IX. ECONOMIC EVALUATION

STUDY

ON

ILOG-HILABANGAN RIVER BASIN FLOOD CONTROL PROJECT

SUPPORTING REPORT IX. ECONOMIC EVALUATON

TABLE OF CONTENTS

Page

1.	INT	RODUCTION	IX-1
	1.1	Flood Losses and Flood Control Benefit	IX-1
	1.2	Fundamentals for Evaluation	IX-1
2	ÅΝΠ	NUAL AVERAGE BENEFIT	IX-2
2.			
	2.1	Mesh Data in the Flood Prone Area	IX-2
	2.2	Value of Properties Vulnerable to Flood Damage	IX-3
	2.3	Damage Rate and Inundation Depth	IX-4
	2.4	Estimate of Flood Damage	IX-5
	2.5	Estimate of Annual Benefit	IX-6
3.	ECC	DNOMIC EVALUATION	IX-7
	3.1	Economic Project Cost	IX-7
	3.2	Economic Viablity of Alternative Study Cases	IX-7
. '	3.3	Economic Viability of the Master Plan	IX-8
	3.4	Sensitivity Analysis	IX-8
4.	PRO	JECT JUSTIFICATION	ÍX-9

LIST OF TABLES

Title

- IX-1-1 Classification of Flood Damages in the Philippines
- IX-1-2 Classification of Flood Control Benefit in the Philippines
- IX-2-1 Detailed Mesh Data of the Flood Prone Area
- IX-2-2 Average Damageable Value of Paddy
- IX-2-3 Average Damageable Value of Sugarcane
- IX-2-4 Average Damageable Value of Fishpond
- IX-2-5 Economic Farmgate Price of Paddy
- IX-2-6 Economic Farmgate Price of Sugarcane
- IX-2-7 Average Depreciation of Dwelling Units
- IX-2-8 Potential Flood Damage at Current Development Level
- IX-2-9 Potential Flood Damage in the Target Year 2020
- IX-2-10 Calculation of Annual Average Benefit of the Master Plan
- IX-3-1 Annual Cost and Benefit Flow of Alternative Cases for the Master Plan
- IX-3-2 Annual Cost and Benefit Flow of Alternative Cases for Phase I

1. INTRODUCTION

1.1 Flood Damage and Flood Control Benefit

Flood damage in general consists of tangible and intangible damages, and the tangible damage is further classified into direct and indirect damages. Direct damages are defined as the monetary losses, compared with what would be expected without floods, and the monetary expenditure required, or which would be required, to restore the flood damaged assets/property to its pre-flood condition. Indirect damages include the net monetary cost of evacuation, relocation, lost wages, lost production, and lost sales. Intangible flood damages are defined as flood effects which cannot be measured in monetary terms. Table IX-1-1 presents the damage calssification applied in the Philippines, the source of which is Guide to Flood Damage Survey & Evaluation of Losses and Benefit, 1988, DPWH.

In the study area, the direct damage is to be inflicted on the agricultural crops of sugarcane and paddy, aquaculture crops of prawns and milkfish, residential houses and non-residential buildings together with their indoor movables, and infrastructure facilities such as roads and railways. Flood damage on other agricultural crops is not considered because it is negligibly small judging from their occupied areas and low productivity.

According to the above-said Guide, flood control benefit is also classified into tangible and intangible benefits. The former is evaluated in monetary terms while the latter is assessed only in the descriptive manner. Assumptions (in percentage) are applied for calculation of some items in the tangible benefit. (Refer to Table IX-1-2.) In this study, the benefits are obtained in the calculative manner without applying such assumptions because they cannot be duly justified due to inadequate back-data in the objective river basin and surrounding areas.

1.2 Fundamentals for Evaluation

The Master Plan was formulated to protect the flood prone area from a 100-year return period flood at the maximum, and its economic viability was assessed on the basis of annual average benefit and economic project cost. Basic conditions for project evaluation are summarized below.

 Annual average benefit or potential flood damage is calculated by the mesh unit (500 m x 500 m) in accordance with the flood inundation analysis.

- (2) Target completion year is fixed at the year 2020, and project life is assumed to be until 2050, considering the durable life of facilities to be installed.
- (3) Project benefit is estimated on the development stage in the target completion year of 2020.
- (4) Price level for all the monetary calculations is November 1990, and the conversion rates of currencies are US\$1.00 = ¥130 = P28.00 (P1.00 = ¥4.64).

2. ANNUAL AVERAGE BENEFIT

Flood control benefit is defined as the reduction of potential flood damage attributed to the design works. The reduction is obtained as the difference between the estimated flood damages under the the with- and the without-the-project situations.

2.1 Mesh Data in the Flood Prone Area

The flood prone area or the beneficial area is limited to the lowest reaches of about 125 km², which is divided into 500 meshes. The land use and assets in each mesh were identified for the following items by examining the topographic map with a scale of 1:5,000 prepared by JICA in 1990. The detailed mesh data are presented in Table IX-2-1.

Item	Particulars	Total
Land Use	Sugarcane	56.6 km ²
	Wet paddy	15.6 km ²
	Fishpond	25.4 km ²
	Cocô, Nipa	9.6 km ²
	Orchard	0.4 km^2
	Forest	0.5 km ²
	Residential	5.9 km ²
	River channel	5.6 km ²
	Unused	5.4 km ²
House/Building	Residential houses	9,771 units
	Non-residential bldgs.	1,482 units
Infrastructure	National road	44.3 km
	Provincial road	104.2 km
	Barangay road	91.8 km
	Railway (for sugarcane)	48.6 km
	Irrigation channel	134.3 km

2.2 Value of Properties Vulnerable to Flood Damage

All the properties in the flood prone area may be vulnerable to flood damage. Their economic value to be assigned for the monetary computation, referred to as "damagable value" is as discussed below.

(1) Agriculture and Aquaculture

The degree of damage on crops varies from month to month, depending on the cropping pattern and when flooding occurs. Therefore, the annual average damagable value of crops per hectare should be taken, and this is estimated as an aggregate of the expected net income and accumulated expenditure for the production spent until the time when flood takes place, where flood frequency and cultivated area in each month have to be taken into account, as expressed by the following formula:

$$DV = \sum_{i=Jan.}^{Dec.} CA_i \cdot FF_i \cdot (AC_i \cdot PC_i + NI)$$

where;

DV: damagable value (P/ha)

CA : cultivated area (%)

FF : flood frequency (%)

AC: accumulated cost (%)

PC: production cost (P/ha)

NI: net income (P/ha)

The damagable values per hectare were thus estimated at 9,900 pesos for paddy, 28,600 pesos for sugarcane, and 32,500 pesos for aquacultural crops. Details of calculation process are set forth in Tables IX-2-2 to IX-2-4. Economic farm gate prices, as presented in Tables IX-2-5 and IX-2-6, were applied for the calculation of net income from paddy and sugarcane production.

(2) House and Building

The damagable value of house/building was estimated as the average value per unit; that is, 81,200 pesos for a residential house and 262,500 pesos for a non-residential building. This was calculated from the construction cost of a new house/building, floor area, distribution ratio and average depreciation ratio, as follows:

Class./ Quality	Const. Cost (P/m²)	Floor Space (m ²)	Depreci- ation	Distri- bution	Unit Value (P/unit)
(Residential Ho High Quality Mid. Quality Low Quality	use) 4,500 3,500 2,500	100 60 40	50% 50% 50%	4% 44% 52%	9,000 46,200 26,000
Total				100%	81,200
Class./ Quality	Const. Cost (P/m ²)	Floor Space (m ²)	Depreci- ation	Distri- bution	Unit Value (P /unit)
(Non-residentia Mid. Quality	l Building) 3,500	150	50%	100%	262,500

The basic data source for the above table is the Special Report No. 5, 1980 Census of Population and Housing, NCSO (data in Negros Occidental Province). The quality and its distribution was judged from the construction materials, and the average depreciation was calculated on the same data source as presented in Table IX-2-7.

The indoor movables or household effects are assumed to have a half value of their immovables; namely, 40,600 pesos for a residential house and 131,300 pesos for a non-residential building.

(3) Infrastructure

The unit damage value of infrastructures such as roads and railways was obtained in the same concept as the house and building, as tabulated below:

Item	Construction Cost (P/m)	Depreciation	Unit Value (P/m)
National Road	2,500	50%	1,250
Provincial Road	1,200	50%	600
Barangay Road	600	50%	300
Railway	1,000	50%	500
Irrigation Channel	200	50%	100

2.3 Damage Rate and Inundation Depth

The damage rates for each item vulnerable to flood damage have been determined in accordance with inundation depth, on the basis of interview at the site, flood damage records in the past and the technical standard for river and sabo works, Ministry of Construction, Japan. These rates are tabulated as follows:

Inundation Depth	Sugarcane	Paddy	Fishpond
less than 0.5 m	27%	21%	90%
0.5 m - 1.0 m	35%	24%	100%
more than 1.0 m	51%	37%	100%
Inundation Depth	House/	Indoor	Infra-
	Building	<u>Movables</u>	structure
less than 0.5 m	5.3%	8.6%	1.0%
0.5 m - 1.0 m	7.2%	19.1%	3.0%
1.0 m - 2.0 m	10.9%	33.1%	5.0%
more than 2.0 m	15.2%	49.9%	10.0%

Inundation depth was calculated by the mesh unit for the floods of 2-, 5-, 10-, 25-, 50- and 100-year return periods as discussed in the Supporting Report V, Flood Control.

2.4 Estimate of Flood Damage

Flood Damage at the Current Development Level

Direct flood damage was calculated in the concept of [Direct Damage] = [Unit Value] x [Quantity] x [Damage Rate], which was applied for each mesh in six (6) cases of flooding conditions; 2-, 5-, 10-, 25-, 50- and 100-year return periods.

Indirect damage is considered to be loss of productivity of the affected people, which was calculated as: [Number of Affected People] x [Per Capita GDP] x [Affected Period]. (Affected period is assumed to be one week for all the flooding conditions.)

Flood damage thus calculated are summarized as follows together with the number of affected people, and the details are presented in Table IX-2-8.

Flooding in Return <u>Period</u>	Direct Damage (mil. P)	Indirect Damage (mil. P)	Total Damage <u>(mil. P)</u>	Affected People (person)
2-year	67.4	1.0	68.4	4,623
5-year	199.6	5.8	205.2	27,759
10-year	272.9	8.1	281.1	38,743
25-year	331.2	9.3	340.6	44,403
50-year	371.3	9.8	381.1	46,706
100-year	396.2	9.8	405.9	46,917

Note: Figures may not add up to totals due to rounding.

Flood Damage in the Future (Target Completion Year)

The present land use in the flood-prone area stands on the almost fully developed stage, so that no drastic change would be expected in the future. The most reliable data to estimate the future flood damage is the population, which reflects on direct damage on the house/building and also indirect damage estimated on the number of affected people.

The future population in the river basin is projected, as discussed in the Supporting Report I. Socio Economy, to be about 519.1 thousand in 2020, the target completion year of the Master Plan, which is about 1.497 times as much as the present population. Based on this figure and the estimated flood damage at the current development level, the flood damages in 2020 were estimated as follows, and the details are presented in Table IX-2-9.

Flooding in Return <u>Period</u>	Direct Damage (mil. P)	Indirect Damage (mil. P)	Total Damage <u>(mil. P)</u>	Affected People (person)
2-year 5-year	74.0 247.4	1.4 8.7	75.4 256.1	6,921 41,555
10-year	343.6	12.1	355.7	57,998
25-year	422.9	13.9	436.8	66,471
50-year	479.1	14.6	493.7	69,919
100-year	514.2	14.7	528.9	70,235

Note: Figures may not add up to totals due to rounding.

2.5 Estimate of Annual Average Benefit

Flood control benefit is defined as the damage reduction by the designed works, and its annual average has to be obtained to identify the economic viability, which is discussed in the following subsection. In calculating the annual average benefit, reference should be made to probability or frequency of flooding in such cases as mentioned above. Based on the estimated flood damages in 2020 for each probable discharge, the annual average benefit was calculated using the following formula:

$$B = \sum_{i=1}^{n} \frac{1}{2} \cdot \left[D(Q_{i-1}) + D(Q_i) \right] \cdot \left[P(Q_{i-1}) - P(Q_i) \right]$$

where;

B: annual average benefit
$$D(Q_i-1), D(Q_i)$$
: flood damage caused by floods with Q_i-1 and Q_i discharge,
respectively. $P(Q_i-1), P(Q_i)$: probabilities of occurrence of Q_i-1 and Q_i discharges,
respectively. n : number of floods applied

The annual average benefit of the Master Plan is thus estimated at 126.6 million pesos. The calculation process is presented in Table IX-2-10.

3. ECONOMIC EVALUATION

The Master Plan has been evaluated from the economic viewpoint by figuring out the economic viability in terms of internal rate of return (IRR), benefit-cost ratio (B/C) and net present value (NPV), comparing the economic project cost and annual average benefit which may accrue in accordance with the expected cost-benefit flow in the project life.

3.1 Economic Project Cost

Economic costs of the project are nominal figures that duly reflect the true economic value of goods and services involved. These costs were used only for the economic evaluation of the project.

Transfer items such as taxes and duties imposed on construction materials and equipment, including government subsidy and contractor profit, were excluded from the elements of financial cost. It is assumed that about 20% of the financial construction cost is involved as the transfer items. The economic construction cost is thus estimated at 676.6 million pesos.

The estimated administration and engineering service costs are applied as the economic cost. Land will be acquired for project implementation, and its economic value is considered to correspond to the productivity foregone by the project, which is reflected by the estimated compensation cost. Price contingency, though physical contingency is included, is not considered in the economic cost.

3.2 Economic Viability of Alternative Study Cases

The Master Plan is put into implementation in tow phases in the following manner: Flood control works for a 25-year return period flood will be completed in the first phase as the Urgent Project, and subsequently it is upgraded to the design scale of a 100-year return period until the target year 2020.

Herein studied is the economic viability of the Master Plan as well as the Urgent Project only by comparing other cases. Study cases are set up by varying the project scale in the Phase I; namely, 50-, 25-, 10, and 5-year return periods. Annual cost-benefit flows were prepared basically in accordance with the implementation schedule or annual disbursement schedule, as shown in Tables IX-3-1 (for the Master Plan) and IX-3-2 (for the Phase I only).

The benefit is assumed to accrue during the construction period because some of the completed works may bring about flood control effect to a certain degree, and to increase gradually until the target year of 2020 and keep the same level until the end of project life. The estimated operation and maintenance cost is needed annually after project completion to keep duly the designed function.

The internal rate of return (IRR) of each alternative case is summarized as follows:

	' IRR	K (%)
Case	Mater Plan	Phase I
1. 50-Year to 100-Year	11.4	12.5
2. 25-Year to 100-Year	12.6	15.2
3. 10-Year to 100-Year	12.7	16.1
4. 5-Year to 100-Year	11.1	13.3
Note : No 2 is the selected ca	60	

Among the above cases, the Master Plan has the highest IRR, and the Phase I (Urgent Project) also shows a high enough economic viability of 15.2% in IRR.

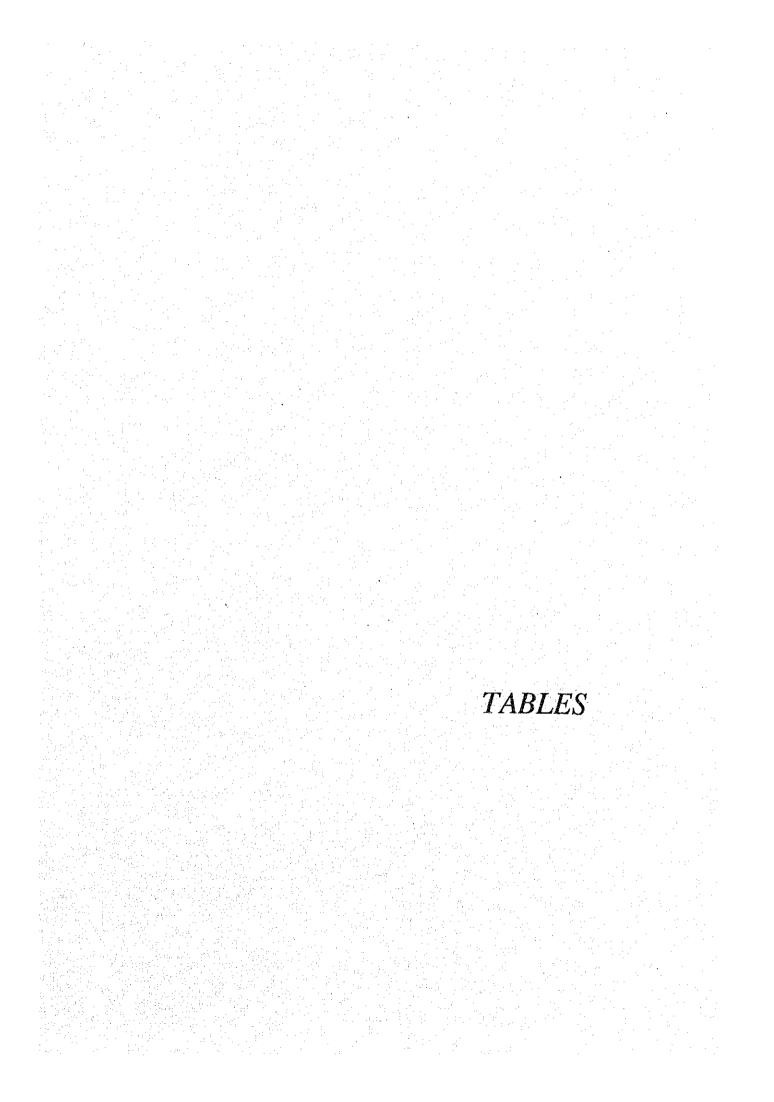
3.3 Economic Viability of the Master Plan

The economic viability of the Master Plan was assessed by means of IRR, B/C and NPV as mentioned above, which were calculated on the annual cost-benefit flow. A discount rate of 10% was applied for the calculation of B/C and NPV. The economic viability was figured out as follows:

IRR	:	12.6%
B/C	:	1.266
NPV	:	68.55 million pesos

3.4 Sensitivity Analysis

Sensitivity analysis of the above-said economic viability was carried out on several cases of changes in both the project benefit and economic construction cost as summarized below.


Case	<u>IRR (%)</u>	<u>B/C</u>	NPV (mil. P)
		1 100	05.00
1. Project benefit 10% down	11.4	1.139	35.90
2. Project benefit 20% down	10,1	1.013	3.25
3. Construction cost 10% up	11.6	1.161	45.20
4. Construction cost 20% up	10.7	1.072	21.85

4. PROJECT JUSTIFICATION

The IRR is the most reliable tool to economically justify a project and the borderlinein this kind of infrastructure project is generally around 10%. The economic viability analysis for the Master Plan shows an internal rate of return of 12.6%, and in any case of the sensitivity analysis, it is over 10% as presented above. The Master Plan is, therefore, evaluated to have an adequate economic viability.

Further, consideration is given to intangible benefits brought about by the project such as saving of invaluable human life that may possibly be lost by flooding, protection from possible injuries, and prevention of disease occurrence.

The number of people affected by a 100-year return period flood is estimated at as much as 70,000 in the year 2020, and all of them will be released from the menace of flooding by implementing the Master Plan. The Master Plan should then be put into implementation in the near future, considering the progress of development in the river basin.

Table IX-1-1 CLASSIFICATION OF FLOOD DAMAGES IN THE PHILIPPINES

	Classificat	ion	Brief Description
***************************************		Class A	Destruction or damage to property caused by direct action the floodwaters and cost of clean-up.
	Direct	Class E	Expenditures caused by flood emergency such as cost of emergency flood fighting measures and the rescue, relief, care and rehabilitation of flood victims.
TANGIBLE	Indirect	Class B	Loss of earning or loss of service due to interruption of agricultural, commercial, industrial, traffic, communications and other activities both within and outside the area subject to flooding.
		Class C	Increased expense of ususal operations.
		Class D	Depreciation of property values.
INTANGIBLE			Losses arising from interruption of normal, individual or collective social activity, mental and physical distress and to the personal risk of life and health endangered by floods including loss of life, as well as wildlife.

Source : Guide to Flood Damage Survey & Evaluation of Losses and Benefits, 1988, DPWH

Table IX-1-2 CLASSIFICATION OF FLOOD CONTROL BENEFIT IN THE PHILIPPINES

	Classification	D n	Assumption for Calculation
ntinge singe		Direct	(Estimation in the calculative manner)
	Primary	Indirect	5% to 20% of the direct benefit
			20% to 40% of the direct benefit
TANGIBLE	Casandanu	Secondary Stemming-From	- 10% to 20% of the direct benefit
	Secondary	Secondary (Induced-By)	
	Employment		15% to 20% of the construction cost
	Public		7% to 10% of the first cost of the project
INTANGIBLE			Impossible to be estimated. (Assessment in the descriptive manner)

Source : Guide to Flood Damage Survey & Evaluation of Losses and Benefits, 1988, DPWH

.

Table IX-2-1(1/6) DETAILED MESH DATA OF THE FLOOD PROME AREA

NO.	х	Y	SC (ha)	WP (ha)	CN (ha)	0C (ha)	FR (ha)	RS (ha)	VU (ha)	RC (ha)	FP (ha)	llS (no.)	NB (no.)	ХЯ (л)	PR (19)	BR (m)	RW (m)	IC (m)
1233455678910112131451617819201222342526728293031323343556378839404122434445467889061626364656676897772737475767787980818233455555758596612636465667689777273747576778798081823345555758596612636465667689777273747576778798081823345555758596612636465667689777273747576778798081823345555758596612636465667787787980818233455557585966126364656677877879808182334555578896612636465667787787980818233455557889661263646567787787980818233455575859661263646566778778798081823345555788966126364656778998818233455677877877877879881823345555758966126364656778778778778778798818233455678897772777879881823345555758966126364567789988182334555578896612636456778778778778778798818233485575578896612636456778778778778778798818238485767787878787878888888888888888888888	233333444444444444555555555555555555555	13 14 15 1 18 19 20 16 7 8 9 10 11 12 13 14 15 16 7 18 9 10 11 12 13 14 15 16 17 18 19 20 16 7 8 9 10 11 13 14 15 16 17 18 19 20 16 7 8 9 10 11 13 14 15 16 17 17 18 19 20 16 7 8 9 10 11 12 13 14 15 16 17 16 17 17 18 19 20 10 11 12 13 14 15 15 16 17 18 19 10 11 12 13 14 15 15 16 17 18 18 19 10 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18 18 19 20 10 11 12 13 14 15 15 16 17 18 19 20 5 17 18 19 20 5 18 19 20 5 18 19 20 5 18 19 20 5 18 19 20 5 18 19 20 5 18 19 20 5 18 19 20 5 18 19 19 20 5 18 19 19 20 5 18 19 19 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c} 0.3\\ 2.0\\ 3.2\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			3.2 3.2 10.5 2.0 1.2 0.4 17.2 4.4 17.2 4.7 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			$\begin{array}{c} 165\\ 49\\ 19\\ 7\\ 5\\ 0\\ 24\\ 31\\ 0\\ 8\\ 10\\ 21\\ 12\\ 2\\ 9\\ 0\\ 2\\ 0\\ 7\\ 0\\ 1\\ 1\\ 2\\ 9\\ 0\\ 2\\ 0\\ 7\\ 0\\ 1\\ 1\\ 2\\ 9\\ 0\\ 1\\ 1\\ 2\\ 3\\ 5\\ 6\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$		$\begin{array}{c} 240\\ 240\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	530 500 500 500 520 0 0 0 0 0 0 0 0 0 0 0 0 0			$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $
				esident gay Roa		lding RW:Rail	way		NR:Natio IC:Irrig			nx:Nat	fonal f	1080	PRIPTON	/incial i	кодо	

Table IX-2-1(2/6) DETAILED MESH DATA OF THE FLOOD PRONE AREA

.

16 0 0 0.0 0.0 0.0 1.2 1.3 1.5 4 2 0 <
RS(Residentia) Illillouced Of Otwas Channel Childen and US. Vaura

Table IX-2-1(3/6) DETAILED MESH DATA OF THE FLOOD PRONE AREA

****	****		SC	WP	CN	0C -	FR	RS	ບບ	RC	FP	нs	N8	N9	PR	BR	RW	IC
NO.	X 14	Y 17	(ha) 17.7	(ha) 3,9	(ha) 3.4	(ha) 0.0	(ha) 0.0	(ha) 0,0	(ha) 0.0	(ha) 0.0	(ha) 0.0	(no.) 0	(no.) 0	(m) 0	(n) 0	(m) 0	(m) 0	(m) 0
172 173	14 14	18 19	20.1 23.7	1.5 0.6	0.0 0.0	$0.0 \\ 0.0$	0.0 0.0	3.4 0.5	0.0	0.0 0.2	$0.0 \\ 0.0$	48 17 36	8 0 0	0 0 0	280 540 420	600 180 0	0 0 0	0 0 240
174 175 176	14 14 14	20 21 22	13.1 11.9 12.1	10.0 11.5 12.6	0.5 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.3	$0.0 \\ 0.0 \\ 0.0$	1.4 1.6 . 0.0	0.0 0.0 0.0	36 10 7	0	· 0 0	280 420	0 0	0	540 680
177 178	14 14 15	23 24 2	19.5 13.8	2.1	0.2 0.0 0.8	0.0 2.2 0.0	0.0 0.0 0.0	3.2 2.7 0.0	0.0 4.6 17.5	0.0 1.7 0.0	0.0 0.0 6.7	38 56 0	6 3 0	1,040 0 0	0 1,220 0	0 260 0	0 0 0	1,000 0 0
179 180 181	15 15 15	3 4	$0.0 \\ 0.0 \\ 0.0 \\ 0.0$	0.0 0.0 0.0	0.5	0.0 0.0	0.0	$0.0 \\ 0.0$	0.0 0.0	2.1 0.0	22.4 25.0	0	0	· 0 0	0	0	0	0 0 0
182 183 184	15 15 15	5 6 7	0.0 0.0 0.0	0.0 0.0 0.0	1.6 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.7 0.9	0.8 0.2 0.0	22.6 24.1 24.1	0 1 0	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0
185 186	15 15	- 8 - 9	4.3 0.0	0.0 0.0	5.9 3.7	0.0	0.0	0.0	1.0	0.0	13.8 21.2 0.0	0 7 1	0 0	0 0 504	0 160 520	0 0 540	0 0 0	0 0 0
187 188 189	15 15 15	10 11 12	23.4 19.0 21.0	0.0 0.0 0.0	1.1 1.3 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.5	0.5 0.0 2.0	0.0 4.7 1.5	0.0	6 11	03	0	860 Q	0 440	0	0
190 191 192	15 15 15	13 14 15	23.0 24.0 22.6	0.0 0.0 0.0	1.1 0.2 0.5	0.0 0.0 0.0	0.0 0.0 0.0	0.7 0.8 1.9	$0.0 \\ 0.0 \\ 0.0 \\ 0.0$	0.2 0.0 0.0	0,0 0.0 0.0	17 15 31	2 0 2	0 0 300	0 0 140	920 700 440	0 540 0	440 0 - 300
-193 194	15 15	16 17	11.9 22.2	12.7 2.8	0.4	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	$0.0 \\ 0.0$	0 4	0 0	22 0 0	0 560 880	340 540 0	0 0 0	160 0 0
195 196 197	15 15 15	18 19 20	21.3 11.6 3.3	2.2 13.0 21.7	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.5 0.4 0.0	0.0 0.0 0.0	$0.0 \\ 0.0 \\ 0.0$	0.0 0.0 0.0	33 11 0	0	0	0 140	0	0 0	0 1,360
198 199	15 15	21 22	3.8 11.7	20.9 8.4	0.0 2.9	0.0	0.0 0.0 0.0	0.2 0.7 2.9	0.0 0.0 0.0	0.1 1.3 1.2	0.0 0.0 0.0	11 20 54	0 0 9	0 0 450	550 440 0	0 450 0	0 0 0	900 0 0
200 201 202	15 15 16	23 24 1	19.7 6.9 0.0	0.0 2.4 0.0	12 2.5 1.7	0.0 2.0 0.0	0.0	9.3 0.0	0.8 16.2	1.1 0.0	0.0	84 0	18 0	0	1,040 0	640 0	0	620 0
203 204 205	16 16 16	2 3 4	0.0 0.0 0.0	0.0 0.0 0.0	3.0 4.1 7.5	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	3.1 7.4 13.0	18.9 13.5 4.5	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
205 206 207	16 16	5 6	0.0 1.8	0.0	14.7 4.5	0.0 0.0	0.0	0.0 0.0	0.0	7.1 6.7	3.2 11.8	0	0	0	0	0	0 0 0	0 0 0
208 209 210	16 16 16	7 8 9	0.5 1.8 16.4	0.0 0.0 0.0	3.8 2.3 3.4	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.5 0.4 0.2	7.9 7.5 0.9	12.3 13.0 4.1	9 3 5	0 1 0	00	0 0 0	0 0 340	0	0 0
211 212	16 16	10 11	0.0 14.6	0.0	1.6	0.0	0.0	1.3 2.7	0.4	2.9 5.2 6.4	18.8 0.0 0.0	25 49 36	6 15 6	280 380 0	140 160 0	640 280 740	0	0 0 0
213 214 215	16 16 16	12 13 14	15.8 24.8 24.9	0.0 0.0 0.0	0.4 0.0 0.0	0.0 0.0 0.0	$0.0 \\ 0.0 \\ 0.0 \\ 0.0$	2.2 0.0 0.0	0.2 0.0 0.1	0.2	$0.0 \\ 0.0$	0	0	0	0 0	840 660	160 460	440 960
216 217 218	16 16 16	15 16 17	22.1 20.7 23.4	0.9 4.1 1.6	2.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.2 0.0	0.0 0.0 0.0	0.0 0.0 0.0	5 1 1	0 0 0	500 0 0	0 0 0	460 400 500	0 0 0	440 940 240
219 220	16 16	18 19	20.9 6.7	2.4 14.0	1.3 2.3	0.0	0.0	0.4 2.0	0.0	0.0	0.0	14 23	4 2 0	0 0	520 400 0	540 0 0	140 0 0	000000000000000000000000000000000000000
221 222 223	16 16 16	20 21 22	0.0 9.5 8.3	25.0 15.5 16.1	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.5	0.0 0.0 0.0	0.0 0.0 0.0	0 7 11	0	000000000000000000000000000000000000000	90 480	0	0	340 550
224 225	16 16	23 24	12.0 5.4	8.1 14.1	0.0 2.1	0.0	0.0	4.9 3.3	0.0 0.1 22.0	0.0 0.0 0.0	0.0 0.0 3.0	37 27 0	6 1 0	840 200 0	0 540 0	0 340 0	0 0 0	720 580 0
226 227 228	17 17 17	1 2 3	0.0 0.0 0.0	$0.0 \\ 0.0 \\ 0.0$	$0.0 \\ 0.0 $	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0	25.0 25.0	1 0	0	0 0	0	0	0	0
229 230 231	17 17 17	4 5 6	0.0 0.0 0.0	0.0 0.0 0.0	0.0 3.5 0.5	0.0 0.0 0.0	0.0 0.0 0.0	$0.0 \\ 0.0 \\ 0.0$	1.1 1.3 0.5	0.0 4.3 0.0	23.9 15.9 24.0	0 0 4	0 0 0	000	0 0 0	0 0 0	0 0 0	0 0 0
232 233	17 17	7 8	0.0 2.6	$0.0 \\ 0.0$	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.2 0.3	0.0 0.4	24.8 21.7	0	0	0	0 200	0	0	0 0 0
234 235 236	17 17 17	9 10 11	16.5 20.0 21.4	0.0 0.0 0.0	0.5 3.0 3.2	0.0 0.0 0.0	0.0 0.0 0.0	$0.6 \\ 0.0 \\ 0.0$	0.1 0.0 0.4	6.1 2.0 0.0	1.2 0.0 0.0	11 19 8	5 1 2	0 0 530	485 0	580 100 300	0	0
237 238	17 17	12 13	19.2 25.0	0.0	0.2 0.0	0.0 0.0	0.0	0.0 0.0	0.2	5.4	0.0	3 0 0	0 0 0	0 0 0	0	0 360 0	120 520 1,100	480 340 580
239 240 241	17 17 17	14 15 16	25.0 24.6 25.0	0.0	$0.0 \\ 0.0 \\ 0.0$	$0.0 \\ 0.0 \\ 0.0 \\ 0.0$	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.4 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1 0	0 0	530 0	0	0 500	0	640 1,300
242 243	17 17	17 18	25.0 24.7	0.0 0.3	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0	0 0 48	0	0 500 0	0 360 640	260 340 160	0 500 0	1,040 640 720
244 245 246	17 17 17	19 20 21	16.9 9.7 17.9	3.7 14.9 1.7	0.3 0.0 0.5	0.0 0.0 0.0	0.0 0.0 0.0	4.1 0.4 4.9	0.0	0.0	$0.0 \\ 0.0$	7 32	0 4	0	0 660	0	0	· 0
247 248	17 17	22 23	20.3 16.4	1.7 8.0 24.0	0.7 0.0	0.0 0.0 0.0	0.0 0.0 0.0	2.3 0.6 0.0	$0.0 \\ 0.0 \\ 0.1$	0.0	0.0 0.0 0.0	37 11 1	10 1 0	480 140 0	300 440 0	0	0 480 0	0 970 1,600
249 250 251	17 17 18	24 25 1	$0.8 \\ 1.5 \\ 0.0$	18.5 0.0	0.1 2.8 0.0	0.0 0.0	0.0 0.0	2.0 0.0	0.2 16.8	0.0 0.0	0.0 8.2	30 0	0	0 0	380 0	180 0	0	700
252 253 254	18 18 18	2 3 4	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 6.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.6	24.4 25.0 23.0	0 0	0 0 0	0 0	0 0 0	0	0 0 0	0
255	18	5 ****	0.0	0.0	0.3	0.0	0.0	0.0	0.5	0.0	24.2	1	1	Ŏ	0 FR:Fore	0	Ö	0
	Note	Į	SC:Sugar RS:Resid NR:Non-r		ial Bui	WP:Wet UU:Unus 1ding	ed	R N	N:Cocon C:River R:Natio	Channe nal Roa	1 đ	FP:Fis	hard h Pond ional f	load	HS:Hous PR:Prov	e	Road	
		I	BR:Barar	ngay Roa	đ	RW:Ra 1 1	way	I	C:Irrig	ation C	nannel		2.5					

Table 1X-2-1(4/6) DETAILED HESH DATA OF THE FLOOD PRONE AREA

225 15 6 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE IX-2-1(5/6) DETAILED MESH DATA OF THE FLOOD PRONE AREA

			SC	WP	CN	0C	FR	RS	80	RC	FP	HS	NB	ŅR.	PR	8R	RW	jc
NO. 341	Х 21	ү 13	(ha) 25.0	(ha) 0.0	(ha) 0,0	(ha) 0.0	(ha) 0.0	(ha) 0.0	(ha) 0.0	(ha) 0.0	(ha) 0.0	(no.) ************************************	(no.) 0	(៣) 0	0	(m) 0	(m) 540	(m) 600
342 343 344	21 21 21	14 15 16	25.0 16.2 24.7	0.0 0.0 0.0	0.0 2.1 0.0	0.0	$0.0 \\ 0.0 \\ 0.0 \\ 0.0$	$0.0 \\ 6.4 \\ 0.0$	0.0 0.3 0.0	0.0 0.0 0.3	0.0 0.0 0.0	1 74 6	0 13 1	20 680 70	500 1,200 220	0 0 0	510 430 720	360 500 0
345 346 347	21 21 21	17 18 19	20.0 9.3 19.5	0.0 0.0 0.0	2.1 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	2.9 7.8 5.5	0.0 0.4 0.0	0.0 7.5 0.0	0.0 0.0 0.0	15 106 62	6 24 16	0 400 0	840 280 520	0 0 60	0	. 0 0
348 349	21 21	20 21	24.9 22.7	0.0	0.0	0.0 0.0	0,0 0.0	$0.0 \\ 1.5$	0.1 0.0	$0.0 \\ 0.0$	0.0 0.0	0 12	0 2	0	540 0	500 370 0	0 520 0	0
350 351 352	21 21 21	22 23 24	23.5 15.8 14.8	0.0 0.0 0.0	0.2 0.1 0.0	0.0 0.0 0.2	0.0 0.0 0.0	0.0 0.0 5.6	$0.0 \\ 4.9 \\ 1.8$	1.3 4.2 2.6	0.0 0.0 0.0	9 0 180	1 0 15	0 0 0	900 0 0	540 840	0 0	Ó
353 354 355	21 21 21	25 26 27	24.4 24.8 24.8	0.0 0.0 0.0	0.2 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.4 0.2 0.2	0.0 0.0 0.0	0.0 0.0 0.0	23	0 0 0	0 420 380	0 940 1,100	140 0 0	0 0 0	0 640 1,940
356 357	21 22	28 2	25.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 8.8	0 0 0	0 0 0	0 0	1,150 0 0	0 0 0	0 0 0	540 0 0
358 359 360	22 22 22	3 4 5	0.0 0.0 0.0	0.0 0.0 6.6	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	25.0 25.0 18.4	0 0	0	0	0	0	0	0
361 362 363	22 22 22	6 7 8	0.0 12.6 8.8	17.5 10.0 6.2	0.0 1.7 9.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.5 0.2 0.0	0.0 0.0 0.0	7.0 0.5 1.0	6 26 24	1 2 2	0. 0 0	200 580 380	0 0 0	· 0 0	0 0 0
364 365 365	22 22 22 22	9 10 11	14.5 23.7 0.0	6.9 0.0 24.4	3.6 1.1 0.2	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.3	0.0 0.2 0.1	0.0 0.0 0.0	0.0 0.0 0.0	0 2 6	0 1 5	0 0 220	820 1,320 200	0	0 0 0	0 500 400
367 368	22 22	12 13	22.4 24.6	0.0	$1.4 \\ 0.4$	0.0 0.0	0.0 0.0	$1.0 \\ 0.0$	0.0	0.2	0.0	27 7	0 0 2	0 0 0	260 0 0	0 620 590	760 190	460 520 1,780
369 370 371	22 22 22	14 15 16	24.4 25.0 18.2	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.6 0.0 6.8	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	3 0 93	0 20	0 600	0 760	0 0	220 380	1,540 330
372 373 374	22 22 22	17 18 19	10.8 3.8 7.5	0.0 0.0 0.0	0.1 2.6 1.8	0.0 0.0 0.0	0.0 0.0 0.0	14.1 16.9 9.0	0.0 0.0 0.0	0.0 1.7 6.7	0.0 0.0 0.0	195 401 179	41 45 11	440 640 0	1,580 500 700	580 0 0	0 0 0	0 0 0
375 376 377	22 22 22	20 21 22	24.8 21.3 21.2	0.0 0.0 0.0	0.0 0.0 0.4	0.0 0.0 0.0	0.0	0.0 0.2 0.0	0.2 0.0 0.2	0.0 3.5 3.2	0.0 0.0 0.0	0 5 13	0	0 200 0	680 640 340	800 0 160	0 0	0 0 0
378 379	22 22	23 24	24.0 20.5	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.4 0.6	0.6 3.9 5.0	0.0 0.0 0.0	0 0 23	0	0 0	600 1,200 360	900 0 340	0 360 0	0 340 0
380 381 382	22 22 22	25 26 27	18.7 14.8 23.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.4	0.9 0.0 1.5	0.4 0.6 0.1	9.6 0.0	0.0 0.0	0 10	0 9	0 740	700 260	0 140	0 540	0 1,320
383 384 385	22 22 23	28 29 2	22.2 20.5 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	2.2 0.0 0.0	0.0 4.0 15.0	0.6 0.5 0.0	0.0 0.0 10.0	11 0 4	4 0 0	0 0 0	1,470 0 0	0 450 0	130 0 0	620 200 0
386 387 388	23 23 23	3 4 5	0.0	0.0 0.0 5.3	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	25.0 25.0 19.7	0 0 0	0 0 0	. 0 0 0	0 0	0 0 0	0.0	0 0 0
389 390	23 23	6 7	0.0 0.6	21.5 21.1	0.9 0.0	0.0	0.0 0.0	1.0 3.3	0.0	0.0	1.6 0.0	48 39	8 9	0 0	400 500	0 140	0 0	0 0
- 391 392 393	23 23 23	8 9 10	2.2 22.7 24.2	8.0 1.8 0.7	7.5 0.5 0.0	0.0 0.0 0.0	0.0 0.0 0.0	3.8 0.0 0.0	1.5 0.0 0.1	0.0 0.0 0.0	2.0 0.0 0.0	86 1 3	8 1 1	440 300 0	980 500 220	0 600 0	0 0 0	0 0 .90
394 395 396	23 23 23	11 12 13	22.4 25.0 24.1	0.0 0.0 0.0	1.8 0.0 0.3	0.0 0.0 0.0	0.0 0.0 0.0	0.8 0.0 0.6	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	6 0 34	. 4 0 0	500 0	320 0 0	0 580 60	0 0 500	0 1,240 900
397 398	23 23	14 15	24.2 20.7	0.0 0.3	0.0	0.0 0.0	0.0	0.8 3.5	0.0 0.2	0.0 0.0	0.0 0.0	14 60 124	0 8 28	200 540 600	0	940 580 0	0 100 500	1,200 720 640
399 400 401	23 23 23	16 17 18	12.0 0.9 2.2	1.1 0.4 0.9	0.0 0.1 0.0	0.0 0.0 0.0	0.0 0.0 0.0	11.9 23.6 21.9	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	374 412	62 32	1,000 0	0	0	580 0	0 0
402 403 404	23 23 23	19 20 21	3.7 16.8 20.6	0.0 0.0 0.0	0.0 0,0 0.2	0.0 0.0 0.0	0.0 0.0 0.0	19.7 0.0 0.0	$0.0 \\ 1.3 \\ 1.3$	1.6 6.9 2.9	0.0 0.0 0.0	339 9 1	30 0 0	0 0 0	400 0	0 100 860	0 0 0	0 0 260
405 406 407	23 23 23	22 23 24	24.0 24.9 24.9	0.0 0.0 0.0	0.2 0.0 0.0	0.4 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	$0.0 \\ 0.1 \\ 0.1$	0.4 0.0 0.0	0.0 0.0 0.0	11 0 0	1 Q 0	· 0 0	0 500 0	800 520 740	0 0 560	440 600 600
408 409	23 23	25 26	23.0 16.8	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	8.0 0.0	0.0 3.3	1.2 4.9	$0.0 \\ 0.0$	23 0	1	Š O O	460 .0	160 0	0 0 0	700 0 300
410 411 412	23 23 23	27 28 29	17.2 22.0 23.5	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.9 0.5 0.0	6.9 2.5 1.5	0.0 0.0 0.0	0 2 5	0 0 0	0 0	300 620 0	420 0 250	90 320	500 0
413 414 415	24 24 24	2 3 4	0.0 0.0 0.0	0.0 0.0 0.8	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	13.5 0.0 0.3	0.0 0.0 0.0	11.5 25.0 23.9	1 0 1	0	0 0 0	0 0 0	0 0 0	0	· 0 · 0.
416 417	24 24	5 6	0.0 0.0	13.7 20.4	0.0	0.0	0.0 0.0	0.0 0.0	2.2 0.0	0.0	9.1 4.6 3.5	18 0 62	1 0 5	0 0 0	0	0	0	80 0 0
418 419 420	24 24 24	7 8 9	5.4 4.4 16.8	11.2 0.0 0.0	1.5 3.8 1.1	0.0 0.0 0.0	0.0 0.0 0.0	3.1 0.9 0.0	0.0 1.1 0.0	0.3 3.2 4.0	11.6 3.1	12 12	1 5	· 0 0	0 260	120 840	0	200
421 422 423	24 24 24	10 11 12	9.4 3.5 12.2	3.0 1.9 12.1	3.9 3.8 0.5	0.0 0.0 0.0	0.0 0.0 0.0	1.0 15.8 0.0	0.2 0.0 0.2	0.0 0.0 0.0	7.5 0.0 0.0	16 178 21	1 69 2	0 . 80 . 0	520 820 540	0 0 0	0	0 0 - 0
424 425	24	13 14	22.8 19.9	0.0 2.9	0.0	0.0	0.0	2.2 1.9	0.0 0,3	0.0 0.0	0.0 0.0	25 16	4 3	540 240	340 5G0	0	870 530	0 820
	Note	: ; ; ;	SC:Sugar SS:Resid VR:Non-r SR:Baran	cane lent la l es ident	ial Bui	WP:Wet VV:Vnus	Paddy ed	C R N	N:Cocon C:River R:Natio C:Irrig	Channe nal Roa	ł	OC:Oro FP:F1s			FR:Fore HS:Hous PR:Prov	8	Road	

Table IX-2-1(6/6) DETAILED MESH DATA OF THE FLOOD PRONE AREA

****	1231123	цары	******			******	******				******			******	*****		******	
NO.	X	Y	SC (ha)	WP (ha)	CN (ha)	0C (ha)	FR (ha)	RS (ha)	600 (ha)	RC (ha)	FP (ha)	HS (no.)	N8 (no.)	NR (m)	РЯ (m)	BR (m)	R\ (m)	ЭІ (т)
426 427	24 24	15 16	24.2 23.5	0.0	0.2 0.3	0.0 0.0	0.0	0.4	0.0	0.2	0.0 0.0	12 12	0	0 420	820 0	0 380	440 0	1,940 1,100
428 429	24 24	17 18	10.6 20.7	2.7 0.4	$0.4 \\ 0.0$	0.0	0.0 0.0	9.9 3.5	0.3 0.4	$1.1 \\ 0.0$	0.0 0.0	49 96	11 7	520 470	0 360	2,520 0	0 460	960 0
430 431	24 24	19 20	22.2	1.8	0.0	0.0	0.0	$1.0 \\ 0.0$	0.0	0.0	0.0	31 2	- 0	980 660	450 360	0 0	500 500	0 480
432	24	21	24.8	0.0	0.0	0.0	0.0	0.0 0.0	0.2	0.0	0.0	Ū 0	ů o	520	540 440	ů o	520	240
433 434	24 24	22 23	24.9 24.9	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0	0	560 0	1,020	320	540 520	200 780
435 436	24 24	24 25	20.7 19.5	0.2	0.0	0.0	0.0 0.0	1.2 0.0	0.1 3,3	0.0 2.0	0.0	2 8	2 0	0	650 0	0 640	660 0	820 0
437 438	24 24	26 27	23.4 21.7	0.0	0.0 0.0	0.0	0.0 0.0	0.0	1.3 0.3	0.3 3.0	$0.0 \\ 0.0$	0 0	0 0	0	: 0	860 1,110	0	0 0
439 440	24 24	28 29	0.0 19.5	15.8 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	5.2 0.0	4.0	0.0	0	0	0	0	0 310	0 310	0
441 442	24 25	30 3	15.4	0.0	0.0	0.0	3.3 0.0	0.0	4.9 0.7	1.4 7.3	0.0	3 7	0	Ô	Ó O	540 0	510 0	Ő
443	25	4	0.0	2.3	0.0	0.0	0.0	0.0	1.4	2.6	18.7	7	3 8	0	0	ŏ	0	0
444 445	25 25	5 6	0.0 12.2	11.4	0.0	0.0	0.0	0.0	0.0	3.2 0.0	9.2 0.0	42 5	2	0	0	800	0	0
446 447	25 25	7 8	5.5 11.2	0.0	1.5 3.5	0.0 0.0	0.0 0.0	$1.9 \\ 0.0$	0.5 0.2	4.6 1.2	11.0	41 8	3 1	0	0 0	420 0	0	0
448 449	25 25	9 10	3.7	2.5 0.0	0.0 3.3	0.0 0.0	0.0	0.0 2.5	0.0	$1.5 \\ 1.9$	17.3 11.1	5 26	0 3	0	0 0	0	0	0
450 451	25	11 12	12.6	0.0	13 55	0.0	0.0	10.6 2.5	0.5	0.0	0.0	172 34	16 0	650 0	80 0	240 0	0	900 0
452 453	25 25	13 14	15.2	0.9	6.1 0.0	0.0	0.0	2.6	0.2	0.0	0.0	35 0	2	0 0	0 420	680 0	540 0	490 360
454	25	15	12.1	11.8	0.0	0.0	0.0	0.3	0,0	0.9	0.0	10	0 0	0	0	ŏ	Ō	920
455 456	25 25	16 17	13.2	10.8 13.7	0.8	0.0	0.0	0.0	0.0	0.0	0.0	14 12	2	560 0	180 300	0	0	820 440
457 458	25 25	18 19	· 3.1 4.8	20.7 20.1	0.9 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.1	0.3	0.0 0.0	5 3	0	0	0	80 220	0	0 820
459 460	25 25	20 21	2.4 22.1	22.5	0.0 0.0	0.0 0.0	0.0 0.0	0.0	$\begin{array}{c} 0.1\\ 0.1 \end{array}$	0.0 0.0	0.0	19 0	0 0	0	48D 530	320 0	0	680 1,500
461 462	25 25	22 23	25.0 24.9	0.0	0.0	0.0	0.0 0.0	$0.0 \\ 0.0$	0.0	0.0	0.0 0.0	0	0	0 540	500 500	0	0	800 980
463 464	25 25	24 25	20.4 12.3	0.6	0.2	0.4	0.0	3.0 0.0	0.4	0.0 4.5	0.0	34 0	3	0	900 0	420 180	1,510	960 0
465 466	25 25	26 27	24.3 21.2	0.0	0.2	0.0	0.0	0.0	0.2	0.3	0.0	1 3	0	0 0	1,580	0 800	0 130	200 900
467	25	28	0.0	17.6	7.4	0.0	0.0	0.0	0.0	0.0	0.0	0	Ō	Ō	Ō	0	0	0
468 469	25 25	29 30	23.4 17.5	0.0	0.0	0.0	0.0	1.6 0.2	0.0	0.0 4.9	0.0	23	0	0 0	0	0	160	0
470 471	26 26	10 11	8.4 12.4	0.6	1.5 3.5	0.0	0.0	$0.9 \\ 1.3$	1.3 0.9	1.9 1.3	10.4 5,2	27 26	8 10	560 220	0	0	0 Q	0
472 473	26 26	12 13	5.0 13.5	5.3 5.6	11.1 2.3	0.0 0.0	0.0 0.0	0.0 1.6	0.4 0.9	1.8 0.1	1.4 0.0	1 33	0 2	0	0	0	0 740	0 540
474 475	26 26	14 15	8.4 4.4	16.5 19.6	0.0 0.0	$0.0 \\ 0.0$	0.0 0.0	0.0	0.0 0.0	0.1 0.0	$0.0 \\ 0.0$	0	0	0 150	0	0	520 0	1,460 2,580
476 477	26 26	-16 17	5.5 5.0	15.4 18.0	3.0 2.0	0.0	0.0	$1.0 \\ 0.0$	0.1 0.0	0.0 0.0	0.0	11 7	3	0	420 0	0	0	1,250 180
47B 479	26 26	18 19	2.4	17.8 20.5	1.6 0.0	0.0	0.0 0.8	0.0	0.4 0.0	2.8	0.0	24 0	ŏ	Ŭ Đ	300 0	Ŏ	ů o	0 420
480	26	20	5.4	16.3	0.0	0.3	0.0	0.0	3.0	0.0	0.0	12	2	Ó	420	Ó	0	520
481 482	26 26	21 22	5.5 10.0	15.6 4.3	$1.0 \\ 0.0$	0.0	2.5	0.4	0.0	0.0	0.0	25 21	0	0	300 0	560 1,260	0	520 680
483	26 26	23 24	16.3 24.0	0.6 0.0	0.4 0.2	0.0 0.0	6.5 0.0	0.0 0.0	0.0 0.8	1.2 0.0	0.0	40 7	0 0	540 0	300 500	0 300	0 540	220 520
485 486	26 - 26	25 26	11.7 22.8	0.0	1.0	0.0	0.0	0.0 0.0	6.7	5.5	0.0 0.0	0	0	0	0 520	0	0 340	1,280 540
487 498	26 26	27 28	25.0 0.0	0.0 23.6	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0	0	0	0 0	670 0	710 0	1,440 1,040
489 490	26 26	29 30	22.7 19.7	1.4	0.0 0.0	0.0	0.0	0.9	0.0	0.0	0.0	18 27	Ŭ 4	Ŏ	ŏ	Ŏ	ů 0	0
491	27	12	6.5	10.1	7.0	0.0	0.0	0.0	0.6	0.8	0.0	8	0	Õ	ò	ō	600	200
492 493	27 27	13 14	4.9	15.6	3.3 0.2	0.0	0.0 0.0	1.2	0.0	0.0 0.0	0.0	27 14	0	0	350	0	480 0	1,900
494 495	27 27	24 25	9.5 19.0	0.0 0.0	0,4 0.0	0.0 0.0	0.0 0.0	1.9	6.8 1.5	5.4 4.5	$0.0 \\ 0.0$	62 0	4 0	280 0	1,020 540	0 1,000	660 0	0 0
496 497	27 27	26 27	20.8	0.0 0.0	0.2 0.0	0.8	0.0	3.0 0.0	0.0 0.0	0.2 0.0	0.0 0.0	27 0	- 8 0	0 260	640 0	340 0	540 260	1,220 0
498 499	27	28 29	25.0 23.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1 29	0	550 580	Ö Ö	0 0	550 680	1,430
500		30	8.8	6.6	0.0	0.0	9.6 ******	0.0	0.0	0.0	0.0	0	0 	0	0		0	0
	Note		SC:Sugar RS:Resid			WP:Wet UU:Unus			N:Cocon C:River			OC:Orc FP:Fis			FR:For HS:Hou			
			NR:Non-r	esident	tal But	lding		1	R:Natio	nal Roa	đ		tonal R	oad		vincia)	Road	•
			BR:Baran	igay kua	u .	RW:Ra 1 h	nay	4	C:Irrig	ation C	nanue 1							

Item			Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
			*******	***			****	*****	******	*****	****	****	******	*****
1. Cropping Pattern			*******	; *******	* ***			* * **	******	******	*******	* ****	* * ***	*****
2. Planted Area	1st	Crop					25%	75%	100%	100%	75%	25%		
	2nd	Crop	100%	75%	25%							25%	75%	100 ^s
3. Accum. Cost	1st	Crop					16%	38%	54%	74%	85%	100%		
	2nd	Crop	74%	85%	100%							16%	38%	549
. Flood Frequency	(%)						4%	8%	25%	29%	13%	13%	8%	
5. 2 x 4	1st	Crop	0%	0%	0%	0%	1%	6%	25%	29%	10%	3%	0%	05
	2nd	Crop	0%	0%	0%	0%	0%	0%	0%	0%	0%	3%	6%	09
5. Damageable Value*	1st	CROP	0	0	0	0	86	611	2,832	3,703	1,322	476	0	0
(P/ha)	2nd	CROP	0	0	0	0	0	0	0	0	0	279	611	0

Table IX-2-2 AVERAGE DAMAGEABLE VALUE OF PADDY

Average Damageable Value (P/ha) = 9,919 (9,900)

Remarks : a. Production Cost (P/ha) = 7,200 b. Yield (ton/ha) = 3.0 c. Economic Price (P/ton) = 4,880

d. Net Incone (P/ha) = 7,440

(b. x c. - a.)

Note $* : 5 \times (3 \times a + d)$

Basic Source of Data :

- Price Prospects for Major Primary Commodities, 1988-2000, The World Bank - Updated Costs and Returns 1985-1989, AEADIS, AASID
- Policy Implication of a Five Peso Support Price of Palay to Farmers' Incentives, Profitability and Economic Efficiency Under an Import Substitution Trade Regime: A Preliminary Analysis, L.A. Gonzales, International Food Policy Research Institute

- Interim Report for Study of Agno River Basin Flood Control, JICA

Item	Jan.	Feb.	Mar.	Apr.	May	dun.	Jul.	Aug.	Sep.	Oct.	Nov.	Deca
	******	******	******	******	******	******	*****	******	******	******	******	****
. Cropping Pattern										ж	×	*
a oropping racion	* *	*										
	*****	******	; ;*******	*****	******	******	******	******	******	******	*******	****
2. Planted Area									~	103	30%	5
	70%	90%	100%	100%	100%	100%	100%	100%	100%	90%	70%	5
	30%	10%	1000	100%	100%		100.5	1000	1003			
	001	100										
3. Accum. Cost			~							5%	11%	18
	26%	35%	46%	52%	59%	65%	71%	78%	84%	89%	94%	97
	99%	100%	***									
4. Flood Frequency (%)					4%	8%	25%	29%	13%	13%	8%	
5.2 x 4										1%	2*	(
	0%			 0%	4%	8%	25%	29%	13%	12%	6%	(
· · ·	0%	0%										
6. Damageable Value*		·	,							190	379	(
(P/ha)	0	0	0	• 0	1,015	2,128	6,950	8,468	3,952	3,674	1,814	(
	0	0										
											•	
	··········											
verage Damageable Value (P/ha	l) = Z	8,571	(= 2	8,600)							
Remarks :												
a. Production Cost (P	/ha) = 2	0,000										
b. Yield (ton/ha) =		70.0						1.1				
c. Economic Price (P/	'ton) =	480										
d. Net Income (P/ha)	- 1	3,600										
(b x c - a)								•				
Note + . C . (2												
Note *:5x(3xa+d)												
Basic Source of Data : -	Price Pr	osnects	for Ma	tion Pri	imary fr	voovliti	loc 100	8-2000	The W	orld Bar	1 4	
	Updated	•		+	-		-	-		or ia bai	in.	
	spaarood	u				,	.1 .4010					

Table IX-2-3 AVERAGE DAMAGEABLE VALUE OF SUGARCANE

I t e m		Jan.	Feb.	Mar.	Apr.	May	Jan.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
		*******	******	******	*	*	******* *	*****	******	*****	*.	1	******
. Cultivation Calera	ler	*******	*****	******	* * *******	ł	* *	******	******	******	* * ******	*	**.
2. Cultivated Area	Bangus	85%	85%	85%	43%		43%	85%	85%	854	43%	-	43%
	Prawn	15%	15%	15%	8*	****	8%	15%	15%	15%	8%		8%
. Accum. Cost	Bangus	50%	70%	90%	100%		20%	50%	70%	90%	100%	.	20%
	Prawn	50%	70%	90*	100%		20%	50×	70%	90%	100%		20%
I. Flood Frequency	(*)					4%	8*	25*	294	13*	13%	8%	
5. 2 x 4	Bangus	0%	0*	0%	0%	0%	3%	21%	25%	11%	6 %	0%	0*
	Prawn	0%	6*	0%	0*	0%	1*	4*	4%	2%	1%	0%	0%
i. Danageable Value*	Bangus	0	0	0	0	0	0	3	4	2	1	0	0
(P/ha)	Prawi	Û	0	0	0	0	1	6	8	4	2	0	0
Average Damageable				•	2,500)							~~~	
Remarks :			an a sa an										
a. Production Cos	+ (P.100		angus 15.0										
b. Yield (ton/ha)	•	0,11a)	0.75	1.50									
c. Unit Price (Pl	000/ton)	=	30.0	150.0									
d. Net Income (P.	•	=	7.5	90.0									
(b x c - a)												
Note *:5 x (3 x	a + d)												
Basic Source of Da	ta: -	The Reso	irce Ba	se for a	Agrariat	ı Refon	m and D	evelopm	ent in	Negros	Occ iden	tal,	
		Social R			-			•		-			
		•••••											

Table IX-2-4 AVERAGE DANAGEABLE VALUE OF FISHPOND

.

.

			(per ton)
I t e m	Financial Cost		Economic Cost
1. FOB, Bangkok, 5% broken milled rice *1	\$ 285.0	\$	285.0
2. Quality Discount (30%) [1 x 0.7]	\$ 199.5	\$	199.5
3. Transportation Cost, Bangkok - Pulupandan	\$ 12.0	\$	12.0
Sub-total [2+3]	\$ 211.5	\$	211.5
Peso Equivalent *2	P 5,922	Р	6,768
4. Port Handling & Warehouse Charge, etc. *3	P 1,270	P	1,361
Ex-warehouse Cost	P 7,192	р	8,129
5. Inland Transport, Pulupadan - Kabankalan *3	P 210	P	225
Price of Rice at Kabankalan	P 7,402	p	8,354
6. Milling Cost, etc. *3	Ρ (720)	р	(771)
Sub-total	P 6,682	Р	7,582
7. Paddy Equivalent (65%)	P 4,343	P	4,928
8. Trasport Cost Farm to Mill	P (43)	. P	(43)
9. Economic Farmgate Paddy Price	P 4,300	р (=	4,885 4,880)

Table IX-2-5 ECONOMIC FARMGATE PRICE OF PADDY (Import Substitute)

Basic Source of Data : - Price Prospects for Major Primary Commodities 1988-2000 Updated,

Including Quarterly Review of Commodity Markets, Fourth Quarter 1989, World Bank

- Policy Implication of a Five Peso Support Price of Palay to Farmers' Incentives, Profitability and Economic Efficiency Under an Import Substitution Trade Regime: A Preliminary Analysis, L.A. Gonzales, International Food Policy Research Institute

- Interview at the Site.

Note *1 : International price in 1990 in current Dollars.

*2 : Conversion rates are \$1.00=P28.00 for the financial cost and \$1.00=P32.00 for the economic cost.

*3 : Assuming a foreign exchange component of 50%.

		(per ton)
Item	Financia 1 Cost	Economic Cost
1. Export Price *1	\$ 391	391
Peso Equivalent *2	P 10,948	12,512
2. Port Mandling & Warehouse Charge, etc. *3	P (3,000)	(3,214)
Ex-warehouse Cost	P 7,948	9,298
3. Milling Cost, etc. *3	P (2,950)	(3,161)
Ex-mill Price	P 4,998	6,137
4. Allowance for Mollases (5%)	P (250)	(307)
Sub-tota I	P 4,748	5,830
5. Cane Price at Mill Gate (9%)	P 427	525
6. Trasport Cost Farm to Mill	P (43)	(43)
7. Economic Farmgate Cane Price	P 384 (⇔ 380)	482 (= 480)

Table 1X-2-6 ECONOMIC FARMGATE PRICE OF SUGARCANE

Basic Source of Data : - Price Prospects for Major Primary Commodities 1988-2000 Updated,

Including Quarterly Review of Commodity Markets, Fourth Quarter 1989, World Bank

- Linkages and Alternatives: The Philippine Sugar Industry in the 1990s, Joop Theunissen, Tilburg, July 1989
- Interview at the Site.

Note *1 : International price in 1990 in current Dollars.

*2 : Conversion rates are \$1.00=P28.00 for the financial cost and \$1.00=P32.00 for the economic cost.

*3 : Assuming a foreign exchange component of 50%.

Table IX-2-7	AVERAGE	DEPRECIATION	0F	DWELLING	UNITS	
--------------	---------	--------------	----	----------	-------	--

Period	Dwelling Unit	Distributuion (%)	Depreciation * (%)	(3)x(4) (%)
(1)	(2)	(3)	(4)	(5)
1941 or earlier	4,595	1.2%	; 10.0%	0.1%
1942 - 1950	9,608	2.4%	10.0%	0.2%
1951 - 1960	31,986	8.14	; 10.0%	0.8%
1961 - 1970	76,123	19.24	\$ 25.0%	4.8%
1971 - 1975	84,524	21.3	\$ 49.0%	10.4%
1976 - 1980	116,552	29.44	\$ 64.0%	18.8
1981 - 1990	73,300	18.5	\$ 85.0%	15.74
Total	396,688	100.0	\$	50.9% (= 50%)

Source : Special Report No.5, 1980 Census of Population and Housing: Housing Characteristics of Occupied Dwelling Units by Region, Province, City and Municipality, Philippines, NCSO

Note * : Assuming a durable life of 30 years and a salvage value of 10%.

	These Welsonahle		-	Scale in			
	Items Vulnerable to Flood Damage			10-Year			
-	B B===================================			********	*****		**====222
ι.	Direct Damage	67.4	199.6	272.9	331.2	371.3	396.2
.1	Agri-/Aquacultural Crops	54.1	100.8	126.7	141.1	147.7	151.0
	- Sugarcane	2.9	30.7	45.7	55.4	61.1	63.9
	- Paddy	0.4	2.0	3.8	4.4	4.8	5.0
	- Prawn/Bangus (Milk Fish)	50.8	68.1	77.2	81.3	81.8	82.1
•2	House/Building	13.2	96.2	142.3	184.5	216.9	237.4
	- Residential Houses	8.2	66.4	99.2	127.7	149.4	163.
	- Non-residential Buildings	5.0	29.8	43.1	56.8	67.5	73.
.3	Infrastructure	0.1	2.6	3.9	5.6	6.7	7.8
	- National Road	0.0	0.6	0.9	1.4	1.7	2.0
	- Provincial Road	0.1	1.0	1.4	2.0	2.4	2.8
	- Barangay Road	0.0	0.5	0.8	1.1	1.3	1.4
	- Railway	0.0	0.3	0.4	0.6	0.7	0.9
	- Irrigation Channel	0.0	0.2	0.4	0.5	0.6	0.7
	Indirect Damage	1.0	5.8	8.1	9.3	9.8	9,8
	Total Damage	68.4	205.2	281.1	340.6	381.1	405.9

Table IX-2-8. POTENTIAL FLOOD DAMAGE AT CURRENT DEVELOPMENT LEVEL

Unit : Million Peso

Note : Figures may not add up to totals due to rounding.

				Scale in			
	Items Vulnerable to Flood Damage	2-Year				50-Year	
4 22	#3F5#649901=956464F565556655555						
1.	Direct Damage	74.0	247,4	343.6	422.9	479.1	514.2
1.1	Agri-/Aquacultural Crops	54.1	100.8	126.7	141.1	147.7	151.0
	- Sugarcane	2.9	30.7	45.7	55.4	61.1	63.9
	- Paddy	0.4	2.0	3.8	4.4	4.8	5.0
	- Prawn/Bangus (Nilk Fish)	50,8	68.1	77.2	81.3	81.8	82.1
1.2	House/Building '	19.8	144.0	213.0	276.2	324.7	355.4
	- Residential Houses	12.3	99.4	148.5	191.2	223.7	244.8
	- Non-residential Buildings	7.5	44.6	64.5	85.0	101.0	110.6
1.2 H	Infrastructure	0.1	2.6	3.9	5.6	6.7	7.8
	- National Road	0.0	0.6	0.9	1.4	1.7	2.0
	- Provincial Road	0.1	1.0	1.4	2.0	2.4	2.8
	- Barangay Road	0.0	0.5	0.8	1.1	1.3	1.4
	- Railway	0.0	0.3	0.4	0.6	0.7	0.9
	- Irrigation Channel	0.0	0.2	0.4	0.5	0.6	0.7
2.	Indirect Damage	1.4	8.7	12.1	13.9	14.6	14.7
	Total Damage	75.4			436.8	493.7	528.9

Table IX-2-9 POTENTIAL FLOOD DAMAGE IN THE TARGET YEAR 2020

Table IX-2-10 CALCULATION OF ANNUAL AVERAGE BENEFIT OF THE MASTER PLAN

Return	Flood D	amage	Damage	Average		Benefit
Period	w/o Project	w/ Project		Reduction	Expectation	
1.4 *	0.0	0.0	0.0 -	ا من هذا هذا هذا هو چيا چه دي وي هي هذا من س	0.2143	
2	75.4	0.0	75.4 -			//****
5	256.1	0.0	256.1 -			
10	355.7	0.0	355.7			
25	436.8	0.0	436.8			** ** ** # ** ** ** ** ** **
50		0.0	493.7 -			5.11
100		0.0	528.9			
				nnual Average		126.59

Unit : Million Peso

Note * : Corresponds to the existing flow capacity.

TABLE IX-3-1(1/4) ANNUAL COST AND BENEFIT FLOW OF ALTERNATIVE CASES FOR	THE MASTER PLAN	l
---	-----------------	---

		Ē	cono	mic Co	st				
	Const.	Admin.	E/S	Phy. Conti.	Land Acq.	o&M	Total		Balanc
33 33		Angendere		0.00	124 6 6 6 6 6 6 6 7 9 4		0.00	0.00	0.0
94				0.00			0.00	0.00	0.0
95			26.49	2.65			29.14	0.00	(29.1
96			26.49				29.14	0.00	(29.1
97				0.00			0.00	0.00	0.0
98				0.00			0.00	0.00	0.0
99				0.00			0.00	0.00	0.0
ŐŐ				0.00	8.05		8.05	0.00	(8.0
)i	35.99	2.25	4.50		8.05		55.06	0.00	(55.0
2	35.99	2.25	4.50		8.05		55.06	8.26	46.7
3	35.99	2,25	4.50		8.05		55.06	16.53	(38.5
4	35.99	2.25	4.50		8.05		55.06	24.79	(30.2
5	35.99	2.25	4.50		8.05		55.06	33.05	(22.0
6	35.99	2.25	4.50		8.05		55.06	41.31	(13.7
7		2.25	4.50		8.05		55.06	49.58	(5.4
	35.99				0.05		47.01	57.84	10.8
3	35.99	2.25	4.50						
Ś	35.99	2.25	4.50				47.01	66.10	19.0
)	35.99	2.25	4.50					74.36	27.3
	35.99	2.25	4.50				47.01	82.63	35.6
2	35.99	2.25	4.50				47.01	90.89	43.8
3	35.99	2.25	4.50				47.01	99.15	52.1
ļ	35.99	2.25	4.50				47.01	107.41	60.4
Ĵ.	35.99	2.25	4.50			o 07	47.01	115.68	68.6
•	33.33		4.17	3.96		2.97	46.51	123.94	77.4
	33.33	2.08	4.17			2.97	46.51	124.47	77.9
	33.33	2.08	4.17			2.97	46.51	125.00	78.4
ł	33.33	2.08	4.17			2.97	46.51	125.53	79.0
	33.33	2.08	4.17	3.96		2.97	46.51	126.06	79.5
						3.72	3.72	126.59	122.8
					+	3.72	3.72	126.59	122.8
						3.72	3.72	126,59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
	•					3.72	3.72	126.59	122.8
1						3.72	3.72	126.59	122.8
			•			3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
2						3.72	3.72	126.59	122.8
3						3.72	3.72	126.59	122.8
ŕ						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
5						3.72	3.72	126.59	122.8
,						3.72	3.72	126.59	122.8
;						3.72	3.72	126.59	122.8
,) .						3.72	3.72	126.59	122.8
)						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
1 2						3.72	3.72	126.59	122.8
3						3.72	3.72	126.59	122.8
ļ						3.72		126.59	122.8
È.						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
)						3.72	3.72	126.59	122.8
0					A STATE OF A STATE	3.72	3.72	126.59	122.8

Case II : Safety degree of Phase I = 25-year return period (Optimum Plan)	Unit : Million Peso						

ar				Dhu Canti				Benefit	- Balanc
nuzuo	Const.	Admin.	E/S	Phy. Conti.	Land Acq.	0&M	Total		
93							0.00	0.00	0.0
94 95				0.00			0.00	0.00	0.0
15 16			26.78	2.68			29.46	0.00	(29.4
			26.78	2.68			29.46 0.00	0.00 0.00	(29.4 0.0
							0.00	0.00	0.0
							0.00	0.00	0.0
)			1		8.05		8.05	0.00	(8.0
	37.28	2.33	4,66	4.43	8.05		56.74	0.00	(56.7
	37.28	2.33	4.66	4.43	8.05		56.74	10.59	(46.1
	37.28	2.33	4.66	4.43	8.05		56.74	21.19	(35.5
	37.28 37.28	2.33 2.33	4.66	4.43	8.05		56.74	31.78	(24.9
	37.28	2.33	4.66 4.66	4.43 4.43	8.05		56.74 56.74	42.38 52.97	(14.3
	37.28	2.33	4.66	4.43	8.05		56.74	63.57	(3.7 6.8
	37.28	2.33	4.66	4.43	0.05		48.69	74.16	25.4
	37.28	2.33	4.66	4.43			48.69	84.76	36.0
	37.28	2.33	4.66	4.43			48.69	95.35	46.6
	37.28	2.33	4.66	4.43			48.69	105.95	57.2
	33.79	2.11	4.22	4.01		2.26	46.39	116.54	70.1
	33.79	2.11	4.22			2.26	46.39	117.66	71.2
	33.79 33.79	2.11 2.11	4.22 4.22	4.01		2.26	46.39	118.77	72.3
	33.79	2.11	4.22	4.01		2.26 2.26	46.39 46.39	119.89 121.01	73.5
	33.79	2.11	4.22	4.01		2.26	46.39	122.12	75.7
	33.79	2.11	4.22	4.01		2.26	46.39	123.24	76.8
		2.11	4.22	4.01		2.26	46.39	124.36	77.9
	33.79	2.11	4.22	4.01		2.26	46.39	125.47	79.0
						3.72	3.72	126.59	122.8
						3.72 3.72	3.72	126.59	122.8
						3.72	3.72	126.59 126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72 3.72	126.59 126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.87
						3.72	3.72	126.59	122.87
						3.72	3.72	126.59	122.87
						3.72		126.59	122.87
						3.72 3.72	3.72 3.72	126.59 126.59	122.8
						3.72	3.72	126.59	122.8
						3.72	3.72	126.59	122.87
						3.72	3.72	126.59	122.87
						3.72	3.72	126.59	122.87
						3.72	3.72	126.59	122.87
						3.72	3.72	126.59	122.87
						3.72 3.72	3.72 3.72	126.59 126.59	122.87 122.87
	Note :	IRR =	12.6%					·===≈===== {R ≃	12.64
			Discou 10%	nt Rate 15%			н 1. м.	i.	

Table IX-3-1(3/4) ANNUAL COST AND BENEFIT FLOW OF ALTERNATIVE CASES FOR THE MASTER PLAN

Case III : Safety degree of Phase I = 10-year return period

Unit : Million Peso

ar -		A	r /c			J L 			Benefit	Balanc
	Const.	Admin.	£/5	Phy.	Conti.	Land Acq.	0&M 	Total		
93					0.00			0.00	0.00	0.0
94					0.00			0.00	0.00	0.0
95			26.78		2.68			29.46	0.00	(29.4
96			26.78		2.68			29.46	0.00	(29.4
17					0.00			0.00	0.00	0.0
8					0.00			0.00	0.00	0.0
9					0.00			0,00	0.00	0.0
0					0.00	8.05		8.05	0.00	(8.0
1	36.14	2.26	4.52		4.29	8.05		55.26	0.00	(55.2
2	36.14	2.26	4.52		4.29	8.05		55.26	11.01	(44.2
3	36.14	2.26	4.52		4.29	8.05		55.26	22.01	(33.2
1	36.14	2.26	4.52		4.29	8.05		55.26	33.02	(22.2
5	36.14	2.26	4.52		4.29	8.05		55.26	44.03	
6	36.14	2.26	4.52		4.29	8.05		55.26		(11.2
7	36.14	2.26	4.52			8.05			55.03	(0.2
8	36.14	2.26	4.52		4.29	0.05		55.26	66.04	10.7
9	36.14	2.26	4.52					47.21	77.05	29.8
9					4.29		1 70	47.21	88.05	40.8
1	35.35	2.21	4.42		4.20		1.79	47.96	99.06	51.1
	35.35	2.21	4.42		4.20		1.79	47.96	101.56	53.6
2	35.35	2.21	4.42		4.20		1.79	47.96	104.07	56.1
3	35.35	2.21	4.42		4.20		1.79	47.96	106.57	58.6
Į.	35.35	2.21	4.42		4.20		1.79	47.96	109.07	61.1
i i	35.35	2.21	4.42		4.20		1.79	47.96	111.57	63.6
	35.35	2.21	4.42		4.20		1.79	47.96	114.08	66.1
	35.35	2.21	4.42		4.20		1.79	47.96	116.58	68.6
	35.35	2.21	4.42		4.20		1.79	47.96	119.08	71.1
	35.35	2.21	4.42		4.20		1.79	47.96	121.58	73.6
	35.35	2.21	4.42		4.20		1.79	47,96	124.09	76.1
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
						•	3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
		· ·			1.1		3.72	3.72	126.59	
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	122.8
							3.72	3.72	126.59	
							3.72	3.72	120.59	122.87
	- 1							3.72		122.87
							3.72		126.59	122.87
						+	3.72	3.72	126.59	122.87
							3.72	3.72	126.59	122.87
							3.72	3.72	126.59	122.87
							3.72	3.72	126.59	122.87
							3.72	3.72	126.59	122.87
							3.72	3.72	126.59	122.87
							3.72	3.72	126.59	122.87
•							3.72	3.72	126.59	122.87
							3.72	3.72	126.59	122.87
							3.72	3.72	126.59	122.87

IRR =

12.68%

Table IX-3-1(4/4)	ANNUAL COST /	AND BENEFIT	FLOW OF	ALTERNATIVE	CASES FOR	THE MASTER PLA	AN
-------------------	---------------	-------------	---------	-------------	-----------	----------------	----

		C			Unit : Mil		Baland		
-	Conct	Admin	E/S PI	w Conti I	and Acc.	0&N	Total		
993	8425939924	**********	**********	0.00			0.00	0.00	0.0
994				0.00			0.00	0.00	0.0
995			26.78	2.68			29.46	0.00	(29.4
996			26.78	2.68			29.46	0.00	(29.4
997				0.00			0.00	0.00	0.0
998				0.00			0.00	0.00	0.0
999				0.00			0.00	0.00	.0.0
2000				0.00	8.05		8.05	0.00	(8.0
2001	36.11	2.26	4.51	4.29	8.05		55.22	0.00	(55.2
2002	36.11	2.26	4.51	4.29	8.05		55.22	8.83	(46.4
2003	36.11	2.26	4.51	4.29	8.05		55.22	17.65	(37.
2004	36.11	2.26	4.51	4.29	8.05		55.22	26.48	(28.7
2005	36.11	2.26	4.51	4.29	8.05		55.22	35.31	(19.9
2006	36.11	2.26	4.51	4.29	8.05		55.22	44.13	(11.0
007	36.11	2.26	1.01	• 4.29	8.05		55.22	52.96	(2.2
. 800	36.11	2.26	4.51	4.29		1 50	47.17	61.78	22.
009	35.43	2.21	4.43	4.21		1.59	47.87	70.61	27.4
010	35.43	2.21	4.43	4.21		1.59	47.87 47.87	79.94	32.0
011	35.43	2.21	4.43	4.21		1.59	47.87	84.61	36.2
012	35.43	2.21	4.43	4.21		1,59	47.87	89.27	41.
013	35.43	2.21	4.43	4.21		1.59 1.59	47.87	93.94	46.0
014	35.43	2.21	4.43	4.21		1.59	47.87	98.60	50.
015	35.43	2.21	4.43	4.21		1.59	47.87	103.27	55.
016	35.43	2.21	4.43	4.21		1.59	47.87	107.93	60.0
017	35.43	2.21	4.43	4.21		1.59	47.87	112.60	64.
018	35.43	2.21	4.43	4.21		1.59	47.87	117.26	69.
019	35.43	2.21	4.43	4,21		1.59	47.87	121.93	74.0
020	35.43	2.21	4.43	4.21		3.72	3.72	126.59	122.
021						3.72	3.72	126.59	122.
022						3.72	3.72	126.59	122.4
023						3.72	3.72	126.59	122.4
024						3.72	3.72	126.59	122.
025						3.72	3.72	126.59	122.
026						3.72	3.72	126.59	122.
027						3.72	3,72	126.59	122.
028						3.72	3.72	126.59	122.
029 030						3.72	3.72	126.59	122.
031						3.72	3.72	126.59	122.
032						3.72	3.72	126.59	122.
033						3.72	3.72	126.59	122.
034						3.72	3.72	126.59	122.
035						3.72	3.72	126.59	122.
036						3.72	3.72	126.59	122.
037						3.72	3.72	126.59	122.
038						3.72	3.72	126.59	122.
039						3.72	3.72	126.59	122.
040						3.72	3.72	126.59	122.
041						3.72	3.72	126.59	122
042						3.72	3.72	126.59	122.
043						3.72	3.72	126,59	122.
044						3.72	3.72	126.59	122.
045						3.72	3.72	126.59	122.
046						3.72	3.72	126.59	122.
047						3.72	3.72	126.59	122.
048						3.72	3.72	126.59	122.
049						3.72	3.72	126.59	122.3
050						3.72	3.72	126.59	122.4

Table IX-3-2(1/4) ANNUAL COST AND BENEFIT FLOW OF ALTERNATIVE CASES FOR PHASE I

Safety degree : 50-year return period flood

Unit : Million Peso

·	***********		cono			Benefit	Balance		
	Const.	Admin.	E/S	Phy. Conti.	Land Acq.	0&M	Total		
}				0.00			0.00	0.00	0.
ļ				0.00			0.00	0.00	0.
			20.24	2.02			22.27	0.00	(22.
			20.24				22.27	0.00	(22.)
				0.00			0.00	0.00	0.
				0.00			0.00	0.00	0.
				0.00 0.00	0 05		0.00 8.05	0.00 0.00	0. (8.
	ວຕົດດ	2.25	4.50		8.05 8.05		55,06	0.00	(55.
	35.99 35.99	2.25	4.50		8.05		55.06	8.26	(46.
	35.99	2.25	4.50		8.05		55.06	16.53	(38.
	35.99	2.25	4.50		8.05		55.06	24.79	(30.
	35.99	2.25	4.50		8.05		55.06	33.05	(22.
	35.99	2.25	4.50		8.05		55.06	41.31	(13.
	35.99	2.25	4.50		8.05		55.06	49.58	(5.
	35.99	2.25	4.50				47.01	57.84	10.
	35.99	2.25	4.50				47.01	66.10	19.
	35.99	2.25	4.50				47.01	74.36	27.
	35.99	2.25	4.50				47.01	82.63	35.
	35.99	2.25	4.50				47.01	90.89	43.
		2.25	4.50 4.50				47.01 47.01	99.15 107.41	52. 60.
	35.99 35.99	2.25 2.25	4.50				47.01	115.68	68.
	22.23	2.23	4.50	4.27		2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	
						2.97	2.97	123.94 123.94	120.
	· · · ·	-				2.97 2.97	2.97 2.97	123.94	120. 120.
	· .	-				2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94 123.94	120. 120.
						2.97 2.97	2.97 2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
		:				2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
			· ·			2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.
						2.97	2.97	123.94	120.

IRR =

0.2

12.50%

Table IX-3-2(2/4) ANNUAL COST AND BENEFIT FLOW OF ALTERNATIVE CASES FOR PHASE I

	legree : 25				Unit : Mil	lion Peso			
		E		Benefit	Balance				
Year -	Const.	Admin.	E/S	Phy. Conti.	Land Acq.	0&M	Total		Baranco
	**********		******			***********	0.00	0.00	0.00
1993				0.00			0.00	0.00	0.00
1994			15.38				16.91	0.00	(16.91)
1995			15.38				16.91	0.00	(16.91)
1996			19100	0.00			0.00	0.00	0.00
1997				0.00			0.00	0.00	0.00
$1998 \\ 1999$				0.00			0.00	0.00	0.00
2000				0.00	8.05		8.05	0.00	(8.05)
2000	37.28	2.33	4.66		8.05		56.74	0.00	(56.74)
2001	37.28	2.33	4.66		8.05		56.74	10,59	(46.15)
2002	37.28	2.33	4.66		8.05		56.74	21.19	(35.56)
2003	37.28	2.33	4.66		8.05		56.74	31.78	(24,96)
2004	37.28	2.33	4.66		8.05		56.74	42.38	(14.37)
2005	37.28	2.33	4.66		8.05		56.74	52.97	(3.77)
2000	37.28	2.33	4.66		8.05		56.74	63.57	6.82
2007	37.28	2.33	4.66		0.00		48,69	74.16	25.47
2009	37.28	2.33	4.66				48.69	84.76	36.06
2010	37.28	2.33	4.66				48.69	95,35	46.66
2010	37.28	2.33	4,66				48.69	105.95	57.25
6011	01.20	C 1 J J J	1100			0.00	0 00	116 64	114 00

2012

2013

2014

2015

2016

2017 2018

2019 2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035 2035

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047 2048

2049

2050

37.28	2.33	4.66	4	.43	8.05		56.74	31.78
37.28	2.33	4.66		.43	8.05		56.74	42.38
37.28	2.33	4.66		.43	8.05		56,74	52.97
37.28	2.33			.43	8.05		56.74	63.57
37.28	2.33	4.66		.43			48,69	74.16
37.28	2.33	4.66		.43			48.69	84.76
37.28	2.33	4.66		.43			48.69	95,35
37.28	2.33	4,66		.43			48.69	105.95
11.120	2100		-			2.26	2.26	116.54
			•			2.26	2.26	116.54
						2.26	2.26	116.54
						2.26	2.26	116.54
						2.26	2.26	116.54
						2.26	2.26	116.54
						2.26	2.26	116.54
						2.26	2.26	116.54
						2.26	2.26	116.54
						2.26	2.26	116.54

. 2,20	2.20
2.26	2.26
2.26	2.26
2.26	2.26
2.26	2.26
2.26	2.26
2.26	2.26
2.26	2.26
2.26	2.26
2.26	2.26
2.26	2.26
2.26	2.26
2.26	2.26
0.00	0.01

****************************** IRR =

15.19%

114.28

114.28

114.28

114.28

114.28

114.28

114.28 114.28

114.28 114.28

114.28 114.28

114.28

114.28

114.28

114.28

114.28

114.28

114.28 114.28

114.28 114.28

114.28

114.28

114.28

114.28

114.28

114.28

114.28

114.28

114.28

114.28

114.28

114.28

114.28

114.28

116.54

116.54

116.54

116.54

116.54

116.54

116.54

116.54

116.54

116.54 116.54 116.54

116.54 116.54

116.54

116.54

116.54

116.54

116.54

116.54

116.54

116.54

116.54

116.54 116.54 116.54 116.54

116.54

116.54

2.20 2.26 2.26 2.26 2.26

2.26 2.26 2.26 2.26 2.26

2.26

2.26

2.26

2.26

2.26

2.26

2.26

2.26

2,26

2.26

2.26

2.26

2.26

2.26

2.26 2.26

2.26 2.26

=====

í

Table IX-3-2(3/4) ANNUAL COST AND BENEFIT FLOW OF ALTERNATIVE CASES FOR PHASE I

		JUIC : WIII								
	Const.	Admin.	E/S	Phy.	Conti.	Land Acq.	0&M	Total		Ba lanc
as:		19999889934%:			2235624			0.00	0.00	0.0
								0.00	0.00	0.0
			12.20		1.22			13.42	0.00	(13.4
			12.20)	1.22			13.42	0.00	(13.4
								0.00	0.00	0.0
								0.00	0.00	0.0
						0.05		0.00 8.05	0.00	0.0
	20.14	0.00	A 50		4 20	8.05		55.26	0.00	(8.0 (55.2
	36.14	2.26	4.52 4.52		4.29 4.29	8.05 8.05		55.20	11.01	(35.2
	36.14		4.52		4.29	8.05		55.26	22.01	(33.2
	36.14	2.26	4.52		4.29	8.05		55.20	33.02	(22.2
	36.14	2.26	4.52		4.29	8.05		55.20	44.03	(11.2
	36.14	2.26 2.26	4.52		4.29	8.05		55.26	55.03	
	36.14		4.52		4.29	8.05		55.20	66.04	(0.2 10.7
	36.14	2.26	4.52		4.29	0.05		47.21	77.05	29.8
	36.14	2.20	4.52		4.29			47.21	88.05	40.8
	36.14	2.20	4.92		4.29		1.79	1.79	99.06	97.2
							1.79	1.79	99.06	97.2
							1.79	1.79	99.00 99.06	97.2
						1	1.79	1.79	99.06	97.2
							1.79	1.79	99.06	97.2
							1.79	1.79	99.06	97.2
							1.79	1.79	99.06	97.2
							1.79	1.79	99.06	97.2
							1,79	1.79	99.06	97
							1.79	1,79	99.05	97
							1.79	1.79	99.06	97
							1.79	1.79	99.06	97.3
							1.79	1.79	99.06	97
							1.79	1.79	99.06	97.2
							1.79	1.79	99.06	97
							1.79	1.79	99.06	97.
							1.79	1.79	99.06	97.
							1.79	1.79	99.06	97.
							1.79	1.79	99.06	97.
							1.79	1.79	99.06	97.
							1.79	1.79	99.06	97.3
							1.79	1.79	99.06	97.3
							1.79	1.79	99.06	97.3
							1.79	1.79	99.06	97.3
							1.79	1.79	99.06	97.3
							1.79	1.79	99.06	97.3
							1.79	1.79	99.06	97.3
							1.79	1.79	99.06	97.3
							1.79	1.79	99.06	97.1
							1.79	1.79	99.06	97.3
	1.1.1						1.79	1.79	99.06	97.2
							1.79	1.79	99.06	97.1
							1.79	1.79	99.06	97.2
	÷						1.79	1.79	99.06	97.2
							1.79	1.79	99.06	97.
							1.79	1.79	99.06	97.1
							1.79	1.79	99.06	97.3
							1.79	1.79	99.06	97.
							1.79	1.79	99.06	97.2
							1.79	1.79	99.06	97.
							1.79	1.79	99.06	.97

.

Table IX-3-2(4/4) ANNUAL COST AND BENEFIT FLOW OF ALTERNATIVE CASES FOR PHASE I

		F				111011 F850			
	Const	Admin.	F/S	Phy. Conti.	Land Acg.	08M	Total		Balanc
:==≓≍ }93	******		********	0.00		13499655555	0.00	0,00	0.0
93 94				0.00			0.00	0.00	0.0
95			10.83	1.08			11.92	0.00	(11.9)
96			10.83	1.08			11.92	0.00	(11.9
97				0.00			0.00	0.00	0.0
98				0.00			0.00	0.00	0.0
99				0.00			0.00	0.00	0.0
00				0.00	8,05		8.05	0.00	(8.0
01	36.11	2.26	4.51	4.29	8.05		55.22	0.00	(55.2
02	36.11	2.26	4.51	4.29	8.05		55.22	8.83	(46.4
03	36.11	2.26	4.51	4.29	8.05		55.22	17.65	(37.5
004	36.11	2.26	4.51	4.29	8.05		55.22	26.48	(28.7
005	36.11	2.26	4.51	4.29	8,05		55.22	35.31	(19.9
005	36.11	2.26	4,51	4.29	8.05		55.22	44.13	(11.0
007	36.11	2.26	4.51	• 4.29	8.05		55.22	52.96	(2.2
108	36.11	2.26	4.51	4.29			47.17	61.78	14.6
09	30.11	2.00	1101			1.59	1.59	70.61	69.0
10						1.59	1.59	70.61	69.0
11						1.59	1.59	70.61	69.0
12						1.59	1.59	70.61	69.0
13						1.59	1.59	70.61	69.0
14					:	1.59	1.59	70.61	69.0
14						1.59	1.59	70.61	69.0
						1.59	1.59	70.61	69.0
16 17						1.59	1 59	70.61	69.0
						1.59	1.59	70.61	69.0
18						1,59	1.59	70.61	69.0
19						1.59	1.59	70.61	69.0
20						1.59	1.59	70.61	69.0
21						1.59	1.59	70.61	69.0
22						1.59	1.59	70.61	69.0
23						1.59	1.59	70.61	69.0
24						1.59	1.59	70.61	69.0
25						1.59	1.59	70.61	69.0
26						1.59	1.59	70.61	69.0
27						1.59	1.59	70.61	69.0
28						1.59	1.59	70.61	69.0
29						1.59	1.59	70.61	69.0
30						1.59	1.59	70.61	69.0
31						1.59	1.59	70.61	69.0
32						1.59	1.59	70.61	69.0
33						1.59	1.59	70.61	69.0
34						1.59	1.59	70.61	69.0
35						1.59	1.59	70.61	69.0
36						1.59	1.59	70.61	69.0
37							1.59	70.61	69.0
38						1.59		70.61	69.0
39						1.59	1.59		69.0
40						1.59	1.59	70.61	69.0
41						1.59	1.59	70.61 70.61	69.0
42						1.59	1.59		
43						1.59	1.59	70.61	69.0
44						1.59	1.59	70.61	69.0
45						1.59	1.59	70.61	-69.0
46						1.59	1.59	70.61	69.0
47						1.59	1.59	70,61	69.0
48						1.59	1.59	70.61	69.0
49		11				1.59	1.59	70.61	69.0
50						1.59	1.59	70.61	69.0

a notion portiod flood

Unit • Million Peso

