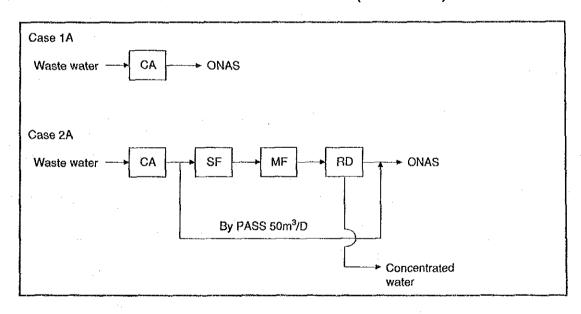
#### 3.6 SMCP/TMC

Total volume of waste water in SMCP/TMC is shown in Table VII-26.

Table VII-26 Quality of Waste Water (SMCP/TMC)


|          | FLOW<br>m³/D | COD<br>mg/l | N-HEX<br>mg/l | , , | 1 1 1 1 |     |      | SO4<br>mg/l |
|----------|--------------|-------------|---------------|-----|---------|-----|------|-------------|
| SMCP+TMC | 300          | 4372        | 251           | 555 | 386     | 318 | 2400 | 3480        |

Elements picked up as water quality problems are COD and T-Cr for the case 1A and N-HEX, Cl and SO<sub>4</sub> are added for the case 2A. As Cr<sup>+6</sup> is very small in quantity, T-Cr can be deemed as Cr<sup>+3</sup>.

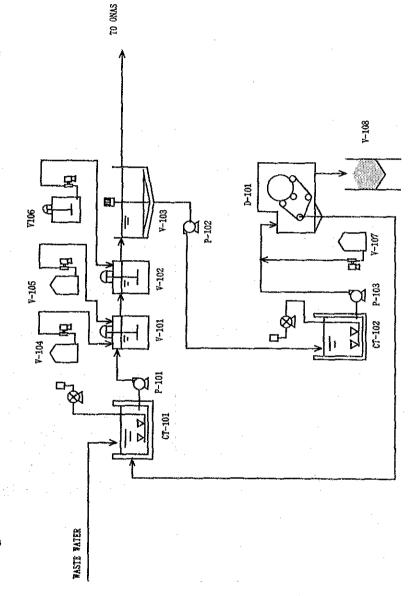
T-Cr is removed by the coagulation method. COD and N-HEX are also removed by coagulation method and organism treatment is not provided as the discharge standards are 2,000 mg/l for COD and 50 mg/l for N-HEX.

Block flow is shown in Table VII-27.

Table VII-27 Block Flow Sheet (SMCP/TMC)



Specifications of the reverse osmosis film concentrated water of the case 2A are as shown below:

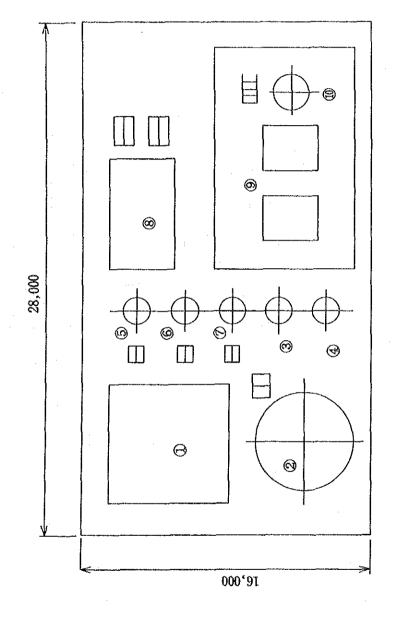

Water volume: 63 m³/D

Cl condensation: 10,000 mg/l

SO4 condensatin: 14,000 mg/l

Detailed flow sheet and layout are shown in Fig. VII-23, 24, 25 and 26 and the list of equipment in Table VII-28 and 29.

Fig. VII-23 Flow Sheet of Waste Water Treatment Facilities (SMCP 1A)




V-101 MIXING HEAD TANK
Y-102 COAGULATION TANK
Y-103 ALDM TANK
Y-105 NOOF TANK
Y-106 POLYMER TANK
Y-107 POLYMER TANK
Y-108 CAKE HOPPER P-101 WASTE WATER PUMP P-102 SLUDGE DEAWING PUMP P-103 SLUDGE FEED PUMP

D-101 BELT PRESS

CT-101 WASTE RECEPTION TANK CT-102 SLUDGE HOLDING TANK

Fig. VII-24 Plot Plan of Waste Water Treatment Facilities (SMCP 1A)



- ① WASTE WATER TANK
  ② SEDIMENTATION TANK
  ③ MIXING HEAD TANK
  ④ COAGULATION TANK
  ⑤ ALUM TANK
  ⑥ NAOH TANK
  ⑦ POLYMER TANK
  ⑧ SLUDGE HOLDING TANK
  ⑨ BELT PRESS

Table VII-28 Main Equipment List (SMCP 1A)

| No. | Equip. No. | Name of Equipment   | No. of<br>REQ'D |                           | Remarks            |
|-----|------------|---------------------|-----------------|---------------------------|--------------------|
| l   | COAGULAT   | ION TREATMENT PLANT |                 |                           |                    |
|     | CT-101     | WASTE WATER TANK    | 1 1             | 300 m <sup>3</sup> RC     |                    |
|     | V-101      | MIXING HEAD TANK    | 1 1             | 2.0 m <sup>3</sup> CS     | AGITATER 0.75 kW   |
|     | V-102      | COAGULATION TANK    | 1               | 2.0 m <sup>3</sup> CS     | AGITATER 0.75 kW   |
|     | V-103      | SEDIMENTATION TANK  | 1               | 15 m <sup>2</sup> RC      | RAKE 0.1 kW        |
|     | V-104      | ALUM TANK           | 1               | 1 m³                      | PUMP 0.1 kW        |
|     | V-105      | NaOH TANK           | 1 [             | l m³                      | PUMP 0.1 kW        |
|     | V-106      | POLYMER TANK        | 1               | 1 m <sup>3</sup>          | PUMP 0.1 kW        |
|     | P-101      | WASTE WATER PUMP    | 1+1             | 0.75 kW                   |                    |
|     | P-102      | SLUDGE DRAWING PUMP | 1+1             | 0.75 kW                   |                    |
| 2   | SLUDGE DE  | WATERING PLANT      |                 | ;<br>                     |                    |
|     | CT-102     | SLUDGE HOLDING TANK | 1 1             | 16 m³ RC                  | BLOWER 0.2 kW      |
|     | D-101      | BELT PRESS          | 2               | l m WIDTH                 | 3.7 kW             |
|     | V-108      | CAKE HOPPER         | 1               | 4 m <sup>3</sup> CS       |                    |
|     | V-107      | POLYMER TANK        | 1               | 1 m <sup>3</sup> PUMP 0.1 | KW AGITATER 0.2 kW |
|     | P-103      | SLUDGE PUMP         | 1+1             | 0.2 kW                    |                    |

Fig. VII-25 Flow Sheet of Waste Water Treatment Facilities (SMCP 2A) V-110 P-103 CT-102 V-101 CT-101 WASTE WATER

P-101 WASTE WATER FOUR
P-102 COAGULATION TANK
P-103 SIJUGE DROWING FOUR
P-104 BOOSTER POUP
P-105 SILUGE PEED POUP
P-106 SILUGE FEED POUP
P-107 NaClO TANK
P-106 SILUGE FEED POUP
P-108 INBITTER TANK
P-109 INBITTER TANK
P-109 INBITTER TANK
P-109 INBITTER TANK
P-109 BELT FRESS
P-101 BELT FRESS
P-101 CAKE HOPPER

Fig. VII-26 Plot Plan of Waste Water Treatment Facilities (SMCP 2A)



- SEDIMENTATION TANK
  - MIXING HEAD TANK COAGULATION TANK
- SLUDGE HOLDING TANK

  BELT PRESS

  POLYMER TANK
- © RECEPTION TANK
  © SAND FILTER
  © CARTRIGE FILTER
  © RO FILTER
  © RO FILTER
  © BRINE TANK
  © NAOCI TANK
  © INHIVITER TANK

Table VII-29 Main Equipment List (SMCP 2A)

| No. | Equip. No. | Name of Equipment        | No. of<br>REQ'D | Remarks                                      |
|-----|------------|--------------------------|-----------------|----------------------------------------------|
| 1   | COAGULAT   | I<br>ION TREATMENT PLANT |                 |                                              |
|     | CT-101     | WASTE WATER TANK         | 1               | 300 m³ RC                                    |
|     | V-101      | MIXING HEAD TANK         | 1               | 2.0 m³ CS AGITATER 0.75 kW                   |
|     | V-102      | COAGULATION TANK         | 1               | 2.0 m <sup>3</sup> CS AGITATER 0.75 kW       |
|     | V-103      | SEDIMENTATION TANK       | 1               | 15 m <sup>2</sup> RC RAKE 0.1 kW             |
|     | V-104      | ALUM TANK                | 1               | 1 m <sup>3</sup> PUMP 0.1 kW                 |
|     | V-105      | NaOH TANK                | 1               | 1 m <sup>3</sup> PUMP 0.1 kW                 |
|     | V-106      | POLYMER TANK             | 1               | 1 m <sup>3</sup> PUMP 0.1 kW                 |
|     | P-101      | WASTE WATER PUMP         | 1+1             | 0.75 kW                                      |
|     | P-102      | SLUDGE DRAWING PUMP      | 1+1             | 0.75 kW                                      |
| 2   | RO PLANT   |                          |                 |                                              |
|     | CT-102     | RECEPTION TANK           | 1               | 50 m³ RC                                     |
|     | T-101      | SAND FILTER              | 1               | 1600φ                                        |
|     | T-102      | CARTRIGE FILTER          | 1 set           | CARTRIGE TYPE                                |
|     | R-101      | ROFILTER                 | lset            | SDIRAL TYPE 2000 x 18 ELEMENTS               |
|     | V-110      | BRINE TANK               | i               | 40 m <sup>3</sup> RC                         |
|     | V-107      | NaCIO TANK               | 1               | 1 m <sup>3</sup> PUMP 0.1 kW                 |
|     | V-108      | INHIVITER TANK           | 1               | 1 m <sup>3</sup> PUMP 0.1 kW                 |
|     | V-109      | HCI TANK                 | 1               | 1 m <sup>3</sup> PUMP 0.1 kW                 |
|     | P-103      | FILTER FEED PUMP         | 1+1             | 0.75 kW                                      |
|     | P-104      | BOOSTER PUMP             | 1+1             | 11 kW                                        |
|     | P-105      | BACK WASH PUMP           | 1               | 1.1 kW                                       |
| 3   | SLUDE DEW  | ATERING PLANT            |                 |                                              |
|     | CT-103     | SLUDGE HOLDING TANK      | 1               | 16 m³ RC                                     |
|     | D-101      | BELT PRESS               | 2               | 1 m WIDTH 3.7 kW                             |
|     | V-112      | CAKE HOPPER              | 1               | 4 m³ CS                                      |
|     | V-111      | POLYMER TANK             | 1               | 1 m <sup>3</sup> PUMP 0.1 kW AGITATER 0.2 kW |
|     | P-106      | SLUDGE PUMP              | 1+1             | 0.2 kW                                       |

#### 3.7 STS

#### (1) Waste water treatment

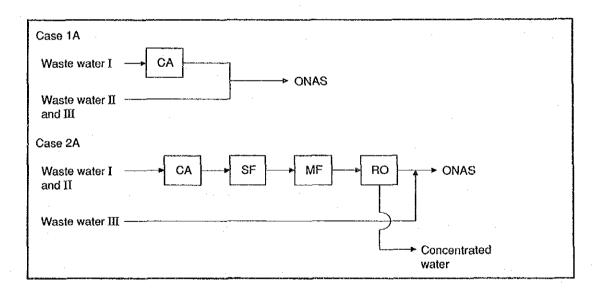

Assumptions of the plan are as shown in Table VII-30.

Table VII-30 Quality of Waste Water (STS)

| STREAM NO. | SAMP NO.             | FLOW<br>m³/D | COD<br>mg/l | Cl<br>mg/l | SO <sub>4</sub><br>mg/l | EC<br>ms/cm |
|------------|----------------------|--------------|-------------|------------|-------------------------|-------------|
| I          | STP-13, 14, 15, 19   | 4.6          | 26276       | 1133       | 5476                    | 19          |
| II         | STS-21               | 7            | 282         | 4800       | 5800                    | 34.5        |
| Ш          | Other than the above | 33.4         | 504         | 363        | 595                     |             |

The waste water of I is small in volume and COD concentration is very high. In the waste water of II, salt concentration is high. As shown in the block flow in Table VII-31, waste water of I, II and III are combined and treated.

Table VII-31 Block Flow Sheet (STS)



Specifications of concentrated water of reverse osmosis film in the case 2A are as follows.

Volume of water: 2.9 m<sup>3</sup>/D

Cl concentration: 13,000 mg/l

SO<sub>4</sub> concentration: 22,000 mg/l

Detailed flow sheet and layout are shown in Fig. VII-27, 28, 29, and 30. List of equipment specifications is shown in Table VII-32 and 33.

#### (2) Exhaust gas treatment

Multi-cyclone was planned for the exhaust gas from the boilder and heating medium heater. Capacity of facilities and number of cyclones are as shown below. Major dimensions are in Table Table VII-13.

• STS-51 1,500 Nm $^3$ /H 2 × 2

• STS-52 600 Nm<sup>3</sup>/H 2×1

Fig. VII-27 Flow Sheet of Waste Water Treatment Facilities (STS 1A) V~108 D-101 国) V-103 фã V-107 3 y-102 V-105 CT-102 P-103 L N L y-101 CT-101 WASTE WATER II, III WASTE WATER I

P-101 WASTE WATER PUMP

P-103 SLUDGE DRAWING PUMP

V-104 ALW TANK

P-105 SLUDGE FEED PUMP

V-105 ALW TANK

P-105 SLUDGE FEED PUMP

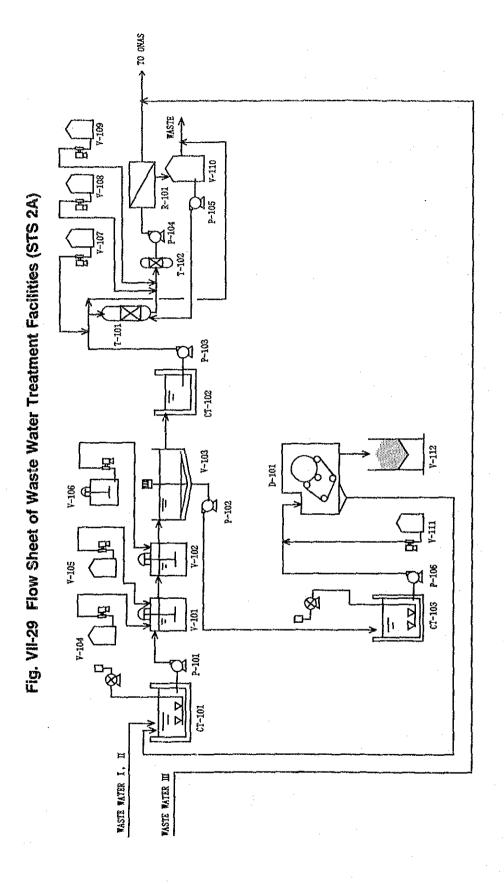
V-105 POLYMER TANK

CT-101 WASTE WATER TANK

V-105 POLYMER TANK

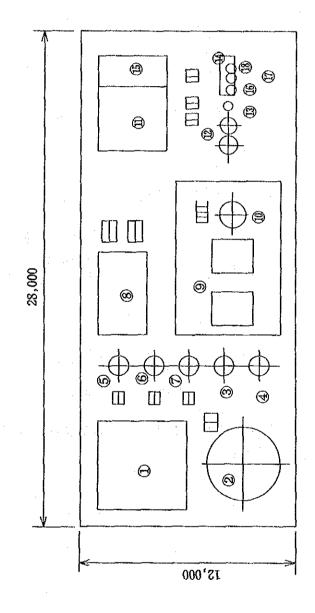
CT-102 SLUDGE BOLDING TANK

V-105 CAKE BOPPER


Fig. VII-28 Plot Plan of Waste Water Treatment Facilities (STS 1A)



- ① WASTE WATER TANK
  ② SEDIMENTATION TANK
  ③ MIXING HEAD TANK
  ④ COAGULATION TANK
  ⑤ ALUM TANK
  ⑥ NAOH TANK
  ⑦ POLYMER TANK
  ⑧ SLUDGE HOLDING TANK
  ⑧ BELT PRESS


Table VII-32 Main Equipment List (STS 1A)

| No. | Equip. No. | Name of Equipment   | No. of<br>REQ'D |                     | Ren         | narks           |
|-----|------------|---------------------|-----------------|---------------------|-------------|-----------------|
| 1   | COAGULAT   | ION TREATMENT PLANT |                 |                     |             |                 |
|     | CT-101     | WASTE WATER TANK    | 1               | $3 \text{ m}^3$     | RC          | ;               |
|     | V-101      | MIXING HEAD TANK    | 1               | $0.03~\mathrm{m}^3$ | CS          | AGITATER 0.1 kW |
|     | V-102      | COAGULATION TANK    | 1               | 0.03 m <sup>3</sup> | CS          | AGITATER 0.1 kW |
|     | V-103      | SEDIMENTATION TANK  | 1               | $0.2 \text{ m}^2$   | RC          | RAKE 0.1 kW     |
|     | V-104      | ALUM TANK           | 1               | $1 \text{ m}^3$     |             | PUMP 0.1 kW     |
|     | V-105      | NaOH TANK           | 1               | $1 \text{ m}^3$     |             | PUMP 0.1 kW     |
|     | V-106      | POLYMER TANK        | 1               | $1 \text{ m}^3$     |             | PUMP 0.1 kW     |
|     | P-101      | WASTE WATER PUMP    | 1+1             | 0.2 kW              |             |                 |
|     | P-102      | SLUDGE DRAWING PUMP | 1+1             | 0.2 kW              |             |                 |
| 2   | SLUDGE DE  | WATERING PLANT      |                 |                     |             |                 |
|     | CT-102     | SLUDGE HOLDING TANK | 1               | $0.5 \text{ m}^3$   | RC          |                 |
| •   | D-101      | BELT PRESS          | 1               | 0.5 m               | WIDTH       | 2.2 kW          |
|     | V-108      | CAKE HOPPER         | 1               | $0.5 \text{ m}^3$   | CS          |                 |
|     | V-107      | POLYMER TANK        | 1               | 1 m <sup>3</sup>    | PUMP 0.1 KW | AGITATER 0.2 kW |
|     | P-103      | SLUDGE PUMP         | 1+1             | 0.2 kW              |             |                 |



P-101 WASTE WATER FUMP
P-102 SLUDGE DRAWING PUMP
P-105 SLUDGE PEED FUMP
P-106 SLUDGE PEED FUMP
P-106 SLUDGE PEED PUMP
P-107 SAUGH PUMP
P-107 SAUGH PUMP
P-108 SLUDGE PEED PUMP
P-108 SLUDGE PU

Fig. VII-30 Plot Plan of Waste Water Treatment Facilities (STS 2A)



- © RECEPTION TANK
  © SAND FILTER
  © CARTRIGE FILTER
  Ø RO FILTER
  © BRINE TANK
  © NAOCI TANK
  © NAOCI TANK CARTRIGE FILTER
- ① WASTE WATER TANK
  ② SEDIMENTATION TANK
  ③ MIXING HEAD TANK
  ④ COAGULATION TANK
  ⑤ ALUM TANK
  ⑥ NAOH TANK
  ⑦ POLYMER TANK
  ⑥ SLUDGE HOLDING TANK
  ⑧ SLUDGE HOLDING TANK
  ⑩ POLYMER TANK

Table VII-33 Main Equipment List (STS 2A)

| No. | Equip. No. | Name of Equipment   | No. of<br>REQ'D | Re                           | emarks          |
|-----|------------|---------------------|-----------------|------------------------------|-----------------|
| 1   | COAGULAT   | ON TREATMENT PLANT  |                 |                              |                 |
|     | CT-101     | WASTE WATER TANK    | 1               | 8 m <sup>3</sup> RC          |                 |
|     | V-101      | MIXING HEAD TANK    | 1               | 0.1 m <sup>3</sup> CS        | AGITATER 0.1 kW |
|     | V-102      | COAGULATION TANK    | .1              | 0.1 m <sup>3</sup> CS        | AGITATER 0.1 kW |
|     | V-103      | SEDIMENTATION TANK  | 1               | 0.5 m <sup>2</sup> RC        | RAKE 0.1 kW     |
|     | V-104      | ALUM TANK           | 1               | 1 m <sup>3</sup>             | PUMP 0.1 kW     |
|     | V-105      | NaOH TANK           | 1               | 1 m <sup>3</sup>             | PUMP 0.1 kW     |
|     | V-106      | POLYMER TANK        | .1              | 1 m <sup>3</sup>             | PUMP 0.1 kW     |
| ·   | P-101      | WASTE WATER PUMP    | 1+1             | 0.2 kW                       |                 |
|     | P-102      | SLUDGE DRAWING PUMP | 1+1             | 0.2 kW                       |                 |
| 2   | RO PLANT   |                     |                 |                              |                 |
|     | CT-102     | RECEPTION TANK      | 1               | 5 m <sup>3</sup> RC          |                 |
|     | T-101      | SAND FILTER         | i               | 360ф                         |                 |
|     | T-102      | CARTRIGE FILTER     | 1 set           | CARTRIGE TYPE                |                 |
|     | R-101      | ROFILTER            | 1set            | SDIRAL TYPE 1000 x 4         | I ELEMENTS      |
|     | V-110      | BRINE TANK          | 1               | 2 m <sup>3</sup> RC          |                 |
|     | V-107      | NaCIO TANK          | 1               | l m³                         | PUMP 0.1 kW     |
|     | V-108      | INHIVITER TANK      | 1               | 1 m <sup>3</sup>             | PUMP 0.1 kW     |
|     | V-109      | HCITANK             | 1               | 1 m <sup>3</sup>             | PUMP 0.1 kW     |
|     | P-103      | FILTER FEED PUMP    | 1+1             | 0.1 kW                       |                 |
|     | P-104      | BOOSTER PUMP        | 1+1             | 0.75 kW                      |                 |
|     | P-105      | BACK WASH PUMP      | 1               | 0.2 kW                       |                 |
| 3   | SLUDE DEW  | ATERING PLANT       | \. \            |                              |                 |
|     | CT-108     | SLUDGE HOLDING TANK | 1               | 0.5 m <sup>3</sup> RC        |                 |
|     | D-101      | BELT PRESS          | 2               | 0.5 m WIDTH                  | 2.2 kW          |
|     | V-112      | CAKE HOPPER         | 1               | 0.5 m <sup>3</sup> CS        |                 |
|     | V-111      | POLYMER TANK        | 1               | 1 m <sup>3</sup> PUMP 0.1 kW | AGITATER 0.2 kW |
|     | P-106      | SLUDGE PUMP         | 1+1             | 0.2 kW                       |                 |

#### 3.8 ONAS

As water flowing into ONAS increases, intensifying the ONAS sewage treatment is planned. As described in Volume V, increase of the existing facility including new flow in is as shown in Table VII-34.

Table VII-34 Water Flowing into ONAS

|               |                       | FLOW m³/D | COD<br>mg/l | BOD<br>mg/l | SS<br>mg/l | Cl<br>mg/l | SO <sub>4</sub><br>mg/l    |
|---------------|-----------------------|-----------|-------------|-------------|------------|------------|----------------------------|
| New flow      | TOTAL                 | 1694      | 1844        | 736         | 730        | 3272       | 1935                       |
| Existing flow | 1991.6-1992.6<br>AVE. | 19554     | 878         | 439         | 334        | 1026       | 429<br>Conversion<br>by EC |
| Total flow    |                       | 21248     | 955         | 463         | 366        | 1205       | 549                        |

SO<sub>4</sub> in the waste water discharged to the sea is restricted to 1,000 mg/l and water quality is studied with respect to COD, BDD and SS.

Existing facilities are for lagoon type microorganism treatment. It is modified to the one of activated sludge type and NaClO is added to the treated water to prevent pathogenic bacteris.

Air is blown in for the activated sludge method and the sluge is returned. List of equipment is shown in Table VII-35.

Table VII-35 Main Equipment List (ONAS 2B • 3B)

| Equip.<br>No. | Name of Equipment  | No. of<br>REQ'D |                   | Remarks     |
|---------------|--------------------|-----------------|-------------------|-------------|
| B-101         | AERATION BLOWER    | 2+1             | 30 m³/min.        | 37 kW       |
| A-101         | AIR DIFFUSER       | 1 set           |                   |             |
| P-101         | RETURN SLUDGE PUMP | 2+1             | 2 m³/min.         | 3.7 KW      |
| T-101         | NaC1O TANK         | 1               | 10 m <sup>3</sup> | PUMP 0.2 kW |

#### 4. Implementation Plan

Based on the facility plan and result of the field study as described in Volume VII, an implementation plan was worked out covering an organization and schedule for implementing the waste water and exhaust gas treatment project.

#### 4.1 Implementing Organization

Particular factories in Sfax City were selected for this study and a countermeasure against the environmental pollution was worked out. It is a matter of course that a countermeasure covering the whole city is needed. The selected factories are scattered all over the city and their operating conditions, time of construction, construction expense and economic situation are different. It is required to promote the plan to accomplish the common object of preventing the environmental pollution and improving the environment.

For this purpose, it is proposed to establish a committee as follows for the implementation of the plan.

#### (1) Establishment of Sfax industrial pollution prevention committee

Though the organizational details of the municipality of Sfax are unknown, the committee will be composed of the following members.

Chairman: Governor of Sfax city or equivalent person

Members of a committee:

General manager of environment department of Sfax city or equivalent person

Staff of MOE

President of LARSEN (Mr. K. MEDHIOUB)

Factory manager of each factory or equivalent person

Fishing industry related responsible person

Finance related responsible person

Representative of residents in Sfax city

#### (2) Duration of committee and contents of implementation

#### 1) Duration of committee

From start of study on the implementation plan until evaluation of result of the trial operation.

Actually from September 1993 to December 1996.

If the organization covers the whole Sfax City including factories other than those selected this time, however, the term should be extended.

#### 2) Contents of implementation

① Study on current situation of environmental pollution in Sfax city

Study the actual situation of industrial pollution in Sfax City and carry out environmental assessment.

#### (2) Preparation of written implementation plan

Evaluate the contents of this report, determine the most suitable cases and prepare written implementation plan (including details of facilities, total processes, and financing plan)

- ③ Promotion of governmental subsidies and accommodation of funds
  - Promote negotiations for taxes and subsidies, and secure funds accommodated
- Promotion of implementation plan and schedule control check the implementation plan of each factory and control its progress
- (5) Technical guidance to each factory

Give advice on the implementation plan of each factory and give technical guidance including analysis

#### (3) Implementation plan of each factory

In addition to the plan of the above committee, each factory makes and carries out an implementation plan based on the basic plan of the committee.

#### 4.2 Personnel Plan

A personnel plan was made for each factory and case about the operation of facilities.

Assumptions for the personnel plan and the outline are as follows.

- (1) Operating personnel of the existing sulfuric acid plant which will be changed to a DCDA method, and the scrubbers of the phosphoric acid and TSP plants which will be also reconstructed will be continuously the operators of the plants reconstructed and therefore new operators were not provided in this plan.
- (2) Water quality analysis personnel is necessary for the waste water treatment operation and newly provided.
- (3) Current operating personnel of the factories are to take care of the exhaust fume treatment cyclone also and personnel for this purpose was not provided.
- (4) Operating personnel of existing facilities are to take care of ONAS also and any personnel for this purpose was not provided.

Outline of the personnel plan is shown in Table VII-36.

Table VII-36 Personnel List

| <u>ه مستقلمه پر و بر سخو ست ۵ استان بر سخو پر سوم سخه کار می پر پر س</u> ت |                 |      |          | No.               | of personn        | el                  | <u> </u> |
|----------------------------------------------------------------------------|-----------------|------|----------|-------------------|-------------------|---------------------|----------|
| Facility                                                                   | Name of factory | Case | Engineer | Analysis engineer | Section<br>leader | Operating personnel | Total    |
| Waste water                                                                | SIAPE           | 1B   |          | 1                 | 1                 | 6                   | 8        |
| facility                                                                   |                 | 2B   |          | 1                 | 1                 | 6                   | 8        |
|                                                                            | UPOTS           | 1A   | 1        | 1                 | 1                 | 6                   | 9        |
|                                                                            |                 | 2A   | 1        | 1                 | 1                 | 6                   | 9        |
|                                                                            |                 | 3A   | 1        | 1                 | 1                 | 6                   | 9        |
|                                                                            | SIOS-ZITEX      | 1A   |          | 1                 | 1                 | 1                   | 3        |
|                                                                            |                 | 2A   |          | 1                 | 1                 | 3                   | 5        |
|                                                                            |                 | 3A   |          | 1                 | 1                 | 3                   | - 5      |
|                                                                            |                 | 3B   |          | 1                 | 1                 | 3                   | 5        |
|                                                                            |                 | 4A   |          | 1                 | 1                 | 3<br>5              | 7        |
|                                                                            | SATHOP          | 1A   |          | 1                 | 1                 | 1                   | 3        |
|                                                                            |                 | 2A   |          | 1                 | 1                 | 3                   | 5        |
|                                                                            |                 | 3A   |          | 1                 | 1                 | 3                   | 5        |
|                                                                            |                 | 3B   |          | 1                 | 1                 | 3                   | - 5      |
| ·                                                                          |                 | 4A   |          | 1                 | 1                 | 5                   | 7        |
|                                                                            | SMCP            | 1A   |          | 1                 | 1                 | 1                   | 3        |
|                                                                            |                 | 2A   |          | 1                 | 1                 | 3                   | 5        |
|                                                                            |                 | 3A   | ļ        | 1                 | 1                 | 3                   | 5        |
|                                                                            |                 | 3B   |          | 1                 | 1                 | 3                   | 5        |
|                                                                            | STS             | 1A   |          | 0.5               | 0                 | 0.5                 | 1        |
|                                                                            |                 | 2A   |          | 0.5               | 0                 | 0.5                 | 1        |
|                                                                            |                 | 3A   |          | 0.5               | 0                 | 0.5                 | 1        |
| ·                                                                          | ONAS            | 3B   |          | 0                 | 0                 | 0                   | 0        |
| Exhaust fume                                                               | SIAPE           |      |          | 0                 | 0                 | 0                   | 0        |
| facility                                                                   | SIOS-ZITEX      |      |          | 0                 | 0                 | 0                   | 0        |
| ·                                                                          | SATHOP          | 1    |          | 0                 | 0                 | 0                   | 0        |
|                                                                            | STS             |      |          | 0                 | 0                 | 0                   | 0        |

#### 4.3 Implementation Schedule

Implementation schedule for this plan is as follows, which is shown in Table VII-37.

(1) Sfax current situation study:

Oct. '93 - Dec. '96

(2) Evaluation of plan details:

Sept. '93 - Nov. '93

(3) Preparation of written implementation plan: Nov. '93 - Jan. '94

(4) Basic plan:

Feb. '94 - Mar. '94

(5) Detailed design:

Apr. '94 - June '94

(6) Construction work:

May '94 - July '95

(7) Trial operation:

Aug. '95 - Sept. '95

(Margin:

Oct. '95 - Mar. '96)

(8) Full operation:

Oct. '95 -

(Margin:

April '96 -

Table VII-37 Schedule for Industrial Pollution Prevention Plan in Sfax

### VOLUME VIII

# TRIAL CALCULATION OF FINANCIAL AND ECONOMIC PROFIT AND LOSS

## VOLUME VIII TRIAL CALCULATION OF FINANCIAL AND ECONOMIC PROFIT AND LOSS

As the last of the present study, we made a trial calculation of financial and economic effect of profit and loss on enterprises.

When a construction plan of new production facilities is studied, financial and economic analysis for judging the profitability of investment is usually implemented.

But, there is no established analytical method for the environmental countermeasure which is a theme of the present study.

Moreover, the countermeasures and facilities following each standard set in Volume V are quite different each other is contents.

The effect of financial and economic profit and loss on each enterprise was calculated by these standards as a internal rate of return (IRR) by setting some preconditions.

In the trial calculation of this volume, continuation of each enterprise and observance of the minimum environmental standard were set as preconditions.

The result of trial calculation should not be used for seeking after the possibility of investment.

Therefore, in trial calculation, we only indicate the effect of financial profit and loss on each enterprise, the necessity of managerial efforts and the importance of governmental subsidiary measures as indices.

#### 1. Total Capital Requirement and Capital Plan

#### 1.1 Total Capital Requirement

The total capital requirement is divided into the cost of constructing the facilities and equipment, and cost for pre-operation stage (cost of personnel training, test operation, and office work plus interest during the construction period). It refers to the fund invested before the operation start.

Table VIII-1 summarizes the calculation results of the total capital requirement. The contents of each expenditure is as shown below.

Table VIII-1 Total Capital Requirement

|            |            |       |          |           |            |          | (Unit:)   | 000 TD>  |           |
|------------|------------|-------|----------|-----------|------------|----------|-----------|----------|-----------|
|            |            | Case  | Training | Test      | Office     | Interest |           | Con-     | Capital   |
|            | Į.         |       | Expense  | Operation |            | During   | pperating |          | Require-  |
| <u> </u>   |            |       | İ        | Expense   | cost, etc. |          | Expense   | cost     | ment      |
| Waste      | STAPE      | 18    | 3.6      | 49.8      | 18.0       | 206.4    | 277.7     | 3.449.4  | 3.727.1   |
| Water      |            | 2B&3B | 3.6      | 50.9      | 31.2       | 366.0    | 451.7     | 6.101.2  | 6,552.9   |
| Treatment  | UPOTS      | 1 Å   | 13.4     | 18.4      | 44.3       | 692.9    | 769.0     | 8,456.0  | 9,225.0   |
| Facilities | ]          | 2 A   | 13.4     | 23.9      | 51.2       | 806.9    | 895.4     |          | 10,743.0  |
|            | L          | 3 A   | 13.4     | 25.2      | 52.9       | 834.8    |           | 10.183.2 | 11, 109.5 |
| }          | STOS-      | 1λ    | 1.6      | 0.5       | 2.1        | 21.0     | 25.1      | 354.0    | 379.1     |
| ]          | ZITEX      | 2 A   | 2.4      | 0.9       | 9.6        | 108.6    | 121.4     | 1.817.7  | 1,939.1   |
| }          | 1          | 31    | 2.4      | 1.1       | 10.7       | 122.4    | 136.6     | 2.043.0  | 2,179.6   |
|            |            | 3B    | 2.4      | 1.1       | 10.0       | 113.4    | 126.8     | 1.899.0  | 2.025.8   |
| l          |            | 4 A   | 3.2      | 1.5       | 9.6        | 108.0    | 122.3     | 1,803.0  | 1.925.3   |
| 1          | SATHOP     | 1.4   | 2.4      | 0.6       | 2.4        | 22.8     | 28.1      | 382,3    | 410.4     |
| f          | 1          | 2 A   | 2.4      | 1.1       | 9.8        | 111.0    | 124.3     | 1.856.0  | 1,980.3   |
| ]          | ]          | 3 A   | 2.4      | 1.2       | 11.0_      | 126.6    | 141.2     | 2.114.1  | 2, 255. 3 |
| 1          | ·          | 3B    | 2.4      | 1.2       | 10.7       | 123.0    | 137.3     | 2,054.7  | 2.192.0   |
| <b>\</b>   | L          | 4 1   | 3.2      | 0.9       | 10.0       | 111.6    | 125.6     | 1.868.8  | 1,994.4   |
| Į          | SHCP       | 1 /   | 1.6      | 0.4       | 4.3        | 48.0     | 54.2      | 800.2    | 854.4     |
| }          | }          | 2 A   | 2.4      | 0.7       | 8.8        | 100.2    | 112.1     | 1,670.2  | 1,782.3   |
|            |            | 3 A   | 2.4      | 0.7       | 9.4        | 106.8    | 119.3     | 1,781.6  | 1.900.9   |
| ŧ          |            | 3B    | 2.4      | 1.0       | 10.3       | 118.2    | 131.9     | 1,971.3  | 2, 103.2  |
| ]          | STS        | 11/   | 0.5      | 0.1       | 0.9        | 9.6      | 11.1      | 167.1    | 178.2     |
|            | j ·        | 2 A   | 0.5      | 0.1       | 1.6        | 18.0     | 20.2      | 303.4    | 323.6     |
| ]          | <u> </u>   | 3A    | 0.5      | 0.1       | 2.2        | 24.6     | 27.4      | 416.9    | 444.3     |
|            | DNAS       |       | 2.4      | 3.4       | 5.2        | 56.4     | 67.4      | 941.0    | 1.008.4   |
| Exhaust    | STAPE      |       | 2.4      | 10.6      | 77.9       | 1315.0   |           |          | 16.885.7  |
|            | SIOS-ZITEX |       | 2.4      | 0.3       | 1.4        | 15.3     | 19.4      | 188.5    | 207.9     |
| Treatment  | SATHOP     |       | 2.4      | 0.3       | 1.5        | 17.9     | 22.1      | 210.8    | 232.9     |
| Facilities | STS        |       | 2.4      | 0.0       | 0.7        | 4.3      | 7.4       | 52.5     | 59.9      |

#### (1) Facility construction costs

The case of study for three cases of the tentative standard proposed by Japan, the tentative standard proposed by Tunisia and INNORPI which are selected as the pollution regulation values in this study, cases by discharge destination and case of process improvement are shown in Table VIII-2.

**Table VIII-2 Study Cases** 

| Classification                   | Case             | Basic standard                         | Discharge destination          |
|----------------------------------|------------------|----------------------------------------|--------------------------------|
| Waste water treatment            | CASE1A/B         | Tentative standard proposed by Japan   | A:ONAS, B:SEA                  |
| facilities                       | CASE2A/B         | Tentative standard proposed by Tunisia | A:ONAS, B:SEA                  |
|                                  | CASE3A<br>CASE3B | INNORPI<br>INNORPI                     | ONAS<br>SEA                    |
|                                  | CASE4A           | Tentative standard proposed by Japan   | Process improvement considered |
| Exhaust gas treatment facilities |                  |                                        |                                |

Construction cost of facilities was calculated by taking the results of conceptual design into account. First, the construction cost in Japan as of April 1993 was added up, then the result was converted into Tunisian values by the following method:

- Trom the field survey result, cost of machines and equipment was estimated by 70% as import from neighboring advanced countries and 30% as domestically procured within Tunisia. Price index was set to 90% of the Japanese commodity price for the import products by assuming that they are imported from France, and 70% for the domestic products of Tunisia, and an average conversion rate to 85%.
  - In establishing the cost index, considering Article 7 of Law No. 88-91 which exempts the import tax and sales tax, these taxes have been excluded from the calculation.
- ② From the field survey result, it was determined that the whole field construction work can be executed by the domestic construction companies of Tunisia, so that the cost was estimated at 75% of the level in Japan.
- ③ The construction cost based on Japanese Yen was converted into Tunisian Dinars (TD) based on the exchange rate information from the Bank of Tokyo as of April 1993 as follows:

```
1 TD = 0.8085 SDR, 1 SDR = 1.37500 US$, US$1 = 1.37500 US$1.
```

As the reference term of the work was set to eighteen months from the start of basic design till the time of completion and test run, considering the range and difficulty of the construction, and the term of the work for margin was set to 24 months.

Table VIII-3 summarizes the construction cost classified by factory and by case.

Table VIII-3 Construction Cost

|            |          |          |          | · · · · · · · · · · · · · · · · · · · | (Unit : 1 | 000 TD)       |         |
|------------|----------|----------|----------|---------------------------------------|-----------|---------------|---------|
| Facili-    | Factory  | Case     | Machine  | Inciden-                              | Sub       | Field         | Total   |
| ties       | L        |          | & Eguip. | tal Equip.                            | Total     | Work          |         |
| aste       | SAIPE    | 1 B      | 1735.4   | 304.6                                 | 2040.0    | 1409.4        | 3449.4  |
| ater       | 1        | 2B&3B    | 4005.2   | 455.6                                 | 4460.8    | 1640.4        | 6101.2  |
| Treatment  | UPOTS    | 1.4      | 4148.0   | 408.0                                 | 4556.0    | 3900.0        | 8456.0  |
| Facilities |          | 2.4      | 5134.0   | 489.6                                 | 5623.6    | 4224.0        | 9847.6  |
|            |          | 3.4      | 5385.6   | 489.6                                 | 5875.2    | 4308.0        | 10183.2 |
|            | -2018    | 1 /      | 129.2    | 54.4                                  | 183.6     | 170.4         | 354.0   |
|            | ZITEX    | 2.1      | 1046.2   | 159.8                                 | 1206.0    | 611.7         | 1817.7  |
|            |          | 3 A      | 1176.4   | 180.2                                 | 1356.6    | 686.4         | 2043.0  |
|            |          | 3B       | 1094.8   | 159.8                                 | 1254.6    | 644.4         | 1899.0  |
|            |          | 4.4      | 513.4    | 53.0                                  | 566.4     | 1236.6        | 1803.0  |
|            | SATHOP   | 1 A      | 135.3    | 64.6                                  | 199.9     | 182. 3        | 382.2   |
|            |          | 2 A      | 1023.4   | 176.8                                 | 1200.2    | 655.8         | 1856.0  |
|            |          | 3 A      | 1175.0   | 204.0                                 | 1379.0    | 735.4         | 2114.4  |
|            |          | 3B       | 1102 3   | 231.2                                 | 1333.5    | 721.3         | 2054.8  |
|            |          | 4 /      | 542.6    | 64.6                                  | 607.2     | 1261.6        | 1868.8  |
|            | SECP     | 1.4      | 349.9    | 142.8                                 | 492.7     | 307.5         | 800.2   |
|            |          | 2 A      | 1012.9   | 193.8                                 | 1206.7    | 463.5         | 1670.2  |
|            |          | 3 A      | 1123.7   | 193.8                                 | 1317.5    | 464.1         | 1781.6  |
|            |          | 3B       | 1165.5   | 219.3                                 | 1384.8    | <b>586.</b> 5 | 1971.3  |
|            | STS      | 11       | 52.5     | 26.4                                  | 78.9      | 88.2          | 167.1   |
|            | <u> </u> | 21       | 155.0    | 37.4                                  | 192.4     | 111.0         | 303.4   |
|            |          | 31       | 230.5    | 44.2                                  | 274.7     | 142.2         | 416.9   |
| <u></u>    | DNAS     |          | 112.2    | 414.8                                 | 527.0     | 414.0         | 941.0   |
| Exhaust    | SIAPE    | L        | 11198.4  |                                       | 11198.4   | 4281.5        | 15479.9 |
| Gas        | S108-Z1T | EX       | 149.9    |                                       | 149.9     | 38.6          | 188.5   |
| Treatment  | SATHOP   | <b> </b> | 167.3    |                                       | 167.3     | 43.5          | 210.7   |
| Facilities | STS      | L.,,     | 10.8     | L                                     | 40.8      | 11.7          | 52, 5   |

#### (2) Cost of personnel training

The antipollution facilities under the present study does not require any expert techniques for the operation or management. However, it was decided to give a concentrated training session to the personnel for two months (or three months for the facilities for MARGIN) before starting the test run, on the assumption of a full-scale operation of the facilities.

To cover the above session, the training cost has been appropriated (utility expense, chemicals expense, labor expense, and factory overhead).

#### (3) Cost of test run supervision and technical support

Cost of supervision for starting the test run and technical support during the construction work is assumed to be included in the construction cost, and is therefore not to be added as an independent item.

#### (4) Initial refill cost of chemicals

Cost of the initial refill of chemicals, filters, and catalysts is assumed to be included in the construction cost or test run cost, and is therefore not to be added as independent item.

#### (5) Test run cost

As the test run period, six months are assumed to be required for the margin treatment to stabilize the treatment facilities, and two months for the exhaust-gas treatment and other waste water treatment. The labor expense, chemicals expense, electricity expense, etc. are assumed to be about 60% of the operation cost after starting the operation.

#### (6) Factory overhead and others

As the factory overhead for the construction period, about 0.5% of the construction cost has been added as a requisite during the period from the beginning of construction till the personal training start time. Also 10% of the personnel training cost and test run cost has been appropriated as the direct and indirect expenditure for the management staff, based on the personnel composition ratio.

#### 1.2 Capital Plan

The capital plan and interest for the construction period have been prepared from the roughly estimated construction cost decribed in Section 1.1 above, by providing the following conditions:

#### (1) Division of construction period

The two years period from one year after the construction start (1.5 to 2 years prior to the operation start) till the second year from the construction start have been divided by four quarters, and the quarters are indicated as 1Y (1st year)/1Q (1st quarter) to 2Y (2nd year)/4Q (4th quarter).

#### (2) Criteria for Payment

① For Machines and equipment: Payment shall be made by three installments: — first installment on placing an order, second installment in the intermediate period, then the final installment on delivery acceptance. This is based on the consideration that a long period of time is required for the import or manufacture, and without any particular binding practice of contract.

The criteria by construction period is set as follows:

24 months' construction period: 1Y/1Q:30%, 1Y/3Q: 25%, 2Y/2Q: 25%, 2Y/4O: 20%

18 months' construction period: 1Y/1Q: 30%, 1Y/3Q: 20%, 1Y/4Q: 20%, 2Y/2Q: 30%

② For construction work: Mainly the personnel expenses (wages). According to the field survey, it is known that the payment term for individual accounts can be established upon each ordering. Therefore, the following payment terms have been determined:

24 months' construction period: 1Y/3Q: 10%, 1Y/4Q: 20%, 2Y/1Q: 20%, 2Y/ 2Q: 20%, 2Y/3Q: 20%, 2Y/4Q: 10%

18 months' construction period: 1Y/2Q: 20%, 1Y/3Q: 20%, 1Y/4Q: 20%, 2Y/1O: 20%, 2Y/2Q: 20%

Table VIII-4 summarizes the payment schedule of the construction cost by factory and by case which are the fund raising bases.

#### (3) Fund raising

For the fund raising, analysis has been made on the financial status of each enterprise based on the field survey results (financial situation and general management situation of each enterprise, etc.) and on the financial reports such as the financial statement of each enterprise. Consequently, taking account of the local fund raising examples, and considering the fact that the present investment is intended for antipollution facilities, the following conditions have been provided:

- ① Self-financing: The analysis of financial statements has led to a conclusion that a self-financing is difficult. Furthermore, in view of the non-profit making nature of the planned investment, capital increase is also difficult. In consequence, self-financing is assumed to be zero.
- ② Public subsidy: When the present investment is approved by the Tunisian Government as a project of antipollution facility, it can be subject to the public subsidy for environmental protection (Article 7 of Law No.88-91). Therefore, a special loan from the central bank (interest on borrowing: 8% per annum) is assumed.
- ② Loan: Out of the total capital required, except the interest for the construction period, long term loans payable from the central bank are assumed for the amount of payment schedule based on the above criteria. To cover the money equivalent to the interest for the construction period, short-term loans from commercial bank are considered.

#### (4) Interest for the construction period

The interest for the construction period is assumed as being generated during the construction period for the balance of borrowed money. It has been calculated by setting the interest and repayment conditions as follows:

- ① Interest rate: 8% per annum for long-term and short-term borrowing
- ② Repayment condition: Repayment shall be made after the start of the operation, taking account of the corresponding depreciation.

Table VIII-4 Payment Schedule for Construction Cost

|                 |            | Case  | Construc  | tion   | Cost    | 1Y/10   | 11/20  | 1Y/30   | 17/40  | 2Y/10     | 2Y/20  | 2Y/30        | 27/40  | Total   |
|-----------------|------------|-------|-----------|--------|---------|---------|--------|---------|--------|-----------|--------|--------------|--------|---------|
|                 |            |       | Kachine & | ield   | Total   |         |        |         | -      |           |        | <del> </del> |        |         |
|                 |            |       | Equipment | Fork   |         |         | -      |         |        |           |        |              |        |         |
| Maste           | SIAPE      | 18    | 2040.0    | 1409.4 | 3449.4  | 812.0   | 281.9  | 689.9   | 689.9  | 281.9     | 833.9  | 0.0          | 0.0    | 3449.4  |
| ¶ater           |            | 2B&3B | 4460.8    | 1640.4 | 6101.2  | 1338.2  | 328.1  | 1220.2  | Ι.     | 1.        | 1666.3 | 0.0          | 0.0    | 6101.2  |
| Treatment       |            |       |           |        |         |         |        | .1      | .f     |           |        |              |        |         |
| FacilitiesUPOTS | UPOTS      | γI    | 4558.0    | 3900.0 | 8456.0  | 1366.8  | 0.0    | 1529.0  | 780.0  | 780.0     | 1919.0 | 780.0        | 1301.2 | 8456.0  |
|                 |            | 2.4   | 5623.6    | 4224.0 | 9847.6  | 1687.1  | 0.0    | 1828.3  | 844.8  | 844.8     | 2250.7 | 844.8        | 1547.1 | 9847.6  |
|                 |            | 3.4   | 5875.2    | 4308.0 | 10183.2 | 1762.6  | 0.0    | 1899. 6 |        | 1 .1      | 2330.4 | 861.6        | 1605.8 | 10183.2 |
|                 |            |       |           |        |         |         |        |         | ~~     |           |        |              |        |         |
|                 | STOS-      | 14    | 183.6     | ė      | 354.0   | 55.1    | 34.1   | 70.8    | 70.8   | 34.1      | 89.2   | 0.0          | 0.0    | (       |
|                 | ZITEX      | 2.λ   | 1205.0    | 611.7  | 1817.7  | 361.8   | 122.3  | 363.5   | 363.5  | 122.3     | 484.1  | 0.0          | 0.0    | 1817.7  |
|                 |            | 34    | 1356.6    | 686.4  | 2043.0  | 407.0   | 137.3  | 408.8   | 408.8  | 137.3     | 544.3  | 0.0          | 0.0    | 2043.0  |
|                 |            | 38    | 1254.6    | 644.4  | 1899.0  | 378.4   | 128.9  | 379.8   | 379.8  | 128.9     | 505.3  | 0.0          | 0.0    | 1899.0  |
|                 |            | 44    | 566.4     | 1236.6 | 1803.0  | 169.9   | 247.3  | 350.6   | 360.6  | 247.3     | 417.2  | 0.0          | 0.0    | 1803.0  |
|                 |            |       |           |        |         |         | - 1    |         |        |           |        |              |        |         |
|                 | SATHOP     | 14    | 199.9     | 182.4  | 382.3   | 60.0    | 36.5   | 76.5    | 76.5   | 1         | 98.5   | 0.0          | 0.0    | 382.3   |
|                 |            | 2.A   | 1200.2    | 655.8  | 1856.0  | 360.1   | 131.2  | 371.2   | 371.2  | 131.2     | 491.2  | 0.0          | 0.0    | 1856.0  |
|                 |            | 3.4   | 1379. 1   | 735.0  | 2114.1  | 413.7   | 147.0  | 422.8   | 422.8  |           | 560.7  | 0.0          | 0.0    | 2114, 1 |
|                 |            | 38    | 1333.5    | 721.2  | 2054.7  | 400.1   | 144.2  | 410.9   | 410.9  | 144.2     | 544.3  | 0.0          | 0.0    | 2054, 7 |
|                 |            | 4.4   | 607.2     | 1261.6 | 1868.8  | 182.2   | 252.3  | 373.8   | 373.8  | 252.3     | 434.5  | 0.0          | 0.0    | 1868.8  |
|                 |            |       |           |        |         |         |        |         |        |           |        |              |        |         |
| -               | SACP       | 1.4   | 492.7     | 307.5  | 800.2   | 147.8   | 61.5   | 160.0   | 160.0  | 61.5      | 208.3  | 0.0          | 0.0    | 800.2   |
|                 |            | 2.4   | 1206.7    | 463.5  | 1670.2  | 362.0   | 92.7   | 334.0   | 334.0  | 92.7      | 454.7  | 0.0          | 0.0    | 1670.2  |
|                 |            | 3.4   | 1317.5    | 464.1  |         | 395.3   | 92.8   | 356.3   | 356.3  | 92.8      | 488.1  | 0.0          | 0.0    | ٠ţ      |
|                 |            | 38    | 1384.8    | 586.5  | 1971.3  | 415.4   | 117.3  | 394.3   | 394.3  | 117.3     | 532.7  | 0.0          | 0.0    | 1971.3  |
|                 | دىدە       |       | 70 0      | 000    |         | 600     | 9 61   |         | 000    |           |        | (            | 6      | 167     |
|                 | 2          | 4.6   | 100       | 1 1 2  | 2002    | 2 2 2 2 | 0 0 0  | 200.4   | 500.4  | 000       | 70.07  | 200          |        | 303     |
|                 |            | 6     | 2 7 7 2   |        | Į.      | 1000    |        | ,       |        | 3 - 7 - 6 |        |              |        |         |
|                 | ·          | NO.   | .1.       | 146.6  | 410.9   | \$ 5.2  | \$ .82 | \$3.4   | \$3.4  | 5.8.4     | 8 .0.  | 0.0          | 3      | ان      |
|                 | DNAS       |       | 527.0     | 414.0  | 0 176   | 158.1   | 8.5.8  | 188.9   | 188.9  | 8 68      | 946.9  | 0.0          | 0      | 941.0   |
|                 |            |       |           |        |         | ***     | ,      |         | 2      | À         | 2      |              |        |         |
| Exhaust         | SIAPE      |       | 11198.4   | 4281.5 | 15479.9 | 3359.5  | 856.3  | 3096.0  | 3096.0 | 856.3     | 4215.8 | 0.0          | 0.0    | 15479.9 |
| Gas             | S10S-211EX | *     | 149.9     | 38.6   | 188.5   | 45.0    | 7.7    | 37.7    | 37.7   | 7.7       | 52.7   | 0.0          | 0.0    | 188.5   |
| thent           | SATHOP     |       | 167.3     | 43.5   | 210.8   | ا، ا    | 8.7    | 42.2    | 42.2   | 8.7       | 58.9   | 0.0          | 0.0    | 210.8   |
| FacilitiesSTS   | STS        |       | 40.8      | 11.7   | 52.5    | 12.2    | 63     | 10.5    | 10.5   | 2.3       | 14.6   | 0.0          | 0.0    | 52.5    |
|                 |            |       |           |        |         |         |        |         |        |           |        |              |        |         |

#### 2. Calculation of Operation Cost

#### (1) Preconditions of calculation

The operating conditions of each facility and preconditions for calculating the operation cost are as detailed below.

#### 1) Number of work days

- ① Waste water treatment facilities: Continued operation per annum (365 days) 8760 hours
- (2) Exhaust gas treatment facilities: 300 days/year 7200 hours
- ③ Glycerol recovery facilities: 330 days/year (SIOS-ZITEX/SATHOP)

#### 2) Operation cost

The operation cost consists of variable cost and fixed cost. The variable cost includes the chemicals expense and utility expense. The fixed cost includes labor expense, maintenance expense, depreciation expense, catalyst depreciation, and factory overhead.

Cost of the land is considered as a buried cost, and is not included in the calculation, because the facilities are constructed within the factory site without additional expenditure. Property taxes and insurance premium are regarded as not necessary because the object is an environmental facilities.

#### (2) Calculation of operation cost

#### 1) Chemicals expense:

The cost per day was calculated by estimating the consumption per day for each factory and each case. The unit purchase price was based on the result of field survey. For unknown items, the price based on Japan was converted into Tunisian based price.

| Ca(OH)2                        | (70%) | 0.2 TD/kg | Alum                             | (8%)  | 0.16 TD/kg |
|--------------------------------|-------|-----------|----------------------------------|-------|------------|
| Polymer                        |       | 8         | CO(NH2)2                         | (70%) | 0.88       |
| HCl                            | (35%) | 0.24      | NaOH                             | (24%) | 0.108      |
| NaClO                          | (12%) | 0.32      | NaH <sub>2</sub> PO <sub>4</sub> |       | 3.12       |
| H <sub>3</sub> PO <sub>4</sub> | (89%) | 2.52      | 4 - 7 '                          |       |            |

The variable cost related to the process improvement (glycerol recovery) was calculated individually by separate estimation.

#### 2) Utility expense:

First, the daily consumption at each factory and case was estimated to obtain the expense per day.

The unit purchase price was based on the result of field survey.

Electricity (medium pressure: 10, 15, 30 kV) 0.056 TD/kwh

Electircity (low pressure: 220, 380 V) 0.076 TD/kwh

Electricity (high pressure: 90,150,225 kV) 0.036 TD/kwh

Fuel oil (large consumption) 106 TD/kl

City water: rental/maintenance fee of water supply pipeline:

1.287 to 124.047 TD/Q (15 to 150 mm)

Water cost: 0.573 TD/m<sup>3</sup>

Sewage treatment: Subscription fee 4,030 TD/quarter

Basic treatment fee 0.230 TD/m<sup>3</sup>

Clean: 0.175

Dirty: 0.270

#### 3) Labor expense

Number of required personnel was calculated for each factory and each case by job type. Unit price of the wage was based on the followings:

General manager: 650 TD/month-person

Production manager: 550 TD/month-person

Engineer: 450 TD/month-person

Skilled worker: 300 TD/month-person

Team head: 280 TD/month-person

Operator: 200 TD/month-person

# 4) Maintenance expense:

The following rates have been appropriated based on the record of existing facilities in Japan and considering the field survey result:

Consumption of ordinary repair parts and cost of consumables:

1.5% of the acquisition price of equipment

Repair fee after failure occurrence:

1.5% of the acquisition price of equipment

Total: 3% of the acquisition price of equipment

# 5) Depreciation expense:

The rates below have been adopted based on the field survey result. According to Article 7 of Law No.88-91, an antipollution equipment is subject to an additional depreciation by 15% per annum when the plan is approved by the Government. However, since this is a tax-exempted subsidy, such additional depreciation is treated as a reserve, and identified from the ordinary depreciation.

Ordinary depreciation: Ratio 10% by straight line method

These depreciation expenses are treated as an operation cost.

Special depreciation: Ratio 15% by straight line method

These depreciation expenses are not treated as operation cost by accounting them to be special depreciation reserves.

By the taxation system, an unlimited extension of depreciation is approved in case of a profit shortage. In ordinary case, however, the depreciation expenses shall be included in the expenditure for the fiscal year, including the special depreciation.

Table VIII-5 lists the calculation results of the depreciation and the special depreciation by factory and by case.

#### 6) Catalyst depreciation:

The life of catalyst input in the exhaust gas treatment facilities is five years. Hence, the calculation has been based on five years' equal amount depreciation. Cost of the replacement work and waste catalyst treatment is included in the catalyst purchase cost.

# 7) Factory overhead cost:

The following ratio has been established based on the record of existing equipment in Japan and the field survey results:

10% of fixed operation cost.

The overhead shall include the direct management cost related to the analysis, operation, and maintenance work.

Table VIII-6 summarizes the calculation results of operation cost by factory and by case.

Table VIII-5 Depreciation Expenses

|                |            |       |                             |                                  |          |                     | (Unit:                                                    | t: 1000 TD)                 |         |                     |     | Special Depreci.<br>& tax exemption | epreci.<br>Eption         |
|----------------|------------|-------|-----------------------------|----------------------------------|----------|---------------------|-----------------------------------------------------------|-----------------------------|---------|---------------------|-----|-------------------------------------|---------------------------|
|                |            | Case  | Equipment<br>Const.<br>Cost | Acquisiti<br>Pre-ope.<br>Expense | 티        | PriceResidual Natal | Number of Dep. Meth<br>Depreci. Straight<br>Years Line M. | Meth. Depreci<br>ight Ratio | . 24    | Depreci.<br>Expense | . * | Special<br>Depreci.                 | Tax Exmp<br>Effect<br>35% |
| aste           | SIAPE      | 18    | 4                           | 277.7                            | 3727.1   | 0                   |                                                           |                             | 10      | 372.7               |     | 559.1                               | 195.7                     |
| ater           |            | 28438 | 6101.2                      | 451.7                            | 6552.9   | 0                   | 10                                                        |                             | 10      | 655.3               |     | 982.8                               | 344.0                     |
| acilitiesUPOTS | UPOTS      | I.A   | 8456.0                      | 769.0                            | 9225.0   | -                   | 01                                                        |                             | <u></u> | 922.5               | :.  | 1383.7                              | 484.3                     |
|                |            | 2.A   | 9847.8                      | 895.4                            | 10743.0  | 0                   | 10                                                        |                             | 10      | 1074.3              |     | 1611.5                              | 564.                      |
| _              |            | 3.4   | 10183.2                     | 926 3                            | 11109.5  | 0                   | 10                                                        |                             | 10      | 1110.9              |     | 1686.4                              | 583.2                     |
|                | -8018      | Y!    | 354.0                       | 25.1                             | 379.1    | 0                   | 10                                                        |                             | 01      | 37.9                |     | 6.0                                 | 19.9                      |
|                | ZITEX      | 2.A   | 1817.7                      | 121.4                            | 1939. 1  | 0                   | 10                                                        |                             | 10      | 193.9               |     |                                     | 101.8                     |
|                |            | 3.4   | 2043.0                      | 136.6                            | 2179.6   | 0                   | 10                                                        |                             | 01      | 218.0               |     | 326.9                               | 114.4                     |
|                |            | 38    | 1899.0                      | 126.8                            | 2025.8   | 0                   | 10                                                        |                             | 10      | 202.6               |     | 303.9                               | 106.4                     |
|                |            | 4.4   | 1803.0                      | 122.3                            | 1925.3   | 0                   | 10                                                        |                             | 01      | 192.5               |     |                                     | 101                       |
|                |            |       |                             |                                  |          |                     |                                                           | ::                          | -       |                     |     |                                     |                           |
|                | SATHOP     | 1Å    | 382.3                       | ٠.١                              | 410.4    | 0                   | 10                                                        |                             | 10      | 41.0                |     | 61.6                                | 21.5                      |
|                |            | 2.4   | 1856.0                      | -1                               | 1980.3   | 0                   | 10                                                        |                             | 2       | 198.0               |     | 297.0                               | 104.0                     |
|                |            | 34    |                             | - d                              | 2255.3   | 0                   | 10                                                        |                             | 10      | 225.5               |     | 338.3                               | 118.4                     |
|                |            | 38    | 2054.7                      | 137.3                            | 2192.0   | 0                   | 10                                                        |                             | 01      | 219.2               |     | 328.8                               | 112                       |
|                |            | 4 V   | 1868.8                      | 125.6                            | 1994. 4  | 0                   | 10                                                        |                             | 10      | 199. 4              |     | 299.2                               | 104.7                     |
|                |            |       |                             | - 1                              |          |                     |                                                           |                             |         |                     |     |                                     |                           |
|                | SICP       | 1,4   |                             | 54.2                             | 854. 4   | 0                   | 10                                                        |                             | 10      | 85.4                |     |                                     | 44                        |
|                |            | 2Α    | 1670.2                      | 112.1                            | 1782.3   | 0                   | 10                                                        |                             | 10      | 178.2               |     | 267.3                               | 93.6                      |
|                |            | 3.4   | 1781.6                      | 119.3                            | 1900.9   | 0                   | 10                                                        |                             | 9       | 1 061               |     |                                     | 99.                       |
|                |            | 38    | 1971.3                      | 131.9                            | 2103.2   | 0                   | 10                                                        |                             | 10      | 210.3               |     | 315.5                               | 110                       |
|                | STS        | 1,4   | 167.1                       | 11.1                             | 178.2    | 0                   | 01                                                        |                             | 10      | 17.8                |     | 26.7                                | 9                         |
|                | 4          | 2.4   | 303.4                       | 20.2                             | 323.6    | 0                   | 01                                                        |                             | 10      | 32.4                |     | 48.5                                | 17.                       |
|                |            | 3.A   | 416.9                       | 27.4                             | 444.3    | 0                   | 10                                                        |                             | 10      | 44.4                |     | 88.8                                | 23.3                      |
|                |            |       |                             |                                  |          |                     |                                                           |                             | -       |                     |     | :                                   |                           |
|                | SVNO       |       | 941.0                       | 67.4                             | 1008.4   | 0                   | 10                                                        |                             | 10      | 100.8               |     | 151.3                               | 52.9                      |
| Exhaust        | SIAPE      |       | 15479.9                     | 1405.8                           | 15885. 7 | 0                   | 10                                                        |                             | 10      | 1640.7              |     | 2461.1                              | 861.4                     |
| Gas            | SIOS-ZITEX |       | 188.5                       | <b>4</b>                         | 207.9    | 0                   | 10                                                        |                             | 0       | 20.8                |     | 31.2                                | 10.9                      |
| reatment       | SATHOP     |       | 210.8                       | 22. 1                            | 232.9    | 0                   | 10                                                        |                             | 0       | 23.3                |     | 34.9                                | 12.                       |
|                | STS        |       | 52.5                        | <u>.</u>                         | 59.9     | 0                   | 01                                                        |                             | 10      | 6.0                 |     |                                     | 3.1                       |
|                |            |       |                             |                                  |          |                     |                                                           | <u>:</u>                    |         |                     |     |                                     |                           |

Table VIII-6 Operation Cost

|            |          |       | ····     | ·        |         |          | (Unit:10 | QO TD/Ye | ar)      |        |
|------------|----------|-------|----------|----------|---------|----------|----------|----------|----------|--------|
|            | 1        | Case  |          | Chemical |         |          |          |          | Catalyst | Total  |
|            | l        |       |          | Expense  | Expense | Expense  | Expense  | Dverhead | Depreci. |        |
| laste      | STAPE    | 1 B   | 66.2     | 2898.1   | 21.4    | 111.8    | 372.7    | 50.6     |          | 3520.8 |
| later      |          | 2B&3B | 98.1     | 2933.6   | 21.4    | 196.6    | 655.3    | 87.3     |          | 3992.3 |
| freatment  | [        |       |          |          | ν       |          |          |          |          | 6.77   |
| Facilities | UPOTS    | 14    | 68.7     | 23.1     | 26.8    | 276.7    | 922.5    | 122.6    |          | 1440.4 |
|            |          | 2 /   | 74.6     | 54.0     | 26.8    | 322.3    | 1074.3   | 142.3    |          | 1694.2 |
|            |          | 3 A   | 76.5     | 60.8     | 26.8    | 333.3    | 1110.9   | 147.1    | 1        | 1755.4 |
|            |          |       |          |          |         |          |          |          |          |        |
|            | S10S-    | 1.6   | 5.4      | 11.0     | 9.4     | 11.4     | 37.9     | 5.9      |          | 80.9   |
|            | ZITEX    | 2.4   | 9.3      | 28.1     | 14.2    | 58.2     | 193.9    | 26.6     | 1        | 330.3  |
|            |          | 3 Å   | 22.6     | 29.2     | 14.2    | 65.4     | 218.0    | 29.8     |          | 379.1  |
|            |          | 3 B   | 21.1     | 29.4     | 14.2    | 60.8     | 202.6    | 27.8     |          | 355.8  |
|            |          | 4 Å   | 55.1     | 11.7     | 19.0    | 57.8     | 192.5    | 26.9     | 1        | 363.0  |
|            |          |       |          |          |         |          | V.=      |          |          |        |
|            | SATHOP   | 1.4   | 4.9      | 13.3     | 9.4     | 12.3     | 41.0     | 6.8      |          | 87.6   |
|            |          | 2.4   | 20.1     | 32.1     | 14.2    | 59.4     | 198.0    | 27.2     |          | 351.0  |
|            |          | 3 A   | 21.1     | 33.8     | 14.2    | 67.7     | 225.5    | 30.7     |          | 393.0  |
|            |          | 3B    | 21.1     | 34.2     | 14.2    | 65.8     | 219.2    | 29.9     |          | 384.3  |
|            |          | 4 A   | 13.2     | 18.4     | 19.0    | 59.8     | 199.4    | 27.8     |          | 337.7  |
|            |          |       | 1        |          |         |          |          |          |          |        |
|            | SHCP     | 1 Å   | 3.4      | 7.3      | 9.4     | 25.6     | 85.4     | 12.0     | :        | 143.2  |
|            |          | 2 A   | 10.3     | 14.7     | 14.2    | 53.5     | 178.2    | 24.6     |          | 295.4  |
|            |          | 34    | 10.3     | 16.1     | 14.2    | 57.0     | 190.1    | 26.1     |          | 313.8  |
|            |          | 3B    | 16.2     | 25.8     | 14.2    | 63.1     | 210.3    | 28.8     |          | 358.4  |
|            |          |       |          |          |         |          |          |          |          |        |
|            | STS      | 1.4   | 1.5      | 0.1      | 3.0     | 5.3      | 17.8     | 2.6      |          | 30.4   |
|            |          | 2 A   | 2.0      | 0.7      | 3.0     | 9.7      | 32.4     | 4.5      |          | 52.2   |
|            |          | 3 A   | 2.5      | 1.5      | 3.0     | 13.3     | 44.4     | 6.1      |          | 70.8   |
|            |          | ·     | <u> </u> |          |         | <u> </u> | 1 1      |          |          |        |
|            | DNAS     |       | 40.2     | 165.5    | 0.0     | 30.3     | 100.8    | 13.1     |          | 349.9  |
| Exhaust    | SIAPE    |       | 282.2    | 0.0      | 0.0     | 506.6    | 1640.7   | 214.7    | 95.7     | 2644.3 |
| Gas        | SIOS-ZIT | EX    | 8.5      | 0.0      | 0.0     | 6.2      | 20.8     | 2.7      |          | 38.2   |
| Treatment  | SATHOP   |       | 9.3      | C. 0     | 0.0     | 7.0      | 23.3     | 3.0      |          | 42.6   |
| Facilities | STS      |       | 1. 2     | 0.0      | 0.0     | 1.8      | 6.0      | 0.8      |          | _ 9.8  |
|            |          |       | 1        | l        |         |          | 1        |          |          |        |

#### 3. Financial Analysis

The present project study on countermeasures for waste water and exhaust gas can be called a kind of social infrastructural adjustment. For the investment on such non-productive facilities, it is difficult to determine or measure the economic benefits in numerical data. While it hardly conform to the evaluation by financial or economic analysis, we have decided to perform the study by using the concept of the opportunity cost or shadow price.

Based on the studies described above, we intended to analyze the influence over the financial profit by the present financial status and managerial achievement of each enterprise. For the analysis, we have generated such documents as a statement of profit and loss, and a cash flow statement.

# (1) Present state analysis of each enterprise

A simple analysis has been made on the present state of each enterprise within the range of information provided by the field survey, such as the financial statements. The analysis is based on the fact that the planned investment will work a substantial influence over the management of the enterprises, and the capability of each enterprise to bear the cost is an important factor for selecting the case.

Further, for the calculation of economic benefits which will be described later, each enterprise's capability to bear the additional depreciation expenses is the precondition. From this, we have estimated a long-term capability and the room for qualitative improvement of each enterprise. For a convenience sake, we have estimated the possible changes of profits and losses of each enterprise, taking account of the favorable change of the managing environment and their policy of saving the fixed expenditures. Thus, a simulation of the possibility has been tried for the enterprises to decide the investment on the non-profit-making projects against the industrial pollution. Such simulation was made to foresee in what situation those enterprises can reach such decision under the existing public subsidy system.

The following summarizes the results of analysis:

The numerical data shows that the enterprises are based on a managerial fundamentals and environment that hardly ensure a stable production continued for a long time-span. That is, operating ratio of the production equipment fluctuates with external factors (such as the demand-supply balance, and condition of rawmaterial supply). Continuation of hard-to-control conditions, such as the growing trend and sudden increase/decrease of the products and raw materials in stock, fluctuation of the production unit figure (estimate) and production profit ratio, etc.

The enterprises require a qualitative improvement of the financial state, and have no retained profit for reinvestment.

Capital structure: The owned capital ratio is relatively high.

Quality of assets: The assets are concentrated on the products and raw materials in stock, with limited current assets (cash, deposits, securities, etc.). (That means a high ratio of current assets themselves.)

- (a) For reinvestment on the production facilities, the funds will fully depend on the external source.
- (b) Evaluation of the owned capital can also be reduced according to the inventory state of the products and raw material (existence of bad stock).
- 3 The present financial analysis has brought about a conclusion that, to encourage the investment on non-productive equipment, support of the public subsidies is an indispensable condition for the fund and operating cost.
- (4) For the SIAPE, it was impossible to try a full simulation because of an extremely low gross production profit ratio. The company is in need of a drastic reform of the management before studying the investment on the present plan.
- 6 Other enterprises appear to have a room to improve the profit to enable the planned investment.

Table VIII-7 summarizes the analysis results on the possibility of environmental countermeasures based on the major financial index and assumption of favorable turn of business and managerial efforts.

As an evaluation of this investment, we proceed our study on condition that there will be some efforts for improvement or subsidies as SIAPE is a nationalized enterprise.

The managerial information from the field survey has been obtained by the cooperation of the enterprises, by restricting the objective solely to using the information for the present analysis. Therefore, this data must be disclosed to the public by going through a close inspection and approval by those companies.

Table VIII-7 Analysis of Present State of Enterprices (from information for 1991)

# (2) Major preconditions

The major preconditions to perform the financial analysis of the present study are summarized below.

#### 1) Period:

The objective period has been set to fifteen years considering the economical durability of the facilities.

#### 2) Price criteria:

To determine the construction cost, operation cost, and the economic benefits used for the financial analysis, the prices were fixed on the level in the year 1993, and the possible price escalation was not included. This was because the calculation was intended to compare the running cost and financial profits and losses, and it was preferable to exclude the uncertain price increase.

The basic design and operation of the present plan are supposed to start several years later. Actually, however, price increase by 10 to 30% must naturally be expected, thus increasing the total amount of the required capital from the above calculated level. Also there will be a large fluctuation in management records of the enterprises. This will obviously require a review of calculation for the actual stage of implementation. Nevertheless, the relative position of the determined influence is considered to remain almost the same over the financial profits and losses.

#### Tax system and rates:

In Tunisia, corporate income tax, personal income tax and value added tax are some of the main tax items. Corporate income tax consists of a standard minimum tax based on the sales amount as a standard and a proportionate tax based on the net income as the standard. The tax rates vary with the type of business. Some documents refers to 38% as the average rate, but we have set 35% as the proportionate tax for the present study based on the field survey results (by hearing).

#### (3) Economic benefits

#### 1) Effect of evasion of output decrease by operation suspension

By implementing the present project, the subject entrepreneur shall fulfill the responsibility stipulated in Article 8 of Law No.88-91, to ensure an evasion of the penalty and order for suspension of operation by the application of penal clause in Article 11.

Considering the survey result, and the positive attitude of the environmental administration by the Tunisian Government, the obvious trend is toward a reinforced regulation for further prevention of industrial pollution. Also on the precondition to ensure a permanent existence of enterprises, and considering the examples of regulations and countermeasures in various countries, it can be judged as a whole that implementation of the present project will generate a greater effect than expected in the evasion of losses by the entrepreneurs.

For the present study, it is assumed that 15 to 90 days can be avoided from the suspension of operations when compared with a case of maintaining the present state, according to the precondition in Section (2) above, where 15 years are supposed to be the objective period.

Therefore, the gross production profit corresponding to the suspension period of operation is calculated as the opportunity cost for the operation suspension. Incidentally, some part of the operating ratio and sales amount has been modified to assume the calculation to be made on a healthy state of management, according to the survey result of each business enterprise.

Table VIII-8 shows the calculation results.

#### 2) Reduction of cost for excessive part of waste water quality standard

Presently, the penalty regulations are currently applied on a flexible basis rather than the regulations by Article 8 and Article 11 of Law No.88-91 for 1988. For the future, however, the application of these regulations is likely to become more and more severe. The present countermeasures will eliminate such fear, so that the penalty money can be treated as an avoidable cost to be added as a part of the economic benefits.

The avoidable penalty amount is calculated to 50,000 TD per business enterprise, considering the present situation.

#### 3) Reduction of sewage treatment cost

The sewage treatment fee is to be levied as penalty if, accord- ing to the sewage treatment regulations, an inhibition or refusal of drainage to the sewage lines is proved (in the amount same as the clean sewage fee).

From this, for the direct discharge to the sea out of the subject waste water treatment system, the discharge cost at ONAS is added as an economic benefit because it can be an avoidable cost.

Table VIII-9 summarizes the calculation results.

Table VIII-8 Amount of Avoidable Output Decrease (per month)

|            |                 | Sale                                                    | s<br>S<br>S      | a 1 e           |                       |               | Profit | Profit Racio of Variable Cost ( % ) | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | Loss from Gutput<br>Decrease (per Month      | utput<br>er Mon | ( t     |
|------------|-----------------|---------------------------------------------------------|------------------|-----------------|-----------------------|---------------|--------|-------------------------------------|---------------------------------------|----------------------------------------------|-----------------|---------|
|            | Sales<br>for 89 | Sales Sales Sales Sales for '89 for '90 for '91 for '92 | Sales<br>for '91 | Sales<br>for 92 | Correction of Sales   | Correct. Base | lase   | Correction                          | Profit<br>Ratio                       | DecreaseDec.in Net Loss<br>in Pro. Fix. Cost | Cost            | st Loss |
|            |                 |                                                         | _                |                 |                       |               | 96     |                                     |                                       |                                              |                 |         |
| SIAPE      | 79.134          | 53,656                                                  | 49.869           |                 | Base for 1989         | 79, 134       | 13.6 6 | 18.6 Correction of 20 %             | 33.6                                  | 2, 215                                       | 122             | 2,094   |
|            |                 |                                                         |                  |                 |                       |               | -      | Increase in Selling Price           |                                       |                                              |                 |         |
|            |                 |                                                         |                  |                 |                       |               | 16     |                                     |                                       |                                              |                 |         |
| SIOS-ZITEX |                 |                                                         | 2,676            |                 | 79%=>90% Load, Sellig | 3,353         | 36.4   | 36.4 Correction of 10 %             | 46.4                                  | 130                                          | 13              | 117     |
|            |                 |                                                         |                  |                 | Price 10 % Increase   |               |        | Increase in Selling Price           |                                       |                                              |                 |         |
|            |                 |                                                         |                  |                 |                       |               | 9.5    |                                     |                                       |                                              |                 |         |
| SATHOP     |                 |                                                         | 1.346            | 1,555           | Selling Price 15 %    | 1,788         | 20.9 L | 20.9 Correction of 15 %             | 35.9                                  | 53                                           | ß               | 48      |
|            |                 |                                                         |                  |                 | Increase              |               |        | Increase in Selling Price           |                                       |                                              |                 |         |
|            |                 |                                                         |                  |                 |                       |               | 16     |                                     |                                       |                                              |                 |         |
| SMCP       |                 |                                                         | 1.901            |                 | Selling Price 20 %    | 2,281         | 15.9 C | Correction of 20 %                  | 35.9                                  | 68                                           | 2               | 99      |
| -          |                 |                                                         |                  |                 | Increase              |               |        | Increase in Selling Price           |                                       |                                              |                 |         |
|            |                 |                                                         |                  |                 |                       |               | 16     |                                     |                                       |                                              |                 |         |
| STS        |                 | 1,133                                                   | 1.195            |                 | 50%=>90% Load, Sellig | 2,366         | 21.6   | 21.6 Correction of 10 %             | 31.6                                  | 82                                           | 4               | 5.8     |
|            |                 |                                                         |                  |                 | Price 10 % Increase   |               |        | Increase in Selling Price           |                                       |                                              |                 |         |
|            |                 |                                                         |                  |                 |                       |               |        |                                     |                                       |                                              |                 |         |

Table VIII-9 Avoidable Cost of Sewage Treatment Fee

|                  | Quantity of | ty of    | Subscrip  | Subscription Fee | Treatment Rec           | Fee     | Reduction of  |
|------------------|-------------|----------|-----------|------------------|-------------------------|---------|---------------|
|                  | Taste Tater | Tater    | for       | for              | Unit Price              | for     | Serage        |
|                  | #3/D        | M3/Y     | a Quarter | a Year           | a Year of Treat. a Year | a Year  | Treatment Fee |
| SIAPE CASE 18    | 1.488       | 543, 120 | 4.030     | 16.120           | 0.175                   | 95,046  | 111,166       |
| CASE 2B          | 1,284       | 468,660  | 4,030     | 16, 120          | 0.175                   | 82.016  | 98, 136       |
| -                |             |          |           |                  | ,                       |         |               |
| SIOS-ZITEXCASE 4 | 208         | 75, 190  | 4.030     | 16, 120          | 0.175                   | 13,158  | 29, 278       |
|                  |             |          |           |                  |                         |         |               |
| SATHOP CASE 4    | 156         | 56,940   | 4,030     | 16, 120          | 0.175                   | 9.965   | 26.085        |
|                  |             |          |           |                  |                         |         |               |
| SKCP CASE 4      | 225         | 82, 125  | ,         | 1,030 16,120     | 0.175                   | 14, 372 | 30,492        |
|                  |             |          |           |                  |                         | -       |               |

# 4) Output profit from by-products

Out of the objects of the present study, by-products are to be used for an effective utilization of resources and added as an economic benefit.

(1) Methane gas collected at the UPOTS margin facility:

By-product of 80,000,000 kcal/day — to be used as an alternative energy of fuel oil.

```
==> 8 \text{ T/D} * 365 \text{ D/Y} * 106 \text{ TD/Y} = \text{approx}. 310,000 \text{ TD/Y}
```

② Glycerol collected by the improved process of SIOS-ZITEX/SATHOP (for Case 4 only):

Collection of 0.32 T/day — This generates a profit of approx. 178,000 TD at the stage of variable cost, so that it is added as an economic benefit by case study.

===> Selling price: 2.16 TD/kg

Sales amount: 2.16 TD/kg \* 320 kg/D \* 330 D/Y = approx. 228,000 D/Y

Profit of variable cost: Sales 228,000 TD/Y – variable cost 50,000 TD/Y = approx. 178,000 TD/Y

(3) Raw material cost reduction by exhaust gas countermeasures at SIAPE

Out of the raw materials, sulfur is reduced — to increase the profit of variable cost.

===> Profit of variable cost: 5.3 T/D \* 300 D/Y \* 148.4 TD/T (165 US\$/T) = approx. 236,000 TD/Y

5) Tax exemption effect by execution of special depreciation

For the calculation of profit and loss account, a tax exemption effect is generated equivalent to the depreciation increase by the execution of a special additional depreciation. To add such effect as an economic benefit, the profit must reach a level to cover the special depreciation amount.

The antipollution cost is to be borne once by those who caused the pollution, but it must eventually be absorbed through the efforts of the enterprise, while a part thereof shall naturally be shifted to the beneficiaries in a form of price increase or subsidy from the national treasury.

That is, in the financial analysis, such subsidual step is appropriated as an economic benefit as effective method, not merely by name.

Table VIII-5 lists the results of calculating the special additional depreciation amounts.

# (4) Cost

For the operation cost, the same description will apply as in Chapter 2 regarding the expense of chemicals, utilities, labor, maintenance, depreciation and, depreciation of catalysts, and factory overhead. Therefore, the description is omitted here to avoid duplication.

Regarding the interest, the facility construction fund was calculated as subject to preferential treatment, and the shortage of operation capital related to the operation cost was based on an expectation of some fund raising method allowing a short-term borrowing from the commercial banks.

The interest on borrowing was calculated at 8% per annum for the balance of loan payable for both long-term and short-term borrowings.

(5) Financial analysis method To analyze the profitability of investment, the financial internal rate of return (F.IRR) has been adopted.

The F.IRR is a method to obtain the profit ratio of capital investment on the collected amount of the fund after taking account of the depreciation expenses, catalyst depreciation, and interest. The F.IRR represents the essential profitability of the project, excluding the influence by the financing conditions (repayment period, interest, etc.) of the debts and the change of owned capital ratio.

Table VIII-10 and -11 list the study results of the financial analysis by case and by factory.

# (6) Analysis of sensitivity

Sensitivity was analyzed on the influence over the financial profit and loss when the following main factors are changed:

- Change of construction cost
- ② Change of economic benefits
- (3) Change of variable cost

Table VIII-10 (1) Financial Internal Rate of Return by Case

|                                         |           | SIAPE      |          |         |        | 0100-  | 157     | ٠ħ                                    |           | 1       | SKCP     |           |         |
|-----------------------------------------|-----------|------------|----------|---------|--------|--------|---------|---------------------------------------|-----------|---------|----------|-----------|---------|
|                                         | - 1       | CASE 2&3BE | Gas      | ~       |        | Š      | 3B      | CASE 4A                               | E. Gas T. | CASE 1A | CASE 2A  | CASE 3A C | CASE 33 |
| 1)Construction Cost (Total Investment)  | 3.727     | 6, 553     | 17,364   | 379     | 1,939  | 2, 180 | 2,026   | 1.925                                 | 208       | 854     | 1, 782   | 1,901     | 2, 103  |
| 2)Economic Benefits                     |           |            |          |         |        |        |         |                                       |           |         |          |           |         |
| Evasion of Loss<br>from Output Red. (2M | 4, 188    | 4, 188     | 4.188    | 234     | 234    | 234    | 234     | 234                                   | 234       | 132     | 132      | 132       | 132     |
| Evaluation of By-product                |           |            | 236      |         |        |        |         | 228                                   | 0         |         |          | -         |         |
| Evasion of Penalty<br>Payment           | 20        | 50         |          | 20      | 5.0    | 2.0    | 20      | 2.0                                   |           | 20      | 50       | 20        | 50      |
| Evasion of Sewage Treatment Fee         | 111       | 86<br>8    |          |         | :      |        | 53      |                                       |           |         |          |           | 30      |
| )Effect of Corporate Tax Exemption      | 196       | 344        | 861      | 20      | 102    | 114    | 106     | 101                                   | 11        | 45      | 94       | 100       | 110     |
| Total                                   | 4, 545    | 4. 580     | 5, 285   | 304     | 386    | 398    | 419     | 613                                   | 245       | 227     | 276      | 282       | 322     |
| 3) Cost                                 |           |            |          |         |        |        |         |                                       |           |         |          |           |         |
|                                         | 99        | 98         | 282      | 5       | 6      | 23     | 21      | 5.5                                   | 80        | 3       | 10       | 10        | 16      |
| Cemical Expense                         | 2,898     | 2, 934     |          |         | 8.8    | 29     | 2.9     | 12                                    | 0         | 7       | 15       | 1.6       | 26      |
| 3)Labor Expense                         | 2.1       | 21         |          | 6       | 1.4    | *      | 14      | 19                                    |           | 6       | 14       | 14        | 14      |
| Maintenance Exp.                        | 112       | 197        | 507      |         | 58     | 65     | 19      | 200                                   | 9         | 26      | 53       | 5.2       | 63      |
| Depreciation Kxp.                       | 6,0       | 000        | 1.041    | 200     | 124    | 2.0    | 203     | 200                                   | 2 2 1     | \$      | 8,7      | 081       | 210     |
| Plant Overhead                          | 15        | 87         | 215      | 9       | 2.2    | 30     | 28      | 976                                   |           |         | 95       | 36        | 29      |
| Interrest                               | 124       | 219        | 579      | 13      | 65     | 73     | 89      | 64                                    |           | 28      | 59       | 69        | 70      |
| Total                                   | 3,645     | 4, 211     | 3,320    | 93      | 362    | 452    | 423     | 427                                   | 45        | 172     | 355      | 377       | 428     |
| A)Profit & loss                         | UVb       | 469        | 596      | 2.1.3   | 5-     | -54    | 7-      | 186                                   | 900       | 3.5     | -78      | 1.05      | -108    |
|                                         |           | × × ×      |          |         |        |        |         | , , , , , , , , , , , , , , , , , , , | À.,       |         | À        | 3         | 1       |
| Amount                                  | per       |            |          |         |        |        |         |                                       |           |         |          |           |         |
| _:1'                                    | 1,397     | 1, 343     | 287      | 58      | 250    | 237    | 997     | 443                                   | 7         | 170     | 159      | 15        | 174     |
| F. IRK                                  | 44.04%    | 17.81%     | : -      | 104.348 | 4      | 0. 63% | 2.1.3%  | 201.12                                | 241.405   | 2 .     |          | ٩         | -6.61%  |
| Z) Output kea. (30 D)                   | ) 6 Q - X | , (3)      | 4.5      | 45.44%  | 19 55  | -24    | -10.145 | 12 048                                | 7.7       | 3 : 0 % | Š,       | \$ P      | X<br>X  |
| 3)Output Red. (15 D)                    | -1.744    | -1, 798    | 1.140    | 1       |        | 62     | اء      | 268                                   | 233       |         | 80       | 5.9       | 7.5     |
| F. IRR                                  | ×         | ×          | -12. 79% | 21.62%  | ×      | ×      | ×       | 6.67%                                 | 25. 1     | -e.     | ×        | ×         | ×       |
| )Output Red. (45 D)                     | 350       | 296        | 3, 234   | 204     |        | 179    | 207     |                                       | 1.6       | 137     |          |           | 141     |
| l .                                     | 3.37%     | ×          | 5        | 72.33%  | -2.03% | -6.96x | -1.08%  | -                                     | 136.72    | 10.42%  | -11.598  | -14.03%   | 13.25   |
| 5)Output Red. (90 D)                    | 3,490     | 3, 436     | 6.374    | 379     | 367    | 854    | 382     |                                       | 344       | 236     | 226      | 2         | 241     |
| Г Т                                     | 176.10%   | 70.49%     | 43.60%   | Ħ       | 16.07% | 11.64% | 16.03%  | 31                                    | н         | 29.51%  | 5.05%    | 3.38%     | 2.58    |
| 400000                                  | 5 5 5     | 977        | 2 5 8 8  | 5.6     | 289    | 325    | 302     | 284                                   | 166       | 197     | 288      | 983       | 313     |
| THEORY MOTIONING                        | 3         | •          | ,        |         | ,      | 1      | )<br>}  | }                                     | :<br>-    | ;<br>:  | <u>.</u> | 2         |         |

Table VIII-10 (2) Financial Internal Rate of Return by Case

| 2A         CASE 3A           748         11.109           310         310           50         50           54         58           27         2           27         2           324         94           324         94           325         2.12           326         2.12           334         X           246         24           246         24           246         24           246         24           246         24           246         24           245         24           245         24           25         2.12           24         24           25         2.12           27         2.12           27         2.2           27         2.2           27         2.2           27         2.2           27         2.2           27         2.2           27         2.2           27         2.2           27         2.2           27         2.2 </th <th>410<br/>410</th> <th>16</th> <th>Y C</th> <th></th> <th></th> <th></th> <th>(</th> <th>,</th> <th>o</th> <th>_</th> <th></th> <th>&gt;</th> <th>5</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 410<br>410         | 16    | Y C   |        |        |      | (          | ,          | o      | _   |         | >     | 5     |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|-------|--------|--------|------|------------|------------|--------|-----|---------|-------|-------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | V7    | ž     | ASE 38 | SE 4   | as T | 8          | SE 2A      | SE 3A  | Gas | ASE I'A | SE 2  | SE 34 | i     |
| Corporative   State                       | 1.980 | 2,255 | 6      | σ,     | ŝ    | <b></b>    | 324        | 444    |     | 22      | . 74  | 1, 10 | 1,008 |
| of Local Red (2R)         97         97         97         97         97         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |       |       |        |        |      |            |            |        |     |         |       |       |       |
| cct         Color of Fernal Iry         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50 <td>. (2#C)</td> <td>26</td> <td>16</td> <td></td> <td></td> <td>2.6</td> <td></td> <td><b>∫</b>€</td> <td>117</td> <td>111</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . (2#C)            | 26    | 16    |        |        | 2.6  |            | <b>∫</b> € | 117    | 111 |         |       |       |       |
| of Femalty         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of                 |       |       |        | 228    |      |            |            |        |     | 310     | 310   | 310   |       |
| 163   251   104   118   115   115   115   116   115   1176   1184   1190   170   844   554   558     153   220   231   255   228   480   159   176   184   190   170   844   924   545     14   138   226   231   241   15   25   24   24   25   24     15   23   24   25   25   25   25   25   25     14   138   226   239   159   23   23   24   25   25   25     15   23   23   24   25   25   25   25   25     15   23   24   25   25   25   25   25     16   23   24   25   25   25   25     17   27   27   27   27   27   27     18   25   25   25   25   25   25     18   25   25   25   25   25     19   25   25   25   25     10   25   25   25   25     11   25   25   25   25     12   25   25   25     13   25   25   25     14   25   25   25     15   25   25   25     15   25   25   25     15   25   25   25     15   25   25   25     15   25   25   25     15   25   25   25     15   25   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     15   25   25     | of Penalty         | 50    | 20    | 20     | 50     |      | 9.0        | 50         | 20     |     | 20      | 20    | 20    |       |
| Column   C | Evasion of Sewage  |       |       | 2.6    |        |      |            |            |        |     |         |       |       |       |
| Expense   15   25   26   28   480   159   176   164   150   170   844   924   946   159   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175  | - 6                | 104   | . 118 |        | 105    | 12   | 6          | 17         | 23     | os. | 484     | 584   | 583   | 8     |
| Expense   5   20   21   21   12   9   1   2   2   1   5   5   5   6   6   6   6   6   6   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | 251   | 265   | ∞      | 480    | l CO | <b>!~~</b> | 00         | on .   | 170 | ~~~     | 101   | 943   | 83    |
| Expense         5         20         21         21         13         9         1         2         2         1         69         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |       |       |        |        |      |            |            |        |     |         |       |       |       |
| Expense         13         12         14         14         18         0         0         1         0         27         27         27         27         23           Expense         12         15         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         15         14         15         14         15         14         15         14         15         14         15         14         15 <t< td=""><td>Cost</td><td>20</td><td>2.1</td><td>12</td><td>1.3</td><td>6</td><td>1</td><td>2</td><td>2</td><td>1</td><td>69</td><td>75</td><td>7.7</td><td>40</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cost               | 20    | 2.1   | 12     | 1.3    | 6    | 1          | 2          | 2      | 1   | 69      | 75    | 7.7   | 40    |
| Expense         14         14         19         0         3         3         3         0         27         27         27         27         28         3         3         3         4         6         922         31         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Expense            | 32    | 3.4   | 34     | 1.8    | Đ    | 0          | 1          | -      | 0   | 23      | 54    | 9     | 168   |
| Second Color   Seco | Expense            | 14    | 4     | 14     | 13     | 0    | ಬ          | 3          | 2      | 0   | 27      | 2.7   | 22    |       |
| Second  |                    | 59    | 68    | 99     | 09     | 7    | 2          | 10         | 13     | 2   | 277     | 322   | 333   | 25    |
| State   Colored   Colore |                    | 861   | 977   | 613    | 188    | 23   | 81         | 32         | 44     | ٥   | 226     | 1.074 |       | 131   |
| Verthead         14         66         75         78         66         11         15         2         307         358         37           Set         106         417         468         457         404         50         36         65         12         1748         2.052         2.128           L & loss         62         -166         -203         -189         75         109         140         121         104         158         -904         -1,128         2,118           L & loss         62         -166         -203         -189         75         109         140         121         104         158         -904         -1,128         -1,118           Fed. (60 D)         117         98         98         123         84,94         166,93x         66,43x         43         105         163         164         168         204         -1,128         -1,118           Fed. (60 D)         117         98         123         84,94         166,93x         66,43x         43,00x         H         K         X         X         X           Filk         110         125         126         125         126         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 26    | 7.5   | 30     | 86     |      | 0          | ÷ 4        |        | 9 - | 0 61    | 2 5   | 27.2  | 2 67  |
| String                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Diox+ Distribut    | 3 3   | 1,4   | 78     | 88     | · ·  | 2 (1       | 7          | 2      | 6   | 202     | 252   | rl c- | 3.6   |
| LEGIOSE 62 -166 -203 -169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 417   | 468   | 457    | 404    | 50   | 36         | 63         | 98     | 2   | 1.748   |       | 2     | 384   |
| t & loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |       |       |        |        |      |            |            |        |     |         | 1 1   |       |       |
| tion Amount per Annum  tion Amount per Annum  Red.(80 D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |       |       |        |        |      | :          |            |        |     |         |       | -1    |       |
| Red. (60 D)         117         98         98         123         341         140         163         164         164         164         166         326         304         29           F. IRR         80.17k         X         X         2.53.3k         12.35k         84.94k         168.93k         66.48k         43.00k         H         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | -166  | -203  | -169   | 7.5    |      | 140        | 121        | 104    | 158 | S       | 4     | 18    | -380  |
| Red. (60 D)         117         98         98         123         341         140         163         164         164         166         366         376         326         304         23           F. IRR         80.17k         X         X         74         25.38k         12.35k         84.94k         168.93k         66.48k         43.00k         H         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | per                | B     |       |        |        |      |            |            |        |     |         |       |       |       |
| F. IRR         30.17k         X         X         -23.33k         12.35k         84.94k         168.93k         66.48k         43.00k         H         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X <td></td> <td></td> <td>88</td> <td>123</td> <td>341</td> <td>140</td> <td>163</td> <td>164</td> <td>1 6 4</td> <td>166</td> <td>326</td> <td>304</td> <td>CO.</td> <td>-246</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |       | 88    | 123    | 341    | 140  | 163        | 164        | 1 6 4  | 166 | 326     | 304   | CO.   | -246  |
| Red.(30.D)         69         50         49         74         293         91         105         105         105         105         105         105         268         246         24         24         25         25         25         25         25         25         25         25         25         25         26         26         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27 <td>F. IRR 30.</td> <td>×</td> <td>×</td> <td>23.3</td> <td>12.35%</td> <td>4.94</td> <td>168.93</td> <td>68.48</td> <td>00</td> <td>X</td> <td>×</td> <td>×</td> <td></td> <td>×</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F. IRR 30.         | ×     | ×     | 23.3   | 12.35% | 4.94 | 168.93     | 68.48      | 00     | X   | ×       | ×     |       | ×     |
| F. IRR         11.70%         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X <th< td=""><td>Red. (30 D)</td><td></td><td>49</td><td>74</td><td>293</td><td>91</td><td>1</td><td></td><td></td><td>吕</td><td>268</td><td>246</td><td>24</td><td>-304</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Red. (30 D)        |       | 49    | 74     | 293    | 91   | 1          |            |        | 吕   | 268     | 246   | 24    | -304  |
| Red.(15 D)         44         25         25         50         269         67         76         76         76         76         79         239         217         21           F. IRR         0.29x         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F. IRR 11.         | ×     | ×     |        | 8.13%  | 6.9  | 82.        | 36.36      | 7.8    | Ξ   | 1       | - 1   |       | ×     |
| F.IRR         0.29%         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Red. (15 D)        |       | 25    | 50     | O.     |      |            |            | :      |     | 239     |       | - 1   | -333  |
| Red.(45 D)         93         74         59         317         116         134         135         137         297         275         27           F. IRR         21.15x         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F. IRR 0.          | ×     | ×     | ×      | - 1    | - 4  | 52         | 22.        | 12.    | н   | ×       | - 1   |       | - [   |
| F. IRR         21.15m         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X <th< td=""><td>Red. (45 D)</td><td></td><td>4/</td><td>9.6</td><td>74</td><td>-</td><td></td><td></td><td>134</td><td></td><td>297</td><td>-</td><td>07.7</td><td>677-</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Red. (45 D)        |       | 4/    | 9.6    | 74     | -    |            |            | 134    |     | 297     | -     | 07.7  | 677-  |
| Red.(90 D) 166 147 146 171 389 188 222 222 222 222 385 385 382 83 8 8 18 8 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F. IRR 21.         | ×     | ×     | ×      | 82     | Ç.   | 120        | 5          | 32. 78 | H   | ×       |       | ×     | ١.    |
| 49,42x     -9.05x     -13.57x     -7.36x     17.10x     135.75x     329.09x     104.24x     65.90x     H     X     X     X     X       61     295     -336     327     297     35     27     48     66     9     1.375     1.601     1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Red. (90 0)        |       |       |        | 칡      | ≃1   |            |            | 727    | 7   | - 1     | ^.    | ŀ.    | 281   |
| 61 295 -336 327 297 35 27 48 66 9 1.375 1.601 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49.                |       |       | 7.36   |        | ~]   | 328        | 9          | 65.90  |     | ×       | ×     | ×     | ×     |
| Sentified for IKK=XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                  | 1     | 336   | 327    | 297    | 35   | 2.2        | 48         | 99     | 6   | 33      | 09    | 40    | 150   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | equired for IKK=8% |       | ı     |        | 1      |      |            | }          |        |     |         |       |       |       |

Table VIII-11 FIRR by Factory

|                                    |           |           |         |           | ١           |        |         | 2110        | -        |         | חח        | c.l      | Sicr    | 01240 |
|------------------------------------|-----------|-----------|---------|-----------|-------------|--------|---------|-------------|----------|---------|-----------|----------|---------|-------|
|                                    |           | E. Gas T. | Total   | CASE IA E | . Gas T.    | Total  | CASE 1A | E. Gas T.   | Total    | CASE IA | E. Gas T. | Total    | CASE 1A | ,     |
| 1)Construction Cost                | 3,727     | 17, 364   | 21,091  | 379       | 208         | 587    | 410     | 233         | 643      | 178     | 9         | 238      | 853     | 2     |
| (Total Investment)                 |           |           |         |           |             |        |         |             |          |         |           |          |         |       |
| 2)Economic Benefits                | .         |           |         |           |             |        |         |             |          |         |           |          |         |       |
| Evasion of Loss                    | 4, 188    | 4, 188    | 4.188   | 234       | 234         | 234    | 1.6     | 1.6         | 16       | 111     | 117       | 117      | 132     |       |
| ėl.                                |           | 286       | 300     |           | -           |        |         |             | ,        |         |           | ,        |         |       |
| By-product                         |           | 907       | 967     |           | <b>&gt;</b> | <br>-> |         |             | <b>-</b> |         |           | ⇒<br>-   |         | 316   |
| 3)Evasion of Penalty               | 20        |           | 20      | 20        |             | 5.0    | 20      | 50          | 100      | 20      | 50        | 100      | 20      | 20    |
| Fayment                            |           |           |         |           |             |        |         |             |          |         |           |          |         |       |
| 4)Evasion of Serage                |           |           | 111     |           |             |        |         | <del></del> | 0        |         |           | 0        |         |       |
| DEffect of Corporate Tax Exemption | 196       | 861       | 1.057   | 20        | 11          | 31     | 22      | 12          | 34       | 5.      | က         | 12       | 45      | 484   |
|                                    |           |           |         |           |             |        |         |             |          |         |           |          | 1       |       |
| Total                              | 4,545     | 5, 285    | 5,642   | 304       | 245         | 315    | 169     | 159         | 231      | 176     | 170       | 229      | 227     | 844   |
|                                    |           |           |         |           |             |        | 1       |             |          |         |           |          |         |       |
|                                    |           |           |         |           | 1           |        |         |             |          |         |           |          |         |       |
| Utility                            | 99        | 282       | - 1     | 5         | 60          | 13     | 5       | 6           | 14       |         |           | 3        | 3       | 69    |
| 2)Cemical Expense                  | 2,898     | 0         | 2,898   | 11        | 0           |        | 3.3     | 0           | 63       | O       | 0         | 0        | 7       | 23    |
| Labor Expense                      | 21        | 0         | 21      | 6         | 0           | 6      | 6       | 0           | 6        | 62      | 0         | 3        | 6       | 2.    |
| 4) Kaintenance Exp.                | 112       | 507       | 619     | 11        | 9           | 17     | 1.2     | L           | 6        | 5       | 3         | 1        | 26      | 277   |
| Depreciation Exp.                  | 373       | 1.641     | 2,014   | 38        | 21          | 59     | 41      | 2.3         | 99       | 18      | 9         | 24       | 85      | 922   |
| )Catalyst Depre.                   | 0         | 96        | 96      | 0         | 0           | 0      | 0       | 0           | 0        | 0       | C         | 0        | 0       |       |
| Plant Overhead                     | 51        | 215       | 266     | 9         | 3           | 6      | 7       | co          | 0        | က       |           | 60       | 12      | 123   |
| )Interrest                         | 124       | 579       |         | 13        | 7           | 20     | 14      | 80          | 21       | وي      | 2         | 80       | 28      | 307   |
| Total                              | 3,645     | 3, 320    | 6,964   | 93        | 45          | 138    | 106     | 50          | 156      | 36      | 12        | 48       | 172     | 1.748 |
|                                    | 000       |           |         |           |             | 80.    | 0,      |             |          |         |           |          |         |       |
| 4)Frotit & loss                    | 006       | 1.865     | 226.1-  | 7 1 1     | 002         |        | 24      | 103         | (2)      | 140     | \$0.1     | 187      | 96      | -804  |
| 5)Collection Amount                | per Annum | 1 1       |         |           |             |        |         |             |          |         |           |          |         |       |
| )Output Red. (60 D)                | 1,397     | 4. 281    | 1,490   | 262       | 228         | 256    | 117     | 140         | 160      | 163     | 166       | 213      | 130     | 328   |
| F. IRR                             | 44.04%    | 24.41%    | -10.60% | 104.94%   | 241.40%     | 54.02% | 30.17%  | 84.94%      | 24.63%   | 168.93% | H         | 160.92%  | 16.82%  | ×     |
| ()Output Red. (30 D)               | -697      | 2, 187    | -604    | ~1        | 7           |        | 9       |             |          | 10      |           | 154      | 103     | 268   |
| F. IRR                             | ×         | 4.51%     | ×       | 45.44%    | 71.55%      | 22.71% | 11.70%  | 46.92%      | 12, 76%  | 82.65%  | I         | 95.09%   | 3.12%   | ×     |
| 3) Output Red. (15 D)              | -1,744    | 1,140     | -1,651  | 87        | 5           | - 1    | 4       |             | 88       |         |           | -        | 7.0     | 239   |
| F. IRR                             | ×         | -12, 79%  | ×       | 21.62%    | 25.18%      | 6.31%  | ٥       | 30.6        | 6.08%    | 52.45%  | ᄪ         | F190.49X | -6.91%  | ×     |
| )Output Red. (45 D)                | 350       | 3.234     | 443     | 204       | 9           | -1     | 6       |             | 136      |         | 137       | -        | 137     | 297   |
| F. IRR                             | 3.37%     | 15.07%    | ×       | 72.33%    | 136.        | 37.93x | 21.     | 64.7        | 18.82%   | 120.2   | H         | 124. 79% | 10.42%  | ×     |
| Output Red. (90 D)                 | 3,490     | 6,374     | 3,584   | 979       | 344         | 372    | 1.6     | 18          |          | ]       | 224       | 271      | 236     | 385   |
|                                    | 176 10%   | 43.60%    | 13. 11% | 199.65%   | 955.56%     | 92.55% | 49. 42% | 135.75%     | 36.88%   | 329 09% | Н         | 263.87%  | 29.51%  | ×     |
|                                    | -         | ••        | -       |           |             |        | -       | _           |          |         |           |          |         |       |

On these three items, the influenced amount of income by 10% increase (or decrease) has been calculated. Table VIII-12 summarizes the results of sensitivity analysis. The results show the largest influence on the profit and loss by the change of construction cost. This indicates that the construction cost must be reduced.

# (7) Evaluation by financial analysis

As is clearly seen from Table VIII-7 (Financial analysis (analysis of present state of enterprise)), the present investment can not be implemented without the managerial efforts of the objective enterprises. For the enterprises, the investment can be an adjustment of their infrastructure, and the investment must also be in an optimum scale within the range of correction of a long-term management plan.

At the same time, the subject investment must enable each enterprise to recover a healthy state of management through a self-supporting effort. The investment must also be an executable plant investment for each enterprise as the source of the pollution to conform to the environmental criteria.

The results of evaluation of the financial analysis and examination are summarized below.

# 1) Case evaluation and case setting of waste water facility

As explained above, the reinforcement work at ONAS is an improvement to solve the current problems. It is indispensable for any case where the waste water standard is adopted. Thus, the investment amount does not change with the case selection at each factory, without being affected by the adoption.

On the other hand, the case settings by several discharge standards can be regarded as based on the same standard, provided the settings satisfy the INNORPI standard at the final stage (discharge to the sea). Therefore, the cases by factory are antinomy plan that can be compared easily by F.IRR. That means a selection of most effective investment plan.

Meanwhile, in order to minimize the financial effect after the investment, it is also important to select a plan with characteristics of 'initial investment = minimum' and 'working expenses (management load) = minimum'.

According to the result of financial analysis, CASE 1 is the best plan for every enterprise.

Table VIII-12 Sensitivity Analysis

In the cases other than CASE 1 and CASE 4 (tentative standard proposed by Japan base), a standard almost equal to the ONAS emission standard is required at the exit of each factory. This as a whole will determine a rather severe emission standard.

Consequently, investment are duplicated in some part of the ONAS and in each factory, resulting in a larger initial investment compared with CASE 1, so that the target amount for managerial efforts is heightened to implement the investment.

Table VIII-13 compares the construction cost with the target amount of Managerial Efforts.

Table VIII-13 Construction Cost and Target Amount of Managerial Efforts

(Unit: 1000 TD)

|          |           | SIAPE          |         | SIO       | S-ZITEX etc.   |           |           | UPOTS           |         |                            |
|----------|-----------|----------------|---------|-----------|----------------|-----------|-----------|-----------------|---------|----------------------------|
| C        | Req       | uired profit i | ncrease | Req       | uired profit i | ncrease — | Req       | uired profit is | ncrease | Economic efficiency        |
| Case     | Construc- | Deficit        | Present | Construc- | Deficit        | Present   | Construc- | Deficit         | Present | per enterprice             |
| <u> </u> | tion cost | elimination    | plan    | tion cost | elimination    | plan      | tion cost | elimination     | plan    |                            |
| CASEIA   | _         | -              | -       | 1,821     | 0              | 407       | 9,225     | ?               | 1,748   | 0                          |
| CASEIB   | 3,727     | 13,674         | 3,645   |           |                |           |           | ļ               |         | <b>0</b>                   |
| CASE2A   |           |                | -       | 6,023     | 0              | 1,230     | 10,743    | 7               | 2,052   | × Large initial investment |
| CASE2B   | 6,553     | 13,674         | 4,211   |           |                |           |           |                 |         | × Large initial investment |
| CASE3A   | -         | -              | -       | 6,715     | O              | 1,383     | 11,109    | ?               | 2,126   | × Large initial investment |
| CASE3B   | 6,553     | 13,674         | 4,211   | 6,763     | 0              | 1,394     |           | -               | -       | × Large initial investment |
| CASE4A   |           | -              | ~       | 4,950     | . 0            | 1,039     |           |                 | _       | × Large initial investment |

As mentioned above, while the process improvement in CASE 4 (tentative standard proposed by Japan base) improves the quality of the waste water discharge, it cannot reduce the cost of constructing the waste water treatment facilities. The glycerol that is collected by improving the manufacturing process can help obtain some profit from variable cost. However, such profit hardly absorbs the fixed cost.

Therefore, the investment must be withheld until such time as the added value of product is increased by effective utilization of the glycerol so that the plan can be evaluated as a single plan of process improvement from the economic viewpoint.

#### 2) Evaluation from financial internal rate of return

As described above in the preconditions of financial analysis and economic benefits, the profit has been calculated based on the subsidiary steps, provided that the investing enterprise itself is assured of a profit that is enough to absorb the additional expenses. This will not give so much influence on the overall evaluation of the superiority in the case selection by factory, even on the assumption that the profit can be actually improved only some years later.

For comparing the investment cases of the factories, Table VIII-14 lists the extracts of F.IRR in a case of 60 days' suspension of operation (evasion of output reduction loss of 60 days).

Table VIII-14 F.IRR (case of 60 days' operation suspension)

(Unit: %)

| Case                                         | SIAPE | SIOS-<br>ZITEX | SMCP  | SATHOP | STS            | UPOTS | Individual evaluation |
|----------------------------------------------|-------|----------------|-------|--------|----------------|-------|-----------------------|
| Waste water treatment facilities             |       |                |       | :      |                |       |                       |
| CASE1A: Tentative standard                   |       | 104.9          | 16.8  | 30.2   | 168.9          | Minus | 0                     |
| proposed by Japan                            | 44.0  |                |       |        |                |       |                       |
| CASE1B: Tentative standard proposed by Japan | 44.0  | _              | -     |        |                | _     | © .                   |
| CASE2A: Tentative standard                   |       | 4.7            | Minus | Minus  | 66.5           | Minus | ×                     |
| proposed by Tunisia                          |       |                |       |        |                |       |                       |
| CASE2B: Tentative standard                   | 17.8  | _              | _     |        | -              | -     | Δ                     |
| proposed by Tunisia                          |       |                |       | . : '  |                |       |                       |
| CASE3A: INNORPI ONAS                         |       | 0.4            | Minus | Minus  | 43.0           | Minus | ) ×                   |
| CASE3B: INNORPI SEA                          | 17.8  | 5.2            | Minus | Minus  | _              |       | ×                     |
| CASE4A                                       | -     | 21.7           |       | 12.4   |                | _     | 0                     |
| Exhaust gas treatment facilities             | 24.4  | 241.4          | -     | 84.9   | 200 or<br>more |       | ©                     |

① Since the required fund depends on external accommodation, the case where IRR is larger than 8% (equivalent to interest on borrowing) is determined as profitable from the investment.

Therefore, in CASE1 of waste water treatment facilities and exhaust gas treating facilities, a result of considerably high F.IRR can be expected for the enterprises other than UPOTS which has some specific factors, provided the preconditions are satisfied.

② For the waste water treatment facilities, the cases are antinomy to each other, so that CASE1 with the high F.IRR must be selected.

Table VIII-15 summarizes the evaluation results of financial analysis.

- 3) Consideration from the present status of enterprises
  - To improve the management state of the enterprises, fairly hard self-supporting efforts are required, also considering the external factors such as the raw material supply. The present study tried the comparison and evaluation under such uncertain preconditions. Therefore, the investment in question must also require a further improved rate of return.
    - In more details, the increased rate of return must be ensured at the execution planning stage, by reducing the cost such as the construction cost (reduction of import ratio, in-house undertaking of constructions).
  - ② Operating cost must also be reduced. For example, the number of operating personnel included in the calculation of the operating cost must not be increased, but be arranged from the existing production personnel. Since this is a non-productive facility, possibilities must be examined for a drastic cost reduction for each enterprise: for example, management at the marginal cost, apart from a possible control over the increase in factory overhead.
  - ③ For the procurement of chemicals, a cooperative buying at lower price by grouped enterprises must be studied and implemented.

Table VIII-15 Evaluation from the Financial Analysis Result

|                   | Evaluation Point                        |                                   | Small Fund Required- | Relatively High Economic Eff. 4 | High Economic Efficiency | No Economic Efficiency-<br>Relatively Saall Fund Required | No Economic Efficiency- | No Economic Efficiency-<br>Large Fund Required | Saall Fund Required-<br>High Economic Efficiency | No Economic Efficiency.<br>Large Fund Required | No Economic Efficiency-<br>arge Fund Sequired | No Economic Efficiency. | Relatively High Sconosic Eff | Bigh Economic Efficiency | Wasii Fund Required -<br>migh Sconosic Efficiency | No Economic Efficiency. | No Economic Efficiency- | No Beonomic Efficiency- | Relatively Bigh Economic Wife - | High Economic Efficiency | Saall Fund Required<br>High Economic Efficiency | No Economic Efficiency- | No Sconomic Efficiency- | No Economic Efficiency- | puo     | Relatively High Economic Eff. | Relatively High Economic Eff. |   | HIRD ECONOMIC SITICICHES | (1)Stale of Required Fund: Represented by Kinjaum Amount, 100<br>(2)Amount Reed to be Improved from Het Profit: Absolute Amount to be<br>Indicated (0 is to be Indicated when it can be Absorbed within<br>the fureat Panne)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Over the F. 183 Standard and Best : © Over the Standard and Second : O Less than the Standard Level : A Relow the Standard A. |       |
|-------------------|-----------------------------------------|-----------------------------------|----------------------|---------------------------------|--------------------------|-----------------------------------------------------------|-------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------|-------------------------|------------------------------|--------------------------|---------------------------------------------------|-------------------------|-------------------------|-------------------------|---------------------------------|--------------------------|-------------------------------------------------|-------------------------|-------------------------|-------------------------|---------|-------------------------------|-------------------------------|---|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------|
| 22                | Overall<br>Evalu-                       | ation.                            | 0                    | ×                               | ©                        | 0                                                         | ×                       | ×                                              | 0                                                | ×                                              | ×                                             | ×                       | ×                            | 0                        | <b>(</b> )                                        | ×                       | ×                       | ×                       | 0                               | ©                        | 0                                               | ×                       | ×                       | ×                       | 0       | ×                             | ×                             | 6 | 0                        | by Kini<br>rofit;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Over<br>Over<br>Less<br>Below                                                                                                 | 3 3 5 |
| (Unit: 1000 T.D.) | Profit-                                 | o be of in-                       | ©                    | 0                               | Ø                        | ×                                                         | ×                       | ×                                              | 0                                                | ◁                                              | ٥                                             | ⊲                       | 0                            | 0                        | <b>(</b>                                          | ×                       | ×                       | ×                       | 0                               | 0                        | 0                                               | ×                       | ×                       | ×                       | ©       | 0                             | 0                             | 6 | 9                        | esented<br>on Net P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l Plan                                                                                                                        |       |
| (Unit: 1000 T.D.) | office Pro. Profic-<br>ndkmount ability | to be                             | 17.319               | 17,885                          | 16.750                   | 1.438                                                     | 1.742                   | 1.816                                          | 0                                                | 911                                            | 173                                           | 144                     | 0                            | 0                        | 88                                                | 395                     | 446                     | 435                     | 641                             | 0                        | 105                                             | 284                     | 305                     | 380                     | 87      | 1                             | 137                           | 1 | 7                        | d : Repr<br>roved fr<br>Indicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ndividua                                                                                                                      |       |
|                   | Scale ofMet Progent                     | ,                                 | 106.0                | 175.8                           |                          | 100.0                                                     | 1 18.5                  | 120.4                                          | 100.0                                            | 511.6                                          | 575.2                                         | 534.6                   | 507.9                        | IJ                       | 0.001                                             | 482.9                   | 550.0                   | 534.6                   | 488.3                           |                          | 0.001                                           | 208.7                   | 222.6                   | 246.3                   | 100.0   | 182.0                         | 249.4                         |   |                          | ired Function of the property | ade of 1                                                                                                                      |       |
| ,-                | Days)                                   | F. 188                            | 44.04%               | 17,81                           | 24.415                   | *inus                                                     | Hinus                   | Kinus                                          | 104.94%                                          | 4.71%                                          | 0.43%                                         | 5.19%                   | 21.70*                       | 241.40%                  | 30.17%                                            | Kinus                   | Linus                   | -23, 33x                | 12.35                           | 84.94%                   | 16.82%                                          | -4.68%                  | -8.49%                  | -6.61%                  | 168.93% | \$ 6. 48x                     | 43.00%                        | 2 | Hinus                    | (1)Sale of Required Fund: Represented by (2)Amount Meed to be Improved from Net Profinal Indianted (d) is to be Indicated when it the furner Panne)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3) Evaluation Grade of Individual Plan                                                                                       |       |
|                   | n of 50                                 | acollect,<br>per Year             | 1.307                | 1.343                           | 4.281                    | 326                                                       | 304                     | 299                                            | 257                                              | 250                                            | 237                                           | 256                     | 215                          | 454                      |                                                   | 888                     | 86                      | 123                     | 347                             | 139                      | 175                                             | 691                     | 170                     | 162                     | 163     | 164                           | 18                            |   | 2.5                      | 1)Scale<br>2)Amount<br>Indict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3)Evalue                                                                                                                      |       |
|                   | Reductio                                |                                   | 900                  | 694                             | 1.973                    | -904                                                      | -1.128                  | -1.183                                         | 206                                              | σ <sub>i</sub>                                 | -54                                           | 7                       | 186                          | 217                      | 29                                                | 991-                    | -203                    | 691-                    | ≅                               | 121                      | 29                                              | 89-                     | -83                     | 118                     | 140     | 121                           | 10.                           |   | 38                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ŭ                                                                                                                             |       |
|                   | (Out Put Reduction of                   | ariableProfit                     | 2, 964               | 3,032                           | 282                      | 3.5                                                       | 129                     | 138                                            | 9-                                               | 37                                             | 5.2                                           | 20                      | 15                           | 8                        | <b>∞</b>                                          | 2.5                     | 50.55                   | 55                      | 9                               | 6                        | 2                                               | 25                      | 36                      | 42                      |         | 60                            | 3                             |   | 206                      | Evaluation )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |       |
|                   | 3                                       |                                   | 3. 545               | 4.211                           | 3, 320                   | 1.748                                                     | 2.052                   | 2.125                                          | 93                                               | 395                                            | 452                                           | 423                     | 127                          | \$3                      | 106                                               | 417                     | 468                     | 457                     | 404                             | 20                       | 172                                             | 355                     | 377                     | 428                     | 36      | 63                            | 88                            |   | 384                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |       |
| ٠                 | s                                       | vasion Tota<br>of LossCost        | 4,545                | 4.680                           | 5,049                    | 534                                                       | 614                     | 633                                            | 384                                              | 386                                            | 398                                           | 617                     | 385                          | 245                      | 169                                               | 251                     | 265                     | 288                     | 252                             | 129                      | 227                                             | 276                     | 282                     | 322                     | 176     | 184                           | 190                           |   | 100                      | p]c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |       |
|                   | ₹ 8                                     | EconomicEvasion<br>Benefit of Los | 4.545                | 4. 680                          | 5. 282                   | 844                                                       | 924                     | 943                                            | 364                                              | 386                                            | 398                                           | 614                     | 613                          | 245                      | 691                                               | 251                     | 265                     | 882                     | 480                             | 159                      | 327                                             | 276                     | 282                     | 322                     | 176     | 184                           | 061                           |   | 62                       | s Availa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |       |
|                   |                                         | Cost Be                           | 3.727                | 6, 553                          | 16, 886                  | 9, 225                                                    | 10.743                  | 11.109                                         | 378                                              | 1.939                                          | 2. 180                                        | 2. 026                  | 1.925                        | 208                      | 9 4                                               | 1.980                   | 2.255                   | 261.2                   | 1.994                           | 233                      | 854                                             | 1. 782                  | 1.901                   | 2. 103                  | 827     | 324                           | 464                           |   | 800                      | organion was Available<br>on from Output<br>is not Calculated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |       |
|                   | Het Pro.                                |                                   | 13.674               | -13.674                         | -13, 674                 | <u> </u>                                                  | -                       | -                                              | 279                                              | 279                                            | 279                                           | 279                     | 279                          | 273                      | 52                                                | 2.5                     | 22                      | 22                      | 22                              | 22                       | 09                                              | 99                      | 99                      | 0.9                     | -51     | -51                           | - 15                          |   | -15-                     | Evasion less no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |       |
|                   | 2 94                                    |                                   |                      | - 88#2 38Y3                     |                          |                                                           | CASE 2A                 | CASE 3A                                        | VI 3SY                                           | CASE ZA                                        | CASE 3A                                       | 28 38 CASE 38           | VF 38Y2                      | E. Gas. T.               | CASE 1A                                           | CASE 2A                 | CASE 3A                 | CASE 38                 | CASE 4A                         | E. Gas T.                | CASE IA                                         | CASE 2A                 | CASE 3A                 | CASE 38                 | VI 3SVO | CASE 2A                       | CASE 3A                       |   | E. Cas T.                | Note: From UPOTS, No int<br>so that the Evasi<br>Reduction Loss wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |       |
|                   |                                         |                                   | SIAPE                |                                 |                          | STOAN                                                     |                         |                                                |                                                  | Z115X                                          |                                               |                         |                              | 1                        | SATHOP                                            |                         |                         |                         |                                 | ĺ                        | SMCP                                            |                         |                         |                         | STS     |                               |                               |   | 3770                     | Mote: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               |       |

# 4. Economic Analysis

The financial analysis concentrated on the economic efficiency of the objective enterprises and factories themselves, and examination was given as to what economic influences would be expected when the waste water treatment facilities and exhaust gas treatment facilities were introduced. With the economic analysis, the study is directed to the question how the social economy of Tunisia or the region of Sfax will be influenced by such introduction.

Therefore, about the economic benefits and expenses that can be calculated quantitatively, the profit and loss have been calculated as with the financial analysis to obtain the economic internal rate of return (E.IRR).

Table VIII-16 summarizes the examination results by the economic analysis.

# (1) Economic benefits

# 1) Direct benefit

In principle, the direct benefit has been studied with the same concept as that of the financial analysis, except the following benefits. These are excluded from the economic analysis because they will not generate any profit or loss for the society as a whole.

# (1) Reduction of cost for excessive part of waste water quality standard

The penalty calculated here means a reduction of expenditure for an enterprise, but it is a reduction of revenues for the local area or country, resulting in zero income and outgo for the whole society.

#### 2 Tax exemption effect by execution of special depreciation

The result is zero income and outgo, same as in ① above, considering the tax exemption for the enterprises and the national subsidies.

The reduction of waste water treatment expense at ONAS was evaluated to be 50% as only variable cost will become a consumption logically. Other economical benefits are as same as those described in financial analysis. Therefore, their duplicate explanation will be avoided.

#### 2) Indirect benefits

Indirect benefits are expected as listed below, while they can hardly be measured into the numerical data as in the case of the direct benefits.

# 1 Increased chances for employment

By the introduction of the planned facilities, there will be newly created opportunities of employment not only for the personnel directly related to the operation, analysis, and maintenance of the equipment, but also for the personnel required for the construction and maintenance work. The nationwide and stepwise projects will have far-reaching effects by increasing the employment chances to shift toward a high income level.

# 2 Resource utilization and improvement of environment

It is highly important for the society to save the water resource which is running short, and to eliminate the harmful influence by the waste water discharge and exhaust gas (such as injuries to the health, decrease in marine products, and reduction of values for tourism). Further, utilization of useful materials collected during the treatment process will not only generate a direct economic effect, but also will offer the chances to acquire the techniques to improve various production processes.

# 3 Contribution to the community economy

It is highly significant to contribute to the enhancement of the standard of living of the community by eliminating the pollution for the industrial development.

Implementation of the present project also means an acquisition of know-how related to the countermeasures of industrial pollution. It will offer opportunities for creating and developing an environmental industry. That will in the long run encourage the regional and environmental industries, and ensure a reduction of construction cost across the country. Another promising possibility is contribution to the promotion of export and acquisition of foreign currencies thanks to the high cost performance.

#### (2) Economical expenses

Out of the expenses under the economic analysis, some items have been calculated by a method different from that of the financial analysis as detailed below. Those items are the wage differences that largely enhance the social economic level and the part of fixed utility cost and factory overhead that are not considered to marginally increase.

#### 1) Labor expense

The personnel to serve the planned facilities are assumed to be shifted from the worker operating on the production facilities. Also the worker vacancy can be filled by temporary workers. Accordingly, the personnel expenditure has been calculated marginally on the basis of an extra worker: 150 TD/month\*person.

# 2) Utility expense

On the electric power supplied to inside the area, the fixed cost equivalent is not considered to be increased marginally. From this, the power cost has been calculated at 60% of the level in the financial analysis.

# 3) Factory overhead

The factory overhead includes various costs of utilizing the social facilities. Such cost has been calculated to 30% of the result of the financial analysis, considering the fact that these costs are not subject to a proportional increase by the increase in the number of personnel, and that the planned facilities require no increase in the office work staff.

# (3) Results of economic analysis

As shown in Table VIII-16, the economic analysis has had a worse result for the individual item than the result of the financial analysis. However, considering the indirect benefits, the decision making will not be affected.

Table VIII-16 EIRR by Factory

| Total Fire IA E Ges T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |         | SIAPE                                   |         | S108-    | ZITEX   |          | SATHOP | 100 |      | SYCP |        | 818  |       | TIPOTS |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|-----------------------------------------|---------|----------|---------|----------|--------|-----|------|------|--------|------|-------|--------|
| The property   1.75   17.58   1.084   378   208   586   409   233   642   854   176   176   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   177   17 |                                          |         | 5. Gas T.                               |         | CASE 1A  | S       | tal      |        | a S | -    | ¥1 3 | ASE IA | SS   | otal  | -      |
| Control   Cont | (1)Construction Cost (Total Investment)  | 3, 725  | 17.359                                  | 21.084  | 378      | 208     |          | 409    | 63  | 842  | 854  | 178    | 0.9  | 88    | 2.1    |
| The following   Fig.    (2)Economic Benefits                     |         |                                         |         |          |         |          |        |     | -    |      |        | -    |       |        |
| Color of the col |                                          | 1       | 4.188                                   | 4,188   | 234      | 6.3     | 234      | 26     | 97  | 26   | 132  | 117    | 117  | 117   |        |
| Care    | 3                                        |         | 236                                     | 236     |          | 0       | 0        |        |     | 0    |      |        |      | 0     | 310    |
| Carporate   State    | 8) Evasion of Penalty                    | 6       | -                                       | 0       |          |         | 9        | -      | -   | -    | -    | 0      | 0    | c     |        |
| Continue    Payment                                  | ,       | >                                       | ,       | ,        | 2       | >        | •      | •   | >    | >    | >      | >    |       | >      |
| VEXENDED   16   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #)Evasion of Sewage<br>Treatment Fee     | 52      | 0                                       | 22      | 0        | 0       | 0        | 0      | 0   | 0    | 0    | 0      | 0    | 0     | 0      |
| F. Expense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5)Effect of Corpo-<br>rate Tax Exemption | 0       |                                         | 0       | 0        | 0       | 0        | 0      | 0   | 0    | 0    | 0      | 0    | 0     | Û      |
| Expense   40   169   2.09   3   5   8   8   3   6   9   1   1   1   2   1   1   2   1   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                                    | 4,243   | 4.424                                   | 47      | 234      | 234     | 234      | 9.7    | 26  | 9.7  | 132  |        | 117  | 117   | 310    |
| Expense   2,898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |         |                                         |         |          |         |          |        |     |      |      |        |      |       |        |
| Expense   2.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Utility Expense                          | 40      | 169                                     | 209     | 60       | ur      | ~        | 67.    | 9   | 6    | 2    |        |      | 2     | 4      |
| Secondary Color   14   5   6   6   6   6   6   6   6   6   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2)Cemical Expense                        | 2,898   | 0                                       | 2,898   | 1.1      | 0       | 1.1      | 13     | 0   | 13   | 7    | 0      | 0    | 0     | 23     |
| ### 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3)Lahor Expense                          | 14      | 0                                       |         | 52       | 0       | 52       | 6      | 0   | 6    | 5    | 2      | 0    | 2     | 16     |
| st tion Rxy.         373         1.640         2.013         38         21         59         41         23         64         85         18         6         24           St perceist.         10         96         96         96         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4) Maintenance Exp.                      | 112     | 506                                     | 9       | 11       | 9       | 17       | 12     | 7   | 61   | 26   | S.     | 2    | 2     | 276    |
| St Degree 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5)Depreciation Rxp.                      | 373     | 1,640                                   | al'     | 38       | 21      | 5.9      | 41     | 23  | 64   | 85   | 18     | 9    | 24    | 921    |
| S   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6)Catalyst Depreciat.                    | 0       | 9.6                                     |         | 0        | 0       | 0        | 0      | 0   | 0    | 0    | 0      | 0    | 0     | 0      |
| t & loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7) Plant Overhead                        | 2       | 65                                      | 800     | 24 0     |         | 2        | 2      |     |      | 200  | ,      |      | ,     | 36     |
| t & loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7) interrest                             | 1776    | 9 0 5 4                                 | 7       | 0.0      | ,       | 66.      | 4      |     | 17   | 97   | ٥٥     | 7    | 8     | 300    |
| t & loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78101                                    | 0,00    | 0.034                                   | 3       | 70       | 7       | 777      | 4.6    | 44  | 138  | 001  | 60     |      | 6     | 1.022  |
| Red.(60 B)         1.163         3.684         660         203         222         190         58         84         44         89         108         114         105           E. IRR         36.53x         22.33x         -9.30x         73.14x         228.59x         38.38x         12.09x         43.45x         -0.02x         6.28x         86.77x         H         56.77x         X           Red.(30 D)         -930         1.590         -1.433         86         105         74         X         X         X         47         H         56.77x         H         56.77x         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>∞</b> 3                               | 567     | 1,369                                   | -2, 151 | 152      | 194     | 112      | E      | 53  | -41  | -25  | 84     | 106  | 74    | -1.312 |
| Red. (60 b)         1,163         3,684         669         203         222         190         58         84         44         89         108         114         105           E, IRR         36,53x         22,33x         -9,30x         73,14x         228.59x         28,10x         43,45x         -0,02x         6.28x         86,77x         H         56,77x         X           Red. (30 D)         -930         1,590         -1,43         86         105         74         X         X         X         47         10         8         35         47         H         9         35         X         -4         12,07x         18         47         18         11         -29         -11,07x         31,23x         X         18         47         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |         |                                         |         |          |         |          |        |     |      |      |        |      |       |        |
| E. IRR         36.53x         22.33x         -9.30x         73.14x         228.59x         38.38x         12.09x         43.45x         -0.02x         6.26x         86.77x         H         56.77x         H         67.72x         H         70.22x         10.22x         10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |         | 3, 584                                  | 099     | 2        | 222     |          | 1      | 84  | 44   | 89   | 108    |      | 105   | -83    |
| Red.(30 D)         -930         1.590         -1.433         86         105         74         9         35         -4         22         49         56         47           E. IRR         X         X         X         X         X         X         11         20         18         18           E. IRR         -1.977         543         -2.480         27         47         15         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E. IRR                                   | 36.53%  | 22.33%                                  | -9.30%  | 73       | 228.59% | 1        | -1     | 1   | 8    | - d  | ای     |      | I     | ×      |
| E. IRR         X         X         X         X         X         X         X         X         11         -78         -11.07%         31.53%         122.8%         20.28%           Red.(15 D)         -1.977         543         -2.480         27         47         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Red. (30                                 | -930    | 1,590                                   | 1,433   | - 1      | 105     | Ħ.       |        | 35  | 7-   | 22   | - 1    |      | - 1   |        |
| Red. (45 D)         -1.51.         5.43.         -2.45.0         -2.45.0         -1.51.         -2.53.         -1.50.         -2.53.         -1.20x         1.20x           E. IRR         -9.33x         X         X         X         X         X         X         7.90x         56.39x         1.20x           Red. (45 D)         X         X         X         46.91x         164         132         33         59         20         56         79         85         76         79         85         76         79         85         77         85         77         86         77         86         70         86         87         76         87         70x         87         70x         70x         87         70x         87         70x         87         70x         87         70x         87         70x         80x         70x         150x         87         70x         80x         70x         80x         70x         80x         70x         80x         70x         10x         80x         70x         80x         70x         10x         80x         10x         80x         10x         10x         10x         10x         80x         10x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E. IRR                                   | X       | ×                                       | ×       | -1       | X       |          |        | ×   | ×    | =    |        | 172  | - l   | ×      |
| Red. (45 D)         116         2.637         -9.33x         X         46.91x         164         132         33         59         20         56         79         85         76           E. IRR         -9.33x         X         X         46.91x         193.68x         24.17x         2.43x         28.29x         -9.38x         -0.81x         56.53x         482.16x         37.70x           Red. (90 D)         3.257         5.778         2.754         319         339         307         106         132         93         155         166         172         164           E. IRR         155.35x         39.55x         10.54x         H         874.13x         70.96x         28.96x         79.15x         12.61x         17.97x         174.85x         H         104.86x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 10 P                                   | , 2, x  | C*C ×                                   | X X     |          | ×       | 1.       | ~      | 1.  | 27 × | ×    | - 1    | 5.6  | 1 20% | *      |
| E. IRR         -9.33x         X         46.91x         -193.68x         24.17x         2.43x         28.29x         -9.38x         -0.81x         56.53x         482.16x         37.70x           Red.(90 D)         3.257         5.778         2.754         319         339         307         106         132         93         155         166         172         164           E. IRR         155.35x         39.55x         10.54x         H         874.13x         70.96x         28.96x         79.15x         17.97x         174.85x         H         104.86x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Red. (45                                 | 116     | 2.637                                   | -387    |          | 164     | -        | 33     |     | 20   | 56   | 7.9    |      | 7.5   |        |
| Red. (90 D)         3. 257         5. 778         2. 754         319         339         307         106         132         93         155. 35 x         10. 54 x         H         874. 13 x         70. 96 x         28. 96 x         79. 15 x         12. 61 x         17. 97 x         174. 85 x         H         104.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E. IRR                                   | -9.33%  | X                                       | ×       |          | -193.   | 1        |        |     | 6    | l .  | 3      | 482. |       | ×      |
| E.IRR 155.35x 39.55x 10.54x H 874.13x 70.96x 28.96x 79.15x 12.61x 17.97x 174.85x H 104.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Red. (90                                 | 3, 257  | 5                                       | 5       | 319      | 62      | $\alpha$ | 106    | 132 | 60   | 155  | 166    | 172  | 164   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1                                      | 155.35% |                                         | 147     | 1        | 4       |          | 28.96% | - 4 | - 4  | . 97 | 85     | æ    |       | ¥<     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |         |                                         |         | <u>.</u> |         |          |        | 1   |      | 7    |        |      |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |         | : : : : : : : : : : : : : : : : : : : : | ,       |          |         |          |        |     | •    | :    |        |      |       |        |

8-35

#### (4) Economic influence

According to the result of the financial analysis, SIAPE and UPOTS require a large increase in the net profit of the enterprise even though the plan is implemented on the basis of CASE1 which is the most advantageous. Therefore, the economic influence has been analyzed by comparing the analysis results with a result assuming that the current state were continued.

1) Countermeasures for waste water and exhaust gas at fertilizer factory (SIAPE):

Running of production activities will inevitably produce some industrial pollution, apart from the extent and causal relationships. To some extent, the drainage is affecting the marine pollution and the exhaust gas affecting the air continuously.

If, therefore, the present state continues, there will be the time when the operation must be stopped or suspended, as is seen from the precedents in some foreign countries.

Bearing this in mind, the economic state is compared the case where the fertilizer factory continues production activities by implementing the anti-pollution countermeasures with the case where the fertilizer industry is inhibited from further production activities from economical side as follows:

(1) Annual output and price of rock phosphate and TSP

Phosphate rock: 6,610,000 tons ('89) US\$31/T ('91)

TSP: 1,000,000 tons ('87) US\$140/T ('91)

(2) Added value by fertilizer industry: Estimated from SIAPE information ('91)

Phosphate rock ===> TSP

Nationwide TSP output

681,120 T/Y

363,000 T/Y

1,000,000 T/Y

[calculated on the basis of 'Yield = 53.3%' and 'energy consumption value = 1/2 of the raw material cost']

Added value of SIAPE = (363,000 \* 140) - (681,120 \* 31 \* 1.5)= approx. US\$19,148,000

Nationwide added value scale = 19,148 \* (1,000/363) = approx. US\$52,749,000/Y = approx. 47,449,000 TD/Y Assuming the operation stop of nationwide fertilizer industry, a direct economic effect of approx. 47,000,000 TD/Y will be canceled.

The total amounts to approximately 705,000,000 TD when the added values by the TSP production are cumulated for fifteen years as the object period of the present investment.

Suppose that no countermeasures were taken against the industrial pollution so that the production must be completely stopped in the fertilizer industry, that will obviously affect the target growth rate 8.7% for the manufacturing industry under the eighth five-year plan. The tax revenue will also be reduced considerably as a result.

4 According to the examination by SIAPE, the expenditure of industrial antipollution countermeasures for the whole fertilizer industry is as follows (unit: 1,000 TD):

|                                  | (SIAPE)      | (Estimate for whole fertilizer industry) |
|----------------------------------|--------------|------------------------------------------|
| TSP output                       | 363,000 tons | 1,000,000 tons                           |
| Waste water treatment facilities | 3,725        | 10,262                                   |
| Exhaust gas treatment facilities | 17,359       | 47,821                                   |
| Total                            | 21,084       | 58,083                                   |
| Annual depreciation              | 2,013        | 5,545                                    |
| Annual running cost              | 6,630        | 18,264                                   |

From the above result, although the expenditure of industrial antipollution countermeasures requires a substantial investment scale, annual running cost of whole fertilizer will be less than the nationwide yearly added value scale. Therefore, it is desirable that the antipollution countermeasures be implemented gradually step by step, considering the economic effect by reserving the existence of such industries and the secondary influence over the other industries.

 Countermeasures for the margin (waste liquid after olive oil expression) at olive factory (UPOTS)

In the study, concentrated treatment facilities for discharged margin in the whole region of Sfax were examined based on the survey result of UPOTS. From the result, the economic comparison for the entire olive industry between margin reclamation treatment and waste water treatment was evaluated as follows:

# (1) Margin discharge:

UPOTS:  $50 \text{ m}^3/\text{day} * 100 \text{ days/year} = 5,000 \text{ m}^3/\text{Y(year)}$ 

Sfax area:  $1,000 \text{ m}^3/\text{day} * 100 \text{ days/year} = 100,000 \text{ m}^3/\text{Y}$ 

Nationwide total:  $= 225,000 \text{ m}^3/\text{Y}$ 

② Estimation of margin treatment cost without waste water treatment facilities:

(Preconditions)

It is assumed that a land must be procured separately from the general area via a green buffer zone, to cover the annual treatment quantity of the waste liquid, and the waste liquid will be discharged to a concentration pool with 1.5 m depth. Then the waste liquid must be left for ten years to cause a natural evaporation and underground penetration. For the eleventh and subsequent years, it will be recycled for reuse.

 $(225,000 \text{ m}^3/\text{Y})/1.5\text{m} = 150,000 \text{ m}^2 \rightarrow \text{A}$  site of 200,000 m<sup>2</sup> per year is procured, including green buffer zone ==> Assuming that the site is adjoining an industrial site, the cost is 20 TD/m<sup>2</sup>, that is: 4,000,000 TD/Y (in the buffer zone, olive tree planting is assumed, for the harvest after ten years' time).

The land will cost during ten years: 40,000,000 TD plus management cost (alpha)

3 Estimated construction cost of treatment facilities installed in the olive factories across the country (unit: 1,000 TD):

|                                               | Case 1A | Case 2A | Case 3A |
|-----------------------------------------------|---------|---------|---------|
| Construction cost for Sfax area               | 9,225   | 10,743  | 11,110  |
| Cost of nationwide construction               | 20,756  | 24,172  | 24,998  |
| Annual depreciation of nationwide facilities  | 2,076   | 2,417   | 2,500   |
| Annual operating cost of nationwide facilitie | s 3,650 | 4,520   | 4,682   |

Even by simply comparing the facility investment plan with the result of continued current state, the annual depreciation expenses are lower in any cases than the land acquisition cost. Moreover, considering the fact that 60% of the invested amount  $(15\% \times 4 \text{ years})$  is subject to exemption of corporate tax by the special depreciation, implementation of the present plan ensures an economic efficiency that is worth studying positively as a whole olive industry.

4 From another standpoint, influence over other industries:

The eighth five-year plan sets the targets of economic growth to 2% for agriculture, 8.7% for manufacturing industry, and 22.3% for tourist industry. Assuming a continuation of the present state, there will be a demand for the land of at least 2 km² for the coming ten years only for these industries (which means an estimated expenditure of 40 million TD). In view of the expected growth rate of the whole manufacturing industry and the tourist industry, the land supply will have to be considerably restricted.

 Difficulties expected for output increase of olive oil as a high value-added product of olive

Difficulty in achieving 2% growth rate target for agriculture

Difficulty in increasing the by-product as a cheap raw material for soap production

Affects the promotion of export and acquisition of foreign currencies

· Acquisition of vast site for throwing waste away

Affects the acquisition of new industrial site, causing difficulty to achieve the growth target for other industries

Negative effect to the geographical and meteorological resources suitable for the tourism, causing difficulty to achieve the growth target of 22.3% for tourism

→ Affects the acquisition of foreign currencies

The above problems may threaten the whole olive industry, so that the possibility of increasing the sales (by about 70,000,000 TD estimated from the quantity of the margin) or absorption of 2% annual growth (= approx. 24,000,000 TD for 15 years) (\*1) might be abandoned.

\*1: Estimated from UPOTS 1991 information (scale of UPOTS = 5/225 of the whole industry)

Olive purchase ===> Sale of olive oil

5,633 tons (260,000 TD) 1,162 tons (1,564,000 TD)

Supposing that the energy consumption is almost equal to the olive purchase cost, (1,564 - (260 \* 2)) \* (5/225)

Value added by olive oil production amounts to approx. 47,000,000 TD. The cumulative total of the 2% growth for 15 years amounts to approx. 24,000,000 TD.

(1,564 \* (5/225)) \* coefficient of annuity closing price (15 years, 2% = 17.29342) equals approx. 24,342

(6) Implementation of the present plan will completely cancel all these fears. Combined with the aforesaid indirect benefits, a large economic effect is expected for the olive industry from the viewpoint of industrial promotion.

Also from the standpoint of achieving the eighth five-year plan and ensuring the source of tax revenues, the investment must be promoted.

#### 5. Financial and Economic Evaluation

From the results of the financial and economic analysis, the waste treatment and recycling plan of selected industries in the region of Sfax is evaluated as follows:

- (1) By the countermeasures proposed by the present study, the investment reached a large amount for SIAPE (drainage from scrubber) and the treatment of the margin at UPOTS because of the excessively polluted waste water. Moreover, by the radical nature of the present study, a new investment had to be made resulting in an excessive financial burden at a time. In other factories, even if the additional cost is borne by the related enterprise, the cost can be absorbed through some managerial support.
  - However, considering the future development, permanent continuity, and industrial promotion of each enterprise, it is necessary to implement the present plan without killing the active power of these enterprises. From this viewpoint, those factors such as the construction cost (initial investment) must be reduced by all means.
- (2) To improve the economic efficiency and to enhance the possibility of implementing the present plan, the point is to lighten the burden of expenses and to reserve the fund for construction. For this purpose, the following steps are considered:
  - The industrial antipollution countermeasures mean nonproductive facilities. Therefore, if the plans are left to the spontaneous action of individual enterprises, the execution is threatened to be delayed or abandoned owing to the management conditions. Also, reduction of the construction cost may result in failure. For fear of this, the administration must take the initiative to enforce a thorough control of the items listed below, as with the present study, to establish a system to eventually attain the real goal. - Control on the estimation and assessment of materials and equipment, purchase negotiations, and supervision of field construction. For example, a system of appointing the dealer or construction company (even for the appointed dealer or constructor, chances must be offered for a "narrow profit margin and large sales volume" policy to train them into the specialists).
  - The implementation plan shall be executed step by step to gradually satisfy the total regulation volume on the waste water quality standard as the decisive factor of the construction scale and process. For example, to attain the target by the total volume, the number of the objective enterprises shall be increased, while easing the standard for individual enterprises. Consequently, for each enterprise, the initial investment and cost for managerial improvement can be reduced to provide a better condition for investment.

- To encourage each enterprise to promote the present plan, some steps shall be examined to offer a direct incentive for reducing the expenditure such as the construction cost. For example, penalty for the enterprises not taking countermeasures would be partially increased, and the collected money would be reimbursed to those who executed the countermeasures, thus establishing a system concentrating the reimbursement on the execution period. Thus, profitability of the investment would be enhanced by subsidizing by the whole beneficiaries widely and lightly so as to eventually reduce the running cost.
- 4 Examination shall also be given to rationalization of a collective treatment of industrial waste water (at the primary treatment stage) by several enterprises or regions. When the possibility is expected, organizing a jointly operated company (or association) shall also be examined for the purpose of reducing the expenses per enterprise such as the construction cost.

# **VOLUME IX**

# CONCLUSION AND RECOMMENDATION

#### **VOLUME IX CONCLUSION AND RECOMMENDATION**

To complete the present study, we describe a conclusion and recommendation in this volume. The object of the study is to assure the environmental protection in the region through the countermeasures for the industrial pollution.

Therefore, it is necessary to make the result of the present study be a model and spread it all over the Tunisia to make a working plan.

#### 1. Outline of the Present State of Selected Factories

It is concluded that, except some factories, no antipollution measures are undertaken. Some factories are studying the possibility, while some others in the process of constructing the equipment. In fact, however, full-scale countermeasures for the waste water or exhaust gas are not taken at the moment.

On the waste water, there is the INNORPI emission standard specifying the standard for the discharge to rivers, sea area, and sewage treatment plant. However, such standard goals have not yet been attained.

For the exhaust gas, no standard exists, and no countermeasure is taken.

#### 2. Conclusion of the Study

To protect the environment and enhance the economic efficiency of each enterprise, the cost of constructing and operating the antipollution facilities must be reduced. For this purpose, the following points must be examined:

- (1) Every factory produces polluted substances at a high density. Polluted substances are originally valuable substances such as raw materials. The valuable substances must be collected as much as possible through rationalization of the factory, so as to reduce the polluted content in the drainage. To that end, the numerical data in each section at the factory must be grasped first. The present study has been made temporarily, and further data must be collected continuously on a long-term basis.
- (2) Waste water treatment facilities must be examined based on the tentative standard proposed by Japan. While the standard is tentative, the drainage from all factories except those from the SIAPE factory is accepted by ONAS, and its quality becomes to fulfill the sea area emission standard of INNORPI by ONAS. In the tentative standard proposed by Japan to be applied for SIAPE, SO<sub>4</sub> exceeds the standard value for sea area of INNORPI standard. However, since removal of SO<sub>4</sub> requires an expensive device, it will have to be studied in the next stage.

- (3) For the INNORPI standard of the inflow into ONAS, Cl and SO<sub>4</sub> are subject to regulations. However, the tentative standard proposed by Japan does not satisfy these regulations. Therefore, if a part of the ONAS treated waste water is used for irrigation, the salt content will be increased. However, in view of the high investment cost required for the removal of salt, reservation of the irrigation water must be studied from an overall point of view.
- (4) By the INNORPI standard of discharge to sea area, SO<sub>4</sub> is subject to regulation. SO<sub>4</sub> also exists in the sea water, so we raised the question about the reason of the SO<sub>4</sub> regulation, without a clear response being received so far. In our opinion, the SO<sub>4</sub> regulation has to be reexamined.
- (5) Treatment of margin at UPOTS is a problem not only for Tunisia, but also for the entire world. In the present study, study was mainly concentrated on a treatment by anaerobic bacteria as treatment methods.
  - Although the method of anaerobic treatment is being researched in various countries of the world, there is no record of the actual plant. It is desired that the research will be further promoted in Tunisia.
- (6) At the sulfuric acid plant in SIAPE, the DCDA method should be adopted to cope with the soaring sulfur price. At the same time, countermeasures for the pollution should be taken along with the efforts to improve the rate of collecting the sulfuric acid.
  - Furthermore, the modification of scrubber in phosphoric acid plant and TSP plant should be implemented to remove fluorine and to be a countermeasure for pollution.
- (7) As the countermeasures for the particles of soot dust from soap factories and STS, installation of cyclone is proposed. As a preparatory step, training of the operating engineers should be projected in order to improve the method of controlling the combustion technique.

## 3. Recommendation and Considerations

## 3.1 Recommendation

As a conclusion of the present study on waste treatment and recycling plan, the following items are recommended:

- (1) The construction cost indicated for each case in the present study was first calculated on the cost level in Japan then converted into Tunisian base by taking account of the field survey results. Therefore, the indicated values do not fully reflect the conditions unique to Tunisia. Hence, before executing the plan, the construction cost has to be reexamined from an overall standpoint.
- (2) Efforts should be made to reduce the polluted substance at the discharge outlet of each factory. Generally, there is a high density of the polluted substance at the discharge outlet of factory. The problems are that a large expense will be required to treat such polluted substance, and that some useful substances are discharged and wasted. It is recommended that the complete numerical data at the production processes be grasped so as to reduce the quantity of the polluted substance.

# (3) Establishment of reasonable emission standard

It is important to enforce a strict emission standard to protect the healthy environment. However, it is also important to set a standard to be harmonized with the industrial development. Especially, removal of salt requires a high cost of investment and operation. Preparation of the irrigation water standard and re-examination of salt regulation in the sea area are recommended.

#### 3.2 Considerations on Plan Execution

After examining the items in the foregoing sections, the following notes must be taken into consideration in executing the plan:

## (1) Organizing of the committee

As the countermeasures for the industrial pollution in the region of Sfax, it is desirable to organize a committee consisting of the governmental and civil personnel and men of learning and experience, to execute the countermeasures for the entire community.

(2) The present study has been made on some selected local factories. For the next study, it is desirable to cover the whole area, and execute the project step by assigning the priority.

(3) Reconfirmation of quality of waste water

Quality of waste water from each factory should be analyzed again to reconfirm the preconditions for design.

(4) Treatment test by actual drain

To obtain the basic numerical data for design, a simple test should be conducted on the actual drain sample. For example, the following data should be confirmed with the actual drain sample:

- · Preparation of neutralization curve
- · Preparation of coagulating sedimentation curve
- (5) Confirmation by pilot plant or demonstrative facility

It is desirable to test the following items through a pilot plant to implement the research and development as they are big problems in Tunisia:

- · Anaerobic treatment of margin
- · Removal of salt by reverse osmosis
- (6) Overseas technical survey

It is desirable that the technical contents of the following items be grasped by inspecting the overseas technology:

- · Anaerobic treatment equipment
- · Reverse osmosis equipment
- (7) It is recommended that LARSEN be expanded into an environmental technology center (or an environmental training center) to serve as a core organization for training the environmental engineers in Tunisia.

# ANNEX

## SCOPE OF WORK

FOR

THE STUDY ON WASTE TREATMENT AND RECYCLING PLAN OF SELECTED INDUSTRIES IN THE REGION OF SFAX

IN THE REPUBLIC OF TUNISIA

AGREED UPON BETWEEN

THE AUTHORITIES CONCERNED OF THE GOVERNMENT OF TUNISIA

AND

JAPAN INTERNATIONAL COOPERATION AGENCY

TUNIS, DECEMBER 14, 1990

MR. BAOUENDI ABDELKADER
PRESIDENT DIRECTOR-GENERAL
AGENCE NATIONALEPOUR LA
PROTECTION DE L'ENVIRONNEMENT,
LE GOUVERNEMENT TUNISIEN

MR. NOBUYOSHI KAKUMA LEADER, THE JAPANESE PRELIMINARY

STUDY TEAM,
JAPAN INTERNATIONAL
COOPERATION AGENCY

#### I. INTRODUCTION

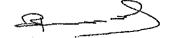
In response to the request of the Government of the Republic of Tunisia (hereinafter referred to as "GOT"), the Government of Japan decided to conduct the Study on Waste Treatment and Recycling Plan of Selected Industries in the Region of Sfax (hereinafter referred to as "the Study")in accordance with the relevant laws and regulations in force in Japan.

Accordingly, Japan International Cooperation Agency (hereinafter referred to as "JICA"), the official agency responsible for the implementation of the technical cooperation programs of the Government of Japan, shall undertake the Study in close cooperation with the authorities concerned of GOT.

The present document sets forth the scope of work with regard to the Study.

#### II OBJECTIVE OF THE STUDY

The objective of the Study is to formulate treatment and where applicable, recycling plans of the industrial waste from the selected factories and industrial facilities in the region of Sfax in order to cope with industrial pollution in the region thereby contributing to the region's sound industrial development and environmental protection.


# III. SCOPE OF THE STUDY

Based on the primary study carried out by the Laboratory of Environment Science in the National Institute of Engineering in Sfax (hereinafter referred to as "L.A.S.E.N."), the Study shall be conducted with regard to treatment and, where applicable, recycling palms of the industrial liquid waste and exhaust fume from the following factories and facilities:

-Societé Industrielle pour la Fabrication de l'Acide Phosphorique et Engrais (S.I.A.P.E.) Unitès A et B -Societé National pour la Distribution du Pétrole (S.N.D.P.) -Selected small-scale factories

The scope of the Study shall be the following:

1. Review of general conditions for the Study (Environmental policies and regulations, Demographic, socio-economic, meteorological, topographic conditions of the region, Present





water resources and analysis of its future demand and supply)

- 2. Analysis of the production process of the factories and facilities
- 3. Analysis of liquid waste and exhaust fume from the production process both within and outside the factories and facilities.
- Formulation of treatment and, where applicable, recycling system alternatives
- 5. Preparation of the implementation plan and schedule of the above systems
- 6. Cost estimation
- 7. Financial and economic analysis (where applicable)
- 8. Conclusion and recommendations

#### IV. PROCEDURE OF THE STUDY

The Study shall be implemented in accordance with the following procedure:

- Step 1. Preparatory study (in Japan)
- Step 2. Preliminary field survey (in Tunisia)
- Step 3. Field survey and analyses (in Tunisia)
- Step 4. Continued analytical work (in Japan)
- Step 5. Presentation of Interim Report and supplementary field survey and analyses (in Tunisia)
- Step 6. Continued analytical work (in Japan)
- Step 7. Presentation of Draft Final Report (in Tunisia)
- Step 8. Submission of Final Report

## V. SCHEDULE OF IMPLEMENTATION

A tentative schedule of the Study implementation shall be as attached in the Appendix.

#### VI. REPORTS

JICA shall prepare and present the following reports in English to GOT.

Ten (10) copies of the Inception Report

Ten (10)copies of the Progress Report

Thirty(30)copies of the Interim Report

Thirty(30)copies of the Draft Final Report

Thirty(30)copies of the Final Report





VII.UNDERTAKINGS BY THE GOVERNMENT OF TUNISIA 1.To facilitate smooth conduct of the Study, GOT shall take the necessary measures:

- 1.1 To secure safety of the Japanese Study Team (hereinafter referred to as "the Team")
- 1.2 To permit the members of the Team to enter, leave and sojourn in Tunisia for the duration of their assignment therein, and exempt them from alien registration requirements and consular fees
- 1.3 To exempt the members of the Team from taxes, duties and other charges on equipment, machinery and other materials brought into, and out of, Tunisia for the conduct of the Study
- 1.4 To exempt the members of the Team from income tax and charges of any kind imposed on, or in connection with, any emoluments or allowances paid to them for their services for the implementation of the Study
- 1.5 To provide necessary facilities to the Team for remittance as well as utilization of the funds introduced into Tunisia from Japan for the implementation of the Study
- 1.6 To facilitate permission for entry into private properties or areas relevant for the conduct of the Study
- 1.7 To secure permission for the Team to take all data and documents related to the Study out of Tunisia
- 1.8 To provide medical service as needed.(Its expenses can be charged to the members of the Team.)

2.GOT shall bear claims, if any arises against the members of the Team resulting from, occuring in the course of, or otherwise connected with the discharge of their duties in the implementation of the Study, except when such claims arise from gross negligence or wilful misconduct on the part of the Team members.

3.Agence National pour la Protection de l'Environnement (heareinafter referred to as "A.N.P.E.") shall act, in cooperation with L.A.S.E.N., as the counterpart agency to the Team as well as the co-ordinating body in relation with other governmental and non-governmental organizations concerned for the smooth implementation of the Study.

4.A.N.P.E. shall, at its own expense, provide the Team with the





following, in cooperation with L.A.S.E.N. and other organizations concerned:

- 4.1 Available data and information related to the Study
- 4.2 Counterpart personnel
- 4.3 Suitable office space with necessary equipment in Sfax
- 4.4 Credentials or identification cards
- 4.5 Vehicles

## VIII. UNDERTAKINGS BY JICA

For the implementation of the Study, JICA shall take the following measures:

- 1.To dispatch, at its own expenses, a series of study teams to Tunisia
- 2.To pursue technology transfer to the Tunisian counterpart personnel

#### IX. CONSULTATIONS

JICA and A.N.P.E. shall consult with each other in respect of any matters that may arise from, or in connnection with, the Study.





▲ DF/R Sep. 20 APPENDIX уn3; Step6 23 Jul. ∞ Apr. | May. | Jun. Step5 1992 9 2 **★** IT/R Yar 三 F.65 = Step4 2 Jan Dec. П **₹**% TENTATIVE SCHEDULE OF THE STUDY Nov. 10 Step3 Sct. Sep Aug. Jul. Jun. 1991 Kay. Feb. | Mar. | Apr. Step2 **₹**2 C Step □ Work in Tunisia Work in Japan Report Output Order of Month Month Year

Abreviations: IC/R: Inception Report P/R: Progress Report IT/R: Interim Report DF/R: Draft Final Report P/R: Final Report

Dec.

Nov.

Oct.

Month

1992

Year.

ಜ

22

53

Order of Wonth

F/R Step8

Report Output

☐ Step7

Work in Tunisia

Work in Japan

# MINUTES OF MEETING

FOR

THE STUDY ON WASTE TREATMENT AND RECYCLING PLAN
OF SELECTED INDUSTRIES IN THE REGION OF SFAX
IN THE REPUBLIC OF TUNISIA

#### AGREED UPON AMONG

AGENCE NATIONALE POUR LA PROTECTION DE L'ENVIRONNEMENT, LE GOUVERNEMENT TUNISIEN,

THE LABORATORY OF ENVIRONMENT SCIENCE IN THE NATIONAL INSTITUTE OF ENGINEERING IN SFAX

AND

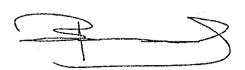
JAPAN INTERNATIONAL COOPERATION AGENCY

TUNIS, DECEMBER 14, 1990

MR. MEDHIOUB

DIRECTOR OF DEPARTMENT OF GEOLOGY,
LABORATORY OF ENVIRONMENTAL SCIENCE,
NATIONAL INSTITUTE OF ENGINEERING IN SFAX

MR. BAOUENDI ABDELKADER
PRESIDENT DIRECTOR-GENERAL
AGENCE NATIONALE POUR LA
PROTECTION DE L'ENVIRONNEMENT,
LE GOUVERNEMENT TUNISIEN


再問信義

MR. NOBUYOSHI KAKUMA
LEADER,
THE JAPANESE PRELIMINARY
STUDY TEAM,
JAPAN INTERNATIONAL
COOPERATION AGENCY

- 1. The Preliminary Study Team organized by Japan International Cooperation Agency visited Tunisia from December 6, 1990 to December 15, 1990 for the purpose of discussing the Scope of Work regarding the Study on Waste Treatment and Recycling Plan of Selected Industries in the Region of Sfax in the Republic of Tunisia, with the authorities concerned of the Tunisian Government.
- 2. In connection with the above, a series of meetings were held between the Tunisian side represented by Mr. Baouendi Abdelkader, President Director-General, Agence Nationale Pour La Protection de L'Environnement and the Japanese side headed by Mr. Nobuyoshi Kakuma, Leader of the JICA Preliminary Study Team. (The attendance list is found in the Appendix.)
- 3. These records should be read in conjunction with the "Scope of Work" agreed upon between GOT and JICA.
- 4. SPECIAL ISSUES HIGHLIGHTED
- 4.1 Regarding III. SCOPE OF THE STUDY, selected small-scale factories shall be the following:
  - -- SATOP Societe Anonyme Tunisienne Des Huiles Olives Pures
  - -SIOS-ZITEX Societe Industrielle Des Olives de Sfax
  - -TMS Tannerie Moderne de Sfax (Ben Arab)
  - -STS Societe Tissage a Sfax
  - -Societe Huilerie UPOTS

The field study in SNDP shall be the examination of its facilities and equipment in premise with a view to detecting the causes for possible leakage of hydro-carbon and making recommendations for its prevention.

- 4.2 Regarding VI. REPORTS, reports shall include supporting data collected during the field studies.
- 4.3 Regarding VII. 1.6 and 1.7 , ANPE shall assist the Japanese Study Team in every possible way including issuance of



official letters of permission for entry into the factories and facilities necessary for the Study and for exportation of the collected data and information. For this purpose, the Team shall consult with ANPE for permission of exportation thereof.

- 4.4 The "documents" referred to in 1.7 shall include photographs.
- 4.5 Regarding VII.1.8, ANPE shall bear the cost for first-aid medical service in Tunisia in the case of accidents or deseases incurred on the members of the Team.
- 4.6 Regarding VII.4.5, ANPE shall make every possible effort to secure vehicles to the study team. However, in case difficulty is anticipated in procuring vehicles in Tunisia in time for the implementation of the Study, ANPE will request JICA to prepare the budget to hire or purchase vehicles for the Study Team.
- 4.7 Regarding VII.4.2, the counterpart personnel assigned by ANPE in cooperation with LASEN shall include three (3) technicians for water quality measurement and analysis.
- 4.8 Regarding VII.4.3, LASEN shall provide suitable office space in Sfax for the Study Team.
- 4.9 Regarding VIII.2., ANPE requested JICA to invite its counterpart officials to Japan for the purpose of participating in the analytical work in Japan and facilitating technological transfer with regard to the Study.
- 4.10 Due to the limited inventory of analytical equipment at the disposal of ANPE, ANPE requested that JICA provide the Study Team with the necessary equipment for the field study at its own expense.







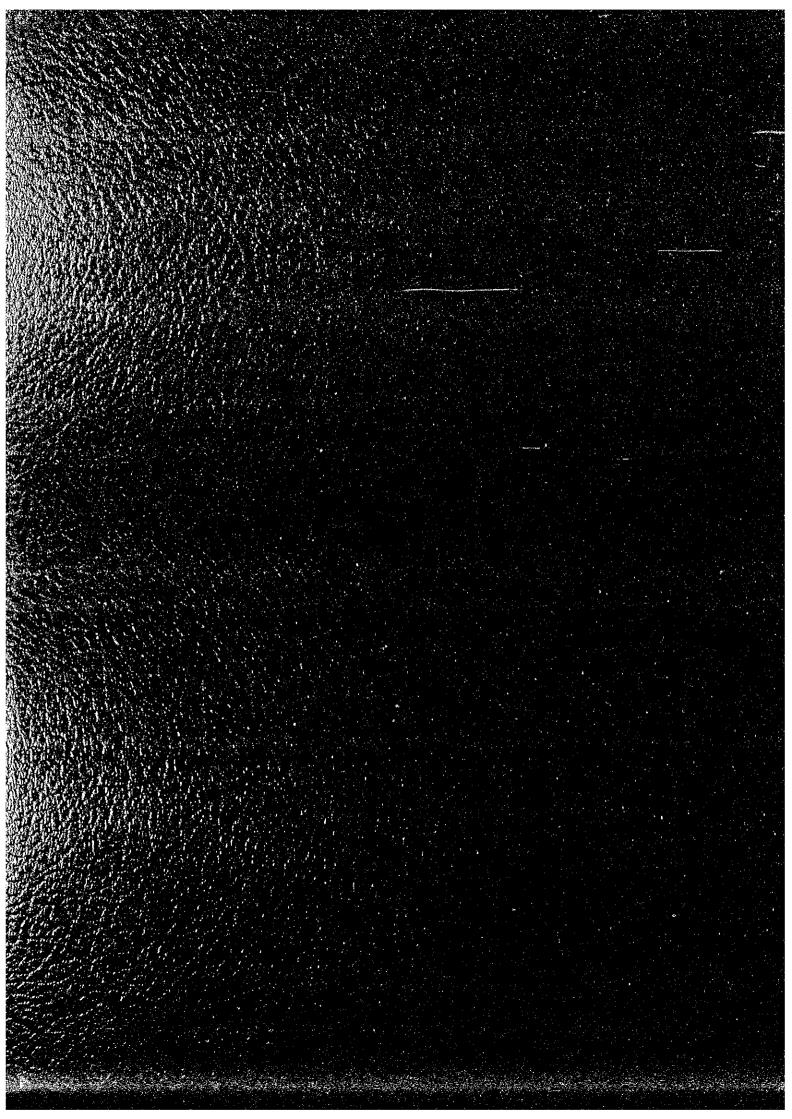
# ANNEX-2

## 1. Alternative Plan of Waste Water Treatment Facilities

Out of the several cases assumed by the present study, the main text described Case 1: tentative standard proposed by Japan and Case 2: tentative standard proposed by Tunisia as emission standard. This Annex describes Case 3 and subsequent case.

As shown in Table V-9 in Volume V, Case 3A proposes to conform to the INNORPI standard of discharge to ONAS and Case 3B proposes for soap factories and SMCP to conform to the INNORPI standard of discharge to sea area. Case 4A assumes a case where the production equipment of soap factories was improved (collection of glycerol from soap production section). Table ANNEX-1 summarizes the water quality to be examined, and emission standard of each factory by case. The flowchart and layout drawing are omitted, since they are almost the same as those appearing in the main text. Table ANNEX-2 summarizes the block flowchart and the site areas.

Also for comparison, contents of Case 1 and Case 2 are also described.


Quality of Waste Water for Study and Emission Standard by Factory and Case

|                        | Remarks       |                               |            |             |                      | Production<br>Facility Improved |                      | Production<br>Facility Improved |             |                       |                   | Applied for SIAPE                      |                                          |                     | Production        |
|------------------------|---------------|-------------------------------|------------|-------------|----------------------|---------------------------------|----------------------|---------------------------------|-------------|-----------------------|-------------------|----------------------------------------|------------------------------------------|---------------------|-------------------|
|                        | Discharge     |                               | SEA<br>SEA | ONAS        | ONAS SEA<br>ONAS SEA | ONAS F                          | ONAS SEA<br>ONAS SEA | ONAS F                          | ONAS SEA    | ONAS<br>ONAS<br>ONAS  |                   | ONAS<br>SEA                            | ONAS<br>SEA                              | ONAS<br>SEA         | ONAS              |
|                        | SO4<br>mg/l   |                               | 1,125      | 3,050       | 3,282 2,086          | 3,282                           | 3,282                | 3,282                           | 3,480       | 5,476<br>5,800<br>595 |                   |                                        | 1,000                                    | 1,000               |                   |
|                        | D mg/l        |                               | 3,700      | 8,900       | 6,259                | 6,259                           | 6,259 7,312          | 6,259                           | 2,400       | 1,133<br>4,800<br>363 |                   | 1                                      | 2,000                                    | 700                 |                   |
|                        | r-Cr<br>mg/l  |                               | 11         | I           | 11                   | 11                              | 1 1                  |                                 | 318         |                       |                   | 2.5                                    | 2.5                                      | 2.5                 |                   |
| la la                  | NH4-N<br>mg/l |                               |            | l           | 11                   | 11                              |                      |                                 | 386         | 111                   |                   | 18                                     | 30                                       | 100<br>30           |                   |
| aste Wate              | T-N<br>mg/l   |                               | ] ]        | Kj-N<br>920 | :                    |                                 | 11                   | 11                              | Kj-N<br>555 |                       |                   | 11.                                    | 1 1                                      |                     |                   |
| Quality of Waste Water | P<br>mg/l     |                               | 108        | 2,300       | 11.                  | ξ [                             |                      | 11                              | 1           |                       |                   | PO4 0.1                                | PO4 0.1                                  | PO4 10<br>PO4 0.1   |                   |
| Õ                      | F<br>mg/!     |                               | 5,848      |             | ] ]<br>:             |                                 |                      | -                               | 1           |                       |                   | 14 5                                   | 15                                       | <br>w &             |                   |
|                        | PHENOL mg/l   |                               |            | V)          | 11                   |                                 | 1 1                  | 1 1                             |             |                       | -                 | 5 0.05                                 | 50.05                                    | 0.05                |                   |
|                        | N-HEX<br>mg/l |                               | 11         | 300         | ] [                  |                                 |                      |                                 | 251         | 111                   |                   | 88                                     | 50<br>20                                 | 20                  |                   |
|                        | COD<br>mg/I   |                               | 276<br>150 | 190,000     | 14,267<br>324        | 12,214                          | 14,267<br>356        | 12,692<br>356                   | 4372        | 2,6276<br>282<br>504  |                   | 2,000                                  | 2,000                                    | 1,000               |                   |
| Flow                   | т³/D          |                               | 1,056      | 1,000       | 45<br>202            | 46<br>202                       | 54<br>140            | 55<br>140                       | 300         | 4.6<br>7.0<br>33.4    |                   |                                        |                                          |                     |                   |
| TREAM                  | No.           | ly                            | I          |             | , II                 | I II                            | I<br>II              | нп                              |             | I<br>II<br>III        |                   |                                        |                                          |                     |                   |
| ł                      | Case          | lity for Stuc                 | 1,2,3      | 1, 2, 3     | 1, 2, 3              | 4                               | 1, 2, 3              | 4                               | 1, 2, 3     | 1, 2, 3               |                   | Z. E                                   | 2A<br>2B                                 | 3A<br>3B            | 44                |
|                        |               | Waste Water Quality for Study | SIAPE      | UPOTS       | SIOS-ZITEX           |                                 | SATHOP               |                                 | SMCP        | STS                   | Emission Standard | Emission Standard<br>Proposed by Japan | Emission Standard<br>Preposed by Tunisia | INNORPI<br>Standard | Emission Standard |

Block Flow Sheet of Waste Water Treatment by Factory and Case

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Longon                                  |          |           |                                 |                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|-----------|---------------------------------|------------------------------------------------------------------------------------|
| Stream I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Name                                    | Case     |           | Block Flow Sheet                | Site Area Required                                                                 |
| 2B Stream I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STAPE                                   | 81       | CA PPE P  | BT ST TO PA                     | 40m x 80m=3,200m²                                                                  |
| 1A MARGIN — OP — ABT-1 — ST-1 — ABT-2 — BT — ST-2 — CA — SF — MF — RO — TO ONAS 5  2A MARGIN — OP — ABT-1 — ST-1 — ABT-2 — BT — ST-2 — CA — SF — MF — RO — TO ONAS 5  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 5  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 5  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 5  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A Stream II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A STREAM II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A STREAM II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A STREAM II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A STREAM II — CA — BT — ST — SF — MF — RO — TO ONAS 6  3A STREAM II — CA — BT — ST — ST — MF — RO — TO ONAS 6  3A STREAM II — CA — BT — ST — ST — MF — RO — TO ONAS 6  3A STREAM II — CA — BT — ST — ST — MF — RO — TO ONAS 6  3A STREAM II — CA — BT — ST — ST — MF — RO — TO ONAS 6  3A STREAM II — CA — BT — ST — ST — MF — RO — TO ONAS 6  3A STREAM II — CA — BT — ST — TO ONAS 6  3A STREAM II — CA — BT — ST — TO ONAS 6  3A STREAM II — CA — BT — ST — TO ONAS 6  3A STREAM II — CA — B |                                         | 2B<br>3B | CA FFH    | BT ST SF NF RO                  |                                                                                    |
| 2A MARGIN Water OP -ABT.1 - ST.1 -ABT.2 - BT - ST.2 - CA - SF - MF - RO - TO ONAS 5  Stream I - CA - BT - ST - SF - MF - RO - TO ONAS 5  Stream I - CA - BT - ST - SF - MF - RO - TO ONAS 5  Stream I - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream I - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream I - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream I - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream I - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream I - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  Stream II - CA - BT - ST - SF - MF - RO - TO ONAS 6  STREAM II - CA - BT - ST - ST - SF - MF - RO - TO ONAS 6  STREAM II - CA - BT - ST                                                                                                                                                                  | 3.00 A.A.                               | ¥.       | OP ABT-1  | ABT-2 BT ST-2                   | * .                                                                                |
| Stream I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S C C C C C C C C C C C C C C C C C C C | 2A<br>3A | OP -ABT-1 | -ABT-2-BT -ST-2-CA -SF -MF - RO | i I                                                                                |
| 2A Stream I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 1A       |           | TO ONAS                         | SIOS-ZITEX<br>16m x 30m=480m <sup>2</sup><br>SATHOP<br>16m x 28m=448m <sup>2</sup> |
| Stream I CA BT ST NF RO Concentrated Water  Stream II CA BT ST NF MF RO  Concentrated Water  Concentrated Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIOS-ZITEX & SATHOP                     |          | CA BT A   | SF MF RO                        | ,                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 3A       |           | SF MF RO                        |                                                                                    |

| Factory<br>Name     | Case | Block Flow Sheet                                                                                                   | Site Area Required                                    |
|---------------------|------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| SIOS-<br>ZITEX<br>& | 38   | Stream I CA BT ST SF MF RO Concentrated Water  Stream II CA BT ST SF MF RO  COncentrated Water  Concentrated Water | SIOS-ZITEX 35m x 55m=1,925m² SATHOP 30m x 53m=1,590m² |
| JOHN US             | 4A   | Stream I TO ONAS                                                                                                   | 16m x 28m=448m²                                       |
|                     | 1A   | Waste Water — CA TO ONAS                                                                                           | 16m x 28m=448m²                                       |
| SMCP                | 2A   | Waste Water CA SF MF RO Concentrated Concentrated Water                                                            | 16m x 40m=640m²                                       |
|                     | 3A   | Waste Water CA SF MF RO Concentrated Concentrated Water                                                            | 16m x 40m=640m²                                       |
|                     | 3B   | Waste Water — CA BT — ST — SF — MF — RO Concentrated Water                                                         | 20m x 60m=1,200m²                                     |
|                     | Y.   | Stream I CA TO ONAS                                                                                                | 12m × 20m=240m²                                       |
| STS                 | 2A   | Stream III — CA SF MF RO Concentrated Water                                                                        | 12m × 28m=336m²                                       |
|                     | 3A   | Stream I+II — CA — SF — MF — RO Concentrated Concentrated Water Water                                              | 12m x 28m=336m²                                       |

