		•	
NUKN	DC -	1992	1250
Пата	1		0

			MINISTERNATION AND ADDRESS.				XM or 7. We Madelland and Pol	· · ·	VIAMIAN CV	и показат	OH NUS	DMA		rice (little Colonia and a colonia and			W. Antonia and Antonia			
				1	i		<u> </u>	1	AMMUTEL	I IOKASAI	ENIM LIC)rijik			1					
Пореден номер	наименование на пробоотворните места	C.5 - 8.5	Алкалност мтекв/л	Обща твърдост <30° Н	Калинй <i>мг/л</i> <250	Магиезий мг/л <80	Сяроводород и сулфади мт/п ве	Разтворен О ₂ >5	Окисляемост мг О ₂ /л <15	Разтворени 8-ва мг/л <1000	Нератворски В-ва мп/л <30	Амоняк мг/л <0,1	Хлориди мг/л <300	Цианиди мг/л <0,02	Феноли мг/л <0,001	Нефгопродукти <i>мг/л</i> <0,3	Желязо мт/л <1,0	Сулфати мг/л <250	Манган до 0,3 мг/л	БПК
1	KXII 1 01.98 me.															Α	0 7	24,0	0,28	
	2 MMDB-BX	7,19	18	16,5%	84,16	20,67	0	6,25	4,46	324	61	0,64		0,32	1,11	7	47	07,0		
	3 - 427	7,08		15,12	74,14	20,66	0	6,58	1268	304	23	5,74		0,43	4,63	<i>t</i>	4,54	0	0, E4 0	
	18 MB -6x	6,99	***************************************	14,28	70,13	19,45	<i>D</i>	8,03	2,92	275	37	4,93		0,12	- 0	D.	0,78	0	0	
	19 -4171,	7,13	***********	13.86	60,11	23.71	0	8,99	2,26	283	35	357		0	0	0	0,40		برکن چ	
ب _ن 2ء:	Сборна 14												***********		- .					
1	кедп 12.02,92 от													0,33	0,35	5,5	1,82	1	0,40	T
4	XBO MEMBB-8X	6,44	*********	13,0%	64,12	18,24	0		4,88	278	40	0,33	*		7	5,75	3,89	0	0,53	1
.5	/ цкл 4 <i>- иза</i>	6,51		13,86	68,13	17,02	2		8,67	283	31	5,49		0,43	49	1	0,31	D	0	
	510B-6x	6,13		13,13	58,11	21,8	0		2,49	250	19	3,2		0	0	0	0,46	0	0	†
	17 -427	6,19		14,39	62,12	17,69			427	256	20	2,34							,	
6	TDQ 7							***************************************	7		****************						· ·			
	03.92000								.01-	0.7 4	F. 1	900.		0,43	0,42	5	283	36,51	0,37	
7	псв в Nendb-вх		******************	13,80	67,33	19,45	0		12,33	297	61	302		0,47	0,23	4,02	402	0	0,41	
8.	PA 3 15 - UZA	7,23		14,89	65,72	20,42	<u> </u>		1293	290	24 17	26	***************************************	0	0	24	1,06	0	0	
9 	16 MOB-BY	402	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16,58	78,55	24,27	0		6,14	133	1	0,28		0	0	0	0,72	0	0	
10	Локомотивно депо 9- ИЗХ	6,9		14,93	70,54	18,97	0		4,21	199		1,000								1.
_11	Маслено стопанство 10				,					[,					_
12	цу — ф. коломор Волов Главен ф. коломор ППД — вх	[] [1220	6813	16 11 1			7,24	357	73	3,19		0,18	0,49	6	1,57	33,62	0,36	
13	Главен ф. колектор (110/2) - 6 х	6120		13,30		16,41	0		8,36		51	348		0,19	0,82	5,5	3,49	0	0,47	
14	Главен д. колектор 24 ИЗК	6,27		11,9	66,12	' 1	u		3,34		24	3,23		0,03	0	بگر	0,73	0	0	.
	Шламова стания В - вх	6,15		19,32			Û		211	3,17	17	1,0		U	U	0	0,33	U	0	_ _
†·		6,14		13,58	76,08	15,8	<i>V</i>		1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					<u> </u>	ļ		
17	/Ari 05,92rov.		******		*****											~ 6	(10	0	066	
···†	NENDB-8x	6,10		10,16	8617	13,98	0		5,48	319	105	277	,	0,38	0,19	1	6,18	0	0,53	
·····		668		13 44	40,13	15,8	0		10,44	272	FR	4,96	•	0,5	0,26	4,2	4,76 лаборатория		0,00	

смкк — 2739 — 5000

	 	*****	***********		****
Дага	 	*****			
				·	

	На серебно в пред 17 живе в пред 17 же в 17 же				ALCE SE	C WAY AND		A STATE OF THE PARTY OF THE PAR	ХИМИЧЕСІ	ки показа	ТЕЛИ — НО	OPMA	ng te er a sembograf ann an air air agus an ann an	The Property of the Parish of	n decemberayanan dadlaray	N	And Andrews Control of the Control o		en e	PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS
Пореден номер	НАИМЕНОВАНИЕ НА ПРОБООТБОРНИТЕ МЕСТА	P _{tt} 0.5 — 8.5	Алкалност итекв/я	Обица твърдост <30°.Н	Калцый мг/л <250	Магнезий мг/л <80°	. Сяроводород и сулфади мг/л не	Разтворен О ₂ >5	Окнеляемост иг Qg/n <15	Разтореня в-ва мг/л <1000	Иератиорошн в-па мг/л <30	Амоияк мг/я <0.1	Хлориди мг/л .<300	Циания мг/л <0,02	Феноли мг/л <0,001	Hetpronpoaykru Mr/n <0,3	Желязо мг/л <1,0	Сунфати мг/я <250	Манган до 0,3 мг/л	BIIK, go 10
	кхп <u>1,05,92 гдо.</u> 2 <i>МПВ-Е</i> х 3 - игх	6,78		15,12	74,14 68,13	20,67 31,61	0		4,46	322 319	31 7	3,49		0	0	1,5	1,4 1,17	0	0	
- E	18 19 06, - GLAVE, CGODNA 14 WM TB - CX			<i>7,00</i>	48,10		0		16,10	198	41	¥,3		0,55	4,32		5,59	0	0,56	
ų T	ксдп 12 - UZ3 хво 6 МВ - вх цкл 4 - идх	6,68 6,48 6,57		8,62 15,9 2,8	43,29 74,14 68,94	25,29	0		12, 11 3,38 2,43	134 3(6 31.3	44 29 8	1,1		0,53 0	4,34 O O	71.2 3 0	4,65 1,77 1,53	0	0	
6	5 17 07.92 год. тип 7 МСИДВ-6х 13 — игх	6,88		11,34	108, 3 .1 48,16	27,4	0		14,69 7,32	203 194	35 52	6,17		0,24 0,21	5,03 0,23	11	5,93 3,86	0	0,45	
8	ПСВ 8 МВ-6 х РМЗ 15 — ИСЯ ПГВ 16	6,20		14,00	61,38 64,25	27,58	0		4,28 44	364 253	62 9	2,14 0,71		0	0	13 5	1,04 0,85	0	0	3
11	Локомотивно ден В. 92000; Маслено стоучевал ДВ Вх ПУ — ф. колектор 20—ИЗХ	40 40		11,76	70,13 54,10	10,33	0		14,26	24 R 241	8R 73	11,04		0,36	1,78 6,48	<u>45</u> 5,5	3,54 2,0	0	0,32	
14	Главен ф. колектор 21 UZA Пламова станция 3	6,75		14,84 14,56	¥4,14 82,16	19,46 13,37	0		5,62 3,65	269 259	45 25	2,97 1,52		0,07	0	3, Q	1,34 1,93	0	Q.113 Q.113	
1	тец <u>109, 92 год</u> ап <u>МСМ8 В - В х</u> — 1425 МСВ - В х	6,8% 6,73		8,18 9,26 14,00	51,30 46,49 65,73	12,16	0	7	14,14 9,37 4,32	202 192 274	124 33 21	10,3 5,79 3,30		0,40 0,41 0	1,57 1,24 0	6 6 3	4,4 4,53 1,11	0 0	0,3,6 0,32 0	
	-UZX 2739 — 5000	6172	***************************************	13,78	62,52	18,09	0	······································	491	250	7	0,43	•	0	0	. ₹ 3ae.	О, Р ∓ лаборатория:_	0	0	

	and the state of t		Barra Barratina ettera a		1		Дага	***************************************					e De let skunderkoje predskrivanje	and and projects to see the first of the first of the second	Line Company Company of the Local		THE PERSON NAMED IN POST OF PE			***************************************
				And Annual Control		,			ХИМИЧЕС	ки показа	тели — но	РМА	,	٠.		· · · · · · · · · · · · · · · · · · ·	and the state of t		and the second s	olina ara mani kini da ara ara ara ara ara ara ara ara ara
Hopedell Kokep	НАИМЕНОВАНИЕ НА ПРОБООТБОРНИТЕ МЕСТА	Pn -65.=- 8.5 .	Алкалпост мтекь/л	Обща тпърдост <30° Н	Калций мг/л <250	Магнезий мг/л <80	Спроводород и сулфади мг/и по	Разтворен О2 >5	ORIGINATION OF A 15 4 15 4 15 4 15 4 15 4 15 4 15 4 15	Pastuopeint 8-34 htt/A <1900	Ператвореш в-ва мг/и <30	Амонак мг/л <0,1	Хлориди мг/л <300	Пиапияп мг/л <0,02	Феноли мг/л <0,001	Пефтопродукти мг/л <0,3	Желязо мт/л <1,0	Сулфати мг/л <250	Мапган до 0,3 мг/л	БПК ₅ до 10
1	кхп 1 <u>10, 92 сев</u> 2 NMBB - вх	7,26		8,77	56,11	10,54	0		7,6'8	145	65	1,4		0,09	0,15	11	4,47	0	0,23	
,	3 - 421	7,22	· · · · · · · · · · · · · · · · · · ·	8,8	61,5	7,3	0		6,96	145	34	3,8		0,1	0,1	8	40	0	0,4	
	18 MOB - BX 19 - UZA	6,51		12,5	93,52	2,4 4,9	0		5,68	279	23 32	419		0	0	0	0,3	0	0	
2	\mathcal{O}	V.1.1.C		1.4.2		771.5			1//											
	кедп 12 M. 9 Laws хво ЛемДВ-вх	7,95		9,71	8483	0,81	0		2272	134	51	401		0,43	16,76	34,5	5,33	0	0,31	
4 5	цкл 4 — МЗЛ	4,38	***********	11,20	56,11	14,60	******		20,02	******************	47	407	,	0,41	10,46	3,5	4,47	0	0,20	
1	1603 - 8x	6,88		16,10					5,16	199	58 37	5,14		0	0	43	0.68	0	0	
6	17 - UZX	727	***************************************	16,24	76,15	29,52	0		3,86	70 -		7,00								
4	18.92000	X	*	15.0	DC 14	45.45			15 110	148	145	7,10	<u></u>	0,29	4,55	15	5,35	O	0,34	
11	ПСВ 8 МСМ Д В - Вх РМЗ 15 — ULX		3	15,54	86,17 100,19	15,23 11,64	0		15,40		26	603		0,28	0,41	6	308	0	0,29	
4	пгв 16 MOB - 6 x	702	***********	20,16	71,14	44,68	- 1		4,70	133	35	1,24		0	0	4	0,58	0	0	
10	Локомотивно дено 9 — ИДА. Маслено стопанство 10	¥,01	; ;	18,34	18,15	32,81	0		3,14	177	22	0,44	1	0		:	<i></i>			
12																				
13	Главен ф. колектор 11			*	-			······································				-	<u>.</u>							
14	Главен д. колектор 21 Шламова станция 3												+							
16	TEIT						1				:									
17	AII		-				1													
	1 1	i : 1	3	1				:	1 : 1		1	1	5	ì		,	i . 1		1	L

Зав. лаборатория:_____

АТИЦЕНИ РЕЗУЛТАТИ ОТ ИЗМЕРВАНИЯТА НА ДЕБИТ И КОНЦЕНТРАЦИЯ НА ПРАХ ЗА 1992 ГОДИНА

OYUCHO / IPED OPUNTAPA	CAED COUNTRIES
CBOPBING - Qu ZO No HH3/4 F/HM	" O. HILKAR IZO T.P./HM
No. 141/4 1/41/4	##/Zac F.P./H.M. 3 509177 0,951 4 261702 0,318 7 313635 0,460 3 13635 0,465 9 332908 0,814 570929 0,209 476875 0,202 476835 0,082 476835 3,065 45625 3,065 45856 0,496 4782

IV. КОНТРОЛ НА ЗАМЪРСЯВАНЕТО НА ВСЯКО ПРОИЗВОДСТВО

1.В "Кремиковци"-АД съществува Лаборатория за изследване и контрол параметрите на околната среда в състава на Централна комбинатска лаборатория и е на пряко подчинение на Намалника на последната.

Лабораторията за изследване и контрол параметрите на околната среда има ръководител, 7 технолози, три групи за контрол (по прахогазови измервания, контрол на атмосферния въздух и работната среда и контрол на водите). Общия числен състав е 51 човека.

- 2. Качествените стандарти за въздуха, за водата, токсични вещества и шум са легализирани в България.
 - 3. Не местни стандарти, а държавни.
 - 4.Приложения №№1 и 2.
 - 5. Екологични проблеми, нуждаещи се от спешно решение:
 - Премахване вторичното замърсяване на Сгуроотвала;
- Прекратяване на фенолните имисии от мокрото гасене на кокса:
- Въвеждане в експлоатация на физико-химичното стъпало на Пречиствателната станция за промишлено-дъждовни води
- Реконструкция на електрофилтрите в АЦ на АДЗ с оглед достигане новите норми, които ще влязат в сила от 1995 г.;
- Изграждане на правоуловителни и газопречистващи инсталации към литейните дворове в ДЦ на АДЗ; Вигоромента до домента в доме
- Реконструкция на пречиствателните съоръжения, монтир рани в отделните цехове на СДЗ с, оглед достигане новите норми и изграждане на нови съоръжения в Миксерно отделение;
- Капсуловане на транспортните ленти и изграждане на пречиствателни съоръжения на пресипките.
- 6.Оборудване за контрол на замърсяването има както следва: Лаборатория за прахогазови замервания работи със стандартизирана апаратура за периодичен контрол на прахоуловителните съоръжения (дебит и прах) и газоанализатор тип "Сенсоник"5000
- Лаборатория (група) за контрол на атмосферния възду - измерва се периодично съдържанието на прах, азотни окиси и фенол в 6 пункта на територията на фирмата със стандартна преносима апаратура "Хигитест";
- Лаборатория (група) за води работи се по методите на БДС за вредни вещества в промишлени и битово-фекални води.

Контролира се периодично вход и изход качеството на водите на пречиствателните станции.

7.Приложения №№2 и 3.

8.Доклади за решаване екологичните проблеми на "Кремиковци"-АД са разработени от следните фирми:

- "Фьост Алпине" - Австрия

- 1988 r;

- "Джейка" - Япония

- 1993 r;

資料 3-1)

«STOMANA» COMPANY BULGARIA, 2304 PERNIK

FIRMA «STOMANA» BULGARIEN, 2304 PERNIK

«STOMANA» company was commissioned into operation in 1953 and produces the following:

- ingot steel and billets (slabs and blooms) cast by means of a continuous casting machine;
- ♦ hot-rolled steel profiles as:
- reinforcement steel bars for steel-concrete constructions;
- equal-angle steel;
- ♦ channel steel;
- flat steel;
- square bars to be processed;
- bell-shaped and trough-shaped profile for supporting in mines;
- steel balls for ball mills;
- ♦ hot-rolled plate steel;
- hot-rolled, heat-treated, calibrated, hardened and grinded round profiles;
- burnt lime (quicklime);
- ♦ fired dolomite;
- centrifugal cast rolls and thick-walled tubes;

Besides attending to the metal needs of the country, «Stomana» Company exports its products to the countries of Europe, Asia, Africa and Latin America too.

Firma «STOMANA» (Stahl) Stadt Pernik ist seit 1953 in Betrieb und erzeugt:

- Blockstahl und Knüppeln (Brammen und Vorblöcke), die an Stranggußanlagen gegossen sind.
- warmgewalzte Stahlprofile, wie es folgt:
- Bewehrungsstahl f
 ür Stahlbetonkonstruktionen,
- ◆ gleichschenkliger Winkelstahl,
- ♦ U förmiges Profil,
- ♦ Flachstahl,
- ♦ Quadratstahl f
 ür Verarbeitung,
- glocken und trogförmige Profile für Grubenausbau.
- ◆ Stahlkugeln für Kugelmühlen,
- warmgewalztes Grobblech,
- Rundprofile warmgewalzt, warmbehandelt, kalibriert, verfestigt und geschliffen,
- ungelöschter Kalk
- ◆ Sinterdolomit
- zentrifugalgegossene Walzen und dickwandige Röhre

Die Produktion der Firma deckt nicht nur den Bedarf unseres Landes, sondern sie wird auch nach vielen Staaten in Europa, Asien, Afrika und Lateinamerika exportiert.

Hot-rolled	Warmgewalztes
Plate Steel	Grobblech

2

Dimensions

in accordance with DIN 1543 Thickness – 8 up to 25 mm Width – 1400 up to 1800 mm Length – 3000 up to 12000 mm

Shape and admissible Deviations in accordance with DIN 1543

Steel Grades

- \$t 33, \$t 37-2, \$t 37-3, \$t 44-2, \$t 44-3, \$t 52-3
 DIN 17100
- ◆ Ck 10, Ck 15, C 22, C 25, C 30, C 40, C 45, 28Cr4, 34Cr4, 41Cr4 DIN 17200
- GL-A, GL-B, GL-A32, GL-D32, GL-A36, GL-D36, GL-A32 in accordance with "Lloyd" - Germany.

H - heat resistant boilr steel in accordance with DIN 17155.

 $\mathsf{E}-\mathsf{low}\text{-}\mathsf{alloyed}$ fine-grained constructional steel in accordance with DIN 17102.

Dispatch

In separate plates or packages.

The rest technical requirements shall be agreed at the time the order is accepted.

Maße

nach DIN 1543 Dicke – 8 bis 25 mm Breite – 1400 bis 1800 mm Länge – 3000 bis 12000 mm

Form und zulässige Abweichungen nach DIN 1543

Stahlmarken

- \$t 33, \$t 37-2, \$t 37-3, \$t 44-2, \$t 44-3, \$t 52-3
 nach DIN 17100
- Ck 10, Ck 15, C 22, C 25, C 30, C 40, C 45, 28Cr4, 34Cr4, 41Cr4 nach DIN 17200
- GL-A, GL-B, GL-A32, GL-D32, GL-A36, GL-D36, GL-E36 nach "Loyd"-BRD

H (Kesselbaustahl thermoresistent) nach DIN 17155 E 355 (niedriglegierter feinkörniger Konstruktionsstahl) nach DIN 17102

Expedition

einzelne Platten oder in Bündeln

stomene

Calibrated	Kalibrierter	
Round Steel	Rundstahl	 <u> </u>
		:
		 ····

Dimensions and admissible deviations: rods with dia. 14 up to 100 mm in accordance with DIN 671(h_a) and DIN 668(h_{11}).

Steel Grades

- ◆ St 37-2, St 50-2, DIN 17100
- ◆ 28Cr4, 34Cr4, 41Cr4, C 22, till C 60 DIN 17200
- ♦ Ck 10, Ck 15, 17623 DIN 17210

Technical requirements and delivery conditions:

DIN 1632

- non-heat treated (cold-hardened or coldworked) steel;
- ♦ heat-treated (annealed);
- grinded;
- polished;
- oiled;
- with chamfer for rods with dia. 13 up to 65 mm.

Length

3 up to 6 m.

Dispatch

In bundles with weight 2 up to 5 tons.

Maße und zulässige Abweichungen

Rundstäbe mit Durchmessern von 14 bis 100 mm nach DIN 67($h_{\rm o}$) und DIN 668($h_{\rm 11}$).

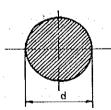
Stahlmarken

- ♦ St 37-2, St 50-2 nach DIN 17100
- 28Cr4, 34Cr4, 41Cr4, C 22, bis C 60 nach DIN 17200
- Ck 10, Ck 15, 17623 nach DIN 17210

Technische Anforderungen und

Lieferzustand

DIN 1652


- ♦ nichtwarmbehandelt (mit Kalthärtung)
- warmbehandelt (geglüht)
- geschliffen
- ♦ blank
- angefaste Rundstäbe mit Durchmessern von 13 bis 65 mm

Länge

3 bis 6 m

Expedition

in Bündeln mit einem Gewicht von 2 bis 5 t.

Hot-Rolled	Rundstahl,	
Round Steel	warmgewalzt	
	· · · · · · · · · · · · · · · · · · ·	

Dimensions

diametres (d) 50 up to 100 mm in accordance with DIN 1013-11/76

Shape and Admissible Deviations in accordance with DIN 1013-11/76

Steel grades

- ♦ St 33, St 37-2, St 50-2 DIN 17100
- ◆ Ck 10, Ck 15, C 22, C 25, C 30, C 35, C 45, 28Cr4, 34Cr4, 41Cr4, 40NiCr6 DIN 17200

Length

3 up to 7 m in accordance with DIN 1013-1/76

Dispatch

In bundles with weigth up to 5 tons.

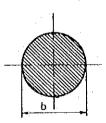
The rest technical requirements shall be agreed at the time the order is accepted.

Maße

Durchmesser (d) von 50 bis 100 mm nach DIN 1013-11/76

Form und zulässige Abweichungen nach DIN 1013-11/76

Stahlmarken


- ♦ St 33, St 37-2, St 50-2 nach DIN 17100
- ◆ Ck 10, Ck 15, C 22, C 25, C 30, C 35, C 45, 28Cr4, 34Cr4, 41Cr4, 40NiCr6 nach DIN 17200

Länge

von 3 bis 7 m nach DIN 1013-1/76

Expedition

in Bündeln mit einem Gewicht bis 5 t

stomane

Hot-Rolled	Winkelstahl
Equal-angle	warmgewalzt,
Steel	gleichschenklig
A COLUMN TO THE REAL PROPERTY OF THE PARTY O	

5

Dimensions

in accordance with DIN 1028-10/76

axaxs

65 x 65 x 7 mm

70 x 70 x 6/7/9 mm

75 x 75 x 7/8 mm

80 x 80 x 6/8/10 mm

90 x 90 x 7/9 mm

100 x 100 x 8/10/12 mm

Shape and Admissible Deviations

In accordance with DIN 1028-10/76

Steel grade

♦ St 37-2, St 50-2, DIN 17100

Length

6 up to 9 m DIN 1028-10/76

Dispatch

In bundles with weight up to 5 tons.

The rest technical requirements shall be agreed at the time the order is accepted.

Maße

nach DIN 1028-10/76

a x a x s

65 x 65 x 7 mm

70 x 70 x 6/7/9 mm

75 x 75 x 7/8 mm

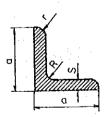
80 x 80 x 6/8/10 mm

90 x 90 x 7/9 mm

100 x 100 x 8/10/12 mm

Form und zulässige Abweichungen nach DIN 1028-10/76

Stahlmarken


♦ St 37-2, St 50-2 nach DIN 17100

Länge

6-9 m nach DIN 1029-10/76

Expedition

in Bündeln mit einem Gewicht bis 5 t

Hot-rolled		Flachstahl	
Flat Steel	:	warmgewal	zt
(Bands)			

6

Dimensions

DIN 1017-1/67

H - 25 up to 60 mm;

B - 100 up to 150 mm

Shape and Admissible Deviations DIN 1017-1/67

Warp

not more than 0,01 L

Steel grades

- ♦ St 37-2, St 44-2, St 50-2 DIN 17100
- ♦ C 35, C 45 DIN 17200
- ♦ St 30 Mn5

Length

2 up to 8 m in accordance with DIN 1017 - 1/67

Dispatch

In bundles with weight up to 5 tons.

The rest technical requirements shall be agreed at the time the order is accepted.

Maße

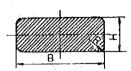
nach DIN 1017-1/67 H – von 25 bis 60 mm

B - von 100 bis 150 mm

Form und zulässige Abweichungen nach DIN 1017-1/67

Krümmung nicht größer als 0,01 L.

Stahlmarken


- ♦ St 37-2, St 44-2, St 50-2 nach DIN 17100
- ♦ C 35, C 45 nach DIN 17200
- ♦ St 30 Mn5

Länge

von 2 bis 8 m nach DIN 1017-1/67

Expedition

in Bündeln mit einem Gewicht bis 5 t

stomana

U-förmiges Profil	
warmgewalzt	
(Schweller)	
	<u> </u>
	<u>-</u>
	warmgewalzt

Dimensions

No. 8, No. 10 and No. 12

Technical data

Maße

Nr. 8, Nr. 10 und Nr. 12

Technische Charakteristik

Number of		Dimensions, mm / Maße, mm										
profile Nummer der Profile	ħ	Admissible deviations Zuläss. Abweich.	b	Admissible deviations Zuläss. Abweich.	S	t	R	ı	kg/m Theor, Masse			
8 10 12	80 100 120	+/- 1,5 +/- 2,0 +/- 2,0	40 46 52	+/- 1,5 +/- 2,0 +/- 2,0	4,5 4,5 4,5	7,4 7,6 7,8	6,5 7,0 7,5	2,5 3,0 3,0	7,05 8,59 10,40			

Channels

U 8; U 10 and U 12 in accordance with DIN 1026.

Steel grades:

♦ St 37-2 in accordance with DIN 17100.

Length

4 up to 9 m.
Admissible deviations on length up to 8 m + 40 mm above 8 m + 80 mm

Warr

not more than 2mm per linear metre (0,2 per cent)

Dispatch

In bundles with weight up to 5 tons.

The rest technical requirements shall be agreed at the time the order is accepted.

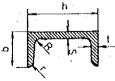
U-förmige Profile

U 8, U 10, und U 12 nach DIN 1026

Stahlmarken

♦ St. 37-2 nach DIN 17100

Länge


von 4 bis 9 m Zulässige Abweichungen in der Länge bis 8 m + 40 mm über 8 m + 80 mm

Krümmung

nicht größer als 2 mm/Meter (0,2%)

Expedition

in Bündeln mit einem Gewicht bis 5 t Die restlichen technischen Anforderungen werden bei Auftragserteilung vereinbart.

Bell-shaped	Glockenförmige
Profile for	Profile
Supporting	für Grubenausbau
in Mines	

Dimensions and Technical data

Maße und technische Anforderungen

Symbol Bezeichnung	В	B ₁	Н	b .	s	h	A,	R ₂	FL ₃	Ř,	Theoretic, mass Theor, Masse
Dimensions (mm)	96	133	90,5	20	9	23	30	36	30	25	21,5 kg/m
	+/- 2,0	+/- 2,0	+/2,0	+/- 2,0	+/- 0,5	+/- 1.0	-	-			+/- 5%

F	J _x	W _x	Ļ
см ²	см ⁴	см ³	см
27.4	195.4	43,1	2,67

Steel grades:

♦ C 25 DIN 17200

Length

It is supplied in 4 types.

- 1. type 2150, 4300, 6450 mm
- 2. type 2400, 4800, 7200 mm
- 3. type 2800, 5600, 2000 mm
- 4. type 3400, 6800 mm
- 2. The other length groups in the range of 2150 up to 9000 mm shall be agreed at the time the order is accepted.
- 3. Admissible deviations on length:
- up to 6 m + 40 mm
- above 6 m + 80 mm
- 4. Profiles for supporting segments (frames) are with length accuracy + 5 mm.

Stahlmarken

♦ C 25 nach DIN 17200

Länge

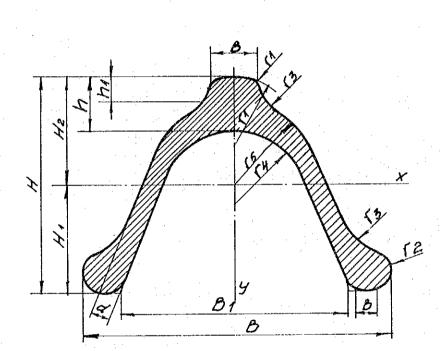
- 1. Wird in 4 Typen geliefert. Die Typen schließen festgestellte Längen und durch sie teilbare Längen ein.
 - 1. Typ 2150, 4300, 6450 mm
 - 2. Typ 2400, 4800, 7200 mm 3. Typ 2800, 5600, 2000 mm

 - 4. Typ 3400, 6800 mm
- 2. Andere Längengruppen im Bereich von 2150 mm bis 9000 mm werden bei Auftragserteilung vereinbart.
- Zulässige Abweichungen in der Länge

bis 6 m + 40 mm

über 6 m + 80 mm

4. Werkstücke für Ausbausegmente (Rahmen) mit einer Längengenauigkeit von + 5mm.


Warp Not more than 8 mm per linear metre.

Dispatch In bundles with weight up to 5 tons.

The rest technical requirements shall be agreed at the time the order is accepted.

Krümmung nicht größer als 8 mm/i.m

Expedition In Bündeln mit einem Gewicht bis 5 t

Trough-shaped	Trogförmige
Profile for	Profile
Supporting in Mines	für Grubenausbau
(With mass	mit Masse
28,07 kg/l.m)	28,07 kg/l.m

Dimensions and Technical data

Maße und technische Charakteristik

ĺ	surface Trăgheits		noments smoment e	Resistance Widerstands		inerti iedgētT	Ratio Verhālinis	
Masse pro 1m	Schnittfläche	X-X	Y-Y	х-х	Y-Y	X-X	Y-Y	
G	F	J _x	J _y	W _x	. W _y	i _x	Ļ	W,/G
kg/m 28.07	cm² 35.76	cm ⁴ 678.24	cm ⁴ 777,61	cm ³ 113,04	cm ³ 103,02	cm 4,36	cm 4,66	4,03

Steel grades:

- ♦ St 37-2, St 44-2, St 50-2 DIN 17100
- ♦ C 25 DIN 17200

Length

- 1. It is supplied in 4 types.
 - 1. type 2150, 4300, 6450 mm
 - 2. type 2400, 4800, 7200 mm
 - 3. type 2800, 5600, 2000 mm 4. type 3400, 6800 mm
- 2. The other length groups in the range of 2150 up to 9000 mm. are agreed at the time the order is accepted.
- 3. Admissible deviations on length
- up to 6 m + 40 mm
- above 6 m + 80 mm
- 4. Profiles for supporting segments (frames) are with length accuracy + 5 mm.

Stahlmarken

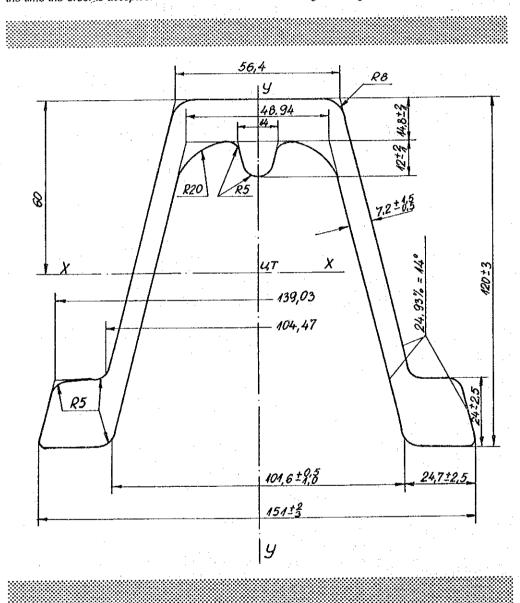
- ◆ St 37-2, St 44-2, St 50-2 nach DIN 17100
- ♦ C 25 nach DIN 17200

Länge

- 1. Wird in 4 Typen geliefert. Die Typen schließen festgestellte Längen und durch sie teilbare Längen ein.

 - 1. Typ 2150, 4300, 6450 mm 2. Typ 2400, 4800, 7200 mm 3. Typ 2800, 5600, 2000 mm
 - 4. Typ 3400, 6800 mm
- 2. Andere Längengruppen im Bereich von 2150 bis 9000 mm werden bei Auftragserteilung vereinbart.
- 3. Zulässige Abweichungen in der Länge bis 6 m + 40 mm
- über 6 m + 80 mm
- 4. Werkstücke für Ausbausegmente (Rahmen) mit einer Längengenauigkeit von + 5 mm.

Warp Not more than 10 mm per linear metre.


Dispatch
In bundles with weight up to 5 tons.

The rest technical requirements shall be agreed at the time the order is accepted.

Krümmung nicht größer als 10 mm/l.m

Expedition

in Bündeln mit einem Gewicht bis 5 t

Trough-shaped	Trogförmige
Profile for	Profile
Supporting in Mines	für Grubenausbau
(With Mass	mit Masse
36 kg/l.m)	36 kg/l.m

Dimensions and Technical data

Maße und technische Charakteristik

F	G	J,	J _y	W _x	W _y	W _y /W _x	Ļ	ij	W _x /G	W _y /G
cm²	kg/m	cm ⁴	cm ⁴	cm ₃	cm ³		cm	cm	cm³/kg	cm³/kg
45.85	35,99	1202,77	725,48	120,91	144,65	1,196	5,12	3,97	3,36	4,018

Steel grades:

- ◆ St 37-2, St 44-2, St 50-2 DIN 17100
- ♦ C 25 DIN 17200

Length

- 1. It is supplied in 4 types.
 - 1. type 2150, 4300, 6450 mm
 - 2. type 2400, 4800, 7200 mm
 - 3. type 2800, 5600, 2000 mm
 - 4. type 3400, 6800 mm
- 2. The other length groups in the range of 2150 up to 9000 mm are agreed at the time the order is accepted.
- 3. Admissible deviations on length

up to 6 m + 40 mm

above 6 m + 80 mm

4. Profiles for supporting segments (frames) are with length accuracy + 5 mm.

Stahlmarken

- ◆ St 37-2, St 44-2, St 50-2 nach DIN 17100
- ♦ C 25 nach DIN 17200

Länge

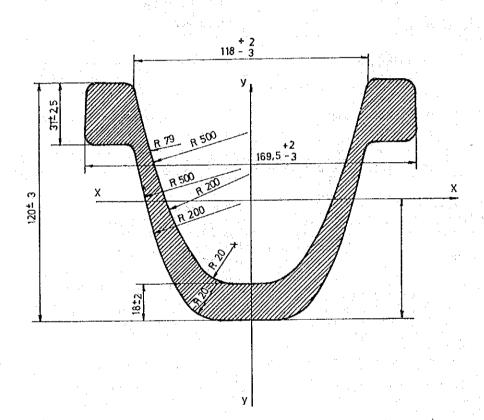
- 1. Wird in 4 Typen geliefert. Die Typen schließen festgestellte Längen und durch sie teilbare Längen ein.
 - 1. Typ 2150, 4300, 6450 mm

 - 2. Typ 2400, 4800, 7200 mm 3. Typ 2800, 5600, 2000 mm
 - 4. Typ 3400, 6800 mm
- 2. Andere Längengruppen im Bereich von 2150 bis 9000 mm werden bei Auftragserteilung vereinbart.
- 3. Zulässige Abweichungen in der Länge

bis 6 m + 40 mm

über 6 m + 80 mm

4. Werkstücke für Ausbausegmente (Rahmen) mit einer Längengenauigkeit von + 5 mm.


Warp Not more than 10 mm per linear metre.

Dispatch in bundles with weight up to 5 tons.

The rest technical requirements shall be agreed at the time the order is accepted.

Krümmung nicht größer als 10 mm/l.m

Expedition in Bundeln mit einem Gewicht bis 5 t

Trough-shaped	Trogförmige
Profile for	Profile
Supporting in Mines	für Grubenausbau
(With Mass	mit Masse
28.70 kg/l.m)	28.70 kg/l.m

Dimensions and Technical data

Maße und technische Charakteristik

į	F	G	Y,	'Y,	W _{x1}	W _{x2}	W,	W_y/W_{x1}	i,	i	W _{x1} /G	W _∞ /G	
	cm ²	kg/m	cm ⁴	cm ⁴	cm ³	cm ₃	cm ³		cm	cm	cm ³ /kg	cm³/kg	
	36,53	28,68	404,05	633,68	81,44	72,95	87,31	1,072	4,35	4,47	2,84	2,54	

Steel grades

- + St 37-2, St 44-2, St 50-2 DIN 17100
- ♦ C 25 DIN 17200

Length

- 1. It is supplied in 4 types.
 - 1. type -- 2150, 4300, 6450 mm
 - 2. type 2400, 4800, 7200 mm 3. type 2800, 5600, 2000 mm

 - 4. type 3400, 6800 mm
- 2. The other length groups in the range of 2150 up to 9000 mm are agreed at the time the order is accepted.
- 3. Admissible deviations on length up to 6 m + 40 mm above 6 m + 80 mm
- 4. Profiles for supporting segments (frames) are with length accuracy + 5 mm.

Stahlmarken

- + St 37-2, St 44-2, St 50-2 nach DIN 17100
- ♦ C 25 nach DIN 17200

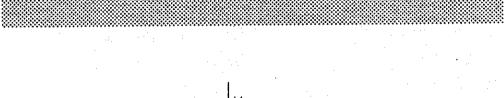
Länge

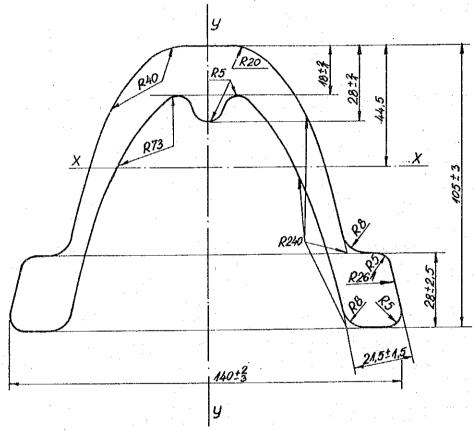
- 1. Wird in 4 Typen geliefert. Die Typen schließen festgestellte Längen und durch sie teilbare Längen ein.
 - 1. Typ 2150, 4300, 6450 mm
 - 2. Typ 2400, 4800, 7200 mm
 - 3. Typ 2800, 5600, 2000 mm
 - 4. Typ 3400, 6800 mm
- 2. Andere Längengruppen im Bereich von 2150 bis 9000 mm werden bei Auftragserteilung vereinbart.
- 3. Zulässige Abweichungen in der Länge

bis 6 m + 40 mm

über 6 m + 80 mm

4. Werkstücke für Ausbausegmente (Rahmen) mit einer Längengenauigkeit von + 5 mm.


Warp Not more than 10 mm per linear metre.


Dispatch
In bundles with weight up to 5 tons.

The rest technical requirements shall be agreed at the time the order is accepted.

Krümmung nicht größer als 10 mm/i.m

Expedition in Bundeln mit einem Gewicht bis 5 t

Hot-rolled	Quadra	tstahl				
Square	warmge	walzt				
Bars to be	zur					
Processed	Verarbeitung					

Dimensions side of square a = 50 up to 120 mm.

Maße Quadrat mit Seite a = 50 bis 120 mm

Technische Charakteristik

rechnical da		Redius of	Cross-section surface	Theoretical mass	Warp
Side of square a (mm) Quadratseite	a (mm) a (mm) Abrundungs		(mm²) Querschnittläche	(kg/m) Theor. Masse	not more than (mm/l. m) Krümmung nicht größer
50	+/-1,2	7	24,58	19,3	15
55	·		29,55	23,2	
60	+/-1,6	9	35,30	27,7	15
65			41,55	32,6	
70			48,30	37,9	
75			55,01	43,2	
80	+/-2,0	12	62,76	49,3	15
85	5,1		71,01	55,7	
90			79,76	62,6	
95		-	88,32	69,3	
100	+/-2,4	15	98,06	77,00	15
105			108,32	85,0	
110		 	118,21	92,8	
115	+/-2.7	18	129,46	101,6	15
120	13.5.1		141,21	110,9	

Steel grades:

- + St 37-2, St 44-2, St 50-2 17100
- ♦ C 35, C 45 DIN 17200
- ♦ 28Cr4, 34Cr4, 41Cr4, 30Mn5 DIN 17200

Length

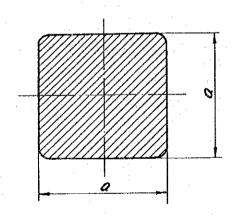
3 up to 8 m Admissible deviations on length: up to 4 m + 30 mm; above 4-6 m + 50 mm; above 6 m + 70 mm

Dispatch

In bundles with weight up to 5 tons.

The rest technical requirements shall be agreed at the time the order is accepted.

Stahlmarken


- ♦ St 37-2, St 44-2, St 50-2 nach 17100
- ♦ C 35, C 45 nach DIN 17200
- ♦ 28Cr4, 34Cr4, 41Cr4, 30Mn5 nach DIN 17200

Länge

3 bis 8 m
Zulässige Abweichungen in der Länge:
bis 4 m + 30 mm,
4-6 m + 50 mm,
über 6 m + 70 mm

Expedition

in Bündeln mit einem Gewicht bis 5 t

stomanc

Hot-rolled	Warmgewalzte
Channel	U-förmige
Steel	Stahlprofile

18

Dimensions 40 x 120 mm Maße 40 x 120 mm

Technical data

a (നന)	Admis. devial. Zulāss.	B (rvn)	Admis, deviat Zuläss, Abweich,	h (mm)	Admis. deviat. Zulāss. Abweich.	٠, ۲	Admis. devial. Zulāss. Abweich,	Z ₂	Admis. deviat. Zuläss. Abweich.	Theoretical mass (kg/m) Theor. Masse	Cross-section surface (cm²) Quer- schrättläche
10	4/-0,6	12	+/-0,8	40	+/-1,0	2	+0 -1	4	+0 -1	14,7	18,77

Steel grades: ♦ 30 Mn5 DIN

Length 4 up to 7 m

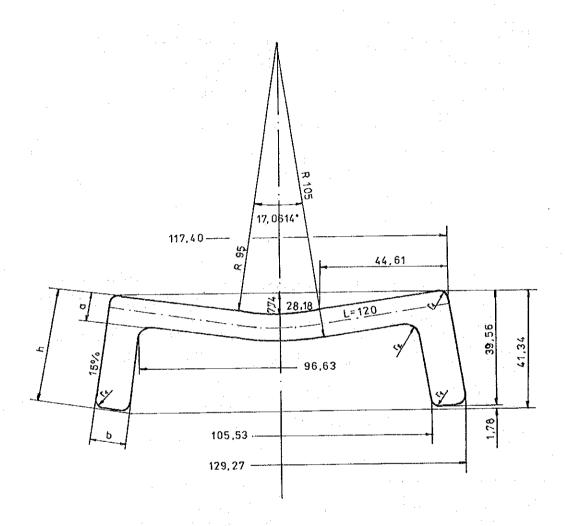
Dispatch

In bundles with weight up to 5 tons.

The rest technical requirements shall be agreed at the time the order is accepted.

Stahlmarke

♦ 30 Mn5 nach DIN


Länge 4 bis 7 m

Expedition

in Bündeln mit einem Gewicht bis 5 t

Die restlichen technischen Anforderungen werden bei Auftragserteilung vereinbart.

Technische Charakteristik

stomana

Hot-rolled	Warmgewalzter
Steel Profile	Stahl –
for Railway	Verbindungsprofil
Connections	für Eisenbahnschienen
Type 49	Тур 49

20

Dimensions and Technical data

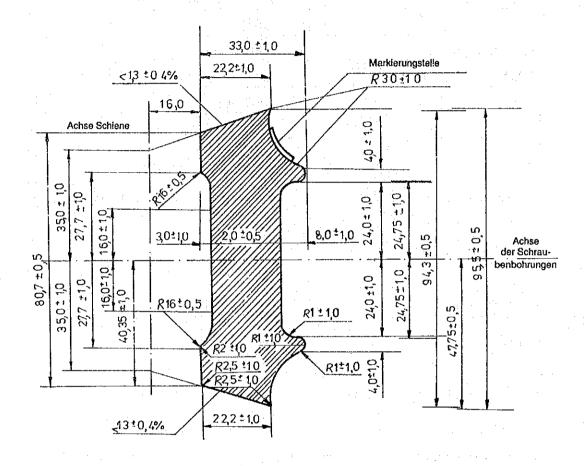
Maße und technische Anforderungen

Steel grades ♦ C 30, C 35 DIN 17200

Length 4 up to 9 m.

Warp not more than 0,025.

Dispatch In bundles with weight up to 7 tons.


The rest technical requirements shall be agreed at the time the order is accepted.

Stahlmarken ♦ C 30, C 35 nach DIN 17200

Länge 4 bis 9 m

Krümmung nicht größer als 0,025

Expedition in Bündeln mit einem Gewicht bis 7 t

Steel Balls		 Stahlkugeln						
for		 für						
Grinding		Kugelmühlen						
		· .						

22

Dimensions and Technical data

Maße und technische Anforderungen

Diameter	Brinell hardne	ss not less than	Theoretical mass	
(mm)	normal	kg/m		
Durchmesser	Härte na nicht w	Theoret, Masse		
	normal	erhört		
40	. 400	451	0,263	
50			0,514	
60	400	451	0,888	
70			1,410	
80	· .	· · · · · · · · · · · · · · · · · · ·	2,104	
90			2,996	
100	350	375	4,110	
110		·	5,471	
120	300	325	7,102	

The rest dimensions in the range of 40 mm up to 120 mm shall be agreed at the time the order is accepted.

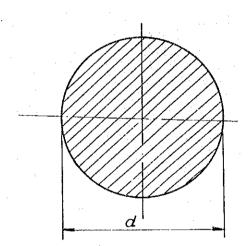
Steel grades

- 1. Carbon steel with carbon contents not less than:
- ♦ 0,35% for balls with dia. 40-60 mm
- ♦ 0,60% for balls with dia. 70-120 mm
- 2. Alloyed steel grades with the following chemical composition:

Andere Maße im Bereich von 40 mm bis 120 mm bei Vereinbarung mit den Käufer.

Stahlmarken

- 1. C-Stahl mit einem Kohlenstoffgehalt nicht weniger als:
- ♦ 0,35% für Kugeln mit Durchmessern 40-60 mm
- ◆ 0,60% für Kugeln mit Durchmessern 70-120 mm
 2. Legierte Stahlmarken mit folgender chemischen Zusammensetzung:


Chemical Composition (%)

Chemische Zusammensetzung (%)

1	С	Mn	SI	P	S	Cr	Mo	. Nb
ı	0.50-0.65	0,70-1,00	0,20-0,50	up to 0,060	up to 0,050	0,30-0,60	0.10-0,30	-
i	0.65-0.80	0,80-1,10	up to 0,50	up to 0,045	up to 0,045	_	4	0,02-0,04
	0.50-0.65	0.75-1.10	0,30-0,60	up to 0,060	up to 0,050	0,40-0,80		
	0,45-0,60	0,70-1,00	0,20-0,50	up to 0,060	up to 0,050	0,50-0,80		-
- 1								

Dispatch in bulk or in closed vessels (barrels).

Expedition im Schüttzustand in geschlossenen Behältern (Fässern).

Hot-Rolled	Warmgewalzter						
Reinforcement Steel	Bewehrungsstahl für						
for Steel-concrete	Stahlbetonkonstruktioner						
Constructions							
:-							

24 l

Shape and Sizes

Class A I

round smooth profile with diameters 14, 16, 18 & 20.

Class A I

lengthwise and crosswise ribbed round profile with screw-shaped circumference of the traverse ribs with diametre 12, 14, 16, 18 and 20 mm.

Class A III and III S

lengthwise and crosswise ribbed round profile, with alder-shaped circumference of the traverse ribs with diametres 12, 14, 16, 18 & 20 mm.

Form und Maße

Klasse A I

rundes glattes Profil mit Durchmessern von 14, 16, 18 und 20 mm;

Klasse A II

Rundprofil mit Längs - und Querrippen und mit einem schraubenförmigen Umfang der Querrippen mit Durchmessern von 12, 14, 16, 18 und 20 mm;

Klasse A III und III S

Rundprofil mit Längs - und Querrippen, mit tannenförmigem Umfang der Querrippen, mit Durchmessern von 12, 14, 16, 18 und 20 mm.

Technical Data

Technische Charakteristik

Nominal		Sizes and admissible deviations, mm. / Maße und zulässige Abweichungen, mm.										Cross-	Theor.
diameter		admis. dev.		edmis. dev.		admis. dev.		admis. dev.				Section surface	. Mass
Nom. Durchm. (mm)		h	zul. Abw.	l zul. Abw.				r	Querschn. fläche (mm)	Theor masse (kg/m)			
12 14 16 18	11,3 13,3 15,3 17,3 19,3	+0,3 0,5	13,8 15,8 18,3 20,3 22,3	+/-1,5	1,25 1,25 1,50 1,50 1,50	4/-0,5	8,0 11,0 12,0 14,0 15,7	+/-1,0	2 2 2 2 2	1 1 1 1,5 1,5	1,9 1,9 2,2 2,2 2,2	1,131 1,539 2,011 2,545 3,142	0,88 1,20 1,57 1,99 2,46

Class		Chamical composition % / Chamische Zusammensetzung %									Mechanical properties Mechanische Eigenschaften			
Юазае	C	Mn	Si	s	P	Cr	Ni	Cu	As	Tensile Sirength Zug- festigkeit MN/m²	Yield point Streck- grenze MN/m²	Relative elongation Relative Dehn.	Cold bending Kalt- blegen	
		1	not more tha	n / nlchtr	nehrals					not k	ss than /	nicht wenige	rals	
At All Alli	0,24 0,37 0,29 0,37	0,65 0,80 1,60 1,20	0,35 0,35 0,90 0,90	0,050 0,055 0,045 0,045	0,045 0,045 0,040 0,040	0,30 0,30 0,30	0,30 0,30 0,30	- 0,30 0,30 0,30	- 0,08 0,08 0,08	372 490 588	235 294 392	25 19 14	180°-0,5 180°-3 90°-3	
DIN	0,22 (0,24)	-	-	0,050	0,030	-	-	~	-	500	420	10	180°	

Length of Bars

2 up to 12 m Admissible deviations: at length up to 6 m + 50 mm at length above 6 m + 70 mm

Warp

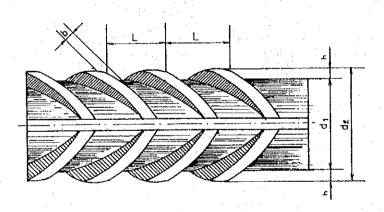
up to 6 mm per linear metre

In bundles with weight up to 5 tons

The rest technical requirements shall be agreed at the time the order is accepted.

Stangenlänge von 2 bis 12 m Zulässige Abweichungen: bis 6 m + 50 mm über 6 m + 70 mm

Krümmung


bis 6 mm pro Meter

Expedition

in Bündeln mit einem Gewicht bis 5 t

Die restlichen technischen Anforderungen werden bei Auftragserteilung vereinbart.

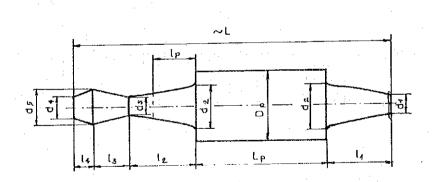
Ansicht/View

Centrifugal	Zentrifugalgegossene
Cast Iron	Gußeisewalzen
Rolls -	für Walzstraßen
Smooth and	glatt und
Non-calibrated	nichtkalibriert

Material

nodular cast iron, two-layered; chilled and grey iron.

Dimensions of the working surface: $D_{\rm b} = 270$ up to 710 mm $L_{\rm b} = 450$ up to 1830 mm


Specials orders are carried out according to prearrangement.

Werkstoff

sphärolitisches Gußeisen; doppelschichtig – gefeintes und graues Gußeisen

Abmessungen des Arbeitsteils $D_b = 270$ bis 710 mm $L_b = 450$ bis 1830 mm

Nach vorheriger Absprache werden auch Sonderausführungen ausgearbeitet.

				٠.,		7				. :					
N2	Dp	Ļ,	l _p	dı	d2	d ₃	d ₄ .	dş	l _t	l ₂	l,	i _k	L	G, (kg)	G ₂ (kg)
i	732	1680	1100	310	420	335	240	445	1130	1100	550	330	4790	7860	7120
il	725	1910	1040	396	510	426	240	470.	1060	1040	510	360	4880	9000	8130
(1)	725	1080	740	270	375	284	240	415	1060	775	475	280	3670	5030	4450
IV	694	1080	740	270	375	284	240	415	1060	775	475	280	3670	4750	4180
٧	654	1080	740	270	375	284	240	415	1060	775	475	280	3670	4400	3830
VI	624	1080	740	270	375	284	240	415	1060	775	475	280	3670	4160	3590
VII	474	1080	565	255	320	255	230	330	800	570	530	280	3260	2490	2080
VIII	400	870	510	185	275	232	230	275	750	650	450	230	2960	1560	1270
ΙX	345	650	645	165	242	200	-	230	660	655	545	-	2510	920	760
х	330	700	320	168	200	175	-	210	330	320	530	-	1830	690	580
хі	310	700	320	168	200	175	_	210	330	320	530	-	1880	540	530
XII	290	700	320	168	200	175	_	210	330	320	530	-	1880	590	480
XIII	664	1080	900	330	475	402	240	415	1410	900	500	330	4220	5950	5180
ΧIV	595	1080	890	296	425	356	240	445	1230	: 890	510	330	4040	4720	4000
χV	480	870	610	205	300	264	240	368	830	610	490	330	3130	2260	1790
XVI	450	870	610	205	300	264	240	368	830	610	490	330	3130	2120	1650
XVII	434	700	480	202	300	270	240	356	980	495	505	280	2960	1820	1370
XVIII	434	870	610	202	300	264	240	368	830	610	490	330	3130	2050	1570
XIX	376	560	500	170	240	210	~	270	700	500	500	-	2260	1000	640
хх	342	560	395 495	162	240	210		240	785	495	505		2345	870	700 720

Centrifugal Cast	Zentrifugalgegossene
Tube Ingots	Rohrwerkstücke

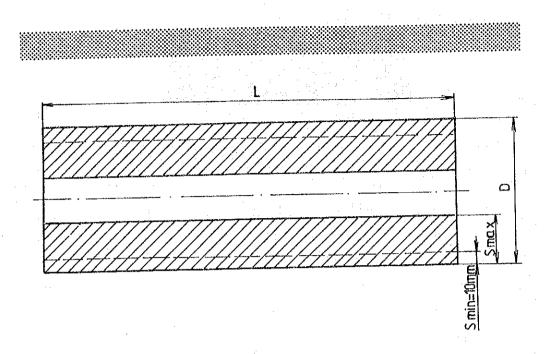
Material

iron – any grades; alloyed steel – any grades.

Dimensions

- ◆ 150 up to 400 mm ♦ 15 up to 120 mm ◆ 2000 up to 3000 mm

Special orders are carried out according to prearrangement.


Material

Gußeisen – jederlei Marken Legierter Stahl – jederlei Marken

Maße

- ♦ 150 bis 400 mm
- ♦ 15 bis 120 mm
- ♦ 2000 bis 3000 mm

Nach vorheriger Absprache werden auch Sonderausführungen ausgearbeitet.

D (mm)	S _{max} (mm)	L (mm)
404	140	2090
389	132	2090
328	110	1910
305	100	1980
297	97	1940
290	97	3015
278	90	1885
242	73	1895
215	50	2670
159	35	2180

Hot-rolled	Stahl
Heat-treated	warmgewalzt
Steel	warmbehandelt
(Annealed)	(geglüht)

Dimensions and Technical Requirements rods with dia. 50 up to 100 mm in accordance with DIN 1013-1.

Steel grades

◆ C 35, C 40, C 45, 28Cr4, 34Cr4, 41Cr4, 40MnCr6 DIN 17200

Length

3 up to 7 m

Dispatch

In bundles with weight up to 5 tons.

Maße und technischen Anforderungen Rundstäbe mit Durchmesser von 50 bis 100 mm

nach DIN 1013-1

Stahlmarken

♦ C 35, C 40, C 45, 28Cr4, 34Cr4, 41Cr4, 40MnCr6 nach DIN 17200

Längen

3 bis 7 m

Expedition

in Bündeln mit einem Gewicht bis 5 t

Burnt Lime	Ungelöschter	
(Quicklime)	Kalk	

Tecnnical data DIN 1060

Indices	% Content
CaO	above 90
MgO	0,5-8,0
SiO ₂	0,2-1,5
Fe ₂ O ₃	0.1 - 0.4
Al ₂ O ₃	0,1-0,5
CO	0,4 - 1,5
Contents of humilty	0,1-0,9
1 .1.	

Granulometric Composition:

fraction 0-5 mm "A"

fraction 6-16 mm "B"

"C" fraction 16 - 55 mm

Hermetically closed two-layered sacks out of jute and polypropylene up to 1,5 m³.

Fired Dolomite

Indices	% Content	_
CaO	52 ~ 55,5	
MgO	not less than 39	
SiO,	not more 0,6	
Fe ₂ O ₃	not more 0,35	
Al ₂ O ₃	not more 0,3	
Loses at burning	not more 0,9	

Granulometric composition 4 to 12 mm

Density:

not less than 3,00 g/cm3

Technische Charakteristik

Merkmale	Gehalt in %
CaO	über 90
MgO	0,5-8,0
SiO ₂	0.2 - 1.5
Fe ₂ O ₃	0.1 - 0.4
Al ₂ O ₃	0.1 - 0.5
CO2	0,4 - 1,5
Feuchtigkeitsgehalt	0.1 - 0.9

Korngrößenzusammensetzung:

Fraktion 0- 5 mm "A"

Fraktion 6-16 mm "B"

Fraktion 16 - 55 mm "C"

Verpackung

in hermetisch verschlossenen

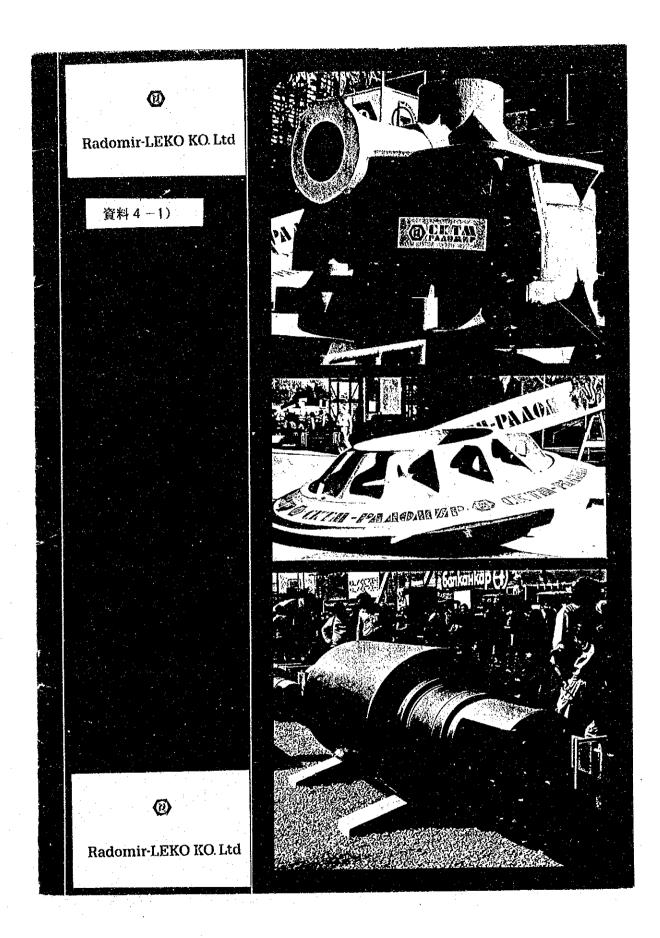
Zweischichtsäcken aus Polypropilen und Jule

bis 1,5 m³

Sinterdolomit

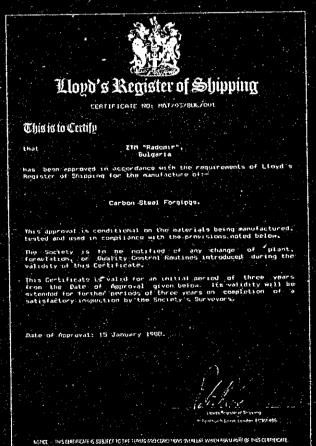
Merkmale	Gehalt in %
CaO	52 – 55,5
MgO	nicht weniger als 39
SiO ₂	nicht mehr als 0,6
Fe ₂ O ₃	nicht mehr als 0,35
Al ₂ O ₃	nicht mehr als 0,3
Glühverluste	nicht mehr als 0,9
] .	

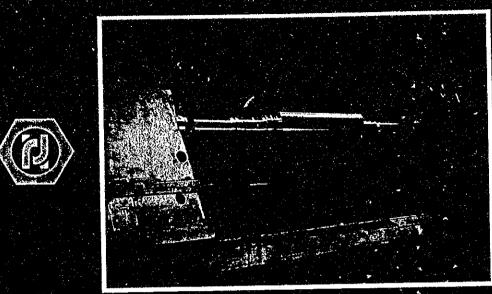
Korngrößenzusammensetzung


4 bis 12 mm

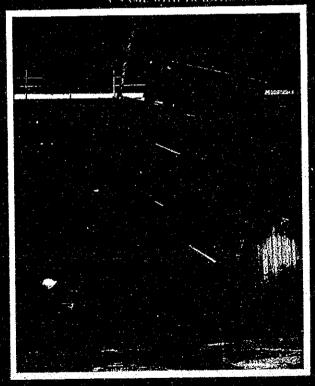
Dichte

nicht weniger als 3,00 g/cm3


TEL:
359 (02) 872070
359 (076) 7151, 71-52, 71-53
359 (076) 72151, 52, 53, 54
GENERALDIREKTOR
359 (02) 881663
STELLV. GENERALDIREKTOR
359 (076) 72182
GESCHÄFTSCHBEREICH
"IMPORT EXPORT"
359 (076) 74212
TELEX: 028501;
FAX: 359 (076) 74570


Printed in OFFSETGRAPHIC Solia

RANGE OF ACTIVITIES


The range of activities of the Heavy Machinebuilding Corporation in Radomir cover the following: organization of scientific-applied engineering, production, trade and investments in turnkey projects both at home and abroad, production lines and unique metallurgical equipment, turbines, steam boilers, water heating boilers and industrial boilers; steam generators and other equipment for hydroelectric, thermal and nuclear power stations; powerful compressor and pump stations for gas-pipe lines, chemical industry and pipeline transport; process lines for construction materials production equipment; big-size and unique cutting machines; unique forgings and castings made of ordinary and special steels and other durable technique.

Radomir-LEKO KO. Ltd

A NAME WITH TRADITIONS IN THE PRODUCTION OF

HIGH-QUALITY PROFICE STELL CASTINGS FROM 3 TO 420 TONS

HIGH-QUALITY FORGINGS OF CARBON AND ALLOYED STEEL UP TO 1000 TONS

CASTINGS AND FORGINGS ARE USED TO BUILD FOR IRMENT FOR THE MINING, INDUSTRY, THE POWER INDUSTRY, METALLURGS, SHIPBLIEDING, CHEMICAL INDUSTRY, HE AVY MACHINERY.

ROLLS FOR HOT AND COLD ROLL-INGONMILLS OF SHFETS AND BARS

ROUGH AND FINALLY MACHINED SPARL PARTS.

WOODEN PATTERNS AND WOODEN PRODUCTS

ALL THESE ARE CERTIFIED BY THE LLOYD'S REGISTER OF SHIPPING

2400 Radoum BET GARIA (depinded - 180, -- 1460 relex 2841) (x = 350, 777 253

Under the conditions of increasing quality requirements of the forgings, our efforts are aimed at meeting the highest technical demands of our clients. We are achieving this by adopting most up-to-date technologies and equipment which guarantee a product quality of the highest order.

The attached schematic drawings contain the main types of forgings made by us. Their weight ranges between 1000 and 56000 kg.

At the request of our clients, we are in a position to make forgings of types other than those shown on the schematics, too.

The schematics also indicate some limitations determined by the capabilities.

of our equipment

The quality of our forgings meets the specifications of the following stan-

BDS (Bulgarian State Standard)

GOST ASTM

BS

JIS

Further technical requirements set by our clients can be met too in as much

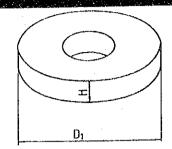
The following process sequence in used in the production of our forgings:

A. To produce the required steel we use electric arc furnaces and VOD-VAD equipment where the molten metal is treated after the furnaces. This method of treatment helps obtain steels of excellent quality— low impurity content, low gas and non-metal inclusions. Their chemical composition and gas content in the metal are continuously controlled with modern precision equipment.

Forging itself is carried out by free forging hydraulic presses of 3600/4000 t. 1600 t. and 630 t. capacity equipped with automatically operated tool and forging manipulators

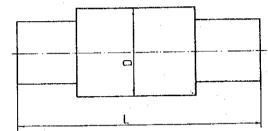
Natural gas heafed and automatically controlled furnaces are used to heat Natural gas heated and automatically controlled intriaces are used to lear the ingots before forging. In the process of heating and forging all main pro-cess data are automatically controlled and recorded. The plastic deforma-tion obtained as a result of the forging is a guarantee of high quality, but is nevertheless verified at the end of the production process where all forgings. undergo final tests.

What is normally tested in the following the size of the forged products the density of material — by means of supersonic non-destructive tests the quality of material — by metallographic analysis.

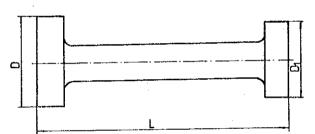

Upon request, a capillary method and magnetic powder testing can be additionally applied for the roughly machined forgings.

The forgings made by us are mainly used for building equipment for the power industry nuclear power stations included ship-building — for shafts, rudder stocks, etc. metallurgy. — from blast furnaces to rolling mills, mining industry, chemical industry.

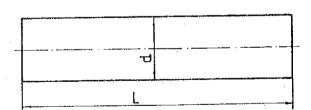
FORGINGS


RING SHAPED FORGINGS

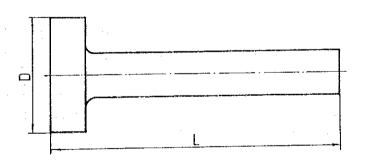
D (mm)	max 3300 min 200 max 45	
H (mm)		
Forging weight (t)		


SHAFT-GEAR WHEELS

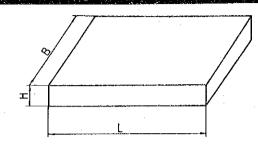
D [mm]	max 1800
L [mm]	max 8000
Forging weight (t)	max 50


INTERMEDIATE SHAFTS

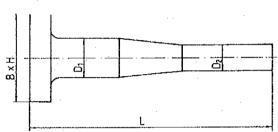
	40.000
L (mm)	max 10 000
Forging weight (t)	max 50


ROUND BARS

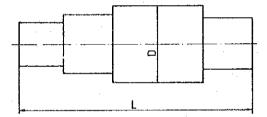
D [mm]	min 200
,L (mm)	max 12 000
Forging weight (t)	max 60


FORGINGS FOR SHIP-BUILDING SHAFTS

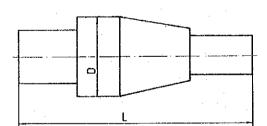
O [mm]	max 1800
L [mm]	max 8500
Forging weight (t)	max 45


PLATE SHAPED FORGINGS

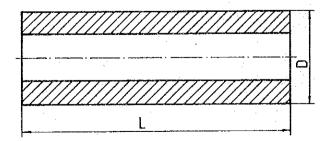
H [mm]	min 200	
B [mm]	max1700	
L (mm)	max 5000	
Forging weight (t)	max 50	


STRAIGHT RUDDER STOCKS

L [mm]	max 12 000	
Forging weight (t)	max 55	


ROLLS

D [mm]	max 1700	
L [mm]		
Forging weight (t)	max 55	


CONE SHAPED ROLLS

L [mm]	max 9000
Forging weight (t)	rnax 50

HOLLOW CYLINDERS

D [mm]	max 1800	
L (mm)	max 12000	
Forging weight (t)	max 56	

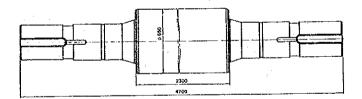
Rolls for hot and cold rolling on mills of sheets and bars produced at the Heavy Machinebuilding Works in Radomir possess a number of valuable properties such as guaranteed strength, plasticity and good operating qualities which are mainly due to:

the high quality of molten steel ensured through vacuum treatment and blowing of inert gases

the low content of non-metal conclusions, ensured by the vacuum-carbon deoxidation

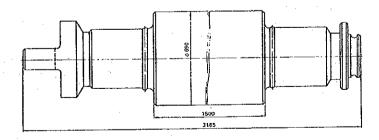
the low content of harmful impurities — oxygen, hydrogen, nitrogen and sulphur — ensured by the VAD tretment up-to-date vanguard technology for forging of mechanised forging com-

plexes heating for forging and heat treatment in heat-treatment furnaces with uni-form temperature field ensured by an automatic programme mode which de-


termines an evenly fine granular structure differential heat treatment which guarantees a roll life increase 2—2,5 times more in comparison with the life of rolls produced by standard technology 100 % control by means of modern methods and equipment that provide strict implementation of technology and guaranteed high quality of the manufactured rolls.

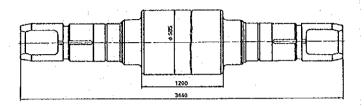
The rolls produced at the Heavy Machinebuilding Works in Radomir are in compliance with the technical requirements of the All-Union Standard (GOST) 3541-74 and GOST 10207-70.

WORKING ROLL


WORK ROLL for sheet rolling (hot rolling). It is designed for reversing thick-sheet mill 2300 FB.

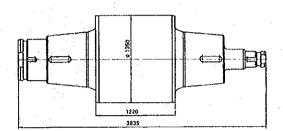
Technical charachteristics: Overall dimensions: rool length — 4700 mm root diameter — 650 x 2300 mm (working weight - 7211 kg.

WORKING ROLL


WORK ROLL FOR BAR ROLLING — hot rolling. It is designed for 500 FB mill. Technical characteristics: overall dimensions:
roll length — 3165 mm
roll diameter — 690 × 1500 mm
weight — 6130 kg.

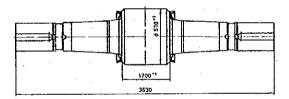
WORKING ROLL

WORK ROLL — cold rolled stock. It is designed for a 1200-CB mill. The mill is used for sheets with thickness 0.3, 0.4, 0.5 and 0.6 mm.


Technical characteristics: Overall dimensions: roll length — 3440 mm roll diameter — 580×1200 mm weight — 4 t.

THRUST SHAFT

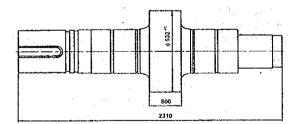
BACKING ROLLER — cold rolling. It is designed for a 1200-CB mill. Sheets with thickness of 0.3, 0.4, 0.5 and 0.6 mm are milled on it.


Technical characteristics:
Overall dimensions:
roll length — 3835 mm
roll diameter — 1350 × 1220 mm
weight — 21 t.

WORKING ROLL

ROLL dia. 500 × 1700 The roll is designed for rolling of sheets and strips of thickness 0.3, 0.4, 0.5 and 0.6 mm. Technical characteristics:

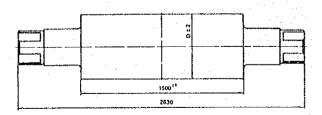
Technical characteristics: Roll length — 3630 mm Roll diameter — 500 mm Weight — 3340 mm



WORKING ROLL

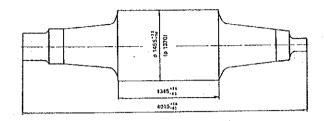
ROLL dia. 530×800 The roll is designed for billet rolling in a continuous wire rod mill 700/500. The billet section is 80×80 .

rion is 80 x 80.

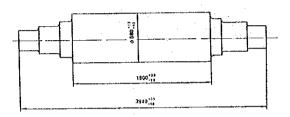

Technical characteristics:
Roll tength — 2310 mm
Roll diameter — 530 mm
Weight — 2010 mm

WORKING ROLL

ROLL dia. $\times\,1500$ The roll is designed for making of various shapes.


Technical characteristics: Roll length — 2630 mm Roll diameter — after applied table Weight — after applied table.

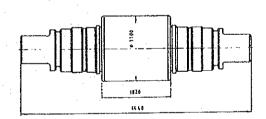
ROLL5


FORGING OF A ROLL

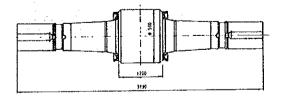
The roll is designed for a 1200 mill for skinrolling necessary for cold rolling production at the "Leonid Brezhnev" Metallurgical Works.

FORGING OF A ROLL

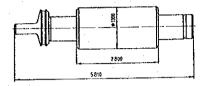
The roll is designed for a 1200 mill for cold rolling production at the "Leonid Brezhnev" Metallurgical Works.


FORGING OF A ROLL

The roll is designed for 1700 mm dia mill — cold rolling production at the "Leonid Brezhnev" Metallurgical Works.


WORKING ROLL

Diameter 1110 × 1820
Designed for rolling mill 1700 — hot rolling.
Overall dimensions:
length — 4440 mm
roll diameter — 1110 × 1820
roll weight — 18 t.


WORKING ROLL

Diameter 500 x 1200 Designed for mill 1200 Overall dimensions: roll length — 3130 mm roll diameter — 500 x 1200 roll weight — 2544 kg.

WORKING ROLL

Diameter 1300 x 2800 Designed for slab mill 1150 — hot rolling Overall dimensions: roll length — 5810 mm roll diameter — 1300 × 2800 roll weight — 39800 kg.

CASTINGS

By using progressive technologies and equipment our company's efforts are aimed at satisfying the steady growing demand of our clients for high-quality products.

The main types of steel castings produced by our company are shown on the attached schematic drawings.

We are capable of producing castings of weight ranging from 3 to 120 t. of low and medium-carbon steels with higher requirements for the sulphur and phosphorus content, as well as low and medium alloy steels of the 110G13L type. The molten steel is obtained in arc furnaces built by BBC, Switzerland using modern technologies.

The company has available VAD-VOD equipment for treatment of the molten metal which provides for the high metal purity.

Depending on the required weight and size of the castings, moulding is done on mechanised moulding lines of 3 to 5 t., produced by Kobé Steel Ltd., Japan or 5 to 20 t. of BMW, West Germany and casting pits.

High quality sand mixes and paints are used to prepare the casting moulds quaranteeing for the high quality of the produced castings.

Castings undergo the following tests subject to the particular requirements: Visual testing Magnetic powder testing

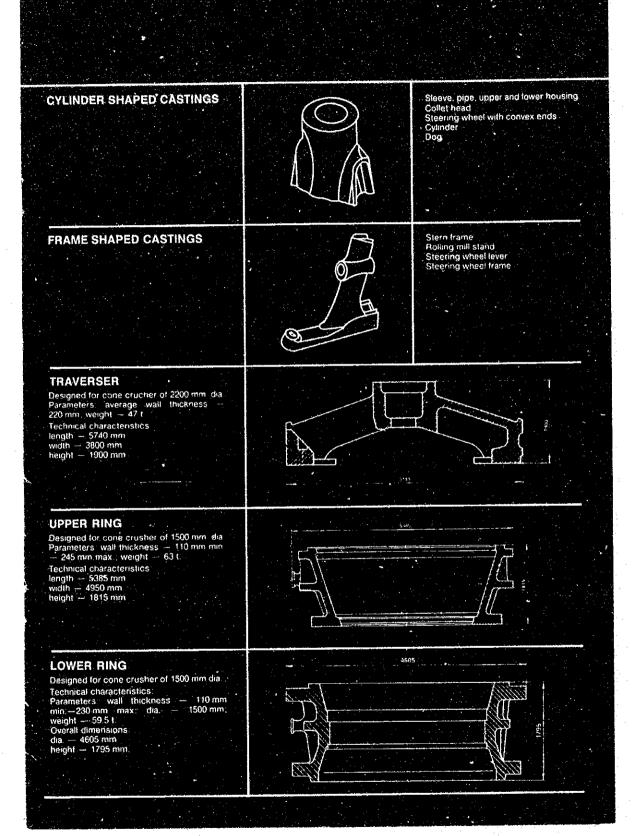
Capillary testing

Supersonic testing.

Our castings meet the specifications of the Bulgarian State Standard, GOST

At the same time we are in a position to satisfy any further and more specific requirements of our clients.

The casting are used to build equipment for:

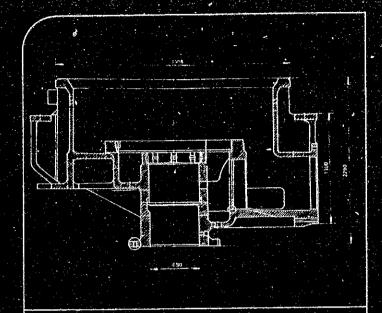

the mining industry the power industry

metallurgy

ship-building and other important branches of industry.

CASTINGS

BAR SHAPED CASTINGS		Gude plate Mixer rotor
PLATE SHAPED CASTINGS		Armour plate Rotor blade
	Q	
BELL SHAPED CASTINGS		Bell Gover Hopper Slag bucket
ANVIL SHAPED CASTINGS		Anvil Upper and lower steering wheel Plunger
RING SHAPED CASTINGS		Ring Gear wheel Gear rim:



CASTING — BODY

Designed for cone crusher 2200 mm dia Wall thickness 40 mm min, 220 mm, max weight — 29 t

Technical characteristics length — 3800 mm width — 3180 mm height — 1280 mm

Radomir-LEKO KO. Ltd

STEELCASTING, FORGING AND MACHINARY WORKS

2400 RADOMIR, BULGARIA

TELEPHONE: +359 /777/ 34 89

TELEFAX: +359 /777/ 21 34

TELEX: 28413

"RADOMIR - LEKO KO" LTD is located 45km west of Sofia and has a convenient transport connection by road and rail to ports at the Black Sea Coast and the Danube River.

The total volume of the production buildings is about 1100 thousand m^2 , while the built-up area is about 700 thousand m2. The total length of the crane runway is 30 000m

"RADOMIR - LEKO KO" LTD , Radomir consists of 3 plants. The product-mix of the plant covers:

- Nuclear Power Station and Thermo-Power Equipment;
- Complete projects Metallurgical Plants, Foundries, etc.;
- Large-size castings and forgings of ordinary carbon steel and special steel;
 - Metallurgical equipment;
- Mill, crushing and transport equipment for mining, ore-dressing and cement industries;
 - Cold and hot rolled rolls;
 - Gantry and Overhead cranes, etc.

the company plants in important most production point of view are: the steel making and steel casting plant, forging plant and machining plant.

The Steel making and steel casting plant is designed to supply feedstock for the machining shop and namely, forging ingots and castings. Its production programme covers a wide range of more than 100 steel grades, corrosion-resistant steel, etc. It is designed for 75 000 tons of steel ingots and 45 000 tons of mould castings for the needs of ship-, automobile-, crane-building, etc.

It structurally comprises: steel making shop with scrap yard. steel casting shop with heat fettling section, pattern shop and repair shop.

The steel making shop is designed for the production of 150 000 tons of liquid steel per year. Three electric arc furnaces of 15-ton, 25-ton and 60 ton capacity respectively were manufactured by the Swiss company BBC and have been installed there as well as steel refining plant - VAD/VOD system.

The technology of Kobe Steel is used in the steel making shop for casting forging ingots of 1 to 80 tons weight. The technology allows steel making with or without steel degassing.

By using the VAD/VOD installation, supplied by Standart Messo Company - Germany, steel grades of higher purity with regard to sulphur, gases and non-metallic inclusions are produced.

The steel casting shop is designed for making castings of 3 to 120 tons weight. It comprises a moulding line for castings of 3 to 5 tons weight, supplied by the Japanese company Kobe Steel.

The finishing of castings is based on Kobe Steel Know-How.

The pattern shop is designed for making complex wooden patterns and for processing of $6000~\text{m}^3$ timber annually.

The steel grades, which are used in the production of castings and ingots for forgings are given in the application

STEEL MAKING AND STEEL CASTING CASTING PLANT

TECHNOLOGICAL EQUIPMENT

Description	Maker	Feature
And the last case of the case	ده و الله الله الله و الله	
MELTING EQUIPMENT		
60 tons	Switzerland	60 tons
25 tons	Switzerland	25 tons
15 tons	Switzerland	15 tons
STEEL DEGASSING		·
VAD ,	Germany	25-75 tons
VOD	Germany	13-70 tons

1	-	~1	08

- 60 tons	Germany	60 tons
- 25 tons	Germany	25 tons
- 15 tons	Germany	15 tons

FETTLING, GOUGING &

REPAIR EQUIPMENT

Shot Blasting Chamber

- 150 tons	Japan	$9 \times 9 \times 7,5$ m
- 60 tons	Japan	$7 \times 7 \times 4$ m
- 30 tons	Japan	5 x 5 x 3,8 m
Knock-out machines	Japan	30 tons
	Japan	80 tons

HEAT TREATMENT EQUIPMENT

Heat treatment furnaces

- 250 tons	Japan	13 x 9 x 4 m
- 150 tons	Japan	11 x 8 x 3,5 m
	Germany	•
- 80 tons	Japan	8 x 5 x 2,5 m
	Germany	
- 50 tons	Japan	$8 \times 5 \times 2,5$ m

The Forging Plant is equipped with unique equipment for production of rolls and forgings of different type and size and for rolls and forgings tempering in the heat treatment plant. All parameters are automatically controlled during the heating and forging process and further analyses are also possible on customer's request.

FORGING SHOP TECHNOLOGICAL EQUIPMENT

1. 3600/4500-ton Press:

Type: Vertical, 4 - column, oil-hydraulic

Operating preassure: max. 250 kg/cm²

Dimensions: Vertical clearance - 5000 mm

Column distance - $4200 \times 2300 \text{ mm}$

Table: $2500 \times 6000 \text{ mm}$

2. 1600-ton Press:

Type: Vertical, 2 - column, oil-hydraulic

Operating preassure: max. 250 kg/cm²

Dimensions: Vertical clearance - 3000 mm

Column distance - 2600 x 1700 mm

Table: $1600 \times 3000 \text{ mm}$

3. Double Frequency Induction Machine

Frequency: 50 Hz; 1000 Hz

Dimensions of rolls:

Barrel diameter: up to 900 mm

Total length: up to 7000 mm

4. Supporting Unit for 1600-ton Press:

Loading capacity: 10 tons

Equipped with chain and spring for suspension

- 5. 160 M.T. Forging Manipulator
- 6. 40 M.T. Forging Manipulator
- 7. Tool Manipulator

FURNACES

1. 150-ton Heating Furnace, bogie-hearth type - 2 off
2. 150-ton Heating Furnace, bogie-hearth type - 5 off
3. 50-ton Heating Furnace, bogie-hearth type - 2 off
4. 25-ton Heating Furnace, bogie-hearth type - 4 off
5. 150-ton Annealing Furnace, bogie-hearth type - 1 off
Inner Dimensions: 4000 wide x 10000 long x 3500 high/mm/
6. 150-ton Annealing Furnace, bogie-hearth type - 1 off
Inner Dimensions: 3000 wide x 15000 long x 3000 high/mm/
7. 90-ton Annealing Furnace, bogie-hearth type - 4 off
Inner Dimensions: 3000 wide x 10000 long x 2500 high/mm/
8. 35-ton Annealing Furnace, bogie-hearth type - 1 off
Inner Dimensions: 2500 wide x 6000 long x 2500 high/mm/
OTHER EQUIPMENT

Automatic Gas Cutting Machine 2 off Maximum cutting thickness: 2500 mm; Equipped with an optic system for components configuration copying.

HEAT TREATMENT SHOP

25-ton Horizontal Heat Treatment Walking Beam Furnace
 3 off

Inner dimensions: 1000 wide x 7500 long x 1000 high/mm/

2. 90-ton Horizontal Heat Treatment Walking Beam Furnace - 5 off

Inner dimensions: 2500 wide x 9000 long x 1800 high/mm/

3. 30-ton Horizontal Resistance Furnace Walking Beam Type

Inner dimensions: 1000 wide x 5000 long x 1000 high/mm/

4. 15-ton Heat Treatment Furnace, Chamber Type, Walking Beam Type

Inner dimensions: 1700 wide x 6000 long x 1500 high/mm/

5. 100-ton Heat Treatment Furnace, Chamber Type, Walking Beam

Type - 2 off

Inner dimensions: 4500 wide x 9000 long x 3500 high/mm/

3000 × 15000 × 3000

6. 90-ton High Speed Heating Furnace

Components size: 600 - 1600 mm dia, 3000 mm long

7. Shaft Furnace - 2 off

Inner dimensions: 1800 dia x 6000 mm

 $3000 \, dia \times 15000 \, mm$

Capacity:

10 & 50 tons

8. Oil Quenching Tanks

- 4 sets

Dimensions: $1300 \times 7000 \times 1000$ mm

9. Quenching Machine

Capacity: 13 tons

10. Quenching Machine

Capacity: 90 tons

11. Subzero Temperature Treatment Unit

Capacity: 13 tons

Coolant: liquid nitrogen

Inner dimensions: 900 wide x 7000 long x 1000 high/mm/

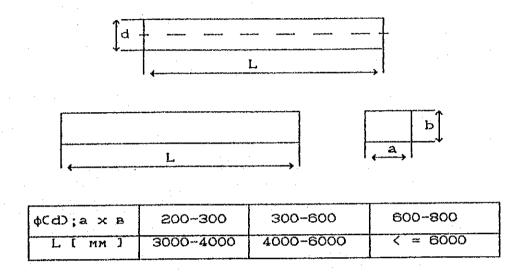
14. Water - quenching Tanks

Dimensions: 2000 wide x 14000 long x 5000 high/mm/

MACHINING PLANT

This plant is equipped with lathes for rolls, boring

machines, milling machines and punching machines. The latter two have possibilities for punching holes from 30 to 135 mm and length up to 12000 mm. Rolls for hot and cold rolling on mills of sheets and bars and other equipment for metallurgy are produced in the shops of the machining plant.


Capacities for the production of oxygen, water glass and liquid nitrogen are also available.

The production of RADOMIR LEKO KO LTD is well recieved in numerous countries in Europe and Asia. Our regular clients are "Steinhoff" and "Ferrostahl" - Germany, "Stalvalsar" - Sweden, ABB Drives - Finland, Novolipetzk Metallurgical Works - Russia as well as the plants and companies in metallurgy, power generation, mining industry and shipbuilding in Bulgaria.

APPLICATION TECHNICAL POSSIBILITIES

/ FORGINGS, HEAT TREATMENT AND MACHINING /

1. ROUND AND RECTANGULAR BARS

or special orders: weight 30 000 kg.

L <= 10 000 mm

condition: forgings - annealed, normalized or tempered.

2. ROLLS FOR ROLLING MILLS

2.1 COLD WORK ROLLS => weight: 200-13000kg

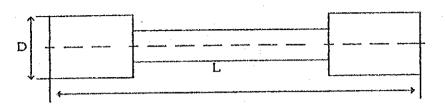
D_b : 200-900mm

2.2 HOT WORK ROLLS => weight :up to 35000kg

D_b : 200-1500mm

2.3 BACK UP ROLLS => weight :up to 35000kg

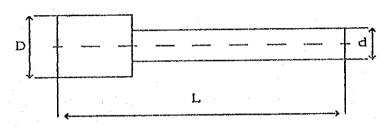
D_b : 200-1500mm


condition: forged, heat treated and machined

3. SPARE PARTS FOR SHIPBUILDING

3.1 SECONDARY SHAFTS

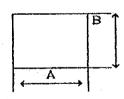
=>weight: <=35000κg

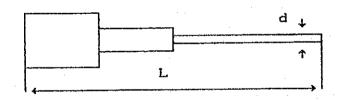

D: <=1500mm; L:<=13000mm

3.2 PROPELLER SHAFTS

>weight : <=35000kg

D : <=1500mm ; L : <=13000mm


3.3 RUDDER STOCK


=>weight: <=35000kg

 $A \times B : \langle =1500 \times 1500 mm$

<=13000mm

condition: forged, heat treated and machined requirements: Lloyd's Register of shipping

4. GENERAL ENGINEERING SPARE PARTS

4.1 SHAFTS, AXLES, GEAR SHAFTS

weight : <=35000кg

200-1350mm

4.2 DISKS, GEARS

=>weight :

>=500kg

D:

<=2500mm

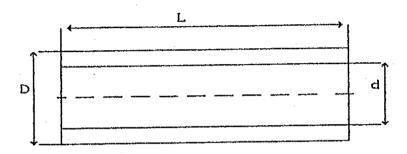
H :

<=1000mm

4.3 RINGS

D : <=3000mm

H : <=1000mm


condition: forged, heat treated and machined requirements: Customer's Application

notes: The weight is dependent on the dimensions of the blank

4.4 HOLLOW FORGINGS /TUBES/

requirements: Customer's Application

notes: The weight is dependent on the dimensions of the blank

4.4.1 conditions: forged, heat treated and premachined

D: <=1500mm

d : >= 300mm

L : <=4000mm

4.4.2 conditions: forged, heat treated and premachined /without centre bore/

D : <=1500mm

d: >= 300mm

L : <=6000mm

資料 4 一

1.7704 1.0619 | 1.7218 1.0446 | 1.7220 1.1167 | 1.0552 1.1159 1.0558 | 1.4112 <=0,30
<=0,30
<=0,30
<=0,30
1 <=0,30
<=0,30
<=0,30</pre> (=0,30 (=0,30 (=0,30 (=g,33 ਲ ਨਾ 3,50-5,00 B,0-12,(<=1,0 (=0,30 껉 1 2,00-2,50 무는 0,70-1,30 | 1,20-1,70 | <=0,30 | (=0,30 0,80-1,20 0,80-1,20 0,80-1,20 <=0,30 0,040 0,030 0,030 0,040 0,040 0,040 0,040 0,040 0,040 0,040 ω 👸 Chemical cosposition 0,040 0,040 0,040 0,040 0,040 0,040 0,035 0,040 0,040 마 0,50-0,80 0,50-6,80 0,40-0,90 0,50-0,80 1,20-1,60 0,40-0,80 0,40-0,70 Ē. 0,35-0,30 0,30-0,50 0,30-0,50 0,20-0,50 0,20-0,50 0,20-0,50 0,20-0,50 0,20-0,60 0,14-0,20 0,17-0,20 0,22-0,30 0,25-0,30 0,30-0,40 0,38-0,45 0,38-0,45 0,40-0,50 0, 12-0, 20 <=0,15 <=0,07 (=0,0=) ⟨=0,07 OCh 18% 10SL Ch13N1031 0Ch 12N4% Standard BDS 6.1 3492 7.1 6550 8.1 6550 9.1 3492 10.1 6550 11.1 5550 12.1 3492 13.1 9631 4.: 7478 5.: 4550 3,1 7478 1276 1 21 14.1 9531 16.1 9531 ---

 <u>:</u>	מרפווובקו		. .		Chea	inilicomposition	1051 [10]	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					֡֝֞֜֜֞֜֞֜֜֞֜֞֜֞֜֞֜֜֞֜֝֓֓֓֞֝֞֜֝֡֝֡֝֝֝֝֡֝֝֡֝֝֡֝֝֡֝֝֡֝֝֡֝֝֡֝֡֝֡֝֝֡֝֡֝֡֝֡
. <u>. l</u>	SES			Si	ř.	0.	ະກ	៦	<u>,,</u>	N	ය :		Det *	## #	
	·	Type	p-1		~	7°=>	"= 》	2-2	2 -1		⊢ *	19	-4	, P	2
	2 -	+ + + + + + + + + + + + + + + + + + +	 	μ μ μ	9	2	83	6	10		1 12	13		15	15
† =	4880	09625	(=0.12	0.50-0.80	1,30-1,70	1 0,035	0,040	1 <=0,30		1 <=0,30	1 <=0,30	1		1	1
2.1.7	7938	3Ch2#8F	1 0,30-0,40	1 0,15-0,40	0,15-0,40	1 0,030 1	0,030	2,20-2,70	•	1 <=0,35	(=0,30	1 0,20-0,50	1,50-9,00	1	1.2581
	7938	SCHIN	0,50-0,60	1 0,15-0,35	1 0,50-0,80	0.030	0,030	1 0,50~0,80	1 0,15-0,30	1 1,40-1,80	1 <=0,30	1) 	·	į
	7938	SChing	10,50-0,60	1 0,15-0,35	1 0,50-0,80	1 0,030 1	020 0	1 1,00-1,30	1 0,50-0,70	1,60-1,90	(=0,30	0,05-0,15	;	· ·	1.2/14
เหร	+4	SCH2NF	1 0,35-0,95	1 0,20-0,50	1 0,20-0,70	0,030	0,030	1 1,70-2,10	1 0,20-0,30	(=0,30	(=0,30	0, 10-0, 20		, ,	l
	6354	12ChN3A	1.0,09-0,16	1 0,17-0,37	1 0,30-0,60	0,025	0,025	0,60-0,40	1 <=0,15	1 2,75-3,65	S (=) :	50,0=>	02'0=>	SD (0=) :	l •
·		150128		gg sad			n-					: !			t
	5354	180,457	1 0,17-0,23	1 0,17-0,37	1 0,80-1,16	1 0,035	0,035	1 1,00-1,30	1 (=0,15	: <=0,30	요 (a)	<=0,05	(=0,20	50°02-0°01	1
	5755	1 29	1 0,18-0,24	1 0,17-0,37	1 0,35-0,65	1 0,035	0,040	1 <=0,23	1	1 <=0,25	(=0,23 1	· ·			7040*1
	5354	20Ch2N4A	10,15-0,22	1 0,17-0.37	1 0,30-0,60	0,025	1 0,025	1 1,25-1,65	(=0,15	1 2,25-3,65	02 (=-)	£0,0=> .	02,0=>	?n'n=> :	l •
	**	1 20ChB	·-					·	lin off		,				ı
	**	2065	p. To							·					
13.	6354	1 ZONZH	1 0,17-0,25	1 0,17-0,37	1 0,40-0,70	0,035	1 0,035	(=0,30	1 0,20-0,30	1 1,50-1,50	08.6=> !	(=0,03	07 ' 0=> ;	?n\$h=> :	
		20NCh34	-÷'									•	, ₁₄₁ .		
	5785	13	1 0,22-0,30	1 0,17-0,37	1 0,50-0,80	0,03	1 0,040	(=0,25	1	<=0,25	(=0, 25			, ,	0*0*4
	5354	1 255	1 0,22-0,30	1 0,17-0,37	1 0,70-1,00	0,035	9,035	(=0,30	(=0,15	02'0=>	02'0=):	20.0=> !	07 ' 0=> !	cη (η=) !	1 4 757.5
	5785	22	1 0,27-6,35	1 0,17-0,37	1 0,50-0,80	1 9,035	0,040	. <=0,25	·	(=0,25	₹ 7 ,0±) ;	i 		! '	700 * 1 + =
50		1 30Ch2NFN	21 LE		p						;			- 2	- :
	5224	1 30ChBT	1 0,24-0,32	1 0,17-0,37	1 0,80-1,10	10°0	10,035	_	(=0,13	1 <=0,30	02 (a) 10	(=0°0=)		5 6 G 6	ı :-•
	6354	30Ch89	1 0,25-0,33	1 0,17-0,37	0,40-0,70	1 0,025	1 0,025	1 0,80-1,10	1 0,15-0,25	(=0,30	1 <=0,30	1 <=0,05	(=0,20	(=0,03	:
	1 1 1 1	י לאכנויזטאא	1 0 07-0 78	17-0 T	07 V-V2 V	3000	1 0 075	-	0.20-0.30	1.25-1.65	(=0.30	(=0:02)	_~	S 01 01 01 01 01 01 01 01 01 01 01 01 01	1

1 16	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		⊶. ~~ ~~ -	. مرم شه	~	E ,,	1		10011	(- 18
21	(-0, 8 (-0, 8) (-0, 8)	; ; (=0,03	50°0=> -	\$0.03 	. <=9,83 8,95 8,95		; <=0,03	50,0=> ;	20 50=2 ::	1 (=0,03
\$ F	<=0, 20 <=0, 20 <=0, 20		62°0=>	8Z *0=>	원 원 일 일 (일 원 (원 원	•	(=¢, 20	S (-)	(2 fn=)	(=0,20
21	0,10-0,181 <=0,05 =>0,05	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<=0,05 1	-0,05	\=0,05 ! \=0,05 !		(=0.05 !	181 0-01 0	: co o=>	<=0,05 !
12	(=0,30 (=0,30 (=0,50	(=0,25 (=0,30	(<=0, 30 !	- 6,6=> : (=),8	1 (=0,30 1		1 <=0,30	02 (0=)	S (11) 11	
11	2,00-2,40 <=0,30 <=0,30	<=0,25 <=0,30	(=0,30	<=0,30 <=0,30	(<=0,30 0 70=1 00	256	2,75-3,25	3,00-3,50	(일) (일) (일)	2° 6° 7° 7° 7° 7° 7° 7° 7° 7° 7° 7° 7° 7° 7°
10	0,20-0,30 <=0,15 <=0,15		0,15-0,25	<=0,15 -	<=0,15 <=0,15	71 (2)	0,20-0,30	0,35-0,45	<=0, 15	=0, (S
-	0,60-0,90 (=0,30 (=0,30	<=0,25 1	0,80-1,10	(=0,30 (=0,30	1,09-1,30	1 0050-0050	9.50-1.20	1,20-1,50 ;	1,30-1,60	1 07 (n=)
ω	0,025 1	0,040 :	0,035 1	0,035 1	0,025	77	0,025	0,625	0,035	0,040
-	0,035	0,033	0,035	0,033	1 0,025	70016	10.025	1 0,025	0,03	0,050
9	0,30-0,60 0,70-1,00 1,40-1,80	0,50-0,80	1 0,40-0,70	1 0,70-1,00	1 0,50-0,80	ortransia i	1 0, 25-0, 50	1 0,25-0,50	09'0-02'0 1	: 0,30-0,80
17	0,17-0,37 0,17-0,37 0,17-0,37	0, 17-0, 37	0,17-0,37	0,17-0,37	0,17-0,37	U3 1 (103 67	6,17-0,37	0,17-0.37	1,00-1,40	0,17-0,37
	0,27-0,34 1	0,32-0,40 1 0,32-0,39 1	0,32-0,40	0, 32-0, 40	0,33-0,42	7 10 10 10	0,33-0,40	0,33-0,40	0,34-0,42	0,57-0,45
m	T ==				"	SechJu I	SECHMENA :	E S		
7 3	6354 6354 6354		131.1 6354				39.1.6354			142,1 5785
	1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1	3 4 5 15 15 15 15 15 15	3 4 5 16 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15	3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15	3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15	3	3 3 4 5 5 6 7 8 8 7 8 10 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15	3	300chkziff 0, 27-0, 35 0, 17-0, 37 0, 30-0, 60 0, 035 0, 60-0, 90 0, 20-0, 30 1, 00-2, 40 (=0, 30 0, 10-0, 18 (=0, 20 (=0, 30 0, 10-0, 18 (=0, 30 (=0

7 . 1 .	## 5-1 #4	~ "	- 	 5/3	-to	'	r	сэ С	o-	Ω.	-1	[]	21	14	CI	9
22.1 5354	1	305hRZMFR! 0,27-0,34	1	1 0,17-0,37	1 0,30-0,60	0 1 09	÷	0,025	0,50-0,90	0,20-0,30	2,00-2,40	; (=0,30	0,10-0,18		1. <=0,03	
23.1 6354	 	305		1 0,17-0,37	1-07.0-1		0,035 1	0,035	! <=0,30 !	<=0,15	02*0=>	02 (0=)]	1 <=0,05	(=0,20	1 (=0,03	1.1145
	174 174	3062		1 0,17-0,37	1,40-1,90	, 88.		0,035	1 <=0,30 1	<=0,15	(=0,30	e, 6=) ;	(=0,02		. (=0,03	1391111
		34Ch76 1			 						per sch					
		3401818 1	-					_ _						.		l
		34ChN3H !									w.e=					1
	 -	34ChN3KA 1				B4 H2									 '	1
	 	~-	0,32-0,40	1 0,17-0,37	1 0,58-0,50	08 f	0,035	0,040	1 (=0,25		(=0,25	(=0,25	1	Pa +2		1.0501
	**		0,32-0,39		1 0,80-1	1011	3,025 1	0,025	11,10-1,40	<=0,15	(=0,30	1 (=0,30	1 <=0,05		1 (=6,03	
		35ChM [0,32-0,40		1 0,40-0	70 1	0,035	0,035	1 0,80-1,10	0,15-0,25	(=0,30	1 <=0,30	; (=0,03	1 <=0,20	. <=0,03	1.722
		3503774														
	153.		0,32-0,40		1 0,70-1,00	. 00,	0,035 1	0,035	1 <=0,30	(=0,15	. <=0,30	ନ ଜୀ ଜୀ	(=0,05	2 9	: (=0,03	1
	23		0,30-0,37		1 0,80-1,20	,20 : (0,040	0,045	1 (=0,30 1	1	1 <=0,30	1 (=0,30	۱ 		1	1
	17 17		0, 35-0, 42		1 0,50-0	86	0,025	0,025	1 1,00-1,30	(=0,15	(=0,30	(=0,30	1 <=0,05		: () :3	1.7043
135, 1, 631	6324		0,38-0,43	1 0, 17-0, 37	1 0,89-1,10	01,	0,035 1	6,035	1 0,50-0,80	<=0,15	1 0,70-1,00	(=0,30	; <=0,05		; (=0, 63	l
			:		· ·		••• :								 ,	
		38ChMJuA 1	-		-~				-		4.4					
	10	38ChN3MA 1	0,33-0,40	1 0,17-0,37	1 0,25-0,50	3,20	0,025	0,025	1 0,80-1,20	0,20-0,30	1 2,75-3,25	(=9 ¹ 성	1 <=0.05		1 (=0,03	l
	£	38CH N3MFA1	0,33-0,40	1 0,17-0,37	1 0,25-0	 Ge.	0,025	0,925	1 1,20-1,50	0,35-0,45	3,00-3,50	(=0,30	1 0,10-0,18		20 0=> 1	1
	6354	39Ch5 1	0,34-9,42	1 1,00-1,40	1 0,30-0,60	1, 69,	0,035	0,035	1,30-1,60	1 <=0,15	1 <=0,30	S (1)	1 <=0,05		1 <=0,03	
142.1.57	5785	10	0, 37-0, 45	1 0, 17-0, 37	1 0,50-0,80	08	0,035	0,040	(=0,25	l 	<=0,25	1 (=0,25	1	1	l	1.0511
	3529	1 49Ch	0,35-0,44	1 0.17-0.37	1 0,50-0,20	1,30	0.035	0,035	1 0,80-1,10	(=0,15	(=0,30	(e) 33	: <=0,05		1 <=0,03	1 1 703

9,035 0,45-0,75 (=0,15 1,00-1,40 (=0,30 (=0,05 (=0,03 1,5711 9,035 0,035 1,30-1,60 (=0,15 (=0,30 (=0,30 (=0,05 (=0,03 - 9,040 (=0,25 - (=0,30 (=0,30 (=0,05 - 1,0503 9,040 (=0,25 - (=0,30 (=0,30 (=0,25 - 1,0503 9,035 0,940 (=0,25 - (=0,25 (=0,25 - - - 1,0501 9,035 0,040 (=0,25 - (=0,25 -	4D
0,035 0,45-0,75 <=0,15 1,60-1,40 <=0,30 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05	
0,040	0.17-0.37 0.50-0.80 0
0,040 (<=0,25 <=0,25 <=0,25 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,05 <=0,	0,30-0,60
0,040	0.59-6.50
0,040 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,30 <=0,30 <=0,30 <=0,20 <=0,25 <=0,25 <=0,25 <=0,26 <=0,25 <=0,26 <=0,25 <=0,26 <=0,26 <=0,26 <=0,25 <=0,26 <=0,26 <=0,25 <=0,26 <=0,25 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,26 <=0,	0,17-0,37 : 0,50-0,80 : 0
0,040 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,25 <=0,30 <=0,30 <=0,30 <=0,30 <=0,30 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,30 <=0,30 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,20 <=0,	
0,040 (=0,25 =0,25 =0,25 =0,25 = 0,25 = 0,25 = 0,25 = 0,30 = 0,30 = 0,30 = 0,30 = 0,20 = 0,20 = 0,20 = 0,30 = 0,30 = 0,20	1 0,50-0,80 1 0
0,035 <=0,25 -	0.17-0.37 1 0.50-0.80 1 0.
0,035 <=0,25 -	
0,025 <=0,25 - <=0,30 <=0,30 =0,30 - =0,20 = = = = = = = = =	10 THE
6,925 17,0-19,0 <-0,30 8,00-10,00 - - -	0,17-6,37 0,90-1,20 0,
0,025 17,0-19,0 <-0,30 8,00-10,00 - - - 5xIC-0,80	
0,025	
1 0,025 0,80-1,30 <=0,30 0,30-0,50 <=0,20 - - - - - - - - -	<=0,80
0,025	
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0,50-0,50 1 0,70-1,00 1 0,

-239-

ブルガリア鉱工業プロジェクト選定確認調査 対 処 方 針

1993.8.25 鉱工業開発調査部計画課

1.調査の目的

開発途上国に対する我が国の技術協力のうち、鉱工業関係の開発計画を効率的に実施するため、既に要請がある「製鉄所の環境対策及び近代化」について、その背景及び経済開発計画における位置付け等を調査し、協力可能な範囲を明確にするとともに、今後、我が国が協力の可能性のあるプロジェクトの発掘を目的とする。

2. 調査の背景と経緯

戦後のブルガリアは、旧コメコン分業体制の下に、原燃料の大部分を旧ソ連からの輸入に依存しながら、重工業化路線を推進した結果、鉄鋼、非鉄金属、機械、電力、化学などの新しい工業部門が発展し、国民所得に占める工業の比重は1960年47.3%、1970年64.8%と1960~1970年の間に急増した。

しかしながら、1970年代に入るとブルガリア経済は減速し始め、鉄鋼業においても粗鋼生産は1980年代後半には年間290万 tの水準で停滞を続け、旧コメコン体制の崩壊後の1991年には162万 tに激減した。鋼材生産も年間320万 t程度であったが、1991年には131万 tに落ち込んでおり、設備効率、生産能率の問題も生じている。また、原燃料多消費型産業である鉄鋼業にとっては、省エネは大きな課題となっている。

一方、製鉄所では、生産設備に公害防止設備が設置されていないか、又は、設置されている公害防止設備でも、国の排出基準を満足していないか、又は稼働していない状況にあり、 環境対策も重要な課題となっている。

かかる背景のもと、本年2月に、省エネ・環境対策を含む鉄鋼産業開発計画推進の方策の 策定を内容とする「(ブルガリア国内製鉄所全ての)製鉄所の環境対策及び近代化」調査の 要請書(別添参照)の提出があった。

本件に関しては、ブルガリアにおける製鉄所の廃止、再編をも含む調査内容も考えられるところ、先方の真意はどこにあるのか、産業省と製鉄所側との間で調整がとれているのか、国内での情報では不十分なため、産業省、製鉄所側から要請の背景、内容の確認をした上で、JICAとしての協力範囲を明確にするとともに、資料収集を目的として、今般、調査団を派遣することとした。 また、ブ国においては現在「省エネルギー計画」調査を実施中であるが、5年度要請は前記の1件のみであり、新規案件の発掘にも先方政府と協議することとした。

3. 調查団構成

JICA鉱工業開発調査部長 棚橋 滋雄 団長・総括 佐藤 秀雄 外務省経済協力局開発協力課課長補佐 技術協力政策 通産省通商政策局技術協力課係長 岩倉 知明 技術協力行政 通産省基礎産業局製鉄課課長補佐 長谷川洋二 製鉄行政 JICA鉱工業開発調査部工業開発調査課 永江 勉 工業開発 (社)日本鉄鋼連盟技術管理部長 珊吉 製鉄技術 堀 環境対策 橋爪 繁幸 (財) 日本環境協会事業担当理事 JICA鉱工業開発調査部計画課課長代理 永井 均 調査企画

4. 調査日程

平成5年9月1日(水)~平成5年9月11日(土) (詳細は別紙のとおり)

5. 調査事項

- (1) 要請内容の確認
- (2) 協力の範囲についての協議
- (3) その他我が国が協力しうる鉱工業関係プロジェクトの発掘
- (4) 関連情報・資料の収集
- 6. 開発調査新規候補案件
 - イ, 中小企業育成
 - ロ. 石炭火力発電所の環境対策
 - ハ. 工場団地
 - 二. 石炭火力発電所におけるリグナイト使用の可能性

7. 対処方針案

- (1) 製鉄所の環境対策及び近代化について
 - イ. 先方政府がJICA調査に対し、ブルガリア国として鉄鋼業をどうするか、将来の 戦略を構築したいのか、即ち、鉄鋼産業開発のためのM/P作成を期待するのか、工 場の設備改善、省エネ、環境対策についてのF/S調査を期待するのか、ブルガリア 側の意向を確認する。

ブルガリアの鉄鋼業の在り方として考えられるところは、

- 1)製鉄所の廃止
- 2) 高炉から電気炉への転換(一貫製鉄の廃止、高炉の一部又は全部の廃止)

- 3) 高炉の今までどおりの存続
- なお、M/P調査の中でクレミコフチ製鉄所を含む4製鉄所を対象として、工場の 設備改善に係る調査を実施するものとする。
- ロ. 先方が、本件調査について、両者を含む調査を要望する場合は、F/S調査の効率性の観点から、まず初めにブルガリア国の鉄鋼業の開発計画のためのマスタープラン作りを優先させることとする。その調査結果を踏まえ、先方政府よりF/S調査の要請が出されればその実施の可否につき検討するものとする。
- 二. 今後の調査スケジュールを問われた場合は、事前調査は12~1月ごろとなる見通 しであると回答する。

(2) 新規案件について

- イ. 今回の調査は平成6年度以降を対象としていることを説明する。
- ロ. 新規案件候補については、先方の要望内容を聴取するものとし、開発調査として適当と判断される案件については要請書の提出を促すこととするが、その採択に関しては、要請書接到後我が国において関係省庁の協議により決定することを説明する。
- ハ. JICA開発調査が必づしも資金協力に結びつくものではないことを説明する。

調査日程(案)

1.	9月1日	(水)	移動 (成田14:0518:557ランクフルト) (LH711)	フランクフルト 泊
2.	2日	(水)	移動 (フランクフルト08:4009:40ミュンヘン10:5513:50ソフィア) (LH122) (LH3386)	y7ィア 泊
			日本大使館訪問	
3.	3 日	(金)	午前:産業省 午後:クレミコフチ製鉄所現地調査	: "
4.	4日	(土)	資料整理	"
5.	5 日	(日)	資料整理	n
6.	6日	(月)	* 棚橋、佐藤、岩倉、永井* (新規案件候補) 環境省、エネルギー委員会、産業省	n
			長谷川、永江、堀、橋爪 クレミコフチ製鉄所現地調査	
7.	7日	(火)	* コンサルを除く全員* 午前:産業省 午後:予備	n
			コンサル 午前:クレミコフチ製鉄所現地調査 午後:ペルニク製鉄所現地調査	٠.
8.	8日	(水)	予備日(自動車工場調査)	n'
9.	9日	(木)	日本大使館報告	
			移動 (ソフィア16:20ウィ-ン17:00) (0S814)	ウィーン 泊
10.	10日	(金)	日本大使館報告、JICA事務所報告	
			移動 (ウィーン16:1018:10アムステルダム19:40 (KL260) (JL414)	機内泊
11.	11日	(土)	13:50 成田)	

1. 要請背景

①第一回JICA専門家派遣 (1992年 2月22日 - 3月 9日)

- 背景 : ク製鉄所は首都ソフィア最大の汚染源と認識されており、ブ政府の環境政策いかんで存亡の危機をむかえる状況にあり、早急に対策を講じる必要がある。

-派遣目的:ク製鉄所の環境保全・省エネに関する現状調査、問題点の抽出、対策立案

- 調査結果:現状の操業条件の元に、環境保全対策・省エネ対策の検討 [同時に、設備効率、生産能率上の問題も浮上(生産能力の半分以下の 生産実績、多品種少量生産)]

-提言 : 環境・省エネ対策将来計画の策定については、適切な生産規模、生産品種を策定のうえ、最適な生産プロセス選定と設備能力を設定することが前提条件。

更にその前提条件として、ブ政府の産業政策、中長期政策、鉄鋼産業政策 を分析する必要あり。

②第二回JICA專門家派遣 (1992年11月30日 - 12月24日)

- 派遣目的:第一回調査不足部分の追加調査

・環境改善計画のための設備改造案・新設備案・同建設費用を含めた 総合改善計画の作成。

- ・上記計画立案のための、粗鋼生産量の検討
- ・プ国側追加要請として生産プロセスの検討
- 調査結果:環境改善計画(案)の提示
 - ・電気炉中心の製鉄プロセスを採用した場合の試算、及び 現状維持のうえでの環境対策費用の対比資料の作成。 (電気炉 70.0 M.\$ - 現状維持 135.2 M.\$) (*電気炉については既存2基に1基追加するプラン)
- ③調査結果に対するコメント

ク製鉄所:一ク製鉄所の将来的な生産プラントは電気炉がベターだがコスト次第

- 問題点として、・電力の確保

(供給量不足)

・スクラップの確保

(輸出産品として 外貨獲得)

・高炉休止による労働者の削減(3,500 人程度)

上記問題点は解決可能?

ブ産業省:-鉄鋼産業の将来計画・戦略を構築する。 (高炉の廃止、一部廃止、ク製鉄所の廃止等)

ブ大使館:- 135M.\$ の設備投資はネガティブ

電気炉が有望と思われるが、日本側としては、選択肢提供のための調査にしたい。

2. 要請内容

ブルガリア製鉄所公害対策及び近代化 要請内容(要約)

(1) 案件名: Restructuring and modernization of steel industry in Bulgaria (for the purpose of improving its effectiveness in the condition of market economy)

(2) 調査対象地:

		粗鋼	従業員	タイプ
クレミコフチ	(ソフィア)	230 <i>7</i> 7 t	1.6 万人	一貫高炉+電気炉
ストマナ	(ペルニク)	?	?	?
カメット	(ペルニク)	?	?	?
プロメット	(ブルガス)	?	?	?
必要に応じそ	の他の工業			

- (3) 意義: -エネルギー大量消費、公害問題などを含む鉄鋼産業の危機的状況の打開 高品質の鉄鋼を最小限のコストで生産するための可能性の研究
- (4) 関連プロジェクト:

本件調査を受け、関連産業(原料、耐火煉瓦等)の調査が考えられる。

- Managan Joint Stock Company
- Company "Dinas"

(5) TOR:

- 1)必要性: JICAの開発調査に基づき、ブ側で省エネ・公害対策を含む鉄鋼産業開発 計画推進のための方策を策定する。
 - -経済分析に基づくケースタディーを含む開発調査。
 - 長期的社会・経済計画を考慮した上で、JICA提言の中から適当なもの を選択する。
- 2)目的 :ブルガリア鉄鋼産業の将来計画を設定するために
 - -経済評価を含む、生産量の増加、製品構成計画の立案
 - 鉄鋼製品種別の輸出入可能性の調査
 - -国内調達原料 (スクラップを含む) の最大利用可能性
 - 国内規制法に合わせるための環境汚染対策
 - -省エネ対策

3) スコープ:

ブ側提供の基礎資料を参考・検討のうえ、下記の事項につき調査を行う。

- ①調査の背景
 - ブルガリア経済概況
 - ブルガリア鉄鋼産業の概況
- ②鉄鋼製品の需要供給状況(輸送・配送を含む)
- ③原材料 (鉄鉱石、石炭、スクラップ、石灰岩等)
- ④各製鉄所の現状
 - 一製鉄所概要
 - -過去5年間における生産量、販売実績の調査
 - -過去5年間における輸出入実績
 - 従業員数
 - 各設備の容量
 - -付帯設備
 - 生産基盤 (電力、天然ガス、工業用水、原料供給ルート)
 - -公害防止
 - -市場調査(セールスネットワークを含む)
 - -生産コスト
 - -経済分析
- ①~④の調査結果を踏まえ、

ブルガリア鉄鋼産業再構築のためのプロポーザル (マスタープラン) (代替案も含め) を作成する

- -生產計画(製品構成、生產量)
- 一設備投資計画
- 設備投資計画・詳細
- 生産基盤
- -雇用人数
- -新規投入設備導入コスト試算
- 生産コスト試算
- 建設スケジュール
- 一財務分析
- -経済評価

*ブ側提供資料

- -鉄鋼需要供給予測(生産量・品種)
- 各製鉄所の設備改善案
- 電力供給の現状と将来計画
- ー スクラッフ 供給政策と将来計画

- 3. 調査の概要
- 1. フ政府中長期産業政策の把握・確認
- 2. 同政策における鉄鋼産業の位置付けの把握・確認
- 3. 鉄鋼産業将来計画策定 (鉄鋼需要予測・市場計画・製品構成計画・原料供給計画) (生産計画・分業・環境対策・労働問題対策)
- 4. 製鉄所の近代化計画作成
- 1) 各製鉄所の製品構成・生産規模の検討
- 2) 各製鉄所の生産工程・プラントの検討
 例) ①自動車、家電製品⇒圧延鋼板⇒コークス炉ー高炉ー転炉(一貫製鉄所)
 ②建設、土木 ⇒鋼材 ⇒電気炉(スクラップ)
 -環境対策・省エネ対策の実施

-248-

I. INTRODUCTION

In response to the request of the Government of Republic of Bulgaria the Government of Japan decided to conduct the Study on Restructuring and Modernization of the Steel Industry in Republic of Bulgaria (hereinafter referred to as "the Study") in accordance with the relelant laws and regulations in force in Japan.

Accordingly, the Japan International Cooperation Agency (hereinafter referred to as "JICA"), the official agency responsible for the implementation of the technical cooperation programmes of the Government of Japan, will undertake the Study in close cooperation with the authorities concerned of the the Government of republic of Bulgaria.

The present document sets forth the scope of work for the Study.

H. OBJECTIVE OF THE STUDY

The objective of the Study is to formulate a comprehensive master plan for restructuring and modernization of the steel industry.

III. SCOPE OF THE STUDY

In order to achieve the above objective, the Study shall be conducted in accordance with the following items:

- 1. Background of the Study
- 1-1 Economic situation of Bulgaria
- 1-2 Mid and long term policy on industrial develoment
- 1-3 Relevant laws and regualtions
- 2. Present situation of steel industry in Bulgaria
- 2-1 Present situation and policies of steel and iron industries
- 2-2 Present situation and trend of supply and demand of steel (quantity and product)
- 2-3 Product transportation and distribution
- 3. Present situation of supply of raw materials and energy
- 3-1 Present situation of supply of raw materials
- 3-2 Future prospect of supply of raw matrials
- 3-3 Present situation of supply of energy(electricity, coal, etc.)
- 3-4 Future prospect of supply of energy (electricity, coal, etc.)

- 4. To study present situation of steelworks
- 4-1 Outline of four (4) steelworks (Kremikovtzi, Stomana, Kamaet and Promet
- 4-1-1 Production and sales record for the past five years
- 4-1-2 Export and import records of steel products for the past five years
- 4-1-3 Organization, administration and manpower
- 4-1-4 Production capacity
- 4-1-5 Utilities (including power, natural gas, industrial water)
- 4-1-6 Supply route for raw materials
- 4-1-7 Pollution control measures and facilities
- 4-1-8 Market for products including sales networks
- 4-1-9 Production cost
- 4-1-10Financial situation
- 4-2 Literay study of other steelworks
- 5. To formulate a master plan for the restructuring and modernization of steel industry
- 5-1 Future strategy
- 5-1-1 Future demand and supply of steel
- 5-1-2 Production plan (products and quantity)
- 5-1-3 Raw material (iron ore, scrap)
- 5-1-4 Energy source.
- 5-1-5 Pollution control maesures
- 5-1-6 Overall restructuring plan of steelworks
- 5-2 Modernization of four (4) steelworks (Kremikovzi, Stomana, Kamat and Promet)
- 5-2-1 Production plan including products mix, quantity, and material balance sheet
- 5-2-2 Cost estimation for modernization
- 5-2-3 Organization, administration and manpower
- 5-3 Conclusion and recomendation

IV. WORK SCHEDULE

The Study will be carried out in accordance with the attached tentative work schedule.

V. REPORTS

JICA shall prepare and submit the following reports in English to the Government of Republic of Bulgaria

Ten (10) copies of the Inception Report

Ten (10) copies of the Progress Report

Twenty (20) copies of the Interim Report

Thirty (30) copies of the Draft Final Report

Thirty (30) copies of the Final Report

VI. UNDERTAKING BY THE GOVERNMENT OF THE REPUBLIC OF BULGARIA

- 1. The Government of the Republic of Bulgaria shall accord privileges, immunities and other benefits to the Japanese study team (hereinafter referred to as "the Team") in accordance with the Agreement on Technical Cooperation between the Government of Japan and the Government of the Republic of Bulagaria.
- 2. To facilitate smooth conduct of the Study, the Government of the Republic of Bulagaria shall take necessary measures :
 - 2-1 To secure safety of the Team
 - 2-2 To permit the members of the Team to enter, leave and sojourn in Thailand for the duration of their assignment therein, and exempt them from alien registration requirements and consular fees
 - 2-3 To exempt the members of the Team from taxes, duties and other charges on equipment, machinery and other materials brought into, and out of , Bulgaria for the conduct of the Study
 - 2-4 To exempt the members of the Team from income tax and charges of any kind imposed on, or in connection with, any emoluments or allowances paid to them for their services for the implementation of the Study
 - 2-5 To provide necessary facilities to the Team for remittance as well as utilization of the funds introduced into Bulgaria from Japan for the implementation of the Study
 - 2-6 To secure permission for entry into private properties or restricted areas for the conduct of the Study
 - 2-7 To secure permission for the Team to take all data and documents including photographs related to the Study out of Bulgaria
 - 2-8 To provide medical service as needed. (Its expenses can be charged to the members of the Team.)

- 3. The Government of the Republic of Bulgaria shall bear claims, if any arises against the members of the Team resulting from, occurring in the course of, or otherwise connected with the discharge of their duties in the implementation of the Study, except when such claims arise from gross negligence or willful misconduct on the part of the Team members.
- 4. The Department of XXXX , Ministry of Industry (hereinafter referred to as "XXX"), shall act as a counterpart agency to the Team as well as the coordinating body in relation with other governmental and non-governmental organizations concerned for the smooth implementation of the Study.
- 5. XXX shall, at its own expenses, provide the Team with the following in cooperation with other organizations concerned:
 - 5-1 Available data and information related to the Study
 - 5-2 Counterpart personnel
 - 5-3 Suitable office space with necessary equipment
 - 5-4 Credentials or identification cards
 - 5-5 Vehicles
- 6. XXX shall organize the Steering Committee (hereinafter referred to as "the Committee") for the purpose of smooth and effective implementation of the Study.

The Chairman of the Committee shall be the Director General of XXX and its secretariat shall be set up within XXX.

VII. UNDERTAKING BY JICA

For the implementation of the Study, JICA shall take the following measures:

- 1. To dispatch, at its own expenses, a series of study teams to the Republic of Bulgaria
- 2. To pursue technology transfer to the Bulgarian counterpart personnel

VII. OTHERS

JICA and XXX shall consult with each other in respect of any matters that arise from, or in connection with, the Study.

