3. Crop Evapotranspiration (ETcrop)

Crop evapotranspiration is estimated by equation below at each growing stage of crops;

 $ETerop = ETo \times Kc$

ETcrop	:	Crop evapotranspiration (mm)
ETo	:	Reference crop evapotranspiration (mm)
Ke	:	Crop coefficient

Crop coefficients of crops are as below;

Crop Coefficient

Crop	Crop Coefficient	Gr	owing Stage
Amol - 3	1.1	Transplanting	- 60th day
	1.2	61th day	- 90th day
	0.95	91th day	- 120th day
Khazar	1,1	Transplanting	- 45th day
	1.2	46th day	- 75th day
	0.95	76th day	- 105th day
Tarom	1,1	Transplanting	- 35th day
	1.2	36th day	- 65th day
	0.95	66th day	- 95th day
Nursery of Rice	1.1 (Shall	low depth with fre	e surface)
v		Sowing	- Transplanting

4. Percolation

In the paddy field and at the bottom of abbandans, percolation is estimated as below;

Puddling p : 5 mm	eriod /day for first 3 days, and 3 mm/day subsequently.
Growing pe	
4	/day at present, and 3 mm/day for future
	tere ; 2 mm/day : deep percolation
	1 mm/day : lateral percolation due to drainage improvement in future.
алар — так Алар	
<u>Abbandan</u>	: 5 mm/day from bottom, when water is stored
Canal	: 5 mm/day from bottom, when flowing

Lateral percolation will appear in downstream drainage canal as a part of return flow.

5. Land Preparation Water

Land preparation water is composed of following four different purposes of water in usage;

Water for saturating soil for necessary depth of 30 cm.

• Standing water of 5 cm in depth.

• Evapotranspiration during land preparation.

· Percolation loss during land preparation.

(1) Land Preparation Water of Nursery Bed

Land preparation water of nursery bed is estimated for present and future respectively. Evapotranspiration is estimated in April, because major part of nursery bed is prepared in April.

	Present	Future	
Water to saturate so	75 mm	75 mm	
Standing water		50 mm	$50 \mathrm{mm}$
Percolation			
First 3 days	$5 \text{ mm/day} \times 3 \text{ days} = 15 \text{ mm}$	59 mm	$15\mathrm{mm}$
	$2 \text{ mm/day} \times 22 \text{ days} = 44 \text{ mm}$	-	
Evapotranspiration		85 mm	10 mm
ETo * Kc * n (da	ys) 3.1 mm/day * 1.1 * 3 days = 10 mm		
	3.1 mm/day * 1.1 * 25 days = 85 mm		
Total		269 mm	150 mm

Land Preparation Water of Nursery Bed (April)

(2) Land Preparation Water of Main Field

Land preparation water of main field is also estimated for present and future as well as of nursery bed. Evapotranspiration is estimated in May, because most of the field is prepared in May.

Land Preparation Water of Main Field (May)

Water by Purposes	Present	Future			
Water to saturate soil of 30 cm depth					
	50 mm	$50~\mathrm{mm}$			
$5 \text{ mm/day} \times 3 \text{ days} = 15 \text{ mm}$	59 mm	$15\mathrm{mm}$			
$2 \text{ mm/day} \times 22 \text{ days} = 44 \text{ mm}$					
	120 mm	15 mm			
ys) $4.4 \text{ mm/day} * 1.1 * 3 \text{ days} = 15 \text{ mm}$					
4.4 mm/day * 1.1 * 25 days = 120 mm	÷				
	304 mm	155 mm			
	5 mm/day × 3 days = 15 mm 2 mm/day × 22 days = 44 mm 2 ys) 4.4 mm/day * 1.1 * 3 days = 15 mm	bil of 30 cm depth 75 mm 50 mm 5 mm/day × 3 days = 15 mm 2 mm/day × 22 days = 44 mm 120 mm 4.4 mm/day * 1.1 * 3 days = 15 mm 4.4 mm/day * 1.1 * 25 days = 120 mm			

6. Applicable Irrigation Efficiency for the Project

Irrigation efficiency is estimated for present and future by irrigation water sources, taking FAO Irrigation efficiencies into consideration.

(1) Irrigation Efficiency of Surface Water

Irrigation efficiency of surface water is composed of following 3 elements;

· Conveyance Efficiency (Ec): Main and secondary canals

• Field Canal Efficiency (Eb): Tertiary and fourth canals

• Field Application Efficiency (Ea): Irrigation ditches

For evaluating above three efficiencies in the project, following elements are to be considered;

1) Irrigation Area	ar internet. Article	
Present (IAp)	= 82,643 ha	
Future (IAf)	= 78,669 ha	
(IAfn)	= 82,171 ha (not	e : without abbandans)
2) Canal Areas		
Secondary cana	al	(AS) = 2,001 ha
Tertiary canal	to irrigation ditch	(AT) = 885 ha
3) Abbandan Areas		
Present and Fu	iture	(AB) = 3,502 ha
Future in case	reclaimed	(AB) = 0 ha
4) Potential Evapotra Coefficient of fi	nspiration (ETo) = ree surface water (I	
Crop coefficien	t of rice in June (K	c) $= 1.1$
5) Percolation		
From canal bec	I(PC) = 5 mm/d	ay
Present stage a	at field $(Pp) = Pd$	= 2 mm/day
Future stage a	t field (Pf) = Pd	+ Pl = 3 mm/day
Deep percol	ation (Pd) =	= 2 mm/day
Lateral per	colation (Pl) =	= 1 mm/day

- 6) Net Irrigation Requirement (In) In = (ETo * Kc + P) * IA
- 7) Operation Allowance in Canal System oa = 15%
- 8) Application Allowance at Field Level aa = 15%

Based on the above elements, irrigation efficiency and effective returnflow rate have been computed as in the Table B. 1. 1 - 11. From the above procedure, irrigation efficiency and effective return-flow rate are estimated as follows:

Irrigation efficiency

•	Conveyance efficiency (Ec)	=	0.89
• .	Field Canal Efficiency (Eb)	-	0.91
•	Field Application Efficiency (Ea)	=	0.87
•	Overall Efficiency (Eo)	=	0.70 (Note : Ecx Ebx Ea)

On the other hand, the following values of irrigation efficiency in the HWDP - 1 study (MOE) are adopted as for groundwater case.

Ea	Ed	$\mathbf{E}\mathbf{p}$
0.90	0.95	0.86 HWDP-1 Study
(0.95)	(0.95)	(0.90) Master Plan Study

Note; Ea: Field Application Efficiency Ed: Distribution Efficiency

Dp: Overall Efficiency

7. Results of Detail Calculation of the Water Requirement

According to above mentioned basic factor for the computation, the water requirement of 10 days interval have been estimated for present and proposed cropping calendar, respectively. The attached table are shown the details of procedure on the estimation. Number of Table and its contents are shown as follows:

Table B. 2. 5 - 1	Weighed Net Irrigation Water Requirement of Paddy Rice (Design Year)
Table B. 2, 5 - 2	Weighed Net Irrigation Water Requirement of Paddy
	Rice (Normal Year)
Table B. 2. 5 - 3	Water Requirement of Nursery (Design Year)
Table B. 2. 5 - 4	Water Requirement of Nursery (normal Year)
Table B. 2. 5 - 5	Water Requirement of Early Matured Variety (Tarom) At
	Present
Table B. 2. 5 - 6	Water Requirement of Middle Matured Variety (Khazar)
	AtPresent
Table B. 2. 5 - 7	Water Requirement of Late Matured Variety (Amol - 3)
	AtPresent
Table B. 2. 5 - 8	Water Requirement of Early Matured Variety (Tarom)
	Design Year
Table B. 2. 5 - 9	Water Requirement of Middle Matured Variety (Khazar)
	Design Year
Table B. 2. 5 - 10	Water Requirement of Late Matured Variety (Amol - 3)
	Design Year
Table B. 2. 5 - 11	Water Requirement of Nursery (Tarom) Design Year
Table B. 2. 5 - 12	Water Requirement of Nursery (Khazar)Design Year
Table B. 2. 5 - 13	Water Requirement of Nursery (Amol - 3) Design Year

TABLE B. 2. 5 - 1 WEIGHTED NET IRRIGATION WATER REQUIREMENT OF PADDY RICE

(Design Year)

	~~~~~~										(Unit: mm)			
		ΕV		M V			M V L V Total Re		M V L V Total Rema		L V			Remarks
	WRe	CI	ACC	WRe	СІ	ACC	WRe	CI	ACC					
APR	60.2						98.9			NIWR				
	7.0			-			7.0			<del>«</del>	E.R.			
	53.2	0.375	20.0	-	0.375	-	91.9	0.250	23.0	43.0				
МАУ	253.1			226.1			294.4			**************************************				
	19.0			19.0			19.0			<	E.R.			
	234.1	0.375	87.8	207.1	0.375	77.7	275.4	0.250	68.9	234.4				
JUN	277.6			282.8			273.3							
	13.0			13.0			13.0			<b>~</b>	<b>E. R</b> .			
	264.6	0.375	99.2	269.8	0.375	101.2	260.3	0.250	65.1	265.5				
JUL	268.7			277.8			283.5							
	18.0			18.0	1		18.0			<b>~</b>	<b>E. R</b> .			
	250.7	0.375	94.0	259.8	0.375	97.4	265.5	0.250	66.4	257.8				
AUG	76.7			193.5			220.5							
	33.0			33.0		ĺ	33.0			-	E.R.			
	43.7	0.375	16.4	160.5	0.375	60.2	187.5	0.250	46.9	123.5				
SEP				21.1			58.9							
<b> </b>	-			7.0			14.0			-	E.R.			
	-	· -		14.1	0.375	5.3	44.9	0.250	11.2	16.5				
	936.3			1,001.3			1,229.5							
E. R.	-90.0	} .		-90.0	}	ļ	-104.0		}		}			
TOTAL	846.3		317.4	911.3	2.1	341.8	1,125.5		281.5	940.7				

Notes :

1) EV : Eary Matured Variety 2) MV

Medium Matured Variety :

3) LV Late Matured Variety :

Net Irrigation Water Requirement Crop Intensity 4) NIWR :

5) CI :

6) ACC Accumulated :

7) E.R. **Effective Rainfall** ÷

## TABLE B. 2. 5 - 2 WEIGHTED NET IRRIGATION WATER REQUIREMENT OF PADDY RICE

## (Normal Year)

(Unit:	mm)

	·					· · · ·					
	ΕV		MV			LV		Total	Remarks		
	WRe	CI	ACC	WRe	CI	ACC	WRe	CI	ACC		
APR	60.2						98,9			NIWR	
	18.0			-		. *	18.0				E. R.
	42.2	0.375	15.8	-	0.375	-	80.9	0.250	20.2	36.0	
ΜΑΥ	253.1			226.1			294.4				
	10.0	N.		10.0			10.0		·		E.R.
	243.1	0.375	91.2	216.1	0.375	81.0	284,4	0.250	71.7	243.9	
JUN	277.6			282.8			273.3				
	36.0			36.0			36.0		- 1	<b>~</b>	<b>E. R</b> .
	241.6	0.375	90.6	246.8	0.375	92.6	237.3	0.250	59.3	242.5	
JUL	268.7			277.8			283.5		:		
	6.0	ł		6.0			6.0	e A tra		· .	E.R.
·	262.7	0.375	98.5	271.8	0.375	101.9	277.5	0.250	69.4	269.8	· · · · · · · · · · · · · · · · · · ·
AUG	76.7			193.5			220.5				
1 A.	16.0			16.0			16.0				E.R.
	60.7	0.375	22.8	177.5	0.375	66.6	204.5	0.250	51.1	140.5	1
SEP	-			21.1			58.9				
	-			21.1			58.9			·	E. R.
	_	-	-	0	0.375	0.0	0.0	0.250	0.0	0.0	
	936.3			1,001.3			1,229.5				
E. R.	-86.0			-89.1		1	-144.9				
TOTAL	850.3		318.9	912.2		341.2	1,084.6		271.7	932.7	

Notes :

1) EV

2) MV

3)

4)

5)

6)

Eary Matured Variety

: Medium Matured Variety

LV : Late Matured Variety

NIWR : Net Irrigation Water Requirement

CI : Crop Intensity

:

ACC : Accumulated

7) E.R. : Effective Rainfall

[	•••••							·····			**							
REMARKS				Effective	Re Rainfall					4					*		Net W.R. is estimated at 2.6 mm/day	$258.7$ mm × 0.01 $\doteq$ 2.6m/m
mOm'AT		145.1	150.0	295.1	41.0	254.1	153.9	150.0	303.9	38.0	265.9	132.9	150.0	282.9	28.0	254.9	258.7	
	က																	
NNr	2																	
	, ,						30.2	7.5	37.7	4.0	33.7						0.250) =	
	3	28.7	7.5	36.2			28.7	30.0	58.7		1						$375) + (265.9 \times 0.375) + (254.9 \times 0.250) =$	
MAY	2	26.1	30.0	56.1	19.0	136.9	26.1	37.5	63.6	19.0	166.9						375) + (;	
	1	26.1	37.5	63.6			26.1	37.5	63.6			26.1	19.0	45.1	6.0	39.1	5.9 × 0.	
	3	21.4	37.5	58.9			21.4	30.0	51.4			42.7	56.0	98.7			5) + (26	
APR.	5	21.4	30.0	51.4	22.0	117.2	21.4	7.5	28.9	15.0	65.3	42.7	56.0	98.7	22.0	215.8	$(254.1 \times 0.37)$	
	1	21.4	7.5	28.9	V					ļ	V	21.4	19.0	40.4			(254.	
		C.Re	L.P	Sub-t	ER	Total	C.Re	L.P	Sub-t	E.R	Total	C.Re	L.P	Sub-t	E.R	Total		
				TAROM	37.5%	L			KHAZAR	37.5%			L	AMOL-3	25.0%	<b>L</b>	Total (Average)	Net W.Re

TABLE B. 2. 5 - 3 WATER REQUIREMENT OF NURSERY (DESIGN YEAR)

TABLE B. 2. 5 - 4 WATER REQUIREMENT OF NURSERY (NORMALYEAR)

 $241.6\text{mm} \times 0.01 \doteq 2.4\text{m/m}$ (Unit: mm) Net W.R. is estimated REMARKS Re Rainfall Effective \$ \$ at 2.4 mm/day 241.6 150.0 47.0 150.0 303.9 65.0 238.9 145.1295.1 248.1 153.9 132.9 150.0 282.9 47.0 235.9 TOTAL ന NUL 2  $(248.1 \times 0.375) + (238.9 \times 0.375) + (235.9 \times 0.250) =$ 30.2 7.5 37.7 18.0 19.7 7.5 36.2 28.7 28.7 30.058.7 က 30.0 10.0 145.9 37.5 63.6 175.9 26.1 56.126.1 10.0 MAY 2 26.1 37.5 63.6 37.5 63.6 19.0 10.0 35.1 26.1 26.145.1 21.4 37.5 58.9 21.4 30.0 51.4 42.7 56.0 98.7 က 37.0 30.0 102.2 21.451.4 21.4 7.5 28.9 37.0 43.3 56.0 37.0 200.8 42.7 98.7 APR. \$ 7.5 21.4 28.9 19.0 21.4 40.4 C.Re Sub-t Total C.Re Sub-t Total L.P E.R C.Re Sub-f Total ER L.P E.R Ľ.P Total (Average) KHAZAR (MV) 37.5% AMOL - 3 (LV) 25.0% TAROM (EV) 37.5% Net W.Re

		7		Mar.		Apr.	Ŀ.		May		*	Jun.	 	ŕ	Jul.			Aug.		Sep.	Ċ,	E
<b>)</b>	component of water requirement	OIII	. 1	2	3	1 2	3	1	2	3	1	2	3	1	2	3	T	2		1 2	33	10101
.T.	Days/Decade or Month		10	IO I	11	10 ]	10 1	10 10	10	11	10	10	01	10	10	11	10	10	11	10	10 10	0
				<b>-</b> -							19 J.										- 	
5	Reference Crop Evapotranspiration					3.1 3	3.1 3.	3.1 4.4	4.4	4.4	5.5	5.5	5.5	5.3	5.3	5.3	4.7	4.7	4.7			
	ETo (mm/day)								· .								·					
3.	Cropping Pattern				/	( 07	/ . 	Ť.	C				i i	Ц н		7	Å	HV	-End o	End of Irrigation	tion	
		-	 			*			$\sum$					7-			/	/				
	ETo (mm/day)											<b> </b>									, 	 
4	Crop Coefficient							1 1	1.1	1.15	1.20	1.20	1.08	0.95	0.95		  -  -	-	 		 	
	days	 				.	10	010	.10	11	10	10	10	10	10	i			-	1. 		
<u>م</u> ر	Crop Water Requirement		 				34.1	1 48.4	48.4	55.7	66.0	66.0	59.4	50.4	50.4	<u>:</u>	 					
6.	Percolation		 				20	0 20	20	22	20	20	20	20	20.							   
7.	Total (1)						54.1	1 68.4	68.4	77.7	86.0 8	86.0	79.4	70.4	70.4	:					÷	
										:												
80	Crop Coefficient							1.1	1.1	1.1	1.15 1	1.20	1.20	1.08	0.95	0.95	0.95					
	days							ۍ.	10	11	10	10	10	10	10	10	3				 	
ര്	Crop Water Requirement							24.2	48.4	53.2	63.3 6	66.0 (	66.0	57.2	50.4	50.4	13.4					
10	Percolation							10	20	22	20	20	20	20	20	20	6.0					
11	Total (2)				:			34.2	68.4	75.2 8	83.3 8	86.0 8	86.0 '	77.2 '	70.4	70.4	19.4					
								: .							•							
12	Crop Coefficient									1.1	1.1	1.1	1.15	1.20	1.20	1.08	0.95	0.95				
	days									11	10	10	10	10	10	11	10	5				
13.	Crop Water Requirement									53.2 6	60.5 6	60.5 6	63.3 (	63.6 (	63.6	63.0	44.7	22.3				
14.	Percolation									22	20	20	20	20	20	22	20	10				
15.	Total (3)			•••••						75.2 8	80.5 8	80.5 8	83.3 8	83.6	83.6	85.0	64.7	32.3				
																	:					
16.	Total(1) + (2) + (3)						54.1		136.8 2	102.6 136.8 228.1 249.8		252.5 24	248.7 23	231.2 22	224.4 1	155.4	84.1	32.3				
17. 1	Average { $(1) + (2) + (3) $ } × 1/3						(18.0)	(34.2) (45.6)	I	76.0 8	83.3 8	84.2 8	82.9	77.1 7	74.8	51.8	28.0 ]	10.8				568.9
18. 1	Land Preparation				_		101.3	101.3 101.3	101.3													303.9
19, I	Field Water Requirement						101.3	101.3 101.3 101.3		76.0 8	83.3 8.	84.2 8	82.9 7	77.1 7	74.8	51.8	28.0 1	10.8				872.8

WATER REQUIREMENT OF EARLY MATURED VARIETY (TAROM) AT PRESENT TABLE B. 2. 5 - 5

¢			Mar.	ų		Apr			May		<u>ر</u>	Jun.	. <u>.</u>	<u>د</u> ،	Jul.		Aug.	20		Sep.		Ē
ز	Component of Waver requirement			2 3	7	2	е С	- 1	2	3	1	67	с С	-1	5	3	1	2 3		2	ß	Total
1.	Days / Decade or Month	1	10	10 1	11 11	0 10	0 10	10	10	.II	10	10	10	10	10	11	10	10	11 1	10 10	10	
						-															·	
2.	Reference Crop Evapotranspiration	2.	2.0 2	2.0 2.	2.0 3.1	1 3.1	1 3.1	4.4	4.4	4.4	5.5	5.5	5.5	5.3	5.3	5.3	4.7	4.7	4.7 3.5	5 3.5	3.5	
· · · ·	ETo (mm/day)													. <u></u>			 					
e.	Cropping Pattern					S	4	Z	тЪ						+	H		Ĥ		End	d of Irri	igation
T			. 				/		7	7			<u> </u>			<u>z</u>	7	4	4	$\downarrow$		
1												- 14 14 14							. ¹ .		.  .  .	
4	Crop Coefficient					 		1.1	1.1	1.1	1.1	1.15	1.20	1.20	1.08 0	0.95 0.	95 0.	95				
	days							10	10	11	10	10	10	10	10	11	10	5				
ъ.	Crop Water Requirement							48.4	48.4	53.2	60.5	63.3	66.0	63.6	57.2	55 4 4	44.7 22.	2.3				
6.	Percolation							20	20	22	20	20	20	20	20	22	20	10				
	Total (1)							68.4	68.4	75.2	80.5	83.3	86.0	83.6	77.2 7	77.4 64	64.7 32.	3				
													<b></b>									
_∞ i	Crop Coefficient			 					1.1	1.1	1.1	1.1	1.15	1.20	1.20 1	1.08 0.	0.95 0.	0.95 0.	95	-	:	
	days		· .					2 2 2	ъ N	1 T T	10	0T	10	인	10	E I	10	10				
റ്	Crop Water Requirement								24.2	53.2	60.5	60.5	63.3 (	63.6	63.6	63.0 44	44.7 44.7	7 35.7	7			1
10.	Percolation								- 10	22	20	20	20	20	20	22	20	20	16			
Ξ.	Total (2)								34.2 7	75.2	80.5	80.5	83.3 8	83.6	83.6 8	85.0 64.	7 64.7	7 51.7	7			
ļ													1 					- 14 - 1 				. •
12	Crop Coefficient		·								1.1	1.1	1.1	1.1	1.15 1	1.20 1.	1.20 1.	1.08 0.5	95 0.95			
	days					<u>.</u>					10	10	10	10	10	11	10	10	10 10			
13.	Crop Water Requirement						· .		<u>.</u>		60.5 (	60.5	60.5 E	58.3 E	61.0 7	70.0 56.4	4 50.8	8 44.7	7 33.3			
14. ]	Percolation										20	20	20	20	20	22	20	20	20 20			
15.	Total (3)										80.5 8	80.5  8	80.5	78.3 8	81.0 9	92.0 76	4 70.8	8 64.7	7 53.3			
16.	Total(1) + (2) + (3)							68.4	92.61	150.4 2	241.5 24	244.3 24	249.8 24	245.5 24	241.8 25	254.4 205.8	8 167	.8 116.	4 53.3			
17. 11	Average { $(1) + (2) + (3) $ } × 1/3							(22.8) (	(30.9)(5	(20.1)	80.5 8	81.4 8	83.3 8	81.8 8	80.6 84	4.8 68.	6 55	9 38	8 21.1			676.8
18.   I	Land Preparation							101.3 ]	101.3101.3	01.3												303.9
10 1	Field Water Requirement	-	. `		•			101.3 I	101.3 1(	101.3	80.5	81.4 8	83.3 8	81.8 8	80.6 8	84.8 68.	0	55.9 38.8	8 21.1			980.7

TABLE B. 2. 5 - 6 WATER REQUIREMENT OF MEDIUM MATURED VARIETY (KHAZAR) AT PRESENT

Outs         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         11         11         11         11         11         11         11         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         11         11         11         11         11         11         11         11         11         11         11         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <th< th=""><th>Unit       1       2       3       1       2       3       1       2       3       1         ion       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       11       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1</th><th>1     2     3       10     10     10     10       3.1     3.1     3.1     3.1       S     S     1     1       S     S     1     1       S     S     S     1       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S</th><th>1     2     3       10     10     11       4.4     4.4     4.4       4.4     4.4     4.4       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1</th><th>1     2     3       10     10     10       5.5     5.5     5.5       5.5     5.5     5.5       11     1.1     1.2       10     10     10       20     50.5     66.0       20     20     20       20     20     20</th><th>┝───┋───╿───╞───┋───┋───┋───┋───┋───</th><th>3 11 5.3 5.3 H H H 11 11 11 11 11 22 22</th><th>1 2 3 10 10 1 47 4.7 4 95 0.95 0.9</th><th>1 2 3 10 10 10 3.5 3.5 3.5</th><th>10007</th></th<>	Unit       1       2       3       1       2       3       1       2       3       1         ion       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       11       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1	1     2     3       10     10     10     10       3.1     3.1     3.1     3.1       S     S     1     1       S     S     1     1       S     S     S     1       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S       S     S     S     S	1     2     3       10     10     11       4.4     4.4     4.4       4.4     4.4     4.4       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1       1.1     1.1     1.1	1     2     3       10     10     10       5.5     5.5     5.5       5.5     5.5     5.5       11     1.1     1.2       10     10     10       20     50.5     66.0       20     20     20       20     20     20	┝───┋───╿───╞───┋───┋───┋───┋───┋───	3 11 5.3 5.3 H H H 11 11 11 11 11 22 22	1 2 3 10 10 1 47 4.7 4 95 0.95 0.9	1 2 3 10 10 10 3.5 3.5 3.5	10007
10         10         10         10         10         10         10         10         10         10         10         11         10         10         11         10         10         11         10         10         11         10         10         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11	dec Month     10     10     10     10     10       Top Evapotranspiration     2.0     2.0     3.1     3.1     3.1     4.4       Top Evapotranspiration     2.0     2.0     2.0     3.1     3.1     4.4       (day)     attern     2.0     2.0     2.0     3.1     3.1     4.4       (day)     attern     2.0     2.0     3.1     3.1     4.4       (day)     attern     2.0     2.0     3.1     1.1     1.1       icent     1     1     1     1.1     1.1     1.1       cient     2     2.0     2.0     2.0     2.0     2.0       Total(1)     1     1     1     1.1     1.1     1.1       cient     1     1     1     1.1     1.1       Requirement     1     1     1     1.1       fient     1     1     1     1.1     1.1       retuit     1     1     1     1.1     1.1       retuitement     1     1     1     1.1       fient     1     1     1     1       fient     1     1     1     1       Requirement     1     1<	10     10     10       3.1     3.1     3.1       S     1       S     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1	10     10     11       4.4     4.4     4.4       4.4     4.4     4.4       1.1     1.1     1.1       1.1     1.1     1.1       10     10     11       48.4     53.2       20     20     22       68.4     68.4     75.2       68.4     68.4     75.2	10     10     10       5.5     5.5     5.5       5.5     5.5     5.5       10     10     10       11     1.1     1.2       10     10     10       10     10     10       20     50.5     66.0       20     20     20       20.5     80.5     86.0	╶┈┈┞╼═┼═╌┫┉═╶╋┈┉╌╂╼╌═╊═╬┽╅═╍┽┼╍╍╎═╼┶╞╼╼┥╍╓┟╏╏╶┈	11 5.3 H 0 0.95 0 0.95 11 11 11 11 22 22	10 10 4.7 4.7 95 0.95 0	0 10 5 3.5 3	
Imagination         2.0         2.0         2.0         3.1         3.1         4.4         4.4         5.5         5.5         5.3         5.3         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7         4.7 <t< td=""><td>Prop Everpotranspiration     2.0     2.0     3.1     3.1     4.4       (day)    </td><td>3.1 3.1 3.1 5 5 1 1 1 1 1 1 1 1 1 5 4.1 1 6 4.1</td><td>4.4     4.4     4.4       4.4     4.4     4.4       1.1     1.1     1.1       1.1     1.1     1.1       10     10     11       48.4     48.4     53.2       20     20     22       68.4     68.4     75.2       68.4     68.4     71.1</td><td>5.5     5.5     5.5       5.5     5.5     5.5       1.1     1.1     1.2       10     10     10       20     50.5     66.0       20     20     20       20     20     20</td><td></td><td>5.3 H 0 0.95 11 11 22 22 22</td><td>4.7 4.7</td><td>5 3.5</td><td></td></t<>	Prop Everpotranspiration     2.0     2.0     3.1     3.1     4.4       (day)	3.1 3.1 3.1 5 5 1 1 1 1 1 1 1 1 1 5 4.1 1 6 4.1	4.4     4.4     4.4       4.4     4.4     4.4       1.1     1.1     1.1       1.1     1.1     1.1       10     10     11       48.4     48.4     53.2       20     20     22       68.4     68.4     75.2       68.4     68.4     71.1	5.5     5.5     5.5       5.5     5.5     5.5       1.1     1.1     1.2       10     10     10       20     50.5     66.0       20     20     20       20     20     20		5.3 H 0 0.95 11 11 22 22 22	4.7 4.7	5 3.5	
Spiration         2.0         2.0         2.0         2.0         3.1         3.1         3.1         3.1         3.1         3.1         4.4         4.4         4.5         5.5         5.5         5.3         5.3         5.7         4.7         4.7           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td>Prop Evapotranspiration     2.0     2.0     3.1     3.1     3.1     3.1     4.4       /day)     Aday     S     7     1     1.1     1.1       /day     S     S     7     7     1       /day     S     S     7     1     1       ient     S     S     S     7     1       Cient     S     S     S     1     1       Cient     S     S     S     1     1       Cient     S     S     S     S     1       Cient     S     S     S     S     S       Total (2)     S     S     S     S     S       Asquirement     S     S     S     S     S       Total (2)     S     S     S     S     S</td><td>3.1 3.1 3.1 3.1 S S S S S 1.1 1.1 1.1 1.1 1.1 1.1 1.1</td><td>4.4     4.4     4.4       4.4     4.4     4.4       1.1     1.1     1.1       1.1     1.1     1.1       10     10     11       48.4     53.2       20     20     22       68.4     68.4     75.2       68.4     68.4     75.2</td><td>5.5     5.5     5.5       5.5     5.5     5.5       1     1     1       1.1     1.1     1.2       1.1     1.1     1.2       10     10     10       20     50.5     66.0       20     20     20       20.5     80.5     86.0</td><td>┝━╍╼╉╍╍╾╫╌┉╶╂╍╍╼╂╼┥┥┯╍┥╍╍╸╎╾╼╞╧╼╡╍╾┉╏┈╏╴╏╴╭╴</td><td>5.3 H 0.95 11 55.4 4 22</td><td>4.7 4.7 95 95 0.95 0</td><td>5 3.5</td><td></td></t<>	Prop Evapotranspiration     2.0     2.0     3.1     3.1     3.1     3.1     4.4       /day)     Aday     S     7     1     1.1     1.1       /day     S     S     7     7     1       /day     S     S     7     1     1       ient     S     S     S     7     1       Cient     S     S     S     1     1       Cient     S     S     S     1     1       Cient     S     S     S     S     1       Cient     S     S     S     S     S       Total (2)     S     S     S     S     S       Asquirement     S     S     S     S     S       Total (2)     S     S     S     S     S	3.1 3.1 3.1 3.1 S S S S S 1.1 1.1 1.1 1.1 1.1 1.1 1.1	4.4     4.4     4.4       4.4     4.4     4.4       1.1     1.1     1.1       1.1     1.1     1.1       10     10     11       48.4     53.2       20     20     22       68.4     68.4     75.2       68.4     68.4     75.2	5.5     5.5     5.5       5.5     5.5     5.5       1     1     1       1.1     1.1     1.2       1.1     1.1     1.2       10     10     10       20     50.5     66.0       20     20     20       20.5     80.5     86.0	┝━╍╼╉╍╍╾╫╌┉╶╂╍╍╼╂╼┥┥┯╍┥╍╍╸╎╾╼╞╧╼╡╍╾┉╏┈╏╴╏╴╭╴	5.3 H 0.95 11 55.4 4 22	4.7 4.7 95 95 0.95 0	5 3.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(day)     S     T       attern     S     T       attern     S     T       attern     S     T       cient     1.1     1.1       cient     20     20       Total (1)     54.1     68.4       Requirement     8.4     1.1       Cient     1     1.1     1.1       cient     1     8.4       Total (2)     6.1     6.3.4       Requirement     1     1.1       Cient     1     1.1       Cient     1     1.1       Cient     1     1.1       Cient     1     1.1       Requirement     1     1.1       Additement     1     1.1       Cient     1     1.1       Cient     1     1.1       Requirement     1     1.1	34.1	1.1         1.1         1.1           1.1         1.1         1.1           10         10         11           20         20         22           88.4         68.4         75.2           68.4         68.4         71	1.1 1.1 1.2 1.1 1.1 1.2 1.0 10 10 20.5 60.5 66.0 20 20 20 80.5 80.5 86.0	╍╍╼╍╊╌┉╌╂╼╍╼ <b>-╂╼</b> ┟┥ <del>╞╼┍┥╿┑╸┍╎╻╸╻╞┊╸┥╸╸╢┈╎╎╎╷╷</del>	H 0.95 0. 11 222 222	95 0.95		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	attern S 11 11 1.1 cient 11 1.1 cient 234.1 48.4 Requirement 24.1 68.4 Total (1) 54.1 68.4 (8.4 Requirement 48.4 Total (2) 68.4 Total (2) 68.4	34.1	1.1         1.1         1.1           1.1         1.1         1.1           10         10         11           20         20         22           68.4         68.4         75.2           68.4         61.1         1.1	1.1 1.1 1.2 1.1 1.1 1.2 10 10 10 20.5 60.5 66.0 20 20 20 20 5 80.5 86.0	┝╼┉╌╋╼╍╼┓╋╼┥╾╋╼┯╼┥┥╾╍╸╎╼╸╼╼╞╧╼╾╡╼╍╼╻┨╌╸╏╴╏╴╶╴	H 0.05 0.95 11 55.4 4 22	95 0.95	HV	
1.10       1.11       1.11       1.11       1.11       1.12       1.2       0.056       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.956       0.95       0.056       0.956       0.956       0.95       0.95       0.056       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95 <th0.95< th=""> <th0.95< th=""> <th0.95< td=""><td>cient cient Requirement Total (1) Total (1) Cient Sequirement Requirement Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cien</td><td>111 10 34.1 54.1 54.1</td><td>1.10 1.11 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.</td><td>1.1 1.1 1.2 1.1 1.1 1.2 1.0 10 10 20.5 60.5 66.0 20 20 20 80.5 80.5 86.0</td><td>┝╍╍═╊═╬╪╋═╕╍┨╍═╍╎═╼═╊╧══┫╍═╖┨┈╷╏╴╏╴╶╴</td><td>0.95 0.95 0. 0.95 4 4 55.4 4</td><td>0.95</td><td>End of Irris</td><td>igation</td></th0.95<></th0.95<></th0.95<>	cient cient Requirement Total (1) Total (1) Cient Sequirement Requirement Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cient Cien	111 10 34.1 54.1 54.1	1.10 1.11 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	1.1 1.1 1.2 1.1 1.1 1.2 1.0 10 10 20.5 60.5 66.0 20 20 20 80.5 80.5 86.0	┝╍╍═╊═╬╪╋═╕╍┨╍═╍╎═╼═╊╧══┫╍═╖┨┈╷╏╴╏╴╶╴	0.95 0.95 0. 0.95 4 4 55.4 4	0.95	End of Irris	igation
110       110       111       111       111       111       112       112       10.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95       0.95 <th0.95< th=""> <th0.95< th=""> <th0.95< td=""><td>cient cient Flequirement Total (1) Total (1) Cient Total (2) Total (2</td><td>1.1 1.1 10 10 34.1 20 54.1</td><td>1.10           1.1           1.1           1.1           1.1           10           11           10           11           12           20           20           20           20           20           20           21           1.1           1.1</td><td>1.1         1.1         1.2           10         10         10           10         20         20           20         20         20           80.5         80.5         86.0</td><td>┠━╉╼╊━╾┯┥╍╼╍╎═╸╼╞╧═╼╡╾═╍┨┈╏╴╏╴╭╴</td><td>▲ 0. 0.95 0. 11 55.4 4. 22 22</td><td>0.95</td><td>/</td><td></td></th0.95<></th0.95<></th0.95<>	cient cient Flequirement Total (1) Total (1) Cient Total (2) Total (2	1.1 1.1 10 10 34.1 20 54.1	1.10           1.1           1.1           1.1           1.1           10           11           10           11           12           20           20           20           20           20           20           21           1.1           1.1	1.1         1.1         1.2           10         10         10           10         20         20           20         20         20           80.5         80.5         86.0	┠━╉╼╊━╾┯┥╍╼╍╎═╸╼╞╧═╼╡╾═╍┨┈╏╴╏╴╭╴	▲ 0. 0.95 0. 11 55.4 4. 22 22	0.95	/	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	cient 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	1.1 10 34.1 20 54.1	1.1         1.1           10         11           48.4         53.2           20         22           68.4         75.2           68.4         75.2	1.1         1.1         1.2           10         10         10         10           80.5         60.5         66.0         20           20         20         20         20           20.5         80.5         86.0	┢━┯┯┥ゃ╾┯╎━╼┺┟╧━┥╼╍╸╢┅╷╎╴╏╴╷╴	0.95 0. 11 55.4 4. 22	0.95		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Requirement     10     10       Total (1)     20     20       Total (1)     20     20       Total (1)     54.1     68.4       Total (1)     1.1     1.1       Cient     1.1     1.1       Cient     1.1     1.1       Cient     1.1     1.1       Total (1)     1.1     1.1       Cient     1.1     1.1       Cient     1.1     1.1       Cient     1.1     1.1       Cient     1.1     1.1       Requirement     1.1     1.1       Cient     1.1     1.1       Requirement     1.1     1.1       Requirement     1.1     1.1       Requirement     1.1     1.1	10 34.1 20 54.1 64.1	10         11           48.4         53.2           20         22           68.4         75.2           68.4         75.2	10         10         10         10           80.5         60.5         66.0         20           20         20         20         20           80.5         80.5         86.0         10		11 55.4 4 22		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Requirement     34.1     48.4       Total (1)     20     20       Total (1)     54.1     68.4       Total (1)     1.1     1.1       Requirement     8.4     48.4       Total (2)     8.4     88.4       Total (2)     8.4     88.4       Requirement     88.4     88.4       Total (2)     88.4     88.4       Total (2)     88.4     88.4       Total (2)     88.4     88.4	34.1 20 54.1	48.4 53.2 20 22 68.4 75.2 1.1	20.5         60.5         66.0           20         20         20           20.5         80.5         86.0		55.4 22			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total (1)     20     20       Total (1)     54.1     68.4       fent     1.1       cient     1.1       Kequirement     8.4       Total (2)     68.4       Requirement     68.4	20 54.1	20 22 68.4 75.2 1.1	20 20 20 0.5 80.5 86.0		22	44.7		:
$64.1$ $64.1$ $68.4$ $65.4$ $65.4$ $65.6$ $83.6$ $77.4$ $64.7$ $64.7$ $35.6$ $\bullet$ $1.0$ $1.1$ $1.1$ $1.1$ $1.1$ $1.2$ $1.2$ $0.95$ $0.95$ $\bullet$ $1.0$ $1.0$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ $0.95$ <td< td=""><td>Total (1)     54.1     68.4       fent     1.1       cient     1.1       Requirement     48.4       Total (2)     68.4       Requirement     68.4       Total (2)     10</td><td>54.1</td><td>68.4 75.2 1.1 1.1</td><td>80.5 80.5 86.0</td><td></td><td></td><td></td><td></td><td></td></td<>	Total (1)     54.1     68.4       fent     1.1       cient     1.1       Requirement     48.4       Total (2)     68.4       Requirement     68.4       Total (2)     10	54.1	68.4 75.2 1.1 1.1	80.5 80.5 86.0					
1.10 $1.10$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ <	cient Cient Requirement Total (2) Total (2) Total (2) Total (2) Total (2) Total (3) Total (3)		1 I I I		F*1	77.4			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	cient Cient Requirement Total (2) Total (2) Total (3) Total		-		L		0.95	<b>^</b>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Requirement     10       Requirement     48.4       Total (2)     68.4       Sient     68.4       Requirement     68.4		1	1.1 2.1		+		0.95	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Requirement 48.4 Total (2) 68.4 cient cient Requirement 7		10	0I -				8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total (2)     20       Total (2)     68.4       Eient     68.4       A     68.4		48.4 53.2	5 60.5 60.5				26.6	
(4, 7, 7) $(6.4, 75.2, 80.5, 80.5, 80.5, 83.6, 83.6, 83.6, 83.6, 64.7, 64.7, 71         (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7) (4, 7, 7)$			20	20				16	
$\star$ $1.10$ $\star$ $1.20$ $\star$ $1.20$ $\star$ $\star$ 1.1       1.1       1.1       1.1       1.1       1.1       1.20       1.20 $0.95$ $0.65$ $0.65$ $0.65$ $0.65$ $0.65$ $0.65$ $0.64$ $44.7$ $49$ 1.1       1.1       1.1       1.1       1.1       1.1       1.1 $1.0$ $0.95$ $0.65$ $0.6$ $0.65$ $0.64$ $44.7$ $49$ 1.1       1.1       1.1       1.1       1.1 $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$			68.4 75.2	80.5 80.5				42.6	
$\times 1/3$				1.10	*	1.20	► < 0.95	5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1.1 1.1				0.95 0.95	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				10				10 10	
×1/3     20     22     20     20     20     20     20     20     20     20       ×1/3     8     8     8     75.2     80.5     80.5     80.5     78.3     83.6     92.0     76.4     64.7     7       ×1/3     1     152     152     152     80.5     80.5     82.3     81.8     83.6     87.1     68.4     75       ×1/3     1     152     152     152     80.5     80.5     82.3     81.8     83.6     87.1     68.6     64.7     7			53.2	60.5 60.5	m			33.3 33.3	
× 1/3     68.4     75.2     80.5     80.5     78.3     83.6     92.0     76.4     64.7     71       × 1/3     1     152     152     68.4     75.2     80.5     80.5     83.6     92.0     76.4     64.7     71       1/3     1     152     152     152     80.5     80.5     82.3     81.8     83.6     87.1     68.6     64.7     71       1/3     152     152     152     152     80.5     80.5     82.3     81.8     83.6     87.1     68.6     64.7     58				20				20 20	
× 1/3     (18.0) (45.6) (68.4 75.2 80.5 80.5 82.3 81.8 83.6 87.1 68.6 64.7 58       152     152     152       152     152     152			75.2	80.5 80.5	÷		64.7	53.3 53.3	-
152 152 152 152 152 152 152 152 152 152	(18.0)(45.6)	(0.81)	68.4 75.2	5 80.5 82.3	8 83.	68	6 64 7	32.0 17.8	881.1
150 150 68 4 75 9 80 5 80 3 81 8 83 6 871 68 6 64 7 58	152	152	152						304
125 125 125 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00	Field Water Requirement 152 6	152	68.4 75.2	80.5 80.5 82.3 81	1.8 83.6	87.1 68.	.6 64.7 58.6	32.0 17.8	1,185.1

TABLE B. 2. 5 - 7 WATER REQUIREMENT OF LATE MATURED VARIETY (AMOL-3) AT PRESENT

(TAROM)
VARIETY
MATURED
OF EARLY
REQUIREMENT OF EARLY MATURED VARIETY
WATER RI
TABLE B. 2. 5 - 8

·····		171	А	Mar.		Apr.	r.		May		د.	Jun.		Ŷ	Jul.		AI	Aug.		Sep.		
	Component of Water Kequirement	ii o	7	2	3	1 2	8	1	3	3	1	2	3	1	7			10		72	ი ი	1000 4
	. Days / Decade or Month		10	10	11	10	10 1	0 10	10	11	10	10	10	10	10	п	01 10	10	11	10	10 10	
							 	.   . 			: ·											
4	Reference Crop Evapotranspiration					3.1 3	3.1 3.1	4	4.4	4.4	5.5	5.5	5.5	5.3	5.3	5.3	4.7	4.7 2	4.7			
	ETo (mm/day)										· .·			· · ·								
જં	Cropping Pattern					$\mathbb{H}$	ŝ		T)		#	-GSM	1	Ч н			4		Bnd	id of Irr	of Irrigation	
							1			7		#	-/.	7	7				*/			- - - - -
	ETo (mm/day)							1.1	-0-		1.20			0.95		*						•
. <del>4</del> i	Crop Coefficient						1.	1 1.1	L I	1.15	1.20 1	1.20	1:08	0.95	0.95	0.95						
	days							10 10	10	11	10	10	10	10	10	11						
ici	Crop Water Requirement						34.1	1 48.4	48.4	55.7	66.0 6	66.0	59.4	50.4	50.4	55.4		 -		÷ •		
ဖ	Percolation			•			3	30 30	30	33	30	30	30	30	30	33						
-	Total (1)						64.1	1 78.4	78.4	88.7	96°0'96	96.0	89.4	80.4	80.4 8	88.4				54 19 10		
								: :		1.10			1.20			0.95		· · ·				
00	Crop Coefficient								1.1	1.1	1.1 1	1.15	1.2	1.2	1.08 (	0.95 0	0.95					
	days	-		 					10	11	10	01	10	10	10	11	10					
6	Crop Water Requirement								48.4	53.2	60.5 6	63.3 6	66.0	63.6	57.2	55.4	44.7					
10	ŧ								30	33	30	30	30	30	30	33	30					
E	1								78.4	86.2	90.5	93.3	96.0	93.6	87.2 8	88.4	74.7				199 	
				<u> </u>						¥		1.10			1.20		0.95	•				
12	Crop Coefficient	 							· · ·		1.1	1.1	1.1	1.15	1.20	1.20	1.08 0.	0.95				
	days			•		 - -	-		·		10	10	10	10	10	긆	10	10				
13	Crop Water Requirement		· • • • • •								60.5	50.5 E	60.5	61.0	63.6	20.07	50.8 4/	44 7			:	
14.	Percolation										30	30	30	30	30	33	30	30	<u>.</u>			
15.	Total (3)	н.	·								90.5	90.5	90.5	91.0	93.6 10	103.0 8	80.8 74	74.7	-			
			· · · · ·		-					- <b>11</b>								<u>.</u>				
16.	Total (1)+(2)+(3)					<del>-</del>	64.1	1 78.4	156.8	174.9 277.0		279.8 27	275.9 21	265.0 26	261.2 27	279.8 15	155.5 74	74.7				- ¹
17.	Average { $(1) + (2) + (3) $ } × 1/3						21.4	26.1	52.3	58.3	92.3	93.3 9	92.0	88.3	87.1 5	93.3 5	51.8 24	24.9				781.1
18	Land Preparation		· 				38.8	38.8	38.8	38.8						<u> </u>				<u> </u>		155.2
19.	Field Water Requirement						60.2	g 64.9	91.1	97.1	92.3 9	93.3 9	92.0	88.3 8	87.1 5	93.3 5	51.8 24	6.4				936.3
].			MSD ; Misdummer Drainage	Misdu	mmer	Draina	9 50	H	H ; Heading	28	HV ; I	; Harvesting	ting	• : 		•	•		°.			

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C	4 ····· · · · · · · · · · · · · · · · ·	11-11	N	Mar.		Apr			May	:		Jun.	÷	. '	Jul.	 	Aug.	bò		Sep		
Disys/Decisite of Month.         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         1	َ ر		CILL	1		1	5	3		2	e.		5	m	<b>F</b> -1	~				14	61	m	lotal
Reference Crop Properturparition         20         20         31         31         31         4         4         4         4         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55	1.			10								10	10	10	0T.	10	11	:				10	
Bit Reference Crop Divergent memory         20         20         21         3.1         3.1         3.1         4.4         4.4         5.5         5.5         5.5         5.7         4.7         4.7         5.5         5.5         5.5         5.5         5.5         5.5         5.5         5.5         5.7         4.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7         5.7 <t< td=""><td></td><td></td><td> : :</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · ·</td><td></td><td></td></t<>			 : :									-									· · · ·		
ETO (miniday)         ETO (miniday)         Image: To (miniday)         To	ีเล่	Reference Crop Evaporranspiration				<u></u>				1.2	4	5.5	5.5	5.5	5.3	5.3				ļ	L	3.5	
		ETo (mm/day)						:													:		
Cop Coefficient         110         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111	6		<u> </u>		. 		¥	/	ľ		( H			#		ŕ		<b>[</b>	//		End	of Irri	of Irrigation
Crop Coefficient         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11			   .							1	1								[	$\backslash$			
CropCoefficient         1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1											1.10			120			0.95						
days         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10		Crop Coefficient				-		<u> </u>	1.1	1		1.1	1.15		1 :	1		0	35				
Crop Water Requirement         48.4         53.2         60.5         53.3         66.0         65.6         67.2         55.4         47.7         23.3           Percolation         30         30         33         33         33         35         15           Total(1)         78.4         78.4         86.2         90.5         93.3         96.0         93.6         87.2         86.7         74.7         37.3           Corp Coefficient         1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         <	1	days	   .				 	-	10		11	10	D.	р П	IO	10	11	01	5				
Percolation         30         30         30         30         33         30         15           Total (1)         Total (1)         78.4         78.4         78.4         78.4         77.3         53.         96.0         93.6         87.2         88.4         74.7         37.3           Crop Coefficient         11         10         10         10         10         11         10         10         11         10         10         10         11         10         10         11         10         10         11         10         10         11         10         10         10         11         10         10         11         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 </td <td></td> <td>Crop Water Requirement</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>48.4</td> <td>f i</td> <td>53.2</td> <td>60.5</td> <td>. ·</td> <td>í .</td> <td></td> <td></td> <td></td> <td>1</td> <td>3</td> <td> </td> <td></td> <td>۱.</td> <td></td>		Crop Water Requirement							48.4	f i	53.2	60.5	. ·	í .				1	3			۱.	
Total (1)		Percolation						[ 	30	ł	33	30	30	30	30	30			2				
Crop Coefficient         Image: Signed		1				. 			78.4	18	<b>├</b>	90.5		1		1				 			
Crop Coefficient         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th="">         I         I</thi<>	<u> </u>		   .			: 								╏╼╂					1				
days       11       10       10       10       11       10       10       11       10       10       11       10       10       11       10       10       11       10       10       11       10       10       11       10       10       11       10       10       11       10       10       11       10       10       11       10       10       11       10       10       12       33       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30      <	<b>I</b>	Crop Coefficient			.   .							1.1	1.1	1	I	1.		L		10	 		
Crop Water Requirement         E         53.2         60.5         60.5         61.6         63.6         70.0         50.8         4.7         35.7           Percolation         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n		days			<b></b> _						TT.	10	10	10	10	10			0	8			
Percolation         Percolation         Sec.2         So.5         So.5 <thso.5< th="">         So.5         So.5<!--</td--><td>[</td><td>Crop Water Requirement</td><td></td><td> </td><td>: ·</td><td>   </td><td></td><td> </td><td></td><td></td><td><u> </u></td><td></td><td>I.  </td><td>1.1.1</td><td>í –</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thso.5<>	[	Crop Water Requirement			: ·	 					<u> </u>		I.	1.1.1	í –								
Total (2)Total (2) <td>· · ·</td> <td>Percolation</td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td> </td> <td></td> <td></td> <td>ŝ</td> <td>30</td> <td>30</td> <td>30</td> <td>30</td> <td>30</td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td>	· · ·	Percolation									ŝ	30	30	30	30	30				4			
Crop Coefficient       I.1       I.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>   </td> <td>ĺ</td> <td></td> <td></td> <td></td> <td>DI DI</td> <td></td> <td></td> <td></td> <td>3.6 10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						<u> </u>	 	ĺ				DI DI				3.6 10							
Crop Coefficient1.11.11.11.11.11.151.201.201.0daysdays1010101010101010dayscrop Water Requirement <t< td=""><td><b>—</b>—</td><td></td><td>•</td><td></td><td>-</td><td></td><td> </td><td>[    </td><td></td><td></td><td></td><td>*</td><td></td><td>1</td><td>10</td><td></td><td></td><td>1.20</td><td>X</td><td>12</td><td></td><td></td><td></td></t<>	<b>—</b> —		•		-			[   				*		1	10			1.20	X	12			
daysdays101010101010101010Crop Water Requirement<	<u>†                                    </u>							<b> </b>					1.1	1.1	1.1				H.		-		
Crop Water RequirementCrop Water Requirement60.563.358.367.056.450.3Percolation78.478.478.478.478.378.378.378.378.378.378.378.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.478.477.0272.9289.1291.4297.1201.658.7140.558.4140.5Iand Preparation78.478.878.878.878.878.878.877.180.777.180.666.146.8Iand Preparation78.458.858.838.838.839.191.492.391.089.771.818.616.146.8Field Water Requirement78.978.978.978		days						·					DT.	10	01	10							
Percolation $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ $30$ <td>f</td> <td>Crop Water Requirement</td> <td></td> <td>   </td> <td></td> <td> </td> <td>   </td> <td>[</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.0 56.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	f	Crop Water Requirement		 			 	[									7.0 56.						
Total (3)Total (3)Total (1) + (2) + (3)S8.3100.086.486.480.8Total (1) + (2) + (3)Total (1) + (2) + (3)Total (1) + (2) + (3)Total (1) + (2) + (3)100.086.486.480.4140.5Average $\{(1) + (2) + (3)\} \times 1/3$ Total (1) + (2) + (3)) \times 1/3Total (1) + (2) + (3)) \times 1/3Total (1) + (2) + (3)) \times 1/3100.086.486.4140.5Land Preparation28.128.126.126.121.089.791.089.797.180.666.146.8Field Water RequirementEacl Mater Requirement64.964.964.996.391.089.797.180.666.146.8		Percolation					 			 			30	30	30	30							
Total (1)+(2)+(3)     Total (1)+(2)+(3)       Average { (1)+(2)+(3) } × 1/3     13       Average { (1)+(2)+(3) } × 1/3     26.1       Average { (1)+(2)+(3) } × 1/3     27.1       Brield Water Requirement     26.1       Field Water Requirement     24.9       95.1     91.4       92.3     91.0       85.8     38.8       38.8     38.8       38.8     38.8       38.8     38.8       38.8     38.8       38.8     38.8       38.8     38.8       38.8     38.8       38.8     38.8       38.8     38.8       38.8     38.8       38.8     38.8       38.8     39.1       38.7     97.1       38.8     39.1       38.7     97.1       38.8     39.1       38.7     97.1       38.8     39.1       38.7     97.1       38.8     39.1       38.7     97.1       38.8     39.1       38.7 </td <td></td> <td>Total (3)</td> <td></td> <td>8.3 100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Total (3)														8.3 100							
Average {(1)+(2)+(3)} × 1/3     26.1     26.1     57.5     60.3     91.4     92.3     91.0     89.7     97.1     80.6     66.1     46.8       Land Preparation     38.8     38.8     38.8     38.8     38.8     38.8     38.8     91.4     92.3     91.0     89.7     97.1     80.6     66.1     46.8       Field Water Requirement     64.9     64.9     96.3     99.1     91.4     92.3     91.0     89.7     97.1     80.6     66.1     46.8		Total (1) + (2) + (3)							78.4	78.4	72.4 1	81.0 2	74.3 21	77.0 27	2.9 26	9.1 291	.4 241	9 198.	4 140.1				
Land Preparation         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.8         38.7         37.1         30.6         56.1         46.8         38.8         38.7         37.1         30.6         56.1         46.8         38.8         38.7         37.1         30.6         56.1         46.8         38.8         38.7         37.1         30.6         56.1         46.8         36.8         30.1         31.0         39.7         37.1         30.6         56.1         46.8         36.8         30.7         37.1         30.6         56.1         46.8		Average {(1) + (2) + (3) } $\times$ 1/3							26.1														846.1
Field Water Requirement 64.9 84.9 96.3 99.1 91.4 92.3 91.0 89.7 97.1 80.6 66.1 46.8		Land Preparation							38.8			38.8											155.2
		Field Water Requirement							64.9	64.9									46.				1,001.3

TABLE B. 2. 5 - 9 WATER REQUIREMENT OF MEDIUM MATURED VARIETY (KHAZAR)

																							•	•					
	Totol	TUNAT					ation																				1,074.5	155.0	1,229.5
		m	10		3.5		End of Irrigation	7																	•••••				<u>`</u>
	Sep.	67	10		3.5		Endo	1													<b>^</b>	0.95	10	33.3	30	63.3	21.1		21.1
· · ·		н	10		3.5		$\Lambda$	f				••••••				0.95	ø	26.6	24	50.0		0.95 (	10.	33.3	30	63.3 6	37.8 2		37.8 2
		ŝ	11		4.7		1			0.95	S.	22.3	15	37.3	5	0.95		49.1	33	82.1	0.95	0.95	II	49.1	33	82.1 (	67.2		67.2
L-3)	Aug.	2	0		4.7			1		0.95	10	44.7	30	74.7	0.95	0.95	10	44.7	30	74.7		0.95	10	44.7	30	74.7	74.7		74.7
MO		Ч	10		4.7			7	0.951	0.95	10	44.7	30	74.7		0.95	01	-	30	74.7	Ť	1.20	010	56.4	30	86.4	78.6	 :	78.6
LATE MATURED VARIETY (AMOL-3)		ŝ	II		5.3		1			0.95	,H	55.4	33	88.4		1.2	11	70.0	33	103.0	1.20	1.20	IT	70.0	33	103.0	98.1		98.1
ARIE	Jul.	\$	10		5.3		-	7		1.2	10	63.6	30.	93.6	1.20	1.2	10		30	93.6 1		1.20	IO	63.6	30	93.6 I	93.6		93.6
D V		ч	10	:	5.3		/	/	1.20	1.2	10	63.6	30	93.6		1.2	10	<u> </u>	30 30	93.6		111	10	58.3 6	30	88.3 9	91.8 9		91.8 9
rure		e	10		5.5		#			1.2	10	66.0 (	30	96.0		1.1	107	60.5 6	30	90.5		1.1	10	60.5	30	90.5 8	92.3 9		92.3 9
MA	Jun.	8	10	-	5.5		÷ .			1.1	10	60.5	30	90.5		11	10	+	30	90.5 9		1.1	10	60.5 (	30	90.5 5	90.5 5		90.5
ATE			10		5.5					1.1	10	60.5	30	90.5		T T	12	- i	30	90.5	1 10	1:1	10	60.5	30	90.5	90.5		90.5
OF L		3.	11		4.4				0	1.1	11	53.2	33	86.2		1.1	11	53.2	33	86.2		1.1	11	53.2	33	86.2	86.2		<u> </u>
	May	2	10		44				1.10	1.1	10	48.4	30	78.4		I I	P	48.4	30	78.4		1.1	10	48.4	30	78.4	78.4		78.4 86.2
REMI		1	10	÷	4.4		( -E-	/		1.1	10	48.4	30	78.4		1.1	10	48.4	30	78.4						64.1 156.8	52.3	77.5	98.9 129.8
Ind		ო	10		3.1		V			1.1	10	34.1	30	64.1												64.1	21.4	77.5	98.9
water requirement	Apr.	5	10		3.1		с С	1																					
/ATE		ч	01.		3.1		$\mathbb{V}$																						
5		3	11		2.0																								
10	Mar.	2	30		2.0																								
. 2. 5		Ĭ	10		2.0			:																:	· . ·				
TABLE B. 2. 5 - 10		11110																											
TAB	£	Component of water wednitement	1. Days/Decade or Month		2. Reference Crop Evapotranspiration	ETo (mm/day)	3. Cropping Pattern			4. Crop Coefficient	days	5. Crop Water Requirement	6. Percolation	7. Total (1)		8 Cron Coefficient		9. Crop Water Requirement	-	+		2. Crop Coefficient	days	3. Crop Water Requirement	4. Percolation	5. Total (3)	<ol> <li>Average { (1) + (2) + (3) } × 1/3</li> </ol>	7. Land Preparation	3 Field Water Requirement
				<u> </u>		<u> </u>	Ľ		<u> </u>		<b></b>		Ľ	Ĺ					Ē	H	Ĺ	12.		13.	14	15.	16.	17.	18

HV ; Harvesting

H ; Heading

**MSD**; Midsummer Drainage

T ; Transplanting

S ; Sowing

6	Component of Water Requirement	Unit		Mar.			Apr			May		Jun.	Total
		Unit	1	2	3	1	2	3	1	2	3	1	(Unit m.m)
1.	Days / Decade or Month		10	10	11	10	10	10	10	10	11	10	
				2.11									······
2.	Reference Crop Evapotranspiration					3.1	3.1	3.1	4.4	4.4	4.4	5.5	
	ETo (mm/day)					1		<u> </u>					
3.	Cropping Pattern					$\sim$		s S		Т-	6	$\sim$	
							<b>_</b>			1	K		
	ETo (mm/day)					<b>4</b> 1	10				<b>`</b>		
4.	Crop Coefficient					1.1	1.1						
1.1	days					10	10						
5.	Crop Water Requirement					34.1	34.1						
6.	Percolation					30	30				}		
7.	Total (1)					64.1	64.1						
. E								<b>4</b> 1.	10				
8.	Crop Coefficient					·		1.1	1.1				
	days	:				· .		10	10			└ <u>-</u>	
9.	Crop Water Requirement							34.1	48.4			· · ·	
10,	Percolation							30	30				
11.	Total (2)							64.1	78.4				·
										<b>∢</b> _1.	10	<b></b>	
12.	Crop Coefficient									1.1	1.1	<b>-</b>	
	days							[	[	10	11	f	
13.	Crop Water Requirement									48.4	53.2		
14.	Percolation									30	30		
15.	Total (3)									78.4	86.2	†	
						<u> </u>						<b> </b>	
16.	Total (1) + (2) + (3)					64.1	64.1	64.1	78.4	78.4	86.2	<u> </u>	· ·
17.	Average { (1) + (2) + (3) } $\times$ 1/3					21.4	21.4	<u> </u>	26.1			<u> </u>	145.1
18.	Land Preparation	1				7.5			37.5		7.5	·	150.0
19.	Field Water Requirement					28.9		<u> </u>	63.6				295.1

# TABLE B. 2. 5 - 11 WATER REQUIREMENT OF NURSERY (TAROM)

C	Component of Water Requirement	Unit		Mar	······	1 I.	Ápr.	1 1		May	•	Jun.	Total
	somponent of water Requirement	Unit	1	2	3	1	2	3	<b>1</b>	2	3	1	(Unit m.m)
1.	Days / Decade or Month		10	10	11	10	10	10	10	10	11	10	
									·	i			
2.	Reference Crop Evapotranspiration		2.0	2.0	2.0	3.1	3.1	3.1	4.4	4.4	4.4	5.5	
·	ETo (mm/day)												
3.	Cropping Pattern						~		S		'l'	<u> </u>	
											$\leq$	*	
							<b>↓</b> ¹	10					• • • • • • • • • • • • • • • • • • •
4.	Crop Coefficient			-			1.1	1.1		-			
	days						10	10		· .			
5.	Crop Water Requirement					· .	34.1	34.1	· .			2.4	
6,	Percolation						30	30					
7.	Total (1)			na a P			64.1	64.1					
								н. н. 1.	◀ 1.	10	111	. :	
8.	Crop Coefficient								1.1	1.1			
	days	· · · ·							10	10			
9.	Crop Water Requirement								48.4	48.4			
10.	Percolation								30	30			
11.	Total (2)					ал . 1			78.4	78.4			
											1.	10	
12.	Crop Coefficient			н. 11.						· · ·	1.1	1.1	
	days					:					11	10	
13.	Crop Water Requirement			·							53,2	60.5	
14.	Percolation							i.			33	30	
15.	Total (3)					1					86.2	90.5	
16.	Total (1) + (2) + (3)						64.1	64.1	78.4	78.4	86.2	90.5	
17.	Average { $(1) + (2) + (3)$ } × 1/3						21.4	21.4	26.1	26.1	28.7	30.2	153.9
18.	Land Preparation			<u> </u>			7.5	30	37.5	37.5	30	7.5	150.0
19.	Field Water Requirement						28.9	51.4	62.6	63.6	58.7	37.7	303.9

## TABLE B. 2. 5 - 12 WATER REQUIREMENT OF NURSERY (KHAZAR)

C C	omponent of Water Requirement	Unit		Mar.			Apr.			May	:	Jun.	Total
		0	1	2	3	1	2	3	1	2	3	1	(Unit m.m
 1.	Days / Decade or Month		10	10	11	10	10	10	10	10	11	10	
												i	
2.	Reference Crop Evapotranspiration		2.0	2.0	2.0	3.1	3.1	3.1	4,4	4.4	4.4	5.5	
· · · · ·	ETo (mm/day)										⊑ <u></u> `		+
3.	Cropping Pattern						S-		Γ~				
							X		X	i			
- 14 - 1						▲ 1	10		>				
4.	Crop Coefficient					1.1	1.1	['				f	{
	days					10	10						
5.	Crop Water Requirement					34.1	34.1		***				 
6.	Percolation					30	30						
 7.	Total (1)					64.1	64.1						[
						<u> </u>	<b>▲</b> 1.1						
8.	Crop Coefficient		1				1.1	1.1					
	days						10	┨╌┥┈╍┈					
9.	Crop Water Requirement						34.1	34.1		·			
 10.	Percolation	··					30			· .	·		
11.	Total (2)					i	64.1		·				
						·i		1.1	0				
12.	Crop Coefficient							1.1					
	days							10					
13.	Crop Water Requirement								48.4				
14.	Percolation		}					30					
15	Total (3)					64.1	128 7	128.2					·····
16.	Average { (1) + (2) + (3) } $\times$ 1/3					21.4	42.7	<u> </u>					132.9
	Land Preparation					19	56						132.9
	Field Water Requirement					40.4	98.7					├	282.9

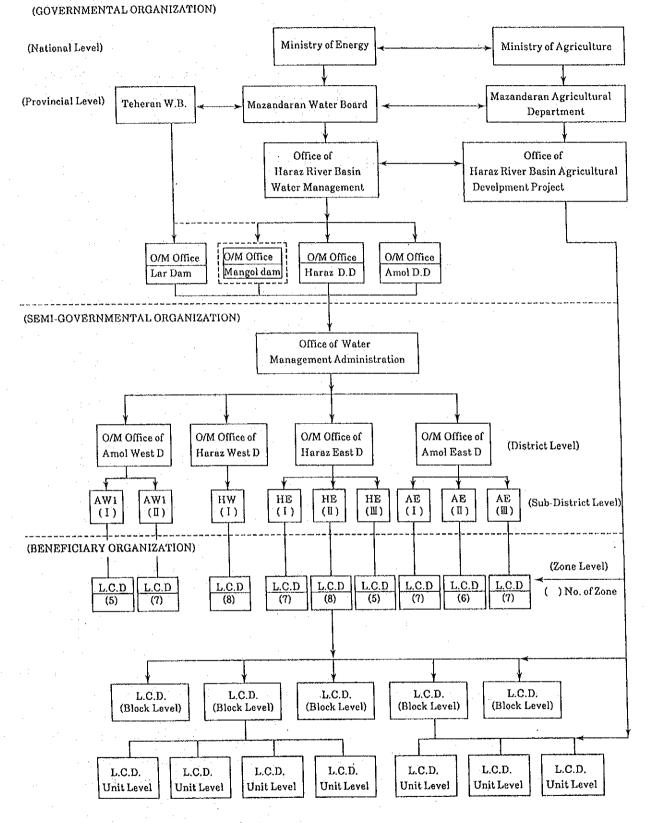
## TABLE B. 2. 5 - 13 WATER REQUIREMENT OF NURSERY (AMOL-3)

## **B. 2.6** Operation and Maintenance

## 1. Proposed Organization

For the proper water management of the post Project, more appropriate organization on the operation and maintenance of the facilities shall be established based on the actual conditions and status of the project facilities and requirements. In accordance with the agreement made by the MOA, MOE and BPO on the rationalization of water management, water management administration was proposed as main body of the O & M activity under the MOE. The proposed organization chart illustrated in the Figure B.2.6-1.

## 2. Staffing Plan (Preliminary basis)


Designation	Office of H.R.B. W.M	O/M Office Haraz D.D	O/M Office Amol D.D	Total
Manager	1	· · · · · - · · ·		1
Deputy Manager	2	-	1 - 1 - <u>1</u> - 1	2
Branch Manager	- 1	1	1	2
Chief Engineer	2	2	2	6
Chief Administration	2	1	1	4
Engineer	5	2	2	9
Technician	4	2	2	8
Assistant Staff	10	2	2	14
Total	26	10	10	46

## 2.1 Governmental Organization

### 2.2 Semi-Governmental Organization

Designation	Main Office	H. W. Office	H.E. Office	A. W. Office	A.E. Office	Total
Superintendent	1	-	·~	-	<u> </u>	1
Deputy S.I.	2	-	-	<u>-</u>	-	2
Chief Engineer	4	-	_	· -	- ·	4
<b>Division Director</b>	10	-	-	. –	<b>-</b> '	10
Branch Manager	-	1	1	1	. 1	4
Deputy B.M.	-	1	3	2	3	9
Engineer	9	2	6	4	6	27
Clark	20	4	12	8	12	56
Agronomist	2	1	1	1	1	6
Chief Mirab	2	1	1	1	1	6
Zone Mirab	-	8	20	12	20	60
Canal Tender	-	35	110	86	100	331
Technician	· _ ·	8	24	16	24	72
Assistant Staff	20	4	12	8	12	56
Total	70	65	190	139	180	644

ORGAINZATION CHART OF OPERATION AND MAINTENANCE



#### L.C.D : Land Consolidation District

## B. 2.7 Relation Between Yield of Rice and Water Shortage

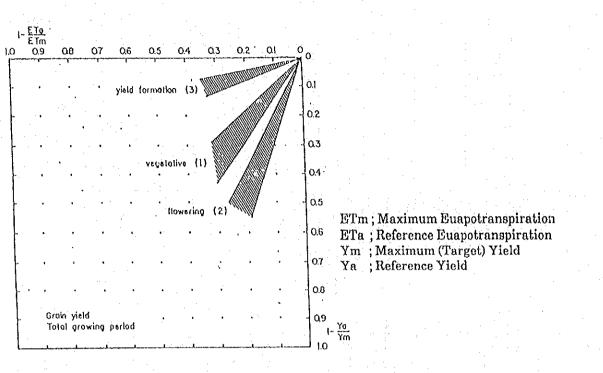
## 1. Target Yield of Rice for The Project

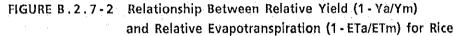
The relationship between improvement of irrigation/farming practice, introduction of farm mechanization and average yield of rice for the project are summarized as follows;

	Item	Tarom	Khazar	(Unit : kg/ha) Amol - 3
1	Prevailing averaged yield	4,135	<u>5,741</u>	7,375
2.	First stage target (Without Mangol dam	case)		
	- Effects by mainly land consolidation with farm mechanization	(7.3%) [1]	(11.1%)	(8.1%)
		4,437	<u>6,378</u>	7,972
3.	Second stage target (With Mangol dam c	ase)		
	- Effects by mainly irrigation and mid-summer drainage	(5.6%) [1]	(5.6%)	(5.6%)
	improvement	4,668	<u>6,700</u>	<u>8,385</u>
4.	Yield decrease by water shortage	e de la companya de l La companya de la comp	e Na San San San San San San San San San Sa	
	- 10% decrease for 2nd target	4,200 (1.02) [2]	6,030 (1.05)	7,540 (1.02)
	- 15% decrease for 2nd target	3,970 (0.97) [2]	5,700 (0.99)	7,130 (0.97)
	- 20% decrease for 2nd target	3,730 (0.90) [2]	5,360 (0.93)	6,700 (0.91)

## Target Yield of Rice

Note: [1] The figures in parenthesis indicate incremental yield ratio to prevailing rice yield.


[2] The figures in parenthesis indicate decreased yield ratio to the second stage target yield.


## 2. Relation Between Irrigation Water Shortage and Rice Yield

The growing periods of respective rice varieties in the project area are shown in the Figure B. 2. 7-1. The relationship between relative yield decrease (1 - Ya/Ym) and relative evapotranspiration deficit (1 - ETa/ETm) for the total rice growing stage is illustrated in the Figure B. 2. 7-2 and standard rice growing periods are indicated in the Figure B. 2. 7-3, respectively.

							ŀ			ļ								ł				
Comment of Woten Reduitrement	TTmit	·	Mar.		Ą	Apr.		May	Ŋ		Jun.			Jul.		¥	Aug.	 	0.1	Sep.		1.07 CL
ATTAINTA TIM BANT TAY ATTAIN ATTAIN		r-1	2	က	ru	21	3	7	es T	1	5	<i>с</i> у		5	3	1	2	ŝ		5	3	TOPAT
Days/Decade or Month		10	10	11	10	10 1	10 1	10 10	11 0	10	10	10	10	10	11	10	-01	11	10	10	0T	
									· ·							<u> </u>	·					
Eary Matured Variety (Tarom)					/	( dr	/4/	C H	///	¥/			X	Óľ.	V.	1	AH /	5 Y	End	End of Irrigation	lgatic	ц
				 	    .				<b> </b>		 					<u> </u>			<u> </u> -			
Middle Matured Variety (Khazar)					<b>Y</b>		(d)	A/	E /	11	¥i			1	<u>،</u>	Y	$\overline{\mathbb{O}}$	1	A A	TY		
				 											· · ·	L	<b>└</b> ──┤─┲───					
Late Matured Variety (Amol-3)				K	ν. Δ	KAY	E						ľ	X	á		@	/1	1	AH -	AV	
										]												
									]				{		{	{	{	{				
S; Sowing T; T	T; Transplanting	nting		ΗV;	Har	Harvesting	ស្ន	Ω	<ol> <li>Vegetative</li> </ol>	ative	$\bigcirc$	© Flowering	werir	ອ	$\odot$	Yield	Forn	SYield Formation	đ			

FIGURE B. 2. 7-1 GROWTH PERIODS OF RICE





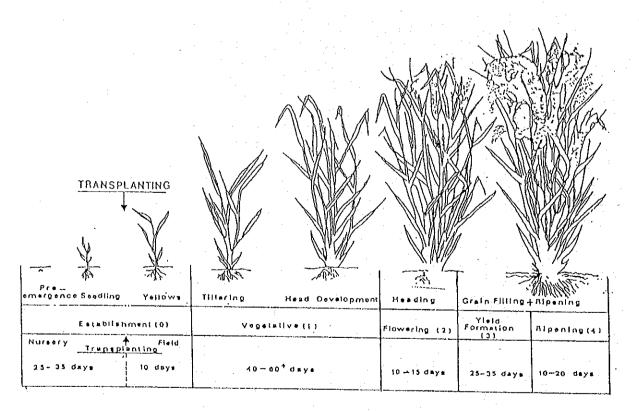



FIGURE B.2.7-3 Growth Periods of Rice

Data source ; No.33 Yield response to water, 1979(C.E.F.S.)FAO Technical Papers

## APPENDIX B.3 DRAINAGE

## CONTENTS

	an an Arian An Arian		<u>Page</u>
B. 3. 1	Exis	ting Drainage Network and Conditions	<b>B3-</b> 1
	1.	Surface Drainage Network and Conditions	B3-1
i	2.	Subsurface Drainage Conditions	B3-3
B. 3. 2	Dra	inage Monitoring	B3-17
	1.		B3-17
	2.	Water Level of the Drains	
	3.	River Mouth Closing	
B. 3. 3	ТІВ	Survey on Drainage	B3-23
	1.	Indus de la contra d	B3-23
	2.	Difficulties on Drainage	
			00-24
8.3.4	Eva	luation of Drainage Design Year	B3-30
	1.	Introduction	B3-30
·	2.	Conclusion	B3-30
	3.1	Design Rainfall	B3-30
	4.	Cost Ratio by Rainfalls	B3-31
	5.	Economic Evaluation	B3-32
B. 3. 5	Cor	ncepts on Drainage Canal Profile and Depth	B3-35
	1.	Concepts on the Terminal Level	
	2.		B3-38
	3.		B3-38
· ·	4.		B3-39
	5.		B3-39
B. 3. 6	Pro	posed Surface Drainage	B3-41
	1.	Proposed Drainage Network	B3-41
	2.	Proposed Surface Drainage Rate	B3-42
	3.	Alternative Routes and Canal Size of major Drains	B3-48
B. 3, 7	Pro	posed Subsurface Drainage	B3-55
	1.		B3-55
	2.	Design of Subsurface Drainage	
		· · · · · · · · · · · · · · · · · · ·	03-21

## LIST OF TABLES

		Page
Table B. 3. 1-1	Elevation-Area Distribution of the Project Area	B3-12
Table B. 3. 1-2	Slope Distribution of the Project Area by 1 km Grid	B3-13
Table B. 3. 1-3	Area by Subsurface Drainage Blocks	B3-14
Table B. 3. 1-4	Zoning by Permeability and Mean Depth of Impervious Layer	B3-15
Table B. 3. 1-5	Distric-Wise Subsurface Drainage Zone	B3-16
Table B. 3. 3-1	Difficulties on Drainage by Zone Mirabs	B3-27
Table B. 3. 3-2	Difficulties on Drainage by Village Mirabs	B3-29
Table B. 3. 4-1	Design 2-day Rainfalls for the Period from September to October	B3-31
Table B. 3. 4-2	Cost Ratios to the 2-Year Design Year Cost	B3-32
Table B. 3. 4-3	Benefit and Cost Ratio on Drainage Improvement Project by	
· · ·	Different Return-Period	B3-33
Table B. 3. 6-1	Runoff Curve Numbers for Hydrologic Soil-Cover Complexes	B3-50
Table B. 3. 6-2	Curve Numbers (CN) and Constants for the Case Ia = 0.2 S	B3-51
Table B. 3. 7-1	Computation Sheet of Drainage Spacing	B3-59

## LIST OF FIGURES

		<u>Page</u>
Figure B. 3. 1-1	Existing Drainage Canals and Topography	B3-4
Figure B. 3. 1-2	topography of Hinterland of Feridonkenar	B3-5
Figure B. 3. 1-3	Eelvation-Area Relation of the Project Area	B3-6
Figure B. 3. 1-4	Elevation-Acreage Relation of the Hinterland of Feridonkenar	B3-7
Figure B. 3. 1-5	Profile of Lower Reach of the Mahmudabad Drain	B3-8
Figure B. 3. 1-6	Profile of Drains in the Hinterland of Feridonkenar	B3-9
Figure B. 3. 1-7	Affecting Factors on Subsurface Drainage	B3-10
Figure B. 3. 1-8	Classification of Land by Hydraulic Conductivity and Depth to	
	Impermeable Layer	B3-11
Figure B. 3. 2-1	Location Map of Drainage Monitoring Sites	B3-19
Figure B. 3. 2-2	Fluctuation of Water Levels of Drainage Canals	
	in the Feridonkenar Drain System	B3-20
Figure B. 3. 2-3	Cross-Section of Drains at Monitoring Sites	B3-21
Figure B. 3. 4-1	Cost Ratio (Cr), Worth Ratio (Br), and Br/Cr under 10% Interest	B3-34
Figure B. 3. 5-1	Terminal Drainage System	B3-35
Figure B. 3. 5-2	Cross-Section of Drainage Ditch	B3-36
Figure B. 3. 5-3	Cross-Section of Lateral Drainage Ditches	B3-37
Figure B. 3. 5-4	Cross-Section of Tertiary Drainage Canals	B3-38
Figure B. 3. 5-5	Drainage Outlet to the Caspian Sea	B3-38
Figure B. 3. 5-6	Restriction of Subsurface Drainage	B3-40
Figure B. 3. 5-7	Restriction on Field Drying	B3-40
Figure B. 3. 6-1	Proposed Drainage Network	B3-52
Figure B. 3. 6-2	Diagram of Proposed Drainage Network	B3-53
Figure 8. 3. 6-3	Equations of Drainage Rate for Different Season	B3-54
Figure B. 3. 7-1	Cross-Section Showing Symbols Used in Ellipse Equation	B3-60
Figure B. 3. 7-2	Graphical Solution of Modified Ellipse Equation	B3-61

B3-iii

### **B. 3.1** Existing Drainage Network and Conditions

## 1. Surface Drainage Network and Conditions

(1) Topography of the Project Area

## 1) Altitude of the Project Area

Altitude of the Project Area ranges about 200 m from minimum EL.(-)24.5 m behind Feridon Kenar to maximum EL.188 m at the southern most of the Project Area, and half of the total area locates below EL.0.0 m. As seeing in Figure B.3. 1-1, the low-lying area, where altitude is below (-)24.0 m, is located mostly in the hinterland of Feridon Kenar, and at very limited area in the Alamdeh Rud Drainage Area. Altitude distribution of the low land area is as shown in the table below;

#### **Ground Elevations in the Low Land Area**

а. А.	Areas by	Elevation		Proportion to the
Elevation	Amol West District (Min. Elevation(-) 24,2 m)	Amol East District (Min. Elevation(-) 24.5 m)	Total (ha)	Whole Project Area of 108,009 ha (%)
less than(-)24 m	4 ha	538 ha	542	0.5
∥ (-)23 m	29	1,681	1,710	1.6
∥ (-)22 m	667	4,337	5,044	4.7
∥ (-)20 m	3,968	8,098	12,066	11.2
∥ (-)18 m	6,469	10,528	16,997	15.7
∥ (-)16 m	8,442	13,021	21,463	19.9

### 2) Slope of the Project Area

As seeing in the Table B.3.1-2, ground slope of the Project Area is mostly steeper than 1/500, however, Amol East District is rather flatter and its slope is mostly gentler than 1/500. In such flat and low land, drainage is so difficult that many problems are concentrated in this district.

## (2) Existing Drainage Network

As explained in the Main Report, existing drainage network is classified into 16 networks, that 11 networks in the Haraz Left Bank Drainage District and 5 networks in the Haraz Right Bank Drainage District.

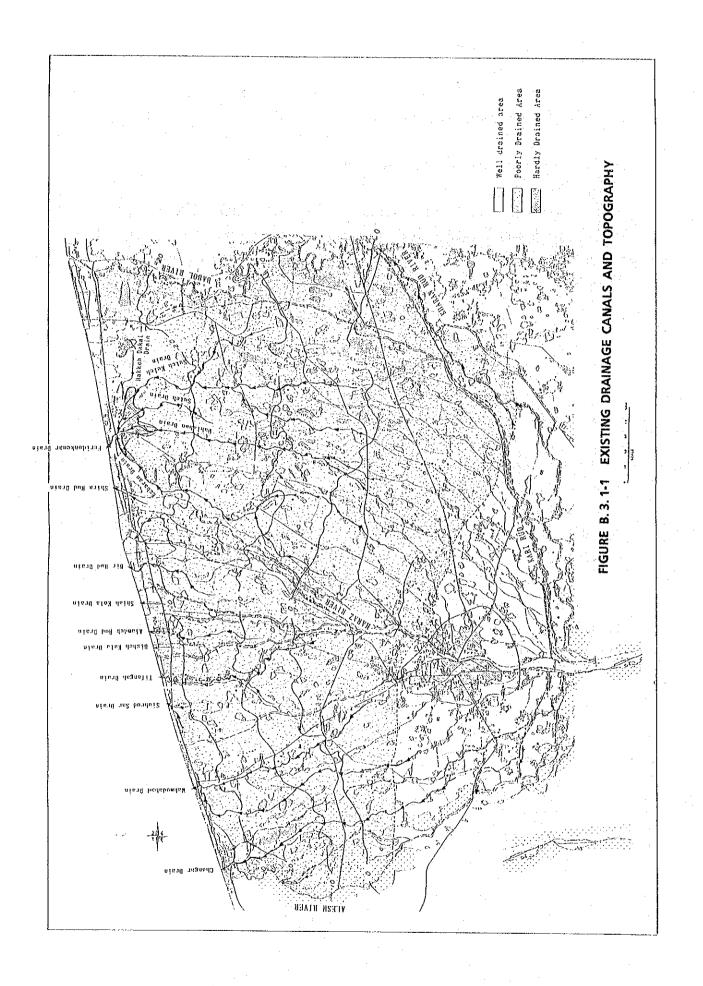
Drain	nage Districts		
	Drainage Zone	Drainage Area (ha)	Ratio (%)
Hara	z Left Bank Drainage District	42,880	39.7
1)	Haraz Upper Drainage Zone	399	0.4
2)	Alesh Drainage Zone	3,587	3.3
3)	Changar Drainage Zone	6,634	6.1
4)	Mahmudabad Drainage Zone	16,170	15.0
5)	Siahrud Sar Drainage Zone	2,353	2.2
6)	Tifangah Drainage Zone	6,119	5.6
7)	Bisheh Kola Drainage Zone	291	0.3
8)	Alamdeh Rud Drainage Zone	1,792	1.7
9)	Shiah Kola Drainage Zone	761	0.7
10)	Bir Rud Drainage Zone	3,793	3.5
11)	Haraz Direct Drainage Zone	981	0.9
		and a second	
<u>Hara</u>	z Right Bank Drainage District	65,129	<u>60.3</u>
1)	Haraz Direct Drainage Zone	1,254	1.2
2)	Shira Rud Drainage Zone	1,130	1.0
3)	Feridon Kenar Drainage Zone	49,070	45.4
4)	Babol Drainage Zone	8,195	7.6
5)	Kari Right Bank Drainage Zone	5,480	5.1
	Total	108,009	100

#### Drainage Area by Existing Drainage Network

### (3) Outlets to the Caspian Sea

As shown in the Figures B. 3. 1-5 "Profile of Lower Reach of the Mahmudabad Drain" and B. 3. 1-6 "Profile of Lower Reach of the Feridon Kenar Main Drain", the Feridon Kenar Main Drain and its tributaries are of very low elevation and flat slope in the hinter-land. On the other hand, the Mahmudabad drain flows into the Caspian Sea with rather steeper slope. Most outlets of the Haraz left bank area are likely same profile as the Mahmudabad drain.

Even in case the Caspian sea level reaches to the design surcharge level (-)24.65 m, the Mahmudabad drain has a enough water head to flush out the river mouth deposit. Therefore, those drains in the Haraz left bank area have not serious problems on river mouth deposit. On the other hand, the Feridon Kenar drains are already serious on river mouth deposit and drainage of the hinter-land.


## 2. Subsurface Drainage Conditions

## (1) Fluctuation of Subsurface Groundwater

From the results of piezometer observation (MOA, 1985), it is found that the irrigation and the autumn and winter rainfall are clearly relating to the groundwater recharge. They raise groundwater sharply at the beginning of irrigation and rainfall. This phenomena is clearly illustrated in the Figure B. 3.1-7.


(2) Hydraulic Conductivity and Depth to Impermeable Layer

Subsurface groundwater table, hydraulic conductivity and depth to impermeable layer were observed in the entire Project Area by HWDP-I Study. This F/S Study uses this result on subsurface drainage plan. The study of HWDP-I defines the problem area on subsurface drainage where groundwater rises 50 cm or more to the field surface. According to this definition, the Project Area is divided into two areas that the well-drained area and the poorlydrained area as shown in the Figure B. 3. 1-1. In the poorly-drained area, the area is divided into 38 blocks by the permeability and the depth to impermeable layer as shown in Figure B.3. 1-8 and Table B. 3. 1-3. Depend on the range of the depth to impermeable lay and the permeability, 38 blocks are classified into 16 zones as shown in Table B. 3. 1-4. Table B.3. 1-5 shows acreages of the district-wise subsurface drainage zones.



B3-4





**B3-5** 

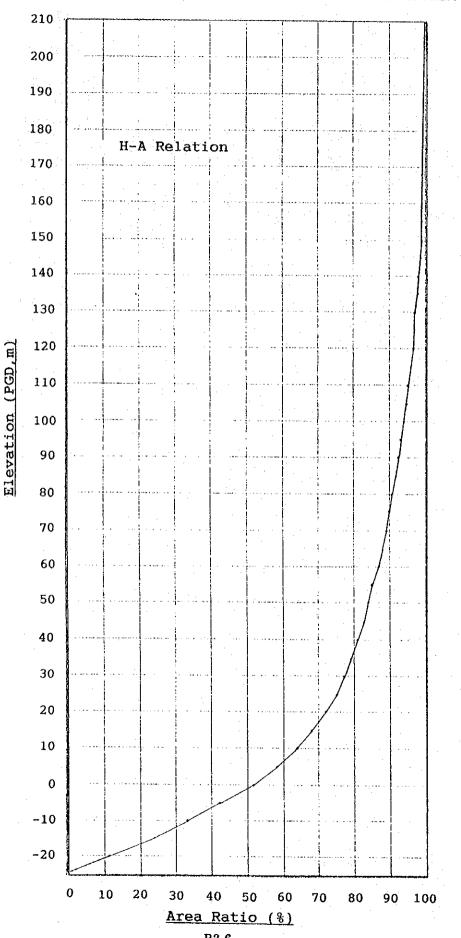
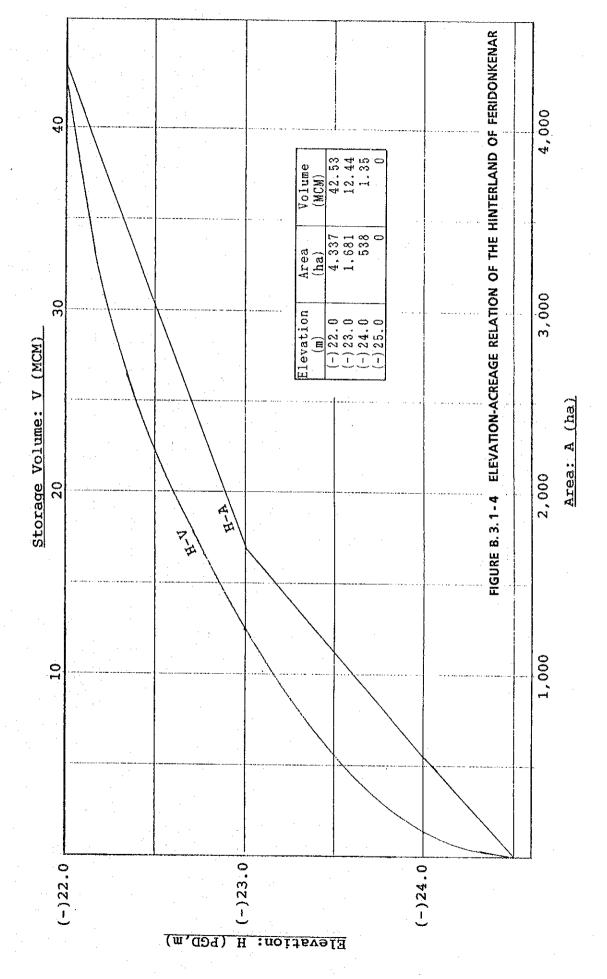
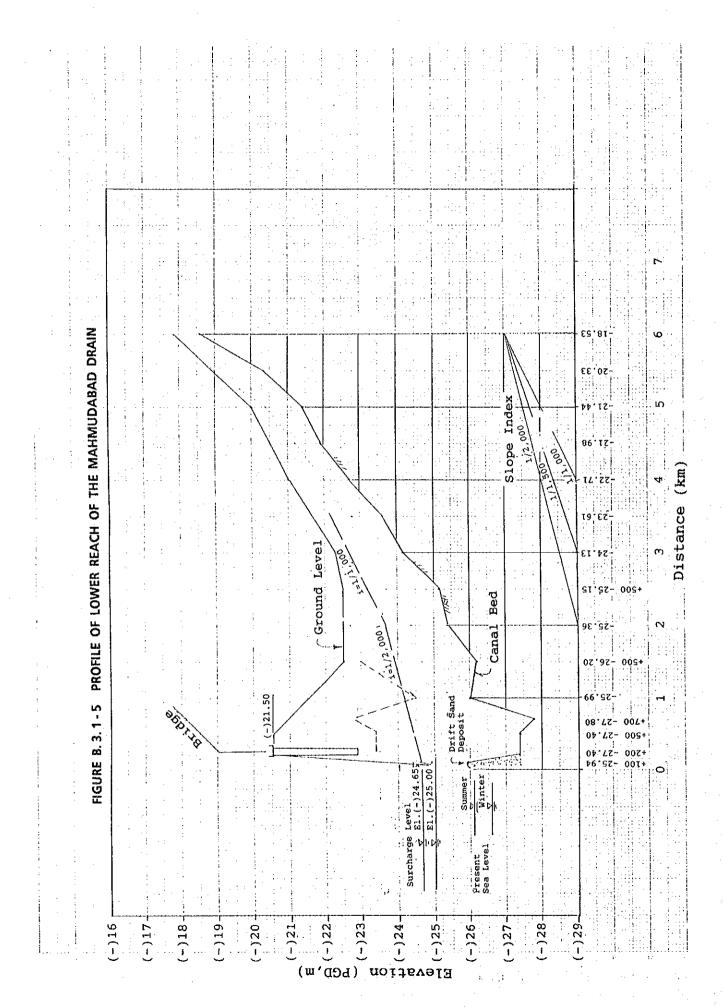
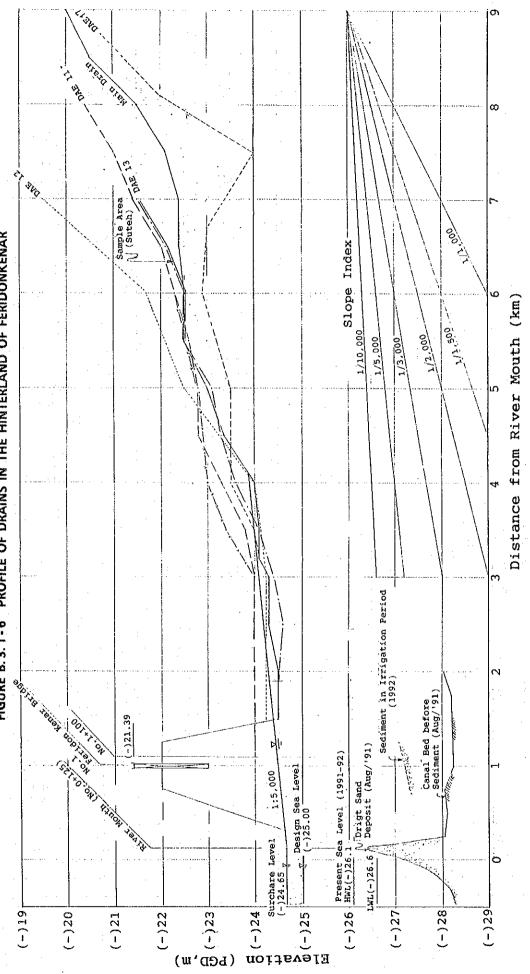
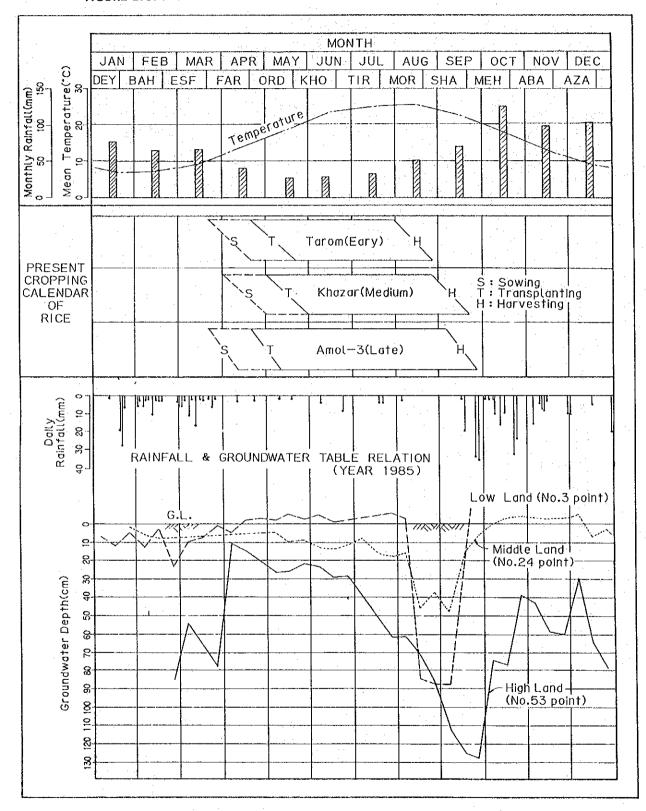




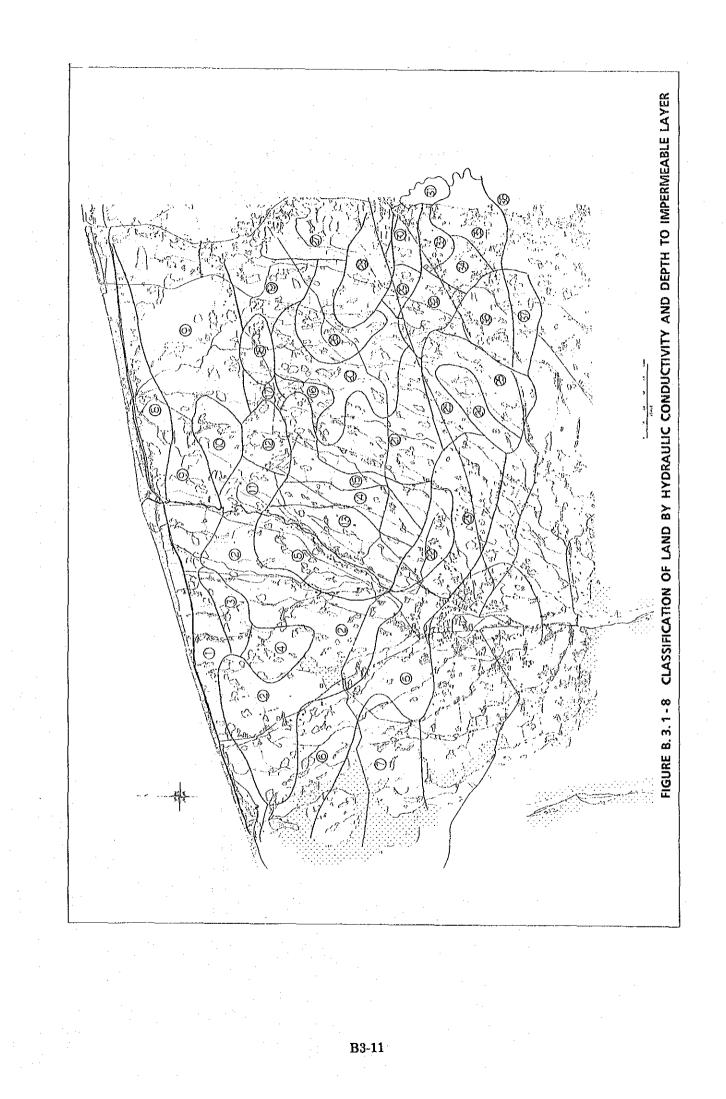

FIGURE B. 3. 1 - 3 ELEVATION-AREA RELATION OF THE PROJECT AREA

B3-6







FIGURE B. 3. 1 - 6 PROFILE OF DRAINS IN THE HINTERLAND OF FERIDONKENAR



## FIGURE B. 3. 1 - 7 AFFECTING FACTORS ON SUBSURFACE DRAINAGE

B3-10

,



		r			1.
Division	Elevation (PGD,m)	Area	Accumlted .Km)	Ratio (%)	
1	~20	121	121	11.2	
-2	-15	137	258	24.0	
3	-10	103	361	33.5	1.11
-4	-5	100	461	42.8	1999 1997 - 1997 1997 - 1997
- 5	0		560	52.0	
6	5	71	631		
7	10	60		58.6	. 1 A
			691	64.2	
- 8	15	43	734	68.2	
9	20	43	777	72.1	÷ .
10	25	33	810	75.2	
11	30	24	834	77.4	
12	35	21	855	79.4	
13	40	17	872	81.0	
14	45	17	889	82.5	1990 - A.
15	50	17	906	84.1	
16	55	12	918	85.2	
. 17	60	18	936	86.9	
18	65	10	946	87.8	
19	70	13	959	89.0	
20	75	9	968	89.9	· ·
21	80	10	978	90.8	1 .
22	85	8	986	91.6	· .
23	90	9	995	92.4	
24	95	10	1005	93.3	110
25	100	7	1012	94.0	
26	105	6	1018	94.5	
27	110	7	1025	95.2	
28	115	10	1035	96.1	
29	120	5	1040	96.6	
30	125	4	1044	96.9	
31	130	4	1048	97.3	
32	135	6	1054	97.9	
33	140	2	1056	98.1	
34	145	6	1062	98.6	
35	140	3	1065		
36	155	0	1065	98.9 08 0	· ·
30	155		1065	98.9	1.
38		3		99.2	1
39	165	3	1071	99,4	Ľ
39 40		0	1071	99.4 00.6	
40	175	2	1073	99.6	· ·
	180	0		99.6	1
42	185	1	1074	99.7	1 · · ·
43	190	2	1076	99.9	1
44	195	0	1076	99.9	
45		0	1076	99.9	
46	205	0	1076	99.9	
. 47	210	0	1076	99.9	
48	215	0	1076	99.9	
49	220	1	1077	100.0	J
(Note) Ar	ea of HWU	(300 ha) i	s excluded	in above t	able.

#### TABLE B. 3. 1 - 1 ELEVATION - AREA DISTRIBUTION OF THE PROJECT AREA

:	Ċ,				·	-1-	÷T	- T	T		·		r <del>i</del>	<b>-</b>	<b>~</b> ~	r1		,		_,	:	<b>~</b> ~~		(				· 1										- <b>.</b>				-		_								
. '	H	-		62	<u></u>	2	2	50	4	<u>8</u>	22 23	15	ю В	6 21	8 8	17	26	25.	24	53	22	21	. 20	18	3	2	91	2		2	2	<u>;</u>	리	00   4		- 4		<u>`</u>	10	-	F	0										
· · ·	2 2 2 5	Ť			+	+	-		-	•	_				-			2	1		-					-	-		-	-	-		-	+	+		+	╀	╀	+-	╀	ŀ	12 45									
	5			_						_	·		1.				5	2	.2	2	4	თ	5	5			-										1			1	$\uparrow$		13 17									
	12		09	-			-	•						~	4 2.	• •	**	3	4 2	~	ġ	÷.	ç	7	4			-	_		_	_	_	_	-		-	1	-				61 42					•				
:	40 41			202	09	-	0		4		-	6	-7	4	و		4 3	4   1	7	 m	с С	37	4. Å	4	- 2	- 	-	-	-	-		+	+	-+-	╉	-	+	╎	╀	-		-	12 07									
SLOPE DISTRIBUTION OF THE PROJECT AREA BY 1 KM GRID	88	1		4	-	5	~			2	-	8	- 7	ç	η.	4	7	4	~	ŝ	ţ	4	5	4	4	σ	-7						-			-	-	-			ŀ	1	39 4									
5	38	_			9.10	ا م ا	9	-1.	2	<b>-†</b>	-7	4	9	2	¢.	7	°?	3	~	~	~	••	~	~	9	~	~	~	~	~		_	_				_	_	-			-	38									
¥.	36 137	-	-		-		4 0	8 0	4 0	-7 	6	7 5	5	5	5 V	4 3	4 - 4	4 5	4 6	2 3	4   2	3 2	3 5	3 2	5	4	2	4	2	∾ 	2 2	ຕ [ ຕ	_	_		┦		-		+		-	36 37									
<u> </u>	135 3					<u>_</u> .	-	~ .	2	ŵ	÷	- 3	2	\$	ج	5	5	ç	5	4	4	3	3	~	57	4	4	~	~	2	3	-	-ŀ	~	╈	╉	+		┼╌	┝-	1-	╞	35 36							۰.		
6	R			_		-	-		2	~	ي	ß	s.	2	5	5	5	4	4	σ	đ	7	5	5.	<u>ې</u>	-	-1		~	-	~	~	1	~		I				1-	T		2	1								
REA	2 53			-	~ ·	÷	ת ת	3112	2	ۍ د		6 6	9 9	4		8	80	9	2 9	ω 	9	7	4	1 4	-	-		7	2	~ ~	~	~	~	~	*	-		╞	╀	-	-	-	52 33									
Ā	ца 1–13-2 1-13-2	-		-[		.,	-		-	<u>თ</u>	-	4.	ŝ	5	5	5	0	33	ŝ	S	3	3	<u>د</u> .	3 1	3	~	ო	~	2	2	2	2	~	~	~	+		┢	┼	╉	┼╴	-										
D	02					-		œ.	n	œ	5	i î	ω	2	3	ß	G	9	2	4	4	3	~	3	3	e	ę	~	~	~	3	$\sim$	~	~	2 6	<b>,</b>	-		1	1-		1-	000									
õ	28 29 30						~	ς S	ö		ھ	ç.	ß	G	ω	۰0 	ŝ	ą.	4	<del>ر</del>	ė	ŝ	3	ŝ	3	~	2	~	~	~	~	~	~ •	~	1	4	-						53									
Ā		┽	-+		-		<u>-</u>	5	с с	4	2	5 1 7	5	5 5	5	5 6	\$ <del>-</del> 7	7 7	4 4	4 3	3 3	3 3	3	2 3	2 2	2 2	2 2	~	7	1 2	2	2	2	~	200	7	+	+	+-	╞	-	-	7 28									
H	26 27	Ì				-	4	-	4	2	ß	5	<u>م</u>	-	دی	-	4	¥	3	3	4	3	 ~7)	2	2	~	2	~	~1			~ ~	-		-	-		╀	╈	+-		╞	25 26 27 28 29 30 31									
Ъ	52							~	~	<del>с</del> ,	4	4:	-7	-		4	m	e	3	~	3	3	2	-2	2	~	2	~	-	-	-	-	-	7	-		1	1	1	Ţ		Ĺ	2 5 2									
Z	3 24	÷			-	-		¥ ·	ם הי	8	2	٤. 4	4	4	9 S	472	3	3	3	3	3 3	3	2	2	2	5	-		~		••••				-	~	-		-	+-	+-	Ļ	24									
Ê	22 23	-	-	-	+	-ť		<u>م</u>		~	r.	4 1	-7	4	4	4	5	2	~	3	 	2	2 2	2 . 2	-			~	~	-	-	_		-		-	┢	+-		╈	-		22 23									
IBU	- 51	_						-	đ	ف	φ	9	4	3	3	4	ty.	3	1 2	2	2	2	2	-2	-	-	-	-	~	-	-		-	-	-[-	>		1		T		Ĺ	212									
STR	20			_	_		_	-	n -		ч Г	5	4	2	3	3	3	3	2	~	-	1	2	2	<b>~</b> 7	-			~		-	-	-			2	+-	+		+	ŀ	-	20									
ā	18 1.9	+	-		┥		-		4	~	**	1	2	4	3	3	3	3	3 3	2	2 2	2 2	2 1	1 1	-	_	2	~	_	-	-							+	╞	+:	ŀ	-	15 19 20									
H H H H H H H H H H H H H H H H H H H	E		ſ				1			<u>ت</u>	m	3	3	~	3	4	ţ,	3	. 2	5	2	2	2		~	-	-	~		-1	-			~	5	- > c		,	┢	┢	+-	-	17 1									
SLC	9	_	_	_	_			_	2	ŝ	~	3	3	3	3	4	3	3	3	2	2	2	11	1	-	•	-	-	-	-	-		-	-			>	ļ					9									
2	91.7	-	-	-		+	-	-		3 4	3 3 3	5 3	4	3	3 3	3	1	¢ 3	3	3 2	2 2	1 1	۰ ۱	1 2		-	-		-		-				- • > •	-	2	+	+	+-			14 15									
B. 3. 1 - 2	12 113 114	1		-	1	1	1	1		9	- S	4	~	~	e-1	5	<del>u</del>	e)		12	2	1	-		-		-					-	-	-	-	>		╈	-		-	-										
м.	2			_	_						7		3	~1	2	3	~>	3	3	3	3	2	2	2	2	2	-		-	~	-	-	-	-	2 0	2		T					11 12 13	1011045								
BLE	101	_		_	-	-	-		4	_	7 1 5	9 9	~	2 2	2 2 2	3 3	3 3	3 3	2 2	2 2	2 2	2 2	2 2	2 2	2	2 2		•	-	-	-		-		-	-		-	+	╞	.	ŀ	E	Ē								
TAB	: Е б		•			+	-			-		· ·	- - -	~	-	·	-	L				_		2 2	2 2	~	2 2	~ ~	~		-		-	-	_	-	+	╉	$\frac{1}{1}$	╈	┢	ŀ	011 6	SB SI								
E.	9	-										7	2	~	3	m	~	4	4	3 3	2	2	3	2	2	2	2	~	~	-	-	-					T	1	1		T		80									
	~		_	_	4	-	-			_		~	-	1—	—	~	<u> </u>		-	3		~	~^		-	2		+		-	_	_	_	_		-	_	-	╇		1_			slope								
1	5 1 6	-	-	-	-	+		+	-		-		6 4	77 19			(1) 1	せい	3.4		3 3	ი ო	? ?		2 2	2 2	2 2	~	~		_	-		4		+	+	+		- -		-	9 5	0	50	100	200	300		000	002	900
	7						-						5	5	┢	)	<u>-</u>	⊢	-		3				2	2	_								-	ł		-	- -		1			atio	2	1.1	ž	2:	27	2	2	ž:
	3		_	_	_	-								1	5 1 5	-	<b>I</b> —		in I	_	-	ŝ	3	61	~													1		1			~		••					• •		> 1/800
	1 2			_	-	-			_		-			E	15	2	~	┝		3 3		-	3 3	4 3		-		-		_				-+	-	-	-	╀	╀	+	-	╞	~	12	¢	-						e) ·
	10							+					┢	╞	-	-	$\vdash$	Ē		Ĥ		ľ	$\vdash$	ĺ			-	+	-			-	┥		+	+	┢	╀	+-	╉	┢	+	-									
•		41	99	в÷	88	22	ŝ	35	34	33	32	5	0	29	8	1	9 S		2.4	3	2	53	0	39	ھ	17 5	16	<u>ت</u>	-	3	12	=	<u>_</u>	<u>_</u>	-10	1	0		,	; _		0	+-	(Kote)								

B3-13

1/900 1/1000 1/1500 1/2000

10 20 50

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		i i i ja	a da ser estas	e de la composition					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						ΛE		BU	Total
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	8,745	6,388	3,413	0	0	3,849	0	22,395
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1		0	0		0	0	0	3,683
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	521				0	0	0	9,645
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3		the second se				0	0	1.042
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	and the second s					0	0	0	1,275
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				· · · · · · · · · · · · · · · · · · ·				0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3,383			1,981				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0		0	0	2,467
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	and the second s	0			0	8,944	0	0	8,944
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0	954	0	0	954
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Terrare and the second s				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									549
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0						0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		renter the second second							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								· · · · · · · · · · · · · · · · · · ·	2,666
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						. 0		0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0		122				0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			462						
30         0         660         0         0         0         0         28         688           31         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<		the second se			and a second				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				72			·····	0	
35         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1,377         37         0         0         665         0         0         0         0         665         38         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
36         0         264         1.113         0         0         0         0         1.377           37         0         0         665         0         0         0         0         665           38         0         0         0         0         0         0         0         0         0           Coastal         0         0         0         1.655         1.877         0         0         3.532									170
37         0         0         665         0         0         0         665           38         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         3,532         0         0         0         3,532         0         0         0         0         0         0         3,532         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0									
38         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         3,532         0         0         3,532         0         0         3,532         0         0         0         3,532         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0							0	0	1,377
Coastal 0 0 0 1,655 1.877 0 0 3,532			*·····			0			
							0	0	
Total   15,026   24,771   5,479   24,830   32,535   3,849   1,515   108,005							-		
	Total	15,026	24,771	5,479	24.830	32,535	3,849	1,515	108,005

TABLE B. 3. 1 - 3 AREA BY SUB-SURFACE DRAINAGE BLOCKS

··	Subsurface		Mean Depth	T	Classfi	· · · · · · · · · · · · · · · · · · ·
Zone	Block	•	Impervious		cation	Area
No.		· .	(m)	(m/day)		(ha)
1	1 4 12		4	>4.65	V.R	6,090
2	2 7 11 21	29	4	3.05 -4.65	R	21,134
. 3	3 5 13 19	i 32	4	1.52 -3.05	S.R	8,99
4	6 22 35		4	0.49 -1.52	M	7.64
5	- 8		$  \rightarrow 6$	1.52 -3.05	S.R	2,46
. 6	9 14 17 30	;	2	1.52 -3.05	S.R	12,87
7	10 19 30	-	2	3.05 -4.65	R	4,35
8	16 26 37		0.8	1.52 -3.05	S.R	3.60
9	18 25 28		1.5 - 2	>4.65	V.R	5,55
10	20 24		0.8 - 1	3.05 -4.65	R	4,83
11	23		2.3	0.49 -1.52	M	2,66
12	33		1.7 - 2	0.49 >	S	26
13	27	÷	5.6	0.49 -1.52	M	1,42
14	31	•	0.2	3.05 -4.65	R	
15	34		4	0.49 >	S	17
16	38		1.5	0.49 -1.52	M	
otal			1			82,08

## TABLE B. 3. 1 - 4 ZONING BY PERMEABILITY AND MEAN DEPTH OF IMPERVIOUS LAYER

(Data Source) HWDP-1 Study (B3 Deep Drainage) (Note) Acreage is measured on 1:50,000 map.

## TABLE B. 3. 1 - 5 DISTRIC-WISE SUBSURFACE DRAINAGE ZONE

r		·····						
Drain	·						· · · · · · · · · · · · · · · · · · ·	
Zone	11 W	NE 🖂	KR	AW	ΛE	ΛU	BU	Total
0	8,745	6,389	3.414			3,849	······································	22,397
1				4,958	1,138			6,096
2	3.904	3.400		11,105	2,725			21,134
3		1,430	72	3.383	4,111			8,996
4	2,377	1.264		3,729	271	······································	·	7.641
5					2,467			2,467
6	· ·	370	1,113		11,392		. ja .	12,875
7	····	822	1.1.1		3,502		28	4,352
8		1,144	665		1,792			3,601
9		4,108	122		703		624	5,557
10		2,401			2,438			4,839
11	· · · · · · · · · · · · · · · · · · ·	2,645			21			2,666
12		261						261
13		462			100		863	1,425
14	· · · · · · · · · · · · · · · · · · ·		·					0
15	· · · ·	76	94					170
16								0
17			· · · · · · · · · · · · · · · · · · ·	1,655	1,877			3,532
Total	15,026	24,772	5.480	24,830	32,537	3,849	1,515	108,009

#### **B.3.2** Drainage Monitoring

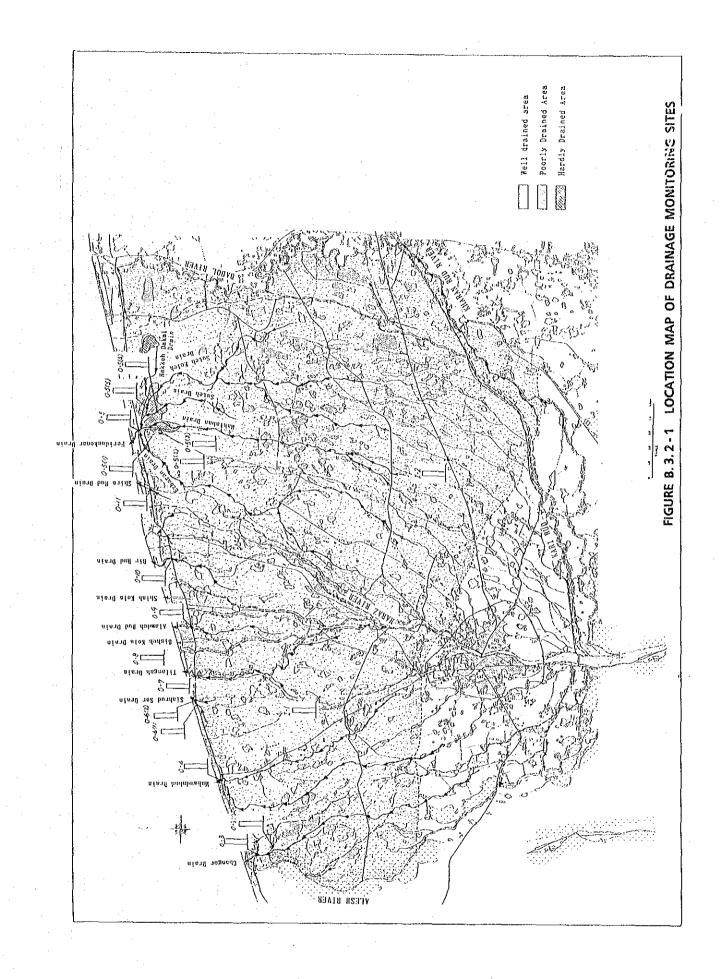
#### 1. Monitoring Sites and Period

Drainage discharge and water level were monitored from June 1991 to September 1992 at 18 sites, of which 16 sites are at the outlet of drains to the Caspian Sea and 2 sites are at the inner irrigation canals. Location of monitoring sites is shown in Figure B. 3. 2-1, and detailed in the table below;

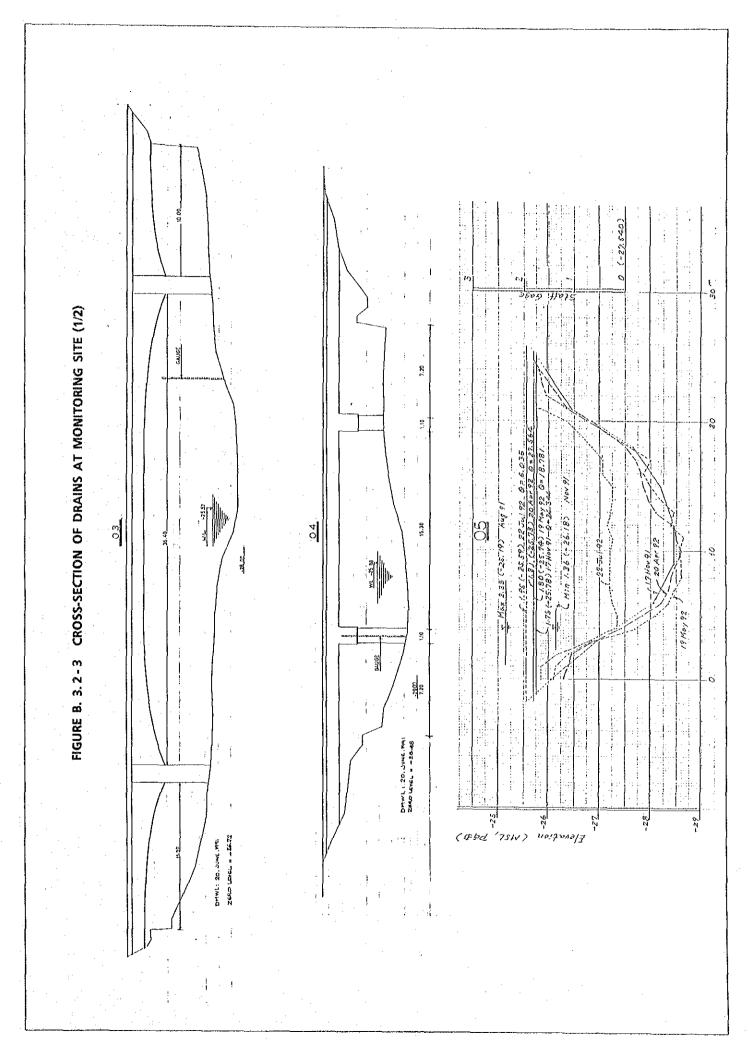
Site No.	Drain or Canal Name	Village	Water Level	Discharge Measuring
0-3	Changar Drain	Keshteh Sar	0	×
0-3 (1)	"	Ahlam	×	4 times
0-4	Mahmudabad Drain	Mahmudabad	0	5 times
0-5	Feridon Kenar Drain	Feridon Kenar	0	4 times
0-5 (1)	Ezbaran Drain	4	Ó	4 times
0-5 (2)	Tail of Irrigation	4	Ō	4 times
0-5 (3)	Mahlaban Drain	4	Ŏ	4 times
0-5 (4)	Sutehkeleh Drain	4	Ō	4 times
0-5 (5)	Hakkeh Dakel Drain	4	Õ	4 times
.0-6 (1)	Siah Rud Drain	Siah Rud	Ō	4 times
0-6 (2)	4	11	0	4 times
0-7	Tifangah Drain	Darya Sar	Ō	4 times
0-8	Bisheh Kola Drain	Bisheh Kola	0	4 times
0-9	Alamdeh Rud Drain	Alamdeh	0	4 times
0-10	Bir Rud Drain	Haji Kola	Ŏ	4 times
0-11	Shiera Rud Drain	Varza Mahalleh	Ó	4 times
I-1	Piteh Rud	CAPIC site	Õ	3 times
I-2	Said Rud	AliAbad	0	3 times

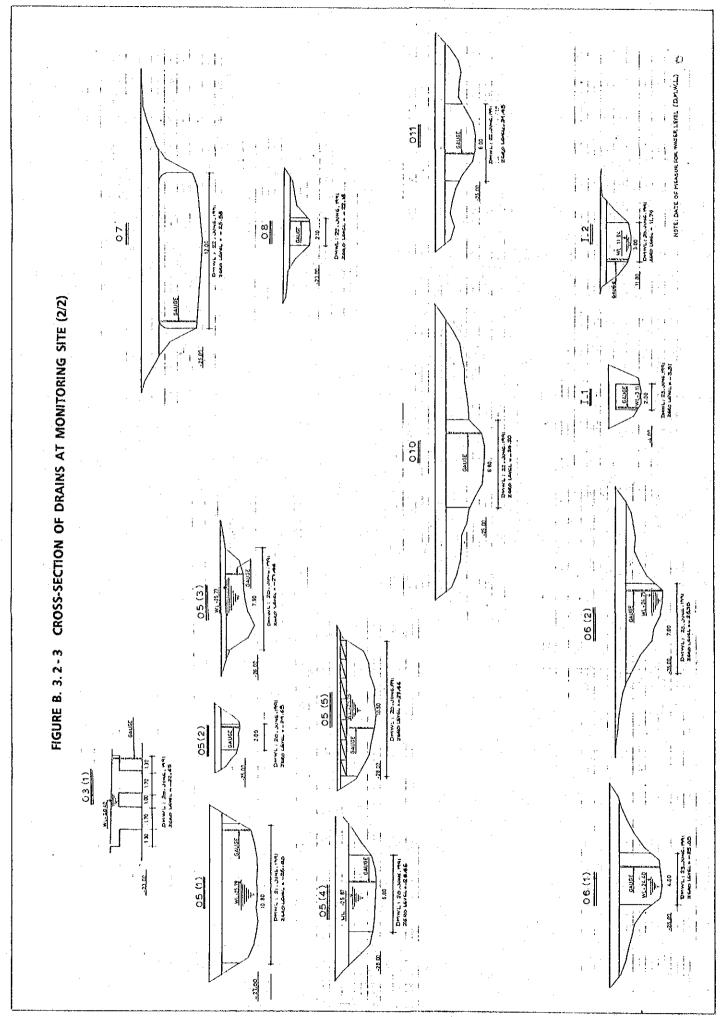
#### **DRAINAGE MONITORING SITES**

Note: X: not observed due to destruction of stuff gage for water level or too large section for discharge measurement.


#### 2. Water Level of the Drains


Water level was monitored over one year from June 1991. The Figure B. 3. 2-2 shows the water level in the Feridon Kenar Drain. The water level of drain fluctuates corresponding to the Caspian sea level fluctuation not only at the outlet (0 - 5) but at the hinterland (0-5(1) to 0-5(5)) far from the outlet around 1.0 km to 2.0 km. The sea level is high in summer and low in winter generally because of the balance of inflow and evaporation. The range of its fluctuation is around 30 cm.


Discharge measurement was conducted during said monitoring period however rating curve of discharge was not able to obtain due to fluctuation of sea level. Observed maximum discharge of the Feridon Kenar Drain (0-5) was 27 cms in April 1992.


#### 3. River Mouth Closing

All of outlets of the drains are closed by drift sand deposit at their mouth. The deposit level is still lower at most outlets except the Feridon Kenar drain because the hinter-land of the Feridon Kenar Drain is exceptionally low. Even if the sea level rises to the design level (-)25.00 m, drift sand deposit will not affect the land in its drainage except the Feridon Kenar as mentioned in B. 3.1.









#### B. 3. 3 TIB Survey on Drainage

#### 1. Introduction

TIB (Terminal Irrigation Block) survey was conducted on drainage as well as on irrigation using the questionnaires to the village mirabs and the zone mirabs (see DATA BOOK II, B2. Irrigation (TIB Survey)). The survey was carried out for the entire zone mirabs and the sampled village mirabs.

#### Surveyed Mirabs

Zone Mirab 116 mirabs (conducted by entire survey) Village Mirab 67 mirabs (conducted by sampling survey)

Village mirabs were compiled district-wise, and the zone mirabs were compiled river-system-wise. Because the command areas of zone mirabs are following the existing canal system and its boundary are not correspond to the districts which are arranged in accordance with the proposed canal network.

The arrangements of the village mirabs and the zone mirabs are as follows;

District	<u> </u>	Zone Mirab									
<i>District</i>	Code	Number	Percent								
Alesh Rud	1 - 7	7	6.0%								
Haraz Left	8 - 29	22	19.0								
Haraz Right	30 - 44	15	12.9								
Kari Left	45 - 96	52	44.8								
Kari Right	97 - 110	14	12.1								
Garma Rud	111 - 115	5	4.3								
Kharan Rud	116	1 .	0.9								
Total		116	100.0%								

#### Arrangement of Zone Mirab

#### Arrangement of Village Mirab

District		Village Mirab	
	Code	Number	Percent
Haraz West	1 - 17	17	25.4%
Amol West	18 - 31	14	20.9
Haraz East	32 - 52	21	31.3
Amol East	53 - 67	15	22.4
Total		67	100.0%

#### 2. Difficulties on Drainage

Table B. 3. 3-1 and Table B. 3. 3-2 show the difficulties on drainage by zone mirabs and village mirabs respectively. According to the said tables, difficulties on drainage are summarized as follows;

#### (1) Percentage of Difficulties

Difficulties on drainage are reported by 19% of zone mirabs and 21% of village mirabs. The ratio of difficulties on drainage is considerably lower than the ratio of difficulties on irrigation. The ratio of difficulties on irrigation is reported at 73% by zone mirabs and 99% by village mirabs (analyzed in Appendix B. 2. 1 TIB Survey on Irrigation). It may be considered that the mirabs are not interesting in drainage comparing irrigation, because they are interesting mainly in drainage of irrigated paddy field in connection with irrigation during irrigation period.

#### **Reported Difficulty on Drainage**

				18 A. A.	87 - <u>1</u> 19 - 19		
				Zone Mirab	·	1	
	Alesh Rud	Haraz Left	Haraz Right	Kari Left	Kari Right	Garma Kharan	Number (%)
Mirabs	7	22	15	52	14	6	116
Difficult	0	6	2	14	0	0	22
Percent (%)	0	27	13	27	0	0	19%

		Village	e Mirab		•. •
			Zone Mirab		* -
. ¹⁴	Haraz West	Amol West	Haraz East	Amol East	Number (%)
Village Mirab	17	14	21	15	67
Difficult	1	3	4	6	14
Percent (%)	5.9	21.4	19.0	40.0	20.9%

From above tables, it is understood that the difficulties are concentrated to the Amol East district particularly.

#### (2) Difficult Season on Drainage

Difficult season on drainage is understood differently by zone mirab and village mirab. The zone mirab answered that the difficulties are mainly in irrigation period particularly at the first half season of irrigation period (April -June), and contrary the village mirab answered that the difficulties are concentrated in the winter season.

an a	Apr Jun. (Far - Kho)	Jul Sep. (Tir - Sha)	Oct Dec. (Meh - Aza)	Jan Mar. (Dey - Esf)
Zone Mirab	53%	16%	20%	11%
Village Mirab	(36	%)	(64	:%)

**Difficult Season on Drainage** 

#### (3) Difficulties on Drainage

Relating to the above understanding, answer of zone mirabs is concentrated into the difficulties in the irrigation period.

· · ·	Difficulties	Zone Mirab Answer (%)	Village Mirab Answer (%)
1)	Transplanting of Rice	16 (26)	4 (6)
2)	Rice Growing	11 (18)	5 (8)
3)	Rice Farming	6 (10)	6 (9)
4)	Harvesting of Rice	6 (10)	7 (10)
5)	Problems on Second Crops	0 (0)	2 (3)
6)	Traffic in Summer	1 (2)	3 (5)
7)	Traffic in Autumn	5 (8)	7 (10)
8)	Traffic in Winter	5 (8)	8 (12)
9)	Traffic in Spring	3 (5)	4 (6)
10)	Inundation of Houses	6 (10)	7 (10)
11)	Erosion of Canal	3 (5)	8 (12)
12)	Erosion of Road	0 ( 0)	6 (9)
	Total	62 (100)	67 (100)

#### **Difficulties on Drainage**

From above results, followings are introduced;

- 1) Zone mirabs are interesting in drainage of irrigated paddy field.
- 2) Water depth control is difficult particularly in transplanting.
- 3) Interest of second crops is low both for zone and village mirabs.

4) Traffic difficulty is more sever for village mirabs than for zone mirabs.

#### (4) Reasons of Drainage Difficulties

Answer of reasons of drainage difficulties is similar both by the zone mirab and the village mirab. Most difficulties are caused by the drainage canal concern (reason 1 to 4), and total percent of four reasons shares 70% or more among reasons of difficulty.

Reasons	of Diff	iculties	on Dra	inage

	Reasons	Zone Mirab Answer (%)	Village Mirab Answer (%)
1)	No Particular Drainage Canal	13 (18)	11 (18)
2)	Less Drainage Canal Capacity	16 (22)	13 (22)
3)	Excess Water from Upstream	14 (19)	11 (18)
4)	Over-Flood from River/Canal	13 (18)	7 (12)
5)	Obstruction by Road	1 (1)	2 (3)
6)	Heavy Texture of Soil	2 (3)	5 (8)
7)	Heavy Rainfall	10 (14)	11 (18)
8)	Other Reasons	3 (4)	0 ( 0)
	Total	72 (100)	60 (100)

#### (5) Counter-measures Taken for Drainage Difficulties

It is remarkable for zone mirabs not to provide in many cases particular counter-measures to prevent drainage difficulties. On the other hand, village mirabs answered to provide counter-measures in any case. It seems that the scale of drainage difficulties is more extensive for zone mirabs than for village mirabs. The most counter-measures taken for prevention of drainage difficulties are conducted by farmers themselves, but the scale of counter-measures is limited in voluntary works.

#### **Counter-measures for the Difficulties on Drainage**

	Counter-Measures		Mirab ver (%)		e Mirab ver (%)
1)	None Counter-Measures	5	(31)	0	( 0)
2)	Provision of Drainage Canal	0	(- 0)	2	(5)
3)	Improvement of Drainage Canal	4	(25)	12	(30)
4)	Provision of River Training	3	(19)	· · · 8·	(20)
.5)	Provision of Bank Protection	4	(25)	14	(35)
6)	Soil Improvement	0	(0)	4	(10)
7)	Other Counter-Measures	0	(0)	0	(0)
	Total	16	(100)	40	(100)

## TABLE B. 3. 3-1 DIFFICULTIES ON DRAINAGE BY ZONE MIRABS (1/2)

<u></u>												· .							· •																					
River	Responsible Canal	$\square$			Mont	he i	n -							llage													 Ď.		s of			<u> </u>		Τ	Çou		-meas			
	ZoneCode Name	ðra			ainag			0		н. Тар		·· .		inage			, L	. 1	tem (	o'n Di	raina	de P	roble	ea .		ч. 1			15 OF 1910						Ďra		en fo e Pro			
		Pro	N	12		4 5	6	7	89	10	11 1	2 1	¥. [	1 2	3	4		1	2 :	3 4	5	6 7		9 10	11	N	1	2	3	4	5 6	5 7	7 8	N		2	3	4	5	6
	1 1010 Kasemdeh Rud	0	0 (	0 0	0 ;	0 0	0	0	0 0	0	0	0 0	2	0 0		0		0	0 (	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 0	) (	0 0	0	0	0	0	0	0	0
	2 1020 Khoshkeh Rud 3 1030 Galan Rud	0.	00	0.0	0	0.0	0	0	0 0	0	0	0 0		0 (	ינ	1 U			0 0	0 0	0	0 0	0	0 0	0	. 0	0	0	0	0	0 0	) (	00		0	0	0	0	0	0
viesh Rud	4 1040 Kukdeh Rud	0	0 0	0 0	0	0 0		.V. 10-	0 0	.0	0.		5	0 0	) () } ()	, 0 , 0		l o	0. ( 0. (	U,U BIO	· 0	0 0	0	0.0		0	0 A	0	ບ 1 ຄ.	0 A	0 0	) ( ) (	0 0 0 0			0	0	0	0	0
iresit ited	5 1050 Vagozari-e-Zamin Rud	ŏ	õ l	0 Ö	ŏ	õ õ	. Õ	· õ	0 0	Ő.	0.	ŏ	Ď	0 0	) 0	) Õ		0	Õ (	0 O	ŏ	0 0	õ	0 0	ŏ	ŏ	õ	õ	0	õ	0 0	) (	0 0	Ĭŏ	ŏ	ŏ	. 0	õ	0	0 0
	6 1060 Shir Kola Rud	0	0 0	0 · 0	0	0 0	0	0	0.0	0	0	0 0	0 -	00	) (	), <b>0</b>	) j ö	0	( 0 · 0	0 0	0	0 0	0	0 0	. 0	0	0	0	0 1	0	0 0	) (	0 0	0 0	0	0	0	0	0	0
	7 1070 Kalajpareh Rud	0	0 (	0 0	0	0 0	0	0	0 0	0	0	0.0	0	0.0	) (	0	)0	0	0 (	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 0	) (	0 0	0	0	0	0	0	0	0
	8 2010 Piteh Rud	0 0		00. 00	. 0	0 0	0	- 0	0 0	0	0		0	0 0		) ()		0	0 (	00	0	0 0	0	0 0	.0	0	0	0	0	0	0 0		00	0	0	0	0	0	0	0
	9 3010 Razekeh Rud (1) 10 3020 Razekeh Rud (2)	0		0 0	0	0 0	0	0	0 0	0	0	öld	0	0 0		, U 1 0				0 0 0 0	0	0 0	. n	0 0	- Å		0	0	0.1	U N	0 0	י י ו ו	υ υ 0 0		0	-0	0	0	0	0
	11 3030 Mohammadabad	0	0 0	ου	ŏ	ő ő	. Õ	Ö	ŏ ŏ	Ů	õ	0 0	0	0 (	) (	0	) o	l ő .	0 (	οŏ	õ	οõ	· ŏ	0 0	ŏ	ŏ	0	õ	0 I	õ	0 0	Ś	0 0	ŏlŏ	ŏ	õ	Ő	õ	õ	ŏ
	12 3040 Valekan Rud	0	0 0	0.0	· 0 ·	0 ; 0	0	0	0 0	0	0	0 0	0.	0 (	) (	0_ 0	) 0	0	0 (	0_0	0	0.0	0	0 0	0	0	0	0	0	0	0 0	) (	0 0	0 0	0	0	0	0	0	0
	13 3050 Shaleh Pat	.0	0 0	0 0	0	0 0	0	0	0 0	. 0	0	0 0	0	0 (	) (	) ()	0	0	0 (	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 0	) (	0 0	0 0	0	0	0	0	0	0
	14 3060 Taj Rud	1.	3	11	1 .	0 0	0	0	0 0		0	0 0	0	0 (				0	.0 (	00	0	0 0	0	1.0		.3	1	1	1 :	0	0 0	) (	00		1	0	0	0	1	0
	15 3070 Darmeh Kola Rud 16 3080 Lakoni Rud	0		0 0	0	0 0		0	0.0	0	0			0 (	) (	) () ) ()	S I O	0	0 1	0 0 0 0	0	0 0	0	0 0		0	0 A	0	0	0	0 0	, , , ,	0 0 0 0		0	0	0	U A	U A	U N
	17 3081 Lakoni Rud (Down Stream)	õ		0 0	Ō	0 0	0	Ō	0 0	Ū	0	õ l i	0	0 (	5 0	) 0	) o	0	Ő (	οõ	ŏ	õ õ	ŏ	οÕ	ŏ	ő	õ	0	0	ŏ	0 C	) (	0 O	ō	Ŏ	õ	Ő	õ	õ	õ
araz left	18 3090 Mastband Kileh	0	0 (	0 0	0 .	0 0	0	0	0 0	0	0	0   (	0	0 (	) (	) (	)   0	0	0 (	0 0	0	0 - 0	0	0 0	0	0	0	0	0	0	0 0	) (	0 0	0	0	0	0	0	0	0
	19 3100 Shah Rud	1	2	0 0	0	0 1	1	0	0 0	0	0	0	1 30	)6 (	) (	) (	2	0	0 (	0 1	0	1 0	0	0 0	0	4	1	1	1	0.	0 0	)	1 0	)   1	· 1	0	0	0	0	0
	20 3110 Ahi Rud 21 3111 Ahi Rud (Lower)	0 1	3 0	υ 0 Δ 1	U 1	0 0	י 0 ח	U A	0 0	0 1 A	U A		0 3 3 4	0 ( 6 242	) ( ) ) (	ט ע ה' ה		0	0 (	υ Ü Δ 1	0.	υ 0 0 1	0	0 0	0	0	U 1	0 1	บ ว	บ 1	0 0	ו ( ר	υ 0 1 1		0	0	() 1	0	0	0
	22 3120 Ahangar Kola Rud	0	o l	0 0	0	0 0	0	0	0 0	· · ·	õ	ŏ	ŏ	0 242	. 248 ) {	, u ) 0	ς   °	0	0 0	0 0	0	0 0	0	0 0	.0		0	0	0	0	0 (	, )	ו ו 0 ח		0	0	· 0	0	0	0
	23 3130 Ali Rud	ŏ.	0	0 Õ	õ	0 0	0 Ő	õ	0 0	ŏ	ō	0 0	0	0 (	5 (	) 0	δ   ŏ	Ő	Ŏ (	0 0	Ō	0 0	ŏ	0 0	ŏ	ŏ	ů :	Ō	0 ·	0	0 0	- ' )	0 0	o   o	ŏ	ŏ	õ	õ	õ	õ
	24 3131 Tifangah Drain	1 1	- 1	0 0	0	0.0	0	0	0 0	0	0	0 0	0	0 0	) (	) (	) 0		0 0	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 (	)	0 0	0 0	0	0	0	0	0	0
	25 3140 Holla Rud	1 ' 1		0 0	0	0 0	0	0	0 0	0	0	0	2 9	91 28	1 (	) (	) 2		0 (	0 0	0	0 0	1	0 0	0	4	1.	1	1	1	0 (	)	0 0	) 1	0	0	0	1	0	0
	26 3141 Alavi Kola 27 3142 Ahi Rud	0	0	0 0	- 0 ·	0 0	) U	0	0.0		. U	0	0 3 29	0 ( 34 29!	) · ( 5 215	2 0		Ť	0 1	0 0	0	0 0	0	0 0	0	0 5	0	0	0	0	0 (	)	0 0 0 1			0	0	0	0	0
	28 3150 Zangi Rud	o		0 0	ŏ	0 0	0	. 0 .	0 0	. 0	0	. 1	0	0 (					0 0	00	0	0 0	0	0 0	o d	o l	0	0	0	0	0 0	о. Б.	0 0			0	0	0	0	0
1	29:3160 Changar Drain	1	3 1	0 0	0	0 0	) 1	1	1. 0	0	0	0	2 2 2	8 252	2 (	) (	5 2	0	0 (	01	õ	0 Î	Õ	0 0	ŏ	5	Ō	1	1	1	1 (	0	1 0	o o	-	Ő	Ő	õ	0	õ
	30 4010 Zane Mard		-	0 0	0	0 0	) Ó	0	0 0	0	0	0 (	0	0 (	) (	) (	0 0	0	0. (	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 (	0	0 0	) 0	0	0	0	0	0	0
	31 4011 Sangar Rud	0	0	0 0	0	0 0	0	0	0 0	0	0.	0	0.	0 (	) (			0	0 (	0.0	0	0 0	0 ·	0 0	0	0	0 ·	0	0	0	0 (	0	0 0	0	0	0	0	0	0	0
	32 4020 Sag Rud 33 4030 Tork Kola Rud	0	0 0	0 0	0	0 0	) U ) 0	. U 0		) U	0	0	n l	0 0	3. 1.	) ( ) (	10		· 0 (	00	0	0 0	0	0 0			0	0	0	0 0	0 0	0 n				0	0	0	0	0
	34 4040 Rash Rud	ŏ	0 0	οõ	ŏ	0.0	, o	ŏ	0.0	o o	õ	ŏ	0	0 0	0 (	$\hat{b}$	δĺŏ	ŏ	0	0 0	0:	0 0	0	0 0	. 0	ŏ	õ	ŏ	0	õ	0 (	0	0 (		0	0	0	0	0	0
	35 4050 Khoshkeh Rud	0	0	0 0	0	0 0	0 ()	0	0 0	0 - 0	0	0	0	0 (	0 (	) (	)   O	0	0 4	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 (	0	0 (	0 0	0	0	0	0	0	0
	36 4051 Khoshkeh Rud (Lower)	1 1	0	0 0	0	0 0	0 (	0	0.0	0	0	0	0	0 0	0 (	) (	) 6	11	1 (	0 0	0	0 1	1	1 1	0	6	1	1	1	1 ·	0 (	0	1 1	1 2	0	0	1	0	1	0
- 1	37 4060 Alavi Kola	0	-	00	0	0 0	0	0	0 0	0	0	0	0	0 (	0 (		0 0	0	0	00	0	0 0	0	0 0	0	0	0	0	0	0.	0 (	0	0 0		0	0	0	0	0	0
	38 44070 Valik Rud 39 44080 Jamshid Rud		0	0 0 0 0	0		) U	0	0 0		U D		0	ບ ເ ຄ. ເ	יט הו	) ( }			0 1	0 0 0 0	0	0 0	0	0 0	0		0	0	0	0	0 0	0	0 (			0	0	0	0	0.
	40 4090 Kachab Rud	1	2	0 0	Ő	0 0	) Õ	ō	0 0	) ) 1	1	ŏ	4 2	76 27	5 4 1 6	3 328	8 2	0	0	0 0	ŏ	0 0	1	0 1	0	3	0	1	1	0	0 (	0	1 0		l õ	0	1	0	1	0
	41 4100 Marj Rud	Ó		0 0	0	0 0	) ()	0	0 . 0	0 (	0	0	0	0 0	0 (	) (	0 0	0	0	0 0	Q	0 0	0	0 0	0	0	0.	Ó	0	0	0 (	0	0 0	o o	Ō	0	0	0	0	0
	42 4110 Mohammadabad Rud (1)	0		0 0	0	0.0	) 0	0	0 0	0	0	0	0	0 (	0 (	) (	0 0	0	0	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 (	0	0.0	0 0	0	0	0	0	0	0
	43 4120 Mohammadabad Rud (2) 44 4130 Cheshmeh HaftKhal		0	00	0 0	0 0	) ()	0 0	0 0	) () ) ()		- E	0		0 ( 0 (		0 0 0 0		0 1	00 00	0 0	0 0	0	0 0	0	0	· 0 0	0	0	0	0 0	0	-			0	0	0	0	0
	45 5010 Sang Rud	0		0 0	0	0 0	$\frac{0}{0}$	0	0 0	$\frac{1}{0}$	0	$\frac{1}{0}$	0	0 0		$\frac{1}{2}$			0	$\frac{0}{0}$ $\frac{0}{0}$	-0	0 0	0	0 0	0	0	· 0	0	0	0	0 0	0 .	· · · · ·		0	0	0	0	0	0
	46 5020 Niaki Rud	1	4	1 1	0	0 0	) 1	1	0 0	) 0	0	0	1	82 (	0 (	) (	0 1	1	0	0 0	0	0 0	0	0 0	Ō	1	0	Ő	0	1	0. (	0		0 0	0	0	ō	Ō	Õ	0
	47 5030 Barik Rud			0 0	0	0 0	) ()	0	0 0	) ()	0	0	0	0 (	0 (	) (	0 0	0	0	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 0	0	•	0 0		0	0	0	0	0
	48 5040 Katel Kash 49 5050 Maliard	0	-	0 0	0	0 0	) 0	0	0 0	) 0	0	0	0	0 0	0 (	) · (		0	0	00	0	0 0	0	0 0	· 0	0	0	0	0	0	0 (	0	~ `	0 0		0	0	0	0	0
	50 [5051] Esbukola Rud	0		0 0	· I 0		) () ) ()	0	י. ה ה	1 U 1 A	0		0		U·U Ní	ינ הינ		1	0	1 1 0 0	U N	0 0	· U 0	0 0	0	- D	· 6 ·	1	0	1	0 0	U N	1 (			0	U A	0	U A	U N
	51 5060 Maseh Rud	ŏ		õ õ	ŏ	õ õ	) Õ	. 0	0 0	0	ŏ	ŏ	ŏ	0 (	ο i	5 (	ŏlŏ	Ŏ	0. (	0 0	õ.	0 0	ŏ	0 0	ŏ	Ö	0.0	ŏ	õ	õ	0 (	0	0 0		-	õ	õ	ŏ	õ	0
	52 5080 Sheikh Rud	0	0	0 0	0	0 0	) ()	0	0 0	) ()	0	0	0	0	0 (	0 0	0 0	0	0	0 0	0	0 0	0.	0 0	0	Ó	0	0	0	0	0 (	0	0 0	0 0	0	0	0	0	0	0
	53 5090 Vozara Rud	0		0 0	0	0 0	) ()	0	0 0	0	0	0	0	0	0.0	) (	0 0	0	0.	0 0	0	0 · 0	0	0 0	0	0.	0	0	0	0	0 (	0	0 0	- 1 -	-	0	0	0	0	0
	54 5100 Vakeh Rud	0	Ň I	0 0	. 0	0 0	) ()	0	0 (	) 0	0	0	0	0	0 (	0 (	0 0	0	0	00	0	0 0	0	0 0	0	.0	0	0	0	0	0 (	D	0 0	0 0	0	0	0	0	0	0
	55 5110 Mozaffar Rud 56 5120 Khatib Rud	1		00	0	0 0	) U ). ()	1			U O	0	3 4	04 39	8 37	1 ( 1 (	0   3 0   0	Ĩ	0	0 0 0 0	0	0 1	1	0 1	0	5	1	1	1	1	0 (	1	0 0	2	0	0	1	- 1	0	0
	57 5130 Traghchi Rud	0		0 0	õ	0 0	) 0	Õ	0 C	0	0	ŏ	ŏ	0	ถิ่			· · · ·	0 0	0 0	0	0 0	0	0 0	0		0.1	· 0	0	0	0 (	D	0 0		0	0	0	0	0	0
ri Left	58 5140 Kazembeigi Rud	Ô		0 0	0	0 0	0	0.	0 (	) Ö	Ō	0	0	0	0	0 0	o l o	1.	0 4	0 0	Ö	0 0	0	0 0	• Õ	Ö	Õ	õ	0 '	0	0 0	0	0 0	ľ		0	0	0	0	0
	59 5150 Karo Kola Rud	0		0 0	0	0 0	) (	0	0 (	0 (	0	0	0	0	0 0	0	0 0	. I *	0 .	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 0	0	0 0			0	0	0	0	0
	60 5160 Zahed Kola Rud			0 0	0	0 0	0 0	0	0 (	) ()	0	0	0	0	0 1	0 (	0 0	Ť	0 - 0	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 (	0	0 0		-	0	0	0	0	0
1	61 5170 Mashin Rud 62 5180 Sang Rud	0		0 0	0	0 0	10 10	0.	0 0	30 30	0	0	0	0 1	0	u ( n∶4	0 0 0:0		0 0	0 0 0 0	0	0 0	0	0 0	0	ļ Ņ	0	0	0. 0	0	0 0	D N	0 0	" I "	1 1 1	0	0	0	0	0
	63 5190 Khandagh Kileh	0		0.0	0	0 0	) 0	0	0 (	, v ) (	0	0	0	0 1	0.1	ь ( р. r			0	0 0 0 0	. U '	0.0	0	0 0	.U 0	0	U A	0	0 0	0	0 0	0	0 0	" I "	-	0	0	0	0	0
· _	64 5200 Zardab Rud	0	0	0 0	0	0 0	) 0	0	0 (	) 0	õ	0	õ	0	0	0 0		0		0.0	ŏ	0 0	Ő	0 0	Ő	0	Õ	õ	0	0	0 0	D	0 0			õ	õ	Ō	0	õ
	65 5210 Juleh Rud	0	0	0 0	0	0 · _ 0	0	0	0.0	): 0	0	0	0	0	0 0	0 0	0 0	0	0	0_0	0	0 0	0	0 0	. 0	0	0	0	0	0	0 (	0	0 (	o o	0	0	0	0	0	0
												·				· ·									÷.,													(	cont	inu
								· · ·			•			·													t.										B3-2			
																									1.1															

	Res	ponsible Canal														T	· · · · · · ·								<u> </u>	_~				<u> </u>	r	<u></u>				
River							ths i				11			lage:											Rea	sons (	0 f						taken	easur for	62	
System	ZoneCode	Canal Name	Dra				19 91	obler	1					nage	Prob				on [	Draina	ge P	roblei	M <u>.</u>	_	Drain	lage Pi	robles	a						Probl	en	
	- <u> </u>		Pro	N	1 2	3	4 5	6	7 8	3 9 1	0 11	12 1		2	3	4	N	2	3 4	1 5	67	8	9 10 1	1 N	1 2	3	4	5 1	6 7	8	N	1	2	3 4	5	6
	66 (5220 M	latekeh Rud	0	0   0	0 0	0	0 0	Ó	0 0	) 0	0 0	0 0		- 0	0	0 (	Q 1 0	0	0 0	0 0	) 0	0 0	0.0	0	0 (	) 0	0	0 0	0 0	) 0	0	0	0	0 0		0 (
	67 5240 8	oragh Rud	0	0 ] (	0 0	0	0 0	0.	0 0	) ()	0 0	0, 0	) (	0	0	0	0.0	0	0 0	0 0	) ()	0 Ó	0 0	0	0 (	) 0	õ	0 0	o i	) 0	ő	õ	Õ i	0 0	ñ	Ô (
		otan Beigi Rud	0	0   (	0 0	0	0 0	0	0 0	0 0	0.0	0 0	) (	0	0	0	0 0	0	0 0	0 0	) 0	0 0	0 0	Ó	0 0	) 0	ō ·	· ñ (	้ ถ	Ň	Ň	Ň	õ	0 0	ň	0 (
		rchirud Kuchak	0	0 0	0 0	0	0 0	0	0 0	) ()	0 0	0 0	) (	0	0	0.	0 0	0	0 0	0.0	) 0	0 0	0 0	Ó	0	0	õ	0 0	ñ ñ	Ň	n l	ñ	ñ	ñ ñ	ถั	0 0
	70 5270 A	irchirud Bozorg	0	0   (	0 0	0	0 0	0	0 0	0 0	0 0	0 0	) i o	0	0	0	0 0	0	0 0	0 0	) ()	0 0	0.0	0.		0	õ	0 0	ñ ñ	Ň	ň	ň	ñ	ñ ñ	· ñ	0 0
	71 5280 B	asra Rud	0	0 (	0 0	0	0 0	Ó	0 0	) ()	0 0	0 0	)   . 0	0	0	0	0 0	0	0 0	0 0	) 0	0 0	0 0	0	0	n o	õ	õ i	n n	, ñ	ň	ñ	n i	ñ ñ	0	Ô (
		ctich Kola Rud	0	0 0	0 0	0	;0 0	0	0 0	0	0 0	0 0		0	0	0	0 0	0	0 0	0 0	) 0	0 0	0 0	l ő	0	, 0 , 0	õ	0 (	n n	ว์ ก็ไ	n l	õ	0	0 0 0	ñ	0 0
	73 5300 G	armich Rud	0	0 : (	0 0	0	0.0	0	0 0	0.0	0 0	0 0		0	0	0	0 0	) Õ	ō ō	0 0	) ° Õ	0 Õ	n n n	Ĭŏ		, o	ñ	0 0	n n	Ň	0	n	0	0 0 0 0	0	0 0
		hamazin Ruđ	1	2 (	0 1	1	0 0	0	0 0	. 0 .	0 0	0 1	382	0	.0	0	2 1	1	0 0	0 0	0	0 0	0 0	4		ັ້ <u>1</u>	٥ ٥	กับ	0 1		Ň	0	ñ	0 1	ň	0 0
	75 5320 K	otisar Rud	0	0.0	0 0	: 0	0 0	0	0 0	) 0 .	0 0	0 d	) i a	0	0	0	0 0	, o	0 0	0 0	0	0 0	00	l ò	0	 	Ň	n n	, 0	ก กั	6	ñ	0	0 0	0	0 (
		aghfirud Kamangar	0	0 0	0 0	0.	0 0	0	0 0	) ()	0 0	0 0	) 0	0	. 0	0	0 0	o o	0 0	n n n	) 0	0 0	0 0	lõ	l n i	n n	Ô	n n	0 0	í ő	Ň	ő	0	0 0	0	0 0
	77 5340 K	ard Rud	0	0 0	0 0	0	0.0	. 0	0 0	0	0 0	0 0		0	0	- 0	0 0	Ň	ñ ñ	n n n	, i ∶õ	0 0	0 0	ľ		้ ถ้	ñ	ñ i	0 0 0 0			0	Å	ò ò	0	0 (
	78 5350 0	ulia Rud	0	0 0	0 0	0	0 0	0	0 0	) 0 -	0 0	0 0		0	0	ol	0 0	0.0	n n	ר ה ה	) 0	6 0	0 0	l ő		กัด	ñ	n i	0 0	Ň	Ň	0	õ	0 0	. 0	0 (
	79 5360 8	ala Haghabeh Rahkola	0	0 0	0 Ö	Ó	0 0	0	0 0	0	0 0	0 0		0	Ō	ō	0 0	ົ້ດ	0 0		, õ	. ň ň	0 0	۱ů	Ň.	า ถ	ň	n i	0 U 0 0	Ś	Ň	0	0		0	0 0
1.		ain Haghabeh Rahkola	0.	0 0	0 0	0	0 0	0	0 0	) 0	0 0	0.0	) a	0	0	0	0 0	0	ο n		) ) )	0 0	0 0	Ň	Ö	n n	õ	0 1	0 0 0 0	, Å	l õ l	ñ	ñ	0 0	0	0 0
· ·		ajoddoleh Rud	1	3	1 1	1	0 0	0	0 0	) 0	0 0	0 1	419	.0	0	ő	2 1	1	0 0		 ) ^	0 0	0 0	1.2		 )	1	Ň 4	0 U N 1		1,	1	Ň	0 0	0	0 4
<b>.</b> .	82 5390 R	akun Rud	1	2 0	0 1	1	0 0	0	0.0	) 0	0 0	0 1	365	0	0	0	2 1	Û	0 0	0 0	) 0	0 0	0 1	1.2	l õ l	1 0	1	0	0 0			0	ñ	0 0	0	0 4
Kari Left		ala Haghabeh Karikola	1	3 (	0.1	1	1 0	0	0 0	) 0	0 0	0 2	358	363	0	ō	1 1	Ő	0 0	, õ,	 )	0 0	0 0	2	ŏ	 	,	ñ ·	1 0		o l	õ	ñ	0 0	ñ	0 4
1		handagh Kileh	0	0 0	0 0	0	0 0	· 0 · ·	0 0	0	0 0	0		0	0	o I	0 0	) Õ	n n		ົ້	0 0	0 0	l õ		n n	0	õ i	0 0		l o l	ñ	ñ	0 0	0	0 4
1	85 5420 R		1	3	1.1	1	0 0	0	0 0	0	0 0	0 2	358	363	0	ōl	1 1	Ő	0 n	n o r	) 0	0.0	0 0	Ĭ	lõi	0 0	1	0	0 0		ŏ	õ	ñ	0 0	ñ	0 1
· ·	86 5430 V	ale Rud	0	0 0	0 0	0	0 0	0.	0 0	0 0	0 0	0 0		0	0	0	0 0	) Õ	0 0	i õ õ	) 0	0 0	0 0	0		0 0	ò	0	0 0	้ ถ่	ŏ	õ	0	0 0	٥ ٥	0 1
	87 5440 K	ard Rud	1	3 1	1 1.	1	0, 0	0	0.0	0	0 0	0 1	356	0	0	0	2 1	1	0 0		, , ,	0 0	0 0	ĬŇ	1	1 1	Ő	ñ i	0 1	i . n	Ň	ñ	ň	0 0	ő	0 0
	88 5450 K	ikha Rud	0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0		0	0	ō	0 0	0	õ õ	0 0	, o	0.0	0 0	0	0	n n	õ	0 1	0 0		0	Ň	0	0 0	0	0 0
1 .	89 5460 R	udbast Rud	1	3 1	1 1	1	0 0	0	0 0	0 (	0 0	0 1	348	0	0	0	3 1	1	1 0	ดัง	้ ถ้	0 0	0 0	ů	0	n n	ñ	0 1	n n	n n	Ň	ñ	ĥ	0 0	ň	0 1
1	90 5470 S	eid Rud	0	0 .	0.0	0	0 0	0	0 0	0	0 0	0 0		0	0	0	0 0	0	0 0	0 0	, õ.	. Ö Ö	0 0	l ő	l o i	n n	Ď	0	0 0	, o	Ň	ñ	ñ	0 0	ů.	0 1
	91 5480 E	sfandiar Rud	1	2 0	0 1	1	0 0	0	0 0	) ()	0 0	0 1	355	0	0	0	3 1	1	1 0	0 0	) 0	0 0	0 0	2	1	1 0	Ň	0	0 0 0	Ó Ő	ň	Ň	ñ	ំ ំ	ñ	n n
	92 5490 8	orayya Drain	1	3 1	1 1	1	0 0	0	0 0	0.	00	0 1	348	0	0	0	3 1	1	1 0	0 0	) 0	0 0	0 0	1.3	1	1 1	Ő	0 +	0 0	o o	ŏ	Õ	Ô.	0 0	Ő	ñ i
1 × .		akkeh Dakal	0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	) 0	0	0	0	0 0	0	0 0	0 0	0	0 0	0 0	1 0	0	0 0	Ő	Õ I	0 0	0 0	0	ů	0	0 0	ů	0 0
	94 5042 8	uteh Kileh Drain	1 1	2 1	1 1	1	1 1	1	1 1	3	1 1	1 2	351	504	0	0	5 1	1	1 1	0 0	) 0	0 0	1 0	l o		0 0	ů	0	0 0	0	ő	ů	Ň	0 0	ů.	0
		ahlaban Drain	1 1	2 1	1 1	1	1 1	1	1 1	1	1 1	1 2	333	503	0	0	5 1	1	1 1	0 0	) 0	0 0	. 1 0	5	1	1 1	1	0	0 1	1 0	ŏ	õ	0	0 0	ů	0
		honi Cheshmeh		0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	) 0	0	0	0	0 0	0	0 0	0 0	) 0	0 0	0 0	1 0	0	0 0	Ó	0	o d	0 0	0	õ	0	0 0	Ő	Õ i
	97 6010 Z			0 0	0 0	0.	0 0	0	0 0	0	0 0	0 0	) 0	0	0	0	0 0	0	0 0	0 0	) 0	0 0	0 0	0	0	0 0	0	0	0 (	0 0	0	0	0	0 0	0	0
		oallem Kola Rud		0 0	0 0	0	0 0	0	0 0	0 0	00	0 0	) 0	0	0	0	0 0	0	0 0	0 0	) ()	0 0	0.0	0	0	0 0	0	0	0 (	0 0	0	Ó	0	0 0	0	0 0
	99 6050 M		0	0 0	0 0	0	0.0	0	0 0	0	0 0	0 0	) 0	0	0	0	0 0	0	0 0	0 0	) ()	0 0	0 0	0.	0	0 0	0	0	0 (	0 0	0	0	0	0 0	0	0 0
	100 6060 C		0	0 0	0 0	0	0 0	0	0 0	0 (	0 0	0 0	) 0	0	0	0	0 0	0	0 0	0.0	) ()	0 0	0 0	0	0	0 0	0	0	0 (	0 0	0	0	0	0 0	0	0
[		iah Vardi Rud	0	0 0	0 0	0	0 0	· 0 .	0 0	0	0 0	0 0	)   O	0	0	0	0 0	Ú 0	0 0	• 0 C	) ()	0 0	0 0	0	0.	0 0	0	0	0 (	0 0	0	0	0	0 0	0	0
	102 6080 1		1 ° 1	0 0	0 0	0	0.0	0	0 0	0.	0 0	0 0	) 0	0	0	0	0 0	0	0 0	0 0	) 0	0 0	0 0	0	0	0 0	. 0	0	0 0	0 0	0	0	0	0 0	0	0
Kari Righ	t103 6090 K	hatib Rud (2)	0	0 0	0 0	0	0 :0	0	0 0	0	0 0	0 0	) 0	0	· 0	0	0 0	0.	0 0	0.0	) 0	0.0	0 0	1 0	0 . 1	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0
		ctich Rud (2)	ł - ł	0 0	0 0	0	0 0	0	0 0	0	00	0 0	0   0	0	0	0	0 0	0	0 0	0 0	) 0	0 0	0 0	0	· 0 . •	0 0	0	0	0 . (	0 0	0	0	0	0 0	0	0
	105 6110 5		I × I	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	) 0	0	0	0	0 0	0	0 0	0 0	0. (	0 0	. 0 0	0	0 ÷ 1	0 0	0	0	0 (	0 0	0	0	0	0 0	0	0
1	106 6120 M	arzun Rud	v i	0 0	0 0	0	0 0	0	0 0	0	00	0.0	0 0	0	Ò	0	0 0	0	0.0	0.0.0	) 0	0 0	0 0	0	0 0	0 0	0	0	0 (	0 0	0	0	0	0 0	0	0
		amangar Rud		0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0	0	0	0	0 0	0	0 0	0 0	) ()	0 0	0 0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0
· · ·		bdanrud Barsemnan	0		0 0	0	0 0	0	0 0	0	0 0	0 0	0 0	0	0		0 0	0.	0 0	0 0	) 0	0 0	0 0	0	0	0 0	0	0	0 (	0 0	0	0	0	0 0	0	0
:	109 6150 Z			0 0		0	0 0	0.	0 0	0	0 0	0 0	0	0	0	0	0 0	0	0 0	0 0	) 0	0 0	0 0	0	0 0	0 0	0	0	0 (	0 0	0	0	0	0 0	- 0	0
ļ		allehbast Rud	0	0 0	0 0	0	0 0	0	0 0	0		0 0	0 0	0	0		0 0	0	0_0	0 0	) 0	0_0	0 0	0	0	0 0	0	0	0 (	0 0 [°]	0	0	Û	0 0	0	0
1		Omdarreh Rud		0 0		0	0 0	0	0 0	0	0 0	0 0	0	0	0		0 0	-	0 0	0 0	) ()	0 0	0 0	0	. 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0
		avarak Rud		0 0		0	0 0	0	0 0	0.	00	0 0	0	0	. 0		0 0		0 0	0 0	) ()	0 0	0 0		0 0	0 0	0	0	0 (	0 0	0	0	0	0 0	0	0
рагна кий		hangar Kola Rud	1 1	0 0		~	0 0	0	0 0	0		0 0		. •	0	- f	0 0		0 0	0 0	) ()		0_0	1 .	0	0 0	0	0	0 (	0 0	0	0	0	0 0	0	0
1		hahneh Kola Rud		0 0		0	0 0	0	0 0	0			0	~	0			. 0		• •	· ·	0 0	0 0	0	0	0 0	0	0	0 (	0 0	0	0	0	0 0	0	-0
Whance Pri		osta Kola Rud haran Rud River		0 0	0 0	0	0 0		0 0			0 0		. 0	0			0			) ()	0 0	0 0		0	0 0	0	0	0 (	0 0	0	0	0	00	0	0
The second se				0 0	0 0	0	0 0	0.	0 0	0	0 0	0 0		0	0			0				0 0			0	0 0	0	0	0.0	· · · ·	0	0	Ó	0 0	0	0
Total	126		22 J	4 110	U 15	14	34	5	65	4	33	2 34					2 16	11	6 6	0 1	1 5	5 3	63		13 1	6 14	13	1	2 10	0 3	16	5	0	4 3	4	0
Average Percent(%				3		10		-	o –			2				1	3							3.3	- N						1					
rercent(%	4I.	·	I	[14	4 Z O	19	4 5	1.	8 7	5	4 4	3				<u> </u>	26	18 1	0 10	0 2	8	8 5	10 5		18 2	2 19	18 1	.42.	8 14	4 4.2		31	0 2	5 19	25	0
(Note)			ภ. พ	-	enti-	<b>.</b>	۰ <b>۵</b> ۰۰	1004-	•								-																			
(00.0)							s pra raina	i nage			-		• .	·											1: No									nter-		
					ien (	זע ווע	aina	y e		· ·										ON RIC		-			2: les									inage		Ι.
٠			•						-											on Ric		-			3: Exc							3: 1mp		ment		
																				00 Hai 00 Sec			f Rice		4: 0Ve					anal.				ainag raini		als.

#### TABLE B. 3. 3-1 DIFFICULTIES ON DRAINAGE BY ZONE MIRABS (2/2)

4: Problem on Marvesting of Rice. 5: Problem on Second Crops.

6: Problem on Trafic in Summer.

7: Problem on Trafic in Autumn.

- 8: Problem on Trafic in Winter.
- 9: Problem on Trafic in Spring.
- 10:Inundation of Houses.

11:Erosion of Canals. (12: Erosion of Roads.)

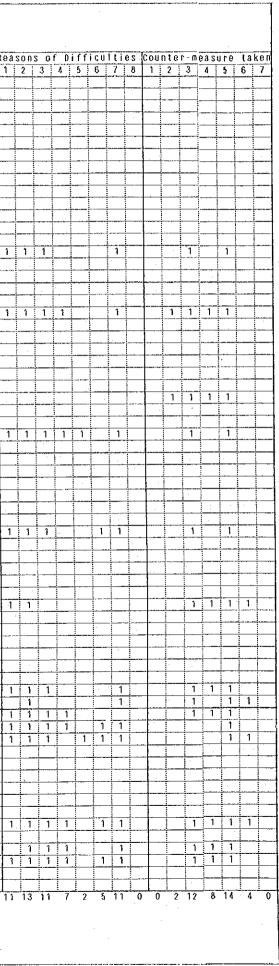
5: Obstruction by Roads.

6: Heavy texture of Soil.

7: Heavy Rainfall.

8: Other Reasons.

Improvement of Orainage canals.
 River training.
 Bank protection.


6: Soil improvement. 7: Other counter-measures.

	Survey Code		Village where illage Mirab liv	es													· .	· · · ·	-					icult in ainag												
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·····		<u></u>		r		·				- <del>1</del>		8		9		10		11		12	······	13		10000	sons		
1				Number Mirabs					2 C m	N	3 C m	 Y r	4 cm	W A	5 C M		C m		c m	IV F		۷ r	C m		C m	Ýr –	cm i	Y r	C m		Cm	Yr		2		
		Code	Name No Gardan	1 1 2 0 5	ALL CULL N		CM	T I	<u>с</u> ш	11	614	<u> </u>	βL 111 		<u>ф III</u>	1.1		+				<u>+</u>		<u> </u>			<u>, , , , , , , , , , , , , , , , , , , </u>					<u></u>	ł		÷	
	2		Marzon Kola	1 *	N	<u> </u>			<u> </u>								{	1	_				+									<u> </u>				
	3		Khas Kola	1	N				· · · · · ·					1				1	-	1		1	·											-	-	
	4		Derazan	1	<u></u>	<u>+</u>		<u></u>				·						1		1			<u>+</u> -													
			Chandar Mahallel			+			· ·			, .	<u> </u>			· · · ·		1		1	-											i i				
			Varam Deh	1	[	<u> </u>							<u> </u>	1	1.					1	1				1				_						_	
	7		Div Raz	1	N.											-							1									1				
			Zaron Deh	2				<u></u>						<u> </u>					-		1		1	1	-							1				-
188			Kord Koti	1	N	<u> </u>			+	<u> </u>		· · · ·	1										· · ·		1						1	1			-	
1			Kord Koti	1			†			<u>†</u>		······	1	1				1			-		1									1				
			Hali Koti	2	a l		1	<u> </u>			1			1								1									1.					
1			Kalikan Olia	1	N	1	1		1				1	1	1		-			1	1		1	-												
			Kaseb Mahalleh	1 *	N .	Ť		<u> </u>		1												1.														
			Jafar Abad	1	N	1		<u>}</u>		1			1	1			1	1	1	1	1											1				
	- 15	197	Aski Mahalleh	1	V 3	-3	15		20		20		50							]													1	1	1	
	16	254	Mir Alamdeh	1	N					1		÷	1		1								1									L				
1	17	245	Ghassab Koti	1 *	N	-	1		1	1	1		1												· ·					<u> </u>	<u> </u>	<u>i</u>				
	18	225	Rafi Abad	1	N			1	-	1	1		· ·	11.	1	1.		1														<u>i</u>		<u> </u>		
	19	231	Sheikh Abad	1	N	1	1.	1										T.							<u> </u>											
	20	233	Zagh Deh	1 *	Y 6	11	-	1				1	30	1	20	2	2 5	2	5	2	3	2	4	3	10								1	1	1	1
			Kalosa	1 *	N																	<u> </u>		<u> </u>												
1 ·			Zangi Kola	1	н	1				1			1							<u> </u>			·								<u> </u>		<b>.</b>	·		
1			Kenes Marz	1	Ň			ŀ		·		<u> </u>							·					<u> </u>									1	$ \rightarrow $		
AW			Eskan Deh	1 *	N					1			· ·						_										ļ					<b></b>		
ľ			Jura Kola	1	N								1					_		1	1		<u> </u>	<u> </u>	1					<u>.</u>		<u> </u>		$ \rightarrow $	<u> </u>	
			Abolhassan Abad	1 >			1			I		L	<u> </u>																			<u> </u>	<b>_</b>	<u> </u>		
			Kale Marz Olia	2	V 8	9	· .	1		<u> </u>	100	1	100	1										1			200	1	ļ	ļ	[			<u> </u>		
			Moallem Kola	1	N		<u> </u>			<u> </u>	<u> </u>		·					<u> </u>						<u> </u>	- <b> </b>									<u> </u>		
1			Harab Deh	1	N		<u> </u>	1														·												<u> </u>		
1			Bisheh Kola	1 *	Y 8	9		1	1				<u> </u>	_							50	1366			100	1364	40	1366	40	1366			+	1		1
L			Khesht Sar	1.	N : .	1		<u> </u>		<u> </u>	<b>_</b>	<u> </u>	ļ	<u> </u>	<u> </u>		_							1		Ļ	· .	Į	ļ	ļ	<u> </u>	<u> </u>	1.	<u>i</u>	<u> </u>	
			Rudhar Dasht	1	N						<b>_</b>		ļ								·			<u> </u>		ļ	ļ	·					_	<u>i</u>		
1			Tork Kola	1	N				1	<u> </u>	- <b> </b>		<b>.</b>				.   · ·				_		J	. <u> </u>			<u>.</u>	<u> </u>	ļ	<u> </u>	<b></b>	<u> </u>	_	$\square$		
	34	153	Buran	1	N						<b> </b>	<u> </u>	ļ		_			-			<u> </u>			<u> </u>		ļ.	<u> </u>	<b> </b>	<u> </u>	ļ						
	1 0 6		IF Charles Markes (Barra)	NE 4	<b>b</b> il		1	1			1			,		:						-								•		2				

1

#### TABLE B. 3. 3-2 DIFFICULTIES ON DRAINAGE BY VILLAGE MIRABS

35 159 Firuz Kola Vosta 36 157 Firuz Kola Olia 1 37 158 Firuz Kola Sofla 1 70 1365 20 1365 15 1365 20 1365 20 1365 1 1 ī 150 1368 38 173 Mahdi Kheil 8 11 39 210 Kamangar Kola 1 40 88 Galesh Kola 1 41 122 Rash Kola 2 ΗE 42 165 Hendu Kola 1 43 164 Harun Kola 1 44 156 Ejbar Kola 1 50 1368 50 1368 50 1369 15 1369 1 1 4 4 45 179 Nezam Abad 1 46 76 Bur Mahaileh 1 47 65 Aloo 1 48 95 Heshtel Pain 49 160 Ghaleh Kash 1 1 * 50 150 Bagheban Kola 1 *) 15 1368 51 91 Haji Abad 10 12 15 1368 15 1368 1 * 2 6 150 1366 150 1366 150 1366 50 1366 52 136 Tanha Kola 1367 1 * 30 2 30 2 50 2 4 53 200 Farah Abad 1 *Y 6 11 4 1 2 40 54 211 Karati 7 11 50 50 2 1 2 55 219 Mohammad Abad 1 Y 10 12 20 1 5 56 141 Valik Sofla 57 86 Espahi Kola Olia 2 1 58 72 Bamer Kola 1 *N 59 116 Narges Marz 60 73 Banser Kola 61 74 Barik Mahalleh Α£ 1 * 1 62 89 Ghias Kola 63 62 Abo Mahalleh 80 4 80 4 80 80 80 80 4 80 4 80 4 80 1 *Y 1 5 4 4 A 4 4 1 50 1368 50 1365 50 1368 1 Y 10 12 40 1370 60 1365 64 275 Kachab Olia 200 65 276 Kachab Sofla 1 2 6 200 200 200 60 60 66 278 Merij Mahalleh 1 67 287 Vozara Mahalleh 1 Answei * : Shora Member 87 17 villages. 72 Total 53 Average 1.1 Standard Deviation 14 0.3 hìn. . 2 Hax.



#### **B. 3. 4** Evaluation of Drainage Design Year

#### 1. Introduction

It is very important to evaluate design year properly on project planning. This paragraph describes the evaluation of the design year on drainage improvement.

#### 2. Conclusion

As the results of economic evaluation on several design years, 10-year has been selected as the design year for drainage improvement. Reasons of selection is as below;

- 1) Design years between 5-year and 10-year are recommendable from an economical viewpoint.
- 2) Design years less than 5-year or greater than 10-year are not recommendable because of less economy.
- 3) Design year of 5-year is recommendable as the highest economical development.
- 4) Design year of 10-year is recommendable from viewpoints of higher benefit and higher economical development.
- 5) Design year of 10-year is more recommendable than 5-year for drainage improvement, because drainage system has to be capable to drain 25-year flood with its bankful capacity from a viewpoint of safety. Flood of 5-year is too small comparing 25-year flood.

#### 3. Design Rainfall

Design rainfall is a 2-day rainfall in the period for seeding berseem from September to October.

Design rainfalls for design years are calculated using maximum daily rainfalls in above period at Babolsar Station, and modifying those maximum daily rainfalls using ration of the 2-day rainfall to the daily rainfall at MOE stations. The following table shows design 2-day rainfalls for several design years;

Return Period	Maximum Daily Rainfall (mm/day)	Ratio of 2-day Rain to Daily	Design 2-day Rainfall (mm ² days)	Ratio to 2-day Rainfall
1/2 year	61	1.39	85	1.00
1/5 year	91	1.35	123	1.45
1/10 year	114	1.30	148	1.74
1/15 year	127	1.27	161	1.89
1/20 year	137	1.25	171	2.01
1/25 year	145	1.23	178	2.09
1/30 year	151	1.22	184	2.16
1/50 year	170	1,18	201	2.36
1/100 year	196	1.13	221	2.60

 Table B. 3. 4 -1
 DESIGN 2-DAY RAINFALLS FOR THE PERIOD FROM SEPTEMBER TO

 OCTOBER

#### 4. Cost Ratio by Design Rainfalls

Cost ratio has been estimated in accordance with following assumptions;

- 1) Cost increases in proportion to the flow-section (A) of drainage canal.
- 2) Flow-section of drainage canal increases in proportion to Q3/4 (Q: discharge) under the most hydraulically effective flow-section of drainage canal.

 $\mathbf{A} = \mathbf{f}(\mathbf{q}\mathbf{3}/\mathbf{4}), \dots, \mathbf{eq}\mathbf{.1}$ 

3) Discharge increase in proportion to rainfall.

In accordance with above assumptions, cost ratios have been calculated to the cost of 2-year return period. The following table shows the cost ratios for several design years to the 2-year design year cost.

Retu	rn Period	Ratio to 2-day Rainfall (p)	Cost Ratio to 2- year Design Year (P ^{3/4} )
1/2	year	1.00	1.00
1/5	year	1.45	1.32
1/10	year	1.74	1.51
1/15	year	1.89	1.61
1/20	year	2.01	1.69
1/25	year	2.09	1.74
1/30	year	2.16	1.78
1/50	year	2.36	1.90
1/100	year	2.60	2.05

Table B.3. 4 - 2 COST RATIOS TO THE 2-YEAR DESIGN YEAR COST

#### 5. Economic Evaluation

Economic evaluation has been given to the several design years, using above cost ratios and estimating the benefit ratios under different interests. Table B.3. 4-3 shows the results under 5%, 10%, and 15% interests. Figure B. 3.4-1 shows the result of 10% interest for better understanding.

# TABLE B. 3. 4 - 3 BENEFIT AND COST RATIO ON DRAINAGE IMPROVEMENT PROJECT BY DIFFERENT RETURN-PERIOD

			DIFFER	ENI	RETUR	N-PERIOD		2				
		· ·										
											•	
								8 de 12				
					1					· .		
		<u> </u>		. <u> </u>	Intere	sts					] .	۰.
	1	5	X.	1.2	10	*		] 15	*		1 .	
Return	Cost	Presen	tWorth Ratio			tWorth Rati			Worth Rati	0	1.	
Period	Ratic	Worth	to 1/2 year	Br/Ci	Worth	to 1/2 yea	rBr/Ci	Worth	to 1/2 yea	rBr/Cr	·	
117 0 NO.	(10)		(8r)	1		(81)	<u> </u>	·	L			
1/ 2 Year 1/ 5 Year	1.00	8.99		1.00	4.71	1.000	1.00	3.06	1.000	1.00		
1/ 10 Year		16.16		1.21	7.52	1.596	1.21 1.18	4 87 5 42	1 590	1.20 1.17		
1/ 15 Year		16.76		1.16	8.70	1.845	1.15	5.57	1.819	1.13		
1/ 20 Year		17.05	1	1.12	8.82	1.871	1.11	5.62	1.837	1.09		
1/ 25 Year	1.74	17.18	•	1.10	8.88	1.884	1.08	5.65	1.844	1.06		
17 30 Year	1.78	17.32	1.926	1.08	8.91	1.891	1.06	5.66	1.848	1.04		
1/ 50 Year		17.46	1.941	1.02	8.95	1,899	1.00	5.86	1.850	0.97		
1/100 Year	<u> </u>	17.54		0.95	8.95	1.900	0.93	5.66	1.850	0:90	<b>j</b>	
(Notes)			life is assu					·			· · ·	
	2. Pr	esent y	worth is cal								4 A.	
			1	2	3	4	5	6	7		9	10
2		0.95	0.95			0.81450625						0.5987369
5		14.381	0.95		0.8574	0.81450625		0	0.6983373		0.6302494	· · · 0
10		16.161	0.95			0.81450625			0.6983373			0
15		16.761	0,95			0.81450625						0.5987369
20		17.051	0.95			0.81450625						0.5987369
25		17.184	0.95			0.81450625						0.5987369
30		17.323	0.95			0.81450625			0.6983373	0.66	0.6302494	0.5987369
50		17.461	0.95			0.81450625						0.5987369
100		17.538	0.95	0.9	0.8574	0.81450625	0.77	0.7351	0.6983373	0.66	0.6302494	0.5987369
								•				
					0.9	1	2 0.81	-3	• 4	- 5	6	7
					4.7124	0.9		0.729 0.729	0 6561	0.59		0.4782969
					7.5191		0.81	0,729	0.6561	0.00		0.4782969
					8.421		0.81	0.729	0.6561			0.4782969
					8.6966		0.81	0.729	0.6561			0.4782969
					8.8173	0.9	0.81	0.729	0.6561			0.4782969
					8.8767	0.9	0.81	0.729	0.6561	0.59	0.531441	0.4782969
					8.9112		0.81	0.729	0.6561	0.59	0.531441	0.4782969
					8.9485		0.81	0.729	0.6561			0.4782969
					8.9536	0.9	0.81	0.729	0.6561	0.59	0.531441	0.4782969
								A 91	1	2	3	4
								0.85	0.85			0.5220063
								3.0622 4.8676	0.85 0.85	0 72	0.614125	0.5220063
								4.0076	0.85			0.5220063
								5.5693	0.85			0.5220063
								5.6247	0.85			0.5220063
								5.6475	0.85			0.5220063
								5.6574	0.85	0.72	0.614125	0.5220063
								5.6647	0.85			0.5220063
								5.665	0.85	0.72	0.614125	0.5220063
											1 A A A A A A A A A A A A A A A A A A A	

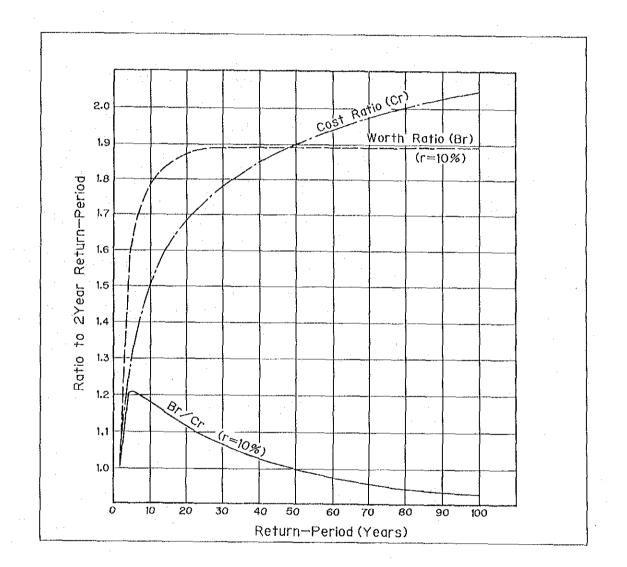



FIGURE B. 3. 4 - 1 COST RATIO (CR), WORTH RATIO (BR), AND BR/CR UNDER 10% INTEREST

### B. 3. 5 Concepts on Drainage Canal Profile and Depth

In this Paragraph, concepts are explained on canal profile and depth from the terminal field level to the outlets into the Caspian Sea.

#### 1. Concepts on the Terminal Level

(1) Depth of the Drainage Ditch and the Lateral Drainage Ditch

The terminal fields will be standardized on shape and alignment for farm mechanization and irrigation/drainage improvement by the land consolidation. Two different drainage ditches are provided in the field as below;

Drainage ditch: provided along the field lots to drain excess water from the field lots, and flows to the land slope direction.

Lateral drainage ditch: provided along the main farm road to collect excess

water from drainage ditches, and generally flows along contour line with minimum slope of 1:2,000.

Above ditches are provided as shown in the figure below;

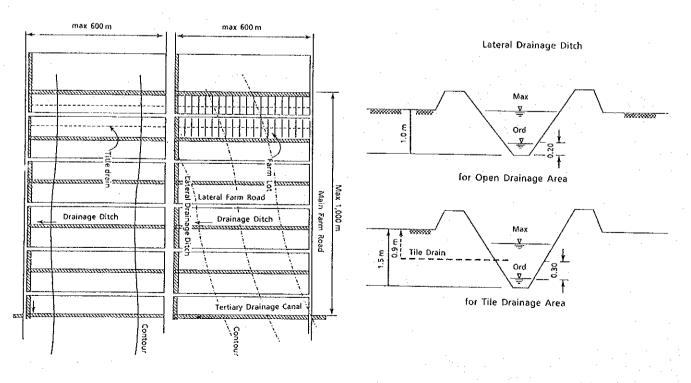



FIGURE B. 3. 5 - 1 TERMINAL DRAINAGE SYSTEM

#### (2) Classification of Lands by Slope

Lands are classified by the slope into two types which a sloping land and a flat land. Sloping land has an enough gradient to provide drainage ditches and lateral drainage ditches. Flat land has not an enough gradient to provide ditches. Division of gradient is differed by the necessity of tile drains, because tile drains require a minimum hydraulic gradient of 1:600.


Sloping Land	:	Open drainage area	slope	>	1:1,000
		Tile drainage area	slope	>	1:600
Flat Land	:	Open drainage area	slope	<	1:1,000
• • • •		Tile drainage area	slope	<	1:600

In the improvement of drainage ditches in the terminal fields, different depth of ditches will be provided to conform with the drainability of the field.

(3) Dept of Drainage Ditch

<u>Two types of drainage ditches will be provided in the terminal field</u> level.





Shallow type drainage ditch : Deep type drainage ditch :

: depth 0.60 m : depth 1.00 m

<u>Shallow type drainage ditch</u> is applied to the well-drained areas on sub-surface drainage where groundwater table is kept below 0.20 m depth through the year

even in rainy period at present stage. This drainage ditch works exclusively to drain excess surface water.

<u>Deep type drainage ditch</u> is applied to the poorly-drained area where groundwater rises more than 0.20 m depth from the field surface in rainy period at present stage, and it works both for draining excess surface water and groundwater.

(4) Depth of Lateral Drainage Ditch

Lateral drainage ditch is classified into three types of ditches by the depth. One is a shallow type with a depth of 0.60 m, and others are a deep type with a depth of 1.0 m and a deeper type with a depth of 1.5 m. Shallow type lateral drainage ditch is applied to the well-drained areas, and deep and deeper types of lateral drainage ditches are applied to the poorly-drained areas. Deeper type of lateral drainage ditch is applied to the applied to the areas where tile drains are necessary to drain groundwater, and deep type one is applied to the areas where sub-surface drainage is satisfied by a open drainage system, that is a depth of 1.0 m. Applied three type of lateral drainage ditches are as follows;

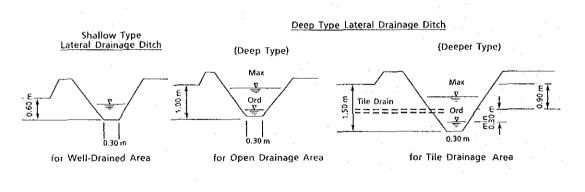
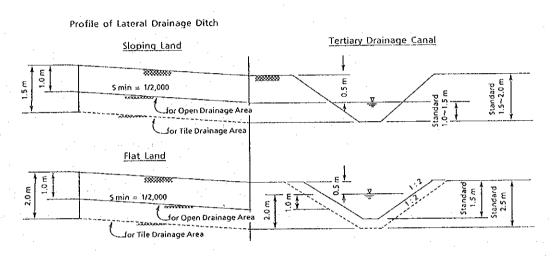
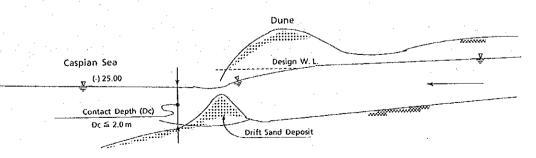




FIGURE B. 3. 5 - 3 CROSS-SECTION OF LATERAL DRAINAGE DITCHES

Shallow type lateral drainage ditch :depth 0.60 mDeep type lateral drainage ditch :depth 1.00 mDeep type lateral drainage ditch :depth 1.50 m

#### 2. Concepts on Tertiary Drainage Canals

Terminal field is drained generally into tertiary drainage canal through drainage ditches and lateral drainage ditches. However, in the lowland areas terminal field is mostly drained directly into secondary drainage canal. Taking terminal field conditions into consideration, tertiary drainage canals are necessary to have a depth of 1.50 m to 2.50 m as shown in the figure below;




#### FIGURE B. 3. 5 - 4 CROSS-SECTION OF TERTIARY DRAINAGE CANALS

#### 3. Concepts on Secondary and Main Drainage Canals

The depth of secondary canal is to be 2.50 m or more in the flat land taking a depth of a tertiary drainage canal as shown in the Figure B. 3. 5-4. However, outlets of the drainage to the Caspian Sea have to be ensured from river mouth closuring. Safety contact water depth of outlets is considered to be less than 2.00 m for preventing the mouth blockade. Consequently, depth and profile of the secondary and the main drainage canals which are drained to the Caspian Sea is to be decided to keep the contact depth less than 2.00 m.





#### 4. Hydraulic Conditions of Drainage Canals

Hydraulic conditions of drainage canals are as follows:

Hydraulic gradient : minimum s = 1:5,000Maximum velocity :  $1.35 \text{ m/sec} (0.90 \text{ m/sec} \times 1.5)$ 

**Roughness coefficient:** 

Drainage ditches : n = 0.35 (good maintenance) Lateral drainage ditches : n = 0.035 (good maintenance) Tertiary drainage canals : n = 0.045 (ordinary maintenance) Secondary drainage canals:

n = 0.040 (ordinary maintenance)

n = 0.035 (good maintenance)

main drainage canal: n = 0.035 (good maintenance)

It is recommended that the secondary and the main drainage canals are to be maintained under good condition taking difficulties in the flat lowlying area into consideration.

#### 5. Restrictions on Drainage

There still remain some restrictions partly in the low-lying area even after the project in connection with the Caspian sea level and the land elevation.

(1) Restriction on Sub-surface Drainage

Restriction arises in the low-lying areas where the land elevation is lower. In case of the tile drainage area, restriction arises in the areas lower than (-)22.50 m, and (-)23.5 m for open drainage area respectively. Such lowelevation-lands are generally flatter than 1/1,000. On the other hand, tile drainage requires a gradient steeper than or equal to 1/600 slope. Therefore, lateral drainage ditches necessarily become deeper to be 1.5 m in the open drainage area. Where the land is lower than above mentioned elevation, ditch bottom goes down below the design elevation (-)25.0 of sea level. Therefore, in such areas, sub-surface groundwater control is rather difficult.

This restriction arises to the hinterlands of 1,309 ha behind Feridon Kenar.

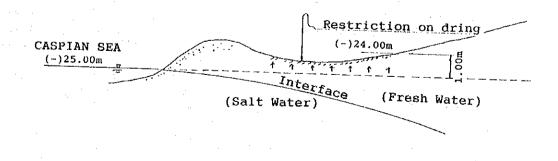

max 600m 1:1,000 Restriction in Tile Drainage Area (-)22.50m - e Restriction in Open Drainage Area (-)23.50m CASPIAN SEA -)25.00m Interface (Fresh Water) (Salt Water)

FIGURE B. 3. 5 - 6 RESTRICTION OF SUB-SURFACE DRAINAGE

(2) Restriction on Field Drying for Farm Mechanization

The areas, where the elevation is lower than (-)24.0 m, are too close to the sea level elevation, so that it is difficult to dry up the soil due to high groundwater level in this area. Therefore, restriction arises on farm mechanization in this area. The acreage of this area is estimated at 511 ha.

FIGURE B. 3. 5 - 7 RESTRICTION ON FIELD DRYING



### B. 3.6 Proposed Surface Drainage

## 1. Proposed Drainage Network

The Project Area will be divided primarily into two drainage areas, viz. the upper and the lower, by the Amol West Main Drain (AWMD) and the Amol East Amol Drain (AEMD) as shown in the flow diagram, Figure B. 3. 6-1. The AWMD (drainage area : 15,453 ha, discharge : 47.59 cms) will be drained to the Alesh river, and the AEMD (drainage area : 22,834 ha, discharge : 66.11 cms) to the Babol river. These two main drains eliminate the drainage rates of the drains pouring into the Caspian Sea.

Modification of drainage areas from the existing drainage network is summarized as below;

				(Unit : ha)
	Drainage District	Existing	Proposed	Difference
Haraz Left Bank	District			
<ul> <li>Alesh River</li> </ul>	Drainage District	· · ·		
DHW1 - 4	l, DAW1 - 2	3,587	3,536	Δ51
AEMD	Amol West Main Drain	0	15,453	15,453
DAW3	Changar Drain	6,634	3,382	$\Delta 3,252$
- Caspian Sea	Direct Drainage			
DAW4	Mahmudabad Drain	16,170	4,126	∆12,044
DAW5	Siahrud Sar Drain	2,353	3,152	1,159
DAW6	Tifangah Drain	6,119	3,974	∆2,145
DAW7	Bishen Kola Drain	291	381	90
DAW8	Alamden Rud Drain	1,792	1,692	Δ100
DAW9	Shian Kola Drain	761	620	۵141
DAW10	Bir Rud Drain	3,793	2,949	۵844
Caspian	Sea Direct	0	683	683
<ul> <li>Haraz Ríver</li> </ul>	Drainage District	100 C		
UHW Ha	raz River Upper	399	399	0
Haraz Ri	ver Direct	981	2,173	1,192
~	Sub-total	42,880	42,880	0
Iaraz Right Ban				· .
	Drainage District	1,254	2,926	1,672
- Caspian Sea	Direct Drainage District			
	ira Rud Drain	1,130	6,675	5,545
DAE10		49,070	18,691	∆30,379
• .	Sea Direct	· 0	1,090	1,090
	Drainage District		1. A. A.	
	ver Direct	8,195	7,433	Δ762
AEMD	Amol East Main Drain	0	22,834	22,834
KR	Kari Right Bank	5,480	5,480	0
	Sub-total	65,129	65,129	0
	Total	108,009	108,009	

## Comparison of the Existing and the Proposed Drainage Areas

(Note)  $\Delta$  ; indicating the decrease

- 2. Proposed Surface Drainage Rate
- (1) Excess Runoff Rainfall and Equation
- 1) Estimation of Drainage Rate in Iran

Excess runoff rainfall and discharge are computed using the procedure recommended by the SCS, USDA. This procedure is composed of following two steps;

Step-1 : Estimation of Excess Rainfall

based on Curve Number (CN) defined by soil and crops Step-2 : Estimation of Discharge based on Excess Rainfall by the Cypress Creek Formula

This procedure has been applied to several irrigation and drainage projects in Iran, and these projects are reported as operated without any particular difficulties. These projects are as follows;

> Zarinehrud Project (40,000 ha) in West Azarbaijan Province Dorudzan Project (40,000 ha) in the North of Fars Province (Note) Information from Mahab Ghodss (Letter 10/19561, date 70/12/26, 16/Mar/92)

#### 2) Rainfalls by Different Seasons

Rainfall varies by seasons in this Project Area. Analysis of rainfall is mentioned in Appendix A.1. Following rainfalls have been considered in this study.

	(Unit: mm) 2-day Rainfall				
Crop Season -	1/10 year	1/25 year			
Annual Maximum	166	204			
Second Crop Season (SepOct. harmful to berseem)	148	178			
Rice Growing Season (Apr Aug.)	73	80			
Rice Harvesting Period (Aug Sep.)	107	128			

Rainfalls Considered on Surface Drainage

### (2) Equations for Estimating Excess Runoff Rainfall

For selection of equation and formula, drainage conditions are considered under improved drainage conditions by the project. Applied drainage equation and formula, and selection reasons of those are as follows;

1) Excess Runoff Rainfall in Rice Growing Season (Apr. - Aug.)

Excess runoff rainfall is generally calculated by hydraulic equations of drainage capacities of field notch and drainage ditch depending on depth of standing water by rainfall in Japan.

Standard width of field notch is 1 meter/ha (or 0.3 m/0.3 ha) in Japan. However, this standard width is too large for the Project Area, because rainfall amount is rather less in this region than in Japan. On the other hand, drainage ditch is 0.6 to 1.0 m depth which is almost same size as Japan, because depth of drainage ditch is decided taking subsurface drainage into consideration. Therefore, flow capacity of drainage ditch becomes much larger than it of field notch in the Project Area. As the results, flow capacity of field notch will regulate excess runoff rainfall in the Project Area.

Consequently, it is sufficiently enough to give the field notches a 2-day drainage capacity for 2-day rainfall, without any harm to rice growing. Excess runoff rainfall during rice growing is 68 mm for 1/10 years and 75 mm for 1/25 years for 2-days taking 5 mm interception by paddy leaves.

Duchabilit	Rainfall	Interception	Excess runoff			
Probability	(mm/2 day)	(mm)	(mm/2 day)	(lit/s/ha)		
1/10 yr	73	5	68	3.94		
1/25 yr	80	5	75	4.34		

#### Excess Runoff Rainfall in Rice Growing Period

(Note) Interception of 5 mm is a standard value in Japan

2) Excess Runoff Rainfall in Second Crop Season (Sep. - Oct.)

In this season, the farm fields are proposed to be cultivated as upland fields mainly with berseem. It is, therefore, recommended to estimate excess runoff rainfall by the method presented in the National Engineering Handbook (NEH), Section 4, Hydrology, Chapter 10, Soil Conservation Service (SCS), USDA. Excess runoff rainfall is estimated depending on following elements;

Hydrologic soil groups

Runoff curve number (CN) by hydrologic soil-cover complex

Antecedent moisture condition (AMC)

(a) Hydrologic Soil Groups

The soils are classified into D (High runoff potential) except sanddunes along the coastal area.

(b) Runoff Curve Number (CN)

The runoff curve number (CN) is estimated taking the hydrologic soilcover complex into consideration. Hydrologic soil-cover complex is a hydrologic soil group (soil) and a land use and treatment class (cover).

Table B. 3. 6-1 shows the CN by hydrologic soil-cover complexes, and CN is adjusted by the antecedent moisture condition (AMC) as shown in Table B. 3. 6-2. In accordance with the tables, CN of the Project Area is estimated as below;

Probable Rainfall	Landuse	Hydrologic Condition	CN	AMC	CN (Adj)
148 mm (1/10 yr	for Sep Oct.)				······
	Pasture/	poor (*1)	89	III	96
204 mm (1/25 yr :	Range for Annual)				
a de la compañía de l Compañía de la compañía	Pasture/	fair (*2)	84	III	93
	Range				

#### Runoff Curve Number (CN) for Second Crop Season

(Note) 1: Hydrologic soil group is classified into D.

2: Considered to be poor due to germination stage(*1).

3: Considered to be fair due to mixture of grown and grazed berseem.

4: AMC is estimated at III, considering antecedent 5 days rainfall.

#### (c) Potential Maximum Retention (S)

Potential maximum retention (S) is estimated by following equation;

S = 25,400 / CN - 254

for 1/10 yr S = 25,400/96 - 254 = 10.58 mm for 1/25 yr S = 25,400/93 - 254 = 19.12 mm

(d) Excess Runoff Rainfall (Re)

Excess runoff rainfall (Re) is estimated by following equation;

 $Re = (P - 0.2 \times S)^2 / (P + 0.8 \times S)$ 

for 1/10 yr Re =  $(148 - 0.2 \times 10.58)^2 / (148 + 0.8 \times 10.58)$ = 136.02 m for 1/25 yr Re =  $(204 - 0.2 \times 19.12)^2 / (204 + 0.8 \times 19.12)$ = 182.72 mm

3) Rice Harvesting Period (Aug. - Sep.)

As seeing in the Figure 4. 3-1 in the Main Report (Proposed cropping calendar), Amol-3 is remaining in the field and still irrigated at the beginning of September. Therefore, in this period, excess runoff rainfall is estimated under the condition that 1/3 of fields are irrigated and 2/3 of fields are under harvesting or harvested. AMC is predicted at I for harvesting fields due to dry field conditions.

(a) Runoff Curve Number (CN) for Dry Field

CN is estimated at 94 under fallow condition and AMC-II, and adjusted to 85 by AMC-I.

(b) Potential Maximum Retention (S) for dry fields

S = 25,400/CN - 254 = 25,400/85 - 254 = 44.82 mm

(c) Excess Runoff Rainfall (Re)

1) for 1/10 yr

Rel =  $(107 - 0.2 \times 44.82)^2/(107 + 0.8 \times 44.82) = 67.28 \text{ mm}$ Re2 = 107 - 5 = 102 mmMean Re =  $67.28 \times 2/3 + 102 \times 1/3 = 78.85 \text{ mm}$ = 4.56 lit/s/ha

2) for 1/25 yr

Re1 =  $(128 - 0.2 \times 44.82)^2/(128 + 0.8 \times 44.82) = 86.47$  mm Re2 = 128 - 5 = 123 mm Mean Re =  $86.47 \times 2/3 + 123 \times 1/3$  = 98.65 mm = 5.71 lit/s/ha

(Note) Rel : for dry fields, Re2 : for irrigated fields

(3) Application of Equations for Estimating Runoff in Canal System

There are two ways to apply equations for estimating the runoff in canal system. One is to apply mathematical equations for a theoretical model which is created taking the canal size and slope, gate size, topographical depressions, and canal storage functions into consideration. The other way is to apply an empirical method which is applicable to the Project.

Cypress-Creek Formula is an empirical method which is developed in United State. This formula is applicable to the flat lands with a land slope of 1: 100 or less. It takes much computation and work for creating a theoretical model for mathematical equation.

Cypress-Creek Formula has been applied to several completed drainage projects and experienced in Iran. Therefore, it is recommended to apply Cypress-Creek Formula to the project. Cypress-Creek Formula is as follows;

 $Q = C \times M^{5/6}$  (lit/sec)

Where;  $C = 4.52 + 0.16032 \times re(24)$  re(24): 24 hours rainfall (mm) M: Drainage Area (ha)

(4) Runoff Equation by Cypress-Creek Formula

1) Drainage Equation for Second Crop Season (Sept. - Oct.)

(a) 
$$C_{10} = 4.52 + 0.16032 \times (136.02/2) = 15.42$$
  
 $C_{25} = 4.52 + 0.16032 \times (182.72/2) = 19.17$ 

(b) Drainage Equation

 $Q_{10} = 15.42 \times M^{5/6}$  (lit/sec)  $Q_{25} = 19.17 \times M^{5/6}$  (lit/sec)

2) Drainage Equation for Harvesting Period (Aug. - Sep.)

(a) Drainage Coefficient

 $C_{10} = 4.52 + 0.16032 \times (78.85/2) = 10.84$  $C_{25} = 4.52 + 0.16032 \times (98.65/2) = 12.43$ 

(b) Drainage Equation

 $Q_{10} = 10.84 \times M^{5/6}$  (lit/sec)  $Q_{25} = 12.43 \times M^{5/6}$  (lit/sec)

- 3) Drainage Equation for Rice Growing Season (Apr. Aug.)
- (a) Drainage Coefficient

 $\begin{array}{ll} C_{10} = 4.52 + 0.16032 \times (68/2) = & 9.97 \\ C_{25} = 4.52 + 0.16032 \times (75/2) = & 10.53 \end{array}$ 

(b) Drainage Equation

 $Q_{10} = 9.97 \times M^{5/6}$  (lit/sec)  $Q_{25} = 10.53 \times M^{5/6}$  (lit/sec)

Above equations are illustrated in the Figure B. 3. 6-3 for convenient for use.

## 3. Alternative Routes and Canal Size of Major Drains

- (1) Canal Size
- 1) Feridon Kenar Drain

		Bottom			Side			
Q10	Depth	Width	Gradient	Side Slope	Protection	Velocity		
(cms)	(m)	(m)				(m/sec)		
58.08	2.37	35.0	1:5,000	1:0.5	Riprap	0.68		

#### 2) AWMD

÷ .		Bottom		
Q10	Depth	Width	Gradient	Side Slope
(cms)	(m)	(m)		
47.6	2.55	10.0	1:1,000	1:2

### 3) AEMD

	Bottom		
Depth	Width	Gradient	Side Slope
(m)	(m)		
3.00	15.0	1:1,910	1:2
	(m)	DepthWidth(m)(m)	DepthWidthGradient(m)(m)

## (2) Alternative Routes

1) Feridon Kenar Drain

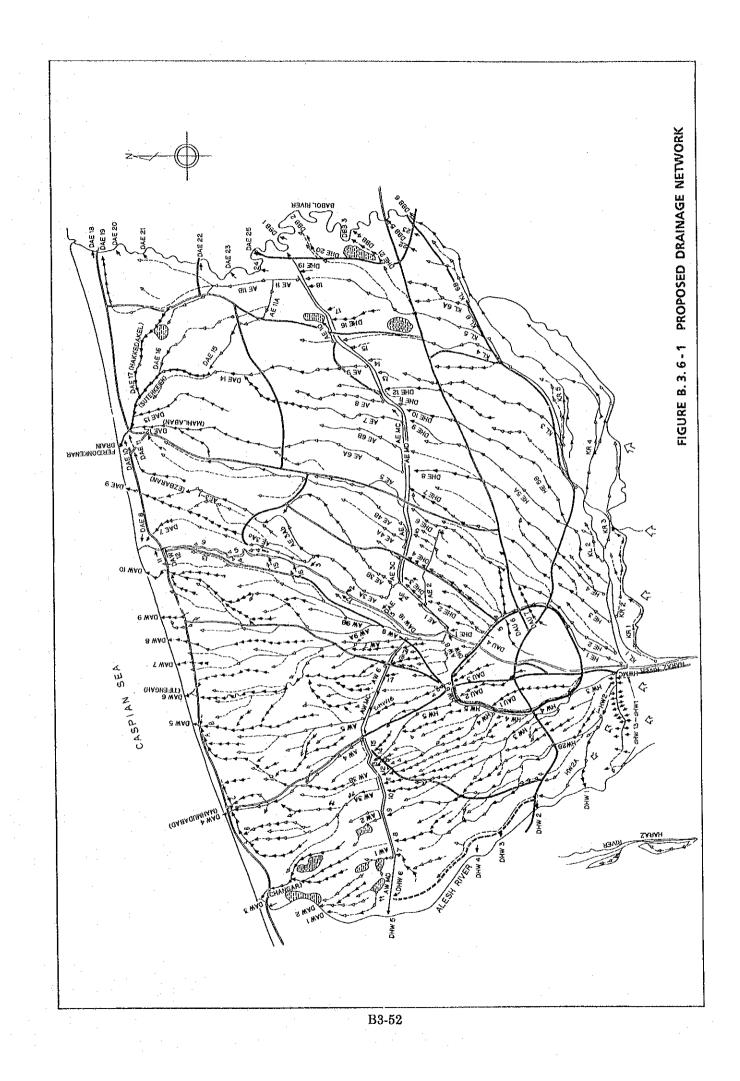
By diverting the Ezbaran drain, the Fereidon Kenar drain can be improved with slightly enlarging the width. It does not cause demolishment of houses in large scale.

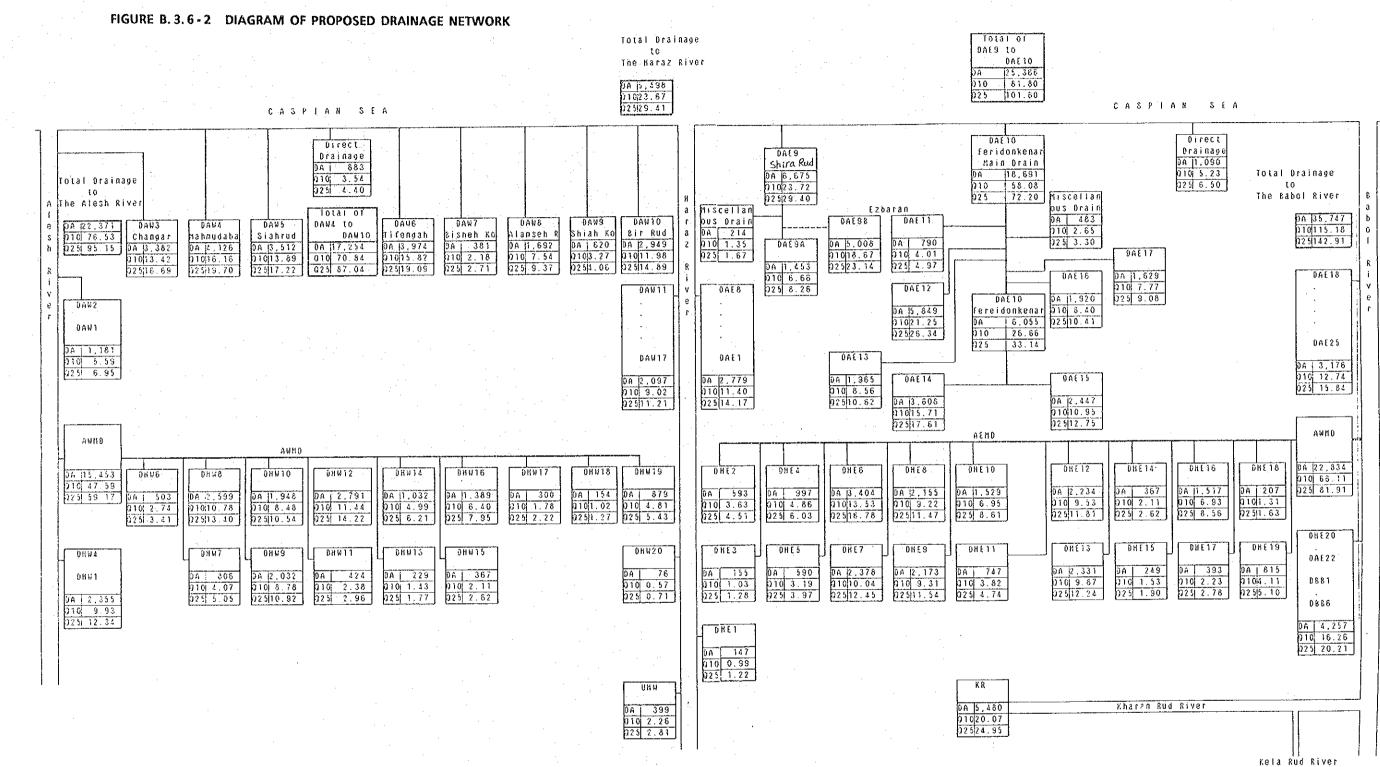
2) AEMD

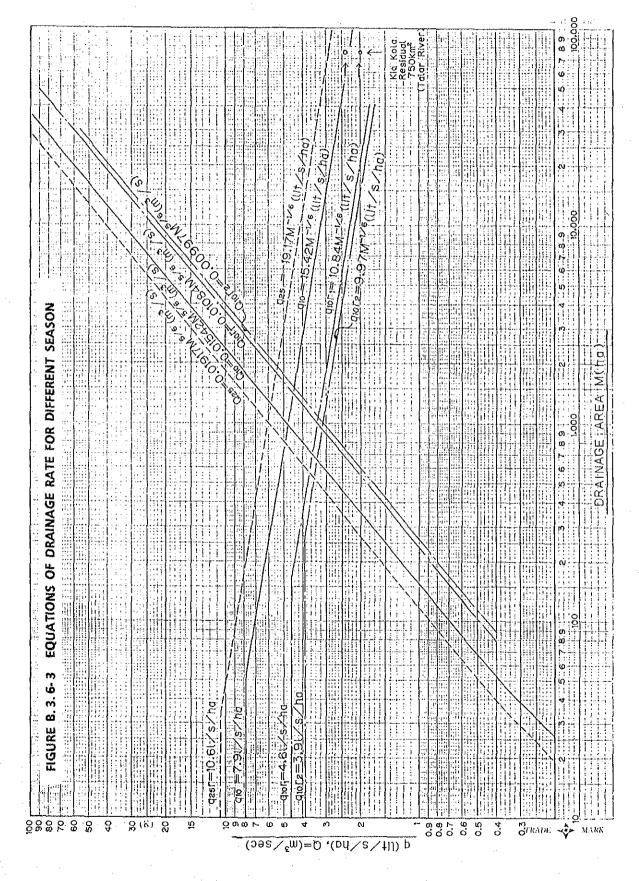
Location of outlet of the AEMD has been examined. However, the Babol river does not get any influence by the location of outlet because the Babol river requires its improvement far downstream from the outlet.

#### TABLE B. 3. 6 - 1 RUNOFF CURVE NUMBERS FOR HYDROLOGIC SOIL-COVER COMPLEXES

Land use	Cover Treatment	Uudnoleato	Undas 7	Hydrologic soil group					
Land use		Hydrologic condition	A	B B	C C	D D			
Fallow	Straight row		77	86	91	<u>9</u> 4.			
Row crops	11	Poor	72	81	88	91			
100 oropo	11 II.	Good	67	78	85	89			
	Contoured	Poor	70	79	84	88			
	11	Good	65	75	82	86			
	"and terraced		66	7ĥ	80	82			
	11 81 11 .	Good	62		78	81.			
Small	Straight row	Poor	65	76	84	88			
grain	· · ·	Good	63	75	83	87			
	Contoured	Poor	63	74	82	85			
		Good	61	73	81	84			
	"and terraced	Poor	61	72	79	82			
		Good	59	70	78	81			
Close-seeded	Straight row	Poor	66	77	85	89			
legumes l/	u u	Good	58	72	81	85			
or	Contoured	Poor	64	75	83	85			
rotation	11	Good	55	69	78	83			
meadow	"and terraced	l Poor	63	73 67	80	83			
	"and terraced	l Good	51	67	76	. 80			
Pasture		Poor	68	.79 '	86	89			
or range		Fair	49	69	79	84			
		Good	39	61	74	80			
	Contoured	Poor	47	67	81	88			
	11	Fair	25	59	75	83			
:	11	Good	6	35	70	79			
Meadow		Good	30	58	71	78			
Woods		Poor	45	66	77	83			
· · · · · · · · · · · · · · · · · · ·		Fair	36	60	73	79			
		Good	25	55	70	77			
Farmsteads			59	74	82	86			
Roads (dirt) (hard	<u>2/</u> surface) 2/		72 74	82 84	87 90	89 92			


(Antecedent moisture condition II, and  $I_{2} = 0.2$  S)


1/ Close -drilled or broadcast. 2/ Including right-of-way.


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	3	24	5	1	2	3	4	5
100100100006040786.671.339997100.101.025939776.951.33989499.204.045838767.241.44979199.309.065737757.541.54968999.417.085636757.861.55958798.638.135434738.521.77928197.989.205131709.611.929078961.11.2250317010.02.008097.989.2051317010.02.008076961.24.2549306910.42.068875951.36.3346276611.72.318570941.63.3346276611.72.318570941.76.3545266512.22.448468951.90.3844256412.72.548367932.05.4143256513.22.648468951.90.3844256412.72.54856793<	condi- tion	cond	itions		starts where	condi- tion	cond	itions		
9997100.101.025959776.951.53989499.204.045838767.241.45979199.309.065737757.541.55968999.417.085636757.861.55958798.526.115535748.181.60948598.638.135434738.521.77928197.989.205131709.611.92918097.989.205131709.611.929078961.24.2549306910.42.068875951.36.2748296810.82.168773951.49.3047286711.32.268468931.90.3844256412.72.548570941.76.3545266513.22.448468931.90.3844256412.72.548367932.05.4443256412.72.548468931.90.3844256412.72.54856	 			(inches)	(inches)				(inches)	(inches)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	998769999999999999999999999999999999999	9999888888887777776666432098755555555444444444	100 99 99 98 88 77 76 65 55 44 55 59 99 99 91 90 88 88 87 86 85 84 84 85 82 81 80 79	$\begin{array}{c} .101\\ .204\\ .309\\ .417\\ .526\\ .8750\\ .981\\ 1.24\\ .638\\ .7570\\ .981\\ 1.24\\ .638\\ .7570\\ .991\\ 1.24\\ .636\\ .9050\\ .222\\ .5682\\ .916\\ .3510\\ .998\\ .249\\ .222\\ .555\\ .3555\\ .13\\ .5555\\ .13\end{array}$	.02 .04 .06 .08 .11 .13 .15 .17 .20 .22 .25 .27 .30 .33 .35 .38 .41 .44 .47 .50 .536 .60 .637 .748 .826 .90 .94 .98 1.03 1.08 1.12 1.17 1.23	59876543210987654321098765432109876543210	398 376 354 332 3130 988 7652 22222 22120 9818 76654 29642 29642 20918 187665 129642	776 7577 7777 7070 988 766 564 362 160 598 776 554 352 1 00 988 766 564 362 100 598 776 554 352 1 00 43 770 22 3	6.67 6.95 7.24 7.54 7.86 8.18 8.52 8.87 9.23 9.61 10.0 10.4 10.8 11.7 12.2 13.8 14.4 15.6 16.3 17.8 18.6 19.4 20.32 21.2 23.3 30.0 10.0 17.8 18.6 19.4 20.32 21.2 23.3 30.0 56.7 90.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0	1.33 $1.39$ $1.45$ $1.51$ $1.57$ $1.64$ $1.70$ $1.77$ $1.85$ $1.92$ $2.00$ $2.08$ $2.16$ $2.26$ $2.34$ $2.44$ $2.54$ $2.64$ $2.76$ $2.88$ $3.00$ $3.12$ $3.26$ $3.40$ $3.56$ $3.72$ $3.88$ $4.06$ $4.24$ $4.44$ $4.66$ $6.00$ $8.00$ $11.34$ $18.00$ $38.00$

# TABLE B. 3. 6 - 2 CURVE NUMBERS (CN) AND CONSTANTS FOR THE CASE Ia = 0.2 S

*For CN in column 1.







B3-54