Sheet
Stady
S
10 t

Ĺ		-			Bait Cost	Bait Cost Study Sheet	eet				(5)	_ {				i	Unit Cost Study Sheet	dy Sheet					(9)
	Norks	Specification	Quentity	tity	Unit Rate		fuit Cost	Kati	Remai 655 Material Plant	Remarks ant Labor	>1 "	1	() () () ()	Specification	Quantity	[t]	Unit Rate	Unit Cost	ž t	Baterial	Remarks US\$ Plant Labor	S	
	C. Onland			 -								Γ	Paresent(2)Normal Interlock	Interlock		 				:			
	Pavement(1)Light													Subgrade CBR>7		-		\$/22	6.4	0	3.6	9:	0-75-25
1		Sabgrade CBR>10				\$/EZ		(.0	9 3.	3.0 1.0	0 0-75-25	122		Subbase t=0.5m	#3/#2	0.5	\$/#3 38.5	\$/#5	19.3	11.6	60.	2.9	60-25-15
1	-	Subbase t=0.3m	83/82	0.3	\$/ a 3	38.5 \$/12	2 11.6		7.0 2.	2.9 1.7	7 60-25-15	151		Re Con t=0.12m	33/82	0.25 \$1	\$/13 350.0	350.0 \$/22	62.0	25.2	4.0	4,	60-20-20
		CrushRock t=0.2m	13/13	9.2	.5 E#/\$	54.0 S/E2	8.81 5		11.3	4.7 2.8	8 60-25-15	<u> </u>		Carb	8/82	0.05 \$	8/m 16.0	0 \$/m2	1.3	1.6	0.1	9.6	70- 5-25
		Carb	182	6.1) =/\$	46.0 \$/#2	1.6		3.2 0	1.7	2 70- 5-25	آب 		Road Sign/Paint		-		\$/102	2.0	1.6	0.5	0.5	50-25-25
<u>.</u>					Sab-Total	tal 5/22	2 39.0		21.5 10	1.8 6.7	7 55-29-16	عوا					Sub-Total	\$/82	9.69	39.4	16.8	13,4	56-24-20
_=_1	Pavement(2)Normal Asphalt	Aspbalt											Pavement(3)Heavy Concrete	Concrete		-		_					
l		Subgrade CBR>7				\$/#2		1.0	9	3.0 1.9	0-75-25	120		Subgrade CBR>5		-		2#/\$	6.5	0	3.0	0.1	0-75-25
<u>-</u> 2		Subbase t=0.5m	B3/B2	0.5	\$/#3 36	38.5 \$/#2	2 19.3	3 11.6	· •	8 2.9	9 60-25-15	10		Subbase t=0.45m	13/12 13/13/13 13/13 13/13 13/13 13/13 13/13 13/13 13/13 13/13 13/13 13/13/13 13/13	0.45 \$/	\$/#3 38.5	\$/#2	17.3	10.4	7	2.5	60-25-15
l 46		Aspbalt t=0.1m	£3/#2	0.1	\$/#3 42(420.0 \$/#2	1 42.0	27.3	1.8 E.	£.8 £.3	3 65-20-15	25		Re Con t=0.3s	83/82	0.30 \$/#3		330.0 \$/#2	0.26	58.5	16.5	24.0	59-17-24
. _{ج. ح} ــا		Carb	18/23	0.02	\$/ a	46.0 \$/#Z	2.3	<u>.</u>	1.6 0	.1 0.6	5 70- 5-25			Corb	8/22	0.05 \$	\$/m 184.0	20/\$	9.2	6.9	0.5	2.7	65- 5-30
		Road Sign/Paint				\$/#2	12 2.0		0 0.1	1.5 0.5	5 50-25-25	yn I		Road Sign/Paint		-		S/B2	2.8	1.0	0.5	5.5	50-25-25
1					Sub-Total	tal \$/#2	69.6		41.5 16	11.3	3 60-24-16	ا م					Stb-fotal	\$/82	131.5	75.9	24.8	8.8	58-19-73
ا	Pavement(2)Normal Concrete	Concrete									-		Pavement(4) Beary	Concrete									
I		Sobgrade CBR>5				2≡/\$	12 5.0		0	0.1 0.	0 0-80-20	9		Subgrade CBR>5		-		\$/82	4.0	0	3.0	6.1	0-75-25
1		Sabbase t=0.35m	#3/#5	0.35	\$/#3	38.5 \$/12	13.5	-	8.1 2.	9 2.5	\$ 60-25-15	'n		Subbase t=0.5m	13/82	0.50 8/	\$/83 38.5	\$/25	19.3	116	8.9	2.9	60-25-15
		Re Con t=0.25m	x3/x2	0.25 \$	\$/#3 35	339.0 \$/#2	82.5	8.8	13.	8 19.9	9 59-17-14			Re Con t=0.35m	23/22	0.35 \$/#3	/#3 330.0	2#/\$	115.5	58.3	19.3	27.9	59-17-24
		Cerb	1/11/2	9.05	\$/∎	£6.0 \$/ ± 2	2 2.3		1.6 0	0.1 0.6	70- 5-25	<u>-</u>		Curb	1/112	0.05	\$/m 184.0	2=/\$ (9.2	6,0	0.5	2.7	65- 5-30
		Road Sign/Paint				\$/ # 5	12 2.0		1.0 6	.5 0.5	5 - 50-25-25	[₅₀		Road Sign/Paint		-		2≖/\$	2.0	1.0	0.5	0.5	50-25-25
1					Sub-Total	.a! \$/#2	12 105.3		59.5 21	.3 24.5	5 56-20-16					 	Sub-Total	\$/82	150.0	86.9	28.1	35.0	58-19-23
				-	-	<u></u>												_					

50	٠,	-	
	>	o	
	_		,

Remarks US\$ Material Plant Labor

Unit Cost

Unit Rate

Quantity

65-10-25 65-5-30 65-5-30 90-0-10

125.0 | (

325.0

50.0 50.0 10.0 2.0 5.0

20/\$

35.0

2.5

3.0

6.5

6.5

\$/#7

\$/#7

0.5

4.5

\$/82

Dait Cost Study Sheet

Unit Cost Study Sheet

			.	unit Cost study speet		100				E	۱			
	Specification	S S S S S S S S S S S S S S S S S S S	gaabti ty	Unit Rate		Tait Cost	Haterial	Remarks US\$ Material Plant Labor	is abor			S#10	Specification	
	Concrete				_						 -	d. Bailding		
	Sabgrade CBR>5				\$/82	17 4.0		3.0	1.0	0-75-25		Kala Gate	Steel Open Strc	
	Subbase t=0.3m	x3/x2	0.30	S.8E E#/S	5 \$/#2	11.6	7.0	2.9	1.1	60-25-15			Power / Lighting	
	Re Con t=1.20m	.m3/m2	1.20	\$/#3 330.0	28/8 0	396.0	234.0	0.99	96.0	59-17-24			Water Supply	l
				Sub-Total	\$/22	12 411.6	241.0	11.9	98.1	59-11-54	<u> </u>		Furniture	l
													Equipment	l
	Stormater Orain Re Con Pipe 432"	a/ha	170.0 5/x	s/x 190.0	Pq/s	32,300	21,000	6,460	4,840	65-20-15	:			L
	Earth Work	s3/ps	578.0	\$/ # 3	20.0 \$/b	\$/ha 11,560	4,620	4,620	2,320	40-40-20				
	Kandole	es/ba	7	\$/ea 3,500	84/5 00	3 7,000	3,850	1,050	2,100	55-15-30		Control Rouse	ConcStruc 2story	l:
	Miscellaneous				\$/ba	ia 2,140	1,070	535	535	50-25-25	<u> </u>		Power / Lighting	l
				Sub-Total	\$/58	33,000	30,540	12,665	9,795	58-24-18	L i		Mater Supply	l
										-			Faraiture	
	Superstructure				\$/#2	2 1,700	335	340	425	55-20-25	<u> </u>		Eguipment	<u> </u>
	Substructure				\$/#2	12 800	97	160	200	55-20-25	L			
				Sub-Total	\$/22	1,500	1,375	200	625	55-20-25				<u>L</u>
												Maintenance Shop Steel Frame	Steel Frame	<u> </u>
	Soil Improvement Paper Drain					-							Power / Lighting	<u> </u>
	Drain	8/E2	50.0	8'D 4/\$	8 \$/82	2 40.0	8.0	28.0	0.4	20-10-10			Water Supply	<u> </u>
	Sand Mat t=0.1m	1/12	1.0	\$/m 10.0	2 \$/#5	10.0	5.0	6.0	1.0	59-49-10			Furniture	
	Earth Load t=0.3m m3/m2	183/82	3.0	8/#3 5.0	1 \$/162	15.0	6.0	7.5	1.5	40-50-10			Equipment	
	Miscellaneous				\$/#2	12 5.0	2.6	1.2	1.2	50-20-20				
				Sub-Total	\$/#2	10.0	21.6	10.7	1.1	31-58-11				
į		-							Ì		,			I

65- 5-30 90- 0-10 90- 0-10

15.0

2.5

225.0 65-10-25

585.0

150.0

\$/82

44.5 65- 5-30

7.5

98.0

\$/87

143.7 65- 9-26

53.0

567.0

\$/#2

Sab-Total

\$/82

6.0 65- 5-30

0.1

20.0

36.0 65- 5-30

6.3

13.0

120.0

\$/22

28.5 90-0-10

9.2 90-0-10

1.3

2.0

\$/#3

220.7 | 11- 1-22

82.0

739.3

Sub-Total \$/m2

121.5

1,042

\$/#7

150.0 70-10-20

75.0

525.0

750.0

2×/\$

291.5 67- 9-24

100.0

778.5

1,170

\$/#7

Sub-fotal

0,

50.0

3.6

32.5

20.0

\$/22 \$/22 \$/22

[10]	1 1 1 20 1 20 1		65-10-25	65- 5-30	65- 5-30			65- 9-26	70- 5-25	69-25-15	40-46-20	90- 0-10	65- 5-30	2 - 2 - 36	86-6-8		75- 5-20		80- 5-15	50-20-30	72- 9-19	
	-		125.0	15.0	0.9		ļ.	146.0	3,850	1,200	280	100	151	1,000	6,580		2009		13.5	6.6	23.4	
•	Remarks US\$ Plant Labor		50.0	2.5	1:0		,	53.5	07.7	2,000	560	0	75	1,000	4,355		150		4,5	9,9	11.1	
-	Saterial		325.0	32.5	13.0			370.5	10, 780	4,800	550	800	375	48,000	65,365		2,250		72.0	16.5	88.5	
	st t		500.0	50.0	20.0		,	570.0	15,400	8,000	1,400	1,000	200	20,000	76,300		3,000		0.06	33.0	123.0	
dy Sbeet	Voit Cost		\$/25	\$/#2	\$/22	\$/27	5/25	2/87	\$/set]	\$/set	\$/set	\$/set	\$/set	\$/set	\$/set		\$/set		3/8	3/8	E/\$	
Wait Cost Study Sbeet	Onit Rate							Sub-rotal	440.0		20.0				Sob-fotal		3,000	:	:	330.0	Sub-Total	
Cait		_							0 \$/#3		70.0 \$/#3						1.0 s/t			0.1 \$/#3	S	
	Quantity								M3/set 35.0		#3/set 70		-				t/set 1		٠	0 a/ga		
	Specification		Conc/Conc Block	Power / Lighting	Water Supply	Paraitore	Egnipsent		Couc Structure	Foundation Piles	Earth Work	Power / Lighting	Water Supply	Egoipaent			Steel 8=10m		Steel E=2.1m	Poundation Conc		
				25	.≆	2.	ឌ			Fo	53	£.	13	- E			Str		Ste	Pai		
	Horks		Mics. Building						Weigh Bridge							:	Gate		Feace			
				-	6	0	6		 			0		<u></u>		·S			1			
(5)	ا چين عص		70-10-20	65- 5-30	65- 5-30	01-0 -06	01-0 -06	10- 9-21	65-10-25	65- 5-30	65- 5-30	90- 0-10	•	65- 9-25		65-10-25	65- 5-30	65- 5-30	90- 0-10	,	65- 9-26	
			150.0	24.0	3.0	0.1	0.5	177.6	125.0	24.0	6.0	2.0	•	155.2		125.0	24.0	9.9	0.2	,	155.2	
1	Labor												i		!		1	ŀ	- 1			. 1
	Remarks US\$ Plant Labor		75.0	£.0.	0.5	0	0	79.5	50.0	4.0	1.0	0	•	55.0		97.05	4.0	2:	5		55.0	
	Remarks USS Material Plant Labor			52.0 4.0	6.5 0.5	0 6.0	4.5 0	588.9 79.5	325.0 50.0	52.0 4.0	13.0 1.0	1.8 0		391.8 55.0		325.0 50.0	52.0 4.0	13.0 1.0	1.8 0		391.8 55.0	
	DS Kateríal		75.0					,	- 1		ĺ		1					- 1	. [
ičy Sheet	22		525.0 75.0	52.0	6.5	6.9	£ .5	588.9	325.0	52.0	13.0	1.8	\$/82	391.8		325.0	52.0	13.0	1.8	\$/#5	\$/#2 602.0 391.8	-
Unit Cost Study Sheet	DS Kateríal		750.0 525.0 75.0	89.0 52.0	10.0	1.0 0.9	5.0 4.5	846.0 538.9	500.0 325.0	80.0 52.0	20.0	2.0 1.8		602.0 391.8		500.0 325.0	80.0 52.0	20.0 13.0	2.0 1.8		602.0 391.8	
fint Cost Study Sheet	Unit Cost Material		750.0 525.0 75.0	89.0 52.0	10.0	1.0 0.9	5.0 4.5	S/m2 846.0 588.9	500.0 325.0	80.0 52.0	20.0	2.0 1.8		\$/#2 602.0 391.8		500.0 325.0	80.0 52.0	20.0 13.0	2.0 1.8		\$/#2 602.0 391.8	
Unit Cost Study Sheet	Unit Date Unit Cost Material		750.0 525.0 75.0	89.0 52.0	10.0	1.0 0.9	\$/#2 5.0 4.5	S/m2 846.0 588.9	500.0 325.0	80.0 52.0	20.0	2.0 1.8		Sub-fotal \$/m2 602.0 391.8		500.0 325.0	80.0 52.0	\$/22 20.0 13.0	2.0 1.8		\$/#2 602.0 391.8	

Unit Cost Study Sheet

100,000 90,060 42,600 9,106 31,000 } 75,000 19,560 2.500 1,650 2,280 7, 500 314,500 00 600 320 180 USS Material Plant Labor 21,000 4,500 15,000 82,500 23,900 1,110 1,500 3,300 19,500 200 .099 20 366 2 22 77,000 210,000 175,000 315,000 21,000 623,000 117,000 351,000 5,910 7 000 1,500 4,290 360 280 980 300,000 146,000 530,600 1,400 9,300 450,000 30,000 Sub-Total 5/8 1,020,000 130,000 390,000 10,000 100,000 2,000 6,600 007 900 Vait Cost Gait Cost Study Sheet \$/8 \$ /3 s/ba \$/13 \$/3 S/na 8/9 \$/pa Sub-Total \$/ba 100,000 \$/8 \$/8 390,000 \$/8 8/8 Sub-Total \$/8 130,000 8/8 ۲. 7,000 30 20.0 40.0 set/ha 0.33 \$/set 20,000 2,000 Spit Rate \$/set } \$/set 3 \$/set 20 S/8a \$/63 45.0 \$/#3 20,000 \$/\$ 10.0 5/1 20.0 \$/m 1,500 \$/1 Çazetity set/B a3/ba Stdby. Gener 600KYk set/B set/3 3/b3 ea/B ea/ba 3/2 Efficent Pipe d12" m/ha 1/8 Collect.Pipe d8* Ductbank (concr) Septic Tank 20m3 Specification Connection Fee Bydrant / Hoses Miscellabeous Miscellaneous Earth Work Hannoles Cables Panel Fire Fighting Power Supply Power Plant Horks Severage 0-0-100 70-10-20 65-10-25 85- 5-10 3.7 65-10-25 65- 7-28 70-10-20 40-40-20 66-14-20 5.0 65-10-25 9 000 | 70-10-20 15,000 65-10-25 20-10-40 65-10-25 6.2 57-10-33 Ξ .. 20,000 2,000 49,000 2,760 720 4,000 9: 1.2 520 US\$ Material Plant Labor 2,780 13,000 1,380 1,040 3 _ ~ ς. Τ 1.500 000'9 2,500 1 2 9.9 7 2,520 13,220 113,000 9,600 22.8 1,046 10.9 31,500 5.0 5. 13.0 . . 39,000 42,500 175,000 3,600 20,000 2,600 45,000 000'09 20,000 13,800 35.0 20,000 19.0 20.0 9.0 15.0 10.0 Dait Cost \$/12 \$/13 \$/82 \$/#2 2/8/ \$/85 \$/B \$/19 \$/19 \$/27 \$/27 \$/B \$/3 B/\$ 50,000 \$/B 905 2 22 Sub-fotal 23 Sub-Total Sub-fotal Sub-Total 39.0 50.0 Dait Rate \$/set \$/#3 7=/\$ \$ 183 0.3 \$/13 ₩ .>> . S 5.5 350 33 300 120 Quantity 13/11 33/ba 3/12 . B/Ba Press. Tank w/Pump | set/B Undergr. Rev. Tank m3/B Connect.Main d12* m/B Specification Water Sup.Distr. Distr.Pipe dlo. Connection Pee Grading / Lawn Ground Prepr. Ground Prepr. Barth Work Pittings Plant Water Sup.Main Landscaping 8. Millities Landscaping Horks

61- 3-31

30- 5-25

55-15-30 70- 5-25

0-0-100 70-10-20

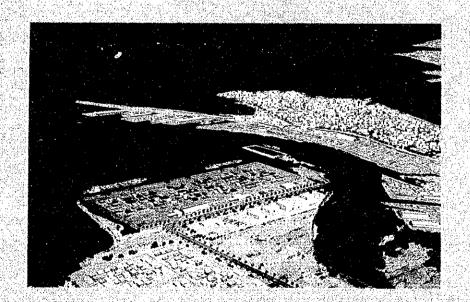
75-15-20

(17)

65-10-25

70- 5-25

70- 5-25 40-40-20 64-20-16 90- 3- 7


90- 5- 5 70- 5-25 90- 5- 5

(14)	Resarks				Y114,000 x 0.90 / 125 = 820.8		(821 + 150) x 0.1 = 97.1																
% Sheet		Bait Cost			\$/t 820.8	s/t 150.0	1.72 1/\$	8'.F 1'067.9	\$/t 214.1	\$/t 1,282.0			0.081 a/s	8/2 144.0	S/m 108.0	\$/m 72.0	0.03 8/8	0'84 m/\$	\$/æ 35.0	\$/ s 24.0			
Vait Cost Study Sheet		Unit Rate						Sub-Total		Total												:	
		Quantity																					
		Specification			Stee!				201				000'1=p	d≖ 800	q≈ -\$00	d= 400	d=1,000	q= 800	009 ±P	00\$ =p			
:		Salog	P. Masic Material	Steel Pipe Pile	Katerial	Transport	Allowance		Overhead	:			Driving Marine				Driving Land				14.	:	
,									:						1	1			11		1	 !	است
(E)		- d - N	85- 5-10	85- 5-10	85- 5-10		70-15-15		70-10-20		70- 5-25		85- 5-10		\$0-12-25	75-10-15	66-13-21		-				
	Remarks	Labor	25,500	20,000	15,500		36,000		1,300		1,000		10,000		150	60	210						
	22	US\$ Material Plant Labor	12,750	000'01 0	12,750		36,000		0 2,400		200		5,000		06	0+ (0	130						
		Kater	216,750	170,000	386,750		168,600		16,800		2,800		85,400		360	300	999			:			
ree;	•	Unit Cost	255,000	3 200,000	(55,000		240,000		\$/hz 24,000		a 4,000		100,000		909	00+	1,500						
tudy St			£/\$	8/5 0	\$/8		\$/B		\$		\$/pa		E/\$		\$/\$	\$/\$	₹/\$					 	_
Onit Cost Study Sheet		Unit Rate	\$/æ 820	\$/set 100,000	Sub-fotal		S/ea 10,000						\$/ez 1.000		\$/t 2,000		Sub-Total				:		
		·-	300	2			\$ 9						\$ 001		0.3 \$							 	
		Quantity	8/8	set/B			ea/B						e2/B 1		t/= 0								
		Specification	Collect Feed SKY	Trolley			Righ Pole Light		Road				Reefor Polats		Two Lines di0"	Pitting / Pump							
		Korks	Power to Grane				Lighting (1)	:	Lighting (2)		Telecos.		Reefer System		Bunker System								
			•								3	-2	50										

Unit Cost Study Sheet

			מזור מחסר סומתל סחבבר	Jame 1	(15)
Norks	Specification	Quantity	Unit Rate	Unit Cost	Reastks
Steel Pipe Joint					
Material		t/m 0.04	\$/t 2,000	\$/m 80.0	
Transport		t/m 0.04	s/t 150	9'9 a/\$	
Allowance				\$/■ 8.7	(800 + 606) x 0.1 = 8.7
			Sub-Total	\$/8 95.3	
Overbead	201			1.61 =/\$	
			fotal	\$/# 114.4	
-					
B-300x300x10x15	94.5kg/m			\$/t 464.0	Y58,000 / 125 = 464
[-300x10x10	38.1kg/m			\$/1 \$84.0	Y73,000 / 125 = 584
L-100x100x10	14.9kg/m			s/t 496.0	Y62,000 / 125 = 496
Arerage Saterial				\$/t 515.0	
Transport				s/t 150.0	
Overhead	203			s/t 133.0	
			Total	\$/t 798.0	
Tie Rope	90 ton			\$/ea 4,752.0	Y594,000 / 125 = 4,752
Overhead	30\$			\$/ea 1,426.0	
			fotal	\$/ea 6,178.0	

