3.4.5 Concrete Plant

(1) Concrete Batcher Plant

The necessary concreting work for the spillway structures and water treatment facilities, which will require the concrete placing of about 53,200 m³ during the period of about 14 months, will determined the capacity required for the concrete batcher plant.

Thus, the necessary capacity of the batcher plant is calculated at 250 m³/day as follows:

Capacity of Batcher Plant =
$$\frac{53,200}{14 \text{ months } \text{x } 20 \text{ days}} \text{x } 1.3 = 247 = 250 \text{ m}^3/\text{day}$$

The required hourly plant capacity is obtained to be 30 m3/hr, assuming the daily working hours of 10 hours/day, as follows:

- Daily concrete requirement = 250 m3/day

Daily working hours = 10 hours/day

- Hourly concrete requirement = 250/10= 25= 30 m3/hr.

The design of the concrete batcher plant is made based on the above requirement. Two types, the full automatic one and semi-automatic one are examined. An approximate cost comparison between two types has indicated a slightly higher cost of Rs. 6.6 million for the full automatic one against Rs. 4.5 million for the semi-automatic one. However, the full automatic one is recommended to be installed in view that a higher concrete quality is secured in the full automatic one. The design of the concrete batcherplant is shown in Fig. 3.4.9.

(2) Cement Silo and Cement Warehouse

A cement silo of 100 tons is attached to the concrete batcher plant. Its capacity can withstand the concreting works for two to three days.

In usual cases, the cement silo is provided with the capacity to cope with concreting works for five to seven days. In the case of the Project, however, a less capacity as mentioned is given with consideration that the transportation and supply of cement will be very easy from the Port Louis harbour which is located near the project site and is equipped with a large stock of cement.

The cement warehouse having an area of 96 m² is planned to be built. This cement warehouse is possible to store the bag cement of about 50 to 60 tons.

The purpose of this cement warehouse is to supply the cement for grouting works. Assuming that the grouting works will use the cement of about 1.0 ton per day, the storage capacity of the cement warehouse will meet the grouting works for two months or more, which is considered sufficient.

3.4.6 Buildings

(1) General

The major design criteria applied for buildings are standard requirements conforming to "Architectural Institute of Japan Standard for Structural Calculation of Reinforced Concrete Structures and Commentary" and "Architectural Institute of Japan Standard for Structural Calculation of Steel Structures".

Design concepts are given below. The designs for major buildings are shown in Fig. 3.4.10 to 3.4.16.

(2) Loading condition

In the structural calculations, the load and external forces that act on the structure are the following:

- (A) Dead load
- (B) Live load
- (C) Seismic load

The dead and live loads of each part of building are applied in accordance with the Japanese Building Standard Law Enforcement Order.

The seismic load is applied as the force to act horizontally as follows:

Seismic coefficient

: k = 0.05

- Horizontal force to the building

 $: H = k \times W$

W:Dead load of building plus adjusted live load

The stress is examined for the following combinations of loads, and the design is made to ensure the safety for all the combinations of loading.

Combination of Loads

Conditions of	f Stresses	Combination of Stresses
Permanent stresses	Normal time	G + P
Temporary stresses	Earthquake	G + P + K

where:

G: Stress due to dead load

P : Stress due to live load

K: Stress due to seismic load

(3) Design of members

The design of reinforced concrete structure is based on "AIJ Standard for Structural Calculation of Reinforced Concrete Structure".

The design is made on the following assumptions:

- Compressive strength of concrete at 28 days shall be 210 kg/cm² or more.
- Reinforcement bar materials shall comply with deformed bar, "SD30". (JIS G3112)
- Weight of reinforced concrete shall be calculated as 2.4 t/m³ and the "Young Modulus" of reinforcement bar to concrete shall be "n=15".
- The design of steel beam depends on the "AIJ Standard for Structural Calculation of Steel Structure".
- The materials of steel shall comply with "SS 41". (JIS G3101)

(4) Allowable design stress

Allowable design stresses of the structural materials is as summarized below:

(i) Concrete and reinforcing bar

Allowable design stress of concrete and reinforcing

						(kg/cm ²
			Type c	of Stress		
Materials	For Permanent Load		For Temporary Load		ad	
	Tension	Compressio n	Shear	Tension	Compressio n	Shear
Concrete (Fc = 210 kg/cm ²)	-	Fc/3 = 70	4.25	-	2Fc/3 = 105	12.75
Reinforcing bar (JIS G3112)	1,800	1,800	1,000	2,700	2,700	1,500

Allowable bond stress per unit surfaces of reinforcing bar

 (kg/cm^2) Type of Stress For Temporary Load For Permanent Load Materials Other Bars Top Bar Other Bars Top Bar Fc/15 Fc/10 1.5Fc/15 1.5Fc/10 Deformed bar 31.5 14.0 21.0 21.0

(ii) Structural steel

			Туре	of Stress		(kg/cm ⁴
Materials	For Permanent Load		For Temporary Load			
		Compressio n	Shear		Compressio n	Shear
Structural steel (SS 41)	1,400	1,400	900	2,100	2,100	1,350

(iii) The allowable bearing capacity of soil is assumed to be 30 t/m².

3.4.7 Water Supply System

The construction work requires various water supplies for the offices, quarters, aggregate and concrete plants, grouting work, concreting works and so on.

Considering the estimated necessary staffs of the contractor and engineer, and respective work activities, etc., the water supply requirement during the construction work in terms of the peak capacity is approximately estimated as follows:

Estimated Water Requirement (Required Peak Capacity)

	Descriptions	Water Requirement (m ³ /min. at peak)
1.	Site office and quarters for the engineer	0.3
2.	Contractor's office and quarters	0.5
3.	Aggregate plant	2.5
4.	Concrete batcher plant	0.3
5.	Grouting work	0.6
6.	Diversion tunnel site	0.5
7.	Spillway site	0,3
. 8.	Repairshop and motor pool	0.2
9.	Others	0.3
	Total	5.5 m ³ /min.

In the above, the diversion tunnel site work is considered not to overlap with other works. However, total water requirement at peak is determined at 5.5 m³/min. provided with some allowance.

The water requirement for offices and quarters is estimated on the assumption that about fifty (50) persons and ten (10) to fifteen (15) persons will work as the contractor's staffs and the Engineer's staff respectively.

The requirement for aggregate plant and concrete batcher plant considers that they should have the production capacity of 90 ton/hour and 30 m³/hour, respectively.

Out of this water requirement, the water supply for the offices and quarters of the contractor and engineer should be made with the treated water. Thus, its supply is planned to be made from the CWA's existing water supply service main passing near the Martindate Bridge.

The water supply for construction work is considered to be made from a reservoir located near the project site. The reservoir is located beside the trunk road (eastern side of the trunk road), into which the water taken from the Profonde river is being supplied. The water level of the reservoir is measured at El. 273. The facilities requiring the water supply are situated at altitudes lower than the water level of the reservoir, thus making it possible to supply the water by gravity flow. There is the existing culvert crossing the trunk road, and therefore, a particular troublesome work is considered

not necessary for the pipeline to cross the trunk road: that is, the water supply pipeline will be connected to the existing culvert.

The required diameter of water supply pipe is obtained on the basis of the relationship among the required water supply discharge, gradient and pipe diameter.

Fig. 3.4.17 presents the graphs to find the necessary diameter of pipe based on the required water supply discharge and gradient between the water source and facility to be supplied the water. The diagram of pipe to each facility which is thus obtained is given in Fig. 3.4.18.

The following gives detailed calculations to obtain the water supply diagram shown in Fig. 3.4.18. Designs of the water supply system are presented in Fig. 3.4.19.

(a) Condition of pipelines

	Route	Required Discharge (m ³ /min)	Length (m)	Difference of Level (m)
(1)	Source to tunnel	0.5	1,460	143
(2)	Source to spillway	0.3	1,260	78
(3)	Source to miscellaneous water	0.3	1,050	75
(4)	Source to grouting (left bank)	0.2	1,020	73
(5)	Source to grouting (right bank + riverbed)	0.4	640	33
(6)	Source to aggregate plant	2.5	580	28
(7)	Source to concrete batcher plant	0.3	560	28
(8)	Source to repairshop & motor pool	0.2	430	28
(9)	Existing pipe to Engineer's office and quarters	0.3	2,100	50
(10)	Existing pipe to Contractor's office and quarters	0.5	2,100	52

(b) Calculations of required diameter

(i) Point I to tunnel:

(ii) Point I to spillway:

 (iii) Point H to Point I:

A sectional area equal to the sum of (i) and (ii) is provided as follows:

$$D = \sqrt{80^2 + 75^2} = 110 \text{ mm} \dots$$
 \text{\text{\$\text{\$\genty}\$}}

(iv) Point H to miscellaneous water:

(v) Point G to Point H:

A sectional area equal to the sum of (i), (ii) and (iv) is provided as follows:

$$D = \sqrt{80^2 + 75^2 + 75^2} = 133 \text{ mm} \dots$$
 Ø150

(vi) Point G to grouting (left bank):

(vii) Source to Point G:

A sectional area equal to the sum of (i), (ii), (iv) and (vi) is provided:

$$D = \sqrt{80^2 + 75^2 + 75^2 + 75^2} = 153 \dots \emptyset 175$$

(viii) Point D to grouting (right bank + riverbed):

$$I = H/l = 33/640 = 1/19 \dots$$
 Ø80

(ix) Point E to concrete batcher plant:

(x) Point E to aggregate plant:

(xi) Point D to Point E:

A sectional area equal to the sum of (ix) and (x) is provided:

$$D = \sqrt{75^2 + 175^2} = 190 \dots \emptyset 200$$

(xii) Point C to Point D:

A sectional area equal to the sum of (viii), (ix) and (x) is provided:

$$D = \sqrt{80^2 + 75^2 + 175^2} = 207 \dots$$
 $\emptyset 250$

(xiii) Point C to repairshop of motor pool:

(xiv) Source to Point C:

A sectional area equal to the sum of (viii), (ix), (x) and (xiii) is provided:

$$D = \sqrt{80^2 + 75^2 + 175^2 + 60^2} = 215 \dots$$
 $\emptyset 250$

(xv) Point B to engineer's office & quarter:

(xvi) Point B to contractor's office & quarter:

(xvii) Point A to Point B:

A sectional area equal to the sum of (xv) and (xvi) is provided:

$$D = \sqrt{100^2 + 100^2} = 140 \dots$$
 Ø150

3.4.8 Electric Power Supply System

(1) General

Electrical works will be designed for supplying power to the respective work sites for construction use. Some of the electric power supply system for the Project are to be used for permanent installation such as office and quarter, dam site plant, etc. The design of the electrical works is made for the followings:

- (i) Electric power requirements for construction work
- (ii) Power receiving design
- (iii) Distribution line design
- (iv) Receiving station design

The design of the electric power supply system is given in Fig. 3.4.20 to Fig. 3.4.23.

Details are mentioned hereafter.

(2) Electric power requirements for construction use

The electric power required is estimated as follows:

No.	Working Area	Estimated Capacity (kw)
I) .	Right Bank Side	
	 a) Office and quarters area 1. Office & quarters for Employer and Engineer 2. Contractor's office and quarters 	150 160
	Subtotal (1)	310
e e	 b) Concrete plants 1. Aggregate plant 2. Concrete batcher plant 3. Laboratory 4. Water supply system 	400 90 10
	Subtotal (2)	500
	 c) Repair shop, work shop, etc. 1. Motor pool & repair shop 2. Assembly yard & metal work shop 3. Dam site lighting 4. Grouting work 5. Miscellaneous installations 	100 150 40 100 30
	Subtotal (3)	420
	d) Quarry and borrow pit area 1. Quarry site 2. Borrow pit 3. Miscellaneous works	30 10 20
	Subtotal (4)	60
II)	Total (I) Left Bank Side	1,290
	1. Dam site lighting	40
	 Diversion tunnel Grouting work Valve & pipe site Intake gate site Miscellaneous works 	100 100 120 80 20
	Total (II)	460
	Grand-Total (I + II)	1,750

In consideration of various demand factors, diversity factors, power factors, etc. among the said loads, the required receiving capacity is roughly estimated as follows:

Total receiving capacity = $\frac{1,750 \text{ (kW)}}{0.8 \times 0.7} \times \frac{0.6}{1.1} = \text{ca. } 1,700 \text{ kVA}$

where, demand factor : 0.6,

diversity factor : 1.1,

average motor efficiency : 0.8, and

average power factor of motors : 0.7.

(3) Power receiving design

In the Basic Design Report the power receiving design has been decided as to receive power from the existing 22 kV distribution line as a result of study of economical and technical bases. One branch line is constructed for receiving power from the existing 22 kV line and one power receiving switching station is constructed for supplying power received to the respective work sites where are separated each other.

The receiving switching station will consist of outdoor type metal clad switchgear which is arranged as one incoming feeder line, three outgoing feeder lines and one station service line.

(4) Distribution line design

Considering the location of the respective work sites, where are separated at three area, three feeders of 22 kV distribution line are constructed for supplying power to the respective work sites. The destination of the respective feeders are as follows:

(i) Feeder line No. 1 For quarry site through water treatment plant

(ii) Feeder line No. 2 For dam site plant

(iii) Feeder line No. 3 For borrow area plant through repair shop/ware house, office and quarter area

In addition to the above, 400 - 230 V distribution line is constructed for the office and quarter area which are used by the Employer permanently.

Extension lines from the above-mentioned lines to each work site are to be constructed by Lot-I contractor during the construction period.

The existing 22 kV main distribution line is located close to the existing 66 kV transmission line and the line passes the land planed for the main dam of the Project.

Therefore, this portion of the existing 22 kV distribution line around the dam site should be relocated to another place so as not to disturb the dam construction works.

The receiving switching station and a part of the 22 kV distribution line feeder No. 3 from receiving switching station to office and quarter area are used permanently even after the completion of the construction work for the Employer's facilities.

(5) Receiving station design

Six receiving stations are to be constructed for the construction work of the Project. Required capacity of step-down transformers at the receiving stations is calculated as follows:

	Working Area	Required	Step-down Transformer	
		Capacity (kW)	(kVA)	
Rigi	nt Bank Side			
a)	Office and quarters area	310	300	
b)	Concrete plants	500	500	
c)	Repair shop, work shop, etc.	420	400	
d)	Quarry area	30	30	
c)	Borrow pit area	30	. 30	
Left	Bank Side		-	
Dan valv	n site, diversion tunnel, grouting work, re & pipe site, intake gate site, etc.	460	400	
Tota	ı	1,750	1,660	
	a) b) c) d) e) Left Dan valy	Right Bank Side a) Office and quarters area b) Concrete plants c) Repair shop, work shop, etc. d) Quarry area	Right Bank Side a) Office and quarters area 310 b) Concrete plants 500 c) Repair shop, work shop, etc. 420 d) Quarry area 30 e) Borrow pit area 30 Left Bank Side Dam site, diversion tunnel, grouting work, valve & pipe site, intake gate site, etc.	

Table 3.2.1: PRINCIPAL FEATURES OF TUNNEL TYPE

	Item	Type I	Type II
1.	Internal Diameter (cm)	680	680
2.	Lining Thickness (cm)	50	80
3.	Rock Properties		
	 Rock class 	$C_{M} \sim C_{H}$	$C_L \sim C_M$
	 Elastic modulus E_r (kg/cm²) 	30,000	5,000
	 Poisson's ratio ν_r 	0.2	0.3

Table 3.2.2: LOADING CONDITIONS OF DIVERSION TUNNEL

	Item	Upstream Section from Plug	Downstream Section from Plug	Note	Study
, mail	During diversion, normal	Pe = GWL Tunnel center EL. = 140 - 131 = 9.0 t/m ²	Pe = $140 - 128.4 = 11.6 t/m^2$		Check
···		Pi = 0	- op -		
7	During diversion, flood	Pe = FWL - Tunnel center EL. = 154.5 - 131.0 = 23.5 ψ m ² (just after flowing out)	Pe = $140 - 128.4 = 11.6 t/m^2$		No-check
		Pi = FWL - Tunnel center EL v ² /2g = 154.5 - 131.0 - 10.5	Pi = FWL - Tunnel center EL $v^2/2g$ = 154.5 - 128.4 - 10.5 = 15.6 v /m ²		Check
ю́	After completion, normal	= 15:0 4m= Pe = 0 Pi = 0	Pe = 0 (drained by weep holes) Pi = 0		No-check
4	After completion, abnormal	Pe = HWL Tunnel center EL. = 208.0 - 131.0 = 77.0 t/m ² (dewatered condition)	Pe = 0 (drained by weep holes)	65% increment of allowable stresses	Check
		Pi = $208.0 - 131.0 = 77.0 \text{ t/m}^2$ (abnormal condition)	Pi = 0	65% increment of allowable stresses	Check
.5	Grout pressure	The grout pressure of $2 kg/cm^2$ is imposed locally around the grout holes for consolidation and curtain.	d locally around the grout holes for	Concrete strength $\sigma_{28} = 210$ Yield strength	Cheek
vi	6. Others	Rock loads are taken by the tunnel supports erected during construction so that no rock load is imposed on the concrete lining. Deal load is neglected because it is rather small than others.	rs erected during construction so that no ig. small than others.		
					-

Table 3.2.3: CONCRETE AND STEEL PROPERTIES

	Con	Steel	
Increment of Stress (%)	Compression (kg/cm ²)	Shear (kg/cm ²)	Tension (kg/cm ²)
0	70	8.5	1,800
65	116	14	2,970
for grout pressure	210	18	3,000

Concrete

Strength

Elastic modulus

 $\sigma_{28} = 210 \text{ kg/cm}^2$ $E_c = 255,000 \text{ kg/cm}^2$ $v_c = 0.2$

Poisson's ratio

Steel

Elastic modulus

 $E_s = 2,100,000 \text{ kg/cm}^2$

Table 3.2.4: RESULTS OF STRUCTURAL ANALYSES FOR DIVERSION TUNNEL

Type I	U/S	D/S
50	00	
	80	80
D16 @300 (inside)	D22 @200 (both sides)	D16 @300 (both sides)
602	2,675	710
64	43	7
32	41	53
4		
-		
-	547	1,106
	(inside) 602 64 32	(inside) (both sides) 602 2,675 64 43 32 41 4

Table 3.2.5(1) :TUNNEL ANALYSIS BY OTTO-FREY-BEAR'S THEORY (Tunnel Type-I)

```
Elastic modulus (rock)
                               = 30000
                                            (kg/cm2)
Elastic modulus (steel)
                               = 2100000
                                              (kg/cm2)
Elastic modulus (conc.)
                               = 255000
                                             (kg/cm2)
Poisson's ratio (rock)
Poisson's ratio (conc.)
                               = .2
                               = .2
Lining thickness
                               = 50
                        (cm)
Inner diameter
                               = 680
                        (cm)
Internal pressure(kg/cm2)= 7.7
External pressure (kg/cm^2) = 7.7
Pitch of rein-bar (mm) = 300
```

(Unit:kg/cm2)	TEN	SION (*)	COMPRE	SSION (**)
Plain conc.	-3	3.5	64.	2
Rein-bars	SGL	DBL	SGL	DBL
D 13 @ 300 D 16 @ 300	605.1 601.8	599.4 593.1	63.7 63.6	63.3 63.0
D 19 @ 300	597.9	585.4 576.9	63.1	62.3
D 25 @ 300	587.9	567.0	62.5	60.9
D 22 @ 300 D 25 @ 300 D 29 @ 300	593.2 587.9 582.0	576.9 567.0 556.2	62.9 62.5 61.9	61.8 60.9 60.1

Note:

- (*) gives the case of internal pressure
- (**) gives the case of external pressure

Table 3.2.5(2) :TUNNEL ANALYSIS BY OTTO-FREY-BEAR'S THEORY (Tunnel Type-II, Upstream of Plug)

```
(kg/cm2)
Elastic modulus (rock)
                          = 5000
                          = 2100000
                                      (kg/cm2)
Elastic modulus (steel)
                                      (kg/cm2)
                          = 255000
Elastic modulus (conc.)
Poisson's ratio (rock)
                          = .3
Poisson's ratio (conc.)
                          = .2
                          = 80
Lining thickness
                    (cm)
Inner diameter
                    (cm)
                          = 680
Internal pressure(kg/cm2)= 7.7
External pressure(kg/cm2)= 7.7
                    (mm) = 200
Pitch of rein-bar
(Unit:kg/cm2)
                   -34.7
                                44.7
Plain conc.
                                    DBL
               SGL
                              SGL
                       DBL
Rein-bars
              _____
             3795.3 3529.5
                              44.5
D 13 @ 200
             3607.2 3243.4
                              44.3
                                    43.8
D 16 @ 200
             3401.1 2950.8
D 19 @ 200
                              44.1
                                    43.6
```

3192.7 2674.9

2975.5 2406.6

2762.6 2161.0

Note:

D 22

D 25

6 500

@ 200

D 29 @ 200

(*) gives the case of internal pressure

43.7

43.6

43.1

42.7

42.0

(**) gives the case of external pressure

Table 3.2.5(3) :TUNNEL ANALYSIS BY OTTO-FREY-BEAR'S THEORY (Tunnel Type-II, Downstream of Plug)

```
Elastic modulus (rock)
                           ** 5000
                                     (kg/cm2)
Elastic modulus (steel) - 2100000
                                        (kg/cm2)
Elastic modulus (conc.) = 255000
                                       (kg/cm2)
Poisson's ratio (rock)
                           = .3
Poisson's ratio (conc.) = .2
Lining thickness
                     (cm) = 80
                     (cm) = 680
Inner diameter
Internal pressure(kg/cm2)= 1.56
External pressure(kg/cm2)= 1.16
Pitch of rein-bar (mm) = 300
```

(Unit:kg/cm2)	TEN	sion (*)	COMPRE	ssion (**)
Plain conc.	-	7.0	6.	7
Rein-bars	SGL	DBL	SGL	DBL
D 13 @ 300 D 16 @ 300	793,3 765.7	754.1 710.1	6.8 6.8	6.8
D 19 @ 300 D 22 @ 300	734.6 702.2	662.7 615.8	6.8 6.6	6.6
D 25 @ 300 D 29 @ 300	666.8 631.1	567.9 522.0	6.6	6.5

Note:

- (*) gives the case of internal pressure
- (**) gives the case of external pressure

Table 3.2.5(4) :TUNNEL ANALYSIS BY OTTO-FREY-BEAR'S THEORY (Tunnel Type-I, During River Diversion)

```
(kq/cm2)
Elastic modulus (rock)
                          = 30000
Elastic modulus (steel)
                                       (kg/cm2)
                          = 2100000
Elastic modulus (conc.)
                                      (kg/cm2)
                          = 255000
Poisson's ratio (rock)
                          = .2
Poisson's ratio (conc.)
                          = .2
                    (cm)
Lining thickness
                          = 50
                    (cm)
                          = 680
Inner diameter
Internal pressure(kg/cm2)= 0
External pressure(kg/cm2)= 1.16
Pitch of rein-bar
                    (mm)
```

(U)	nit	:}	cg/cm2)	TENS	;ion (*)	COMPRE	(**) SSION
Pla	ain	1 (conc.	(0.0	9.	7
Re	in-	ba	ars	SGL	DBL	SGL	DBL
D I	13 16 19 22	0 0 0 0	300 300 300 300	0.0 0.0 0.0	0.0 0.0 0.0	9.7 9.7 9.5 9.6	9.5 9.6 9.5 9.4
D 2	25 29	@ @	300 300	0.0	0.0	9.5 9.3	9.3 9.2

Note:

- (*) gives the case of internal pressure
- (**) gives the case of external pressure

Table 3.2.6(1) :TUNNEL ANALYSIS FOR GROUT PRESSURE (Tunnel Type-I)

Elastic modulus (rock) = 30000 (kg/cm2)
Elastic modulus (conc) = 255000 (kg/cm2)
Poisson's ratio (rock) = .2
Poisson's ratio (Conc) = .2
Lining thickness (cm) = 50
Inner diameter (cm) = 680
Grouting press.(kg/cm2) = 2

PHAI (deg)	M (tm)	s (t)	N (t)	sig1 (kg/cm	sig2 12)
0 5	0.7 0.7	0.0	-69.0 -69.0	15.1 15.3	12.4 12.5
10	0.7	0.0	-69.0	15.3	12.5
15	0.6	0.0	-69.0	15.2	12.3
20	0.6	0.2	-69.0	15.4	12.2
25	0.8	0.2	-68.8	15.5	12.1
30	0.7	0.2	-68.8	15.5	12.0
35	0.8	0.1	-68.8	15.8	11.8
40	1.0	0.1	-68.9	16.0	11.8
45	0.9	0.2	-68.9	16.0	11.6
50	1.0	0.0	-68.9	16.3	11.3
55	1.0	-0.0	-68.7	16.3	11.3
60	1.1	-0.3	-68.9	16.2	11.4
65	0.9	-0.4	-68.8	15.8	12.0
70	0.6	-0.7	-69.0	14.9	12.6
75	-0.2	-1.2	-69.0	13.9	13.8
80	-0.8	-1.6	-69.4	15.8	12.0
85	-2.0	-1.8	-69.5	18.5	9.4
90	-3.1	-2.1	-70.0	21.5	6.4
95	-4.7	-2.2	-70.4	25.0	3.2
100	-6.0	-2.0	-70.8	28.5	-0.4
105	-7.1	-0.9	-71.1	31.4	-3.0
110	7.4	1.0	-71.2	32.2	<u>-3.8</u>
115	-6.6	4.7	-70.9	29.8 26.0	-1.3 2.1
120	-5.1	4.5	-70.5 -70.0	22.7	5.4
125	-3.7	4.4	-69.6	19.5	8.6
130 135	-2.4 -1.0	3.8	-69.3	16.5	11.5
140	0.2	3.5	-69.0	14.0	13.7
145	1.2	3.1	-68.7	16.5	11.1
150	2.1	2.6	-68.6	18.6	8.9
155	2.9	2.2	-68.4	20.4	7.0
160	3.5	1.9	-68.2	21.9	5.6
165	4.0	1.5	-68.1	22.9	4.2
170	4.4	0.9	-68.0	23.9	3.5
175	4.6	0.6	-67.8	24.4	2.8
180	4.5	0.0	-67.9	24.6	2.8

Note: M: Moment, S: Shear, N: Axial Force

Sig 1: Inside Stress, Sig 2: Outside Stress

Table 3.2.6(2) :TUNNEL ANALYSIS FOR GROUT PRESSURE (Tunnel Type-II)

Elastic modulus (rock) = 5000 (kg/cm2)
Elastic modulus (conc) = 255000 (kg/cm2)
Poisson's ratio (rock) = .3
Poisson's ratio (Conc) = .2
Lining thickness (cm) = 80
Inner diameter (cm) = 680
Grouting press.(kg/cm2) = 2

PHAI	M	S	N	sig1	sig2
(deg)	(tm)	(t)	(t)	(kg/c	m2)
0	18.8	0.0	-62.5	25.3	-9.7
5	18.6	-1.1	-62.4	25.1	-9.5
10	17.9	-2.2	-62.6	24.6	-8.8
15	16.6	-3,3	-62.9	23.6	-7.7
. 20	15.2	-4.3	-63.3	22.0	-6.3
25	13.0	-5.3	-64.0	20.2	-4.2
30	10.6	-6.2	-64.5	18.0	-2.0
35	7.9	-7.0	-65.4	15.6	1.0
40	4.6	-7.8	-66.2	12.7	3.9
45	1.1	-8.3	-67.0	9.4	7.3
50	-2.6	-8.6	-68.1	10.9	6.0
55	-6.5	-8.6	-69.0	14.7	2.5
60	-10.6	-8.3	-70.2	18.7	-1.2
65	-14.5	-7.5	-71.2	22.5	-4.7
70	-18.2	-6.6	-72.2	26.1	-7.9
75	-21.5	-4.9	-72.9	29.3	-10.9
80	-24.1	-2.8	-73.8	31.8	-13.4
85	-26.2	-0.1	-74.3	33.7	-15.3
90	-26.9	3.2	-74.5	34.7	-16.1
95	-26.6	7.2	-74.4	34.2	-15.5
100	-24.3	12.1	-73.7	32.0	-13.7
105	-20.1	12.8	-72.7	27.8	-9.8
110	-15.9	12.6	-71.6	23.7	-6.0
115	-11.7	12.0	-70.5	19.9	-2.3
120	-7.8	11.6	-69.5	16.0	1.3
125	-4.1	11.0	-68.5	12.4	4.8
130	-0.6	10.3	-67.6	9.0	8.0
135	2.6	9.5	-66.6	10.9	6.0
140	5.7	8.5	-65.8	13.6	3.1
145	8.4	7.6	-65.1	16.0	0.5
150	10.6	6.6	-64.5	18.0	-1.9
155	12.8	5.6	-64.1	20.0	-4.0
160	14.5	4.5	-63.5	21.5	-5.5
165	15.8	3.4	-63.3	22.7	-6.9
170	16.6	2.3	-62.9	23.6	-7.7
175	17.3	1.3	-62.9	24.1	-8.4
180	17.5	0.0	-62.7	24.1	-8.6
T00	A		•	_	

Note: M: Moment, S: Shear, N: Axial Force

Sig 1: Inside Stress, Sig 2: Outside Stress

Table 3.2.6(3): CALCULATION OF INTERNAL STRESS IN REINFORCED CONCRETE STRUCTURE: DIVERSION TUNNEL (TYPE-II) FOR GROUT PRESSURE

Q t		26.90 3.20	20.10	26.90	
Q t N t	:		20.10	26.00	
Q t N t	:			∠0,9 0	20.10
N t			12.80	3,20	12.80
		74.50	72.70	74.50	72,70
	m	100.00	100.00	100,00	100.00
h c	:m	80.00	80.00	80.00	80.00
	m	30.00	30.00	30.00	30.00
	n	70.00	70.00	70.00	70,00
2.5	m	10.00	10.00	10.00	10,00
d'/d		0.14	0.14	0.14	0.14
M'- M+N.u t	.m	49,25	41.91	49.25	41.91
M'/(b.d.d) k	g/cm2	10.05	8.55	10.05	8.55
Q /(b.d) k	g/cm2	0.46	1.83	0.46	1.83
f = M/N + u c	m	66.11	57.65	66.11	57.65
f / d		0.94	0.82	0.94	0.82
As		D16@300	D16@300	D22@200	D22@200
	m2 ,	6.61	6.61	19.40	19,40
As'		D16@300	D16@300	D22@200	D22@200
c	m2	6.61	6.61	19.40	19.40
As' / As		1.00	1.00	1.00	1.00
n	,	15.00	15.00	15.00	15.00
np=n.As/(bd)	-	0.014	0.014	0.042	0.042
C		5.31	3,98	4.09	3.43
S		7.34	2.57	3.63	1.61
2		1.16	1.25	1.21	1.28
Sigma c k	g/cm2	53.3	34.0	41.1	29.4
Sigma s k	g/cm2	1106.2	329.7	546.6	206.6
Tau k	g/cm2	0.5	2.3	0.6	2.3
Sigma ca k	:g/cm2	210.0	210.0	210.0	210.0
	g/cm2	3000.0	3000.0	3000.0	3000.0
	g/cm2	18.0	18.0	18.0	18.0

Case Note

As, As': Sectional area of reinforcement bar (cm²)

Sigma C: Stress in concrete (kg/cm²)

Sigma S: Stress in reinforcement bar (kg/cm²)

Tau: Shearing stress in concrete (kg/cm²)

Sigma Ca: Allowable stress for concrete (kg/cm²)

Sigma Sa : Allowable stress for reinforcement bar (kg/cm²)
Tau a : Allowable shearing stress for concrete (kg/cm²)

Table 3.2.7(1): STRUCTURAL ANALYSIS OF INLET PORTAL (SECTION A-A)

NOTES: * MEANS MAXIMUM STEEL AREA

	•		,,,,								•						
NEM	CYZE	POINT	SICN	B	H	DI	D2	N	S	М	AS	ASD	2100	SIGS	TAU	SICCA SICSA	SICTAU
		(1)		100 0	300 0	190.0	10.0	67.4	5.5	23.3	0.00	00,0	6,9	0.0	0.4	105.0 2700.0	12.8
1		HAX		100.0	200.0	100.0	10.0	68.7	0.0	22.1	0.00	0.00	6.8	0.0	0.0		
ŀ								71.2	22,1	38.3	0.00	0.00	9.3	0.0	3.1		
!		(2)		100.0	200 0	190.0	10.0	354.7	84.8	149.2	0.01	0.00	40.8	58.9	8.4	105.0 2700.0	12.8
1		(!)		100.0	0,004	130.0	10.0	352.8	0.0	106.4	0.00	0.00	33.6	0.0	0.0		
1		HAX	*					349.6	82.8	146,1	0.01	0.00	40.0	52.9	6.3		
!		(2)	•		200 0	Inn á	10.0	66.0	34.7	38.3	0.00	0.00	9.0	0.0	2.5	105.0 2700.0	12.8
2		(2)		0.001	ZUU.V	190.0	10.0		0.0	0.0	0.00	0.00	0.0	0.0	0.0		
2		MAX			•			0.0			0.00	0.00	3.9	0.0	1.4		
2		(3)						62.6	20.9	5.0		0.00	39.0	124.8		105.0 2700.0	12.8
2		(2)	*	0.001	200.0	190.0	0.01		188.6	146.1	10.0		0.0	0.0	0.0		
2	2	HAX						0.0	0.0	0.0	0.00			0.0	7.7		
2	2	(3)						299.9	112.5	34.4	0.00	0.00	20.2			105.0 2700.0	12.8
3	1	(3)		0.001	200.0	180.0	10.0	62.6		5.0	0.00	0.00	3.9	0.0	0.0	100.0 2100.0	,
3	- 1	MAX						57.1	0.0	15.1	0.00	0.00	5.1		1.0		
3	- 1	(4)	•					52.5	15.8	1.9	0.00	0.00	2.9	0.0	7.7	105.0 2700.0	12.8
3	2	(3)		100.0	200.0	180.0	10.0	299.9	112.5	34.4	0.00	0.00	20.2	0.0	0.0	100.0 2700.0	
3		MAX	*	:				291.1	0.0	137.2	0.01	0.00 00.0	36.7 21.1	0.0	7.3		
3	2	(4)			11.			282.7	102.4	46.5	0.00	0.00	2.9	0.0	1.0	105.0 2700.0	12.8
4	- 1		-	100.0	200.0	190.0	10.0	52.5	15.8	1.9	0.00	00.00	0.0	0.0	0.0		
4	- 1	HAX			•			0.0	0.0	0.0	0.00	0.00	6.4	0.0	. 2.0		
4	ŀ	(5)			*			48.9	27.3	26.2	0.00		21.1	0.0	7.3	105.0 2700.0	12.8
4	2	(4)		100.0	200.0	190.0	10.0	282.7	102.4	46.5	0.00	0.00		0.0	0.0	100.0 210010	
4	2							0.0	0.0	0.0	0.00	0.00	0.0	123.9	12.6		
4	2	(5)	*					276.4	175.1	134.2	10.0	0.00	35.8		1.2	105.0 2700.0	12.8
5	- 1	(5)		0.001	220.0	190.0	10.0	53.9	15.2	26.2	0.00	0.00	5.7	0.0		100.0 2100.0	12.10
5	I	MAX						52.3	0.0	17.4	9.00	0.00	4.5	0.0	0.0		1.1
5	- 1	(6)				-, '		51.0	10.4	21.7	0.00	0.00	5.0	0.0	0.9	105.0 2700.0	12.8
5		(5)		100.0	220.0	190.0	10.0	319.3	71.7	134.2	0.00	0.00	31.1	0.0	5.9	103.0 2700.0	[2.0
5	2	XAM						9.818	0.0	101.4	00.0	0.00	27.0	0.0	0.0		
5	2	(8)	*	:				315.8	82.5	145.4	0.00	0.00	32.4	0.0	8.6	10F 0 0700 0	12.8
6		(6)		100.0	140.0	130.0	10.0	43.4	28.7	21.7	0.00	0.00	9.7	0.0	-	105.0 2700.0	12.0
8		MAX						0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0		
8		(1)						43.4	17.8	6.2	0.00	0.00	5.0	0.0	8.1 8.41	105.0 2700.0	12.8
6	2	(6)	*	100.0	140.0	130.0	10.0	281.6	164.9	145.4	10.0	10.0		2081.0	0.0	100.0 6100.0	1210
8	2	MAX	•					0.0	0.0	0.0	0.00	0.00	0.0 24.2	0.0			
6	. 2	(7)						281.6	99.7	13.4	0.00	0.00 00.0	5.0	0.0	1.9	105.0 2700.0	12.8
7	- 1	(7)		100.0	140.0	130.0	10.0	43.4	17.8	6.2	00.0	0.00	0.0	0.0	0.0	,4010 211111	• • • • • • • • • • • • • • • • • • • •
7	1	MAX						0.0	0.0	0.0	0.00	0.00	3.5	0.0	0.7		
7	1	(8)						43.4	6.8	21.0	0.00		24.2	0.0	9.8	105.0 2700.0	12.8
7	2	(7)		100.0	140.0	130.0	10.0		99.7	13.4	0.00	0.00	0.0	0.0	0.0	10010 210410	
7	2	MAX						0.0	0.0	0.0	0.00	0.00			3.7	4	
7	2	(8)	×					281.6	34.4	93.8	10.0	0.00	51.2	138.9		105.0 2700.0	12.8
8		(8)		100.0	220.0	210.8	10.0	43.4	8.3	21.0	0.00	0.00	4.6	0.0	0.5	103.0 2700.0	12.0
8		MAX						43.4	0.0	23.3	0.00	0.00	4.9	0.0			
8		(9)				•		43.4	17.6	8.0	0.00	0.00	3.0	0.0	1.1	100 0 0000 0	12.8
8		(8)		100.0	220.0	210.0	10.0	281.6	34.4	93.8	0.00	0.00	24.4	0.0	2.5	105.0 2700.0	12.0
8		MAX						281.6	0.0	104.3	0.00	0.00	25.7	0.0	0.0		
8		(9)	*					281.6	100.7	14.2	0.00	0.00	14.6	0.0	0.0	105 0 9700 0	10.0
9		(9)			220.0	210.0	10.0	43.4	17.6	8.0	0.00	0.00	3.0	0.0		105.0 2700.0	. 12.0
9		HAX				•		0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0		
٠	'	11/1/4															

					The second secon
N	:	Axial force (t)	SIGS	:	Stress in reinforcement bar (kg/cm ²)
S	:	Shearing force (t)	TAU	:	Shearing stress in concrete (kg/cm ²)
M	:	Bending moment (t 0m)	SIGCA	:	Allowable stress for concrete (kg/cm ²)
AS,		Sectional area of reinforcement bar	SIGSA	:	Allowable stress for reinforcement ba

 $ASD : (cm^2)$

(kg/cm²)
Allowable shearing stress for concrete SIGTAU: SIGC: Stress in concrete kg/cm²)

(kg/cm²)

Table 3.2.7 (2): STRUCTURAL ANALYSIS OF INLET PORTAL (SECTION A-A)

NOTES;	×	MEANS	MAXINUM	SILEL	AHEA	

										*	•								
NEN	CASE	POINT	SICN	В	Я	DI	D2	N	s	Ħ	AS	ASD	SICC	SICS	TAU	SICCY	SICSX	SICTAU	
. 9	1	(10)		-				43.4	29.9	20.5	0.00	0.00	4.5	0.0	2.1				
9		(9)		100.0	220.0	210.0	10.0	281.6	100.7	14.2	0.00	0.00	14.6	0.0	6.0	105.0	2700.0	12.8	
9		MAX						0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0				
9	2	(10)	¥				•	281.6	168.3	147.2	10.0	0.00	32.5	103.9	11.1				
10		(10)		100.0	220.0	210.0	10.0	51.8	9.5	20.5	0.00	0.00	4.9	0.0	0.7	105.0	2700.0	12.8	
10	1	HAX						53.0	0.0	16.9	0.00	0.00	4.5	0.0	0.0			,	
10	1	(11)						54.7	1.31	26.8	0.00	0.00	5.8	0.0	1.1				
10	2	(-10)		100.0	220.0	210.0	10.0	318.1	80.1	147.2	0.00	0.00	32.7	0.0	5.6	105.0	2700.0	12.8	
10	2	MAX						320.3	0.0	105.7	0.00	0.00	27.7	0.0	0.0				
10	2	(11)	*					321.6	74.0	140.7	0.00	0.00	32.1	0.0	5.2				
11	ŀ	(H)		100.0	200.0	190.0	10.0	50.1	27.3	26.8	0.00	0.00	6.5	0.0	2.0	105.0	2700.0	12.8	
11	ŧ	MAX						0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0				
11	1	(12)						53.7	15.8	1.4	0.00	0.00	2.9	0.0	0.1				
11	2	(Π)	*	100.0	200.0	190.0	10.0		175.1	140.7	0.01	0.00	37.5	154.3	12.5	105.0	2700.0	12.8	
11		MAX						0.0	0,0	0.0	0.00	00,0	0.0	0.0	0.0				
11		(12)						286.0	102.4	40.0	0.00	0.00	20.3	0.0	7.2				
12		(12)		109.0	200.0	190.0	10.0	53.7	15.8	1.4	0.00	0.00	2.9	0.0	1.0	105.0	2700.0	12.8	
12		PIAX.						58.3	0.0	14.6	0.00	0.00	5.1	0.0	0.0			•	
12		(13)				100 0		83.8	20.9	5.6	0.00	0.00	4.0	0.0	1.4	105.0	0700 A	19.0	
12		(12)		100.0	200.0	190.0	10.0		102.4	40.0	0.00	0.00	20.3	0.0	7.2	109.0	2700.0	12.8	
12		MAX	*				• .	294.4	0.0	130.7	0.01	0.00	35.3	73.4	0.0 7.6				
12		(13)		100.0	900 0	100.0	10.0	303.3	112.5	27.8	0.00	0.00	fa'3.	0.0		105 0	9700 0	12.8	
13		(13)		100.0	200.0	190.0	10.0	63.8	20.9	5.6	0.00	0.00	4.0	0.0	1.4 0.0	109.0	2700.0	14.0	
13		HAX						0.0 67.2	0.0	0.0	0.00	0.00 0.00	0.0 9.2	0.0	2.5				
13		(14)		100 0	900 0	100 A	τ <u>ο</u> ο		34.7	38.9 27.8	0.00	0.00	19.3	0.0		105.0	2700.0	12.8	
13		(13)		100.0	200.0	190.0	10.0		112.5		0.00	0.00	0.0	0.0	0.0	105.0	2100.0	12.0	
13		MAX						0.0 309.0	0.0	0.0	0.00	0.00	40.7	153.5	Į3,.5				
13		(14)	*	100.0	200.0	מ ממו	in n	72.1	188.6 22.9	152.6 38.9	0.01 00.0	0.00	9.4	0.0		0.201	2700.0	12.8	
14		(14)		100.0	200.0	190.0	10.0	69.3	0.0	21.3	0.00	0.00	6.7	0.0	0.0	100.0	2700.0	12.0	
14 14		AIAX (15)	1.0					68.3	4.7	22.2	0.00	0.00	6.7	0.0	0.4				
14		(15) (14)		100 0	200 0	180.0	10.0		85.1	152.6	10.0	0.00	41.4	73.6	6.4	E05.0	2700.0	12.8	
14		HAX.		190.0	200.0	100.0	10.0	355.3	0.0	110.6	0.00	0.00	34.3	0.0	0.0	••••	2		
14		(15)	*					357.1	82.4	151.0	0.01	0.00	41.3	60.4	6.2				
15		(18)	:	-	200.0	190.0	10.0	51.6	25.0	17.9	0.00	0.00	5.3	0.0	2.0	105.0	2700.0	12.8	
15		MAX						0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0				
15		(15)						51.6	41.8	22.2	0.00	0.00	5.9	0.0	3.2				
15		(16)		100.0	200.0	190.0	10.0	310.8	113.3	30.2	0.00	0.00	20.1	0.0	. 7.7	105.0	2700.0	12.8	
15	2	MAX						0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0				
15	2	(15)	*					310.8	188.7	151.0	0.01	0.00	40.3	140.3	13.6				
16	1.	(.17)		100.0	200:0	190.0	10.0	51.6	25.4	17.3	0.00	0.00	5.2	0.0	2.1	105.0	2700.0	12.8	
16	1	MAX				1	100	51.8	0.0	40.3	0.00	00.0	3.8	0.0	0.0				
16	1	(16)						51.6	25.0	17.9	0.00	0.00	5.3	- 0.0	2.0	•			
16	2	(17)		100.0	200.0	190.0	10.0	310.8	112.7	31.3	0.00	0.00	20.2	0.0	7.7	105.0	2700.0	12.8	
16	. 2	HAX	¥					310.8	0.0	132.5	10.0	0.00	36.1	56.3	0.0	•			
16	2	(16)						310.8	113.3	30.2	0.00	0.00	20.1	0.0	7.7				
17	1.1	(1)		100.0	200.0	190.0	0.01	51.6	42.2	23,3	0.00	0.00	6.1	0.0	3.2	105.0	2700.0	12.8	
17		HAX		÷			5.5	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0				
17	1	(17)			•	. *		51.6	25 4	17.3	0.00	0.00	5.2	0.0	2.1				
17	2	(1)	*	100.0	200.0	190.0	10.0		188.1	149.2	0.01	0.00	39.8	130.3	.13.6	105.0	2700.0	12.8	
17	2	MAX					* .	0.0	0.0	0.0	0.00	0.00	. 0.0	0.0	0.0	,			
17	2	(17)						310.8	112.7	31.3	0.00	00.0	20.2	0.0	7.7				

Table 3.2.8 (1): STRUCTURAL ANALYSIS OF INLET PORTAL (SECTION B-B)

NEW CASE POINT SIGN B N D1 D2 N S N AS ASD SIGC SIGS TAW SIGCA SIGTAW		NOTES;	* NEA	ANS MA	XINUN S	STEEL A	REA											
1 HAX	HEN	CASE POINT	SIGN	В	н	Dì	D2	N	s	M	AS	ASD	S100	SIGS	TAU	SICCA	SIGSA	SIGTAU
1 HAX	1	1 (1)		100.0	200.0	190.0	10.0	67.2	43.3	76.4	- 3.62	0.00	42.4	2700.0	2.4	105.0	2700.0	12.8
1 2 1 2 100.0 200.0 130.0 10.0				,,,,,	200.0		•••			0.0	0.00	0.00	0.0					
1 2 (1) 2 (1) 3 100,0 200,0 190,0 100,0 290,4 273,8 402,5 38,05 38,05 300,0 2700,0 10,4 101,5 102,0 2700,0 12,8 12,5 12,5 13,6 13,8 11,8 12,0 200,0 190,0 10,0 0,0										36.3	0.00	0.00						
2 MAX 20,0 0.0	-	•	*	100.0	200.0	190.0	10.0		273.8	402.5	38.05-	38.05				0.701	2700.0	12.8
1 2 2 2 285.6 213.3 585.0 0.01 0.00 42.9 298.7 1.5 81.0 2340.0 11.1 3 11 100.0 200.0 180.0 10.0 92.4 25.9 78.3 0.01 0.00 42.0 2089.7 1.5 81.0 2340.0 11.1 3 1 2 100.0 200.0 180.0 10.0 64.4 36.8 36.3 0.00 0.00 0.0 0.0 0.0 0.0 0.0 1 3 1 3 1 2 100.0 200.0 180.0 10.0 64.4 36.8 36.3 0.00 0.00 0.0 6.6 0.0 0.0 2 1 1 1 1 1 1 1 1 1									0.0	0.0	0.00	0.00						
1 3 1) 100.0 200.0 190.0 10.0 32.4 25.9 78.9 0.01 0.00 42.0 208.7 1.5 51.0 2340.0 11.1 3 MAX	-							285.6	213.3	159.0	0.01	0.00						
1 3 MAX	-			100.0	200.0	190.0	0.01	92.4	25.9	78.9	0.01	0.00				91.0	2340.0	11.1
1 3 2 10 20 100 0 200 0 100 0 100 0 64 4 36 8 36 3 0 0 0 0 0 8 7 0 0 2 7 105 0 2700 0 12 8		-						0.0	0.0	0.0	0.00							
2 1 { 2} 1 { 2} 1 { 30.0 200.0 190.0 10.0 64.4 36.8 36.3 36.0 0.0 0.00 8.7 0.0 2.7 100.0 2700.0 12.8 45.3 28.4 22.5 0.00 0.00 0.00 8.6 0.0 0.1 1.1 1.3 100.0 200.0 190.0 10.0 285.6 213.3 159.0 0.01 0.00 42.9 275.3 14.6 105.0 2700.0 12.8 22 { 3} 2 MAX 28.5 2 0.0 0.01 0.00 42.9 275.3 14.6 105.0 2700.0 12.8 253.0 192.6 129.5 0.01 0.00 34.5 153.9 13.6 10.0 12.8 100.0 200.0 190.0 10.0 87.6 0.2 2.0 20.9 0.01 0.00 34.5 153.9 13.6 10.0 12.8 12.3 14.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12	i	3 (2)						87.8	25.9	53.0							n200 A	
2 1 MAX				100.0	200.0	190.0	10.0	64.4	36.8							105.0	2700.0	12.8
2 2 (2) 100.0 200.0 190.0 10.0 285.6 213.3 159.0 0.01 0.00 42.8 275.9 14.6 105.0 2700.0 12.8 269.2 18AX 269.2 0.0 200.9 0.01 0.00 70.7 1583.0 0.0 200.0 190.0 10.0 87.6 25.9 53.0 0.0 0.00 34.5 153.9 13.6 13.5 13.6 23.0 192.6 129.5 0.01 0.00 34.5 153.9 13.6 13.5 13.6 23.0 192.6 129.5 0.0 0.00 0.00 14.8 133.7 1.7 91.0 2340.0 11.1 69.9 0.0 9.2 0.00 0.00 0.00 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0																		
2 2 MAX 2 689.2 0.0 200.9 0.01 0.00 70.7 1583.0 0.0 2340.0 11.1 253.9 13.6 150.0 200.0 190.0 10.0 87.6 25.8 53.0 0.01 0.00 34.5 153.9 31.6 2340.0 11.1 23 87.8 129.5 0.01 0.00 0.00 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2	1 (3)														105.0	2700 0	19.0
2 2 (3)	2	2 (2)		100.0	200.0	190.0	10.0									0,601	2100.0	12.0
2 3 { 2)	2	2 MAX		1														
2 3 8 MAX 2 3 (3) 3 1 (3) 3 1 (4) 3 2 (3) 4 2 2 3 (6) 5 2 3 (1) 5 2 3 (1) 5 3 MAX 2 3 (3) 5 5 0 11 5 29.5 0.00 0.00 7.2 0.0 0.8 3 1 (4) 3 2 (3) 4 2 2 3 (6) 5 5 0 11 5 29.5 0.00 0.00 0.00 7.2 0.0 0.8 3 1 (4) 4 2 2 36.6 58.3 -4.20 -0.00 34.8 2700.0 2.0 3 2 (4) 4 2 2 36.6 58.3 -4.20 -0.00 34.5 153.9 13.6 105.0 2700.0 12.8 3 2 MAX 3 2 (4) 4 2 2 36.6 58.3 -4.20 -0.00 0.00 0.0 0.0 0.0 0.0 3 2 (4) 4 2 2 36.6 58.3 -4.20 -0.00 0.00 0.0 0.0 0.0 3 2 (4) 4 2 2 3 6 3 5 3 -4.20 -0.00 0.00 0.0 0.0 0.0 3 2 (4) 4 2 3 3 (3) 4 00.0 200.0 190.0 10.0 55.0 11.5 29.5 0.00 0.00 0.0 0.0 0.0 0.0 3 3 (4) 4 1 (4) 4 100.0 220.0 210.0 10.0 36.6 42.2 58.3 4.44 0.00 0.0 0.0 0.0 0.0 0.0 4 2 (5) 4 2 (4) 4 100.0 220.0 210.0 10.0 251.5 247.7 373.9 -31.55 0.0 0.0 34.5 227.2 11.9 4 2 (5) 4 3 (4) 4 100.0 220.0 210.0 10.0 13.3 49.7 43.2 6.31 0.00 21.8 2340.0 11.1 4 3 MAX 4 3 (5) 5 1 (6) 5 2 (5) 5 100.0 220.0 210.0 10.0 36.6 32.6 20.8 0.00 0.00 0.0 0.0 0.0 0.0 5 2.3 1458.9 0.8 5 1 MAX 5 1 (6) 5 2 (6) 5 2 (5) 5 100.0 220.0 210.0 10.0 38.6 32.6 20.8 0.00 0.00 0.0 0.0 0.0 0.0 5 2.3 1459.0 13.3 105.0 2700.0 12.8 5 2 MAX 5 2 (5) 5 100.0 220.0 210.0 10.0 38.6 32.6 20.8 0.00 0.00 0.0 0.0 0.0 0.0 5 2.3 145.1 1.9 5 3 MAX 5 100.0 220.0 210.0 10.0 38.6 32.6 20.8 0.00 0.00 34.5 227.2 11.9 5 2 MAX 5 2 (6) 5 3 MAX 5 100.0 220.0 210.0 10.0 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 5 2 MAX 5 2 (6) 5 3 MAX 7 10.0 220.0 210.0 10.0 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 5 2 MAX 5 2 (6) 5 3 MAX 7 10.0 220.0 210.0 10.0 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 5 3 MAX 7 10.0 220.0 210.0 10.0 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 5 3 MAX 7 10.0 220.0 210.0 10.0 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 5 3 MAX 7 10.0 220.0 210.0 10.0 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 5 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	2	2 (3)														01.0	2010 0	
2 3 FAX 3 (3) 3 1 (3) 3 100.0 200.0 130.0 10.0 45.3 28.4 22.5 0.00 0.00 7.2 0.0 0.8 3 1 (4) 3 2 (3) 1 (4) 4 2 2 36.6 58.3 -4.20 0.00 34.8 2700.0 2.0 3 2 (3) 1 (30.0 200.0 130.0 10.0 253.0 192.6 129.5 0.01 0.00 34.5 153.9 13.6 105.0 2700.0 12.8 3 2 HAX 3 2 (4) 4 2 2 37.7 251.5 373.3 -40.68 -0.00 0.00 0.0 0.0 0.0 0.0 3 3 (4) 4 3 100.0 200.0 130.0 10.0 55.0 11.5 29.5 0.01 0.00 7.2 0.0 0.8 91.0 2340.0 11.1 3 3 MAX 4 1 (4) 4 100.0 220.0 210.0 10.0 36.6 42.2 58.3 4.94 -0.00 30.9 2700.0 2.1 105.0 2700.0 12.8 4 1 HAX 4 1 HAX 4 1 100.0 220.0 210.0 10.0 36.6 42.2 58.3 4.94 -0.00 30.9 2700.0 2.1 105.0 2700.0 12.8 4 2 HAX 2 1 HAX 4 2 HAX 5 100.0 220.0 210.0 10.0 36.6 32.8 20.8 0.00 0.00 0.0 0.0 0.0 0.0 4 2 (5) 4 2 (4) 5 100.0 220.0 210.0 10.0 13.3 49.7 43.2 6.31 0.00 21.8 2340.0 2.5 91.0 2340.0 11.1 4 3 MAX 5 1 (5) 5 1 (5) 5 1 (6) 5 2 (7) 5 1 (6) 5 2 (7) 5 1 (7) 5 1 (8) 5 1 (8) 5 1 (8) 5 1 (8) 5 2 (8) 5 1 (8) 5 1 (8) 5 1 (9) 5 2 (10.0 220.0 210.0 10.0 38.6 32.8 20.8 0.00 0.00 21.8 2340.0 2.5 91.0 2340.0 11.1 5 2 (8) 5 2 (8) 5 3 MAX 5 100.0 220.0 210.0 10.0 38.6 32.8 20.8 0.00 0.00 21.8 2340.0 2.5 91.0 2340.0 11.1 5 3 MAX 5 1 (6) 5 2 (7) 5 3 MAX 5 1 (8) 5 3 MAX 5 1 (9) 5 3 MAX 5 1 (10.0 220.0 210.0 10.0 38.6 32.8 20.8 0.00 0.00 21.8 2340.0 2.5 91.0 2340.0 11.1 5 3 MAX 5 2 (6) 5 3 MAX 5 2 (7) 5 3 MAX 5 2 (8) 6 3 MAX 7 4 MAX 8 4 MAX 8 MAX 8 MAX 8 MAX 8 MAX 9 MA	2	3 (2)	*	100.0	200.0	190.0	10.0							-		91.0	2340.0	11.1
3 1 (3) 100.0 200.0 190.0 10.0 45.3 28.4 22.5 0.00 0.00 5.6 0.0 2.1 105.0 2700.0 12.8 0.0 1 (4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2	XAM C		:														
3 1 (3)	2	3 (3)				•										£05.0	2700 0	17.8
3 1 4 4 42 .2 36 .6 58 .3 -4 .20 -0.00 34 .8 2700 .0 2.0 2.0 3 .2 (3) 100 .0 200 .0 190 .0 10 .0 253 .0 192 .6 128 .5 0.01 0.00 34 .5 153 .5 13 .6 105 .0 2700 .0 12 .8 3 2 141				0.001	200.0	190.0	10.0									100.0	2100.0	12.0
3 2 (3)																		
3 2 NAX 2 100.0 200.0 190.0 10.0 55.0 11.5 29.5 0.00 0.00 7.2 0.0 0.8 15.1 2340.0 11.1 0.0 220.0 210.0 10.0 36.6 32.6 20.8 0.00 0.00 0.00 0.0 0.0 0.0 0.0 10.0 1																105 A	2700 0	12.8
3 2 (4) * 247.7 251.5 373.9 -40.68 - 0.00 103.3 2700.0 15.1 3 (3 3 3 3 3 100.0 200.0 150.0 10.0 55.0 11.5 29.5 0.00 0.00 7.2 0.0 0.8 91.0 2340.0 11.1 3 3 MAX 49.7 13.3 43.2 0.01 0.00 25.3 1453.8 0.8 41 (4) 100.0 220.0 210.0 10.0 36.6 42.2 583. 4.04 0.00 30.9 2700.0 2.1 105.0 2700.0 12.8 41 1 MAX 40.0 36.6 32.8 20.8 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0				0.001	200.0	0.091	10.0									100.0	2700.0	12.0
3 3 (3) 100.0 200.0 190.0 10.0 55.0 11.5 29.5 0.00 0.00 7.2 0.0 0.8 191.0 2340.0 11.1 3 3 MAX																*		
3 3 HAX																91.0	2340.0	11.1
3 3 (4)				100.0	200.0	190.0	10.0									0,11		
4 1 (4) 100.0 220.0 210.0 10.0 36.6 42.2 58.3 4.04 0.00 30.9 2700.0 2.1 105.0 2700.0 12.8 4 1 NAX 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.																		
4 1 MAX 4 1 MAX 5 0.0 0.0 0.0 0.00 0.00 0.00 0.0 0.0 0.0				100.0	990 0	310.0	10.0									105.0	2700.0	12.8
4 1 (5) 4 2 (4) * 100.0 220.0 210.0 10.0 251.5 247.7 373.9 -31.35 - 0.00				100.0	220.0	210.0	10.0											
4 2 (4) * 100.0 220.0 210.0 10.0 251.5 247.7 373.9 -31.35 - 0.00 .93.6 2700.0 13.3 105.0 2700.0 12.8 4 2 NAX						*												
4 2 NAX				100 0	220 0	210.0	10.0								13.3	105.0	2700.0	12.8
4 2 (5) 4 3 (4) 100.0 220.0 210.0 10.0 13.3 49.7 43.2 8.31 0.00 21.8 2340.0 2.5 91.0 2340.0 11.1 4 3 HAX 0.0 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.		,		144.4	250.4	210.0	10.0									•		
4 3 (4) 100.0 220.0 210.0 10.0 13.3 49.7 43.2 6.31 0.00 21.8 2340.0 2.5 91.0 2340.0 11.1 4 3 HAX 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													34.5	227.2	11.9			
4 3 HAX				100.0	990 D	210.0	10.0							2340.0	2.5	9).0	2340.0	11.1
4 3 (5) 13.3 38.4 0.8 0.00 0.00 0.7 0.0 2.3 5 1 (5) 100.0 220.0 210.0 10.0 36.6 32.6 20.8 0.00 0.00 4.2 0.0 2.2 105.0 2700.0 12.8 5 1 HAX 36.6 0.0 34.6 0.00 0.00 6.0 0.0 0.0 5 1 (6) 36.6 32.6 20.8 0.00 0.00 4.2 0.0 2.2 5 2 (5) 100.0 220.0 210.0 10.0 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 5 2 MAX 251.5 0.0 171.1 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 5 2 (6) 5 2 (6) 5 3 (5) 100.0 220.0 210.0 10.0 13.3 38.4 0.8 0.00 0.00 0.7 0.0 2.3 91.0 2340.0 11.1 5 3 MAX * 13.3 0.0 66.1 11.30 0.00 26.3 2340.0 0.0				100.0	220.0	210.0							0.0	0.0	0.0			
5 i (5) 100.0 220.0 210.0 10.0 36.6 32.6 20.8 0.00 0.00 4.2 0.0 2.2 105.0 2700.0 12.8 36.6 0.0 34.6 0.00 0.00 6.0 0.0 0.0 5.0 0.0 5.0 1 (6) 36.6 32.6 20.8 0.00 0.00 4.2 0.0 2.2 5.2 5.2 (5) 100.0 220.0 210.0 10.0 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 251.5 0.0 171.1 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 11.1 11.1 11.1 11.1 11.1 11.1 11.1									_			0.00	0.7	0.0	2.3			
5 HAX 36.6 0.0 34.6 0.00 0.00 6.0 0.0				100.0	220.0	210.0	10.0				0.00	0.00	4.2	0.0	2.2	105.0	2700.0	12.8
5 1 (6) 35.6 32.6 20.8 0.00 0.00 4.2 0.0 2.2 5.5 5 2 (5) 100.0 220.0 210.0 10.0 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 5 2 MAX 251.5 0.0 171.1 0.01 0.00 39.9 399.4 0.0 5 2 (6) 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 5 3 (5) 100.0 220.0 210.0 10.0 13.3 38.4 0.8 0.00 0.00 0.7 0.0 2.3 91.0 2340.0 11.1 5 3 MAX * 13.3 0.0 66.1 11.30 0.00 26.3 2340.0 0.0		• .							0.0	34.6	0.80	0.00	0.0	0,0				
5 2 (5) 100.0 220.0 210.0 10.0 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 105.0 2700.0 12.8 5 2 MAX 251.5 0.0 171.1 0.01 0.00 39.9 399.4 0.0 5 2 (6) 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 5 3 (5) 100.0 220.0 210.0 10.0 13.3 38.4 0.8 0.00 0.00 0.7 0.0 2.3 91.0 2340.0 11.1 5 3 MAX * 13.3 0.0 66.1 11.30 0.00 26.3 2340.0 0.0								36.6	32.6	20.8	00.0	0.00						
5 2 MAX 251.5 0.0 171.1 0.01 0.00 39.9 399.4 0.0 5 2 (6) 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 5 3 (5) 100.0 220.0 210.0 10.0 13.3 38.4 0.8 0.00 0.00 0.7 0.0 2.3 91.0 2340.0 11.1 5 3 MAX * 13.3 0.0 66.1 11.30 0.00 26.3 2340.0 0.0				100.0	220.0	210.0	0.01	251.5	191.4	154.4	10.0	0.00				105.0	2700.0	12.8
5 2 (6) 251.5 191.4 154.4 0.01 0.00 34.5 227.2 11.9 5 3 (5) 100.0 220.0 210.0 10.0 13.3 38.4 0.8 0.00 0.00 0.7 0.0 2.3 91.0 2340.0 11.1 5 3 MAX * 13.3 0.0 66.1 11.30 0.00 26.3 2340.0 0.0								251.5	0.0	171.1	0.01							
5 3 (5) 100.0 220.0 210.0 10.0 13.3 38.4 0.8 0.00 0.00 0.7 0.0 2.3 91.0 2340.0 11.7 5 3 MAX * 13.3 0.0 66.1 11.30 0.00 26.3 2340.0 0.0								251.5	191.4	154.4						A. A.		
5 3 MAX * 13.3 0.0 66.1 11.30 0.00 26.3 2340.0 0.0				100.0	220.0	210.0	10.0									31.0	2340.0	11.1
			*															
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	3 (6)						13.3	38.4	8.0						105.4	9700 O	19.0
6 1 (6) 100.0 220.0 210.0 10.0 36.6 32.6 20.8 0.00 0.00 4.2 0.0 2.2 105.0 2100.0 12.3	6			100.0	220.0	210.0	10.0									V. 6VE	4100.0	14.0
6 MAX	6	i MAX																
6 1 (7) 38.6 42.2 58.3 -4.04 0.00 30.9 2700.0 2.1 6 1 (7) 38.6 42.2 58.3 -4.04 0.00 30.9 2700.0 2.1	6	1 (7)														105.0	9700 0	12.8
6 2 (6) 100.0 220.0 10.0 251.5 151.4 104.4	в	2 (6)		100.0	220.0	210.0	0.01									105.0	2100.0	14.0
6 2 HAX 0.0 0.0 0.00 0.00 0.0 0.0	E	2 NAX						0.0	0.0	0.0	0.00	U.U	0.0	0.0	0.0			

Table 3.2.8 (2): STRUCTURAL ANALYSIS OF INLET PORTAL (SECTION B-B)

NOTES: * MEANS MAXIMUM STEEL AREA

6 2 7 7 7 7 8 7 8 8 8 8	MEN	i . C	ask	POINT	SIG	N B	H	D1	D 2	N	s	N	٨S	ASD	SICC	SICS	UAT	SICCA SI	ICSA	SICTAU
		c	,	1 71	. ,					251.5	247 7	373 9	· 31 35	. 0 00	93 G	2700 0	13.3			
S 3 MX S 0,0							0.220.0	210.0	10.0									91.0 234	40.0	11.1
E 3 7 10 10 10 10 10 10 1						100.		21010												
7 (7)																2340.0	2.5			
7 2 (78) 7 2 (70) 8 100,0 200,0 180,0 10,0 247,7 251,5 373,9 40,0 8,0 0.0 10,0 25,8 10,0 0.0 0,0 0.0 0,0 0.0 0,0 0.0 0,0 0.0 0.		7				100.	0.002	190.0	10.0	42.2	36.6	58.3	- 4.20-	0.00	34.8	2700.0		105.0 270	0.00	12.8
7 2 (17)		7	- 1	MAX														•		
7 2 MAX 7 2 (8) 7 3 (7) 100.0 200.0 180.0 10.0 49.7 18.3 43.2 0.01 0.00 25.3 1458.3 13.6 7 3 (8) 8 1 (8) 100.0 200.0 180.0 10.0 45.7 18.3 43.2 0.01 0.00 25.3 1458.3 0.8 8 1 (8) 100.0 200.0 180.0 10.0 45.7 28.4 22.5 0.00 0.00 0.00 25.3 1458.3 0.8 8 1 (8) 100.0 200.0 180.0 10.0 45.3 28.4 22.5 0.00 0.00 0.00 2.7 0.0 0.1 10.0 25.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 1		7																		
7 2 2 8) 7 3 6 7) 7 3 6 8) 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1					2	× 100.	0.002	190.0	10.0									105.0 276	0.00	12.8
7 3 (7) 100.0 200.0 190.0 10.0 49.7 13.3 43.2 0.01 0.00 25.3 1459.3 0.8 91.0 2340.0 11.1 7 3 MAX							٠													
7 3 MAY 7 3 (8) 8 1 (8) 100.0 200.0 190.0 10.0 45.3 28.4 22.5 0.00 0.00 0.00 0.0 0.0 0.8 8 1 (8) 1 (9) 8 2 (8) 1 100.0 200.0 190.0 10.0 253.0 192.6 129.5 0.01 0.00 8.7 0.0 2.7 8 2 (8) 8 1 (9) 8 3 (8								100.0	10.0										40 O	11 1
7						100.	0 200.0	190.0	10.0									31.0 Z34	10.0	11.1
R																				
No.						100.	0 200.0	190.0	10.0									105.0 270	00.00	12.8
S									••••											
1										64.4	36.8	36.3	0.00	0.00	8.7	0.0	2.7			
Record R		8				100.	0 200.0	190.0	10.0	253.0	192.6	129.5	0.01	0.00			13.6	105.0 270	0.00	12.8
8 3 8 100.0 200.0 190.0 10.0 55.0 11.5 29.5 0.00 0.00 7.2 0.0 0.8 91.0 2340.0 11.1 8 3 NAX		8	2	MAX																
8 3 MAX		8																		
S S S S S S 100.0 200.0 130.0 10.0 64.4 35.8 25.9 53.0 0.01 0.00 0.0 8.7 0.0 2.7 105.0 2700.0 12.8 S I MAX 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S I 1 1 1 1 1 1 1 1 1						100.	0 200.0	190.0	10.0									91.0 234	40.0	11.1
1 9																				
9 1 MAX								100.0										105 0 970	00.0	12 8
1 10 10 10 10 20 20 10 1						100.	0 200.0	190.0	19.0									105.0 27	10.0	12,0
3 2 (3)																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						100	0 200 A	190 0	10.0									105.0 270	00.00	12.8
S						. 100-	0 209.0	100.0	10.0											
3 3 9 100.0 200.0 190.0 10.0 87.6 25.9 53.0 0.01 0.00 14.8 133.7 1.7 91.0 2340.0 11.1 9.3 (10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0					,	k														
9 3 1 HAX 9 3 1 HAX 9 100.0 200.0 190.0 10.0 43.3 44.5 25.3 0.00 0.00 0.0 0.0 0.0 0.0 0.0 12.8 100 1 1 (11) 100.0 200.0 190.0 10.0 43.3 44.5 25.3 0.00 0.00 0.00 42.0 2089.7 1.5 1.5 105.0 2700.0 12.8 100 1 1 (10) 43.3 57.6 76.4 7.86 0.00 38.5 2700.0 3.2 105.0 2700.0 12.8 100 2 HAX 100 2						100.	0 200.0	190.0	10.0					0.00	14.8	133.7	1.7	91.0 23	0.0	11.1
10								•		0.0	0.0	0.0	0.00		0.0	0.0	0.0			
10		9	. 3	(10)																
10	ı	0 .				100.	0 200.0	190.0	10.0									105.0 276	JO .0	12.8
10 2 (11) 100.0 200.0 190.0 10.0 273.8 211.8 159.5 0.01 0.00 43.7 339.1 14.3 105.0 2700.0 12.8 100 2 MAX																				
10 2 MAX																		105 0 976	00.0	19 0
10						100.	0 200.0	190.0	10.0									103.0 £10	JU.U	12.0
10 3 { 11 } 1010.0 200.0 190.0 190.0 190.0 25.9 58.8 11.4 0.00 0.00 3.0 0.0 4.5 91.0 2340.0 11.1 10 3 (10) 25.9 76.1 78.9 (13.37) -0.00 33.8 2340.0 4.3 11.1 1 (12) 100.0 200.0 190.0 10.0 43.3 44.5 25.3 0.00 0.00 6.0 0.0 33.4 2700.0 0.0 12.8 11 1 1 (11) 43.3 44.5 25.3 0.00 0.00 6.0 0.0 33.4 2700.0 0.0 12.8 11 2 (12) 100.0 200.0 190.0 10.0 273.8 211.8 159.5 0.01 0.00 43.7 339.1 14.3 105.0 2700.0 12.8 11 2 (11) 2 (11) 2 (11) 2 (11) 2 (11) 3 (12) 100.0 200.0 190.0 10.0 25.9 58.8 11.4 0.00 0.00 43.7 339.1 14.3 105.0 2700.0 12.8 11 3 (12) 100.0 200.0 190.0 10.0 25.9 58.8 11.4 0.00 0.00 35.6 2340.0 0.0 11.1 3 (11) 2 (11) 2 (11) 3 (11) 2 (11) 3 (11) 2 (11) 3 (11) 2 (11) 3 (11) 2 (11) 3 (11) 2 (11) 3 (11) 2 (11) 3 (11) 4 (
10					^		n 200 n	190 0	10.0									91.0 234	40.0	11.1
10 3 (10)						, ,,,,,	200.0	160.0	19.9											
11																				
11						100.	0 200.0	190.0	10.0				0.00	0.00	6.0	0.0	3.2	105.0 270	0.00	12.8
11											0.0		2.33	0.00	33.4	2700.0	0.0			
11 2 MAX 273.8 0.0 200.6 0.01 0.00 68.2 1399.0 0.0 12 2 11 273.8 211.8 159.5 0.01 0.00 43.7 339.1 14.3 13 3 12 100.0 200.0 190.0 10.0 25.9 58.8 11.4 0.00 0.00 3.0 0.0 4.5 91.0 2340.0 11.1 11 3 MAX 25.9 0.0 88.6 (15.75 0.00 35.6 2340.0 0.0 11 3 11 25.9 58.8 11.4 0.00 0.00 3.0 0.0 4.5 12 1 1 100.0 200.0 190.0 10.0 43.3 57.6 76.4 -7.86 0.00 38.5 2700.0 3.2 105.0 2700.0 12.8 12 1 MAX 0.0 0.0 0.0 0.00 0.00 0.0 0.0 0.0 12 1 12 43.3 44.5 25.3 0.00 0.00 6.0 0.0 3.2 12 2 1											44.5	25.3	0.00	00,0						
11 2 (11) 273.8 211.8 159.5 0.01 0.00 43.7 339.1 14.3 11.3 (12) 100.0 200.0 190.0 10.0 25.9 58.8 11.4 0.00 0.00 3.0 0.0 4.5 91.0 2340.0 11.1 3 (11) 25.9 58.8 11.4 0.00 0.00 3.0 0.0 4.5 91.0 2340.0 11.1 25.9 58.8 11.4 0.00 0.00 3.0 0.0 4.5 91.0 2340.0 11.1 11.1 11.1 11.1 11.1 11.1 11.1	f	1	2	(12)		100.	0 200.0	190.0	10.0	273.8	211.8		0.01					105.0 27	0.00	12.8
11 3 (12) 100.0 200.0 190.0 10.0 25.9 58.8 11.4 0.00 0.00 3.0 0.0 4.5 91.0 2340.0 11.1 11.1 3 (11) 25.9 58.8 11.4 0.00 0.00 35.6 2340.0 0.0 11.1 25.9 58.8 11.4 0.00 0.00 35.6 2340.0 0.0 11.1 11.1 11.1 11.1 11.1 11.1 1	1	l	2	MAX																
11 3 MAX * 25.9 0.0 88.6 (15.75 0.00 35.6 2340.0 0.0 11 3 (11) 25.9 58.8 11.4 0.00 0.00 3.0 0.0 4.5 12 1 (1) 100.0 200.0 190.0 10.0 43.3 57.6 76.4 -7.86 0.00 38.5 2700.0 3.2 105.0 2700.0 12.8 12 1 MAX 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0																		01 0 02	40.0	
11 3 (11) 25.9 58.8 11.4 0.00 0.00 3.0 0.0 4.5 12 1 (1) 100.0 200.0 190.0 10.0 43.3 57.6 76.4 7.86 0.00 38.5 2700.0 3.2 105.0 2700.0 12.8 12 1 MAX 0.00 0.0 0.0 0.00 0.00 0.0 0.0 0.0 12 1 (12) 43.3 44.5 25.3 0.00 0.00 6.0 0.0 3.2 12 2 (1) *100.0 200.0 190.0 10.0 273.8 274.1 402.5 40.61 40.61 98.7 2700.0 16.4 105.0 2700.0 12.8 12 2 MAX 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 2 (12) 273.8 211.8 159.5 0.01 0.00 43.7 339.1 14.3 12 3 (1) 100.0 200.0 190.0 10.0 25.9 76.1 78.9 (13.37) 0.00 33.8 2340.0 4.3 91.0 2340.0 11.1 12 3 MAX 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0								190.0	10.0									81.0 23	40.0	11.1
12						* .														
12 MAX						100	0 200 0	190 0	10.0									105.0.27	90.0	12.8
12						100.	v 200.0	190.0	10.0											
12 2 (1) * 100.0 200.0 190.0 10.0 273.8 274.1 402.5 -40.61 40.61 98.7 2700.0 16.4 105.0 2700.0 12.8 12 2 MAX						*														
12 2 MAX						k [00.	0 200.0	190.0	10.0									105.0 27	00.0	12.8
12 2 (12) 273.8 211.8 159.5 0.01 0.00 43.7 339.1 14.3 12 3 (1) 100.0 200.0 190.0 10.0 25.9 76.1 78.9 (13.37) 0.00 33.8 2340.0 4.3 91.0 2340.0 11.1 12 3 MAX 0.0 0.0 0.0 0.00 0.00 0.0 0.0 0.0																	0.0			
12 3 (1) 100.0 200.0 190.0 10.0 25.9 78.1 78.9 (13.37) 0.00 33.8 2340.0 4.3 91.0 2340.0 11.1 12 3 MAX 0.0 0.0 0.0 0.00 0.00 0.00 0.0 0.0														0.00	43.7	339.1	14.3			
12 3 MAX 0.0 0.0 0.0 0.00 0.00 0.0 0.0						100.	0 200.0	190.0	10.0					0.00	33.8		4.3	91.0 23	40.0	11.1
												0.0								
			3	(12)						25.9	58.8	11,4	0.00	0.00	3.0	0.0	4.5			

Table 3.2.9 (1): CALCULATION OF INTERNAL STRESS IN REINFORCED CONCRETE STRUCTURE: INLET PORTAL SECTION B-B

Member		1	2	3	4	5
Spot		2(outside)	mid(inside)	3(outside)	5(outside)	mid(inside)
• ,						
М	t.m	159.00	200.90	129.50	154.40	66.10
Q	t	213.30	0.00	192.60	191.40	0.00
Ň	t	285,60	269.20	253.00	251.50	13.30
b	cm	100.00	100.00	100.00	100.00	100.00
h	cm	200.00	200.00	200.00	220.00	220.00
u	cm	90.00	90.00	90.00	100.00	100.00
ď	cm	190.00	190.00	190.00	210.00	210.00
ď,	CIR	22010				•
u.	Cin					
d' / d		0.00	0.00	0.00	0.00	0.00
$M' = M + N \cdot u$	t.m	416.04	443.18	357.20	405.90	79,40
M'/(b.d.d)	kg/cm2	11.52	12.28	9.89	9.20	1.80
Q /(b.d)	kg/cm2	11.23	0.00	10.14	9.11	0.00
f = M/N+u	cm Kg/Cmz	145.67	164.63	141.19	161.39	596.99
	CIII	0.77	0.87	0.74	0.77	2,84
f / d		0.77	0.07	0		
۸۵		D19@150	D19@300	D19@150	D19@150	D19@150
As	ст2	19.10	9.54	19.10	19.10	19.10
As'	CIIIZ	17.10	7,54		27.20	
AS	cm2	0.00	0.00	0.00	0.00	0.00
0-1 / 0-	CIIIZ	0.00	0.00	0.00	0.00	0.00
As' / As	-	15.00	15.00	15.00	15.00	15.00
n A = 4/h d		0.015	0.008	0.015	0.014	0.014
np=n.As/(bd	.)	0.013	0.000	0.013	0.014	0.017
C		3.61	4.91		3.63	11.67
С		1.31	5.20		1.36	52.26
S		1.32	5.20		1.32	52,20
Z		1.32	•	0	1.32	
o.,	1 (41.6	60.3	32.1	33.4	21.0
Sigma c	kg/cm2	41.0	00.5	-6.8	33.4	21.0
		005.0	957.1	618.6	188.3	1411.5
Sigma s	kg/cm2	225.8	95/.1	0.010	100.5	1411.5
_		14.0	0.0	111 (12.0	0.0
Tau	kg/cm2	14.9	0.0	11.6	12.0	0.0
		105.0	105.0	105.0	105.0	91.0
Sigma ca	kg/cm2	105.0	105.0	105.0	105.0	
Sigma sa	kg/cm2	2700.0	2700.0	2700.0	2700.0	2340.0
Tau a	kg/cm2	12.8	12.8	12.8	12.8	11.1
			•	•		r a
Case		2	2	2	2	3
Note				٠		
		-3-				

Table 3.2.9 (2): CALCULATION OF INTERNAL STRESS IN REINFORCED CONCRETE STRUCTURE: INLET PORTAL SECTION B-B

Member		11	12
Spot		mid(inside)	12(outside)
M	t.m	88.60	159.50
Q	t,	0.00	211.80
. N	t	25, 90	273.80
ъ	cm	100.00	100.00
h	cm	200.00	200.00
u	cm	90.00	90.00
d	CIR	190.00	190.00
ď'	cm		
d'/ d	•	0.00	0.00
M' = M+N.u	t.m	111.91	405.92
M'/(b.d.d)	kg/cm2	3.10	
Q /(b.d)		0.00	11.24
f = M/N+u	kg/cm2	432.08	11.15 148.25
f / d	cm	2.27	0.78
1 / u		2.21	0.78
As		3.00	D19@150
	cm2	19.10	19.10
As'	cm2	0,00	0.00
As' / As	Citiz	0.00	0.00
n		15.00	15.00
np=n.As/(bc	15	0.015	0.015
np-n.as/(bc	· <i>)</i>	0.015	0.013
С		10.62	3.72
S		41.94	1.58
Z		-	1.31
Sigma c	kg/cm2	32.9	41.8
Sigma s	kg/cm2	1950.4	266.5
Tau	kg/cm2	0.0	14.6
Sigma ca	kg/cm2	91.0	105.0
Sigma sa	kg/cm2	2340.0	2700.0
Tau a	kg/cm2	11.1	12.8
Case		3	2
Note			stirrup
	÷		scillup *

HOTES: x	WE 1982	PUMIZAN	STEEL	AREA
----------	---------	---------	-------	------

	nores. *	rmany rma	timen 3	IEEE A	nun									
MEN CA	SE POINT SI	GN B	Н	DI	D2	И	s	N	AS	ASD	SICC SICS	TÁU	SICCA SIGS	SICTAU
	1 (1)	+ 100 D	LOO O	90.0	10.0	69.1	39,8	68.0	21.63	0.00	79.1 2340.0	5.0	91.0 2340.0	1.11
ŀ		. 140.14	100.0	30.0	10.0	60.3	0.0	0.4	0.00	0.00	6.3 0.0	0.0		
1	1 MAX					59.8	5.4	0.9	0.00	0.00	6.5 0.0	0.8		
!	2 (1)	ton a	0,001	ี ยก ก	10.0	77.3	5.0	41.5	3.69	0.00	73.2 3000.0	0.6	210.0 3000.0	0.81
Į.		1.00.0	(403.0	30.0	10.0	0.0	0.0	0.0	0.00	0.00	0.0 0.0	0.0		
i.	2 MAX					67.9	5.0	60.8	13.45	0.00	82.4 3000.0	0.6		
. 1	2 (2)	Lore 6	100.0	90.0	10.0	59:1	10.2	0.9	0.00	0.00	6.5 0.0	1.4	91.0 2340.0	11.1
2		11117,11	100.9	50.0	10.0	57.2	0.0	3.4	0.00	0.00	7.8 0.0	0.0	•	
2	I MAX					54.5	14.4	5.1	0.00	0.00	8.5 0.0	2.3		
2	1 (3)	100.0	100.0	90.0	in a	66.9	12.8	8.03	13.62	0.00	82.2 3000.0	1.6	210.0 3000.0	0 18.0
2	2 (2) 2 BAX	. (110.1)	100.0	30.0	10.0	0.0	0.0	0.0	0.00	0.00	0.0 0.0	0.0	•	
2						62.2	11.5	36.2	3.94	0.00	66.2 3000.0	1.4		
2	2 (3)	ton à	100.0	90.0	0.01	54.4	14.7	5.1	0.00	0.00	8.5 0.0	2.3	91.0 2340.0	1.11
3	I MAX	11111	1110.0	00.0	10.0	52.5	0.0	3.0	0.00	0.00	7.1 0.0	0.0		
3	1 (4)					50.9	12.1	2.5	0.00	0.00	0.0	1.8		
3 3	2 (3)	100.0	เหก ก	90.0	10.0	48.1	41.1	36.2	8.28	0.00	62.5 3000.0	5.0	210.0 3000.0	0.81 0
3	2 MAX	. [1411.0	00.0		0.0	0.0	0.0	0.00	0.00	0.0 0.0	0.0		
3	2 (4)					44.7	17.3	32.9	5.48	0.00	59.4 3000.0	2.1		
4	1 (4)	100.0	100.0	90.0	10.0	50.2	15.0	2.5	0.00.	0.00	6.5 0.0	2.2	91.0 2340.1	0 11.1
4	t MAN			****	•	49.5	0.0	5.6	0.00	0.00	8.3 0.0	0.0		
4	1 (5)					48.9	13.1	0.6	0.00	0.00	5.2 0.0	8.1		
4	2 (3)	100_0	9,901	90.0	10.0	30.0	37.3	32.9	7.93	00.0	55.3 3000.0	4.5	210.0 3000.0	0.81
4	2 HAN					29.0	0.0	64.2	21.21	0.00	75.3 3000.0	0.0		
4	2 (5)					28.8	7.7	62.8	20.68	0.00	74.4 3000.0	0.9		•
5	1 (5)	100.0	100.0	90.0	10.0	48.9	13.1	0.6	0.00	0.00	5.2 0.0	8.1	91.0 2340.0	11.1
5	I MAX					49.5	0.0	5.6	0.00	0.00	8.3 0.0	0.0		
5	1 (6)					50.2	15.0	2.5	0.00	0.00	6.5 0.0	2.2		
5	2 (5)	100.0	100.0	90.0	10.0	28.8	7.7	62.8	20.68	00,0	74.4 3000.0	0.9	210.0 3000.0	0 18.0
5	2 MAX					23.0	0.0	64.2	21.21	00.0	75.3 3000.0	0.0		
5	2 (6)					30.0	37.3	32.9	7.93	0.00	55.3 3000.0	4.5	•	
6	i (g)	0.401	100.0	90.0	10.0	50.9	12.1	2.5	0.00	0.00	6.6 0.0	1.8	91.0 2340.0	0 11.1
6	1 BAX					52.5	0.0	3.0	0.00	0.00	7.1 0.0	0.0		1
Ğ	1 (7)					54.4	14.7	5.1	0.00	0.00	8.5 0.0	2.3		
ě	2 (6)	0,001	100.0	90.0	10.0	44.7	17.3	32.9	5.48	0.00	59.4 3000.0	2.1	210.0 3000.	0 18.0
Ğ	2 HAY					0.0	0.0	0.0	0.00	0.00	0.0 0.0	0.0		
G	2 (7)	á				18.1	41.1	36.2	6.28	0.00	62.5 3000.0	5.0	01.0000	
7	1 (7)	0,001	100.0	90.0	10.0	54.5	14.4	5.1	0.00	0.00	8.5 0.0	2.3	91.0 2340.	0 11.1
7	I HAY				•	57.2	9.0	3.4	0.00	0.00	7.8 0.0	0.0		
7	1 (2)					1.63	10.2	0.9	0.00	0.00	6.5 0.0	1.4	010 0 2000	0 18.0
7	2 (7)	im. 'n	fùn (t	90.0	10.0	62.2	11.5	36.2	3.94	0.00	66.2 3000.0	1.4	210.0 3000.	V 10.V
7	S MYZ					0.0	0,0	0.0	0.00	0.00	0.0 0.0	0.0		
7	2 (8)					66.9	12.8	60.8	13.62	0.00	82.2 3000.0	9.1	91.0 2340.0	11.1
8	1 (8)	Hur 'U	100 0	0.00	0.01	8.87	5.4	0.9	0.00	0.00	6.5 0.0	0.8	31.0 2340.	0 11.1
8	E MAX					60.9	0.0	0.4	0.00	0.00	6.3 0.0	0.0		
8	1 (9)					69.1	39.8	68.0		0.00	79.1 2340.0	5.0	010 A 900A	0.81 0
8	2 (8)	0,004	100.0	90.0	0.0	67.9	5.0	8.09	13.45	0.00	82.4 3000.0		210.0 3000.	0 10.0
8	2 MAX					0.0	0.0	0.0	0.00	0.00	0.0 0.0	0.0		1.00
8	2 (9)					77.3	5.0	41.5	3.69	0.00	73.2 3000.0	0.6	01 0 0040	0 11.1
9	11 13	100,0	tuù ù	90.0	0.01	39.8	65.5	68.0	27.58	0.00	72.9 2340.0		91.0 2340.	V 11.1
9	I MAN					39.8	0.0	59.7	22.96	0.00	68.3 2340.0	0.0		
9	1 (9)					39.8	65.5	68.0	27.58	0.00	72.9 2340.0		A.A. A. BOOO	
9	2 (1)	100,0	100.0	90.0	0.01	-5.0	67.5	41.5	17.35	0.00	51.3 3000.0		210.0 3000.	0 18.0
9	2 MAX	,				-5.0	0.0	90.1	37.79	0.00	82.5 3000.0	0.0		
3	2 (-9)					-5.0	67.5	41.5	17.35	0.00	51.3 3000.0	8.0		

Table 3.2.11: CALCULATION OF INTERNAL STRESS IN REINFORCED CONCRETE STRUCTURE: OUTLET TRANSITION

Member		1	4	4	9	9
Spot		1(outside)	5(outside)	mid(inside)	9(outside)	mid(inside)
M	t.m	68,00	62.80	64.20	68.00	90.10
Q Q	t	39.80	7.70	0.00	65.50	0.00
N	t	69.10	28.80	29.00	39.80	-5.00
Ъ	cm	100,00	100.00	100.00	100.00	100.00
h	cm	100.00	100.00	100.00	100.00	100.00
u	cm	40.00	40.00	40.00	40.00	40,00
d	cm	90.00	90.00	90.00	90.00	90.00
ď.	cm					
د ر بد	•	0.00	0.00	0.00	0.00	0.00
d'/d	. ·	95.64	74.32	75.80	83.92	88.10
M' = M+N.u	t.m	11.81	9.18	9.36	10.36	10.88
M'/(b.d.d)	kg/cm2	4.42	0.86	0.00	7.28	0.00
Q / (b.d) $f = M/N+u$	kg/cm2 cm	138.41	258.06	261.38	210.85	-1762.00
	CIII	1.54	2.87	2.90	2.34	-17.58
f / d		1.54	2,07	2.90	2.54	-19.50
As		D22@150	D22@150	D22@150	D25@150	D29@150
	cm2	25.80	25.80	25.80	33.80	42.90
As'						
	cm2	0.00	0.00	0.00	0.00	0.00
As' / As		0.00	0.00	0.00	0.00	0.00
'n		15.00	15.00	15.00	15.00	15.00
np=n.As/(bd)	0.043	0.043	0.043	0.056	0.072
С		6.33	7.48	7.49	6.56	7.24
. S		11.30	17.70	17.80	12.48	16.30
Z		1.14	1.11	17.00	1.13	10.50
		1,14	1.11	_	1.13	
Sigma c	kg/cm2	74.7	68.6	70.1	67.9	78.8
Sigma s	kg/cm2	2000.5	2436.0	2498.1	1939.1	2659.1
	- 6/	. 7.111				
Tau	kg/cm2	5.0	0.9	0.0	8.2	0.0
Sigma ca	kg/cm2	91.0	210.0	210.0	91.0	210.0
Sigma sa	kg/cm2	2340.0	3000,0	3000.0	2340.0	3000.0
Tau a	kg/cm2	11.1	18.0	18.0	11.1	18.0
Case Note		1	2	2	1	2

Table 3.2.12: STRUCTURAL ANALYSIS OF OUTLET PORTAL

NOTES: * MEANS MAXIMUM STEEL AREA

HEM	CASE	POINT	2108	В	H	ÐĮ	D2	И	\$	M	AS	ASD	SICC	SICS	TAU	SIGCA	SICSA	SICTAU
1	ŀ	(1)		100.0	100.0	90.0	10.0	49.3	7.4	6.9	0.00	0.00	9.0	0.0	1.2	70.0	0,0081	8.5
· 1	1	MAX						0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0			
1	- 1	(2)	Å		-			45.4	17.0	13.3	0.01	0.00	14.5	96.5	2.4			
. 2	1	(2)	7	100.0	100.0	90.0	10.0	44.1	20.1	13.3	0.01	0.00	14.7	111.7	2.3	70.0	0.0081	8.5
2	I	MAX						35.0	0.0	4.3	0.00	0.00	6.1	0.0	0.0			
2	1	(3)						29,5	8.11	4.4	0.00	0.00	5.6	0.0	2.0			
3	}	(3)		100.0	100.0	90.0	10.0	29.2	12.4	4.4	0.00	0.00	5.5	0.0	2.1	70.0	0.0081	8.5
3	1	MAX						29.2	0.0	5.7	0.00	00.0	6.3	0.0	0.0	*		
3	1	(. 4)	T.					29.2	12.4	4.4	0.00	0.00	5.5	0.0	2.1			
4	1	(1)		100.0	0,001	90.0	10.0	29.5	11.9	4.4	0.00	0.00	5.6	0.0	2.0	70.0	0.008	8.5
4	1	MAX						35.0	0.0	4.3	0.00	0.00	6.l	0.0	0.0			
4	- 1	(5)	1.					44.1	1.09	13.3	0.01	0.00	14.7	111.7	2.9			
5	1	(5)	, L	100.0	100.0	90.0	10.0	45.4	17.0	13.3	10.0	0.00	14.5	98.5	2.4	70.0	0.0081	8.5
5	1	XAM						0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0			
5	1	(6)						49.3	7.4	6.9	0.00	0.00	9.0	0.0	1.2			

Table 3.2.13: CALCULATION OF INTERNAL STRESS IN REINFORCED CONCRETE STRUCTURE: OUTLET PORTAL

Member Spot		2 2(outside)
M Q N b h	t.m t c cm cm	13.30 20.10 44.10 100.00 100.00 40.00
d d'	cm cm	90.00
d'/ d M'= M+N.u M'/(b.d.d) Q /(b.d) f = M/N+u f / d	t.m kg/cm2 kg/cm2 cm	0.00 30.94 3.82 2.23 70.16 0.78
As'	cm2	D16@300 6.61
As' / As n np=n.As/(bo	cm2 1)	0.00 0.00 15.00 0.011
C S Z		3.75 1.65 1.30
Sigma c	kg/cm2	14.3
Sigma s	kg/cm2	94.7
Tau Sigma ca Sigma sa Tau a	kg/cm2 kg/cm2 kg/cm2 kg/cm2	2.9 70.0 1800.0 8.5
Case		

Note

STRUCTURAL ANALYSIS OF STEEL SUPPORT (TUNNEL TYPE-I) Table 3.2.14:

Point	α _i (Degree)	α _i (Radion)	θ _i (Radian)	× Œ	Υ _i (m)	W _i (ton)	A _i (ton)	$\sup_{(\theta_i,\theta_{i+1})}$	COS (θ _i .α _i)	$\cos \frac{\cos(\theta_{i\rightarrow1}\alpha_{i})}{\cos(\theta_{i\rightarrow1}\alpha_{i})}$. Τ _i (ασί	H (ag	Α	T; (foil)
-	00.06	1.57	1.57	000	000			0.1180	1000	0.0078	1 0000	(1)	•	
7	76.15	1.33	1.45	0.11	0.91	1.59	2.29	0.2393	0.9926	0 9928	0.9998	0.2410	9.51	24:12
m	62.31	1.09	1.21	0.43	1.76	3.08	3.52	0.2393	0.9926	0.9928	0.9996	0.2410	14.59	24.12
4	48.46	0.85	0.97	0.95	2.52	4.40	4.35	0.2393	0.9926	0.9928	0.9994	0.2409	18.06	24.11
'n	34.62	09:0	0.73	1.64	3.13	5.47	5.03	0.2393	0.9926	0.9928	0.9992	0.2409	20.87	24.11
9	20.77	0.36	0.48	2.45	3.55	6.21	5.81	0.2393	0.9926	0.9928	0.9990	0.2408	24.13	24.10
7	6.92	0.12	0.14	3.34	3.77	4.92	4.89	0.2401	0.9926	0.9927	0.9989	0.2416	20.03	24.10
00	0.00	0:00		3.80	3.80	0.00								
												MAX	24.13	
	,													
	wnere,													
	W	.∇ =	$\mathbf{J}_i \cdot \mathbf{H} \cdot \mathbf{b} \cdot \mathbf{\gamma}$	÷ ,	•	,								
	P		The State of the S	A 400 000		/ LOC -								

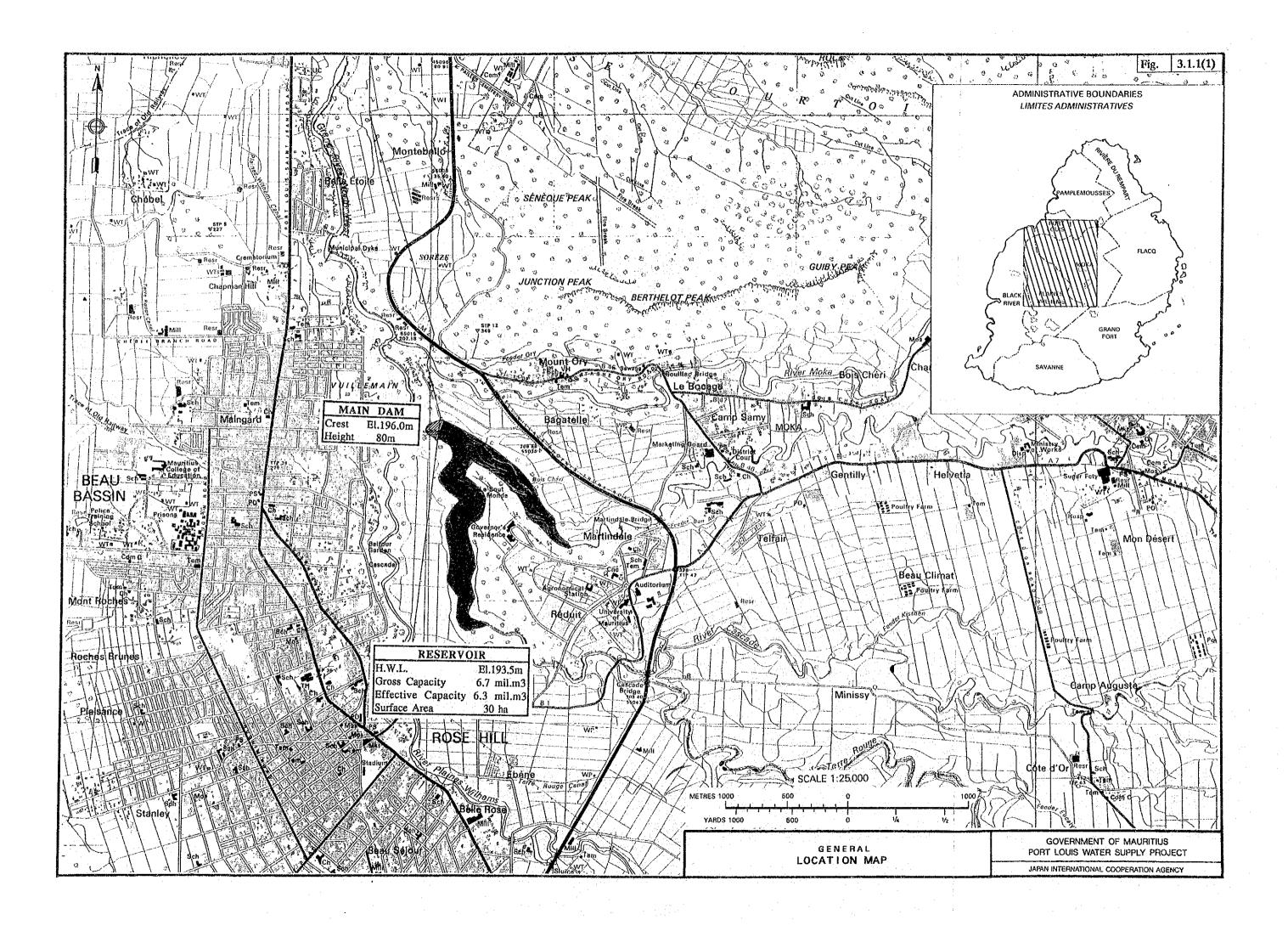
Height of rock to act as load (= 1.95 m) Interval of steel support (= 1.5 m) Unit weight of rock (= 2.5 t/m^3)

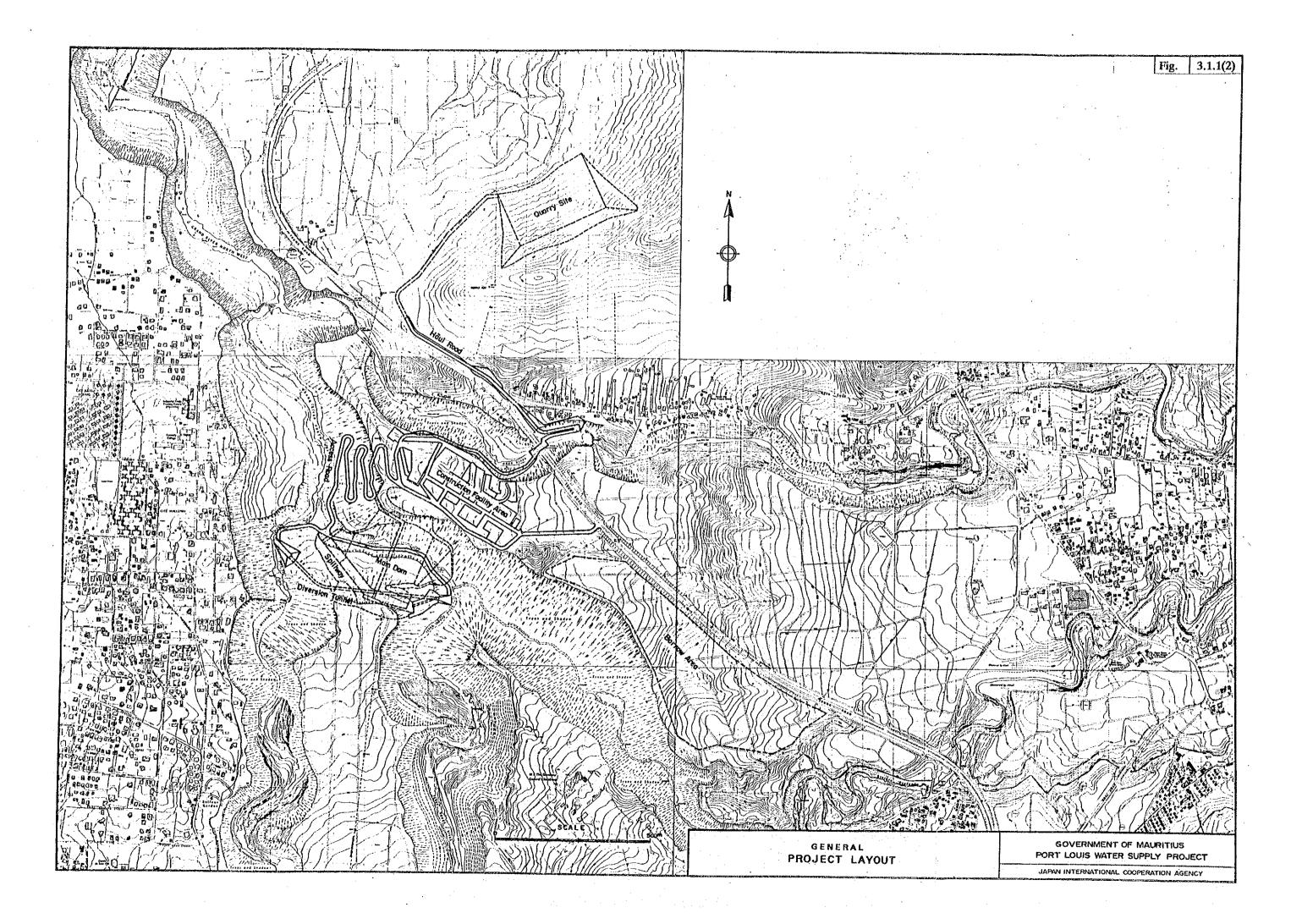
 $A_i = W_i \cdot COS \alpha_i \text{ (For } \alpha_i \le \phi = 25^\circ)$ $A_i = \frac{SIN 65^\circ}{SIN(115^\circ \cdot \alpha_i)} \cdot W_i \text{ (For } \alpha_i > \phi = 25^\circ)$

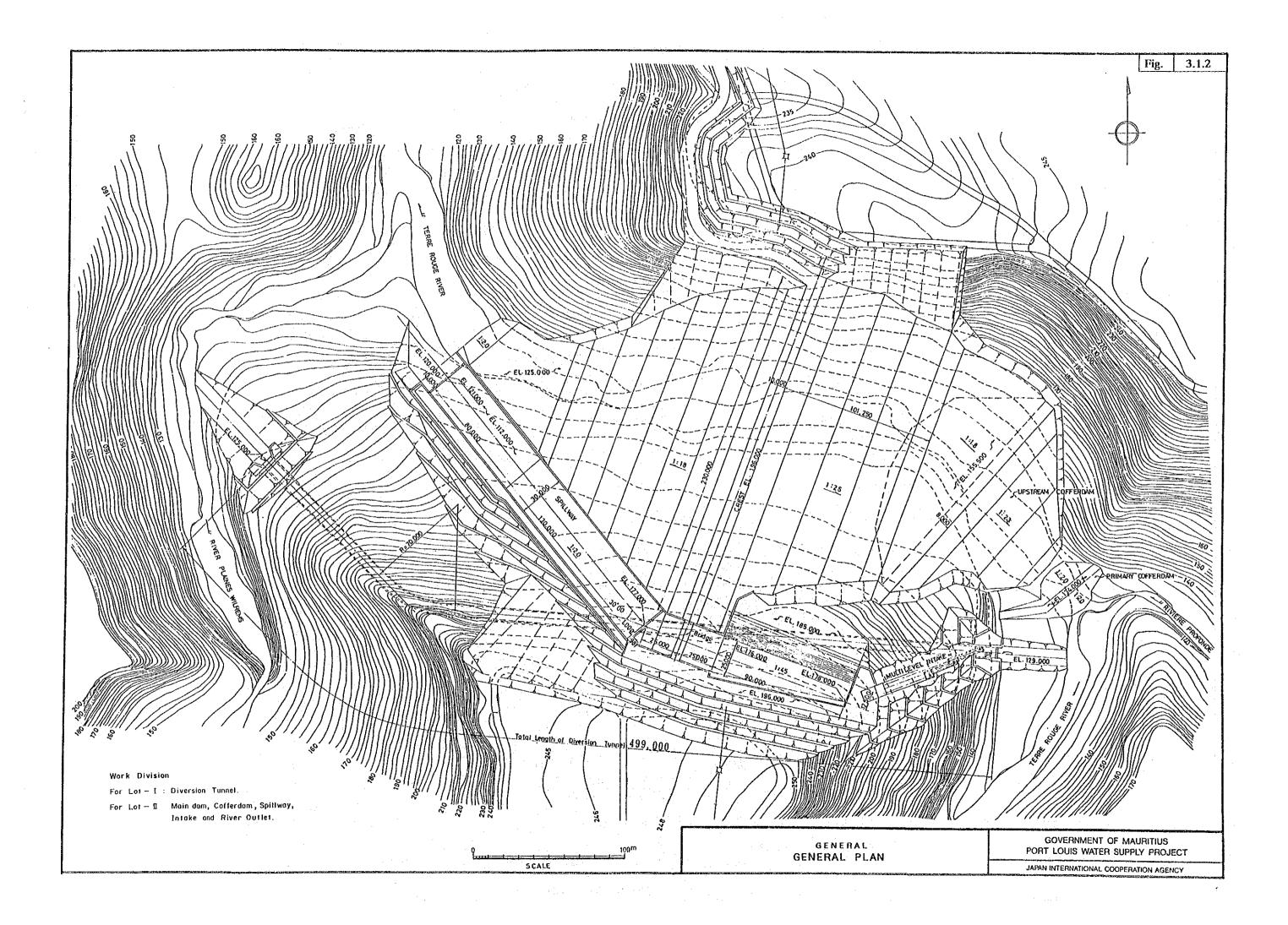
 $T_i \cdot \cos(\theta_i - \alpha_i) / \cos(\theta_{i+1} - \alpha_i)$

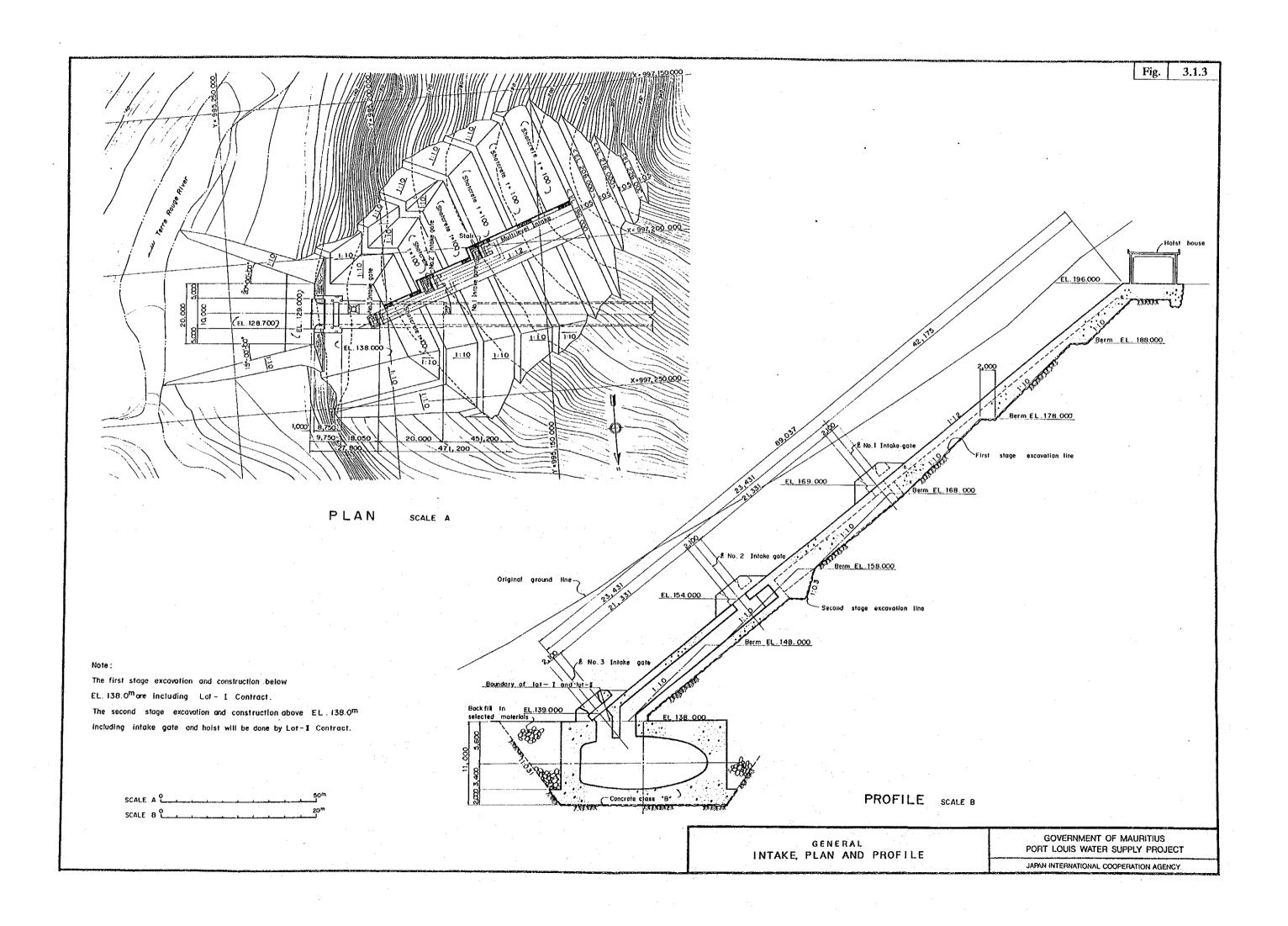
 $\overline{T}_i \cdot \text{SIN} (\theta_i - \alpha_{i+1}) / \text{COS} (\theta_{i+1} - \alpha_i)$ \overline{T}_{i+1}

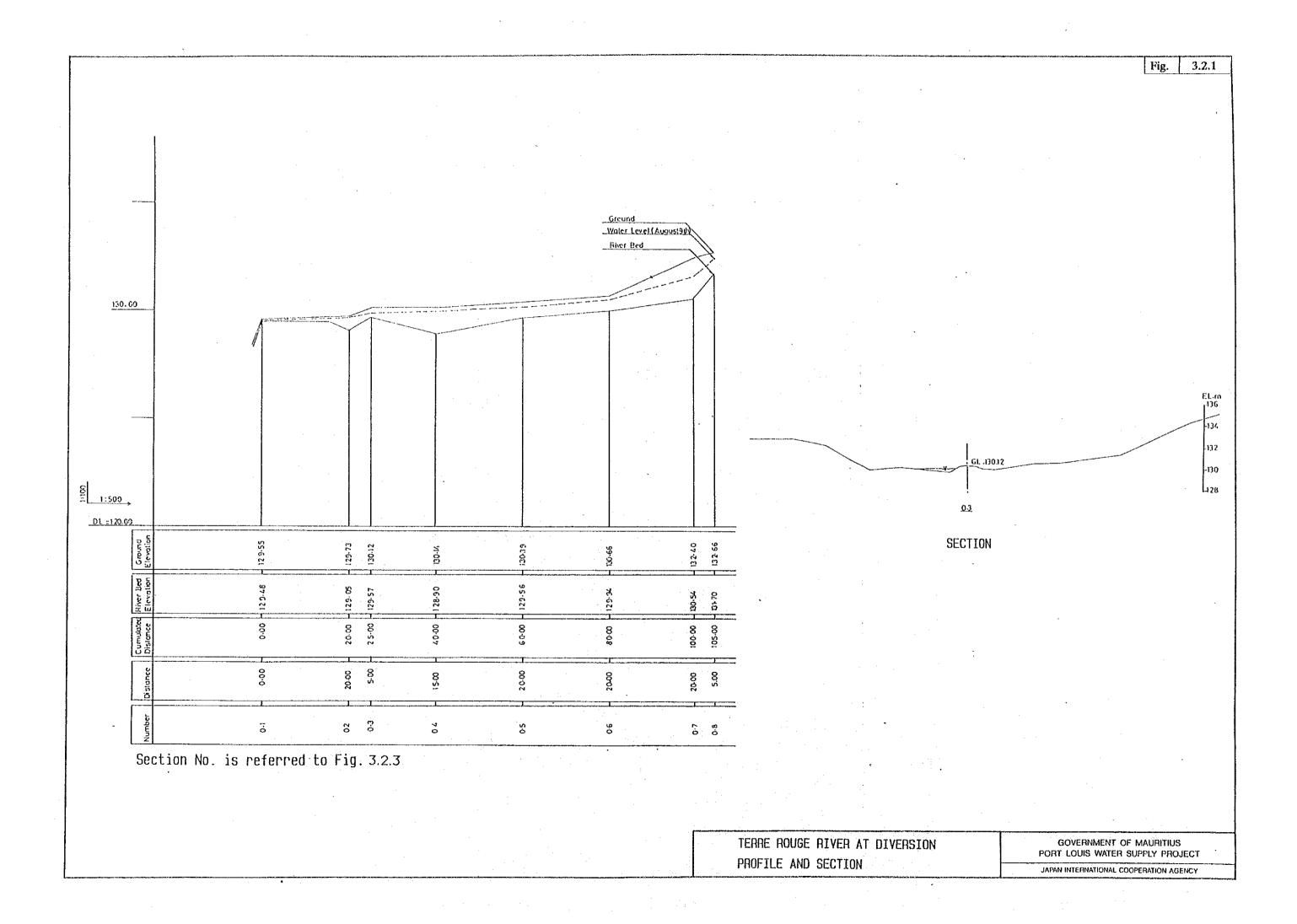
 $\overline{T}_i \cdot (A_i / \overline{F}_i)$ max

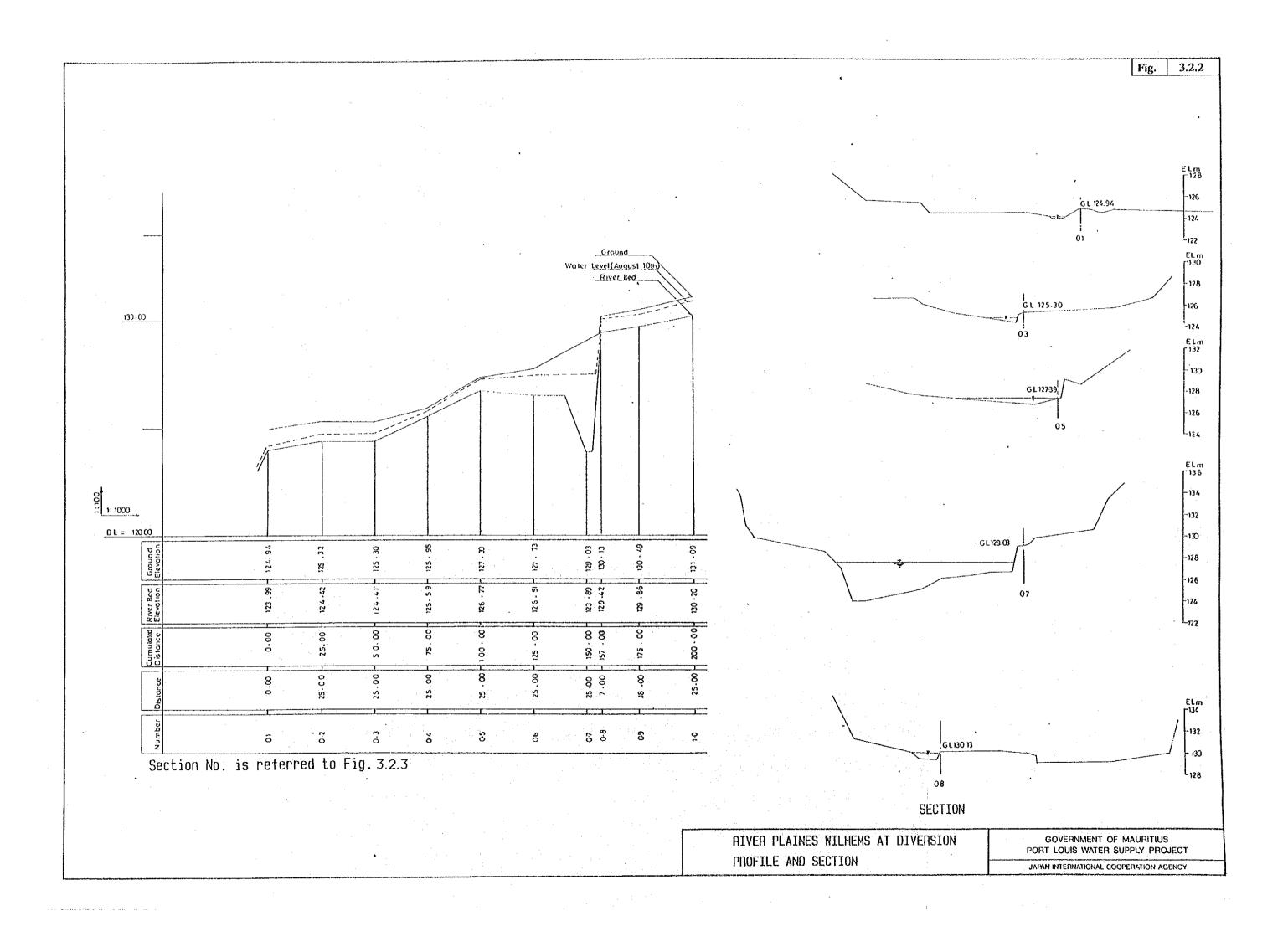

24.12 (ton) 0.86 x Tmax x h = 0.86 x 24.12 x 0.0277 = 0.57 (t·m)

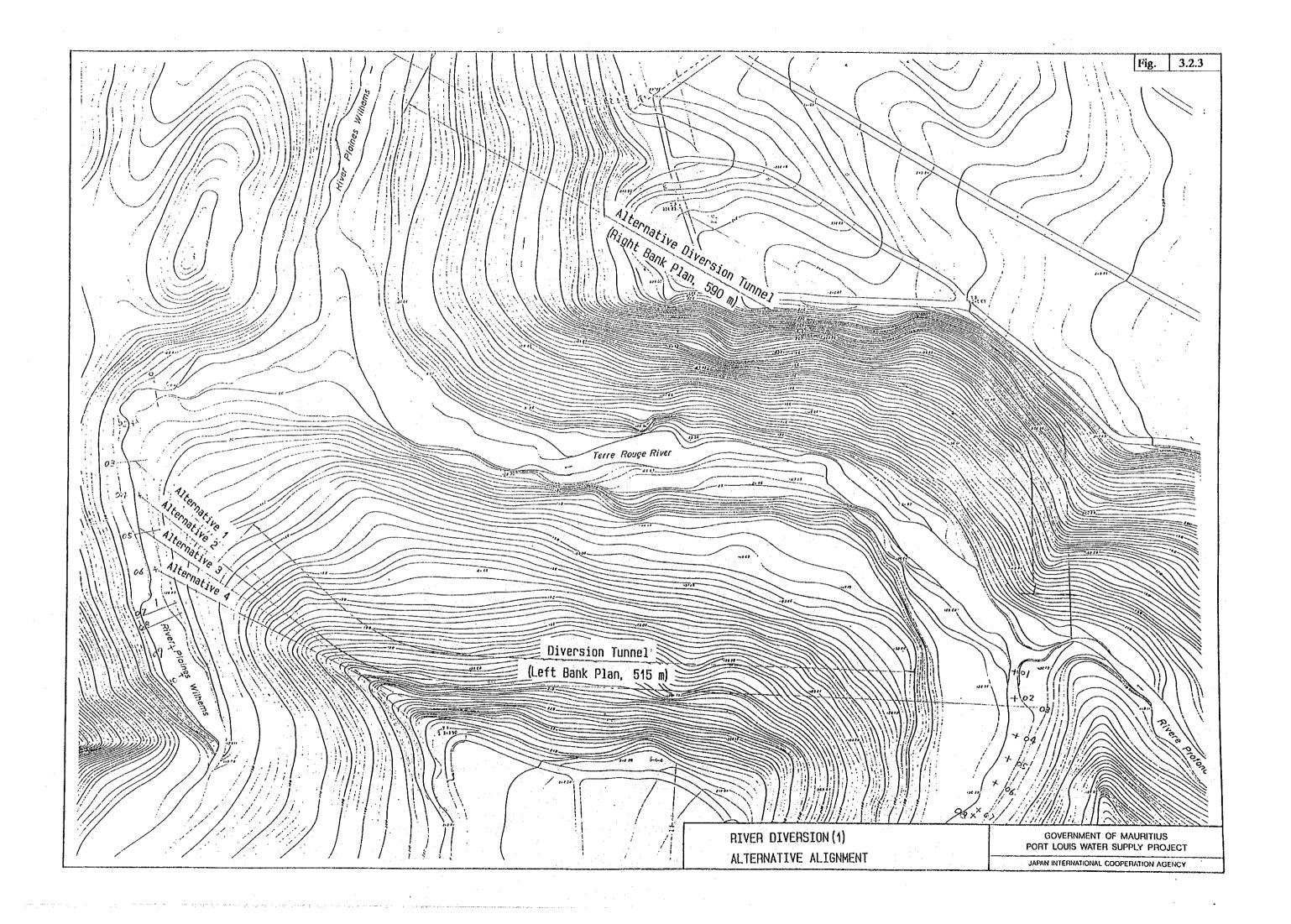

Table 3.2.15: STRUCTURAL ANALYSIS OF STEEL SUPPORT (TUNNEL TYPE-II)

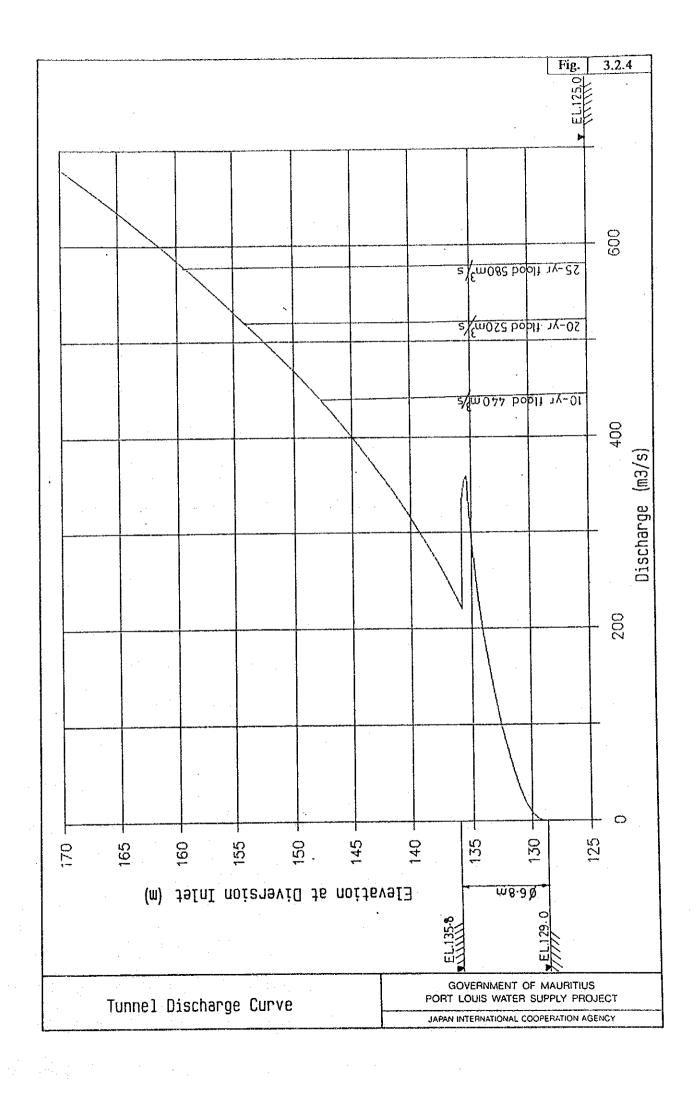

		:												
Point	α _i (Degree)	α _i (Radion)	6; (Radian)	(m)	Υ _i (m)	W _i (ton)	A _i (ton)	SIN (θ _i .θ _{i+1})	$\cos (\theta_i \cdot \alpha_i)$	$\cos (\theta_{i-+1}\alpha_i)$	T_i (ton)	F , (ton)	A _i	T _i (ton)
	90.00	1.57	1.57	00.00	-0.00			0.1189	1.0000	0.9928	1.0000			
2	76.15	1.33	1.45	0.11	0.91	2.98	4.32	0,2393	0.9926	0.9928	0.9998	0.2410	17.89	50.98
m	62.31	1.09	1.21	0.43	1.76	5.80	6.61	0.2393	0.9926	0.9928	9666.0	0.2410	27.44	50.97
4	48.46	0.85	0.97	0.95	2.52	8.28	8.19	0.2393	0.9926	0.9928	0.9994	0.2409	33.98	50.96
'n	34.62	0.60	0.73	1.64	3.13	10.29	9.45	0.2393	0.9926	0.9928	0.9992	0.2409	39.25	50.95
\$	20.77	0.36	0.48	2.45	3.55	11.69	10.93	0.2393	0.9926	0.9928	0.9990	0.2408	45.38	50.94
7	6.92	0.12	0.14	3.34	3.77	12.41	12.32	0.2401	0.9926	0.9927	0.9989	0.2416	50.99	50.94
œ	0.00	0.00		3.80	3.80	0.00								
								-				MAX	50.99	
. •	where,													
	Wį	∇ ==	Δlį•H•b•γ	,										
	耳』	ئو پنظو	Height of rock to act as load (= 5.5 m)	k to act as	load (= 5.5)	(m)			-					
	٥	- 1	nterval of ste	ser support	(mpc:1 =)									
	>-		Unit weight of rock $(= 2.5 \text{ t/m}^3)$	f rock (=)	2.5 t/m³)									
	Ą		$A_i = W_i \cdot COS \alpha_i$		(For $\alpha_i \le \phi = 25^\circ$)	_								
		**	$A_i = \frac{\sin 65^{\circ}}{\sin(115^{\circ} - \alpha_i)}$	ζ. (γ.) (γ.) (γ.)	$\stackrel{-}{\longrightarrow}$ W _i (For $\alpha_i > \phi = 25^\circ$)	>¢=25°)								
	T+1	11	$\overline{T}_i \cdot \cos(\theta_i - \alpha_i) / \cos(\theta_{i+1} - \alpha_i)$	$(\alpha_i - \alpha_i)/C$	OS (0,+1	- α _i)								

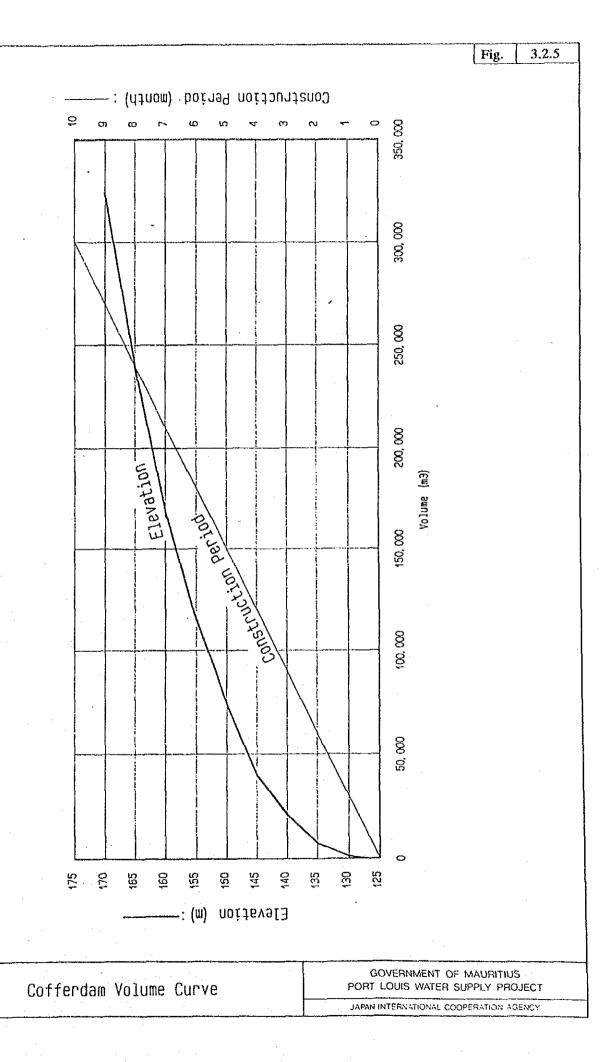

 $\overline{T}_i \cdot \text{SIN} (\theta_i - \alpha_{i+1}) / \text{COS} (\theta_{i+1} - \alpha_i)$ $\overline{T}_i \cdot (A_i / \overline{F}_i) \text{max}$ 50.98 (ton)
0.86 x Tmax x h = 0.86 x 50.98 x 0.0277 = 1.21 (t·m)

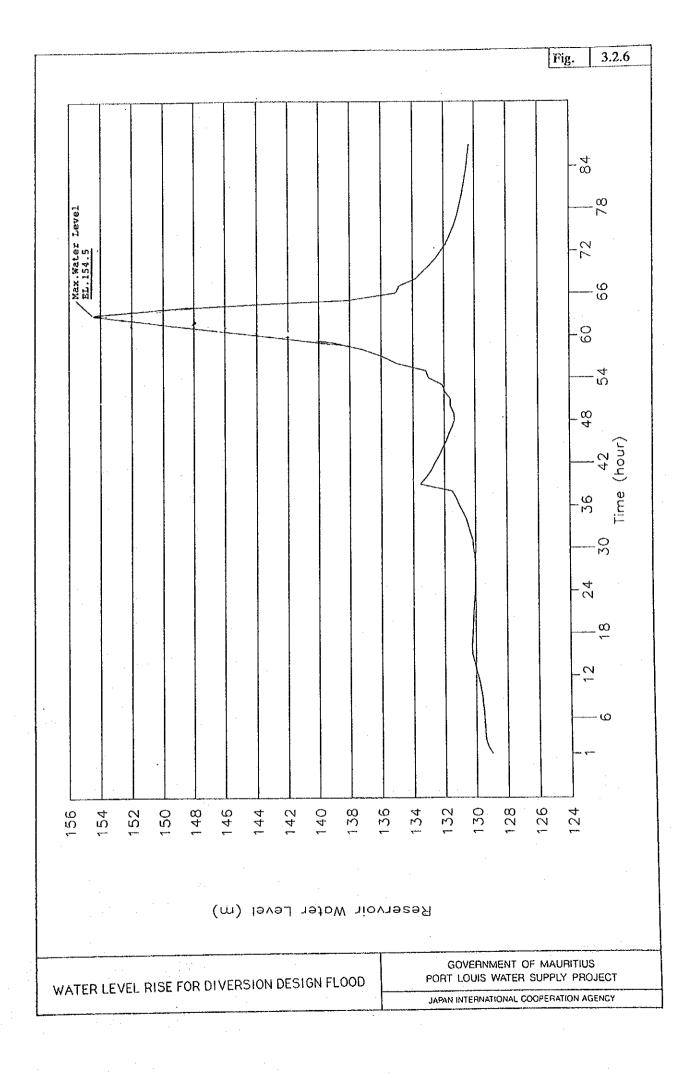

 $\frac{F_{i}}{T_{i}}$ Thax
Mmax

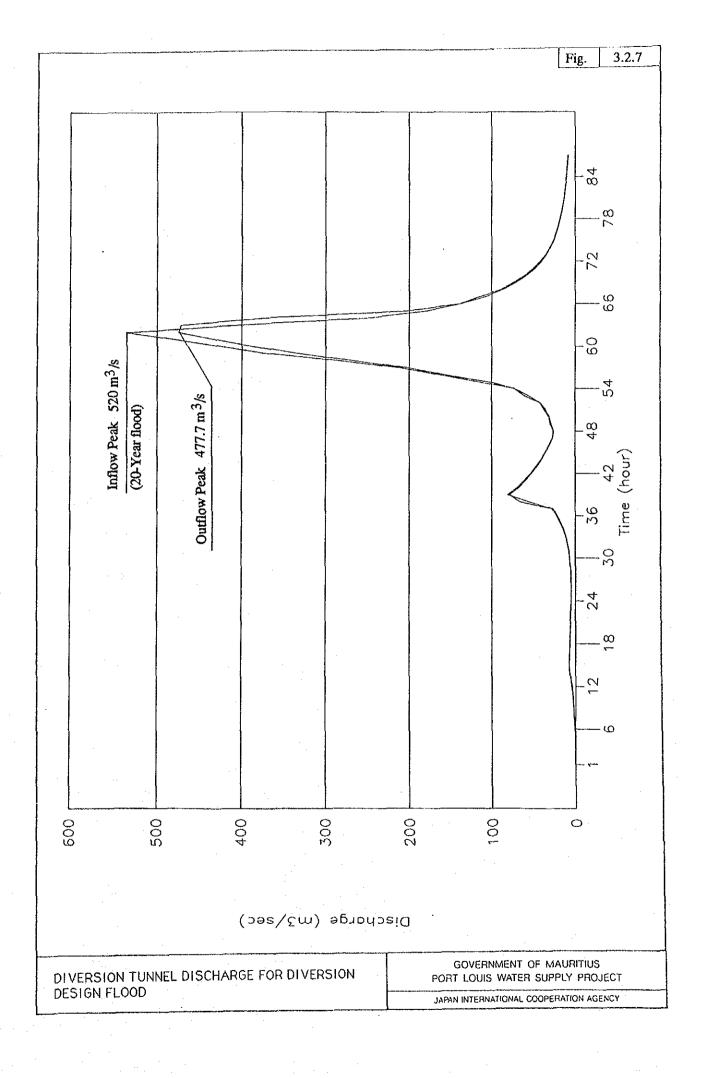


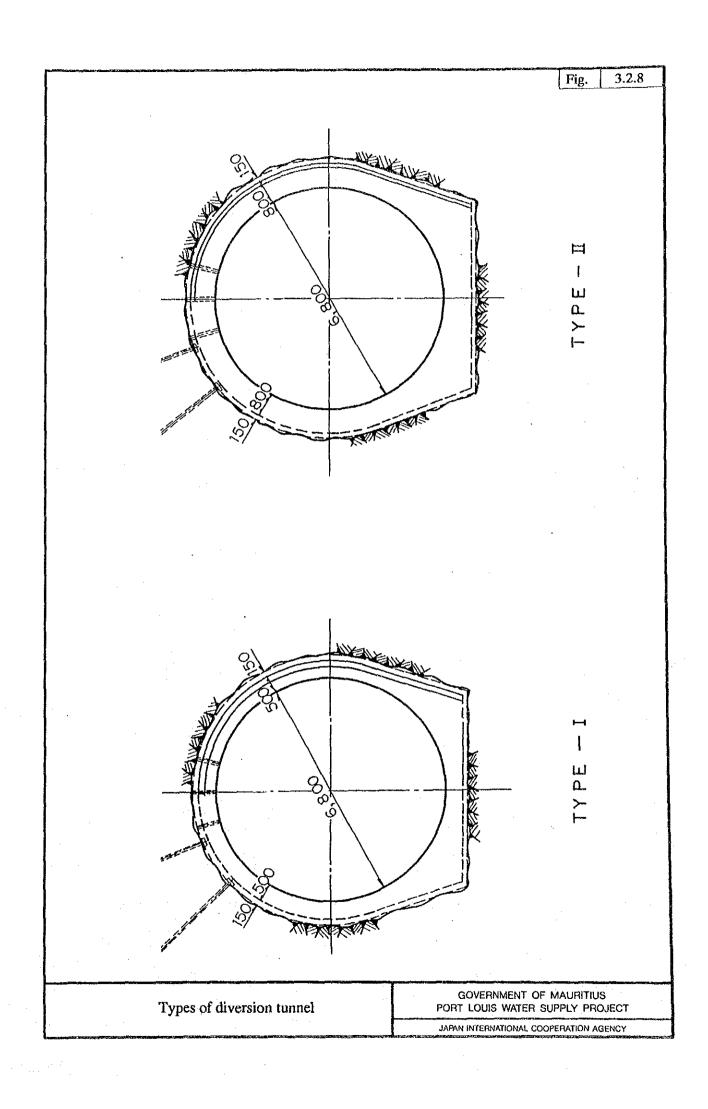


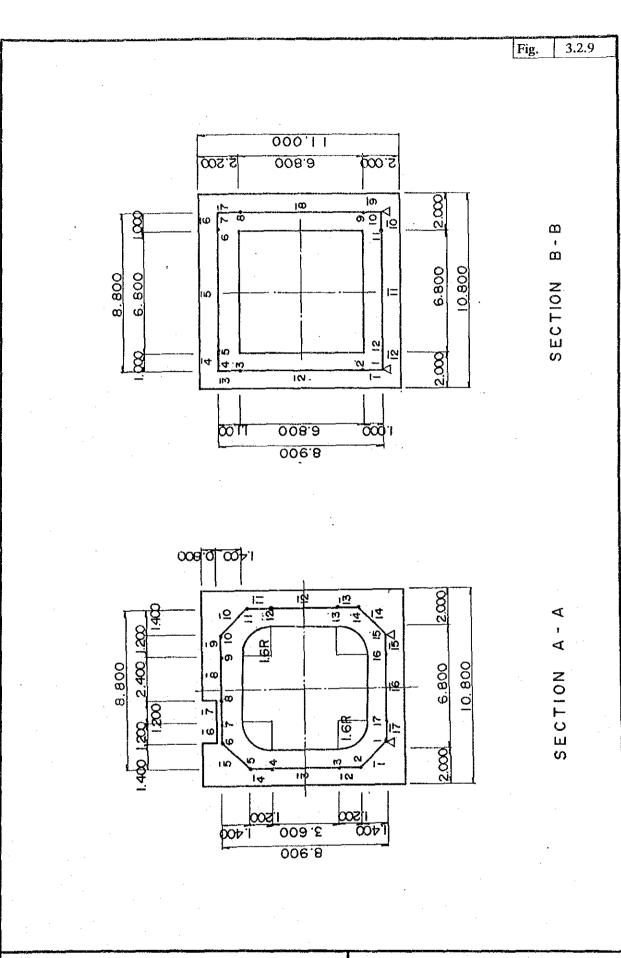




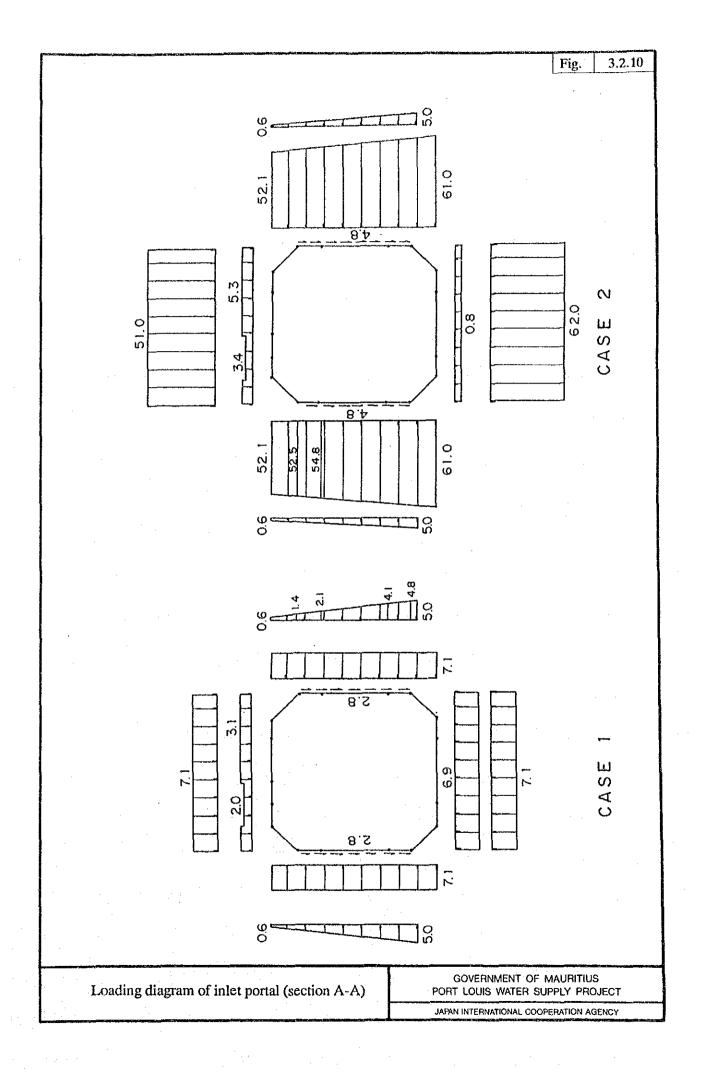








.



Section and dimension of inlet portal

GOVERNMENT OF MAURITIUS
PORT LOUIS WATER SUPPLY PROJECT

JAPAN INTERNATIONAL COOPERATION AGENCY

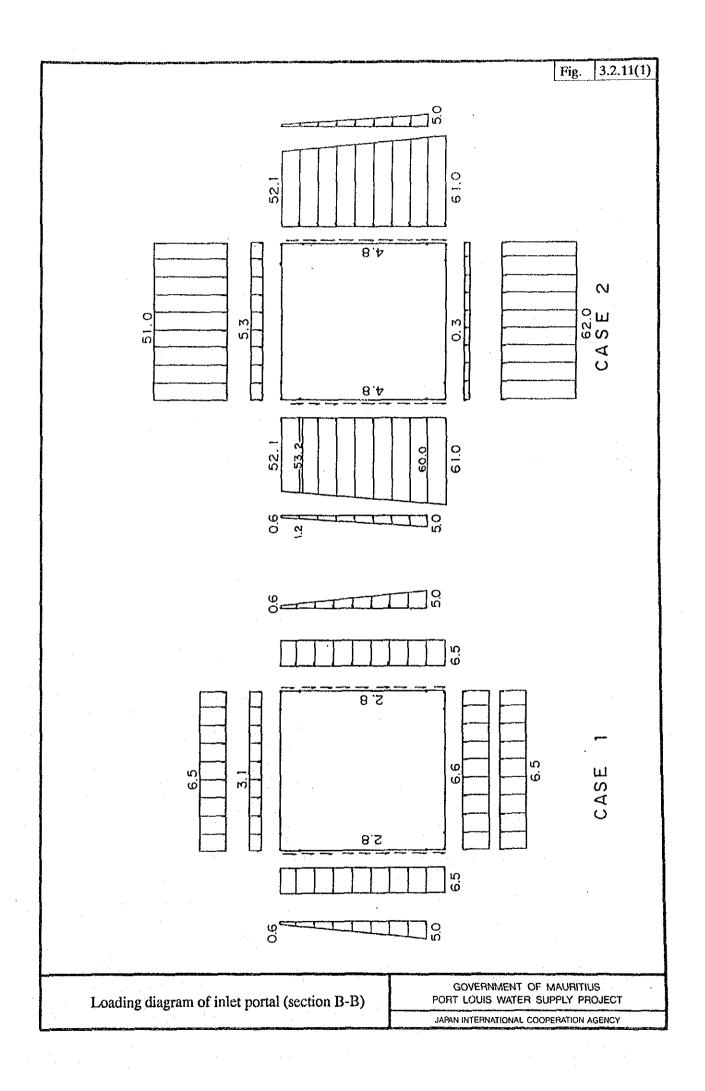
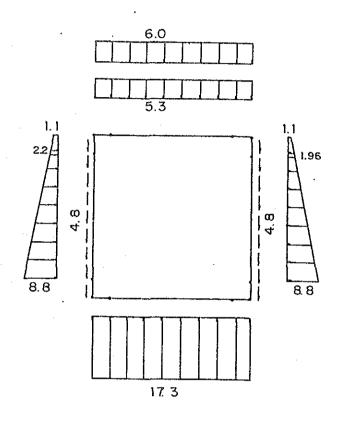
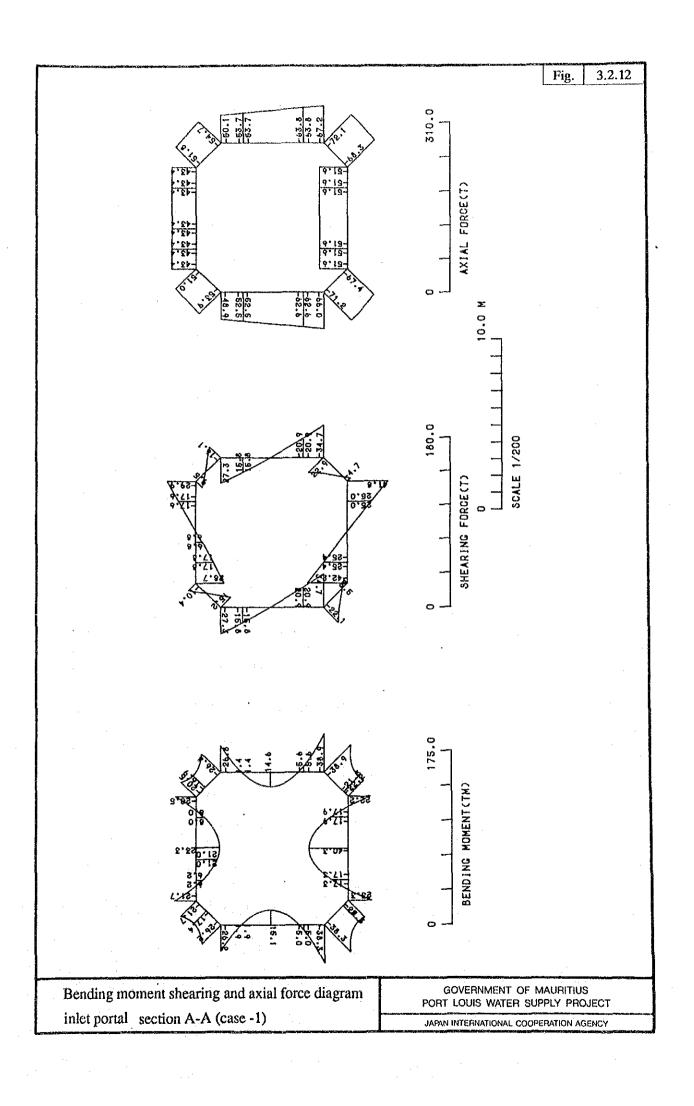
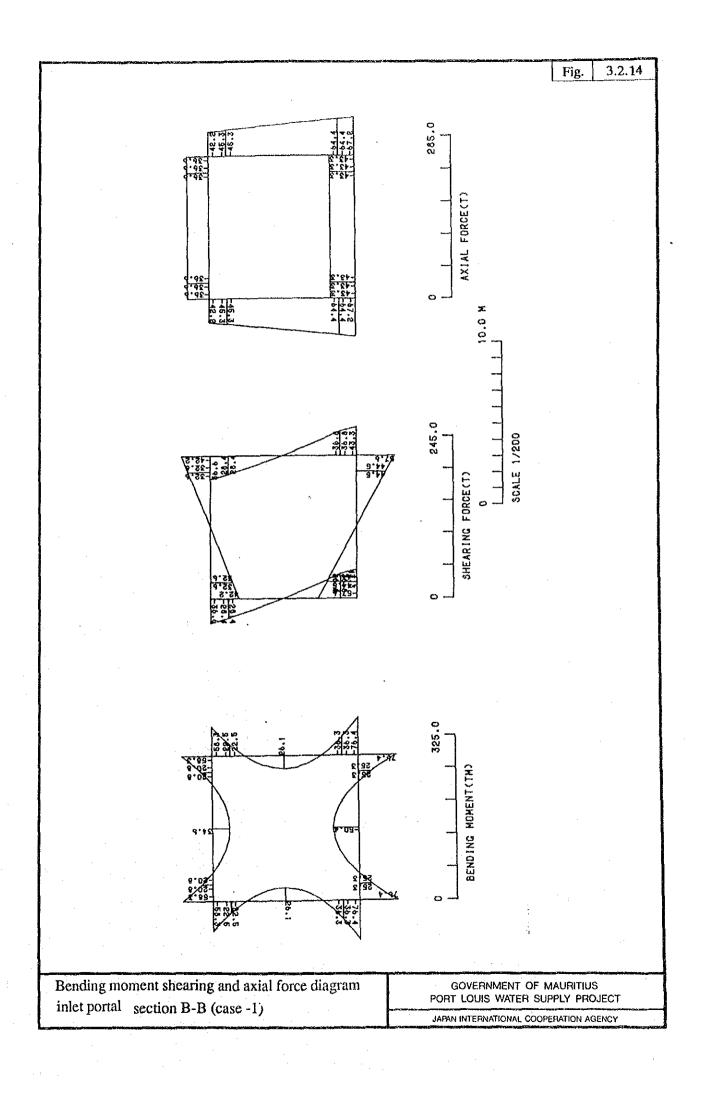
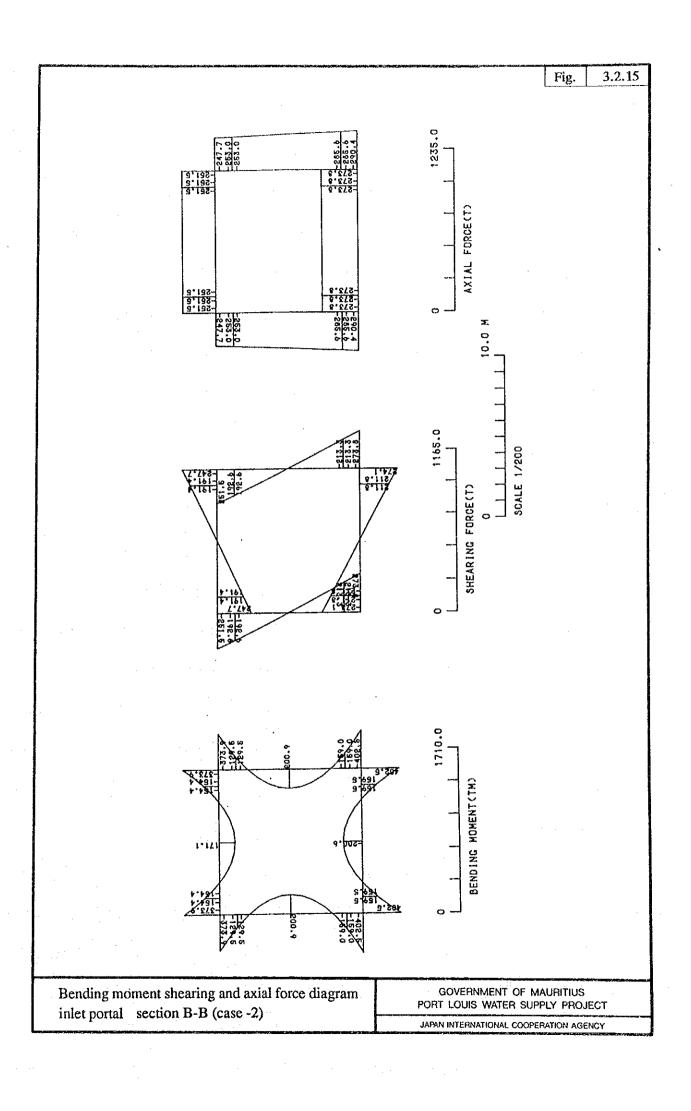



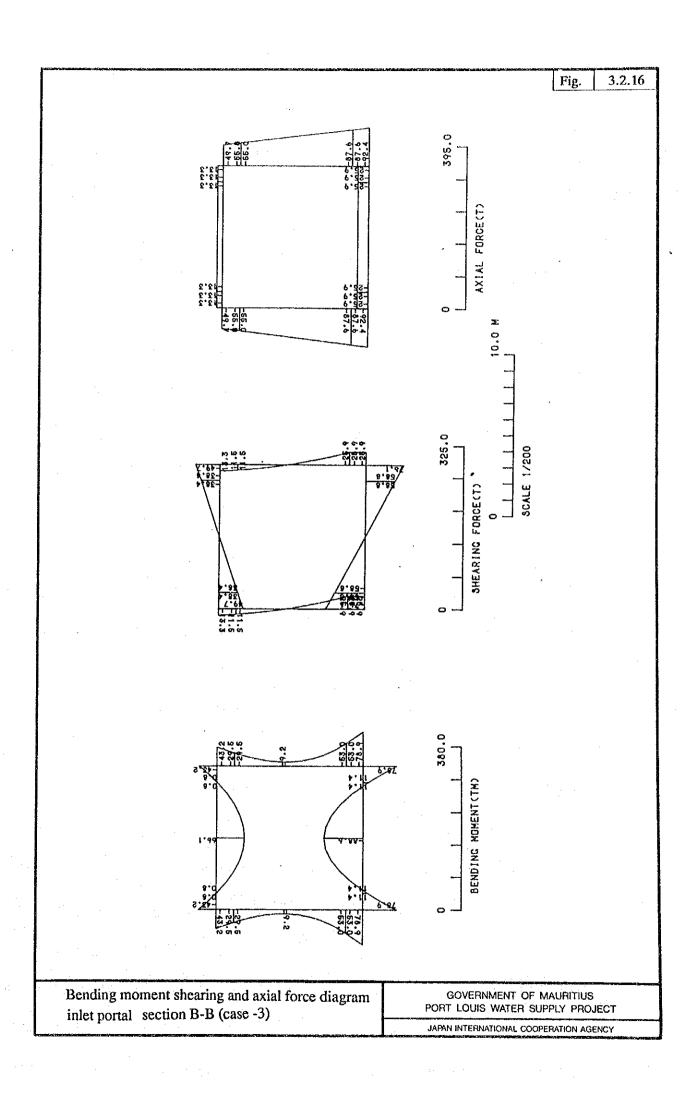
Fig. 3.2.11(2)

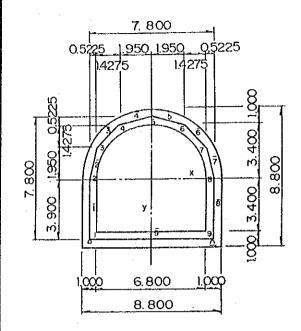


CASE 3


Loading diagram of inlet portal (section B-B)

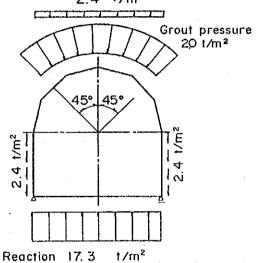

GOVERNMENT OF MAURITIUS PORT LOUIS WATER SUPPLY PROJECT


JAPAN INTERNATIONAL COOPERATION AGENCY



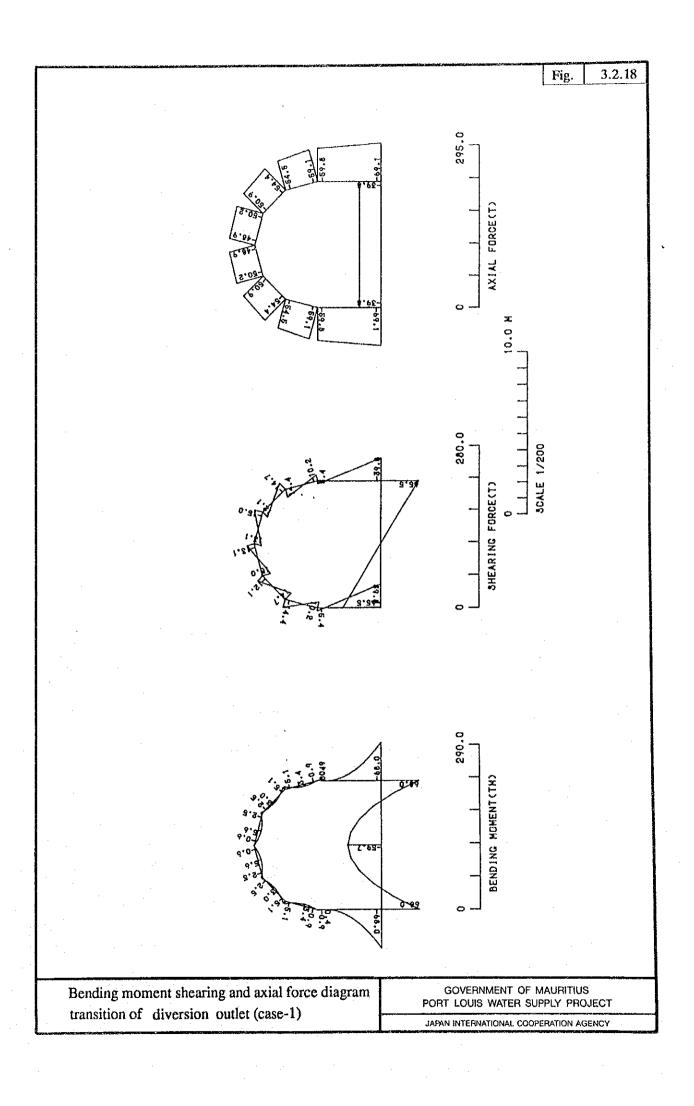
3.2.13 Fig. -310.8 -310.8 -310.8 SHEARING FORCECT) BENDING MOMENTCIMS Bending moment shearing and axial force diagram GOVERNMENT OF MAURITIUS PORT LOUIS WATER SUPPLY PROJECT inlet portal section A-A (case -2) JAPAN INTERNATIONAL COOPERATION AGENCY

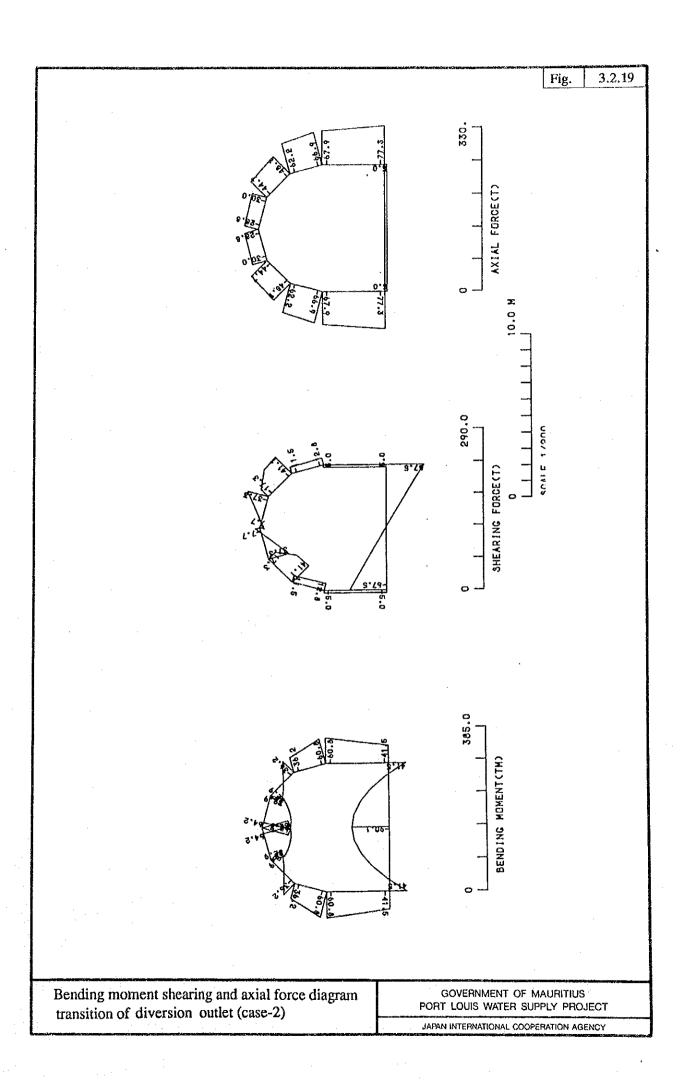
А	=	1.	0	m _s
1	=	Ο.	0	833 m²

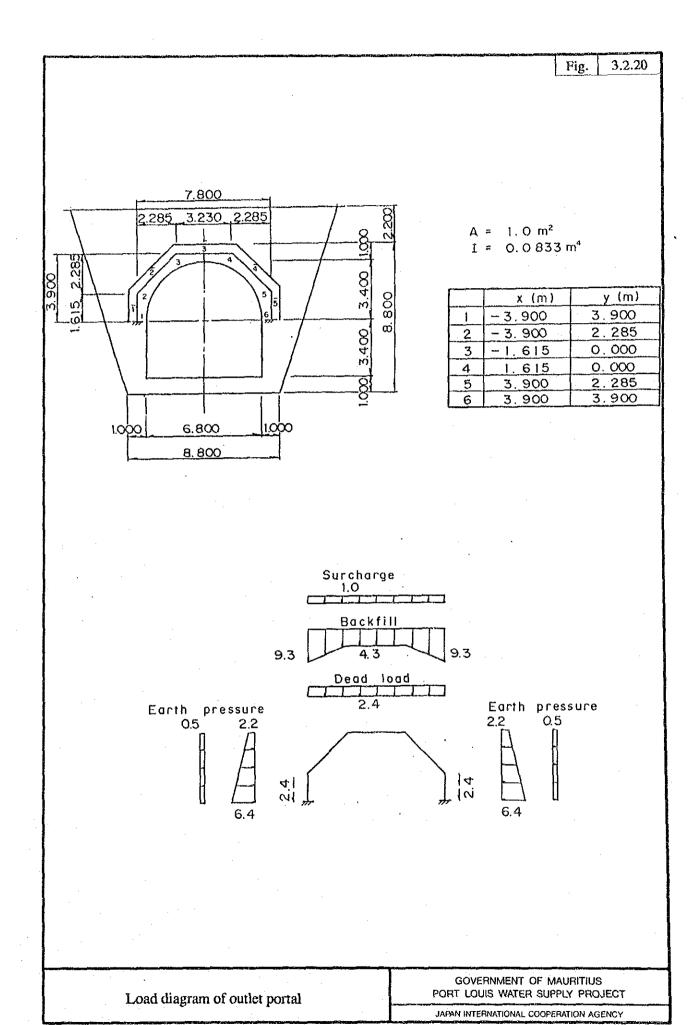

	x (m)	y (m)	
1	- 3.900	3.900	
2	- 3.900	0.000	
3	- 3.3775	-1.950	
4	-1.950	- 3.3775	
5	0.000	- 3.900	
6	1.950	- 3.3775	
7	3.3775	-1.950	
8	3.900	0.000	
9	3.900	3.900	

Dead load
2.4 t/m²

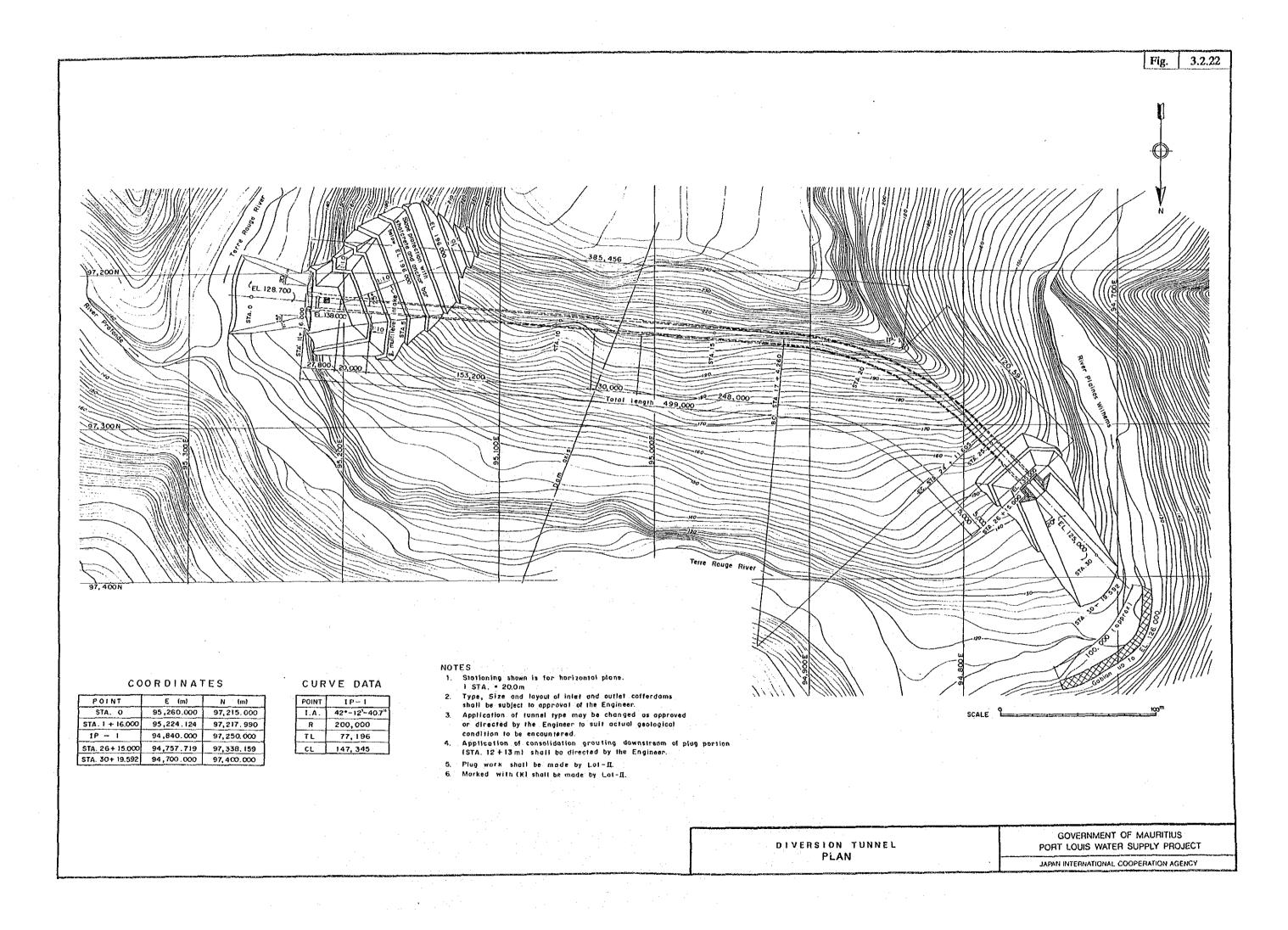
Water pressure
11.6 t/m²

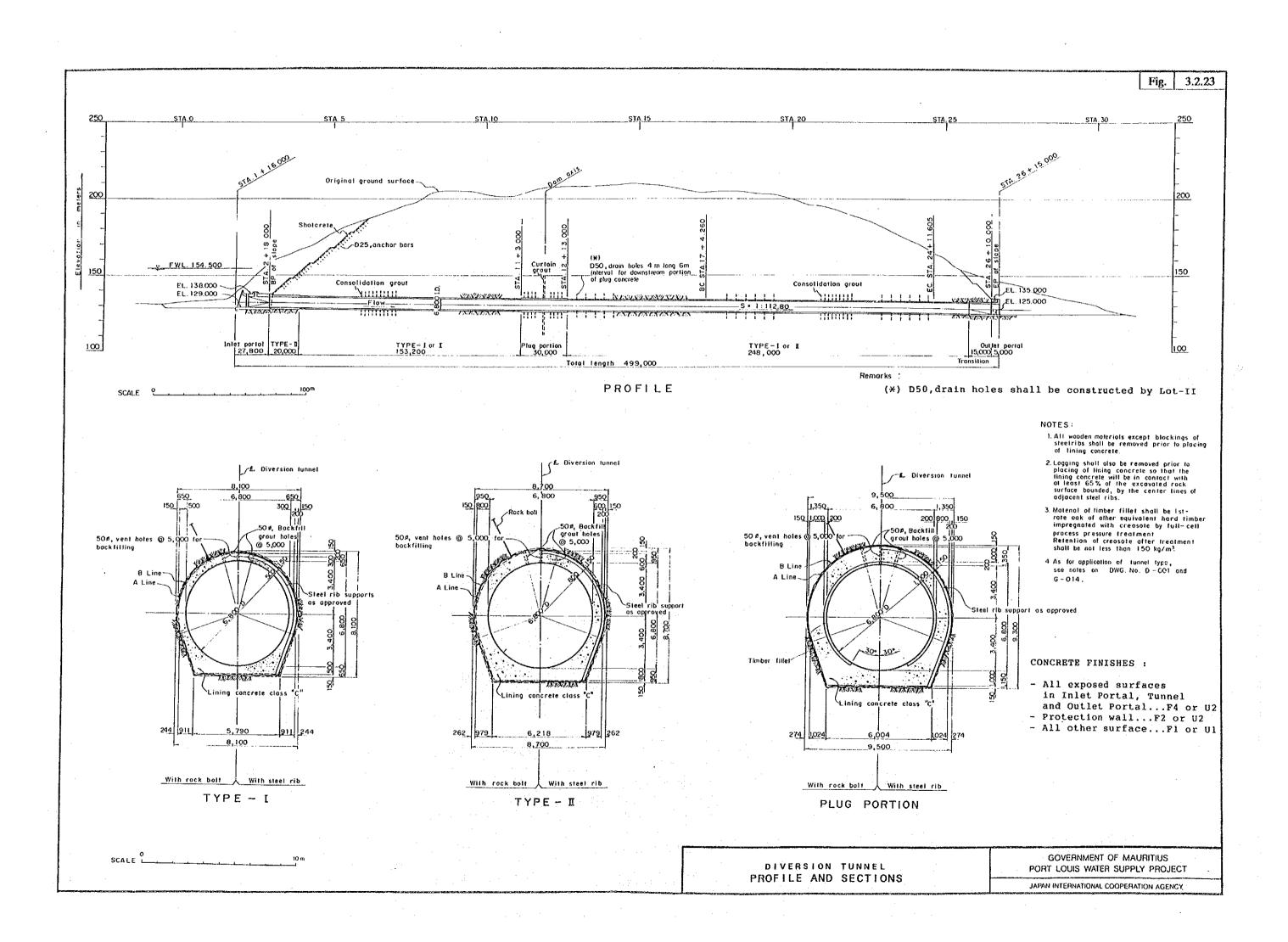

Reaction 5.2 t/m²

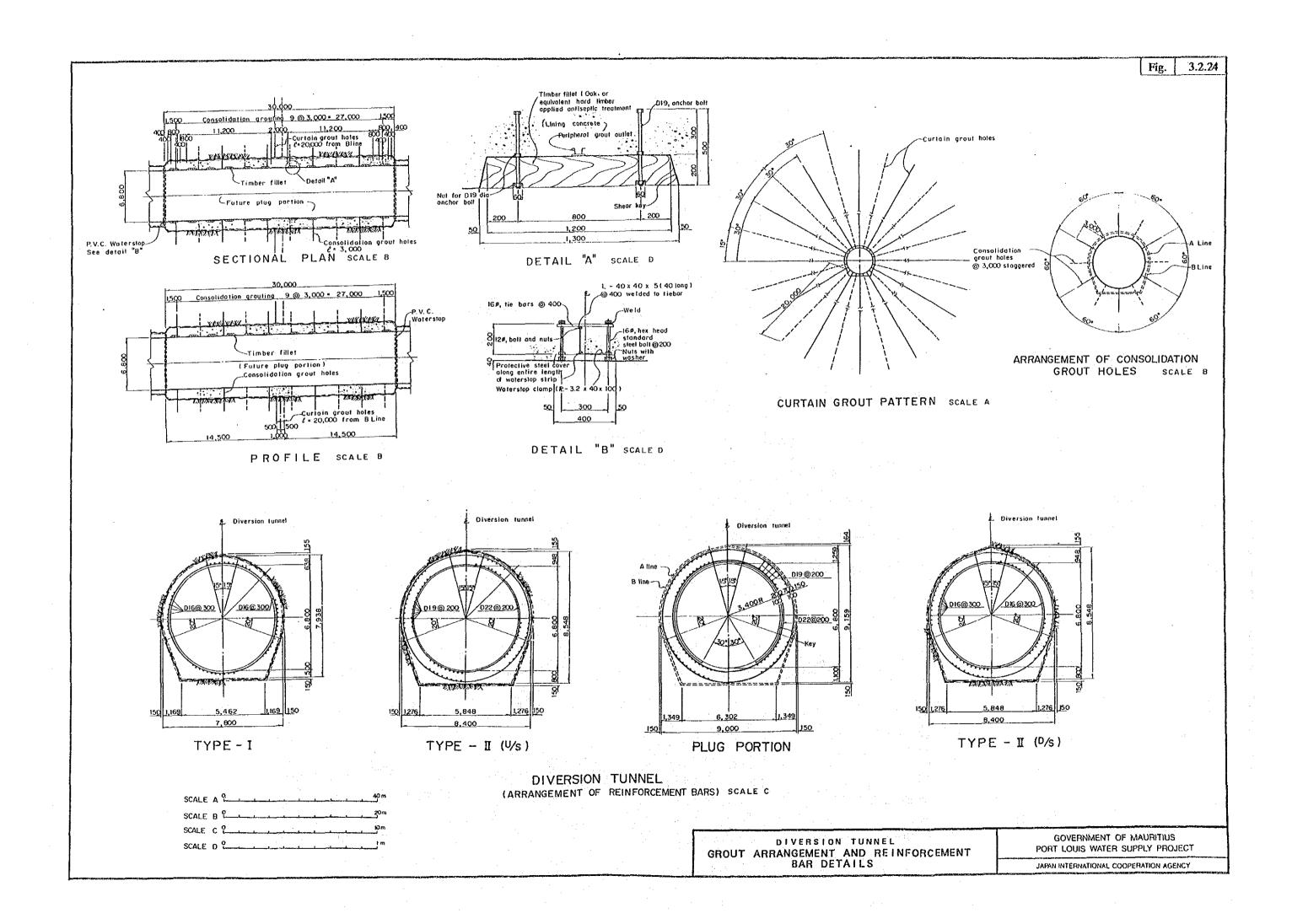

Dead load 2.4 ½m²

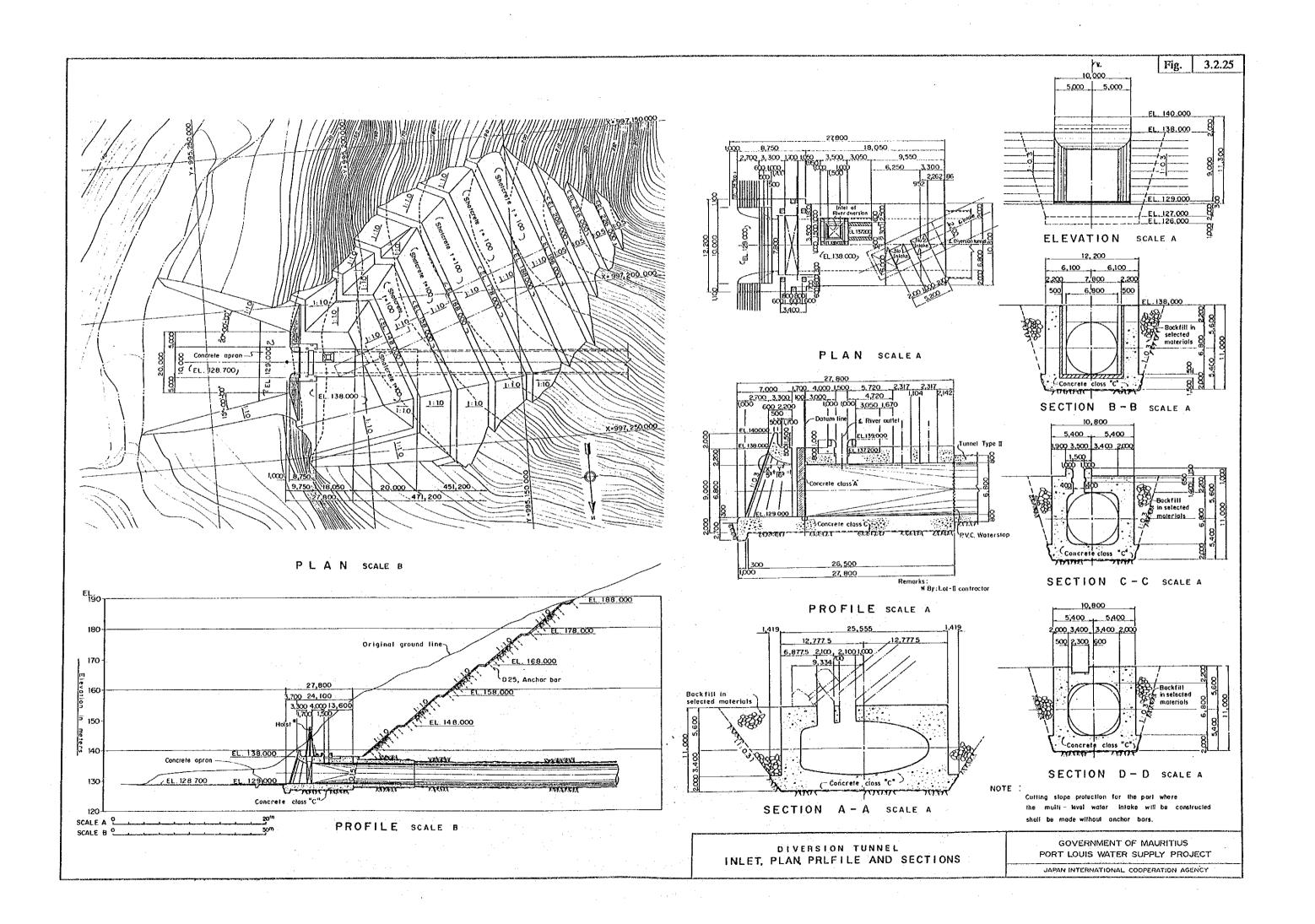


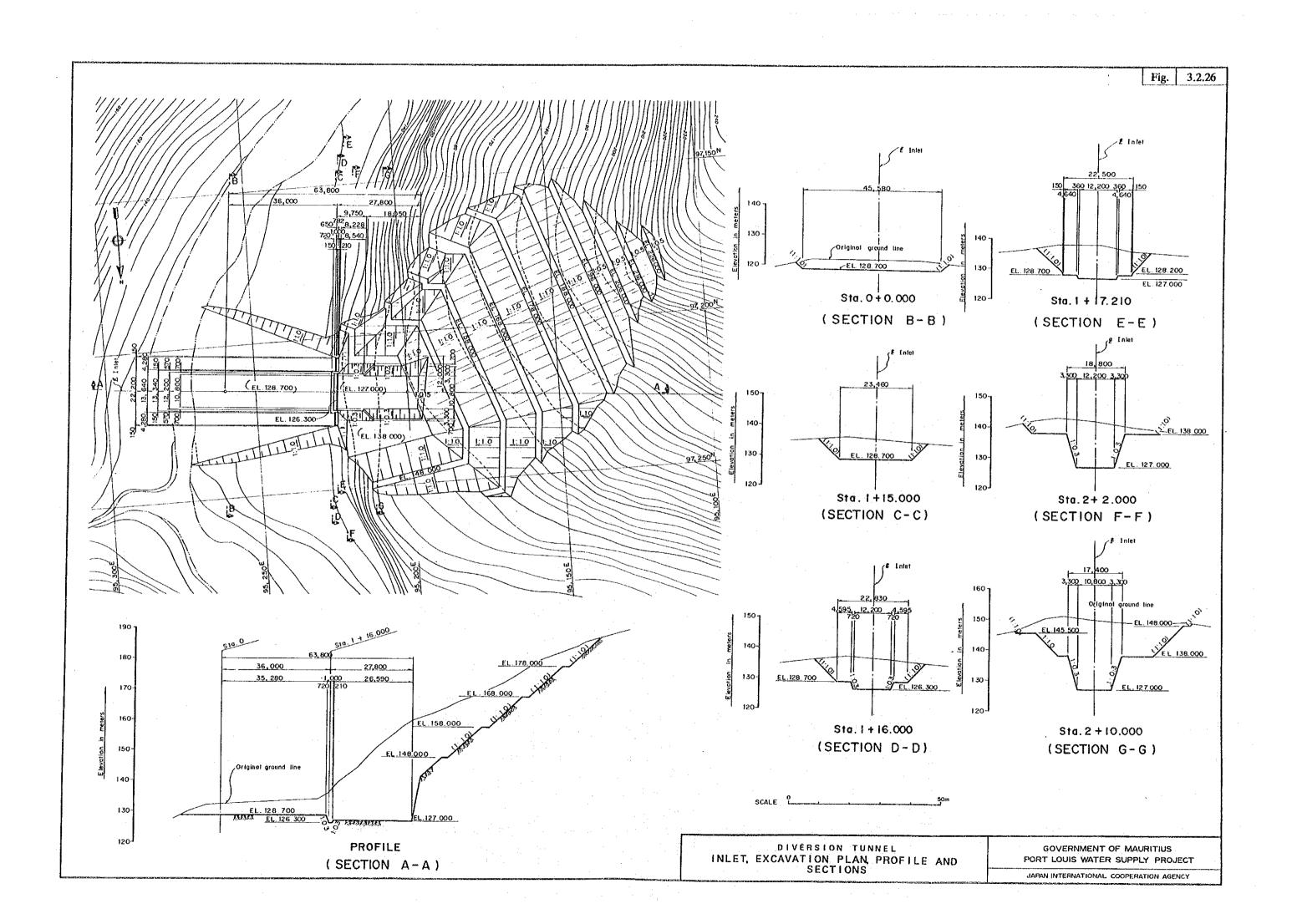
(1) During diversion


(2) Grouting condition








3.2.21 Fig. Bending moment shearing and axial force diagram, GOVERNMENT OF MAURITIUS
PORT LOUIS WATER SUPPLY PROJECT Outlet portal JAPAN INTERNATIONAL COOPERATION AGENCY

