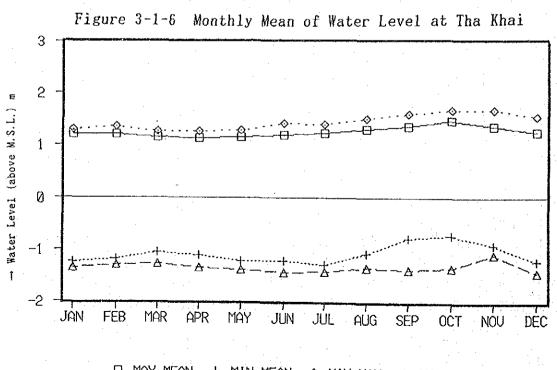
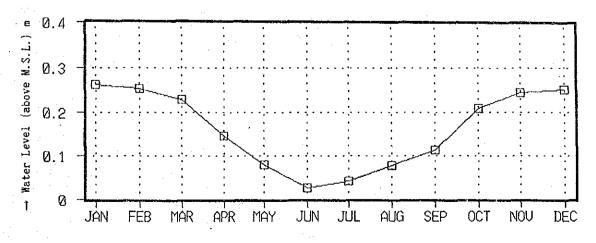
Table 3-1-3 Water Level at Tha Khai

	Tha	Khai					•							(MSL)
	M a (in Rive							41					Mean	Max	Min
	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	ХОУ	DEC			
1978	1.22	1.17	1, 15	1, 10	1.14	1. 20	1.30	1.38	1.42	1.56	1. 26	1.11	1. 26	1, 56	1.10
1979	1.17	1. 20	1.08	1.10	1.05	1.13	1. 28	1.06	1, 05	1.37	1.22	1.15	1.16	1.37	1.05
1980	1.18	1.19	1.06	1.20	1.08	1, 20	1.40	1.35	1.42	1.43	1, 29	1. 25	1. 25	1, 43	1.08
1981	1.23	1.16	1.14	1, 13	1. 26	1.20	1.35	1.40	1.40	1.43	1.31	1. 24	1. 27	1.43	1.13
1982	1.17	1.12	1.14	1.18	1. 21	1.08	1.18	1.25	1.45	1.48	1.30	1,38	1.25	1.48	1.08
1983	1.26	1. 20	1.15	1.10	1.20	1.40	1.02	1.50	1.59	1.67	1.58	1.31	1. 33	1.67	1.02
1984	1.28	1. 28	1.18	1.05	1.13	1.14	1.30	1.35	1, 23	1:34	1. 29	1. 21	1. 23	1.35	1.05
1985	1.18	1. 25	1.27	1.18	1.15	1.15	1. 25	1.21	1.37	1.30	1, 42	1.20	1. 24	1.42	1.15
1986	1.19	1. 35	1.20	1.13	1.28	1. 25	1.38	1.50	1.43	1,46	1.33	1. 23	1, 31	1.50	1.13
1987	1. 26	1.18	1.17	1, 17	1.15	1.16	1, 10	1. 10	1. 35	1, 30	1.32	1. 25	1, 21	1. 35	1.10
1988	1.30	1. 25	1.15	1.27	1.26	1.42	1.40	1.43	1.41	1, 55	1.43	1, 21	1.34	1, 55	1.16
1989	1, 23	1. 24	1.17	1.05	1.10	1.10	1.10	1.38	1. 25	1.37	1.23	1.19	1.20	1.38	1.05
1990	1.20	1.29	1.14	1.15	1.20	1.10	1.00	1.05	1.15	1, 65	1.67	1.55	1. 26	1.67	1.00
1991	1.18	1. 18	1.25	1.06	1.05	1.16	1.10	1.36	1.40	1.53	1.30	1. 22	1. 23	1.53	1.05
Mean	1.22	1. 22	1.16	1.13	1.18	1.19	1.23	1.31	1.35	1,46	1, 35	1. 25	1.25	1.48	1.08
Жах	1.30	1. 35	1. 27	1. 27	1.28	1.42	1.40	1,50	1,59	1.67	1.67	1.55	1.34	1.67	1.18
Min	1, 17	1. 12	1.06	1.05	1.05	1.08	1.00	1,05	1,05	1.30	1. 22	1.15	1.15	1.35	1.00
	100														
	Mi	n	1.					-							

		Mi	n											T		
				-	1.5				-			1.00	-	Mean	Мах	Min
		(in Rive										- 11-11	7.00	MC411	MOV	111 11
L		JAN	FEB	MAR	APR	MAY	אטנ	JUL	AUG	SEP	OCT	уоу	DEC	<u></u>		
l.,	1978	-1.18	-1.10	-1.17	-1.12	-1.15	-1.25	~0.95	-0.74	-0.80	-0.50	-1.10	-1.20	-1.02	-0.50	-1.25
	1979	-1. 22	-1.22	-1.20	-1.15	-1, 37	-1.22	-1.20	-1.04	-1.10	-0.98	-1.10	-1.20	-1.11	-0, 96	-1.37
Г	1980	-1. 21	-1.08	-1.10	-1.05	-1. 32	-1.25	-1.30	-1.05	-0.35	-0.50	-0.95	-1.10	-1.02	-0.35	-1, 32
Г	1981	-1.10	-1.15	-1.01	-1,08	-1.07	-1.30	-1.22	-0.82	-0.90	-0.57	-0.75	-1. 21	-1.02	-0.57	-1.30
Г	1982	-1.20	-1.10	-0.10	-1.10	-1. 25	.0.41	-1.14	-1.10	-0.58	-0.88	-0.94	-1.15	-0.84	0.41	-1. 25
Г	1983	-1.30	-1.18	-1 10	-1.20	-1.20	-1:43	-1.42	~0.90	0.70	0.15	-0.50	~1.02	-0,87	0.70	-1.43
	1984	-1.27	-1. 20	-1.18	-1.25	-1.35	-1.35	-1.35	-1.23	-1.00	-0.87	-1.03	· ~1. 20°	-1.19	-0.87	-1.35
Г	1985	-1.35	-1.30	-1.18	-1.35	-1.25	-1.38	-1.30	-1.20	-0.70	-1.03	-1.01	-1,44	-1. 2i	-0.70	-1.44
E	1986	-1.31	-1.20	-1.15	-1.20	-1.16	-1.38	-1.38	-1.17	-0.50	-0,33	-0.92	-1, 20	-1.07	-0.33	-1, 38
	1987	-1.24	-1. 27	-1, 28	-1.11	-1.34	-1.40	-1.42	-1.35	-1.34	-0.98	-0.98	1. 24	-1. 25	-0.98	-1.42
	1988	-1.35	1.19	-1.12	-1.18	-1. 25	-1.32	-1.30	-0.85	-0.96	-0.48	-0.95	-1.32	-i. 1i	-0.48	-1.35
	1989	-1.26	-1. 25	-1.10	-0.25	1.39	-1.42	-1.39	-1.28	~0.75	-0, 96	-1.10	-1.25	-1. 12	-0.25	-1.42
. L	1990	-1.15	-1.18	-1.10	-1.32	-1.32	-1.45	-1.43	-1.34	-1.25	-0.94	-0.47	-1.32	-1. 19	-0.47	-1.45
ľ	1991	-1.25	-1.28	-1.02	-1.20	-0.85	-1.43	-1.37	-1.12	-1.40	-1.36	-1.04	-1.30	-1.22	-0.85	-1.43
	Hean	-1.24	-1.19	-1.05	-1.11	-1. 23	-1.23	-1.30	-1.09	-0.18	-0.73	-0.92	-i. 23	-1.09	-0.44	-1.37
L	Max	-1.10	-1.08	-0.10	-0.25	-0.85	0.41	-0.95	-0.74	0.70	0.15	-0.47	-1.02	-0.84	0, 70	-1. 25
	Min	-1.35	-1.30	-1.28	-1.35	-1, 39	-1.45	-1.43	-1.38	-1.40	-1.35	-1.10	-1.44	1. 25	-0.98	-1.45




Table 3-1-4 Summary of Actual Tide Level at Bang Pakong

	·			-			·			unit:m	(M. S. L)
ļ	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	Mean
Hest H.W.	1.75	1.75	2.02	1.78	1.83	1.79	1.78	1.66	1.88	1.78	2.02
М. Н. Н. Ж.	1.23	1.25	1. 27	1. 25	1.23	1.21	1.25	1.20	1, 23	1. 21	1. 23
M. L. H. W.	0.77	0.78	0.88	0.74	0.81	0.71	0.82	0.75	0.73	0.74	0.77
M. H. W. S.	1, 15	1.26	1.29	1.32	1.34	1. 25	1.29	1.26	1. 28	1. 29	1, 27
M. R. W.	0.94	1.11	1.16	1.12	1.17	1,09	1.15	1.09	1.09	1.13	1.11
M. H. W. N.	0.94	1 00	1.08	1.01	1.01	0.98	1.05	1.00	0.92	0.98	1.00
M. T. L.	0.16	0.12	0.18	0.13	0.09	0.08	0.13	0.14	0.09	0.12	0.12
M. S. L.	0.18	0.20	0.18	0.17	0.15	0.12	_	0.14	0.15	0.17	0.16
M. L. W. N.	-0.62	-0.73	-0.82	-0.78	-0.91	-0.86	-0.83	-0.84	-0.88	-0.90	-0.82
M. L. W.	-0.63	-0.71	0.81	-0.85	-0.98	-0.92	-0.88	-0.86	-0.91	-0.91	~0.85
M. L. W. S.	-0.67	-0.73	-0.91	-1.02	-1.12	-1.03	-0.97	-0.95	-1.03	-1.06	-0.95
M. H. L. W.	-0.04	-0.13	-0.10	-0.20	~0.31	-0.24	-0.21	-0.16	-0.15	-0.34	-0.19
M. L. L. W.	-1.02	-1.03	-1.08	-1.09	-1.31	-1.17	-1.13	-1.12	-1.02	~1, 11	-1.09
L'est L.W.	-1.56	-1.51	-1.56	-1.61	-1.64	-1.65	-1.60	-1.58	-1.61	-1.67	-1,67
Mean	-0.83	-0.53	-0.53	-0.54	-0.36	-0.49	-0.47	-0.55	-0.50	-0.48	-0.53
	LOCATION	;Lat. 13'	30'03"N	Long. I	01 59 16	E					

Table 3-1-5 Monthly Mean of Tide Level

r		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		-	unit;m	(M. S. L)
YEAR	JAN	FEB	MAR	APR	MAY	אטנ	JUL	AUG	SEP	ост	МОА	DEC
1982	0.250	0.260	0.210	0.210	0.100	0.060	0.090	0.090	0.130	0.190	0.250	0.260
1983	0.260	0.190	0.230	0.160	0.110	0.050	0.130	0.220	0.160	0.270	0.340	0.300
1984	0.300	0.320	0.240	0.130	0.120	0.040	0.070	0.080	0.140	0.180	0.290	0.290
1985	0.240	0.260	0.350	0.140	0.120	0.040	0.060	0.100	0.140	0.200	0.170	0.250
1986	0.260	0.250	0.240	0.130	0.080	0.030	0.000	0.030	0.110	0.180	0.240	0.220
1987	0.230	0.180	0.110	0.120	0.050	0.030	-0.040	0.020	0.040	0.170	0.200	0.270
1988	0.210	0.250	0.250	0.170	0.030	0.020	0.070	0.120	_		_	
1989	0.310	0.300	0.240	0.100	0.030	-0.010	0.070	0.050	0.090	0.180	0.130	0.180
1990	0.280	0.290	0.220	0.150	0.090	_0.000	-0.030	-0.010	0.050	0.230	0.260	0.240
1991	0.280	0.230	0.190	0.150	0.070	0.010	0.000	0.080	0.150	0.270	0.320	0.250
Mean	0.262	0.253	0.228	0.146	0.080	0.027	Ú. 042	0.078	0.112	0.208	0.244	0. 251

Figure 3-1-7 Monthly Mean of Tide Level

Note; Bang-Pakong (1982-1991)

Figure 3-1-8 Discharge and Saltwater Intrusion

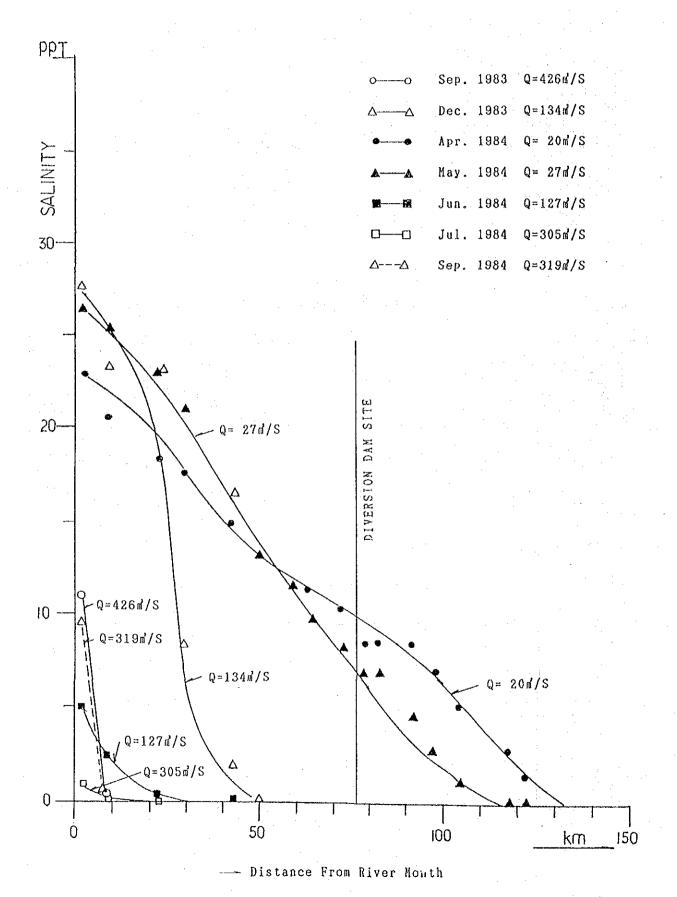


Figure 3-2-1 Bang Pakong River System

Figure 3-2-2 Diagram for Flood Simulation Study

Maenui	η Nakhon Naj	y o k
	L-manning the contract of the	✓ Upper Bang Pakong
	No.30	1 Oppor Build Lanons
	No.29	
A	No. 28	
> E	No. 27	
∺ ≃	No.26	
o o	No.25	
Z		
KO	No.24 ····↓····	
¥ مر	No.23 ····↓····	
	No.22 ····↓····	← 100% of Khlong Tha Lat River
C Z	No.21	← 13.8% of (LBP-13 to LBP-17)
B A	No.20	← 6.8% of (LBP-13 to LBP-17)
•	No.19	← 6.5% of (LBP-13 to LBP-17)
	No.18	← 5.2% of (LBP-13 to LBP-17)
Proposed Site of	No.17	← 15.7% of (LBP-13 to LBP-17)
Diversion '	No. 16	← 2.9% of (LBP-18 to LBP-17)
Dam	No.15	2.1% of (LBP-13 to LBP-17)
표 전	No.14	← 2.9% of (LBP-13 to LBP-17)
> -	No.13	1 AN () (1 DD 10 1 DD (G)
24	•••••	
ტ	No.12	25.4% of (LBP-13 to LBP-17)
ン 0	No.11	← 13.3% of (LBP-13 to LBP-17)
×	No.10	← 100% of (LBP- 6 to LBP-12)
ЪА	↓	← 33.6% of (LBP-2 + LBP-3 + LBP-6 + LBP-7)
 U	No. 8	← 39.8% of (LBP-2 + LBP-3 + LBP-6 + LBP-7)
A N	No. 7	← 26.6% of (LBP-2 + LBP-3 + LBP-6 + LBP-7)
മ	No. 6	
	No. 5	← 100% of (LBP-4 + LBP-5)
	No. 4	
	No. 3	← 100% of LBP-1
	No. 2	
	No. 1	
	Open Sea)	
	1	

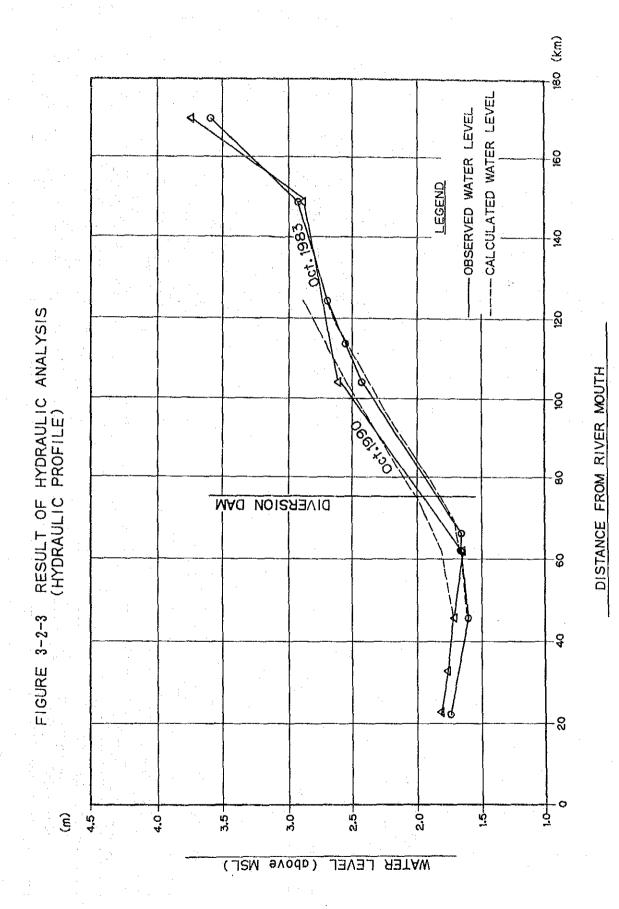
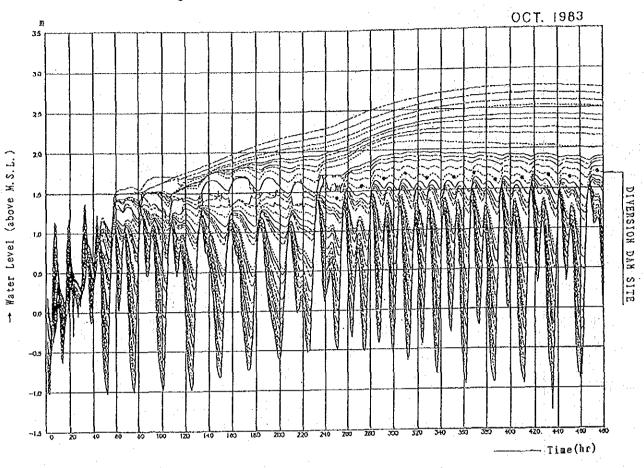



Figure 3-2-4 Result of Hydraulic Analysis

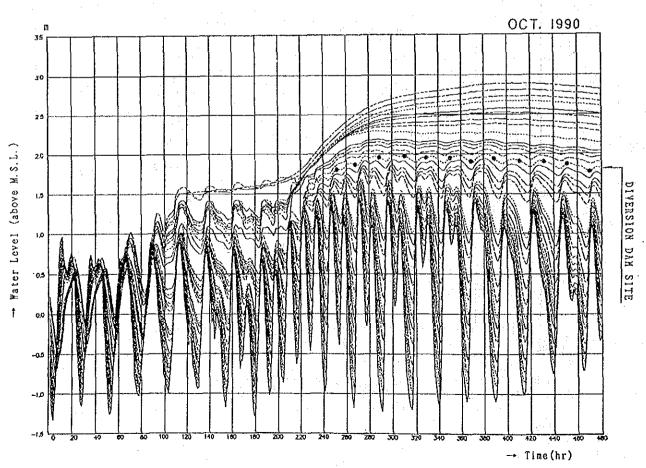
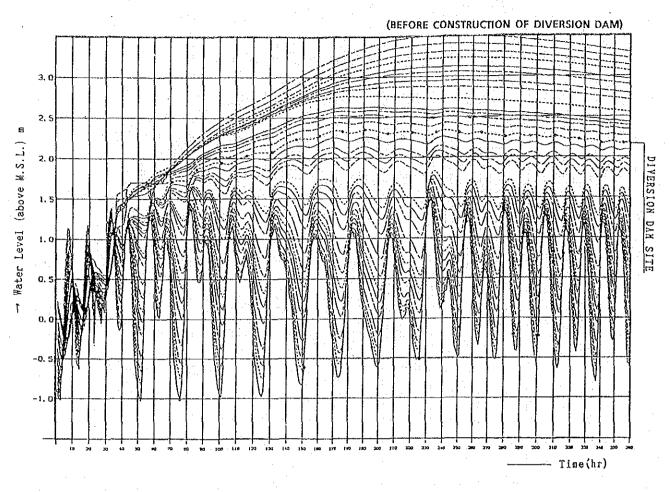



Figure 3-2-5 Proposed Flood (W=1/50 Years) Max. Q=1, 590. 6m3/S Proposed Rainfall Pattern (W=1/50, 386. 4mm/7days) 100 150 50 20000 → Discharge(m3/5) 15000 -3000 -10000 → (mm) leinisA

→ Time(hr)

3-37

Figure 3-2-6 Flood Water Level of 50 Years Probability

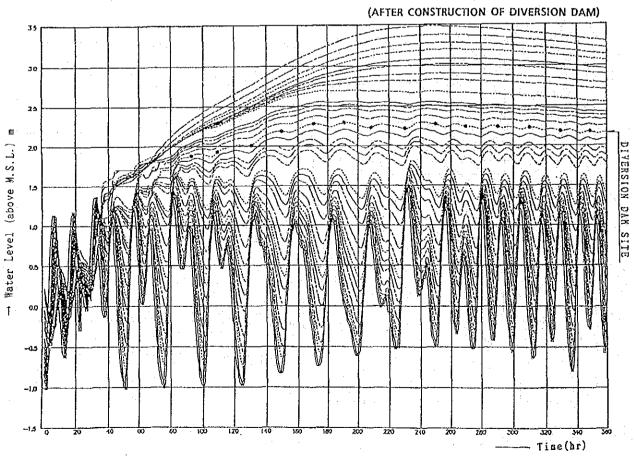


Table 3-2-1 Daily Maximum Discharge in Dry Season

<u>ہ</u> [7					ر. ا				, T	1	!	—-т		 -1	·	1
S/B	٥.									.			 	Y 27	2.2	4 B		2	~	A. 4	~				8	2
_	Ny. 3	203 km	1	1	1	1	١.	1	H	ı	1	1	Nov	Жаў	5	Nov	1	De	No v	~	-	**	-	-	-	^
	~	2											7.7	7.4	2.7	10.2		6.8	9.8	3.8	34.4	1.1	10.4	6.3	4.2	11.9
Ī			23	S	63	LS.		2.1	10	5	15	1	30	27	31	7								_	-	
	Ny.1,1B	5 20 km	¥2¥	-	Nov	-	•	-	*	1	1	•	Жаў		*	Nov									ľ	İ
	ź	5,	30.0	32.0	34.0	23.0	19.0	22.0	15.0	39.0	25.0	0.9	26.0	21.3	17.8	22.8	1	1.	1	1	1		1			1
		_	C.,	6.5	6.3	63	-	2	1	36	2	3(2		8 17	1 22	9	1	1				63	_		_
	25	Ħ												Bay 16		No v	May 26	Nov	Xq.	Нау 30	pr 30	May 11	No 7		May 21	
	Kgt.	24312	1	i	ı	1	ı	I	ı	i	1	J	ı	ж 0	1 1	3 N	£ 3	457	9		6 A.p					1
	, A.				ļ									2	6	دې	15.	,.; 	2.	*-	7.6	10.0	0	2.7	1.8	
	5 0	r _{ea}	y . 4	1.2	50	15		10	7 7	12	9	က	1 26	20	ιc	10	œ.	25	18	2.1	13	11	co	15	31	9
	Kgt. 19	535 km	May	.5	No v	Ap	No v		May	Nov	-	_	Ha y	۳.	۱a.	No v	100	Apr	No r	May	*	5	No v	Мау	-	Nov
	™		3.7	6.4	3.8	2.6	22.0	5.6	4.4	44.0	12:0	46.0	4.0	34.4	13.6	8.5	11.3	18.0	11.4	2.2	9.8	43.7	20.3	20.6	11.2	5.4
					5	1	7	.10	15	40	2.8	2	1	25	1.4	,	1.9	19	17		 1	12	c~a		t	-
	188	951kd			No v	Dec	Nov		~		Мау	No v	ı	¥ay	*	Nov	Жау	No v	a. ,	*	,	Маў	Nov	ŗ	_	_
	Kgt.	6		1	5.8	2.0	71.0	7.3	64.0	90.0	7.2	64.0	1.4	14.7	0.4	9.6	31.6	13.4	13.2	3.2	12.4	84.6	10.6	14.4	2.0	11.5
ŀ				12		1	1	9	1 25	12 9	10	1 9	1	28 1	5	2-	27. 3	20 1	1 1	28	15 1	11 8	3 1	1 1	2.8	-
1	15A	530 km		May 1	No v		_	b-3-	May 2	Nov 1	_	_	-	May 2	Nov	_	2 .	May 2	No v	May 2	1	1	No v	-	Изу 2	No v
	Kgt.	530	Į.	5	0	7	80		5	0	∞	0	5	တ	9		و	٠,	∞ ∞			9	N V	က	ဖ	1
	<u></u>			2.	65	7	ທ່	41.0	4	13	89	16	9.	8.	3.	71.0	10.6	12.	11.	16.7	30.1	16.	12.	9.	11.	27.7
	1.4	7≅	y 28	6	3 3	v 1	у 20	7 18	15.	9	16	27	2.9	y 27	2.1	, 7	7	2	¥ 1	1		y 1.1	v 14	у 16	20	62
ļ	Kgt. 1	368bm	Hay	1	-	No v	May	Nov	-		-	•	•	Жау	1	No v	-	De	No v	3-13	1	H.a	Nov	Мау	,	Nov
	×.		25.0	1 0	9.3	2.2	4.2	23.0	1.2	12.0	3.9	14.0	3.1	10.6	2.3	12.8	8.6	3.9	5.7	2.7		77.0	3.2	2.6	17.9	11.4
I			15	14			2	2.4	2.1	8.2		-1	7	30	2.7		2		1	1	18	7	5	1	24	2
		5,347 bod	A ON	ИаУ		ı	No v		bo-	May	No v	•	.	¥a y	-	No v	1	-	-	,	May	٠.	No v	í	Мау	No v
ļ	Kg1.	5,3	45	40	1	ŀ	174	135	169	116	61	364	112	58	20	143	155	29	151	30	95	802	3.5	175	55	234
			14	13	-	, , ,	دى	12	20	2		9	1	30	24	_	-1	-	-	_	17	14	12	1	30	
	27	E	Nov 1	May 1	Nov	20,	les,	r-1 to,		-	-			May 3	2	No v	2		-	_	May 1	-	Nov 1	t q	May 3	No v
	K81.	1, 540 km	48 2	10	14	62	6.1	29	7.6	36	19	134	65	35 1	13	45	47	30	45	0.1	26 y	89	14 h	2.9	17 1	28 N
						:			_		_			_					_							
	0	")EI	y 28	12	2	د ن	2	23	2	2	у 28	4	-	y 16	25	5	-	13	13	-	14	y 1.3	F 4	y 16	22	h v
	Kgi.	2, 523kd) May	_	Nov	Dec	Nov	-		*) Hay	Nov	-	May	-	Nov				150	-	May	No w	May	_	Nov
	X.	2,	Ó	7.4	17	11	207	9.7	240	104	68	281	14	7.0	22	34	183	49	117	∞	09	188	105	43	49	35
		Per :	2.9	14	S	-	62	2.4	22	~	7-4	63	7	30	2.7	-	23	-	,	-	-	57	LO		3.1	-
	دی	02 km	May	-	NOV	-		-	-	i.,	-	-	Po.	May	-	Nov	*	-	-	-	-	Жау	Nav	-	¥2 y	Nov
	Κ8.	7,502	11	88	250	108	243	192	250	190	94	444	174	114	48	255	198	126	274	53	156	266	130	280	62	304
	<u>-</u> _	7	1	ω	6	0	~	2	6	4	2	9	7	8	6	0	-	2	67	4	5	9	2	8	6	0
.	7		9.6	9 6	9 6	97(2 6	9.7	2 6	9.7	2 6	9.7	2 2	9 7 8	2 6	8 6	80	9 8	8 6	8 6	8	8 6	8	8 6	8 6	6 6
Į	_		- -1	,r-1	F	-	n	7-1	-	м	-	п		H		m	1"1	П	FH	F	ы	77	771	74		
												÷.			, a	3-39										

Table 3-2-2 Probability of Daily Maximum Discharge in Dry Season

Remarks	1967~1990	r = 2.2	1967~1990	22 = u	1957 ~ 1990	$r_{\rm m} = 2.2$	1967~1990	n = 20	1967~1990	n = 22	1968~1990	n=21	1969~1990	n = 20	1967~1990	n = 22	1978 ~ 1989	n = 12	1967 ~ 1989	n = 14	1977 ~ 1990	n = 14
W = 1/100	521.0	0.069	513.7	0.204	145.8	0.095	433.5	0.081	72.9	0.199	85.7	0.162	237.5	0.250	86.2	0.161	31.7	0.130	46.2	0.089	40.0	0.197
W = 1/50	456.8	0.061	401.7	0.159	124.2	0.081	369.7	0 069	54.8	0.150	67.6	0.128	167.8	0.178	67.1	0.125	23.8	0.098	43.2	0.083	32.4	0.160
W = 1/30	410.3	0.055	329.4	0.131	109.0	0.071	324.9	0.051	43.5	0.119	55.9	0.105	126.9	0.133	54.9	0.103	18.9	0.078	40.9	0.079	27.3	0.134
W = 1/20	373.8	0.050	277.5	0.110	97.4	0.063	290.4	0.054	35.7	0.098	47.4	0.089	99.7	0.105	46.2	980:0	15.5	0.064	39.0	0.075	23.7	0.117
W = 1/15	347.9	0.046	243.5	0.097	89.4	0.058	288.5	0.050	30.7	0.084	41.9	0.079	83.0	0.087	40.5	0.076	13.3	0.055	37.6	0.072	21.2	0.104
W = 1/10	311.4	0.042	199.2	0.079	78.2	0.051	233.5	0.044	24.4	0.067	34.7	0.065	62.7	0.086	33.1	0.062	10.8	0.044	35.6	0.068	18.0	0.089
W = 1/5	248.0	0.033	132.8	0.053	59.7	0.039	178.1	0.033	15.4	0.042	23.8	0.045	35.6	0.037	2.2.2	0.041	6.7	0.028	31.7	0.081	13.0	0.054
W = 1/2	155.8	0.021	59.6	0.024	34.6	0.022	103.1	0.019	5.4	0.017	11.8	0.022	11.8	0.012	10.3	0.019	2.9	0.012	25.3	0.049	7.3	0.036
	Kgt. 3	7,502时	Kgt. 10	2,523 km	X81. 12	1,540 km²	Kg: 13	5,347 km	X81. 14	366 km	X81. 15A	53014	Kg1. 18	95112	Kgt. 19	535 km	Kgt. 25	243 km	Ny 1,18	520 km³	Ny, 3	203 km

Note; The lower is specific discharge (nd/s·kd)

DINERSION DAM (14.729Km²)	Ka
	- 0000
o o	
Season	
Dry Dry	00
i. i.	00 mm
Discharge	Z-001
Disc	
	1000 H A
Probabi	<u> </u>
Pro	00 200
	300
-2-7 2 Ye	0
Figure 3-2-7 2 Yea	100-200-300
e :	00
Figure (
12 (B)	100
SPECIFIC DISCHARGE (CD)	δ
E SPECIFIC DISCHARGE (97	
m³/2s;kar? Figure 3-2-7 2 Ye Sigure 3-2-	

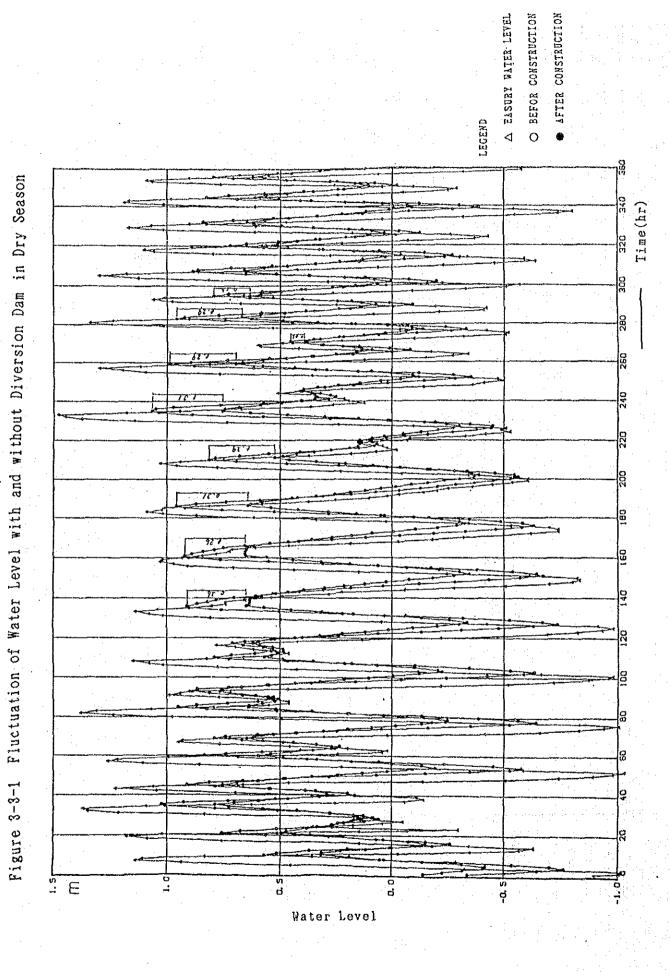


Table 3-4-1 Assumed Water Level at Diversion Dam Site

5.1						
Tide	Flow m³/S	Station	High WL m (MSL)	Mean m (MSL)	Low WL	Range
Spring Tide		Estuary	1.30		m (MSL)	<u> </u>
Dbiing Lide	0	Dam Gate	0.81	0.15	-1.00	2.30
	30	иан часе		0.23	-0.36	1.17
•	50	"	0.86	0.28	-0.31	1.17
	80		0.89	0.31	-0.27	1.16
	100	"	0.93	0.35	-0.23	1.16
		<i>"</i>	0.96	0.38	-0.20	1.16
	200	<i>"</i>	1.04	0.54	0.03	1.01
	260	<i>"</i>	1.08	0.64	0.20	0.88
et e e	300	<i>II</i>	1.11	0.71	0.30	0.81
	400	n .	1.20	0.90	0.59	0.61
	500	<i>"</i> :	1.31	1.19	1.06	0.25
	1,000		2.21	2.20	2.19	0.02
						•
Neap Tide		Estuary	1.00	0.10	-0.80	1.80
	0	Dam Gate	0.65	0.16	-0.34	0.99
;	30	<i>II</i> .	0.69	0.20	-0.30	0.99
: +	50	n,	0.72	0.23	-0.27	0.99
	80	n	0.76	0.27	-0.22	0.98
	100	n .	0.78	0.30	-0.19	0.97
	200	u	0.89	0.44	-0.02	0.91
:	260	n	0.96	0.54	0.12	0.84
	300	· "	1.01	0.61	0.21	0.80
	400	<i>#</i>	1.07	0.76	0.45	0.62
	500	n	1.16	0.95	0.74	0.42
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,000		2.14	2.13	2.11	0.03
/			0.17	<i>D</i> .10	L.11	0.00

Figure 3-4-1 Water Level \sim Storage Volume Curve

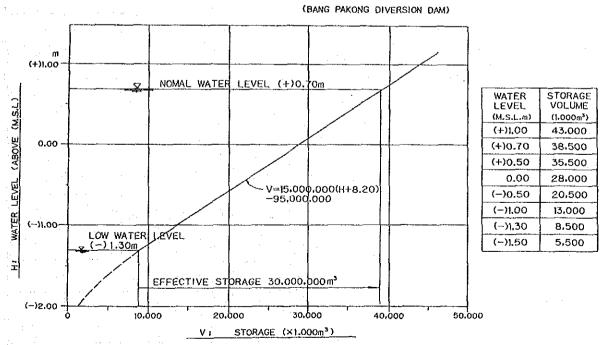


Figure 3-4-2 Tide and Water Level at Diversion Dam Site

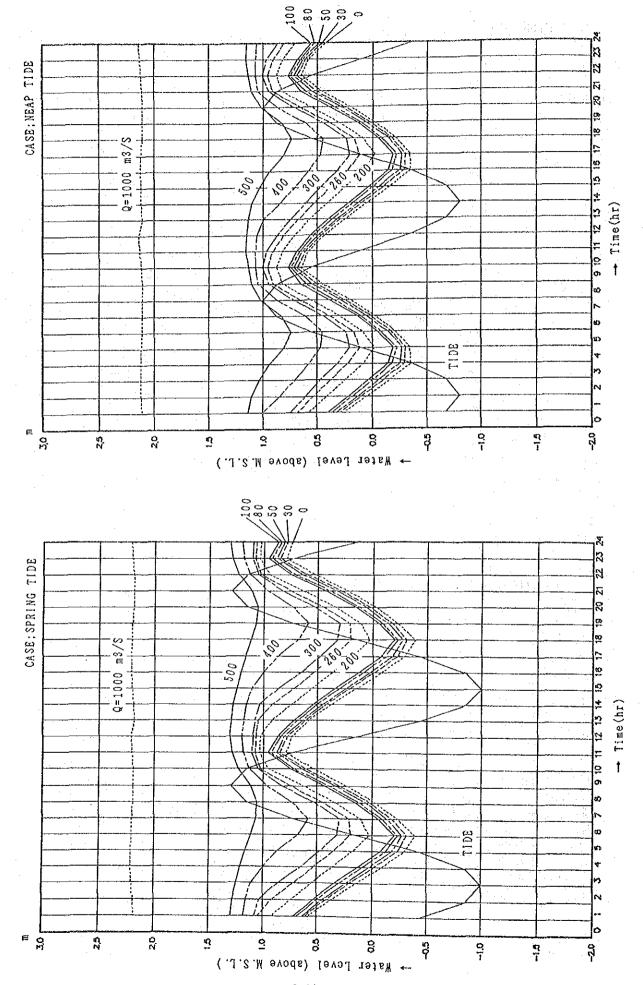


FIGURE 3-4-3 DISCHARGE COEFFICIENT (1)
(FREE FLOW UNDER THE GATE)

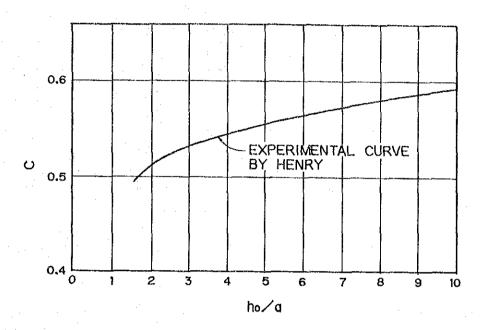


FIGURE 3-4-3 DISCHARGE COEFFICIENT (2)
(SUBMERGED FLOW UNDER THE GATE)

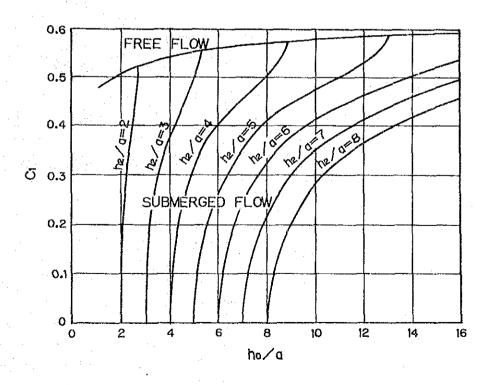


Figure 3-4-4 Gate Simulation (1)

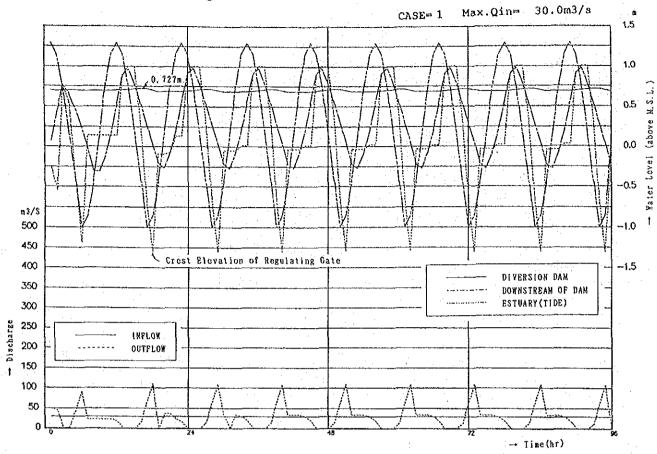
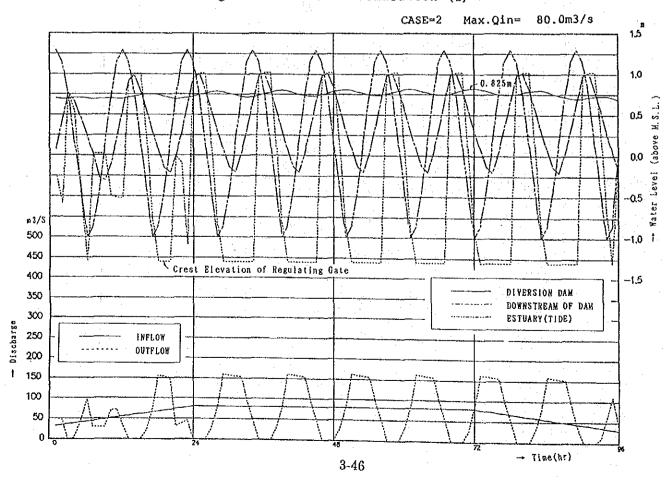



Figure 3-4-4 Gate Simulation (2)

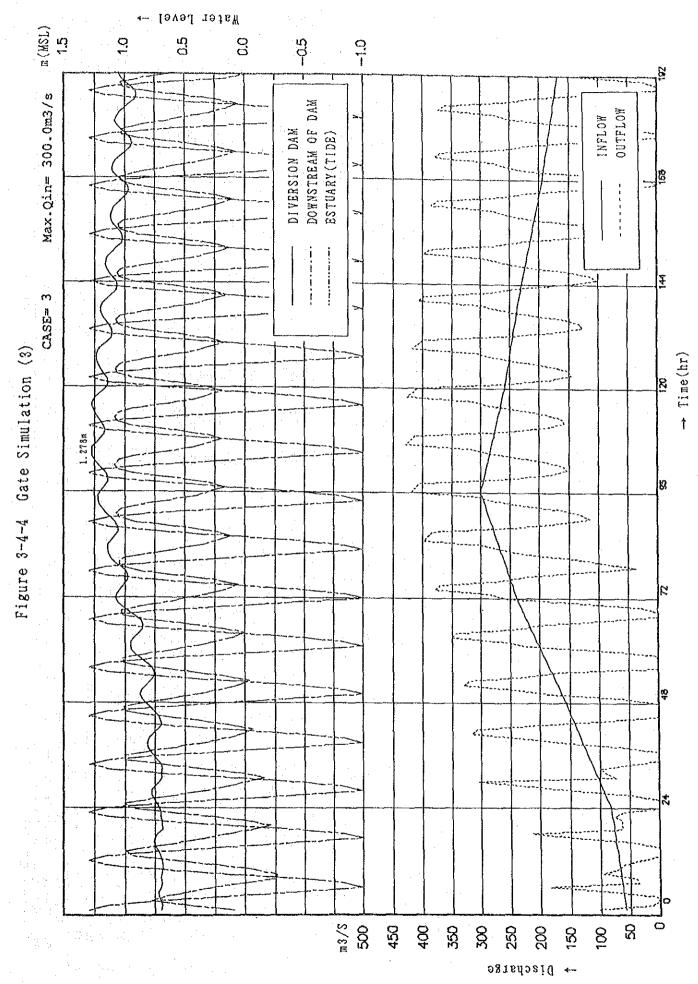


Table 3-4-2 Gate Simulation (1)

			-t	l - -t	,	r4	i r-l	,-1 ·	٠.	1	t e-t	e4 :	٦.,	{ ~4	r~1	ı-t ·	-1	1	t-d	: r-{ -	4	,		1	1	.,	4 F	L pot	м	- (-		ç-4	4 1-4	Led	pol o		ı m	н.	H H				
, c=0	\$ / CHEO	FT (H)	-0.429	850	431	77.0	149	300	150	127	429	666	850 753	1 4	729	949	9 6	731	151	429	א א	850	44	729	149	900	733	151	429	מאני מאני מאני	431	149	149	300	150	731	429	.999	0,850		. ده		
. 6	7	WI (II)	0.546	0.052	-0.222	-0-275 -0-084	0.199	0.557	16.0 16.0	0.790	0.546	0.293	20.00	0.275	0.083	0.199	755.0	0.975	0.790	0.546	557.0																		0.052		CATES (nel	S	
,	A A A	L-G(B)	8,20	8,20	8.20	200	8.20	8.20	02.6	202	9.20	200	000	202.50	3.20	25	2 0	200	20	88	7	2	A (ivi	N	on o	7 (2)	2	20	20 G	i e	Si c	2 (!N	8.2	ω c	8	2	-8.20	!!	REGULATING G	\sim	
	* Magas	U-G(m)	0.34																			-1.30	0.0	-0.04	0.05	0.05	1.01	101	0.34	9 C	-0.04	900	0.03	0.03	0.91	1 .	0.34	-0.66	-1.30		200	o u	
(00.17) 00(cms)	12.7	i Or	m (m (*	g.	00 1	00	0	N	p 4 6	7) (1)	33.5	m	0.0	X C	0	0	12.7	4	6		'n	φ,	oʻ d		0	ά.	.i 0	· ~	•	ຸ່ຜ່				. 4	•	109.2		00-01 804 t i on	elev	DAM
	NOT TO	ON DAM (NO	00		•	•		•	•			•				•										•			•	٠.	٠.	•		• •		٠		•	00	• •	- C	· E	DIVERSION
	4	-DIVERSI Q1(cms)	12.7	i Or	M 1	00 E	an o	4	00	20	N	-11	א עב		m	0.1	m c	0	0	12.7	٦ .	ல்	. ,	'n	o,	တ်ဇ		ó	ď.	io	'n	•	່າ ແ	· .	6		: .:	61	109.2		In M.S.L	flow	ET OT
* *	t t	WL (m)	0.718																							٠											• •	•	0.702		vel Ver	nder	STre
	(2)	Oin (cms)	30.0	30.0	30.0	0 0	30.0	30.0	30.0	200	30.0	30.0	200	200	30.0	30.0	0 0	900	30.0	30.0	2000	0	50		0	0	; 0	6	6	င်င	6	0	; 0		ö	်င	ö	。	30.0		WL-Wate	02, L-G(m) -0	70. T & T . O.
		T (hr)	4 R	27	25	დ қ დ 4	8	56	57	3 0	9	19	7.0	9.00	65	99	is a	9 6	5	۲. ۲. د	7	7.3	4 2	9.	77	9 00	v 6	18	85	20 00	8	86	. 60 0 00	9 60 60	8	ი გ	63	94	ው 0 የአ	*	NOTE;		:
																																•		٠.									
٠	,	к * !!	-																																					*	:		-
9,70		MT (m)	1.300		٦.	4.0	. 60	4.	4,	. –	m	1	` -	1 4	ς.	ω,	٦ ٢	! [w.	7	-	4 4	9	∞.	٠,	٦,		ო,	-i r	:	4.0	νœ	4.	-4		10	7	0.731	4 !	: :		
90	•	*E (B)	0.073																			•			٠	oʻ «	٠.		•					• •			• •	•	0.975	- 1	ני אפניעט	6	
, and a		L-G(m)	18 20	8.2	8.2	200	8	8.2	ο. ο	۰ در ده	8	2.6	20 a	9.00	8.2	27.	00 G	. 0	2	-8.20	7,0	(4.6	4	l (N	(1)	N, r	v N	~	CU (\sim	. (α	y O	101	OI 4	$\omega \circ$	· cv	$^{\sim}$	18.20	11	DESCRIPTION OF THE PROPERTY OF	REG. /FLOOD	
(1636)	1 1 200	U-G (m)	-0.24	0.77	0.35	10.45	0.14	0.14	77.	77.0	0.14	0.89	200	0.28	-0.72	-1.30	000	90.0	0.13	0.13	76.0	1.01	T 0.0	-0.67	-1.30	-0.05	0.00	0.01	0.01	2.5	1.01	0.34	9 0	0.0	-0.04	5 6 6 6	0	16.0	, 9.5	3	24	30 uc	
**	í	(NO.17)	4.0.5	6	аi.	4.α α ω.α		ci.	o, c	; c	ś	0.0)))	် တိ	S.	110.1	o'r	٠.	22.5	4. (>	0.0	13.0	8	109.3	34.3	2 m	30.0	18.2	000	0	ν,	+ 5		m.	6, 6 4, 6	. 6	ö	00		00-01	elevati	DAM
MOTHS THEN YO	MOTTENIO.	(N 02 (cms)	00		•				•												•	•			•				•										00				DIVERSION
ALC CHAN	1	Ol(cms)	49.5	ď	à	4 0 0 0 0 0	, .	ď	ຕ່ ເ	10	Ś	0	0.0	:	65.5	<u>.</u>	ór	٠.,	22.5	₹.))	0.0	0 6	N	109.3	9 (34.0	. 0	œ.	0 6	0	∾.		50	m	ص ص ص م	a	o	00		In M.S.L.	10v	O.
*	t t	WI (m)	0.703	0.696	0.704	0.706	0.691	0.693	0.692	0.00	0.700	90.0	0.713	0.727	0.724	0.709	0.690	0.0	0.690	0.692	669.0		0.73	0.718	0.703	0.690	0.690	0.690	0.691	0.697	0.71	0.718	0.716	0.690	0.690	0.690	0.691	0.697	0.704	77/->	vel	nder	own stream
	(1)	Oin (cms)	30.0	30.0	30.0	0.0	30.0	30.0	300	200	30.0	30.0	0 0	200	30.0	30.0	000	000	30.0	30.0	20.0	30.0	30.0	30.0	30.0	30.0	0 0	30.0	30.0	0 0	30.0	30.0	30.0	30.08	30.0	90.0	30.0	30.0	30.0	2	WL-Water	02, L-G (m) =U	NO.16=Dc
	,	T(hr)	40	l 63	₹7	יט ע		ω	on () F	12	82	er u	n va H m	17	18	13	9 6	22	CA C	3-,		28 7	7 2 8	29	30	3.5		34	ທ ທ	3 5 6	88	W 4	i. 4 .	45		r u	46	4.4	# I	MOTE;		

Table 3-4-2 Gate Simulation (2)

	1.	Ĵ,	n c	. 0	٠. وسي	on .).)) (1	i.	ض:	j., a	فيو	ው	o.	ė			ъ.	* ^	٠,						· .		. ~			- '					,	_			-1)	1	7,5			-	*			
.0m3/s	*SEA-		• •	. ~~	-	0.149	: -	•		•	1-1	٠.	v.	Ç,	4	-(_	-((n,	4 6	~ ~	4 48	7 (5)		0.8.0	40.4.0	777	1 1 4 9	1.300	1.150	0.731	0.151	-0.429	0.0	-0.431	0.149	0.729	1.149	7.300	731		-0.429	-0.999	-0.850	-0-001	· ·		
in= 80	-NO.16-	i i	0 0	0.086	-0.134	-0.200 -0.200 -0.200	315	0.668	0.987	1.009	0.815	0.569	0.320	680.0	-0.132	-0.139	870.0	700	000	000	200	0.00	0.321		0.00.0	200	, α α α α α α α α	0.318	0.670	0.988	1.009	0.816	0.569	0 6	0.137	0.203	0.024	0.311	200	ο α ο α ο α ο α	36	0.562	0.306	0.063	0.157	GATES (n=1)	GATES	
Max.Qin	(H) 9-11	1,	; `	• • •	``	-8-50	: ''		.,	• •	٠,	, ,			., .			A .	46	v	9 (10	-8.20	;	200	2 6	3 6	200	20	20	8.20	8.20	200	200	22,0	50	20	-8.20) () ()	2 6	2 5	202	20	20	20		reg./frood	
35=2	(H) 5-5																						-0.93		000	ეგ. - 1.	7 -	300	-1.30	66.0	1.02	1.02	0.13	ο c Ο c	-1.30	-1.30	1.30	-1.30		2,0	20.1	0.38	0.62	1.30	0.15	8	H O	
*** CASE	.17)		Šè	S	ê,	157.9	ה ה	Ġ	_	0.0	်	32.8	84	93	9	ຕໍ່	ر د رو	'n.	;.	,		; b	85.9	,	63.7	9 C	יי מע	900	. 00	0	0	0.0	5.2	Э и Э с	9.0	8.8	2.0	o b.	2.0	> d	50	. 4	, m,	4	1.1	00-01 ation	levation 4	
SIMULATION *	(cms) 00			0	0	0.0	50						0	0	0	0	0						00			၁		0				0	0.4	· •	20	0.	0.	0.0	ο (, a		0.0	0	est el	Bottom el RSION DAM	
GATE SIMUI	DIVERSION 1 (cms) 02			.62.3	1.09	57.9	ກິດ	0.0	0	0	0.0	32.8	84.2	63.1	6.09	58.7	90.0	ر د د د	200) c		, , , ,	85.9	-	63.7	-1 (א מ	S CO	0	G	0.0	o	ത്	jο		Ψ.	ς.	90.9	υ,	ာင) c	, ,	Ö	10.4	-: 1	M.S.L	ow and of DIVE	!
***	WL (m) 01	* 000	000	805	.785	766 1	740	741	758	777	797	.814	820	812	792	773 1	7.74	017	101	700	, coa	3 0	825	;	816 1	196	7 6//	745	743	757		.787	.800	7007	764	739 1	714 1	. 700	694			732	731	717 1	690	vel ir	™Under £l n stream	
	n (cm3)	* 1 0			~	~ ·			0	0	_	о •	<u> </u>	0		-		> t			> C	,	00		<u> </u>	ν.	~ ~	. \r		_		_						46.7 0.								WL-Water le Q1, U-G(m) ~O	, K-G (m) * 1 6*Down	
2	T(hr) O41	* 0 5								'n							٠.						12															88							*	NOTE; WI	8 S	i
	*	*																																				-							+	į 25		
	*	*	4 -	-	٦	: . ed F	-1 e-	1 +-1	1	Н	٦	ч	н	7	~1	-	~	٠,	-1 r	4 ,	- t	- -	4 -4		⊢ 1 ,		-I -	4 -	سم ا	l prof	-	-4	-t ·	r-4 e	-, ۱	M	٦	ч	н.	H .	-1 -	-1 h-	٠, ١	14	~1	t .		
0m3/s	SEA	1"	; *		먹	Ą.,	, a	, 4	. –	۲.	٦.	m	٦.	۲.	٦.	₹.	٠,	σ,	•	վ Ր	٦,	∹ ^	1.150		٠.	٦.	a, c	'nα	, 4	~	6	M	m.	٦.		7	Q.	-0.850	4.	4,	٦.	٦.۳	, L		т.	(1		
In= 80.	-NO.16-*	1	₹₹		Ψ,	4.	ήc	, ~	וַייי	0	ď	'n.	ď.	σ.	Γ,	w.	ų.	٠.	٦, ۵	, ·	<u>ن</u> د	, u	0.957															0.083								ATES (n=1)	GATES	
Max.Q.	L-G (m)		Vυ	· "	w	(V)	v c	4 C		N	α	C)	CV.	$^{\circ}$	N	CV.	\sim	C (N 6	v	vο	vις	-8.20		٧,	Ŋ	Ŋ	40	iα	00	8	8.2	8.2	e i	'n	2	8	œ	8	6	e c	70	0 0	i	7		f REG./FLOOD	
SE= 2	(E) (U-D		7.0	77	0.54	-0.46	35	200	0.00	-0.50	-0.52	-0.52	0.92	1.01	1.01	0.24	-0.76	-1.30	-1-30 -1-30	1.30	7 C) (0.96		1.01	ره-ر ا	8 6	10.82	7.5	30	-1.30	130	-1.30	0.00	7.07	0.16	-0.84	-1.30	-1.30	1.30	-1.30	1.30	-1-00 00 00 00	1.02	1.02	188	o g	
*** CASE	10.17)	*	n u	. 0	ហ		9	Dα	,	۱۳. ا	9	4.4	0	0	0.0	6.9	70.5	ത	53.4	51.2	ο (7.	- O.		٠	ó	•	o o	,,,	, n.		93.	'n	•		, ,		6	59.	٥	54.	4.	٠,		٠.	00-01+	elevatio	A.
SIMULATION *	DAM(N)))	00	0.0	0	00) c	9 0	0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0	0.0	0.0	0.0	0,0	00				•		•				•		•						•		•		0,0	ء ا	Ę,	a MOTSME
GATE SIMU	-DIVERSION	- 18	4 U.r		2.5	42.4	200.7	200	9.0	70.01	72.6	34.4	0.0	0.0	0.0	19.9	70.8	155.8	153.4	151.2	31.6	7	40.0		0.0	0	25.3	76.7	- V - V - V - V) kr () kr (9	45,4	0-0	0,0	ָ ֓ ֓ ֓ ֞ ֩	2 0	161.2	159.0	156.9	154.9	94.9	4. 7. 9.	90	0.0	In M.S.L.,		am of DIV
* *	WT. (m)	*																					0.708		r~	_		P (~ r	~ r	~ r			~	-	~ r	~ a) r-		. [~	-	_		г г	0,789	vel	nder	stre
	2.) 		32.1	36.4	8	40.4	42.5	9, 7	0.0	000	52.9	55.0	57.1	59.2	61.2	63.3	65.4	67.5	9.69	71.7	73.7	75.8	80.0		ö	ö	ö	0	5 6	, ,	50	ċ		6	o.	5,6	; c		ċ	0	6	ö	်	ö	30.08 80.0	WL-Water	02, L-G(m)=0	NO.16-Dc
	**************************************		ન (v (*	ব	Ŋ	Ö r	~ 0	0.0	, [1 m	12		41	15	9	17	3	б	50			23 7 8		25	56	27	28	5 G	2	ህ r	46) (J)	32	36	. e	10 C T) C	n c n <	קרק	. 2	4	4.	43	46	4. 4 00	*		
																							3-4	19																								

³⁻⁴⁹

Table 3-4-2 Gate Simulation (3)

		ннг	1 6	4 (-6)	⊣ ત્ન	ed r		ed to	1 -1		4 ~4	નું અં		-11		 .							٠.								
300.0m3/s	"SEA* WL (m)	1.150	124 0	000	149	729	200 200 300	130	51.	929	200	431 149	129	200 300	131	<u> </u>	n ø	S =	0.0	n on	00	> ⊢ (H Q	on c) rd	0.149 1	σ.	00	д.	40	6
Max.Qin= 300.	*-NO.16-'	1.050	22.0	986	32	25.		9.9	36	78	33	22	133	33	02	924	525	978	073	523	863	037	00 00 00 00 00 00	0,0	160	0.054	517	857	034	655 655	GAIES (n=2)
Max.	L-G(m)	-8.20	000	14	ν α α α	200	88	2,0	9.6	2.0	9 00	Sid	10	43	22		သတ	α α	0 00 0	χ χ	000	0 00	m m	on o	, m	-8.20	(3)	200	6/10	100	LATING S./FLO
CASE= 3	U-G (m)	11.30														-0.26			: : : :				- w		.,,	11.30	(1)	סיי	Οu	U 4.	20 to 0 to 0
* *	NO.17) 00 (cms)	101.7		900	96	55	200	. i a	'n		22.	S N	9	8 8		200	אינ טינ	96	368.9	3 2	in c	56	55.	m v	٥,	361.5	80	s o	ö	134.6	Q=Q1 QQ=Q1 levation elevati
SIMULATION	OZ (cms)	000	• •					-					. ,													0.0					Crest e Bottom
GATE SIN	DIVERSI Q1(cms)	101.7	217.6	290.7	0.786 0.086	275.9	143.4	67.60	134.3	212.8	282.2	385.9 9.35.9	200	218.7	0.0	P- 0	. 10	-40	368.0	· ^		00	S G	2	٥ م	361.5	4	N O	٥,	134.6	in M.S flow a flow am of
*	WL(m)	1.099														1.101	Ö	ő	200	ກ່ວ	9.0	20	ဝိုင်	6	38	0.963	8	20	9 5	0.0	vel ver nder stre
(9	Oin (cms)	228.5														8	9.2	800	8	86	10 c		88	6.0	25	176.6	4.	25	4	9.00	Wirwater le Q1,U-G(m) C Q2,L-G(m) V
	T (hz)	146	1 rd -	120	122	153	156 156 156 156	100 100 100 100 100 100 100 100 100 100	158	694 1017	191	162	H 160	1 65 1 66	167 168	169	177	172	174	175	177	179	180	185	7 47 10 84 11 11 11	185	187	1 E	190	191	NOTE;
					•																										
	* *	Ì														н.	~ H	rd r	4 ⊢ 4 ,	4	~ •	- 11	н -	·		н -	t 1		٦,	ᅯᆑ,	×.
.0m3/s	*SEA* WL (m)	149 729	000	73.	0.429	666	0.431	149	149	300	731	429	9	431	.729		150	731	0.429	900 900 900	0.431	729	749 000	120	151	10.429 1	80.0	4.4 14.9 14.9	729	300	2)
300	(E)	164 0.149 299 0.729 587 1.149	933 1,300	084 0.731	920 -0.429	661 -0 999	313 -0.431	.194 0.149	600 1.149	945 1.300	.087 0.731	.052 0.151 .933 -0.429	665 -0.999	.443 -0.850 .310 -0.431	.190 0.149 .313 0.729	.596 1.1	.062 1.150	083 0.731	901 -0.429	.426 -0.850	290 -0.431	300 0.729	.583 1.149	.057 1.150	077 0.731	10.429	404 -0.850	.265 -0.431 .147 0.149	283 0.729	.569 1.149 .911 1.300	ATES (D#2)
	NO.16-*SEA WL(m) WL(m)	8.20 0.164 0.149 8.20 0.299 0.729 8.20 0.597 1.149	8.20 0.933 1.300	20 1.084 0.733	8.20 0.920 -0.429	8.20 0.661 -0.999	8.20 0.313 -0.431	8.20 0.194 0.149	8.20 0.600 1.149	8.20 0.945 1.300	8.20 1.087 0.731	8.20 1.052 0.151 8.20 0.933 -0.429	8.20 0.665 -0.999	8.20 0.443 -0.850 8.20 0.310 -0.431	8.20 0.190 0.149 8.20 0.313 0.729	8.20 0.596 1.1	8.20 1.062 1.150	8.20 1.083 0.731	8.20 0.901 -0.429	8.20 0.426 -0.850	8.20 0.290 -0.431	8.20 0.300 0.729	8.20 0.583 1.149	8.20 1.057 1.150	8.20 1.077 0.731 8.20 1.038 0.151	20 0.863 -0.429	8,20 0.404 -0.850	8.20 0.265 -0.431 8.20 0.147 0.149	20 0.283 0.729	8.20 0.569 1.149 8.20 0.911 1.300	សដ្ឋ
3 Max.Qin= 300	-G(m) WL(m) WL(m)	30 -8.20 0.164 0.149 30 -8.20 0.299 0.729 30 -8.20 0.597 1.149	30 -8.20 0.533 1.300	1.00 480 I 00.00 1.00.1	.30 -8.20 0.920 -0.429	1.30 -8.20 0.661 -0.999	.30 -8.20 0.313 -0.431	1.30 -8.20 0.194 0.149	.30 -8.20 0.600 1.149	30 -8.20 0.945 1.300	1.30 -8.20 1.087 0.731	1.30 -8.20 1.052 0.151 1.30 -8.20 0.933 -0.429	1.30 -8.20 0.665 -0.999	.30 -8.20 0.443 -0.850 .30 -8.20 0.310 -0.431	30 -8.20 0.190 0.149 30 -8.20 0.313 0.729	30 -8.20 0.596 1.1	.30 -8.20 1.062 1.150	30 -8.20 1.083 0.731	30 -8.20 0.901 -0.429	.30 -8.20 0.647 -0.999 .30 -8.20 0.426 -0.850	30 -8.20 0.290 -0.431	0 -8.20 0.171 0.149	30 -8.20 0.583 1.149 30 -8.20 0.426 1.300	30 -8.20 1.057 1.150	.30 -8.20 1.077 0.731 .30 -8.20 1.038 0.151	0 18.20 0.863 10.429 0 18.20 0.623 10.999	30 -8,20 0.404 -0.850	.30 -8.20 0.265 -0.431 .30 -8.20 0.147 0.149	30 -8,20 0.283 0.729	1.30 -8.20 0.569 1.149 1.30 -8.20 0.911 1.300	2 f REGULATING GATES of REG./FLOOD GATE
* CASE 3 Max.Qin 300	(cms) U-G(m) L-G(m) WL(m) WL(m)	11.9 -1.30 -8.20 0.164 0.149 05.3 -1.30 -8.20 0.299 0.729 69.4 -1.30 -8.20 0.587 1.149	87.4 - 1.30 - 8.20 0.833 1.300	1000 1 10	31.9 -1.30 -8.20 0.920 -0.429	85.4 -1.30 -8.20 0.661 -0.999	15.9 -1.30 -8.20 0.442 -0.650 29.6 -1.30 -8.20 0.313 -0.431	20.9 -1.30 -8.20 0.194 0.149	63.9 -1.30 -8.20 0.600 1.149	91.0 -1.30 -8.20 0.945 1.300	62.7 -1.30 -8.20 1.087 0.731	87.0 -1.30 -8.20 1.052 0.151 28.0 -1.30 -8.20 0.933 -0.429	83.0 -1.30 -8.20 0.665 -0.999	14.0 -1.30 -8.20 0.443 -0.850 26.5 -1.30 -8.20 0.310 -0.431	6.9 -1.30 -8.20 0.190 0.149 7.8 -1.30 -8.20 0.313 0.729	58.4 -1.30 -8.20 0.596 1.3	83.0 -1.30 -8.20 0.939 1.500 46.0 -1.30 -8.20 1.062 1.150	50.3 ~1.30 -8.20 1.083 0.731	25.3 -1.30 -8.20 0.901 -0.429	76.5 -1.30 -8.20 0.647 -0.999 06.9 -1.30 -8.20 0.426 -0.850	17.6 -1.30 -8.20 0.290 -0.431	07.8 -1.30 -8.20 0.171 0.149 98.6 -1.30 -8.20 0.300 0.729	49.6 -1.30 -8.20 0.583 1.149 	26.7 -1.30 -8.20 1.057 1.150	32.9 -1.30 -8.20 1.077 0.731 63.0 -1.30 -8.20 1.038 0.151	22.0 -1.30 -8.20 0.863 -0.429	98.9 -1.30 -8.20 0.404 -0.850	07.6 -1.30 -8.20 0.265 -0.431 97.7 -1.30 -8.20 0.147 0.149	84.2 -1.30 -8.20 0.283 0.729	1.30 -8.20 0.569 1.149 1.30 -8.20 0.911 1.300	CQ-01+Q2 evation of REGULATING GAIES elevation of REG./FLOOD GAIE AM
*** CASE* 3 Max.gin* 300	DAM (NO.17)	11.9 -1.30 -8.20 0.164 0.149 05.3 -1.30 -8.20 0.299 0.729 69.4 -1.30 -8.20 0.587 1.149	. 0 187.4 -1.30 -8.20 0.533 1.300 - 1.	.0 160.5 -11.30 -8.20 1.084 0.731	.0 18/.0 -1.30 -8.20 1.049 0.151 .0 231.9 -1.30 -8.20 0.920 -0.429	.d 285.4 -1.30 -8.20 0.661 -0.999	.0 315.9 -1.30 -8.20 0.442 -0.650 .0 429.6 -1.30 -8.20 0.313 -0.431	.0 420.9 -1.30 -8.20 0.194 0.149	.0 263.9 -1.30 -8.20 0.600 1.149	.0 191.0 -1.30 -8.20 0.945 1.300	0 162.7 -1.30 -8.20 1.087 0.731	.0 187.0 -1.30 -8.20 1.052 0.151 .0 228.0 -1.30 -8.20 0.933 -0.429	0 283.0 -11.30 -8.20 0.665 -0.999	.0 314.0 -1.30 -8.20 0.443 -0.850 .0 426.5 -1.30 -8.20 0.310 -0.431	.0 416.9 -1.30 -8.20 0.190 0.149 .0 407.8 -1.30 -5.20 0.313 0.729	.0 258.4 -1.30 -8.20 0.596 1.3	.0 183.0 -1.30 -8.20 0.939 1.300 .0 146.0 -1.30 -8.20 1.062 1.150	.0 150.3 ~1.30 -8.20 1.083 0.731	.0 225.3 -1.30 -8.20 0.901 -0.429	.0 276.5 -1.30 -8.20 0.647 -0.999 .0 306.9 -1.30 -8.20 0.426 -0.850	.0 417.6 -1.30 -8.20 0.290 -0.431	.0 40/.8 -1.50 -8.20 0.1/1 0.149 .0 398.6 -1.30 -8.20 0.300 0.729	.0 249.6 -1.30 -8.20 0.583 1.149	.0 126.7 -1.30 -8.20 1.057 1.150	.0 152.9 -1.30 -8.20 1.077 0.731 .0 163.0 -1.30 -8.20 1.038 0.151	0 222.0 11.30 18.20 0.863 10.429	0 298.9 -1.30 -8,20 0.404 -0.850	.0 407.6 -1.30 -8.20 0.265 -0.431 .0 397.7 -1.30 -8.20 0.147 0.149	0 284.2 -1.30 -8,20 0.283 0.729	1.30 -8.20 0.569 1.149 1.30 -8.20 0.911 1.300	CQ-01+Q2 evation of REGULATING GAIES elevation of REG./FLOOD GAIE AM
TOLATION *** CASE* 3 Max.Qin* 300	NO.17}	3 0.0 411.9 -1.30 -8.20 0.164 0.149 3 0.0 405.3 -1.30 -8.20 0.299 0.729 0 0 259 -1.30 -8.20 0.587 1.149	.4 0.0 187.4 -11.30 -8.20 0.533 1.300	. 5 0.0 150.5 130 820 1.084 0.731	.0 0.0 187.0 -1.30 -8.20 1.049 0.151 .9 0.0 231.9 -1.30 -8.20 0.920 -0.429	.4 0.0 285.4 -1.30 -8.20 0.661 -0.999	.9 0.0 316.9 -1.30 -8.20 0.442 -0.650 .6 0.0 429.6 -1.30 -8.20 0.313 -0.431	.9 0.0 420.9 -1.30 -8.20 0.194 0.149	.9 0.0 263.9 -1.30 -8.20 0.600 1.149	0 0.0 191.0 -1.30 -8.20 0.945 1.300	7 0.0 162.7 -1.30 -8.20 1.087 0.731	.0 0.0 187.0 +1.30 +8.20 1.052 0.151 .0 0.0 228.0 +1.30 +8.20 0.933 +0.429	0.0 283.0 -1.30 -8.20 0.665 -0.999	.0 0.0 314.0 -1.30 -8.20 0.443 -0.850 .5 0.0 426.5 -1.30 -8.20 0.310 -0.431	.9 0.0 416.9 -1.30 -8.20 0.190 0.149 .8 0.0 407.8 -1.30 -8.20 0.313 0.729	8.4 0.0 258.4 -1.30 -8.20 0.596 1.1	3.0 0.0 183.0 -1.30 ~8.20 0.939 1.300 5.0 0.0 146.0 -1.30 -8.20 1.062 1.150	5.3 0.0 150.3 ~1.30 -8.20 1.083 0.731	5.3 0.0 225.3 -1.30 -8.20 0.901 -0.429	5.5 0.0 276.5 -1.30 -8.20 0.647 -0.999 6.9 0.0 306.9 -1.30 -8.20 0.426 -0.850	7.6 0.0 417.6 -1.30 -8.20 0.290 -0.431	7.8 0.0 407.8 Tisu E8.20 0.171 0.149 8.6 0.0 398.6 Tiso -8.20 0.300 0.729	9.6 0.0 249.6 -1.30 -8.20 0.583 1.149	5.7 0.0 126.7 -1.30 -8.20 1.057 1.150	2.9	2.0 0.0 222.0 11.30 18.20 0.863 10.429	3.9 0.0 298.9 -1.30 -8.20 0.404 -0.850	7.6 0.0 407.6 -1.30 -8.20 0.265 -0.431 7.7 0.0 397.7 -1.30 -8.20 0.147 0.149	1.2 0.0 284.2 -1.30 -8.20 0.283 0.729	.0 240.0 -1.30 -8.20 0.569 1.149 .0 158.5 -1.30 -8.20 0.911 1.300	in M.S.L., flow and Crest elevation of REGULATING GATES: flow and Bottom elevation of REG./FLOOD GATEs am of DIVERSION DAM
TOLATION *** CASE* 3 Max.Qin* 300	WL(m) Q1(cms) Q2(cms) Q2(cms) U-G(m) L-G(m) WL(m) WL(m)	171 411.9 0.0 411.9 -1.30 -8.20 0.164 0.149 144 405.3 0.0 405.3 -1.30 -8.20 0.299 0.729 346 250 4 0 260 4 1 30 -8.20 0.587 1.149	161 187.4 0.0 187.4 -1.30 -8.20 0.933 1.300	.152. 150.5 0.0 150.5 -1.30 -8.20 1.084 0.731	.252 187.0 0.0 187.0 -1.30 -8.20 1.049 0.151 .273 231.9 0.0 231.9 -1.30 -8.20 0.920 -0.429	278 285.4 0.0 285.4 -1.30 -8.20 0.661 -0.999	.274 316.9 0.0 316.9 -1.30 -8.20 0.442 -0.650 .242 429.6 0.0 429.6 -1.30 -8.20 0.313 -0.431	.207 420.9 0.0 420.9 -1.30 -8.20 0.194 0.149	.168 263.9 0.0 263.9 -1.30 -8.20 0.600 1.149	179 191.0 0.0 191.0 -1.30 -8.20 0.945 1.300	.232 162.7 0.0 162.7 -1.30 -8.20 1.087 0.731	.255 187.0 0.0 187.0 -1.30 -8.20 1.052 0.151	273 283.0 0.0 283.0 -1.30 -8.20 0.665 -0.999	.264 314.0 0.0 314.0 -1.30 -8.20 0.443 -0.850 .229 426.5 0.0 426.5 -1.30 -8.20 0.310 -0.431	.191 416.9 0.0 416.9 -1.30 -8.20 0.190 0.149 .154 407.8 0.0 407.8 -1.30 -8.20 0.313 0.729	1146 258.4 0.0 258.4 -1.30 -8.20 0.596 1.1	.154 185.0 0.0 183.0 -1.30 ~8.20 0.939 1.500 .178 146.0 0.0 146.0 -1.30 -8.20 1.062 1.150	.204 150.3 0.0 150.3 ~1.30 -8.20 1.083 0.731	.240 225.3 0.0 225.3 -1.30 -8.20 0.901 -0.429	.240 276.5 0.0 276.5 -1.30 -8.20 0.647 -0.999 .229 306.9 0.0 306.9 -1.30 -8.20 0.426 -0.850	194 417.6 0.0 417.6 -1.30 -8.20 0.290 -0.431	.154 407.8 0.0 407.8 -1.50 -6.20 0.171 0.149 .117 398.6 -0.0 398.6 -1.30 -8.20 0.300 0.729	.109 249.6 0.0 249.6 -1.30 -8.20 0.583 1.149	140 126.7 0.0 126.7 -1.30 -8.20 1.057 1.150	.168 132.9 0.0 132.9 -1.30 -8.20 1.077 0.731 .190 163.0 0.0 163.0 -1.30 -8.20 1.038 0.151	.203 222.0 0.0 222.0 -1.30 -8.20 0.863 -0.429	189 298.9 0.0 298.9 -1.30 -8.20 0.404 -0.850	.153 407.6 0.0 407.6 -1.30 -8.20 0.265 -0.431	.075 284.2 0.0 284.2 -1.30 -8.20 0.283 0.729	3.0 0.0 240.0 -1.30 -8.20 0.569 1.149 3.5 0.0 158.5 -1.30 -8.20 0.911 1.300	ir level in M.S.L., QQ-Q1+Q2 (m)=Over flow and Crest elevation of REGULATING GATES (m)=Under flow and Bottom elevation of REG./FLOOD GATE Own stream of DIVERSION DAM
GATE SIMULATION *** CASE- 3 Max.Qin= 300	(cms) W1 (m) Q1 (cms) Q2 (cms) Q0 (cms) U-G (m) L-G (m) WL (m) W1 (m)	298.3 1.171 411.9 0.0 411.9 -1.30 -8.20 0.164 0.149 296.6 1.144 405.3 0.0 405.3 -1.30 -8.20 0.299 0.729 0.729 0.729	1.161 187.4 0.0 187.4 -1.30 -8.20 0.933 1.300 1.500 1.	1.225 160.5 0.0 160.5 -1.30 -8.20 1.084 0.731) 1.252 187.0 0.0 187.0 -1.30 -8.20 1.049 0.151 3 1.273 231.9 0.0 231.9 -1.30 -8.20 0.920 -0.429	3 1.278 285.4 0.0 285.4 -1.30 -8.20 0.661 -0.999	3 1.274 316.9 0.0 316.9 -1.30 -8.20 0.442 -0.650 1.242 429.6 0.0 429.6 -1.30 -8.20 0.313 -0.431	5 1.207 420.9 0.0 420.9 -1.30 -8.20 0.194 0.149	11.168 263.9 0.0 263.9 -1.30 -8.20 0.600 1.149	1.179 191.0 0.0 191.0 -1.30 -8.20 0.945 1.300	7 1.232 162.7 0.0 162.7 -1.30 -8.20 1.087 0.731	3 1.255 187.0 0.0 187.0 -1.30 -8.20 1.052 0.151 3 1.27 228.0 0.0 228.0 -1.30 -8.20 0.933 -0.429	3 1.273 283.0 0.0 283.0 -1.30 -8.20 0.665 -0.999	1.264 314.0 0.0 314.0 -1.30 -8.20 0.443 -0.850 1.229 426.5 0.0 426.5 -1.30 -8.20 0.310 -0.431	7 1.191 416.9 0.0 416.9 -1.30 -8.20 0.190 0.149 7 1.154 407.8 0.0 407.8 -1.30 -8.20 0.313 0.729	8 1.146 258.4 0.0 258.4 -1.30 -8.20 0.596 1.1	6 1.154 183.0 0.0 183.0 -1.30 ~8.20 0.939 1.300 4 1.178 146.0 0.0 146.0 -1.30 -8.20 1.062 1.150	2 1.204 150.3 0.0 150.3 ~1.30 -8.20 1.083 0.731	8 1.240 225.3 0.0 225.3 -1.30 -8.20 0.901 -0.429	5 1.240 276.5 0.0 276.5 -1.30 -8.20 0.647 -0.999 3 1.229 306.9 0.0 306.9 -1.30 -8.20 0.426 -0.850	1 1.194 417.6 0.0 417.6 -1.30 -8.20 0.290 -0.431	9 1.154 407.8 0.0 407.8 -1.50 -8.20 0.171 0.149 7 1.117 398.6 -0.0 398.6 -1.30 -8.20 0.300 0.729	5 1,109 249.6 0.0 249.6 -1,30 -8,20 0,583 1,149	1 1.140 126.7 0.0 126.7 -1.30 -8.20 1.057 1.150	9 1.168 132.9 0.0 132.9 -1.30 -8.20 1.077 0.731 7 1.190 163.0 0.0 163.0 -1.30 -8.20 1.038 0.151	5 1.203 222.0 0.0 222.0 -1.30 -8.20 0.863 -0.429	3 1.189 298.9 0.0 298.9 -1.30 -8.20 0.404 -0.850	8 1.153 407.6 0.0 407.6 -1.30 -8.20 0.265 -0.431 8 1.15 397.7 0.0 397.7 -1.30 -8.20 0.147 0.149	4 1.075 284.2 0.0 284.2 -1.30 -8.20 0.283 0.729	.067 240.0 0.0 240.0 -1.30 -8.20 0.569 1.149 .073 158.5 0.0 158.5 -1.30 -8.20 0.911 1.300	level in M.S.L., = OQ=Q1+Q2 = Over flow and Crest elevation of REGULATING GATES = Under flow and Bottom elevation of REG./FLOOD GATE ** stream of DIVERSION DAM

APPENDIX - 4 : DESIGN OF DIVERSION CANAL

APPENDIX - 4. DESIGN OF DIVERSION CANAL

LIST OF CONTENTS

			Page
4.1	Location	n and Plane Figure of the Diversion Canal	4-1
4. 2	Typical:	Section of the Diversion Canal	4 - 1
	4. 2. 1	Design Conditions	4-1
	4. 2. 2	Cross Section of River	4-4
é	4. 2. 3	Hydraulic Calculation	4-6
4.3	Slope Pr	otection Works	4 - 7
	4. 3. 1	Excavated Slope	4-7
	4. 3. 2	Embankment Slope	4-7
	4. 3. 3	Design of Slope Protection Works	4-16

4. 1 Location and Plane Figure of the Diversion Canal

The diversion canal will be constructed to make a short-cut for the meandering section. It will be located at the site and have the plane figure as shown in Figure 4-1 for the following reasons.

- 1) The diversion canal will have the plane figure on the upstream side that the left bank side of the diversion dam is in a straight line. The angle of the right bank opening will be 20 degrees with a radius of 1,000 meters, four time the canal width, so as to ensure smooth inflow of the river water. Downstream from the diversion dam, both banks of the canal will contract the river at an angle of 20° and with a curve of 1,000 m radius.
- 2) The straight portion of the diversion canal will be extended as far as possible so that both the diversion dam and the road bridge can be constructed over the canal.

4. 2 Typical Section of the Diversion Canal

4. 2. 1 Design Conditions

1) Design Flood Discharge

The flood analysis has revealed that the design flood discharge by 50-year probability is $Q = 1,600 \text{ m}^3/\text{s}$.

2) Design Flood Depth

The flood analysis has found that the maximum water level at the diversion dam site is Max. WL. 2.40 meters, while the design river bed elevation is EL (-) 8.20 meters. Consequently, the design flood depth is H = 10.60 meters.

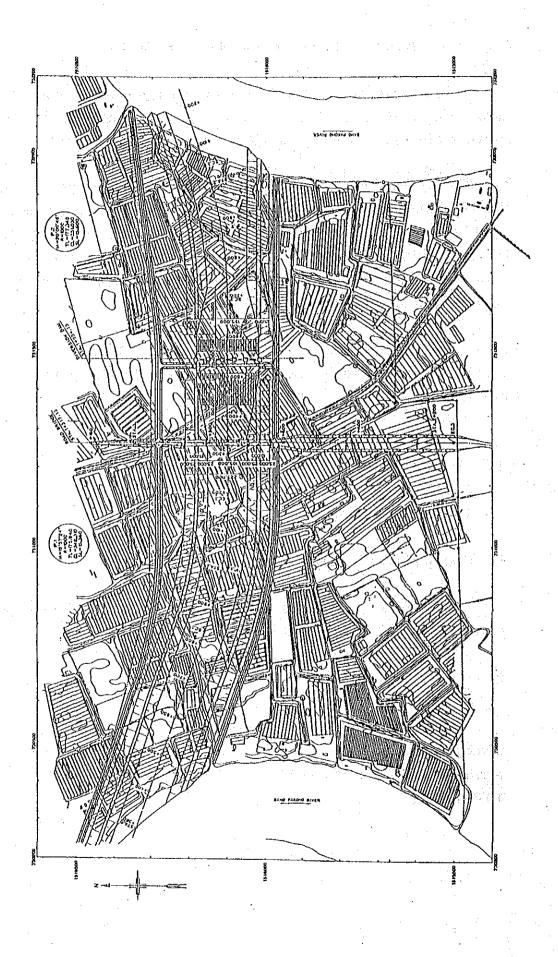
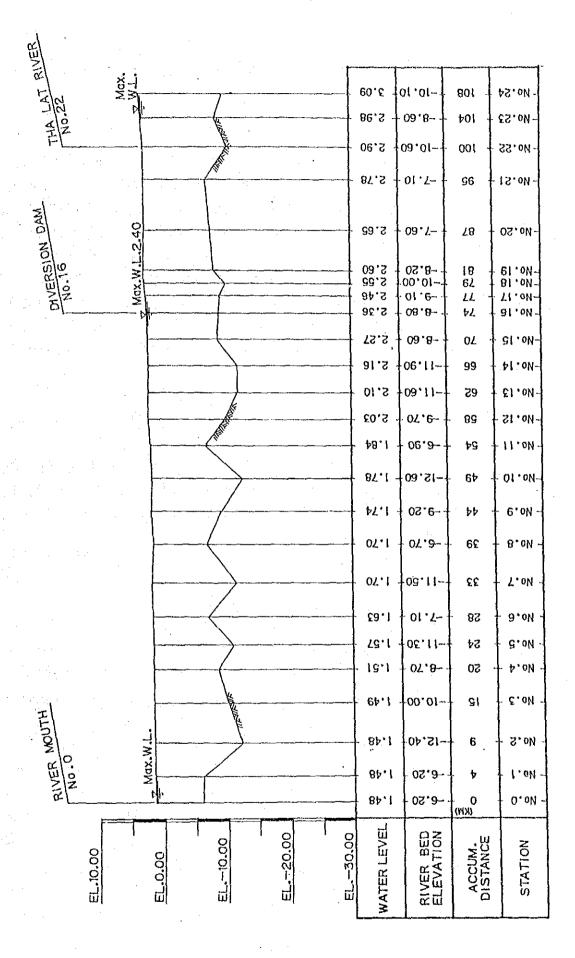



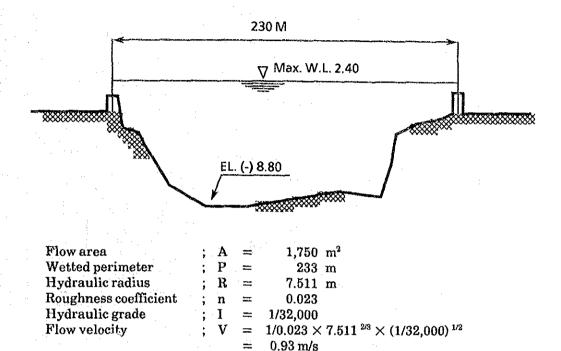
FIGURE 4-2 PROFILE OF BANG PAKONG RIVER

3) Profile Slope

a) River Bed Slope

The average slope of the river bed for a distance of about 10 kilometers around the diversion dam is $I_0=1/4,000$. The portion (L=5.77 km) between Sta. 2+230 and Sta. 8+000 will be short-cut for construction of the diversion dam, and the river alignment will be shortened by 3.52 kilometers for constructing the diversion canal $(L_2=2.25 \text{ km})$. The river slope of $I_0=1/4,000$ cannot be changed because of the stability of the river bed. Under these conditions, the difference in river bed elevation, $\Delta H=3520 \text{ m} \times 1/4,000=1/4,000$ approx. 0.9 meters, which will be caused by the construction of the diversion dam, should be treated with a drop structure to be provided at the diversion dam site.

b) Flood Surface Slope


As a result of the flood analysis, the water surface slope of the design flood discharge by $Q = 1,600 \text{ m}^3/\text{s}$ can be shown in Figure 4-2. The flood slope around the diversion dam (No. 15 to No. 18; L = 9.0 km) can be estimated as I = (2.55 - 2.27)/9,000 = 1/32,000.

4. 2. 2 Cross Section of River

1) Existing River Section

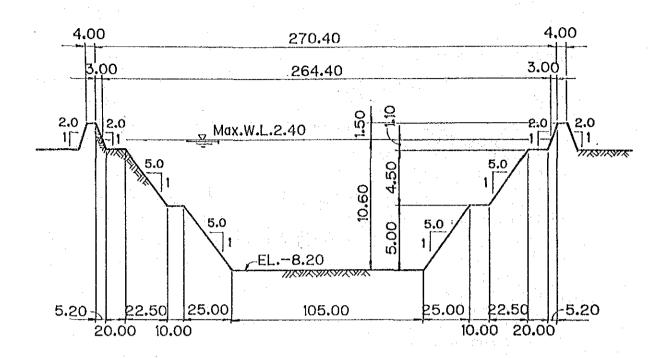
The existing river section around the diversion dam is as shown in Figure 4-3.

FIGURE 4-3 EXISTING CROSS SECTION OF RIVER (AT DIVERSION DAM SITE)

 $1,750 \times 0.93 = 1,6281 \,\mathrm{m}^3/\mathrm{s} \div 1,600 \,\mathrm{m}^3/\mathrm{s}$

·

Discharge


Design River Section

2)

Around the diversion dam, the river can be found with about 230 m in water surface width, $1,750 \text{ m}^2$ in its cross sectional area, and H=10.60 m in design flood depth. In other respect, as a result of the stability analysis of the excavated slope, the slope will be 1:5.0 with 10 m wide berms at every 5.0 m excavation height.

The design cross-section of the river is illustrated in Figure 4-4 so that $Q = 1,600 \text{ m}^3/\text{s}$ of the design flood discharge can flow down smoothly on conditions of H = 10.60 m of the design flood depth, 1:5.0 of the excavated slope and 1:32,000 of hydraulic grade, in taking into account the existing river section.

FIGURE 4-4 TYPICAL SECTION OF DIVERSION CANAL

4.2.3 Hydraulic Calculation

Flow area : $A = 1/2(105.0 + 155.0) \times 5.0 + 1/2(175.0 + 220.0)$

 $\times 4.5 + 1/2(260.0 + 264.4) \times 1.1$

 $= 1,827.17 \,\mathrm{m}^2 > 1,750 \,\mathrm{m}^2$

Wetted perimeter: $P = 105.0 + (25.5 + 10.0 + 22.95 + 20.0 + 2.46) \times 2$

 $= 266.82 \,\mathrm{m}$

Hydraulic radius : R = 1827.17/266.82 = 6.848 m

Roughness coefficient: n = 0.023

Hydraulic grade : I = 1/32,000

Flow velocity : $V = 1/0.023 \times 6.848^{2/3} \times (1/32,000)^{1/2} = 0.88 \text{m/s}$

Discharge : $Q = 1,827.17 \times 0.88 = 1,608 \text{m}^3/\text{s} > 1,600 \text{m}^3/\text{s}$

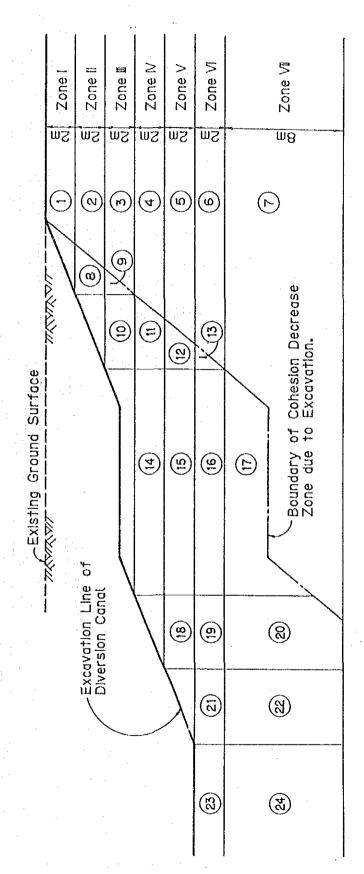
4.3 Slope Protection Works

4.3.1 Excavated Slope

The excavation for the diversion canal will be made at the layer found at EL(-) 9.0 m to EL 1.5m which are geologically specified as soft clay layers with N-value of 1 to 2 and cohesion of 0.1 to 0.5 kgf/cm².

As a result of the excavated slope stability analysis, the excavated slope will be 1:5.0 and the 10 m wide berms will be provided at every 5 m height in excavation so as to ensure necessary safety factors. (Refer to Figure 4-6 to -11)

4.3.2 Embankment Slope


The embankment height of dike to be constructed along the diversion canal is as low as about 2.0 m, and the embankment is affected by river flow only in flooding. The embankment slope will be 1:2.0 with sodding cover as slope protection considering the flow velocity is as low as 1.0 m/s or below.

DECREASED COHESION DUE TO EXCAVATION AT DIVERSION CANAL TABLE 4-1

			Su	1	1		1		2.76	15.19	16.71	17.79	18.45
		Ħ	E.B.	······································	1.				08.0	1.00	1.00	1.00	1.60
		10.0 m	Ψ			,	'		0.53	0.70	22.0	0.82	0.85
			σn	1	,	·	1		0.88	2.81	4.91	7.01	9.11
			Str	1	ı			2.91	3.74	17.36	18.23	18.88	19.31
		. 8	F)	ı				0.80	0.80	1.00	1.00	1.00	1.00
		8.0 m	ΨÀ	,		,	,	0.56	0.72	0.80	0.84	0.87	0.89
			σn	•				0.82	2.52	4,45	6.55	8.65	10.75
			Sa	Ł		•	⊕%.	3.69	(1) (1) (1)	18.45	19.10	19.50	•
	Excavation Depth	g	E#				0.80	0.80	0.80	1.00	1.00	1.00	
	avation	6.0 m	ΨΨ			-	0.53	0.71	0.80	0.85	0.88	0.90	
	ΞX		uo	•		:	0.53	1.88	3.58	5.51	7.61	9.71	-
		4.0 m	Su	. I	'	98	(E)	4.21	(a) 4.		•	•	
			Β _π	3	1	0.80	0.80	08.0	0.80		1 1 1	•	• • • • • • • • • • • • • • • • • • •
			W.	1	•	0.56	0.72	0.81	0.86		1	1	ī
			υo	1	•	0.49	1.51	2.86	4.56	-		•	_
			Su *8	1	@ <u>%</u>	© ² 2	,	1	,	1		1	1
		អ	L# S	ı	0.80	08.0	1	1		,•	•	i	•
		2.0 m	9* A4	•	0.61	0.77		,	,	1	-	1	1
			on *5	F,	0.48	1.45	•	ı	'	. •		1	•
	;	Su' *3 o'm *4 (tf/m²) (tf/m²)			2.4	3.41	4.43	5.78	7.48	9.41	11.51	13.61	15.71
		5 37 8 134	(EVE)	2.00	2.00	2.00	2.00	6.50	6.50	21.70	21.70	21.70	21.70
	v (Vm²)		ysat *2	1.98	1.48	1.49	1.53	1.82	1.88	2.05	2.05	2.05	2.05
	Density (Vm²)	· [x*1	1.74	1.47	1.47	1.47	1.75	1.75	2.05	2.05	2.05	2.05
	ć	redari (E)	<u> </u>	0~2.0	2.0~4.0	4.0 ~ 6.0	6.0 ~ 8.0	8.0~10.0	10.0 ~ 12.0	12.0 ~ 14.0	14.0 ~ 16.0	16.0 ~ 18.0	18.0 ~ 20.0

Notes; *I wet density *2 saturated density *3 initial cohesion *4 preconsolidation pressure *5 effective normal stress after excavation (tl/m²) *6 Coefficient of cohesion decrease (= OCR-" a=0.3) *7 Aas's correction factor *8 Cohesion for design (decreased cohesion) (tl/m²) mark of Surow corresponds element figure into FIGURE 4-5

FIGURE 4-5 CALCULATION MODEL FOR STABILITY ANALYSIS

Firm Foundation N>40

FIGURE 4-6 RESULT OF STABILITY ANALYSIS (CASE 1)

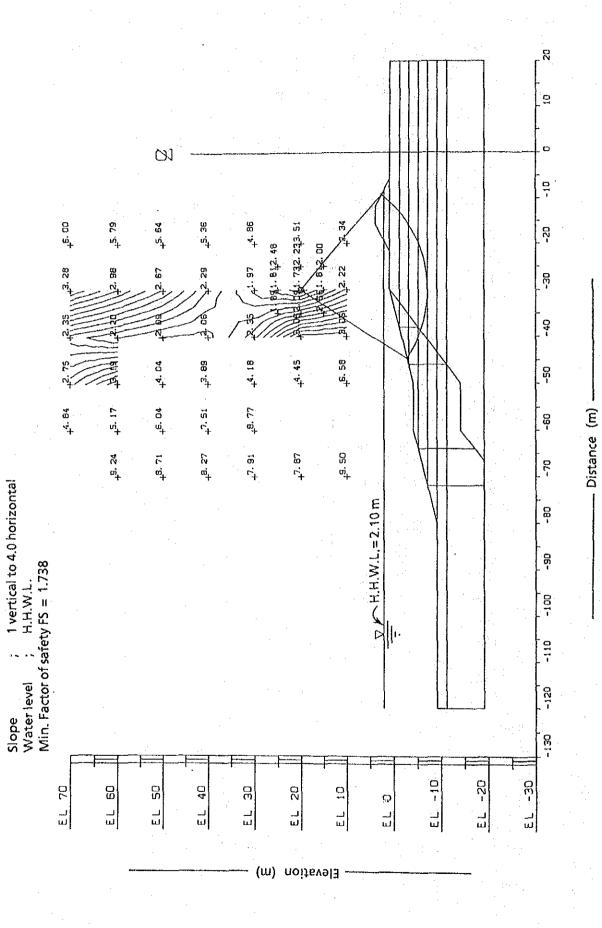


FIGURE 4-7 RESULTS OF STABILITY ANALYSIS (CASE 2)

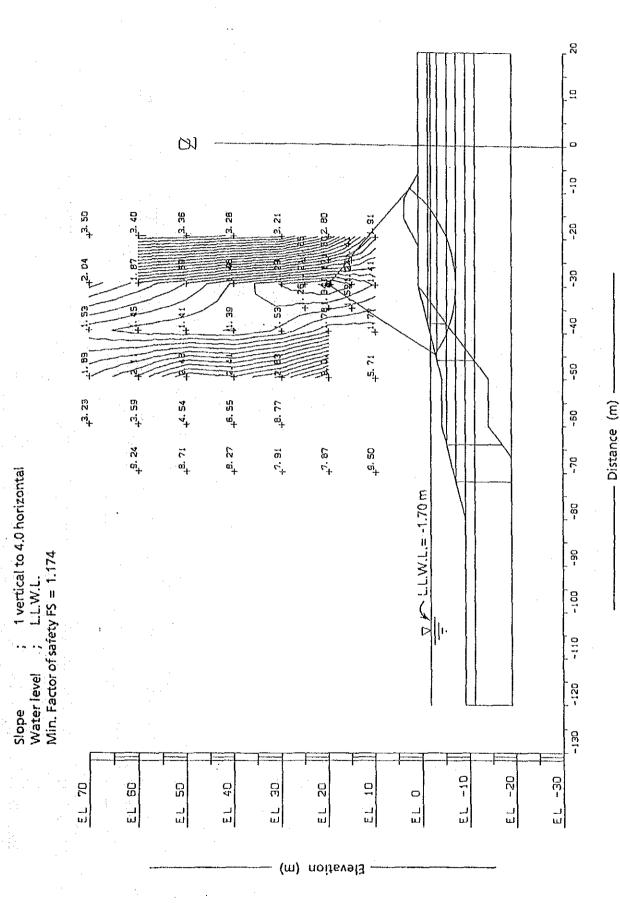


FIGURE 4-8 RESULTS OF STABILITY ANALYSIS (CASE 3)

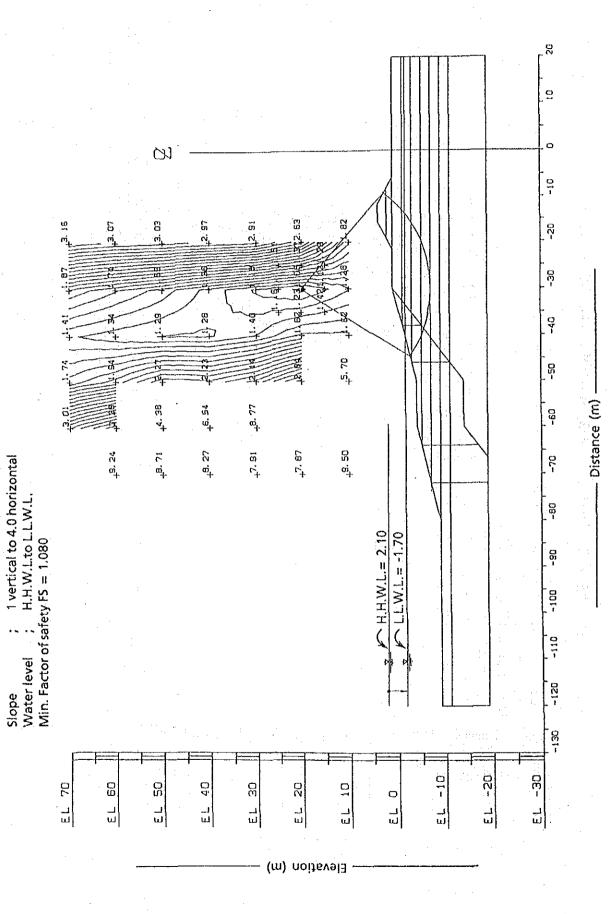


FIGURE 4-9 RESULTS OF STABILITY ANALYSIS (CASE 1)

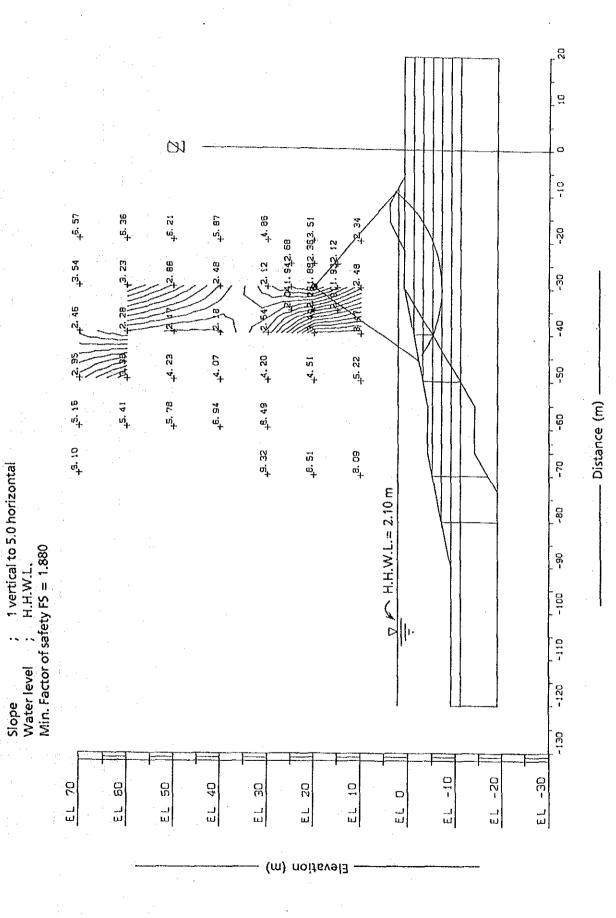


FIGURE 4-10 RESULT OF STABILITY ANALYSIS (CASE 2)

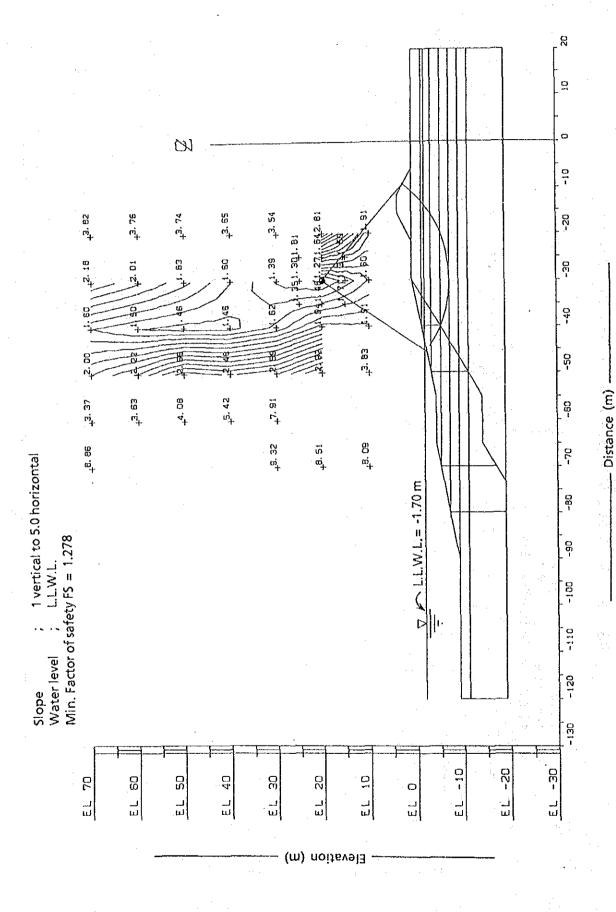
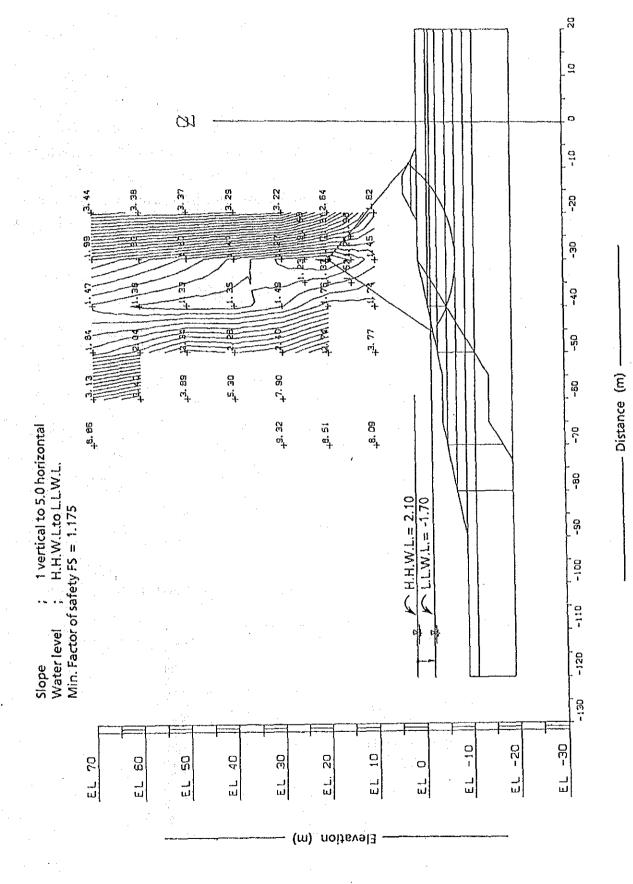



FIGURE 4-11 RESULTS OF STABILITY ANALYSIS (CASE 3)

4.3.3 Design of Slope Protection Works

1) Allowable Velocity

a) Unlined Canal

The allowable velocity to erosion and scouring of natural river sides and dikes is different by a variety of soil features and compactness. According to the results of experiments and field studies conducted by E.W. Lane, different allowable velocities in various conditions can be shown in the tables as Table 4-3 to -7 while the constants of the presents foundation soils in Table 4-2.

TABLE 4-2 SOIL CONSTANTS

Position	Depth	Soil	Graing Size	Void ratio	Cohesion	Water Depth	Curve
Up-S.	Dike 0 to 2m 2 to 5m 5 to 10m	Light Clay	0.05 // 0.01	0.5 1.0 1.1 0.8	0.8 0.7 2.3	m 0.3 1.0 3.0 6.0	Large
Middle	Dike 0 to 2m 2 to 5m 5 to 10m	Light Clay	0.05 // 0.01	0.5 1.0 1.1 0.8	0.8 0.7 2.3	0.3 1.0 3.0 6.0	Straight
Down-S.	Dike 0 to 2m 2 to 5m 5 to 10m	Light Clay	0.05 0.01 0.05	0.5 1.0 1.1 0.8	0.8 0.7 2.3	0.3 1.0 3.0 6.0	Large

TABLE 4-3 ALLOWABLE VELOCITIES OF LESS COHESIVE SOILS

Materials	Size	Velocity
	mm	m/s
	0.005	0.15
Silt	0.05	0.20
Fine Sand	0.25	0.30
Sand	1.00	0.55
Coarse Sand	2.50	0.65
Small Gravel	5.00	0.80
Gravel	10.00	1.00
Coarse Gravel	15.0	1.20
Small Cobble	25.0	1.50
Cobble	40.0	1.80
Coarse Cobble	75.0	2.40
Boulder	100.0	2.70
"	150.0	3,30
" .	200.0	3.90

TABLE 4-4 ALLOWABLE VELOCITIES OF CLAYEY SOILS (M/S)

Compactness of riverbed	loose	a little hard	ordinary	hard
Void Ratio	2.0 ~ 1.2	1.2 ~ 0.6	$0.6 \sim 0.3$	0.3 ~ 0.2
Sandy Clay (Sand 50%)	0.45	0.90	1.30	1.80
Heavy Clay	0.40	0.85	1.25	1.70
Clay	0.35	0.80	1.20	1.65
Light Clay	0.32	0.70	1.05	1.35

TABLE 4-5 REVISION OF ALLOWABLE VELOCITIES AT CURVES TIES

Revised Coeff.
1.00
0.95
0.81
0.78

TABLE 4-6 REVISION OF ALLOWABLE VELOCITIES TO WATER DEPTH (CLAYEY MATERIALS)

Average Water Depth	Revised Coeff.
0.3	0.8
0.5	0.9
0.75	0.95
1.0	1.0
1.5	1,1
2.0	1.1
2.5	1.2
3.0	1.3

TABLE 4-7 REVISION OF ALLOWABLE VELOCITIES TO WATER DEPTH (LESS COHESIVE MATERIALS)

Average Water Depth	Revised Coeff.
0.3	0.8
0.6	0.9
1.0	1.00
1.5	1.10
2.0	1.15
2.5	1.20
3.0	1.25

The allowable velocities at the respective points are shown in Table 4 -

8.

TABLE 4-8 LANE'S ALLOWABLE VELOCITIES

Oberv. Point	Depth	Average Allow. Velocity	Revised Coeff by Water Depth	Revised Coeff by Curve	Allow. Velocity
TT. CL.	Dike	m/s 1.05	0.8	0.95	m/s 0.80
Up-Stre.	0 to 2m 2 to 5m 5 to 10m	$\begin{array}{c} 0.70 \\ 0.70 \\ 0.85 \end{array}$	1.0 1.2 1.2	" "	0.67 0.80 0.97
Middle	Dike 0 to 2m 2 to 5m	m/s 1.05 0.70 0.70	0.8 1.0 1.2	1.00	m/s 0.84 0.70 0.84
	5 to 10m	0.85	1.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.02
:	Dike	m/s 1.05	0.8	0.95	m/s 0.80
Down-Stre.	0 to 2m 2 to 5m 5 to 10m	0.70 0.70 0.85	1.0 1.2 1.2	# # #	0.67 0.80 0.97

Sodding works

Sodding works will be executed for the gentle stream parts over the normal water level, and the relevant allowable velocity will be in a range 1.0 to $2.5 \, \text{m/s}.$

Riprap works

The allowable velocity for riprap works can be obtained by Isbash's equation as,

 $Vmin = E_1 \cdot N \cdot \sqrt{D}$

Where, Vmin: Allowable velocity (m/s)

Coefficient 0.86 $N = \sqrt{2g \frac{r_1 - r}{r}} = \sqrt{2 \times 9.8 \frac{2.65 - 1}{1}} = 5.69$

0.3m of diameter of riprap materials

 $Vmin = 0.86 \times 5.69 \times \sqrt{0.3} = 2.68 \,\text{m/s}$

APPENDIX - 5 : DESIGN OF DIVERSION DAM

APPENDIX - 5. DESIGN OF DIVERSION DAM

LIST OF CONTENTS

			Page
5.1	Location o	f the Diversion Dam	5 - 1
5. 2	Elevation o	of Gate Sill and Other Major Parts of the Structures	5 - 1
	5. 2. 1	Gate Sill Elevation	5 - 1
	5. 2. 2	Crest Elevation of the Gate	5 - 1
	5. 2. 3	Pier Height	5-3
	5. 2. 4	Crest Elevation of Retaining Wall	5 - 4
5.3	Determina	ition of the Gate Span	5 - 4
	5. 3. 1	Cross Section for Flood Discharge	5 - 4
	5. 3. 2	Determination of Gate Span	5 - 4
5. 4	Piers		5-7
÷	5. 4. 1	Pier Length	5 - 7
	5. 4. 2	Pier Thickness	5 - 7
5. 5	Apron and	Riprap	5-8
	5. 5. 1	Downstream	5-8
	5. 5. 2	Upstream	5 - 11
5. 6	Retaining \	Wall	5 - 13
	5. 6. 1	Height of Retaining Wall	5 - 13
	5, 6, 2	Wall Type	5 - 14
5. 7	Gate		5 - 14
٠	5. 7. 1	Gate Type	5 - 14
	5. 7. 2	Specifications for the Gate Design	5 - 15
5. 8	Hoist Hous	e	5 - 17
. :	5. 8. 1	Size of Hoist House	5 - 17
	5. 8. 2	Structure of Hoist House	5 - 18
5. 9	Operation	and Maintenance (O/M) Bridge	5 - 18
	5. 9. 1	Bridge Width	5 - 18
	5. 9. 2	Span	5 - 18
	5. 9. 3	Bridge Type	5 - 20
	5. 9. 4	Beam Seat Elevation	5 - 20
5. 10	Stability A	nalysis of Pier	5 - 22
	5. 10. 1	Center Pier	5 - 22
	5. 10. 2		5 - 31
			- 1

5. 11	Pile Found	lation Analysis	5 -
	5. 11. 1	Center Pier	5 -
	5. 11. 2	Abut Pier	5 -
5. 12	Stability a	nd Structural Analysis of Retaining Wall	5 -
	5, 12, 1	Stability Analysis	5 ~
	5. 12. 2	Structural Analysis	5 -
5. 13	Analysis o	f Foundation for Retaining Wall	5 -
5. 14	Examinati	on for Fish Way	5 -
•	5, 14, 1	Conditions Suitable for Fish Way	5 -
÷	5. 14. 2	Hydraulic Structures of Each Part of Fish Way	5 -
	5. 14. 3	Discharge Capacity of Fish Way	5 - 1
	•		

5.1 Location of the Diversion Dam

The location of the proposed diversion dam was selected, in the Feasibility Study, at a site about 71 kilometers upstream from the Bang Pakong river estuary. The location of the diversion dam is proposed at the point of Sta. 1 + 534.13 of the diversion canal for the following reasons.

- 1) The diversion dam will probably be located upstream of the diversion canal so as to lessen the effect of the overflow at the gates to the Bang Pakong river downstream from the diversion dam.
- 2) About 150 meters in the length of the diversion canal upstream from the diversion dam will be constructed in a straight line to smooth the plane figure of the transition portion of the canal.

5. 2 Elevation of Gate Sill and Other Major Parts of the Structures

5. 2. 1 Gate Sill Elevation

The gate sill elevation is designed to ensure the smooth rundown of flood discharge. The gate sill elevation will be EL (-) 8.20 meters considering that the elevation of the diversion canal is EL (-) 8.18 meters at the diversion dam site.

5. 2. 2 Crest Elevation of the Gate

1) Crest Elevation of the Gate

The crest elevation of the gate is designed according to the high water level (H.W.L.) in the sea and wave height.

High Water Level: H.W.L 1.30 m

Wave Height: By S.M.B. method

(Sverdrup - Munk - Bretschneidr)

 $Hw = 0.00086 \cdot V^{1.1} \cdot F^{0.95}$

where, Hw: Wave height (m)

V: Wind velocity 30m/s (Max. 55 knots)

F: Fetch 340 m (double the length of the

diversion dam)

 $Hw = 0.00086 \times 30^{1.1} \times 340^{0.45} = 0.50 \,\mathrm{m}$

The crest elevation of the gate can be obtained as follow:

$$H.W.L 1.30 m + 0.50 m = EL 1.80 m$$

2) Crest Elevation of the Lower Gate Leaf

The river maintenance discharge shall be released by operation of the upper gate leaves of the regulating gates, while a large scale operation shall be made restrictively only twice or thrice for a transitional period from the dry season to the wet. And the upper gate leaves shall be operated for the purpose so as to keep the river maintenance discharge, when the river runoff is less than 300 m³/s.

a) Discharge for River Maintenance

The river maintenance discharge shall be carried out every day for two hours with discharge of 29.88 m³/s through upper gate leaf operation, in the case that the stored water level is over EL. (-)0.15 m and the downstream water level is below EL. (-)0.25 m.

For securing the above discharge of 29.88 m³/s with the water level difference between up-and-downstream by 0.1 m and discharging width by 28.3 m \times 2 units, the overflow depth at upstream is to be 0.48 m. Under such conditions, the crest elevation of the lower gate leaf must be not higher than EL. (-)0.63 m based on the stored water level by EL. (-)0.15 m.

b) Minor Flood Discharge

When the gates for minor flood discharge is operated in case of river discharge by below 300 m³/s, the river water shall be released through the upper gate leaves of the regulating gates not to exceed the limited reservoir water level of EL. 1.30 m.

For discharging 300 m³/s in conditions of EL. 1.30 m of the upstream water level, EL. 1.04 m at downstream water level and discharge width of 28.3 m \times 2 units, the overflow depth is required to be 2.60 m at upstream and the crest elevation of the lower gates is designed at EL. (-)1.30 m. For further references, two units of regulating gate leaves are required for effective release of 300 m³/s of water.

5.2.3 Pier Height

The crest elevation of the piers will be determined according to the following equation.

Crest Elevation = Maximum water level + Freeboard ① + Gate height + Freeboard ② + Crest thickness

where, Maximum water level: Max. W.L. 2.40 m

Freeboard 1 : Distance between maximum water level and

bottom of gate sill hoisted up (1.50 m)

Gate Height : EL 1.80 - EL (-) 8.20 = 10.00 m

Freeboard 2: Distance between gate crest and bottom of crest

slab, when the gate includes such structures, as spoiler, sieve, stopping hook, etc. and freeboard of

hoist is 2.00 m.

Crest thickness: 1.50 m

Pier crest elevation = Max. W.L. 2.40 + 1.50 + 10.00 + 2.00 + 1.50

 $= EL 17.40 \,\mathrm{m}$

5. 2. 4 Crest Elevation of Retaining Wall

Retaining Wall works shall be provided for protecting the embankment at the portion contacting at the normal water level, while sodding works for the flood water level.

1) Upstream Retaining Wall

The crest elevation of the upstream retaining wall is designed at EL. 1.80 m including reservoir limited water level of EL. 1.30 m and freeboard of 0.5 m against wind and waves.

2) Downstream Retaining Wall

The crest elevation of the downstream retaining wall is designed at EL. 1.80 m including maximum downstream discharged water level of EL. 1.28 m and freeboard of 0.5 m.

5. 3 Determination of the Gate Span

5. 3. 1 Cross Section for Flood Discharge

The mean cross-sectional area of the Bang Pakong river is A. = 1,750 m², and the total length of the diversion dam is required to be more than 165 meters so that the cross-sectional area of the river can be secured at more than 1,750 m² at the point of the diversion dam site.

5. 3. 2 Determination of Gate Span

The gate span length will be determined taking into consideration the magnitude of the design flood discharge, the gate manufacturing technique, and economic factors.

In general, the span length of a diversion dam for a river with a design flood discharge of 1,600 m³/s is more than 20 meters. As a result of an alternative study on three different span lengths of 20, 30, and 40 meters respectively, the span of 30 meters with 5 gates is recommended in view of the manufacturing technique and economic factors as shown in Table 5-1 on Comparison of Gate Span.

TABLE 5-1 COMPARISON OF GATE SPAN

Item	Case-A: 20 m scheme	Case-B: 30 m scheme	Case-C: 40 m scheme
Rough Sketch	215 215 215 215 215 215 215 35 35 35 35 35 35 35 35 35 35 35 35 35	4.0 30.0 4.0 30.0 4.3 0.0 4.0 30.0 4.0 10.0 10.0 10.0 10.0 10.0 10.0 10	4.0 38.5 4.0 38.5 4.0 38.5 4.0
Gate Dimensions	Flood Gate : 21.5 m $ imes$ 10 m $ imes$ 5 sets Regulating G. : 21.5 m $ imes$ 10 m $ imes$ 2 sets	F.G.; 30.0 m × 10 m × 3 sets R.G.; 30.0 m × 10 m × 2 sets	F.G.; 38.5 m × 10 m × 2 sets R.G.; 38.5 m × 10 m × 2 sets
Stability	Span ratio to leaf height: 1/2.2>1/15, stable in structure.	Span ratio to leaf height: 1/3>1/15, stable in structure	Span ratio to leaf height: 1/3.9>1/15, stable in structure
Operation and Maintenance	Easier in O and M works with hoisting motor capacity of 30 kw per one gate	Normal O and M works with hoisting motor capacity of 44 kw per one gate	More disadvantageous in O and M works with hoisting motor capacity of 60 kw per one gate.
Economically	Flood Gate : 464.0 M.B Regulating G. : 220.0 M.B Pier : 57.3 M.B Total : 741.5 M.B	Flood Gate 365.4 M.B Regulating G. 312.0 M.B Pier 46.1 M.B Total 723.5 M.B	Flood Gate : 390.0 M.B Regulating G. : 488.6 M.B Pier : 38.4 M.B Total : 917.0 M.B
Overall Appraisal	0	0	1

5.4 Piers

The structure of the piers should not in any way obstruct gate operation. They should be stable, and if possible reduce problems with the flow of flood discharge.

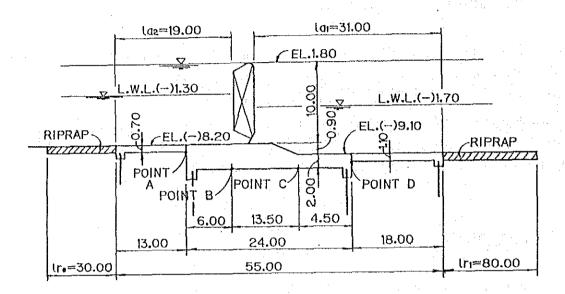
5. 4. 1 Pier Length

The length of the upper part of the pier is designed to be 9.0 meters in the direction of the thalweg allowing for space for gate installation and the stability of the piers. The lower part of the piers will have a round shape at both ends of the upper and downstream sides. The total length will be 19.0 meters including the upper length and the length reserved for the construction of the O/M bridge.

5. 4. 2 Pier Thickness

The pier thickness will be calculated by the following empirical equation with the pier height and gate span length as parameters, which was derived from the data of piers constructed in Japan.

```
\begin{split} t_p &= 0.12\,(D_p + 0.2\,B_i) \pm 0.25 \\ where, \quad t_p \quad : Pier \, thickness\,(m) \\ \quad D_p \quad : Pier \, height\,(EL\,16.90 - EL\,(-)\,9.10 = 26.00\,m) \\ \quad B_i \quad : Span \, length \, of \, gate\,(30.0\,m) \end{split}
```


$$t_p = 0.12 (26.50 + 0.2 \times 30.0) \pm 0.25$$

= 3.65 to 4.10 m

The pier thickness is determined to be 4.0 meters taking into account the guide rail depth of the gate leaf and pier stability.

5. 5 Apron and Riprap

The apron and riprap is structured to protect the river bed both upstream and downstream of the gates from scouring.

(Upstream) (Downstream)

5. 5. 1 Downstream

1) Apron Length

The apron length can be obtained by the following equation.

$$l_{a1}=0.9\,C\,\sqrt{D_1}$$

where,

lai : Length of downstream apron (m)

C : Bligh's coefficient 18 (fine particle sand or sedimentary sand)

D, : Height from lowest low water level to gate crest

(EL. 1.80 - L.L.W.L. (-) 1.70 = 3.50 m)

$$l_{a1} = 0.9 \times 18 \times \sqrt{3.50} = 30.3 \, m < 31.0 \, m$$

2) Creep Length

Sufficient length of creep must be secured in the foundation and back surface of the retaining wall so that the occurrence of piping caused by the creeping that results from the water level differences upstream of the gate and downstream of the gate can be prevented. The minimum creep length to be ensured should be taken as the larger value of the two methods which can be obtained by the following equations respectively.

a) Bligh's Method:

 $L_{B1} \geqq C \cdot \triangle H_1$

where, L_{B1} : Creep length measured along the foundation bottom (m)

C: Bligh's coefficient (18)

ΔH1: Water level differences upstream of the gate and downstream of

the gate (E.L. 1.80 - L.L.W.L(-) 1.70 = 3.50 m)

Therefore; $L_{B1} \ge 18 \times 3.50 = 63.0 \text{ m}$

At the end of the apron, 3.0 meter-long steel pile shall be driven for prevention of scouring and expansion of the foundation. And the design creep length is:

Design creep length
$$L'_{B1} = 55.0 + 3.0 \times 2 \times 2 + 0.7 + 2.2 + 0.9 + 1.1$$

= 71.9 m > $L_{B1} = 63.0$ m

b) Lane's Method

 $L_{L_1} \ge C' \triangle H_1$

where, L_{L1} : Weighted creep length (m)

C': Lane's coefficient 8.5 (fine particle sand or sedimentary sand)

 ΔH_1 : Water level differences upstream and downstream (3.50 m)

Therefore: $L_{L1} \ge 8.5 \times 3.50 = 29.8 \text{ m}$

Design creep length
$$L'_{Li} = 1/3 \times 55.0 + 3.0 \times 2 \times 2 + 0.7 + 2.2 + 0.9 + 1.1$$

= 35.2 m > L_{Li} = 29.8 m

3) Apron Thickness

The apron thickness can be obtained from the following equation with a minimum thickness of $0.50\,\mathrm{m}$.

$$t_1{\stackrel{\scriptstyle \geq}{=}}\,\frac{4}{3}{\times}\,\frac{{\scriptstyle \triangle}H_1{\,\text{-}}\,H_{f1}}{\gamma{\,\text{-}}\,1}$$

where, t1: Apron thickness (m)

 ΔH_1 : Water level difference between up and downstream (3.50 m)

He : Head loss of water percolation up to the check point (m)

γ : Specific weight of apron (2.2)

a) Point C

Creep length
$$l_c = 32.5 + 3.0 \times 2 + 0.7 + 2.2 = 41.4 \text{ m}$$

$$H_{fc} = \frac{lc}{L_1} \times \triangle H_1 = \frac{41.4}{71.9} \times 3.50 = 2.02 \text{ m}$$

$$t_c = \frac{4}{3} \times \frac{3.50 - 2.02}{2.2 - 1} = 1.64 \doteq 2.0 \text{ m}$$

b) Point D

Creep length
$$l_d = 37.0 + 3.0 \times 2 \times 2 + 0.7 + 2.2 + 0.9 = 52.8 \text{ m}$$

$$H_{fd} = \frac{52.8}{71.9} \times 3.50 = 2.57 \text{ m}$$

$$t_d = \frac{4}{3} \times \frac{3.50 \cdot 2.57}{2.2 \cdot 1} = 1.03 \text{ m} = 1.1 \text{ m}$$

4) Riprap Length

The riprap will be provided at the places where there may be some fear of local river bed scouring to be caused by diversion dam construction, taking into account the conditions of the river bed and discharges found around the gate. And the riprap will be structured to withstand the river flow and to dissipate any discharge.

a) Bligh's Method;

$$\begin{aligned} l_{r1} &= L_{R1} \cdot l_{a1} \\ L_{R1} &= 0.67 \, C \sqrt{\triangle H_1 \cdot q_1} \cdot f_1 \end{aligned}$$

where, lri : Riprap length (m)

L_{R1} : Total length of protection structures including apron length

(lai) and riprap length (ln). (m)

C : Bligh's coefficient (18)

 ΔH_1 : Height from the water level

downstream to the gate crest.

(EL 1.80 - L.L.W.L. (-) 1.70 = 3.50 m)

q₁ : Design flood discharge per unit width

 $1600/30 \times 5 = 10.67 \text{ m}^3/\text{s/m}$

f₁ : Safety factor (1.5 for movable weir)

Therefore: $L_{R1} = 0.67 \times 18 \times \sqrt{3.50 \times 10.67} \times 1.5 = 110.5 \text{ m}$ $l_{r1} = 110.5 - 31.0 = 79.5 \text{ m} = 80 \text{ m}$

b) Hydraulic Analysis

In studying the flow velocity caused from gate operation, the released water through the upper gate leaves will reach the river bed at the point 430 m downstream of the gates and the velocity will be 1.04 m/s in maximum. Water released from the flood gates for minor floods and flushing operation will become the maximum velocity of 0.64 m/s at the downstream end of the ripraps, which are less than the allowable velocity of 1.0 m/s for the river bed to ensure that the riprap length of 80 m is sufficiently stable.

5. 5. 2 Upstream

1) Apron Length

The apron length can be obtained by the following equation.

$$l_{a2} = 0.6 \, \text{C} \, \sqrt{D_2}$$

where, D_3 ; Height from Min. operating level of the reservior to gate crest. EL 1.80 - Min. O.L (-) 1.30 = 3.10 m

$$l_{82} = 0.6 \times 18 \times \sqrt{3.10} = 19.0 \text{ m}$$

- 2) Creep Length
- a) Bligh's Method

$$L_{B2} \ge C \cdot \triangle H_2 = 18 \times 3.10$$
 = 55.8 m
Design creep length L'_{B2} = 55.0 + 3.0 × 2 × 2 + 1.1 + 0.9 + 2.2 + 0.7
= 71.9 m > L_{B2} = 55.8 m

b) Lane's Method

$$\begin{array}{lll} L_{L2} \geqq C' \cdot \triangle H_2 = 8.5 \times 3.10 & = & 26.4 \text{ m} \\ \\ \text{Design creep length L'_{L2}} & = & 1/3 \times 55.0 + 3.0 \times 2 \times 2 + 1.1 + 0.9 + 2.2 + \\ & & 0.7 \\ \\ & = & 35.2 \text{ m} > L_{L2} = 26.4 \text{ m} \end{array}$$

3) Apron Thickness

$$t_2 \geqq \frac{4}{3} \times \frac{\triangle H_2 - H_{f2}}{\gamma - 1}$$

a) Point A

Creep length
$$l_a = 42.0 + 3.0 \times 2 \times 2 + 1.1 + 0.9 + 2.2 = 58.2 \text{ m}$$

$$H_{fa} = \frac{58.2}{71.9} \times 3.10 = 2.51 \text{ m}$$

$$t_a = \frac{4}{3} \times \frac{3.10 - 2.51}{2.2 - 1} = 0.66 \text{ m} = 0.70 \text{ m}$$

b) Point B

Creep length
$$l_b = 36.0 + 3.0 \times 2 + 1.1 + 0.9 = 44.0 \text{ m}$$

$$\begin{split} H_{fb} &= \frac{44.0}{71.9} \times 3.10 = 1.90 \text{ m} \\ t_b &= \frac{4}{3} \times \frac{3.10 - 1.90}{2.2 - 1} = 1.33 \text{ m} < 2.9 \text{ m} \end{split}$$

4) Riprap Length

· Bligh's method:

$$\begin{split} \mathbf{l_{r2}} &= \mathbf{L_{R2}} \cdot \mathbf{l_{a2}} \\ \mathbf{L_{R2}} &= 0.67 \cdot \mathbf{C} \, \sqrt{\triangle \mathbf{H_2} \cdot \mathbf{q_2}} \cdot \mathbf{f_2} \end{split}$$

where, C: Bligh's coefficient 18

 ΔH_2 : EL 1.80 - Min O.L. (-) 1.30 = 3.10 m

 q_2 : $CB\triangle H_2^{3/2}/L = 2.0 \times 30.0 \times 3.10^{3/2}/166.0 = 1.97 \text{ m}^3/\text{s/m}$

f₂: Safety factor, 1.5 in case of gate.

$$L_{R2} = 0.67 \times 18 \times \sqrt{3.10 \times 1.97} \times 1.5 = 44.7 \text{ m}$$

 $l_{r2} = 44.7 \cdot 19.0 = 25.7 \text{ m} = 30.0 \text{ m}$

5. 6 Retaining Wall

5. 6. 1 Height of Retaining Wall

The foundation of the retaining wall will be on an elevation 2.0 meters below the apron surface, and an elevation of EL (-) 10.2 m upstream and EL (-) 11.1 downstream.

Since the crest elevation of the wall is EL 1.8 meters, the wall height is 12.0 meters on the upstream side while 12.9 meters on the downstream side, respectively.

5. 6. 2 Wall Type

There are four types of walls: i) Gravity type, ii) Inverted T-shape type, iii) L-shape type, and iv) Counterfort wall type. And the counterfort wall type is adopted for the Project for the following reasons.

- 1) This type requires a lower volume of concrete than the other types.
- 2) An economical height for walls of this type ranges from 7.0 meters to 13 meters.

5.7 Gate

5. 7. 1 Gate Type

1) Flood Gate

There are three types of gates, the Girder type, Trass type and Shell type. The Shell type is adopted for the following reasons.

- a) The Girder type is successfully applicable only when the span is less than 15 meters.
- b) The Shell type and Trass type can be applied to those gates whose span ranges from 15 to 80 meters.
- c) Due to the fact that flood gates receive hydraulic pressure from both sides, up and downstream, the Girder and Trass types cannot be adopted in this Project.

2) Regulating Gate

Double leaf gates and Flap gates can be adopted as regulating gates to serve for water intake for irrigation, domestic/industrial water supply, and to prevent sea water intrusion. The following table shows the comparison of the above two types of gates with their merits and demerits.

Item	Double I	eaf Gate	Gate Shell Type w		
100111	Normal Reverse		Normal Reverse		
- Height of Gate	Hc > 1	1/12 L	Hc > 1/3	H or 3.0 m	
- Down pull of Lower Leaf	Small	Large	Large	Small	
- Effect of Tidal Wave	Small	Medium	Large	Small	
- Adherence of Sea Animals	Inside of Upper Leaf	Inside of Lower Leaf	Flap and Lower Leaf	Flap and Lower Leaf	
- Stability of Water Flow	Smooth	Smooth	Unsteady	Unsteady	

Double leaf gates are high in stability as well as reliability in operation, although inferior to flap gates in economy. Accordingly, double leaf gates will be employed in the Project, especially, the double leaf normal type gates with hydraulic advantages. For reference, two units of regalting gates shall be provided for controlling the water level in the reservoir in drought or normal level of stored water as 300 m³/s or below.

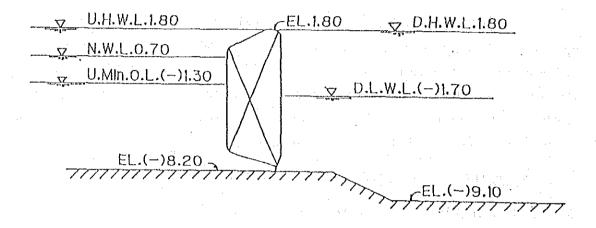
5. 7. 2 Specifications for Gate Design

1) Design Conditions of the Gate

a) Design Water Level

The design water level for the gates is as follows:

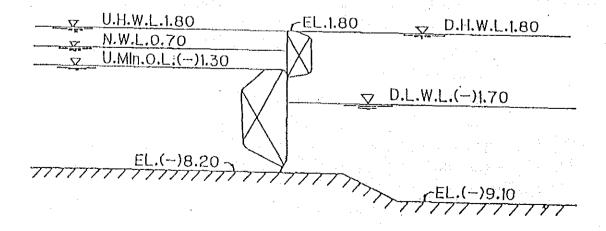
- The upstream high water level (U.H.W.L) is designed at EL. 1.80 meters of the crest elevation of the gate.
- The upstream low water level (U.L.W.L) is designed at EL (-) 1.30 meters of the minimum operating level of the reservoir.
- The downstream high water level (D.H.W.L) is EL 1.80 meters of the crest elevation of the gate.
- The downstream low water level (D.L.W.L) is EL (-) 1.70 meters of the lowest low water level in the sea.


b) Sediment Depth

The sediment at upstream of the gate is not acute because of the large reservoir.

c) Flood Gate

Upstream


Downstream

d) Regulating Gate

Upstream

Downstream

e) Water Level Conditions for Designing

		Upstream	Downstream 1	Water level difference
Case I	:	H.W.L 1.80 m	L.W.L(-)1.70 m	3.50 m
		L.W.L. (-) 1.30 m		3.10 m

2) Major Items of Gate Specifications

Item	Flood Gate	Regulating Gate
Gate type	Single Shell Roller Gate	Double Shell Roller Gate
Clear span	30.0 m	30.0 m
Upper leaf height	••	3.1 m
Lower leaf height	10.0 m	6.9 m
Quantity	3 sets	2 sets
Gate sill elevation	EL. (-) 8.20 m	EL (-) 9.10 m
Gate crest elev. of upper	- '	EL 1.80 m
Gate crest elev. of lower	EL. 1.80 m	EL (-) 1.30 m
Sealing Type	3 - sides rubber seal	3 - sides rubber seal
Hoist	2 - motors, 2 - drams	2 - motors, 2 - drams
* :	wire rope winch	wire rope winch
Operating speed	0.3 m/min	0.3 m/min
Lifting height	12.1 m (EL. 3.90 m)	12.1 m (EL. 3.90 m)
Operation method	Local and remote	Local and remote
Design water level	Upstream: 3.50 m	Upstream: 3.50 m
difference	Downstream: 3.10 m	Downstream: 3.10 m
Operating water level	H.W.L. 1.80 m	H.W.L 1.80 m

5. 8 Hoist House

5. 8. 1 Size of Hoist House

The gate hoist house is designed to protect the hoisting and electric equipment and facilities from exposure to sun shine and rain water which inhibit smooth operation of the gates. The size of the hoist house is decided according to the types of hoisting equipment on the piers and operation methods.

The hoist house for the proposed gates will be 12.5 meters in thalweg direction, 10.0 meters in diversion dam center direction, and 4.5 meters in height.

5. 8. 2 Structure of Hoist House

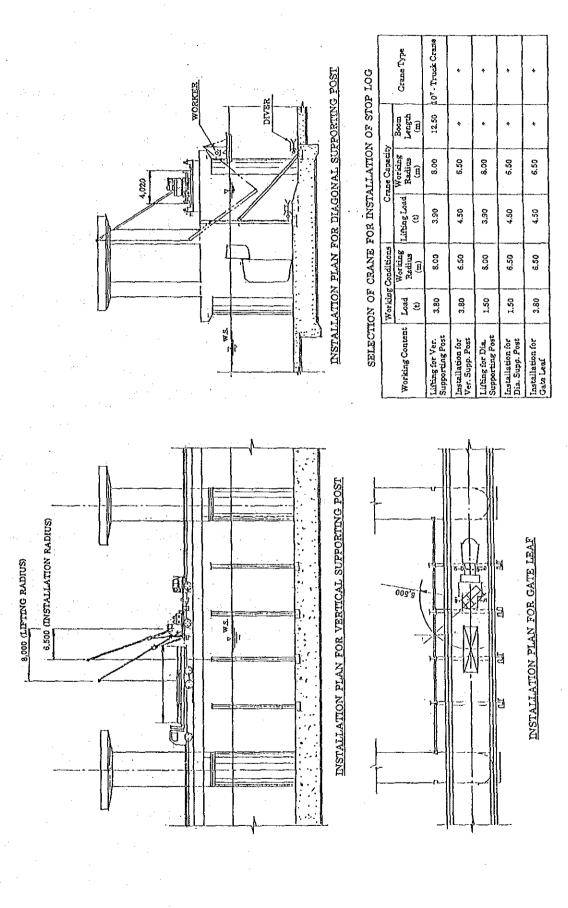
The proposed hoist house is designed to be a reinforced concrete building. It will be necessary to provide a chain block for inspection and repairs on the ceiling which will be made of reinforced concrete. The walls will be reinforced concrete block.

Since the hoist house building will have the appearance of a colourless rectangular box, it is deemed better that the total building is designed to meet the architectural design standards of Thailand.

5. 9 Operation and Maintenance (O and M) Bridge

The O and M bridge connected with the hoist house is a bridge to be provided for rendering O and M services for the facilities.

5. 9. 1 Bridge Width


The O and M bridge will have sufficient width to carry out successful O and M works as well as emergency operation of the gates.

The proposed bridge will have a width of 5.0 meters so that a 10-ton truck crane can pass through for installation of stop-log (Refer to Figure 5-1).

5.9,2 Span

The O and M bridge will have a clear span length of 30.0 meters and a span length of 32.60 m \times 5 spans taking into account the gate span length.

FIGURE 5-1 INSTALLATION PLAN FOR STOP LOG

5.9.3 Bridge Type

As O and M bridges, in general, steel bridges, I-beam bridges with prestressed concrete and hollow box type bridges with prestressed concrete can be used. For the proposed O and M bridge, the hollow box type bridge with prestressed concrete is recommended for the following reasons and in reference to Table 5-2 Comparison of O & M Bridge Types.

- 1) The hollow box type bridges are more economical in many respects than the other types of bridges, although the weight is heavier.
- 2) O and M works such as painting, etc. can be rendered more easily than with other types.
- 3) Since the beam height of this type is lower than that of the others, it is easier to provide embankments, access roads and so forth.

5. 9. 4 Beam Seat Elevation

The beam seat elevation is determined as follows with consideration for gate operation safe clearance, wave height, freeboard.

Beam seat elevation = Maximum water level + Freeboard

= Max, W.L. 2.40 m + 1.50 m

= EL 3.90 m

TABLE 5-2 COMPARISON OF O & M BRIDGE TYPES

Overall Appraisal	4	0	0
Specific Features	 Dead load reaction is largest O and M works are not required Economically, initial cost is largest No need for bent method and easy in construction. 	 O and M works are not required Most economical No need for bent method and easy in construction 	- Dead load reaction is least - Bent method is required and high technique is necessary in construction
Economy	143%	100%	103%
Dimensions of Super.	- Span length : 32.60 m - Beam length : 33.95 m - Span : 5	- Span length : 32.60 m - Beam length : 33.95 m - Span : 5	- Span length : 32.60 m - Beam length : 33.90 m - Span : 5
Type of Superstructure	Prestressed Concrete Bridge Girder I - Section	Prestressed Concrete Hollow Box Girder	Simple Composite Steel Girder
Scheme	A	В	o O

5. 10 Stability Analysis of Pier

5. 10. 1 Center Pier

```
1. DESIGN CRITERIA
```

1-1 TYPE OF PIER ; CENTER PIER

1-2 DIMENSIIONS (M)

```
A( 1)= 24.00 A( 2)= 2.00 A( 3)= 2.00 A( 4)= 12.50 A( 5)= 3.00 A( 6)= 0.50 A( 7)= 2.00 A( 8)= 1.00 A( 9)= 3.00 A(10)= 2.00
A(11) = 5.00 A(12) = 10.00 A(13) = 5.50 A(14) = 1.75 A(15) = 12.50
A(16) = 13.00 A(17) = 19.00
B(1)= 12.00 B(2)= 4.00 B(3)= 4.00 B(4)= 4.00 B(5)=
B(6) = 3.00 B(7) = 10.00
C(1) = 2.90 C(2) = 10.60 C(3) = 0.50 C(4) = 1.00 C(5) = 12.00
C(6) = 1.50 C(7) = 0.90 C(8) = 0.70 C(9) = 1.10 C(10) = 3.00
C(11)=
        5.50
                       0.80 AX3 =
                                     5.00
        5.80 AX2
                   =
A X 1 =
                                     1.00
        2.40 AA2
                   =
AA1
                       2.40 BB3 =
                                     0.80
BB1
        0.80 BB2
```

1-3 DEAD LOADS (T/M3)

```
REINFORCED CONCRETE; RC = 2.40
PLAIN CONCRETE; RC = 2.20
WET EARTH; RS = 1.80
SATURATED EARTH; RW = 2.00
WATER; WO = 1.00
SEA WATER; WS = 1.03
```

1-4 COEFFICIENT OF ACTIVE EARTH PRESSURE ; KA= 0.355

1-5 GATES

LOADS		LEFT-SIDE	RIGHT-SIDE
DEAD LOAD	(T)	300.00	350.00
OPERATION LOAD	(T)	400.00	450.00
LIFTING MACHINE	(T)	50.00	100.00
CLEAR SPAN	(M)	30.00	30.00
HIGHT	(M)	10.00	10.00

1-5 LOADS OF OPERATION BRIDGE

```
DEAD LOAD (T); RD = 320.00
LIVE LOAD (T); RL = 100.00
WIND LOAD (T); RH = 20.00
```

1-6 DEAD LOAD OF HOIST HOUSE; WH = 1.50 (T/M2)

1-7 LIVE LOAD; Q = 1.00 (T/M2)

1-8 WATER LEVEL

	CASE1	CASE2	CASE3	CASE4	CASE5	CASE6	CASE7	
DOWNSTREAM	2.40	-1.70	1.80	0.00	1.80	-1.70	0.00	
UPSTREAM	2.40	1.80	-1.30	0.00	1.80	-1.30	0.00	

2. DEAD LOAD AND CENTER OF GRAVITY

_ ~							
n	\\\((t)\)	χ (m)	W ⋅ χ (t ⋅ m)	y (m)	W·y (t·m)	z (m)	W · z (t · m)
1	1267.20	12.00	15206.38	1.00	1267.20	6.00	7603.19
2	392.04	8.25	3234.33	2.45	960.50	6.00	2352.24
3	35.64	17.50	623.70	2.30	81.97	6.00	213.84
. 4	159.84	3.15	503.70	8.20	1310.72	6.00	959.06
. 5	1858.56	12.00	22302.71	8.95	16634.11	6.00	11151.36
6	12.96	18.50	239.76	2.60	33.70	6.00	77.76
7	4.32	19.75	85.32	2.45	10.58	6.00	25.92
8	173.42	20.85	3615.51	8.65	1500.05	6.00	1040.49
9 :	9.60	1.50	14.40	14.50	139.20	6.00	57.60
10	2.40	1.67	4.00	13.83	33.20	6.00	14.40
11	28.80	3.00	86.40	14.25	410.40	6.00	172.80
12	28.80	21.00	604.80	14.25	410.40	6.00	172.80
13	2.40	22.33	53.60	13.83	33.20	6.00	14.40
14	9.60	22.50	216.00	14.50	139.20	6.00	57.60
15	161.28	5.00	806.40	21.00	3386.88	6.00	967.68
16	161.28	12.00	1935.36	21.00	3386.88	6.00	967.68
17	450.00	8.50	3825.00	27.75	12487.49	6.00	2700.00
18	-55.76	7.00	-390.30	8.95	-499.02	4.40	-245.33
19	-18.59	8.00	-148.68	8.95	-166.34	7.60	-141.25
50	-23.23	5.50	-127.78	8.95	-207.93	7.60	-176.56
Σ	4660.55		52690.57		41352.35	·	27985.64

2-1 X-DIRECTION

 $X = W \cdot X / W = 52690.57 / 4660.55 = 11.31 (M)$

2-2 Y-DIRECTION

 $Y = W \cdot Y / W = 41352.35 / 4660.55 = 8.87$ (M)

2-3 Z-DIRECTION

 $Y = W \cdot Y / W = 27985.64 / 4660.55 = 6.00 (M)$

3. CHECK OF SATABILITY

3-1 CASE (1)

LOAD	V	Х	v · x	Н	Y	Н∙Ү
	(T)	(M)	(T • M)	(T)	(M)	(T·M)
1.PIER	4660.55	12.69	59162.65			
2.GATE	350.00	17.00	5950.00			
3.GATE	400.00	17.20	6880.00			
4.LIFTING MACHINE	5000	17.00	850.00	**		
5.LIFTING MACHINE	100.00	17.20	1720.00	:	. *	•
6.OPERATION BRIDGE	420.00	5.50	2310.00			
7.HOIST HOUSE	187.50	15.50	2906.25			
8.WATER	2293.14	11.79	27037.63	1 1		
9.BUOYANCY	-1566.27	12.39	-19411.09			45
10.WIND PRESSURE				36.00	20.00	720.00
11 WIND PRESSURE	•		*	36.00	20.00	720.00
12.WIND PRESSURE				13.10	20.95	274.50
13.WIND PRESSURE			•	13.20	31.25	412.50
14.WIND PRESSURE			and the second second	20.00	15.00	300.00
TOTAL	6894.91		87405.31	118.30		2427.00

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 10:GATE(LEFT),11:GATE(RIGHT),12:PIER,13:HOIST HOUSE,14:BRIDGE

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - · COEFFICIENT OF FRICTION ; $\mu =$ 0.60

$$Fs = \Sigma V \cdot \mu / \Sigma H = 34.97 \ge Fs a = 1.50$$

(2) STABILITY AGAINST OVERTURNING

$$\chi = B - (\Sigma V \cdot \chi - \Sigma H \cdot y) / \Sigma V = 11.68$$
 (m)
$$e = B / 2 - \chi = 0.32$$
 (m)
$$\leq B / 6 = 4.00$$
 (m)

$$Q1 = \Sigma V/B/L \cdot (1+6 \cdot e/B) = 25.88 \quad (t/m')$$

$$Q2 = \Sigma V/B/L \cdot (1 - 6 \cdot e/B) = 22.00 \quad (t/m')$$

3-2 CASE (2)

LOAD	įν	Χ .	v · x	н	Υ	нч
	(1)	(M)	(M·T)	(T)	(M)	(M·T)
1.PIER	4660.55	12 69	59162.65			
2.GATE	40.00	17.00	680.00			
3.GATE	46.67	17.20	802.67			
4.LIFTING MACHINE	50.00	17.00	850.00			
5.LIFTING MACHINE	100.00	17.20	1720.00			
6. OPERATION BRIDGE	420.00	5.50	2310.00			
7.HOIST HOUSE	187.50	15.50	2906.25			
8.WATER	1725.90	12.92	22303.18			
9.UPLIFT	-400.59	13.23	~5300.14			
10.WIND PRESSURE				0.00	12.90	0.00
11.WIND PRESSURE				0.00	12.90	0.00
12.WIND PRESSURE				13.61	21.73	295.76
13.WIND PRESSURE				13.20	31.25	412.50
14.WIND PRESSURE				20.00	15.00	300.00
15.WATER PRESSURE		•		847.24	7.13	6042.67
16.WATER PRESSURE				226.47		971.00
TOTAL	6830.02		85434.44	1120.51		8021.92

NOTES; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE
10:GATE(LEFT),11:GATE(RIGHT),12:PIER,13:HOIST HOUSE,14:BRIDGE
15:GATE,16:PIER

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - COEFFICIENT OF FRICTION ; $\mu = 0.60$

$$Fs = \Sigma V \cdot \mu / \Sigma H = 3.66 \ge Fsa = 1.50$$

(2) STABILITY AGAINST OVERTURNING

$$\chi = B - (\Sigma V \cdot \chi - \Sigma H \cdot y) / \Sigma V = 12.67 \quad (m)$$

$$e = B / 2 - \chi = -0.67 \quad (m) \leq B / 6 = 4.00 \quad (m)$$

Q1 =
$$\Sigma V/B/L \cdot (1+6 \cdot e/B) = 19.77$$
 (t/m')
Q2 = $\Sigma V/B/L \cdot (1-6 \cdot e/B) = 27.66$ (t/m')

3-3 CASE (3)

LOAD	· V (T)	X (M)	V·X (T·M)	Н (Т)	Y (M)	H•Y (T•M)
1.PIER	4660.55	11.31	52690.57			
2.GATE	40.00	7.00	280.00	•		* #
3.GATE	46.67	6.80	317.33			
4.LIFTING MACHINE	50.00	7.00	350.00		•	* *
5.LIFTING MACHINE	100.00	6.80	680.00		$x_{i,j} = x_{i,j} - x_{i,j} = x_{i,j}$	
6.OPERATION BRIDGE	420.00	18.50	7770.00			100
7.HOIST HOUSE	187.50	8.50	1593.75			
8.WATER	1967.03	13.34	26245.58			
9.UPLIFT	-551.77	13.42	-7402.57			
10.WIND PRESSURE				13.61	21.78	296.42
11.WIND PRESSURE				13.20	31.25	412.50
12.WIND PRESSURE	* .			20.00	15.00	300.00
13.WATER PRESSURE				830.85	7.12	5916.91
14.WATER PRESSURE	•	•	$\mathcal{L}^{(n)} = \bigoplus_{i \in \mathcal{I}_{n} \cap \mathcal{I}_{n} \cap \mathcal{I}_{n} \cap \mathcal{I}_{n}} \mathcal{L}^{(n)}$		4.17	961.95
TOTAL	6919.96		82524.56	1108.27		7887.77

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 10:PIER,11:HOIST HOUSE,12:BRIDGE,13:GATE,14:PIER

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - COEFFICIENT OF FRICTION ; μ = 0.60

 $Fs = \Sigma V \cdot \mu / \Sigma H = 3.75 \ge Fsa = 1.50$

(2) STABILITY AGAINST OVERTURNING

$$\chi = (\Sigma V \cdot \chi - \Sigma H \cdot y) / \Sigma V = 10.79$$
 (m)

$$e = B/2 - \chi = 1.21$$
 (m) $\leq B/6 = 4.00$ (m)

$$Q1 = \Sigma V/B/L \cdot (1 + 6 \cdot e/B) = 31.32 \quad (t/m')$$

$$Q2 = \Sigma V/B/L \cdot (1 - 6 \cdot e/B) = 16.73 \quad (t/m)$$

3-4 CASE (4)

LOAD	٧	Х	٧٠x	н	Υ	H·Y
	(T) .	(M)	(M·M)	(T)	(M)	(T·M)
1.PIER	4660.55	12.69	59162.65			
2.GATE	350.00	17.00	5950.00			
3.GATE	400.00	17.20	6880.00			
4.LIFTING MACHINE	50.00	17.00	850.00			
S.LIFTING MACHINE	100.00	17.20	1720.00			
6. OPERATION BRIDGE	420.00	5.50	2310.00			
7.HOIST HOUSE	187.50	15.50	2906.25			
8.WIND PRESSURE				48.00	20.00	960.00
9.WIND PRESSURE				48.00	20.00	960.00
10.WIND PRESSURE				29.34	16.48	483.70
11.WIND PRESSURE				17.60	31.25	550.00
12.WIND PRESSURE				20.00	15.00	300.00
TOTAL	6168.05		79778.81	162.94		3253.70

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 8:GATE(LEFT),9:GATE(RIGHT),10:PIER,11:HOIST HOUSE,12:BRIDGE

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - COEFFICIENT OF FRICTION ; μ = 0.60

 $Fs = \Sigma V \cdot \mu / \Sigma H = 22.71 \ge Fsa = 1.50$

(2) STABILITY AGAINST OVERTURNING

$$\chi = B - (\Sigma V \cdot \chi - \Sigma H \cdot y) / \Sigma V = 11.59$$
 (m)
 $e = B / 2 - \chi = 0.41$ (m) $\leq B / 6 = 4.00$ (m)

Q1=
$$\Sigma V/B/L \cdot (1+6 \cdot e/B) = 23.59$$
 (t/m')
Q2= $\Sigma V/B/L \cdot (1-6 \cdot e/B) = 19.24$ (t/m')

3-5 CASE (5)

	. 					
LOAD	V (T)	Z (M)	V · Z (T · M)	H. CT)	Y (M)	H•Y (T•M)
A DIED			22005 17			
1.PIER	4660.55	6.00	27985.63			
2.GATE	40.00	2.00	80.00			•
3.GATE	46.67	10.00	466.67			
4.LIFTING MACHINE	50.00	4.00	200.00		1	
5.LIFTING MACHINE	100.00	8.00	800.00			
6.OPERATION BRIDGE	420.00	6.00	2520.00	•	100	4.3
7.HOIST HOUSE	187.50	6.00	1125.00			
8.WATER	2207.95	6.00	13247.72		1.	
9.BUOYANCY	-1518.32	11.61	-17622.82			
10.WIND PRESSURE				26.75	19.21	513.89
11.WIND PRESSURE				16.50	31.25	515.62
TOTAL	6194.35		28802.20	43.25		1029.51

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 10:PIER,11:HOIST HOUSE

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - ... COEFFICIENT OF FRICTION:; μ = 0.60

 $Fs = \Sigma V \cdot \mu / \Sigma H = 85.94 \ge Fs a = 1.50$

(2) STABILITY AGAINST OVERTURNING

$$\chi = (\Sigma V \cdot z - \Sigma H \cdot y) / \Sigma V = 4.48$$
 (m)

$$e = B/2 - \chi = 1.52$$
 (m) $\leq B/6 = 2.00$ (m)

$$Q1 = \Sigma V/B/L \cdot (1 + 6 \cdot e/B) = 37.82 \quad (t/m^2)$$

$$Q2 = \Sigma V/B/L \cdot (1-6 \cdot e/B) = 5.20 \quad (t/m^2)$$

3-6 CASE (6)

LOAD	٧	2	V · Z	H	Y	H·Y
	(T)	(M)	(T·M)	(T)	(M)	(M·T)
1.PIER	4660.55	6.00	27985.63			
2.GATE	40.00	2.00	80.00			
3.GATE	46.67	10.00	466.67			
4.LIFTING MACHINE	50.00	4.00	200.00			
5.LIFTING MACHINE	100.00	8.00	800.00		•	
6.OPERATION BRIDGE	420.00	6.00	2520.00			
7.HOIST HOUSE	187.50	6.00	1125.00			
8.WATER	1484.98	6.00	8909.89			
9.UPLIFT	-68.97	6.00	-413.83			•
10.WIND PRESSURE				42.53	16.13	686.04
11.WIND PRESSURE				16.50	31.25	515.62
TOTAL	6920.72		41673.36	59.03		1201.66

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 10:PIER,11:HOIST HOUSE

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - COEFFICIENT OF FRICTION ; μ = 0.60

$$Fs = \Sigma V \cdot \mu / \Sigma H = 70.35 \ge Fsa = 1.50$$

(2) STABILITY AGAINST OVERTURNING

$$\chi = (\Sigma V \cdot z - \Sigma H \cdot y) / \Sigma V = 5.85 \quad (m)$$

$$e = B / 2 - \chi = 0.15 \quad (m) \leq B / 6 = 2.00 \quad (m)$$

Q1 =
$$\Sigma V/B/L \cdot (1+6 \cdot e/B) = 25.86 \quad (t/m')$$

Q2 = $\Sigma V/B/L \cdot (1-6 \cdot e/B) = 22.20 \quad (t/m')$

3-7 CASE (7)

LOAD	V (T)	Z (M)	V · Z (T · M)	H (T)	Y (M)	H•Y (T•M)		
1.PIER	4660.55	6.00	27985.63					
2.GATE	350.00	4.00	1400.00					
3.GATE	400.00	8.00	3200.00		1 · · · · · · · · · · · · · · · · · · ·	4.2		
4.LIFTING MACHINE	50.00	4.00	200.00		1 × 2 × 2	Land to the second		
5 LIFTING MACHINE	100.00	8.00	800.00					
6.OPERATION BRIDGE	420.00	6.00	2520.00					
7.HOIST HOUSE	187.50	6.00	1125.00					
8 WIND PRESSURE				74.36	11.98	890.71		
9.WIND PRESSURE	:			16.50	31.25	515.62		
TOTAL	6168.05		37230 - 63	90.86		1406 34		

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 8:PIER,9:HOIST HOUSE

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - COEFFICIENT OF FRICTION ; μ = 0.60

 $Fs = \Sigma V \cdot \mu / \Sigma H = 40.73 \ge Fs a = 1.50$

(2) STABILITY AGAINST OVERTURNING

$$\chi = (\Sigma V \cdot z - \Sigma H \cdot y) / \Sigma V = 5.81$$
 (m)

$$e = B/2 - \chi = 0.19$$
 (m) $\leq B/6 = 2.00$ (m)

$$Q1 = \Sigma V/B/L \cdot (1 + 6 \cdot e/B) = 23.47 \quad (t/m^2)$$

$$Q? = \Sigma V/B/L \cdot (1-6 \cdot e/B) = 19.36 \cdot (t/m^2)$$

5.10.2 Abut Pier

1. DESIGN CRITERIA

1-1 TYPE OF PIER; ABUT PIER

1-2 DIMENSIIONS (M)

```
A(1)= 24.00 A(2)= 0.00 A(3)= 0.00 A(4)= 16.50 A(5)= 3.00 A(6)= 4.50 A(7)= 0.00 A(8)= 0.00 A(9)= 4.00 A(10)= 2.00 A(11)= 5.00 A(12)= 11.00 A(13)= 5.50 A(14)= 1.75 A(15)= 12.50 A(16)= 13.00 A(17)= 19.00

B(1)= 12.00 B(2)= 4.00 B(3)= 4.00 B(4)= 4.00 B(5)= 1.40 B(6)= 3.00 B(7)= 10.00

C(1)= 2.90 C(2)= 10.00 C(3)= 0.00 C(4)= 2.10 C(5)= 12.00 C(6)= 1.50 C(7)= 0.90 C(8)= 0.70 C(9)= 1.10 C(10)= 3.00 C(11)= 5.50

AX1 = 5.80 AX2 = 0.00 AX3 = 0.00
```

0.00

1-3 DEAD LOADS (T/M3)

```
REINFORCED CONCRETE: RC = 2.40
PLAIN CONCRETE: RC = 2.20
WET EARTH: RS = 1.80
SATURATED EARTH: RW = 2.00
WATER: WO = 1.00
SEA WATER: WS = 1.03
```

AA1 = 2.40 AA2 = 0.00 AA3 = BB1 = 0.80 BB2 = 3.20 BB3 =

1-4 COEFFICIENT OF ACTIVE EARTH PRESSURE; KA= 0.355

1-5 GATES

LOADS		LEFT-SIDE	RIGHT-SIDE
DEAD LOAD OPERATION LOAD LIFTING MACHINE CLEAR SPAN HIGHT	(T) (T) (T) (M)	300.00 400.00 50.00 30.00 10.00	

1-5 LOADS OF OPERATION BRIDGE

```
DEAD LOAD (T); RD = 160.00
LIVE LOAD (T); RL = 50.00
WIND LOAD (T); RH = 10.00
```

1-6 DEAD LOAD OF HOIST HOUSE; WH = 1.50 (T/M2)

1-7 LIVE LOAD; Q = 1.00 (T/M2)

1-8 WATER LEVEL

	CASE1	CASE2	CASE3	CASE4	CASE5	CASE6	CASE7
DOWNSTREAM UPSTREAM	2.40 2.40	-1.70 1.80	1.80 -1.30	0.00	1.80 1.80	-1.70 -1.30	0.00

2. DEAD LOAD AND CENTER OF GRAVITY

n .	W (t)	χ (m)	W ⋅ χ (t ⋅ m)	y (m)	₩ · y (t · m)	z (m)	W ⋅ z (t ⋅ m)
1	1267.20	12.00	15206.38	1.00	1267.20	6.00	7603.19
2	392.04	8.25	3234.33	2.45	960.50	6.00	2352.24
3	35.64	17.50	623.70	2.30	81.97	6.00	213.84
4	0.00	0.00	0.00	7.90	0.00	6.00	0.00
5	2787.84	12.00	33454.07	8.95	24951.16	6.00	16727.03
6	12.96	18.50	239.76	2.60	33.70	6.00	77.76
7	38.88	21.75	845.64	2.45	95.26	6.00	233.28
8	0.00	24.00	0.00	8.35	0.00	6.00	0.00
9	0.00	0.00	0.00	13.95	0.00	6.00	0.00
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	0.00	24.00	0.00	13.95	0.00	6.00	0.00
15	161.28	5.00	806.40	21.00	3386.88	6.00	967.68
16	161.28	12.00	1935.36	21.00	3386.88	6.00	967.68
17	450.00	8.50	3825.00	27.75	12487.49	6.00	the first of the control of the cont
18	-55.76	7.00	-390.30	8.95	-499.02	4.40	-245.33
19	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Σ	5251.34	** ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·-	59780.32		46151.99		31597.35

2-1 X-DIRECTION

 $X = W \cdot X / W = 59780.32 / 5251.34 = 11.38$ (M)

2-2 Y-DIRECTION

 $Y = W \cdot Y / W = 46151.99 / 5251.34 = 8.79 (M)$

2-3 Z-DIRECTION

 $Y = W \cdot Y / W = 31597.35 / 5251.34 = 6.02 (M)$

3. CHECK OF SATABILITY

3-1 CASE (1)

LOAD		X	- •		Y	н•ү
thing pirty what what myor these thank though them does name to be deady date. They what many the bank many	(T)	(M)	(T·M)	(T)	(M)	(M•T)
1.PIER			66251.87			
2.GATE	350.00	17.00	5950.00			
3.GATE	0.00	0.00	0.00			
4.LIFTING MACHINE	50.00	17.00	850.00			
5.LIFTING MACHINE	0.00	0.00	0.00			100
6. OPERATION BRIDGE	210.00					
7.HOIST HOUSE	187.50	15.50	2906.25			
8.WATER AND EARTH	1113.60	12.00	13363.20			
9.WATER	1039.20	11.81	12277.35			
10.BUOYANCY	-1765.75	12.25	-21628.61			
11.WIND PRESSURE	As a second			36.00	20.00	720.00
12.WIND PRESSURE				0.00	0.00	0.00
13.WIND PRESSURE				13.10	20.55	269.24
14.WIND PRESSURE				13.20	31.25	412.50
15.WIND PRESSURE				10.00	15.00	150.00
TOTAL	6435.89	- 	81125_00	72,30	~	1551.74

NOTES; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 11:GATE(LEFT),12:GATE(RIGHT),13:PIER,14:HOIST HOUSE,15:BRIDGE

- (1) FACTOR OF SAFETY AGAINST SLIDING
- COEFFICIENT OF FRICTION ; μ = 0.60

 $Fs = \Sigma V \cdot \mu / \Sigma H = 53.41 \ge Fsa = 1.50$

(2) STABILITY AGAINST OVERTURNING

$$\chi = B - (\Sigma V \cdot \chi - \Sigma H \cdot y) / \Sigma V = 11.64$$
 (m)
 $e = B / 2 - \chi = 0.36$ (m) $\leq B / 6 = 4.00$ (m)

$$Q1 = \Sigma V/B/L \cdot (1+6 \cdot e/B) = 24.38 \quad (t/m')$$

$$Q2 = \Sigma V/B/L \cdot (1-6 \cdot e/B) = 20.31 \quad (t/m')$$

3-2 CASE (2)

LOAD	V (T)	X (M)	V • X (T • M)	H (T)	(M)	H•Y (T•M)
1.PIER	5251.34	12.62	66251.87			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2.GATE	40.00	17.00	680.00			
3.GATE	0.00	24.00	0.00	٠		2.40
4.LIFTING MACHINE	50.00	17.00	850.00			1000
5.LIFTING MACHINE	0.100	24.00	0.00			
6. OPERATION BRIDGE	210.00	5.50	1155.00			+ *. +
7.HOIST HOUSE	187.50	15.50	2906.25	*		e de la companya de l
8.WATER AND EARTH	1982.40	12.00	23788.79		1.0	
9.WATER	777.34	12.86	10000.08	*		and the state of the
10.UPLIFT	-400.59	13.23	-5300.14			. *
11.WIND PRESSURE				0.00	12.90	0.00
12.WIND PRESSURE				0.00	0.00	0.00
13.WIND PRESSURE				13.68	21.74	297.37
14.WIND PRESSURE				13.20	31.25	412.50
15.WIND PRESSURE				10.00	15.00	150.00
16.WATER PRESSURE				423.62	7.13	3021.33
17.WATER PRESSURE	•	100	The second of	226.47		971.00
TOTAL	8097.98		100331.75	686.96		4852.20

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 11:GATE(LEFT),12:GATE(RIGHT),13:PIER,14:HOIST HOUSE,15:BRIDGE 16:GATE,17:PIER

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - COEFFICIENT OF FRICTION ; $\mu = 0.60$

 $Fs = \Sigma V \cdot \mu / \Sigma H = 7.07 \ge Fsa = 1.50$

(2) STABILITY AGAINST OVERTURNING

$$\chi = B - (\Sigma V \cdot \chi - \Sigma H \cdot y) / \Sigma V = 12.21$$
 (m)
 $e = B / 2 - \chi = -0.21$ (m) $\leq B / 6 = 4.00$ (m)

Q1 =
$$\Sigma V/B/L \cdot (1+6 \cdot e/B) = 26.65 \cdot (t/m')$$

Q2 = $\Sigma V/B/L \cdot (1-6 \cdot e/B) = 29.59 \cdot (t/m')$

3-3 CASE (3)

LOAD	V.	Χ.	v · x	Н	γ	н•ү
	(T)	(M)	(M-T)	(T)	(M)	(M·T)
1.PIER	5251.34	11.38	59780.32			* *** *** *** *** ***
1.PIER 2.GATE 3.GATE 4.LIFTING MACHINE 5.LIFTING MACHINE	40.00	7.00	280.00			
3.GATE	0.00	24.00	0.00			
4.LIFTING MACHINE	50.00	7.00	350.00			
5.LIFTING MACHINE	0.00	24.00	0.00			
6.OPERATION BRIDGE	210.00	18.50	3885.00			
7.HOIST HOUSE	187.50	8.50	1593.75			
8 WATER AND EARTH	1986.24	12.00	23834.87			
9.WATER	895.45	13.22	11840.09			
10.UPLIFT	-551.77	13.42	-7402.57			
11.WIND PRESSURE				13.68	21.74	297.37
12.WIND PRESSURE				13.20	31.25	412.50
13.WIND PRESSURE				10.00	15.00	150.00
14.WATER PRESSURE				415.42	7.12	2958.46
15.WATER PRESSURE		·	·	230.61	4.17	961.95
TOTAL	8068.75		94161.37	682.92		4780.27

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 11:PIER,12:HOIST HOUSE,13:BRIDGE,14:GATE,15:PIER

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - COEFFICIENT OF FRICTION ; μ = 0.60

$$Fs = \Sigma V \cdot \mu / \Sigma H = 7.09 \ge Fsa = 1.50$$

(2) STABILITY AGAINST OVERTURNING

$$\chi = (\Sigma V \cdot \chi - \Sigma H \cdot y) / \Sigma V = 11.08$$
 (m)
 $e = B / 2 - \chi = 0.92$ (m) $\leq B / 6 = 4.00$ (m)

(t/m²)

(3) SOIL REACTION

 $Q1 = \Sigma V/B/L \cdot (1 + 6 \cdot e/B) = 34.48$

$$Q2 = \Sigma V/B/L \cdot (1 - 6 \cdot e/B) = 21.55 \quad (t/m')$$

3-4 CASE (4)

LOAD	V (T)	X (M)	V · X (T · M)	H (T)	Y (M)	H•Y (T-M)
1.PIER	5251.34	12.62	66251.87		day and the and hith him with the	. M. A. A. M. M. D. A. LOS LOS LOS LOS RES
2.GATE	350.00	17.00	5950.00			•
3.GATE	0.00	24.00	0.00			
4.LIFTING MACHINE	50.00	17.00	850.00	•		
5.LIFTING MACHINE	0.00	24.00	0.00		1 %	• •
6.OPERATION BRIDGE	210.00	5.50	1155.00	:		
7.HOIST HOUSE	187.50	15.50	2906.25			
8.WATER AND EARTH	1981.44	12.00	23777.27			
9.WIND PRESSURE				48.00	20.00	960.00
10.WIND PRESSURE				0.00	0.00	0.00
11.WIND PRESSURE				18.24	21.74	396.49
12.WIND PRESSURE	0			17.60	31.25	
13.WIND PRESSURE			:	10.00	** * .	150.00
TOTAL	8030.28		100890.37	93.84		2056.49

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 9:GATE(LEFT),10:GATE(RIGHT),11:PIER,12:HOIST HOUSE,13:BRIDGE

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - COEFFICIENT OF FRICTION ; μ= 0.60 .

 $F s = \Sigma V \cdot \mu / \Sigma H = 51.34$ $\geq F s a = 1.50$

(2) STABILITY AGAINST OVERTURNING

$$\chi = B - (\Sigma V \cdot \chi - \Sigma H \cdot y) / \Sigma V = 11.69$$
 (m)

$$c = B/2 - \chi = 0.31$$
 (m) $\leq B/6 = 4.00$ (m)

$$QI = \Sigma V/B/L \cdot (1+6 \cdot e/B) = 30.03 \quad (t/m^2)$$

$$Q2 = \Sigma V/B/L \cdot (1-6 \cdot e/B) = 25.74 \quad (t/m)$$

3-5 CASE (5)

LOAD	; V	. Z	٧٠Z	Ħ	Υ	н•Ү
	(T)	(M)	(M·T)	(T)	(M)	(M·T)
1.PIER	5251.34	6.02	31597.35			gal tax au a au mg an an an an
2.GATE	40.00	A TOTAL CONTRACTOR OF THE PARTY				
3.GATE	0.00	0.00	0.00			•
4.LIFTING MACHINE	50.00	4.00	200.00			•
5.LIFTING MACHINE	0.00	0.00	0.00			
6.OPERATION BRIDGE	210.00	6.00	1260.00			
7.HOIST HOUSE	187.50	6.00	1125.00			
8.WATER AND EARTH	2016.00	10.00	20160.00			
9.WATER	1000.85	2.00	2001.69			
10.BUOYANCY	-1707.00	11.75	-20059.00			
11.WIND PRESSURE				23.83	14.72	350.90
12.WIND PRESSURE	ė.			16.50	31.25	515.62
13.WATER PRESSURE		•		1996.92	4.30	8586.74
14.WATER PRESSURE				-1373.40	4,30	-5905.61
15.EARTH PRESSURE	409.41	12.00	4912.88	709.11	4.59	3253.84
TOTAL	7458.09		41277.91	1372.96		6801.48

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 11:PIER,12:HOIST HOUSE

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - CDEFFICIENT OF FRICTION ; $\mu = 0.60$

$$Fs = \Sigma V \cdot \mu / \Sigma H = 3.26 \ge Fsa = 1.50$$

(2) STABILITY AGAINST OVERTURNING

$$\chi = (\Sigma V \cdot z - \Sigma H \cdot y) / \Sigma V = 4.62$$
 (m)
 $e = B / 2 - \chi = 1.38$ (m) $\leq B / 6 = 2.00$ (m)

$$Q1 = \Sigma V/B/L \cdot (1+6 \cdot e/B) = 43.73 \quad (t/m)$$

$$Q2 = \Sigma V/B/L \cdot (1-6 \cdot e/B) = 8.06 \quad (t/m)$$

3-6 CASE (6)

· · · · · · · · · · · · · · · · · · ·		*				
LOAD	V (T)	Z (M)	V · Z (T · M)	H (T)	Y (M)	H•Y (T•M)
1.PIER	5251.34	6.02	31597.35		- *** *** *** *** *** ***	
2.GATE	40.00	2.00	80.00			
3.GATE	0.00	0.00	0.00		5	
4.LIFTING MACHINE	50.00	4.00	200.00			
5.LIFTING MACHINE	0.00	0.00	0.00			
6.OPERATION BRIDGE	210.00	6.00	1260.00			e Turing and the second of the
7.HOIST HOUSE	187,50	6.00	1125.00		1. 1. 1.	
8.WATER AND EARTH	1952.64	10.00	19526.39			
9.WATER	671.94	2.00	1343.87		÷	
10.UPLIFT	-68.97	6.00	-413.83			
11.WIND PRESSURE	•			28.12	19.05	535.53
12.WIND PRESSURE			*	16.50	31.25	515.62
13.WATER PRESSURE				1105.92	3.20	3538.94
14.WATER PRESSURE				-546.76	and the second second	-2806.70
15.EARTH PRESSURE	535.93	12.00	6431.14	928.26	4.84	4495.34
TOTAL	8830.37		61149.91	1532.03		6278.74

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 11:PIER,12:HOIST HOUSE

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - COEFFICIENT OF FRICTION; $\mu = 0.60$

 $Fs = \Sigma V \cdot \mu / \Sigma H = 3.46 \ge Fsa = 1.50$

(2) STABILITY AGAINST OVERTURNING

$$\chi = (\Sigma V \cdot z - \Sigma H \cdot y) / \Sigma V = 6.21$$
 (m)

$$e = B/2 - \chi = -0.21$$
 (m) $\leq B/6 = 2.00$ (m)

$$Q1 = \Sigma V/B/L \cdot (1 + 6 \cdot e/B) = 27.38 \quad (t/m')$$

$$Q2 = \Sigma V/B/L \cdot (1-6 \cdot e/B) = 33.94 \quad (t/m)$$

3-7 CASE (7)

LOAD	V	Z	۷·Z	Н	Y	н•ү
£*	(T)	(M)	(T·M)	(T)	(M)	(T·M)
1.PIER	5251.34	6.02	31597.35			
2.GATE	350.00	4.00	1400.00			
3.GATE	0.00	0.00	0.00			
4.LIFTING MACHINE	50.00	4.00	200.00			
5.LIFTING MACHINE	0.00	0.00	0.00			
6.OPERATION BRIDGE	210.00	6.00	1260.00			
7.HOIST HOUSE	187.50	6 00	1125.00			
8.WATER AND EARTH	1824.00	10.00	18240.00			
9.WIND PRESSURE				37.49	19.05	714.04
10.WIND PRESSURE				22.00	31.25	687.50
11.EARTH PRESSURE	692.97	12.00	8315.62	1200.26	4.47	5365.75
TOTAL	8565.81	. -	62137.97	1259.75		6767.30

NOTES ; 2,4:LEFT-SIDE 3,5:RIGHT-SIDE 9:PIER,10:HOIST HOUSE

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - COEFFICIENT OF FRICTION ; μ = 0.60

$$Fs = \Sigma V \cdot \mu / \Sigma H = 4.08 \ge Fsa = 1.50$$

(2) STABILITY AGAINST OVERTURNING

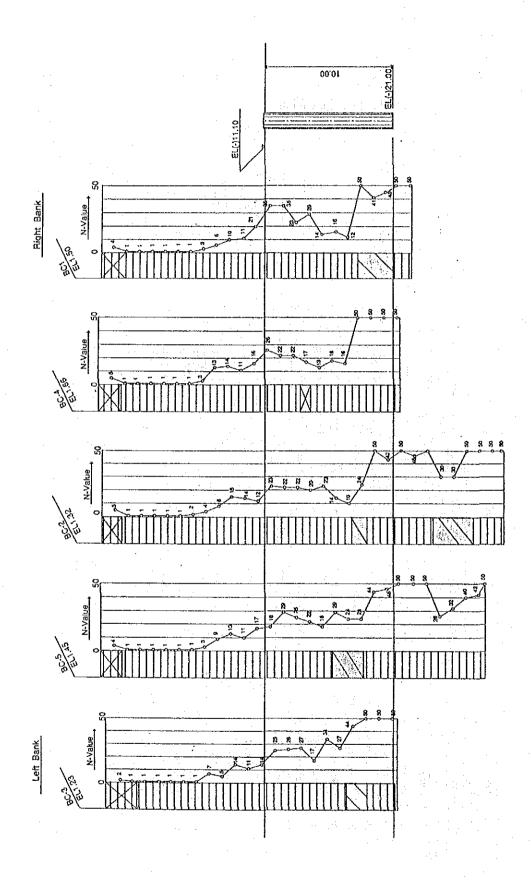
$$\chi = (\Sigma V \cdot z - \Sigma H \cdot y) / \Sigma V = 6.46$$
 (m)
 $e = B/2 - \chi = -0.46$ (m) $\leq B/6 = 2.00$ (m)

Q1=
$$\Sigma V/B/L \cdot (1+6 \cdot e/B) = 22.84$$
 (t/m')
Q2= $\Sigma V/B/L \cdot (1-6 \cdot e/B) = 36.64$ (t/m')

5.11 Pile Foundation Analysis

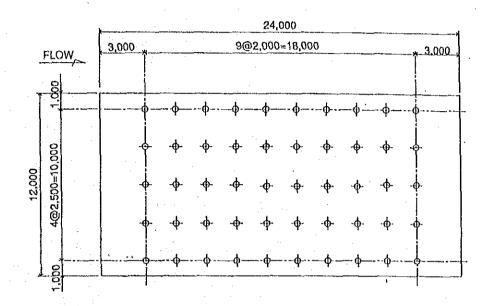
5.11.1 Center Pier

		r-	23	ო	4	co.	ဖ	7	ω	ത	10
n (Number of Piles)	(bcs.)	ທ	ഗ	<i>ι</i> ο.	ໝ	5	ເດ	30	5	5	5
D (Diameter)	(mm)	800.00	800.00	800.00	800.00	800.00	800.00	800.00	300.00	800.00	800.00
t (Thickness)	(mm)	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00
A (Cross Section)	(m)	0.01735	0.01735	0.01735	0.01735	0.01735	0.01735	0.01735	0.01735	0.01735	0.01735
I (Moment of Inertia of Pile Cross Section)	Cross Section) (m²)	0.135E-2	0.135E-2	0.135E-2	0.135E-2	0.135E-2	0.135E-2	0.1355-2	0.135E-2	0.135E-2	0.135E-2
8 (Angle Between Pile and Vertical)	ertical) (deg)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Xi (Coordinate of Piler Head))	(m)	9.00	7,00	5.00	3.00	1.00	-1.00	-3.00	-5.00	-7.00	-9.00
L (Length of Piles)	(m)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Kh (Coefficient of Horizontal Subgrade Reaction) (kg/cm²)	ubgrade Reaction) (kg/cm²)	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
	(m,	0.47	0.47	0.47	0,47	0.47	0.47	0.47	0.47	0.47	0.47
Simultaneous Equation:				1		í					-
	-63452		×	1110.0		<u> </u>	Usptacement) 	o x == 0.002023	E	
17	741473. 0.		8у _ =	[. 6920.00	[(<u>></u>)				è y = 0.003974	$\widehat{\mathbf{g}}$	
-634546.	0. 58809952.		ğ	8380.00	(M)	:		g ≡ 0	= 0.000164	(rad)	
Xi (Honzontai Displacement)	(m)	0,002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Yi (Vertical Displacement)	(m)	0.005	0.005	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.002
PVi (Vertical Load)	(t/pes.)	189.91	178.45	167.02	155.57	144.12	132.68	121.23	109.79	98.34	86.89
PHi (Horizonial Load)	(1/pcs.)	22.20	22.20	22.20	22.20	22.20	22.20	22.20	22.20	22.20	22.20
Mi (Moment)	(1 · m/pos.)	-21.26	-21.26	-21.26	-21,26	-21.26	-21.26	-21.26	-21.26	-21.26	-21,26
Έ	(1)			1109.998		-			.: -		
Vi	(1)		7	6919.984		٠.	٠	1 .			
. Wi	(t·m)		٠.	8379.980			,	٠.			
Check of Stress		Pile	Groupe - 1		Pile Groupe - 10	9-10					
Compressive Stress	(kg/cm²)	-	1721		1127						
Tensile Stress	(kg/cm²)		0	٠.	-126			: :		:	
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	-								


:	
:	
$\dot{\gamma}$	
šše	
Ö	

Pile Groupe		-	83	6	4	uc.		
n (Number of Piles)	(bcs.)	10	2	10	0,	10		
D (Diameter)	(mt)	800.00	800.00	800.00	800.00	800.00		
t (Thickness)	(mm)	9.00	9.00	9.00	900	9.00		
A (Cross Section)	(m³)	0.01735	0.01735	0.01735	0.01735	0.01735		
! (Moment of Inertia of Pile Cross Section)		(m1) 0.135E-2 0.135E-2	0.1355-2	0.135E-2 (0.135E-2	0.135E-2		
8 (Angle Between Pile and Vertical)	(Gap)	0.00	00.0	0.00	0.00	0.00		
Xi (Coordinate of Pile Head))	(m)	5.00	2.50	0.00	-2.50	-5.00		
L (Length of Piles)	(<u>u</u>)	10.00	10.00	10.00	10.00	10.00	:	
Kh (Coefficient of Horizontal Subgrade Reaction)	Reaction) (kg/cm²)	0.71	0.71	0.71	0.71	1.7.0		
B	E	0.47	0.47	0.47	0.47	0.47		
Simultaneous Equation:								
600352. 0	-634546.	~	× 49	50.00	50.00 (H)	Displacement :	$\delta x = 0.000530$	(E)
0. 1741473.	o o		y o	[6200.00 (V)	(v)		ô y == 0.003560	Ð
-634546. 0.	23109781.		ğ	9430.00 (M)	(M)		a = 0.000423	(ਮੁਕਰ)
Xi (Horizontai Displacement)	(w)	0.001	0.001	0.001	0.001	0.001		
Yi (Vertical Displacement)	Œ	900.0	0.005	0.004	0.003	0.001		•
PVI (Vertical Load)	(vpcs.)	197.60	160.80	124.00	87,20	50.41	:	
PHi (Honzontal Load)	(1/pos.)	1.00	1.30	1.00	1,00	1.00		
M. (Moment)	(t · m/pcs.)	4.61	4.6	4.61	4.61	4.61		
X Hi	Φ			50.000				
VI.	3			6199,996				
M	(t · m)			9429.980				
Check of Stress		Pile G	Pile Groupe - 1	a.	Pile Groupe - 5	ις.		
Compressive Stress	(kg/cm²)		1275		426			
Tensile Stress	(kg/cm²)		ø		ò			
Allowable Stress	(kg/cm²)		1900		1900			

Pile Groupe		-	2	က	7	ហ	ဖ	7	æ	ത	5	11	
n (Number of Piles)	(bcs.)	S	r.	ဌ	ι.	ιΩ	5	ស	ហ	9	3	S	
D (Diameter)	(mm)	800.00	800.00	800.00	800.00	800.00	800.00	800.00	800.00	800.00	800.00	80.00	
t (Thickness)	(mm)	9,00	9.00	90.6	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	
A (Cross Section)	(m)	0.01735	0.01735	0.01735 0.01735	0.01735	0.01735 0.01735		0.01735	0.01735	0.01735	0.01735	0.01735	
(Moment of Inertia of Pile Cross Section)	Ē		0 135E-2 0.135E-2	0.135E-2 (0.135E-2	0.135E-2 0.135E-2		0.135E-2 (0.135E-2 (0.135E-2 0.135E-2	0.135E-2	0.135E-2	
8 (Angle Between Pile and Vertical)	(ded)	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	
X (Coordinate of Pile Head))	E	10.00	8.00	6.00	4.00	2.00	0.00	-2.00	-4.00	-6.00	-8.00	-10.00	
L (Length of Piles).	E	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	
Kh (Coefficient of Horizontal Subgrade Reaction) (kg/cm²)	on) (kg/cm²)	7.10	7.10	7.10	7.10	7.10	7.10	7.10	7.10	7.10	7.10	7.10	r.
02	(<u>, m</u>	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	
Simultaneous Equation:		:											
660387.	-698000.		×)69	690.00 (H)		Displacement		$\delta x = 0.001156$	156	(<u>f</u>		
[0. 1915620.	Ó		êy]	نـــا	8070.00 (V)]			ю	$\delta y = 0.004213$	•	(H)		
-698000.	78100263.		g.	7430	7430.00 (M)			ð	. = 0.000105	:	(pag)	•	
Xi (Honzontai Displacement)	(E)	0.001	0.001	0,001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
Yi (Vertical Displacement)	Œ	0.005	0.005	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.003	0.003	
PVi (Vertical Load)	(t/pcs.)	183.46	176.11	168.77	161,43	154.07	146.73	139.38	132.03	124.69	117.34	109.99	
PHi (Honzontal Load)	(t/pcs.)	12.55	12.55	12.55	12.55	12.55	12,55	12.55	12.55	12.55	12.55	12.55	
M. (Moment)	(t · m/pcs.)	-11.85	-11.85	-11.85	-11.85	-11.85	-11,85	-11.85	-11.85	-11.85	-11.85	-11.85	
ïΗ	(£)		:	683.999									
V 10 10 10 10 10 10 10 10 10 10 10 10 10	€		. •	8069,980		٠							
W	(t·m)			7429.977	٠.		.	٠					
Check of Stress		Pile	Pile Groupe - 1		Pile Groupe - 1	11 - adn						٠	
Compressive Stress	(kg/cm²)		1406			963						٠	
Tensile Stress	(kg/cm²)		0	٠	-	0							
Altowable Stress	(kg/cm²)		1900		1	1900							


;
Ŋ
S
Ö
:

Pile Groupe		-	2. 3	4	ß		
n (Number of Piles)	(bcs.)	11	11	11	1.		
D (Diameter)	(பய)	800.00 800.00	00.008	800.00	800.00		
t (Thickness)	(mm)	9.00	0.6	9.00	9.00		
A (Cross Section)	(m;)	0.01735 0.01735	5 0.01735	0.01735	0.01735		
1 (Moment of Inertia of Pile Cross	Section) (m*)	0.135E-2 0.135E-2	0.135E-2	0.135E-2	0.135E-2		
8 (Angle Between Pile and Vertical)	(deg)	0.00 0.00	00.0	0.00	0.00		
Xi (Coordinate of Pile Head)	(m)	5.00 2.50	0.00	-2.50	-5.00		
L (Length of Piles)	Έ)	10.00 10.00	10.00	10.00	10.00		,
Kh (Coefficient of Horizontal Subgrade Reaction) (kg/cm²)	rade Reaction) (kg/cm²)	0.71 0.71	1 0.71	0.71	0.71	. •	
8	(m,	0.47 0.47	7 0.47	0.47	0.47		
Simultaneous Equation:							
٠	0698000.	× 60	1380.0	1380.00 (H)	Displacement	: 8 x = 0.002593	Ê
0. 1915620.	.20. 0.] [8y]	= [7460.0	7460.00 (V)]		$\delta y = 0.003894$	a
	0. 25420759.	b	10300.0	10300.00 (M)		$\alpha = 0.000476$ ((Page
X (Honzontai Displacement)	(E)	0,003 0,003	3 0.003	0.003	0,003		
Yi (Vertical Displacement)	Œ)	0.006 0.005	5 0.004	0.003	0,002		
PVi (Vertical Load)	(t/pcs.)	218.60 177.12	135,64	94.16	52.68		
PHi (Horizontal Load)	(t/pcs.)	25.09 25.09	3 25.09	25.09	25.09		
M (Moment)	(t · m/pcs.)	-20.13 -20.13	3 -20.13	-20.13	-20.13		
Σ	(μ)		1379.999		٠	-	
N 5	Ξ		7459.992				
×	(t·m)		10299.988	i			
Check of Stress		Pile Groupe -		Pile Groupe -	-5		
Compressive Stress	(kg/cm²)	1853		897			
Tensile Stress	(kg/cm²)	0		-290			
Allowable Stress	(kg/cm²)	1900		1900			

FIGURE 5-3 PILE ARRANGEMENT FOR PIERS

Center Pier

Abut Pier

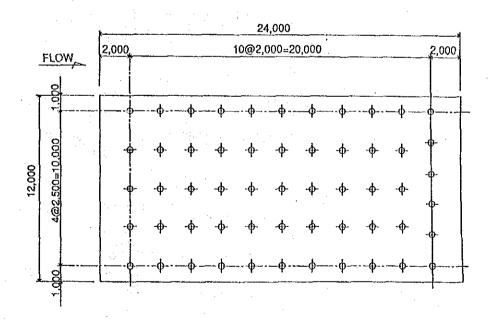
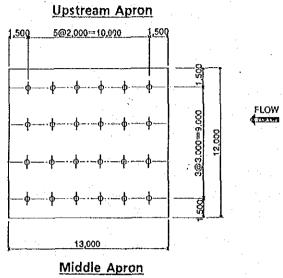
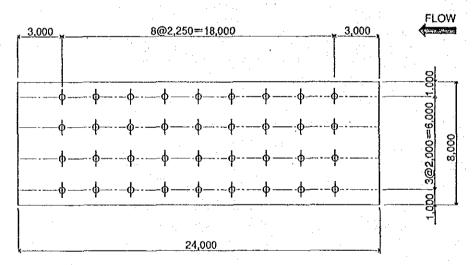
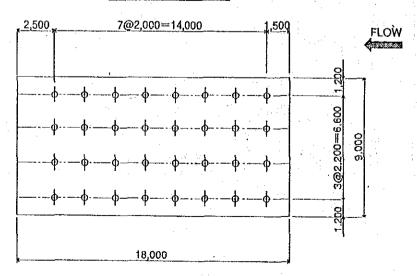





FIGURE 5-4 PILE ARRANGEMENT FOR APRON

Downstream Apron

5. 12 Stability and structural Analysis of Retaining Wall

5. 12. 1 Stability Analysis

1) Type W1-1 Wall

1. DESIGN CRITERIA

1-1 TYPE OF WALL ; TYPE W1-1

1-2 DIMENSIONS(M)

```
H1 = 10.50 H2 =
                  1.50
                       H3 ≃
                              1.50
                                   H4 =
                                         1.00
H6 = 0.50
            L1 =
                  2.00
                       L.2 =
                              0.50
                                   L3 =
                                         4.00
  = 1.00
            HO =
                  0.00
                      X1 =
                              0.00
                                   XN =
                                         0.00
```

WATER LEVEL(REAR) WL1 = 11.00 (FRONT) WL2 = 8.90

1-3 DEAD LOADS (T/M3)

```
REINFORCED CONCRETE; RC = 2.40
WET EARTH; RS = 1.80
SATURATED EART; RW = 2.00
WATER; WO = 1.00
```

1-4 COEFFICIENT OF ACTIVE EARTH PESSURE; KA = 0.355 (0.367)

1-5 LIVE LOAD ; Q= 1.00 (T/M2)

2. DEAD LOAD AND CENTER OF GRAVITY

· N	W	X	W•X	Υ	Н•Ү
	(T)	· (M)	(M·T)	(M)	(T·M)
1	37.80	2.25	85.05	6.75	255.15
2	0.00	1.33	0.00	1.50	0.00
3	21.60	1.00	21.60	0.75	16.20
4	5.40	2.25	12.15	0.75	4.05
5	0.60	2.67	1.60	1.17	0.70
6	28.80	4.50	129.60	0.50	14.40
7	48.00	3.83	184.00	4.33	208.00
	142.20		434.00		498.50

2-1 X-DIRECTION

$$X = W \cdot X/W = 434.00 / 142.20 = 3.05$$
 (M)

2-2 Y-DIRECTION

$$Y = W \cdot Y/W = 498.50 / 142.20 = 3.51$$
 (M)

3. CHECK OF STABILITY

LOAD	V (T)	X (M)	V · X (M · T)	H (T)	Y (M)	H•Y (T•M)
1.WALL	142.20	3.05	434.00	يس أونها وسب فراي أوسط الحرو فويل نزسا بناه همك		
2.EARTH AND WATER	320.85	4.63	1485.32	•		4
3.EARTH AND WATER	44.40	1.00	44.40	er gradus gi		
4.LIVE LOAD	12.00	4.50	54.00		•	
5.EMBANKMENT	0.00	0.00	0.00		+ 1	
6.BUOYANCY	-54.60	3.12	-170.37			
7.EARTH PRESSURE	69.19	6.50	449.73			100
8.EARTH PRESSURE	•			148.38	4.13	612.79
9.WATER PRESSURE			4 - 4 -	181.50	3.67	665.50
10.WATER PRESSURE				-118-81	2.97	-352.48
TOTAL	534.04		2297.09	211.06		925.81

NOTES; 2,9; REAR SIDE, 3,10; FRONT SIDE

- (1) FACTOR OF SAFETY AGAINST SLIDING
 - · COEFFICIENT OF FRICTION ; μ = 0.60

$$F s = \mu \cdot \Sigma V / \Sigma H = 1.52$$

(2) STABILITY AGAINST OVERTURNING

$$\chi = (\Sigma V \cdot x - \Sigma H \cdot y) / \Sigma V = 2.57$$
 (m)
 $e = L/2 - \chi = 0.68$ (m) $L/6 = 1.08$ (m)

Q1=
$$\Sigma V/L/B \times (1+6 e/L) = 44.63$$
 (t/m³)
Q2= $\Sigma V/L/B \times (1+6 e/L) = 10.14$ (t/m³)

2) Type W2-1 Wall

1. DESIGN CRITERIA

1-1 TYPE OF WALL ; TYPE W2-1

1-2 DIMENSIONS(M)

```
H1 = 11.00 H2 =
                     1.00
                           H3 =
                                 1.00
                                        H4 =
                                              1.00
H6 = 0.50 L1 =
                     0.00
                                        L3 =
                          L2 =
                                 0.50
                                              6.50
                                                           3.93
T = 1.00 \text{ HO} =
                     0.00 \text{ X1} =
                                0.00
                                        XN =
                                              0.00
```

WATER LEVEL(REAR) WL1 = 11.00 (FRONT) WL2 = 8.90

1-3 DEAD LOADS (T/M3)

```
REINFORCED CONCRETE; RC = 2.40
WET EARTH ; RS = 1.80
SATURATED EART ; RW = 2.00
WATER ; WO = 1.00
```

1-4 COEFFICIENT OF ACTIVE EARTH PESSURE; KA = 0.355 (0.367)

1-5 LIVE LOAD ; Q= 1.00 (T/M2)

2. DEAD LOAD AND CENTER OF GRAVITY

N .	W (T)	X (M)	W·X (T·M)	Y (M)	H · Y (M · T)
1	51.88	0.25	12.97	6.50	337.19
2	0.00	0.00	0.00	1.00	0.00
3	0.00	0.00	0.00	0.50	0.00
4	4.72	0.25	1.18	0.50	2.36
5	0.88	0.67	0.59	1.17	1.03
6	61.31	3.75	229.91	0.50	30.65
7	78.00	2.67	208.01	4.33	338.00
:	196.78		452.66		709.23

2-1 X-DIRECTION

$$X = W \cdot X/W = 452.66 / 196.78 = 2.30$$
 (M)

2-2 Y-DIRECTION

$$Y = W \cdot Y / W = 709.23 / 196.78 = 3.60$$
 (M)

3. CHECK OF STABILITY

						أحادث سيوبرسيد
LOAD	V (T)	X (M)	V · X (T · M)	H (T)	Y (M)	H•Y (H•H)
1.WALL	196.78	2.30	452,66			
2.EARTH AND WATER	713.73	3.90	2785.76		the second	
3.EARTH AND WATER	0.00	0.00	0.00			
4.LIVE LOAD	25.54	3.75	95.80.			
5.EMBANKMENT	0.00	0.00	0.00		100	
6.BUDYANCY	-75.90	2.46	-187.08			
7.EARTH PRESSURE	90.64	7.00	634.48		1. No. 1. E. E.	
8.EARTH PRESSURE		•		194.38	4.13	802.75
9.WATER PRESSURE				237.76	3.67	871.80
10.WATER PRESSURE				-155.65	2.97	-461.75
TOTAL	950.80		3781.61	276.49		1212.80

NOTES ; 2,9; REAR SIDE, 3,10; FRONT SIDE

- (1) FACTOR OF SAFETY AGAINST SLIDING $\cdot \text{ COEFFICIENT OF FRICTION }; \ \mu = 0.60$ $\text{Fs} = \mu \cdot \Sigma \text{ V/}\Sigma \text{II} = 2.06$
- (2) STABILITY AGAINST OVERTURNING $\chi = (\Sigma V \cdot x \Sigma H \cdot y) / \Sigma V = 2.70 \quad (m)$ $c = L/2 \chi = 0.80 \quad (m) \quad L/6 = 1.17 \quad (m)$
 - (3) SOIL REACTION $Q = EV/L/B \times (1 + 6 e/L) = 58.21$ (t/m') $Q = EV/L/B \times (1 + 6 e/L) = 10.91$ (t/m')

3) Type W3 Wall

1. DESIGN CRITERIA

1-1 TYPE OF WALL; TYPE W-3

1-2 DIMENSIONS (M)

H1=0.60 H2 = 0.60H3 = 0.60H4 = 6.40H5 = 0.60B1=0.30 B2 = 0.80B3 = 0.60B4=2.10 BT=3.50 HT = 7.00X1 = 0.00H0 = 0.00WATER LEVEL(HRONT) WL1=7.00 (REAR) WL2=7.00

1-3 DEAD LOADS (T/M3)

REINFORCED CONCRETE ; RC=2.40 WET EARTH ; RS=1.80 SATURATED EARTH ; RW=2.00 WATER ; W0=1.00

1-4 COEFFICIENT OF ACTIVE EARTH PRESSURE; KA=0.355 (0.367)

1-5 LIVE LOAD; $Q = 0.30 (T/M^2)$

2. CHECK OF STABILITY

LOAD	V	X	V · X	Н	Υ	Η•Υ
	(T)	(M)	(T · M)	(T)	(M)	(T · M)
WALL	11.95	1.34	15.96			
EARTH AND WATER	28.80	2.37	68.35			
LIVE LOAD	0.72	2.30	1.66			
BUOYANCY	-19.38	1.75	-33.91			
EARTH PRESSURE	3.99	3.50	13.97			
EARTH PRESSURE		.*		8.56	2.43	20.77
TOTAL	26.09		66.03	8.56		20.77

(1) FACTOR OF SAFETY AGAINST SLIDING

$$FS = \mu \cdot \Sigma V / \Sigma H = 1.85 \ge FSA = 1.5$$

(2) STABILITY AGAINST OVERTURNING

$$\chi = (\Sigma V \cdot x - \Sigma H \cdot y) / \Sigma V = 1.74 \text{ (m)}$$

 $e = B / 2 - \chi = 0.01 \text{ (m)} \leq B / 6 = 0.58 \text{ (m)}$

$$Q = \Sigma V/B (1+6 e/B) = 7.64 (t/m^2)$$

 $Q = \Sigma V/B (1-6 e/B) = 7.26(t/m^2)$