

図5-10 中国西山石膏礦 3月14日焼成品 Gc-2

(7) 物理試験

(i)試験項目

混水率、始発、終結、抗折強度、抗圧強度

(ii)試験法

JIS'

QJ/TG08.02-89(中国規格)

(iii) 試験結果

表 5-13 物理試験結果

	試除	室	水	混	凝	結	抗折	抗圧	抗張	試
サンプル	験規格	温	温	水量	始発	終結	強度	強度	強度	験
	格	$^{\circ}\mathbb{C}$	$^{\circ}$	%	min	min	MPa	MPa	MPa	室
西山 3 月 13日焼成 G c-1	JIS		13	76	14	22	1, 31	2, 35		西山
西山 3 月13日焼成 G c-2	JIS	20	15	80	11	20	1. 28	2. 10		西山
同 上 Gc-2	QJ	24	12	79	7, 30	18	· —	2, 10	0. 58	日本
西山 1 月25日サンフル Gc-3	JIS			51	11	18	2, 29	5, 43		西山
同 上 G _{c-3}	JIS	22	15	58	7	16	1, 34	3, 03	0. 74	日本
平邑 α 石膏 Gc-4	JIS	20	15	72	15	30	2. 52	5, 18		西山
中 国 某 社 Gc-8	JIS			83	11.5	22, 0		2. 94	0, 73	日本
日本陶磁器 Gc-7	JIS	20	15	72	16	34	3, 23	7. 64		西山
日本陶磁器 Gc-9	JIS			76	12, 5	24	_	4, 21	0. 99	日本

(8) 顕微鏡による観察

(i)試験法

サンプル微粉末を偏光顕微鏡で観察し、その写真を投影した。

測定サンプル

中国西山石膏礦 3月14日焼成品 G_{c-1}

同 上 3月14日焼成品 G_{C-2}

中国平邑 α 石膏 G_{c-4}

(ii) 顕微鏡写真

顕微鏡写真を写真5-1~5-3に示す。

(iii) 键察結果

中国西山石膏礦 焼成品 G_{c-1} と G_{c-2} は共に粉末粒径が小さく、大きくても 50μ 程度であり 10μ 以下の小粒が多く観察される。

結晶形は不揃いであり、β型半水石膏である。

中国平邑 α 石膏 G_{c-1} は、大は 100μ から小は 10μ までの粒子が多く、結晶はよく発達し形がはっきりしている。

α石膏であると判断される。

5-4-5 石炭の品質

西山省には前述の如く、良質の石炭が豊富に産出され、太原市西山は産地の一つである。

この石炭は発熱量が高く、硫黄分、灰分が少なく、揮発分は14~27%含有している良質の歴青炭である。

石膏焼成用としては、充分な品質である。

西山地区の石炭の品質を表5-14に示す。

水素 発 熱 量 固定炭素 灰 分 揮発分 全硫黄 湿分 鉱山 % % % Kcal/Kg % % % 3,88 17, 78 0.76 7, 583 79.45 銘 0.60 11.88 74 76. 79 3, 65 15. 27 2, 40 7, 279: 13, 18 銘 0.92稺 3, 65 7, 160 74.88 杜 兒 坪 16.23 0.98 16, 18 0, 85 74.72 3, 61 6,926 13, 87 1.53 白 家 庄 0.87 16, 52 68. 15 3, 53 6, 541 西 曲 1, 01 21, 22 21, 71 0,80 5, 884 62, 85 3, 35 西 曲 0.84 28. 14 22, 77 1.03 4.06 0.44 25, 84 27, 63 1. 29 6,094 75.09 馬 蘭 6,983 17.43 14.46 官 地 0.52

表 5-14 太原西山石炭の品質

5-5 安全管理

5-5-1 現 状

太原西山石膏礦資料『安全管理』がある。(添付資料5参照)

この『安全管理』はむしろ作業標準書に類するもので主としてレイミンドミル及 びケトルの作業手順や機械の保守・点検方法や服務規程について記述してある。安 全に関する記述は各機械毎に述べられている程度である。

安全に対する組織的な活動は、充分に行われていないようである。

5-5-2 問題点

現在は安全に関する規定は少ない。

5-6 設備管理

5-6-1 現 状

太原西山石膏礦資料『安全管理』の中に設備管理に関して記述がある。

又、主機の保全業務として下記が定められている。

(1)原料粉砕機

検査:1回/月

(2) ケトル

検査:1回/月(記録はない)

部品の点検・取替:1回/年

(中修理)

大修理

:1回/3年

注: 一般的な修繕は、自社で実施するが難度の高いものは外注することがある。

5-6-2 問題点

上記の記述等では不充分である。

即ち設備管理として日常点検、定期点検、及びそれらの記録等にはっきり分けて 標準書にするべきである。

日常点検は正常な運転を維持するために作業員の毎日の保守点検作業の事である。 定期点検は週単位以上の作業を要し、専門業者による工場外からの工事が含まれる。

いずれも記録して同じ故障の発生を防ぎ、無駄な部品の在庫を減少させる為の資料にしなければならない。

5-7 教育·訓練

5-7-1 現 状

OJTによる教育を実施している。

設備が休転状態にある事が多いので、特別な教育は実施されていない。

5-7-2 問題点

社内の教育・訓練が充分に実施されていないようである。 教育・訓練の設備が少ない。

5-8 環境対策

5-8-1 現 状

環境基準として国家標準が規定してある。(添付資料7参照) 煤じん及び粉じんの排出基準は定められている。

(1) 工業炉、窯の排出基準

既設 300mg/m^{*}

新設 200mg/m³

(2) 工業"三廃"排出基準

粉じんの排出基準

150mg / m

工場亭の粉塵濃度

 $10 \,\mathrm{mg} / \,\mathrm{m}^2$

SOx、NOx、振動関係及び水質関係の各々の基準は定められていない。 なお騒音については作業環境が定められている。

詳細は添付資料7『環境基準』を参照のこと。

5-8-2 問題点

(1) 煤じんの発生

長期間ケトルを使用していないため連続して運転する場合の状況は不明である。

(2) 粉じんの発生

粉塵については既に述べたように粉塵をサイクロン、及びバッグフィルターで捕集しているが能力不足で十分に捕集されていないので排出ダクトからの粉塵の飛散が多い。各輸送機の継ぎ目から吹き出し室内の作業環境を悪化させている。

(3) 測定値について

工場での測定した値がなく、ほとんどの場合目視や公的機関の測定結果に頼っている。これらは重要であるが長年の観察による経験と同時に簡単な測定機器を揃え日常運転の測定値を調査することはさらに重要である。

第 III 編

近代化計画

第 川 編 近代化計画

第6章 近代化計画の対象とその内容

大原西山石膏工場は、焼石膏の製品品種揃え、生産能力増強および製品品質の向上を 目標として、工場近代化を図る計画である。

本近代化計画調査団は、この目標を前提として、太原西山石膏工場の調査を実施し、 現状の把握と問題点の抽出を行い、これらを第 II 編工場の社会的環境と工場概況に記述 した。

本編では、工場が対象としている製品製造設備について、目標の製品品種、生産能力 および製品品質向上を可能とする、工場の近代化計画について記述する。

既存設備がその能力を十分に生かされた運転が行なわれていない現状に鑑み、第 II 編では、近代化の目標と現状とのギャップを明らかにした。近代化計画に当っては、この点に注目し、「効率のよい設備投資」を近代化計画の基本方針として、設備改善および工場体質の改良を提案することを目的にしている。

生産工程については、先づ、既存設備の有効利用および最小限の更新・新設での設備 改善を図り、設備の安定運転と製品品質の安定化を第1段階の目標に掲げ、次に、増産 および製品品質向上を第2段階の目標とした。

生産管理については、生産量および製品品質を左右する重要な管理項目であり、近代的な工場に求められる重要な要件であるので、従来の管理体制とは異なり、従業員の意識の改革が必須である。

第皿編に記述する近代化計画は、概ね次の通りであるが、太原西山石膏工場の目標達成のために、「何をすべきか」を示すとともに、できる限り「如何にすべきか」についても提案することに意を用いた。

(1) 生産工程の近代化

工場側の生産計画に示された、目標製品品種揃え、生産能力および製品品質向上を 前提として設備の改善策を提案している。

生産工程は、生産の方式の改革と生産設備の近代化が必要であり

- (i)製造の方式
- (ii) 生産能力
- (iii) 品質向上のためのプロセスと生産設備 の3つの観点から現状を分析、考察し、各工程別に改善策を提案している。
- (2) 生産管理の近代化

生産工程の近代化に合わせ、生産管理面から必要となる設備上の改善策、また、品質を確保するための品質管理、生産量を確保するための工程管理、設備管理等々の改善策を提案している。

- (3) 近代化の実施スケジュール 近代化推進の実施手順および近代化実施工程について提示した。
- (4) 近代化に必要な経費 設備の近代化に伴う必要経費の試算を示した。
- (5) 近代化実施上の留意点

近代化計画を実施に移すに当って、考慮すべき、あるいは近代化をより効果あらし めるために必要な事項を示した。

第7章 近代化計画の構想

7-1 工場側の近代化構想

7-1-1 基本構想

太原西山石膏礦の工場近代化計画に対する基本的な考え方は次の通りである。

- (1) 製品の多品種化を図る。
- (2) 焼石膏製品の品質の向上を図る。
- (3) 最新の技術を導入し先進の設備を導入する。
- (4) 自動化を部分的に取り入れた製造工程とする。
- (5) 機械化により労働量の軽減を図る。

7-1-2 生産能力の改造目標

(1) 多品種化及び製造能力の向上

1号及び2号系統設備を使用して年間生産量30,000Tonを目標とする。

品種別内訳は

陶磁器型用模型型用

10,000

建材用 (ブロック等)

10,000

石膏プラスター

10,000

合 計

30,000Ton/年

但しケトルはバッチ運転とし、運転時間は 24h/d、300d/yとする。

既存設備の能力及び品質向上面から制限を受ける場合は30,000Ton/年の生産量が確保できなくても良いものとする。

- (2) 焼石膏品質の向上
 - (i) 各種製品とも現在製造されているものより品質を向上させる。
 - (ii) 原料品質

現在使用している原料の石膏 (CaSO・2H₂O)品位は60%程度である が近代化実施時には品位60~85%の原料を供給するものとする。

7-1-3 近代化実現のために必要な設備と設備投資

(1) 設備

既存設備の最大限の利用を図り、近代化構想を実現するための設備とする。

(2) 工事資金の調達方法

工事資金の調達方法としては次のような事を考えている。

- (i) 自己資金
- (ii) 借入金
- (ii) 国からの融資

工場側の説明によると、最新技術導入の場合は国から融資が得られるとの ことである。

7-1-4 近代化推進のために考慮すべき条件

- (1) 既存設備の不備な点を改造し、出来る限りこの既存設備を利用する。
- (2) 多品種製品製造のために、新しい技術を積極的に導入する。
- (3) 製品包装用袋は50kg用、PP製とする。

7-2 工場側の近代化構想に対する対処策

工場側から示された近代化構想は、近代化計画に当って、与えられた条件と理解して、目標達成のための方策を検討し、具体策を示すことにする。しかし7-1項に示された目標については、考察を加え、必要な対処策について以下記述しておく。

7-2-1 生産計画

今回の近代化計画は、中華人民共和国に於ける、石膏製品の需要に応ずるために、中華人民共和国非金属鉱工業総公司および山西省経済委員会のバックアップを受けて、石膏製品の主要供給工場としての一翼を担うために実施に移されるものである。

従って 7 - 1 - 2 項に示された生産能力の目標は、需要予測に基づいて策定されたものであろうが、しかし、販売量を確保していくためには、顧客ニーズに適合した品質向上を目指す必要がある。

また、生産能力増強対策については、現実的かつ実現の可能性の高い方策として段階を踏まえた設備増強を行うことが得策と考えられる。

7-2-2 利益計画

企業が利益を生み出すためには、基本的なことではあるが、原価低減、販売量 アップおよび稼働率向上を目指すことが重要である。そのためには、原価管理、 高品位原料の使用、生産管理がポイントとなる。

(1)原価管理

原価管理とは「原価を分析し、原価を維持および低減する活動に対する定量的な裏付けを行うこと」と定義されている通り、

- ・製品を生産するために要した原価を把握すること
- ・原価引き下げの目標を得ること
- 統制すべき原価要素を把握すること

の三つに集約される。

「標準原価」(見積原価)に対し「実行予算」を執行し、その結果として「実 績原価」が発生し、「原価差異分析」を行う。これによって原価低減の具体策 を立て実施してゆく必要がある。 原価集計の際には原単位(原材料、燃料、電力などの製品単位量当り消費量)によって管理すべきである。

(2) 高品位原料の使用

製品の品質(強度)は主として原料石膏の品位によって決まる。即ち高品位 原料からは高品質製品が得られ、その結果販売価格アップも可能となる。

(3)設備稼働率の向上

目標の生産性と品質を確保するためには高稼働率を維持することが必要である。そのためにはきめ細かな生産管理が要求される。

生産管理については第9章に記述する。

7-2-3 製品品質の目標レベル

現在、西山石膏礦で製造されている焼石膏及び生石膏粉は河北省、山東省、北京市等に出荷され、陶磁器型材用や石膏建材用に使用されている。

その諸特質は「5-4品質管理」に詳述されているように、建築材料用としての 中国規格は満たしている。

しかしながら、将来販路を拡げ、且つ、販売価格を向上させる為には、より 高品質の製品を製造する必要がある。工場近代化の目標の一つとして品質向上 を目標とした背景である。

今回の近代化で計画している品質向上策は原料の品位向上と設備の改造ならびに運転操作基準の改良である。

原料面では、現在使用している石膏の品位は、60%程度であるが、鉱山での 選別強化等によりこれを60~85%に向上させる。特に陶磁器型用には85%以上 の品位を使用する。

設備面では、8章に詳述してあるように、主要機械の整備、石膏焼成後の粉砕、混合設備の新設、計測機器の整備等数多くの品質向上対策を実施する。

運転操作基準としては、原料粉末度を粗目にし、焼成後微粉砕すること、焼成操作を厳密にコントロールすること、製品をよく混合すること等の対策を実施する。

製品品質の目標レベルを定量的に示すことは必ずしも容易ではないが、上記の改善により、原料面では品位の向上に応じた向上が得られ、設備面及び運転

操作面でもそれ相応の向上が期待される。

以上総合的に見て、原料品位向上と設備および運転操作の改良とによって各 種製品共現在の品質を相当上回ったものが得られると考えられる。

具体的な品質数値は、第一期が完了した後の試験運転で判明する。

7-3 近代化計画の重点課題

工場近代化計画に当たり、工場側から示された近代化目標と、現地調査によって把握した状況を分析、整理して、目標と現状のギャップ分析を行い、それを基にして近代化目標達成のための「基本的な方策と具体的課題」を検討した。

表7-1「工場近代化の方策」にその内容を示す。

第8章からの具体的な近代化計画は、この近代化の方策に基づいて計画したものである。

近代化の目標	問 題 点(ギャップ分	析) 方	策具体的な改善課題
	〔生産工程〕① 一次破砕を人力で行っている。(1号、2号)	〔基本とする考え方〕	① 増産対応としての機械化
製品品種揃えおよび生産	② 微粉砕機の異物(鉄片)混入によるトラブル予防	措置がない。(1号、2号) (1) 段階的増産(設備増	曾強)計画を採用する。② 除鉄機の新設
能力レベル	③ 原料微粉砕系のエアー輸送能力不足が予想される		列用を図る。 ③ メインファンの更新
mijes 3	④ 粉体輸送用にドラグチェーンコンベヤを使用して		
・製品品種および品種別生産	⑤ ケトルからの原料もれが起る。(1号、2号)		⑤ 釜底、攪拌機の更新
量は下記の通り	⑥ ケトルの伝熱効率が悪い。(1号、2号)	〔生産方式〕	⑥煙道の改善
単体上記の通り	(7) 排蒸ダクトが欠落。 (1号)	(1) 設備系統を製品品種	
	(1) (19)(8) ホットピットが1号、2号共用となっているため		⑧ 専用ホットピットの新設
1)陶磁器型用、模型型用		and the state of the	· · · · · · · · · · · · · · · · · · ·
10,000Ton/年	⑨ 石膏プラスター製造のための混合設備がない。	(2) 半自動化設備に改め	
	⑩ 製品の袋詰作業は機械化されてなく、手作業での		⑩ 袋詰機の新設
(2)建材用(ブロック等)	⑪ 圧縮エアー設備がない。	〔生產計画、日程管理〕	
10, 000Ton/年	⑩ 電源関連の容量不足。	(3) 販売計画基準の日程	
	③ 制御設備の既存品利用が不可能。	(4) 構内物流・運搬方式	【を改善する。
(3)石膏プラスター	〔環境対策〕 ⑩ 原料微粉砕工程での粉じん発生(1号、2号)		⑩ 微粉捕集、集じん系の改善
10, 000Ton/年	⑤ 袋詰工程が手作業だと発じんが予想される。(1)	号、2号) (品質管理)	19 10項と同じ
	(生産計画) ⑩ 製品品種別生産計画が必要。	(5) 原料品位の管理体制	りを確立する。 ゆ 販売計画と在庫の適正化
但し既存設備能力及び品質	[工程管理] ⑪ バッチ運転によるムダ時間の排除と生産量の確保		
向上面から制限を受ける場合	(THEEXE) 6 3 YEAR ON DAYS MET A DIMINETED REAL	(7) 製品品質の管理体制	
は、上記生産量が確保できな	[設備管理] 18 設備点検記録がない。	(1) SCHUITS SECTION	18 設備管理体制、基準の確立
· · · · · · · · · · · · · · · · · · ·	® 予備品・消耗品の在庫がない。	[生産能力増強]	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
くても良い		(8) 設備と人員の増強を	
	⑩ 設備点検に必要な測定器具がない。	(0) 政備こ八負の指題を	で図る。
	[生産工程] ① ケトルへの原料供給に長時間を要している。(2	号) 〔職場管理〕	① 供給機の能力アップ。
【製品品質レベル】	② ケトルの仕込量にばらつきがある。(1号、2号) (9) プロセスの管理を強	能化する。 ② レベル計測装置の新設
RADINITIES	③ 焼成方法が経験による判断のため、作業者により		③ 品温、燃焼ガス温度計の新設
・現状より高品質を狙う。	(1号、2号)	〔教育・スキルアップ〕	
・品質の安定, 均一化	④ 釜出しに長時間を要している。(1号、2号)	(10) 従業員の教育・訓練	
一面真の女足、均一に	⑤ 焼石膏の粉砕設備がない。(1号、2号)	W MARCOAN INITIAL	⑤ 粉砕設備の新設
	⑥ 焼石膏、製品中への二水石膏の混入のおそれがあ	7 (1县 9县)	⑥ 原料粉砕・焼成室の集じん改善。
	の 別石首、製品中、の一小石首の低人のわてれかめ	000 (15) 45)	原料粉砕・焼成室と焼石膏混合・包装
			室との分離
	⑦ 陶磁器型用、模型型用製品の品質のばらつきを調		⑦ 混合設備の新設
	⑧ 製品への鉄分混入のおそれがある。(1号、2号)	⑧ 除鉄機の新設
	〔品質管理〕⑨ 製品品種により原料必要純度が異なるため、原料	選別が必要となる。	⑨ 原料受入前検査の実施
·	⑩ 運転記録が残されていない。		⑩ 運転記録のフィードバック方式採用に
, .			よる品質向上
	即 製品試験記録が残されていない。		① 試験記録のフィードバック方式採用に
			よる品質安定・均一化
	〔教育管理〕 ⑫ 作業者の品質意識、改善意欲が低い。		② 製品知識教育、改善制度の強化
			③ OJT教育、ブラザー制の採用
·	③ 作業員の増強が必要		10 しょ1秋日、ノノッ 門の休川
f			

第8章 生産工程の近代化

8-1 生産工程概要

8-1-1 製品別専用製造設備

- 2 系統ある製造設備を各々製品品種毎の専用設備とする。
- 1号系統:陶磁器型用、模型型用
- 2号系統:建材用(ブロック等)、石膏プラスター

8-1-2 各工程毎の設備概要

(1)原料受入工程

ダンプトラックにて運ばれた石膏原石を破砕ピットに受入れる設備

(2) 原料粉砕工程

石膏原石を一次破砕し、その後粗粉砕、微粉砕を行い、ケトル前の粉原料ホッパーに輸送するまでの設備。

尚、一次破砕は1号、2号系統共用の油圧ブレーカにて行い、その後の工程は1号、2号系統各々専用設備にて処理される。

(3) 焼成工程

粉原料をケトルへ供給し、焼成した後、焼石膏をホットピットへ排出するまで の設備

(4) 焼石膏粉砕、混合工程

焼石膏を粉砕した後混合設備までエアー輸送し、その後、出荷用製品品質調整用の添加剤を加え混合する設備

(5)包装・入出庫工程

出荷用製品の袋詰設備及び製品置場

(6)熟成工程

袋詰された製品を製品置場にて保管し熟成させる。そのための設備の必要はない。

8-2 生産工程近代化の前提条件

8-2-1 段階的近代化

既存設備の運転は、一部設備を除き常時は行われていない現状からすると、近代 化の実施に際しては、より実現性を高めるため段階を踏まえた実施方法で計画する ことを提案する。即ち、

(1) 第一期では、既存設備の改善に主眼をおくが、用途別製品製造のための焼石 膏粉砕、混合設備および袋詰機などの新設も行う。

運転は一日一直運転とし、生産量増大よりも設備の安定運転および製品品質の安定に重点を置く。

(2) 第二期では、増産および更なる品質向上を目指し、原料の一次破砕設備の新設と焼石膏混合設備の増設を行う。

運転も一日24時間運転へ移行する。

8-2-2 設備系統の専用化

既存設備は1号と2号の2系統の製造設備を保有しているのでそれをそのまま生かし、製品種別毎に各々専用設備とする。その理由は製品種別により焼成方法が異なるためである。

- (i) 1号系統:陶磁器型用、模型型用
- (ii) 2号系統:建材用(ブロック等)、石膏プラスター

8-2-3 生産量の推移

- (1) 第一期完了段階での生産量
 - (i) 運転条件

運 転 時 間:実働8時間/日(拘束9時間30分)

運 転 日 数:300日/年

焼成バッチ回数:1、2号とも各々2回/日

(ii) 生産量…焼出し量換算

1号系統: 5.2Ton/回×2回/日×300日/年=3,120Ton/年

2号系統: 5.5Ton/回×2回/日×300日/年=3,300Ton/年

合 計:6,420Ton/年

(2) 第二期完了段階での生産量

(i) 運転条件

運転時間:24時間/日、300日/年

焼成バッチ回数:1号…6.8回/日(3.5時間/回)

2号…9.6回/日(2.5時間/回)

(ii) 生産量…焼出し量換算

1号系統: 5,2Ton/回×6,8回/日×300日/年=10,600Ton/年

2号系統: 5.5Ton/回×9.6回/日×300日/年=15.840Ton/年

合 計: 26, 440Ton/年

この場合の製品種別毎の生産量は次の通りとなる

陶磁器型用、模型型用 10,600Ton/年

建材用(ブロック等) 7,920Ton/年

石膏プラスター 7,920Ton/年

(3) 1号系統を兼用設備とした場合の試算

前項の生産量は、1号、2号系統を専用設備とした場合の生産量であるが、 実際は1号系統は建材用(ブロック等)製造も兼用可能な設備であるので、そ の場合の生産量試算を下記する。

表8-1 1号系統を兼用設備とした場合の生産量試算

	<u>-</u>				
項目	製品種	運転日数	生 産 量		
ケース	製品種	1号系統	2号系統	(Ton/年)	
製品種別毎の生産量を同じとする場合	陶磁器型用、模型型用	256	_	9, 050	
	建材用(ブロック等)	44	128	9, 080	
	石膏プラスター	_	172	9, 080	
	合計	300	300	27, 210	
	陶磁器型用、模型型用	96		3, 390	
年産 30,000Ton	建材用(ブロック等)	204	48	13, 305	
の場合	石膏プラスター	_	252	13, 305	
	合 計	300	300	30, 000	

8-3 原料受入工程

8-3-1 近代化の基本的考え方

原料石膏使用量は1号、2号系統合わせて第一期完了段階で一日当り約25Ton、第二期完了段階で100Ton強となる。従って第一期では現状通りの方法での原料受入れを行い、原料置場も現状のままとする。第二期ではダンプトラックにて原料を搬入し、一次破砕用ピットを新設し、それにダンピングする方式とする。

8-3-2 1号、2号系統の近代化

第二期で一次破砕用ピットを1号、2号系統に各々1基新設するが、既存の粗砕機(ジョークラッシャー)を現状通りの位置で利用するため、新設ピットを地上に設けなければならない。

従ってダンプトラックの進入路にはスロープを設け、ダンピング位置レベルを地上 2.5mにする必要がある。ダンプトラック(10Ton車を想定)はバックにて進入するものとする。

ピットはコンクリート擁壁とし、容量は16㎡とする。

ピット部屋根については、既存屋根を撤去の上、軒高の高い屋根を新たに設ける 必要がある。

8-3-3 改善実施に当っての留意事項

- (1) 第二期完了段階では、原料搬入のダンプトラックの往来が激しくなるため、 構内への進入路および構内車道の整備を行うのは当然であるが、それと同時に、 構内の車道、歩道の区分をするなど、特に安全対策に十分配慮した計画を行う 必要がある。
- (2) 原石に付着している泥、他の異物は製品の品質を低下させるので置場への搬入前にできるだけ除去する必要がある。

8-4 原料粉砕工程

8-4-1 近代化の基本的考え方

一次破砕については、第一期では、現状通り人力により行い、設備増強は行わない。第二期段階で、機械化を行うこととする。

粗粉砕は、1号、2号系統とも既存のジョークラッシャにて行い、設備改善の必要はない。

微粉砕については、1号、2号系統とも既存レイモンドミルにより行うものとするが、粉砕粉捕集及び輸送工程において改善の必要がある。微粉砕工程の近代化は、その他必要な改善工事を含め、全て第一期で完了させるものとする。

8-4-2 1号系統の近代化

(1) 設備能力

1号系統の本工程設備必要能力は、焼成バッチサイクルタイム(3.5時間/回) およびバッチ当り原料使用量 (6.26Ton/回)から

6.26Ton/回÷3.5h/回≒1.8Ton/hである。

(2) 設備フロー

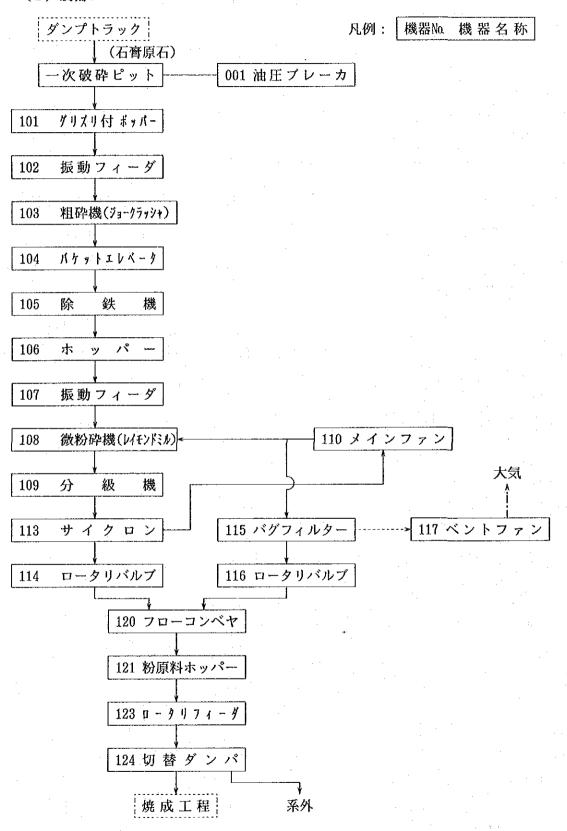


図8-1 1号系統原料粉砕工程フロー II-16

(3)一次破砕工程

一次破砕ピットに受入れられた石膏原石は、このピット内で油圧ブレーカ (パワーショベルに油圧ブレーカを装着したもの) にて 200mm角程度に破砕する。

油圧ブレーカは1号、2号系統共用とし1台のみ設備する。

破砕能力は運転員の熟練度にもよるが、 2.5~5 m/hである。

破砕された原料は油圧ブレーカにて破砕ピットから新設のグリズリ付ホッパーへ搔き出され、そこに貯蔵される。

(4) 粗粉砕工程

一次破砕後ホッパーに貯められた塊原料は新設の振動フィーダにて既存のジョークラッシャーへ定量供給される。ジョーククラッシャーにて40mm角程度に粗砕された塊原料は既存のバケットエレベータにてレイモンドミル前のホッパーへ送られ貯蔵される。尚、次工程のレイモンドミル保護のためバケットエレベータ排出部に除鉄機を設け鉄片の除去を行う。

この工程の運転制御はレイモンドミル前ホッパーのレベル検知にて自動的に 行うシステムとする。

(5) 微粉砕工程

粗粉砕された塊原料は、レイモンドミル前ホッパーから既存振動フィーダに てレイモンドミル(微粉砕機)へ定量供給される。レイモンドミル自体の能力 は現状のままで、近代化の目標生産能力に対応可能と考えられるが、メインファンの能力不足が予想されるので更新の必要がある。また微粉砕粉の捕集系は 粉じんもれをなくし作業雰囲気を改善する目的から、負圧運転の必要がある。 更に大気に放出される排気中の粉じん量を低減させるためバグフィルターの設 置も必要である。

微粉砕粉の一次捕集は既存のサイクロン (循環系に設置のもの) で行い、二次捕集は抽気系に新たに設けるバグフィルター (既存の二次サイクロンは撤去する) にて行う。バグフィルターから排出されるクリーンエアーはベントファンにより大気へ放出される。 微粉砕粉捕集系のダクトは更新の必要がある。

捕集された微粉砕粉はサイクロン及びバグフィルター下部に新設のロータリバルブを通り輸送機、更に粉原料ホッパーへと供給される。既存の輸送機は粉

体輸送には適していないので更新の必要がある。今回の計画では既存のドラグ チェーンコンベヤをフローコンベヤに更新することとする。

粉原料ホッパーからの排出部には原料粉出荷にも対応出来る様に手動切替ダンパを設ける。

この工程の運転制御は、粉原料ホッパーのレベル検知にて自動的に行うシステムとする。

8-4-3 2 号系統の近代化

(1) 設備能力

2号系統の本工程設備必要能力は、焼成バッチサイクルタイム(2.5時間/回) およびバッチ当り原料使用量(6.26Ton/回)から

6,26Ton/回÷ 2.5h/回=2.5Ton/hとなる。

(2) 設備フロー

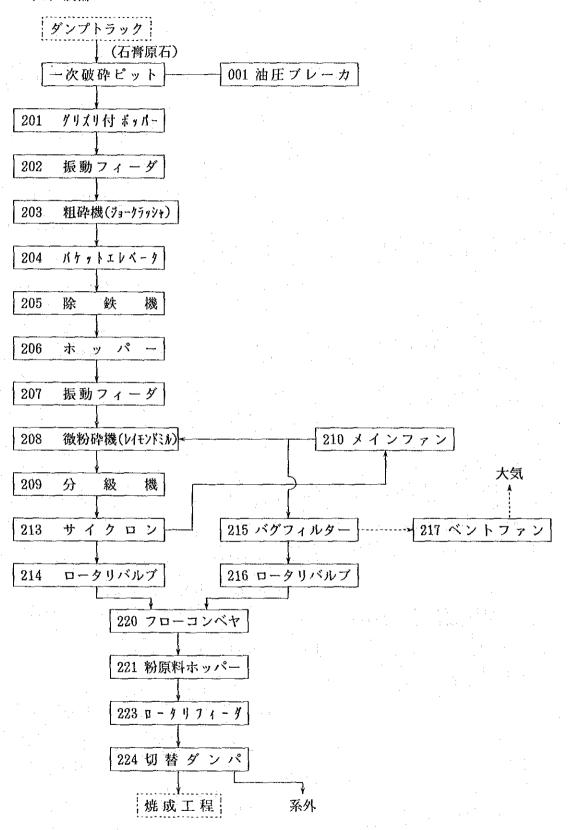


図8-2 2 号系統原料粉砕工程フロー Ⅲ-19

- (3) 一次破砕工程 1 号系統と同内容の改善を行う
- (4) 粗粉砕工程

(5) 微粉砕工程

改善後のフローは1号系統と同じとする。即ち、メインファンは能力アップ のため更新とし、既存の二次サイクロンとバグフィルターは撤去し、新たに二 次捕集用のバグフィルターを設置する。捕集系のダクトは更新としベントファンを新設しクリーンエアーを大気へ放出するものとする。

捕集された微粉砕粉は、現状ではスクリューコンベヤで直接ケトルへ投入するフローとなっている。しかし既存スクリューコンベヤではケトルへの原料投入時間が1時間以上かかり、製品品質面で好ましくない。従って1号系統と同様、スクリューンコンベヤをフローコンベヤに更新し、粉原料ホッパーへ貯蔵する方式とする。

粉原料ホッパーからの排出も1号系統と同様に原料粉出荷にも対応出来る様にする。

運転制御も1号系統と同じシステムとする。

8-4-4 改善実施に当っての留意事項

- (1) 原料粉粒度の調整は、分級機の回転数、微粉砕機への原料供給用振動フィー ダの供給量変化、微粉砕粉捕集系の手動ダンパ開度等によって行うことができ るので、製品品種、品質に合わせ各々調整を行う必要がある。
- (2) 原料粉砕・焼成室 2 階には新設の機器、設備が設置されるので、建物の既存 構造部材(梁、床等)の強度検討を行う必要がある。

8-5 焼成工程

8-5-1 近代化の基本的考え方

焼成工程はケトルへの原料供給から、焼成後、ホットピットへの排出までである。 既存のケトルを最大限利用し、焼石膏品質向上のための設備改善に主眼をおく。1 号、2号系統は各々独立した専用設備とするため、ホットピットは、1号、2号系 統に各々設けることとする。

本工程の設備改善は第一期とする。

8-5-2 1号系統の近代化

- (1)設備能力
 - (i) ケトル能力

4-4-4 (2) 項よりケトル1バッチ能力は

- 原料仕込量 6.26Ton
- ・焼 出 量 5.2Ton (原料石膏純度85%の場合) また、焼成工程の所要時間は、次の通りとする。
- · 原料供給時間 30分
 - 焼 成 時 間 2 時間30分~50分
 - ・釜出し時間 10分
 - ・従ってサイクルタイムは3時間30分とする。

(ii) 原料供給能力

上記原料仕込量と供給時間より必要供給能力は 6. 25Ton÷0. 5h≒13Ton/h

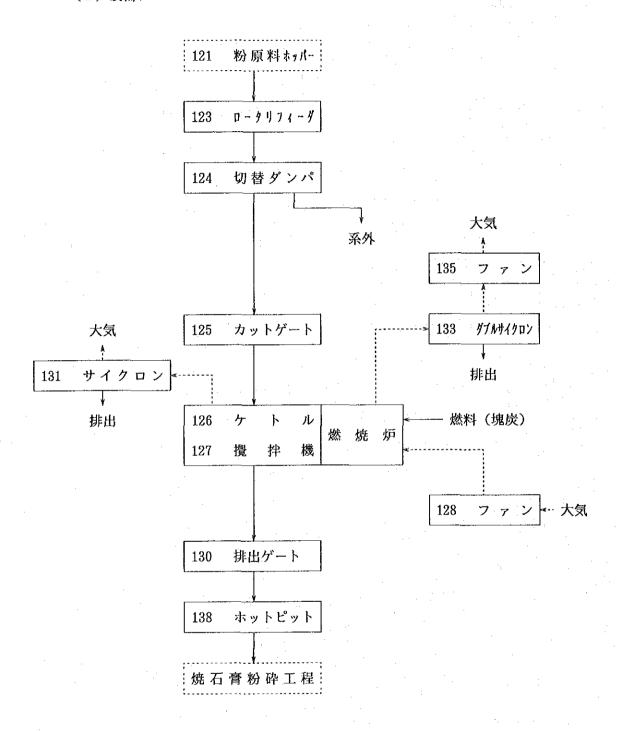


図8-3 1号系統焼成工程フロー

(3) 原料供給工程

原料は粉原料ホッパーからケトルへ供給される。粉原料ホッパー下部に新たにロータリフィーダを設置し、これによりホッパーからの切出しを行う。また、ロータリフィーダの下流には手動切替ダンパを設け、原料の系外取出しができるようにする。ケトルへの挿入シュート下部には、ケトルからの排蒸によるシュート内面への原料付着を防止するために自動カットゲートを設けることが望ましい。

この工程の運転制御はケトルに設けられるレベル検知器によりロータリフィーダの起動、停止および自動カットゲートの開閉を自動的に行うシステムとする。

(4) ケトル

以下に必要と思われる改善事項について述べる。

(i) 現状最大の問題点である釜底からの原料もれに対しては、その原因(第4章 生産工程の現状と問題点、「4-4-4考察」参照)を検討し、釜底の更新並びに下記攪拌機のスクレーパの改良を提案する。

釜底板の材質は鋳物とし、構造は分割方式のせり持ちとするが、熱による 釜底板の伸縮を出来るだけ均一にさせ、局所的な原料もれを防止するため、 釜底板の分割数、各片の形状、大きさおよび継目部形状、各片相互の固定な どに特に注意を払う必要がある。図8-4に構造イメージの一例を示す。

尚、各片の継目の隙間には、ほぐれのない成形パッキンを使用する。

(ii) 攪拌機については、釜底の部分的な原料滞留(これがひいては、ケトルの 熱歪につながり原料もれの原因となる)を完全に防止するため、釜底全面が 搔きとれる形状のスクレーパを取付けることを提案する。

そのために、所要動力が増大するので、攪拌機を一式更新する必要がある。

- (iii) 原料仕込量を一定にするため、ケトルにレベル検知器を取付ける。
- (iv) 焼成中の品温把握のため上、下2ヶ所に温度センサーを設置する。計測された温度は記録計に記録する。
- (v) 釜出し時間を10分以内にする必要があるため、ケトル排出口口径を大きくし、開閉用ゲートも自動ゲートに更新する。また、排出口位置も、デッド量を少なくするため、できるだけ下方に取付けることが肝要である。

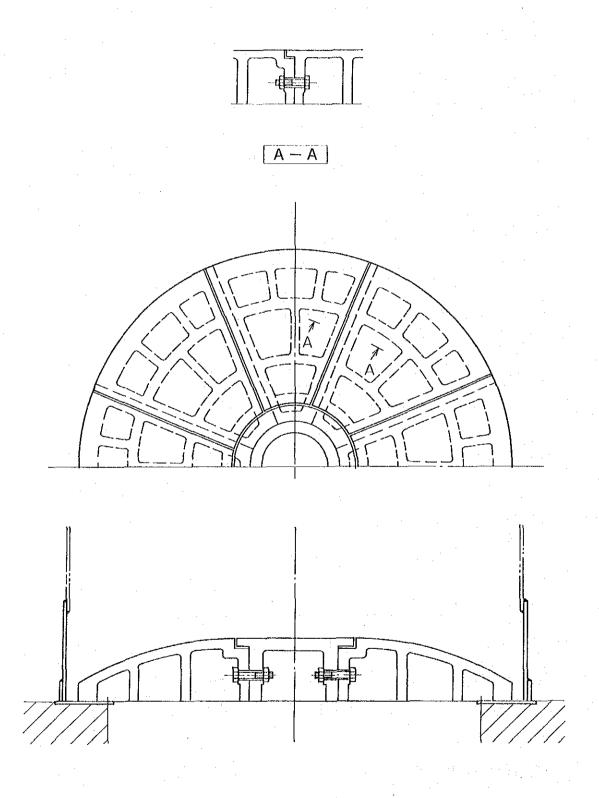


図 8-4 ケトル釜底構造図

- (vi) ケトルの運転は操作室からの遠隔手動運転とする。
- (vii) ケトルの運転操作上のミスやトラブル時の対応の遅れなどからもケトルの 熱歪を助長し、原料漏れの一因となるので下記点に注意を払う必要がある。
 - ・焼成中、燃焼室を異常高温(950℃以上) にさせないこと。
 - ・焼成中、停電やその他トラブルなどで攪拌機が停止した場合、直ちにケトル内の原料をホットピットへ排出し、同時に燃焼室の温度を下げる。
 - ・ケトル内に原料がないときは、燃焼室温度を低く(600℃以下)すること。
 - ・ケトルに対しては、急激な熱変動を与えないこと。

上記の事をケトルの運転担当者に徹底し、安定した工程管理を行う必要がある。

(5) 燃焼炉

燃焼炉自体は既存のまま利用するものとするが、ケトルの熱交換効率を高めるため、また品質管理面上、以下の改善を提案する。

- (i) 堅煙道部の伝熱面積を増すため、また、上下の横煙道へ入る燃焼ガス量の バランスをとるため、堅煙道部に仕切り板を入れる。図8-5に構造イメー ジを示す。
- (ii) 炉内温度および熱交換を終えた燃焼排ガス温度を把握するため2ヶ所に温度センサーを設置する。計測された温度は記録計に記録する。

(6) 集じん

排蒸および燃焼排ガス中のダスト処理は既存設備を利用することとする。ただし排蒸ダクトは復旧および保温施工が必要である。

(7) ホットピット

1号、2号系統の各ケトルからは、品種の異なる焼石膏が出されるためホットピットも専用のものを設ける必要がある。新設のホットピットは、鋼板製とし、容量はケトル1バッチ分以上とする。

ホットピット底部にはスクリューコンベヤを設け、これにより焼石膏の排出 を行う。



図 8-5 堅煙道構造図

8-5-3 2号系統の近代化

(1) 設備能力

(i)ケトル能力

4-4-4 (2) 項よりケトル1バッチ能力は

- · 原料仕込量 6.26Ton
- ・焼 出 量 5.5 Ton (原料石膏純度60%の場合)

また、焼成工程の所要時間は、次の通りとする。

- 原料供給時間 30分
- •焼成時間 1時間50分
- ・釜出し時間 10分
- ・従ってサイクルタイムは2時間30分とする。

(ii) 原料供給能力

上記原料仕込量と供給時間より必要供給能力は 6.26Ton÷0.5h=13Ton/hである。

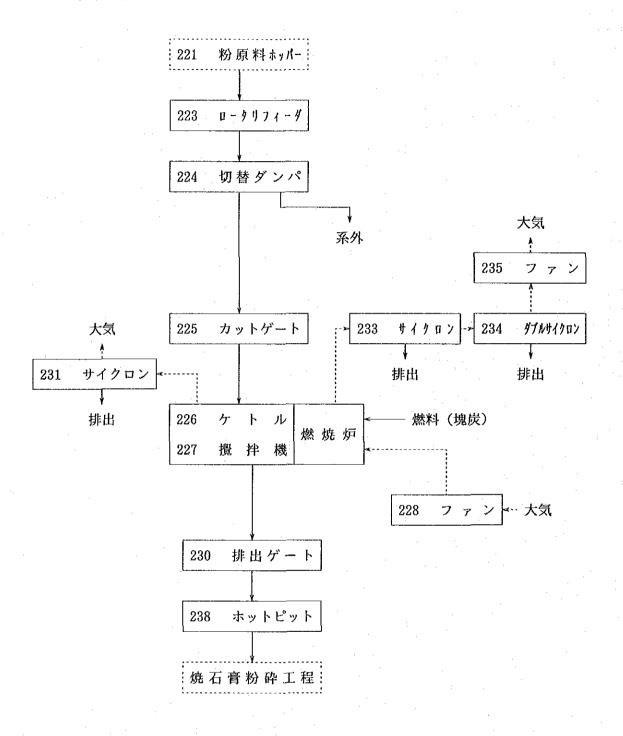


図8-6 2号系統焼成工程フロー

(3) 原料供給工程

1号系統と同じ改善計画内容とする。

(4) ケトル

1号系統と同じ改善計画内容とする。

(5) 燃焼炉

1号系統と同じ改善計画内容とする。

(6)集じん

排蒸および燃焼排ガス中のダスト処理は既存設備をそのまま利用することと する。

(7) ホットピット

2号系統専用設備とするため、既存ホットピットを撤去し、新たに鋼板製ホットピットを設ける。容量はケトル1バッチ分以上とし底部にはスクリューコンベヤを設け、これにより焼石膏の排出を行う。

8-5-4 改善実施に当っての留意事項

- (1) ケトルの改善を行う際には、既存のケトルセル外面および横煙道内面の掃除が必要である。この部分は、過去の運転での原料もれによる石膏あるいは石炭灰の付着、堆積が予想されるので、圧縮エアーなどを使って取り除き、伝熱効率を元通りに復帰させなければならない。
- (2) 焼石膏の品質管理は、バッチ管理にて行うため、ケトルおよびホットピット などの構造については、デッド量が極力少なくなる様配慮する必要がある。
- (3) 従来、経験則によって行われてきた焼成方法を、今回センサー類(レベル計、 温度計等)を導入し、それによって行うことを推奨したが、これは経験則を否 定するのではなく、経験則をデータによって補強するという見地で活用すべき である。

8-6 焼石膏粉砕・混合工程

8-6-1 近代化の基本的考え方

本工程は製品品質向上のために必要なものである。現状は、本設備は装備されていないので、全て新設となり、1号、2号系統に各々専用設備を設ける計画とする。

焼石膏の粉砕は、焼成後できるだけ早い時期に行った方が良い。そのため、現在、原料粉砕・焼成室横にあるコンクリート製製品サイロを撤去し、そこに建家の建増しを行い、その中に焼石膏粉砕設備を設置することを提案する。

また、混合工程での製品中への原料粉の混入を避けるため、混合工程は原料粉 砕・焼成室から切り離し別室とする方が好ましい。

本工程の設備は、焼石膏をホットピットから切り出し、粉砕した後、焼石膏混合・包装室までエアーにて輸送し、そこで捕集された粉砕焼石膏を混合機へ移送、 更に添加剤を加え混合するまでの設備である。尚、添加剤の混合機への供給は人力にて行うものとする。

添加剤は、混合機設置フロアーの天井に新設の電動ホイストで搬入できる計画とする。

焼石膏粉砕工程は、1号、2号系統とも第一期で行う計画とする。混合工程については、1号系統は第二期での実施とし、2号系統は、第一期で実施する計画とする。

8-6-2 1号系統の近代化

- (1)設備能力
- (i) 焼石膏粉砕~袋詰工程のサイクルタイムおよび各所要時間
 - (a) サイクルタイム: 焼成工程のサイクルタイムより 3 時間30分
 - (b) 所 要 時 間:各工程の所要時間は次の通りすとる
 - ・粉砕、輸送

1 時間

・添加剤供給、混合、サンプルテスト 1時間

袋 詰

1 時間30分

(ii) 粉砕·輸送能力

焼成 1 バッチ分の焼石膏 (5, 2Ton) を上記所要時間で処理するための必要能力は

5. $2\text{Ton} \div 1 \text{ h} = 5. 2\text{Ton} / \text{h}$

(iii)混合機能力

混合工程もバッチ処理される。工場側より提示された焼石膏嵩比重 (0.74 3 Ton/㎡) より、バッチ容量は

5. 2Ton÷0. 743Ton/m=7 m···混合機作業容量 尚、添加剤量は微量のため上記容量に影響しない。

(2)設備フロー

(i)第一期

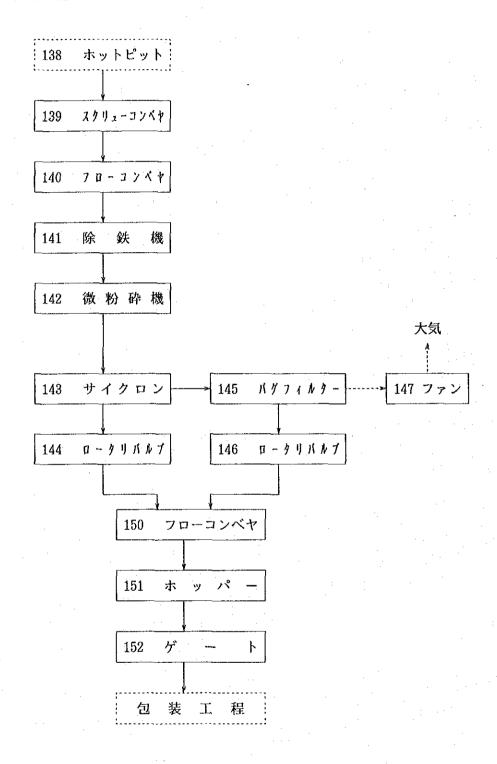


図8-7 1号系統焼石膏粉砕・混合工程フロー (第一期)

(ii) 第二期

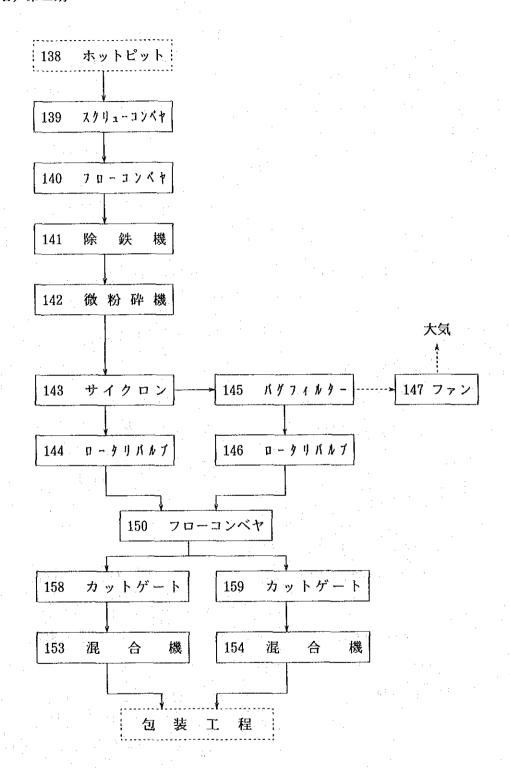


図8-8 1号系統焼石膏粉砕・混合工程フロー(第二期)

(3)粉砕・輸送工程

ホットピットへ釜出しされた焼石膏は、ホットピット底部に設けられたスク リューコンベヤにより切り出され、フローコンベヤを経由して、微粉砕機へ供 給される。微粉砕機の前には、除鉄機を設け、微粉砕機の保護を行う。

微砕された焼石膏は微粉砕機を出ると同時に、焼石膏混合・包装室に設置のファンにて吸引、輸送される。エアー輸送された焼石膏はサイクロンおよびバグフィルターで捕集され、その下流に設置のフローコンベヤで混合工程へ移送される。エアー輸送用のエアーはバグフィルターで集じんされ、クリーンエアがファンを通り大気へ放出される。

本工程の運転は焼石膏混合・包装室に設置の操作盤による遠隔手動操作とする。

(4)混合工程

1号系統の混合機設置は第二期段階で行う計画であるので第一期では、混合機を据える位置にホッパーを一基設置することとする。即ち第一期段階では、添加剤による製品調整はせず、粉砕された焼石膏を出荷することとなる。

第二期では混合機を2基設置し、添加剤を加え、凝結時間が調整された製品を出荷できるようにする。混合機を2基設ける目的は、一度添加剤を加え、混合した後、サンプリングにより、凝結時間の測定試験を行い、もし規定値をはずれていた場合には、再度添加剤調整を行うなど、混合の所要時間が、長びく可能性があるためである。

添加剤の添加量は、混合機に附属するロードセルにより焼石膏重量を把握し、 決定する。その場合、混合機への輸送初めと、終りのサンプルテストにより添 加剤を加える前の焼石膏の凝結時間を測定しておく必要がある。

混合機の運転は、添加剤を加え、30~40分間混合する。混合を終えたら、下部の自動ゲートを開き、袋詰工程へと進む。操作は焼石膏混合・包装室に設置の操作盤による遠隔手動操作とする。

8-6-3 2号系統の近代化

- (1) 設備能力
- (i) 焼石膏粉砕〜袋詰工程のサイクルタイムおよび各所要時間
 - (a) サイクルタイム:焼成工程のサイクルタイムより2時間30分
 - (b) 所 要 時 間: 各工程の所要時間は次の通りとする
 - 粉砕、輸送

25分

・添加剤供給、混合 30分

• 袋 詰

1時間35分

(ii) 粉砕·輸送能力

焼成1バッチ分の焼石膏(5.5Ton)を上記所要時間で処理するための必要能力は

5.5Ton÷25min×60min/h=13.2Ton/h である。

(iii)混合機能力

混合工程もバッチ処理される。工場側より提示された焼石膏嵩比重 (0.743Ton/m) よりバッチ容量は

5.5Ton÷0.743Ton/m=7.4m···混合機作業容量

(2) 設備フロー

(i)第一期

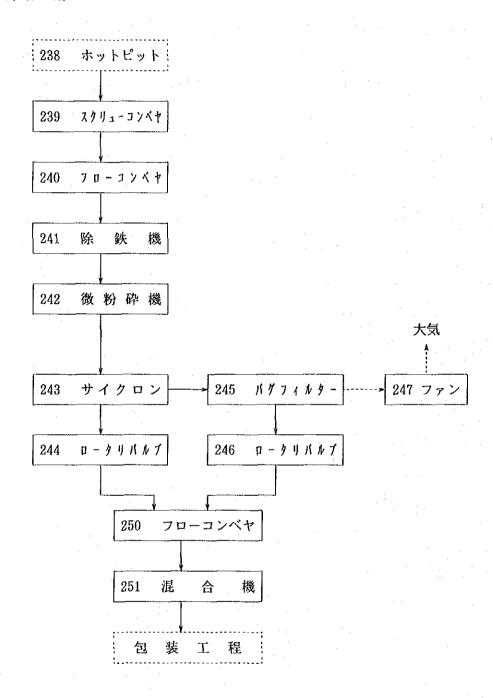


図8-9 2号系統焼石膏粉砕・混合工程フロー (第一期)

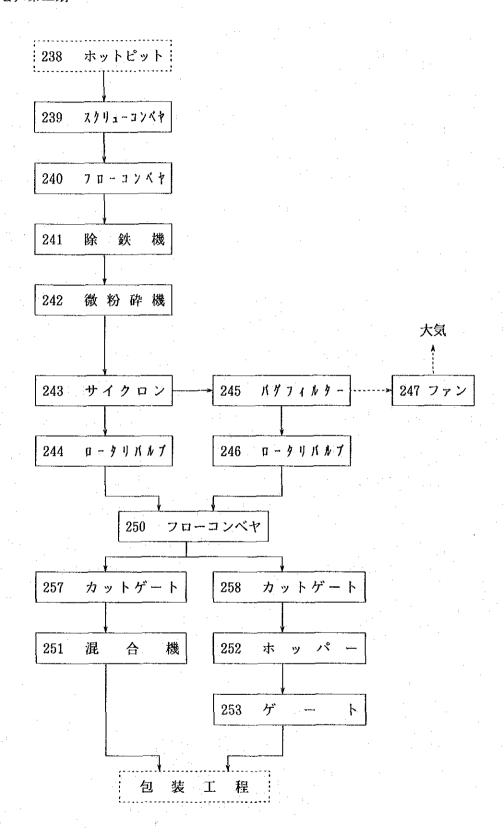


図8-10 2号系統焼石膏粉砕・混合工程フロー(第二期)

(3)粉砕・輸送工程

設備フロー、設備される機器は1号系統と同じである。但し機器能力は1号 系統とは異なる。

(4)混合工程

石膏プラスター製造には添加剤を加える必要があるため、第一期で混合機を 設置することとする。この場合、添加剤の添加量についてはある程度ラフな管 理でよいため、混合機にはロードセルは設けないものとする。また、建材用 (ブロック等)の場合は、添加剤を加える必要はない。

第二期段階では、1号系統の第一期で設置するホッパーを、2号系統へ移設し、石膏プラスターと建材用(ブロック等)との使い分けが出来るようにする。 混合機の運転は1号系統と同じ方法であるが、混合時間は、添加剤供給時間 を含め30分とする。操作は、焼石膏混合・包装室に設置される操作盤による遠 隔手動操作とする。

8-6-4 改善実施に当っての留意事項

- (1) 焼石膏粉砕設備は燃焼炉石炭焚口の近くに設置することとなる。そのため石炭灰などの異物粉じんが焼石膏中に混入する可能性がある。従って異物混入のおそれのある箇所は、その防護措置を講ずる必要がある。
- (2) 原料粉砕・焼成室で粉砕された焼石膏はエアー輸送にて焼石膏混合・包装室 へ送られるが、この工程は一連の運転である。設備が各々別建物に設置されて いるので、安全面、工程面上、運転・操作の連携には十分配慮する必要がある。

8-7 包装·入出庫工程

8-7-1 近代化の基本的考え方

包装工程においては、製品の袋詰作業の能力アップおよび省力化のため、機械化 即ち半自動袋詰機を設置する計画とする。本設備は、焼石膏混合・包装室内の混合 設備下流に設置するものとし、1号、2号系統とも第一期で実施することとする。

入出庫工程は、袋詰された製品の倉庫への搬出入であるが、包装から入庫の一連 の作業がスムーズにできるよう、包装室と既存製品倉庫とは仕切壁のない一つのフ ロアーとなるような計画を提案する。また第二期での増産に伴い、入出庫の省力化 を図るために製品搬送にフォークリフトを使用することを提案する。

8-7-2 1号系統の近代化

(1) 設備能力

・ 袋詰作業:袋への製品充塡…自動

袋詰機への袋のセット、充塡袋の積付…人力

・袋詰能力:袋詰の一連の上記作業に要する時間は50sec/袋とする。

但し、袋は50kg用、外弁式ポリプロピレン袋とする。

・焼成 1 バッチ分処理するのに必要な時間 5200kg÷50kg/袋×50sec/袋=5200sec≒ 1 h 30min

(2) 設備フロー

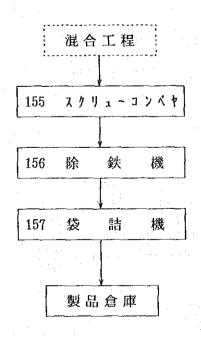


図8-11 1号系統包装・入出庫工程フロー

(3)包装工程

混合機により調整された焼石膏(第一期段階では混合機は設置されないので 調整できない)は、混合機下部に設置されるスクリューコンベヤに送られ、更 に除鉄機を通して袋詰機へ供給される。袋詰機は、秤量精度を高めるため、サ ービスタンクを設け、そのレベル制御を行う方式のものとする。本工程の運転 は袋詰機に備えられた操作盤にて行う。

(4)入出庫工程

この工程での設備は第二期段階でのフォークリフト以外には、特にない。

8-7-3 2号系統の近代化

(1) 設備能力

- ・袋詰作業、袋詰能力は1号系統と同じである。
- 焼成1バッチ分処理の所要時間
 5500kg÷50kg/袋×50sec/袋=5500sec=1h35min

(2) 設備フロー

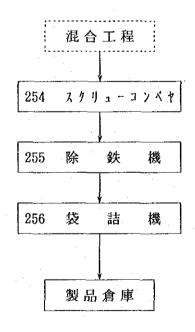


図8-12 2号系統包装・入出庫工程フロー

- (3)包装工程 1号系統と同じである。
- (4) 入出庫工程 1号系統と同じである。

8-7-4 改善実施に当っての留意事項

- (1) 焼石膏中に鉄分が含まれていると、水和成型時に、部分的に鉄色に着色する。 これは製品に対しては有害であり、特に、陶磁器型用の場合、陶土に付着する ので絶対にあってはならないものである。その意味で、本工程の除鉄機は非常 に重要な役割を果たすものである。
- (2)複数の製品種類を製造するため、本工程での製品の取扱いについては、種別 混淆が発生しない対策を講ずることが必要である。

8-8 熟成工程

本工程での設備は必要としない。

袋詰された製品を製品倉庫に、ある期間保管し、そこで製品の熟成を行わせる。 熟成期間としては包装袋の材質により異なるが、今回計画のPP袋の場合、1~2 ヶ月程度と予想される。尚、熟成を必要とする製品は陶磁器型用、模型型用の製品で あり、建材用(ブロックてど)および石膏プラスターについては熟成は必要としない。

8-9 電気設備

8-9-1 近代化の基本的考え方

近代化計画対象設備の設備増加に伴い、電源、制御設備などその関連の電気設備 は一式更新する必要がある。

制御設備については、第一期段階で第二期分を含めた計画、実施を行うものとする。従って、第二期では追加される設備の二次側配線工事を行うだけとする。

8-9-2 電源関係の近代化

(1)設備容量

第二期完了段階で近代化計画対象設備の設備容量は 760kWとなる。

(2) 変圧器

上記設備容量に対応する変圧器容量は、予想需要率、予想不等率、将来的余裕率、力率などを考慮すると約560kVAとなる。従って本設備用として560kVA変圧器 (10kVから380V/220Vへ降圧変電)を新設することとする。これにより既設変圧器の負荷率は58%程度に軽減されるが、経済的問題等で変圧器容量を契約電力等の計算に使用したりしない限り技術的にみて変圧器に消費される電力は非常に軽微であり、低負荷で使用しても何ら支障はない。

(3)変圧器の設置場所

既存変圧器が設置されている職場変電所に、新設変圧器を設置するとすれば、職場変電所と原料粉砕・焼成室間の配電負荷電流が1400~1500 A/380 V程度と 非常に大きくなり、配電線工事が困難となる。

大電流対策としては、一般的に電圧を高めることによる方策が最も有効である。この間の配電を10kVとすると電流は30A程度と小さくなり配電線工事は可能となる。

従って、職場変電所 1 次側10kVを既設遮断機以降に10kVフィーダを設け分岐 配電し、同変電所と原料粉砕・焼成室間を架空配線施設で結び、原料粉砕・焼 成室 2 階に新設する電気室内に変圧器を設置する計画とする。

(4) MCC電源盤、照明電源盤

MCC電源盤、照明電源盤とも新設とし、原料粉砕・焼成室2階の新設電気室内に設置する。同電気室内に設置する変圧器から380V/220Vの電力が供給

される。また、省電力対策として力率改善用コンデンサーが効果があるので、 380 V 側にこのコンデンサーを設けることを推奨する。

8-9-3 制御設備の近代化

負荷容量の増大、制御方式の変更により、制御設備は全て更新する計画とする。 原料粉砕・焼成室1階にある既存の電気操作室はスペースの問題上、一旦撤去し、 そこに新たに操作室を設け、新設の制御設備を設置する。

制御方式はPLCおよびリレーによる半自動方式を推奨する。また、電源の安定 化を図るためにUPS (uninterrupting power system) の付設も合わせて推奨する。 操作盤は、1号、2号系統とも焼成工程までと、それ以降の工程との2つに分割 し、新設操作室と焼石膏混合・包装室に各々設置する。

操作室内の操作盤はミミック表示付デスクタイプの主操作盤とし、焼石膏混合・ 包装室に設置の操作盤は壁掛式で、その制御ロジックは操作室の本体に組込むもの とする。

8-9-4 改善実施に当っての留意事項

- (1) 高圧機器および配線材料・照明器具等、後日運営上で規格等に問題があると 思われるものは中国製品とする必要がある。
- (2) 中国側の電力事情が良くないと思われるため、計画段階で考えられる対策を 考慮しておく必要がある。
- (3)情報によれば、冬期温度が-20℃を下まわるときがたまにあるとのこと。電気設備は-20℃で耐寒仕様となり価格が大巾に上昇するため今回は-20℃迄とした。

8-10 土木建築工事

8-10-1 土木建築工事仕様

(1) 規格及び基準

当プロジェクトの設計及び施工に関する規格及び基準等は中国の規格及び基準に従うべきであるが、これら規格及び基準等で規定できない事項があった場合には、国際的に認められた規格及び基準に従うべきである。

(2) 設計荷重.

(i) 風荷重及び積雪荷重

風荷重及び積雪荷重については、中国基準である、 "工程建設規范汇編

2 結構設計規范"に従うべきである。

(ii) 積載荷重

(a) 積載荷重は、特記なき場合及び中国基準において特に規定のない場合に は、下記の数値を使用すべきである。

	床、根太、小梁用	大梁、基礎用
- 歩 行 し な い 屋 根	100kg/m²	50kg/m²
-歩 行 す る 屋 根	300kg/m²	180kg/m²
-電気室 小梁及び床用	500kg/m²	300kg/m²
- 倉 庫	500kg/m²	500kg/m²
-階段及び通路	$300 \mathrm{kg/m^2}$	180kg/m²
ーそ の 他 の 床	300kg/m²	180kg/m²

- (b) 機器の自重及び振動による荷重は上記荷重とは別に加算すべきである。
- (c) 建設途中での仮設荷重を考慮すべきである。

(3) 構造形式

地面より下に施工される構造物は鉄筋コンクリート構造すべきであり、仮に、 強度計算上、鉄筋が不要と思われる部分であっても、亀裂防止上鉄筋を使用す べきである。

地上より上に施工される主要な建物や構造物については、鉄筋コンクリート 構造か鉄骨構造とすべきである。

(4)基礎形式

蘇州非金属砿山設計院が行なった地質調査報告書から推定すると、当プロジ

ェクト用地の地質状況は、各構造物を直接基礎で支持するのに適していると考えられる。報告書では、地質により許容地耐力を10t/㎡から25t/㎡ (GL-15m)の範囲で推定している。

設計に当っては、機械荷重及び建物の荷重条件に従い基礎の必要地耐力を算出し、これを支持できる地盤または構造物の上に基礎を設置すべきである。

(5)使用材料

構造物及び建物に使用する材料強度に関して、特に中国の基準等がない場合 には次の数値以上のものを使用すべきである。

- (i) コンクリート強度: 圧縮強度 250kg/cd以上(28日材令、キュービックテストピースによる)
- (ii) 鉄筋強度:降伏点強度 30kg/mm²以上(異形鉄筋で、径25mm以下のものを使用)
- (iii) 構造用網材:降伏点強度 25kg/mg2以上
- (6) その他設計条件
 - (i) 各建物及び構造物は、工場の運転、保守点検、機器の交換等の作業に支障 のないように又、工場作業員の安全と作業環境を考慮して設計すべきである。
 - (ii) 特記なき場合は、歩廊、廊下、階段などの床面から、建物の床や梁下、配管、照明器具などの最低の高さまでの距離を 2.1m以上確保すべきである。
 - (iii) 主要な歩廊や階段の幅は 800mmを下回らぬように設計すべきである。
 - (iv) 各建物及び構造物の構造及び、建築設備などは、現地の気象条件に適合するように設計すべきである。
 - (v) 建物の出入口と前面道路との間には、人の出入用の階段か、又は資材運搬 用車輛などが出入可能なようにスロープを設置すべきである。

8-10-2 各建物及び構造物の設計概要。

(1) 原料粉砕・焼成室増築及び改造

建物寸法: 既設 18^w ×18^L×17.5^H (m)

增築 7 W × 15 L × 6 H (m) (平屋)

既設原料粉砕・焼成室の南側に平屋を増築し、新機械設備及び電気設備を設置することになる。主な項目としては、

- 1 階に操作室を設置する
- 1 階に既存土間解体の上、ピットを設ける。
- 2 階に機械設置用架台及び基礎を設置する。
- 2階に電気室を設置する。
- 2 階及び屋上部分に機械用開口を設ける。
- 増築部分1階に機械基礎を設置する。
- 既存製品サイロを撤去する。

などであるが、特に2階に機械設置用架台及び基礎を設置する為には、既設 構造部材(梁、床等)がその荷重に耐え得るか検討し、必要があれば補強工事 を行うべきである。

(2) 焼石膏混合・包装室

建物寸法:12^w×21^L×15^H (m)

当建物は、3階建で、3階にタンク4基が設置され、2階にタンクからの製品引出し用機械が設置される。1階には、包装機械、集じん装置及びコンプレッサー室などが設置される。

屋根部分には、機械設備等を搬出入する為の開口を設ける。また3階への添加剤などの原料搬入の為、3階外壁に開口を設け、天井部にホイストレールを設置する。

当建物は既設倉庫を一部解体した場所に設置する計画で、建物南側に残る倉庫とは1階部分で連絡できるようにする。この為、建物南側は幅約12m、高さ約4mの開口を設ける必要がある。

(3) 圧送配管支柱基礎

原料粉砕・焼成室と焼石膏混合・包装室との間に構内道路を横断して製品圧 送用配管ガーダが設置される。このガーダ支柱の為の基礎を設置する必要がある。

(4)一次破砕室(第二期)

原料受入れ及び一次破砕を行なう為、原料搬入ランプ及び一次破砕室を設置する。ランプは、スロープ部及び平坦部を合わせて長さ約35m、最大幅約14m、最大高さ約GL+2.5mとなる。

スロープの勾配は約7°とする。

一次破砕室は四周を擁壁で囲った鉄筋コンクリート製のホッパー形式とし、 寸法は $4^{W} \times 4^{L} \times 4^{H}$ (m) で、2 基設置する。

2 基のホッパーの間には、破砕用油圧ブレーカー付パワーショベルが進入できる空間を設ける。

ホッパー上部は、幅約18m、長さ約10m、高さ約 8.5mの屋根を設け、雨水の流入がないようにする。

当建物を建設する為、既設屋根(18^w×20^L×4.5^H)を解体する必要がある。

8-11 設備フローシートおよび計画図

本章で近代化計画の内容について述べてきたが近代化対象設備の第一期、第二期完 了段階での各々のフローシートおよび機器配置計画並びに電気関係計画などについて 下記図面を添付するので参照されたい。

	図面名称	図番
(1)	フローシート(第一期完了段階)	1806 - M92 - 004
(2)	フローシート(第二期完了段階)	1806 - M92 - 005
(3)	全体配置計画図	1806 - M92 - 006
(4)	原料粉砕・焼成室 機器配置計画図(1/3)	1806 - M92 - 007
(5)	原料粉砕・焼成室 機器配置計画図(2/3)	1806 - M92 - 008
(6)	原料粉砕・焼成室 機器配置計画図(3/3)	1806 - M92 - 009
(7)	焼石膏混合・包装室 機器配置計画図	1806 - M92 - 010
(8)	単線結線図(1/6)	1806 - E 92 - 101
(9)	単線結線図(2/6)	1806 – E 92 – 102
(10)	単線結線図(3/6)	1806 - E 92 - 103
(11)	単線結線図(4/6)	1806 – E 92 – 104
(12)	単線結線図(5/6)	1806 - E 92 - 105
(13)	単線結線図(6/6)	1806 – E 92 – 106
(14)	1号系統インターロック図(1/4)	1806 - E 92 - 201
(15)	1号系統インターロック図(2/4)	1806 – E 92 – 202
(16)	1号系統インターロック図(3/4)	1806 - E 92 - 203
(17)	1号系統インターロック図(4/4)	1806 - E 92 - 204
(18)	2号系統インターロック図(1/4)	1806 - E 92 - 205
(19)	2号系統インターロック図(2/4)	1806 – E 92 – 206
(20)	2号系統インターロック図(3/4)	1806 - E 92 - 207
(21)	2号系統インターロック図(4/4)	1806 - E 92 - 208
(22)	計装ダイアグラム	1806 - E 92 - 301

8-12 設備·機器仕様

8-12-1 機械関係

(1) 1号系統

→"J"は海外(日本) 調達品を示す。

· · · · · · · · · · · · · · · · · · ·	(1) 15米机				司司人	至100で7	190
機器No.	機器名称	仕 様		既設	新設 更新	一期	二期
101	グリズリ付ホッパ	容量	3 m³		0		0
. "			i .				:
102	振動フィーダ	能力	$4 \sim 20 t/h$		OJ .		Ö
		モータ 0.8	5kW×4P×2台				
		可変制御	インバータ				
103	ジョークラッシャー	能力	4∼14 m³/h	0		0	
		モータ	7.5k₩×6P	·			
	•	主軸回転数	300r. p. m				
		粉砕後サイズ	20~80mm			+ 1	
104	パケットエレベータ	能力	8 m³/h	0		0	
		揚程	8· m				
		モータ	3 kW×4P				
105	除鉄機	形式 永磁	玄式ブレートマグネット		OJ	0	
		表面磁力	3000ガウス			1	
106	塊原料ホッパ	容量	2 m²	0			
107	振動フィーダ	能力	7. 2t/h	0		0	
		モータ	60w (220V)		:		
						· .	

				erron conservation (sec	POWER PROPERTY AND ADMINISTRATION OF THE PARTY AND ADMINISTRAT
	4後 QO V _ 146	/.l. +¥	90°≆11.	新設	#n ~* #n
	機器No.機器名称	仕 様	既設	更新	一期 二期
	108 堅型ローラミル	能力 1~3t/h			0
		分量粒度 入口 40mm		•	
		出口 44~125µm			
		主軸回転数 140r.p.m.			
		モータ 40kW×4P			
		TORH A TI			
	100 17 100 118				
	109 分 級 機	モータ 5. 5kW×4P	O		O
•		回転数 115~1150r.p.m.	·		
•			:		
	110 メインファン	容量 320㎡/min×650mmAq at20℃		OJ	0
		モータ 75kW×4P			
	SOC TOPS AS A 1				
•	循環ダクト	サイズ φ 610		Ö	0
	. 111 - メインファン入 ロダンパー	手動レバー式		Ol	0
		サイズ			
	112 ベントダンパ	手動レバー式		OJ	0
		サイズ <i>ϕ</i> 390			
	113 サイクロン	CLT- ø 660, Y型	0		
	110 / 1 / 11 /	C13 1 Ψ000, 1 Ξ	改造) O
*.					
	114 サイクロン排出ロータリバルブ	口径	-	$\bigcirc 1$	
		ギャードモーカ 2. 2kW×4P×1/29			
		$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right)$			
	The state of the s		<u>.</u>		

機器No.	機器名称	仕 様	新設 既設 更新	一期二期
115	N 4 7 1 N 9 -	形式 ジェットパルス式	Ol	
·		濾過面積 104 m		
				_
116	バクフィルター排出ロークリバルブ	口径	OJ	0
		ギャードモータ 1. 5kW×4P×1/29		
117	ベントファン	容量 130 m²/min×350mmAq at20°C	OJ	0
		モータ 15kW×4P		
	ベントダクト	サイズ φ 390	0	0
118	ベントファン入 口ダンパ	手動レバー式	O1	0
. *		サイズ φ 390		
119	粉砕排気ダクト	サイズ Ø 390	0	0
120	フローコンベヤ	能力 3t/h	Ol	0
		機長 9.7m		
		揚程 9 m		
		ギヤードモーク 3. 7kW×4P×1/45		
121	粉原料ホッパ	容量 20㎡	改造	0
			公 尼	
122	粉原料ホッハ集じルサンハ	手動レバー式	OJ	0
		サイズ φ 100		

機器No.	機器名称	仕 様		既設	新設 更新	一期	二期
123	粉原料ホッパ排出 ロータリフィーダ	能力	16t/h		Ol	0	
		口径 *ヤ-ドモ-ク 2.	ϕ 350 2kW×4P×1/43				
124	切替ダンパ				OJ	Ö	
		サイズ	□ 350				
125	カットゲート	エアー駆動式 サイズ	350 A		Ol	0	
126	ケトル	容量	8 m³	OI(釜底)	0	
140		サイズ	$\phi 2524 \times 2820$	改造			
127	ケトル攪拌機	モータ	22kW		OJ	0	
		回転数	20r. p. m.				
128	ケトル吹込ファン		2930~5408 m³/h ×109~165mmAq	0		0	
1 N		モータ	3 kW×2P				
129	外加次达772人口约7	手動式		0		0	
130	ケトル排出ゲート	46			Ol	0	
		サイズ	φ 240				
131	排蒸サイクロン			0		0	

機器Na	機器名	称	仕 様	dan uurusaalau on seesyn raisidelt teritorija dalik teritorija dalik teritorija	既設	新設 更新	一期	二期
132	排蒸煙	突			〇 補修		0	
							•	
133	燃焼排煮サイ	イクロン	型式	X S - 1型	0			
	·		効率	94.3%				
			圧損	60mm Aq				
134	燃焼排ガスサイ		サイズ	ϕ 1500×1800		O	0	
	捕集粉ホッパシ	/1-1	シュートサイン	ズ φ 100				
				•			•	
135	燃焼排ガスフ	ァン	容量	3300 m³/h	0	٠.	0	
			モータ	4k₩×2P	·	·		
136	燃焼排オスファンノ	人口ダンパ	手動式		0		0	·
137	燃焼排ガス	煙突			0		0	
138	ホットピッ	ット	容量	8, 5 m³		0	0	
,			鋼板製					
		-	e e					
139	ホットヒット排出スク	りューコンベア		最大7t/h		Ol	0	
			羽根径	φ 300	14			
		: .	機長	3. 9m				
			1 1	$7kW \times 4P \times 1/29$	T KT + E			٠
	•		可変制御	インバータ		:		
		•		•		:		

	機器Na	機器名称	仕 様		新設 既設 更新	一期 二期
	140	フローコンベヤ	能力	7t/h	OJ.	0
	:		機長	5 m		
			揚程	4 m		
	w.		キャードモータ	2. 2kW×4P×1/45		
	141	除鉄機	形式	、磁式格子型磁選機	OJ	O -
				-クホイント 3000ガウス		
				5× 420ℓ×13本組		
	142	微粉砕機	形式	衝撃式ピンミル	OJ	0
			能力	7t/h		
			モータ	45k₩×4P		
	143	サイクロン	サイズ	φ 800	0	0
	144	サイクロン排出ロータリバルブ	口径	φ 350	OJ	0
			ギヤードモーク	2. $2kW \times 4P \times 1/29$		
•			: :			
	145	バクフィルター	形式	ジェットパルス式	OJ	Ö
			濾過面積	55 m²		
		÷,				
	146	バグフィルター排	口径	φ 300	OJ	0
	Tail Tolland	出ロータリバルブ	ギヤードモータ	1. $5kW \times 4P \times 1/29$:	
	:					
				· · · · · · · · · · · · · · · · · · ·		

機器No.	機器名称	仕 様	既設	新設更新	一期 二期
147	エアー輸送ファン	容量 70㎡/min×800mmAq at20℃		OJ	0
		モータ 18.5kW×2P			
	エアー輸送ダクト	サイズ φ 250, φ300		0	0
148	エアー輸送ファン入口タンバ	手動レバー式		OJ	0
		サイズ φ 300			4
149	17-輸送排気外	サイズ φ 300		0	0
150	フローコンベヤ	能力 7t/h		OJ	0
		機長 11.5m		i	
		揚程 12.5m			
		ギャードモータ 3.7kW×4P×1/45			
151	製品ホッパ	容量 8 ㎡			0
152	製品ホッパ排出ケート	エアー駆動式		OJ	0
		サイズ 300 A			
153	混 合 機 (1)	形式 遊星運動スクリュー 式		OJ	
		容量 7 m³			
		自転モータ 11kW×4P			
		公転モータ 1.5kW×4P×1/29			
•		排出ゲート エアーツリグ 駆動			
		計量装置 ロードセル式			

更新 154 混 合 機 (2) 機器No.153 と同じ				·			-			
154 混 合 機 (2) 機器Ma153 と同じ 155 混合機排出スクリューコンヘヤ 能力 15t/h 別根径 φ 400 機長 4.56m 料ードモーク 5.5kW×4P×1/29 156 除 鉄 機 形式 スクリーン式電磁分離機 最大磁力 約3000ガウス 磁化電力 1.44kW バイブレータ 0.15kW×2 台 振分タンパシュート エアー駆動 157 袋 詰 機 形式 自動定量式 アー エアー駆動 30~35sec/bag (充塡時間) モータ 3.7kW×4P 0.2kW×4P 1.5kW×4P 1.5kW×4P	機器No.	機器	名	称	仕 様		既設		一期	二期
155 混合機排出スクリューコンヘヤ 能力 15t/h 別根径 φ 400 機長 4,56m ギャードモータ 5.5kW×4P×1/29 156 除 鉄 機 形式 スクリーン式電磁分離機 最大磁力 約3000ガウス 磁化電力 1,44kW バイブレータ 0.15kW×2 台 振分ザンパシュート エアー駆動 157 袋 詰 機 形式 自動定量式 か量 50kg/bag 袋型式 外弁式 P P 袋 能力 30~35sec/bag (充塡時間)モータ 3.7kW×4P 0.2kW×4P 1.5kW×4P 1.5kW×4P 1.5kW×4P	*							更新		
羽根径	154	混合	機	(2)	機器No.153 と	同じ		OJ		0
機長 4.56m や ドモータ 5.5kW×4P×1/29 156 除 鉄 機 形式 スリーン式電磁分離機 最大磁力 約3000ガウス 磁化電力 1.44kW バイブレータ 0.15kW×2 台 振分ダンパシュート エアー駆動 157 袋 詰 機 形式 自動定量式 秤量 50kg/bag 袋型式 外弁式 P P 袋 能力 30~35sec/bag (充塡時間) モータ 3.7kW×4P 0.2kW×4P 1.5kW×4P	155	混合機排	出功	リューコンベー	化能力	15t/h	-	Ol		
ドヤードモータ 5.5kW×4P×1/29 156 除 鉄 機 形式 スカリーン式電磁分離機 最大磁力 約3000ガウス 磁化電力 1.44kW バイブレータ 0.15kW×2 台 振分サンドシュート エアー駆動 157 袋 詰 機 形式 自動定量式 ○J ○ 秤量 50kg/bag 袋型式 外弁式 P P 袋 能力 30~35sec/bag (充塡時間) モータ 3.7kW×4P 0.2kW×4P 1.5kW×4P 1.5kW×4P					羽根径	ϕ 400				-
156 除 鉄 機 形式 スカリーン式電磁分離機 最大磁力 約3000ガウス 磁化電力 1,44kW バイブレータ 0,15kW×2台 振分ゲンパシュート エアー駆動 157 袋 詰 機 形式 自動定量式 20kg/bag 袋型式 外弁式 P P 袋 能力 30~35sec/bag (充塡時間) モータ 3,7kW×4P 1,5kW×4P 1,5kW×4P 1,5kW×4P 1,5kW×4P 1,5kW×4P					機長	4. 56m				
最大磁力 約3000ガウス 磁化電力 1,44kW バイブレータ 0,15kW×2 台 振分がパシュート エアー駆動 157 袋 詰 機 形式 自動定量式					ギヤードモータ	$5.5 \text{kW} \times 4 \text{P} \times 1/29$				
最大磁力 約3000ガウス 磁化電力 1,44kW バイブレータ 0,15kW×2 台 振分がパシュート エアー駆動 157 袋 詰 機 形式 自動定量式										
最大磁力 約3000ガウス 磁化電力 1,44kW バイブレータ 0,15kW×2 台 振分がパシュート エアー駆動 157 袋 詰 機 形式 自動定量式	156	除	泆	機	形式 スグ	J->式電磁分離機		OJ	-0	. :
磁化電力 1.44kW バイブレータ 0.15kW× 2 台 振分ダンパシュート エアー駆動 157 袋 詰 機 形式 自動定量式 ○J PP量 50kg/bag 袋型式 外弁式 P P 袋 能力 30~35sec/bag (充塡時間) モータ 3.7kW×4P 0.2kW×4P 1.5kW×4P 1.5kW×4P						-		•		
バイブレータ 0.15kW×2台 振分がパシュート エアー駆動 157 袋 詰 機 形式 自動定量式				. 1						
振分がパパュート エアー駆動 157 袋 詰 機 形式 自動定量式					*					
157 袋 詰 機 形式 自動定量式										
秤量 50kg/bag 袋型式 外弁式PP袋 能力 30~35sec/bag (充塡時間) モータ 3,7kW×4P 0,2kW×4P 1,5kW×4P			2		3 23771112	, , ,				
秤量 50kg/bag 袋型式 外弁式PP袋 能力 30~35sec/bag (充塡時間) モータ 3,7kW×4P 0,2kW×4P 1,5kW×4P	157	\$	洁	塔	形式	白動定量式		O.J.		
	101	<i>3</i> 2 F		104						
能力 30~35sec/bag (充塡時間) モータ 3,7kW×4P 0,2kW×4P 1,5kW×4P				٠				•		
モータ 3,7kW×4P 0,2kW×4P 1,5kW×4P 1,5kW×4P 1,5kW×4P 0 0,2kW×4P 1,5kW×4P 1,5kW×4P 1,5kW×4P 0 0,2kW×4P 1,5kW×4P 1,5kW×4P 1,5kW×4P 0 0,2kW×4P 1,5kW×4P 1					4	30~35sec/bag				
サイズ ロ 400					モータ	3 , $7kW \times 4P$ 0 , $2kW \times 4P$				
サイズ ロ 400										
	158	カット	ゲ・	- ŀ		t di		Ol		O
159 カットゲート 機器No.158 と同じ OJ ○				٠	サイズ	□ 400				
	159	カット	ゲ -	- h	機器No.158 と	:同じ		OJ		0
									:	

(2) 2号系統

機器No.	機器名称	仕 様	新設 既設 更新	一期 二期
201	グリズリ付ホッパ	容量 3 m ³	0	
202	振動フィーダ	能力 4~ 20t/h モータ 0.85kW×4P×2台	Ol	O
		可変制御 インバータ		
203	ジョークラッシャー	能力 10~12㎡/h モータ 15kW×4P	0	0
		主軸回転数 280~330r.p.m 粉砕後サイズ 20~80mm		
204	パケットエレベータ	能力 8 m³/h	0 .	0
		揚程 10.52m モータ 3 kW×6P		
205	除鉄機	形式 永磁式ルートマグネット	Ol	0
906	Left (FE 3KN 1	表面磁力 3000ガウス		
206	塊原料ホッパ	容量 2.04 m³		
207	振動フィーダ	能力 8t/h モータ 60w(220V)		

機器Na	機器名称	仕 様		既設	新設 更新	一期	二期
208	堅型ローラミル	能力	2~6t/h	0		O.	
		原料粒度 入口	40mm				
		主軸回転数 10	03r.p.m.		;		
	:	モータ	75kW×6P				
209	分 級 機	径	φ 1710	0		0	
		モータ 7.	5kW×4P				
		回転数 120~120	00r.p.m.				
							•
210	メインファン	容量 450 m³/min×′	700mmAq at20°C) J	0	
		モータ	90kW×4P	i	•		
	循環ダクト	サイズ	φ 730		Ö		
٠.	旧塚ノノー	<i>917</i>	Ψ 100				* *
211	メインファン入 ロダンバ	手動レバー式			J	0	
		サイズ	φ 730		÷ ;		. •
						·	\$
212	ベントダンパ	手動レバー式			J	0	
		サイズ	φ 450				
:							
213	サイクロン	C L T $- \phi$ 2200, Y	型	0		0	
		容量	5 m³	改造			
214	サイクロン排出ロークリバルブ	口径	φ 350		OJ	0	
		ギヤードモーク 2. 2kW×	4P×1/29		٠		
		. d 					

機器No.	機器名称	仕 様	新設 既設 更新	一期二期
215	КУ 7 1 N У -	形式 ジェットパルス式	OJ	0
		濾過面積 125 m		
216	バクフィルター排出ロークリバルブ	口径	. Oj	0
		ギャードモータ 1. 5kW×4P×1/29		
217	ベントファン	容量 170㎡/min×350mmAq at20℃	Ol	
		モータ 18.5kW×4P		
	ベントダクト	サイズ ø 450	0	0
218	ベントファン入 ロダンパ	手動レバー式	Ol	
		サイズ		
219	粉砕排気ダクト	サイズ φ 450	0	O
220	フローコンベヤ	能力 6t/h	OJ	0
		機長 11.6m		
		揚程 9.5mギヤードモータ 3.7kW×4P×1/45		
221	粉原料ホッパ	容量 20㎡	0	0
222	粉原料ホッハ集じルタンバ	手動レバー式	OJ	0
		サイズ Ø 100		

機器No.	機器名称	仕 様		既設	新設更新	一期	二期
223	粉原料ホッパ排出	能力	16t/h		OJ	0	
	ロータリフィーダ	口径	φ 350	:			
		ギヤードモータ	$2.2 \text{kW} \times 4P \times 1/43$				
224	切替ダンパ	手動レバー	式	-	OJ		
	*.	サイズ	□ 350	:			
225	カットゲート	エアー駆動	力式		OJ	0	
		サイズ	350 A				
226	ケトル	容量	8 m³	○J(改造	釜底)	0	
		サイズ	ϕ 2524 \times 2820	; *			. *
227	ケトル攪拌機	モータ	22k\		OJ		
		回転数	20r. p. m.				
228	ケトル吹込ファン	容量	2930~5408 ㎡/h ×109~165mmAq	0	W	0	
		モータ	$3 \text{ kW} \times 2P$				
			e .				
229	外收达772人口42K	手動式		0		0	
230	ケトル排出ゲート				Ol	.0	
		サイズ	φ 240°				:
231	排蒸サイクロン	型式	X Z 2 - III - 560	0	p s	0	

機器Na	機器名称	仕 様	新設 既設 更新	一期二期
232	排 蒸 煙 突		0	0
233	燃 焼 排 ガスサイクロン		0	
234	燃焼排ガスダブルサイクロン	型式 X S - 1 B	Ο	O 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
235	燃焼排ガスファン	容量 3500 m³/h×191mmAq	0	0
		モータ 4kW×2P		
236	燃焼排がスファン入口タンパ	手動式	0	0
237	燃焼排ガス煙突		0	0
238	ホットピット	容量 8.5 m 割板製	0	0
239	ホットヒット排出スクリューコンヘア		OJ	0
		羽根径 Φ 400 機長 3.9m		
		ヤードモータ3.7kW×4P×1/29可変制御インバータ		
240	フローコンベヤ	能力 16t/h	OJ	0
		機長 5.5m 揚程 4.5m		
		₹7- FE-9 3. 7kW×4P×1/45		

-					
機器No	機器名称	仕 様	既設	新設	一期二期
104 HITHU		India IPA	PAGE X	更新	387141
241	除鉄機	形式 永磁式格子型磁選機		OJ	0
		表面磁力ピーケポイント 3000ガウス			
		サイズ ø 25× 420 ℓ×15本組			
	•				
242	微粉砕機	形式 衝撃式ピンミル		OJ	0 .
		能力 16t/h			
		モータ 90kW×4P			
243	サイクロン	サイズ φ1000		0	0
244	サイクロン排出ロークリバルブ	口径		Oì	0
		ギヤードモータ 3. 7kW×4P×1/29			
245	バクフィルター	形式 ジェットパルス式		O1	
٠.		濾過面積 104 m²			
246	バグフィルター排	口径		· OJ	0
	出ロータリバルブ	ギャードモータ 1. 5kW×4P×1/29			
0.47	エアー輸送ファン			○ 1	
247	エナー軸医ファン	容量 150 m³/min×800mmAq at20℃		OJ :	
					e de la companya de l
		モータ 37kW×2P		•	
	エアー輸送ダクト	サイズ φ 300, φ 350			0
248	17-輸送ファン入口タンハ	手動レバー式		Ol	0
		サイズ φ 350			e e e
			<u> </u>		

機器No.	機器名称	仕 様	既設	新設 更新	一期	二期
249	17-輸送排気タクト	サイズ φ 350		Q	0	
	•					
250	フローコンベヤ	能力 16t/h		OJ	0	
		機長 11.5m				
		揚程 12.5m				
		ギャードモータ 5. 5kW×4P×1/45				
251	混合機(3)	形式 遊星運動スクリュー 式		J	0	
		容量 8 m				
		自転モータ 11kW×4I	,			
		公転モータ 1.5kW×4P×1/29	,	٠.		
		排出ゲート エアーデリング 駆動				
252	製品ホッパー	容量 8 m	移設	÷		0
253	製品ホッパー排出ケート	エアー駆動式	0		ı	0
		サイズ 300 A	移設			
254	混合機排出スクリュコンヘヤ	能力 15t/l	L	OJ	0	•
		羽根径			 	
		機長 4.56m				
		ギャードモータ 5. 5kW×4P×1/29	1			
				•		
					:	

機器No	1. 機	器名	称	仕 様		既設	新設更新	一期	二期
255	除	鉄	機	形式 スクリー	・ン式電磁分離機		OJ	0	
				最大磁力	約3000ガウス				
		4.		磁化電力	1. 44kW				
				バイブレータ	0.15kW×2台				
	. 1.			振分タンハシュート	エアー駆動				
		÷							
256	袋	詁	機	形式	自動定量式		OJ	Ο,	
		1		秤量	50kg/bag				
				袋型式	外弁式PP袋				
				能力	30~35sec/bag (充塡時間)		+ *		
				モータ	3. 7kW×4P 0. 2kW×4P 1. 5kW×4P				
257	カッ	トゲ	- ト	エアー駆動式			OJ		0
			:	サイズ	500×690				
258	カッ	トゲ	- ' F	機器No.257 と[司じ		Ol		0
	:					:			
				er en					

4		-				
機器No.	機器名称	仕 様	. *	新設 新設 既設	一期	二期
核器10.	機器名称	1上 7水		更新	一期	————
001	油圧フレーカ付パワーショべル	パワーショベ	ル LS-1600F2	OJ		\circ
001	1HVT7.1 11 11 11 11 11 11 11 11 11 11 11 11 1	;	H B 8 G			
		能力	2. 5~ 5 m³/h			٠.
		:	2.0 0 m, n			
002	コンプレッサー	形式	パッケージ式スクリュー式)l		
			in×7 kg ∕cπ²G			
		モータ	22kW			
		運転方式	アンローダ式	:		
		冷却方式	空冷			
003	エアードライヤー	処理空気量	3.7 m²/min	.OJ	0	
		冷凍機出力	0, 75kW		<u>.</u>	
004	レシーバタンク	容量	430 ℓ	OJ	0	
005	電動ホイスト	吊上荷重	1000kg	Ol	O,	
•		揚程	15m			
		走行距離	6 m			
		巻上モータ	1. $8kW \times 6P$			
		走行モータ	$0.2kW \times 12P$			
						٠.
006	フォークリフト	最大荷重	2000kg	Ol		
			٠.			
						·

機器名称	数量	調達区分 (海外(日本)調達 (品を"J"で示す
(1)職場変電所内改造設備		
(i) ディスコン盤	1面	
3 ϕ , 3 W, 50 H Z, 3 P, 600 A, 10000 V		
鋼板,防塵,屋内, 2 段積		
1000W×1200H×1500D		
(ii) 遮断器盤	1面	
3 Ø 3 W, 50 H Z, 3 P, 600 A, 10000 V		
遮断容量 25kA		
鋼板,防塵,屋内, 2 段積		
1000W×1200H×1500D		
		`
(2)原料粉砕・焼成室 2 階の電気室内設備		
(i)ディスコン盤	1面	
3 φ 3 W, 50 H Z, 3 P, 600 A, 10000 V		
鋼板,防塵,屋内, 2 段積		
1000W×1200H×1500D		
(ii) 電源盤	1面	
$3 \phi 3 W$, 50HZ, 3 P, 600A, 10000 V		
遮断容量 25kA		
鋼板,防塵,屋内, 2 段積		
1000W×1200H×1500D		
	14	
(前)変圧器	1台	
$3 \phi 4 W$, $50 H Z$, $10000/380 V$, $560 kVA$		
油入式、屋外、自冷		

	数量	調達区分
機 器 名 称		(海外(日本)調達) 品を"J"で示す
(iv) バスダクト	1式	
3 \phi 4 W, 50 H Z, 380 V, 1600 A		
屋内		
(v)コンデンサー	1台	
$3 \phi 3 W$, $50 H Z$, $200 kVA$, $380 V$		
鋼板,防塵,函入,屋内		# ¹
(vi) モーターコントロールセンター	14式	
3 ø 3 W, 50H Z, 380V, ドロワー式		
鋼板,屋内,600W×2100H×600D		
(vii) 照明,制御用コントロールセンター	2式	
1 Ø 2 W, 50H Z, 220 V, ドロワー式		
鋼板,屋内,600W×2100H×600D		
		* . - -
(3) 原料粉砕・焼成室1階の操作室内設備		
(i) PLC及びリレー盤	2面	J
1 \phi 2 W, 50 H Z, 220 V		
鋼板, 自立, 防塵, 屋内, PLC内蔵		
$1200\mathrm{W} \times 1900\mathrm{H} \times 600\mathrm{D}$		at the second of
(ii) UPS	1面	J
$1~\phi~2~\mathrm{W}$, $50~\mathrm{H}~\mathrm{Z}$, $220~\mathrm{V}$, $3~\mathrm{kVA}$		
入力 220 V ± 15%		
$50\mathrm{HZ}\pm2~\%$		
出力 220 V ± 2 %		
50HZ± 1%		
鋼板, 自立, 防塵, 屋内		er Maria Tarak Maria
$600W \times 600H \times 600D$		
	1	<u> </u>

機器名称	数量	調達区分 海外(日本)調達 品を"J"で示す
(iii)主操作盤	1面	J
1 Ø 2 W, 50 H Z, 220 V		•
鋼板,デスク式		
ミミックパネル, 計装機器 ANN		
PB, PL		
$3200\text{W} \times 1900\text{H} \times 1400\text{D}$		
(4) 焼石膏混合·包装室内設備		
混合・包装操作盤	2面	${f J}$
1 \phi 2 W, 50 H Z, 220 V		
鋼板,壁掛防塵,屋内		
$900\text{W} \times 600\text{H} \times 300\text{D}$		
(5) 計装及び単体機器	:	
(i) CA形熱電対	6	J
1000mm ℓ 可動フランジ付		
(ii) PR形熱電対	2	$oldsymbol{J}$
1000㎜ℓ 磁性管		
(iii) 同上温度変換発信器	8	J
DC. 4-20m A		
(iv) 同上電源部	4	J
A C 100 V, 2 loop用		
(v) 差圧発信器	6	J
均圧弁含む		
(vi) 同上電源部	3	·:
A C 100 V 2 100p用		

機器名称	数量 調達 (海外(日z (品を"J")	区分 本)調達) で示す
(vii)連続調節計	2	J
入力 DC1-5V		•
出力 DC4-20mA	•	
(viii) 記録計	2	J
入力 DC4-20mA		
(ix)レベルスイッチ	8 :	J
A C 220 V, パドル式		
(x) 機側スイッチ	75	J
連、停、単、ノッチ式、防水		
(xi) 起動ベル	6	\mathbf{J}
AC 220V, 150φ 防水		:
(xii)非常スイッチ	4	J
(6) 照明器具		
(i) 水銀灯具		
1 \phi 2 W, 50 H Z, 220 V, 300 W	25	
チェン吊下げ、フード付 防水		
安定器		
(ii) 蛍光灯具		
1 ϕ 2 W, 50 H Z, 220 V 40W × 2	30	
反射笠付 防水 40W×1	20	
20W×1	10	
(iii)コンセント	$\frac{d_1}{d_2} \leq \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} \right) + \frac{1}{2} \left(1$	
1 \phi 2 W, 50 H Z, 220 V		
防水 20 A × 2	40	
	. 1	

第9章 生産管理の近代化

9-1 生産管理の概要

9-1-1 管理項目

できるだけ低い製造原価で必要な生産量と要求される品質の製品を確保するためには設備の充実だけではなく生産管理が円滑に活動していることが必要である。

工場設備の一部しか稼働していない状況では生産管理についてはあまり注意を 払う必要もなかったであろうが、今後は近代化された高度な管理が必要である。

設備がバラバラに単独に動くだけでは製品が出来ないように、生産管理も次に 述べる分野の管理が有機的に働いて初めてその効果が発揮され、安価でよい製品 が製造出来る。

生産管理について次の様に分類したが、これらは互いに関連のある管理なので 組織として有機的に対処する必要がある。

- (1) 生産計画、日程管理
- (2)調達管理
- (3)在庫管理
- (4) 工程管理
- (5) 品質管理
- (6)安全管理
- (7) 設備管理
- (8) 教育・訓練
- (9) 環境対策

9-1-2 生産管理会議の開催

前述の各管理項目は組織上、各担当部署により管理されることとなるが、それらが効率的に運営されるため、また、関連部署間の連携を密にするため、月1回程度の生産管理会議を開催することを推奨する。

この会議は各部署の責任者および工場の総括責任者によって構成され、各管理 項目に対する月間の結果報告および問題提起の場とすべきである。 これにより生産計画の見直しや修正の必要が生じた場合には、迅速な対応が可能となるばかりでなく、職場で発生する種々の問題の解決にも非常に役立つものと考えられる。

9-2 生産計画、日程管理

9-2-1 生産計画

販売計画をベースにした、正確な生産計画を立てることが肝要である。

生産計画は、年間、月間、週間計画から成り、製品種別毎の詳細且つ具体的な 内容とすべきである。

計画に際しては、年間休日、長・短期の休転、トラブル等による稼働率等を勘 案する必要がある。

この生産計画は原材料の調達計画、適正在庫計画の基となるものであるため、 何らかの原因で生産計画の変更が余儀なくされた場合には早急に対応、見直しを 行わなければならない。

9-2-2 日程管理

生産計画により、詳細な運転計画を組み実施に移すことになるが、ここでは第 一期段階、第二期段階でのケーススタディーとしての運転タイムチャートを示す。

- (1)第一期段階
 - (i) 運転条件

運 転 時 間:実働8時間/日(拘束9時間30分)

焼成バッチ回数:1号、2号系統とも2回/日

(ii) 運転タイムチャート

図 9-1参照

- (2) 第二期段階
 - (i) 運転条件

運 転 時 間:24時間/日

焼成バッチ回数:1号系統 6.8回/日(3.5時間/回)

2号系統 9.6回/日(2.5時間/回)

(ii) 運転タイムチャート

図 9-2参照

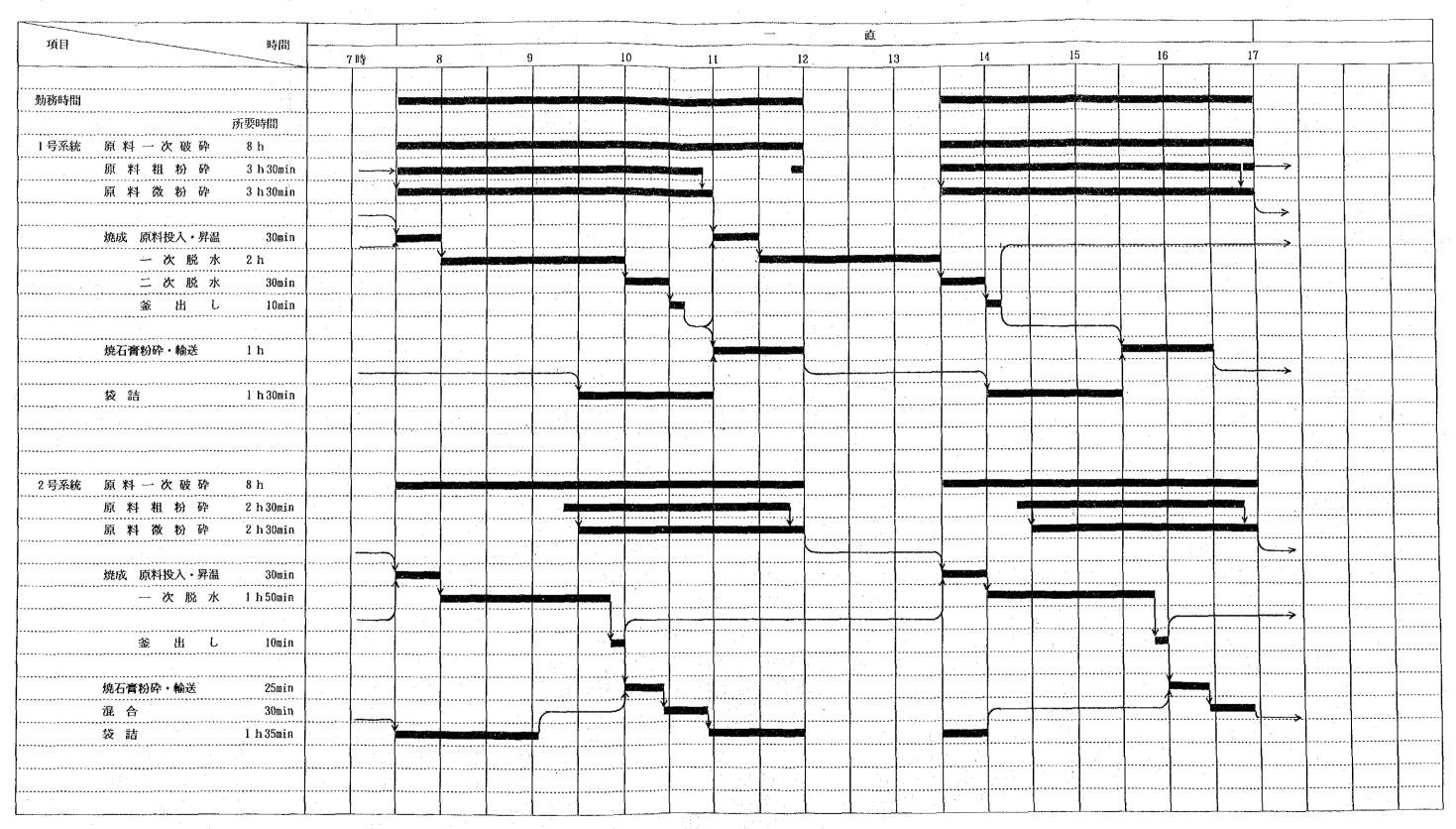


図9-1 第一期段階での運転タイムチャート

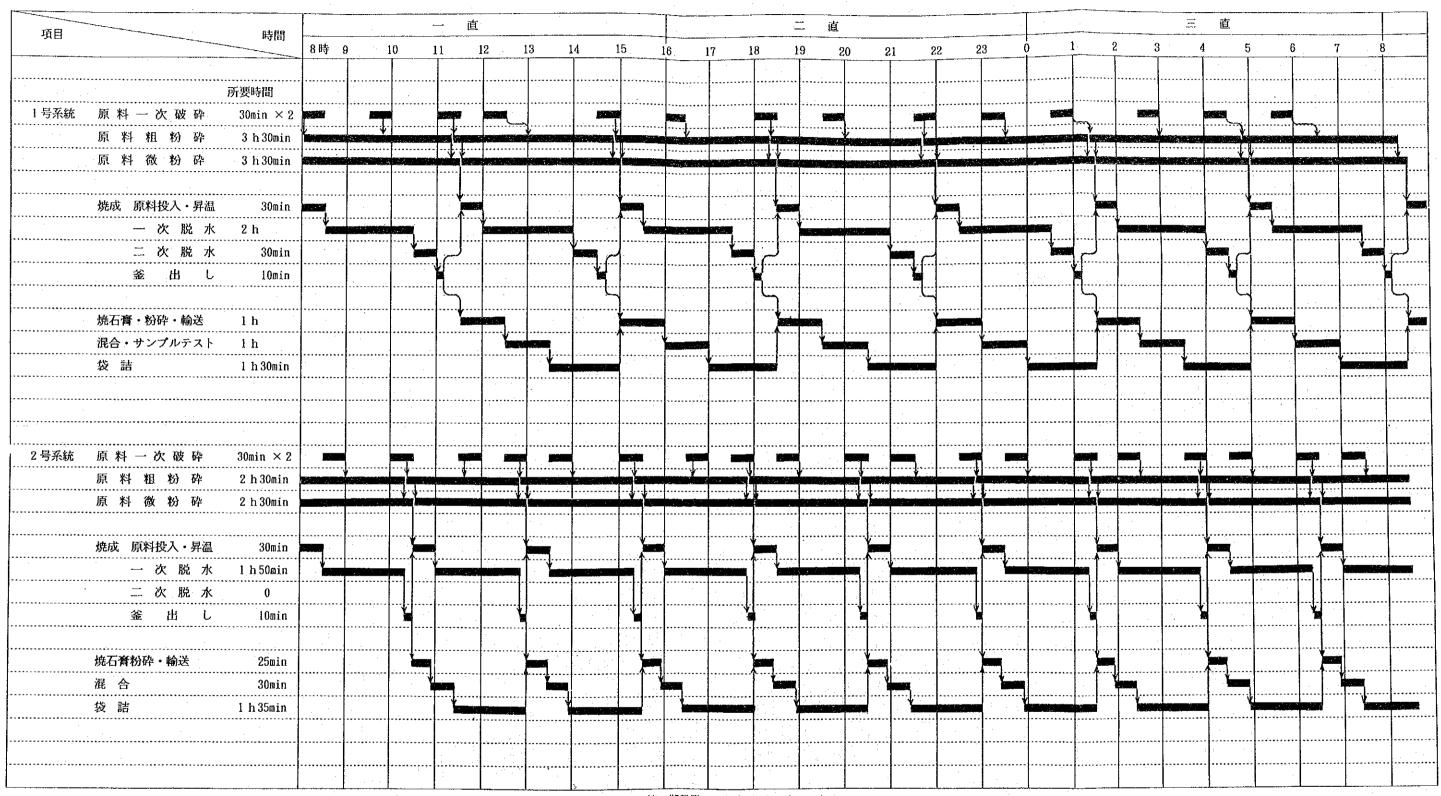


図9-2 第二期段階での運転タイムチャート

9-2-3 要員計画

前述の運転タイムチャートに従い運転する場合の要員計画を表 9 - 1、表 9 - 2 に示す。これは実際に要員計画を立てる際の参考の為に作成したものである。

尚、下記両表の要員数には分析・試験要員、管理要員などは含まれていないの で別途考慮する必要がある。

		·	
要員	作 業 員	操作員	
工程	1号2号	1 号 2 号	
原 料 搬 入	1	. - .	!
一次破砕	1 1		
粗粉砕~焼成~輸送	2	1	
混 合	- 操作員兼務	1	
袋 詰	2 2	4	
入 出 庫	1	<u> </u>	
合 計	1 0	2	1 2

表 9-1 第一期段階での要員数

主0-9 第二期的膜水の亜昌粉

一直での要員	作 業 員	操作員	
工程	1 号 2 号 交替員	1 号 2 号 交替員	•
原 料 搬 入	1	_	
一次破碎	1 1	_	
粗粉砕~焼成~輸送	1 1 1	1 1	
\.	操作員		
混合	兼教	1 1	
袋 詰	2 2 2		
入 出 庫	2 1	-	
合 計	1 6	4	2 0

4 直 3 交代体制: 20人/直×4 直=80人

9-3 調達管理

生産に必要な原材料、燃料等の調達については、その計画、実施およびチェックを 行う必要がある。調達計画は生産計画を基に行われるものであり、適正在庫、置場スペースなど加味の上決定されるべきである。

また、操業に必要な予備品、消耗品についても、その調達および管理が行われなければならない。

9-3-1 原材料

(1) 原料石膏

本近代化計画の第二期段階では石膏工場内に石膏原石を大量に貯蔵する設備 はない。従って石膏原石調達は運転計画に応じたタイムリーな工場搬入が要求 される。

また、製品品種により使用する原料石膏の純度が制限されるため、よりシビアーな搬入計画を立て、実施することが必要である。

(2)添加剤等

製品品種揃えのため、また製品品質向上のために使用する各種添加剤等は他 社からの購入品であるので納期を勘案の上、生産計画に合わせた調達管理を行 うことが必要である。

添加剤の中には長期保管により品質劣化を起こすものもあるので、注意をすべきである。

また、購入に際しては、成分表、試験成績表等を購入先から必ず入手しなければならない。

9-3-2 燃料

降雨に濡れないように置き場を確保する必要がある。

搬入ロット毎に成分表又は試験成績表を取り寄せること。

その中には工業分析として水分、灰分、揮発分、固定炭素の外に燃料原単位を 算出するのに欠かせない発熱量、今後公害規制が厳しくなる事も考えられるので 硫黄分も入れるようにしておくこと。

9-3-3 予備品、消耗品、他

円滑な操業を行うためには「9-8設備管理」の部分で述べる事項を履行することが重要でありまた基本であるが、機器および設備を運転する上では、予備品、消耗品は必ず必要なものである。

各機器毎に予備品、消耗品をリストアップし、予想寿命、納期、価格等をまとめておくと管理がスムーズに行えるであろう。

過剰在庫を防ぐため、適切な調達計画、在庫管理を行うことが肝要である。また、潤滑用油脂類、包装部品などの調達、在庫管理についても同様に行う必要がある。

9-3-4 管理項目内容・記録

以上述べたことをまとめると下記の通りとなる。これらについて記録をとり管理し、調達計画を立てることが肝要である。

- (1) 原料石膏:純度別受入量(日、週、月単位でまとめる)
- (2)添加剤:種類別購入量、在庫量、使用量(日、週、月単位でまとめる)
- (3) 燃料:購入量、在庫量、使用量(日、週、月単位でまとめる)
- (4) 予備品、消耗品:部品別購入量、使用量、在庫量(月単位でまとめる)
- (5) 潤滑用油脂:種類別購入量、在庫量、使用量(月単位でまとめる)
- (6) 包装容器・袋:種類別購入量、在庫量、使用量(日、週、月単位でまとめる)

9-4 在庫管理

添加剤、燃料、予備品・消耗品および油脂類等の在庫管理は調達管理と一括して管理を行う方が効率的であり、その内容については「9-3調達管理」にて記述しているので、ここでは原料石膏および製品の在庫管理について述べる。

9-4-1 原料石膏

本近代化計画の第二期段階では、石膏工場内には原料である石膏原石の在庫管理を行うほどの貯蔵設備はない。従って生産計画に応じた原料石膏の在庫は鉱山側で確保する必要がある。

製品品種により使用する原料石膏の品位が異るため、鉱山においては品位別在庫管理を行わなければならない。

従って鉱山で切出された原石の選別作業は厳重に行われなければならない。

また、保管中、あるいは石膏工場へ輸送中原料石膏の付着水分が降雨などにより増加しないよう、策を講ずる必要がある。鉱山から石膏工場へ搬入された石膏原石は、直ちに粉砕工程で処理されるため、もし付着水分の多い原料の場合、付着などによるトラブル発生の危険性があり、また焼成においても余分な燃料の使用、焼成時間の延長等デメリットが非常に多くなる。

又原料石膏に土砂や木材等の異物が混入しないよう注意すべきである。

9-4-2 製品

(1)陶磁器型用、模型型用

本製品は熟成を要するため、袋詰後一定期間製品倉庫で保管されなければならない。従って在庫量としては、熟成・出荷の両面から適正量を決める必要がある。

出庫用在庫は販売からの出荷計画により決められるべきであるが過剰在庫を もつと、それだけ製品倉庫のスペースを要することになるし、また在庫期間が 長くなり過ぎると品質面でも悪影響がでるので注意しなければならない。

一般的には出荷用在庫は一週間程度である。

(2) 建材用(ブロック等)、石膏プラスター

これらの製品は熟成を必要としないので、出荷用の在庫量を確保すればよい。

従って在庫量としては一般的には一週間程度である。

(3) 製品品種の区別

多品種を取扱うため異品種の混同を防がねばならない。

そのためには、品種により包装袋の表示を変えるなど、判別し易い工夫が必要であり、また、製品倉庫の品種別割り付けも明確にさせる必要がある。

9-4-3 管理項目内容・記録

下記事項につき記録をとり管理を行うべきである。

- (1) 原料石膏:本項目は鉱山の原石置場で管理する内容である。
 - ・品位別受入量、払出量、在庫量(日、週、月単位でまとめる)

(2) 製品

- (i) 陶磁器型用、模型型用
 - ・入庫量、熟成在庫量、出荷在庫量、出荷量 (ロット、日、週、月単位でまとめる)
- (ii) 建材用(ブロック等)、石膏プラスター
 - ・入庫量、出荷量、在庫量 (ロット、日、週、月単位でまとめる)

9-5 工程管理

計画された生産量、製品品質を確保するためには、入念な運転計画のもと、各工程 毎に決められた操作、作業を所定時間で確実に行うことが肝要である。また人によっ て、そのやり方に、ばらつきが出ないようにすることが重要である。

そのためには、各種基準書、標準書、要領書、記録書等の整備が必要となってくる。 従って運転に携わる作業員、操作員は全員が、これら基準、標準を正しく理解し、 各工程でチェック(管理)を行いながら運転を行うことが必須である。即ち、生産量、 製品品質の良し悪しはこの工程管理の如何にかかっているという認識をもつことが重 要なポイントである。

9-5-1 基準書、標準書、要領書等の整備

少なくとも下記資料の作成、整備は行うべきであり、必要に応じて更に追加、 拡充を図ることが重要である。

- (1) 品質基準…詳細については「9-6、品質管理」に述べる
 - 原材料、燃料の品質基準値
 - 製品品質基準値
- (2) 化学分析及び物理試験方法基準…詳細については「9-6品質管理」に述べる。
 - 化学分析・物理試験を行う対象品(社内検査、社外検査)
 - サンプリング方法
 - · 化学分析 · 物理試験方法

(3) 運転要領書

- ・運転・操作方法…起動準備、起動・停止手順など
- 各工程毎の作業内容
- トラブル時の操作・作業内容
- 停電時の操作・作業内容
- (4) 運転スケジュールの標準

「9-2-2日程管理」に示した運転タイムチャートを参考にし標準の運転スケジュールを作成する。

(5) 運転管理基準

・原料微粉砕系での粉末度と関連機器の設定値との関係

- ・原料微粉砕系の風圧設定値
- 各ホッパーのレベル設定値
- 焼成工程での各操作所要時間の基準値
- ・焼成温度(品温、燃焼ガス温度)の基準値
- 混合工程での各種添加剤の添加量基準値および混合時間の基準値
- (6) その他、設備・機器の維持管理のための、点検チェックリストや保修要領書等の設備が必要であるが、これについては「9-9設備管理」にて述べることとする。

9-5-2 運転結果の記録と保管

工程管理を確実に行うために、運転記録を残すことが有効であり、また品質向 上を目指す上でも非常に役立つものである。

品質管理で記録される検査結果と合わせ、ある一定期間保管されることを薦める。

具体的な実施方法としては種々考えられるが、一つの方法としては記録票を準備し運転に携わる人がそれに記入する方法がある。

記録票には少なくとも下記内容を記載すべきである。

- (1) 焼成ロット毎に管理する内容
 - ・焼成温度(品温、燃焼ガス温度)と時間の経緯
 - ・陶磁器型用、模型型用製品の混合工程での焼石膏重量と添加剤種類、添加量
 - ・石膏プラスター製品の混合工程での添加剤の種類、添加量
 - 包装袋数
- (2) 定期的に管理する内容
 - 各工程毎の所要時間
 - ・原料石膏粉の嵩比重…焼成バッチ量の変化をみる。
 - ・混入異物 (鉄片、鉄粉) の割合

9-6 品質管理

品質管理の目的は品質保証であり、品質保証とは、消費者に安心感と満足感を与えることである。

そのためには

- (1)消費者のニーズをしっかりと把握すること
- (2) 品質第一主義を明確に打ち出し、工場長以下全従業員が品質に対して関心をもつこと。
- (3) 品質管理の組織、システム、責任・権限等を明確にする。
- (4) 管理基準、管理方法を明確にする。
- (5) 品質保証の責任は生産者にあり、検査部門にはないという意識をもつこと等 を実践することが肝要である。

9-6-1 品質基準

下記項目について基準値を定めることが必要である。

- (1)原料石膏原石
 - (i) 品位(組成): 陶磁器型用、模型型用…二水石膏含有量が85%以上 高純度程、高品質の製品が得られ る。

: 建材用 (ブロック等) …二水石膏含有量が60%以上 用途によっては高純度の原料が要 求される。

石膏プラスター用 …二水石膏含有量が60%以上

(ii) 付着水分 : 1.0%以下

付着水分は少ない程好ましい

(2)原料石膏粉粉末度

焼成前の原料石膏粉の粉末度は、ある程度粗い方が、焼石膏の強度を得ることが出来る。

参考として表9-3に日本に於ける一般的な原料粉末度を示す。

表 9-3 原料石膏粉粉末度(日本の場合)

粉度((μm)	~20	20~40	40~60	60~100	100~149	149~
分布	(%)	5. 1	5. 4	5.0	5. 2	24. 4	54, 9

即ち 100メッシュ(149 µm)残分55%である。

(3)添加剤:組成、特性

(4)燃料:石炭の発熱量、組成

(5) 焼石膏粉末度

参考として表9-4に日本に於いて市場に出ている高級品(陶磁器特級)の 粉末度を示す。

表 9 - 4 陶磁器特級粉末度(日本の場合)

粒度 (μm)	~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80	80~149	149~
分布 (%)	15. 3	21. 4	15	15, 8	12. 5	8	5	2, 4	4. 6	0

(6) 製品:製品品種別に下記基準を定める。

•組 成: 主 成 分 ··· 化合水 (H₂O) %

無水硫酸 (SO3) %

副 成 分 … 酸化第二鉄 (Fe₂O₃)、他%

• 物理的性質: 標準混水量

凝 結 時 間 … 始発、見掛の終結時間、終結時間

凝結膨張率

ぬれ強度 … 引張、圧縮

保 水 率

曲げ強さ

9-6-2 製品の期待品質

7-2-3 に述べたように近代化により製品品質は、現在の品質に比較し、相当程 度向上することが期待できる。

しかし現時点で製品品質を定量的に予想することは、困難である。

(1)陶磁器型用、模型型用

近代化では原石品位85%以上を使用し、且つ、原料粉末度を100メッシュ (149 µ) 残分を30%以上、焼石膏粉末度を170メッシュ (88 µ) 残分を5%以下程度とし、焼成操作を厳密に管理すれば、良質の製品が得られる。

(2) 建材用(ブロック等)

近代化では原石品位60%以上、用途によっては70%以上等の原料が使用される。原料粉末度、焼石膏粉末度等を上記条件とし、焼成操作を厳密に管理すれば良質の製品が得られる。

(3) 石膏プラスター用

(2)項参照

石膏プラスターの場合、混合材の管理が必要である。

9-6-3 品質管理項目・方法

表 9 - 5 に示す事項につき検査を行い、その結果を記録し管理を行うべきである。

尚、内容については中国の情況に合わせたものとする必要がある。

表 9 - 5 品質管理のための検査項目及び方法

項目	検 査 内 容	方 法	頻 度	(株 考
原料石膏原石	·純度 ·付着水分	山元での試料採取	鉱山の石膏層が変ったとき (月1回程度)	・試験結果が基準値 から外れた場合の 対策を考慮
原料石膏粉	粉末度	ケトル投入前の原料: ら試料採取	か 週1回程度	
添加剤	・組成 ・特性	・購入先からの試験 領書な場合 ・必要な場合社内検 を行う	成 納入都度分を1ロット で 検査:	
燃料(石炭)	・発熱量 ・組成	購入先からの試験成 費服合	積 納入都度分を1ロットとするロット 検査	·
焼石膏 (陶磁器型用) (模型型用	・混水量 ・凝結時間	混合機供給開始直後 よび終了15分前の2 試料採取 (添加剤添加量決定 (のため	お 焼成ロット毎	
	・混水量 ・凝結時間	混合後試料採取	焼成ロット毎	
製品 (陶磁器型用)	組成	最終製品から試料採	取 3ケ月に1回程度	
()	・混凝 ・混 ・混 ・混 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	混合後の最終製品か 試料採取	ら 焼成ロット毎	
	・粉末度		週1回程度	-
製品	組成	最終製品から試料採	取 3ヶ月に1回程度	11.1
(模型型用)	・混み 量明 ポース 水 量明 間 本	混合後の最終製品か 試料採取	ら 焼成ロット毎	
	・粉末度		週1回程度] .
製品 (建材用)	組成	最終製品から試料採	取 3ヶ月に1回程度]
(22771)	・混凝結結 水結 ・混凝 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	最終製品から試料採	取 週1回程度	
製品	組成	最終製品から試料採	取 3ヶ月に1回程度	
(石膏クラスター)	・ 数保外の は を は は は は は は は は は は は は は は は は は	混合後の最終製品か 試料採取	ら 週1回程度	
包装袋	外観(目視・メタォー)	ロット抜き取り方式	納入都度分を1ロットとするロット 検査	

9-7 安全管理

作業(仕事)の目的は企業の方針に従って生産目標を達成することにある。それが、 災害、トラブル等が発生すると、場合によっては著しく低下することになる。従って 安全性ということが極めて重要な課題となってくる。

一般に企業の作業集団において、これを安全化するためには、次の三つが必要であるといわれている。

- (1)設備の安全化
- (2) 人間の安全教育
- (3)作業集団の安全推進

「設備の安全化」は生産を行う手段として、これを安全化することは基本的なことであるが、これによって生産活動が行われる過程でこれに従事する人間の行動を安全化するためには「教育」が最も大切なことである。また、この人間が集団において全体として安全を保持していくためには、組織としての実際の「安全行動への推進」が必要である。

9-7-1 設備、作業環境の安全化

(1) 設計安全基準

設備・装置などで、従業員が点検、調整、給油および修理等の保全作業を必要とする設備、あるいは、見学者等の部外者が容易に接近する設備において危険性を伴うものについては、安全を確保できる対策をとる必要がある。これに該当するものの一部を下記する。またこれらは社内基準として整備されることを薦める。

- ・安全カバー、防護棚類 … 機器の回転部分、作動部分等の覆い
- ・保 護 カ バ … 高温部等の覆い
- •通路、階段、手摺 … 構造、寸法
- ・特殊階段、タラップ … 構造・寸法
- ・落 下 防 止 設 備 … 物の落下、人の墜落防止
- ・保 安 装 置 … 非常停止、電気保護装置、ケーブルカバー等
- (2) 作業環境の安全化
 - 整理・整頓

- 作業領域の確保
- 作業領域の照明
- · 安全標識、表示、色彩
- 保護具、防具

9-7-2 安全教育

災害の原因を大局的に分類すると

- ・機械・装置が主体原因と考えられるもの
- 人的な作業行動が主体原因と考えられるもの

の二つに大別されるが、数量的には後者の方が圧倒的に多い。

従って人の行動を安全性ある正しい作業行動にするには、もっぱら安全教育に依存せざるを得ないし、また、安全教育を十分に行うことによってのみ安定性のある安全行動を持続することができる。

しかし、安全教育というと生産活動と独立し別個の存在としてあるように思われるが、それはそうでなく、安全教育は生産活動の教育のなかにあり、生産を離れて安全はあり得ないのであり、教育は生産遂行をその目的に従って行わしめる 促進剤のようなものである。

安全教育の内容としては次の三つに大別される。

(1) 安全知識の教育

- ・扱う機械・設備の構造、機能、性能の概念形成を図る。
- 災害発生の原理を理解する。
- ・正しい作業手順を知る(作業標準の整備)

(2) 安全技能の教育

- ・作業のやり方や機械・装置などの操作の仕方について手順急所を習得する。
- ・問題解決力の育成

事実の確認→問題点の抽出→原因究明→対策→実施の手順を知る

(3) 安全態度の教育

- ・安全作業に対する身がまえ、心がまえを身につける。
- ・職場規律、安全規律を身につける。
- 意欲づけを行う。

以上の安全教育の実施に際しては、教育対象・内容により、実施場所、実施方法について、より効率的なやり方を採用すべきである。安全技能教育については仕事を通じての訓練 (on the job training)を行うことが必要である。

9-7-3 安全推進

円滑なる安全推進を行うためには、その基本として各々の構成メンバーに対す る安全教育が徹底されなければならない。

安全教育が結果として生産活動において安全行動を生み、また集団における全体安全行動に対する秩序立てと安全推進を招くようになる。この意味において作業集団の安全管理は安全教育を行うことが最も基本的なことであり、また最も重要なことである。

安全化を持続・推進させるため日本ではいろいろな方法が考えられているが、 その一部を紹介するので参考にしてもらいたい。

- (1) 安全管理組織の形式
- (2) 安全点検制度(チェックリスト、パトロール)
- (3) 災害記録と報告制度(再発防止対策用)
- (4) 安全提案制度
- (5) 安全行事

9-8 設備管理

工場をよく管理して、よい品質の製品を生産してゆくためには適切な能力と精度のある設備を保有していることが必要になってくる。ところが、設備は使用するにしたがって次第に損耗し、性能が低下してゆき、時としては損傷するものである。設備の性能が低下したり、損傷すれば、生産能率が低下するばかりでなく、製品の品質が低下することは明らかである。従って、いかによい原材料を使い、また作業が標準化されたとしても、設備がいつも良好な状態に管理されていなければ、品質のよい製品を作り出すことはできない。このために生産管理実施の一環として、組織的に設備を管理することが必要である。

設備管理も、品質管理で現状をたえずチェックし、異常が発見されるとただちにアクションをとり正常な状態に直しながら工程を管理していくのと同じように、その精度、性能の現状を把握することによって、故障を予測し、事前に計画的修理を行って、常に精度、性能の保持に努め、設備の稼働停止、性能低下などによる損失、修理費の増大化を防止することが必要である。これは、予防保全と呼ばれる設備管理の方式であるが、これを実施してゆく上で次に示す事項を実践することが肝要である。

9-8-1 設備台帳

設備を管理してゆくのに必要なものであり、基本となるものである。設備の製作、購入から廃却に至るまでの履歴を明らかにし、設備の故障度数、補修費、更新期の予測に役立つもので、設備・機器毎に作成される。これには次の事項を記載する。

- (1)設備・機器番号
- (2)設備·機器名称
- (3) 製造会社名
- (4)製造年月
- (5) 購入年月
- (6) 購入価格、据付価格
- (7) 据付場所
- (8) 仕様(型式、能力、モータ出力、他)
- (9) 予備品の有無ならびに使用履歴

(10) 修理年月、内容、費用

9-8-2 性能基準

機器・装置などの設備で生産を続けてゆくには、これらの設備に対して要求される性能、精度の限界を定めて管理してゆかねばならない。即ち、ここまでの性能があれば、製品の品質、生産能力に影響がないかという限界を点検検査の際の「性能基準」として定め、これに基づいて管理してゆく。

基準の設定に当っては、製品の品質におよぼす影響、生産性、経済性などの関連を検討して定めるが、基準はできるだけ測定器を用いて測れるものにし、具体的な数値で示すようにすることが必要である。また、ここまで損耗したら使用を禁止し、修理しなければならないという「使用限度」も定めておく必要がある。

9-8-3 点検検査基準表

設備が定められた性能、精度を維持してゆくためには、適切な点検検査を行って、常にその設備の状態をチェックする管理状態にする必要がある。この点検検査には、日常点検、定期点検などがあるが、これは設備の種類、構造ならびに使用度数、故障度数などを考慮して定める。

そのためには検査すべき設備・機器毎に点検検査基準表を作る。これには次の項目を記載する。

- (1) 点検箇所
- (2) 点検項目
- (3) 点検時期(周期)
- (4) 点検方法
- (5) 検査器具
- (6)性能基準(前項の内容)
- (7) 検査後の処置(検査結果不良となった場合の処置)

9-8-4 検査記録

点検検査基準表にしたがって検査した結果は、所定の記録用紙に記入されるべきである。この記録用紙は、その検査結果の様相がはっきりわかるように、しか

も後からみて必要とする処置、または検査時期などがわかるような様式になって いることが必要である。

また検査結果を記号や符号で用紙にチェックしてゆく方式にすると便利である。

9-8-5 給油脂基準

設備を正しい状態に保持する上で、側面的に関係しているものに潤滑管理がある。潤滑管理は設備管理の重要な一部をなすものであり、その利点としては、

- ・機器の摩耗、損傷を最小にする。
- ・摩擦による動力損失を減少する。
- ・潤滑剤の消費量を最小にする。

などの諸点が考えられる。

潤滑管理も、前述の検査基準と同様、給油脂基準を作成し、それにしたがって 給油脂を確実に行うことが必要である。

即ち、各設備・機器毎に作成し、次の事項を明確に規定する。

- (1)給油脂箇所
- (2) 潤滑剤の種類
- (3)給油脂周期
- (4) 給油脂方法

9-8-6 検査設備の管理

生産用の計測機器や試験用計測機器(試験機、分析器具)などについても、これらの故障、性能低下は製品の品質、生産性などに与える影響が大きい。従ってこれらの管理に当っては、製造設備の場合と同様に予防保全の手法を利用してゆくのが、効果的である。

即ち、設備台帳、性能基準、点検検査基準表、検査記録等によって管理する方法を薦める。

9-8-7 図面類の管理

設備を維持管理してゆくなかで設備の改造・改善の必要が生じることもある。 その場合、改造・改善の内容は、図面によっても管理してゆかねばならない。 設備の変更があった場合には必ず、図面にも修正、訂正を加え、常に現物と図面とは一致させておく必要がある。

9-9 教育・訓練

生産管理を推進するには、有能で、協力的な人材を養成しなければならない。本章で述べてきた、各種管理業務は会社組織全体で実施するものであるから、各層の従業員にそれぞれ適正な教育を施さなければならない。従って、教育の対象としては、工場幹部、技術者、職場責任者、作業者、新規採用者などが考えられる。

教育の方法としては、社内での教育と社外へ派遣して行う教育とに分けられ、社内 教育でも、社外から講師を招へいする場合と、社内の者が講師になる場合とがある。

未熟練者の教育の場合、社内での集合教育実施後の職場内での実践訓練が極めて重要である。これに最も効果が期待できるのは、時間的に長く、且つ実務の厳しい環境下で実施するOJT (On the Job Training とは仕事を通じて教育すること)教育である。それに比べれば、OFF-JT教育の効果は単発的なものであるが、軽視すべきものではなく、基礎知識の習得、新しい考え方の導入、方針展開の教育に際しては効果的である。

教育計画は教育対象、教育内容、方法、時間、時期、講師、使用テキストなどを定め、生産に支障をきたさないように、有効且つ長期的な見通しの下に実施することが 必要である。

9-9-1 OJT教育

日常の生産活動の中で上司が部下を、上級者が下級者を、経験者が未経験者を 指導できるような体制(エルダー制度)をつくり上げることが必要である。

これは職場内の実践教育を強化する方法として最も効果的なものであり、指導上の兄弟(姉妹)関係を作り上げ、一定期間内、兄(姉)が弟(妹)の職場内指導を1対1で行う方法である。

この方法はyonger (ヤンガー) / elder (エルダー) 教育と呼ばれ、教育対象者に対して一定期間継続して実施される。

エルダーの指導内容は概ね次の通りである。

- ・ヤンガー個人の専門技術/技能の到達目標の設定と日程計画表の作成 (到達目標、日程計画は両者納得の上決定する)
- ・専門技術や技能の向上に対する具体的な助言
- ・上司への成果報告

ヤンガーはその期間内の成長実績や感想をエルダーに報告する。

この方法の長所は未熟練者一人一人に適した対応策が実施でき、短期間に労働 者を育成できる点である。

反面、エルダーの素質と選任基準・ヤンガーへ仕事を任せる体制・中堅労働者 への配慮等の職場雰囲気の問題など、解決すべき課題が多いことも指摘しておき たい。

9-9-2 OFF-JT教育

工場全体、生産部門全体あるいは、未熟練者全体などを対象とする集合教育、また個々人の個別能力レベルアップのための社外教育など、いわゆるOFF-J T教育も重要である。

OFF-JT教育の内容としては次のようなものがある。

- (1) 製品に関する教育 原料、製品品質に関する基礎知識
- (2)設備に関する教育 設備の構造、取扱い等の基本技術
- (3)安全に関する教育 「9-7安全管理」に記述した内容
- (4)問題解決手法の教育

全員が使える簡単な手法を教育する。日本では、次に紹介するQC7つ道具により職場問題の大部分を解決している。

- QC7つ道具(i)パレート図
 - (ii) チェックシート
 - (ii) 特性要因図
 - (iv) 層別の考え方。
 - (v) 散布図
 - (vi)管理図・グラフ
 - (vii) 度数分布(ヒストグラム)

(5)事例教育

品質、設備面上での改善などの事例を紹介し、将来の改善の際の参考とする。

9-10 環境対策

現状でもっとも改善を要することは粉じん対策である。

発じんを抑制、防止するためには、その原因を究明し対策を講ずる必要がある。 本近代化計画においては

- 集じん機
- ・外部へのリークのない運転方式

などの採用によって発じんを抑える計画としている。しかし、これらは正常な運転を行うことによって、はじめて効果を発揮するものであるので設備管理は非常に重要なポイントである。

粉じん対策を行うことは地域環境を良くするだけでなく、作業環境も良くすること であり、また、製品品質確保の上でも大切なことである。

作業環境については「9-7-1 設備、作業環境の安全化」に記述しているので参照 願いたい。

工場近代化計画の実施手順の考え方は次の通りである。

(1) 今回の近代化には、生産方式と管理方式に従来とは違った変革をもたらすものであ
り、全従業員の意識の改革が不可欠である。

そのため、実行の第一段階としては、計画段階から関係者を参画せしめ、先づ、工場の経営方針、工場の将来像を明確に打ち出し、全従業員の協力の基に、近代化計画を実行するための意識を合わせることに注力する。

この中で実行計画を立案し、それを実行に移すことによって、近代化の基礎となる 体質の強化を図ることにする。

(2)次に、第一期設備改善の実施に着手する。

所要工期は国情の違いが多く断言することはできないが、約1年程度と予想される。

(3) 第一期完了時点で一日一直運転での生産体制へ入る。

ここで設備の安定運転、製品品質の安定を図る。

(4) 新しい生産方式、管理方式に熟練し、また、販売が伸びてきた段階で、第二期に着 手する。

所要工期は約8ヶ月程度と予想されるが、切替工事のための休転期間は1~2ヶ月 程度であろうと思われる。

(5) 第二期完了時点で、一日三直運転での生産体制へ入り、増産および品質向上を図り、 今回の近代化計画の完了となる。

以上の近代化スケジュールのうち、第一期、第二期の工事工程計画表を表10-1に、また、生産管理の近代化の実施スケジュールを表10-2に示す。

	12		
	11)
	10		
	රා	2	
	æ	響 }	00→0
	7		数
工事工程計画表	9		Ó
計	വ	OO	
表10-1	4		
	8		O·····
	2	O+O	
	- 		
	経過月数	四 剣 脳	CH 網 紹
			(本田) 女 ()
		無 1 異	無 11 舞

表10-2 生産管理近代化の実施スケジュール

·										3X10 L	-LaCE	自理近代化の夫他スク:	l								···		
項				Ξ	2.5		備	期		第		期	-	安 定 化	上 時 期			第			期		完成運転
				and .	1 ()	月)		6	1		6	7 1	2 1			6 1			6	7		12	
工場経営	方針	·設定。	と近代	化計画の立案		~]										·				
設 備 (の	改善	善 (第-	-期と第二期)				· .															
	i.	温質向_	上を重点	点に強化対策																			
体質強化	<u> </u>	上産性区	句上を見	重点に強化対策					·										:	·			
	=	コスト	氐減を重	重点に強化対策				:															
																					: -		
	生産	計画	・日程管																		7		
					基	本	案 之	、案	第一其	用生産計画	i .	第一期要員計画				穿	二期生	産計	画	第二	期要員計	· 画	
	調	達	管	理																		<u>,</u>	
					基	本	案 立	、案	調達	管理立案	!	原料石膏採堀管理				房	料石膏	搬入計	画				
	在	庫	管	理							[
					基	本	案工	2. 案				原料石膏鉱山在庫管理		1 + 1		隻	以品 在	庫管	理		•	: .	
	T.	程	管	理		-																	
					基	本	案 立	、案	運転要	領書・運転管	理基	準作成 運転日誌作成	戊 :	運転言	己録	運転男	見領書・過	転管理	基準の	見直し		÷	
	品	質	管	理																			
					基	本	案立	案	品質基	準・化学分析	〒・牧	7理試験法作成見直し	1	品質	記録		質管理基	準の見直	重し				
÷									試験	頻度立案	[
												品質管理日誌の作成						•					
	設	備	管	理																			
					基	本	案」立	案	設備台	帳・性能基準		図面の整理	•	点検検	查記録	•							
									点検基	準給油基準	i	e e e			-								
	安	全	管	理																			
			:		基	本	案 立	案	安全教	育		安全設備取付	. :	安全点	検制度					無	災害運	動	
									安全管	理組織設立		保護具の整備	2.3										÷
-	教	育・	訓	練																			
					基	本	案 立	案	OFF-JT (§	製品・設備・	問題	解決手法)	ЭΙТ	(設備改	造立合・エ	ルダー制	順・運転	管理·	設備管	理・品質	質管理)		
		•						٠	((QCサークル	活動))								• .	•		
	環	境	対	策											:]
					基	本	案立	案		集 塵		設 備		设備	調整		影	t :	備	改	善善		. :
· i	設	備	運	転				·		· .													
														第一期	铅	備	運	転					完成運

第11章 近代化に必要な経費

11-1 経費のまとめ

第8章に記述した設備の近代化に伴う必要経費を表11-1に示す。

表11-1 近代化に必要な経費のまとめ

·					
		調道	達区分	海外(日本)調達費	国 内 調 達 費
	IJ	i I		(百万円)	(千元)
	第一期	機 械 設 設	備備築 費費費費	153, 4 30, 5 - 80, 1	955 960 1, 900 450
		小	計	264	4, 265
	第二期	機 械 設 電 気 設 土 木 建 設計、S/V	備 備 築 費 費 費 費	46. 1 16. 2	185 25 315 135
		小	計	62. 3	660
		合	計	326. 3	4, 925

上表の経費の範囲、調達区分および算定条件などについては、「11-2経費の試算」に示す。

尚、海外(日本)調達費については、1992年7月時点の価格ベースで算定している。

11-2 経費の試算

11-2-1 経費の範囲および調達区分

(1) 表11-1 に示された経費の範囲および調達区分を表11-2 に示す。

表11-2 経費の範囲および調達区分

項		=	海外(日本)調達	国 内 調 達
機械設備	機器購	入費	8-12-1項「機械関係機器仕 様」の中で"J"で示され た機器のFOB価格	・海外調達以外の機器 ・海外調達品の運送費、 保険料
	据付工	事費	-	・既存設備の改造・撤去 ・新設・更新設備の据付 ・ダクト・配管工事 ・架台、ベッド、シュー ト、点検座、階段、歩 廊、手摺などの製作・ 据付
電気設備	設備・機	器購入費	8-12-2項「電気関係設備仕 様」の中で"J"で示され た設備・機器のFOB価格	・海外調達以外の設備・ 機器 ・海外調達品の運送費、 保険料
	据付工	事費		・既設設備の改造・撤去 ・新設・更新設備の据付 ・配線工事
土木	建築	工事	_	・既存建物・構造物の増設、改造および撤去 ・建物・構造物の新設 ・設備の基礎工事
設計		域 関 係	・基本・詳細設計 ・S/V 派遣	<u>-</u>
S / V 派 遺 (据付 技術指導	電気	1. 関係	・基本設計 ・S/V 派遣	詳細設計
	土木	建築関係	<u> </u>	設 計

- (2) 下記項目は表11-1の経費に含まれていないので、必要な場合は加算される べきである。
 - ・ 海外調達品の輸入租税
 - ・建設工事に係る租税
 - 工事保険

- ・製品倉庫 (既存倉庫での不足分)
- ・現地工事に係る資材置場、建設事務所、工事用水・電力など
- 既存の建物、構築物および設備の撤去品の工場外運搬および処理費
- S/V(据付技術指導) のための通訳費用
- ・図面、ドキュメント類の翻訳費用
- 設備予備品、消耗品
- 工事予備費
- 構内への進入路、構内道路整備

11-2-2 経費の算定条件

表11-1に示された経費は次の条件にて算定されている。

- (1) 海外 (日本) 調達の機械・電気設備・機器購入費 1992年7月時点の価格ベースで、FOB価格としている。
- (2) 海外調達品の運送費・保険料:梱包容積(㎡) 当りの単価
 - ·海上運賃 352元/㎡
 - •保 険 料 32元/㎡
 - ·国内陸上運賃 108元/㎡
- (3) 国内調達の機械設備費
 - 製 缶 品 製 作 費 (材工共) 8,000元/Ton
 - ・据 付 工 事 費
- 1,000元/Ton
- ダクト・配管工事費(材工共)
- 9,500元/Ton
- 機 器 撤 去 費

500元/Ton

・仕 上 塗 装 費

10元/㎡

上記単価は本格調査時の調査結果および中国における同種の建設工事の資料などをベースとしている。

(4) 国内調達の電気設備および土木建築費

中国での同種の建設工事の資料および、物価(建設資材、電力料、他)などをベースとしている。

11-3 経費についての見解

多額の設備投資を伴う工場の近代化は、投資によって所期の成果を確実に得られる 手段に依らなければならない。その意味で、段階を踏まえた実施計画案は、当工場の 近代化計画の目標(多製品種、生産量、品質)を達成するための堅実で現実的な投資 案であると考えられる。

工場側としては本計画の実行の可能性を高めるため、表11-1に示された経費の低 減対策の検討を行う必要がある。

具体的な検討内容としては、次のようなことが考えられる。

- ・ 国内調達費の詳細調査
- ・海外調達品の国内調達への振り替え
- ・海外調達品の運送費、保険などの詳細調査

初期投資を低減する方策として「11-4代替案」にその方法、内容を記述するが、設備投資選択においては、資金、販売、要員などの面から慎重な検討が必要である。

11-4 代替案

本章に提示した第一期の投資額(初期投資)を更に抑え着工を容易にする方策としての代替案を検討したので、ここに記述しておく。

11-4-1 代替案A

(1)第一期内容

- (i)機械関係:本案の第一期設備改善のうち、2号系統のみ改善する。
- (ii) 電 気 関 係:電源関係と2号系統の制御設備を改善する。
- (iii) 土木建築関係:本案の第一期と同じ。

(2) 第二期内容

上記第一期以外の本案第二期完了段階の設備として必要な改善一切。

(3) 代替案Aの経費のまとめ

上記(1)、(2)項の条件での必要経費を表11-3に示す。

表11-3 代替案Aの場合の経費のまとめ

 			<u> Alamana katang at tanggaran katang at tangga</u>					
	調	達区分	海外(日本)調達費	国	内	調	達	費
項	目		(百万円)		(千元)	
第		期	188		3, 625			
第		期	180			1, 33	0	
合		計	368			4, 95	5	

尚、試算方式、条件については本案に準ずる。

(4)考察

- (i) 代替案Aの方法で近代化を行う場合、第1段階としては、本案と比し少ない 投資で設備改善を図り、新しい生産方式、管理方式に熟練することができると いうメリットがある。
- (ii) しかし、代替案Aの第一期完了段階での生産量についは、一日一直運転をする場合は、年産3,000Ton強となり、本案の半分程度となってしまう。
- (iii) そこで、24 h / 日連続運転をすれば、 10,000Ton / 年以上の生産量となるが、 その場合、原石の受入、一次破砕工程の機械化が必要となり、第1段階の投資 額は増加せざるを得ないし、また要員の増員も必要となる。

- (iv) 第一期、第二期を含めた全投資額については、1号系統と2号系統の設備改善時期をずらすことによるデメリットが生じ、本案に比し割高となる。
- (v) この代替案Aの第1段階の設備で近代化の目標の製品品種揃えは可能であるが、逆にこの程度の設備改善を図らなければ、目標の品種揃えはほぼ不可能と考えられる。

11-4-2 代替案B

(1) 第一期内容

- (i)機 械 関 係:代替案Aの第一期のうち焼石膏粉砕・混合設備を除いた設備 改善。尚、包装設備は原料粉砕・焼成室増築部分に設置する ものとする。
- (ii) 電 気 関 係:代替案Aの第一期のうち2号系統の焼石膏粉砕・混合工程の 制御設備を除いた改善。
- (iii) 土木建築関係: 本案の第一期のうち焼石膏混合・包装室を除いた改善。但 し原料粉砕・焼成室の増築部分は、本案と比し大きくなる。

(2) 第二期内容

上記第一期以外の代替案A第一期完了段階の設備として必要な改善。

(3)第三期内容 代替案Aの第二期と同じ。

(4) 代替案Bの経費のまとめ

上記(1)、(2)、(3)項の条件での必要経費を表11-4に示す。

表11-4 代替案Bの場合の経費のまとめ

	訳	達区分	海外(日本)調達費	国 内 調 達 費
項	目		(百万円)	(千元)
第		期	140	2, 545
第		期	79	1, 880
第	Ξ	期	180	1, 330
	:	計	399	5, 755

尚、試算方式、条件については本案に準ずる。

(5)考察

- (i)代替案Bは代替案Aの第一期改善分を更に2段階に分けて設備改善を図る方法である。つまり代替案Bの第一期は2号系統の焼成設備の改善を主体内容とする。
- (ii) 従って本近代化目標である製品品種揃えと品質向上について、代替案Aの第 一期完了段階に達するのは、代替案Bの場合、第二期完了段階となる。
- (iii) 生産量については、代替案Bの第一期および第二期段階では代替案Aの第一期と同じである。
- (iv) 初期投資(第一期) は本案および代替案Aより少額で済むが、全投資額 (第一期~第三期) は改善時期を3段階にずらすことによるデメリットが生じ、 代替案Aより更に割高となる。
- (v) 工事期間は第一期に約1年、第二期に約1年、第三期に約8ヶ月必要と考えられ、代替案Aに比し合計で約1年長くかかる。

第12章 近代化実施上の留意点

第Ⅲ編で、近代化計画と種々の方策について詳述したが、本章では、この近代化計画 を成功に導くために、実施上の留意点について記述する。

(1)従業員の意識の統一と向上を図る。

工場の近代化を行うという全従業員の意識を統一するため、計画段階から関係者を 参画せしめ、その中で従業員の意識の改革と向上を図る。

(2)全体のレベルアップが不可欠

この近代化計画は、設備の改善、増強による近代化と同時に、近代的な工場にするための、生産方式や管理の仕組みの改善も重要な要件である。

従って、今回の近代化に際し、工場全体の水準を引き上げることが重要であり、生産性と品質に関して、全体の水準を向上しない限り、近代化の目標を達成することはできない。

工場を近代化するということは

- ・従業員の志気と技術
- ・管理や作業の仕組みと方法
- 設備

の水準を向上することである。近代的な設備を導入すれば近代化できるというもので はないことを認識し、品質と生産性の向上に一層努力するべきである。

(3)システムとしての設備設計が不可欠

設備がその目的とする機能を果たすためには、個々の機器、装置、その他関連する 諸要素が、有機的、体系的に組み合わされていることが絶対条件である。

本近代化設備計画においても、設備全体をシステムとして設計することが肝要である。

(4) 利益率の向上を図る

今回の工場の近代化は多額の設備投資を伴うが、投資額に見合う利益を生み出さなければならない。そのためには拡販による増加利益だけではなく「7-2-2利益計画」に記述したように原価低減と製品品質向上により利益率の向上に努力しなければならない。