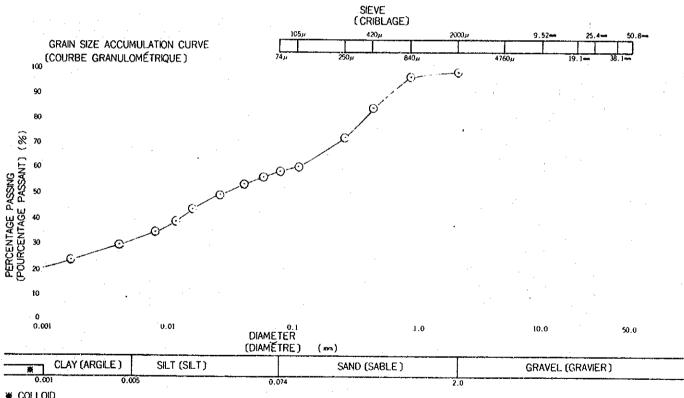

COLLOID
(COLLOIDE)

ļ.	4.76mm<	0	%	MAXMUM DIAMETER (DIAMETRE MAXIMUM)	2.0	men
zź	4.76~2.00mm	0	%	60% DIAMETER (DIAMÉTRE60%)	0.036	тнт
ORTION	2.00~0.42mm	9	%	30% DIAMETER (DIAMETRE 30%)	0.0025	er en
PROP(0.42~0.074mm	20	%	10% DIAMETER (DIAMETRE 10%)		10176
- 5	0.074~0.005****	37	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)	<u> </u>	
	0.005mm>	34	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	~~~	

GRADATION ANALYSIS	FOR REPORTING (POUR LE RAPPORT)
(ANALYSE GRANULOMÉTRIQUE)	
NAME OF SURVEY & LOCALITY MEMVE-ELE PROJECT DATE (DATE)	
SAMPLE NO. & DEPTH (N' DE L ÉCHANTILLON ET PROFONDEUR) TP-7 (3.0 m - m) (ESSAI PAR)	

SPECIFIC GRAVITY (POIDS SPECIFIQUE) Gs 2.737

Ë (ge	GRAIN SIZE (***) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
SEV	TOTAL PASSING(%) (TOTAL PASSANT)									100	29.9	99.8	29.6
AETER ÉTRE)	GRAIN SIZE() (GRANULOMÉTRIE)	0.0540	0.0382	00243	0.0/42	04/01	0.0072	0.0036	0.00/5				
\$2,\$	TOTAL PASSING(%) (TOTAL PASSANT)		52.1	44.8			38.9		342		!		:

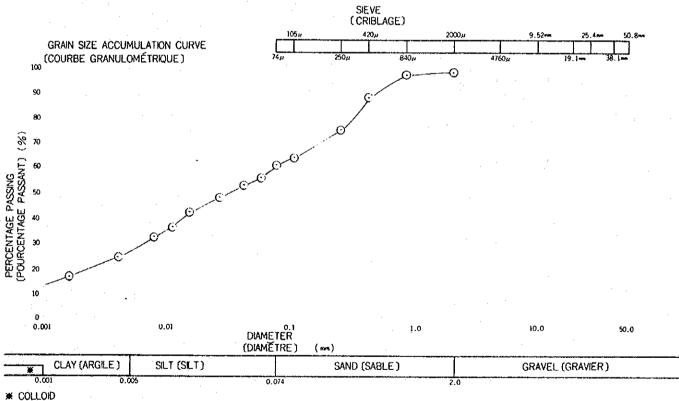

* COLLOIDE)

	4.76тт <	0	%	MAXMUM DIAMETER (DIAMETRE MAXIMUM)	0.42	nvn.
)	4.76~2.00mm	0	%	60% DIAMETER (DIAMÉTRE60%)	0.048	mes.
ORTION	2.00~0.42mm	0	%	30% DIAMETER (DIAMETRE 30%)		กก
PROPOF	0.42~0.074mm	0	%	10% DIAMETER (DIAMETRE 10%)		яня
<u>a</u> E	0.074~0.005mm	62	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)	_	
	0.005mm>	38	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)		

(A	GRADATION ANALYSIS NALYSE GRANULOMÉTRIQUE)		REPORTING LE RAPPORT)
NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	ATE ATE)	боннятили какологородую, вырам <u>изменявалисян</u> я	
SAMPLE NO. & DEPTH (N°DE L ÉCHANTILLON ET PROFONDEUR)		STED BY SSAI PAR)	

SPECIFIC GRAVITY (PQIDS SPÉCIFIQUE) Gs 2.649

m &	GRAIN SIZE (==) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
SPE CREE	TOTAL PASSING(%) (TOTAL PASSANT)							100	97.6	86.2	73.7	62.4	599
METER (ÉTRIE)	GRANULOMÉTRIE)	0.0552	0.0383	00251	00148	0.0/06	00075	0.0038	0.0016				
X S	TOTAL PASSING(%)				,	40.4		١ .	25./				

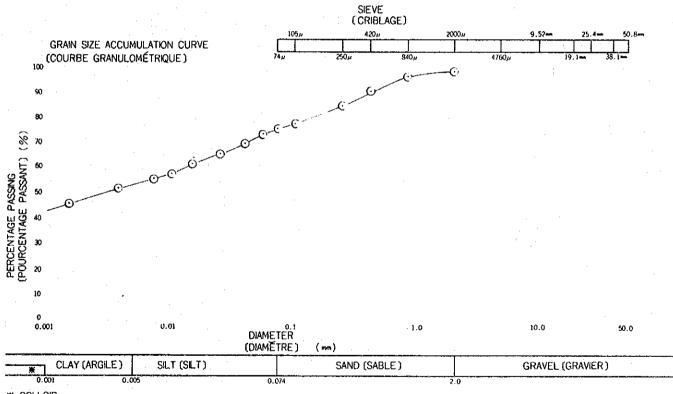

₩ COLLOÏDE)

	4.76mm<	0	%	MAXMUM DIAMETER (DIAMETRE MAXIMUM)	2.0	min
zź	4.76~2.00mm	0	%	60% DIAMETER (DIAMÉTRE60%)	0.074	1975
PROPORTION PROPORTION	2.00~0.42mm	14.	%	30% DIAMETER (DIAMETRE 30%)	0.0034	#HTS
P. P	0.42~0.074mm	26	%	10% DIAMETER (DIAMETRE 10%)		тить
	0.074~0.005mm	27	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)		
	0.005mm>	33	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)		

(A	GRADATION ANAL NALYSE GRANULOMÉ		es curvidocuroposto.	Militaria de la companya de la comp	DAY-MANANA S	FOR REPORTING (POUR LE RAPPORT)
NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	MEMVE-ELE	PROJE	СТ	DATE (DATE)	enersed.	recontrol control and control control for the first fi
SAMPLE NO. & DEPTH (N° DE L'ÉCHANTILLON ET PROFONDEUR)	TP-7	(/0.0 m~	m)	TESTED BY (ESSAL PAR)		, , , , , , , , , , , , , , , , , , ,

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs 2.642

ΛĒ,	GRAIN SIZE () (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
1	TOTAL PASSING(%) (TOTAL PASSANT)							100	982	904	78.1	66.0	62.7
METER AÉTRE)	GRAIN SIZE() (GRANULOMÉTRIE)	0.0560	0.0399	0.0256	0.0150	0.0107	0.0077	0.0039					
HYDRO	TOTAL PASSING(%)	57.8		50.2					18.3				


(COLLOIDE)

	4.76mm<	0	%	MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	2.0	កាកា
22	4.76~2.00mm	0	%	60% DIAMETER (DIAMÉTRE60%)	0.065	mns
PROPORTION (PROPORTION)	2.00~0.42mm	10	%	30% DIAMETER (DIAMETRE 30%)	0.0058	וחמו
YOP POPC	0.42~0.074mm	27	%	10% DIAMETER (DIAMĚTRE 10%)		men
" "	0.074~0.005mm	35	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)		
	0.005mm>	28	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)		

(A	GRADATION ANAL NALYSE GRANULOMÉ	, 0.0	de de main. Esta de compte ("Reining to plus de descrimente esta funda de Cardenia de Cardenia de Cardenia de	FOR REPORTING (POUR LE RAPPORT)
NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)	MEMVE-ELE	PROJECT	DATE (DATE)	activacy (Anthropis August (Anthropis Anthropis Anthropis Anthropis Anthropis Anthropis Anthropis Anthropis An
SAMPLE NO. & DEPTH (N'DE L'ÉCHANTILLON ET PROFONDEUR)	Camp Well	(5.0 m~ m)	TESTED BY (ESSAI PAR)	

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs 27/2

VE AGE)	GRAIN SIZE (***) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
SIE	TOTAL PASSING(%) (TOTAL PASSANT)							100	97.8	92.3	86.4	787	76.9
METER (ÉTRIE)	GRAIN SIZE(>>) (GRANULOMÉTRIE)	0.0556	0.0396	a0251	0.0146	0.0104	00074						
HYDRO (AREO	TOTAL PASSING(%)	74.6	71.3						47.0				

* COLLOÏDE)

	4.76mm<	0	%	MAXMUM DIAMETER (DIAMETRE MAXIMUM)	2.0	RO(T)
7 7	4.76~2.00mm	0	%	60% DIAMETER (DIAMÉTRE60%)	0.0/2	mens
ORTON	2.00~0.42mm	8	%	30% DIAMETER (DIAMÈTRE 30%)		men
PROP(0.42~0.074mm	15	%	10% DIAMETER (DIAMÉTRE 10%)		87 1 671
1	0.074~0.005	23	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)		
	0.005mm>	54	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)		

GRADATION ANALYSIS FOR REPORTING (ANALYSE GRANULOMÉTRIQUE) (POUR LE RAPPORT) DATE NAME OF SURVEY & LOCALITY MEMVE-ELE PROJECT (DATE) (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ) SAMPLE NO. & DEPTH TESTED BY well Camp (8.0 m ~ (ESSAI PAR) (N' DE L ÉCHANTILLON ET PROFONDEUR)

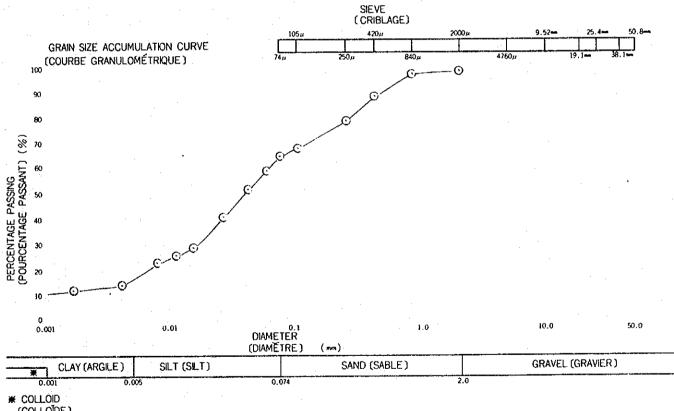
PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY
(POIDS SPÉCIFIQUE) Gs 2679

/Ē AGEJ	GRAIN SIZE () (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
SE SE	TOTAL PASSING(%) (TOTAL PASSANT)						100	99.8	98.0	90.6	81.4	7/.2	68.8
HETER IÉTRIE)	GRAIN SIZE(>>>) (GRANULOMÉTRIE)	0.0548	20391	0,0249	00146	00/04	00074	0.0038	0.0016				
HYDRO	TOTAL PASSING(%)	67.3	63.1	59.2	52.0	48.4		36.0	30.8				

★ COLLOID

(COLLOIDE)


	4.76mm<	0	%	MAXMUM DIAMETER (DIAMÉTRE MAXIMUM)	4.76	пут
7 5	4.76~2.00mm	0	%	60% DIAMETER (DIAMÉTRE60%)	0.03	ma
ORTION	2.00~0.42mm	9	%	30% DIAMETER (DIAMETRE 30%)	0.0014	nun.
PROPC (PROPC	0.42~0.074mm	22	%	10% DIAMETER (DIAMÉTRE 10%)	-	тип
P 6	0.074~0.005mm	30	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)		
	0.005mm>	39	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)	. -	

GRADATION ANALYSIS FOR REPORTING (POUR LE RAPPORT) (ANALYSE GRANULOMÉTRIQUE) DATE NAME OF SURVEY & LOCALITY MEMVE-ELE PROJECT (DATE) (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ) TESTED BY SAMPLE NO. & DEPTH (ESSAL PAR) well (11.0 m ~ Camp (N° DE L'ÉCHANTILLON ET PROFONDEUR)

PARTICLE SIZE & WEIGHT PERCENTAGE OF PARTICLES UNDER THE SIZE (DIMENSION DES PARTICULES ET POURCENTAGE DE POIDS DES PARTICULES DE DIMENSION INFÉRIEURE AUX PRÉCÉDENTES)

SPECIFIC GRAVITY (POIDS SPÉCIFIQUE) Gs 2.642

ω ĝ	GRAIN SIZE (>>>) (GRANUROMÉTRIE)	50.8	38.1	25.4	19.1	9.52	4.76	2.00	0.84	0.42	0.25	0.105	0.074
	TOTAL PASSING(%) (TOTAL PASSANT)						. · · · · · · · · · · · · · · · · · · ·	100	99.0	89.6	79.9	68.9	66.2
VETER (ÉTRE)	GRAIN SIZE (##) (GRANULOMÉTRIE) TOTAL PASSING(%)	0.0581	0.0413	00263	00154	00110	0.0078	0.0040	00016				
HYDRO!	TOTAL PASSING(%) (TOTAL PASSANT)	59.8	52.8	41.8	29.9	26.9	23.9	14.9	13.4.				

(COLLOIDE)

	4.76mm <	0	%	MAXMUM DIAMETER (DIAMETRE MAXIMUM)	20	#Nen
	4.76~2.00mm	0	%	60% DIAMETER (DIAMÉTRE60%)	0.058	men.
ORTION	2.00~0.42mm	/0	%	30% DIAMETER (DIAMETRE 30%)	0.015	nien.
PROPOF	0.42~0.074mm	24	%	10% DIAMETER (DIAMÈTRE 10%)		min
o e	0.074~0.005mm	49	%	COEFFICIENT OF UNIFORMITY (COEFFICIENT D'UNIFORMITÉ)		
	0.005==>	17	%	COEFFICIENT OF CURVATURE (COEFFICIENT DE COURBURE)		

FOR REPORTING (POUR LE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

DATE (DATE)

TESTED BY (ESSAL PAR)

%

WATER CONTENT

FLOW CURVE L'OURBE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ)

	NO. & DEPTH MANTILLON ET PROFON	DEURI	No	Ti	Þ	-/	! / O m ~ ni)			
	Liquid Limit ti (Limite de Liqu		1			PLASTIC LIMIT TEST (LIMITE DE PLASTICITÉ)				
TEST. NO. (N°OE L' ESSAI)	NO. OF BLOWS (NOMBRE, DE COUP)					TEST NO				
1	3/		<i>69</i> . <i>.</i>	3 %	5	1	27.1 %			
2	<i>z\$</i>	ļ. 	Z1.8	9 %	5	2	26.1 %			
. 3	20		74.		31	3	26.8 %			
4	16		<u> </u>		- 11					
5	/3	ľ	80,0		EI		:			
6	10		81.8		- 11:	MEAN VAL VALEUR MOYENNE				
LIQUIO (LIMITE (STIC I DE PL	LIMIT		É) (IN	PLASTICITY INDEX IOICE DE PLASTICITÉ)					
w _L 7	2.0 % w	, ,	26.7	7		% 10	45.3			

90	
80	
72.0%	
60	

SAMPLE NO. & DEPTH No. TP -/ *∃3.0* m ~ (N° DE L' ÉCHANTILLON ET PROFONDEUR) LIQUID LIMIT TEST PLASTIC LIMIT TEST (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) TEST. NO. NO. OF BLOWS (N'DE L'ESSAI) (NOMBRE DE COUP.) WATER CONTENT (TENEUR EN EAU) WATER CONTENT (TENEUR EN EAU) TEST. NO. NICE LIESSA 1 36 % 37.0 2 2 32 3 105.3% 23 4 18 5 6 8 % 37. *|* LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDEX (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) (INDICE DE PLASTICITÉ)

37.

%

104.0%

NUMBER OF BLOWS (NOMBRE DE COUP)

66.9

%

FOR REPORTING (POUR LE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

DATE (DATE)

TESTED BY (ESSAL PAR)

%

WATER CONTENT (TENEUR EN EAU)

60

FLOW CURVE (COURBE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ)

					-			
	E NO. ,& DEP		UR)	No. 7	P		2 4	4.0 m ~ m)
	LIQUID LIMI (LIMITE DE							TIC LIMIT TEST DE PLASTICITÉ I
	TEST. NO. NO. OF BLOWS WAT DEL'ESSAID (NOMBRE, DE COUP.) (TEL				NT AU)	TES	T. NO UESSO:	WATER CONTENT (TENEUR EN EAU)
<u>i</u>	32			95.0	%		l	35.7 %
2	25	<i>25</i>			980%		2	36.2 %
3	20			01.7	- 1	δ 3		36.Z %
4	17		10	243	%			
5	/3			08./				
6	10	,		24	- 11		VALUE LEUR YENNE	36.0
LIQUID LIMIT PLA				ASTIC LIMIT PLASTICITY			PLASTICITY INDEX CE DE PLASTICITÉ)	
w _L 9	Э	6.0		%	ĺρ	62.0		

110 100 98.0°/-

SAMPLE NO. & DEPTH (N' DE L' ÉCHANTILLON ET PROFONDEUR)

No. TP-2 (8.0 m ~ m)

	(rimite de			-	PLASTIC LIMIT TEST (LIMITE DE PLASTICITÉ)				rÉ)
TEST, NO: (N°DE L'ESSAI)	NO. OF BLOY (NOMBRE DE CO		WATER CONTE (TENEUR EN E			T. NO.	WATER C		
1	32		40.9	%		1	<i>≥3</i> ,∙	4	%
2	26		42.0	%	L	2	≥3.		00
3	20	432	%		3	23.	3	%	
4	16		450						
5	/2		464	- 11					
6	7	:		%	MEA (V/ M	N VALUE ALEUR OYENNE) 23,	4	
LIQUÍD (LIMITE E	LIMIT DE LIQUIDITÉ)		PLASTIC LIMIT LIMITE DE PLASTICIT			PLASTICITY INDEX TÉ) (INDICE DE PLASTICITÉ)			
w. ' ≰	1.8 %	w_{p}	<i>23,4</i>		%	J p	184		

4).8%

FOR REPORTING (POUR LE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ!

MEMVE-ELE PROJECT

DATE (DATE) TESTED BY (ESSAL PAR)

> FLOW CURVE (COURBE DE DÉFERMINATION DE LA LIMITE DE LIQUIDITÉ)

	NO. & DEPTI		R) No.	T .	P -	3 (.	3.0 m -	m)
:	LIQUID LIMIT (LIMITE DE L						TIC LIMIT TEST	
TEST. NO.	NO. OF BLOW (NOMBRE DE CO	NTENT EN EAU						
1	34		90.	7 %		1	33.2	%
2	29		92.	8 %	<u>.</u>	2	32.7	%
3	25		95.	9 %		3	33.7	%
4	20			7 %	11			
5	16		102	1%				
6	10			7 %	MEA	N VALUE ALEUR YENNE	33, 2	
	LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDEX (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) (INDICE DE PLASTICITÉ)							
w _L 9	5.5 %	wp	<i>33</i> ,	2	%	lp.	62.3	

	//0			
	/00 	95.5 %		-
(%)	90	· .	·	\
WATER CONTENT (%)	÷			

	NO. & DEPTION ET PRO	- "	No. TP	- 3	(7	7.0 m~	m)
	LIQUID LIM		,			TIC LIMIT TEST	
	(LIMITE DE	LIQUIDITI	E)		LIMITE	DE PLASTICIT	E)
TEST, NO.	NO. OF BLOV (NOMBRE DE CO		ER CONTENT IEUR EN EAU)	11	T. NO. L'ESSAH	WATER CONTE (TENEUR EN E	
1	34		44.0%	1		30.5	%
2	27		45.1%		2	30.6	%
3	21		46.1 %	:	3	30.8	%
4	15		47.6%				
5	8		49.9 %				
6			%	MEA (V,	N VALUE ALEUR OYENNE	30.6	
LIQUID (LIMITE I	LIMIT DE LIQUIDITÉ)		STIC LIMIT DE PLASTICI	τÉ)		ASTICITY INDEX CE DE PLASTICI	
w _L 4	W. 45.5 % WD 30.6 % 10 14.9						

45.5%

60

6 7 8 9 III 15 20 25 30 40 5 NUMBER OF BLOWS (NOMBRE DE COUP)

FOR REPORTING
(POUR LE RAPPORT)

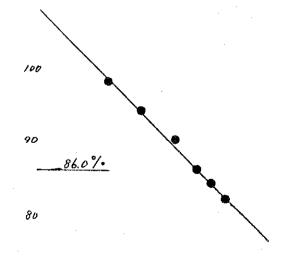
NAME OF SURVEY & LOCALITY
(DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE—ELE PROJECT

DATE
(DATE)

(ESSAI PAR)

WATER CONTENT (TENEUR EN EAU)


FLOW CURVE (COURBE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ)

	NO. & DEPTH ANTILLON ET PROF		No.	TI	> <u>-</u>	5 (3,0 m	m)
	liquid limit (Limite de L)				TIC LIMIT TE DE PLASTI	
TEST. NO. NO. OF BLOWS WATER CONTEL IN DEL'ESSAI) (NOMBRE DE COUP) (TENEUR EN EA							WATER CO (TENEUR E	
1	32		98,4	%		1 .	<i>30</i> ,	9 %
2	≥7		01,2	%	<u> </u>	2	<i>30</i> .	3 %
3	22	/	104.7 %			3	30.	0.
4	19		05.9	. 1				
5	14	1.	11.3					
6	10	l l	147	- 1		N VALUE NLEUR YENNE)		 خ
	LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDEX (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) (INDICE DE PLASTICITÉ)							
w _L 10	2.0 %	$w_{\mathcal{P}}$	30.S	-	%	lρ	71.5	

// 0	o	À	•		
160		02.0%		4.	
90	•				

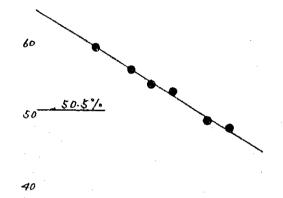
(N. DE T. EC	MANTILLON ET PRO	FON(DEUR) NO.	TF	' – (5 3	5.0 ^{m~}		m)
* ;	LIQUID LIM	IT T	EST	٠		PLAS	TIC LIMIT	TEST	
	(LIMITE DE	LIQ	UIDITÉ)	:		(LIMITE	DE PLAS	STICIT	ſÉ)
TEST. NO. (N°DE L'ESSAI)	NO. OF BLO (NOMBRE DE CO		WATER CO				WATER (TENEUR		
1	33		82.	2 %		1	31	3	%
2	29		83.	7 %	2		31	.3	%
3	<i>≥</i> \$		864	4 %		3	31	. 3	%
4	20		89.	6 %				:	-
5	14		94.	3 %					
6	10		98	3 %	MEA (Y	N VALUE ALEUR OYENNE	~	. 3	
	LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDEX (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) (INDICE DE PLASTICITÉ)								
w _i &	86.0 %	wp	31.	3	%	Ιp	54	7_	

SAMPLE NO. & DEPTH

FOR REPORTING (POUR LE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT


DATE
[DATE]

TESTED BY (ESSAL PAR)

> FLOW CURVE. (COURBE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ)

. 6 7 8 9 10 - 15 26 26 30 40 50

	LIQUID LIMIT	TES	T		PLASTIC LIMIT TEST				•
	(LIMITE DE I	.Ю UID	ITÉ)		(LIMITE DE PLASTICITÉ)				
TEST. NO. N'DE L'ESSA)				NTENT TEST, NO. (N'EAU) (N'DE L'ESSA					
1	36	47.	7 %		1	28.		%	
2	29		49.0 %		2		29.	4	%
3	20	.	52.9 %			3	29	8	0
4	16		542%						
5	/3		56	1 %					
6	9	59.			N VALUE NLEUR YENNE	29	2./	,	
LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDEX (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) (INDICE DE PLASTICITÉ)									
w _L 5	0.5 %	w_{D}	29	/	%	 Тр	21.4	 L.	

WATER CONTENT (%)

	NO. & DEP		EUR)	No.			· (m ~	m)
	LIQUID LIM)			_	TIC LIMIT T	
TEST. NO.	NO. OF BLO (NOMBRE DE CO							WATÉR ((TENEUR	CONTENT EN EAU)
1					%		1 .		%
2				%		.2		%	
3			%		ļ	3		%	
4					%	ļ		· · · · · · · · · · · · · · · · · · ·	
5					%			·	
6					%	MEA (M	N VALUE ALEUR OYENNE)	· · · · · · · · · · · · · · · · · · ·
LIQUID LIMIT PLA (LIMITE DE LIQUIDITÉ) (LIMITE				TIC LIF			Pl	ASTICITY I	,
wı	%	w_p				%	Ιp		

6 7 8 9 10 15 20 25 30 40 50 NUMBER OF BLOWS (NOMBRE DE COUP)

FOR REPORTING (POUR LE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

DATE (DATE)

TESTED BY (ESSAL PAR)

%

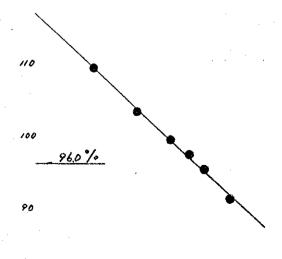
60.8

FLOW CURVE (COURBE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ)

_	NO. & DEPT		No.	TP	· (6 τ,	3,0 m		m)
	Liquid Limit (Limite de I		.)				TIC LIMIT E DE PLA		É)
TEST. NO. (N' DE L' ESSA!)	NO OF BLOW (NOMBRE DE CO					T. NO.	WATER (TENEUF		
1	36		86.	7 %		1	29	.4	%
2	27		88.	8.7%		2	2	8. <i>Z</i>	%
3	22	. .	90.7%			3	2	9.9	ºó
4	18	1		3 %	il.				
5	14	1		0%	1				
6	i ' I				ME.A	N VALUI ALEUR YENNE		9. z	
			STIC		_	1	PLASTICIT ICE DE PL	Y INDE	,

90,0% 80

29.2


%

%

90.0

 w_{p}

							WATER CONTENT TENEUR EN EAU)
	NO. & DEPTH IANTILLON ET PROFONO	DEUR) No. 7	ΓΡ	-6	5.0 ^{m~}	m)	WATE (TENE
	Liquid Limit 1 (Limite de Liq			ĺ	TIC LIMIT TEST	ſÉ)	
TEST, NO.	NO. OF BLOWS (NOMBRE DE COUP)	WATER CONT		TEST, NO.	WATER CONTE		
1	36	91.1	%	1	32.9	%	
2	28	94.5	%	2	32.8	%	
3	24	97.1	%	3	32.5	%	
4	20	98.5	%				
5	14	102.9	%				
6	9	108.8	%	MEAN VALU (VALEUR (MOYENNE	32.7		
LIQUID (LIMITE		PLASTIC LIMI IMITE DE PLAS		À	LASTICITY INDEX ICE DE PLASTICI		
w_{L}	96.0 % w	32.7		% Гр	63.3		

FOR REPORTING (POUR LE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

DATE (DATE)

TESTED BY (ESSAL PAR)

> FLOW CURVE (COURRE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ)

	NO. & DEPTH WATILLOW ET PROFONI	HUR) No. TP	-6	, · (<i>j</i>	'.O.O''' .	m)
	LIQUID LIMIT TE (LIMITE DE LIQU	PLASTIC LIMIT TEST (LIMITE DE PLASTICITÉ)				
TEST. NO N'DE L'ESSAI)	NO. OF BLOWS (NOMBRE, DE COUP)	WATER CONTENT (TENEUR EN EAU)	TES (N'DE		WATER CONTI	
1	33	88.1%		1	39.7	%
2	27	90,0%		2	39.6	%
3	18	93.7 %	<u> </u>	3	39.4	%
4	/3	97.2 %				
5	8	1025%				
. 6		%	MEAN VALUE			
LIQUID	LIMIT	PLASTIC LIMIT		ŧ	PLASTICITY INDE	

90 905% 90

SAMPLE NO. & DEPTH
(N' DE L' ÉCHANTILLON ET PROFONDEUR)

No. (m ~ m)

39.6

%

(LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ)

90.5

LIQUID LIMIT TEST PLASTIC LIMIT TEST (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) WATER CONTENT TEST, NO (TENEUR EN EAU) (N'OE L'ESSAI NO. OF BLOWS WATER CONTENT % 1 % % 2 % 2 3 % % 3 % 4 5 % MEAN VALUE VALEUR MOYENNE 6 % LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDEX (INDICE DE PLASTICITÉ) (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) wL % wp %

water content (Teneur En Eau)

%

(INDICE DE PLASTICITÉ)

50.9

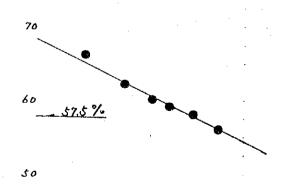
FOR REPORTING (POUR LE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

DATE (DATE)

TESTED BY (ESSAL PAR)


> WATER CONTENT (TENEUR EN EAU)

FLOW CURVE (COURBE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ) 5 6 7 8 9 10 15 20 25 30 40 50

SAMPLE (N° DE L' ÉC	Na.	TI	> _	7 (30m~		m)			
liquid limit test (Limite de liquidité)							PLASTIC LIMIT TEST (LIMITE DE PLASTICITÉ)			
TEST. NO. (N' DE L' ESSA)		NO. OF BLOWS WATER CONTENT (NOMBRE, DE COUP.) (TENEUR EN EAU			ENT EAU)	TE:	ST. NO. E L'ESSA!	WATER (
1	40		_ 8	3.Z	%		1	31.	0	%
2	3/		8	5.7	%		2	30.		%
3	25		8	9.6	%		3	3/.		%
4	22		9	1.3	%					
5	16			47						
6				8.6		MEA (V)	N VALUE ALEUR YENNE		7	- -
			PLAS	TIC LIA	C LIMIT PLASTICITY INDE PLASTICITÉ) (INDICE DE PLASTIC			INDEX		
$w_L = \delta$	6.5 %	wp	3	0.7	,	%	Ιp	<i>\$\$.8</i>		

90<u>86,5%</u>

SAMPLI (N' DE L' ÉCI	Na 7	Р	-7	, (5.0 m		m)		
LIQUID LIMIT TEST (LIMITE DE LIQUIDITÉ)						PLASTIC LIMIT TEST (LIMITE DE PLASTICITÉ)			
TEST, NO.	NO. OF BLOW (NOMBRE DE CO	ER CONTI	R CONTENT TEST			WATER (TENEU	CONTE		
1	3/		56.1	6.1%		1	28	3, <i>&</i>	%
2	24	\	57.5	%	2		28	3. 8	%
3			59.Z	%	3			8.9	%
4	16	i i	60.2	- 11				·	
5	12	- 1	62,3	- 11				·	
6			664	%	MEAN VALU (VALEUR (MOYENNE) 2	8.7	
(LIMITE DE LIQUIDITÉ) (LIMITE D			TIC LIMIT		É)		ASTICITY E DE PL	INDEX	rÉ)
w _L 5	7.5 %	w _p	28.7		%	Ιp	≥8.	8	

6 7 8 9 10 15 20 25 30 40 50 NUMBER OF BLOWS (NOMBRE DE COUP)

FOR REPORTING (POUR LE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

(DATE)

 w_{L}

TESTED BY (ESSAL PAR)

WATER CONTENT TENEUR EN EAU)

FLOW CURVE (COURBE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ)

	· · · · · · · · · · · · · · · · · · ·								
SAMPLE (N' DE L' ÉCI	No.	T	Ρ-	74	0.0 ^{m ~}	m)			
LIQUID LIMIT TEST (LIMITE DE LIQUIDITÉ)						PLASTIC LIMIT TEST (LIMITE DE PLASTICITÉ)			
TEST. NO. (N'DE L'ESSAI)	NO. OF BLOW (NOMBRE, DE CO	ER CONT	ENT EAU)	TES (N'DI	ST. NO.	WATER CON (TENEUR EN	ATER CONTENT NEUR EN EAU)		
<u>i</u>	36		56./	%		1	33,3	} %	
2	28		<u>\$8,2</u>	%	L	2	32.8	3 %	
3	22		60.0	%	3		33.2	. %	
4	19	i ·	61.1	٠.١					
5	14		634	%					
6	9	- 1	674	i		N VALUE ALEUR YENNE	33.	 /	
			STIC LI	MIT		F	LASTICITY IN	DEX	
w. 58	7 %	w _o	33 /		%	Ιp	756		

70	
60_58.7%	A REAL PROPERTY.
50	

SAMPLE NO. & DEPTH ((N' DE L' ÉCHANTILLON ET PROFONDEUR) LIQUID LIMIT TEST

PLASTIC LIMIT TEST (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) WATER CONTENT TEST, NO. (TENEUR EN EAU) IN DE L'ESSAI NO. OF BLOWS (NOMBRE DE COUP.) WATER CONTENT (TENEUR EN EAU) 1 % % 1 2 % 2 % 3 % 3. % 4 % 5 % MEAN VALUE (VALEUR (MOYENNE) % LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDEX (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) (INDICE DE PLASTICITÉ)

> w_{ρ} %

%

FOR REPORTING (POUR LE RAPPORT)

NAME OF SURVEY & LOCALITY (DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

MEMVE-ELE PROJECT

DATE (DATE)

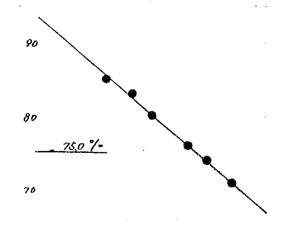
TESTED BY (ESSAL PAR)

%

WATER CONTENT (TENEUR EN EAU)

FLOW CURVE (COURBE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ)

5 6 7 8 9 10 15 20 25 30 40 50


SAMPLE (N'DE L' ÉQ	R) NaW	È	- L	<u>L</u> (5.0 m ~	mi)		
LIQUID LIMIT TEST (LIMITE DE LIQUIDITÉ)					PLASTIC LIMIT TEST (LIMITE DE PLASTICITÉ)			
TEST. NO.	NO. OF BLOV (NOMBRE, DE CO	ATER CONTE	NT AU)	TES (N'DE	T. NO. L'ESSA)	WATER CON (TENEUR EN		
1	32		95,0	%		1	33,8	%
2	26		97.5	97.5 %		2	34.6	%
3	zj		101.1	%	3		34.3	
4	77		106.1	%				
5	12		111.6	- 1				
6	9		119.5			N VALUE		<u> </u>
LIQUID LIMIT PLAS			LASTIC LIMI E DE PLAS	T.		F	PLASTICITY INC	ÆΧ
101 9	8.0 %	$w_{\rm p}$	34.2		%	Ιρ	63.8	

170 110 100 98.0°/-

SAMPLE NO. & DEPTH (N' DE L'ÉCHANTILLON ET PROFONDEUR)

No. WELL (8.0 m ~ m)

	Liquid Limit	PLASTIC LIMIT TEST			
	(LIMITE DE L	(LIMITE DE PLASTICITÉ)			
(N'DE L'ESSAI)	NO. OF BLOWS (NOMBRE DE COU		TEST. NO.	WATER CONTENT (TENEUR EN EAU)	
1	36	70.8 %	1	32.8 %	
2	28	74.1 %	2	32.7 %	
3	23	76.4 %	3	32.6 %	
4	16	79,5 %			
5.	/3	82.8 %			
6	10	84.6 %	MEAN VALI VALEUR MOYENN	32.7	
LIQUID (LIMITE D		PLASTIC LIMIT (LIMITE DE PLASTICI)	PLASTIC LIMIT PLAST (INDICE (INDICE (
w_{L}	75.0 % u	00 32.7	% 10	42.3	

FOR REPORTING (POUR LE RAPPORT)

NAME OF SURVEY & LOCALITY
(DÉNOMINATION DE L'ENQUÊTE ET LOCALITÉ)

DATE
(DATE)

MEMVE—ELE PROJECT

TESTED BY
(ESSAI PAR)

FLOW CURVE (COURBE DE DÉTERMINATION DE LA LIMITE DE LIQUIDITÉ)

SAMPLE (N° DE L' ÉCH	No. C	UE	L	Ly	1.0 ^{m ~}		m)		
LIQUID LIMIT TEST (LIMITE DE LIQUIDITÉ)					PLASTIC LIMIT TEST (LIMITE DE PLASTICITÉ)				
TEST. NO. N'OE L' ESSA!)	NO OF BLOW (NOMBRE, DE CO	ER CONT NEUR EN I				WATER CO			
1	32		57.0 %			1	33	3	%
2	26	- 1	584		2		33.	7_	%
3	2/		<i>5</i> 9.8			3	33.	4	%
4.	15		61.6						
5	10		65.3	%					
6				%	MEA (V) (MO	N VALUE VLEUR YENNE		5	
			ASTIC LI DE PLA		τÉ)		PLASTICITY CE DE PLA		
w _L 5	8.5 %	wp	33.5	-	%	lρ	25.0		

50

S S WATER CONTENT (TENEUR EN EAU)

%

SAMPLE NO. & DEPTH (m ~ (N'DE L'ÉCHANTILLON ET PROFONDEUR) LIQUID LIMIT TEST PLASTIC LIMIT TEST (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ) NO. OF BLOWS WATER CONTENT TEST. NO (NOMBRE DE COUP) (TENEUR EN EAU) IN DE L'ESSA! WATER CONTENT (TENEUR EN EAU) TEST. NO. % % 1 1 % % 2 2 % % 3 3 % % 5 % 6 LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDEX (INDICE DE PLASTICITÉ) (LIMITE DE LIQUIDITÉ) (LIMITE DE PLASTICITÉ)

%

 w_{\perp}

en programme de la companya de la c La companya de la co

