Appendix 13 Design Conditions of Architecture

1. Design Policy

1.1 Outline of Structure

(1) Structural Classification

RC

(2) Type of Framework

Rigid Frame Construction

(3) Type of Foundation

· Pile Foundation ... RC Pre-fabricated Piles

· Direct Foundation

1.2 Structural Analysis and Design of Members

- (1) The calculation of the stress and deformation of each portion of buildings shall be, in general, made based on the elastic rigidness of the structural members. However, for the portion where the stress is large, the rigidness shall be lowered in consideration of the effects of cracks of the concrete and plastic deformation of the members.
- (2) For the design of the structural members (calculation of the cross-sectional area), the allowable unit stress design method, in which the obtained unit stress of a cross-sectional area of a member is held to be within the specified allowable unit stress, shall be applied.

2 Design in General

2.1 Materials to be Used and Physical Constants

Physical Constants

Kind	Young's Modulus
Concrete (Fc = 210 kg/cm ²)	2.15 x 10 ⁵ kg/cm ²
Steel bars (SD295A), Steel material (SS400), Equivalent	2.15 x 10 ⁶ kg/cm ²

2.2 Allowable Unit Stress

(1) Concrete

Design standard strength

• Compressive unit stress

· Shearing unit stress

Fc = 210 kg/cm^2 70 kg/cm^2 7.0 kg/cm^2 · Bonding unit stress

Round bars Top bar 8.4 kg/cm^2 Others 12.6 kg/cm^2 Deformed bars Top bar 14.0 kg/cm^2 Others 21.0 kg/cm^2

(2) Reinforcement Bars

Standards JIS/SD295A or Equivalent

• Tensile unit stress 2,000 kg/cm²

• Compressive unit stress 2,000 kg/cm²

(3) Steel Materials

Standards JIS/SS400 or Equivalent

• Tensile unit stress 1,600 kg/cm²

Compressive unit stress
 1,600 kg/cm² or below*

• Shearing unit stress 923.7 kg/cm²

(4) Extra Allowable Unit Stress

• Long period (vertical load) Factor for increase 1.0

• Short period (typhoon) Factor for increase 1.5

The figures marked with * shall be calculated at the time of cross-sectional design.

2.3 Soil Condition

The soil condition shall be set from the results of borings and laboratory tests.

3. Loads and External Forces

(1) Combination of Loads

Load	Assumed Condition	Combination of Loads	
Long period load	Normally	G + P	G: Dead load P: Live Load
Short period load	Under typhoon	G + P + W	W: Wind load

- · Seismic load shall not be considered.
- Wind loads shall be set in accordance with the relevant standards being applied in Japan.

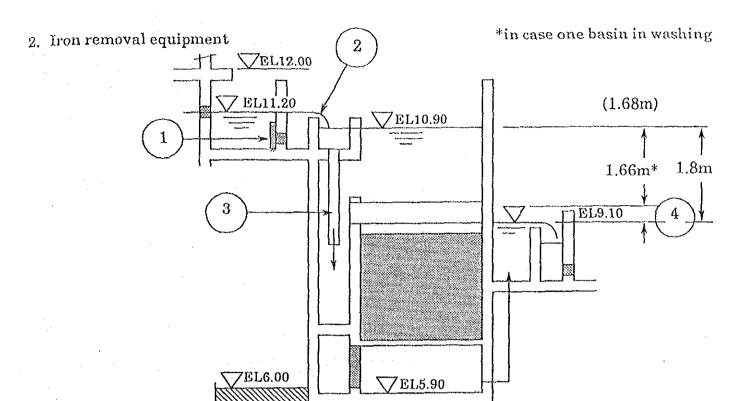
(2) Live loads

Unit (kg/cm²)

Classification	A	В	
Roof	90	65	A: For calculation of floor
Pump room, Control room, Others	300	180	B: For calculation of main frames and foundations

- · Other loads shall be set, if necessary, in consideration of the actual condition.
- The weight of the pump and the pump-foundation shall be considered in a separate manner.

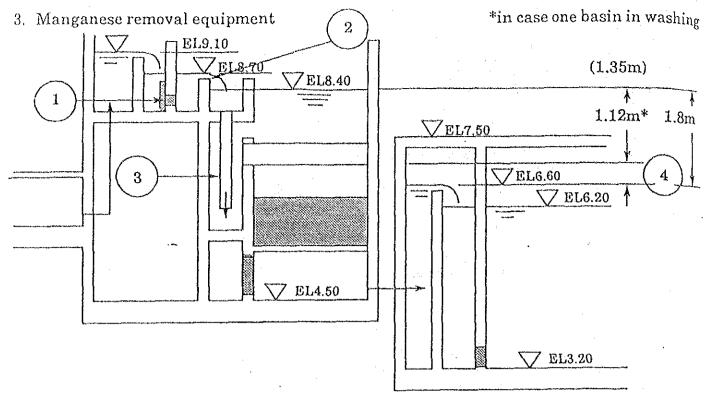
Appendix 14


Hydraulic Calculation and Specification of Treatment Plant

The Water Supply System in Gia Lam Area in Hanoi City Hydlaulic Calculation

1. Aeration Equipment

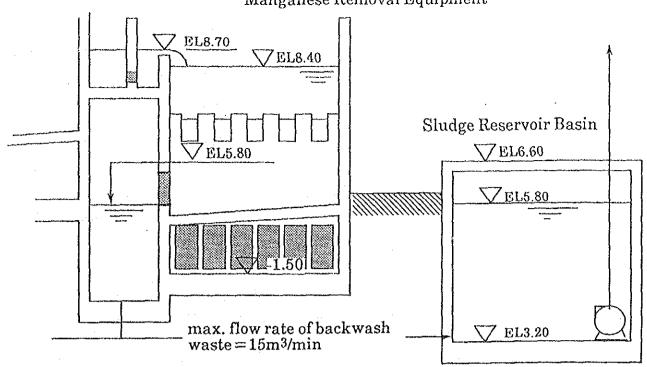
	Items	Details of Calculation
1	Raw water Pipe :H1	Connecting point of Raw water pipe~Header pipe of Aeration
		Flow rate: $32100 \text{m}^3/\text{d} \div 2 = 16050 \text{m}^3/\text{d} = 0.186 \text{m}^3/\text{s}$
		Pipe size: 350mm(Sectional area = 0.09m²)
		Flow velocity in the pipe: $0.186 \text{m}^3/\text{s} \div 0.09 \text{m}^2 = 2.1 \text{m/s}$
	Friction loss of the pipe	Total length of the pipe: 40m
	or one pipe	$h1 = \lambda \times \frac{L}{D} \times \frac{V^2}{2g} = 0.015 \times \frac{40}{0.34} \times \frac{2.12}{2g} = 0.397m$
	in the second se	λ : Coefficient of friction of Darcy-Weisbach' formula
	Friction loss of the bent	Quantity: 4 pcs
	or the bent	$h2 = f_{b1} \times f_{b2} \times \frac{V^2}{2g} \times n = 1.0 \times 1.0 \times \frac{2.1^2}{2g} \times 4 = 0.9m$
		f _{b1} : Coefficient of loss caused by radius of curvature
		fb2: Coefficient of loss coused by center angle of curvature
	Loss of valve	Valve size: 350mm(butterfly valve) Quantity: 3 pcs
		$h3 = f_u \times \frac{V^2}{2g} \times n = 0.15 \times \frac{2.12}{2g} \times 3 = 0.101m$
		$f_u = \frac{t}{D} = 0.15$ (t=Thickness of disk (D=Bore size of Valve)
	Loss of flow meter	Nominal Size of Flow meter: 350mm(Orifice) Quantity: 1 pcs
		h4 = 2.0m
	Total loss of Raw water pipe	H1= $h1+h2+h3+h4=0.397m+0.9m+0.101m+2.0m=3.398m$


~	Items	Details of Calculation
2	Spray pipe main :H2	Header pipe~Spray pipe main of Aeration
	.112	Flow rate: $16050 \text{m}^3/\text{d} \div 6 = 2675 \text{m}^3/\text{d} = 0.031 \text{m}^3/\text{s}$
		Pipe size: 150mm(Sectional area = 0.018m ²)
		Flow velocity in the pipe: $0.031 \text{m}^3/\text{s} \div 0.018 \text{m}^2 = 1.72 \text{m/s}$
	Friction loss of the pipe	Total length of the pipe: 14m
		$h1 = \lambda \times \frac{L}{D} \times \frac{V^2}{2g} = 0.018 \times \frac{14}{0.155} \times \frac{1.72^2}{2g} = 0.245 \text{m}$
	·	λ : Coefficient of friction of Darcy-Weisbach' formula
	Friction loss of the bent	Quantity: 1pcs
	or the bene	$h2 = f_{b1} \times f_{b2} \times \frac{V^2}{2g} \times n = 1.0 \times 1.0 \times \frac{1.72^2}{2g} \times 1 = 0.15 \text{m}$
		f _{b1} : Coefficient of loss caused by radius of curvature
	,	fb2: Coefficient of loss coused by center angle of curvature
	Loss of valve	Valve size: 150mm(butterfly valve) Quantity: 1 pc
		$h3 = f_u \times \frac{V^2}{2g} \times n = 0.15 \times \frac{1.72^2}{2g} \times 1 = 0.023m$
		$f_u = \frac{t}{D} = 0.15$ (t=Thickness of disk (D=Bore size of Valve)
;	Total loss of Spray pipe main	$H2 = h1 + h2 + h3 = 0.245m + 0.15m + 0.023m = \underline{0.418m}$
}	Spray lateral	Spray pipe main ~Spray lateral pipe
	pipe :H3	Flow rate: $2675 \text{m}^3/\text{d} \div 30 = 89.2 \text{m}^3/\text{d} = 0.001 \text{m}^3/\text{s}$
		Pipe size: 40mm(Sectional area = 0.0013m2)
		Flow velocity in the pipe: $0.001 \text{m}^3/\text{s} \div 0.0013 \text{m}^2 = 0.77 \text{m/s}$
		Total length of the pipe: 2m
		$h1 = \lambda \times \frac{L}{D} \times \frac{V^2}{2g} = 0.025 \times \frac{2}{0.041} \times \frac{0.77^2}{2g} = 0.037m$
		λ : Coefficient of friction of Darcy-Weisbach' formula
		H3 = h1 = 0.037m
	Total head loss of 牛(Actual head=	Aeration Equipment= $(H1+H2+H3=3.853 \text{ m})$ 10 m) + $(Dynamic head of water at the jet=3m)=16.853 m$
	Raw water pressu	re at the grand level(EL 6.00)should be at least 17 mAq.

		VIIIIIIII
	Items	Details of Calculation
1	Raw water distribution	Flow rate: $16050 \text{m}^3/\text{d} \div 5 = 3210 \text{m}^3/\text{d} = 0.0371 \text{m}^3/\text{s}$
	valve :H1	Valve size: 300mm(butterfly valve) Quantity: 1 pc
	•	$H1=f_u \times \frac{V^2}{2g} \times n = 0.1 \times \frac{0.53^2}{2g} \times 1 = \underline{0.0014m}$
		$f_u = -\frac{t}{D} = 0.1$ (t=Thickness of disk (D=Bore size of Valve)
2	Overflow depth	Flow rete: $16050 \text{m}^3/\text{d} \div 5 = 3210 \text{m}^3/\text{d} = 0.0371 \text{m}^3/\text{s}$
:	of distribution weir:H2	Width of weir: 800mm(B) $H2 = \left(\frac{0.0371}{1.84 \times 0.8}\right)^{2/3} = \underline{0.086m}$
3	Raw water	Pipe size: 300mm(Section1 area = 0.072m ²)
	inlet pipe :H3	Flow velocity in the pipe: $0.0371 \text{m}^3/\text{s} \div 0.072 \text{m}^2 = 0.51 \text{m/s}$
	Friction loss of the pipe	Total length of the pipe: 3m
		$h1 = \lambda \times \frac{L}{D} \times \frac{V^2}{2g} = 0.015 \times \frac{3}{0.3} \times \frac{0.51^2}{2g} = 0.002 \text{m}$
		λ : Coefficient of friction of Darcy-Weisbach' formula
	Friction loss	Quantity: 2pcs
	of the bent	$h2 = f_{b1} \times f_{b2} \times \frac{V^2}{2g} \times n = 1.0 \times 1.0 \times \frac{0.51^2}{2g} \times 2 = \underline{0.027m}$
		f _{b1} : Coefficient of loss caused by radius of curvature
		fb2: Coefficient of loss coused by center angle of curvature
		H3 = h1 + h2 = 0.002m + 0.027m = 0.029m

	Items	Details of Calculation
4	Initial fitration loss: H4	Flow rate: $16050 \text{m}^3/\text{d} \div 5 = 3210 \text{m}^3/\text{d} = 0.0371 \text{m}^3/\text{s}$
	1088: 114	Filtration area: $3m \times 6.2m = 18.6m^2$
		Filtration velocity: 0.0371 m ³ /s ÷ 18.6 m ² = 0.002 m/s
	Head loss of filter layer	$\begin{array}{lll} v = & \text{Filtration velocity:} & 0.0371 \text{m}^3/\text{s} \div 18.6 \text{m}^2 = 0.002 \text{m/s} \\ L = & \text{Depth of filter layer:} & 2 \text{m} \\ D = & \text{Size of filter sand:} & 1.6 \text{mm} = 0.0016 \text{m} \\ \phi = & \text{Shape coefficient of sand:} & 0.8(0.7 \sim 0.85) \\ \varepsilon = & \text{Initial void ratio of sand:} & 0.45(0.4 \sim 0.5) \\ \gamma = & \text{Liquid density:} & 1000 \text{kg/m}^3 \\ \psi = & \text{Viscocity coefficient:} & 0.001 \text{kg/m} \cdot \text{s} \\ g = & \text{Gravity acceleration:} & 9.8 \text{m/s}^2 \\ \alpha/\beta = & 5.5(5.5 \sim 5.7) \end{array}$
		α: Shape coefficient of sand (for surface area) β: Shape coefficient of sand (for volume) Re = Reynold's number: $(\gamma \times D \times v)/\mu = (1000 \times 0.0016 \times 0.002)/0.001$ = 3.2
	,	$h0=f \times \frac{\mu \times v \times L}{g \times \gamma \times \Phi^2 \times D^2} \times \frac{(1-\epsilon)^2}{\epsilon^3}$ (in case $2 \le \text{Re} \le 6$, $f=144$)
	in case one basin in washing	$h0 = 144 \times \frac{0.001 \times 0.002 \times 2}{9.8 \times 1000 \times 0.82 \times 0.00162} \times \frac{(1-0.45)^2}{0.45^3} = \frac{0.119 \text{m}^}{= (0.101 \text{m})}$
	Outlet pipe	Flow rate: $3210 \text{m}^3/\text{d} = 0.0371 \text{m}^3/\text{s}$
	branch	Pipe size: 300mm(Sectional area = 0.0725m2)
7,77		Flow velocity in the pipe: $0.0371 \text{m}^3/\text{s} \div 0.0725 \text{m}^2 = 0.512 \text{m/s}$
	Friction loss of the pipe	
		$h1 = \lambda \times \frac{L}{D} \times \frac{V^2}{2g} = 0.01 \times \frac{2}{0.3} \times \frac{0.51^2}{2g} = 0.0009m$
		λ : Coefficient of friction of Darcy-Weisbach' formula
	Friction loss of the bent	Quantity: 1pc $h2 = f_{b1} \times f_{b2} \times \frac{V^2}{2g} \times n = 1.0 \times 1.0 \times \frac{0.51^2}{2g} \times 1 = \underline{0.013m}$
		f _{b1} : Coefficient of loss caused by radius of curvature
		f _{b2} : Coefficient of loss coused by center angle of curvature
	Loss of valve	Valve size: 300mm(butterfly valve) Quantity: 1pc
		$h3 = f_u \times \frac{V^2}{2g} \times n = 0.15 \times \frac{0.51^2}{2g} \times 1 = \underline{0.002m}$ $f_u = \frac{t}{D} = 0.15 \qquad (t = Thickness of disk)$ $(D = Para sign of Valve)$
		$f_u = \frac{t}{D} = 0.15$ (t=Thickness of disk (D=Bore size of Valve)

Items	Details of Calculation
Outlet pipe main	Flow rate: $16050 \text{m}^3/\text{d} \times 3/5 = 9630 \text{m}^3/\text{d} = 0.111 \text{m}^3/\text{s}$ Pipe size: $500 \text{mm}(\text{Sectional area} = 0.19 \text{m}^2)$ Flow velocity in the pipe: $0.111 \text{m}^3/\text{s} \div 0.19 \text{m}^2 = 0.59 \text{m/s}$ Total length of the pipe: 15m
	$h4 = \lambda \times \frac{L}{D} \times \frac{V^2}{2g} = 0.01 \times \frac{16}{0.49} \times \frac{0.59^2}{2g} = 0.0058m$ λ : Coefficient of friction of Darcy-Weisbach' formula
Initial filtration loss	


	Items	Details of Calculation
	Raw water distribution	Flow rate: $16050 \text{m}^3/\text{d} \div 3 = 5350 \text{m}^3/\text{d} = 0.0619 \text{m}^3/\text{s}$
	valve :H1	Valve size: 400mm(butterfly valve) Quantity: 1pc
	·	$H1 = f_u \times \frac{V^2}{2g} \times n = 0.1 \times \frac{0.49^2}{2g} \times 1 = \underline{0.0012m}$
		$f_u = -\frac{t}{D}$ = 0.1 (t=Thickness of disk (D=Bore size of Valve) Flow rate: 16050m ³ /d ÷ 3=5350m ³ /d=0.0619m ³ /s
;	Overflow depth of distribution	
	weir :H2	Width of weir: 800mm(B) $H2 = \left(\frac{0.0619}{1.84 \times 0.8}\right)^{2/3} = 0.12m$
,	Raw water	Pipe size: 400mm(Sectionl area = 0.119m2)
	inlet pipe :H3	Flow velocity in the pipe: $0.0619 \text{m}^3/\text{s} \div 0.119 \text{m}^2 = 0.52 \text{m/s}$
Friction loss of the pipe		Total length of the pipe: 3m
or the bibe	$h1 = \lambda \times \frac{L}{D} \times \frac{V^2}{2g} = 0.01 \times \frac{3}{0.39} \times \frac{0.52^2}{2g} = 0.001 \text{m}$	
	λ: Coefficient of friction of Darcy-Weisbach' formula	
	Friction loss	Quantity: 2pc
of the bent	$h2 = f_{b1} \times f_{b2} \times \frac{V^2}{2g} \times n = 1.0 \times 1.0 \times \frac{0.52^2}{2g} \times 2 = 0.028m$	
		fb1: Coefficient of loss caused by radius of curvature
	,	fb2: Coefficient of loss coused by center angle of curvature
		H3 = h1 + h2 = 0.001m + 0.028m = 0.029m

	Items	Details of Calculation
4	Initial fitration	Flow rate: $16050 \text{m}^3/\text{d} \div 3 = 5350 \text{m}^3/\text{d} = 0.0619 \text{m}^3/\text{s}$
	loss: H4	Filtration area: $3.6 \text{m} \times 6.2 \text{m} = 22.32 \text{m}^2$
		Filtration velocity: $0.0619 \text{m}^3/\text{s} \div 22.32 \text{m}^2 = 0.0028 \text{m/s}$
	Head loss of filter layer	v=Filtration velocity: $0.0619m^3/s \div 22.32m^2 = 0.0028m/s$ L=Depth of filter layer: $0.9m$ D=Size of filter sand: $0.6mm = 0.0006m$ $\phi = Shape coefficient of sand: 0.8(0.7 \sim 0.85) \varepsilon = Initial void ratio of sand: 0.45(0.4 \sim 0.5) \gamma = Liquid density: 1000kg/m^3 \mu = Viscocity coefficient: 0.001kg/m \cdot s g = Gravity acceleration: 9.8m/s^2 a/\beta = 5.5(5.5 \sim 5.7) a: Shape coefficient of sand (for surface area) \beta: Shape coefficient of sand (for volume) Re = Reynold's number: (\gamma \times D \times v)/\mu = (1000 \times 0.0006 \times 0.0028)/0.001$
		$=1.68$ $\mu \times \nu \times L \qquad (1-\varepsilon)^2$
		$h0 = f \times \frac{\mu \times v \times L}{g \times \gamma \times \phi^2 \times D^2} \times \frac{(1-\epsilon)^2}{\epsilon^3}$ (in case $1 \le \text{Re} \le 2$, $f = 180$)
	in case one basin in washing	$h0 = 180 \times \frac{0.001 \times 0.0028 \times 0.9}{9.8 \times 1000 \times 0.8^{2} \times 0.0006^{2}} \times \frac{(1-0.45)^{2}}{0.45^{3}} = \underbrace{0.664m^{}}_{=(\underline{0.474m})}$
	Outlet pipe	Flow rate: $5350 \text{m}^3/\text{d} = 0.0619 \text{m}^3/\text{s}$
	branch	Pipe size: 400mm(Section1 area = 0.119m2)
	,	Flow velocity in the pipe: $0.0619 \text{m}^3/\text{s} \div 0.119 \text{m}^2 = 0.52 \text{m/s}$
	Friction loss of the pipe	Total length of the pipe: 2m
		$h1 = \lambda \times \frac{L}{D} \times \frac{V^2}{2g} = 0.01 \times \frac{2}{0.39} \times \frac{0.52^2}{2g} = \underline{0.0007m}$
		λ : Coefficient of friction of Darcy-Weisbach' formula
	Friction loss of the bent	Quantity: 1pc $h2=f_{b1}\times f_{b2} \times \frac{V^2}{2g} \times n = 1.0\times 1.0 \times \frac{0.52^2}{2g} \times 1 = \underline{0.014m}$
		fb1: Coefficient of loss caused by radius of curvature
		fb2: Coefficient of loss coused by center angle of curvature
	Loss of valve	Valve size: 400mm(butterfly valve) Quantity: 1pc
		$h3 = f_u \times \frac{V^2}{2g} \times n = 0.15 \times \frac{0.52^2}{2g} \times 1 = \underline{0.002m}$ $f_u = \frac{t}{D} = 0.15 \qquad (t = \text{Thickness of disk} \atop (D = \text{Bore size of Valve})$
		$f_u = \frac{t}{D} = 0.15$ (t=Thickness of disk (D=Bore size of Valve)

Outlet pipe main Flow rate: $16050\text{m}^3/\text{d} \times 2/3 = 10700\text{m}^3/\text{d} = 0.123\text{m}^3/\text{s}$ Pipe seze: $500\text{mm}(\text{Sectional area} = 0.19\text{m}^2)$ Flow velocity in the pipe: $0.123\text{m}^3/\text{s} + 0.19\text{m}^2 = 0.65\text{m}/\text{s}$ Total length of the pipe: 15m $14 = 1 \times \frac{\text{L}}{\text{D}} \times \frac{\text{V}_2}{\text{2g}} = 0.01 \times \frac{15}{0.49} \times \frac{0.65^2}{2\text{g}} = 0.0066\text{m}$ A: Coefficient of friction of Darcy-Weisbach' formula $11 = 10 + 11 + 12 + 13 + 14 = 0.664\text{m} + 0.0007\text{m} + 0.014\text{m} + 0.002\text{m} + 0.0066\text{m} = 0.6873\text{m}$ $11 = 10 + 11 + 12 + 13 + 14 = 0.684\text{m} + 0.0007\text{m} + 0.014\text{m} + 0.002\text{m} + 0.0066\text{m} = 0.6873\text{m}$	Items	Details of Calculation
Initial filtration loss	Outlet pipe main	Pipe seze: 500 mm (Sectional area = 0.19 m ²) Flow velocity in the pipe: 0.123 m ³ /s ÷ 0.19 m ² = 0.65 m/s Total length of the pipe: 15 m
= 0.664m + 0.0007m + 0.014m + 0.002m + 0.0066m		
		= 0.664m + 0.0007m + 0.014m + 0.002m + 0.0066m
	,	

4. Sludge Treatment Equipment

Manganese Removal Equipment

<u> </u>	Items	Details of Calculation
1	Waste water pipe :H1	Flow rate: $15 \text{m}^3/\text{min} = 0.25 \text{m}^3/\text{s}$
	Friction loss of the pipe	Pipe size: 700 mm(Sectional area = 0.38 m ²) Flow velocity in the pipe: 0.25 m ³ /s ÷ 0.38 m ² = 0.66 m/s Total length of the pipe: 110 m
		h1= $\lambda \times \frac{L}{D} \times \frac{V^2}{2g} = 0.01 \times \frac{110}{0.7} \times \frac{0.66^2}{2g} = 0.035 \text{m}$ λ : Coefficient of friction of Darcy-Weisbach' formula
		A . Oddinerent of michael of 25 area and a second of the second of 25 area and a second of the secon
	Friction loss of the bent	Quantity: 2pc $h2=f_{b1}\times f_{b2} \times \frac{V^2}{2g} \times n = 1.0\times 1.0 \times \frac{0.66^2}{2g} \times 2 = 0.044m$
		f_{b1} : Coefficient of loss caused by radius of curvature f_{b2} : Coefficient of loss coused by center angle of curvature
	Loss of outlet and inlet of the pipe	$h3 = f \times \frac{V^2}{2g} = 1.5 \times \frac{0.66^2}{2g} = 0.033m$
	Total loss of Waste water pipe	H1 = h1 + h2 + h3 = 0.035m + 0.044m + 0.033 = 0.112m

The Water Supply System in Gia Lam Area in Hanoi City

- 2. Calculation Sheet for the Design of the Water Treatment Plant
 - 2-5 Calculation of the Capacity and Outline of the Specification of each Equipment
 - 2-5-1 Mechanical Equipment
 - (1) Aeration Equipment

Raw water quantity in total : 32100m3/d(1338m3/h)

Number of the series : 2 series

Raw water quantity of one series : 16050m3/d(669m3/h)

(as for one series)

Aeration area : $669 \text{m}^3/\text{h} \times 0.4 \text{m}^2/\text{m}^3/\text{h} = 268 \text{m}^2$

Dimension of Aeration room : 12m(width)×24m (length)

Capacity of Hold tank : 740m³
Retention time of Hold tank : 66min

Outer Structure: Concrete made and Etc.(double floor system)

Spray pipe : Perforated lateral pipe type

Materials of the Spray pipe : Stainless steel Pipe

Accessories : Inlet valves

Drain valves

(2) Iron Removal Equipment

Raw water quantity in total : 32100m3/d(1338m3/h)

Number of the series : 2 series

Raw water quantity of one series : 16050m3/d(669m3/h)

(as for one series)

Total Filtration area : 111.6m²

Number of the Basins : 6 basins

Filtration area per Basin : 18.6m²

Dimensoin of one Basin : $3m(width) \times 6.2m(length)$ Filtration Rate : $16050m^3/d \div 111.6m^2 = 144m/d$

Depth of Filter Layer : 2000mm

Size of Sand : 1.6~2.0mm

Water Backwash velocity : Backwash with Air = 0.4m/min
Backwash without Air = 0.8m/min

Air Scouring velocity : 1m/min

Outer Structure : Concrete made

Water collecting device : Concrete floor with Nozzle

Piping materials : Steel pipe inside Tar Epoxy coating

Accessories

Pneumatic valves

Aeration device for Ammonia removal

(3)Manganese Removal Equipment

Raw water quantity in total

32100m³/d(1338m³/h)

Number of the series

2 series

Raw water quantity of one series

16050m³/d(669m³/h)

(as for one series)

Total Filtration area

 $89.3m^{2}$

Number of the Basins

4池

Filtration area per Basin

 $22.32m^{2}$

Dimensoin of one Basin

 $3.6 \text{m(width)} \times 6.2 \text{m(length)}$ $16050 \text{m}^3/\text{d} \div 89.3 \text{m}^2 = 180 \text{m}/\text{d}$

Filtration Rate Depth of Filter Layer

900mm

Size of Sand

0.6mm

Water Backwash velocity

Backwash = 0.6m/min

Air Scouring velocity

1m/min

Outer Structure

Concrete made

Water collecting device : Concrete floor with Nozzles

Piping materials

Steel pipe inside Tar Epoxy coating

Accessories

Pneumatic valves

Common use Equipments for Iron and Manganese Removal (4) Equipment

1) Backwash Pumps

Type

: Double Suction Sentrifugal Pump

Capacity:

7.5m³/min \times 10mAq

With Standarad Accessories

Motor : 380V, 50Hz, 4P, 18.5kw

Mumber of pumps

: 2sets

2) Air Scouring Blower

Type

: Roots Blower

Capacity:

 $18.5 \text{m}^3/\text{min} \times 5 \text{mAq}$

Motor: 380V, 50Hz, 4P, 26kw

With Standarad Accessories Number of Blowers : 2 sets

3) Aeration Blower for Ammonia removal

Type

: Roots Blower

Capacity:

 $5.5 \text{m}^3/\text{min} \times 5 \text{mAq}$

Motor: 380V, 50Hz, 4P, 11kw

With Standarad Accessories Number of Blowers 2 sets

Treated water Reservoir (5)

Outer Structure

Concrete made

Dimension

 $30m(width) \times 35(length) \times 4.3m(height)$

(water depth:

Total Capacity

 $3000m^{3}$

Number of Basin

2 basins .

Accessories

Outlet weir for Manganese Remobable

Equipment

Valves

Chlorination Equipment (6)

Water quantity to be dosed

32100m³/d(1338m³/h)

Dosing rate

for Manganese removal

 $2mg/l \times 1.3 = 2.6 mg/l(max.)$

for Steralization

=2mg/l

Total

=4.6 mg/l

Capacity of Dosing

 $1338m^3/h \times 4.6mg/l = 6.15kg/h$

1) Chlorinator

Type

Wall mounting Type

Capacity

2000g/h

Number of Chlorinator

4 sets

2) Chlorine Container

Type

1 ton Container

Number of Container:

4 sets

3) Container Weighing Mashine

Type

Load cell type for two Containers

Number of Weighing Mashine:

1 set

4) Container Carrying Equipment

Type: Manual operating Chain Hoist

Capacity: 2 ton

Number of Equipment: 1 set

5) Pressurized water supply Pump

Type

Multi Stage Centrifugal Pump

Capacity

 $70 \text{ l/min} \times 50 \text{mAg}$

Motor

380V, 50Hz, 2P, 2.2kw

With standard accessories

Number of Pump

3 sets

(7) Sludge Treatment Equipment

Dry solid

1381kg/d

Quantity of Sludge

 $2570 \text{m}^3/\text{d} = 1.78 \text{m}^3/\text{min}$

1) Sludge Reservoir Basin

Outer Structure

Concrete made

Dimension

 $10m(width) \times 18(length) \times 3.4m(height)$

(water depth: 2.6m)

Total Capacity

 $450 \mathrm{m}^3$

Number of Basin

2 basin

2) Suludge Transfer Pump

Type

Submerged Pump

Capacity

 $1 \text{ m}^3/\text{min} \times 12\text{mAg}$

Motor

380V, 50Hz, 4P, 3.7kw

With standard accessories

Number of Pump

4 sets

3) Sludge theikening Basin

Separation Area

: 100m²/basin

Dimension

 $10 \text{m} \times 10 \text{m}$

Number of Basin

: 2 basin

Up flow velocity

 $1.78 \text{m}^3/\text{min} \div (100 \text{m}^2 \times 2) = 9 \text{mm/min}$

Outer Structure

Concrete made

Driving Unit

: Cyclo Reducer

Motor

380V, 50Hz, 4P, 0.4kw

Inner Structure

Center well

Scraper

Water collecting weir

Materials of Inner Structure: Steel with Tar Epoxy Coating

4) Concentrated Sludge Discharge Pump

Type

Snake Pump

Capacity '

 $50 \,\mathrm{m}^3/\mathrm{h} \times 10 \,\mathrm{mAg}$

Motor

: 380V, 50Hz, 4P, 11kw

With standard accessories

Number of Pump

4sets

5) Clear water Return Pump

Туре

: Singale Suction Centrufugal Pmup

Capacity

 $1.8 \,\mathrm{m}^{3/\mathrm{min}} \times 10 \mathrm{mAg}$

Motor

380V, 50Hz, 4P, 5.5kw

With standard accessories

Number of Pump : 2sets

6) Aluminum Sulfate Dosing Equipment

Water quantity to be dosed : 2570m3/d

Dosing Rate : 50mg/l (to be assumed)
Dosing Capacity : 2570m³/d×50mg/l=129kg/d

Concentration of Solution: 10%

Dosing Flow : 1290 l/d = 0.9 l/min (approx.)

a) Dilution Tank

Outer Construction : Concrete made(Inside Epoxy Linning)

Dimension : $1.6m \times 1.6m \times 2.6m$ (height)

Effective Volume : 5m³
Number of Tank : 2 tanks

Accessories : Mixer 1.5kw

b) Dosing Pump

Type : Metering Pump

Capacity : 600 lit/min × 5kg/cm² Motor : 380V, 50Hz, 4P, 0.2kw

With standard sccessories

Number of Pump : 3 sets

(8) Sludge Drying Bed

Dry Sludge : 1381kg/d Sludge Volume : 138m³/d

Sludge Receiving Rate : 2762kg/5~6hs(276m³/5~6hs)

Outer Construction : Concrete made

Dimension per Bed : 16m(width)×32m(length)×2m(height)

Number of Beds : 5 beds

Accessories : Sludge Distribution Pipes

Valves

Overfow Weir

(9) Pipings in the Field

a)	Raw water Pipe	350mm,	250mm	Steel Pipe
b)	Filtered water Pipe	500mm		Steel Pipe
c)	Treated water Pipe	700mm		Steel Pipe
d)	Wash water Waste	700mm		Steel Pipe
	Scouring Air Pipe	300mm		Steel Pipe
-	Backwash water Pipe	400mm	•	Steel Pipe

g)	Clear water Pipe	150mm		PVC
h)	Slude Transfer Pipe	150mm		PVC
i)	Aeration Pipe	$150 \mathrm{mm}$		PVC
j)	Chroline Solution and			
-	Pressurized water Pipe	80mm,	25mm	PVC
k)	Utility Pipe	50mm		PVC

2-5-2 Electrical Equipment

(1) Center Control Panel with Graphic board

1) Center Control Panel for Intake Pumps

Type : Enclosed Self Standing Indoor Type

Number of Panel: 1 set

2) Center Control Panel for Water Treatment Facility

Type : Enclosed Self Standing Indoor Type

Number of Panel: 1 set

3) Center Control Panel for Distribution Pump

Type : Enclosed Self Standing Indoor Type

Number of Panel: 1 set

(2) Control Panel

1) Control Panel for Backwash Pump and Air Scouring Blower

Type : Enclosed Self Standing Indoor Type

Number of Panel: 2sets

2) Control Panel for Chlorination Equipment

Type : Enclosed Self Standing Indoor Type

Number of Panel: 1 set

3) Control Panel for Sludge Treatment Equipment

Type : Enclosed Self Standing Indoor Type

Number of Panel: 1 set

4) Control Panel for Iron and Manganese Removal Equipment

Type : Enclosed Self Standing Indoor Type

Number of Panel: 2 sets

5) Receptacle for Sludge Drying Bed

Type : Enclosed Wall Mounted Outdoor Type

Number of Panel: 8 pcs

(3) Wiring Materials (for power)

1) Indoor
Cross-Linked Polyethlene Insulated Cable (CV)

2) Outdoor Steel Armored CV Cable

(4) Instrument

1) Raw water Flow Indicator and Recorder (for 8-wells)

Type of Transmitter: 350 mm Orifice Type

Number

2 sets

2) Raw water Flow Indicator and Recorder (for 4-wells)

Type of Transmitter: 250 mm Orifice Type

Number

: 2 sets

3) Distribution Flow Indicator and Recorder

Type of Transmitter: 600 mm Ultrasonic Type

Number

: 2 sets

4) Clear water Flow Indicator

Type of Transmitter: 100 mm Orifice Type

Number

: 2 sets

5) Treated Water Reservoir Water Level Indicator and Alarmer

Type of Transmitter: Float Type

Number

: 2 sets

6) Chlorine Gas Leak Detector

Type of Transmitter: Non Reagent

Number

: 1 set

7) Water Level Alarmer

Number

for Iron Removal Equipment

12sets

for Manganese Removal Equipment for Aluminum Sulfate Dissolving Tank 8sets 2sets

for Sludge Reservoir Basin

2sets

for Sump Pit

2sets

- (5) Wiring Materials (for instruments)
 - 1) Indoor

Cross-Linked Polyethlene Insulated Cable (CV Cable)

2) Outdoor

Steel Armored CV Cable

Appendix 15 Hydraulic Calculation of Pipelines

<u>Hydraulic Calculation of Raw Water Transmission Pipeline (1)</u> (From the Red River side to the Treatment Plant)

Pipeline	Flow	Dia.	L	1	V	Н	Т.Н.
No No.	(1/sec)	(mm)	(m)	(1/1000)	(m/s)	(m)	(m)
A - B	50	450	280	0.34	- 0.31	0.10	0.10
B ~ C	100	450	320	1.23	0.63	0.39	0.49
C - D	150	450	330	2.61	0.94	0.86	1.35
D - E .	200	450	250	4.44	1.26	1.11	2.46
$\mathbf{E} - \mathbf{k}$	300	600	120	2.31	1.06	0.28	. 2.74
F - G	350	600	650	3.08	1.24	2.00	4.74
G - H	372	600	5,300	3.45	1.31	18.29	23.03
NO.4 - E	50	250	280	5.98	1.02	1.67	
N0.2 - F	50	250	140	5.98	1.02	0.84	

(Note):

```
Flow required = Treatment plant capacity = 30,000 m3/day x 107% = 32,100 m3/day = 372 l/sec
```

```
L = Length of the pipeline
I (Hydraulic gradient ) = 10.666 \times C^{**}(-1.85) \times D^{**}(-4.87) \times Q^{**}(1.85)
( C = 110 )
```

H (Loss of head in the pipeline) = I x (Length)
T.H. = Total loss of head from No.A

Capacity of Intake Pump (Submersible pump) (Well Nos. 1 - 8 in the Well Field)

- Pumping capacity per unit = 50 1/sec = 3.00 m3/min
- Water level of Aearation Tank in the Plant = + 16.00 m
- Dynamic groundwater level in the well = 4.00 m
- Actual pumping head = (+16.00) (-4.00) = 20.00 m
- Loss of head in the raw water transmission pipeline = 23.03 m (See above Table)
- Loss of head around the pump = 1.50 m
- Total pumping head = $20.00 + 23.03 + 1.50 = 44.53 \text{ m} \longrightarrow 45 \text{ m}$
- Motor power required: $P = \{ 0.163 \times 3.00 \times 45.0 / (0.7) \} \times (1+0.15)$ $= 36.2 \text{ kw} \longrightarrow 37 \text{ kw}$
- Total power required = 37 kw x 8 pumps = 296 kw

Hydraulic Calculation of Raw Water Transmission Pipeline (2) (In the Treatment Plant)

Pipeline No No.	Flow. (1/sec)	Dia. (mm)	L (m)	I (1/1000)	v (m/s)	H (m)	T.H. (m)
K - L	50	250	250	5.98	1.02	1.50	1.50
L - M	100	350	160	4.19	1.04	0.67	2.17
M - N	186	450	30	3.88	1.17	0.12	2.29

(Note):

```
Flow required = 1/2 x (Treatment plant capacity)
= 1/2 x 30,000 m3/day x 107% = 16,050 m3/day = 186 1/sec
```

L = Length of the pipeline

I (Hydraulic gradient) =
$$10.666 \times C^{**}(-1.85) \times D^{**}(-4.87) \times Q^{**}(1.85)$$

(C = 110)

H (Loss of head in the pipeline) = I . (Length)

T.H. = Total loss of head from No.K

Capacity of Intake Pump (Submersible pump) (Well Nos. 9 - 12 in the Plant)

- Pumping capacity per unit = 50 1/sec = 3.00 m3/min
- Water level of Acaration Tank in the Plant = + 16.00 m
- Dynamic groundwater level in the well = 5.00 m
- Actual pumping head = (+16.00) (-5.00) = 21.00 m
- Loss of head in the raw water transmission pipeline = 2.29 m

(See above Table)

- Loss of head around the pump = 1.50 m
- Total pumping head = 21.00 + 2.29 + 1.50 = 24.79 m --> 27 m
- Motor power required:
 - $P = \{ 0.163 \times 3.90 \times 27.0 / (0.7) \} \times (1+0.15)$
 - = 21.7 kw --> 22 kw
- Total power required = 22 kw x 4 pumps = 88 kw

Water Demand in the Year 2000 (1)

Block No.	Max.	Hourly Max. Demand (1/sec)	No.	Max.	Max.	Block No.	Daily Max. Demand (m3/d)	Hourly Max.
Khu Ng	oc Thuy A	rea	Duc Gi	ang Area		Sai Do	ng Area	
A1	347	5.41	C1	178	2.78	D1	179	2.80
A2	282	4.40	C2	450	7.03	D2	138	2.16
A3	256	4.00	C3	450 692 105	10.81	D3	180	2.81
			C4	105	1.64	D4	117	1.83
Sub	884	13.81	C5			D5	76	1.19
Total	m3/da	y l/sec		746	11.66	D6	491	7.67
***************************************	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		C7	423	6.61	D7	200	3.13
			C8	٠ 🕳		D8	557	8.70
Gia La	m Area		C3	278	4.34	D9	221	3.45
			C10	145	2.27	D10	284	4.44
		5.83	C11	221	3.45	D11	565	8.83
	460	7.19	C12	86	1.34	D12	474	7.41
В3	773	12.08	C13	301	4.70		106	1.66
	633	9.89	C14	298		D14	630	9.84
B 5	530	8.28	C15	20	0.31	D15	507	7.92
B6	478	7.48	C16	147	2.30	D16	252	3.93
B7	628	9.81	C17	627		D17	433	6.77
B8	511	7.98	C18	198	3.09	D18	323	5.05
B9	395	6.17	C19	-	_	D19	363	5.67
	457	7.14		88		D20	566	
		4.80	C21	233				3.89
	257			40				8.17
						D23	534	8.34
	73			896				~~~~~
				659			7,968	
B16	137					Total	m3/day	l/sec
B17		1.81		7,404				
	100		Total	m3/day	1/sec			
	82				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
B20	446	6.97						
B21	485	7.58						
B22	76	1.19						
B23	244	3.81				•		
B24	42	0.65						
Sub	7,834	122.41						
Total	m3/day	l/sec						

(Note):
Hourly Maximum Demand = (Daily Maximum Demand) x (135 %)

Water Demand in the Year 2000 (2)

the say the say the say the say the say the	and the sim has the see on the			and the side has the see that the side of the sea one all the see that the		
Block No.	Daily Max. Demand (m3/d)	Max.		Block No.	Daily Max. Demand (m3/d)	Hourly Max. Demand (1/sec)
Sub Urban A	rea	, hand drive and? Erad Sp.74 Mind days Mine		Summary	احد بهای حصل بودن کنمه غیره بحمد ویژه امدی هیله :	hal, girk trus. 1995 Mills by'T filib Aus
Gia Thuong Gia Quat Gia Thuy Ngoc Lam Lam Du Viet Hung Thuong Cat Duc Giang Thanh Am Lon Caie Gia Thuy Xon Dang Thon Ngo Long Bien	520 1,109 424 207 242 399 433 130	1.48 3.39 4.45 7.06 8.13 17.33 6.63 3.23 3.78 6.23 6.77 2.03 9.48 12.35	•	Block A (Ngo Thuy) Block B (Gia Lam) Block C (Duc Giang) Block D (Sai Dong) Sub Urban Area Grand Total (Note): Hourly Maximum Demandary (Daily Maximum Demandary)	7,834 7,404 7,968 5,910 30,000 m3/day	115.69 124.50 92.34 468.75 1/sec
Sub Total	5,910 m3/day					•

Hydraulic Calculation of Distribution Pipelines (1) (Gia Lam Area)

```
I
                      Dia.
                                              ٧
Pipeline
                                                            T.H.
                                                                   G.H.
                                                                         R. Head
No. - No. (1/\text{sec}) (mm)
                              (m) (1/1000) (m/s)
                                                      (m)
                                                            (m)
                                                                   (n)
                                                                           (m)
(Dynamic Water Level at Treatment Plant = +50.00 m)
(LWL of Reservoir = + 1.00 m, Pump Head = 49.0 m, 1.0 + 49.0 = 50.0 m)
100 - 200
            468.75
                      700
                              600
                                     2.45 1.22
                                                    1.47
                                                            1.47
                                                                   +5.3
                                                                           43.23
200 - 500
            310.19
                      600
                             1400
                                     2.45
                                            1.10
                                                    3.43
                                                            4.90
                                                                   +7.3
                                                                           37.80
500 - 11
            145.44
                      450
                              400
                                     2.43
                                                    0.97
                                                            5.87
                                                                   +7.0
                                                                           37.13
                                            0.91
11 - 12
            140.34
                      450
                              300
                                     2.40
                                            0.88
                                                    0.73
                                                            6.60
                                                                   +7.2
                                                                           36.20
 12 - 13
             70.16
                      300
                              300
                                     4.60
                                            0.99
                                                    1.38
                                                            7.98
                                                                   +7.0
                                                                           35.02
13 - 14
             68.40
                      300
                              200
                                     4.30
                                                                   +6.7
                                                                           34.46
                                            0.97
                                                    0.86
                                                            8.84
14 - 15
             60.34
                      300
                              300
                                     3.45
                                            0.85
                                                            9.88
                                                                           33.42
                                                    1.04
                                                                   +6.7
15 - 16
                      300
                                                                           32.76
             50.08
                              300
                                     2.50
                                                    0.76
                                                                   +6.6
                                            0.71
                                                           10.64
16 - 17
             46.12
                      300
                              200
                                     2.12
                                            0.65
                                                    0.42
                                                           11.06
                                                                   +6.6
                                                                           32.34
17 - 18
             42.55
                      250
                              300
                                     4.30
                                            0.87
                                                    1.29
                                                           12.35
                                                                   +6.6
                                                                           31.05
18 - 19
             37.66
                      250
                              400
                                     3.50
                                            0.78
                                                    1.40
                                                           13.75
                                                                   +6.6
                                                                           29.65
 19 - 20
             10.52
                              200
                                     3.90
                                                    0.78
                                                                           28.97
                      150
                                             0.59
                                                           14.53
                                                                   +6.5
 20 - 21
              6.78
                      150
                              200
                                            0.38
                                                    0.35
                                                           14.88 +13.0
                                                                           22.12
                                     1.75
12 - 22
                                                                   +6.8
             66.37
                      300
                              400
                                     4.15
                                            0.94
                                                    1.66
                                                            8.26
                                                                           34.94
22 - 23
                                                            9.86
                                                                   +6.6
                                                                           33.54
             65.90
                      300
                              400
                                     4.00
                                             0.93
                                                    1.60
 23 - 24
                      300
                              300
                                     2.80
                                             0.74
                                                    0.84
                                                           10.70
                                                                   +6.5
                                                                           32.80
             52.05
 24 - 25
                      300
                                     2.45
                                             0.71
                                                    0.25
                                                           10.95
                                                                   +6.4
                                                                           32.65
             50.02
                              100
 25 - 26
26 - 27
                                     2.25
                                                                           32.40
                                                           11.40
                                                                   +6.2
             47.62
                      300
                              200
                                             0.67
                                                    0.45
                                                    1.38
                                     4.60
                                                           12.78
                                                                   +6.1
                                                                           31.12
             44.05
                      250
                              300
                                             0.90
                                                                           29.33
 27 - 28
             28.88
                      200
                              300
                                     6.30
                                             0.92
                                                    1.89
                                                           14.67
                                                                   +6.0
 28 - 29
                      200
                              200
                                     3.40
                                             0.67
                                                    0.68
                                                           15.35
                                                                   +5.8
                                                                           28.85
             20.90
 29 - 30
                                                           16.06 +10.0
                                                                           23.94
                                     3.55
                                             0.56
                                                    0.71
              9.97
                      150
                              200
 19 -
                                                                           27.36
                                                    2.89
                                                           16.64 + 6.0
              8.13
                      150
                             1200
                                     2.41
                                             0.46
  Lam Du
```

```
(Note)
```

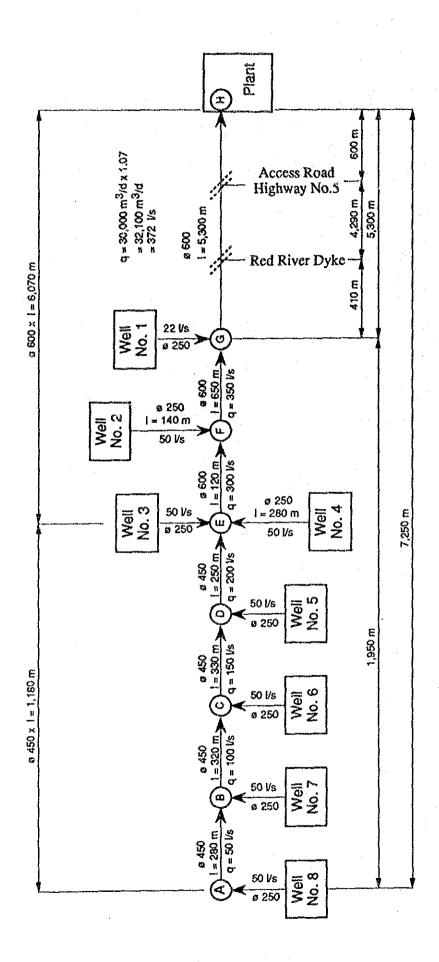
L = Length of the pipeline

I (Hydraulic gradient) = $10.666 \times C^{**}(-1.85) \times D^{**}(-4.87) \times Q^{**}(1.85)$ (C = 110)

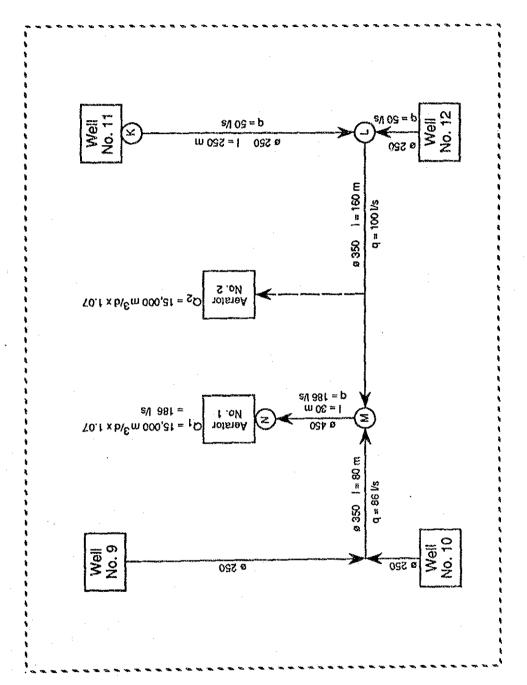
H (Loss of head in the pipeline) = $1 \times (Length)$

T.H. = Total loss of head from Treatment Plant

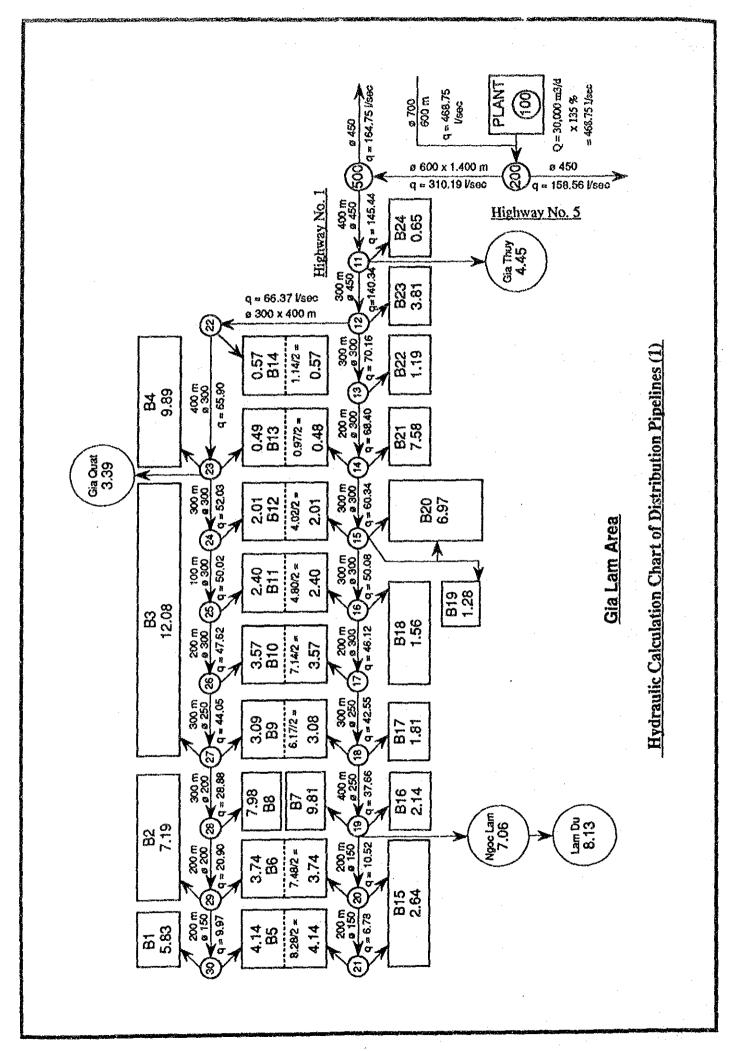
G.H. = Ground height above sea level

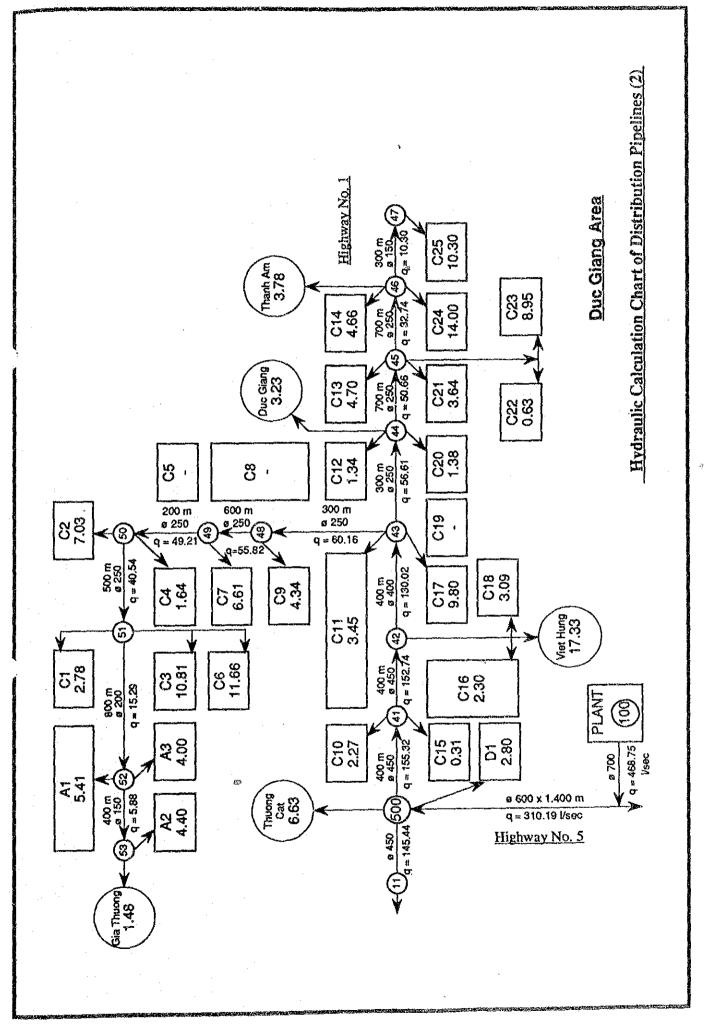

R. Head = Residual head

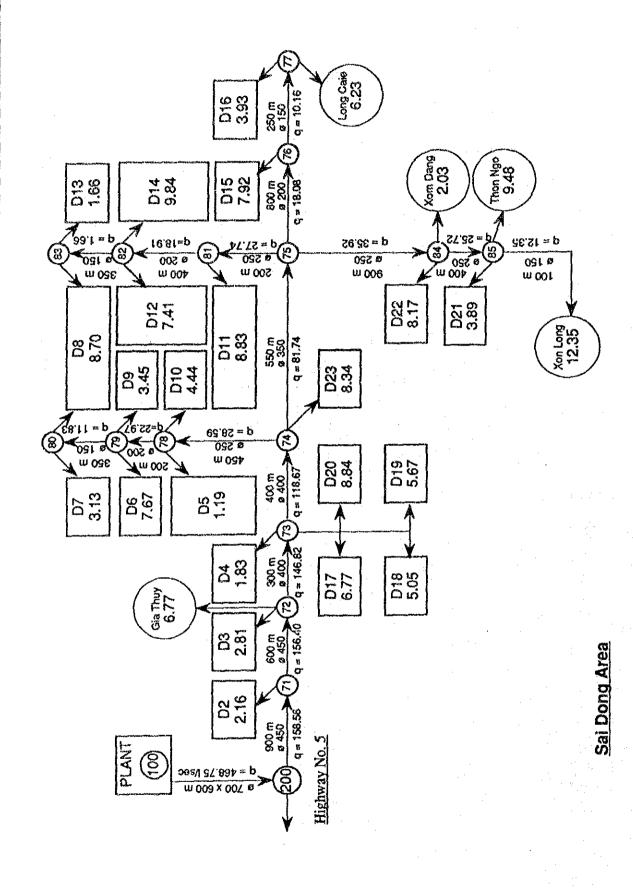
Hydraulic Calculation of Distribution Pipelines (2) (Duc Giang Area)


Pipeline No No.	Flow (1/sec)			I (1/1000)			T.H.	G.H. (m)	R.Head
(Dynamic W	ater Leve	l at T	reatme	ent Plant	= +50.	00 m)	and the day are and in one	601 644 Men med 4166 1824	the Cal hap are day you are
100 - 200	468.75	700	600	2.45	1.22		1.47	+5.3	43.23
200 - 500	310.19	600	1400	2.45	1.10	3.43	4.90	+7.3	37.80
500 - 41	155.32	450	400	2.79	0.98	1.12	6.02	+7.6	36 38
41 - 42	152.74	450	400	2.67	0.96	1.07	7.09	+7.6	35.31
42 - 43	130.02	400	400	3.50	1.03	1.40	8.49	+7.5	34.02
43 - 44	56.61	250	300	7.50	1.15	2.25	10.74	+7.5	31.76
44 - 45	50.66	250	700		1.03	4.34	15.08	+7.5	27.50
45 ~ 46	32.74	250	700	2.68	0.67	1.82	16.90	+7.5	25.60
46 - 47	10.30	150	300	3.80	0.58	1.14	18.04	+8.5	23.46
43 - 48	60.16	250	300	8.30	1.23	2.49	10.98	+8.0	31.02
48 - 49	55.82	250	600	7.20	1.14	4.32	15.30	+8.0	26.70
49 - 50	49.21	250	200	5.75	1.00	1.15	16.45	+8.0	25.55
50 - 51	40.54	250	500	3.95	0.83	1.98	18.43	+8.1	23.47
51 - 52	15.29	200	800	1.90	0.49	1.52	19.95	+8.1	21.95
52 - 53	5.88	150	400	1.35	0.33	0.54	20.49	+8.3	21.27
42 -									
Viet Hung	17.33	200	800	2.45	0.55	1.96	9.05	+7.0	33.95

<u>Hydraulic Calculation of Distribution Pipelines (3)</u> (Sai Dong Area)


Pipeline No No.								G.H. (m)	
(Dynamic W	later Leve	l at T	reatme	nt Plant	= +50.	00 m)	-200 april 2002 2007 3000 4000 4004	THE PERSON NAMED AND POST OF	
100 - 200	468.75	700	600	2.45	1.22	1.47	1.47	÷5.3	43.23
200 - 71	158.56	450	900	2.85	1.00	2.57	4.04	+5.2	40.76
71 - 72	156.40	450	600	2.78	0.98	1.67	5.71	+5.1	39.19
72 - 73	146.82	400	300		1.17		7.03	+5.0	37.97
73 - 74		400	400	2.95	0.94	1.18	8.21	+4.9	36.89
		350	550	2.80	0.85	1.54	9.75	+4.8	35.45
75 - 76	18.08	200	800	2.65	0.58	2.12	11.96	+4.6	33.44
76 - 77	10.16	150	250	3.70	0.57	0.93	12.87	+4.5	32.63
75 - 84	35.92	250	900	3.20	0.73	2.88	12.63	÷5.5	31.87
84 - 85	25.72	250	400	1.72	0.52	0.69	13.32	+6.0	30.68
85 - 86	12.35	150	1000	5.41	0.70	5.41	18.73	+6.2	25.07
74 - 78	28.59	250	450	2.10	0.58	0.95	9.16	+5.2	35.64
78 - 79	22.97	200	200	4.15	0.73	0.83	9.99	+5.2	34.81
79 - 80	11.83	150	350	4.80	0.67	1.68	11.67	+5.2	33.13
75 - 81	27.74	250	200	1.98	0.56	0.40	10.15	+5.3	34.55
81 - 82		200	400	2.84	0.60	1.14	11.29	+5.3	33.41
82 - 83	1.66	150	350	0.13	0.09	0.05	11.34	+5.3	
85 -		·							
Thon Ngo	9.48	150	700	3.22	0.54	2.25	15.57	+6.5	27.93




Hydraulic Calculation Chart of Raw Water Transmission Pipelines (1)

Hydraulic Calculation Chart of Raw Water Transmission Pipelines (2)

Hydraulic Calculation Chart of Distribution Pipelines (3)

Appendix 16 List of Equipment and Materials

1. Well Construction Materials

No.	ITEM	Q TY	SPECIFICATION
1	Well construction equipment and materials		
1-1	Well construction equipment		
	Well drilling rig	2 Units	Cable percussion type well drilling rig with deck engine power unit, Drilling capacity: $\phi 20^{\circ} \times 100 \text{m}$
1-1-02	Transportation truck for drilling rig	2 Units	With 3 ton crane, 6×4
1-2	Standard operation accessories		
1-2-01	Drilling line wire rope	2 Rolls	ϕ 24nm. L = 200m
1-2-02	Sand line wire rope	2 Rolls	$\phi 12mm$, $L=200m$
1-2-03	Casing line wire rope	2 Rolls	ϕ 18mm, $L = 110$ m
1-2-04	Travelling block for casing line	2 Pcs.	Capacity: 30 ton, 3-wheel
	Mast reinforcing legs with screw type levelling jacks	2 Sets	
1-2-06	Working platform for drilling operation	2 Sets	4,000×4,000mm
1-2-07	Guy line system as follows	2 Sets	
	Miscellaneous and maintenance tools for	2 Sets	
	drilling rig		
1-3	Open hole drilling tools		
1-3-01	Drilling bit	2 Pcs.	Tubular type $\phi 600$ mm (24") bit, for conductor pipe
1-3-02	Drilling bit	3 Pcs,	Tubular type ϕ 500mm (20°) bit, for casing pipe
1-3-03	Wire crip for drilling line	50 Pcs.	For ϕ 24mm
1-3-04	Flat valve bailer	2 Pcs.	14"×3,500L
1-3-05	Bailing ditch for above	2 Boxes	Steel
	Mud mixer	2 Units	Engine drive type, capacity: 250 1
	Outlet mud hose for above	2 Pcs.	ϕ 4" \times L 5,000, with clamp
	Wire grip for drilling line	2 Pcs.	For \$\phi 24mm
	Casing clamp for 24" conductor pipe	2 Sets	For $\phi 24$ conductor pipe
1-3-10	Wrench for above	8 Pcs.	
	Sling wire rope for above	8 Pcs.	
1-3-12	Engineering tool kit	2 Sets	
	Wire grip for drilling line	2 Pcs.	
1-3-14		2 Set	

No.	ITEM	Q*TY	SPECIFICATION
1-4	Well logging equipment		
1-4-01	Well logging equipment	1 Set	Normal resistivity, point mesuring system
1-4-02		1 Pce.	Electrode span: 50cm and 100cm, L=100m
1-4-03	Battery	1 Pce	
1-4-04	Battery cable	1 Pce.	With terminals
4 6	Coning aminument		
1-5	Casing equipment Casing clamp for 14" casing pipe	4 Pcs.	For SGP 350A
1-5-01	French for above	8 Pcs.	For par 9904
1-5-02		2 Sets	φ 22·m× L 1, 500 mm
1-5-03	Sling wire rope for above	E UCUS	A Stellmer of Te connect
1-6	Well development equipment		
1-6-01	Flat valve bailer	2 Pcs.	For SGP 350A, L = 3,500mm
1-6-02	Surge block with stem	2 Pcs.	For SGP 350A
1-7	Well testing equipment		0 0 0 0 0 0 TT 0 0 TT
1-7-01	Submersible motor pump	1 Set	Capacity:Q=3,000 1/min, H=27m
-			With 50m power cable and standard
		0.0	accessorty, voltage:380V
1-7-02	Riser pipe	8 Pce.	JIS G-3452 SGP 150A×5.5m.
4: 8. 46		2 Pce.	galvanized pipe 150A
	Nipple	1 Pce.	150A
1-7-04	Elbow	1 Pce.	150A, JIS 10K
	Sluice valve	1 Pce.	150A, JIS 10K
	Check valve	2 Pce.	150A
1-7-07	Flange	24 Sets	SUS, M20×70
	Bolt and nut	3 Pce.	150A
	Packing Control panel	1 Unit	
1-7-11	Diesel engine generator	1 Unit	3-phase, 380V×50KVA
	Intermediate cable	1 Pce.	38md×3c×20m. With terminals
1-7-13	Notch box	1 Box	Steel triangular notch weir
1-7-14	Band for riser pipe	1 Sets	for 150A
1-7-14	Nater level indicator	1 Unit	Measuring deepth:100m
	Discharge pipe	1 Pce.	ϕ 150mm, L=5m. with JIS 10K flange
* ; **			
1-8	Consumable goods for well construction work	\$	
1-8-01	Electrode by electric welding	50 kg	
1-8-02	Special electrode by gas welding	50 kg	

No.	ITEM	Q TY	SPECIFICATION
1.0	Fighing tools		
1-9	Fishing tools	0.0.	0
1-9-01	Hidraulic jack	2 Sets	Capacity:30 t. lift:200mm
1-9-02	Jack up rod	14 Pcs.	ϕ 89. 1mm (2-3/8" IF), L = 6, 000mm,
			with wrench recess
1-9-03	Jack up rod	2 Pcs.	ϕ 89. 1mm (2-3/8" IF), L = 3.000mm.
*.			with wrench recess
1-9-04	Jack up rod	. 2 Pcs.	ϕ 89. 1mm (2-3/8" IF), L = 1, 500 mm.
	-		with wrench recess
1-9-05	Overshot for tubular bit	1 Set	With 2-3/8" IF. thread
1-9-06	Hoisting plug for jack up rod	1 Pce.	For ϕ 89. 1mm (2-3/8" IF)
1-9-07	Wedge band	1 Pce.	For ϕ 89. 1mm (2-3/8" IF)
1-9-08	Wedge band	2 Pcs.	For φ89. 1mm(2-3/8" IF)
1-9-09	Hook	1 Pce.	With 2-3/8" IF. thread
1-9-10	Rope spear	1 Pce.	With 2-3/8" IF. thread
1-9-11	Rod wrench	2 Pcs.	For ϕ 89. 1mm (2-3/8" IF)
			• •
1-10	Spare parts		
1-10-01	Spare parts for well drilling rig	1 Set	
1-10-02	Spare parts for transportation truck	1 Set	
1-10-03	Spare parts for submersible motor pump	1 Set	
1-10-04	Spare parts for control panel	1 Set	
1-10-05	Spare parts for diesel engine generator	1 Set	

No.	ITEM	Q TY	SPECIFICATION
2	Well construction material		
2-1	Conductor pipe	18 Pcs.	JIS G-3457, STPY, 600A. L=6.000mm
2-2	Casing pipe	100 Pcs.	JIS G-3452, SGP, 350A, L=5.500mm
2-3	Strainer pipe	88 Pcs.	Pipe base type round wire strainer, Slot of round wire: 1.0mm Base pipe: JIS G-3452, SGP, 350A.
			L = 5, 500mm
			Effective length of strainer: 5,000mm
2-4	Bottom plug	12 Pcs.	same quality as casing pipe
3	Erectric welder		
3-1	Engine drive welder	1 Unit	Welding ampacity: 50~240A, Applicability of electrode: 2.6~5.0mm With generator, capacity: 380V×7.5KVA
3-2	Accessory for welder		
3-2-01	Welding holder	1 Pce.	38må
3-2-02	Earth grip	1 Pce.	38må
3-2-03	Welding cable	1 Pce.	38mil×15m
3-2-04	Earth cable	1 Pce.	38mi×10m
3-2-05	Werding mask	2 Pcs.	
3-2-06	Werding glove	6 Pcs.	
3-2-07	Chipping hammer	2 Pcs.	
3-3	Spare parts for welder	1 Set	

II. DISTRIBUTION PIPE MATERIALS

No.	ITEM Appropriation of the second of the seco	SIZE	Q TY
i	DUCTILE IRON STRAIGHT PIPES	φ 75×4,000	4, 826
1 2	"	ϕ 100×4,000 ϕ 100×4,000	800
ა 3	<i>"</i>	ϕ 150 × 5, 000 ϕ 150 × 5, 000	2, 472
0 4	" "	$\phi 200 \times 5.000$	592
5	"	$\phi 250 \times 5,000$ $\phi 250 \times 5,000$	1, 104
6	,	φ 300×6, 000	385
7	"	φ350×6, 000 φ350×6, 000	92
8		$\phi 400 \times 6,000$	189
9	"	$\phi 450 \times 6,000$	482
9 10		\$600×6,000	214
11	<i>"</i>	φ700×6,000	110
12	SOCKET AND SPIGOT 90° BEND	φ 100 × 0, 000 φ 75	5
13	"	φ 100	2
13	"	φ100 φ100	1
15	SOCKET AND SPIGOT 45° BEND	φ 75	9
16	"	φ100	2
17	<i>"</i>	φ150	3
18	SOCKET AND SPIGOT 22.5° BEND	φ 75	1
19	"	φ100.	2
20	- "	φ150	13
21	<i>n</i>	φ300	2
22		φ700	2
23	COLLAR	φ 75	194
24	"	φ100	33
25	"	φ 150	124
26	<i>"</i>	φ200	32
27	"	φ 250	57
28	: "	φ300	24
29	"	φ350	6
30		φ 400	13
31	" "	ø 450	30
32	<i>"</i>	ϕ 600	13
33	"	φ700	7
34	FLANGED SOCKET	φ 75	47
35	"	$\phi 100$	14
36	"	φ150	25
37	"	φ200	8
38	<i>n</i>	φ 250	5
39		ϕ 300	2
40	<i>"</i>	ϕ 450	2
•••			

## FLANGED SPICOT	No.	ITEM	SIZE	Q*TY
## ## ## ## ## ## ## ## ## ## ## ## ##	41	FLANGED SPIGOT	φ 75	185
### ### ##############################	42	"	φ100°	16
### ### ### ### #### #### ###########		n	φ 150	27
## ## ## ## ## ## ## ## ## ## ## ## ##		<i>"</i>	ϕ 200	5
47 " ϕ 450 4 4 48 PLUG	45	"	$\phi 250$	5
48 PLUG	46	"	$\phi 300$	2
49 " $\phi100$ 1 1 50 " $\phi150$ 6 6 51 " $\phi250$ 1 52 BLANK FLANGE $\phi150$ 5 53 " $\phi200$ 3 54 " $\phi250$ 1 1 55 SOCKET AND SPIGOT TEE W/ SOCKET BRANCH $\phi75\times\phi75$ 62 62 $\phi75$ 8 " $\phi100\times\phi75$ 18 62 64 " $\phi100\times\phi75$ 18 65 " $\phi100\times\phi75$ 18 67 " $\phi150\times\phi100$ 6 6 69 " $\phi100\times\phi75$ 19 10 60 " $\phi100\times\phi75$ 10 10 61 " $\phi100\times\phi75$ 10 10 61 " $\phi100\times\phi75$ 10 10 61 " $\phi100\times\phi75$ 10 10 62 " $\phi100\times\phi75$ 10 10 63 " $\phi100\times\phi75$ 10 10 64 " $\phi100\times\phi75$ 10 10 65 " $\phi100\times\phi75$ 10 10 66 " $\phi100\times\phi75$ 10 10 11 11 11 11 11 11 11 11 11 11 11	47	<i>"</i>	ϕ 450	4
50 "	48	PLUG	φ 75	4
51 " φ 250 1 52 BLANK FLANGE φ 150 5 53 " φ 200 3 54 " φ 250 1 55 SOCKET AND SPIGOT TEE \$\forall / \text{ SOCKET BRANCH}\$ φ 75 × φ 75 36 56 " φ 150 × φ 75 18 57 " φ 150 × φ 75 62 58 " φ 150 × φ 75 62 59 " φ 150 × φ 150 62 60 " φ 200 × φ 150 10 61 " φ 200 × φ 150 2 62 " φ 200 × φ 200 3 63 " φ 250 × φ 150 5 64 " φ 250 × φ 150 5 65 " φ 250 × φ 250 2 66 " φ 300 × φ 150 3 68 " φ 350 × φ 250 2 69 " φ 400 × φ 300 5 70 " φ 450 × φ 300 6 71 " φ 600 × φ 600 1	49	<i>"</i>	φ 100	1
52 BLANK FLANGE Φ 150 5 53 " Φ 200 3 54 " Φ 250 1 55 SOCKET AND SPIGOT TEE W/ SOCKET BRANCH Φ 75×Φ 75 36 56 " Φ 100×Φ 75 18 57 " Φ 150×Φ 150 62 58 " Φ 150×Φ 100 6 59 " Φ 150×Φ 150 10 60 " Φ 200×Φ 150 10 61 " Φ 200×Φ 150 2 62 " Φ 200×Φ 150 2 63 " Φ 250×Φ 150 2 64 " Φ 250×Φ 250 2 66 " Φ 300×Φ 100 4 67 " Φ 300×Φ 150 3 68 " Φ 300×Φ 150 3 68 " Φ 300×Φ 300 5 70 " Φ 450×Φ 300 6 71 " Φ 600×Φ 600 1 72 " Φ 600×Φ 600 1 73 " <td>50</td> <td>"</td> <td>ϕ 150</td> <td>6</td>	50	"	ϕ 150	6
53	51	<i>#</i>	$\phi 250$	1
54 " $\phi 250$ 1 55 SOCKET AND SPIGOT TEE W/ SOCKET BRANCH $\phi 75 \times \phi 75$ 36 56 " $\phi 100 \times \phi 75$ 18 57 " $\phi 150 \times \phi 75$ 62 58 " $\phi 150 \times \phi 100$ 6 59 " $\phi 150 \times \phi 150$ 10 60 " $\phi 200 \times \phi 100$ 11 61 " $\phi 200 \times \phi 150$ 2 62 " $\phi 200 \times \phi 100$ 20 63 " $\phi 250 \times \phi 100$ 20 64 " $\phi 250 \times \phi 150$ 5 65 " $\phi 250 \times \phi 150$ 5 66 " $\phi 300 \times \phi 150$ 3 67 " $\phi 300 \times \phi 150$ 3 68 " $\phi 350 \times \phi 250$ 2 69 " $\phi 400 \times \phi 300$ 5 70 " $\phi 450 \times \phi 300$ 6 71 " $\phi 450 \times \phi 300$ 6 72 " $\phi 400 \times \phi 300$ 6 73 " $\phi 450 \times \phi 300$ 1 75 SOCKET AND SPIGOT TEE W/ FLANGED BRANCH $\phi 100 \times \phi 75$ 7 76 " $\phi 300 \times \phi 75$ 7 77 " $\phi 200 \times \phi 75$ 9 78 " $\phi 300 \times \phi 75$ 7 79 " $\phi 300 \times \phi 75$ 7 80 " $\phi 350 \times \phi 75$ 14 79 " $\phi 300 \times \phi 75$ 7 80 " $\phi 350 \times \phi 75$ 14 82 " $\phi 450 \times \phi 75$ 4	52	BLANK FLANGE	φ 150	
55 SOCKET AND SPIGOT TEE W/ SOCKET BRANCH ϕ 75× ϕ 75 36 56 " ϕ 100× ϕ 75 18 57 " ϕ 150× ϕ 100 6 58 " ϕ 150× ϕ 150 10 60 " ϕ 150× ϕ 150 10 60 " ϕ 200× ϕ 100 11 61 " ϕ 200× ϕ 200 3 63 " ϕ 200× ϕ 200 3 64 " ϕ 250× ϕ 250 2 65 " ϕ 250× ϕ 250 2 66 " ϕ 300× ϕ 1100 4 67 " ϕ 300× ϕ 150 3 68 " ϕ 300× ϕ 150 3 69 " ϕ 400× ϕ 300 5 69 " ϕ 400× ϕ 300 5 70 " ϕ 450× ϕ 300 6 71 " ϕ 600× ϕ 600 1 73 " ϕ 600× ϕ 600 1 75 SOCKET AND SPIGOT TEE W/ FLANGED BRANCH ϕ 100× ϕ 75 7	53	<i>y</i>	$\phi 200$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	"	φ 250	i
57	55	SOCKET AND SPIGOT TEE W/ SOCKET BRANCH	ϕ 75× ϕ 75	36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	"	$\phi 100 \times \phi 75$	18
59	57	"	ϕ 150 × ϕ 75	62
60	58	"	$\phi 150 \times \phi 100$	6
61	59	"	$\phi 150 \times \phi 150$	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	"	$\phi 200 \times \phi 100$	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	<i>"</i> "	$\phi 200 \times \phi 150$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	. "	$\phi 200 \times \phi 200$	
65	63	"	$\phi 250 \times \phi 100$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64	"	$\phi 250 \times \phi 150$	
67	65	<i>"</i>	$\phi 250 \times \phi 250$	
68	66	. <i>"</i>	$\phi 300 \times \phi 100$	
69 " $\phi 400 \times \phi 300$ 5 70 " $\phi 450 \times \phi 300$ 6 71 " $\phi 500 \times \phi 300$ 1 72 " $\phi 600 \times \phi 600$ 1 73 " $\phi 700 \times \phi 400$ 2 74 " $\phi 700 \times \phi 700$ 1 75 SOCKET AND SPIGOT TEE */ FLANGED BRANCH $\phi 100 \times \phi 75$ 7 76 " $\phi 150 \times \phi 75$ 33 77 " $\phi 200 \times \phi 75$ 9 78 " $\phi 250 \times \phi 75$ 14 79 " $\phi 300 \times \phi 75$ 7 80 " $\phi 350 \times \phi 75$ 2 81 " $\phi 400 \times \phi 75$ 4 82 " $\phi 450 \times \phi 75$ 8	67	<i>"</i>	•	
70	68	p	ϕ 350 \times ϕ 250	
71	69	u .	$\phi 400 \times \phi 300$	
72	70	"	ϕ 450 \times ϕ 300	
73	71			
74	72	<i>"</i>		
75 SOCKET AND SPIGOT TEE W/ FLANGED BRANCH $\phi 100 \times \phi 75$ 77 76 $\%$ $\phi 150 \times \phi 75$ 33 77 $\%$ $\phi 200 \times \phi 75$ 9 9 78 $\%$ $\phi 250 \times \phi 75$ 14 79 $\%$ $\phi 300 \times \phi 75$ 7 80 $\%$ $\phi 350 \times \phi 75$ 2 81 $\%$ $\phi 450 \times \phi 75$ 8 82 $\%$ $\phi 450 \times \phi 75$ 8	73	<i>"</i>		
76	74		-	
77	75	SOCKET AND SPIGOT TEE W/ FLANGED BRANCH		
78	76	"	•	
79	77	"		
80 " $\phi 350 \times \phi 75$ 2 81 " $\phi 400 \times \phi 75$ 4 82 " $\phi 450 \times \phi 75$ 8 400 400 400 400 82 " 400 400 400	78	"		
81	79	n .	-	
82 " \$\phi 450 \times \phi 75 8	80	"	- ·	
or annual as	81	"		
83 ϕ 600× ϕ 75 4	82	"	· · · · · · · · · · · · · · · · · · ·	
	83	"	ϕ 600× ϕ 75	4

No.	ITEM	SIZE	Q TY
84	LARGE SOCKET TAPER	φ100×φ 75	12
85	"	$\phi 150 \times \phi 100$	15
86	"	$\phi 200 \times \phi 100$	1
87	<i>"</i>	$\phi 200 \times \phi 150$	3
88	<i>"</i>	$\phi 250 \times \phi 150$	3
89	"	$\phi 250 \times \phi 200$	3
90		$\phi 300 \times \phi 150$	2
91	"	$\phi 300 \times \phi 250$	1
92	<i>"</i>	ϕ 350 \times ϕ 200	1
93	<i>H</i>	$\phi 400 \times \phi 250$	1
94	<i>"</i>	$\phi 400 \times \phi 300$	1
95	<i>"</i>	ϕ 450 \times ϕ 300	1
96	"	ϕ 450 \times ϕ 400	2
97	$\boldsymbol{y} = \frac{1}{2}$	ϕ 600 \times ϕ 450	1
98	"	ϕ 700 \times ϕ 400	. 1
99	SMALL SOCKET TAPER	ϕ 100 \times ϕ 75	34
100	"	ϕ 150 \times ϕ 100	2
101	<i>"</i>	$\phi 200 \times \phi 100$	3
102	"	$\phi 250 \times \phi 200$	1
103	<i>"</i>	$\phi 300 \times \phi 100$	2
104	"	ϕ 350 \times ϕ 150	3
105	. "	φ300×φ200	1
106	"	$\phi 300 \times \phi 250$	2
107	"	$\phi 350 \times \phi 200$	1
No.	ITEM	SIZE	Q~TY
108	SWALL SOCKET TAPER	ϕ 400 \times ϕ 150	1
109	"	$\phi 450 \times \phi 200$	1
110	"	ϕ 600 \times ϕ 450	1
111	"	ϕ 700 \times ϕ 600	1

VALVES & OTHERS

	Valves & Others		
No.	ITEM	SIZE	Q'TY
112	SLUICE VALVE	φ 450	3
113	"	\$\phi 300	2
114	"	φ250	6
115	"	φ200	8
116	<i>"</i>	φ150	31
117	<i>"</i>	φ100	26
118		φ 75	157
119	FIRE HYDRANT W/ ISOLATING VALVE	ø 75	91
120	PVC (SOCKET & SPIGOT W/ RUBBER GASKET)	ϕ 100×5, 000	538
121	"	ϕ 75×5,000	2, 110
122	<i>"</i>	ϕ 50×5,000	5, 614
123	TS CAP	φ 75	7
124	"	φ 50	75
125	FCD MECHANICAL TEE W/ RESTRAINED JOINT	$\phi 100 \times \phi 100$	5
126	"	$\phi 100 \times \phi 50$	10
127	"	ϕ 75× ϕ 75	17
128	<i>"</i>	ϕ 75× ϕ 50	33
129	<i>n</i>	ϕ 50× ϕ 50	58
130	FCD VS JOINT W/ RESTRAINED JOINT	φ100×φ 75	10
131	"	ϕ 75× ϕ 50	28
132	FCD MECHA. BEND W/ RESTRAINED JOINT	$\phi 100 \times 90^{\circ}$	2
133	"	φ100× 45°	4
134	"	φ100× 22°	1
135	"	ϕ 75× 90°	20
136	FCD MECHANICAL BEND W/ RESTRAINED JOINT	ϕ 75× 45°	8
137	n	ϕ 75× 22°	-13
138	"	ϕ 50× 90°	83
139	. <i>"</i>	ϕ 50× 45°	39
140	"	ϕ 50× 22°	25
141	FCD VC FLANGED SOKET	$\phi 100$	9
142	"	φ 75	24
143	FCD VC FILANGED SOCKET TAPER	ϕ 150 × ϕ 100	2
144	n .	$\phi 100 \times \phi 75$	11
145	<i>"</i>	ϕ 75× ϕ 50	71
146	FCD MECHANICAL TEE W/ FLANGED BRANCH	$\phi 100 \times \phi 75$	3

IN TREATHENT PLANT

No.	ITEM	SIZE	Q^TY
1	DUCTILE IRON STRAIGHT PIPES	ø700×6,000	20
2	COLLAR	ϕ 700	6
3	PLUG	φ700	1
. 4	SOCKET AND SPIGOT TEE W/ FLANGED BRANCH	ϕ 700 \times ϕ 400	6
5	SMALL SOCKET TAPER	ϕ 700 \times ϕ 200	6
•	TOOLS		
No.	ITEM	SIZE	
1	JOINTING TOOLS	1 LOT	
2	WATER PRESSURE TEST MACHINARY	1 LOT	•

SPARE ITEMS

	SPARE TIEMS		
No.	TIEM	SIZE	Q TY
1	DUCTILE IRON STRAIGHT PIPES (JIS CLASS 3)	φ 75×4, 000	145
2	<i>"</i>	φ100×4.000	24
3	rr .	φ150×5,000	74
4	u ·	φ 200×5, 000	18
5	<i>"</i>	ϕ 250×5, 000	33
6	<i>"</i>	ϕ 300×6, 000	12
7	<i>"</i>	ϕ 350×6, 000	3
8	<i>"</i>	ϕ 400×6, 000	6
9	<i>"</i>	ϕ 450×6, 000	14
10	"	ϕ 600×6.000	6
11	"	ϕ 700×6,000	3
12	SOCKET AND SPIGOT 90° BEND	ø 75	1
13	,	φ100°	1 -
14	SOCKET AND SPIGOT 45° BEND	φ 75	12
15	"	φ100	4
16	"	ϕ 150	8
17	<i>"</i>	φ 200	4
18	<i>"</i>	φ 250	4
19	"	φ600	4
20	SOCKET AND SPIGOT 22.5° BEND	φ 75	12
21	<i>"</i>	φ100	4
22	"	φ150	8
23	"	ø 200	4
24	"	ϕ 250	4
25	"	ø 300	2
26	SOCKET AND SPIGOT 11.25° BEND	φ 75	12
27	"	$\phi 100$	4.
28	<i>"</i>	φ150	8
29	"	$\phi 200$	4
30	"	φ250	4
31	"	φ300	4
32	"	φ 350	2
33	"	φ 400	4
34	"	φ 450	4
35	PVC (SOCKET & SPIGOT W/ RUBBER GASKET)	ϕ 100×5, 000	27
36	"	ϕ 75×5,000	106
37	<i>"</i>	ϕ 50×5.000	281
38	TS CAP	φ 75	2
39	"	φ 50	7
40	FCD VS JOINT W/ RESTRAINED JOINT	ϕ 100 × ϕ 75	2
41	"	ϕ 75× ϕ 50	5

SPARE ITEMS

No.	TTEM	SIZE	<u>Q'TY</u>
42	FCD NECHANICAL BEND W/ RESTRAINED JOINT	φ100× 90°	1
43	#	ϕ 100 × 45°	1
44	"	$\phi 100 \times 22^{\circ}$	1
45	<i>II</i>	ϕ 75× 90°	4
46	n	ϕ 75× 45°	2
47	. "	ϕ 75× 22°	3
48	"	ϕ 50× 90°	16
49	"	ϕ 50× 45°	8
50	"	ø 50× 22°	5
51	FCD VC FLANGED SOCKET	ϕ 100	2
52	<i>"</i>	φ 75	5
53	FCD VC FLANGED FLANGED TAPER	ϕ 150 \times ϕ 100	1
54	<i>"</i>	$\phi 100 \times \phi 75$	2
55	<i>"</i>	ϕ 75× ϕ 50	14
56	TAPPING MACHINE	ϕ 20	5
57	<i>"</i>	φ 40	5

FOR HOUSE CONNECTION, PUBLIC TAP (TYPE A)

ITEN	SIZE	Q^TY
TAPPING SADDLE	$(\phi 200 \times \phi 20)$	(5, 940) *1
POLYETHYLENE SERVICE PIPE	$\phi 20 \times 20 \mathrm{m}$	5, 940
WATER METER	ϕ 13	5. 940
SCREW FITTINGS FOR SERVICE PIPE	φ 20, φ 13	5. 940
*1 TAPPING SADDLE		
MAININE DIP	$\phi 200 \times \phi 20$	240
	ϕ 150 \times ϕ 20	950
	ϕ 100 \times ϕ 20	245
	ϕ 75× ϕ 20	1, 490
MAINLINE PVC	$\phi 100 \times \phi 20$	185
	ϕ 75× ϕ 20	780
	ϕ 50× ϕ 20	2.050
	TAPPING SADDLE POLYETHYLENE SERVICE PIPE WATER METER SCREW FITTINGS FOR SERVICE PIPE *1 TAPPING SADDLE MAININE DIP	TAPPING SADDLE $(\phi 200 \times \phi 20)$ POLYETHYLENE SERVICE PIPE $\phi 20 \times 20 \text{ m}$ WATER METER $\phi 13$ SCREW FITTINGS $\phi 20, \ \phi 13$ FOR SERVICE PIPE $*1 \text{ TAPPING SADDLE}$ MAININE DIP $\phi 200 \times \phi 20$ $\phi 150 \times \phi 20$ $\phi 100 \times \phi 20$ $\phi 75 \times \phi 20$ MAINLINE PVC $\phi 100 \times \phi 20$ $\phi 75 \times \phi 20$

FOR PLANT, LARGE USER (TYPE A)

3 SCREW FITTINGS FOR SERVICE PIPE

No.	ITEM	SIZE	QTY
1	TAPPING SADDLE	$(\phi 200 \times \phi 40)$	(180) *1
2	FOLYETHYLENE SERVICE PIPE	$\phi 40 \times 50 \mathrm{m}$	180
3	WATER METER	φ40	180
4	SCREW FITTINGS FOR SERVICE PIPE *1 TAPPING SADDLE	φ40 ·	180
	MAINLINE DIP	$\phi 200 \times \phi 40$	30
		ϕ 150 \times ϕ 40	120
		$\phi 100 \times \phi 40$	10
		ϕ 75× ϕ 40	20
	FOR BUILDING (TYPE B)		
No.	ITEM	SIZE	Q^TY
. 1	TAPPING SADDLE	$(\phi 200 \times \phi 40)$	(70) *1
2	FOLYETHYLENE SERVICE PIPE	φ40×20m	70
3	SCREW FITTINGS FOR SERVICE PIPE *1 TAPPING SADDLE	φ40、φ20	70
	MAINLINE DIP	$\phi 200 \times \phi 40$	10
	BUILDALIN DIE	ϕ 150× ϕ 40	50
		$\phi 100 \times \phi 40$	10
No.	ITEM	SIZE	Q^TY_
1	FOLYETHYLENE SERVICE PIPE	φ20×60m	950
2	SATER METER	φ13	950
£.			

\$\phi 20 \phi 13

950

