12. 1 Method of Calculation

The relations between direct costs and contracts price are assumed as follows.

The contract price will be divided into the following elements.

	Direct Cost	72%	
-	Indirect Cost	5%	
-	Site-Overhead	8%	
•	General Overhead & Profit	12%	
•	Contingency	3%	
	Total	100%	(Contract price)
	$72 \times 1.4 = 100$		

It means Direct Cost \times 1.4 = Contract price

Therefore the following expression, can be applied. The figure of calculated direct costs times 1.4 become contract prices or contract unit rates.

(Note: When the above expression is applied for temporary works cost, the coefficient of 1.35 instead of 1.4, will be taken because some costs are already included in the Indirect Cost sum)

12.2 Breakdown of Temporary Works

12. 2. 1 Diversion Dam

1) Contractor's & Emplayer's Camp		(Bath) (18,000,000)
Land leveling	$22,000 \text{ m}^2$	2,500,000
Fence & Gate	600 m	300,000
Road	$6,000 \text{ m}^2$	600,000
Building	$3,300 \mathrm{m}^2$	12,500,000
Working yard	$2,000 \text{ m}^2$	200,000
Septic Tanks	3 ea	300,000
Water & Electric Supply	LS	1,600,000

2)	Labour's Camp		(3,000,000)
	Living Quarters 1,5	$00 \mathrm{m}^2$	1,500,000
	Rest House & Toilet	LS	500,000
	Other Facilities	LS	1,000,000
3)	Electric Facilities & Telephone System	٠.	(6,000,000)
	Incoming Distribution Line	LS	2,500,000
	Substation	LS	
	Site Distribution Line	LS	•
÷	Miscellaneous Works	LS	
	Telephone System	LS	500,000
4)	Water supply		(1,500,000)
	Storage Tank	200 t	500,000
	Pumping Facilities from the River	LS	200,000
	Distribution System	LS	800,000
		2	
5)	Dewatering for Excavation		(20,000,000)
	Cut off wall L:12m sheetpile 13	300 t	16,750,000
	Pump	LS	2,000,000
	Other Facilities	LS	1,250,000
6)	Slope Protection		(2,5000,000)
	Protection for Open Excavated Slope		in the distance of the second
	42,0	000 m^2	2,100,000
	Miscellaneous Works	LS	400,000
7)	Concrete Plant		(2,000,000)
	Plant Establishment	LS	1,500,000
	Demolition Expense	LS	500,000
	- versus many many		000,000

8) Temporary Road for Works Site			(23,000,000)
Access Roads to EL(-)9.0 Ground		3NOS	6,000,000
Road for Dam site	40,000	-	6,000,000
Road for O/M Building Area	50,000		7,500,000
Other Road	16,000		2,000,000
Drainage Facilities & Others	,	LS	1,500,000
			2,000,000
9) Scaffolding, Support & Bracing			(5,000,000)
Scaffolding for Pier works	45,000	m^3	4,500,000
Support & Bracing	-,	LS	500,000
en e			000,000
10) Preparation for Mechanical Works A	rea		(1,000,000)
11) Earth & Rock Loading Pier.	450	m^2	(2,000,000)
12) Temporary Works for Road Bridge			(3,000,000)
Access Road to Pier Works		LS	400,000
Earth Removed before Pier & Aba	utmentwo	rks	ŕ
		LS	100,000
Scaffolding for Concrete Work	3,600	m^3	500,000
Crane Road for Girder Setting	500	m	900,000
Road for Concrete Hauling	500	m	300,000
Staging for Pile Drive		LS	500,000
Dewatering etc		LS	300,000
13) Survey Works			(500,000)
Transit Groups		2G	3,200,000
Level Group		1 G	1,400,000
Consumerble Materials		LS	400,000
14) Safty Facilities			(500,000)

15)	Security Service		4	. 1.4.174	(3,000,000)
	Guard Man	$3^{\mathrm{M}} \times 3^{\mathrm{M}}$	$2^{\mathrm{S}} \times 42^{\mathrm{MTH}}$		3,000,000
16)	Rock Embankment o Dumped Rock	n the old River C			(5,000,000) 5,000,000
17)	Sand Compaction Pil	e work Foot hold			(3,000,000)
18)	Final Site Clean Up		To execution		(1,500,000)
19)	Other's				(6,000,000)
	Total			1 1	111,000,000

 $111,000,000 \times 1.35 = 150,000,000 B$

12. 2. 2 Pumping Station

			(Bath)
1)	Coffer Dam		(11,600,000)
·	Sheet Pile Type IV, L:15m Fill Soil	1,000t 13,000m ³	9,000,000 2,600,000
2)	Dewatering		(3,500,000)
	Cut off wall L:10 m Sheet pile Pump etc	310 t	3,100,000 400,000
3)	Seaffolding for Concrete Work		(1,500,000)
4)	Foundation Treatment		(1,200,000)
	Remove Soft Soil and Refill Sand	$6,000\mathrm{m}^{\mathrm{s}}$	1,200,000
5)	Misc Temporary Works		(200,000)
	Total		18,000,000
	美国工作 化二氯甲二甲二二二甲二甲二二二甲二二二二二二二二二二二二二二二二二二二二二二二		

 $18,000,000 \times 1.35 = 24,000,000 \, \mathbb{B}$

12.3 Cost Breakdown of Major Construction Works

12.3.1 Diversion Dam

1) Bulk Excavation (per cu. m)

Volume	1,060,000	$\mathbf{m^s}$
		er og grafte og en forskette skriver
Dragline	2m³ 3unit	33unit·month \times 360,000 $\mathbb{R}/M = 11,880,000$
Backhoe	1m ³ 3unit	33 unit·month $\times 156,000 \ B/M = 5,148,000$
Dump Truck	11t 20unit	244unit · month × 72,000 $B/M = 17,568,000$
Swamp Dozer	15t 5unit	65unit · month \times 168,000 $\cbete{B/M}$ = 10,920,000
Bulldozer	21t 2unit	26 unit·month $\times 216,000 \ B/M = 5,616000$
Foreman"A"	$2 \times 13M$	$26 \text{man} \cdot \text{month} \times 18,000 \ B/M = 468,000$
Foreman"B"	$4 \times 13M$	$52\text{man} \cdot \text{month} \times 12,000 \text{ B/M} = 624,000$
Labour	$20 \times 13M$	$260 \text{man} \cdot \text{month} \times 4,500 \ B/M = 1,170,000$
Misc.	LS	2,000,000
	Sub - Total	55,394,000

Diffusing expense at the O/M Building area.

Swamp Dozer	15t	2unit	26 unit·month \times $168,000 =$	4,368,000
Bulldozer	21t	2unit	26unit · month × $216,000 =$	5,616,000
Grader	3.4m	2unit	26 unit·month \times $150,000 =$	3,900,000
Drain	LS		•	1,500,000
Labour	LS			500,000
	Sub - T	otal		15,884,000
	Total			71,278,000

 $71,278,000 \div 1,060,000 = 67 \, B/m^3 \times 1.4 = 94 \, B/m^3$

- 2) Pile Work (per pcs)
- i) P.C pile \emptyset 400 \times 10m

Material price	5,400
Driving expence	800
Total	6,200

 $\times 1.4 = 8,700 \, \text{B/pc}$

ii) P.C pile \emptyset 600 \times 10m

 $\times 1.4 = 18,200 \, \mathbb{B}/pc$

iii) Steel sheet pile Type II $\ell = 3m$ (per pes)

Material price	$48 \text{ kg/m} \times 3 \text{m} \times 1.1 \times 15 \text{ B/kg} =$	2,376
Driving expence		600
Total		2,976
	$\times 1.4 = 4.20$	10 B /nc

In Case of change in pile length, price are adjusted proportionally per linear meter.

- 3) Concrete (per cu. m)
- i) Concrete (180 kg/cm²)

Concrete Production	1,400
Loss 5%	70
Pouring By Pump	120
Vibrator & Curing etc	150
Total	1,740

ii) Concrete (210 kg/cm²)

Concrete Production	1,500
Loss 5%	75
others (same as above)	270
Total	1,845

iii) Concrete (240 kg/cm²)

Concrete Production	1,600
Loss 5%	80
others (same as above)	270
Total	1,950

iv) Reinforced Steel Bar (per ton)

Deformed Bar SD 30	13,000
Loss 12%	1,560
sleeper, Binding Wire 5%	650
Sub - Contractor Expence 12% of above	1,825
Labour LS	3,000
Equipment (crane etc) LS	600
Total	20,635

v) Form (per $sq \cdot m$)

Base	Material	140
	Labour	160
	Total	300

Pier Wall etc	Material	270
	Labour	230
	Equipment	100
Total		600

(Note; Above price not include scaffolding)

- 4) River Bed Protection (cross concrete block) (per sq·m)
 - · Cross Block per 4m2

Concrete (210 kg/cm²) 1.03m³ × 1.845 = 1.900

Form Work (Base) $4.6m^2 \times 300 = 1.380$

Reinf. Bar $0.01t \times 20,635 = 207$

Sub - Total 3,487

 $3,487 \div 4 = 872 \, \text{B/m}^2$

· Steel Form for Casting;

Prepared 60 sets

 $60 \text{ sets} \times 10,000 \text{ } \text{B/set} = 600,000 \text{ } \text{B}$

Per 1m² of protection Work

 $600,000 \div 18,000 \,\mathrm{m}^2 = 34 \,\mathrm{B}/\mathrm{m}^2$

· Handling & Setting

 $300\,\mathrm{B/m^2}$

Total

1,206 B/m²

 $\times 1.4 = 1,700 \, \text{B/m}^2$

12. 3. 2 Closure Dam

1) Earth Embankment (per cu · m)

Total Volume 250,000 m³

By Bottom Dump Barge 150,000 m³

By end Tipping 100,000 m³

Embankment material will be taken from borrow pit apart approx 20km from the site

 $80\,\mathrm{B}/\mathrm{m}^3$

Bottom Dump Barge (200m³) 2unit \times 2 M \times 500,000 \mathbb{B} /M = 2,000,000

Tag Boat $(250HP)1unit \times 2 M \times 750,000 B/M = 1,500,000$

Sub - Total 3,500,000

Bulldozer (21t) $2 \text{unit} \times 2 \text{ M} \times 216,000 \text{ B/M} = 864,000$

Summery

Material $80 \, \text{B/m}^3 \times 250,000 \, \text{m}^3 \times 1.2 =$ 24,000,000Barge & Tag Boat3,500,000Bulldozer864,000Misc.LS

Total 29,500,000 \div 250,000 = 118 $B/m^3 \times 1.4 = 165 B/m^3$

2) Rock Zone Embankment (per cu m)

Volume 40,000m3

By Bottom Dump Barge

Bottom Dump Barge (200m³) 2unit \times 0.5M \times 500,000 \cancel{B} /M = 500,000 Tag Boat (250HP) 1unit \times 0.5M \times 750,000 \cancel{B} /M = 375,000 Sub-Total 875,000

Loading to Dump Truck at the Site (Double Hondling)

Loader (2.4m³) 40,000m³ ÷ 50m³ × 10 Hr × 24 D = 3.5 unit mounth Dump Truck (11t) 10 unit mounth Bulldozer (21t) 2 unit mounth

Loader (2.4m³) 3.5 unit mounth × 105,000 B/M = 367,500

Dump Truck (11t) 10 unit mounth × 72,000 B/M = 720,000

Bulldozer (21t) 2 unit mounth × 216,000 B/M = 432,000

Sub - Total 1,519,500

Summery

Material $300 \, B/m^3 \times 40,000 m^3 \times 1.4 =$ 16,800,000Barge & Tag Boat875,000Bulldozer handwork1,519,500Misc.LS805,500

Total 20,000,000 $20,000,000 \div 40,000 = 500 \, \mathbb{B} / \text{m}^3 \times 1.4 = 700 \, \mathbb{B} / \text{m}^3$

3) Riprap (per cu. m)

```
Volume
                                              15,000 m^3
  By crane Barge
                                               5,000 m^3
  By crawler crane on the land
                                              10,000 \text{m}^3
  Crane Barge (w/20t crane) 1 unit \times 2 M \times 250,000 = 500,000
  Barge (50m³)
                                      2 \text{ unit} \times 2 \text{ M} \times 200,000 = 800,000
  Tag boat (100HP)
                                      1 \text{ unit} \times 2 \text{ M} \times 350,000 = 700,000
  Crawler crane (50t)
                                      1 \text{ unit} \times 2 \text{ M} \times 240,000 = 480,000
  Labour etc.
                         LS
                                                                          470,000
  Material (rock)
                                 300 \, \mathbb{B} / \text{m}^3 \times 15,000 \times 1.3 = 5,850,000
       Total
                                                                       8,800,000
           8,800,000 \div 15,000 = 587 \, \text{B/m}^3 \times 1.4 = 820 \, \text{B/m}^3
```

4) Sand Compaction pile (per cu. m)

One gang's one day progress is 10 piles (40m^3) $40\text{m}^3 \times 24 \text{ days} = 960\text{m}^3 / \text{Mouth} / \text{gang}$

Material Cost

Sand $960 \,\mathrm{m}^3 \times 1.3 \times 150 \,\mathrm{B/m}^3$ Casing pipe & bucket LS 50,000 Other Consumption LS 20,000 Sub - Total 257,200

Labour Cost

Foreman "A" $1 man \times 1M \times 18,000 = 18,000$ Special Labour $2 men \times 1M \times 9,000 = 18,000$ Labour $3 men \times 1M \times 4,500 = 13,500$ Sub - Total 49,500

Equipment Cost

 Base Machine
 $1 unit \times 1M \times 300,000 = 300,000$

 Generator
 120ps $1 unit \times 1M \times 100,000 = 100,000$

 Compresser
 50ps $1 unit \times 1M \times 45,000 = 45,000$

 Crawler shovel
 $0.5m^3$ $1 unit \times 1M \times 120,000 = 120,000$

20.000 = 20.000Hummer LS 10,000 10,000 LS Other tools 595,000 Sub - Total 50,000 Site Preparation 951,700 Total $951,700 \div 960 = 1,000 \text{ ps/m}^3 \times 1.4 = 1,400 \text{ B/m}^3$

12. 3. 3 Diversion Canal

Excaration (per cu. m) 1)

2,000,000 m³ By Pump Dredger $300,000 \,\mathrm{m}^3$ By Backhoe & Dump Truck $2.300,000 \,\mathrm{m}^3$ Total Volume

Pump Dredger;

 $2 \text{unit} \times 8.5 \text{ M} \times 4,000,000 \text{ B/M} = 68,000,000$ Pump Dredger 1,200ps 2unit $\times 8.5 M \times 900,000 B/M =$ 15,300,000 250HP Tag boat 1unit $\times 8.5 M \times 150,000 B/M =$ 1,275,000 Motor Boat 1unit \times 8.5 M \times 250,000 \cancel{B} /M = 2,125,000 Archor barge Navigating expense for above $1,000,000 \times 2 =$ 2,000,000 1,000,000 Delivery Pipe LS $2\text{men} \times 2 \text{ shift} \times 8.5 \text{ M} \times 18,000 \text{ B/M} =$ 612,000 Foreman "A" Foreman "B" $4\text{men} \times 2 \text{ shift} \times 8.5 \text{ M} \times 12,000 \text{ B/M} =$ 816,000 $10\text{men} \times 2 \text{ shift} \times 8.5 \text{ M} \times 4,500 \text{ B/M} =$ 765,000 Labour Site preparation & Night lightiny etc 3,000,000 LS 94,893,000 Sub - Total Sub Contractor's overhead 16% 15,107,000 110,000,000 Total

 $110,000,000 \div 2,000,000 \div 55 B/m^3$

Backhoe & Dump Truck; unit price 67 B/m³

 $(55 \text{ B/m}^3 \times 2.000,000 \text{ m}^3 + 67 \text{ B/m}^3 \times 300,000 \text{ m}^3) = 56.60 \text{ B/m}^3$ 2,300,000 m³ $56.6 \, \text{B/m}^3 \times 1.4 = 80 \, \, \text{B/m}^3$

APPENDIX-13: PART IV. ENVIRONMENTAL CONSIDERATION

APPENDIX - 13. PART IV. ENVIRONMENTAL CONSIDERATION

LIST OF CONTENTS

13, 1	Mov	v Organiyasia		<u>Page</u>
13. 1	224	v Organization	of Ministry of Science, Technology	
13. 2	Das	Environment ((MOSTE)	13 - 1
13.2	ves	ignating Proce	dure of Specific Environmental Conservation Area	
13.3	(POI	fution Control	Area)	13 - 1
13.3	Pro	cedure of Wate	er Quality Analysis Method	13 - 1
13. 4	Def	initions of Wat	er Analysis Data Sheets	13 - 2
13.5			n Source Survey	13 - 3
13. 6			uality Survey on Irrigation Canal Water	
			Pakong River	
13. 7		•	ater	13 - 6
13.8	Tab	le and Figure		
•	1)	Figure 13-1	Organization Structure of Ministry of Science,	
			Technology and Environment (MOSTE)	13 - 8
	2)	Figure 13-2	Structure of OEPD	13 - 9
	3)	Figure 13-3	Structure of PCD	13 - 10
	4)	Figure 13-4	Structure of EQPD	13 - 11
	5)	Figure 13-5	Flow Chart of Actions which will be Done After the	
			Designating Such Area as the Pollution Control Area	13 - 12
	6)	Figure 13-6	Water Sampling Point	13 - 13
	7)	Table 13-1	Properties of Water Samples from Factories and Ponds a	it
		•	Chachoengsao on October, 1992	13 - 14
	8)	Table 13-2	Properties of Water Samples from Pig Raising Farm,	
			Fish Pond and Groundwater at Chachoengsao on Nov.	
			1992	13 - 15
	9)	Table 13-3	Properties of Water Samples from Factories at	
			Chachoengsao on Mar. 1993	13 - 16
	10)	Table 13-4	Properties of Water Samples from Pig Raising Farms at	
			Chachoengsao on Mar. 1993	13 - 17
	11)	Table 13-5	Properties of Water Samples from Groundwater and	
	,		Rain Pond at Chachoengsao on Mar. 1993	13 - 18
	12)	Table 13-6	Properties of Water Samples from Canals on	10 10
	12)	Table 13-0	Nov. 1992	12 10
	4.03	Table 42.7	Properties of Water Samples from	13-13
	13)	Table 13-7	•	12 20
			Bang Pakong River (1)	13 - 20

		en e
14)	Table 13-8	Properties of Water Samples from Bang Pakong River
		(Point 4) (2)
15)	Table 13-9	Properties of Water Samples from Bang Pakong River
		(3)
16)	Table 13-10	Properties of Water Samples from Bang Pakong River
		(4)
17)	Table 13-11	Properties of Water Samples from Bang Pakong River
		(5)
18)	Table 13-12	Properties of Water Samples from Bang Pakong River
		(6)
19)	Table 13-13	Properties of Water Samples from Bang Pakong River
		(Point X) (7)
20)	Table 13-14	Properties of Water Samples from Bang Pakong River
		(8)
	.*	

13. 1 New Organization of Ministry of Science, Technology and Environment (MOSTE)

The office of National Environment Board (ONEB) presided by the vice prime minister was upgraded to the National Environment Board (NEB) to be presided by the prime minister, and the Ministry of Science, Technology and Environment (MOSTE) of which organization was expanded on April 4, 1992. The new organization, offices and duties are shown on Figure 5-1 to 5-4.

The personnel training in the Environmental Research and Training Center with grant-in-aid by the Japanese Government started at the same time, is the NEB's main subject. Although their organization and rights are enlarged and expanded, they cannot be expected so much for the time being, because they have not yet equipped with personal and material conditions. Especially, the present situation of the water quality laboratory is far weak as compared with RID's laboratory.

13. 2 Designating Procedure of Specific Environmental Conservation Area (Pollution Control Area)

The concerned area upstream of the diversion damsite in this project will be designated as pollution control area for water quality conservation after the diversion dam completion. The designating procedure for it is shown on Figure 5-5, in accordance with the national ordinance for environment and environmental conservation.

13.3 Procedure of Water Quality Analysis Method

Hand made sampler was used for taking the samples in the river. River water was collected not only from the surface but also the bottom, and cross sectional figures were checked at and near the pumping station. Sampling points are shown on Figure 5-1.

The following parameters were analyzed in the field;

Temperature (Temp.), pH, Electric Conductivity (EC), Transparency (Trans.), Dissolved Oxygen (DO).

Analyzing methods are;

1. Temperature : Digital Temperature Meter

2. pH : pH meter (Glass electrode)

3. EC : EC meter

4. Trans. : 50 cm transparent meter

5. Turbidity : Turbidity meter

6. Total Dissolved Solid (TDS): Calculated from EC μ s/cm \times 0.64

7. Suspended Solid (SS) : GFP method at 103 ~ 105°C

8. Cf- : Argent metric method

9. Salinity : Calculated from Cl-(g/ ℓ) × 1.805 + 0.03

10. COD : COD Cr. Dichromate reflex method

COD Mn, Permanganate method in case of

low chloride used acid solution

COD OH, Permanganate method in case of

high chloride used alkaline

solution

11. BOD : Winkler azide modification method

Direct method : $BOD < 7 \text{ mg/}\ell$

Dilution method : $BOD > 7 \text{ mg/}\ell$

12. Total Nitrogen (TN) : Org. $N + NH_3 - N + NO_2 - N + NO_3 - N$

13. Ammonium Nitrogen (NH₃-N); Distillation and titration method

14. Nitrite Nitrogen (NO₂ - N): Spectrophoto metric method by using N-

Cl-Naphtyl-Ethylene diamine

15. Nitrate Nitrogen (NU₃-N): Cadmium reduction method

16. Organic Nitrogen (Org.-N): Distillation and titration method

17. Total Phosphorus (T-P) : Ascorbic method

18. Dissolved Oxygen (D.O.) : DO meter

13. 4 Definitions of Analysis Data Sheets

All analysis data are shown on Table 5-1 to Table 5-14. Definition of the data sheet are the followings;

a) Unit

Temperature (°C), pH (-), EC (μ s/cm), Transparency (dig.), turbidity (NTU), Salinity (g/ ℓ) other parameters (mg/ ℓ).

b) Not Detective Value (N.D.)

N.D. < 1 : Turbidity, SS, Cl-

N.D. < 0.5 : COD, BOD

N.D. < 0.01 : T-N, NH₃-N, NO₂-N, NO₃-N, Org-N, Fe, Mn

N.D. < 0.005 : T-P

N.D. < 0.001 : Zn, As, Al, Cd, Cu, Cr, Pb

c) Effective Value

Temp. EC, Cl (3), 123,000 (1.23 \times 10⁵) pH, SS, TOS, Transp. BOD, COD (2) 120,000 (1.2 \times 10⁵)

d) Remarks

CODCr : By potassium dichromate

COD_{Mn}: By potassium permanganate in acid solution

CODOH : By potassium permanganate in alkaline solution

13. 5 Results of Pollution Source Survey

The pollution source survey, water sampling and water quality analysis were carried out twice in dry and wet season. (Table 5-1 and 5-4)

1) Noodle Factory (S-1W, 2W, 3W, 4D1, 4D2, and 4D3)

The water for the noodle factory is being taken from an irrigation canal constructed by RID.

Almost all the discharges are the water with which noodle was washed. In the factory, three settling tanks are set for precipitating suspended matters. Due to no draining of sludge, the water quality of the discharge after

matters. Due to no draining of sludge, the water quality of the discharge after passing through the tanks was rather worse than that of the water with which noodle has just been washed, before passing. The water quality of course, further over the water quality standard values of the Ministry of Industry (MOI). It will certainly be improved by draining the sludge from the tanks.

2) Old Paper Reproducing Factory (S-4W, 2'D, and 3'D)

Since this factory cannot take water from the river in a dry season, a chemical condensation and floating by pressure equipment was being operated as water treating facilities aiming at also re-cycle. SS of the treated water was pretty low indicating 150 mg/l in both the season, probably due to re-cycling, but BOD was far over the standard value.

3) Whisky Factory (S-6W and 6D)

The factory is classified as one of the semi-governmental firms with complete discharge treatment, particularly with an oxidation pond with aerators for the treatment of the water with which bottles are washed and miscellaneous drainages such as toilet wash water.

The treated water was so clean as usable water for miscellaneous purposes. Since this factory cannot take water from Bang Pakong river in a dry season owing to high salinity, it possesses a large reservoir. When the factory stores the water taken from the river, pH of the water gradually becomes extremely low (S5D2) because of the SO₄ from the soil.

4) Shrimp and Fish Ponds (S-7W, 8W, 9W, 7D and 8D)

As found out on the tables, the water in the ponds are qualitatively with no problem as a whole. There, however, are a little high values of nitrogen and phosphorus in the fish pond. Because the fish pond, over which 4,000 laying hens were being kept in a pen, could treat mostly well hen droppings.

5) Pig Farm (S-10W, 11W and 11D)

In case of S-10W, urine and dung and water with which pigs were washed, from piggeries, were not directly sampled form there but taken from

the canal just after passing a temporary storing tank. (not regarded as an oxidation pond.) The canal is situated 100 m inside of the river bank upstream of Bang Pakong diversion damsite, and the water quality has no problem, because a pig farmer said that even if water is taken from the irrigation canal it was hardly drained to it. As water was sampled form surface layer in the canal, it does not indicate water quality of piggery discharge, even though it is contaminated. It was expected, however, at the canal bottom layer, plenty of pig dung was deposited. During the dry season, water was more deteriorated, but not so much significant.

6) Fish Pond Supplied with Dung as Feed (S-12W)

Some pig farmers are using or selling dung as feed for fish for /to themselves or independent fish breeders.

Although BOD and SS values were somewhat high because of water sampling near the feeding spot, it does not seem that it contributes to a pollution of Bang Pakong river.

7) Ground Water On Left Bank Upstream of Diversion Damsite (S-13W, 13D1, 13D2, 13D3, and 13D4)

The survey was carried out so as to know whether the ground water in the area where many pig farms lie scattered, has been polluted or not.

It is said that all wells cannot be used at all owing to high salinity, with no necessity of the survey on pollution with pig urine and dung.

A sample of S-13W was taken from a deep well 70 m in depth. However, there are some items over the water quality standard values in drinking water supply ordinance. That is,

 $C\ell$: 1,080mg/ ℓ > 200 mg/ ℓ of standard value

TDS : $2,500 \text{ mg/}\ell > 500 \text{ mg/}\ell$ ditto

Mn : $204 \text{ mg/} \ell > 0.3 \text{ mg/} \ell \text{ ditto}$

13. 6 Results of Water Quality Survey On Irrigation Canal Water Taken From Bang Pakong River (Table 5-6)

Sampling points are shown on Figure 5-6. Water was taken from the surface. There is not so much difference of the water qualities from left bank side to right bank side, and water is not so much polluted. It means that the waste water from the piggeries does not influence the river water quality.

13.7 Survey on River Water

Since water sampling and water quality analysis are being performed at the sites shown on Figure 5-6 and water quality analysis data are shown on Table 5-7 to 5-14. Table 5-7 to 5-9 are on Nov. (Phase I), and Table 5-10 to 5-14 are on Mar. (Phase II).

1) Temperature

Water temperatures were around 26°C on November (Phase I), and around 30°C on March (Phase II).

There was less than one degree (°C) difference between surface and bottom in temperature measured at the every sampling station, and was no significant difference between upper stream and lower stream.

2) pH

The pH levels were also consistent through phase I and phase II, and in the most part, around 7.0.

3) Salinity

As mentioned, saline waters are denser than fresh water enevally. The result of this phenomenon in the estuarine river forms two-layer flows and "salinity wedge" in the transition zone between fresh and saline waters.

But there was no "salinity wedge" in phase II, there is no significant difference between surface water and bottom water. This phenomenon was called intensive mixing by tidal activity and it was assumed that there was a little fresh water inflow at the damsite during the dry season.

4) Water Clarify

Water clarify in the estuary is highly correlated with flow conditions and salinity.

Water clarify in the dry season was higher than in the wet season. During the wet season, clarify (Turbidity) was almost the same every sampling station and in the river cross section, but during the dry season, surface water was clearer than bottom water because of the co-agulation by the saline water.

5) Other Physical Features

There was no significant phenomenon worth to discuss.

13.8 Table and Figure

ORGANIZATION STRUCTURE OF MINISTRY OF SCIENCE, TECHNOLOGY AND ENVIRONMENT (MOSTE) FIGURE 13-1

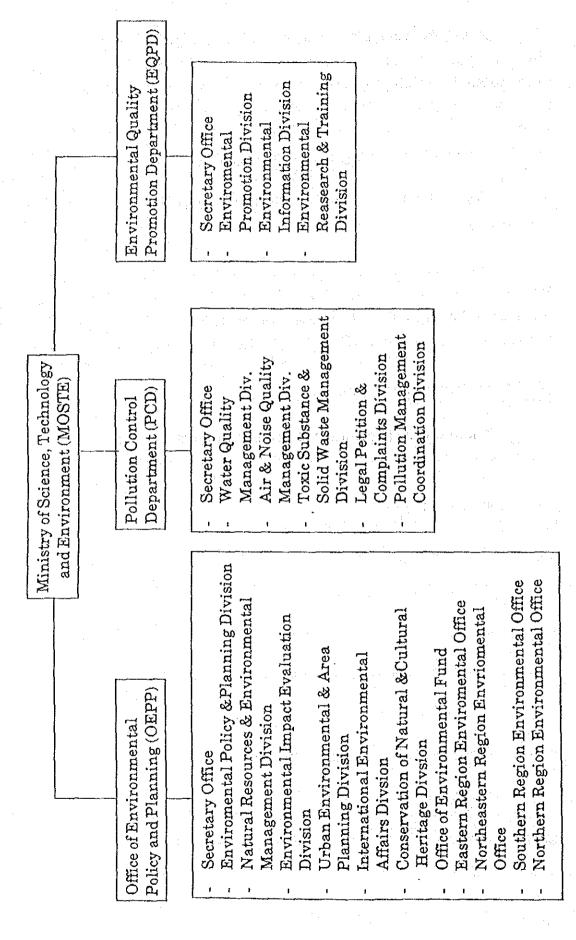


FIGURE 13-2 STRUCTURE OF OFD

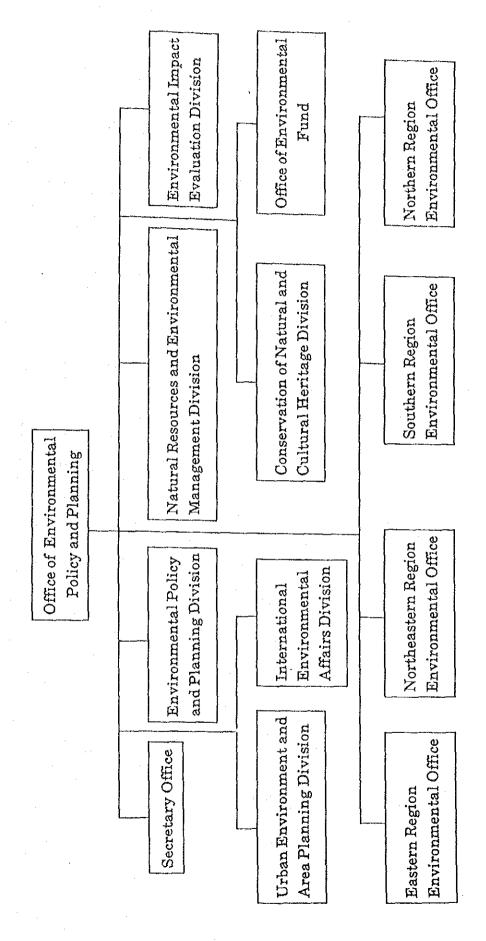
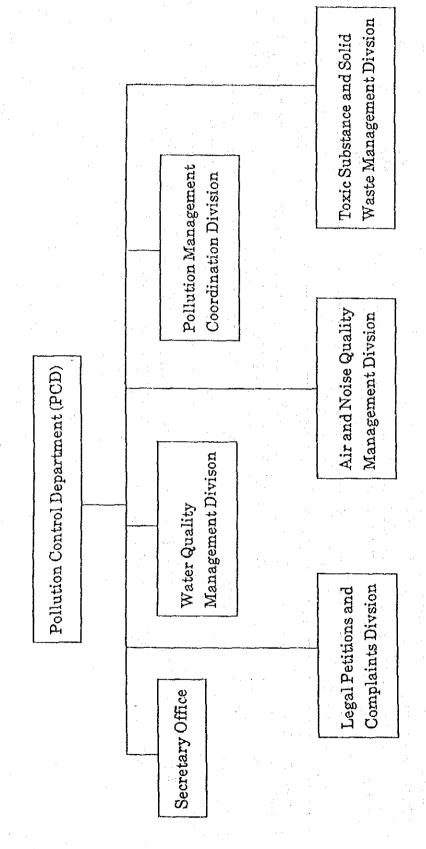



FIGURE 13-3 STRUCTURE OF PCD

Environmental Reserach & Training Center (ERTC) Environmental Information Division FIGURE 13-4 STRUCTURE OF EQPD Promotion Department (EQPD) Environmental Quality Environmental Promotion Division Secretary Office

FIGURE 13-5 FLOW CHART OF ACTIONS WHICH WILL BE DONE AFTER THE DESIGNATING SUCH AREA AS THE POLLUTION CONTROL AREA

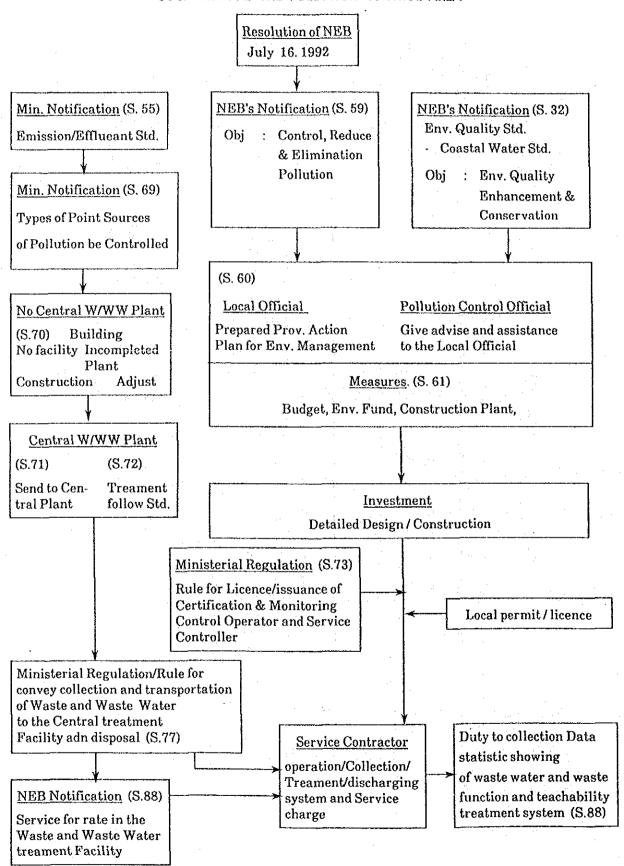


FIGURE 13-6 WATER SAMPLING POINT

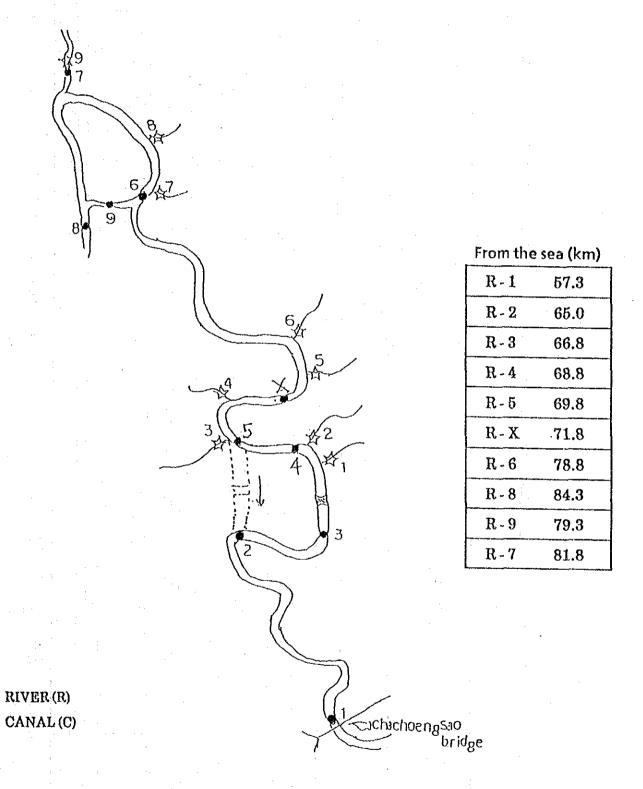


TABLE 13-1 PROPERTIES OF WATER SAMPLES FROM FACTORIES AND PONDS AT CHACHOENGSAO ON OCTOBER, 1992

Sampling on Oct. '92

PROPERTIES OF WATER SAMPLES FROM PIG RAISING FARM, FISH POND AND GROUNDWATER AT CHACHOENGSAO ON NOV. 1992 **TABLE 13-2**

Sampling on Nov.20. '92

Ground Water	(Deep well (OH)	4.9	3,910	2,500	0.6	1,080	2.0	6.4	1.0	1.07	0.50	0.50	N.D.	0.07
ish Po	Notal Second	6.3	265	170	1.2	21	0.1	55	37	1.51	0.89	0.50	N.D.	0.12
Pig Raising Farm Discharge	S-11W	6.6	909	390	99	7.1	0.2	200	888	27.47	3.32	24.15	N.D.	N.D.
Pig Raising Farm Discharge	S-10W	6.9	1,400	006	18	340	9.0	3.1	23	14.57	1.57	11.80	1.03	0.17
Item	Sample	Hd	EC	TDS	SS	CJ-	Salinity	CODer	BOD	T-N	Org-N	NH3-N	NO2-N	NO3-N

% All this samples were analyzed from three days after collection.
% S-13, Heavy metal, Cd, Pd, As, Cu, Cr, (Not Detected)
Dissoved Fe = 0.01
Mn = 2.346
Zn = 0.026

PROPERTIES OF WATER SAMPLES FROM FACTORIES AT CHACHOENGSAO ON MAR. 1993 **TABLE 13-3**

Sampling on Mar. '93

Paper Mill	Paper Mill	1		N	Noodle Factory	1.	EM	Whishy Footony	714
Sample Tap.W. Wash.W.	Wash.W.	- 1	Disch.W.	Tap.W.	Wash.W.	J Disch.W.	Pond A		Disch.W.
Mar.18 Mar.18 M S-2'D S		送の	Mar.18 S-3'D	Mar.18 S4D1	Mar.18 S4D2	Mar.18 S4D3	Mar.16 S5D1	Mar.16 S5D2	Mar.16 S6D
35.0 36.5			36.5	30.0	31.5	31.5	30.4	29.5	28.5
7.3 6.7			6.7	7.3	4.8	4.8	6.7	3.7	7.4
1,600 9,390 9,4		σ	0 h h	₹65	1,200	2,760	253	732	1,180
1,000 6,000 6,0		9	000	380	770	1,800	160	0.247	750
7 530	530		150	19	210	00π	8.0	2.0	6.0
173 1,710 1,7		1,	750	8.1	257	691	32	122	93
0.3 3.1			3.2	0.2	0.5	1.3	0.1	0.3	0.2
32 920			820	6.3	550	160	7.3	4.1	11.6
6.6 >1,400 >1,4		>1,	400	9.4	066	>1,400	2.7	1.3	7.6
**************************************	_		•	1.48	3.71	16.75	0.75	76.0	0.64
1				0.67	1.26	5.88	61.0	64.0	0.56
1	1			0.81	2.45	10.78	N.D.	90.0	N.D.
-	•		1	N.D.	N.D.	0.03	0.01	N.D.	0.01
1	•		1	N.D.	N.D.	90.0	0.25	0.39	0.08
0.09 2.38	2.38		1.99	0.11	0.14	2.51	0.11	0.08	0.29

* Heavy metal etc.

	7	000 1000 0000		•	-	•	
		SOU	д 1 9	Mn	Zn	A1	Cd, Cu
2 L	SSD1	55.2	O.N	N.D.	0.090	0.31	N.D.
	SSDZ	127.8	20.0	909.0	0.078	1.14	N.D.

PROPERTIES OF WATER SAMPLES FROM PIGRAISING FARMS AT CHACHOENGSAO ON MAR. 1993 TABLE 13-4

Sampling on Mar. 16. '93

rig maising rarm Discharge (Canal)
S-11D
29.3
6.1
23,000
15,000
140
6,740
12
98
179
37.86
0.78
36.96
0.02
0.10
6.72

PROPERTIES OF WATER SAMPLES FROM GROUNDWATER AND RAIN POND AT CHACHOENGSAO ON MAR. 1993 **TABLE 13-5**

Sampling on Mar. 16, '93

POLICIE		-	-	-	******	yeonwan	-	,		·	_	~~~~			-	
	S1D3	29.5	7.4	925	290	1	163	0.3	8.6	3.4	0.87	0.58	0.20	0.01	0.08	0.22
Rain Pond Water	SIDZ	29.3	6.8	6,580	4,200	30	1,760	3.2	11	4.8	0.79	0.62	N.D.	0.01	0.16	0.11
Ra	S1D1	27.6	7.2	142	91	2.5	3	0.1	5.0	3.1	1.39	0.36	N.D.	05.0	0.53	0.23
	S13D4 114	30.7	8.7	2,410	1,500	53	583	1		6.5	0.73	0.58	90.0	N.D.	60.0	0.12
Water	S13D3 76	29.2	5.8	10,200	6,500	7.0	3,240	5.9	2.0	1.6	2.61	1.96	95.0	N.D.	60.0	0.11
Ground	S13D2 70	29.7	8.9	3,200	2,100	7.5	593	•	2.5	1.4	0.63	0.28	N.D.	N.D.	0.35	0.10
	S13D1	29.1	5.9	9,130	5,800	10.0	2,930	5.3	1.3	2.8	0.71	98.0	0.20	N.D.	0.15	0.10
Sample	(m)	Temp.	HQ.	Э	IDS	SS	IJ	Salinity	СОВОН	BOD	N-L	Org-N	NH3-N	NO2-N	NO3-N	

BLE 13-6 PROPERTIES OF WATER SAMPLES FROM CANALS ON NOV. 1992

Sampling on Nov. 3. '92

-			No.	·	~~~~	 	,	penus .	The same of						
6-2	10:50	ħ.6	109	70	80	10	0.1	6.0	2.4	0.85	0.50	0.17	0.01	0.17	0.23
C-8	10:35	6.3	217	140		27	0.1	7.9	1.6	69.0	79.0	N.D.	N.D.	0.05	0.01
C-7	10:25	9.9	184	120	23	18	0.1	3.8	2.0	1.01	0.76	0.14	N.D.	0.11	0.55
c-6	10:05	4.9	829	530	30	139	0.3	8.3	2.9	2.87	0.67	2.10	0.03	0.07	0.14
C-5	9:55	6.2	296	190	26	39	0.1	9.3	7.7	2.50	0.89	1.57	0.01	0.03	0.10
C-4	57:6	ħ.∂	195	130	130	23	0.1	6.7	2.7	0.83	0.70	N.D.	N.D.	0.13	N.D.
c-3	9:35	₩.9	200	130	竹竹	23	0.1	5.6	2.8	2.55	2.01	0.42	N.D.	0.12	0.28
C-2	9:25	6.5	374	540	55	09	0.1	5.6	3.9	2.24	2.12	N.D.	0.02	0.10	0.13
C-1	9:20	9.9	970	620	56	506	₩.0	54	17	8.74	1.88	6.86	N.D.	N.D.	0.57
Sample	Item	нd	23	TDS	SS	C1-	Salinity	CODMn	BOD	N-T	Org-N	NH3-N	NO2-N	N-SON	d- []

TABLE 13-7 PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (1)

Sampling on Nov.10. 1992

10:30~13:40	R7B	5.0	26.2	6.8	179	120	210	20	0.1	9.2	2.1.2	1.00	0.78	N.D.	0.01	0.21	0.070
	R9B	0.9	26.6	7.1	201	130	12	18	0 1	5.7	2.9	07.0	0.11	N.D.	0.01	0.28	0.077
	R8B	0.6	26.5	7.0	210	130	20	20	0.1	5.6	1.1	0.38	0.11	N.D.	0.01	0.26	0.066
	R6B	0.4	26.7	7.1	202	130	170	18	0.1	9.0	2.3	0.55	0.25	N.D.	0.01	0.29	0.084
	RXB	9.5	26.5	7.1	204	130	290	50	0.1	-	2.0	0.62	0.31	N.D.	0.02	0.29	0.078
	R5B	0.6	26.6	7.1	210	130	80	21	0.1	6.8	2.2	0.41	0.14	N.D.	0.02	0.25	080.0
	R4B	11.0	56.6	7.3	216	140	10	22	0.1	9.9	2.0	0.59	0.36	N.D.	0.01	0.22	0.086
	R3B	9.0	26.7	7.0	509	130	170	23	0.1	& &	2.2	0.57	0.28	N.D.	0.02	0.27	0.078
	R2B	10.0	26.5	7.3	- 231	150	170	27	0.1	8.3	2.8	0.59	0.34	N.D.	0.02	0.23	0.080
	R1B	14.0	26.8	7.1	225	140	69	33	0.1	6.0	1.7	0.65	0.36	N.D.	0.04	0.25	0.092
	Sample	Item	Temp.	Hd	Э	SQI	SS	-T2	Salinity	CODMI	BOD	N-L	Org-N	NH3-N	NO2-N	NO3-N	T.P

PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (POINT 4) (2)

Sampling on Nov.10. 1992 10:30~13:40

	ннв	2.0	26.6	7.1	219	140	190	23	0.1	10	2.4	0.72	o. 45	N.D.	0.01	0.26	0.078
000	HH.S	0	26.8	7.1	217	140	6.0	23	0.1	5.4	1.4	0.49	0.27	N.D.	0.01	0.21	0.081
C	ACB ACB	11.0	56.6	7.3	216	140	10	22	0.1	9.9	2.0	0.59	0.36	N.D.	0.01	0.22	0.086
	FC3	5.5	56.6	7.2	212	140	0.6	21	0.1	ر ن ف	7.	09.0	0.37	N.D.	0.02	0.21	0.105
CCC	SCS.	0	26.8	7.1	204	130	0.4	22	0.1	0.9	2.1	0.52	0.27	N.D.	0.01	0.24	0.084
d.T.C.	RLB	10.0	26.3	7.5	212	140	21	22	0.1	5.7	7.1	0.54	0.28	N.D.	0.02	0.24	0.086
V 10	Main	5.0	26.7	7.5	217	140	2.0	92	0.1	5.1	2.2	0.54	0.28	N.D.	0.02	0.24	0.091
010	כיזע	0.0	27.3	7.4	213	140	2.0	23	0.1	6.3	2.3	0.55	0.28	N.D.	0.02	0.25	0.109
Comos	(m)	Item	Temp.	Hq	эз	TDS	SS	_CJ-	Salinity	. CODMn	BOD	N-L	Org-N	NH3-N	NO2-N	N-EON	T-P

TABLE 13-9 PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (3)

Sampling on Nov. 10. 1992

10:30~13:40 N.D. \ddot{c} N.D. 50 N.D. ਤ N.D ပ္ပ 0.10 0.02 N.D. 0.01 N D 0.01 0.01 N D N.D. N.D. N.D. N.D. N.D. N.D N O N.D. N.D. £ 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 N.D. N.D. N.D. N.D. S.A. 0.014 0.035 0.018 0.003 0.013 0.028 0.017 0.026 990.0 0.025 0.050 0.071 0.031 0.024 0.041 0.041 0.007 2n0.14 0.18 0.10 0.18 0.13 0.14 0.15 0.18 0.18 0.23 0.15 0.10 0.17 0.23 0.11 0.23 0.17 e O Sample R-13 R-2B R-3B R-5B R-XB R-6B R-8B R-9B (R-7)RILS RULM RALB R4CS R4CM RUCB RURS RURB Item

TABLE 13-10 PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (4)

				S.	Sampling on Mar.9. '93 11:00~13:30
Item	Temp.	нф	EC	Transp.	OQ
R1S	30.1	7.0	008,44	Ŋ	2.3
B10m	29.8	7.1	45,200	α	2.7
R2 S	30.0	7.0	42,600	7	2.2
В9т	29.8	7.1	42,300	7-	<i>C</i>)
R3.S.	31.0	7.1	ŧ	23	2.6
B9m	30.0	-	41,300	· ις	2.0
S 78	30.5	7.0	1	13	2.5
B10m	29.8	7.1	40,800	\(\alpha\)	ري 0.
R5 S	30.3	7.1	. 1	23	2.5
B9m	29.8	7.1	39,700	·	5.8
RXS	30.2	7.0	38,700	. 50	2.4
B9m	29.8	7.1	39,400	2	8.0
R6 S	30.2	7.1	33,600	6	2.6
B4m	29.9	7.0	36,400		- 2.7
R8 S	30.1	7.1	32,000	#1	2.6
E68	29.8	7.1	34,200	†	2.6
R9 S	30.0	7.0	1	71	2.2
B6m	29.6	7.0	35,600	1	2.2
R7 S	30.0	7.1	1	ſŪ	2.7
B5.5m	29.7	7.1	31,700	5	2.7

TABLE 13-11 PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (5)

Sampling on Mar. 9. '93

3	.20
n.	r
•	
	٠.
	ſΥ
•	Ç,
75	00.
٠	~
ğ	~
3	_
v	•
-	
٠,	•
	4
รี	
=	
_	
Ω¢	

00:01 -00:13	R7B	بن تن	27.7	7.1	31,700	Ŋ	20,000	1,100	9,320	2	12.7	3.1	2.7	2.26	0.59	N.D.	η0.0	1.63	N.D.	
1 9	R9B	9	29.6	7.0	35,600 3	77	23,000	260	10,700	19	9.9	2.3	2.2	2.17	0.36	N.D.	0.10	1.71	N.D.	
	R8B	6	29.8	7.1	34,200	-	22,000	330	10,200	18	8 1	3.3	2.6	2.20	0.36	N.D.	0.08	1.76	N.D.	
	R6B	ħ	29.9	7.0	36,400		23,000	12,000	10,700	19	12.0	9. 1	2.7	3.95	2.16	N.D.	0.08	1.7.1	N.D.	
	RXB	6	29.8	7.1	39,400	2	25,000	2,000	11,900	22	13.3	3.5	2.8	2.85	1.30	N.D.	90.0	64.1	N.D.	***************************************
	R5B	6	29.8	7.0	39,700	٦ .	25,000	3,700	12,100	22	14.6	4.1	2.8	2.74	1.23	N.D.	90.0	1.45	N.D.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	R4B	10	29.8	7.1	40,800	5	26,100	630	12,500	23	8.6	3.2	2.8	2.27	18.0	N.D.	0.04	0.39	N.D.	**************************************
	R3B	6	30.0	7.1	41,300	S	26,000	270	12,700	23	6.7	3.0	2.6	5.49	1.06	N.D.	0.05	1.38	N.D.	
	RZB	6	29.8	7.1	42,300	· ·	27,000	2,000	13,300	54	20.2	80.11	2.5	6.13	4.79	N.D.	0.07	1.27	N.D.	
	. R1B	10	29.8	7.1	45,200	2	29,000	5,800	13,800	25	8.2	3.2	2.7	1.58	0.50	N.D.	0.03	1.05	N.D.	
	Sample	Item	Temp.	Hd	ЕС	Transparency	TDS	SS	-TD	Salinity	нодор	BOD	DO.	2-6	Org-N	NH3-N	NO2-N	NO3-N	d-T	L

TABLE 13-12 PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (6)

Sampling on Mar.9. '93

တ္က		<u> </u>	1	7	-	-	T	1	1	1	Ţ	T	<u> </u>	J				
11:00~13:30	R8S	30.1	1.1	32,000	14.0	21,000	72	9,410	17	5.3	2.1	2.6	1.84	0.17	N.D.	0.03	1.64	N.D.
	R6S	30.2	7.1	33,600	8.5	22,000	88	0,900	80	6.2	1.7	2.6	1.94	0.20	N.D.	0.05	1.69	N.D.
	RXS	30.2	7.0	38,700	20.0	24,800	70	12,000	22	4.7	1.6	۲.5	1.87	0.18	N.D.	0.10	1.59	N.D.
	R2S	30.0	7.0	42,600	6.5	27,000	110	13,000	54	4.7	2.9	2.4	1.57	0.31	N.D.	0.05	1.21	N.D.
	R1S	30.1	7.0	44,800	4.5	29,000	190	13,600	25	5.2	2.7	2.3	1.80	0.73	N.D.	0.04	1.03	. N.D.
	RISR	30.0	7.1	44,700	0.9	27,000	140	13,600	25	9.4	2.6	2.4	2.02	92.0	N.D.	0.05	1.21	N.D.
	Sample Item	Temp.	Нď	EC	Transparency	TDS	SS	-12	Salinity	СОРОН	ВОВ	og .	H-N	Org-N	N-SHN	NO2-N	N-SON	T-P

TABLE 13-13 PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (POINT X)(7)

Sampling on Mar. 9. '93

11:00~13:30	RRB	m	29.9	7.0	39,300	m	25,000	850	11,900	21	8.7	2.⊈	2.0	2.12	0.49	N.D.	0.07	1.56	N.D.
	RRS	0	30.1	7.0									2.2				/		
	RCB	6	29.8	7.1	39,400	CJ	25,000	2,000	11,900	21	13.3	3.5	2.8	2.85	1.30	N.D.	90.0	61.1	N.D.
	RC7.5	7.5	29.8	7.1	39,400	8	25,000	130	11,800	21	0.9	6.1	8.7	5.40	0.78	N.D.	0.08	1.54	N.D.
	RC5	ហ	29.9	. 7.1.	39,600		25,000	82.0	11,700	21	5.5	1.6	2.7	1.86	0.31	N.D.	0.08	1.47	N.D.
	RCS	0	30.2	7.0	38,700	20	25,000	0.04	12,000	22	4.7	1.6	2.4	1.87	0.18	O.N.	0.10	1.59	N.D.
	RLB	9	30.0	7.1	37,900	2	24,000	1,000	11,600	. 21	8.7	2.1	2.7	2.90	1.27	.d.N	0.10	1.53	N.D.
	RLS	0	30.1	7.0		10							2.3						
	Sample	Item	Temp.	Ĥď	CE	Transparency	IDS	SS	-13	Salinity	нодоэ	gog	00	N-L	Org-N	N-tihN	NO2-N	N-SON	T-P

TABLE 13-14 PROPERTIES OF WATER SAMPLES FROM BANG PAKONG RIVER (8)

				San	Sampling on Mar.9. '93 11:00~13:30	
Sample	R9B	RGB	RXB	R2B	R1B	***************************************
d-Fe	0.16	0.16	0.19	0.18	0.23	
Mn	N.D.	N.D.	0.004	0.313	0.042	
Zn	0.044	0.020	0.077	960.0	0.032	
no	600.0	0.007	0.008	0.003	0.007	
Cr	0.004	0.002	0.010	0.004	0.007	

