Table 6.1.1 Current Condition of Water Supply

Province	Kotamadya/ kabupaten	Area (km2)	Population (person)	Treatmen! Capaciy (1/scc)	Scrvice Population (person)	(*1) Service Ratio (\%)	Non-Service Population (person)	(*2) System S.R. (\%)	(*3) System Capacity (head/day)	Distribution Loss (\%)
Jambi	Kerinci Bungo-Tebo Sarolangun Bangko Batang Hari Tanjung Jabung Kots Jambi	53,436	2,018,463	492.50	239,882	11.88\%	1,778,581	38.54\%	68.37	N.A.
		4,200	280,017	35.00	17,740	6.34\%	262,277	22.81\%	38.88	27.79\%
		13,500	360,402	40.00	24,880	6.90\%	335,522	39.93\%	55.47	N,A.
		14,200	350,095	37.50	25,567	7.30%	324,528	45.53\%	57.70	N.A.
		11,130	325,783	22.50	16,345	5.02\%	309,438	35.62%	42.36	N.A.
		10,200	362,380	47.50	19,448	5.37\%	342,932	37.24\%	78.59	46.53\%
		206	339,786	310.00	135,902	40.00\%	203,884	44.00\%	86.72	N.A.
South-Sumatrs		109,234	6,276,482	2180.00	755,903	12.04\%	5,520,579	42.44\%	105.75	37.44\%
	Ogan Komering Uhu	10,408	963,794	100.00	47,424	4.92\%	-916,370	35.98\%	65.55	35.35\%
	Ogan Komering lril	21,658	771,463	42.50	16,615	2.15\%	754,348	21.54\%	47.60	28.29\%
	Muara Enim	9,575	586,075	90.00	64,433	10.99\%	521,642	46.95\%	56.66	28.00\%
	Lahat	4,034	599,347	85.00	42,808	7.14%	556.539	25.15\%	43.15	28.76%
	Musi Rawas	21,513	512,077	80.00	25,853	5.05\%	486,224	42.00%	112.29	35.00\%
	Musi Banyuasin	25,644	883,719	50.00	23,699	2.68\%	860,020	42.02\%	76.60	28.40\%
	Bangka	11,614	513,946	62.50	19,769	3.85\%	494.177	26.50\%	72.39	37.88\%
	Belitung	4,532	192,972	45.00	19,335	10.02\%	173.637	29.53\%	59.38	32.33\%
	Kota. Palembang	224	1,139,926	1,550.00	479,747	42.09\%	660,179	53.00\%	147.95	40.00\%
	Kota. Pangkal Pinang	32	113.163	75.00	16,220	14.33%	96.943	16.00\%	63.92	25.00\%
Bengkulu		19,709	1,179,122	290.00	90,161	7.65\%	1,088,961	28.43\%	79.01	N.A.
	Bengkulu Selatan	5.969	2948,214	40.00	16,799	5.63%	281,415	45.82\%	94.26	N.A.
	Rejang Lebeng	4,110	367,9480	95.00	34,457	9.36\%	333,523	29.32\%	69.84	N.A.
	Bengkulu Utara	9,612	342,601	55.00	18,626	5.44\%	323.975	45.70\%	116.59	N.A.
	Kota, Bengkulu	18	170,327	100.00	20,279	11.91\%	150,048	16.60\%	70.73	N.A.
Lampung	Lampung Selatan Lampung Tengah lampung Uara Kota.Bandar Lampung	35.422	6,017,573	484.00	121,008	2.01\%	5,896,564	26.70\%	82.27	N.A.
		6,694	1,824,162	70.00	28,874	1.58\%	1,795,288	29.56\%	61.92	32.56%
		9.190	1,901,630	54.00	23,551	1.24\%	1,878,079	30.25\%	59.93	N.A.
		19,369	1,655,075	60.00	28,959	1.75\%	1,626,116	36.27\%	64.93	35.50\%
		169	636,706	300.00	39,625	6.22\%	597,081	20.00\%	130.83	48.00\%
Total		217,801	15,491,640	3446.50	1,206,955	7.79\%	14,284,685	N.A.	N.A.	N.A.

*Sources : Hasil Pembangunan S/D Perita IV, Cipta Karya, PU
*Note: (*1) Service ratio is calculated service population devided by the population of Kotamadya or Kabupaten.
(*2)System service ration is calculated service population devided by the population within the service area.
(*3) System capacity is calculated treatment capacity devided by service population.

flood prone area. The way of production in the area also reflects the natural river condition, applying "Lebak" or "Pasang Surut", which are the traditional paddy farming methods for swamp, or inundation area. Inland fishery activity is also found in the area using the deep swamp. The road network newly constructed in the area is also generally elevated by dyking to avoid the transportation damage due to flood.

The recent flood is however becoming serious because of expansion of residual area in the flood prone area and degradation of water holding capacity in the upstream basin. In Jamuary 1992, the severe flooding attacked the eastern low land area of Sumatra Island, particularly Jambi City along the Batang Hari River. The flooding of the Batang Hari River destroyed hundreds hectares of crops, inundated at least 200 villages, and claimed the life of ten persons. Major economic activities of the city force to close down for a week due to inundation of infrastructures, factories, markets and so on.

6.1.4 Irrigation Development

Figure 6.1.3 shows the location of existing and further expected irrigation schemes, revealed that past major development activities were made in Lampung Province and the fringe of Bukit Barisan Range. Large scale irrigation development is found in Kabupatens Lampung Tengah and Ogan Komering Ulu which are situated rice supply base for the Region and Indonesia. Large impact, creating job opportunity for local people and transmigrants is another contribution of the large scale irrigation development. On the other hand, irrigation schemes on mountain edges are mainly medium and small scale with simple river structures contribute to the improvement of local farmers' living by to maintaining self-sufficiency of rice within the village.

Further development potential is mainly found in Kabupatens Lampung Utara, Ogan Komering Ulu, Musi Rawas and Sarolangun Bangko, in view of both land and water availability. Detail figures of present and further irrigation conditions are summarized in Table 6.1.2, and the list of project ideas is shown in Table 6.1.3.

6.1.5 Swamp Reclamation

More than 8 million hectares of tidal or non-tidal swamp area spread in the Region, particularly in South Sumatra and Jambi Provinces. Major part of the area is not yet developed and the reclamation can be helpful to enhance agriculture production for the regional economic development. The swamp area began being used by local people in the beginning of this century without infrastructure development. The traditional paddy farming method called "Pasang Surut" and "Lebak" were applied for rice production and the swamp area is now becoming major rice supply field for the Region and Indonesia.

Enhancement of the existing swamp reclamation area was carried out by Indonesian government in recent years, aims at increasing the efficiency of agriculture production and encouraging resetlement people from the crowded inner islands to the swamp reclamation area. Table 6.1 .4 shows existing and on-going swamp reclamation area distributed by Kabupatens, and the further project ideas together with development potentials are shown in Table 6.1.5. A total of 609,818 ha of swamp area has developed with 75 schemes and 168,165 families live in the area. The development activities are mainly found along eastern coast of the Region as referred to Figure 6.1.3, showing the swamp area near Palembang and Jambi cities is concentrated to be developed. The problems still remain that most of the developed area is isolated by road and telecommunications networks.

Table 6.1.2 Existing/Further Irrigation development in the Region

Province/ Kabupaten	Existing Irrigation Scheme (*1)								On-going/ Commited (ha)	Idea Schemes(${ }^{(2)}$	
	Technical		Semi-Tech		Simple		Total				
	(Nos)	(ha)	(Nos)	(ha)	(Nos)	(ba)	(Nos)	(ha)		(Nos)	(ha)
JAMBI	2	499	63	14,176	49	824	114	15,499	11,271	8	134,529
Kerinci	0	0	26	9.277	8	604	34	9,881	2,023	0	0
Bungo 'Tebo	2	499	16	1,616	16	205	34	2,320	4,373	2	8,346
Sarko	0	0	19	1,616	16	15	35	1,631	3,402	6	126,183
Batang llari	0	0	1	1,637	7	0	8	1,637	282	0	0
Tanjung Jabung	0	0	1	30	2	0	3	30	1,191	0	0
SOUTII SUMATRA	2	26,782	55	16,908	29	4,135	86	47,825	16,587	26	153,700
OKU	1	18,691	13	1,992	12	2,766	26	23,449	4,328	5	42,155
OKI	.	-	.			-	.	,	-	7	42,574
Muara Enim	0	0	6	458	5	246	11	704	909	3	11,070
Lahat	0	0	19	9,564	10	1.073	29	10,637	3,912	0	0
MURA	1	8,091	13	4,464	1	0	15	12,555	6,306	5	31,200
MUBA	-	-	1	1,240	-	.	-	-	380	6	26,701
Bangka	0	0	2	330	0	0	2	330	751	0	0
Bclitung	0	0	2	100	1	50	3	150	381	0	0
BENGKULU	24	17,432	168	21,364	122	7,521	314	46,317	25,187	2	10,514
B. Salatain	2	4,043	61	8,844	55	4,939	118	-17,826	8,913	1	5,600
Rejang Lebong	11	7,311	75	10,797	13	527	99	18,635	1,900	0	0
B. Utara	11	6,078	32	1,723	54	2.055	97	9,856	14,374	1	4,914
LAMPUNG	19	70.388	59	13,315	29	2.550	107	86,253	68,703	14	110,455
L. Selatan	8	5,635	44	9,592	1	500	53	15,727	4,056	0	0
L. Tengah	8	60,961	15	3,723	0	0	23	64,684	34,555	2	11,750
L. Utara	3	3,792	0	0	28	2,050	31	5,542	30,092	12	98,705
	Sources		(*1) Pekapitulasi Inventarisasi Dacrah Irigasi, PU 1989.								

Table 6.1.3 List of Project Ideas for Irrigation Development

No. Project Name	Kabupaten	River	$\begin{aligned} & \text { Irrigation } \\ & \text { Area(ha) } \end{aligned}$	Remarks
JAMBI			134,529	
1 Batang Bungo	Bungo-Tebo	Bt.Bungo		
2 Kuamang Kuning	Bungo-Tebo	S.Pelepat		
3 Batang Tabir	Sarko	Bt.Tabir	50,000	by $\mathrm{ADCA}, 1990$
4 Batang Mcrangin	Sarko	Bt.Merangin	60,000	
5 Batang Asai	Sarko	Bt.Asai	7,000	
6 Batang Limun	Sarko	Bi.Limun	2,468	
7 Batang Reban	Sarko	Bt.Reban	2,285	
8 Batang Singkut	Sarko	Bt.Singkut	4,430	
SOUTH SUMATRA			153,699	
9 Belitang 1,2,3	OKU	A. Komering	20,600	omering Scheme
10 Belitang 4	OKU	A.Komering	8,750	
11 Tanjung Raya	OKU	A Komering	1,875	
12 Way Hitam Kini	OKU	A.Komering	3,830	
13 Muncak Kabau	OKU	A. Komering	7,100	
14 Lempuing	OKI	A.Komering	13.100	omering Scheme
15 Sungai Rotan	OKI	A.Komering	5,080	
16 Lebak Burigur	OKI	A.Komering	6,594	
17 Lebak Palas 1,2	OKI	A.Komering	8.750	
18 Tanjung Balai	OKI	A.Komering	1,750	
19 Dangku Kiri	Muara Enim	A.Enim	3,820	
20 Dangku Kanan	Muara Enim	A.Linim	3,750	
21 Modong	Muara Enim	A.Enim	3,500	
22 Sekayu/Lumpatan	MUBA	A.Musi	5,800	i Leko Scheme
23 Danau Calah	MUBA	A.Musi	2,800	
24 Batanghari Leko	MUBA	A.Musi	4,400	
25 Lebak Semendawai	OKI	A.Ogan	5,300	
26 Lebak Air Daros	OKI	A.Ogan	2,000	
27 Air Malus 2	MURA	-	1,500	
28 Air Baal	MURA	-	5,500	
29 Air Kati	MURA	-	1,500	
30 Rupit	MURA	A.Rupit	11,100	usi Scheme
31 Air Rawas	MURA	A.Rawas	10,000	
32 Lakitan	MURA	A.Lakitan	11,600	
33 Talang Niur	MUBA	A.Musi	2,500	
34 Babat Toman	MUBA	A.Musi	1,200	
BENGKULU			14,719	
35 Muko-Muko Kanan	B.Utara	A.Manjuto	4,919	
36 Air Selagan	B.Utara	A.Sclagan	4,200	CA
37 Air Alas	B.Selatan	A.Alas	5,600	
LAMPUNG			136,955	
38 Way Abung	L.Utara	W.Abung	13,000	
39 Way Pedada	L.Utara	W.Pedada	13,500	
40 Way Giham	L.Utara	W. Giham	5,000	
41 Way Bahuga	L.Utara	W.Bahuga	5,000	
42 Way Pisang	L.Utara	W.Pisang	330	
43 Way Besai	L.Utara	W.Besai	40,000	
44 Wai Bawang	L.Utara	W.Bawang	40,000	
45 Way Kampar	L.Utara	W.Kampar	750	
46 Way Tangguh	L.Utara	W.Tangguh	650	
47 Way Bambang	L.Utara	W.BAmbang	100	
48 Way Pontan	L.Utara	W.Pintau	100	
49 Ngaras	L.Utara	W.Ngaras	275	
50 Ngambur	L.Utara	W.Ngambur	2,500	
51 Way Biha	L.Utara	W.Biha	4,000	
52 Rumbia	L.Tengah	W.Sckampung	3,750	
53 Way Bekri	L.Tengah	W.Bekri	8,000	
TOTAL OF THE REGION		439,902		
SOURCES :	Musi River Basi Master Plan Stud Heaning survey	Study, DGWRD, for Mesuji and Tu om local goverrme	$\text { PU, } 1989$ ulangbawan Ri nt	OGWRD,PU,1989

Table 6.1.4 Existing / On-going Swamp Reclamation Schemes

Province / Kabupaten	Total Schemes (Nos.)	(A) Identified Area (ha)	Existing Area					Existing Famars (families)	(A)-(B) Un-developed Area (ha)
			Paddy (ha)	Up-land (ha)	Tree crops (ba)	Others (ha)	Total (ha)		
JAMBI	17	71,008	29,267	5,614	2,311	2,346	39,538	16,844	31,470
Kerinci	1	384	200	72	0	0	272	200	112
Sarko	1	567	130	11	0	0	141	141	426
Batanghar	4	13,950	5,050	185	220	97	5,552	2,305	8,398
Tanjung Jabung	10	56,002	23,819	5,326	2,086	2,237	33,468	14,138	22,534
Bungo-teko	1	105	68	20	5	12	105	60	0
Kota. Jambi	0	0	0	0	0	0	0	0	0
SOUTH-SUMATRA	47	471,060	149,510	59,134	32,102	16,718	257,464	124,431	213,596
Ogan Komering Ulu	1	1,200	680	480	0	40	1,200	800	0
Ogan Komering llir	16	135,202	68,010	30,740	5,410	14,245	118,405	62,435	16,797
Muara Enim	0	0	0	0	0	0	0	0	0
Lahat	1	500	280	120	20	80	500	334	0
Musi Rawas	8	10,300	3,200	5,000	40	260	8,500	5,668	1,800
Musi Banyuasin	18	323,121	77.050	22,574	26,602	1,896	128,122	54,738	194,999
Bangka	1	500	160	220	0	120	500	300	0
Belitung	0	0	0	0	0	0	0	0	0
Kota.Palembang	2	237	130	0	30	77	237	156	0
Kota.Pangkalpinang	0	0	0	0	0	0	0	0	0
BENGKULU	5	15,700	3,590	3,150	0	50	6,790	4,057	8,910
Bengkulu Sclatan	3	14,400	3,040	2,950	0	50	6,040	3,407	8,360
Rejang Lebong	0	0	0	0	0	0	0	0	0
Bengkulu Utara	2	1,300	550	200	0	0	750	650	550
Kota.Bengkulu	0	0	0	0	0	0	0	0	0
LAMPUNG	6	52,050	22,996	1,750	0	1,205	25,951	22,833	26,099
Lampung Selatan	2	22,050	18,936	100	0	265	19,301	16,233	2,749
Lampung 'Tengah	0	0	0	0	0	0	0	0	0
Lampung Utara	4	30,000	4,060	1,650	0	940	6,650	6,600	23,350
Kota.Bandarlampung	0	0	0	0	0	0	0	0	0
TOTAL	75	609,818	205,363	69.648	34,413	20,319	329,743	168.165	280,075

Source : Inventarisasi Luas Pemanfaatan Lahan Rawa Pasang Surut dan Rawa Nion pasang Surut
(P2TRPDR,DGWRD, PU, Augusi,1989)

Table 6.1.5 Potential for Swamp Reclamation

Province	Scheme	Kabupaten	Area (ha)	Source
Current Condition of Swamp Reclamation				PITPDR,PU
JAMBI				
	Total Swamp Area		1,902,301	
	Suitable Area		384,740	
	Developed Area		71,003	
	Potential Area		313,737	
SOUTH SUMATRA				
	Total Swamp Area		5,679,174	
	Suitable Area		3,007,139	
	Developed Area		471,060	
	Potential Area		2,536,079	
BENGKULU				
	Total Swamp Area		267,232	
	Suitable Arca		121,703	
	Developed Area		15,700	
	Potential Arca		106,003	
LAMPUNG				
	Total Swamp Area		348,062	
	Potential Area		108,517	
	Developed Area		52,050	
	Remaining Area		56,467	
SOUTHERN SUMATRA				
	Total Swamp Area		8,196,769	
	Potential Area		3,622,099	
	Developed Area		609,813	
	Remaining Area		3,012,286	

Note:

1) P2TPDR : Proyek Perencanaan Teknis Pengembangan Daerah Rawa

6.1.6 Hydropower Development

Power supply system in the Region is so far isolated by major energy consumption area, where power generation is generally depended on diesel generators. Isolated power system rises many problems such as low efficiency and the difficulty of the effective maintenance. The existing transmission line is found only two lines Pelembang Bukit Asam and Tes - Curup, Bengkulu, however, PLN, state electric company plans to interconnect power supply system within the Region and further to expand whole Sumatra Island aiming at attaining stable power supply and effective operation of the system.

Tes- 1 hydropower station is currently one and only major hydropower plant with 16 MW of installed capacity located downstream of Lake Tes in Kabupaten Rejang Lebong of Bengkulu Province for generating power mainly to Bengkulu City. The other two hydropower projects are so far under detailed design, Besai-1 with 90 MW in Lampung Utara and Musi-1 with 111 MW in Rejang Lebong for further interconnection of transmission to Palembang and Bandar Lampung cities.

Previous studies revealed abundant hydropower development potential in the Region. Thirty five potential schemes are identified in four provinces expected to $8,280 \mathrm{GWh}$ of annual energy output with $1,650 \mathrm{MW}$ of total installed capacity. Development potential is shown in Figure 6.1.3, and Table 6.1.6.

6.2 DEVELOPMENT CONCEPT 2010

Figures 6.2 .1 and 6.2 .2 show water resources development contrasting between 1990 and 2010, and the general development concept is as follows:

6.2.1 Water Supply

Expansions of water supply system will be mainly focused within the sector, particularly for major cities in the view of population density and the impact of the project. Table 6.2 .1 summarizes the long-term water supply program for respective provincial capital cities.

Long-term water supply plan with the period between 20 and 25 years was provided for respective Provincial capital except Jambi City. It is generally required such long term water supply plan for the provincial capital cities to encourage smooth economic growth and social welfare. According to the long term master plan, the water supply service ratio to the population is expected more or less 70% in 2010, contrasting the current average service ratio is 29.5% for the provincial capital cities.

The planning horizon of the towns along the major river basins also required expansion of water supply program with the long-term view as the components of frame work plan for the basin-wide water resources development and management. Expansion of water supply system for the other cities, towns and villages will be reguired under the mid-term development with the period of 5 or 10 years, together with detailed financial plan and institutional arrangement.

Table 6.1.6 Major Hydropower Potential in The Region

No.	Project Name	Kiver	Province	Calchment Area (km2)	Fim Discharge (m3/s)	Installed Capacity (MW)	Energy \quad Phase Output (GWh/y)	Remarks
	1 Merangin-1	Merangin	Jambi	-		22.4	98.1 HPPS'83	*1
	2. Merangin-2	Merangin	Jambi			340.0	$1136.0 \mathrm{~F} / \mathrm{S} 91$	
	3 Merangin-3	Merangin	Jambi	- 3 ,		57.4	251.4 HPPS'83	1
	4 Merangin-5	Merangin	Jambi	2,597	24.5	24.0	155.5 Pre F/S'87	* ${ }^{1}$
	5 Asai-4	Asai	Jambi			41.9	200.1 HPPS'83	*
	6 Ranau	Selabung	S.Sumatra	508	14.5	60.0	145.9 FS'87	
	7 Selabung-2	Selabung	S.Sumatra	1,005	31.5	73.0	443.7 HPPS'83	*1
	8 Selabung-3	Selabung	S.Sumatra	1,155	40.3	20.8	184.0 HPPS 83	* 1
	9 Enim-3	Enim	S.Sumara	468	21.8	47.0	300.9 HPPS'83	* 1
	0 Lematang-4	Lematang	S.Sumatra	1,148	46.3	83.2	676.4 Pre F/S'87	* 2
	1 Musi-1	Musi	S.Sumatra	610	14.0	69.2	582.5 D/D'91-	*1
	2 Kutu	Kutu	S.Sumatra	246	9.3	39.6	266.4 HPPS 83	*
	3 Buluh	Lematang	S.Sumatra	1,350	8.0	12.2	$105.5 \mathrm{P}_{\text {re F }} / \mathrm{s}$ '81	* 4
	4 Tanjung Pula	Ogan	S.Sumatra	360	5.3	26.7	116.0 Pre F/s'81	*
	5. Kota Agung	Selabung	S.Sumatra	1,250	15.8	37.2	163.0 Pre F/s'81	* 4
	6 Sejemput	Lematang	S.Sumatra	1.800	34.6	100.0	43.0 Pre F/s'81	*4
	7 Sula	Kutu/Rawas	S.Sumatra	235	8.2	12.8	56.0 Pre F/s'81	* 4
	8 Muara Lintang	Musi	S.Sumatra	2,940	48.4	20.9	92.0 Pre F/s'81	*
	9 Panjung	Lematang	S.Sumatra	280	31.4	22.0	100.0 Pre F/s'81	* 4
	Baru.	Selabung	S.Sumatra	1,110	14.3	35.0	153.0 Pre F/s'81	* 4
	1 Luas-3	Luas	Bengkulu	616	25.8	32.2	200.0 HPPS'83	*1
	Manna-1	Manna	Bengkulu	460	20.8	77.2	629.6 HPPS'83	*1
	3 Kerahun-1	Ketahun	Bengkulu	314	10.4	19.8	128.7 HPPS'83	*1
	4 Ketahun-4	Ketahun	Bengkulu	1,091	50.4	40.8	216.7 HPPS'83	*1
	5 Besai-1	Besai	Lampung	420	9.3	61.6	380.3 D/D'90	* 1
	6 Batutegi	Sekampung	Lampung	424		24.0	105.1 F/S 78	* 6
	7 Besai Gedongbatin	Besai	Lampung	686	31.2 -		Pre F/S'89	*5
	8 Giham Pungkan	Giham	Lampung	52		40.0	212.5 Pre F/S'89	* 5
	Upper Semangka-1	Semangka	Lampung	290	12.5	26.8	143.0 Pre F/s'92	*8
	Upper Semangka-2	Semangka	Lampung	383	29.8	23.2	123.0 Pre F/s'92	48
	1 Upper Semangka-3	Semangka	Lampung	416	32.3	28.2	151.0 Pre F/s'92	*8
	Lower Semangka-1	Semangka	Lampung	799	50.3	35.5	182.0 Pre F/s'92	*8
	Lower Semangka-2	Semangka	Lampung	840	52.9	40.4	209.0 Pre F/s'92	*8
	4 Semung-1	Semung	L ampung	312	19.7	23.8	123.0 Pre F/s'92	* 8
	5 Semung-2	Semung	Lampung	320	20.2	38.7	202.0 Pre F/s'92	*8
Sources:		${ }^{4} 1$: Hydro Power Potential Study, 1983, Nippon Koei Co, lid (IBRD)						
		*2: Pre Feasibility Study on 21 Hydropower Project, 1987, Nippon Koci Co. Lud. (IBRD)						
		*3: Feasibility Study for Ranau Hydropawer Project, 1987, JICA						
		*4 : Musi River Basin Study, 1989, BCEOM (EC)						
		*5 : Tulangbawang and Mesuji River Basin Master Plan Study, 1989, Binnie andid Partners						
		*6: Lanpung Waser Resources Development Project, 1978, UK						
		*7: Feasibility Study for Merangin-2 Hydropower Project, 1990, Wirauman (IBRD)						
		*8: Pre-F/S carried out by the Sudy (LTA-129) in 1992 based on the PLN data						

Table 6.2.1 Long-Term Water Supply Program for Major Cities

	$\begin{aligned} & \text { Jambi } \\ & \text { (Jambi) } \end{aligned}$	Palembang (S. Sumarra)	$\begin{aligned} & \text { Bengkulu } \\ & \text { (Bengkulu) } \end{aligned}$	Bandar Lampung (Lampung)
1. Current Condition				
(1) Population	339,786	1,139,926	170.327	636.706
(2) Area	206.0 km 2	224.0 km 2	144.5 km 2	169.2 km 2
(3) Population in Service Area	-		.	198,125
(4) Several $\%$ of Population Served	135,902	479,747	20.279	139,625
(5) Service Ratio to Administrative	40.0\%	42.1\%	11.9\%	6.2\%
Population				
(6) Raw Water Intake	-	-	.	$5701 / \mathrm{Scc}$
Capacity				
(7) Treatment Capacity	$310 \mathrm{l} / \mathrm{scc}$	$1.550 \mathrm{l} / \mathrm{Sec}$	$100 \mathrm{l} / \mathrm{Sec}$	$300 \mathrm{l} / \mathrm{Sec}$
(8) Major Water Resources	Batang Hari	Air. Musi	Air Bengkulu	Way Kuripan
(9) Coverage Pcriod Within The Existing Facilities		Upo 1995	Upto 1994	Upto 1995
2. Further Water Supply Program				
(1) Water Supply Master Plan	Nonc	1991	1991	1986
(2) Supporing Agency		ADB (IUIDP)	German	AIDAB (Austraha)
(3) Coverage Period		1995-2015	1995-2015	1985-2010
(4) Estimated Population on		2,391,000	489,9501	1,479,000
Target Year		(2015)	(2014)	(2010)
(5) Expected Service		1,919,000	-	1,087,000
Population on Target		(2015)		(2010)
Year				
(6) Overall \% to Population Served		79.8\%	-	73.4\%
(7) Required Raw Water		$8,430 \mathrm{l} / \mathrm{S}$	$1.2501 / \mathrm{Sec}$	4,475 1/Sec
Resources				
(8) Target Per Capita Consumption		1951 l/headd/diy		182 /headrtay
(9) Estimated Treamment		7,330 l/S	1,200 1/Sec	4,341 $1 / \mathrm{Sec}$
(10) Capacity				
(10) Major Water Resources		$\begin{aligned} & \text { Air Musi } \\ & 6,830 \mathrm{l} / \mathrm{S} \end{aligned}$	Air Bengkulu	Wity Kuripan $780 \mathrm{l} / \mathrm{S}$
		Air Ogime $1.600 \mathrm{l} / \mathrm{S}$	Air Nelas	Way Subu 2,1501/S
				Ketibung G/W
				1.000 1/S
				Others - $2201 / \mathrm{S}$
				Way Sckampung 2,000 l/S
Sources: Masterplan Study for Patenbang Water Supply Project, (IUIDP,1991)				
Bengkulu Water Supply Project, 1991Masterplan Study for Bandarlampung Water Supply Project (ADAB, 1986)				

6.2.2 Flood and Sedimentation

As mentioned in Section 6.1, the existing flood and sediment damages can be classified the following two types, flood and debris flow damages at the fringe of mountains, and flood and sediment damages at major cities in low land area. It is required to consider the different approaches as shown below.

A number of medium and small towns, and villages are located on the fringe of Bukit Barisan Range, which are seriously damages to human lives and the river structures such as the irrigation intakes, the bridges and so on, dhe to the violence of flood and debris flow. The required countermeasures are mainly aiming at energy dissipation of the flood and the
debris flow. Debris flow control is particularly important for the areas because the volcanic activities by Trans Sumatra Fault Zone are remarkable and the geological condition is brittle.

The urgent countermeasures, such as construction of Sabo dams, protection of land erosion and also river dyking, are generally done by the local government in the view of social welfare. However, it is still necessary to continue the sabo activities particularly in Kerinci and Lampung Selatan, in where the current population density is relatively high and the habitual debris flow disaster is occurred. The long term sabo master plan is required considering the technical and fimancial assistance from the foreign countries in such major damaged area.

On the other hand, the flood and sediment damages in the eastern low land area is required the different approach. Because the rivers located in the area have the larger watershed, the longer river length and the gentle gradient. The flood characteristics are, therefore, long lag time, dull peak and long flood duration, and the damages are mainly not to human lives and the destroy of the infrastructures but decrease the validity of commodities by inundation, and being affected the economic activities due to the inuidation of commercial zone and road network with longer period. The excess sediment deposition in the river channel is accelerate the flood damages due to decreased river capacity, and also damaged to the river transportation activities.

The integrated basin wide approach is proposed to tackle the issues aiming at the both of minimizing the flood damage and maximizing the economic development with the long term view. Because the huge flood prone area is spread in low land area, where is so far unused and functioning as the natural flood retarding basins for the downstream major cities, however, having higher potential for the future development as the hinterland of the cities. On the other hand, flood protection plan with pre-supposing the upstream development would be very costly for the major cities in low land area. The integrated basin wide approach should be therefore composed of the following considerable items;

- Basin environmental management,
- Partially river dyking and widening,
- Flood way channel,
- Basin land use plan with flood retarding basin plan,
- Dam and rescrvoir,
- Flood forecasting and warning system,
- Flood insurance system.

6.2.3 Irrigation Development and Swamp Reclamation

It is reported that national self-sufficiency of rice was attained in 1983 by great deal of effort for extensive irrigation development. After that, the sectoral priority was put on intensification of the existing paddy field to improve the efficiency of rice production particularly in Java and Sumatra Islands. According to Repelita V, area extension with 100,000 ha per year of irrigation development is also required whole in Indonesia to maintain national self-sufficiency of rice taking into account the further population growth.

On the other hand, the regional policy was revealed that maintaining selfsufficiency of rice in the Region is put priority among the regional development activities, and it was found that the regional government is still interested in extensive irrigation development. Lampung and South Sumatra Provinces are particularly expected to develop large scale irrigation schemes because the provinces are situated rice granary in the view of maintaining national self-sufficiency of rice. Current major rice supply base in the Region are Kabupatens Lampung Tengah, OKi, MUBA, and Tanjung Jabung. All those Kabupatens mainly produce rice in huge swamp area except Kabupaten Lampung Tengah.

Irrigation developmem is generally expected higher land productivity and the production stability with less affected by the climate condition, however, the capital investment is relatively higher than the swamp land paddy farming. In the case of on going Komering Irrigation Project in OKU, the estimated investment cost is more or less US $\$ 10,000 / \mathrm{ha}$, is as 10 to 20 times as of capital investment for swamp land development with US $\$ 500-1,000 /$ ha.

The paddy farming by "Pasang Surut" or "Lebak", which are found in South Sumatra and Jambi Provinces, are main production activity in the swamp reclamation area and becomes the dominant rice granary of the Region. However, the productivity appears much lower than the paddy farming by irrigated wettand in lowland area. Tree crops such as coconuts, rubber and oil palm can be considered as attractive alternatives to swamp paddy farming to enhance the economic activity in the swamp area. However, still more investment is required to reach the same output level as the plantation in inland has. Past experience of swamp development in the Region however seems to be unsatisfactory by various unexpected difficulties. The problem to be identified in the existing swamp reclamation area are as follows:

1) Low production efficiency,
2) Poor communication system (inchide road network),
3) Bad quality of groundwater and lack of water supply system,
4) Prevalent poverty anong new setlers.

The further policy for swamp reckamation to be recommended therefore to improve the existing swamp reclamation area in the view of infastrictures and institution setup for pursuit better production efficiency rather than to extend swamp reclamation arca except the area where the land development is strongly required with effective economic vability.

6.2.4 Hydropower Development

Although the regional power supply system is currently separated from the major energy consumption centers, the system is expected to be linked in fuure as shown in Figure 6.2.2. Together with the expansion of tranmission line network, hydropower development will be attractive for the regional power supply. Implementation plan of transmission expansion is shown in Table 6.2.2.

Table 6.2.2 Plan of Transmission Expansion in the Region

From - To	Volage Level (kv)	No.of Circuit (Nos.)	Lengh	Target Year (Year)	Remarks
Bukit Asam - Palembang	150	2	-	-	Existing
Tes - Curup	70	2	40	1990	Existing
Curup - Bengkulu	70	2	60	1990	Existing
Bukit Asam - Baturaja	150	2	90	1991	Existing
Katabumi - Tarahan	150	1	135	1991	Existing
Lahat - Pagar Alam	70	2	40	1993	Committed
Baturaja- Kotabumi	150	1	60	1993	Committed
Lahat-Lubuk Linggau	150	1	100	1995	Committed
Lubuk Linggau - Curup	150	2	60	1995	Committed

* Source: Feasibility Study for Merangin - 2 HPP , March 1900 PLU

Furthermore, intercomection of PLN Region 111, which covers West Sumatra and Riau Provinces, and IV covering four provinces in the Region, by 275 kv through Bangko has been recommended for implementation within the period 1993 to 1998 in the Long Range Power Development Study of Sumata. The further policy of Power Supply within the Region is that the base load will be supplied by coal thermal plants in Bukit Asam, and the peak load by various hydropower stations in Bukit Barisan Range for all the major cities in the Region. Several major hydropower projects have been identified in the Region as shown in Table 6.2.3.

Table 6.2.3 Major Hydropower Project in the Region

Scheme	Province	Kabupaten	Target year (year)	Installed Capacity (MW)	Annual Energy Output $(\mathrm{GWh} / \mathrm{yr})$	Current condition
Tes-1	Bengkulu	$\begin{aligned} & \text { Rejang } \\ & \text { Lebong } \end{aligned}$	1991	16	-	operation
Besai-1	Lampung	L. Utara	1996	90	380.3	D/D completed
Musi-1	Bengkulu	Rejang Lebong Kerinci	1998	111	582.5	$\begin{gathered} \text { D/D } \\ \text { on-going } \end{gathered}$
Merangin-2	Jambi		2001	340	1136.0	F/S completed
		Kerinci				
Katahun-1	Bengkulu	Rejang Lebong	2003	84	175.0	F/Scompleted
Ranau	S. Sumatra	OKU	-	60	145.9	F/S completed
Tes-2	Bengkulu	Rejang Lebong	-	17	${ }^{-}$	waiting F / S
Merangin-5	Jambi		-	24	155.5	waiting F/S

Source: PLN, Feasibility Study for Merangin-2 I Iydropower Project, 1990
Micro hydropower development applied to mountain streams and artificial irrigation camals with simple structures seem os be attractive for rual electrification particulany in Bengkulu and Lampung Provinces. Considering the futher expansion of power supply system, special program for rural electrification is required since the many isolated villages in the Region will still remain without access to the system.

6.3 ISSUES AND STRATEGY

6.3.1 Water Supply and Sewerage Treatment

(1) Urban Water Supply and Sewerage Tratment

Most of the urbanized area in the region has generally abundant water resources for water supply, however ensuring raw water resources for water supply of Bandar Lampung City is urgently required. Because the present water resources is almost limited in the view of water quantity and the Way Sekimpung River, which is expected as the further water resources for the city, is fully used for imgation, and no more water to be allocated for Bandar Lampung city under the present condition. Reassessment of water allocation and construction of Batutegi multi purpose dam and reservoir are recommended together with the research of the other new water resources in and around the city.

Long-term water supply plan has been almost completed for the urban water supply. However, the institutional arangement for the implementation work and the operation
and maintenance for the system seem to be insufficient. Strengthening of water supply agency is necessary for smooth implementation of the further expansion of water supply system. Detail assessment of institutional set-up including tariff system and staff increasing and training shall be carried out together with long-term water supply program particularly for PDAM in major cities.

Sewerage treatment condition is remarkably poor compared with the water supply capacity. Water pollution will become more serious together with expansion of water supply capacity, because the expansion of water supply system is generally to increase water consumption and resulting increase of waste water. In the view of sustainable environmental condition, the further water supply program should be linked with the sewerage treatment with adequate capacity.

(2) Rural Water Supply

Rural water supply is gradually expanding the Region without priority area under the equity policy. However, it is recommended to consider the availability of spring, river flow, and groundwater for respective village to reveal the priority areas. The villages located in eastern coastal swamp generally suffer from bad quality of groundwater, no adequate alternatives to rural water supply by treated water, where is strongly required to supply potable water.

6.3.2 Flood and Sedimentation

(1) Urgent Flood Control, Sabo, and Drainage

In some places, the urgent countermeasures are required for the flood control, sabo and urban drainage issues in view of the social stability and basic human needs. The most of the identified area has already made countermeasures by the regional government, but still required the technical and financial assistance. The following area have identified to be required urgent action;

- Jambi City (flood control and urban drainage)
- Batang Suliti River in Kerinci (debris flow control)
- Lake Kerinci Basin in Kerinci (flood control)
- Palembang City (drainage)
- Allied rivers flow to Semangka Bay in Lampung Selatan (flood control and sabo)

(2) Basin Wide Approach

Together with the urgent flood control works where the serious flood damage occurs, comprehensive basin-wide flood managemem plan is required, which should be a components of basin-wide water resources development master plan because the respective flood control works can influence other areas within the basin. Particularly, flood control works in the Musi and the Batanghari River Basins are required within the basin-wide approach.
"Musi River Basin Study" has completed in 1989, which is a comprehensive study including water resources development, flood control plan, irrigation and swamp development and environmental management with the basin-wide long-term view. Flood control and urban drainage for Palembang City, which require urgent actions shall be carried out pre-supporting the results of the master-plan study.

On the other hand, there is no comprehensive river basin study for the Batanghari River in spite of the flood and sediment issues as summarized below:

1) Forest degradation in Kerinci Seblat Natiomal Park
2) Flood damage in Lake Kerinci Basin
3) Debris flow damage in Batang Suliti Basin
4) Bank erosion of Batang Hari river
5) Flood and inundation damages in Jumbi City
6) Influence river transportation due to excess sediment deposition

It is noted that the above problems are not independent but strongly related to each other. Therefore, it is required to tackle the issues with the basin-wide view.

6.3.3 Irrigation Development

(1) Continue the on-going large sale irrigation schemes

Two large-scale irrigation schemes, that is, Way Rarem Irrigation scheme with 22,000 ha in Lampung Utara and Upper Komering Irrigation scheme with 42,155 ha in Ogan Komering Ulu, should be put top priority in the view of national and regional requirements to yield surplus production of rice within the Region. The both projects are currently under construction and Way Rarem is expected to complete in the early 1990's and Upper Komering in the later 1990's.

Intensification of Way Sekampung Irrigation scheme together with construction of Batutegi dam and reservoir in Limpung Utara is also put priority in the sectoral view point. Construction of Batutegi dam and reservoir will be expected not only for imigation purpose but also for industrial and potable water supply purposes for Bandar Lampung City and the industrial area. Therefore, the detailed assessment of water allocation among irrigation, industrial and potable water supply for Bandar Lampung City should be done before the project commencement.
(2) Feasibility Study for the identified irrigation schemes

The other major irrigation development in Kabupatens Lampung Utara, Ogan Komering Ilir, Musi Banyuasin, Musi Rawas, Bengkulu Utara and Sarolangun Bangko are also expected to be developed however presupposing long-term demand forecasting of rice consumption with national level is required to encourage implementation of the projects. The priority among the projects listed in Table 6.1 .3 shall be considered following to the national level of long-term rice consumption in Indonesia and the transmigration program.

(3) Development of small scale irrigation schemes

The medium and small scale imgation development can directly contribute to the improvement of the smallholders' well-being and therefore is recommended in the view of the national equity policy and the regional stability. There are some programs to encourage the improvement of the small scale schemes such as Provincial Irrigated Agriculture Development Project (PIADP), and Small Scale Irrigation Management Project (SSIMP).

PIADP financed by IBRD aims at improvement of the existing small-scale irrigation projects with the provincial view, including structure rehabilitation, institutional arrangement and modification of cropping pattern and so on. The project is currently carried out for Bengkulu Province and expected a great deal of impact for improvement of rural development. On the other hand, SSIMP financed by USAID and Japanese OECF aims at encouraging implementation of the identified small-scale irrigation projects which are trapped for various reasons such as technical, institutional and financial constraints. The project is currently carried out in Eastem Indonesia but it is expected to apply such kind of approach to the Region.
Present Condition of The Southern Part of Sumatra

Province Kabupaten	Administrative Area $(\mathrm{xm2})$	Population as of 1990 (thousand)	$\begin{gathered} \text { GRDP } \\ \text { (Rp. billion) } \end{gathered}$	$\begin{gathered} \text { GRDP per } \\ \text { Capita } \\ \text { (Rp. million) } \\ \hline \end{gathered}$	Irrigation Area (ha)	Wetland Area (ha)	\qquad	$\begin{aligned} & \text { Producton } \\ & \text { Yield } \\ & \text { (ton/ha) } \\ & \hline \end{aligned}$	Production per Capita (kg/person)	Remarks
Jambi	53,436	2,015	756	0.375	27,729	145,214	475,243	3.27	235.85	
Kerinci	4,200	279	61	0.219	11,412	21,128	76,353	3.61	273.67	KR
Bungo Tebo	13,500	361.	114	0.316	5,059	12,285	36,764	2.99	101.84	BT
Sarorangun Banko	14,200	350	119	0.340	8,995	5,324	17,149	3.22	49.00	SB
Barang Hari	11,130	324	133	0.410	1,095	19,599	55,916	2.85	172.58	BH
Tanjung Jabung	10,200	361.	128	0.355	1,158	86,878	289,061.	3.33	800.72	TJ
Kota.Jambi	206	340	201							
South Sumatra	109,234	6,276	4,002	0.638	58,478	352,801	1,202,060	3.41	191.53	
Ogan Komering Ulu	10,408	964	324	0.336	22,464	68,989	261,045	3.78	270.79	OKU
Ogan Komering Inil	21,638	771	276	0.358	3,326	95,294	300,205	3.15	389.37	OKI
Muara Enim	9,575	582	244	0.419	4.103	21,517	68,115	3.17	117.04	ME
Lahat	4.034	602	248	0.412	20,914	31,062	130,366	4.20	216.55	LHT
Musi Rawas	21,513	512	216	0.422	6,608	23,820	85.911	3.61	167.79	MR
Musi Banyuasin	25,664	884	729	0.825	1,063	112.119	356,418	3.18	403.19	MB
Bangka	11,614	514	428							
Belitung	4,532	193	124							
Kota. Palembang	224	1,141	1345							
Kota. Pangkal Pinang	32	113	68							
Bengkulu	19.789	1,171	454	0.388	45.669	65,933	234,082	3.55	199.90	
Bengkulu Selatan	5,949	298	102	0.342	14.997	27,354	101,012	3.69	338.97	BS
Rejang Rebong	4,110	360	152	0.422	17,810	19,175	68,055	3.55	189.04	RR
Bengkulu Utara	9,585	343	109	0.318	12,862	19,404	65,015	3.35	189.55	BU
Kota. Bengkulu	145	170	91							
Lampung	35,377	6,006	1,939	0.323	135,292	264,062	1,113,402	4.22	185.38	
Lampung Selatan	6,649	1,825	514	0.282	26,786	98,637	434,493	4.40	238.08	15
Lampung Tengah	9,190	1,901	591	0.311	86,305	116,684	478,476	4.10	251.70	LT
Lampung Utara	14,418	1,335	359	0.260	22,201	48,741	197,277	4.05	147.77	LU
Lampung Barat	4,951	308	68							
Kota. Bandar Lampung	169	637	407				3,156			
Southern Sumarra	217,836	15,468	7,151	0.462		828.010	3,024,787	3.65	195.55	

It was revealed that the previous irrgation development in the region has contributed to the regional economic growth, but not directly to contribute to the improvement of the average farmers income. Correlation analysis was made to be clear the impact of irrigation development using the statistic data of all kabupatens in the region.

Figure 6.3.1 shows the correlation between irrigation ratio and production yield of paddy. The figure indicates there is strong relationship between the irrigation ratio and the production yield of paddy. Accordingly, irrigation development has effect on the increase the production yield of paddy.

Increase of production yield of paddy is however not contribute to the growth of per capita GRDP as shown in Figure 6.3.2. In the case of the region, eastern lowland area such as Batang Hari and OKI is the lower production yield of paddy between 2.7 ton/ha and 3.2 ton/ha, and Lampung Province has the higher production yield of paddy with more than 4.0 ton/ha due to great deal of investment for irrigation development. However, the per capita GRDP is almost same level in the both area. This figure may suggest the irrigation development is not directly contribute to the farmers income growth.

Figure 6.3 .3 is the correlation between population density and production yield of paddy, showing strong relationship. The figure suggest that the irrigation development has an effect to increase of migrants from outside of the project area. Consequently, irrigation development can contribute to the regional economic growth due to the increase of labor receipt capability, and accelerate of migration from the outside poorer villages. However, it is still required to improve the income level for the farmers in the project area, and some countermeasures should be considered for the further irrigation development project.

6.3.4 Swamp Reclamation

(1) Improvement of The Existing Swamp Reclamation Area

Improvement of the existing swamp reclamation area is fustly recommended as the priority action. The main objective is to eliminate the serious poverty in the swamp reclamation areas by upgrading infrastructures, research alternative production activity and so on. The recommended procedure of improvement is as follows:

1) Upgrading communication network (rual road, telecommunication)
2) Provide water supply system and electricity
3) Upgrading drainage system with gated structures
4) Strengthening agricultural extension service
5) Development social structures such as school, mosques, and so on
6) Institutional set-up

For the research of new production activity as alternative to swamp paddy farming, three pilot projects are recommended as follows:

1) Pumping irrigation development pilot-project in Kabupaten Musi Banyuasin of South Sumatra Province.
2) Small agro-industry using coconuts and coconuts shells in Kabupaten Tanjung Jabung of Jambi Province
3) Inland fishery improvement in Kabubaten Tanjung Jabun of Jambi Province.

Figure 6.3.1 Relationship between Irrigation Area and Production Yield of Paddy

Figure 6.3.2 Relationship between GRDP per Capita and Production Yield of Paddy

Figure 6.3.3 Relationship between Population Density and Production Yield of Paddy

Location advantage can be considered in the view of marketing further prospect of the existing swamp reclamation area as the gateway to the Growth Triangle, which is composed of Singapore, Batam and Johor. Kabupaten Timjung Jabung in Jambi Province is particularly expected further development as the hintertand of the Growth Triangle. The second priority therefore shall be intensive development of enhancement agricultural production aiming at the Growth Triangle. The long-term marketing research is required to realize the intensive swamp development for Kabupaten Tanjung Jabung.

(2) Extensive Swamp Reclamation in Bengkulu Province

Another requirement to extend swamp reclamation area is found in Bengkulu Province, which has limited land for development and expects extensive development particularly for agro-based industry. The huge swamp area is located in Kabupaten Bengkulu Selatan along the western coast between Bengkulu City and Manna. The transportation advantage is confirmed because of closeness to Bengkulu Port and on-going new road network to Bandar Lampung city. There are three swamp reclamation schemes as the components of the recommended development plan:

1)	Rawa Peninjauan	$10,600 \mathrm{ha}$	on-going
2)	Rawa Penago	$3,800 \mathrm{ha}$	on-going
3)	Rawa Alas	$6,500 \mathrm{ha}$	New

6.3.5 Hydropower Development

(1) Realize On-going and Committed Hydropower Schemes

Insufficient of the electric power supply for the Region is focused, and power supply shortage is forecasted in 1995/96. The installation of additional power generation facilities is one of the urgent matters, and there are two hydropower development projects, Besai-1 and Musi-1 schemes, are on-going or committed to realize. Implementation of the projects should be priority to satisfy the electric power demand by 2000.

Following to the schemes, two other hydropower schemes are scheduled to be installed, Merangin-2 on 2000/01, and Ketahun-1 on 2003/04. Since the feasibility study for the both schemes have completed with adequate economic viability, it is urgently required to carry out the detailed design to realize as scheduled.

(2) Provide the Power Supply Program after 2003/04

The existing power supply program for the Region covers until 2003/04, and the further power supply program is required, taking into account the inter connection to Northern Sumatra and also Java. For the further power supply program, the feasibility study for the other identified schemes in the Region such as Way Semangka schemes in Lampung Selatan, Manna- 1 scheme in Bengkulu Selatan and Merangin- 5 scheme in Kerinci are proposed, which are assumed rather attractive than the other identified schemes. Among them, Way Semangka schemes are assessed in the Study with pre-F/S level. The detailed are shown in Volume 4.

Micro hydropower development is expected as an alternative to isolated diesel power plant particularly in Kabupatens Bengkulu Utara, Bengkulu Selatan and Lampung Barat. These areas are not covered by the current expansion plan of transmission network but various potential sites for micro hydropower development might exist. It is recommended to research micro-hydropower development potential as the component of small rivers development for the rural development by small water resources development with local government initiative.

6.3.6 Basin Wide Water Resources Development

Water resources is one of the important economic and environmental assets of the Region. Considering development of water resources, it is strongly required to assess the environmental impact and adverse economic effect to the other area together with the economic viability of the project. The projects in a river basin are not independent but strongly related to the other issues within the same basin. River basin approach must be the most suitable way to assess the conservation, development and management of the land and water resources, particularly for the major river basins.

Sectoral approach can be recommended for the river basin where basin-wide master plan has completed as shown below:

1) Musi River Basin Study in 1989 (whole South-Sumatra Province)
2) Water Resources Development Master Plan for Mesuji-Tulangbawan River Basins in 1989 (Lampung Utara)
3) Master Plan Study for Komering River Basin 1982 (OKU and OKI)
4) Water Resources Development Master Plan for Way Sckampung and Way Seputih River Basins in 1978 (Lampung Selatan, Tengah)

Irrigation development and Flood control project are particularly required basinwide approach. Accordingly the proposed irrigation and flood control projects in the Study are mainly located in the above 6 river basins.

The proposed area for a basin wide water resources development approach are shown in Figure 6.3.4. For the further water resources development and conservation, it is strongly recommended to take immediate actions to start Master Plan Study for Batang Hari River Basin, since this is the only major river basin which still lacks a basinwide master plan.

6.4 IDENTIFIED PROJECTS

41 Projects related to water resources sector have finally selected as the components of The Integrated Regional Development Master Plan for The Southern Part of Sumatra. These projects have been identified by the various agencies such as the central and provincial governments, international agencies and also the study team based on the field investigation. Figure 6.4 .1 presents the location of the selected 41 projects which are well distributed by the province, 10 projects in Jambi, 16 in South Sumatra, 10 in Bengkulu and 11 in Lampung Province.

8 of the above 41 projects have defined high priority projects because of the importance, the urgency and the economic viability to the region. The detailed procedures how to define the high priority project is shown in Section 2.10 of Volume 2, "Main Report". Figure 6.4.2 shows the schematic location map of the high priority projects and the features are as follows;

(1) Batang Hari Integrated Basin Development Plan (Jimbi Province)

It is recognized that water and land resources are the most important assets in Sumatra, and their effective and sustainable development is required for further national/regional development. The Batang Hari River basin with the second largest catchment area in Sumatra is blessed with abundant water and land development potentials for which efficient and harmonious development is considered important paramountly, and the national and provincial governments have accordingly idemified significiant necessity of conducting the Batang Hari River Integrated Basin Development Study considering the linkage among flood

control, land/water resources development, and envirommental conservation in view of the integrated regional development for the basin.
(2) Rural Water Supply Project for The Eastern Lowland Area (Tanjung Jabung, Musi Banyasin, and Ogan Komering Ilir)

Eastern coast of the southern part of Sumatra is generally isolated by road network, and scattered in the populated area. The villages, located on the area are generally suffering from the access to the potable water. Because the river water contains salt due to the backwater effect of the sea, and the shallow wells less than 50 m of the depth is almost affected acidity, which is not suitable for the drinking purpose. However, water supply project for such serious coastal area is situated low priority under the current program of the central government. Because, the priority of the water supply project is depended on the population density and there is no consideration of the availability of present potable water resources. Therefore, it is recommended to prepare the special program for rual water supply project for such low land area.
(3) Rehabilitation and Extension of The Existing Irrigation Schemes in Kabupaten Lahat (Lahat)

Kabupaten Lahat is located on the hilly land in South Sumatra Province. There are 29 existing irrigated schemes in Kabupaten Lahat with a total area of 10,673 ha. Most of the schemes are rather small scale due to the topographic constraints. There is less potential for the extensive development for large scale irrigation, and consequently the major activity for the irrigation development is focused in the rehabilitation and expansion of the existing irrigation systems. The following 3 schemes are included in the project; Air Mulak with 2,207ha, Air Kuruh with 1,531 ha and Lintang Kanan with 3,509ha.

(4) Lower Komering Integrated Agriculture Development Project (Ogan Komering Ilir)

The project are with $5,229 \mathrm{~km}^{2}$ is located between Palembang City and on-going Upper Komering Irrigation Project site, where soil condition is adequate for paddy field, and expected advantage of marketing to Palembang City. The GOI expects the area is to be developed as national rice granary together with Lampung Province. Current economic condition is however insufficient due to habitual overflow of Ogan and Komering Rivers, and the irrigation development is inevitably required to consider the flood control of OganKomering River System. On the other hand, the project area is currently forms seasonal swamp and contribute to flood mitigation for Palembang City as the natural flood retarding basin. Therefore, it is required the integrated approach to develop the area. The project is composed of 6 irrigation schemes with a total irrigation area of 28,47 hat.

(5) Peninjauan Swamp Land Development Project (Bengkulu Sehatan)

Swamp reclamation project for Peninjuan area with 10,600ha is on-going, and the main purpose is to develop irrigated agriculture land for transmigants, who are long suffered from low intensity of production due to habitual inundation. In view of the regional development for Bengkulu Province, agro-industrial development is expected and Peninjauan Area is the most suitable location as the industrial development center. Because Peninjauan Area is located just next to the Bengkulu Port, and only 20 km from Bengkulu City, which has high advantage for the market access. The proposed study is accordingly to review the present land use plan considering the regional economic development with the improvement of the existing villages in Peningauan Area.
(6) Tulang Bawan River Basin Irrigation Development Project (Lampung Utara)

Swamp reclamation project for Peninjauan area with $10,600 \mathrm{ha}$ is on-going, and the main purpose is to develop irrigated agriculture land for transmigrants, who are long suffered from low intensity of production due to habitual inundation. In view of the regional development for Bengkulu Province, agro-industrial development is expected and Peninjauan Area is the most suitable location as the industrial development center. Because Peninjauan Area is located just next to the Bengkulu Port, and only 20 km from Bengkulu City, which has high advantage for the market access. The proposed study is accordingly to review the present land use plan considering the regional economic development with the improvement of the existing villages in Peninjauan Area.

(6) Tulang Bawan River Basin Irrigation Development Project (Lampung Utara)

Lampung Province has situated as a part of the national rice granary of which rice produced is not only for the regional supply but also for maintaining the national selfsufficiency of rice. The current center of paddy field is Kabupaten Lampung Tengah but shifting to the north due to the urbanization and industrialization of the southern part of Limpung Province. Under such circumstance, EEC camied out "Water Resources Master Plan Study for Tulang Bawang and Mestiji River Basins" in 1989, to provide the 20 years development scenario for the river basins mainly for irrigation development. The proposed study is to follow the above development scenario to carry out the feasibility study for the high priority projects as follows; Way Abung with 8,225 ha, Way Pedada with 13,550 ha, Way Saka/Bahuga with 12,600ha, and Quick Yielding Schemes with 15,060ha.

(7) Way Sekampung Water Allocation Study (Lampung Selatan, Bandar Lampung)

Way Sekampung River with a catchment area of $5,500 \mathrm{~km}^{2}$ flows the north of Bandar Lampung City. All the river water in dry season is currently diverted to Way Sekampung Irrigation System with a total area of 94,123 ha. Batutegi Multipurpose Dam with a height of 120 m and a catchment area of $424 \mathrm{~km}^{2}$, located on the mainstream of Way Sekampung River, has committed for the constuction by OECF finance. The purpose of the dam has defined to firm up the irrigation water in dry season, flood control to the downstream and hydropower with an installed capacity of 24 MW . On the other hand, water supply for Bandar Lampung City is currently critical condition, and the Municipality is expected to be allocated water from Way Sekampung River. The proposed study is to review the water allocation plan of Batutegi Dam considering the both of irrigation water supply and potable water supply for Bandar Lampung City.

(8) Way Semangka Hydropower Development Project (Lampung Selatan, Lampung Barat)

Way Semangka River with a catchment area of $2,100 \mathrm{~km}^{2}$ has advantages for the bydropower development such as steep gradient, stable river flow through the year, and the closer to the demand area of Bandar Lampung City. There are 7 schemes identified as the hydropower development potential sites with a total installed capacity of 216.6 MW . All the schemes are the run of river types and the cost performance is attractive comparing to the other candidates in the region. The proposed study includes the review of the hydropower development potential in the basin, identification of the priority development schemes and the feasibility study.

6.5 DATA BASE

Appendix to this Chapter contains some basic data collected and compiled by the Team.

Figure 6.4.1 Schematic Location Map for Water Resources Project

Figure 6.4.2 High Priority Projects for Water Resources Sector

Appendix

Table A-1 List of River System

10	River System	CT Area (Km2)	Wi. Gauge (nos.)	10	River System	CT Area (Km2)	WL Gauge (nos.)
BJI	S.Air Hitam Laut	1,900	0	BB1	A.Menjuta	770	2
BJ2	S.Batanghari	49,100	33	882	A. Selagan	660	3
BJ3	S.Mandahara	990	0	883	A. Dikit	2,400	1
BJ4	S.Pangkalandur Besar	440	0	B84	A.Bantal	660	0
BJ5	S.Bentara	1.100	0	B85	A.Teramang	770	2
BJ6	S.Tungkal	4,300	1	B86	A.loun	1,300	3
				BB7	A. Seblat	660	3
BS1	S.Jeriju	1.500	0	BB8	A.Ketahun	2,800	6
BS2	S.Lumpur	3,600	0	B89	A.Seranggai/Bintunan	550	2
BS3	S.Lebonghitam	1.100	0	8810	A.Pagang/Lais	880	4
BS4	S.Riding	990	0	8 B 11	A.Palik	550	0
BS5	S.Pidada	440	0	B812	A.lemau	660	2
BS6	S.Batang	770	0	BB13	A. Bengkulu	770	3
BS7	S.Buranrinding	2.900	0	BB14	A. Nelas/Ungkal	660	3
BS8	S.Saleh	12.400	0	8 B 15	A.Seluma	880	4
BS9	S.Musi	39,500	47	BB16	A. Talo	660	0
BS10	A.Banyuasin	14,100	0	BB17	A.Alas	880	1
BS11	S.Sembilang	1,300	0	BB18	A.Maras	440	3
BS12	S.Bakorendo	1,200	0	BB19	A.Manna	770	2
BS13	S.Benu	990	0	B820	A.Nipis	440	1
BS14	s.Cerucuk	660	0	B821	A.Benkenang	440	1
BS15	A.Sapti	880	0	B822	A.Padangguci	770	1
BS16	S.Linggang	550	0	8823	A.Kinal	220	0
BS17	S.Manggar	660	0	8824	A.Luas	1.100	0
BS18	A.Rengas	770	0	B825	A Nasal	990	0
BS19	A.Cengal	440	0	8826	A.Menula	550	0
BS20	S.Kebiang	110	0				
BS21	S.Kampa	550	0	BLI	A.Melaya	330	0
BS22	S.Mancong	1.500	0	BL2	W.Kru	660	0
BS23	S.Jeruk	440	0	BL3	W. Tenumbang	330	0
BS24	S.Menduk	550	0	BL4	W. Biha	220	0
BS25	S.Bangkakota	660	1	BL. 5	W.Ngamburbunuk	330	0
BS26	s.Balar	330	0	BL6	W. Temuli	330	0
BS27	S.Bengkayan	550	0	8 L 7	W. Ngaras	110	0
BS28	S.Ulin	660	0	BL8	W.Pintan	110	0
BS29	s.Kepoh	330	0	$8 \mathrm{L9}$	W. Bambang	220 330	0
8S30	S.Jelamu	220	0	BL10	W. Pamerihan/Cangup	330	0
BS31	S.Ketiak	110	0	BL11	W. Menanga Kiri	330 330	0
BS32	A.Lengko	220	0	BL12	W. Belanbang	330 2.100	5
BS33	S.Kurau	770	0	8 LL 13	W. Semangka	2.100 770	0
BS34	S.Selindung	330	0	BL14	W. Guring	770	0
BS35	S.Mapur	1,100	0	BL. 15	W. Campong	5.500	16
BS36	S.Layang	330	0	BL 16	W.Sekampung	8.500	1
BS37	A.Anton	440	0	BL18	W.Kambas	440	1
				BL. 19	W. Tursan	660	0
				BL. 20	W. Seputin	7,400	17
				BL21	W. Tulangbawang	10,900	13
				BL22	S.Mesuji	7.000	0

*Suurce: RePProt 1988

Table A-2 List of Water Level Gauge in Jambi Province

$\begin{aligned} & \text { Gauge } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { Basin } \\ & \text { ID } \end{aligned}$	Kab. 10	River System	River Name	Place	CT Area $(K \mathrm{~m} 2)$	Start Year		Owner
RJI			Bt.Hari	Bt.Tembesi	Pauh	10,821		1976	DPUP
RJ2			Bt.Hari	Bt.Tembesi	Muara toum	1,455		1972	DPMA
RJ3			Bt.Hari	Bt.Tabir	Muara Jerunih	886		1972	DPMA
Rj4			Bt.Hari	Bt.Uleh	Lb. Tapus	221		1972	DPMA
RJ5			Bt.Hari	Bt. Tebo	Air Gemurun	1.810		1977	DPMA
RJ6			Bt. Hari	Bt.Hari	Muara Kilis	17.824		1976	DPMA
RJ7			Bt.Hari	Bt.Hari	Muara Tembesi	36,135		1976	DPMA
RJ8			8t. Hari	Bt. Kempeh	Pemp.Bidaro	375		1977	DPMA
RJ9			Bt. Hari	D. Kerinci	Sanggaran Agung	966		1974	PLN
RJ10			Bt.Mari	Bt.Hari	Ouren	38,704		1979	DPMA
RJil			Bt.Hari	S.Ulak	S.Ulak Deras	188		1979	DPMA
RJ12			Bt. Hari	Bt.Merao	Debai	51		1980	DPUP
RJ13			Bt.Hari	Bt.Sangkir	Tanah Kampung	425		1980	DPUP
RJ14			S.Pengauan	S.Pangabuan	Merlung	813		1982	DPMA/PHBD
RJ15			Bt.Hari	Bt.Asai	Benso	1,258		1983	DPMA/PHBD
RJi6			Bt.Hari	Bt:Bungo	Rantau Pandang	411		1983	DPMA/PHBD
RJ17			Bt. Hari	Bt.Merangin	Lb.Paku	1,228		1974	PUN
RJ18			Bt.Hari	Bt.Singkut	Tenang	328		1983	DPMA
RJ19			Bt.Hari	Bt.Merangin	Bangko	3.645		1983	DPMA
RJ20			Bt.Hari	Bl Tabir	R.Panjang	1.046		1983	DPMA
RJ21			Bt. Hari	Bt. Pelepat	R.Kelayang	413		1984	PHBD
RJ22			Bt.Hari	Bt.Alai	Tirta Kencana	655		1984	DPMA
RJ23			Bt. Hari	Bt.Limun	Muara Kutur	504		1984	Dit.Gasi
RJ24			Bt.Hari	Bt. Siulak	Kubang	647		1981	DPUP
RJ25			Bi.Hari	Bt.Sangkir	Tanah Kampung	425		1981	DPUP
RJ26			Bt.Hari	Bt.Hari	Sungai Manau	397		1984	PHBD
RJ27			Bt.Hari	Bt.Merangin	P.Rengas	2,916		1984	PHBD
RJ28			Bt. Hari	Bt.Merangin	Sanggaran Agung	966		1974	PLN
RJ29			Bt.Hari	Bt.Air Asam	Dudun Tebat	-		-	-
RJ30			Bt.Hari	Bt.Air Jujuhan	Rantau Ikil	-			-
RW18			Bt. Hari	Bt.Sangir	Sampu	-		-	- .
RW19			Bt. Hari	Bi.Hari	Sungai Dareh	-		-	\checkmark
RW21			Bthari	Bt.Siat	Koto Baru	-		-	*
RW28			Bt. Hari	Bt. Suluti	Air lpuh	\checkmark		-	-

*Source: RePPProt 1988 (Catchment Area : DPMA)

Table A-3 List of Water Level Gauge in South Sumatra Province

Gauge ID	$\begin{aligned} & \text { Basin } \\ & \text { ID } \end{aligned}$	Kab. ID	River: System	River Name	Place	CT Area (Km2)	Start Owner Year
RS1			A.Musi	S.Musi	Upang	51,238	1972 DPUP
RS2			A.Musi	S.Musi	Tebing Abang	32,275	1971 DPUP
RS3			A.Musi	S.Musi	Gandus	34,509	1973 DPUP
RSA			A.Musi	S.Lambi Daro	Gandas	34,508	1982 DPUP
RS5			A.Musi	S.Kelekar	Muara Penimbung	1,244	1973 DPUP
RS6			A.Musi	S.Ogan	Muara Pemulutan	8,001	1973 DPUP
RS7			A.Musi	S.Lematang	Sungai Rotan	6.890	1971 DPUP
RS8			A.Musi	S.Lematang	Lebak Budi	2,040	1982 DPMA
RS9			A.Musi	S.Beliti	Rantau Bingin	817	1974 PLN
RS10			A.Musi	S.Musi Ulu	Muara Semanggus	9.778	1982 PLN
RS11			A.Musi	S.Rawas	Bingin Teluk	4.310	1980 PLN
RS12			A:Musi	S.Rupit	Tg.Beringin	906	1980 PLN
RS13			A.Musi	S.Baai	Terawas	.-	1982 PUN
RS14			A.Musi	S.Kungku	Ciptonadi	221	1984 DPUP
RS15			A.Musi	S.Komering	Cempaka	4,383	1976 DPUP
RS16			A.Musi	S. Belitang	Ranau Condong	319	1976 DPUP
RS17			A.Musi	S.Belitang	Tirtonadi	77	1976 DPUP
RS18			A.Musi	S.Macak	Jaya Mulya	65	1976 DPUP
RS19			A.Musi	S.Lengkayap	Batu Putih	970	1980 DPUP
RS20			A.Musi	S.Ogan	Tanjung Agung	850	1983 DPUP
RS21			A.Musi	S.Malus	Tanjung Raya	75	1981 DPUP
RS22			A.Musi	S.Lakitan	Selangil	531	1981 DPUP
RS23			A.Musi	S.Dulu	Bukit Ulu	40	1981 DPUP
RS24			A.Musi	A.Rawas	Muara Rupit	3.138	1981 DPUP.
RS25			A.Musi	S.Temelet	Ciptonadi	86	1981 DPUP
AS26			A.Musi	S. Perigit	Suka Karya	74	1981 DPUP
AS27			A.Musi	A.Enim	Dusun Lingga	990	1974 PLN
RS28			A.Musi	A. Rawas	Pulaukida	1,325	1983 DPMA
RS29			A.Musi	A.Enim	Suka Raja	627	1984 DPMA
RS30			A.Musi	S.Kernh	Talang Bungur	269	1984 DPMA
RS31			A.Musi	A. Beliti	Muara Saling	554	1984 DPMA
RS32			A.Musi	W.Selabung	Kota Agung	1,228	1984 DPMA
AS33			A.Musi	S. Kikim	Gunung Kembang	289	1984 DPMA
RS34			A.Musi	S.Pangi	Ulak Bandung	409	1984 DPMA
RS35			A.Musi	S.Semanggus	Rantau Sibobo	1,536	1984 DPMA
RS36			A.Musi	A.Rupit	Suka Menang	9,663	1973 DPUP
RS37			A.Musi	A.Gegas	Suka Karya	251	1973 DPUP
RS38			A:Musi	A.Musi	Mambang	7.748	1974 DPMA
R\$39			A.Musi	A.Megang	Megang Sakti II	292	1983 DPUP
RS40			S.Bangka	S.Bangka Ujung	Badengung		1984 PMA
RS41			A.Musi	S.Lematang	Pinang Berlarik	3,676	1984 DPMA
RS42			A.Musi	Bt. Hari Leko	Bandar Jaya	2,821	1984 DPMA
RS43			A.Musi	A. Klingi	Lima	374	1985 DPNA
RS44			A.Musi	A.Lematang	Ujung Mas		-
RS45			A.Musi	A. Klingi	Lubuk Linggau		- -
RS46			A.Musi	A.Musi	Des Patah		-
RS47			A.Musi	S.Beliti	Rantau Bingin		: - .
RS48			A.Musi	A.Kati	Lb.Tanjung		\cdots

-Source: RePPProt 1988 (Catchment Area: DPMA)

Table A-4 List of Water Level Gauge in Bengkulu Province

Gauge ID	Basin ID	Kab. ID	River System	River Name	Place	$C T$ Area (Km2)	Start Owner Year
R81			A.Seluma	A. Seluma	Puding	331	1977 DPMA
AB2			A. Seluma	A.Seluma Hilir	Pasar Seluma	460	1979 P3SA
RB3			A.Seluma	A.Seluma	Pasar Seluma	459	1981 P3SA
RB4			A. Seluma	A.Seluma	Bnd.Seluma	344	1982 DPUP
PB5			A. Sengkulu	A. Bengkulu	To. Trujam	444	1977 DPMA
RE6			A. Bengkulu	A. Bengkuiu	Kancing	376	1980 DPNA
R87			A. Manjuto	A.Manjuto	L. Luwas	444	1977 DPMA
RB8			A. Manjuto	A.Manjuto Hir.	Lb.Pinang	622	1980 P3SA
889			A.Selagan	A.Selagan Htr .	Muko-Muko	724	1981 P3SA
RB10			A.Nelas	A.Nelas	Lb. Puding	86	1982 DPMA
R811			A.Nelas	A.Jenggalu	Parit Lima	256	1982 P3SA
RB12			A.Nelas	A.Nelas	Cahaya Negeri	139	1977 DPUP
RB13			A.Lais	A.Lais	Kuro Tidur	143	1978 DPUP
RB14			A.Ketahun	A. Ketahun	Gunung Payung	1.833	1978 DPMA
RB15			A.Ketahun	A.Ketahun	Tes	583	1982 DPMA
RB16			A Ketahun	Danau Tes	Tes	452	1982 PLN
PB17			A.Lais	A.Hitam	Tg. Terdana	16	1982 P3SA
RB18			A.Padang	A.Padang	Masigit	123	1978 DPUP
RB19			A.Padang	A.Padang	Km 0 Tidus III	105	1979 DPUP
RB20			A.Bintunan	A.Bintunan	Lb. Banyau	294	1979 DPUP
RB21			A.Mana	A.Mana	Bodr Agung	588	1979 P3SA
RB22			A.Nipis	A.Nipis	Palak Bangkrung	, 56	1979 P3SA
RB23			A.Ketahun	A.Ketahun	Tunggang	969	1978 DPUP
R824			A.lpuh	A.lpuh	Sibak Mukomuko	696	1978 DPMA
RB25			A. Dikit	A. Dikit	Sari Bulan Muko	1,002	1979 DPUP
8B26			A.Selagan	A.Selagan	Teras Trujam	411	1979 P3SA
RB27			A.Alas	A.Alas	Rt.Panjang	431	1982 DPMA
R828			A.lpuh	A.lpuh	Sie Ipuh	753	1979 DPMA
RB29			A.Leman	A.Leman	Karang Panggung	72	1980 P3SA
RB30			A.Leman	A.Leman	Paku Haji	171	1984 DPUP
RB31			A.Kedurang	A.Kedurang	Batil Ampar	43	1981 P3SA
RB32			A.Nipis	A.Bengkunang	Suka Rami	128	1980 P3SA
R833			A.Tetamang	A.Bantal	Pondok Baru	391	1981 DPUP
RB34			A.Lelangi	A.Lelangi	Lb. Mindai	225	1981 DPUP
R835			A.Sebelat	A.Sebclat	Pasar Sebelat	935	1981 DPUP
RB36			A.Sebelat	A.Sebelat	Ti.Gelumpang	901	1984 DPWA
RB37			A.Maras	A.Maras	Maras Hulu	20	1981 P3SA
R838			A.Maras	A.Maras	Ps.Maras	80	1981 P3SA
R839			A. Selagan	A.Hitam	Pondok Baru	34	1982 P3SA
RB40			A.Pasdang Guci	A.Pasdang Guci	Bungin Tambun	159	1981 P3SA
R841			A.Rami	A. Rami	Pulau	170	1982 DPUP
RB42			A.Teramang	A. Teramang	Tunggang	331	1983 DPUP
RB43			A.Urai	A.Urai	Urai Hulu	88	1984 DPMA
R844			A.Seranggai	A.Seranggai	Peninjau	159	1984 DPMA
R845			A Bengkulu	A.Bengkulu	Karang Tingg!	98	1984 DPMA
RB46			A.Ketahun	A.Ketahun	Karang Dapo	-	-

Table A-5 List of Water Level Gauge in Lampung Province

Gauge ID	$\begin{aligned} & \text { Basin } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Kab. } \\ & \text { ID } \end{aligned}$	River System	River Name	Place	CT Area (Km2)	Start Year	Owner
RL1			W.Tulangbawang	W.Abung	Ogan Enam	-158		1974 DPUP/P3SA
RL2			W:Seputih	W.Tatayan	Sumbur Sari	33		1968 DPMA
RL3			W. Seputh	W.Waya	Banyu Wangi	240		1968 DPMA
RL4			W.Sekampung	W.Sekampung	Pujo Rahayu	1,696		1968 DPMA
FL5			W.Sekampung	W.Sekampung	Jurai	812		1968 DPMA
RL6			W. Sekampung	W. Sekampung	Kunyir	719		1968 DPMA
RL7			W.Sekampung	W. Sekampuig	Tegineneng	2,084		2/83 Retired
RL8			W. Seputih	W. Seputih	Segala Mider	190		1976 DPUP/P3SA
RL9			W.Tulangbawang	W.Rarem	Pekurunan	293		1973 DPUP/P3SA
RLi0			W.Seputih	Bt.Hari	Ramang Fajar	208		1977 DPUP/P3SA
RLIt			W. Tulangbawang	W.Umpu	Rantau Tamiang	205		1973 DPUP/P3SA
RL12			W. Seputih	W.Seputih	Buyut Udik	1,648		1976 DPUP/P3SA
RL13			W.Semangka	W. Semangka	Liwa .	220		1973 OPUP/P3SA
RL14			W.Tulangbawang	W.Umpu	Negeri Batin	547		1974 DPUP/P3SA
RL15			W.Tulangbawang	W.Giham	Rantau Jangkung	513		1975 DPUP/P3SA
RLi6			W.Sekampung	W.Bulak Dam	W.Gatel	783		1973 DPUP/P3SA
RLi7			W.Seputh	W. Tatayan	Sindangsari	86		1971 OPUPIP3SA
RL18			W.Sekampung	W. Tebo	Banjar Agung	139		1973 DPUP/P3SA
RL 19			W.Sekampung	W. Bulok	Bulo Kerto	850		1973 DPUP/P3SA
RL20			W.Sekampung	W.Semah	Sukodadi	6.		1973 DPUP/P3SA
RL21			W.Sekampung	W.Padang Ratu	Cipadang	120		1973 DPUP/P3SA
RL22			W.Sekampung	W.Sekampung	Argoguruh	1.975		1973 DPUP/P3SA
RL23			W. Tulangbawang	W.Besai	Pelay	389		1974 DPUP/P3SA
RL. 24			W. Tulangbawang	W.Besai	Banjar Masin	664		1974 DPUP/P3SA
RL25			W.Sekampung	W. Pisang	Palas Jaya	177		1974 DPUP/P3SA
RL26			W.Seputih	W.Terusan	G.Batin	480		1974 DPUP
RL27			W.Tulangbawang	W.Umpu Kanan	Paknan Ratu	3,355		1972 DPUP/P3SA
HL28			W.Semangka	W.Semangka	Sri Kuncoro	1.352		1972 DPUP/P3SA
RL29			W.Tulangbawang	W. Tahmi	Tanjung Agung	509		1973 DPUP/P3SA
RL30			W.Tulangbawang	W. Rarem	Kota Bumi	828		1974 DPUP
RL31			W.Seputih	W.Seputih	Ajibaru	476		1974 DPUP
RL32			W.Jepara	W.Jepara	Jepara	147		1968 DPMA
RL33			W.Seputih	W.Pangbuan	Terbangi	638		1968 DPUP
RL34			W.Sekampung	W. Ketibung	Sidomulyo	116		1975 DPUP
RL35			W.Seputih	W.Pengbuan	Blambang Pagar	644		1977 DPUP
RL36			W.Sekampung	W.Kandis	Tri Kota	165		1977 DPUP
RL37			W. Seputh	W. Seputih	Sri Ungo	1.541		1977 DPUP
RL38			W. Seputih	W.Raman	Hendra	178		1977 DPUP
RL39			W.Semangka	W. Semong	Banding	432		1977 DPUP
RL40			W.Semangka	W. Semangka	Suka Jadi	407		1977 DPUP
RL41			W.Semangka	W.Semangka	Tulang Asahan	1,392		1977 DPUP
RL42			W.Tulangbawang	W. Kiri	Tulang Bawang	2,238		1980 DPUP
RL43			W.Tulangbawang	W.Giham	Saling Beringin	364		1983 DPMA
RL. 44			W.Seputih	W. Pengbuan	Gedong Harta	99		1974 DPUP
RL45			W.Tulangbawang	W. Besai	Jemb.Suka Jaya	324		1981 DPUP
RL46			W. Sekampung	W. Tebo	Watia Jati	- -		-
RL47			W.Sekampung	W. Buloh	Bulkerto			- -
RL48			W.Sekampung	W.Sekampung	Negeri Jemanten			.
RL49			W.Seputih	W.Seputih	Negeri Aji			\cdots
RL50			W. Seputih	W.Pengubuan	Trimodadi	-		- -
RL5 5			W.Pegadungan	W. Sukadana	Sukadana			
RL. 52			W.Seputih	W. Rarem	Metro	-		
RL53			W.Seputih	W. Batang Hari	Metro	.		\cdots

[^0]Table A-6 List of Meteorological Stations

No.	Station Name	Province	Location		Elevatior (El.m)	Data Period	
			Lat.	Long.		From	To
CJI	Pelayang	Jambi	0126 S	$10151{ }^{1} \mathrm{E}$	76	1977	1983
CJ2	Kota Baru Hiang	Jambi	02045	$10128^{\prime} \mathrm{E}$	800	1978	982
cu3	Bangko	Jambi	$0205{ }^{\text {S }}$	$10216^{\circ} \mathrm{E}$	75	1982	1983
Cu4	Jambi	Jambi	$0135{ }^{\circ}$	$10337{ }^{\prime}$	10	1971	1979
CS1	Palembang	S.Sematr	20259	$10445^{\circ} \mathrm{E}$	12	1971	1979
CS2	Pangkal Pinang	S.Sematr	$0210{ }^{\circ}$	$10608^{\circ} \mathrm{E}$	33	1971	1979
CB1.	Kuro Tidur	Bengkulu	03235	$10210^{\prime} \mathrm{E}$	244	1979	1984
CB2	Bengkulu	Bengkulu	0348.5	$10215^{\prime} \mathrm{E}$	15	1971	1979
C83	Pajar Bulan	Bengkulu	0415 S	$10248{ }^{\prime} \mathrm{E}$	200	1982	1984
CLI	Kasui	Lampung	. $0443{ }^{\prime} 5$	$10426^{\prime} \mathrm{E}$	200	1975	1980
CL2	Astra Ksetra	Lampung	0437'S	$10514{ }^{\prime \prime}$	19	1971	1979
CL3	P. Bulan	Lampung	05045	$10425^{\prime} \mathrm{E}$	810	1975	1980
CL4	Gunung Megang	Lampung	0519 S	$10440^{\prime} \mathrm{E}$	550	1975	1980
CL5	Tanjung Karang	Lampung	05275	$10516^{\circ} \mathrm{E}$	10	1975	1979

Table A-7 Mean Monthly Temperature of the Study Area

No														
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	nual
W1	Pelayang	26.5	29.2	28.5	29.4	28.7	28.0	27.3	28.1	29.3	27.2	25.8	26.8	27.9
C/2	Kota Baru Hiang	24.5	28.3	25.3	25.8	25.7	25.1	24.7	24.7	24.3	24.7	24.1	25.0	25.2
al3	Bangko	29.1	28.6	28.6	29.1	28.7	29.4	27.1	29.4	30.4	28.9	28.8	29.0	28.9
Cu4	Jambi	26.6	26.8	27.2	27.4	27.5	27.3	27.0	27.2	27.0	27.3	27.0	26.8	27.1
CSI	Palembang	26.6	26.8	27.2	27.6	27.9	27.4	27.0	27.3	27.2	27.6	27.3	26.7	27.2
cs2	Pangkal P inang	25.8	25.8	26.3	26.9	27.0	26.5	26.4	26.8	26.5	27.0	26.4	25.8	26.4
C8 1	Kuro Tidur	26.0	25.6	25.6	26.1	25.1	26.1	26.0	26.0	25.9	25.6	26.6	26.4	26.0
C82	Bengkulu	26.8	27.0	27.1	27.4	27.4	27.1	26.7	26.7	26.7	26.7	26.6	26.5	26.9
C83	Pajar Bulan	26.0	25.6	25.6	26.1	26.2	26.1	26.0	26.0	25.9	25.6	26.6	26.7	26.0
CLI	Kasui	25.2	26.7	25.8	25.4	26.8	24.7	24.6	25.6	25.5	26.6	26.0	25.3	25.7
CL2	Astra Ksetra	26.6	26.6	26.9	27.2	26.8	27.0	26.7	27.0	27.1	27.7	27.6	27.1	27.0
CL 3	P.8ulan	21.6	21.8	20.7	20.4	20.8	21.3	20.8	20.6	20.9	22.1	21.7	22.1	21.2
CL4	Gunung Megang	23.3	23.8	24.8	24.9	25.1	25.1	235	23.0	23.8	24.3	24.3	23.8	24.1
CL5	Fanjung Karang	26.2	26.3	26.7	26.9	27.0	26.4	25.9	26.1	26.3	27.0	27.0	26.6	26.5

Table A-8 Mean Monthly Related Humidity of the Study Area

No.	Station Name				Mean Monthly Related Humidity (.8)									
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	nual
01	Pelayang	77.0	95.0	95.0	96.0	95.0	97.0	94.0	93.0	98.0	94.0	93.0	95.0	93.0
C. 2	Kota Baru Hiang	94.0	92.0	93.0	95.0	97.0	94.0	96.0	93.0	93.0	93.0	93.0	92.0	93.8
cu3	Bangko	96.0	93.0	95.0	96.0	92.0	95.0	93.0	96.0	94.0	97.0	96.0	96.0	94.9
Cu4	Jambi	84.0	85.0	85.0	86.0	84.0	84.0	82.0	81.0	83.0	83.0	85.0	86.0	84.0
CS 1	Palembang	86.0	86.0	86.0	86.0	85.0	83.0	82.0	81.0	82.0	81.0	85.0	86.0	84.1
CS2	Pangkal Pinang	85.0	85.0	85.0	84.0	83.0	81.0	79.0	78.0	81.0	81.0	84.0	88.0	82.8
C81	Kuro Tidur	95.0	96.0	96.0	95.0	96.0	96.0	96.0	95.0	95.0	97.0	96.0	96.0	95.8
CB2	Bengkulu	84.0	84.0	84.0	86.0	85.0	84.0	85.0	85.0	87.0	85.0	84.0	85.0	84.8
C83	Pajar Bulan	93.0	93.0	94.0	93.0	95.0	93.0	93.0	95.0	95.0	95.0	93.0	95.0	93.9
CLI	Kasui	77.0	88.0	92.0	91.0	90.0	90.0	90.0	90.0	91.0	90.0	90.0	91.0	89.2
CL2	Astra Ksetra	83.0	86.0	84.0	86.0	86.0	83.0	86.0	87.0	88.0	86.0	87.0	84.0	85.5
CL3	P. Bulan	86.0	86.0	69.0	83.0	70.0	81.0	68.0	83.0	82.0	81.0	82.0	70.0	78.4
CL4	Gunung Megang	84.0	84.0	84.0	83.0	83.0	83.0	82.0	82.0	80.0	78.0	79.0	80.0	81.8
CL5	Tanjung Karang	84.0	84.0	84.0	83.0	83.0	83.0	82.0	82.0	80.0	78.0	79.0	82.0	82.0

Table A-9 Mean Daily Sun-shining Hour of the Study Area

	Station Name	Mean Daily Sun-shiring Hour (HCur)												
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Noy	Dec	rual
W1	Pelayang	4.32	3.87	4.72	520	5.40	5.07	5.01	5.74	4.89	4.76	4.10	4.55	4.80
Cu2	Kota Baru Hiang													
co3	Bangko	3.54	5.63	5.53	6.05	5.10	5.64	5.53	5.28	4.54	3.63	2.32	4.88	4.81
c. 4	Jambi	3.27	3.18	3.44	3.48	4.39	4.44	4.54	4.45	3.29	3.61	3.33	3.32	3.73
CS 1	Palembang	3.59	3.68	4.07	4.74	5.27	5.17	4.86	5.28	4.52	4.58	4.24	3.70	4.48
$\operatorname{cs} 2$	Pangkal Pinang	3.84	3.72	3.90	4.38	4.70	5.68	5.44	5.88	4.48	4.70	3.62	2.72	4.42
C8 1	Kurotidur	4.42	4.78	4.72	4.78	5.50	6.00	5.54	5.57	4.15	3.74	3.75	4.52	4.79
CB2	Bengkulu	4.56	4.92	4.94	5.40	5.74	5.78	5.74	5.41	4.67	4.39 4.56	4.22	4.13 4.48	4.99 493
C83	Pajar Bulan	4.76	4.74	4.78	4.51	4.10	6.82	6.15	5.06	4.96	4.56	4.20	4.48 5.10	4.93
CLI	Kasui	4.60	5.20	5.50	6.60	6.15	6.80 3.99	6.90	5.50	6.70 3.71	6.40	5.90 355	5.10	6.04 4.16
CL 2	Astra Ksetra	3.86	4.48	3.85	4.71	4.30	3.99	4.54 5.80	4.52	3.71 5.70	3.69 5.10	3.55	4.27 3.80	4.16 5.03
CL3	P. Bulan	4.00	4.10	4.70	5.40	6.00	6.00	5.80	6.00	5.20	5.10 5.60	4.30 450	3.80 3.80	5.03 5.13
CL4	Gunung Megang	3.60	3.90	5.00	5.70	6.10	6.00 5.54	6.00 5.20	6.20	3.10	5.60 5.48	4.50	3.80 4.04	5.13 460
CL5	Torijung Karang	3.55	3.81	4.59	5.12	5.54	5.54	5.20	4.83	3.79	5.48	3.12	4.04	4.60

Table A-10 Mean Monthly Wind Speed of the Study Area

No.	Station Name	Mean Monthly Wind Speed (m3/s)												
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	nnual
W1	Pelayang	0.37	0.25	0.26	0.28	0.26	0.23	0.40	0.29	0.23	0.33	0.20	0.28	0.28
cs2	Kota Baru Hiang	0.57	0.62	0.68	0.67	0.82	0.62	0.74	0.99	0.82	0.70	1.10	0.74	0.76
c.13	Bangko	0.37	0.25	0.26	0.28	0.26	0.23	0.40	0.29	0.23	0.33	0.20	0,27	0.28
c.4	Jambi	0.25	0.22	0.18	0.17	0.17	0.19	0.22	- 0.23	0.22	0.17	0.16	0.21	0.20
CSI	Palembang	0.29	0.26	0.25	0.20	0.21	0.24	0.27	0.28	0.27	0.25	0.21	0.24	0.25
CS2	Pangkal Pinang	0.36	0.36	0.32	0.32	0.29	0.35	0.42	0.41	0.38	0.36	0.29	0.29	0.35
CBI	Kuro Tidur													
C82	Bengkulu	0.24	0.24	0.37	0.20	0.20	0.20	0.22	0.24	0.19	0.20	0.22	0.22	0.23
CB3	Pajar Bulan	0.31	0.27	0.27	0.27	0.27	0.26	0.26	0.29	0.28	0.41	0.37	0.32	0.30
CLI	Kasui	0.84	1.10	0.75	0.57	0.59	0.67	0.66	0.65	0.58	0.62	0.55	0.66	0.69
CL2	Astra Xsetra	0.24	0.23	0.20	0.17	0.10	0.17	0.15	0.14	0.15	0.15	0.22	0.18	0.18
CL3	P. Bulan	0.69	0.71	0.68	0.50	0.44	0.47	0.50	0.53	0.56	0.63	0.61	0.67	0.58
CL4	Gunung Megang	0.40	0.35	0.45	0.35	0.34	0.35	0.31	0.43	0.42	0.54	0.50	0.42	0.41
CL5	Tanjung Karang	0.24	0.57	0.21	0.20	0.2	0.21	0.28	0.18	0.17	0.21	0.20	0.20	0.24

Table A-11 Mean Monthly Evaporation of the Study Area

No	Station Name	Mean Monthly Evaporation (mm/day)												
		Jan	Feb	Mar	Apr	Moy	Jun	Jul	Aug	Sep	Oct	Noy	Dec	mual
W	Pelayang	3.84	3.87	4.17	4.22	3.92	3.53	3.56	4.08	4.15	3.97	3.47	3.64	3.87
cal	Kota Baru Hiang	3.00	3.54	3.86	3.78	3.53	3.44	3.43	3.51	3.71	3.81	3.43	3.24	3.52
ca3	Bangko	3.62	4.38	4.46	4.46	3.86	3.89	3.66	4.01	4.23	3.78	3.22	4.00	3.96
cu4	Jambi	3.47	3.55	3.75	3.60	3.62	3.44	3.54	3.75	3.61	3.79	3.50	3.34	3.58
CSi	Palembang	3.56	3.69	3.91	3.94	3.84	3.59	3.59	3.94	3.96	4.12	3.80	3.57	3.79
CS2	Pangkal Pinang	3.53	3.61	3.80	3.33	3.66	3.69	3.73	4.11	3.91	4.10	3.56	3.18	3.73
CB1	Kuro Tidur	3.40	3.61	3.80	3.53	3.76	3.75	3.70	3.86	3.60	3.41	3.32	3.41	3.60
CB2	Bengkulu	3.87	4.10	4.17	4.04	3.83	3.61	3.63	3.82	3.85				3.88
CB3	Pajar Bulan	3.79	3.80	3.84	3.59	3.18	3.60	3.55	3.53	375	3.76	3.71	3.75	3.65
Cl!	Kasui	3.99	4.23	4.12	4.07	3.82	3.48	3.59	3.93	4.22	4.47	4.13	3.83	3.99
CL2	Astra Ksetra	3.70	3.91	3.85	3.85	3.5 .3	3.24	3.36	3.61	3.62	3.82	3.65	3.82	3.66
Cl3	P. Bulan	3.35	3.45	3.76	3.38	3.35	3.09	3.26	3.35	3.51	3.78	3.46	3.63	3.45
CL4	Gunung Megang	3.40	3.57	3.97	3.89	3.68	3.46	3.36	3.62	3.78	4.14	3.77	3.49	3.68
CL5	Tanjung Karang	3.61	3.79	4.00	3.93	3.63	3.46	3.44	3.62	3.66	4.33	3.78	3.76	3.75

Table A-12 List of Raingauge Stations in Jambi Province

TD No.	Basin No Station Name	Period of Record	Location		E.
		From T	Lat.	Long.	
					(El.m)
173	Muara Sabalk	1931	195801085	10351 E	4
174	Pelabuhan Dagan	1931	19410109 S	$10305{ }^{\text {E }}$	10
175	Jambi	1931	19670136	10337 E	15
175 b	Palmerah	1952	$19700138 \cdot 5$	$10339^{\prime} \mathrm{E}$	17
176	Lubuk Rusa	1931	$19600134{ }^{\text {c }}$	10321 E	10
177	Muara Tembesi	1931	$19540142{ }^{\prime}$	$10306^{\prime} \mathrm{E}$	12
177 b	Pauh	1931	19530208 'S	$10249^{\circ} \mathrm{E}$	28
178	Muara Tebo	1931	$19580127{ }^{\text {c }}$	$10229^{\circ} \mathrm{E}$	36
178 b	Teluk Kayuputin	1931	196001115	$10159^{\circ} \mathrm{E}$	57
178 c	Jambu	1931	19410108 S	$10221^{\prime \prime} \mathrm{E}$	50
179	Muara Bungo	1909	197501275	$10206^{\circ} \mathrm{E}$	80
180	Tanah Tumbun	1931	$19410126^{\prime} \mathrm{S}$	$10152^{\prime} \mathrm{E}$	100
181	Rantau Panjang	1931	$19510148^{\prime} 5$	$10215^{\prime} \mathrm{E}$	75
182	Bangko	1931	$19580204{ }^{\text {c }}$	$10205^{\circ} \mathrm{E}$	75
182 a	Muara Siau	1931	19550227 'S	$10205{ }^{\prime} \mathrm{E}$	200
184	Sanggaran Agung	1931	195902.07 'S	$10131{ }^{\circ} \mathrm{E}$	600
185	Sungai Penub	1931	$197002.04{ }^{\prime} \mathrm{S}$	$10127^{\prime} \mathrm{E}$	630
186	Sorolangun	1931	19580218 S	$10243^{\prime} \mathrm{E}$	37.
187	Rantau Panjang Azai	1931	$19410230 \cdot 5$	10215 E	142

Table A-13 List of Raingauge Stations in South Sumatra Province

1 N No.	Basin No Station Name	Period of Record	ecord Loc	Location	EI.
		From	Lat.	Long.	
188	Surulagun	1931	195802375	$10234{ }^{\prime} \mathrm{E}$	1205
189 c	Suban Burung	1931	195102325	10324 E	55
189 f	Lilin	1937	1960023815	$10409^{\prime} \mathrm{E}$	2
190	Sungsang	1931	194102225	$10454{ }^{\prime} \mathrm{E}$	5
190 c	Plaju.	1931	$19700300{ }^{\circ}$	$10450{ }^{\circ} \mathrm{E}$	1
190 d	Sungai Gerong	1950	$19700259^{\circ} \mathrm{S}$	$10450{ }^{\prime}$	7
191	Plembang	1931	19410259 S	10451 E	10
191 a	Talang Betutu	1931	197002545	$10442^{\prime} \mathrm{E}$	12
192	Paya Kabung	1931	194103125	$10435^{\prime} \mathrm{E}$	12
193	Tanjung Raja I	1913	$19740320{ }^{\circ}$	$10446^{\prime} \mathrm{E}$	8
193 b	Kayu Agung	1931	195703245	10450 E	10
194	Gelumbang	1931	194103145	$10426^{\prime} \mathrm{E}$	19
195	Muara Kuang	1931	$19600340^{\circ} \mathrm{S}$	10433 E	14
197	Prabumulih	1953	19700326.5	$10415{ }^{\circ} \mathrm{E}$	35
199	Gunung Merang	1931	196003275	$10353^{\prime} \mathrm{E}$	21
200	Sekayu	1931	$19410253{ }^{\text {S }}$	$10350^{\prime} \mathrm{E}$	9
200 a	Talang Akar	1931	194103115	$10346{ }^{\prime} \mathrm{E}$	70
200 b	Tugumulyo	1938	197003015	$10250^{\circ} \mathrm{E}$	79
201 f	Taba Pungin	1931	195403195	$10256^{\prime} \mathrm{E}$	90
201 j	Lubuk Lingaau	1934	$195603014{ }^{\prime} \mathrm{S}$	$10250{ }^{\circ} \mathrm{E}$	79
202	Tebing Tinggi	1931	19600345 S	$10315{ }^{\prime} \mathrm{E}$	120
203	Labat	1931	19590348.5	10332 E	358
204	Muara Bnim	1931	$19570340 \cdot \mathrm{~S}$	103 47'E	15
205	Padang Burnai	1931	19600350 S	$103.02{ }^{\prime} \mathrm{E}$	405
207 a	Padang Karit	1931	19520359 S	$10319{ }^{\prime} \mathrm{E}$	752
207 b	Sungai Baru	1931	$19570308 \cdot 5$	10315 E	60
208	Pagaralam	1931	19700401 's	$10315{ }^{\prime} \mathrm{E}$	900
209	Talang Bedug	1931	19410403 S	103 06'E	1000
210 a	Tebatgunung	1927.	$19700404{ }^{\text {S }}$	$10321{ }^{\prime} \mathrm{E}$	665
212	Padandulang	1931	19410401 S	$10347{ }^{\prime} \mathrm{E}$	212
213	Penfadoran	1931	196004075	$10350^{\circ} \mathrm{E}$	136
214	Barueaja	1927	197504175	10411 E	150
2140	Blitang	1950	19700408 S	$10439^{\prime} \mathrm{E}$	51
215	Martapura	1931	19600427 S	10421 E	20
216	Muara Disa	1931	19560437 S	$10403{ }^{\prime} \mathrm{E}$	150
217 a	Ranau	1931	19410447 S	$10358^{\circ} \mathrm{E}$	710
251	Muntok	1931	197002045	$10510^{\prime \prime}$	20
251 a	Mayang	1931	19550158.5	$10517{ }^{\prime} \mathrm{E}$	20
251 c	Klapa	1931	19700153.5	10540 E	20
251 d	Tempilang	1931	194102075	$105.27^{\prime} \mathrm{E}$	3
252	Jebus	1931	19590145	$10546^{\prime} \mathrm{E}$	20
253	Blinyu	1931	19700138 S	10551 'E	15
253 a	Lumut	1939	19540146 S	$10529{ }^{\prime}$	12
253 b	Mantung	1950	$19700138{ }^{\prime} \mathrm{S}$	$10559{ }^{\prime} \mathrm{E}$	45
254	Sungai Selan	1931	19670223.5	$10607{ }^{\prime} \mathrm{E}$	2
255	Sungai Liat	1931	19700151 S	$10606^{\prime} \mathrm{E}$	10
256	Baturusa	1931	19580201 S	$10607{ }^{\prime \prime} \mathrm{E}$	20
257	Pangkalpinang	1931	19700208.5	10607 E	20
261	Toboali	1931	196003015	10607 E	6
262	Tanjung Pandang	1931	19600245 S	$10738^{\circ} \mathrm{E}$	34
262 b	Bulun Tumbang	1949	$19680245 ' 5$	$107.45^{\prime} \mathrm{E}$	55
263 a	Klapa Kampit	1931	19600242 S	$10804^{\prime} \mathrm{E}$	10

Table A-14 List of Raingauge Stations in Bengkulu Province

TONO.	Basin No Station Name	$\begin{aligned} & \text { Period of Record } \\ & \text { From To } \end{aligned}$		Location		EI.
				Lat.	Long.	
7	Bintuhan	1931				(El.m)
8	Muara Saung	1931			$10320^{\circ} \mathrm{E}$	0
8 a	Muara Sidang	1931	1941	0428'S	$10320^{\circ} \mathrm{E}$	400
9	Mana	1931	1959	0428'5	$103545^{\circ} \mathrm{E}$	750
13	Bengkulu	1931	1959	034715	$10215{ }^{\text {P }}$	+
14	TAbah Penanjang	1931	1957	0342's	$10229^{\circ} \mathrm{E}$	105
14 b	Aur Gading	1934	1958	03315	10218 E	195
15	Kepahiang	1931	1960	0338×5	$10234^{\circ} \mathrm{E}$	517
15 a	Bukit Kaba	1931	1953	0327 's	$10238^{\circ} \mathrm{E}$	1130
15 c	Pematang Danau	1931	1938	0327'5	$10235^{\circ} \mathrm{E}$	1090
15 e	Waringit Tiga	1931	1941	0327 ¢	$10241^{\prime} \mathrm{E}$	1000
16	Padanfulaktanding	1931	1960	0322 S	10247 E	255
17 a	Curup	1931	1960	0327 S	10231 E	635
18 a 18 b	Lais 1 Air Simpang	1931	1959	0322.5	$10203{ }^{\prime} \mathrm{E}$	8
20	Air Nening Air	1931	1937	03245	$10234^{\prime} \mathrm{E}$	931
21	Muara Aman	1931	1960	$0310 \cdot 5$	$10223{ }^{\prime} \mathrm{E}$	1000
21 a	Lebong Donok	1931	1941	0310's	$10210^{\prime} \mathrm{E}$	391
23	Lebong Tandu	1931	1941	0302 S		395 180
24	Napal Put in	1931	1941	0312 S	$10115^{\circ} \mathrm{E}$	180
24 a	Ipun	1931	1957	03015	$10129^{\prime} \mathrm{E}$	0
25	Muko-Muko	1931	1957	0236 's	$10105^{\prime} \mathrm{E}$	0

Table A-15 List of Raingauge Stations in Lampung Province

TO No.	Basin No Station Name	Period of RecordFrom To		Location		El.
				Lat.	Long.	
						(El.m)
2	Mutaralam	1931	1941	0505	10450 E	872
3	Negarabatin	1931	1.960	0504'S	$10405{ }^{\text {E }}$ E	900
5	Kroe	1931	1960	05145	$10353{ }^{\text {E }}$	-
220 a	Tulung Buyut	1931	1941	$0435{ }^{\circ}$	10432 E	81
222	Menggala	1903	1975	0428'S	$10415^{\circ} \mathrm{E}$	18
223	Wiralaga	1931	1941	0351 S	105 29'E	5
225 a	Kota Bumi	1931	1941	0451's	$10453^{\prime \prime} \mathrm{E}$	32
228	Suka Dana	1931	1960	05045	10533 E	20
228 c	Metro	1939	1960	05045	10524 E	57
229	Ulusemung	1931	1941	0513.5	$10526^{\circ} \mathrm{E}$	700
230	viubelu	1932	1941	05215	$10436^{\circ} \mathrm{E}$	800
230 a	Tangkit Serdang	1931	1941	05215	$10550^{\prime \prime} \mathrm{E}$	214
231	Talang Padang I	1931	1941	0522 S	$10447^{\prime} \mathrm{E}$	243
232	Kota Agung	1931	1960	0529 S	10437 E .	225
232 a	Tanjung Jati	1931	1941	0512 S	10417 E	235
233	Pulih Doh	1931	1941	0539 S	10552 E	10
233 b	Pesawaran	1931	1941	05 29'S	$10557^{\circ} \mathrm{E}$	160
234.	Kedondong 1	1931	1941	0528.5	$10459{ }^{\prime} \mathrm{E}$	116
235	Gedong Tatakan	1931	1960	0523.5	$10506^{\circ} \mathrm{E}$	100
2350	Wai Beruluk	1931	1960	0520 S	10510 E	150
238	wai Halim	1931	1960	$0526{ }^{\circ}$	$10516^{\circ} \mathrm{E}$	100
241 a	Tanjung Kemala	1931	1941	0454'5	$10448^{\circ} \mathrm{E}$	107

Table A-16 Monthly Rainfall in Jambi Province

10	Station Name	E1. Mean Monthly Rainfoll (mm)													
		(Elm)		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	ct	Nov	Dec	Annual
173	Muara Sabalk	$\frac{4}{4}$	248	216	237	184	154	95	100	120	143	173	188	322	2180
174	Pelabuhan Dagan	10	232	167	189	250	188	130	120	137	185	250	312	228	2388
175	Jambi	15	313	226	327	324	268	156	148	157	137	299	365	343	3063
175 b	Palmerah	17	216	187	248	246	167	118	114	129	109	209	244	253	2240
176	Lubuk Rusa	10	207	196	231	254	168	80	83	113	127	187	270	286	2202
177	Muara Tembesi	12	258	207	221	272	188	143	89	124	163	220	288	288	2461
177 b	Pauh	28	309	309	286	264	221	128	111	129	15	253	308	370	842
178	Muara Tebo	36	249	184	251	220	141	65	88	113	165	179	211	283	2149
178 b	Teluk Kayuputin	57	298	186	218	276	195	83	103	118	170	159	286	278	2370
178 c	Jambu	50	216	209	250	280	196	111	124	210	161	234	381	333	2705
179	Muara Bungo	80	302	239	300	306	205	117	131	150	165	223	269	313	2720
180	Tanah Tumbuh	100	339	273	230	353	171	109	115	181	191	217	336	411	2926
181	Rantau Panjang	75	302	234	275	317	236	147	121	209	165	269	280	343	2898
182	Bangko	75	313	268	325	299	245	142	147	206	170	297	345	389	3146
182 a	Muara Siau	200	361	265	282	307	251	214	140	193	234	277	383	327	3234
184	Sanggaran Agung	600	304	226	313	266	177	135	120	149	186	238	255	267	2636
185	Sungai Penub	630	242	182	193	203	125	108	88	103	143	169	200	237	1993
186	Sorolangun	37	347	292	336	311	239	127	127	192	216	279	353	383	3202
187	Rantau Panjeng Azai	142	339	305	256	264	235	128.	91	162	208	268	331	288	2875
	Average	115	284	230	261	273	198	123	114	152	168	232	295	313	2644

Table A-17 Monthly Rainfall in South Sumatra Province

No.	Station Name	Elevalion				Mean Monthy Rainfall (mm)									
		(El.m)	Jan	Feb	Mar	Apr	May	Jun	J 4	Aug	Sep	OCl	Nov	Dec	Annual
188	Surulagun	1205	390	326	328	301	237	138	178	246	211	260	328	393	3336
189 c	Suban Burung	55	289	230	337	289	246	133	122	178	213	282	368	355	3042
1891	Lilin	2	271	241	353	284	294	156	116	179	156	276	274	416	3016
190	Sungsang	5	244	155	254	228	179	130	100	85	106	179	239	279	2178
190 c	Plaju	1	293	247	326	286	197	127	108	103	85	183	282	322	2559
190 d	Sungai Gerong	7	260	235	319	293	209	100	114	99	74	171	250	317	2441
191	Plembang	10	255	265	309	285	155	128	102	86	85	202	343	365	2580
191 a	Talang Betutu	12	281	249	300	261	213	119	98	104	112	193	268.	333	2531
192	Paya Kabung	12	199	206	227	197	74	112	41	45	60	149	263	219	1792
193	Tanjung Raja 1	8	326	284	396	261	176	116	814	114	121	157	254	342	3361
193	Kayu Agung	10	309	270	334	259	176	113	86	98	98	172	291	329	2535
194	Gelumbang	19	258	242	304	263	134	117	76	107	149	245	275	337	2508
195	Muara Kuang	14	348	323	360	286	161	143	101	113	90	185	297	335	2742
197	Prabumulin	35	382	270	349	312	178	102	129	113	88	187	323	389	2822
199	Gunung Merang	21	420	323	387	290	153	139	109	192	148	235	341	377	3114
200	Sekayu	9	303	248	283	296	198	110	103	157	136	227	262	352	2675
200 a	Talang Akar	70	369	311	385	321	196	170	115	198	188	305	325	391	3274
200	Tugumulyo	79	219	206	199	187	185	120	106	120	147	143	216	266	2114
201	Taba Pungin	90	372	407	300	281	254	187	161	194	217	285	324	356	3338
201	Luouk Linggau	79	351	319	270	304	288	185	188	198	221	278	276	316	3194
202	Tebing Tinggi	120	420	363	327	279	213	157	153	201	267	362	299	341	3382
203	Labat	358	508	374	354	293	215	147	120	166	165	253	303	405	3303
204	Muara Bnim	\cdots	479	383	348	319	217	170	113	193	208	255	298	435	3418
205	Padang Burnai	405	246	209	191	211	148	91	100	104	168	200	245	217	2130
207 a	Padang Karit	752	444	367	364	335	257	195	154	153	210	303	337	468	3587
207 b	Sungai Baru	60	471	374	333	254	203	167	121	204	185	231	286	384	3213
208	Pagaralam	900	257	209	211	225	171	126	93	124	119	179	218	239	2172
209	Talang Bedug	1000	358	376	334	371	276	233	131	195	176	315	379	418	3562
210 a	Tebatgunung	665	330	250	252	292	243	146	110	136	149	215	306	319	2748
212	Padandulang	212	377	319	458	312	238	190	107	128	167	295	358	438	3387
213	Penfadoran	136	393	266	351	373	269	161	141	234	163	217	317	400	3285
214	Barueaja	150	360	305	305	300	228	126	137	183	130	210	255	364	2903
214 c	Blitang	51.	374	271	391	279	170	115	81	107	78	179	292	364	2701
215	Martapura	20	402	380	395	351.	208	132	136	132	159	216	348	402	3261
216	Muara Dua	150	318	282	355	296	247	148	100	150	161	239	284	327	2907
217 a	Ranau:	710	325	273	283	289	205	156	106	137	146	228	270	315	2733
251	Muntok	- 20	371	210	245	207	157	106	81	95	94	146	230	375	2317
251 a	Mayang	20	402	245	309	263	189	136	110	117	121	184	343 319	474	2893
251 c	Klapa	20	362	198	272	348	318	254	135	106	143	192	319	501	3148
251 d	Tempilang	3	285	190	259	212	181	118	117	81 137	90	173	250	303	2259
252	Jebus	20	461	211	228	247	259	192	189	137	161	236	325	465	3111
253	Blinyu	15	427	202	228	247	259	192	189	137	161	236	325	465	3068 3238
253 a	Lumut	12	442	227	289	306	295	221	181	118	166	222	328	443 516	3238 2839
253 b	Mantung	45	374	237	220	245	182	172	182	122	116 185	228	245	516 295	2839
254	Sungai Selan	2	274	226	277	275	238	166	157 160	131	185	231 174	290 305	295	2745 2825
255	Sungai Liat	10	410 337	235	228	223	262	172 178	160	119	126 149	174 178	305	411 307	2825
256	Baturusa	20	337	202	261	246	241	178	155 160	143	149	178 156	222	307 337	2619 2659
257	Pangkalpinang	20	317 123	247	247	281 130	254	184 125	160 86	135 66	106	156	235 144	331 138	2659 1382
261	Tohoali	6 34	123	105	127 183	130	165	125	86 230	66 158	141	317	403	365	2986
262	Tanjung Pandang	34 55	282 371	147	183	243 315	276 276	241 191	188	167	145	336	385	444	3296
263 a	Klapa Kampit	10	256	136	207	272	287	192	163	134	71	193	251	290	2452
	Average	149	340	261	297	275	216	153	141	139	142	222	292	361	2840

Table A-18 Monthly Rainfall in Bengkulu Province

	Station Name	Elevation Mean Monthly Rainfall (mm)													
		(El.m) Jan		Feb		Apr	$\frac{\text { May }}{177}$		Jul 180	$\frac{\text { Aug }}{189}$	$\frac{\text { Sep }}{280}$	$\frac{0 \mathrm{cl}}{414}$	$\frac{\text { Nov }}{449}$	$\frac{\text { Dec }}{333}$	$\frac{\text { Annual }}{3209}$
7	Bintuhan	0	268												
8	Muara Saung	400	371	307	299	331	258	171	164	233	257	36	8	396	3584
8 a	Muara Sidang	750	423	330	345	354	226	184	103	134	137	8	343	3	3176 3536
9	Mana	1	254	236	253	225	182	186	158	302	438	478	461	3	36
13	Bengkulu	0	306	238	337	285	228	209	187	193	240	325	438	402	3388
14	TAbah Penanjang	105	351	329	361	407	231	195	213	216	270	371	470	465	3879
140	Aur Gading	195	369	210	346	343	258	197	203	331	432	515	484	448	38
15	Kepahiang	517	361	273	323	271	192	132	126	149	162	259	354	385	2987
15 a	Bukit Kaba	1130	325	274	285	271	245	155	126	173	246	293	267	308	8
15 c	Pematang Danau	1090	357	287	317	281	248	153	154	180	244	318	319	346	3204
15 e	Waringit Tiga	1000	363	302	320	260	283	168	148	189	259	253	279	363	3187
16	Padanfulak tanding	255	390	275	210	305	234	174	184	199	232	249	281	319	3052
17	Curup	635	293	251	255	239	191	114	115	151	149	232	256	301	2547
18 a	Lais I	8	292	246	242	267	217	183	182	179	272	364	372	347	3163
18 b	Air Simpang	931	374	342	343	370	245	171	166	179	275	450	440	488	3843
20	Air Nening	1000	286	267	307	314	275	164	148	163	229	328	342	351	3174
21	Muara Aman	391	391	350	414	363	274	174	169	193	217	367	386	456	3754
21 a	Lebong Donok	395	389	330	398	397	289	167	121	167	249	340	389	429	3665
23	Lebong Tandu	180	492	530	518	580	501	355	291	420	515	665	635	566	6069
24	Napal Putih	40	270	251	190	267	196	135	135	212	254	410	349	299	2968
24 a		0	239	179	242	229	232	115	158	214	262	404	333	334	2941
25	Muko-Muka	0	350	256	364	309	213	199	171	228	343	452	434	441	3760
	Average	410	342	285	314	316	245	176	164	209	271	368	387	386	3463

Table A-19 Monthly Rainfall in Lampung Province

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (1/14)

YEAR	1974												
CA	1413	m2											
RODPT	1245	m/year											
DATE	JAN	FB	MA	$A P A$	MAY	JUN	JUL	ALS	Sty	cror			
1	48	40	51	25	99	63	49	AL3	Sty	8	NOV	D8C	TOTAL
2	51	40	84	29	58	56	33	44	39	89	83	69	
3	51	39	60	28	01	47	31	46	29	83	100	74	
4	46	35	46	45	90	43	30	34	29	105	143	89	
5	49	31	37	56	75	42	29	29	30	76	104	78	
6	43	31	34	52	97	39	27	27	43	76	02	72	
7	41	30	31	85	78	37	26	20	64	86	82	76	
8	39	37	30	76	98	37	29	33	92	68	82	93	
9	39	46	29	52	95	35	44	29	113	56	70	78	
10	50	85	29	81	97	32	55	31	91	66	76	72	
11	54	61	29	84	506	31	51	28	87	52	76	67	
12	43	44	29	65	123	33	33	29	94	50	67	62	
13	39	35	29	66	124	49	37	41	98	51	66	58	
14	36	32	26	96	110	31	42	38	82	53	105	63	
15	35	32	25	111	99	32	33	37	72	73	111	58	
16	33	43	24	106	105	20	29	34	57	73	94	54	
17	33	42	23	105	93	28	28	29	47	57	98	57	
18	32	35	23	120	108	27	31	26	42	50	100	47	
19	30	32	23	104	98	27	32	27	52	46	85	48	
20	29	32	22	75	104	31	31	39	61	45	98	54	
21	28	40	24	66	106	31	27	39	62	48	96	54	
22	28	33	28	81	112	24	25	58	53	49	75	66	
23	27	31	27	86	92	27	24	63	51	51	70	67	
24	27	30	42	60	71	27	33	58	59	62	71	77	
25	27	29	50	47	65	29	53	46	50	90	85	66	
26	27	27	29	41	61	34	49	34	48	76	80	142	
27	27	26	69	39	55	42	37	35	50	71	95	185	
28	38	28	25	42	48	32	32	41	65	105	84	80	
29	39		23	52	52	30	38	47	70	108	87	75	
30	35		23	69	59	37	36	49	81	130	73	64	
31	37		26		78		35	37		118		58	
AVERAGI	37.74	37.36	34.52	68.13	87.52	35.40	35.13	37.84	61.07	72.48	87.57	73.81	55.78
Max	59	85	89	120	124	63	55	63	113	\$30	143	185	. 185
WN	27	26	22	25	48	24	24	26	29	45	66	47	22
No.	31	28	31	30	31	30	31	31	30	31	30	31	365

Table A-20 Daily Runoff Record at Sricuncolo on Way Sernangka (2/14)

YEAR	1975
CA	$1413 \mathrm{Km2}$
PODPT	$1449 \mathrm{~mm} / \mathrm{year}$

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (3/14)

YEAR	1076												
CA	1413						,						
RO-DPT	1353 mm/year		MR	APR	MAY	JUN	JUL	AUG	SEP	0 CT	NOV	DEA	TOTAL
DATE	JAN	FEB											
1	43	78	72	80	137	39	24	93	23	18	65	36	
2	47	101	65	74	116	38	23	109	19	21	87	34	
3	59	97	59	71	102	42	22	68	17	29	108	33	
4	65	82	101	71	90	42	22	33	16	26	104	31	
5	62	75	103	78	82	36	22	29	14	27	96	28	
6	49	76	93	131	77	34	23	29	15	29	80	26	
7	45	71	72	133	73	34	25	26	17	39	54	25	
θ	72	02	72	130	70	34	23	24	23	25	40	27	
0	80	148	59	105	80	39	21	22	19	24	85	35	
10	76	173	51	$\theta 1$	89	34	23	21	15	34	80	40	
11	79	147	40	83	82	34	25	20	13	33	57	39	
12	77	111	45	78	86	34	33	20	22	45	108	51	
13	76	99	46	75	91	35	35	20	15	71	98	80	
14	79	88	42	56	83	32	27	21	12	59	134	88	
15	102	87	51	75	74	31	24	34	12	40	162	63	
16	110	82	50	72	64	33	23	24	14	123	151	91	
17	107	93	48	79	57	32	22	21	14	97	145	71	
18	87	92	46	84	71	29	21	24	15	84	144	101	
19	89	119	61	95	68	29	20	24	15	54	223	84	
20	101	112	133	94	40	28	19	21	15	33	180	68	
21	87	102	167	93	39	27	19	19	15	30	168	86	
22	87	89	133	78	40	27	19	19	14	28	128	33	
23	77	76	107	80	36	28	26	18	19	24	103	80	
24	83	76	114	91	48	27	21	18	30	22	90	74	
25	89	46	116	71	41	26	18	18	30	25	84	78	
26	94	97	110	81	37.	28	18	20	29	25	79	76	
27	99	79	104	106	35	42	17	28	30	21	73	98	
28	91	82	102	107	37	34	33	30	25	25	64	93	
29	78	81	116	145	38	26	61	29	20	47	52	84	
30	93		96	159	36	25	41	24	18	62	42	72	
31	84		84		35		66	24		61		52	:
ALEPAGE	80.19	94.45	82.84	92.20	66.26	32.63	26.32	30.00	18.50	41.32	102.80	62.48	60.64
MAX	110	173	167	159	137	42	66	109	30	123	223	101	223
M ${ }^{\text {N }}$	43	46	42	56	35	25	17	18	12	18	40	25	12
No.	31	29	31	30	31	30	31	31	30	31	30	31	366

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (4/14)

YEAR	1977												
CA	1413								:				
RO-DPT	$1360 \mathrm{~mm} / \mathrm{year}$												
DAIE	JAN	FEB	МАด	APR	MAY	JuN	JUL	AUG	SEP	CTI	NON	DEC	TOTAL
1	48	117	46	156	113	142	27	25	35	21	15	113	
2	4θ	95	37	145	92	103	31	24	30	19	15	102	
3	43	97	34	111	87	82	30	23	29	19	15	83	
4	83	101	35	87	66	83	69	23	27	19	15	101	
5	84	80	48	77	64	101	64	22	25	19.	15	80	
6	73	82	62	77	69	101	55	22	22	18	15	56	
7	55	88	57	76	78	139	37	22	21	18	15	88	
8	73	92	55	97	78	121	35	21	19	18	15	79	
9	118	79	51	144	66	99	29	20	19	18	15	62	
10	103	80	51	115	80	87	25	19	18	17	16	99	
11	76	121	80	97	94	80	24	19	17	16	17	82	
12	69	137	90	105	77	80	23	19	18	15	16	79	
13	82	125	77	148	51	99	26	19	113	15	19	107	
14	64	107	72	134	110	90	44	16	73	15	26	89	
15	64	94	72	109	107	87.	34.	15	89	15	23	83	
16	79	92	79	94	74	101	41	15	89	16	22	76	
17	69	88	77	85	55	121	55	15	55	16	20	58	
18	74	70	71	83	43	94	41	14	40	15	25	40	
19	80	76	80	82	33	. 82	31	14	53	15	21	76	:
20	82	70	57	95	31	60	27	14	43.	15	23	62	
21	8.4	72	95	83	35	24	26	14	41	15	20	69	
22	109	57	138	78	31	94	24	14	34	15	24	49	
23	162	66	115	105	43	109	24	14.	46.	15	- 34	70	
24	132	83	139	94	93	97	24	14	44	15	51	55	-
25	105	78	138	80	88	79	24	14	43	14	113	71	
26	97	77	157	74	69	60	35	14	41	13	102	. 82	
27	92	64	157	76	79	40	38	14	40	14	57	40	
28	85	62	139	73	62	46	46	13	38	14	33	77	
29	80		134	88	44	: 35	43	13	23	14	31	88	
30	107		144	107	72	34	41	21.	22	13	57	72	
31	- 106		141		115		40	49		14		82	
AVERACP	85.39	87.86	88.00	99.17	70.94	85.67	36.55	18.55	40.23	15.97	29.50	76.45	60.94
MAX	162	137	157	156	115	142	84	49	113	21	113	113	162
MiN	43	57	34	73	31	24	23	13	17	13	15	40	13
1 Ho	31.	28	31	30	31	30	31	31	30	31	30	31	365

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (5/14)

VEAR CA RODPY	1078												
	$1413 \mathrm{Km2}$												
	RODPI $2636 \mathrm{~mm} / \mathrm{year}$												
DATE	JAN	FEB	MAR	APA	MAY	JN	3 UL						
1	88	93	37	93	105	103	105	RUG	SE	Cr	Nov	OEC	rotal
2	66	97	44	97	105	105	103	105	111	111	225		
3	85	105	76	105	118		102	105	105	147	234		
4	95	109	76	109	150		102	105	113	163	202		
5	95	102	105	102	211		101	102	107		184	166	
6	110	66	109	66	225	179	99	103	107		160	97	
7	. 87	37	154	37	192	125	98	102			145	101	
8	69	35	148	35	173	106	97	106			148	111	
9	49	34	142	34	235	117	135	103			166	128	
10	148	60	154	60	218	234	114	170	105		138	150	
11	179	41	159	41	235	193	110	106	103	76	159	166	
12	182	49	156	49	264	144	135	106	103	41	177	179	
13	118	46	198	46	253	122	139	103	103	43	195	141	
14	110	44	129	44	253	119	153	103	103	40		128	
15	101	44	105	44	225	138	121	103	103	37		144	
16	113	44	144	44	202	124	107	138	111	48		162	
17	117	44	124	44	163	110	105	107				168	
18	106	49	144	49	127	109	103	145	114			135	
18	124.	60	166	60	119	107	103	141				162	
20	125	88	156	88	117	106	105	157	106		170	189	
21	154	129	153	129	110	106	105	138	106		145	181	
22	160	103	142	103	106	106	105	128	118		131	147	
23	232	60	119	60	106	111	105	141	134		128	151	
24	170	69	106	69	106	106	102	115	124	97	137	176	
25	138	57	99	57	107	153	109	106	111	107	122	160	
26	122	44	127.	44	110	109	151	105	113	109	114	148	
27	113	57	111	57	117	105	156	105	106	144	109	128	
28	122	80	94	80	109	105	121	103	106	275	121	101	
29		145	80	145	105	105	107	103	106	211	128	99	
30		118	70	118	105	105	109	103	109	190		174	
31			77		105		111	103		173		189	
AVERAG	120.64	70.30	119.48	70.30	157.29	124.15	113.57	114.94	109.28	118.35	158.65	146.25	118.12
MAX	232	145	198	145	264	234	156	170	134	275	234	189	275
MiN	49	34	37	34	105	103	97	101	103	37	109	97	34
No.	28	30	31	30	31	27	30	31	25	17.	23	28	331

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (6/14)

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (7/14)

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (8/14)

YEAR	1985												
CA	1413 Km 2												
RODPT	$1766 \mathrm{~mm} / \mathrm{year}$		-_:			JUN	JUL	AlG	SEP	OCr	NON	DEC	TOTAL
DATE	JAN	FEB	MAP	APR	MAY								
1	92	173	56	68	83	48	63		58	54	113	75	
2	94	223	58	63	76	53	62		63	54	105	71	
3	87	174	54	64	72	83	58	.	46	69	90	68	
4	84	147	51	65	69	75	54		38	91	80	63	
5	80	136	58	60	77	81	47		33	149	80	83	
6	76	121	71	69	79	79			59	68	79	92	
7	80	127	79	63	75	65			39	64	88	84	
8	87	116	81	63	81	60			36	76	84	76	
9	81	114	71	62	80	57			35	64	105	79	
10	80	108	62	83	79	64			34	60	105	81	
11	100	104	69	91	77	97			68	56	98	87	
12	119	98	81	157	100	100			130	50	102	100	
13	138	88	81	146	110	79	.		107	47	117	102	
14	133	83	76	128	102	73	:		73	46	100	85	
15	114	79	67	147	95	69			58	214	81	79	
16	88	75	73	111	105	124			51	117	91	72	
17	80	73	85	90	87	100			44	80	94	68	
18	75	71	100	83	77	79		38	56	$\because 169$	79	64	
19	- 75	68	144	BO	72	71		37	53	147	77	73	
20	77	68	88	81	68	68		96	47	83	76	69	
21	83	64	$B 7$	88	69	77		35	44	154	72	65	
22	81	72	76	31	73	68		33	41	238	72	72	
23	76	65	71	76	64	62		31	37	: 111	69	75	
24	84	62	71	75	59	56		30	54	85	63	77	
25	104	64	: 72	73	56	53		44	67	77	58	80	
26	114	62	54	68	59	50		43	77	$\therefore 71$	76	87	
27	105	58	59	73	77	47		37	91	71	85	84	
28	87	54	57	80	79	45		35	92	102	92	79	:
20	85		65	71	64	45		31	73	117	:88	95	
30	101		92	68	57	43		29	60	104	76	100	\cdot
31	122		79	84	52		.	28		113			
AVERACS	92.97	98.11	73.16	84.55	76:55	69.03	56.80	34.79	58.80	96.81	86.50	79.50	79.12
MAX	138	223	114	157	110	124	63	44	130	238	117	102	238
MN	75	54	51	60	52	43	47	28	33	46	58	63	28
No.	31	28	31	31	31	30	5	14	- 30	31	30	30	322

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (9/14)

YEAR 1086													
$\begin{aligned} & \text { CA } \\ & \text { RO-DPT } \end{aligned}$	1413 km 2												
	2338	mm/yoar											
DATE	JAN	FEO	MAR	$A P R$	MAY	JuN							
1	91	146	72	90	79	35	328	$\stackrel{8}{59}$	SEP	OC	NON	08.	TOTAL
2	107	157	79	83	63	41	164	59 72	67 84	127	187	124	
3	94	154	87	79	60	43	110	95	414	122	238	120	
4	92	188	92	75	75	80	90	95	94	128 119	277	101	
5	110	198	108	75	79	73	79	102	79	107	309	97	
6	131	185	147	72	73	53	69	95	84	107	251	92	
7	214	173	116	71	92	76	68	85	117	95	215	90	
8	232	138	135	80	90	63	60	80	107	91	157	87	
9	203	$\bigcirc 110$	146	88	99	58	68	104	135	152	174	85	
10	154	98	151	79	95	54	95	116	135	164	154	98	
$\ddagger 1$	117	138	157	84	79	50	100	92	133	146	143	117	
12	05	113	171	95	69	59	90	77	130	130	135	107	
13	80	90	164	87	64	81	80	194	122	116	125	108	
14	90	: 84	138	88	62	73	101	223	98	116	122	113	
15	83	80	144	79	63	72	124	138	91	104	124	146	
16	84	83	147	72	56	76	124	50	104	98	116	128	
17	76	90	130	69	51	76	98	107	97	101	114	131	
18	73	79	113	68	48	60	84	98	114	161	111	143	
18	73	72	107	68	45	56	73	91	97	120	116	151	
20	71	71	128	77	44.	53	65	85	90	143	114	122	
21	72	71	110	67	43	50	54	81	91	166	104	105	
22	73	68	92	62	63	47	82	77	130	190	101	114	
23	69	67	87	62	42	45	90	75	138	204	98	122	
24	64	71	97	63	47	42	88	83	139	240	125	108	
25	63	81	92	60	43	54	80	169	146	267	187	102	
26	60	75	90	59	36	83	63	105	174	236	183	94	
27	62	71	94	58	34	52	53	146	157	340	159	127	
28	78	75	90	57	34	43	51	98	139	259	136	133	
29	90		84	59	33	42	54	81	130	245	128	147	
30	88		85	80	36	143	67	73	122	228	122	133	
31	117		88		38		67	69		178		141	
AVERAGE	100.55	108.11	114.23	73.87	58.55	61.10	90.55	100.48	115.27	161.45	156.93	115.90	104.75
MXX	232	199	171	97	99	143	328	223	174	340	309	151	340
M ${ }^{\text {a }}$	60	67	72	57	33	35	51	50	67	91	98	85	33
No.	31	28	31	30	31	30	31	31	30.	31	30	31	365

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (10/14)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{13}{|l|}{1987}

\hline CA \& 1413 \& (mi2 \& \& \& \& \& \& \& \& \& \& \&

\hline RO-DPY \& \multicolumn{13}{|l|}{$2302 \mathrm{~mm} / \mathrm{year}$}

\hline DATE \& JAN \& F \& MAR \& APR \& MAY \& JN \& JUL \& AUG \& SP \& OT \& NON \& DEC \& TOTAL

\hline 1 \& 144 \& 92 \& 110 \& 101 \& 131 \& 64 \& 63 \& 203 \& \& \& 64 \& 117 \&

\hline 2 \& 122 \& 92 \& 122 \& 91 \& 143 \& 62 \& 63 \& 147 \& \& \& 62 \& 95 \&

\hline 3 \& 107 \& 02 \& 138 \& 85 \& 114 \& 73. \& 64 \& \& \& \& 75 \& 113 \&

\hline 4 \& 111 \& 01 \& 164 \& 88 \& 102 \& 76 \& 63 \& \& \& \& 68 \& 120 \&

\hline 5 \& 139 \& 100 \& 143 \& 81 \& 104 \& 79 \& 65 \& \& \& \& 67 \& 113 \&

\hline 6 \& 152 \& 88 \& 166 \& 91 \& 114 \& 77 \& 60 \& \& \& \& 73 \& 127 \&

\hline 7 \& 146 \& 97 \& 146 \& 108 \& 117 \& 87 \& 59 \& \& \& \& 95 \& 146 \&

\hline 8 \& 146 \& 100 \& 124 \& 92 \& 114 \& 91 \& 57 \& \& \& \& 97 \& 136 \&

\hline 9 \& 124 \& 101 \& 139 \& 110 \& 104 \& 117 \& 57 \& \& \& \& 81 \& 133 \&

\hline . 10 \& 119 \& 95 \& 128 \& 102 \& 108 \& 94 \& 57 \& \& \& \& 97 \& 201 \&

\hline 11 \& : 133 \& 116 \& 129 \& 111 \& 159 \& 87 \& 56 \& \& \& \& 107 \& 173 \&

\hline 12 \& $\therefore 124$ \& 133 \& 122 \& 242 \& 169 \& 76 \& 56 \& \& \& 104 \& 127 \& 131 \&

\hline 13 \& 114 \& 152 \& 113 \& 174 \& 147 \& 73 \& 53 \& \& \& 108 \& 95 \& 110 \&

\hline 14 \& . 117 \& 151 \& 104 \& 249 \& 124 \& 71 \& 58 \& \& \& 108 \& 77 \& 110 \&

\hline 15 \& 105 \& 139 \& 98 \& 206 \& 113 \& 69 \& 57 \& \& \& 108 \& 71 \& 101 \&

\hline 16 \& 119 \& - 146 \& 94 \& 244 \& - 107 \& 69 \& 56 \& \& \& 108 \& 67 \& 100 \&

\hline 17 \& 104 \& 105 \& 100 \& 169 \& - 116 \& 69 \& 53 \& \& \& 108 \& 65 \& 101 \&

\hline 18 \& 119 \& 161 \& 100 \& 136 \& 119 \& 68 \& 52 \& \& \& 108 \& 64 \& 95 \&

\hline 89 \& 117 \& 151 \& 101 \& 120 \& 104 \& 104 \& 75 \& \& \& 108 \& 64 \& 147 \&

\hline 20 \& 117 \& 169 \& 114 \& 117 \& 107 \& 97 \& 64 \& \& \& 110 \& 63 \& 154 \&

\hline 21 \& 110 \& 208 \& 101 \& 131 \& 97 \& 69 \& 81 \& \& \& 110 \& 63 \& 124 \&

\hline 22 \& 111 \& 136 \& 122 \& 114 \& 98 \& 94 \& 69 \& \& \& 91 \& 72 \& 104 \&

\hline 23 \& 110 \& 120 \& 117 \& 111 \& 92 \& 92 \& 77 \& \& \& 72 \& 85 \& 95 \&

\hline 24 \& 159 \& 117 \& 113 \& 125 \& 88 \& 65 \& 76 \& \& \& 71 \& 77 \& 85 \&

\hline 25 \& 130 \& 116 \& 95 \& 110 \& 83 \& 67 \& 75 \& \& \& 71 \& 67 \& 79 \&

\hline 26 \& 120 \& 154 \& 90 \& 117 \& 80 \& 91 \& 77 \& \& \& 69 \& 63 \& 75 \&

\hline 27 \& 113 \& 131 \& 85 \& 105 \& 76 \& 69 \& 92 \& \& \& 69 \& 62 \& 72 \&

\hline 28 \& 105 \& 117 \& 83 \& 101 \& 73 \& 86 \& 76 \& \& \& 68 \& 68 \& 79 \&

\hline 29 \& 110 \& \& 102 \& 119 \& 69 \& 64 \& 76 \& \& \& 68 \& 68 \& 69 \&

\hline 30 \& 104 \& \& 138 \& 164 \& 67 \& 63 \& 75 \& \& \& 68 \& 98 \& 69 \&

\hline 31 \& 100 \& \& 125 \& \& 64 \& \& 72 \& \& \& 67 \& \& \&

\hline AVERAGI \& 121.00 \& 127.14 \& 116.97 \& 130.47 \& 106.55 \& 78.77 \& 65.58 \& 175.00 \& \& 89.75
110 \& 76.47
127 \& 110.87

201 \& 103.14
249

\hline MAX \& 159 \& 208 \& 166 \& 249 \& 169 \& 117 \& 92 \& 203 \& \& 110 \& 127 \& 201 \& 249

\hline Min \& $\therefore 100$ \& 88 \& 83 \& 81 \& 64 \& 62 \& 52 \& 147 \& \& 67
20 \& 60 \& 69
31 \& 32
295

\hline No. \& 31 \& 28 \& 31 \& 30 \& 31 \& 30 \& 31 \& 2 \& \& 20 \& 30 \& 31 \& 295

\hline
\end{tabular}

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (11/14)

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (12/14)

	1989												
CA	1413	Km2											
RO-DPr	$2380 \mathrm{~mm} / \mathrm{year}$		MAR	APR	MAY	JUN	JUL.	ALS	SFP	OCT	NOV	CES	TOTAL
DATE	JAN	FES											
1	183.55	85.83		102.96	65.99	119.45	102.96	76.59		125.63	131.86	154.59	
2	188.85	93.75		104.45	64.71	114.82	91.5	73.7		121	135.07	139.88	
3	190.62	92.82		102.96	64.71	101.48	84.48	71.08		113.34	130.26	139.82	
4	187.08	127.17		102.96	63.44	114.82	83.13	75.05		111.86	125.63	190.63	
5	187.08	194.15		104.45	62.17	121.08	80.44	79.09		108.89	124.08	169.74	
6	188.85	135.07		104.45	68.53	133.47		81.79		107.41	127.17	162.88	
7	187.08	117.91		105.93	79.09	138.28		72.35		100	121	156.24	
8	187.08	133.47		110.27	71.08	12.1		69.8		101.48	128.72	152.93	
9	178.31	131.86		105.93	76.39	111.86		65.99		97.17	122.54	157.9	
10	88.66	102.96		105.93	84.48	103		62.17.		94.33	116.36	154.59	
11	151.27	101.48		127.17	75.05	98.58		59.62		85.83	107.41	146.29	
12	187.08	104.45		108.89	85.83	105.93		54.84		80.44	100	147.95	
13		104.45		108.89	84.33	105.93		53.65		76.39	113.34	139.88	
14		101.48		107.41	94.33	102.96		52.46		77.74	107.41	131.86	
15		104.45	77.74	102.45	87.25	97.17		50.07		75.05	102.86	139.88	
16		105.93	77.74	100	85.83	91.5		51.26		75.05	116.36	139.88	
17		114.82	77.74	98.58	73.7	85.83		52.46		71.08	125.63	143.08	
18		127.17	73.7	97.17	81.79	B4.48		47.68		71.08	121	139.88	
19		111.86	72.35	94.33	83.13	84.48		50.07		69.8	127.17	146.29	
20		116.36	75.05	94.33	75.05	75.05		48.87		94.33	135.07	133.47	
21		107.41	79.09	85.83	69.8	66.53		52.46		121	135.07		
22		107.41	79.09	87.25	69.8	69.8		51.26		122.54	136.67		
23		105.93	85.85	81.79	77.74	67.26		53.65		124.08	133.47		
24		104.45	88.66	79.09	77.74	71.08		59.62		124.08	\$47.95		
25		104.45	92.92	81.79	94.33	80.44		52.46		119.45	146.29		
26		162.88	94.33	76.39	107.41	79.09		50.07		128.72	149.61		
27		166.31	100	72.35	100	72.35	.	133.47		133.47	139.88		
28		127.17	114.82	71.08	117.91	88.65		122.54		135.07	144.69		
29			114.82	71.08	166.31	134.67		131.86		136.67	141.48	133.47	
30			102.96	67.26	169.74	122.54		102.96		133.47	146.29	146.29	
31			102.96		130.26			87.17		133.47		152.93	
AVEPAGS	175.46	117.63	88.81	95.45	87.67	98.79	88.50	69.23		105.48	128.01	148.71	106.62
Msx	180.62	184.15	114.82	127.17	169.74	138.28	102.96	133.47		136.67	149.61	190.63	184.15
MIN	88.66	85.83	72.35	67.26	62.17	66.53	80.44	47.68		69.8	100	131.86	47.60
No.	12	28	17	30	34	30	5	31		31	30	23	268

Table A-20 Daily Rumoff Record at Sricuncolo on Way Semangka (13/14)

YEAR CA RODPT	1990												
	1413	m2											
	$1638 \mathrm{~mm} / \mathrm{year}$												
DATE	JAN	FB	M 4 A	APR	MVY	J W	JUL	AUG	SEP.	OCT	NON	DEC	TOIAL
1	88.0	80.7	79.8	65.4	42	77.1	63.5	47.8	91.5	68.1	60.9	94.2	
2	84.3	83.4	73.5	74.4	41.4	66.3	60.9	47.8	161	73.5	60	102	
3	86.1	106	81.6	65.4	41.4	60.5	91.5	56	113	75.3	57.5	105	
4	87.8	86	78.8	60.9	40.6	57.5	87.9	56	110	69	60	150	
6	87.9	90.5	76.2	57.6	40.2	74.4	102	53.5	105	74.4	54,4	130	
6	88.8	87.9	92.4	79.8	42.6	95.1	94.2	74.4	97	63.6	52.8	125	
7	87	83.4	113	75.3	47.8	106	86.1	63.5	93.5	59.2	53.5	122	
8	83.4	81.6	108	72.5	43.3	86	82.5	69.5	102	56.8	52	121	
9	79.8	76.2	94.2	73.5	46.4	90.6	78	65.4	99	56	62.7	119	
10	76.2	69	94.2	70.8	50.6	82.5	87.9	60	102	54.4	62.7	117	
11	72.6	64.5	89.7	67.2	47.1	74.4	91.5	54.4	104	52.8	58.4	115	
12	69	60.9	85.2	65.4	52	68.1	85.2	54.4	98	52	55.2	105	
13	65.4	75.3	86.1	64.5	56.8	64.5	87	53.5	92.4	51.3	54.4	102	
14	65.4	65.4	84.3	76.2	58.4	60.9	80.7	54.4	87.9	50.6	49.9	88.8	
15	67.2	90.6	87	68.1	70.8	66.3	79.8	52	84.3	50.6	54.4	106	
16	65.4	20.6	$\therefore 84.3$	60	70.8	60	79.8	\$7.8	108	50.6	162	108	
17.	81.4	89.7	75.3	59.2	69	56	75.2	46.4	106	50.6	167	110	
18	70.8	87	70.8	58.4	65.4	55.2	69.9	47.1	101	49.9	60.9	108	
18	64.5	87	73.5	56.8	57.6	52.8	74.4	45.7	95.1	49.9	60.9	109	
20	50.9	92.4	67.2	56.8	57.6	53.6	69	45	90.5	49.2	56.9	111	
21	57.6	$87.9{ }^{\text {- }}$	77.1	52	51.3	54.4	65.4	44	91.5	48.5	60	114	
22	56	88.8	80.7	52.8	49.9	53.6	62.7	44.4	98	47.8	60.9	103	
23	56	87	72.6	49.9	49.2	52	61.5	50.6	96	47.8	67.2	100	
24	61.8	84.3	76.2	48.5	47.8	52	42	65.4	94.2	55.2	97	98	
25	66.3	87	76.2	49.9	47.1	60	42.5	50.9	91.5	58.4	102	96	
26	65,4	87.9	87.9	47.1	45.4	57.5	49.9	60	90.6	56	88.8	93.3	
27.	63.6	87.9	92.4	45	45.7	53.5	49.9	57.5	87.9	55.2	B7	92.4	.
28	59.2	85.2	90.6	44	49.2	51.3	47.8	56.8	83.4	54.4	80.7	102	
29	67.2		83.4	44	65.4	50.5	47.8	56	75.3	161	74.4	117	
30	62.7	:	78.5	42.5	64.5	55.2	47.8	55.2	68.1	67.2	73.5	118	
31	78		70.9		78		47.8	56.8		69.5		118	
AVERAGI	71.83	84.08	83.32	60.13	52.81	65.27	70.71	54.59	97.26	60.61	71.60	109.67	73.40
MAX	88.8	106	113	79.8	78	106	102	74.4	161	161	167	150	167
MN	56	60.9	67.2	42.5	40.2	50.5	42	44	68.1	47.8	49.9	88.8	40.2
No.	31	28	31	30	31.	30	31	31	30	31	30	31	365

Table A-20 Daily Runoff Record at Sricuncolo on Way Semangka (14/14)

YEAR CA	$\begin{aligned} & 1991 \\ & 1413 \end{aligned}$	m2											
RO-DPY	1054 mm/year					Jus	JUL	AUS	sep	OH	NON		TOTAL
DATE	JAN	AB	MAR	APP	MiY							DEC	
1	116	118	28	56	27.1	21	16.2	14.2	20	18.5		90.6	
2	118	119	26.7		26.3	21	16	14	20	18.2		85.2	
3	136	120	27.5		30.2	20.7	16	14	22.1	18.2		74.4	
4	121	. 118	46.4		28.6	20.7	15.8	14	23.5	17.9		69.9	
5	121	115	45.7		27.1	20.3	15.8	14	24.7	18.2		70.8	
6	157	109	49.9		31.9	20.3	15.6	14	20.7	19.4	53.8	97	
7	149	106	78		43.8	20	15.6	14	20	19.1	25.9	87.9	
8	128	108	70.8		59.2	20	15.4	14.	21	17.9	23.5	80.7	
9	127	108	69	70.8	49.2	$\therefore 19.7$	15.4	20	20.7	17.6	22.8	73.5	
10	127	108	71.7	64.5	65.4	19.4	15.4	19.7	20.7	17.9	22.1	92.4	
11	126	136	71.7	61.8	59.2	19.4	15.2	19.7	23.9	17.9	26.7		
12	126	114	67.2	71.7	58.4	19.1	15.2	20	21	17.6	23.1		
13	124	207	73.5	60.6	61.8	18.8	15.2	19.7	25.5	17.6	28.6	93.3	
14	122	109	78	55.2	58.4	18.5	15	20	25.5	13.5	28.6	94.2	
15	118	56.8	76.2	51.3	52.8	18.2	15	20	21.7	17.9	28.6	90.6	
16	117	41.4	74.4	56.8	46.4	17.9	15	20	21	19.4	33.5	82.5	
17	113	42.6	72.6	52.8	42	17.6	15	19.7	20.3	20.7	35.4 39	62.7	
18	113	39	62.4	47.1	37.2	17.6	15	19.7	20.3	18.8	39	47.1	
19	110	37.2	64.5	42.6	34.2	17.3	15	20.7	19.7	18.2 19.7	36 378	42.6 39.6	
20	119	36	59.2	42	31.3	17.3	14.8	21	19.7	19.7	47.8	39.6	
21	128	42.6	55.2	45.7	29.7	17	14.6	20	19.4	18.8	45 54.4	38.4 46.4	
22	109	36	72.6	54.4	27.5	17	14.6	19.7	19.4	20.7	54.4 57.6	46.4 58.4	
23	122	36.4	70.6	45	26.7	17	14.6 14.6	19.7	19.1	19.4 22.1	57.6 78	61.8	
24	121	36.6	74.4	42.6 39	25.9	17 16.8	14.6	19.4 19.7	19.4 22.8	19.1	62.7	56	
25	120	36	70.8	39	25.1	16.8		19.7	20.3	18.2	86.1	63.6	
26	119	35	82.5	36	24.3	16.4		13.4	20.7	17.6	99	81.6	
27.	120	33.6	78.9	33	23.5	16.4		24.3	19.4	19.4	109	78.9	
28	120	33	70.8	30.2	22.8	16.4		20.6	19.1	19.4	101	71.7	
29	119		67.2	30.2	22.4	16.2		20.6	18.8	19.4	94.2	72.6	
30	118		67.2	28.6	22.1	162	14.2	20		17.6		69.9	
31	117		60.9	70.8	22.4 36.87	18.37	15.13	18.61	21.01	18.74	50.34	71.53	47.23
AVERAGK	122.61	79.86	64.02 82.5	49.53 71.7	36.87 65.4	18.37 21	16.2	2.43	25.5	22.1	109	97	207
MAX	157	207	82.5	71.7	65.4		14.2	14	16.8	17.6	22.1	38.4	14
MIN	109	33	26.7	28.6	22.1	16.2 30	$\begin{array}{r}14.2 \\ \\ \hline\end{array}$	31	30	31	25	29	348
No.	31	28	31	24	31								

7. TRANSPORTATION

Introduction

Indonesia is composed of more than 13,000 islands and extends over a distance of $5,000 \mathrm{~km}$ from Sumatra in the west to Irian Jaya in the east. Due to the archipelagic nature of the country, the nation's transportation and communications systems are vitally important for national cohesion, but difficult to develop coherently for the purpose of economic integration and development. Among these islands, Sumatra is the largest in land area and possesses a relatively well developed transportation infrastructure compared to the other islands of the country.

The transportation systems in the study area exhibit the historical pattern of separate and unintegrated development of agriculture and industries in the different provinces. The reliance on links with Java, primarily with the Jakarta area, is predominant while links with neighboring provinces tend to be weak by comparison. The transportation networks tend to be centered around the provincial capital cities all of which have ports providing sea access to Java and abroad. The Bukit Barisan mountain range represents a major natural obstacle that effectively isolated the west coast of the island from the main transportation networks and resources located in the study area.

Three factors responsible for the development of the transportation systems along these lines are the following:

- the insufficient level of investment in transportation infrastructure in the past;
- the bias of past investment in favor of mainly urban regions having relatively well developed systems;
- the lack of a comprehensive approach in the past to transportation planning that reflects interdependent relationships among different regions.

Historical Perspective

The existing transportation networks are heavily influenced by the colonial policies of the Dutch who ran the country from the early 17th century until the 1940s. As is the case in many developing countries, the Indonesian economy was molded by the colonial power into one of supplier of raw materials for the purpose of industrialization of the European country. Southern Sumatra was developed as a plantation economy with the creation of estates of oil palms, rubber and coconut destined to serve foreign markets. The national economy was focused on the island of Java, and transportation systems were likewise centered on Java. As a result the trading routes from Southern Sumatra historically lead first to Java and then abroad, or even directly abroad. Similarly, the railroad networks were built for the purpose of transporting industrial raw materials and mining products to the nearby ports for shipment onward to other parts of Indonesia or abroad.

After President Soeharto assumed the presidency in 1969, Indonesia's Five Year Plans were developed and institutionalized as the main planning tool for the country. A summary of the developmental objectives of the four past Pelita programs regarding transportation is provided in Table 7.1.1 below.

The most significant event in the transportation history in the study area is the completion in 1984 of the Trans-Sumatra Highway, nearly $2,700 \mathrm{~km}$ in length, which unites the island from north to south (Figure 7.1.1). It is the longest such route in the country and it is instrumental in the development of linkages between formerly independent regions. Its full benefits for the different provinces will take years to be realized as it undergoes successive improvement programs.

Table 7.1.1 TRANSPORT POLICY FOR PAST REPELITAS

	Target for Transportation Development	Target for Regional Economic Development	Remarks
Repelita 1	- To vitalize neglected transportation facilities - Contribution to export increase	- Reconstruction of national economy - Stability in national economy - To arrest the process of economic deterioration	- Period of making investment inventory for the infrastructure abondoned during the preceeding period
Repelita II	- To revive the transportation facilities - Improvement in transportation efficiency - Establishment of transportation system	- Homogeneous development among sector - Stability in national economy - Equity in regional development	- Period of recovering selfconfidence for the construction of the national economy
Repelita III	- Improvement in transportation efficiency - Construction and maintenance of transportation facilities	- Enhancement of living standard, technology and welfare standard in homogeneous manner. - Preparation of economic condition for coming development in the next stage	- Attainments of minimum substantial standard (self sifficiency of rice was first attained in this period) - Minimum level of infrastructure was going to be provided although it is not a satisfactory standard
Repelita IV	- Road development aimed at promotion of productive sector - Coordinated development among different transportation means - Airplane and ship service to the transportationally less developed area - Internationalization	- Economic growth to lead the national economy to the take-off stage - Social equity to ensure productive employment and renumerative income - Sustained stability from political, environmental and natural resources points of view	Period of reviewing past Repelita with modest progress of society as achivable target

[^1]

7.1 CURRENT CONDITIONS

7.1.1 Description of Existing Infrastructure

(1) Roads

The road network in the four provinces consists of three road systems: the National, the Provincial and the local (kotamadya and kabupaten roads) networks which contain a combined total of approximately $29,000 \mathrm{~km}$ of roads. Just under one third, 9,000 km , is rated in good condition (1988). The GOI policy in recent years is to maintain and improve this network in Southern Sumatra, but not to substantially expand it by construction of new roads, with a few exceptions. The design standard for these roads generally features a 4.5 meter carriageway width and 8 ton ESA (equivalent standard axleload). Tables 7.1 .2 and 7.1.3 provide statistics on the road networks and on their traffic volumes. Figures 7.1.2 to 7.1.6 present maps of the national and provincial road networks in each province.

1) The Trans-Sumatra Highway

The backbone of the network is the Trans-Sumatra Highway which extends from Aceh in the north to the ferry terminal at Bakauheni (Lampung) on the southern tip [Figure 1]. In Southern Sumatra it lies to the east of the Bukit Barisan mountain range roughly in the center of the island. It crosses each of the provinces in the study area except Bengkulu which lies entirely on the west slope of the Bukit Barisan and is therefore bypassed by the route. This highway also bypasses the cities of Palembang and Jambi City at distances of 170 and 200 km respectively. In the northern half of Sumatra it traverses generally mountainous terrain, almost touching the west coast at both Padang and Sibolga, before turning towards the east coast below Medan. The northernmost fourth of its length follows the coast along the Strait of Malacca. The road is generally constructed to the above mentioned design standard, and portions of it are benefiting from road betterment and improvement programs funded by foreign and domestic sources.

2) Highway Design Standards

The GOI is beginning to use a standard for roads that will be safe for use by heavy vehicles (container trucks, multi-axle trucks, large buses) that requires a minimum 6 meter carriageway width and 10 ton ESA strength. In view of the increasing use of large trucks for freight transport, upgrading of some sections to this higher standard has already been done by the Highways Dept. However, on the whole, the main roads vary in width from 3.5 to 5 meters (excluding shoulders), frequently lack stable shoulders, and reflect a geometric design that allows for average road speeds in the range of 40 to 60 kph .

3) Network Density

The kabupatens along the east coast contain swampland and therefore have fewer roads. The road network densities are highest in Lampung and Bengkulu (about 200 $\mathrm{km} / \mathrm{km} 2$ of territory) where there is relatively less swampland. The lowest density is in South Sumatra which has by far the largest land area and the largest area of swampland. The sparseness of the road systems along the East coast is apparent on Figures 2, 3 and 6

4) Vehicle Type Trend

The count of registered vehicles in Southern Sumatra has been increasing 7\% per year (1985-1990), far higher than the 4% national average. Growth in registered trucks also averaged 7% for the Region, and only 2% for the nation. However, because of the small size of the roads of the Region, heavy vehicles such as multi-axle trucks or buses, especially container trucks, are entirely absent from the Region with one exception. A limited number of tractor-trailors hauling small containers to and from Panjang port (Lampung) use the TSH up to approximately 100 km north of Bandar Lampung. Large capacity intercity buses (up to

Table 7.1.2 CHARACTERISTICS OF ROAD NETWORKS AND 1990 TRAFFIC

	SOUTH				ALL		ALL	
	UNIT	JAMBI	SUMATRA BENGKULL LAMPUNG			SUMATRA	JAWA	INDONESIA
area	km2	44,800	103,688	21,168	33,307	473,481	132,186	1,919,317
population 1990	000s	2,016	6,277	1,179	6,006	36,420	107,518	179,322
ROAD NETWORKS								
national \& provincial	km	1,581	3,265	1,253	1,960	17,751	11,100	52,569
district	km	5,136	6,784	2,416	4,334	53,014	54,414	166,371
all types	km	7,155	10,848	4,073	6,880	76,136	79,769	244,668
Road Networks-Good Condition only :								
1988	km	1,240	4,089	1,361	2,008	24,196	25,458	82,180
1885	km	944	3,659	572	1,583	19,288	18,129	63,945
average yearly change	\%	10\%	4\%	46\%	9\%	8\%	13\%	10\%
network densities:								
all types	meters/km2	160	105	192	207	161	603	127
good condition only	meters/km2	28	39	64	60	51	193	43
all/1000 population	km/000 pop	4	2	3	1	2	1	1

VEHICLE REGISTRATIONS (including motorcycles)

1989	vehicles	86,074	385,358	42,426	144,371	$1,779,720$	$5,204,297$	$8,291,908$
1985	vehicles	62,857	278,069	30,884	104,817	$1,386,753$	$4,419,546$	$6,856,317$
average yearly change	$\%$	9%	10%	9%	9%	7%	4%	5%
trucks only:								
1989	trucks	10,284	52,346	11,067	28,054	246,710	559,774	952,461
1985	trucks	7,294	37,132	7,850	19,899	182,246	523,703	845,338
average yearly change	$\%$	10%	10%	10%	10%	9%	2%	3%

TRAFFIC VOLUMES (national \& provincial roads only)
Full Networks:

vehicle-kilometers	millions	538	2,422	922	1,619	10,402	19,549	36,723
traffic intensity/year	$\mathrm{vk} / \mathrm{km}$	340,101	741,654	735,674	826,122	585,990	1,761,153	698,569
daily average	$\mathrm{vk} / \mathrm{km}$	932	2,032	2,016	2,263	1,605	4,825	1,914
Good Condition Roads Only :								
total length	km	686	1,721	414	973	8,873	7,204	23,595
\% of full network	\%	43\%	53\%	33\%	50\%	50\%	65\%	45\%
vehicle-kilometers	vk millions	345	1,859	427	1,211	7,458	16,378	27,391
percent of total vk	\%	64\%	77\%	46\%	75\%	72\%	84\%	75\%
intensity measure	\%	148\%	146\%	140\%	151\%	143\%	129\%	166\%
traffic intensity/yr	$\mathrm{vk} / \mathrm{km}$	502,915	1,080,186	1,031,401	1,244,604	840,527	2,273,459	1,160,882
traffic intensity/day	vk/km	1,378	2,959	2,826	3,410	2,303	6,229	3,180

Notes : Vehicle-km statistics exclude motorcycles. Good condition roads include roads with an International Roughness Index less than 6.
Sources: Min of Public Works-D G of Highways, Indonesian Highway Statistics, May 1991; BPS, Statistik Indonesia 1990.

Table 7.1.3 National \& Provincial Road Network Densities in Southern Sumatra

(unit:)	Land Area (km2)	Road Length (km)	Network Density (m/km2)	Population Density (pop/km2)	Road Density /Capita (m/capita)
Jambi					
Kerinci	4,200	226	54	67	0.8
Sarko	14,200	533	38	25	1.5
Batang Hari	11,130	367	33	29	1.1
Tanjab	10,200	226	22	35	0.6
Bungotebo	13,500	411	30	27	1.1
Kdya Jambi	206	32	155	1,651	0.1
Totals	53,436	1,795	34	38	0.9
South Sumatra					
O K Ulu	10,408	628	60	93	0.6
OK Ili	21,658	293	14	36	0.4
Muara Enim	9,575	427	45	61	0.7
Lahat	4,034	427	106	149	0.7
Musi Rawas	21,513	404	19	24	0.8
Musi Banyuasi	25,664	462	18	34	0.5
Bangka	11,614	582	50	44	1.1
Belitung	4,532	317	70	43	1.6
K Palembang	224	62	277	5,094	0.1
K Pangkal	32	14	438	3,536	0.1
Totals	109,254	3,616	33	58	0.6
Bengkulu					
Selatan	5,949	322	54	50	1.1
Rejang Lebong	4,110	213	52	90	0.6
Utara	9,585	576	60	36	1.7
Kdya Bengkulu	145	71	490	1,175	0.4
Totals	19,789	1,182	60	60	1.0
Lampung					
Selatan	6,649	466	70	276	0.3
Tengah	9,190	599	65	207	0.3
Utara	19,369	872	45	85	0.5
K B Lampung	169	84	497	3,768	0.1
Totals	35,377	2,021	57	170	0.3
Southern Sumat	202,963	8,614	42	73	0.6
Northern Sumat	270,518	9,136	34	80	0.4
Sumatra	473,481	17,751	37	77	0.5
Java	132,186	11,100	84	813	0.1
Indonesia	1,919,317	52,569	27	93	0.3

Notes:
Land area data are approximate as sources differ slightly.
sources:
Provincial Bina Marga Offices, provincial Dalam Angka Publications;
Hoff \& Oveigaard: Indonesian Highway Statistics, 1991.

大STERANOAN:

Figure 7.1.2 Jambi Province National \& Provincial Roads

Figure 7.1.6 Lampung Province National \& Provincial Roads

PROPINSI LAMPUNG (\{T)

60 seats) are used mainly on the routes linking Jakarta to Palembang, Padang and other large cities in Sumatra.

5) Traffic Intensity

The intensity of road usage (traffic intensity; Table 7.1.2) in Southern Sumatra is far below that of Java island (1,605 vehicle kilometers $/ \mathrm{km}$ of road per day in Sumatra versus 4,825 for Java). Within the Region, Jambi's usage level at 932 is far below those of the other provinces, all three of which exceed 2,000 daily vehicles. Average daily traffic levels outside of the urban centers seldom exceed 4,000 vehicles and congestion is generally absent from the Region's intercity roads. The two roads that are exceptions to this include the Palembang-Prabumulih road, which connects the city to the Trans-Sumatra Highway to the west, and the Trans-Sumatra Highway itself in the vicinity of Bandar Lampung.

6) Importance of Jakarta Access

Of great importance to Southern Sumatra is the quality of the surface link between Jakarta in West Java and the vital ferry service linking Java to Sumatra through the terminals at Merak and Bakauheni respectively. Although not located in Sumatra the JakartaMerak road is very important to Sumatra because it serves as the main access road to the Sumatra ferry terminal at Merak: Approximately one half of the overall distance of 110 km is covered by a toll road, and the journey takes 2 to 3 hours. Driving conditions on the portion that is not a toll road continue to be fair to difficult.

Another component of Jakarta access is the efficiency of the ferry link itself across the Sunda Strait. This is an operational issue somewhat beyond the scope of this study. The operation has undergone significant upgrading in recent years, and plans exist to make further improvements and to expand capacity as traffic on the route builds. During the day service is as frequent as every 40 minutes, and on normal days most vehicles experience little delay.

7) Jambi Province

The Trans-Sumatra Highway is the most heavily used road, followed by the Jambi-Palembang link. The entry point from Riau province north of Merlung has been in very poor condition and much of it has had only an earth surface. Consequently, the province has not had any good road link to points in Riau or North Sumatra. However, it has two links to West Sumatra, one being the Trans-Sumatra Highway, and the second being a cross mountain road from the Kerinci area to the west coast. The province's most vital link, however, is the Jambi City-Palembang road which is fully paved and can be covered in approximately four hours. The 1990 average daily traffic (vehicle) volumes at the entry points were:

Sarolangun-South Sumatra border [Trans-Sumatra Highway] 3,493
Muara Bungo-West Sumatra border [Trans-Sumatra Highway] 1,863
Tempino-South Sumatra border [Eastern Sumatra Highway] 1,285
Merlung-Riau border [Eastern Sumatra Highway] 226
There are two east-west routes linking Jambi City in the east with the interior areas and the Trans-Sumatra Highway. Each extends from Muara Tembesi, one to Muara Bungo and the second to Sarolangun. The networks for local roads are fairly well distributed across the province, although relatively sparse in the mountain zone of the province, and in the swampy area on the east coast.
8) South Sumatra Province

The province functions as a hub for the Region of Southern Sumatra since it has the Region's largest city and seaport at Palembang. It also has by far the most extensive road system, including nine crossings into neighboring provinces. With just over half of its network (national and provincial roads) in good condition (53%), the province has the Region's best road system. This includes the networks in the islands of Bangka and Belitung, both of which are fairly extensive. Outside the urban areas, traffic volumes generally fall below 3,000 per day, with the exception of a few points along the Trans-Sumatra Highway. Palembang is located a minimum of 170 km from this artery and as a result requires a daylong drive to reach the provincial capitals of Bengkulu and Bandar Lampung. In contrast, Jambi City to the north is accessible in approximately 4 hours by road.

9) Bengkulu Province

Bengkulu is the most isolated of the provinces as it has good road access only to the central part of the province, where Bengkulu City is located, and none in the north or south sections of the province. The province therefore is somewhat of an enclave. The Curup road leads to Lubuklinggau and the Trans-Sumatra Highway, and has a daily traffic volume of 1,576 vehicles (1990). The second access is the nearby Pasemah Highlands road from Kepahiyang which has a comparable traffic volume of 1,495 vehicles. The access road to West Sumatra to the north is in poor condition but carries some traffic, while the roads in South Bengkulu leading to South Sumatra and Lampung are in poor condition and carry minimal traffic.

10) Lampung Province

This province is the most densely populated in the Region and also has the densest road network ($207 \mathrm{~km} / \mathrm{km} 2$). However, the network is concentrated in the south central part of the province, while the upper part and the region west of the Bukit Barisan have the least developed networks. The Trans-Sumatra Highway functions as the main artery of the province (as it does for all of Sumatra) and handles the heaviest (exurban) traffic volumes, ranging from 2,100 to 9,800 vehicles (1992) with the lowest volume indicating the traffic level near the border with South Sumatra. Traffic at points in the Bandar Lampung area currently exceed 20,000 daily vehicles and represent the heaviest exurban volumes in the study area.

Heavy trucks hauling small containers use the Trans-Sumatra Highway between central Lampung province and Panjang port, over a distance of about 100 km . This is the only major road in the study area that is used regularly by heavy trucks, since the road system generally is not capable of accommodating heavy vehicles safely. However, because of the small size of the road, the lack of stable shoulders along much of it, and in view of the heavy pedestrian and small vehicle traffic (bicycles, becaks, bajajs, etc) along all the numerous populated stretches, even this moderate use by heavy vehicles is dangerous and hazardous to both pedestrians and vehicles. Some usage control for such vehicles (possibly by Time of day) might be considered until adequate upgrading of the road can be accomplished.

Railroad
There is one major rail system operating in the study area, and its network includes a total track length of 654 km currently in operation (Figure 7.1.7). The key characteristics of this network are summarized in Table 7.1.4 below. A minor rail line is located in a mountainous region of North Bengkulu and is operated by a mining company, but it is an internal operation not providing any public transportation. There are also two rail systems located in the Northern part of Sumatra and in West Sumatra, which operate as separate divisions of Perumka and have no relation to the Southern Sumatra rail operation. They are smaller divisions operating networks of respec tively 493 and 233 km in length.

The main system is operated by Perusahaan Umum Kereta Api (Perumka) the state rail company (formerly PJKA) headquartered in Bandung. The system was built by the
(

Dutch in the 19 th century and being a narrow gauge system, generally reflects the technology of that era. The network has not been modernized or expanded in recent years except for the branch to the Tarahan coal port. It has a fleet of foreign built diesel locomotives, coal hoppers and some upgraded passenger coaches, as well as some foreign built servicing equipment.

1) Freight Traffic and Coal Dominance

The system mainly hauls coal from the Bukit Asam mining area at Tanjung Enim in central South Sumatra to the Tarahan coal port south of Bandar Lampung. At Tarahan it is crushed and transferred to coal ships for transport to the power complex at Suralaya on the Java shore of the Sunda Strait. There is also a secondary coal shipping point at Palembang. It is this Suralaya coal traffic that has been the main source of growth in freight traffic nationally for Perumka, growing from 32 million ton $/ \mathrm{km}$ in 1981/2 to 1,938 million in 1991. It generated 50% of Perumka's nationwide freight traffic and revenue in 1991, which is an indication of how vital this traffic is to Perumka's operations. In 1992 it is expected to haul approximately 5 million tons. The system also carries a limited volume of cement from the Baturaja cement plant to Palembang and some other bulk cargoes. For a while in 1991 Perumka ferried freight containers between Panjang and Palembang, but this traffic was recently discontinued as a result of a shift in shipping patterns of the containers to Singapore.

2) Passenger Traffic

Passenger services are offered over the entire system with two daily trains each way between Palembang and Bandar Lampung, and the same number between Palembang and Lubuklinggau. These passenger services compete directly with bus services over the same routes, and on the whole account for about 20% of total train kilometers. The recently introduced executive class service which provides air conditioned reserved seat service at higher fares is proving popular and competitive with bus and air services over the Palembang-Bandar Lampung route. According to Saltrannas, in 1988 318,000 persons used rail on trips between South Sumatra and Lampung provinces, and 225,000 on trips between South Sumatra and Java.

3) Other System Characteristics

In general, other than the coal handling infrastructure, the facilities of the system such as the rolling stock, rail lines and maintenance facilities are old and some in unsatisfactory condition. Average speeds fall in the $30-40 \mathrm{kph}$ range and are low, service interruptions frequent, and large parts of the fleet out of commission. In the city of Bandar Lampung, there are approximately 8 grade crossings on the city's streets, and one at Natar on a heavily trafficked portion of the Trans-Sumatra Highway.

The financial health of Perumka as a state company which has never earned a profit is very uncertain. It is this coal hauling operation from Bukit Asam to Tarahan that is its most profitable operation, and the ESS that is its most efficient division. However, even this division has never been profitable and its future is unclear.

Air

1) Infrastructure

Commercial air service to the Region is provided through six airports marked on Figures 7.1.1 and 7.1.8. All of these airfields are operated by the operating company of the Directorate General of Air Communication, and all are served on a daily basis with nonstop service from Jakarta operated by Merpati, the domestic subsidiary of the Garuda Indonesia Group. General information on these facilities appears in Table 7.1 .5 below. Each airport operates with one paved runway generally on visual flight rules and handles only daylight
operations. The exception is Palembang's Badarudin II airport which has a functioning instrument landing system, runway lighting and scheduled night operations.

Table 7.1.4 Profile of Perumka Southern Sumatra Rail Division
(Explotasi Sumatera Selatan)

Length of track (km)	654 km
Gauge of track (mm)	1,067
Number of freight cars	2,120
Number of passsenger cars	117
Number of locomotives	82
Number of operating stations	over 40
Provinces served:	South Sumatra and Lampung
Key points served:	
Palembang (terminus)	Bukit Asam (coal mines)
Baturaja (cement)	Tanjung Karang
Panjang (scaport)	Tarahan (coal port, terminus)
Lubuklinggau (terminus)	
Traffic 1989-1990:	
Coal tonnage	3.3 million
ton-kilometers	1.2 billion
average haul	364 km
Other freight tonnage	0.9 million
ton-kilometers	216.6 million
average haul	241 km
Passengers persons	1.0 million
pax-kilometers	341.8 million
average haul	342 km

1991 financial performance (all Perumka networks):

	yield (revenue)	cost
Freight	Rp 32/ton km	Rp 128/ton km
Passenger	Rp 14.8/passenger km	Rp 34/passenger km

[^2]There are in addition some minor airfields in the Region including:

Pasir Mayang	(Jambi)	$1,000 \mathrm{~m}$ runway	DHC-6
Depati Parbo-Kerinci	(Jambi)	650 m	DHC-6
Lubuklinggau	(South Sumatra)	construction suspended	
Mukomuko	(Bengkulu)	$1,000 \mathrm{~m}$	C-212
Astra Ksetra Military	(Lampung)	grass airstrip	

The ones in Jambi and Bengkulu are under DGAC responsibility, while the Lubuklinggau facility, which is incomplete, is an initiative of the kabupaten government. These fields are generally not equipped with navigational aids and are not always open for traffic. Some have handled public service functions such as transmigration flights.

The DGAC has spent minimal amounts on these airports in recent years, as its priorities for capital investment lie elsewhere in the country. Its position is to maintain them in operating condition without any major upgrading as regards safety or technical capability.

Table 7.1.5 Commercial Airports in Southern Sumatra

	Jambi	Palembang	Pangkal Pinang	Tanjung Pandan	Bengkulu	Bandar Lampung
runway length	1,650	2,200	1,620	1,650	1,800	1,850
(meters)				10,701	12,000	20,425
apron arca	20,368	17,651	14,400	10,701	12,000	20,42,
(sq meters) terminal area	1,064	2,168	735	1,188	746	1,158
terminal area (sq meters)						
largest aircraft	F-28	DC-9	F-28	F-28	F-28	F-28
DGAC category	II	1	I	I	III	1
nstrument landing system	no	yes	no	no	no	no
1990 passengers	88.5	510.9	200.9	79.8	75.8	105.1
(000s)	2	4	3	2	1	1
daily flights	2	14	3	2	2	7
daily passengers (in \& out)	242	1,400	550	219	208	288

Source: Directorate Gencral of Air Communications materials, Merpati timetable

2) Traffic and Service Patterns

The traffic diagram (Figure 7.1.8) indicates how heavily focused traffic is on Jakarta and how weak links between the provinces are. Service between provincial capitals and Jakarta is generally reliable and is provided year round, while services between provincial capitals and Palembang is subject to frequent schedule changes, occasional cancellation, and suspension for months at a time. In 1992, the service betwen Jambi and Palembang was completely suspended for several months. Nearly all flights originate or terminate at Jakarta.

By far the most important route is the Palembang-Jakarta trunk route with over forty flights per week in each direction. As with most routes, this route is a monopoly operation of Merpati, which provides nearly all the service in the Region. Other carriers such as Pelita, Deraya and STP provide limited service on a small number of routes. At present there is no international service to the Region, and no nonstop service between Singapore and any point in the Region.

Air service on a per kilometer basis is by far the most costly mode of transportation and as such operates independently of other modes of transportation. Three main groups use air service in the Region, government officials, businessmen and high income individuals. Foreign or domestic tourists do not form a large part of traffic in this Region.

3) Capacity Utilization

The airports generally have plenty of unused capacity with daily flights ranging from 2 to 14. They can handle several times current passenger volumes without any major expansion. The F-28 twinjet aircraft is likely to remain the main aircraft serving this Region, and it is well adapted to the airport infrastructure. In the past several years, traffic patterns have been somewhat irregular with years of rising and falling traffic, but have generally shown growth in the area of 4% per year. Service is sometimes hampered by such problems

FIGURE 7.1.8 1989 AIR PASSENGER TRAFFIC AND POSSIBLE FUTURE ROUTES
(103) Annual Airport Passenger Volume (000s)

105 Annual Route Passenger Volume (000s)

Routes $<50,000$ Volume
Possible Future Routes

Note: Locations and data are approximate.
as poor visibility from forest fires, seasonal schedule reductions for the Haj flight program, and poor flying conditions during the monsoon season. Major airfare increases have also hampered growth in traffic.

Water Transportation

The topography of the coastal line differs greatly between the east coast and west coast. The eastern part of the Region is flat with coastal swampland, and siltation along the coast is substantial. The west coast has a narrow coastal plain separating the Bukit Barisan from the sea: at some points it suffers from heavy erosion. On the south side (Sunda Strait) the twin bays of Semangka and Lampung offer good natural conditions for port construction.

1) Seaports

In the southern part of Sumatra, there are about 26 seaports consisting of 13 commercial ports and 13 non-commercial ports. The main commercial ports are Jambi City, Pulau Baai in Bengkulu city, Palembang's riverport, and Panjang port located in a suburb of Bandar Lampung. Figures 7.1 .9 to 7.1 .12 show the cargo volume of the four main ports.

Although the road system is undergoing significant expansion, sea and river transportation continue to carry most cargo for export, for Java and even for much of the intra-Sumatran traffic. This dominance of water transport should continue for the foreseeable future. Of all the tonnage moving between Java and Sumatra, 91% moved by sea according to the 1988 National Nonroad Origin and Destination Survey. The main reason is the importance of low value bulk cargoes for which sea transport is ideal. Another reason is that the design and condition of roads in Sumatra have generally been insufficient for the safe operation of most types of multi-axle vehicles needed for the most economical trucking transport.

Table 7.1.6 summarizes traffic at the Region's main ports in 1986 and in 1990. It indicates the strong growth in activity over the period, averaging 26% per year. It also indicates how domestic traffic dominates total activity, and how imbalanced flows are except at Jambi, with outbound cargo shares (share loaded) at Palembang, Bulau Baai and Panjang being respectively $78 \%, 80 \%$, and 88%.

Table 7.1.6 Cargo Volume at Main Sea Ports

(Unit : 1000 tons)							
1986				1990			$\begin{aligned} & 1990 \\ & \text { SHARE } \\ & \text { LOADED } \end{aligned}$
Seaport	FOREIGN DOMESTIC TOTAL FOREIGN DOMESTIC TOTAL						
Jambi (1)	398	491	889	530	970	1,500	54\%
Palembang	1,340	2,352	3,702	1,207	7,023	8,230	78\%
Containers (2)	-		12	-	-	21	-
Pulau Baai	120	248	368	318	574	890	80\%
Panjang	547	975	1,522	1,513	4,145	5,653	88\%
Containers (2)	.	-	2	-	-	\ldots	
4 ports total			6,481			16,273	
Panjang-oil only			419			527	
Tarahan-coal loaded			282			3,369	

(1) Includes Muara Sabak and Kuala Tungkal.
(2) Container Traffic in Thousands of TEUs. Figures are for 1987 and 1990.

Source : Port offices of PUP II port operating company.

Jigure 7.1.9 Cargal landing Volunc at limbi Port

Figure 7.1.10 Cargo flanding Volume at Patembang Pori

Figure 7.1.1t Cargo fanding Volume at Putat Bani fort

Year
Figare 7.1.12 Cargo Hameling Volame at lanjang Pori

Jambi Province. The province has its main port at Jambi City on the Batang Hari River, with secondary ones at Muara Sabaka and Kuala Tungkal, and a less important one at Nipah Panjang. The former three ports are operated by one of the state port corporations and the latter port by the regional office of the Ministry of Communication. The common problems shared by the above ports are the large difference in water level between low water and high water, and also the sedimentation problem at the mouth of rivers. The volume of maintenance dredging is about 360 thousand cubic meters per year.

The main facilities of Jambi port are two pontoon berths (total length: 206 m), one quay wall for rainy season use only (length: 76 m), two transit sheds (area: 1,365 square meters) and two open storage areas ($28,500 \mathrm{sq} . \mathrm{m}$). The main commodities of Jambi Port are logs, sawn timber and oil.

The main facility at Muara Sabak port is a small wooden jetty whose length is 203 m with 5 m waterdepth in dry season. The main facilities of Kuala Tungkal are a small wooden jetty whose length is about 40 m with a 4 m waterdepth and a transit shed.

South Sumatra Province. The province has 11 public ports, namely Palembang and Sungai Lais on the mainland, Muntok, Pangkal Balam, Sungai Selam, Sungai Liat and Belinyu on Bangka Island, Tanjung Pandan on Belitung Island, all of which are operated by one of the state port corporations. In addition there is Sungai Lumpur on the mainland, Toboali on Bangka, and Manggar on Belitung, which are operated by the regional office of the Ministry of Communication. Palembang, Sungai Lais, Pangkal Balam and Sungai Liat are all river ports and have problems with sedimentation at the mouth of their rivers.

The biggest port in this province is Palaembang, which handles the largest cargo volume in the Southern part of Sumatra. Palembang port has a limited water depth of 6.5 m at the entrance channel in dry season. The volume of maintenance dredging is about 2,500 cu.m per year. The main public facilities at Palembang port are:
a) total quay wall length: $1,020 \mathrm{~m}$
b) total transit shed area: $8,972 \mathrm{sq} . \mathrm{m}$
c) total open storage area: 48,546 sq.m

Bengkulu Province. The province has 4 public seaports and two special purpose private ones. The public ones are Pulau Baai, Mukomuko, Linau (where construction of a small dock is imminent), and Enggano Island. The only substantial port of this province is Pulau Baai whose main facilities are a special coal loading wharf, a general cargo wharf and an oil jetty. The largest wharf at Pulau Baai port is the special coal loading wharf whose water depth is about 11 m . Pulau Baai port is located about 20 minutes south of Bengkulu City by road, in a well protected natural bay. The main commodity of this port is coal: volume reached about 770 thousand tons in 1989. A problem with this port is the sedimentation at the mouth of the bay.

Lampung Province. In Lampung province there are 9 public seaports, namely Panjang, Kota Agung, Kalianda, Teluk Betung on the south coast, Krui on the west coast, and Menggala, Mesuji, Way Seputih and Labuhan Maringgai on the east coast. Panjang port is operated by a state port corporation and the other ports are operated by the regional office of the Ministry of Communication.

Panjang port has good natural conditions for port construction. The major hinterland of this port is the province itself, where industry is growing rapidly. Some traffic for other provinces also uses this port, which is located directly on the Trans-Sumatra Highway. The growth rate of cargo volume here from 1985 to 1989 is about 45% per year, which is the highest growth rate in the Region. The number of containers reached 16,500 TEUs in 1990 which is about 10 times larger than the volume in 1987.

The main public facilities of Panjang port are as follows:
a) total berth length: $1,028 \mathrm{~m}$
b) total transit shed area: $20,582 \mathrm{sq} . \mathrm{m}$
c) total open storage area: $57,248 \mathrm{sq} . \mathrm{m}$

The Tarahan coal port which is located just to the south of Panjang port, is operated by the coal company and handles only coal. The volume handled at this port is about 2.5 million tons per year. This coal is transported to the Suralaya power plant, located some 60 sea miles to the east on the Java shore of the Sunda Strait, by two ships used only for this route. There is an elaborate coal processing station at Tarahan.

2) River Transportation

River transportation is used in Jambi, South Sumatra and Lampung provinces. Most of the facilities at these ports consist of small wooden wharves or pontoon docks. In many areas, as road and bridges are built, traffic has shifted from river to road resulting in the reduction or discontinuation of service on some river routes.

In Jambi province, Jambi city is the hub of a system of 8 routes. Recorded passenger traffic in the province has fallen from 300,000 in 1988 to 175,000 in 1990, while cargo amounted to 130,000 tons last year. In South Sumatra, only four routes are operated, two including Palembang, and volume is substantially higher than in Jambi: 358,000 passengers in 1990, and 531,000 tons of cargo. There is a clear trend of decline since 1986 (Figure 7.1.14). In Lampung, there is scrvice along the Mesuji and Tulang Bawang rivers in the northeast corner of the province, and traffic is the lightest in the Region, 75,000 passengers and 102,000 tons of freight in 1990. Figures 7.1.13 to 7.1.15 show river traffic volumes for each of these provinces.

3) Ferry Services

The southern part of Sumatra has three ferry routes, Palembang to Kayu Arang (Bangka Island), Pangkal Balam (Bangka Island) to Tanjung Pandan (Belitung Island), and Bakauheni (Sumatra) to Merak (Java). Traffic on these routes has increased steadily. Figures 7.1.16 to 7.1.18 show the volumes on these routes. They also are marked on Figure 7.1.1.

Palembang - Kayu Arang. This route is one of the regional trunk routes and has substantial potential for growth with South Sumatra as its hinterland. The existing scheduled route of this service connects Palembang with Kayu Arang which is located on the Jering River about 20 km upstream from its mouth. At low tide it is sometimes difficult to enter or exit the mouth of the river because of shallow water conditions. Therefore, often the ferry is forced to divert to Muntok which is located on the coast, but which lacks proper docking facilities. Recently, the loading bridge at Kayu Arang was recently damaged and has not been operable.

The existing main facilities for the ferry terminal at Palembang include a pontoon dock with 3 m waterdepth, terminal building and parking space. Traffic on the route has shown growth since 1986. Recently a daily fast boast service for passengers between Palembang and Muntok (Bangka) was started linking the two points in 3 hours. The service has been increased to 3 departures daily and has proven to be popular.

Bangka - Belitung. The route between these two islands connects two river ports on these islands, which do not have ideal conditions. Pangkal Balam (Bangka) is a river port lying 6 km upriver from he estuary of the Mentawang River. Tg Pandan (Belitung) has a sea port that lies at the estuary of the Cerucup river. The total berth length at Pangkal Balam is 188 m with a 3.5 m water depth. Here there is a problem of sedimentation at the

Figure 7.1.13 River Tramsportaion in hambi browince

Figure 7.1 .14 River Transpotiation in South Sumatra Province

Figure 7.1.15 River Transportation in Lampung Province

Figure 7.1.16 Ferry Tramsportation Patembang Kay" Arang

Figare 7.1.17 Ferry Transportation Bangka Lshand/ranjung Pandan

Figure 7.1.18 Ferry Tramsportation Bakauhuni/Merak

[^0]: *Source: RePPProt 1988 (Catchment Area : GPMA)

[^1]: source

 - Repelitas

[^2]: Source: Various Perumka documents, Land Transport Development Plan Phase II Technical Appendix 1B Vol 3 (March 1992)

