	1986 PBO	48	1	44	29		59	24	27	58	22	37		-	-	85 85	87 87	206	54	42	16	26	44	46	87	111	00	04 04	20 8	28	38	40	102	88	85	117	63	105	63	352	55	38	104
NO. 01 DOUSE	1385 MQA	59	6	53	19		52	22	24	80		64	10	123	(240)		57	197	29	40	103	21	40	46	53	88	40 U	50 0	00	32	42	45	112	110	73	39	74	100		345	50	24	87
	Irrigation Zone	AES	AE3	AE5	AES		AE4	AE4	AE2	AE3	AE3	AEI	AE2	AE3	AE5	AED	100	AE7	HEI	HE3	HEI	ÅES	HE4	AE5	HE4	AE3	AC/ UEO	720	AE3	HE4	HE3	HE2	HE3	AE3	HEI	HE3	AE5	AES	lie3	HEI	HE2	AE6	HE2
~	Irrigation District	ÅÊ	AE	AE	AE	AE	AE	HE	HE	AE	AE	HE	HE	AE	AE	AE	AL AL	AE AE	ΞH	HE	HE	AE	HE	AE	HE	AE	AL	21	AE A	EH	H	HE	HE	AE	HE	HE	ÅE	AE	HE	HE	HE	AE	HE
Nut LINUAL COULS	Rural Cooperative	RC010		-	RC010	RC010		RC011	RC012	RC013	RC013	RC013	RC013	RC014	RC010	RC010	Dro19	RC011	RC013				RC011	RC012	RC011	RC014	20000	CUUN			RC012	RC005	RC012	RC014	RC005	RC007			RC007	RC009	RC012		RC005
- F	Rural Service Center	SC004	SC004	SC004	SC004	\$000K	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SCU04	*none	SC004	SC004	SC004	SC004	SC004	SC004 -	SC004	SC004	SC004		50004	30004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004
	Dehstan	DN005	DNOOS	DN005	DN005	DN005	DNCO5	DN005	DN005	DN005	DN005	DN005	DNOO5	DN005	DN005	DNU05	DNDOF	DN005	DN005	DN005	DN005	DN005	DNOOS	DN005	DN005	01005	CUUND	DUDU5	0N005	DN005	DN005	DNOO5	DN005	DN005	DK005	DN005	DN005	DN005	DN005	DN005	DNOO5	DN005	DN005
	VILLAGE NAME	Abdangsar	Abulhassanabad	Abu Mahaleh	Aspahi Kola Olia	Aspahi Kola Sofla	Aspiari	Eski Mahaleh	Ashrafabad	Ashkar Kola Sofla	Ashkar Kola Olia	Allu:	Aminebad Surak	- I	F.	Ahangar Kola Sofia	Bar IN Maria Jell	Banser Kola	Bur Manaleh	Bish Mahaleh	Pasha Kola	Papin	Palham Keti	Tazehabad	Tanha Kola	Tarvijan	Jali Kola	Unaren	Hajiabad Hajiabad	Hassanabad	Hosseinabad	Diyu Kola	Dangpia	Dotireh	Darzi Kola	Darvish Kheil	Div Kola Sofla	Div Kola Olia	Dieh	Rash Kola	Reisabad	Ziar Kola	Sefiddarbon
	VILLAGE CODE	015131	015132	015133				015136	015137	015138	015139	015140	015141	015142	015554	015553	015145	015146	015148	015149	015151	015216	015152	015154	015156	015559	015159	015316	015561	015164	015165	015167	015168	015169	015319	015320	015170	015171	015172	015323	015174	015175	015301

	1	÷.,	d.							, ¹ .		÷.,			•••				-		نست							:		•	<u></u> .		. :	•	1.				:			۰ ب	÷		
-0	1986 PBO	12	35	67	69		136	61	15	24	38	6	137	27	114	13	18	-	37	96		134	98	109	59	32	280	1	17	85	112	50	54	33	39	26	17	56	74	51	112	47	206	61	
No. of househol	1985 MOA	12	23	33	53		138	19	71	23	36	10	120	27	110	÷.	74	54	36	80	55	140	38	80	58	39	315	20	20	84	94	53	53	34	38	25	1	57	57	53	1	41	235	19	
	irrigation Zone	HE4	AES	AE2	AE5	AE5	AE3	AE2	HE3	HE4	AE5	AES	HEI	ÅE3	AEG	HE3	AE6	HEI -	HE3	AES	AES	AE5	AE3	AE5	HEI	AE4	AE4	AE6	AE3	HE4	HE4	HE3	AES	AE6	HE4	HE3	HE2	AE4	AEG	AE3	AES:	HE3	AE3	HE2	
ъI	Irrigation District	끩	AE	HE	AE	AE	AE	HE	HE	HE	AE	AE	HE	AE	ÅE	HE	AE	HE	HE	- AE	AE	AE	HΕ	AE	HE	AE	AE	AE	AE	HE	HE	HE	AE	AE	HE	HE	HE	ÅE	AE	AE	AE	HE	AE	HE	
REFERENCE CODE	Rural Cooperative			RC013			RC013	RC010	RC012		RC014		RC013.	RC013	RC010		RCOID	RC005	-	RCOIO	RC010	RC014		RC013	RC013	RC010	RC014	RC007		RC011	RC011	RC012	RC011	RC011		RC012		RC010	RC007	RC013	RC013	RC007	RC014	RC005	
1	Rural Service Center	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004 5	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004		SC004	SC004	SC004		SC004	SC004	SCU04	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	SC004	
	Dehstan	DN005	DNCOS	DN005	DN005	DN005	DN005	DN005	DN005	DN005	DN005	DN005	DN005	DN005	DNDO5	DNODE	DNOOS	DN005	DNDO5	DN005	DN005	DN005	DN005	DN005	DNOOS	DN005	DN005	DN005	-DN005	DN005	DN005	00012	DN005	DN005	DN005	DN005	DNDO5	DN005	DN005	DN005	BN005	DN005	DN005	DN005	
· Î	VILLAGE NAME	Soltanabad	Sangar	Surak	Shaneband(01ia)	Shaneband(Sofla)	Shah Keti	Shah Kola	Shar iatabad	Shahr Keti	Sorat Kola	Taherabad	Tcoleh Kola	Azizabad	Cheis Kola	Challa Keti	Ghara Kola	Kord Kheil	Kashi Mahaleh	Korsi Kola Sofla		8	Kaliksar	Kamangar Kola	Galesh Kola	Mahut Kola	Marzangu	Majidabad	Mahammadabad	Motaher Sofla	Motaher Olia	Hamrez Keti	Muzi Keti Sofla	Muzi Keti Olia	Muss Mahalen	Mianrud	Naserabad	Najjabad	Narges Marz	Valik Sofla	Valik Olia	Yaskol	Yaskus	Heshtal Bala	ł.
	VILLAGE CODE	015177	015215		015180								015331		<u> </u>		-		015130	1		015585		015197	••••	015200					015203		;									015357			1

			REFERENCE CODE	0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	No. of household	- 1
YILLAGE NAME	Venstan	Kural Service Center	Kural Cooperative	District	Irrigation Zone	C851	1385 PBO
Heshtal Poin	DN005	SC004	RC005	HE	HE1	110	176
100	aleh DNDO5	SC004	RC007	HE	HE4	84	1
Yusefabad	DN005	SC004	RC013	AE	AE3	26	29
Ahangar Kola	DN006	SC004		Å	A#8	47	52
Absaraft	DNODE	5004	RC013	HE	HE1	36	34
ESK1 Manalen		50005	KUU16	L H	HTD HTD	211	110
UJIEDEG		chuo chuo	4rn1p		UTD.	TDS	101
ASHE MONEAREDUC		SCOOF	Dr010	M 1	0.81	06	00
Pen Vati	DNUDR	SCOOF	51003	a H	2 Sec	20°	76
Bish Mahaleh	DNOO6			8 Y	AYG	40	
Pasha Kola	DNOUG	SC005		Å	AWS	52	52
Pasha Kola	DNODE			HE	HEI	(195)	33
Polkiadeh	DN006		RC013	AE	AEI	52	57
Tokaran Farz	DNODE					1	
Tamsak	DNOOB	SC005	RC017	AW	A#9	12	14
Jamshidabad	SOOND -	SC004	- RC017	- AE	AEI	52	58
Jafarabad	DNOOB	SC005	RC016	AW	AW8	37	99
Jin-mod Factory	900NG			AE		1	
Hosseinabad	DNOOE	SC005	RC016	H	R#5	22	25
Kharab Mianrud	DNDO6	SC005		ÅŸ	A¥8	17	15
Rafiabad	DNOOG	SC005	RC017	ÅË	A#S	27	73
Zaghdeh	BNDDB	SC005	RC018	AW	AW7	69	99
Sang Keti	DN006	SC002	RC021	H¥	H#G	55	58
Sang Bast	DN006	SC005	RC017	AW	A#9 .	75	81
Seiddin Kola	DNOOE	SC005	RC017	AW	A#8	62	52
Rudbar	900NG		RC018 -	AW	AW7	165	162
Sharm Kola	900NG - 1	SC004	RC013	HE	HE1	101	100
Sheikhabad	DNCOG	SC005		AW	A NO	49	47
Salla Keti Farm	DNDOG					1	1
Aali Kola Ahi	DN006		RC013	AE	AE5	135	141
Farahabad	DN006	SC004	RC017	AE	AEI	•	11
Ghadi Mahaleh	DNOOE	SC005	RC016	#H	HWG	86	81
Ghorogh	DN006		RC016	НЖ	ÂŬ	85	85
Kamangar Kola	900NC			HE	HEI	230	199
Kelikan Olia	DNOOE	SC005		AW	AW8	80	24
Kelikan Sofla	DNOOE	SC005 -		AW	AW8		34
Kols Mahaleh	DNOOB	SC005	RC016	HH .	HWG	20	22
Kohnehdan	DNOOB		RC013	AE	AE2	120	103
Lati Kola	DN008	SC004	RC013	AE	AEI	40	40
Kola Safa	DN005	SC005	RC016	HW	HWS	98	117
Kerati	DNOOS	SC004	RC013	ÅE	AEI	15	8
Masumabad	DND06	SC002	RC016	Н	H¥6	65	60
Mohandis Farm	DNOOB					1	
Mignrud	DN006	SCOR	RC017	199	337		Q

:

		:	4	REFERENCE CUDES	_ I		No. of nousehold	- 1
VILLAGE CODE	VILLAGE NAME	Dehstan	Rural Service Center	Rural Cooperative	Irrigation District	Irrigation Zone	1985 MOA	1986 PBO
015212	No Kola	DN006	SC005		Å W	A#8	72	11
015211	Nodeh	DNOOE	SC005	RC016	ÅŸ	AW8.	45	4
015213	Hereh Pak	DNDO6	SC005	RC016	AW	AW8	13	14
015428	Hematabad	DNDOG	SC005	RC018	AH .	A WS	35	38
015472	Abad Mahaleh	DN007	SC002	RC019	AW	A#4	•••••	113
015473 **	NIOC Camp	DN007			AW	AFF3	1	21
015474	Azadmun	DN007	SC002	RC020	AW	A#3	300	311
015475	Ahlam	DN007	SC002	RC020	AR	A W 3	215	218
015476 **	Ahu Mahaleh	700ND			AW	A#4	66	88
17	Birjandeh	DN007	SC002	RC020	¥₩	AW1	165	18
- 82	Bulideh	DN007			ΗН	H¥4	1	45
015479	Bundeh	700ND	SC002	RC020	A¥	ATC.	95	10
015667	Bayudeh Dlia	DN007	SC002	RC021	A.W.	A WG	96	105
015666	Bayudeh Sofla	DN007	SC002	RC018	A¥	A'NG .	75	8
015480	Taj Kenar	200ND	SC002	RC020	A¥ .	AW3	1001	5
015482	Tarsîab	DN007	SC002	RC019	A W	7#4	- 71	9
015483	Tashbandan	DN007	SC002	RC019	AW	5#Y .	1	35
015484 **	Talik Sar	DN007			AW.	784 784	163	10:
015485	Juni Kola	DN007	SC002	RC021	AW.	A#4	81	-00
015487	Hassanabad	DN007	SC002	RC021	Н¥	HWS	35	3
015489.	Kheshtsar	DN007	SC002	RC020	ÄW	AWI	280	260
015490	Khordon Kola	700ND	SC002	RC021	AW	A W 3	120	113
015675	Zangi Kola	DN007		RC021	AW	ANG	103	121
	Sayuja	DN007		-	AN		I	
015493	Saiar Kola	DN007	SC002	RC019	AW	AN3	143	134
015494	Sherafti	DN007	SC002	RC020 -	AW	AW1 -	09	63
95	Shurstagh	DN007	SC002	RC020	Å٣	AWI	50.1	43
015496	Shumia	DN007	SC002		ÅŘ	A¥2	203	183
197	Talaran	DN007	SC002	RC021	ЯН	HW4	72	80
015498	Esheghabad	DN007	SC002	RC021	ÅŸ	A WG	56	ŭ
015499	Ghassab Keti	DN007	SC002	RC016	HY	HW5	97	116
200	Karchak Larijani	DN007	SC002	RC021	HW	HWG	55	56
501	Karchak Navai	700ND	SC002	RCOIE	HH	5#H	48	45
015502	Kuldeh	DN007	SC002	RC016/RC021	жH	5 9#H	220	166
	Kahlu Kaj	DN007	 SC002 	RC021	AH H		1	
504	Galesh Pol	DN007	SC002.	RC019	AR	AN3	175	171
015505	Gelird	DN007	SC002	RC021/RC012	HH -	H¥4	153	156
015506	Gilapei	DN007	SC002	RC021	AW	ANG	92	110
015508	Mir-alandeh	DN007	SC002	RC021	H¥	H¥4	132	101
015509	Namusdeh(Eslamabad)	DN007	SC062	RC016	MH.	145	103	107
015684	Naserabad	DN007	SC002	RC021	Α₩	A¥G	- 35	4
015510	Yusefabad	700NG	SC002	RC019	AF	A \$3	135	98
015550	Abulhassenebad	DN008	SC005	RC022	AW	A#9	60	58
			20000					

	Denstan
SC005	
	-
SC005	
SC005	
	I
SC005	
scub	
SCUUD	
20000	
20000	
20005	
CLUTE .	
SC005	
SC005	
SC005	
SC005	1
SC005	
SC005	<u>ا</u>
SC005	1
SC005	
20002	
coose	
SCOUS	
20005	
SC005	
-	
	Ł
SC005	1
SC005	
SC005	
SC005	+
SC004	1-
SC005	1
SC005	t
	+

			REFERENCE CODE			I NO OF HOWSPH	t
VILLAGE NAME	Dehstan	Rural Service		Irrigation	Irrigation	1985	1986
Alevi Kola Nir	DNDA	AGII (61	PCD25	- 19 CC	9007 7#0	RUA 10E	LBU
b Sof	500NQ	SC004	RC014	AE	A E 3	150	155
Kechab Olia	DNCO9	SC004	RC014	ΑĒ	AEd	115	122
Kechab Kulva	DN009	SC005	RC014	ÅE	AE3	179	140
Kons Marz	DN009	SC004 -	RC025	Α¥	6#V	65	
Gol Mahaleh	DN009	SC004	RC024	AE	AE3	127	104
Marich Mahaleh	DN009		RC024	AE	AE3	400	353
Molla Kola	DN009	SC005	RC022	ÅŴ	AW9	300	294
Mirdeh Sofla	0000 DN009	5C005	RC025	AW	A¥9	28	31
Mirdeh Olia	DN009	SC005	RC025	ÅŴ	AWS	36	34
Varza Mahaleh	DN009	SC006	RC024	AE	AE3	150	158
Ezbaran	DIONO	SC006	RC015	AE	AE4	408	366
Asbu Kola	DIONO	SC006		AE	AE8		
Bozorg Bisheh Mahaleh	DN010	SC006 -		AE	AEG	290	223
Boneh Kenar	DIOND	- SC006	RC015	AE	AE4	215	179
Binamad	DIONO	SC006		AE	AE6	132	67
Jazin	DIONG	SC006	RC015	AE	AE7	75	76
Zahed Kola	DIONO	SC006		AE	AE8	76	18
Darzi Mahaleh	DIONO			AE	AE9		32
ahrak Farzadshahr	DIONO	SC006.		AE	AE3	í	14
Shira(Hosseinabad)	DIONO	SC006		AE	AE3	10	58
Shir Mahaleh	DN010	SC006	RC015	AE	AE4	400	320
Tooleh Sara	DN010	SC006	RC015	AE	AES	52	38
Kardgar Mahaleh	DIONO	SC006	RC015	AE	AE4	325	314
Kuleh Sara	DIOND			AE		1	
	DNOIO	SC006	RC026	AE	AET	75	77
Kuchak Bisheh Mahaleh		SC006	RC014	AE	AE4	183	144
Mangharpei	DN010	- SC006	RC026	AE	AEG	120	104
hlban	DIOIO	SC006	RC026	AE	AEG	275	252
Mianbal	DN010			AE	AES	46	49
Navai Mahaleh	DNOIO	SC006		AE	AE4	235	228
Gjaksar	DNOLL	SC007	RC027	AE	AEII	330	372
Heidar Kola	DN011	SC006	RC026	AE	AE7	35	93
Khaneh Dariai	TIOND			AE		-	•
Rudbast	I I ONO		RC027	ÅË	AE11	-	44
Saadat Mahaleh	DN011	SC007	RC027	AE	AEII	197	163
Suteh	1 I ONO	SC006	RC026	AE	AET	332	311
Shahrak Dariasar	DN011	SC006		AE	AEII	-	20
Shahrak Daria Kenar	DNOII	SC006		AE	AELI	1	324
Shahrak Khazar Shahr	DN011	SC006		AE	AEII	-	136
Sharmeh Kola	DN0.11	SC006		AE	AE9	14	74
Askarnia	I I ONG			AE	AEII	Í	8
Fern	DNOIL	SC006	RC026	AE	AET	170	182
Firuzabad	I LONG -	SC006		ÅE	AE11		107
Gavzan Mahaleh	DNO11	SC007	RC027	31	1 111		010
			10001	Ab	AGLI.	1000	610

																				: '		:-						
	•				1	127	55	154	235	137	135	51	73	24	9	88	512	137	9 <u>9</u>	271		75	88	11	377	256	91	
			1986	P80														-										
		of household	1985	Y		1	28	140	235	110	135	45	1	27	38	95	535	126	75	250	1	90	84	64	50	300	95	
		No.	SI S	N.					.*	- 																		
			Irrigation	20ne		AEII	AEII	XL5.	AELI	AE9	AEIO	AEII	AE11	KL5	AEII	AEII	AEII	AEII	KL5	AEI1	AEII	AEII	AEII	AE9	KL5	KR5	KR5	-
			Irrigation	UISTLICT	AE	AE	AE	HE	AE	AE	AE	AE	AE	HE	AE	AE	AE	AE	HE	AE	AE	AE	AE	AE	HE	ЯЕ	HE	
		REFERENCE CODES	Rural	Vooperative	· · ·	RC027	RC027	RC028	RC027	RC033	RC033	RC028		RC028	RC027	RC027	RC027	RC027	:	RC028	RC027	RC028		RC033	RC030	RC029	RC030	
			Rural Service	renter		SC007	SC007		SC007	SC007	SC007	SC007	SC007		SC007	SC007	SC007	SC007		SC007	SC007	SC007	SC007	SC006	SC008	SC008	SC008	
			Dehstan		DN011	DN012	DND12	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN012	DN013	DN013	DN013	
			VILLAGE NAME		Nurandaz	Armich Kola	Esfandiar Mahaleh	Barik Kola	Khoshkrud	Dughi Kola	Raz Kenar	Rekun	Seid Mahaleh	Shamshir Mahaleh	Ghadî Mahaleh	Kari Kola	Kalleh Bast	Kikha Mahaleh	Galleh Kola	Fulad Kola	Lari Mahaleh	Mashahdi Kola	Nosrat Kola	Valikrud Posht	Asbu Kola	Agha Malek	Aktij Kole	
•	P.10		VILLAGE CODE VILLAGE NAME			015854		016913							015862					016945				•			017017	

53	10	13	6.01	1	2		0	51	13	9	27		2	æ	<u></u>	37	25	6		
•																	:			
235	110	135	45	1	27	38	95	535	126	75	250	I	90	84	64	50	300	95		
-	1.1. J.																			
AELI	AE9	AE10	AEII	AEII	XL5	AELL	AEII	AEII	AEII	KL5	AEI1	AEII	AEII	AEII	AE9	KL5	KR5	KR5	-	
AL	AE	ÅE	AE	AE	HE	AE	AE	AE	AE	HE	. AE	AE	AE	AE	AE	HE	HE	HE		
KU027	RC033	RC033	RC028		RC028	RC027	RC027	RC027	RC027		RC028	RC027	RC028		RC033	RC030	RC029	RC030		

				NEFENENCE CUUES			NO. OI NOUSENOID	
VILLAGE CODE	VILLAGE NAME	Dehstan	Rural Service Center	Rural Cooperative	Irrigation District	lrrigation Zone	1985 M0A	1986 P80
017018	Allah Chal	DN013	SC008	RC029	ΞH	KR4	137	159
017019 *	Allah Rudbar	DN013	SC008	RC031	VCKL6	VCKL6	1	277
017059 *	Ahangar Kola	DN013			VCKR4 .	VCKR4		48
017020 *	Baba Abad	DN013	SC008	RC030	VCKL6	VCKLG	1	31
017167	Babulkan Sofia	DN013	SC010	RC031	HE	KL4	35	35
017168	Babulkan Olia	DN013	SC010	RC031	HE	KL4	88	68
017169	Baziar Bala	DN013	SC008	RC029	НE	KR4	152	160
017170	Baziar Poin	DN013	SC008	RC029	HE	KR⊄	220	235
016917	Buleh Kola	DN013	SC008		HE	KL6	140	118
017171	Bala Ahmad Chalehpei	DN013	SC008	RC029	HE	KL3	235	250
017021	Poin Ahmad Chalehpei	DN013	SC008	RC029.	HE	KR5	305	218
016923	Tork Mahaleh	DN013	SC008	RC032	HE	KLG	200	191
017176	Chenarbon	DN013	SC008	RC029	НĒ	KL3	170-	143
017022	Hamzeh Reza	DN013	SC008	RC029	НE	KR4	36	33
017028	Hamzeh Kola Shish Pol	- DN013	SC008	RC030	- 3H	KR5	230	206
017179		DND13		RC035	HE	KL4	10	66
017023	Khorassan Mahaleh	DN013	SC008	RC030	HE	KR4	320	263
017180	Khateb	DN013	SC008	RC029	HE	KL3	93	12
017025	Delavar Kola	DN013			HE	KR5	120	120
017181	Davud Kola Astanehsar	DN013	SC008		HE	KL3	113	92
017024	Derzi Kola Agha Shafii	DN013	SC008	RC029	HE	KR4	230	190
	Darzi Kola Nurshirvan Kola						1	1
017184	Darvish Khak Bala	DN013	SC008 -	RC030	HE	KL6	129	138
	Darvish Khak Poin	DN013	SC008	RC030	HE	XL6		
	Rekaj	DN013	SC008	RC029 -		KR4	3	•
017185	Rangerz Kola	DN013			HΕ	XL4		G
	Zahed Kola	DN013		RC029	HE .	KL3	106	<u>95</u>
017026 *	Saadat Mahaleh	DNU13		1 KUUSU	YUXK4	VCKK4	1.9	08
017027	Shasb Kola	DN013			VCKR4	VCKR4	¢	
01/030	Shelkh manalen	DNU13		00000	36	AK4	00	
01/182	lorgnoni Kola Chassah Amir	DND 13	00000	EZNOV	ac TH	VCKR6	20	95 95
A17093 *	Ghassab Kola Zaikan	DN013			VCKR4	VCKR4		102
017032	Chassab Kola Miandeh	DN013			HE	XR4	54	82
017094 *	Ghozi Kola	DN013			VCKR4	VCKR4		158
017031 *	Aali Zamin	DN013			VCKR4	VCKR4		80
017192	Kazem Beigi	DN013	SC008	RC029	HE	KL3	88	84
017196	Carmich	DN013	SC008	RC030	HE	KL4	54	46
761710	Gol Mahaleh	DN013	SC008		HE	KL3		51
017200	Laluk	DNO13	SC008	RC029	HE	XR4	38	68
016953	Mati Kola	DN013	SC008	RC032	HE	XL6	220	186
017202	Mazafar Kola	DN013	SC008	RC029	HE	KL3	80	58
017034	Naghorechi Mahaleh	DN013			VCKL6	VCXLS	1	171
								4

			1	NULL DIVIDING COULD			51000001 10 · 01	
VILLAGE CODE	VILLAGE NAME	Dehstan	Rural Service Center	Rural Cooperative	lrrigation District	Irrigation Zone	1985 MOA	1986 PBO
017206	Varaton	DN013	SC010	RC031	HE	XL4	114	88
017207	Yashi Kola	DN013		RC029	ΗE	KR4	. 09	52
016910	Archi	DN014	600JS	RC033	AE	AE10	120	131
017163	Ard Kola	DN014	SC009		HE	KL4	145	161
016911	Asbushurpei	DN014	SC009	RC034	AE	AE8	180	178
017166	Inanabad	DN014	SC010		HE	KL3	268	285
017165	Andi Kola	DN014	SC010	RC034	HE	KL3	260	223
016914	Barseminan	DN014	SC010		HE	KL5	190	204
016915	Basera Bala	DN014	SC009	RCO36	ΗE	KL4	140	186
	Basera Poin	DN014	SC009	RC036	HE	KL4	75.	
016916	Buleh Kola Marzanabad	DN014		RC036	· · HE	80		- 21
016920	Bizi Kola	DN014	SC010 -	RC034	HE	HE5	225	197
016918	Pahnahvar	PN014	SC010	RC034	AE	AE8	45	44
016919	Picha Kola	DN014	SC009	RC036	HE	KL4	250	194
016921	Tajaldoulleh	DN014	SC007	RC036	ÅE	AEII	46	34
016922	Tajnak	DN014	SC010	RC035	HE	XL4	250	218
017172	Tari Mahaleh	DN014	SC010		HE	HE5	80	33
016924	Talikaran	DN014	SC009	RC033	AE	AE10	250	210
017175	Chamazin	DN014		RC035	HE	KL5	95	105
017178	Hiji Kola Lalehabad	DN014	SC010		HE	KLG	132	132
016926	Khordon Kola	DN014	SC010		HE	KLG	180	171
016928		DN014	SC010	RC035	HE	KL4	100	38
017182		DN014	SC010		HE	HE5	149	155
016929	Darzi Kola Karim Kola	DN014	SC009		AE	AE9	100	150
017183	Darzi Kola Kuchak	DN014	SC010	RC034	HE	HE5	35	33
016930	Darvish Kheil Marzanabad	BU		RC036	HE	BU	180.	146
016932	Dahak	DN014	SC010	RC036	HE	KLG	100	119
016933	Rah Kola	DN014	SC009	RCO36	HE	KL5	80	75
016937	Zargar Mahaleh	DN014	SC010		HE	KL4	85	64
016938	Sarvan Mahaleh	DN014	SC010	RC035	HE	KL4	28	27
016939	Sangchi	DN014	SC010	RC034	HE	HES	45	46
016940	Shareh	DN014	SC009	RC033	AE	AE9	130	139
016944	Shahid Abudallah	DN014	SC009	RC034	AE	AE9	110	22
017188	Shariat Kola	DN014	 SC009 		. HE	HE5	1	132
016941	Shariat(Shah)Kola Karim Kola	DN014	SC010	RC033	AE	AE9	36	71
017191	Aliabad	DN014	SC007		НE	HE5	70	73
017190	Toghan	DN014	SC009	RC035	HE	KL4	30	97
016946	Ghadi Kola	DN014	SC009		ÅE	AEIO	112	113
	Ghassab Kola	DN014			HE		-	-
016948	Keti Sar	DN014	SC009		HE	KL5	73	79
016949	Kalangah	DN014	SC009	RC035	ÅE	AE9	115	87
	Karfu Kola	DN014	SC009	RC033	AE	AE9	64	ſ
016925	Karim Kola Tavakol	DN014	SC009		AE	AE9	22	20

			i i i i i i i i i i i i i i i i i i i	REFERENCE CODES			No. of household	old
LAGE CODE	VILLAGE CODE VILLAGE NAME	Dehstan	Rural Service	Rural	Irrigation	Irrigation	1985	1986
			Center	Cooperative	District	Zone	MOA	P80
017194	Kuru Kola Poin	PN014	SC010	RC028	HE	KL3	200	136
017195	Kamangar	DN014	SC010	RC036	ЯE	KL5	120	124
016950	Gardan Bari Olia	DN014	SC009	RC035	HE	KL4	123	11
017199	abad	DN014	SC010	RC034	HE	HES	26	25
016952	Motekeh	DN014	SC010	RC035	HE	KL4	81	87
017203	Monas Kola	DN014	SC010	RC035	HE	XL4	87	69
016954	Merzbel	DNOI4	SC009		ЗH	XL4	88	0
017201	Mosir Mahaleh	DN014	SC010	RC034	HE	KL3	63	67
016956	Muzirij Astanehsar	DN014	SC010	RC036	HE	BU	520	200
016957	Miandasteh	DN014	SC010	RC034	HE	1 XL3	110	11
016958	Mianrud	DN014		RC036	HE	KL5	25	22
016959	Nodehak	DN014	SC010	RC034	AE	AE7	113	11
017204	Navai Kola	DND14	- SC010	RC034	HE	KL3	150	122
018960	Nei Kola	DN014	SC009		HE	KL5	45	4
016962	Halel Kola	DN014	SC010	RC034	HE	HE5	141	158
	Vish Mahaleh	DN014	SC009	RC034	HE			
017033	Najjar Mahaleh	DNOIS			VCKLG	VCKLG		43

TABLE D. 3-2 OUTLOOK OF RURAL COOPERATIVES IN THE PROJECT AREA

<u>DEHSTAN</u> (AMOL AREA)	NAME OF COOPERATIVE	LOCATION OF CENTER	NO.OF MEMBER	CAPITAL	NO. OF MEHBER Villages
Bala Khiaban Latikuh	Golestan	Darazan	1, 135	RIS 46, 566, 000	25
Poin Khiaban Latikuh	Aghuzbon	Aghuzbon	1, 372	74, 632, 000	15
	Pishru	Hosseinabad	2,027	87, 118, 950	25
Dabu Junubi	Dabu	Marzangu	2,209	58, 875, 200	16
	Taher	Hotaher	924	38, 413, 000	19
	Esfand	Hosseinabad	855	36, 478, 400	11
	Etemad	Div Kola	1, 330	46, 419, 300	19
	Aresh	Surak	1,837	83, 047, 150	22
Dashtsar	Vahadat	Pasha Kola	1,636	79, 680, 250	12
Publicat	Nima	Keti Posht	1,529	74, 188, 100	11
•	Vali Asr	Ghaleh Kosh	1,071	39,005,350	13
	Bahaman	Ejibar Kola	753	49,045,950	3
	Hendu Kola	llendu Kola	985	58, 203, 300	12
Harazpei Junubi	Resalat	Ghadi Mahaleh	1, 501	82, 768, 700	24
	Haghighat	Rudbar	1, 166	53, 375, 850	24 12
	Hontaz	Sangbast	622		
Ahlamrostagh	Taliksar	Taliksar	1, 702	36, 319, 200	10
Alluarostugi	Payam	Azadmun	1, 102	55,690,150	11
	Tohid	Kuldeh		56, 827, 250	8
Dabu Shomali	Omid	Alavi Kola Hir	1, 332	66, 591, 100	14
	Ettehad	Sorkhrud	879	44, 685, 300	9
	Molla Kola		2, 150	70, 946, 450	16
MEAN (TOTAL)	nulla Nula	Molla Kola	2,248	58,931,700	16
(BABOLSAR AREA)			1, 340	58, 500, 000	(321) 14
Emamzadeh Abudollah	Deh Feri*	Kandran Habalah	1 007	10 000 700	0
Barikrud	Khazar	Kardgar Mahaleh Suteh		49,960,700	9
Rudbast	Rudbast		1,645	56, 378, 550	12
MEAN (TOTAL)	nuubast	Kaleh Bast	2,961	118, 522, 850	26
(BABOL AREA)			2,071	74,954.000	(47) 16
Karipei	Azadi	Zangan Hahalah	0 0 0 0	70 044 000	0.0
Natipei	Pishru	Zargar Mahaleh	2,230	76, 314, 600	22
		Darzi Kola Bozo		93, 072, 050	22
	Hadaf	Barsennan	2, 312	126, 568, 400	15
Lalababad	Hafez Dol Apponi	Ghadi Kola	1, 724	52, 504, 100	17
Lalehabad	Pol Ansari	Ahmad Chalehpei		104, 019, 600	17
	And i sheh	Tork Mahaleh	1,680	71, 716, 950	12
NEAN (TOTAL)	Asbu Kola	Asbu Kola	1,802	84, 920, 200	10
MEAN (TOTAL)			2, 115	83, 400, 000	(115) 16
	а с. Т. А. с. с.				

* Transferred from Amol Area

\sim
Ψ.
-
<u> </u>
-
o≃
ш
5
S
$^{\circ}$
æ
\supset
æ
5
ဆ
<u>.</u>
æ
Ч.
六
ш
~
0
5
ய
<u> </u>
Ξ
ULTURE IN THE PROJECT AREA BY AURA
ш
5
·
<u> </u>
2
Ξ.
œ,
$^{\circ}$
K OF AGRICI
ц.
5
÷
8
2
8
ų.,
5
ш.
œ.
\sim
DF CREDIT FR(
õ
0
1
ω
\mathbf{c}
끮
ц.,
0
Ο
æ
0
\odot
2
~
1
က်
-
\circ
ω.
<u> </u>
8
<u> </u>
•

1369	70	135	100	ı	۱	60	06	340	85	85	1	75	02	100	65	50	- 105 -	02	200	70	110	ĩ	1,880			100	275	375		100	183	290	92	243	123	121	1, 132
1368	90	50	1	85	60	ł	65	•	. 85	85	•	55	63	06	•	45	•	21	88	01	92	1	1 073		. 75	52	204	354	· ·	176	163	153	69	155	87	120	923
1367	60	85	100	85	60	80	65	120	06	6	22	55	70	75	<u>.</u>	40	80	•	98	•	•	30	1,438		22	•	17	246		159	145	6	06	149	86	124	954
1366	45	02	85		50	45	09	100	10	10	55	50	5	75	50	•	r	01	80	21	92	80	1,272	•	65	86	129	280	:	212	160	169	84	165	06	124	1,004
1365	40	50	75	77	45	40	55	22	. 09	92	51	. 35	20	01	45	ŝ	55	55	2	. 60	- 22	- 22	1,258	• .	60	13	127	260		161	•	150	89	116	100 100	93	669
1364	3	84	. 09	10	20	23	40	110	14	55	21	25	40	50	33	22	80	85	100	57	130	43	1,226	•	30	- 67	113	210		4	151	113	62	78	74	15	559
1363	33	37	60	•	24	20	•	50	50	60	25	25	40	50	3	22	40	42	50	57	65		. 781		•	52	92	144		•	•	75	49	•	55	.t	179
1362	65	80	120	130	09	55	106	100	100	120	80	48	80	117	6	44	80	. 85	80	•	128	120	1,859		06	1	105	195		167	140	1		107	67	95	576
1361	Ŧ	80	•	33	, ,	15	24	24	18	13	19.	13.	80	24	6	12	27	18	21	12	33	33	614		•	. 67	94	161		103	123	17	00	86	58	80	599
1360	45	53	135	130	. 75	64	100	16	12	11	85	55	09	53	85 85	52	20	44	82	. 68	110	80	1,675	• ;	95	100	100	295	•	120	40	80	F	150	17	138	550
1359	34	30	06	06	04	40	53	69	47	•	88 89	37	40	40	20	35	95 9	50	71	41	81	1	1,100	•	69	29	123	221		33	96	120	•	120	66	1	495
1358	11	ເ	-	15	18	Ξ	28	23	15	4	ı	ί	24	12	თ	÷	19	10	:	ç	18	10	309			10	18	39		45	139	110	•		88	132	512
1357	12	15	30	29	15	15 25	21	Ξ	13		20	14	;	25	17	13	35	19	27	15	20	- 21	422		24	ı	.1	24		1	12	•	18	а	•	1	30
1356	1	14	28	28	14	14	20	17	12	4	9 0	10	0	25	ц Ц	10	27	18	•	14	8	23	361	4	23	~	1 8	49		30	29	- 22	•	•	20	24	125
告원	(AHUL AREA) Golestan	Aghuzbon	P i shru	Dabu	Taher	Esfand	Etemad	Aresh	Vehadat	Nina	Vali Asr	Bahaman	Hendu Kola	Resalat '	Haghighat	Montaz	Taliksar	Payam	Tohid	Omid	Ettehad	Holla Kola	TOTAL	(BABOLSAR AREA	Deh Feri	Khazar	Rudbast		(BABOL AREA)	Azadi	P i shru	Hadaf	Hafez	Pol Ansari	ē.	ASDU KOIA	TOTAL

NOTE: The year of 1356 is starting from March 21, 1977

D.4 Rural Infrastructures

(1) Data Applied

The Village Gazette in 1986 and the Census Report of Agriculture in 1988 are applied as the source of information.

(2) Analysis

All available data in the above sources were rearranged by villages and sorted into subtotal of the Dehstans or the Irrigation Zones as shown in the Tables D. 4-1 and D. 4-2.

As explained in the Section D. 3, the Village Gazette and Agricultural Census are not covering whole villages in the Project Area, but the trend of rural infrastructure availability can be read therefrom.

D. 4.1 Availability of Social Infrastructure in the Project Area

Tables D. 4-1 and D. 4-2 are showing the details of availability of social infrastructure and main items of such infrastructure are plotted on the map as shown in Figure 3. 2-2 in the Main Report.

Followings are read from the above data:

- * Access to the village was not so good in the Project Area. In 1986, only 20% of villages were located nearby asphalt paved road and the accessibility of 37.8% of villages were rather poor. Since the year, some improvement of road have been done, but more than one third of villages are still suffering for poor accessibility, especially in the rainy season.
- * Most of villages have electricity nowadays, and availability of electricity changed rural life in considerable extent.
- * Telephone is mostly available along the coastal road, old and new Amol-Babol roads, but the diffusion rate was only 4.6% in the year of Census.

- * About 74% of villages were using shallow well water or canal water for their domestic use. Considering the quality of water at the shallow aquifer, improvement of water supply system is very important in the Project Area.
- * Medical facilities are mainly located along the asphalt paved roads, but medical clinics or sanitary offices are spread in whole area and most of villages are located in a radius of less than 5 km. The qualitative improvement of medical facilities is main problem in future.
- ^{*} Most of villages have primary school in the Project Area, and about 42% of villages had adult school for anti-illiteracy campaign, however, the secondary school were covering only 20% of villages. There are many villages, especially in Latikuh area, which are not included within a radius of 5 km of a secondary school. The acceptability of student of primary school is also not sufficient.

TABLE D.4-1 AVAILABILITY OF SOCIAL INFRASTRUCTURE IN THE PROJECT AREA BY DEHSTANS

	Rice Screening				9	5	S	2	2	3	4	თ	37		1	2	****	4		7	6	14	ស
38	Rice Mill	_			12	01	15	24	13	12	13	15	109		8	4	ເກົ	17	1	18	27	46	172
etc in 1988	Dairy	· · ·					i i				1	1	3			2		2			9	9	11
shop, e	[ron- smith	·			2	5	12			12	6	ເກ	44		G	2	ې	13	 	12	13	26	83
Work	Sawmill Sawmill		·	-	3	en e	10			4	3 -4	2	27			3	8	7		ω	3	60	43
	Repair Shop S of Agri-	tools				9	11	18	en N	8	σ	80	62		7	1	8	16	 1	8	15	24	102
	Repair Shop of Asri-	Machinery			1	2	13	14	3	11	12	8	84		7		ഹ	10		G	15	24	86
in 1988	Spare Part Shop				1	1	1			2	4	8	15				1	1		4	5	6	25
etc.	ler of trosin					2	6	12	ഹ	80	9	8	47	-	-1	e	57	9		ß	13	19	72
Repair-shop,	Dealer of [Gasoline						2	8		•	3	5	12			3		4		2	4	9	22
Bank, Shop,	er of [1 0i1							-					2			•		-1			9	1	4
							S	2		3		2	13		2	2	1	5	 	4	11	16	34
	Cooperative Bank Shop		· .			2	12	14	9	11		3	49		4	S	ഹ	12		10	14	24	85
	eth eth	1																				1	1
1 in 198	Earth Walk Surface Path	- -	 F**	4	10	14	2	33	15	10	11	10	111		9	5	80	19 -		14	29	43	173
Grade of Road in 1986	Gravel Paved				5	20	29	31	26	18	14	3	148		2	4	7	15		12	20	32	195
Grade	Asphalt Paved			27		3	5	23		80	2	12	62		10	5	2	17		80		13	36
REFERENCE	· · ·	Dehstan	811	DNOOI	DN002	DNO03	- DN004	DNODS	DNOOE	700NG	DN008	DN009	Sub-total		DN010	I LONG	DN012	Sub-total	BU	DN013	DN014	Sub-total	TOTAL

D4-3

.

	L.	l oc					ŝ	တ	တ	28	15	5	2	16	109		12	8	12	30	•		22	8	53	199
	Adu	School						:																		
Schooling in 1986	Secondary	School			•••		2	8 1 1	10	12	7	12	8	8	62		Å	2	4	13			ß	11	11	66
ni loot	ar y S		 : ·	·	r-4	2	17	30	34	62	22	28	23	20	239	-++ -	16	10	12	38		1	26	42	63	848
Sci	Primary	School							:					1.									• • • • •			
in 1986	Nurse/	Mid-	mother					5	:	00	4	9	4	2	26			3	2	വ			2	<u>က</u>	ເດ	36
Facility i		cian					9 -4	ம்	со	12	4	80	3	4	40		9	- 1	1	8			ۍ ۲	1	0	КЯ
Medical F	<u> </u>	Office				1	1	5	13	13	S	7	5	2	55		- 1	1	1	6			g		2	11
	1 S	Clinic 0					-1	3	9	1	2	വ	23		27		5		2	۰ ع			- - -			22
	+	Bath Cl			-	2	17	29	33	66	27	33	29	24	260		- 15	6 6	12	36		- -	27	31	59	o R R
in 1986	<u>ا</u>	Water				2	5	9	26	12	17	80	4	2	85		9	4	1	11			5	16	21	117
an Needs	Post	Box								9		~		3	12	-	1	5	ល	11			2	2	4	16
Basic Hum	Telephone		• •						-		1	2		4	1		2	5	2	6			2	ŝ	<u>ب</u>	91
	Electri-Tel						18	36	43	86	40 -	35	32	24	313		18	14	18	20		1	33	51	85	ВИИ
388	sion		Man				1		s S			. 1			ເດ		2	ۍ ۲		7			2	3	5	<u>r</u>
ivestock in 1988.	Veterinary Extension	Technician S							1	1					2	-	2	9	1	6		1	8		10	21
	Veterinary V								2						3											ст (
REFERENCE			Dehstan		AU	DN001	DN002	DN003	DN004	DN005	DNODG	DN007	DN008	DN009	Sub-total		DN010	DIO11	DN012 -	Sub-total		BU	DN013	DN014	Sub-total	TUTAI

REFERENCE	í Grad	e of Roa	d (n 19	86	1		Bank, Shop,	Repair-ch	noo. etc	in 1988			Vart	shee	te in 19	88	
	Asphalt				Cooperative	Bank	Basler of	Realan of	Dealor of	11 1300	Repair Shop	Densis Chart	NO[8				1 - DI
rrisation zone	Paved	Paved	Sur face	Path	Shop	Duit	Diesel Oil	Gasoline	Kerosin	Part Shop	of Agri- Machinery	tools	Dawalii	lron~ saith	Dalry	Rice Mill	Rice Screenin
HWU1		·															
HAUS	1	·····			·						<u>_</u>		<u> </u>		:	L	<u> </u>
HNUZ HNU3							<u> </u>	1	······			· ····-	1	·			
Sub-total	2								ļ				· · · · ·				
300-10181	٤	. 1				• •		1	1 1		ĺ		1	1			}
811			3	-				<u> </u>		ŀ		·	 		 		
HY2	2	12	8	<u> </u>					1		····			· · · · · · · · ·		·	
HW3		12			2			<u> </u>	2		<u> </u>	2	3	3		6	
H¥4		5	7		2	1	}·		1	<u> </u>	}·			6	· · ·		
EN5	. 2	3			Ĩ	1	f		2	1	2		1	2			
816		3					· · · · ·	·	<u>*</u> -	<u> </u>		<u>-</u>	<u>+</u>			3	
Sub-total	.4	35	33		5	2			5	2	4	5	8	7	<u> </u>	21	
				[· · ·				<u> </u>			<u>~</u>	1				1
Total of HW	8	36	33	· .	5	2	. 1	1	5	2	4	- 5	9	8		21	
KLI		1	· ·	<u> </u>				h	<u> </u>			<u> </u>	<u>† </u>	1	<u> </u>	1	·[
KLS			1		1	·	<u> </u>	t.	1	·····	1	1	1	1		1— -	1
KL3	2	5	3		.4	3		2	4	2	4					5	1
KL4	4	6			6	2		3								8	
KL5	1.	5			1	, in		L	1	1							
XL6	3	3	1		3	. 2		ļ	3	1		2		4		6	
Sub-total	10	20	23		15	1	1	- 5	12	6	13	13	5	8(3	26	1
KR2			2	<u> </u>				-					1	1			
KR3	1	5	1			1.1	1.1				3			3		2	1
KR4		6		1		1	:		2	<u> </u>	3					5	
KR5	<u> </u>	2	2	ļ	4	2		1 1								4	
Sub-total	· 2	13	9	1	8	3		i	3	3	9	6	8	9		11	
HEI	3	5	6.		5	1		1	5	· ·	4	5	1	1		8	
HE2	1	5			1			1			1					2	
HE3	2	11	3		- 2	1	1	1			3		1			3	
HE4	4	11	6		8	2		1			2			l		2	
HES .	3	3	8	<u> </u>	3	5			3		4	4	1			8	
Sub-total	. 13	35	26		19	9		4	17		14	16	5	8		23	
otal of HE. KL. KR	25	68	58		40	19	2	. 10	32	9	36	35	18	35	5	60	. 4
AEL		2	3		1		1		<u>i</u>				[1.) 	· · · ·	h
AE2	2	3		<u> </u>	2			. 1	2			1				2	
AE3	15	6		<u> </u>	2	1		1	1		8	9	1	1		01	
<u>AE4</u>	7	4	1	<u> </u>	3	2	<u> </u>		2		5	5	1	4		5	
AES	. 8	3			3		L		2		4					. 8	
AE6 AE7	3	2	6		4	<u> </u>			1		L	3		. 3		4	
AE8		2	6	· · ·	4			11	2	L. I	2		2	1		5	
AE9	1		4	<u> </u>		1			<u> </u>	<u> </u>	1		<u> </u>	ļ	1	<u> </u>	
AEIO		1	10		2	<u> </u>		-		<u> </u>	2		ļ	3	· · · ·	. 5	
AEII	5	13	5		4	2	· · · · · · · · · · · · · · · · · · ·		2	<u> </u>	2					3	
Sub-total	41	39	48	[[1	4		4	· · ·		3	1
A#1				· ·	26	8		6	17	3	28	35	9	· ·		48	ļ
AW2	<u> </u>	. 3	· -1	<u> </u>	. 1.	<u>· · ·</u>		:.	1		3	2	·····	2		1	
AT3	2	5			3					ļ			I	<u> </u>	<u> </u>	1	
. A#4.	3	2		<u>-</u>		1		11	$\frac{1}{a}$	<u> </u>	2				J	5	
ANS	1				4		 	h	3	3	2	2	2		ļ	3	
ANG	1	8		i	1	<u> </u>				<u> </u> 3	5						<u> </u>
AN7	4	. 4		i —	1	——	····	2		ł	1	· ·	· ···	1		1	· · ·
AW8		5	8		1		<u>`</u>	†		<u>├</u>	<u>د</u>		1	- <u>-</u>	1	6	
489	6	10	17		3	2	· · · · · ·	2	5	6	11	9	1	7	1	16	
Sub-total	17	46	. 33		13	3		5	16	10	27	22	5	Ţ	2		}
ÂŬ		5		·				ļ'			· ·					39	
BU	2	3 l	<u> </u>		1	2		 	<u> </u>	<u> </u>	2		2			2	<u> </u>
	<u>-</u>	!					· · · · · · · · · · · · · · · · · · ·	<u></u>	ļ		<u>l</u>	3	<u> </u>	1	1.	2	<u> </u>
RAND TOTAL	92	195	173	Γ.	- 85	34	4	22	72	25	98	102	43	83	12	172	

TABLE D. 4-2 AVAILABILITY OF SOCIAL INFRASTRUCTURE IN THE PROJECT AREA BY IRRIGATION ZONES

D4-5

					· · · ·					100			. :		
REFERENCE		Livestock in	1988		Basic	Kuman Keed					Facility			ng in 1986	
Irrisation	Veterinary Statlon	Yeterinary Technician	Service	Electri- city.	Telephone	Post Box	Piped Water	Cosmon Bath	Medical Clinic	Sanitary Office	Physi- clan	Nurse/ Kid-	Primary School	Secondary School	Adult School
20né		·	Kan						· · · · ·			Bother			<u> </u>
HWU1												1.11			i s
HTU2		·		· · ·				· · · · · · · · · · · · · · · · · · ·		1			1 1		
HTU3		}		2			••••••••••••	2			· · · · ·		2		
Sub-total				2			2	4	<u> </u>	1			4		
	· · ·														· ·
HXL				3			1	3		<u> </u>			3		2
H#2 8#3		l		21		1	4	18		5	8	3	17	5	6
814				19	1		8 2	17		3	2	2	17	2	
HES				8		1	1	7		2	2		4		5
H¥6				7			2	5	1	1	- 1		4	1	2
Sub-total		1	1	70	1	2	18	60	1 7	12	11	5	57	11	28
Total of HW		· 1	1	72		2	18	. 64	1 7	13	. 11	5	61	11	28
KLI	{·····	1		1	<u> </u>]_ ,,	1		}		<u> </u>	1		}
XL2						t	1	1			[¹		
XL3		1		14	2	2	6	12	1		2	1	11	4	9
<u>KL4</u> KL5		<u> </u>		17	ļ		·	9		2	1		14	. 4	. 9
KL5 KL6	· · · · · · ·	1		10	<u> </u>	└	1	6		1		1	1		8
Sub~total	+	5		50	4	3	10	5		1 5	<u> </u>	2	7 40		
		1 ·	` `		'	. [*]			¹		1	[°]	· "•	10	31
XR2				Ź				- 1					1		
KR3 KR4		ļ	2		ļ	·	2	6			3		10		1
<u>KR5</u>		3		11 5	1		. 4	9		2	1	<u> </u>	10		7
Sub-total		4		26			6	3		1 6	5	2	5		13
	ĺ		(· · ·	1	,	í .'		10	('	[1 .		
HEI	1	1		14		1	7	13	2	4	1		14	4	6
HE2	1			11		1	5	12	1				7		2
HE3 HE4	· · · · · · · · · · · · · · · · · · ·			15			4	13		3	2		11		<u> </u>
HE5			 l			· · ·	6 9	69		3		;	8 10		3
Sub-total	2	· 1	i i	69		2	31	53	7		3		50		19
										··· ·····					[
Total of HE.	2	10	8	145	5	6	47	106	9	25	12	1 4	116	32	63
<u>KL. KR</u>				5						ļ					L
AE2	1	<u> </u>	<u> </u>	5			<u> </u>	4	<u>↓</u>	· · · · · · · · ·		2	3		<u> </u>
AE3				24	3	2	8	21		5	3		21		9
AE4				12	1	2	6	-12	2	G G	5	1	11	4	9 10
<u>λ£5</u>	· · · · ·			20		2	4	17	1		5	4	12	4	9
AE6 AE7		1			<u>├</u>	<u>├</u>	<u>-</u>	7			3		10		5
				8	<u> </u>	· · · · ·	3	- 7		1		2	8		6
4E9			<u> </u>	12				10				<u> </u>	2		4
1510		[4		1							4		4
AEII		4	5	23	6	7	4	4	3		2	3	12		11
Sub-total	l 1	9	7	128	u	16	25	99	8	19	19	12	97	25	62
A W A				4	i	i	i –	4	1	+		<u> </u>	3		ļ,
AW2				2			1	5	<u> </u>				2		<u> </u>
A¥3 A¥4		. <u>.</u>	<u> </u>	8	1	1	2	8	2		3	2	6	3	
AN-1	· · · ·	·	<u> </u>	<u> </u>	-	———	3	5		1	2				3
AW6				3				9		<u> </u>	1	1			3
A¥7	L			13			1	12		3	. 2	1	10	5	4
AW8		<u> </u>		10	L		7	5	1	1	1	2	3		
A#9	· · · · · · · · · · · · · · · · · · ·	<u> </u>		32	3	2	8	29	3		3	6			17
Sub-tots]			ı	93	· _ 4	3	22	80	9	15	12	14	64	23	36
AU				7		<u> </u>	5	4	†	+		+	6		<u>-</u> 1
BU	Į	1		3				2		1	1	1	2	1	
GRAND TOTAL	3	21	17	448	21	27	117	355		72	, 54		346		·····
	I	I <u></u>	<u>i </u>	1		L	1	1	1	1	1	1.	1	1	1

APPENDIX E. PROJECT PLANNING

APPENDIX E. PROJECT PLANNING

CONTENTS

N 11			<u>Page</u>
E. 1	Design	· · · · · · · · · · · · · · · · · · · ·	E1-1
	E. 1. 1	Special Consideration of Groundwater Supply Area	
		for Secondary Canals	E1-1
	E. 1. 2	Suitable Investment Level on Facilities Improvement	E1-3
	E. 1. 3	Design of Turnout	E1-5
,	<u>E. 1. 4</u>	Design of Check Structure	E1-8
	E. 1. 5	Secondary Canal Inventory	E1-10
	E. 1. 6	Planning and Design of Tertiary Canal	E1-22
	E. 1. 7	Estimation of Work Quantities	E1-85
· .			
E. 2	Cost Est	timate	E2~1
	E. 2. 1	Manner of Cost Estimate and Some Considerations	E2-1
	E. 2. 2	Cost Estimate and Disbursement Schedule	E2-7
E. 3	Project	Evaluation	E3-1

APPENDIX E. 1 DESIGN

CONTENTS

1.1.1		Page
E. 1. 1	Special Consideration of Groundwater Supply Areas for Secondary Canals	E1-1
	1. Objectives	E1-1
•	2. Basic Conditions	E1-1
	3. Special Consideration	E1-2
E. 1. 2	Suitable Investment Level on Facilities Improvement	E1-3
	1. Objectives	-
	2. Project Cost	
	3. Other Conditions	
	4. Computer Outputs	E1-4
		·
E. 1. 3	Design of Turnout	
	1. Sluice Gate Type	
	2. Double Orifice Gate Type	E1-6
E. 1. 4	Design of Check Structure	E1-8
E. 1. 5	Secondary Canal Inventory	F1-10
	······································	
E 1 6	Planning and Design of Tertiary Canal	54.00
C. I. O	· · · · · · · · · · · · · · · · · · ·	
	1. Definition	
	2. Existing Conditions	
	3. Route Planning of the Tertiary Canal	
	4. Design Criteria and Appurtenant Structures	E1-30
	5. Proposed Level of Improvement	E1-35
	6. Planning and Design Procedure	E1-36
	7. Standard/Typical Design	E1-38
E. 1. 7	Estimation of Work Quantities	F1_Q5
	1. Earth Work of Canals	
	2. Related Structures	
	3. O/M Road	E1-86
	4. Special Consideration	F1-87

LIST OF TABLES

			Page
Table E. 1. 2-1	Summary of Calculation Co	nditions	. EL-14
Table E. 1. 5-1	Specification of Secondary	Canals	. EL-15
Table E. 1. 5-2	Secondary Canal by Sub-dis	trict Wise	. EL-18
Table E. 1.5-3	List of Secondary Canal Rela	ated Facilities	. EL-21
Table E. 1.6-1	Summary of Irrigation Cana	al	. E1-40
Table E. 1.6-2	Tertiary Irrigation Canal	(Haraz West District)	. E1-41
Table E. 1.6-3	4	(Amol West District)	. E1-43
Table E. 1.6-4	. 4	(Haraz East District)	. E1-45
Table E. 1.6-5	4	(Amol East District)	. E1-47
Table E. 1.6-6		(Kari Rud Left Bank Area)	. E1-50
Table E. 1.6-7	"	(Kari Rud Right Bank Area)	. E1-51
Table E. 1.6-8	Summary of Drainage Cana	al	. E1-52
Table E. 1.6-9	Tertiary Drainage Canal	(Haraz West District)	. E1-53
Table E. 1.6-10	. //	(Amol West District)	. E1-55
Table E. 1.6-11	11	(Haraz East District)	. E1-57
Table E. 1.6-12	<i>и</i>	(Amol East District)	. E1-58
Table E. 1.6-13	11	(Kari Rud Right Bank Area)	. E1-60
Table E. 1.6-14	Average Command Area		. E1-61
Table E. 1.6-15	11	(Tertiary)	. E1-62
Table E. 1.6-16	Summary of Number of Str	uctures (Irrigation)	. E1-64
Table E. 1.6-17	Number of Structures Irriga	ation (Haraz West District)	. E1-65
Table E. 1.6-18	11	(Amol West District)	. E1-67
Table E. 1.6-19		(Haraz East District)	E1-69
Table E. 1.6-20		(Amol East District)	E1-71
Table E. 1.6-21	11	(Kari Rud Left Bank Area)	. E1-74
Table E. 1.6-22	4	(Kari Rud Right Bank Area)	E1-75
Table E. 1.6-23	Summary of Number of Str	uctures (Drainage)	. E1-76
Table E. 1.6-24	Number of Structure Drain	age (Haraz West District)	. E1-77
Table E. 1.6-25	"	(Amol West District)	. E1-79
Table E. 1.6-26	1	(Haraz East District)	. E1-81
Table E. 1.6-27	4	(Amol East District)	. E1-82
Table E. 1.6-28	4	(Kari Right Bank Area)	. E1-84

LIST OF FIGURES

Figure E. 1. 3-1 Tu	rnout	 	· · · · · · · · · · · · · · · · · · ·	 EL-12
Figure E. 1. 4-1 Che	eck Structure	 	•••••	 EL-13

÷

E. 1.1 Special Consideration of Groundwater Supply Areas for Secondary Canals

1. Objectives

In order to utilize excess water for the groundwater supply areas, the special consideration is studied in the irrigation capacities of the secondary canals.

2. Basic Conditions

(1) Water Balance

Irrigation water requirements and relevant data are as follows:

Мол.	Day	Haraz River (m ³ /s) (1)	Water Req. (m ³ /s) (2)	(3) = (1) - (2)
Apr.	1-10	23.9	0.2 (<i>l/s/</i> ha)	23.7
	11-20	32.6	0.6 ()	32.0
	21-30	54.3	42.8 (0.794)	11.5
May	1-10	66.6	72.9	negative
	11-20	82.7	70.1 (1.301)	12.6
	21-31	88.6	76.6 (1.421)	12.0
Jun.	Aug.	na an taon an taona taon		negative
Sep.	1-10	20.5	15.5 (0.288)	5.0
	11-20	18.3	4.7 (0.087)	13.6

Water Balance Data

Note, (1) : Average observed discharge at Karehsang station (1956-1982).

(2) : Average planned water demand for the whole surface water supply areas without effective rainfall. (--): negligible.

From the above study, the average water requirement when excess water exists is estimated at 0.8 $\ell/s/ha$ (=(0.794 + 1.301 + 1.421 + 0.288 + 0.087)/5).

(2) Groundwater Supply Area Ratio

The groundwater supply area ratios (R) (=(Groundwater supply area)/(Surface water supply area)) are calculated under the with project conditions as follows:

R		Zone Name	a a secolaria de la companya de la c	
R>=1.6	AE9,AE10			
1.6 > R > = 1.0	AE4A,AW2			н н <u>.</u>
1.0 > R > = 0.3	HW2A, KL5, KL6	3B, AW3B, AW5,AW9A,	AE3C,AE8,AE11A,KR4	

Note) Zones, R less than 0.3, are omitted.

3. Special Consideration

Based on the above data, the irrigation capacities of the secondary canals are specially considered as follows:

(1) Basic Idea

The irrigation capacities of the proposed secondary canals are principally determined as follows:

- The secondary canals have the incident function that the canals can irrigate the groundwater supply areas additionally, whenever it is possible.

- The flow areas in the canals applied for the additional discharges are considered as the 2/3 of freeboard.

The end points of the secondary canals are not subject to the groundwater supply areas considered herein.

(2) Irrigation Capacity Considering 2/3 of Freeboard (Qq)

Generally speaking, the capacity accrued from using 2/3 freeboard is estimated at about 25% of the irrigation design discharge. Therefore, the capacity in question is as follows:

- Irrigation capacity of secondary canal: 1.7 l/s/ha,
- Capacity in question : $Qq = 1.7 \times 1.25 = 2.1$ l/s/ha.

(3) Potential Ratio (R) Using Capacity (Qq)

The considered capacity is Qq = 2.1 l/s/ha, on the other hand the average water requirement when excess water exists is computed at 0.8 l/s/ha. This means that the secondary canals can irrigate as 2.6 (=2.1/0.8) times areas as the surface water supply areas. Consequently, the maximum potential ratio (R) becomes 1.6 (=(2.1-0.8)/0.8).

(4) Considered Secondary Canal

The zones/canals with R values more than 1.6 are considered specially to enlarge their canal sections. They are AE9 and AE10 zones, however, it is AE10 secondary canal only as AE9 zone has no secondary canal. The new irrigation capacity is computed based on the following irrigation area (As):

As(ha) = (A1 + A2)/2.6,

Where; Surface water supply area : A1 (ha), Groundwater supply area : A2 (ha).

E. 1. 2 Suitable Investment Level on Facilities Improvement

1. Objectives

In order to determine the improvement level of the irrigation and drainage systems, most economical investment costs and suitable benefits by the project implementation should be clarified as a reasonable level. Major factors affected to the above mentioned components are summarized as follows:

- Project cost including each category of civil works,
- Operation and maintenance costs, and replacement costs,
- Project implementation plan (cost disbursement plan),
- Incremental benefits.

2. Project Cost

Project cost was preliminarily estimated, and is summarized in the Table E.1.2-1. In the estimates, four alternatives were considered on the systems improvement level as follows (for canal type, refer to Figure E.1.2-1):

- Case-1: Earth canal improvement including provision of turnout, check and drop structures. (Canal type-III)
- Case-2: Concrete canal improvement for around 1/3 length of the proposed secondary and tertiary canals in the Case-1. (Canal type-III $\times 2/3$ + canal type-IV $\times 1/3$)
- Case-3: Provision of turnout, check and drop structures only. (Canal type-II)
- Case-4: Same as Case-2, however saved construction equipment costs for land consolidation works.

3. Other Conditions

1) Project Implementation Plan

The outline of the project implementation plan for each district is indicated in the Table E.1.2-1.

2) Incremental Benefits

The incremental benefits were estimated based on the proposed net production values of major crops, the growth rate of crop production and the proposed cropping patterns. The results are shown in the Table E.1.2-1.

4. Computer Outputs

The economic internal rates of return (EIRR) were calculated based on the cost and benefit flows, which were prepared considering the mentioned conditions. The summary of EIRR is as follows:

EIRR Outputs

				(Unit:%)		
District	Haraz East	Haraz West	Amol East	Amol West	Overall	
Case-1	11.2	9.6	12.1	11.8	11.3	
Case-2	9.3	7.6	9.2	9.2	8.9	
Case-3	15.2	14.0	12.5	17.6	16.6	
Case-4	9.9	10.6	8.6	9,9	10.0	

Based on this study, Case-4 is considered as the optimum investment level of the project. In line with this, the improvement level of on-farm facilities (the amount of investment) is considered within the range of Case-4.

E.1.3 Design of Turnout

In this section, the two types of turnouts adopted in the study are described, viz. sluice gate type and double orifice gate type (refer to Figure E.1.3-1).

1. Sluice Gate Type

(1) Application

This is common as the type of turnout, and is applicable to almost all kinds of water sources, such as open canals, lakes, reservoirs, regulating ponds, and so on. As this type can not regulate intake quantity satisfactorily, a measuring device is demanded in case of need. If this type is planned to open canals, check structures are to be installed in the canals in order to obtain the required water levels which enable turnouts to take designed discharges.

(2) Structure

The intake structure of this type consists of gate and transition (and screen, if necessary).

A sluice gate is used, and is installed at the entrance of pipe. The gate is made of steel, and is operated manually when the gate size is small. An air hole is required just after the gate.

The transition is designed between the water source (open canal, pond, etc.) and the pipe. The structure of transition is cantilever or retaining wall made of reinforced concrete, and the length is determined in accordance with the site conditions.

(3) Discharge Control

Intake volumes are controlled by gate operation. However, the discharges can not be known accurately. Therefore, a measuring device should be installed in order to perform smooth water management.

(4) Hydraulic Design

The hydraulic design of this type is carried out under the fully-openedgate condition using the maximum intake discharge. And appropriate head losses should be counted for transition, gate inflow, etc.

2. Double Orifice Gate Type

(1) Application

This type is applicable to the open canals whose water levels can be kept in constant. Therefore, a check structure is indispensable for the application. As this type can measure discharges, no measuring devices are required.

(2) Structure

The major structures of this type consist of two gates and one regulating water tank. The regulating water tank is made of reinforced concrete, and the gates are steel sluice gates. As auxiliary facilities, one gate opening indicator (for orifice gate) and two water level measuring pipes are installed. The following standard criteria are used in common in the design so as to measure discharges correctly by mitigating the waves and shocks in the regulating water tank:

1) Maximum Opening of Orifice Gate (No. 1 Gate): Y1,

 $Y_1 < = 0.8 Y_3$

2) Orifice Submerge Depth: Y2,

 $Y_2 > = Y_1$

3) Minimum Length of Regulating Water Tank: L,

 $\begin{array}{ll} 2.25~\mathrm{Y1} < \mathrm{L} > 1.75~\mathrm{Y3}, \mathrm{L} > 1.0 & (\mathrm{Q} < = 0.28~\mathrm{m^3/s}), \\ \mathrm{L} > 2.75~\mathrm{Y1} & (\mathrm{Q} > 0.28~\mathrm{m^3/s}) \end{array}$

4) Pipe Submerge Depth: Y4,

5) Length of Transition : L2,

 $1.5(Y_1 + Y_2) < L_2$

6) Spacing for Orifice Gate

Before and behind the orifice gate, flat spaces (width Y1) are necessary.

7) Sluice Gate (No. 2 Gate) and Air Hole

An air hole is needed just after the sluice gate which is circular shape with high water tightness.

(3) Discharge Control

Discharges are regulated by the openings of the orifice gate (square shape), and the No. 2 gate is controlled to maintain the constant differences of water levels, before and behind the orifice gate. The hydraulic design of the gates is carried out using the submerged orifice formula.

The relationship between the openings and discharges of the No. 1 gate is, as follows:

Q = CA $\sqrt{2gH}$ Where, Q; discharge (m³/s) C; coefficient of discharge, 0.65 - 0.75 A; area of orifice (m²)

H; difference of water level = 0.05 - 0.06 (m)

E. 1.4 Design of Check Structure

(1) Application

Check structures are designed for irrigation canals and irrigationcum-drainage canals in order to mitigate water level fluctuation in canals and to divert water firmly, etc.

(2) Structure

An overflow type stop log gate is designed as a movable weir, and a bypass of fixed weir type is designed at the both sides or one side of a check (refer to Figure E. 1. 4-1).

The width of one stop log is designed to be 1.5 m at maximum, and the maximum height of the stop log is to be about 1.2 m. On the other hand, the salient features of the bypass are as follows:

1) Design Discharge of Bypass (Qb)

The design discharge of bypass (Qb) is considered to be 30% of the design irrigation discharge of the upstream canal.

2) Crest Length of Bypass (Lb)

The total crest length of the bypass (Lb) is calculated based on the following equation:

 $Q = LCH^{3/2}$,

where, Q: design discharge of bypass, (= Qb),

L; Lb + Ls, (Ls = total stop log width),

C; coefficient of discharge,

H; depth of flow at crest, standard 0.2 m,

(3) Water Level Control

Generally speaking, water levels and discharges are regulated manually or automatically. In this study, manual gate (stop log) operation type is adopted in principle from the viewpoints of economical operation and similarity to the present type. Then, the check system falls under the constant upstream level type.

(4) Check Water Level (CWS)

The check water level (CWS) is designed to be 0.2 m below the design water level (NWS) which is calculated using the design irrigation discharge. The difference between CWS and NWS equals to the depth of flow at the bypass crest.

(5) Operation

Water level is regulated by the stop log during the irrigation period, and the stop log is removed during the non-irrigation period in principle. On the other hand, in the case of irrigation-cum-drainage canals, the following discharge is expected during the harvesting period from August to September:

$q = 10.84 \text{ M}^{-1/6}$ (ℓ /s/ha; 10-year return period)

As some areas still require irrigation water in this period, the necessity of the stop log operation in this case was studied at the sampled check sites. And the study resulted in no need of stop log operation as follows:

- Drainage less than the bypass capacity can be discharged through the bypass without stop log operation.

Drainage more than the bypass capacity can overflow over the bypass and stop log without stop log operation. As far as the sample studies were carried out, the water levels of overflows did not exceed the canal heights, viz. within the freeboard. In addition, some ideas can be considered in the detailed design, e.g. deepening the depth of flow at bypass crest and/or lengthening the crest length of bypass, etc.

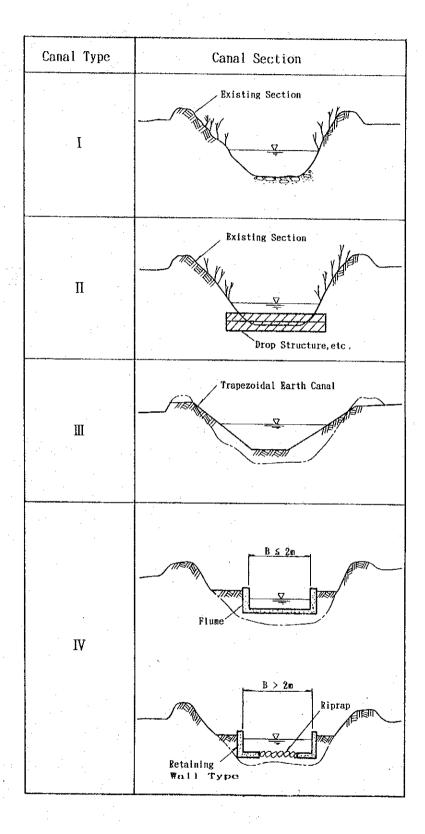
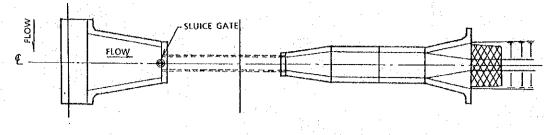
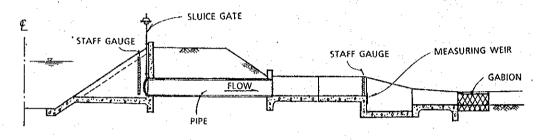
		- <u></u>			· · · · ·		
Sample Check	Qi	Qd	Qb	Qh	L	Hh	He
HE 2 (CP No.1)	1.7	1.8	0.51	< 1.2	3.1	0.36	< 0.52
HE 2 (CP No.2)	0.8	5.8	0.24	< 3.8	3.0 *)	0.79	< 1.04
AE4B (CK No.2)	3.8	2.6	1,14	< 1.8	7.0	0.27	< 0.50
AE6A (CK No.1)	1.7	7.1	0.51	< 4.4	3.1	0.85	< 1.14

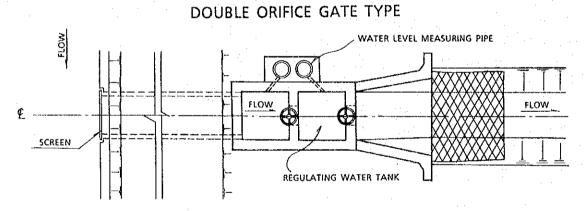
Sample Studies

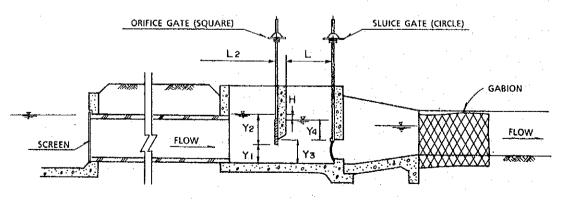
	(1.0		1.1	1.1	0.51	< 4.4	3.1	<u>,</u> 0.8	50
Note)	Qi	:	design irri	gation disch	arge (m ⁸ /s),				
	Qd	:	design dra	inage discha	rge (m ³ /s),				
	Qb	:	bypass cap	acity (m ⁸ /s),	· .				`
· · .	Qh	1	harvesting	period discl	narge (m ⁸ /s),				
	L	:	fore menti	oned (Lb + I	.s) (m),		н. 1. н. н.		
	Hh	:	crest overf	low depth =	$(Qh/L \cdot C)^{2/3}$	m),			
• •	Hc	:	canal room	height abov	ve the bypass of	crest includ	ing freeboar	d (m),	•
	*)		Some adju:	stments wer	e møde.				

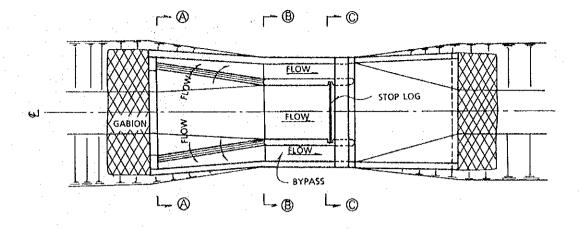
E. 1. 5 Secondary Canal Inventory

The 81-route secondary canals were designed and the total length reached at 594.22 km. The inventories of the proposed secondary canals are shown in the Tables E.1.5-1 to E.1.5-3.


FIGURE E. 1. 2-1 CANAL TYPE





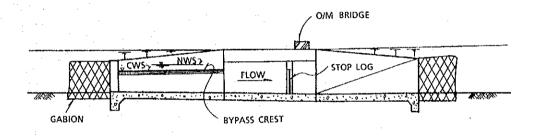
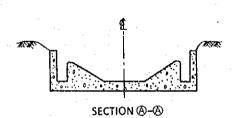
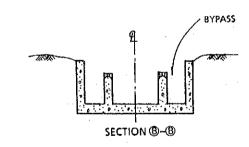

PROFILE

FIGURE E.1.3-1 TURNOUT


E1-12



PLAN

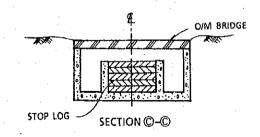


FIGURE E.1.4-1 CHECK STRUCTURE

Items	Haraz East	Haraz West	Amol East	Amol West	Total
1. Capital Cost					
	171,496	98,867	161,382	122,473	554,218
Case-2	209,409	123,201	216,201	158,861	707,672
Case-3	134,532	75,146	107,947	84,650	402,275
Case-4	181,590	108,153	197,740	144,192	631,675
2. Annual O/M	and Replac	cement Cost			
Case-1	613	353	576	437	1,979
Case-2	748	440	722	567	2,477
Case-3	481	268	386	311	1,446
Case-4	649	386	706	515	2,256
3. Implementat	ion Term		n an an Th		
Project Year	1-13	1-10	3-13	3-13	1-13
Period (Year)	13	10	11	11	13
4. Beneficial A	rea (ha)	•			
	25,262	11,239	25,091	18,378	79,970
5. Benefit			۰ ۲		
	24,323	11,617	25,376	18,587	79,903

(Unit Of Items 1, 2 & 5 : Million Rials in Economic Value)

Note) 1. Beneficial Area (ha): Present paddy fields excluding urban areas.

2. Benefit: Accrued from increase crop productions mainly.

TABLE E.1							<u>S (1 OF 3</u>		(Unit: m)	
Canal	<u>ų n</u>	<u>ax (</u> m		Total	Irriga		<u>Irri. cum</u>	<u>Drain</u>	Draina	ige
Name	I	I/D	D	Length	Improv.	New	Improv.	New	Improv.	New
HW1	-	··· ••	+ '	3,900		3,900	-		==	
HW2/2B	5.4	0.7 j	7.6	19,300	4,400		10,350	<u> </u>	4,550	-
HW2A	2.5	· -	-	7,800	2,000	5,800	-	· _ ·	-	-
HW3	9.2	7.7	7.7	18,900	3,600	600	11,400	-	3,300	- :
IW4	5.1	7.3	12.0	14,000		5,200	4,900	-	3,200	700
HW5	2.5	2.0	5.2	9,150		2,000	2,750	••	4,400	<u>.</u>
186		3.7	5.0	7,350	-	850	750	-	5,750	-
(7-Route:	Sub-t	otal)		80,400	10,000	18,350	30,150	0	21,200	700
DHW1	~~	·	9.8	1,500		-	-		-	1,500
DHW1A	-	·	-	2,150		· <u> </u>		` 	2,150	-
DHW7	-	-	4.3	1,500	– .		-	~	-	1,500
DHW8	-		9.7	9,500	·	· 🗕	_ ·		9,500	-
DHW10A	~	-	4.1	2,250	-	-		-	_	2,250
DHW12A			4.6	3,400		-		-	-	3,400
DHW19	-	-	3.5	450			-	÷ .	450	-
(7-Route:	<u>Sub-t</u>	atal)		20,750	0	0	0	0	12,100	8,650
(HW 14-Rou				101,150		18,350	30,150	0	33,300	9,350
Note) I: I	rriga	tion	canal	, I/D: I	rrigatio	on-cum-d	rainage c	anal,		

D: Drainage canal.

E1-15

. •

TABLE E.1	.5-1	SPEC	IFICA	TION OF	SECONDAR	Y CANAL	S (2 OF	3)	(Unit: m):
Canal	Qma		3/s)	Total	Irriga	tion	Irri. cu	m Drain	Drain	age
Name	I	I/D	D .		Improv.	New	Improv.	New	Improv.	New
HE1	3.6			10,500	2,800	7,700	-	-	-	-
HE2	-	5.8		17,100	100	-	8,800	-	8,200	· ·
HE2A	.		6.5	3,300		1 - 1		1 - 1	1,200	2,100
HE3	-	6.7	8.6	16,900	-	-	12,100	1,300	3,500	-
HE4	3.1	4.9	7.2	16,100	400	· · · · · ·	10,700		4,400	600
	4.6	7.0	8.2	25,400	2,800		19,800		2,800	
(6-Route:S	ub-tot	tal)		89,300	6,100	7,700	51,400	1,300	20,100	2,700
DHE2		• u n	3.7	500	-	-	-	-	-	500
DHE4	-		3.6	1,800	· →.	⊷	-		-	1,800
DHE10			6.0	7,100	·		-	-		7,100
DHE11	-	-	3.8	1,250	~		· <u> </u>	÷ .	1,250	-
DHE12		-	9.4	3,600	- :	-	-		1,800	1,800
DHE12A	· -		4.3	5,000		-		-	2,000	3,000
DHE12B	-	~ :	4.9	3,100	-	.	· - ,	-	500	2,600
DHE13	-		9.3	8,600		-	-	•••	1,000	7,600
DHE16	-	-	5.6	6,100		-	-		 ·	6,100
DHE19			2.9	2,100	- '				1,100	1,000
DHE21A	-	-	4.6	3,500	-	-	-	-	1,000	2,500
DHE21B	~	-	3.3	1,400	-	-	-	. . .	-	1,400
(12-Route:	Sub-to	otal)		44,050	0	0	0	0	8,650	35,400
KL2	0.7	- 1		500	-	500	~	-		-
KL3	4.0	-	-	9,000	6,300	2,700			-	-
KL4	2.5		-	6,000	3,700	2,300		-	-	-
KL5	3.1	-	-	9,900	9,900		-		-	
KL6/6B/6A		-	-	6,700	5,000	1,700		·	~	-
(5-Route:S	ub-tot	tal)		32,100	24,900	7,200	0	0	0	0
KR1				5,900	5,900	-	-	-	-	-
KR2	1			3,200	3,200	- 1	· '	***	<u>-</u>	
KR3				4,900	4,900	·	· 👝	-		
KR4				11,300	8,850	-	2,450	· •••	<u> </u>	- ·
KR5]			5,000	2,900	2,100	-	· -	-	-
(5-Route:S	ub-toi	tal)		30,300	25,750	2,100	2,450	0	0	0
DKR3				1,500	~~	-		**	1,500	-
DKR4	}			600	-	-	-			600
DKR5				3,500	-		-		-	3,500
DKR10	1			2,750		-		-	2,750	-
DKR14	}			950	· -	-	-	-	450	500
DKR28]			1,850	-	_	-	· _ ·	1,850	<u> </u>
(6-Route:S				11,150	0	0	0	0	6,550	4,600
(HE 34-Rou	ite: Te	<u>otal)</u>		206,900	56,750	17,000	53,850	1,300	35,300	42,700

TABLE E.1	.5-1	SPECIFICA	ተገለክ ሰም	SECONDAR	V CANAL	S (3 OF	3)	(Unit: m	}
Canal			Total	Irriga		Irri. cu			
Name	I			Improv.		Improv.		Improv.	New
AW1	1.4		600	-	600	-	-	-	~
AW2	0.4		800	· <u>-</u>	800	~	-		_
AW3/3A/3B	2.4	·	7,100	5,400	1,700		_	-	-
AW4	1.9	6.9 6.9	10,100		4,000	2,650	1,050	750	1,650
AW5	2.4		4,500	4,500		~		-	
AW6	1.7		1,800		1,800	· _		-	·
AW7	3.3	· •••	11,700	11,700	-	_	-		·
AW8	0.7		1,000		1,000		_	- ·	-
AW9/9A/9B	7.2		24,600		11,250		·		
(9-Route:S		ntal)	62,200		21,150	2,650	1,050	750	1,650
DAW2	<u>, av</u>	- 4.0	1,250	_			-		1,250
DAW3/3A	1 -	- 12.2	6,600		. <u>.</u>	_		5,300	1,300
DAW4	- I	-16.2	6,450	_			_	3,300	3,150
DAW5/5A	-	- 15.6	12,700	_	-	_	-	900	11,800
DAW6	_	- 15.8	20,520				-	14,870	5,650
DAW8	:	- 7.6	7,300		-		_		7,300
DAW10	_	- 12.0	10,600		_		~	6,000	4,600
(7-Route:	1:		65,420	0	0	0	0	30,370	35,050
(AW 16-Rou			127,620		21,150	2,650	1,050	31,120	36,700
AE1	0.6		2,000	2,000	~	- 2,030	1,000		
AE2	1.3	_	3,200	2,000	3,200	_	_		_
AE3A		16.9 21.1	29,000	4,350	3,200 4,950	11,350	500	7,850	_
AE3B	1.6		10,300	2,000	1,000	600	-	3,400	3,300
AE3C ·	0.8		1,400	2,000	1,000		_	3,400	J,JU1
AE4/4A/4B	4.4		15,350	4,400	850	8,100	1,150	_	850
AE5	1.8		4,900	4,400		- 0,100	1,100	_	- 001
AE6/6A/6B	1.9		25,000	7,000		7,600	1,000	7,800	_
line i	2.3		11,750	1,900		8,350	1,500		_
AE7 AE8	0.5		900	900			1,300		_
AE11		11.0 11.0		6,800		6,050	1,500	-	2,200
(11-Route			123,150		15,800	42,050		19,050	6,35
DAE9		- 7.5	5,400	51,200	15,000	- 42,050		1,500	3,90
DAE12B/12		- 9.8	10,500				_	4,000	6,50
DAE125/12		- 8.6	6,400		~		_	4,000	1,50
IS A THE A		- 15.7	5,500		-	_	-	4,900	1,500
DAE14 DAE16		- 8.4	3,200		-		_	0,000	3,20
DAE10 DAE17		- 7.8	3,200					1,250	3,15
(6-Route:	 ՏոՒ- *		35,400	0		0	- 0	17,150	18,25
(AE 17-Ro			158,550		15,800	42,050	5,650	36,200	24,60
		te: Total)	594,220		$\frac{13,800}{72,300}$	128,700	<u> </u>	135,920	113,35
Crurie o	<u>i = n u u</u>	ie: julai)	W34,440	1122,220	14,300	1140,100	0,000	1100,040	<u>ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر </u>

•

TABLE E.1	.5-2	SECO	NDARY	CANAL B	Y SUB-DI	STRICT	WISE (1	OF 3)	(Unit: m) 1. 2. 2. 44
Canal	Qma	1X (m	<u>3/s)</u>	Total	Irriga	tion	Irri. cu	m Drain	Drain	age
Name	I	<u>1/D</u>	D	Length	Improv.		Improv.	New	Improv.	New
HW1				3,900		3,900			-	
HW2/2B	5.4		7.6	19,300	4,400		10,350	<u> </u>	4,550	· .
HW2A :	2.5	-	-	7,800	2,000		-	-		. .
IW3	9.2	7.7	7.7	18,900	3,600	600	11,400	-	3,300	_
HW4	5.1	7.3	12.0	14,000		5,200	4,900	· •	3,200	700
HW5	2.5	2.0	5.2	9,150	-	2,000		- 1.	4,400	
HW6	1.2					850			5,750	
(7-Route:	Sub-to	otal)			10,000	18,350	30,150	0		700
DHW1	-		9.8	1,500	-			-	-	1,500
DHW1A 👘 👘	-			2,150	-	-	· · ·	<u></u>	2,150	
DHW7	-	-	4.3	1,500		-	1 - 1 - 1	-	-,	1,500
DHW8	-	·	9.7	9,500	-		· - ·		9,500	
DHW10A	. –	-	4.1	2,250		· _ ·	_	<u>_</u>	-	2,250
DHW12A	-		4.6	3,400	-		_	· _ ·		3,400
DHW19	-	⊷ ` ·	3.5	450		· ••• :		_	450	
(7-Route:	Sub-ta	ital)		20,750	0	0	0	0	12,100	8,650
HW(I) 14-R	oute:	Tota		101,150	10,000	18,350			33,300	9,350
Note) I: 1	rrigat	ion	canal	$I/D \cdot I$	rrigatio	n-cum-d	rainago	canal		~, ~ ~ ~ ~

te) 1: Irrigation canal, 1/D: Irrigation-cum-drainage canal,

D: Drainage canal.

ABLE E.1	. 5 - 2	SECO	NDARY	CANAL B	<u>Y SUB-DI</u>	STRICT	WISE (2	OF 3)	(Unit: m)
lanal	- U M	ax (m	<u>3/s)</u>	ffotal 👘	Irriga	tion	Irri. cu	m Drain	Drain	age
Name	I	I/D			Improv.		Improv.	New	Improv.	New
IE1	3.6	~~ 		10,500		7,700		••		
IE2	·		12.7	17,100	100	•••	8,800	.	8,200	-
IE2A	-	-	6.5	3,300	· -	· -	-	~~	1,200	2,100
IE3	-		8.6	16,900	-	-	12,100	1,300	3,500	
IE4	3.1		7.2	16,100	400		1 - 0 , 1 0 0	-	4,400	600
E5/5A/5B		7.0			2,800		19,800		2,800	-
6-Route:S	ub-to	tal)			6,100	7,700	51,400	1,300	20,100	2,700
HE2	_	~	3.7	500] -		·	-		500
HE4			3.6	1,800	-	•		-	·	1,800
HE10	- 1	~	6.0	7,100]	-	-	-	- .	7,100
HE11		·	3.8	1,250		···		·	1,250	- ·
4-Route:S	<u>ub-to</u>	<u>tal)</u>		10,650	0	0	0	0	1,250	9,400
IE(I) 10-R				99,950	6,100	7,700	51,400	1,300	21,350	12,100
HE12	-		9.4	3,600		-			1,800	1,800
HE12A	-		4.3	5,000	· · ·	-		-	2,000	3,000
HE12B	-	-	4.9	3,100	-		-	-	500	2,600
HE13	-		9.3	8,600		· •••	-	-	1,000	7,600
HE16	-	<u> </u>	5.6	6,100		· •	-'.		-	6,100
HE19		` -	2.9	2,100	-	-	– 5.	-	1,100	1,000
HE21A	-	-	4.6	3,500	-		-	· -	1,000	2,500
HE21B			3.3	1,400	-			-	-	1,400
8-Route:S		tal)		33,400	0	0	0	0	7,400	26,000
12	0.7		· •	500		500	1	-	-	-
L3	4.0	-	-	9,000		2,700	-	-	~	-
L4	2.5	 '	-	6,000	3,700	2,300	} -	-	-	-
L5	3.1	***	-	9,900	9,900	-	-	-	~:	
L6/6B/6A		-		6,700		1,700		· -	· ~	- 1
5-Route:S	<u>ub-to</u>	<u>tal)</u>		32,100	24,900	7,200		0	0	0
E(II) 13-	<u>Route</u>	<u>: Tot</u>	<u>al</u>	65,500	24,900	7,200	0	0	7,400	26,000
R1	·			5,900	5,900	***		-		
R 2	: -			3,200	3,200	· ••• [-	-
R 3				4,900	4,900		-	-	-	-
R4				11,300	8,850		2,450			-
R5				5,000	2,900	2,100	-	-	-	· +
5-Route:S	<u>ub-to</u>	tal)		30,300	25,750	2,100	2,450	0	0	0
KR3				1,500	-	-	- 1		1,500	-
KR4				600	- 1	-	-	-	(-	600
KR5				3,500	· -	 '	-	-		3,500
KR10		· · ·		2,750		· 🚥	-	-	2,750	
KR14				950	[-			-	450	500
KR28	l,			1,850	-		-	-	1,850	
6-Route:S				11,150	0	0	0	0	6,550	4,600
<u>E(III) 11</u>			tal	41,450	25,750	2,100	2,450	0	6,550	4,600
E 34-Rout	e: To	tal		206,900	56,750	17,000	53,850	1.300	35,300	42,700

RY SHR-DIGTDIGT WIGT ~ (**O Å H I T** .

E1-19

TABLE E.1	.5-2 SECONDARY	CANAL B	Y SUB-DI	STRICT	WISE (3	OF 3)	(Unit: m)
Canal	Qmax (m3/s)				Irri. cu		Drain	age
Name			Improv.		Improv.		Improv.	New
AW1	1.4	600		600	· · ·			
AW2	0.4	800	-	800		. 1	-	
AW3/3A/3B		7,100		1,700				_
AW4	1.9 6.9 6.9	10,100	5,200	4,000	2 650	1 050	750	1,650
		10,100		4,000	2,650	1,000	750	
(4-Route:S			5,400	1,100	6,030	1,050		1,650
DAW2	4.0	1,250		: - -,	- -	· · - ·		1,250
DAW3/3A	12.2	6,600	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	-	-	5,300	1,300
DAW4	16.2	6,450					3,300	3,150
(3-Route:S					0			5,700
	ute: Total	32,900		7,100	2,650	1,050	9,350	7,350
AW5	2.4	4,500	4,500		-	-	-	 - 1.1 - 1
AW6	1.7	1,800	- -	1,800	-	· _	-	-
AW7	3.3	11,700	11.700	- - -		-	🗕 🖓	-
AW8	0.7	1,000	-	1,000			· ••	
AW9/9A/9B		24,600		11,250		-		
(5-Route:S		43,600		14,050		0	0	0
DAW5/5A] 15.6	12,700		.	······		900	11,800
DAW6	15.8	20,520		-				5,650
DAW8	7.6	7,300	_				-	7,300
DAW10				_				
		10,600					6,000	4,600
(4-Route:S	UD-LOTAI)	51,120			0	0	21,770	29,350
AW(11) 9-R		94,720		14,050			21,770	29,350
	e: Total				2,650		31,120	36,700
AE1	0.6	2,000	2,000			-	2	-
AE2	1.3	3,200		3,200	-	·	-	֥ ;
AE3A	6.4 16.9 21.1	29,000	4,350	4,950	11,350	500	7,850	- 11
AE3B	1.6 2.2 9.2	10,300	2,000	1,000	600	. –	3,400	3,300
AE3C	0.8	1,400		1,400		-	_	e po d e com
	ub-total)	45,900	8.350	10,550	11.950	500	11,250	3,300
DAF9	7.5	5,400	-				1,500	3,900
	ute: Total	51,300	8 350	10,550	11,950	500	12,750	7,200
AE4/4A/4B		15,350	4,400		8,100		10,700	850
AE5	1.8	4,900	4,900		0,100	1,130		0.0
		95 000	4,300	1 600	7 000	1 0 0 0	7 000	
HEU/04/00	1.9 7.8 21.3	40,000	1,000	1,000	7,600	1,000	7,800	9 :- (0 7 8
	Sub-total)	45,250	16,300	4,430	15,700	2,150		850
DAE12B/120		10,500	- 1		-	-	4,000	6,500
DAE13	8.6	6,400	.			<i>"</i>	4,900	1,500
Ky-Route S	Sub-total)	16,900	0		. 0	0	8,900	8,000
		1 00 100	16,300	2,450	15,700	2,150	16,700	8,850
AE(11) 5-F		62,150						
AE(11) 5-F AE7	2.3 7.0 -	11,750	1,900		8,350	1,500	-	•
AE(11) 5-F	2.3 7.0 -	11,750 900		-			1	
AE(11) 5-F AE7	2.3 7.0 -	11,750 900	1,900	-	8,350 -		1	•
<u>AE(11) 5-1</u> AE7 AE8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11,750 900 19,350	1,900 900 6,800	- 2,800	8,350 - 6,050	1,500 - 1,500	1	- 2,200
AE(11) 5-F AE7 AE8 AE11 (3-Route:5	2.3 7.0 - 0.5 6.8 11.0 11.0 Sub-total)	11,750 900 19,350 32,000	1,900 900	- 2,800	8,350 -	1,500		2,200 2,200
AE(11) 5-F AE7 AE8 AE11 (3-Route:5 DAE14	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11,750 900 19,350 32,000 5,500	1,900 900 6,800	- 2,800	8,350 - 6,050	1,500 - 1,500	- - 0 5,500	2,200 2,200 -
AE(11) 5-F AE7 AE8 AE11 (3-Route:5 DAE14 DAE16	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11,750 900 19,350 32,000 5,500 3,200	1,900 900 6,800	- 2,800	8,350 - 6,050	1,500 - 1,500	- - 5,500	2,200 2,200 3,200
AE(11) 5-F AE7 AE8 AE11 (3-Route:5 DAE14 DAE16 DAE17	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11,750 900 19,350 32,000 5,500 3,200 4,400	1,900 900 6,800 9,600 - - -	2,800 2,800 - - -	8,350 6,050 14,400 -	1,500 1,500 3,000 	- - 5,500 1,250	2,200 2,200 3,200 3,150
AE(11) 5-F AE7 AE8 AE11 (3-Route: 5 DAE14 DAE16 DAE16 DAE17 (3-Route: 5	$\begin{vmatrix} 2.3 & 7.0 & -\\ 0.5 & - & -\\ 6.8 & 11.0 & 11.0\\ \text{Sub-total} \end{vmatrix}$ $\begin{vmatrix} - & - & 15.7\\ - & - & 8.4\\ - & - & 7.8\\ \text{Sub-total} \end{vmatrix}$	11,750 900 19,350 32,000 5,500 3,200 4,400 13,100	1,900 900 6,800 9,600 - - - 0	2,800 2,800 - - - 0	8,350 6,050 14,400 - - 0	1,500 	- - 5,500 1,250 6,750	2,200 2,200 - 3,200 3,150 6,350
AE(11) 5-F AE7 AE8 AE11 (3-Route: 5 DAE14 DAE16 DAE16 DAE17 (3-Route: 5 AE(111) 6-	2.3 7.0 - 0.5 6.8 11.0 11.0 Sub-total) 15.7 8.4 7.8 Sub-total) - Route: Total	11,750 900 19,350 32,000 5,500 3,200 4,400 13,100 45,100	1,900 900 6,800 9,600 - - - 0 9,600	2,800 2,800 - - - 0 2,800	8,350 - 6,050 14,400 - - 0 14,400	1,500 1,500 3,000 - - 0 3,000	- 5,500 1,250 6,750 6,750	2,200 2,200 3,200 3,150 6,350 8,550
AE(11) 5-F AE7 AE8 AE11 (3-Route:5 DAE14 DAE16 DAE17 (3-Route:5 AE(111) 6- AE 17-Rout	2.3 7.0 - 0.5 6.8 11.0 11.0 Sub-total) 15.7 8.4 7.8 Sub-total) - Route: Total	11,75090019,35032,0005,5003,2004,40013,10045,100158,550	1,900 900 6,800 9,600 - - - 0 9,600	2,800 2,800 - - - 2,800 15,800	8,350 6,050 14,400 - - 0	1,500 	- - 5,500 1,250 6,750	2,200 2,200 - 3,200 3,150 6,350

TABLE E.1.5-3 LIST	OF SE	SECONDARY	0	ANAL	RELAT	ED H	ACILIT	IES						(Uni	t: place)
District		MH		ΗE		Sub-		AW	Sub-		AE		-qn		
-Dist		E	(I)	(II)	(111)	total	(1)		5	(\mathbf{I})	(II)	(III)		Tot	Remarks
eck (Type		တ	10	18	11	39	ထ	21	29	0	***4 ?***1	-12	ຕີ (
k (Typ		ন্দ	red	0	Ö			m	4	4	2	2	ω		
heck/Drop (Type	()	0	ີຕາ	0	Ċ	9	21	2	- 1	0	0	ຕ	ر ي،	<u> </u>	
eck/Drop (Typ		ເດ 	13	~ 3	ល	19	1	2	ຕ ງ	4	2	0	ب ص	4	
heck/Drop (Type		3	ŝ	, (ທີ	0	0	0		0	0		ۍ	
herk/Drop (Type		4	2	0	0		0	0	0	0	0	0			
(Tvpe A)		23	6	2	20	31		8		ر ي	4	4	+ +	9 [~	
rop (Typ		173	158	• - 1	110		4	17	53 53	10	ເດັ	G		478	
rop (Tvpe		26	6	0	G		yd	2	ۍ 	0	v1	0	 1	۲	
rna (Tvae		,, ,,	80	1	6T		0			0	0			<u>i</u> Ω	
ridge (Tvpe		27	16	4		2	18			12	(۲) ۲۰۰۰	14		132	
ridge (Tvp		27	16	-41	ເຈ		18			12	ری ۲-4			ຕາ.	
Rridge (Tvpe		00	100	67	43		34			20	64			ത	
Turnout (Tvpe		18	13	9	0		Û			ታ	 ני			80	ouble Or
Turnout (Tvp	-	τ.	20	19	C		10			1 +1	თ	16		119	ble Orific
Turnout (Tvpe	 ·	æ	10	2	21		9	18		6	2	[88	3
unction (Ty	1)	9	ຕ		0	4	ω	æ	16	0	~1 * 1	•••• • •	ເລ (58 1 28	
. Junction (Type C1-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18	ഹ	~	0		ò	1 1		-1 -	ω,		57 I 77	4.0	
unction (Type C1-		G	ω	0	ŋ	~ 	~	4	ය 	r-~1 (1	ي فدن 1	ດ ·	<u></u>	
. Junction (Type C2			0	0			0							L, L,	
. Junction (T		(C) (C)	50	51	26	127	14	37	10	7.1	27	C7	ъ с	2 2	
hon (Typ		2	0	0			0	4		<u> </u>	•	20)	*) <	
. Siphon (T	-	0	0	0	0	0	0	0	0	0	0		> ''	⇒¦\	
. Cross Culvert (Ty	e	0	0	0	Ö	0	⊷ -4	ന്			•	-	0		
. Cross Culver	e B)	4	0	0	0	0	0	0	0	0)	•	ې د	4.0	
M.C. Crossing		ω	E	➡	0	+++ +	0	0	0	0	0		>	5	Nonqid
queduct		1	0	0	12	12	0	с.	۳ 		-		0	19	

E. 1.6 Planning and Design of Tertiary Canal

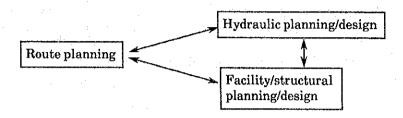
1. Definition

This section describes the basic concept and approach, design criteria and standard design adopted for planning and design of the tertiary canal. Some of the items have already been mentioned in detail in the respective appendixes, and are duplicated briefly here.

(1) Proposed Canal System

a) In planning, the canals in the project area are classified as follows.

By the role of the canal into


- Irrigation canal
- Drainage canal
- Irrigation cum drainage canal

By operation & maintenance, and management method into

- Main canal/drain
- Secondary canal
- Tertiary canal
- Fourth canal (irrigation or drainage ditch)
- On-farm ditch
- b) The proposed canal system is consisted of
 - Conveyance structures
 - Regulating structures
 - Intake and water measurement structures
 - Protective structures
- c) The term tertiary canal when used in general will mean both the irrigation and drainage canal. distinction will be made, such as irrigation tertiary canal, drainage tertiary canal, and irrigation cum drainage tertiary canal, whenever necessary to specify the role of the canal.

d) Basic Approach

Route planning, hydraulic planning and facility planning are interrelated and should be planned by feedbacking the results of one to the other, in order to produce a good planning.

(2) Tertiary Canal and the Related Terms

- a) A block is an area of approximately 500 ha commanded by a tertiary canal.
- b) A unit is an area of approximately 100 ha commanded by a fourth canal.
- c) The command area of irrigation and drainage canal is determined by gross paddy area and gross area, respectively. Block very much greater or smaller than 500 ha will be planned as a special case. This happens when the topographical and/or social conditions restrict smooth organization of area in a zone into blocks of 500 ha. For the same reason, a unit can be larger or smaller than 100 ha.
- d) A turn-out is a permanent structure diverting water from the secondary canal into the tertiary canal.
- e) An off-take, often install with gates and incorporated with check structure, is a permanent structure diverting water from the tertiary into the fourth canal.
- f) The irrigation tertiary canal (ITC) conveys water diverted at the turnout (from the secondary canal) and ends at a terminal irrigation unit. Off-take structures located in the tertiary canal divert

water into the fourth canals to irrigate the units. The secondary canal can be either an irrigation canal or irrigation cum drainage canal. The ITC is connected indirectly, via intake structures, to the farm ponds in the vicinity.

- g) The drainage tertiary canal (DTC) starts at a drainage unit, and collects drainage water from other units along its course before draining into the secondary canal, or in some cases directly into the rivers or the Caspian sea. The secondary canal, likewise, can be either a drainage canal or an irrigation cum drainage canal. The DTC is connected indirectly, via intake and spillway structure, to the farm pond in the vicinity to collect and store drainage water and return flow.
- h) An irrigation cum drainage tertiary canal (IDTC) is basically a drainage canal which convey irrigation water, return flow and drainage water. The return-flow and drainage water collected during irrigation period are used for irrigation through off-take structures in the downstream. Like the ITC, the IDTC is connected indirectly to the farm ponds.
- i) Return flow is available for irrigation and is included when estimating water resource. However, it is omitted in designing canal capacity since it is often very much smaller than the peak design discharge.
- j) Surface water irrigated area is the area currently irrigated by water diverted from the existing canals. And is the main factor in the design of canal capacity.
- k) Groundwater irrigated area is the area irrigated by groundwater drafted through deep and shallow wells, artesian wells and springs. In this study they are included in the design of canal capacity.

E1-24

2. Existing Conditions

1) Tertiary Canal

- a) The density of existing canal is estimated at about 15m/ha. The command area of these canal ranges from 5 to over 500 ha and the individual canal length from 0.1 km to over 10 km.
- b) Some of the tertiary canals function as irrigation cum drainage canals; conveying irrigation water diverted from the secondary canal and collecting return-flow and/or drainage water along its course. The water is either reused for irrigation or drained away at the lower reaches.
- c) The existing canal network, evolved over the years, is complex. Though most of the major tertiary canals are named locally, the size and boundary of the command area of each canal are not necessarily accurately known.
- d) The routes of these canals were clarified through Terminal Irrigation Block Survey (TIB) conducted in this study.

(2) Appurtenant Structures

a) Diversion Structures

The existing diversion structures, most of them temporary, are constructed by the mirabs or farmers at the beginning of irrigation season.

In the highland region, the invert of the secondary canals are deep, far below the elevation of the surrounding paddy fields and it is difficult to obtain the required diversion head without some form of check structure. Some of the existing canals, especially those irrigating the middle land region, water is diverted at locations very much upstream and convey water through long approach canals. b) Regulating and Measuring Structures

Water distribution in the Project Area is arbitrated by the Mirabs and the unit 'abdang' (ratio for distribution) in use is ambiguous. In some cases, water diversion is conducted by contracted rectangular weir and measurement is not a common practice. To ensure stable water distribution and efficient water management, some form of measuring device are necessary.

c) Protection and Safety Structures

The existing facility does not provide protection against flood water or rain-storm from flowing into the tertiary canals.

The canals are not protected against sedimentation. The sediment, especially the sand load, is removed by the farmers at the field level. In some of the downstream region, especially in the drainage canal, plugging is becoming a problem.

Most of the existing permanent drop structures (mainly built of concrete, block or stones) are poorly maintained. In some cases, the canals bed and embankments are heavily eroded.

d) Operation and Maintenance Structures

Some of the roads along the larger canals inhibit smooth access by vehicles. And the existing level of farm road and village roads is insufficient for smooth farming, operation & maintenance activities.

- (3) Existing Design Criteria/Standard
 - a) At present there are several design criteria in use in Iran. For example,
 - Soil and concrete design criteria ASSHTO, ASTM, ACI
 - Hydraulic and structural design criteria Design of small canal structures by United States, Department of the Interior, Bureau of Reclamation

- b) The details of hydraulic and structural criteria adopted in Water Resources Development Planning of Talar, Babol and Haraz Watersheds (Haraz Plain Water Supply Project, Design of Irrigation and Drainage Scheme, Phase-1) can be found in HWDP-1 Volume B-2 Report (e.g. p 5-22 to 5-26).
- c) To avoid confusion, it is necessary to specify and state clearly the criteria used for planning and design. The detail of design criteria use in this study is given in 1) of (4) "Design Criteria".

3. Route Planning of the Tertiary Canal

(1) Canal Alignment and Integration of Intake

The routes of the tertiary canals are planned as follows.

- The role of canals are planned based on the roles defined above.
- The canal routes are planned using 1/20,000 map containing the contour lines and the existing canal network. These maps were prepared from the NCC maps (National Cartographic Center) and the results of the Terminal Irrigation Block Survey (TIB) conducted in this study.
 - The routes of the tertiary canals are planned after careful study of the topography and the existing canal network. The routes are planned in such a way that the tertiary canals irrigate, or drain water from, blocks of approximately 500 ha. In doing so the existing canals, large and small inside a block are integrated into a more or less simpler layout. Also, after land consolidation, most of the smaller existing canals will be 'displaced' by irrigation or drainage ditches.

The zones, defined for the secondary canals, are cut-up into blocks (less than 500 ha) based on the proposed route of the tertiary canal. The process of grouping the area within the zones into block is conducted after taking into consideration the existing canal routes, topography (contour lines, ridges and valleys, and slope orientation), the existing road, village boundary, ponds (abbandan), land consolidation and canal density.

The routes are planned principally by adopting the existing ones whenever possible, putting emphasis on those that collect return-flow. However, new routes are planned for cases where better water conveyance and distribution can be expected for irrigation or for better drainage. For example, by rerouting the irrigation canal along the ridges of rim of the slope and the drainage canal along the valleys. For there cases, the right-of-way for the canal will have to be considered.

The blocks are then divided into units (about 100 ha) along the tertiary canal to plan the off-take locations and land repotting in land consolidation.

Also, the blocks are sub-divided into sub-blocks bordered by the irrigation and drainage boundary, as defined by the topography, to facilitate grouping the land into irrigation and drainage area. Note that the blocks are divided into units and sub-blocks for different purposes. And the sub-blocks do not coincide with the units.

The farm pond in the vicinity are linked indirectly to the proposed tertiary canal whenever possible. The ponds are never planned as a part (i.e. included in the canal route) of a canal.

Generally, topographical undulation play an important role in canal route selection. The irrigation block boundary coincides with the valleys or depression of the topography and therefore is usually the planned location for route of drainage canal. The reverse is true for drainage boundary; since the drainage boundary generally follows the ridges or convex of the topography, the irrigation canal route is generally planned along the drainage boundary, and irrigation cum drainage canal along inflection of a slope.

a) Irrigation Tertiary Canal (ITC)

Irrigation tertiary canals are planned to command an irrigation block (approximately 500 ha of gross paddy area), and ends at a terminal irrigation unit (about 100 ha). Basically each block is irrigated by one tertiary canal. Block irrigated by more than one tertiary canals is planed as special case. The irrigation tertiary canals are generally planned along the ridges of the topography, and they also serve as drainage boundary. Depending on slope orientation, they are planned either to irrigate the area along single or both banks.

The existing canals are given the priority in the route planning. Other alternative routes are considered only when better water conveyance can be expected. The off-take structures in the tertiary canals are planned in such a manner that each off-take irrigates an irrigation unit of about 100 ha.

In the process of canal route planning some of the canals are planned as irrigation cum drainage canals, depending on water use, the slope orientation and topography.

b) Drainage Tertiary Canal (DTC)

The drainage tertiary canals are planned along the depressions of the topography, and thus also serve as irrigation boundary.

Drainage tertiary canals receive drainage water from a drainage unit (about 100 ha) and along its course collect water from other units. Therefore, a drainage tertiary canal commands a drainage block of approximately 500 ha.

(2) Naming of the Tertiary Canals and Blocks

a) The name of the irrigation tertiary canal consists of two parts. The first part comes from the name of the zone (secondary canal) and the second part from the layout sequence of the tertiary canals from upstream. For example, AE15-T1, AE15-T2, etc. AE15 comes from the secondary canal and T1, T2 are number of the layout sequence.

For blocks irrigated or drained by more than one tertiary canal, "a", "b", "c", will be added, in the clock-wise direction. e.g. AE15-Tla, AE15-Tlb.

b) The drainage secondary canals are numbered according to the district and layout sequence in the clock-wise direction. The tertiary canals in each drainage secondary canal are numbered according to the layout sequence from downstream, e.g. DAW2-J3, DAW2-J4. J3 means the third drainage outlet and DAW2 is the name of the drainage secondary canal.

4. Design Criteria and Appurtenant Structures

1) Design Criteria

The hydraulic design criteria for the tertiary canal are basically the same as those for the secondary canal. However, adaptation is made for the small discharge found in the tertiary canal.

- Continuity Equation

 $Q = V1 \times A1 = V2 \times A2$

The Average Velocity Equation (Manning's formula)

 $V = 1/n \times R^{(2/3)} \times I^{(1/2)}$

is used in the hydraulic calculation of uniform flow (where the longitudinal gradient, water surface and energy head are parallel).

Coefficient of Roughness (n)

In the Manning's formula, n varied only with the conditions of the channel surface. n = 0.030 is adopted in principle for irrigation and irrigation cum drainage canal. n = 0.045 is used for canal with heavy weed growth and stones or pebbles as bed material, and for drainage canal.

Type and Shape of Cross Section

Open-type unlined trapezoidal cross-section is adopted as the most economical section. Lined section, not necessarily trapezoidal, will be considered only for hydraulically difficult locations.

For a Trapezoidal Section

 $A = b \times h + z \times h^{2}$ R = A/P $P = b + 2 \times h \times sqrt(1 + z^{2})$ $B = b + 2 \times z \times h$

where

- A: cross sectional area
- b: bottom width
- B: water surface width
- h: design water depth
- z : side slope (1 (vertical) : z (horizontal))
- R: hydraulic radius

P: wetted parameter in contact with the channel

Side Slope (1 vertical : z horizontal)

For earth canal z ranges from 1.0 to 3.0 depending on soil type. Side slope of 1:1.5 is adopted for this study.

Freeboard (Fb)

Adequate freeboard must be provided to guard against sudden rise in the water level due to operation error, intrusion of flood water from rain-storm, changes in canal roughness, etc.

 $Fb = 0.07 \times d + hv + (0.05 \text{ to } 0.15) > = 0.15 \text{ m}$

d : design water depth (m)

hv : velocity head (m)

The minimum freeboard is 15 cm. However, the value adopted in planning is determined by the design discharge.

 $Fb = 0.15 \text{ m} \quad \text{for} \qquad q < = 1.0 \text{ cu.m/s}$ $Fb = 0.30 \text{ m} \quad \text{for } 1.0 \text{ cu.m/s} < q < = 5.0 \text{ cu.m/s}$ $Fb = 0.40 \text{ m} \quad \text{for } 5.0 \text{ cu.m/s} < q < = 15.0 \text{ cu.m/s}$

Longitudinal (invert) Profile

The invert gradient is designed for maximum canal capacity while ensuring maximum canal stability and most efficient use of head loss; no abnormal flow, no deposition of sand, no aquatic weed growth, no scouring and erosion of canal bed and side.

The invert are planned, as far as possible, in such a way that the canal bed is situated under the natural ground surface. This does not hold for the 'filled portion' before a check/drop structure. And wherever possible, the normal water surface in the canal is kept at one meter above ground level in the average (from 0.5 m to 1.5 m above ground level) at the diversion point, since in most cases, the area irrigated are located close to the canal.

Allowable Velocity (Vmin, Vmax)

Very few natural canal bed/side material can withstand a flow velocity exceeding 1.5m/s. The safe velocity is set between 0.3 m/s (Vmin) to

0.9 m/s (Vmax) for earth irrigation canal. For earth drainage canal 1.5 times of the maximum value, i.e. $0.9 \times 1.5 = 1.35$ m/s, is adopted for 1/10 probability rain-storm. For the irrigation cum drainage canal, design velocity is checked for the most and the least frequent flow; the maximum value is 0.9 m/s for irrigation and 1.35 m/s for drainage. Near critical flow should be avoided; the design velocity should be less than 2/3 of the critical velocity to ensure hydraulic and water surface stability, and structure safety.

Energy Head Loss

Frictional, entrance, transition, bend or curvature, pier or screen or trash rack head loss are the major head losses occur in the tertiary canal. Of the head losses, mainly the frictional head loss is considered in the standard design. 0.3 m head loss is considered in planning.

Design Discharge

Irrigation Canal

2.0 cu.m/s/ha (peak flow in summer irrigating gross paddy area in a block).

For Drainage Canal,

15.42 $M^{-1/6}$ lit/s/ha (1/10 year probability winter rainfall). However, the Cypress-Creek formula and the 20-40% rule are applied at all time.

d/b (water depth and bed width) ratio

Since the best hydraulic cross section (for a trapezoidal section $b = 2 \times d \tan (\frac{1}{2})$, theta is the angle between the horizontal) is not necessary the most economical section, the d/b ratio is set between 1 to 2 for small canal. Larger value of d/b is not adopted because of side slope stability in earth canal.

For a trapezoidal cross-section with 1:1.5 side slope the best hydraulic section happens when d/b = 1.6. Also, from the construction aspect (e.g. excavating by a backhoe) b = 50 cm is adopted as the minimum bed width value.

Service Road and Top Berm Width

Effective width of 4.5 m is adopted for service road. The top berm width of 1 m is proposed for the bank opposite to the service road to reduce seepage and to provide foot passage.

(2) Appurtenant Structures

Generally, for easy and economical operation and maintenance and to reduce construction costs, it is advisable to reduce the number of structures. Since the existing structures in the existing canal network is insufficient to facilitate safe and smooth operation and proper management of water supply and drainage, the following appurtenant structures are proposed.

a) Turn-out Structure

Permanent turn-out structure, with regulating and measuring device are planned in the secondary canal to divert and measure water diverted into the tertiary canal.

b) Off-take Structure

Off-take structures built in the tertiary canal are permanent structure with sluice gate and staff gages to control and measure diversion.

c) Check Structure

Check structure is designed to control the upstream flow as well as to maintain the desired water level for diversion. Check structure is usually incorporated with the off-take structure, since checking-up of water level is only necessary at off-take location.

d) Drop Structure

Drop structures are used in places where the natural slope caused excessive velocity. They may be closely spaced in series to keep flow velocity within the allowable range. Concrete drop structures are proposed. For lined or protected section a maximum drop of 2.5 m to 3.0 m is usually permitted. Vertical drop of 2.0 m is adopted in this study.

e) Spillway Structure

Spillway is provided to drain away excess water resulting from operation error, and to empty the canal for inspection and repair or when bank collapse occurs at downstream. For the irrigation tertiary canal in the study area, spillway structure is usually not necessary for the following reasons:

The length of the irrigation tertiary canal ranges from a few hundred meters to about 6 km. Operating the turn-out structures will enable inspection and repair work or to cope with emergency.

The design discharge of tertiary canal is small. A canal with 0.5 m bed width (the smallest design bed width) and 1/500 longitudinal slope (average design slope) will allow a discharge of 0.5 cu.m/s (average design discharge) at a flow velocity of less than 0.7 m/s (less than the allowable velocity).

f) Road Crossing Structure

For Q < 3.0 cu.m/s, pipe road crossing is more economical, easily designed and constructed, and cause less road interference during and after construction. For operation and maintenance purpose, the minimum diameter of the pipe should be greater than or equal to 600 mm.

The existing structural survey along the New and Old Amol-Babol road and the coastal road shows that pipe structure is used for small discharge, and except for the few cases, the minimum diameter used is equal to or larger than 600 mm; 800 mm to 1,000 mm being the most popular types. The survey also shows that almost all of the existing pipe crossing structures are poorly maintenance. It is reiterated here that proper maintenance of these structures is a must in order to perpetuate the design capacity. Also, the existing pipe crossing structures must be rehabilitated and adopted in the detail design, especially in planning land consolidation, before turning to new alternatives.

Simple concrete slab bridge are planned as the crossing structure for drainage tertiary canal where pipe crossing is not advisable.

g) Settling Basin

Since removal of suspended load are already considered at the Haraz and Amol Diversion Dam, only small settling basin will be planned at location after the turn-out or in the head-race to remove suspended load. Exclusion of silt and clay is economically not feasible and is not necessary for water of agricultural use.

h) End Structure

A box-type end structure with drainage outlet is planned at the end of tertiary canal. Water from the end structure is drained either into drainage ditch, tertiary or secondary canal

5. Proposed Level of Improvement

In connection with land consolidation, the following level of improvement is adopted for tertiary canal development.

Structure	Existing	Planned
Conveyance	excavated, unlined	excavated, trapezoidal, unlined. Some existing ones abandoned or unified and systematically ordered and classified
Intake	mostly temporary	permanent structure after unifying and abandoning
Regulating	ditto abbandan	permanent with gates, rehabilitated to increase storage effect
Measuring	staff gages	sluice gate with staff gage
Protective/Safety	mostly temporary	drop, check, gate, settling basin, end structure
O & M	roads, paths	service road

6. Planning and Design Procedure

(1) Design Data

- a) Existing Topographical Information From Maps
 - Spot (or paddy field) elevation: (1/20,000) maps
 - Detail contour lines: NCC (1/20,000) maps
 - Bench mark elevation: Bench Mark survey maps (1/20,000)
 - Turn-out elevation: Secondary canal survey
- b) Area (Block and sub-block level) From Land Use Data
 - Gross and paddy (net)
 - Groundwater (spring and well) irrigated area
- c) Canal Route and Length from Proposed Canal Layout Maps
 - Irrigation districts, zones, blocks, sub-blocks,
 - Drainage zones, blocks, sub-blocks
 - Turn-out locations
 - The proposed canal layout maps are prepared after careful and thorough study of the existing canal networks, topography and water use.
- d) Existing Irrigation and Drainage Canal Network
 - maps (1/20,000) from TIB survey results
- e) Canal Materials, Soil Types and Physical Properties
- f) Design Criteria
 - Hydraulic planning
 - Structural design

- g) Operation & Maintenance
 - **Existing situation**
 - Proposed method and organization
- h) Proposed Level of Improvement
- (2) Preparation of Block Schematic Flow Diagram
 - a) Since most of the sub-blocks are 'oblong' in shape in the north-south direction, it is advisable to organized the paddy fields into somewhat 'square' shaped irrigation unit by appropriately organizing the paddy area in the sub-blocks to the respective irrigation unit. This will avoid planning a fourth canal that is unnecessarily long and it is more efficient in the use of available energy head.
 - b) In organizing the sub-blocks into the units the following points are taken into consideration:
 - Existing road (large and paved, shown in NCC maps)
 - Shape and direction of the zone/block boundary
 - Villages
 - **Contour lines**
 - Existing canal, especially those of drainage nature
 - The proposed size of unit
 - c) The gross paddy area and the diversion rate are estimated for each irrigation unit. The location of the off-take in a tertiary canal, usually at the head of the unit, are also determined.
 - d) These data are tabulated in the form of the schematic flow diagram.

(3) Existing Profile

a) The elevations of all contour lines crossing the proposed tertiary canal are read from the NCC maps. For the steep slope in the highland region and those places where the contour lines are close together and more or less running parallel, they are read at 10 m interval, to an accuracy of 1 m. For the flatter lowland region where the contour lines are wider apart, they are read at 2 m interval, to an accuracy of 1 decimal place.

- b) The distance between the contour lines are measured by a 'curvimeter' to an accuracy of 50 m.
- c) These data are plotted to obtain the average longitudinal slope of the ground surface. Average slope is calculated for each 10 m drop in altitude and/or for sections with different slopes.
- d) The existing profile are used in designing velocity, locating and designing of drop and check structures.

(4) Hydraulic design

- a) Hydraulic design is based on the existing profile. The off-take locations are also read and plotted on the profile. Average slope for the interval between the off-takes are estimated. Hydraulic calculation is conducted separately for the individual Q of the intervals between the off-takes. A combination of standard bed widths and standard longitudinal slopes, ranging from those steeper to those gentler than the existing ones are used. Only the combination that produces a velocity within the permissible velocities and the proposed d/b ratio is adopted in profile design.
- b) The profile is designed for each interval by plotting the selected bed width and longitudinal slope combination which give the best hydraulic profile and head distribution throughout the tertiary canal.

7. Standard/Typical Design

a) Hydraulic section

Unlined trapezoidal cross-section (side slope 1.1:5) is adopted as the standard cross-section.

b) The minimum bed width is 50 cm and the increment is 10 cm. Standard bed widths are 50 cm, 60 cm, 70 cm, 80 cm, 90 cm, 100 cm, 110 cm, 120 cm, 130 cm, 140 cm and 150 cm.

- c) Standard slope are 1/50, 1/100, 1/200, 1/300, 1/400, 1/500, 1/600, 1/700, 1/800, 1/900, 1/1,000, 1/1,250, 1/1,500, 1/2,000,1/2,500, 1/3,000, 1/3,500, 1/4,000, 1/4,500 and 1/5,000.
- d) Four types of drop structure, A-type = 2.0 m, B-type = 1.0 m, C-type = 0.5 m and D-type = 0.25 m are proposed.

TABLE E. 1. 6 - 1 SUMMARY OF IRRIGATION CANAL

	· · · ·	1	CANAL I	ENGTH (n)	
ZONE	4	DISCHARGE		E/REPAIR	NEW	TOTAL
	(ha)	(cu.∎/s)	A TYPE	B TYPE	<u>C TYPE</u>	1
HARAZ WEST	10,382	20.77	58,200	1,950	30,850	91,000
AMOL WEST	17,463	34.91	83,250	32,600	45,950	161,800
HARAZ EAST	11,019	22.80	60,400	34,150	11,550	106, 100
AMOL EAST	23,539	47.06	87,410	55,150	62,200	204,760
KARI LEFT	9,591	19.19	26,650	47,500	19,700	93,850
KARI RIGHT	4,277	8.53	17,400	10,900	9,300	37,600
TOTAL	76,271	153.26	333,310	182,250	179,550	695,110

E1-40

A TYPE: Existing canal commanding less than 100ha B TYPE: Existing canal commanding more than 100ha C TYPE: New canal

TABLE E. 1. 6 - 2 TERTIARY IRRIGATION CANAL (HARAZ WEST DISTRICT)

TEDT I I	DV CANAL	1 DPA			ENGTH (m			11 11 11		1.17	PD 1 (1
IERLIA	RY CANAL		DISCHARGE		REPAIR	NEW	TOTAL		<u>'ION(m)</u>		ERAG
	r	(ha)	(cu.m/s)	A TYPE	B TYPE	C TYPE		START	END	SL	OPE
H₩1 ⊨	T 1	144	0.00			1 150	1.000	1.50 0	100 0	1 /	
[1] [1]	<u>T1</u> T2	144	0.29	100	450	1,150			130.0		70
		77	0.15	400		600			132.0		50
	T3	182	0.36	500		1,900			119.0		73
·	T4	220	0.44	1,200	450	600		153.0	125.0	1/	64
IIWOJ	Total	623	1.24	2,100	450	4,250	6,800	100.0	100.0	• /	057
HW2A	T1	201	0.40	200		1,600				1/	257
·	T2	161	0.32	350		1,550	1,900		89.0	· · · · ·	119
	T3	217	0.43	1,050		250	1,300	93.0		1/	76
	T4	1,019	2.04	2,400		4,000	6,400	36.0		1/	200
÷	T4'	(404)	(0.81)	0 100		3,100	3,100	20.0	9.0		282
	T5	293	0.59	2,100		10 500	2,100	60.0	42.0	1/	117
11000	Total	1,891	3.78	6,100		10,500	16,600	107 0	70.0		
HW2B	T1	323	0.65	3,400		800	4,200		70.0	1/	114
	T2	334	0.67	700	400	1,900	3,000	88.0	64.0		125
	T3	339	0.68	3,900		500	4,400	62.0	1 ·	1/	133
	T4	314	0.63	1,400	· · · · ·	600	2,000	30.0		1/	143
	T5	551	1.10	3,700			3,700	16.0	1.4	1/	253
turio	Total	1,861	3.73	13,100	400	3,800	17,300		107.0		
HW3	T1	247	0.49	1,250	ļ	1,600	2,850	170.0	137.0	1/	86
	T2/UNIT	82	0.16			 					
	<u>T3,T4</u>	601	1.20	2,500					119.0		93
	T3, T4'	(300)	(0.60)	3,650			3,650	138.0	107.0	1/	118
	T5/UNIT	35	0.07	0.000	}			-		<u> </u>	
· · ·	T6	135	0.28	2,300	ļ		2,300	95.0	74.0	1/	110
	T7/UNIT	60	0.12								
:	<u>T8</u>	414	0.83	3,050		1,800	4,850	63.0	17.0	<u> </u>	105
	T9	358	0.72	2,700	100	100	2,900	56.0		1/	171
	<u> </u>	318	0.64	3,700	 	· · ·	3,700	56.0	21.5	1/	107
	T11/UNIT	100	0.20								
	T12	415	0.83	2,550		400	2,950	21.5		1/	177
	T13	119	0.24			1,400	1,400	16.0	8.5	1/	187
	Total	2,884	5.78	21,700	100	5,300	27,100				
HW4	T1	183	0.37	300	 	1,300	1,600	86.0	72.0		114
	T2	312	0.62	1,900	ļ		1,900	69.0	53.5		123
	T3	466	0.93	3,400			3,400	59.0	24.5		99
	<u>T4</u>	107	0.21		· · ·	600	600	29.5	27.2		261
· · .	T5	489	0.98	200		1,850	2,050		7.8		10
	T5'	(241)	(0.48)	400	 	1,200	1,600	19.0	11.5	1/	213
	Total	1,557	3.11	6,200	ļ	4,950	11,150	ļ			
HW5	<u>T1</u>	105	0.21			400	400	60.0	56.0		100
:	T2	114	0.23	400			400	51.0	49.5		267
	T3	175	0.35	1,450		50	1,500	38.5	24.0		10:
	T4	417	0.83	2,800			2,800	26.0	11.0	1/	187
1	Total	811	1.62	4,650		450	5,100		1		

A TYPE: Existing canal commanding less than 100ha B TYPE: Existing canal commanding more than 100ha

C TYPE: New canal

.

·	·.	1.1.1.1.1	CANAL L	ENGTH (#)				
RY CANAL	AREA	DISCHARGE	IMPROVE	/REPAIR	NEW	TOTAL	ELEVAT	ION(m)	AVERAG
	(ha)	(cu.m/s)	A TYPE	B TYPE	C TYPE			END	SLOPE
Ť1	219	0.44	800		1,600	2,400	46.4	23.5	1/ 105
T2	(131)	(0.26)	650			650	42.0	36.4	1/ 116
T3	536	1.07	2,900	1,000		3,900	47.2	15.8	1/ 124
Total	755	1.51	4,350	1,000	1,600	6,950			· ,
	10,382	20.77	58,200	1,950	30,850	91,000			
		1		1.1					
	T1 T2 T3	(ha) <u>T1</u> 219 <u>T2</u> (131) <u>T3</u> 536 <u>Total</u> 755	(ha) (cu.m/s) T1 219 0.44 T2 (131) (0.26) T3 536 1.07 Total 755 1.51	RY CANAL AREA (ha) DISCHARGE (cu.m/s) IMPROVE A TYPE T1 219 0.44 800 T2 (131) (0.26) 650 T3 536 1.07 2,900 Total 755 1.51 4,350	RY CANAL AREA DISCHARGE IMPROVE/REPAIR (ha) (cu.m/s) A TYPE B TYPE T1 219 0.44 800 T2 (131) (0.26) 650 T3 536 1.07 2,900 1,000 Total 755 1.51 4,350 1,000	RY CANAL AREA DISCHARGE IMPROVE/REPAIR NEW (ha) (cu.m/s) A TYPE B TYPE C TYPE T1 219 0.44 800 1,600 T2 (131) (0.26) 650 1 T3 536 1.07 2,900 1,000 Total 755 1.51 4,350 1,000 1,600	RY CANAL (ha) AREA (cu.m/s) DISCHARGE A TYPE IMPROVE/REPAIR B TYPE NEW C TYPE TOTAL T1 219 0.44 800 1,600 2,400 T2 (131) (0.26) 650 650 T3 536 1.07 2,900 1,000 3,900 Total 755 1.51 4,350 1,000 1,600 6,950	RY CANAL AREA DISCHARGE IMPROVE/REPAIR NEW TOTAL ELEVAT (ha) (cu.m/s) A TYPE B TYPE C TYPE START T1 219 0.44 800 1,600 2,400 46.4 T2 (131) (0.26) 650 650 42.0 T3 536 1.07 2,900 1,000 3,900 47.2 Total 755 1.51 4,350 1,000 1,600 6,950	RY CANAL AREA DISCHARGE IMPROVE/REPAIR NEW TOTAL ELEVATION(m) (ha) (cu.m/s) A TYPE B TYPE C TYPE START END T1 219 0.44 800 1,600 2,400 46.4 23.5 T2 (131) (0.26) 650 650 42.0 36.4 T3 536 1.07 2,900 1,000 3,900 47.2 15.8 Total 755 1.51 4,350 1,000 1,600 6,950

HARAZ WEST DISTRICT (2/2)

A TYPE: Existing canal commanding less than 100ha

B TYPE: Existing canal commanding more than 100ha C TYPE: New canal

		1. s		CANAL L							
FERTIARY CANAL			DISCHARGE	and a second second second	/REPAIR	NEW		ELEVAT			ERAC
		(ha)	(cu.m/s)	A TYPE	B TYPE	C TYPE		START	END	SL	OPE
AW1	<u>T1</u>	98	0.20	600			600	-9.0	-10.0		600
	T2	395	0.79	4,450		600	5,050	-9.0		1/	443
	T3, T4	431	0.86	1,800	· · · ·	400	2,200		-13.5		458
· ·	T4	(214)	(0.43)	1,500		1,000	2,500	-9.4	-13.5	1/	610
1180	Total	924	1.85	8,350		2,000	10,350				
AW2	<u>T1</u>	347	0.69	2,850			2,850	-1.4	-11.5	1/	282
•	<u>T2</u>	164	0.33		(3,050)		(3,050)			1/	44
1	<u>T3</u>	182	0.36	1,250			1,250	-9.5	-11.5	1/	62
	Total	693	1.38	4,100		· · ·	4,100				
AWSA	<u>T1</u>	240	0.48			2,300	2,300	-0.8		1/	37
	T2	672	1.34	1,200			1,200	-9.5		1/	63
	T2'	(603)	(1.21)	4,000		800	4,800	-12.7		1/	57
· .	T3	271	0.54		(3,000)		(3,000)			1/	54
· · ·	T4,T4'	491	0.98		4,050		4,050	-9.5	-18.8		43
	<u>T</u> 4'	(243)	(0,49)	2,500		200	2,700	-14.0	-20.2	1/	43
	Total	1,674	3.34	7,700	4,050	3,300	15,050				
AW3B	<u>T1</u>	569	1.14		4,800		4,800	-0.8	-11.2		46
AW4	T1	296	0.59	1,100		1,650	2,750	6.1	-3.0		30
	T2	351	0.70	3,350		350	3,700	1.0	-9.8	1/	34
	<u> </u>	130	0.26			550	550	0.0	-1.0	1/	55
. •	T4/UNIT	82	0.16						:		
	T5	508	1.02	1,600		2,400	4,000	-14.5	-20.5		66
	T5'	(193)	(0.39)	700		800	1,500	-17.8	-20.3		60
• .	T6	248	0.50	1,000		1,200	2,200	-17.7	-21.0	1/	66
	T7/UNIT	11	0.02								
: 	Total	1,626	3.25	7,750		6,950	14,700				
AW5	T1/UNIT	41	0.08								
·	T2	374	0.75			2,600	2,600	0.0	-5.5		47
	T3	474	0.95	1,900	1,800		3,700	-1.0	-8.5	<u> </u>	49
	T4	463	0.93	 		2,250	2,250	-8.0	-14.0	1/	37
	T4'	(177)	(0.35)			600	600	-10.0	-11.5	1/	40
	T5	629	1.26	1,900		2,900	4,800	-8.0	-20.0	1/	.40
		(197)	(0.39)	800	·	2,000	2,800	-12.4	-20.5	1/	34
· .	Total	1,981	3.97	4,600	1,800	10,350	16,750			L	
A\6	T1/UNIT	64	0.13						· ·		1
	T2	227	0.45	1,600	[1,600	14.1	7.5		24
	T3	658	1.32	2,650		2,000	4,650	10.6	-5.4		29
	T3'	(265)	(0.53)	1,350		1,150	2,500	5.8	-2.4		30
	T4	191	0.38	300		1,900	2,200	11.5	3.3		26
	Total	1,140	2.28	5,900		5,050	10,950				

TABLE E. 1. 6 - 3 TERTIARY IRRIGATION CANAL (AMOL WEST DISTRICT)

A TYPE: Existing canal commanding less than 100ha B TYPE: Existing canal commanding more than 100ha

C TYPE: New canal .

AMOL WEST DISTRICT (2/2)

		· .			ENGTH (#					
FERTIARY CANAL			DISCHARGE		/REPAIR	NEW		ELEVAT		AVERAC
	· · · · · · · · · · · · · · · · · · ·	(ha)	(cu.∎/s)	A TYPE	B TYPE	C TYPE	1	START	END	SLOPE
1007		DOF	1 00	1 100		9 000	0.000	0.7	1.0	1 01
A#7	<u>T1</u> T2/UNIT	<u>695</u> 84	1.39	4,100		2,200	6,300	24.5	-1.3	1/ 244
	T3	162	0.17		1,750	0	1,750	1.6	-2.5	1/ 427
	T4	289	0.52	2,400	1,700	0	2,400	·	-2.5 -10.2	
1	14 T5	209	0.38	2,400		0	2,400		-10.2 -10.4	
	TG	200	0.40	2,800		0	2,800	-6.2	-14.0	
	10 T7	284	0.42	<u>2,000</u>	2,600	0	2,600		-14.0 -21.5	
	T8	262	0.57	3,100	2,000	0	3,100	-15.7		1/ 43
	T9	300	0.60	2,800	n de la deserverte de la d La deserverte de la deserve	0	2,800			$\frac{1}{1}$ 51
	T10	653	1.31	5,200	1,000	400	6,600	-9.7		1/ 64
	T10'	(198)	(0,4)	550	1,000	650	1,200			1/ 37
· · · ·	Total	3,141	6.28	22,950	5,350	3,250	31,550	10.0	10.4	1/ 010
AW8	TI TI	299	0.60	1,650	0,000	200	1,850	50.0	33.0	1/ 109
AllO	T2	179	0.00	1,000		750	1,850	50.0	40.0	
	Total	478	0.96	2,750		950	3,700	00.0	40.0	1/ 10
AW9	T1	132	0.30	<u>, 100</u>	200	800	1,000	47.5	45.0	1/ 400
NHU NHU	T2	132	0.26	1,200	200	000	1,200	26.5	19.4	
	T3	501	1.00	1,200	3,800	1,000	5,800	26.5		1/219
	Total	762	1.52	2,200	4,000	1,800	8,000	20.0	0.0	17 610
AW9A	T1/UNIT	92	0.18	4,200	4,000	1,000	0,000			
AIION.	T2/UNIT	81	0.16	· · · · · · · · · · · · · · · · · · ·						
	T3	242	0.18	1,600		400	2,000	-1.2	-6.0	1/ 41'
	13 14	524	1.05	(1400)		(500)	(1900)	-1.4		1/ 55
	T4'	(216)	(0.43)	200	1,200	600	2,000	-1.4		1/ 28
	T4''	(162)	(0.40)	1,600	1,200	000	1,600			1/ 308
	T4'''	(102) (113)	(0.23)	2,300			2,300	-4.8		1/ 30
	T5/UNIT	.84	0.17	4,000			<i>2,000</i>		14.4	17 000
	T6	198	0.40	400	:	1,400	1,800	-13.7	-17.8	1/ 439
	10 T7	749	1.50	400	4,500	600	5,100	-13.5		1/ 40.
	T7'	(206)	(0.41)		3,000		3,000	-15.5		1/ 938
	T7''	(167)	(0.33)	500	0,000	600	1,100		-20.0	1/ 61
	T8	218	0.44	1,000	2,300	100	3,400	-13.7	-21.5	1/ 430
÷.,	Total	2,188	4.38		11,000	3,700	22,300	10.1	21.0	1/ 400
AW9B	TI	131	0.26	400	11,000	1,400	1,800	15.1	7.4	1/ 234
	T2/UNIT	71	0.14	400		1,400	1,000	10,1		17 20
	T3	306	0.61	1,000	500	1,200	2,700	7.1	-1.5	1/ 314
	T4/UNIT	61	0.12	.,		.,				
	T5	370	0.74	2,200		1,600	3,800	1.0	-8.9	1/ 384
	T6	165	0.33	400		400	800	-4.0	-6.7	
	17	184	0.37	1,500		100	1,500	-8.0	-12.0	
	T8	145	0.29			900	900	-10.5	-11.0	
	T9	290	0.58		1,100		1,100	and the second s	-13.8	
	T9'	(115)	(0.23)		(2100)		(2100)			1/ 63
	T10	422	0.84	3,550	<u> `````````</u>	1,100	4,650	+ · · · · · · · · · · · · · · · · · · ·	-21.4	
	T11	142	0.28	300		2,000	2,300		-19.8	
	Total	2,287	4.56	9,350	1,600	8,600	19,550	1		
TOTAL		17,463	34.91	83,250	32,600		161,800		· · · ·	

		·		CANAL L	ENGTH ()		<u></u>		[
TERTIA	TERTIARY CANAL		DISCHARGE	IMPROVE	/REPAIR	NEW	TOTAL	ELEVAT	ION(m)	AV	ERAGE
		AREA (ha)	(cu.m/s)	A TYPE	B TYPE	C TYPE		START	END		OPE
		<u>`</u>									
HEI	T1(L)	167	0.33	1,000	1,000	600	2,600	162.0	148.0	1/	186
	T1L'#1	(157)	0.31						1.0.0	<u> </u>	
	T1(R)	182	0.36	3,900			3,900	162.0	126.0	17	108
	T1R' #1	(223)	0.45								
	T2	117	0.23	1,200		1	1,200	104.0	91.5	1/	96
	T3	355	0.71	1,800			1,800	86.5	72.0		124
	T4(L)	533	1.07	· · · · · · · · · · · · · · · · · · ·	5,550		5,550	81.0		1/	123
	T4(R)	364	0.73	3,150		1,200	4,350	81.0		1/	132
	T5	533	1.07	4,350		400	4,750	73.0		1/	128
· ·	T6(L)	290	0.58	1,100		1,200	2,300	74.0		1/	100
	T6(R)	280	0.56		1,950		1,950	74.0	60.0	1/	139
	Total	2,821	6.40	16,500	8,500	3,400	28,400	· · ·		<u> </u>	
HE2	T1	469	0.94	4,300				160.0	115.0	1/	96
	T2	617	1.23	3,700		1,200	4,900	103.0	55.0	1/	102
	T3	439	0.88	4,600		800	5,400	67.0	23.0	1/	123
	Total	1,525	3.05	12,600		2,000	14,600				
HE3	T1	125	0.25		650	50	700	157.0	142.0	1/	47
. ·	T2	136	0.27		1,050	5	1,050	140.0	130.0	1/	105
]:	13	550	1.10		3,500			126.0		1/	83
	T3'	(264)	(0.53)	3,050		350	3,400	120.0	83.0	1/	92
	T3''	(197)	(0.39)		1,600		1,600	84.0	70.0	1/	114
	T4	220	0.44	2,950		300	3,250	78.0	47.0	1/	105
	T5	881	1.76	6,400		300	6,700	50.0	9.0	1/	163
	T6	145	0.29		950		950	35.0	29.0	1/	158
	T7	135	0.27	900		800	1,700	24.0	15.0	1/	189
	Total	2,192	4.38	13,300	7,750	1,800	22,850				
HE4	TI	281	0.56	3,150			3,150	120.0	91.0	1/	109
	T2	358	0.72	1,650		1,600	3,250	80.0	46.0	1/	96
	T3/UNIT	98	0.20				1				
	T4	306	0.61	2,000		600	2,600	40.0	25.0	1/	173
	T5	749	1.50		4,800		4,800	24.5	4.1	1/	235
	T5'	(172)	(0.34)	1,350			1,350	19.0	11.5	1/	180
	Total	1,792	3.59	8,150	4,800	2,200	15,150				
HE5	T1/UNIT	81	0.16					<u> </u>			
]	T2	279	0.56	1,800			1,800	70.0	58.0	1/	150
	Total	360	0.72	1,800			1,800		3 - A		
HE5A	T 1	197	0.39	1,450		650	2,100	60.0	46.0	1/	150
	T2	196	0.39		1,950		1,950	29.0		1/	150
	T3/UNIT	86	0.17			1					
ľ	T4	206	0.41	1,700			1,700	9.0	4.0	1/	340
	Total	685	1.36	3,150	1,950	650	5,750				

TABLE E. 1. 6 - 4 TERTIARY IRRIGATION CANAL (HARAZ EAST DISTRICT)

#1: To irrigate Amol urban area

A TYPE: Existing canal commanding less than 100ha B TYPE: Existing canal commanding more than 100ha

C TYPE: New canal

r			T				· · · · · · · · · · · · · · · · · · ·			
				CANAL L	ENGTH (r)	te da a			
TERTIA	RY CANAL	AREA	DISCHARGE	IMPROVE	/REPAIR	NEW	TOTAL	ELEVAT	ION(m)	AVERAGE
		<u>(ha)</u>	(cu. 🛯/s)	A TYPE	B TYPE	C TYPE		START	END	SLOPE
HE5B	<u>T1</u>	415	0.83			1,100	1,100	50.0	44.5	1/ 200
	T1'	(325)	(0.65)	(2200)		(400)	(2600)	44.5	29.0	1/ 168
:	T2	113	0.23	100	450	400	950	49.5	42.0	1/ 127
	T3	169	0.34		1,150		1,150	29.0	26.5	1/ 460
	T4/UNIT	81	0.16			· · · ·				
	T5	328	0.66	· · ·	4,450		4,450	14.5	4.5	1/ 445
1.1	. T6	248	0.50	4,800			4,800	14.5	4.0	1/ 457
	T7	290	0.58		5,100		5,100	14.5	2.0	1/ 408
	Total	1,644	3.30	4,900	11,150	1,500	17,550			
										· · · ·
TOTAL		11,019	22.80	60,400	34,150	11,550	106,100			
						1.00				ra e la Pr

HARAZ EAST DISTRICT (2/2)

A TYPE: Existing canal commanding less than 100ha

B TYPE: Existing canal commanding more than 100ha

C TYPE: New canal

(ha) (cu.m/s) A TYPE B TYPE C TYPE START END SL01 AE1 T1 319 0.64 3,000 3,000 49.0 22.0 1/ T2 325 0.65 1,350 1.600 3,550 49.0 22.0 1/ T2 325 0.65 1,350 1.600 3,550 49.0 22.0 1/ T2 242 0.48 1.050 1.600 3,550 26.8 20.0 1/ T3 264 0.53 250 3,150 1,450 26.8 16.0 1/ T0tal 768 1.53 250 3,150 1,50 7.0 1/ 1 T2/WIT 92 0.18	TERTIARY CANAL		AREA	DISCHARGE		ENGTH (M) New	TOTAL	el evár	100/>	• A 11	ERAG
AE1 T1 319 0.64 3,000 3,000 49.0 22.0 1/ T2 325 0.65 1,950 1,600 3,550 49.0 22.0 1/ Total 644 1.29 4,950 1,600 6,550 22.0 1/ T2 242 0.52 900 900 26.8 20.0 1/ T3 264 0.53 250 1.200 1,450 26.8 20.0 1/ Total 768 1.53 250 3,150 3,400 2.0 1/ 1 T2/UNIT 92 0.18 - <					and the second se							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(Cu. m/S)	ATTE	DIIL	UIII		DIANI	END	<u> </u>	ULE
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AE1	T1	319	18.0		3 000		3 000	19.0	22 0	1/	111
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					<u>.</u>		1 600				- •	131
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ł								40.0	10.0	17	101
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AE2			**************************************		1,000			26.8	20.0	17	132
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				· · ·	 							154
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					250					1		134
AE3A T1 193 0.89 1,550 1,550 15.0 7.0 1/ T3/UNIT 92 0.18		Total										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AE3A					1,550			15.0	7.0	1/	194
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	·	12/UNIT	92					<u>-</u>				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. 1	T3/UNIT	95				· ·					
T5/UNIT 74 0.15		T4	277		900	1,300		2,200	6.0	-0.5	1/	338
Total 731 1.46 900 3,750 4,650 AE3Aa T7 230 0.46 0 1,850 -6.0 -9.0 1/ 6 T8 538 1.07 0 7,100 -7,100 -6.0 -18.0 1/ 9 T9 #1 791 1.58 400 5,100 5.500 -13.0 -22.0 1/ 0 Total 1,557 3.11 1.800 14,050 600 2,000 -18.5 -21.5 1/ 0 Total 1,557 3.11 1.800 14,050 600 16.450 AE3B T1/UNIT 88 0.18		man a winner winner	(124)	(0.24)					6.0	3.8	1/	409
AE3Aa T7 230 0.46 0 1,850 1,850 -6.0 -9.0 1/ T8 536 1.07 0 7,100 -6.0 -18.0 1/ 1 T9 #1 791 1.58 400 5,100 5,500 -13.0 -22.0 1/ 0 T9 #1 791 1.58 400 5,100 5,500 -18.5 21.5 1/ 0 Total 1,557 3.11 1,800 14,050 600 16,450 - <t< td=""><td>ŀ</td><td>T5/UNIT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ŀ	T5/UNIT										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					900	3,750		4,650				
T9 #1 791 1.58 400 5,100 5,500 -13.0 -22.0 1/ T9' (136) (0.27) 1,400 600 2,000 -18.5 -21.5 1/ 0 AE3B T1/UNIT 88 0.18	E3Aa				0		·				· · · · · · · · · · · · · · · · · · ·	617
T9' (136) (0.27) 1,400 600 2,000 -18.5 -21.5 1/ (1) AE3B T1/UNIT 88 0.18					i and the second se							592
Total 1,557 3.11 1.800 14,050 600 16,450 AE3B T1/UNIT 88 0.18						5,100	· · · · · · · · · · · · · · · · · · ·					611
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									-18.5	-21.5	1/	667
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1,800	14,050	600	16,450		· .		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AE3B										L	<u> </u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												411
AE3Ab T10/UNIT 86 0.17									0.5	-8.0	1/	488
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DOU				5,250		1,900	7,150				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			in the second			· · · · · · · · · · · · · · · · · · ·	. 	· · ·	ļ			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 2 				0.000	000	0.000	F 100	10.1	00.0	1	1000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									-19.1	-23.0	1/	1308
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 FOC	ł.				800	2,300		15 0	0.0	17	170
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	чпор					1 950	000					<u>173</u> 319
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· ·								15.0	4.6	1/	519
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FA /AA					1,200			14 0	-1 0	1/	244
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						·		4,400			1/ 1/	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VP4D				000	200						182
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						<u> </u>	000	1,000	10.0	0.0	17	102
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · .				3 100	1 000	·	1 100	-3.0	-10 5	17	547
T5 773 1.55 4,400 4,400 -12.3 -18.4 1/ T5' (335) (0.67) 2,000 650 2,650 -20.2 -23.0 1/ 9 T6 172 0.34 100 1,750 1,850 -13.0 -15.0 1/ 9 T7 792 1.58 4,000 4,000 -18.0 -23.0 1/ 9							<u> </u>					667
T5' (335) (0.67) 2,000 650 2,650 -20.2 -23.0 1/2 T6 172 0.34 100 1,750 1,850 -13.0 -15.0 1/2 T7 792 1.58 4,000 4,000 -18.0 -23.0 1/2						1,000			· · · · · · · · · · · · · · · · · · ·			721
T6 172 0.34 100 1,750 1,850 -13.0 -15.0 1/ 2 T7 792 1.58 4,000 4,000 -18.0 -23.0 1/ 2							850					946
T7 792 1.58 4,000 4,000 -23.0 1/ 4	· .			· · · · · · · · · · · · · · · · · · ·		1.750	000					925
					£	1 11100				f		800
1 10121 Z.033 - 5.25 15.201 4.550 1.850 22.500 - 1		Total	2,633	5.26	16,200	4,550	1,850	22,600	1.0.0	20.0	<u>*/</u>	_000

TABLE E. 1.6-5 TERTIARY IRRIGATION CANAL (AMOL EAST DISTRICT)

A TYPE: Existing canal commanding less than 100ha B TYPE: Existing canal commanding more than 100ha

C TYPE: New canal

יניתחי	NV CLINIT	1004	DICOULDOS		ENGTH (Y97 7917		ANDREAM	
ERTIARY CANAL			DISCHARGE	IMPROVE/REPAIR		NEW	TOTAL	ELEVAT	4 · · · · ·		
	P	(ha)	(cu.∎/s)	A TYPE	B TYPE	C TYPE		START	END	SLOPE	
AE5	T1	203	0.41	1,400			1,400	8.5	4.0	1/ 311	
	T2	379	0.76	1,400	3,100	1,200	4,300	8.5		1/ 344	
	T3	187	0.37		600	800	1,400	2.0		1/ 368	
· . · .	T4	134	0.27	· · · · · · · · · · · · · · · · · · ·	1,200	000	1,200	0.0	-1.5		
	T5	449	0.90		2,000		2,000	2.0		1/ 200	
•	T6	288	0,58	2,050			2,050	-7.7		1/ 477	
	Total	1,640	3.29	3,450	6,900	2,000	12,350			~	
AEGA	T1/UNIT	74	0.15					1			
	T2	210	0.42	1,100		600	1,700	4.0	-0.8	1/ 354	
	T3	111	0.22	500		300	800	-3.2		1/ 500	
	Ť4	244	0.49	1,300		1,500	2,800			1/ 700	
	T5 -	198	0.40	1,050		850	1,900		-19.6		
	T6	682	1.36	4,400		2,300	6,700	-16.0		1/ 838	
	T6'	(260)	(0.52)	500		1,200	1,700	-18.4	-22.4	1/ 425	
	Total	1,519	3.04	8,850	1. W	6,750	15,600				
AE6B	T1	163	0.33	300	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	900	1,200	2.4	-1.0	1/ 353	
	T2	160	0.32	1,200			1,200	0.0	-3.7	1/ 324	
	T3/UNIT	92	0.18								
	T4	222	0.44	700		1,650	2,350	-5.8	-10.2	1/ 534	
	T5/UNIT	47	0.09								
	<u> </u>	329	0.66	1,860	300	3,150	5,310	-9.0	-15.3	1/ 843	
	Total	1,013	2.02	4,060	300	5,700	10,060		1		
AE7	T1/UNIT	23	0.05								
	T2	200	0.40	1,080		800	1,880	0.0	-2.2		
	T3	202	0.40	2,110		750	2,860	-5.7	-9.2		
	T4	107	0.21	500		200	700	-6.0		<u>1/ 500</u>	
	<u>T5</u>	267	0.53	3,000			3,000	-9.4		1/ 769	
	<u> </u>	508	1.02	4,200			4,200	-10.4		1/ 553	
	T6'	(219)	(0.44)	2,000			2,000	-15.9		1/ 909	
	<u>T7</u>	548	1.10		4,650		4,650	-19.6	-23.7	1/ 1134	
	Total	1,855	3.71	12,890	4,650	1,750	19,290				
AE8	T1	556	1.11	1,900	2,600	1,250	5,750	-2.2	-9.3	1/ 810	
	T2/UNIT	45	0.09					1. 			
	<u>T3</u>	405	0.81	1,150	2,000		3,150	-7.5	-12.3	1/ 656	
100	Total	1,006	2.01	3,050	4,600	1,250	8,900		i di d		
AE9	<u>T1</u>	182	0.36	1,650			1,650	-4.0	-6.0		
•	T2	656	1.31	2,900			2,900	-4.0	-5.8		
	T2'	(238)	(0.48)	400	a ayar	1,000	1,400		-12.0		
	T3	375	0.75	900			900	-14.2	-14.6		
	T3'	(200)	(0.65)	1,000		900	1,900	-15.2	-17.7	1/ 760	
1010	Total	1,213	2.42	6,850	· · ·	1,900	8,750				
AE10	T1	563	1.13	600		600	1,200	-5.2	-6.4	1/ 1000	
		(169)	(0.34)	1,200		1 100	1,200	-14.4	-16.2		
	T2 T2	147	0.29	0 400		1,400	1,400	-5.4	~7.5		
	T3 TO'	402	0.80	2,400		1,300	3,700	-7.2	-11.9	1/ 787	
	T3'	(184)	(0.37)	1 000		1,400	1,400	-10.0	-11.1	1/ 1273	
	Total	1,112	2.22	4,200	1	4,700	8,900		1.11		

AMOL EAST DISTRICT (2/3)

E1-48

		01								
	4	19		CANAL L	ENGTH (m)				
CERT I A	RY CANAL	AREA	DISCHARGE	IMPROVE	/REPAIR	NEW	TOTAL	ELEVAT	ION(m)	AVERAC
		(ha)	(cu.m/s)	A TYPE	B TYPE	C TYPE		START	END	SLOPE
				a stational sector						
AETT	T1/UNIT	117	0.23							
	T2	326	0.65	1,360	·	400	1,760	-9.5	-12.0	1/ 704
	Total	443	0.88	1,360		400	1,760		· · · · · · · · · · · · · · · · · · ·	
AE11A	<u>T3</u>	446	0.89		2,150	1,200	3,350	-11.0		1/ 957
	<u>T3'</u>	(224)	(0,45)	1,500	600	400	2,500		-14.0	1/ 833
	<u>T4</u>	250	0.50		1,200		1,200	-14.0		1/ 667
	T4'	(132)	(0.28)			900	900	-16.7	-17.4	1/ 1286
на стали. На стали	<u>T5</u>	318	0.64	800		2,200	3,000	-18.6	-21.6	1/ 1000
	Total	1,014	2.03	2,300	3,950	4,700	10,950			
AE11B	T4	111	0.22			700	700	-11.5	-12.0	1/ 1400
	T5/UNIT	<u>99</u>	0.20							
	T6	332	0.66	850		3,400	4,250	-13.0	-19.1	1/ 69'
	T9(R)#2	301	0.60	700	600	1,600	2,900	-17.3	-20.5	1/ 900
· · .	T9(L)#3	539	1.08	3,500		1,650	5,150	-17.3	-23.4	1/ 844
	T10	568	1.14	850	2,800	2,400	6,050	-13.5	-21.5	1/ 750
	T11	260	0.52	1,300		1,700	3,000	-14.0	-20.0	1/ 500
	T12	474	0.95	1,300	· · ·	3,500	4,800	-19.5	-23.4	1/ 123
	T13	1,077	2.15		2,000	4,700	6,700	-19.6	-22.0	1/ 2792
	Total	3,761	7.52	8,500	5,400	19,650	33,550			
70 M L X			1 1 2 2 2							
TOTAL	{	23,539	47.06	87,410	55,150	62,200	204,760	}		
			L	<u> </u>	<u> </u>	<u> </u>		l	<u> </u>	<u> </u>
#1 NC)T includ	ing AES/	-2-1				80	ha		
			-2-2				88			
#2 N)T includ							ha		
HL III	I Incied	-	B-3-2					ha		
#3 NC)T includ							ha		
Tota		IN6 ALL	10 4 1		···		298	_		
TOLA						:	230	110		
fotal	area of	Amol Eas	st District	; =			23,837	ha		
							20,001	****		

AMOL EAST DISTRICT (3/3)

A TYPE: Existing canal commanding less than 100ha B TYPE: Existing canal commanding more than 100ha C TYPE: New canal

(ha) (cu. w/s) A TYPE B TYPE C TYPE START END SLOP KL1 T1 155 0.31 1,300 1,200 500 3,000 220.0 170.0 1/ KL2 T1 412 0.82 1,800 1,250 1,000 4,050 15.0 72.0 1/ KL3 T1 550 1.10 600 7,150 44.0 11.0 1/ 2 T2 409 0.82 4,450 7,750 44.0 1/ 2 1 0/ 2 1 1 1 1 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>· .</th> <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th>							· .			· · · · · · · · · · · · · · · · · · ·	
(ha) (cu. m/s) A TYPE B TYPE C TYPE START END SLOP KL1 11 155 0.31 1,300 1,200 500 8,000 220.0 170.0 1/ KL2 T1 412 0.82 1,800 1,250 1,000 4,050 115.0 72.0 1/ KL3 T1 550 1.10 600 7,150 7,750 44.0 11.0 1/ 2 T3 550 1.10 5,650 700 6,350 27.5 14.0 1/ 4 T4 225 0.45 1,600 1.500 22.00 12.0 0.7 1/ 3.0 10 12.0 1/ 3.0 10.6 12.0 1/ 4.1 4.4 4.83 4.250 22.460 850 27.550		DII A 1111									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TERT I A	RY CANAL						TOTAL		(ION(m)	AVERAC
Kl.1 T1 155 0.31 1,300 1,200 500 3,000 220.0 170.0 1/ KL2 T1 412 0.82 1,800 1,250 1,000 4,050 115.0 72.0 1/ KL3 T1 550 1.10 600 7.150 7.750 44.0 12.0 1/2 T2 409 0.82 4,450 4.450 4.460 4.40 24.01 /2 T3 550 1.10 5.660 700 6.350 27.5 14.0 1/ 4 T4 225 0.450 2.065 150 2.00 17.0 1/ 3 T6 430 0.868 5.200 150 2.200 17.0 1/ 4 T1 453 0.91 5.000 100 5.100 10.5 1/ 60 T6 430 0.60 2.400 1.000 3.200 1.0 1/ 50			<u>(ha)</u>	(cu.m/s)	A TYPE	B TYPE	C TYPE		START	END	SLOPE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			100 A. 110 A.				a de la composición d			1. ja	
KL3 T1 550 1.10 600 7,150 7,750 44.0 11.0 1/ 2 T2 403 0,82 4,450 4,450 44.40 24.0 1/ 2 24.0 1/ 0 24.0 1/ 2 24.0 1/ 4 1/ 600 2.0 1/ 1/ 1/ 4 1/ 4 22.5 0.45 1,600 2.001 12.0 1/ 3 1/ 1/ 3 1/ 0 0.7 1// 1/											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							1,000		115.0	72.0	1/ 94
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	KL3			1.10	600	7,150		7,750	44.0		1/ 235
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0.82		4,450		4,450	44.0	24.0	1/ 223
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1.10		5,650	700	6,350	27.5		1/ 470
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			225	0.45	1,600			1,600	22.0	17.0	1/ 320
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12		249	0.50	2,050		150	2,200	19.0	12.0	1/ 314
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		T6	430	0.86		5,200			12.0	0.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Total	2,413	4.83	4,250	22,450	850				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	KL4	T1	453	0.91	· .		100		12.5	4.5	1/ 638
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	T2	208								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		T3	249				1.000				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	÷	T4	194		450			· · · · · · · · · · · · · · · · · · ·			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		T5				3,250					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.1				1,250						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		T6'					2,200	· · · · · · · · · · · · · · · · · · ·			1/ 432
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						13,950	· · · · · · · · · · · · · · · · · · ·			7.0	17 402
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	KL5								11 5	6.0	1/ 718
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1,200			1. · · · ·		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						850					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						000					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1 200			· · · · · · · · · · · · · · · · · · ·		· · .
Total 2,528 5.06 7,750 3,250 7,250 18,250			it re-	· · · · · · · · · · · · · · · · · · ·	1 200	1,200	900				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						3 250		the second se	4.1	1.0	17 011
KL6A T1 190 0.38 2,150 2,150 7.0 2.0 1/ 43 T2 269 0.54 2,350 300 2,650 7.0 2.0 1/ 43 Total 459 0.92 2,350 2,450 4,800	KL6								12 0	9.0	1/ 967
T2 269 0.54 2,350 300 2,650 7.0 2.0 1/ 53 KL6B T1 228 0.46 1,600 500 2,100 11.0 7.0 1/ 53 KL6B T1 228 0.46 1,600 500 2,100 11.0 7.0 1/ 53 T2 #2 426 0.85 700 2,200 1,400 4,300 8.0 2.0 1/ 70 T3 #3 727 1.45 3,800 500 4,300 8.0 1.5 1/ 60 Total 1,381 2.76 4,500 3,800 2,400 10,700 1.5 1/ 60 Total 1,381 2.76 4,500 3,800 2,400 10,700 1.5 1/ 60 Total 9,591 19.19 26,650 47,500 19,700 93,850 1.5 1/ 60 #1 including BU1-1					1,100	1,000					
Total 459 0.92 2,350 2,450 4,800 KL6B T1 228 0.46 1,600 500 2,100 11.0 7.0 1/53 T2 #2 426 0.85 700 2,200 1,400 4,300 8.0 2.0 1/7 T3 #3 727 1.45 3,800 500 4,300 8.0 1.5 1/60 Total 1,381 2.76 4,500 3,800 2,400 10,700 1 50 Total 1,381 2.76 4,500 3,800 2,400 10,700 1 50 TOTAL 9,591 19.19 26,650 47,500 19,700 93,850 1 1 60 #1 including BUBL-3 420 ha - 1,052 ha #3 including BU1-1 163 ha - 1,052 ha BU2-1 169 ha - 8,539 ha BU2	Rijon				2 250						
KL6B T1 228 0.46 1,600 500 2,100 11.0 7.0 1/53 T2 #2 426 0.85 700 2,200 1,400 4,300 8.0 2.0 1/73 T3 #3 727 1.45 3,800 500 4,300 8.0 2.0 1/73 Total 1,381 2.76 4,500 3,800 2,400 10,700 9.591 TOTAL 9,591 19.19 26,650 47,500 19,700 93,850 93,850 93,850 #1 including BUBL-3 420 ha 9,591 ha 9,591 ha #2 including BU1-1 163 ha - 1,052 ha #3 including BU1-2 107 ha 8,539 ha BU2-1 169 ha 8,539 ha BU2-2 193 ha ha 1,052 ha									1.0	2.0	1/ 000
T2 #2 426 0.85 700 2,200 1,400 4,300 8.0 2.0 1/ 7 T3 #3 727 1.45 3,800 500 4,300 8.0 1.5 1/ 60 Total 1,381 2.76 4,500 3,800 2,400 10,700 1.5 1/ 60 TOTAL 9,591 19.19 26,650 47,500 19,700 93,850 1.5 1/ 60 #1 including BUBL-3 420 ha 9,591 ha 9,591 ha #1 including BUBL-3 420 ha 9,591 ha 1.052 ha #3 including BU1-1 163 ha - 1,052 ha BU2-1 169 ha 8,539 ha 8,539 ha BU2-2 193 ha - 1,052 ha	KIGR				2,000	1 000			11.0	7 0	1/ 505
T3 #3 727 1.45 3,800 500 4,300 8.0 1.5 1/60 Total 1,381 2.76 4,500 3,800 2,400 10,700 10	KLOD				700						· · · · · · · · · · · · · · · · · · ·
Total 1,381 2.76 4,500 3,800 2,400 10,700 TOTAL 9,591 19.19 26,650 47,500 19,700 93,850 4 #1 including BUBL-3 420 ha 9,591 ha 9,591 ha #2 including BU1-1 163 ha - 1,052 ha #3 including BU1-2 107 ha 8,539 ha BU2-1 169 ha 8,539 ha						2,200					
TOTAL 9,591 19.19 26,650 47,500 19,700 93,850 #1 including BUBL-3 420 ha 9,591 ha #2 including BU1-1 163 ha - 1,052 ha #3 including BU1-2 107 ha 8,539 ha BU2-1 169 ha - 1,052 ha BU2-2 193 ha - - 1,052						2 200			0.0	1.5	1/ 002
#1 including BUBL-3 420 ha 9,591 ha #2 including BU1-1 163 ha - 1,052 ha #3 including BU1-2 107 ha 8,539 ha BU2-1 169 ha - 1,052 ha BU2-2 193 ha - - 1,052 ha		Iotai	1,001	2.10	4,000	3,000	2,400	10,700			
#2 including BU1-1 163 ha - 1,052 ha #3 including BU1-2 107 ha 8,539 ha BU2-1 169 ha ha 8,539 ha BU2-2 193 ha ha 1,052 ha	TOTAL		9,591	19.19	26,650	47,500	19,700	93,850			
#2 including BU1-1 163 ha - 1,052 ha #3 including BU1-2 107 ha 8,539 ha BU2-1 169 ha ha 8,539 ha BU2-2 193 ha ha 1,052 ha	#1 in	cluding	BUBL-3	420				ha		9.591	ha
#3 including BU1-2 107 ha 8,539 ha BU2-1 169 ha BU2-2 193 ha Bu2-2 Bu2-2 193 ha Bu2-2 10 Bu2-2 10 <td></td>											
BU2-1 169 ha BU2-2 193 ha											
<u>BU2-2 193</u> ha										.,	1154
											1.1
110	Total		لطة المترجوحين								
				1,000				1164			

TABLE E. 1. 6 - 6 TERTIARY IRRIGATION CANAL (KARI RUD LEFT BANK AREA)

Total area (exculding Babol Urban area) =

8,539 ha

		- <u>-</u> -		CANAL L	ENGTH (m)					
ERT I A	RY CANAL	AREA	DISCHARGE	IMPROVE	/REPAIR	NEW	TOTAL	ELEVAT	10N(m)	ÁVI	ERAG
		(ha)	(cu.m/s)	A TYPE	B TYPE	C TYPE	:	START	END	SLC	JPE
KR1		298	0.60	and a start	5,200		5,200	210.0	177.0	1/	158
KR2		365	0.73		3,000		3,000	150.0	120.0	1/	100
KR3	T3	122	0.24	600			600	70.0	68.0	1/	300
	T4	102	0.20			600	600	70.0	65.0	1/	120
· ·	Ť5	130	0.26	1,100		100	1,200	64.0	55.0	1/	133
· · · ·	T6	187	0.37	1,000		200	1,200	60.0	51.0	1/	133
	17	170	0.34	500	· · · ·	100	600	50.0	47.0	1/	200
-	Total	711	1.41	3,200		1,000	4,200				
KR4	T1	151	0.30	900		100	1,000	51.0	43.0	17	125
	T2	297	0.59	700		1,100	1,800	42.0	32.0	1/	180
	T3	297	0.59	4,000		1,800	5,800	42.0	32.0	1/	580
	T4	227	0.45	1,000			1,000	38.0	31.5	17	154
	T5	302	0.60	1,600		600	2,200	33.0	26.0	1/	314
	T6	250	0.50	(1400)		(1000)	(2400)	27.5	23.0	1/	エラー
	T7	196	0.39	600	· ·	600	1,200	27.5	23.0	1/	267
	T8	228	0.46			1,800	1,800	21.0	18.5	1/	720
	T9	463	0.93	400	2,700	900	4,000	21.0	13.0	1/	500
	Total	2,411	4.81	9,200	2,700	6,900	18,800	1	1	<u> </u>	
KR5		492	0.98	5,000		1,400	6,400	23.5	14.5	1/	711
TOTAL		4,277	8.53	17,400	10,900	9,300	37,600				

TABLE E. 1. 6 - 7 TERTIARY IRRIGATION CANAL (KARI RUD RIGHT BANK AREA)

A TYPE: Existing smaller canal after improvement/repair/conservation B TYPE: Existing larger canal after improvement/repair/conservation C TYPE: New canal

	T	1	CANAL L	ENGTH (m	<u>.</u>	
Tertiary canal	AREA (ha)	DISCHARGE (cu.m/s)		/REPAIR B-TYPE	NEW C-TYPE	TOTAL
DHW	9,839	59.13			47,600	84,850
DAW	18,846	112.26	49,300	27,950	66,200	143,450
DHE	13,733	79.43	38,000	8,700	59,750	106,450
DAE	20,269	117.14	63,350	9,450	69,150	141,950
KARI RIGHT BANK AREA	4,776	49.29	13,450	3,300	8,100	24,850
TOTAL	67,463	417.25	200,150	50,600	250,800	501,550

TABLE E. 1. 6-8 SUMMARY OF DRAINAGE CANAL

A TYPE: Existing canal commanding less than 100ha B TYPE: Existing canal commanding more than 100ha

C TYPE: New canal

m					ENGTH (m		
Tertiary	canal	AREA	DISCHARGE		/REPAIR	NEW	TOTAL
·		(ha)	(cu.m/s)	A-TYPE	B-TYPE	C-TYPE	
DHW1	JI		. * .				
	J2(L)	300	1.79	· · · · ·		2,700	2,700
	J3(L)	398	2.26	600		1,900	2,500
	J4						
	J5(L)	247	1.61	1,000	· · · · · · · · · · · · · · · · · · ·	550	1,550
	Total	945	5.66	1,600		5,150	6,750
DHW2	· · · · · · · · · · · · · · · · · · ·						
DHW3					·		
DHW4							· · · · · · · · · · · · · · · · · · ·
DHW5			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
DHW6	· · · · · · · · · · · · · · · · · · ·						
DH#7	J1(R)	208	1.39	750		800	1,550
	J2	221	1.51	700		1,050	1,750
	J3	377	2.33	800		1,700	2,500
	Total	806	5.23	2,250		3,550	5,800
DH#8	J3(R)	242	1.79	1,800		1,050	2,850
	J4(R)	217	1.48	1,100		150	1,250
	J5(L)	273	1.65	500		800	1,300
						·	
		179	1.30			900	900
	J8(R)						
	J9(L)						
	J10	400	2.27	2,350		2,900	5,250
	J11	328	1.93			3,500	3,500
	Total	1,639	10.42	5,750		9,300	15,050
DHW9	J5(R)	425	2.48	2,600		1,100	3,700
1		184	1.21	1,200		200	1,400
	J8(R)	ļ					
	J9(R)		·				
	J10(R)	550	2.96	1,000		3,150	4,150
	Total	1,159	6.65	4,800		4,450	9,250
DHW10	J3(L)	821	4.14	3,900		1,450	5,350
	J4(R)	357	2.07	1,900		2,000	3,900
	J5(L)	202	1.38	1,100		550	1,650
	J6(R)	120	0.93			200	200
	J9(R)	163	1.17		1,200		1,200
	Total	1,663	9.69	6,900	1,200	4,200	12,300
DHW 11(L)		427	2.40	900		5,350	6,250

TABLE E. 1.6 - 9 TERTIARY DRAINAGE CANAL (HARAZ WEST DISTRICT)

	:			CANAL L	ENGTH (m)	
Tertiary	canal	AREA	DISCHARGE		/REPAIR	NEW	TOTAL
		(ha)	(cu.m/s)	A-TYPE	B-TYPE	C-TYPE	
DHW12	J2(L)	661	3.45	5,600		1,950	7,550
	J3(R)	186	1.21	350	. •	1,000	1,350
	Total	847	4.66	5,950		2,950	8,900
DHW13(L)		229	1.55	1,150		700	1,850
DHW14	J2	411	2.53	2,300		1,650	3,950
DH#15(L)		367	2.11	300		1,650	1,950
DHW16							
DHW17(L)		313	1.85	1,700		400	2,100
DHW18(L)		154	1.03	0		700	700
DHW19	J1(R)	277	1.67	600		3,600	4,200
	J2	395	2.29	800		2,200	3,000
	J2'	207	1.39	1,050		1,750	2,800
	Total	879	5.35	2,450		7,550	10,000
······································							
TOTAL		9,839	59.13	36,050	1,200	47,600	84,850
•	 					9	

E1-54

HARAZ WEST DISTRICT (2/2)

				· · ·		-	
					ENGTH (m		
Tertiary	canal		DISCHARGE		/REPAIR	NEW	TOTAL
l	······································	(ha)	(cu.m/s)	A-TYPE	B-TYPE	C-TYPE	
DAW1							
DAW2	J3	296	1.77	1,000		1.150	9 150
DAND	J4	445	2.48			1,150	2,150
	Total	741	4.25	2,400		1,000	3,400
DAW3	J6	511	4.25	3,400	0.400	2,150	5,550
DAILO	J7, J8		2.19	2,750	3,400	1.000	3,400
		460				1,800	4,550
· ·	J10	526	2.85	600	F 000	3,250	3,850
a than the se	JII	605	3.21	······	5,300	1.000	5,300
	<u>J11'(L)</u>	133	0.93	0.050	0 100	1,600	1,600
DAW4	Total	2,235	12.33	3,350	8,700	6,650	18,700
DAn4	J2(L)	358	2.10		4,300		4,300
	J3(L)	148	0.99	600			600
	J4(R)	212	1.50	350		400	750
	<u>J6(R)</u>	164	1.08	800			800
	J7	475	2.95		2,700		2,700
1. A.	J7'	224	1.43	1,100		1,300	2,400
	Total	1,581	10.05	2,850	7,000	1,700	11,550
DAW4A	J2	320	2.08	3,000			3,000
		348	2.02	200		1,500	1,700
	J4(R)	297	1,95		1,950		1,950
	Total	965	6.05	3,200	1,950	1,500	6,650
DAW4B	J1	680	3,54	4,250			4,250
DAW4C	J2	315	1.86	1,400		2,000	3,400
	J3	335	2.35	1,600			1,600
	Total	650	4.21	3,000		2,000	5,000
TOTAL		3,876	23.85	13,300	8,950	5,200	27,450
DAW5	J2(R)	177	1.26			1,100	1,100
	J4(R)	232	1.62	1,200		1	1,200
1	J5	263	1.77	200		900	1,100
	J6	306	2.07	200		2,800	3,000
	Total	978	6.72	1,600		4,800	6,400
DAW5A	J1(R)	390	2.29	100		2,400	2,500
	J4(R)	260	1.85			2,150	2,150
	J5(R)	257	1.72	:		1,500	1,500
	J7	530	2.87	1,050		2,800	3,850
	J8	247	1.60			3,400	3,400
	Total	1,684	10.33	1,150		12,250	13,400
TOTAL		2,662	17.05	2,750		17,050	19,800

TABLE E.1.6-10 TERTIARY DRAINAGE CANAL (AMOL WEST DISTRICT)

A TYPE: Existing canal commanding less than 100ha B TYPE: Existing canal commanding more than 100ha

C TYPE: New canal

(1		CANAL L	ENGTH (<u>}</u>	
Tertiary (canal	AREA	DISCHARGE		/REPAIR	NEW	TOTAL
		(ha)	(cu.m/s)	A-TYPE	B-TYPE	C-TYPE	IUIND
					D IND	0 1110	
DAW6	J5	313	2.15	3,000	19. 	600	3,600
DAILO	J5'	260	1.76	0,000		1,250	1,250
	Total	573	3.91	3,000		1,250	4,850
DAWGA	J3	382	2.26	2,300	•••••	600	2,900
	J3'	380	2.25	2,400		500	2,900
	J12	634	3.34		5,700	1,100	6,800
	Total	1,396	7.85	4,700	5,700	2,200	12,600
DAW6B	J3(R)	211	1.37	200		2,000	2,200
	J4, J5	481	2.65	1,800		500	2,300
	J4', J5'	217	1.44	1,200			1,200
*	Total	909	5.46	3,200		2,500	5,700
TOTAL		2,878	17.22	10,900	5,700	6,550	23,150
DAW7		401	2.28	2,400		400	2,800
DAW8	J3(L)	339	1.98	600	1,000	400	2,000
	J7	341	2.38			1,600	1,600
	J8	602	3.19	3,100	1,500	2,200	6,800
	Total	1,282	7.55	3,700	2,500	4,200	10,400
DAW9		620	3.31	1,500		2,900	4,400
DAW10	J3(L)	336	2.02			2,800	2,800
* * [J6(R)	415	2.34	1,300		1,300	2,600
	J8(R)	290	1.76		2,100		2,100
	J9(L)	627	3.74	800		2,600	3,400
	J9'(R)	228	1.58	400		1,000	1,400
	J11	234	1.45	2,100			2,100
	J12	495	2.71	1,400		3,000	4,400
	Total	2,625	15,60	6,000	2,100	10,700	18,800
DAW11				.:			
DAW12(L)		370	2.13	800		2,200	3,000
DAW13	·				· · · · · · · · · · · · · · · · · · ·		
DAW14(L)		199	1.43	200		1,000	1,200
DAW15(L)		378	2.17	1,000		1,600	2,600
DAW16(L)		579	3.09			5,600	5,600
			1.0	1			
TOTAL		18,846	112.26	49,300	27,950	66,200	143,450
L		<u> </u>	L	L	l	L	

AMOL WEST DISTRICT (2/2)

A TYPE: Existing canal commanding less than 100ha

B TYPE: Existing canal commanding more than 100ha

C TYPE: New canal

			[CANAL L	ENGTH (m)	
Tertiary	canal	AREA	DISCHARGE	IMPROVE		NEW	TOTAL
		(ha)	(cu.m/s)	A-TYPE		C-TYPE	101.12
DKL1		300	1.79	700	<u> </u>	1,800	2,500
DHE1						1,000	
DHE2	J1, J2	593	3.15	4,250		1,000	5,250
DHE3	01101			.,		1,000	0,200
DHE4	J3, J4	648	3.40			5,550	5,550
DHE5	00103	723	3.72	1,400	2,600	2,400	6,400
DHEG	J2(L)	162	1.07	600		900	1,500
0.120	J5(L)	120	1.20	900	······································	000	900
	J8(L)	373	2.22	1,900			1,900
	Total	655	4.49	3,400		900	4,300
DHE7	J1(L)	341	1.99	0,400	1,100	2,200	3,300
	J2(R)	476	2.65	1,100		2,300	3,400
	J3(L)	345	2.01	600	<u>-</u>	2,000	2,600
	J 9	248	1.53	1,800	<u> </u>	200	2,000
	Total	1,410	8.18	3,500	1,100	6,700	11,300
DHE8	J4(L)	427	2.77		1,100	3,000	3,000
	J5(L)	294	1.93		3,800		3,800
	Total	721	4.70		3,800	3,000	6,800
DHE9	J3(L)	192	1.32	250		1,100	1,350
	J10(L)	226	1.58			900	900
	Total	418	2.90	250		2,000	2,250
DHE10	J6(L)	478	2.64	5,300		400	5,700
DHE11	<u>J3</u>	333	1.95	1,400		2,300	3,700
	J4	255	1.64			2,750	2,750
	Total	588	3.59	1,400	 	5,050	6,450
DHE12	J14, J15	558	3.00		800	4,200	5,000
	J20, J21	689	3.57	2,200		2,700	4,900
	J20', J21'(247	1.67	200	[1,600	1,800
	Total	1,494	8.24	2,400	800	8,500	11,700
DHE13	J4(R)	598	3.18	1,200	400	2,800	4,400
	J7(R)	502	2.75			2,900	2,900
(J12, J13	516	3	1,600		200	1,800
	Total	1,616	8.74	2,800	400	5,900	9,100
DHE14(R)		367	2.14	2,000		1,300	3,300
DHE15(R)		249	1.74	900		1,000	1,900
DHE16	J8	511	2.79	200		2,900	3,100
DHE17(R)		393	2.31	400		1,950	2,350
DHE18(R)		207	1 46			1,600	1,600
DHE19	J3, J4	485	2.67	2,900	l	1,300	4,200
DHE20	· · · · · · · · · · · · · · · · · · ·	180	1.20	1,200	ļ	1,200	2,400
DHE21	J2	259	1.71	800		600	1,400
·	J2, J3	614	3.25	900	<u> </u>	2,700	3,600
	J5, J6	545	2.94	2,800		1,000	3,800
	Total	1,418	7.90	4,500	ļ	4,300	8,800
DHE22		279	1.68	500		1,000	1,500
DHE23	·		<u> </u>		L	· · ·	
TOTAL		13,733	79.43	38,000	8,700	59,750	106,450
[· ·						[

TABLE E.1.6-11 TERTIARY DRAINAGE CANAL (HARAZ EAST DISTRICT)

A TYPE: Existing canal commanding less than 100ha B TYPE: Existing canal commanding more than 100ha

C TYPE: New canal

				CANAL L	ENGTH (m		· · · · · · · · · · · · · · · · · · ·
Tertiary	canal	AREA	DISCHARGE	IMPROVE	/REPAIR	NEW	TOTAL
· ·		(ha)	(cu.m/s)	A-TYPE	B-TYPE	C-TYPE	
DAE1(R)	- <u>-</u>	347	2.03	1,200	750	1,400	3,350
DAE2(R)						-,	
DAE3(R)							
DAE4(R)							
DAE5(R)							
DAE6(R)	· · · · · · · · · · · · · · · · · · ·	172	1.26	1,400	· · · ·		1,400
DAE7(R)		605	3.82		2,400		2,400
DAE8(R)							
DAE9	J5	488	2.68	200		4,900	5,100
1	JG	480	3.07			3,300	3,300
	Total	968	5.75	200		8,200	8,400
DAE10							
DAE11	J5(R)	191	1.36	1,200		300	1,500
	J5'	557	3.04	1,800		2,100	3,900
	J5''(L)	225	1.60			1,700	1,700
	J7(L)	159	1.05		300	1,300	1,600
	J10(R)	490	2.75	1,600		1,100	2,700
	J11(R)	600	3.19	2,500		2,100	4,600
	J12(L)	294	2.01			1,800	1,800
	J13(R)	207	1.31		400	800	1,200
	J15	348	2.04	2,750		1,300	4,050
	J15'	194	1.32	1,400			1,400
	J16	373	2.14	1,800	1.	1,300	3,100
	J16'	150	1.00	700	- 14 - 14	900	1,600
	J17(R)	251	1.76	1,200		300	1,500
·	Total	4,039	24.57	14,950	700	15,000	30,650
DAE12	J4(L)	324	1.91	800		1,800	2,600
	J5(R)	183	1.20	1,000		800	1,800
	J11(R)	304	1.81			2,100	2,100
	J12(R)	574	3.19	2,200		1,600	3,800
	J12'(R)	128	0.88	600	<u>,</u>	600	1,200
	J13(L)	615	3.25	4,200		400	4,600
	J14(L)	169	1.24	1,000	600		1,600
	J16, J17	695	3.60			4,800	4,800
	J16', J17'	267	1.81	3,800	· · · ·		3,800
	J21(R)	193	1.28	1,500		650	2,150
	J23	741	3.80		4,100		4,100
	J28(R)	384	2.50	900		1,300	2,200
	J28'(R)	152	1.02			1,100	1,100
	Total	4,729	27.49	16,000	4,700	15,150	35,850

TABLE E.1.6-12 TERTIARY DRAINAGE CANAL (AMOL EAST DISTRICT)

AMOL EAST DISTRICT (2/2)

		· .			ENGTH (m	-	<u></u>
Tertiary	canal		DISCHARGE		/REPAIR	NEW	TOTAL
		(ha)	(cu.m/s)	A-TYPE	B-TYPE	C-TYPE	
DAE13	J7(R)	328	1.93	2,600		300	2,900
	J8	324	2.02	2,000		1,200	3,200
	J8'	614	3.25	1,900	900	2,400	5,200
	Total	1,266	7.20	6,500	900	3,900	11,300
DAE14	J3(R)	418	2.36	1,200		1,400	2,600
	J6(L)	191	1.28	600		400	1,000
	J9(R)	236	1.49	800		600	1,400
	J10(L)	246	1.70			1,600	1,600
	J12(L)	546	2.94	3,200		1,200	4,400
	J13(R)	509	2.78	2,000		1,600	3,600
	J13'(L)	432	2.42	1,400		1,400	2,800
	Total	2,578	14.97	9,200		8,200	17,400
DAE15	J6(R)	729	3.75	3,200	·····		3,200
	J11(L)	333	2.15	1,000		800	1,800
	J12	656	3.43	3,400		800	4,200
	Total	1,718	9.33	7,600		1,600	9,200
DAE16	J4(R)	620	3.27	300	····	2,700	3,000
	J6(L)	194	1.40	900			900
	J7	338	3.12			2,000	2,000
	J7'	654	0.66			1,700	1,700
and the second second	Total	1,806	8.45	1,200		6,400	7,600
DAE17	J5	399	2.36	1,700		1,500	3,200
DAE18(L)							
DAE19	J3	586	3.34	1,200		2,600	3,800
	<u>13</u> ,	206	1.33	800			800
	Total	792	4.67	2,000	<u>↓</u>	2,600	4,600
DAE20	20	424	2.39			4,100	4,100
	20'	224	1.47			1,100	1,100
	Total	648	3.86	·		5,200	5,200
DAE21(L)		1		· · · ·			
DAE22(L)		1					
DAE23(L)			· · · · ·	<u> </u>	•		
DAE24(L)		202	1.38	1,400			1,400
DAE25(L)		1					1,100
TOTAL		20,269	117.14	63,350	9,450	69,150	141,950

<u></u>	<u></u>				CANAL L	ENGTH (m)	
Tertiary	canal	1.5	AREA	DISCHARGE		/REPAIR	NEW	TOTAL
	· · · · · · · · · · · · · · · · · · ·		(ha)	(cu.m/s)	A-TYPE	B-TYPE	C-TYPE	
]								
DKR3	· · · · · · · · · · · · · · · · · · ·		346	8,63	1,350		200	1,550
DKR4	· · · ·		153	2.27	2,100			2,100
DKR9			171	1.12	100	700		800
DKR10		•	848	15.73		2,600		2,600
DKR11	· .		115	0.8		1	200	200
DKR14'	· .		179	1.31	800			800
DKR14			518	2.82	1,000		1,400	2,400
DKR16	· · · · · · · · · · · · · · · · · · ·		462	2.72	1,900		900	2,800
DKR17			274	1.86	2,500			2,500
DKR20	*		284	2.04	900		100	1,000
DKR23	÷.		277	1.94	400			400
DKR24			353	2.47			1,000	1,000
DKR25			354	2.46			1,800	1,800
DKR26			173	1.27			1,600	1,600
DKR28			269	1.85	2,400		900	3,300
ΤΟΤ	A L		4776	49.29	13,450	3,300	8,100	24,850
	·			<u> </u>				

TABLE E.1.6-13 TERTIARY DRAINAGE CANAL (KARI RIGHT BANK AREA)

A TYPE: Existing canal commanding less than 100ha B TYPE: Existing canal commanding more than 100ha C TYPE: New canal

DISTRICT TERTIAR		TERTIARY	DIVERSION	AREA	AVERAGE AREA/	AVERAGE AREA/
		/FOURTH	POINTS	4 - F 	CANAL	DIVERSION
		CANAL		(ha)	(ha)	(ha)
	HW1	4	8	623	155.8	77.9
	HW2A	5	17	1,891	378.2	111.2
HARAZ	HW2B	5	20	1,861	372.2	93.1
	HW3	12	31	2,884	240.3	93.0
WEST	H\#4	5	18	1,557	311.4	86.5
	HW5	4	10	811	202.8	81.1
	HW6	2	10	755	377.5	75.5
	Total	37	114	10,382	280.6	91.1

	<u> </u>						
	DISTRICT	TERTIARY	DIVERSION	AREA	AVERAGE AREA/	AVERAGE AREA/	
1		/FOURTH	POINTS	1.1	CANAL	DIVERSION	
		CANAL		(ha)	(ha)	(ha)	
	AW1	3	10	924	308.0	92.4	
	AW2	3	6	693	231.0	115.5	
	AW3A	4	16	1,674	418.5	104.6	
AMOL	AW3B	1	5	569	569.0	113.8	
	AW4	7.	21	1,626	232.3	77.4	
WEST	AW5	5	19	1,981	396.2	104.3	
	A\6	4	14	1,140	285.0	81.4	
	AW7	10	33	3,141	314.1	95.2	
	AW8	2	4	478	239.0	119.5	
	A₩9	3	8	762	254.0	95.3	
	AW9A	8	- 30	2,188	273.5	72.9	
	AW9B	11	30	2,287	207.9	76.2	
	Total	61	196	17,463	286.3	89.1	

DISTRICT		TERTIARY	DIVERSION	AREA	AVERAGE AREA/	AVERAGE AREA/	
		/FOURTH	POINTS		CANAL	DIVERSION	
		CANAL		(ha)	(ha)	(ha)	
HEI		9	31	2,821	313.4	91.0	
	HE2	3	14	1,525	508.3	108.9	
HARAZ	HE3	7	24	2,192	313.1	91.3	
	HE4	5	18	1,792	358.4	99.6	
EAST	HE5	2	4	360	180.0	90.0	
	HE5A	4	7	685	171.3	97.9	
	HE5B	7	19	1,644	234.9	86.5	
	Total	37	117	11,019	297.8	94.2	
		TERTIARY	DIVERSION	AREA	AVERAGE AREA/	AVERAGE AREA/	
		/FOURTH	POINTS		CANAL	DIVERSION	
		CANAL		(ha)	(ha)	(ha)	
	1 1 2 4					1	

TABLE E. 1. 6 - 15 AVERAGE COMMAND AREA (TERTIARY)

AE1 2 6 644 322.0 107.3 AE2 3 768 6 256.0 128.0 **AE3A** 5 9 731 146.2 81.2 AMOL AE3Aa 3 14 1,557 519.0 111.2 AE3B 3 .9 904 301.3 100.4 EAST AE3Ab 4 7 557 139.3 79.6 AE3C 2 5 595 297.5 119.0 AE4/4A 1 5 574 574.0 114.8 7 AE4B 27 2,633 376.1 97.5 AE5 6 16 1,640 273.3 102.5 6 AE6A 17 1,519 253.2 89.4 AE6B 6 15 1,013 168.8 67.5 AE7 7 1,855 74.2 25 265.0 3 AE8 10 1,006 335.3 100.6 3 AE9 11 1,213 404.3 110.3 **AE10** 3 12 1,112 370.7 92.7 AE11 2 4 443 221.5 110.8 3 AE11A 15 1,014 338.0 67.6 AE11B 9 3,761 34 417.9 110.6 Total 78 247 23,539 301.8 95.3

	DISTRICT	TERTIARY	DIVERSION	AREA	AVERAGE AREA/	AVERAGE AREA/
		/FOURTH	POINTS		CANAL	DIVERSION
		CANAL		(ha)	(ha)	(ha)
	KL1	1	2	155	155.0	77.5
	KL2	1	5	412	412.0	82.4
KARI	KL3	6	22	2,413	402.2	109.7
RUD	KL4	6	20	1,957	326.2	97.9
LEFT	KL5	6	26	2,528	421.3	97.2
	KL6	1	3	286	286.0	95.3
÷.	KL6A	2	5	459	229.5	91.8
· · ·	KL6B	3	11	1,381	460.3	125.5
	Total	26	94	9,591	368.9	102.0

AVERACE COMMAND AREA OF A TERTIARY CANAL AND A UNIT

DISTRICT TERTIAR				AREA	AVERAGE AREA/	AVERAGE AREA/
		/FOURTH	POINTS		CANAL	DIVERSION
l		CANAL		(ha)	(ha)	(ha)
	KRI	1	4	298	298.0	74.5
	KR2	1	2	365	365.0	182.5
KARI	KR3	7	12	711	101.6	59.3
RUD	KR4	9	24	2,411	267.9	100.5
RIGHT	KR5	1	4	492	492.0	123.0
	Total	19	46	4,277	225.1	93.0

	TYPE OF	DROP ST	RUCTURE		
ZONE	A	В	C	D	TOTAL
	(2.0m)	(1.Om)	(0.5m)	(0.25m)	
HARAZ WEST	128	61	64	69	322
AMOL WEST	17	26	45	68	156
HARAZ EAST	137	55	74	70	336
AMOL EAST	. 15	11	26	46	98
KARI LEFT	30	15	17	35	97
KARI RIGHT	19	6	11	14	50
TOTAL	346	174	237	302	1059

TABLE E. 1. 6 - 16 SUMMARY OF NUMBER OF STRUCTURES (IRRIGATION)