
OVER BRIDGE(1) W=6m

1. Shape and size

2. Factor of section

Shape	$b \times h = A (m^2)$	y (m)	Ay (m³)	$I_0 = Ay^2 + \frac{bh^3}{12} (m^4)$
	$7.20 \times 0.20 = 1.440$	0.100	0.144	0.0192
	$0.60 \times 0.80 \times 3$ = 1.440	0.600	0.864	0.5952
Σ	2.880		1.008	0.6144

$$\overline{y} = \frac{\sum A y}{\sum A} = \frac{1.008}{2.880} = 0.350^{\text{m}}$$

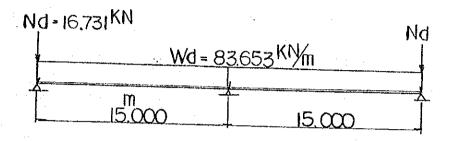
$$I = I_0 - \sum A \cdot \overline{y}^2 = 0.6144 - 2.880 \times 0.350^2 = 0.2616^{\text{m}}$$

$$E_C = 27 \text{ KN/mm}^2 = 2.7 \times 10^7 \text{ KN/m}^2$$

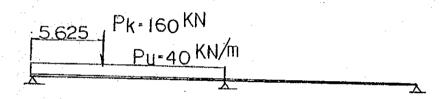
No. ① VEHICLE BRIDGE

- 3. Load
 - 1) Dead load

pave :
$$22.6 \times \frac{0.05+0.095}{2} \times 6.0$$
 = 9.831 kN/m
con : $23.6 \times 7.2 \times 0.20$ = 33.984 kN/m
: $23.6 \times (1.10 \times 0.15+0.60 \times 0.15 \times 2)$ = 3.894 kN/m
: $23.6 \times 0.60 \times 0.80 \times 3$ = 33.984 kN/m
guard rall: 0.980×2 = 1.960 kN/m
 ωd : = 83.653 kN/m


- 2) Live load (HA-load)
- a) loaded strength

b) Loaded of all width


For U.D.L
$$P_u = 30.0 \times 2^{1 \text{ane}} \times 2/3 = 40^{\text{KN/m}}$$

For K.E.L $P_{\kappa} = 120^{\text{KN/m}} \times 2/3 = 160^{\text{KN/m}}$

3) Loaded figure


case-1

case-2

case-3

0
EXCHANG
) BE
DIMENSIONA
TH
NOTE:

	INTO THIS CALCULATION
	CALC
	THIS
	OLVI
	N(KN)
4	DIMENSION(KN)!
	<u>≥</u>

NOISION		
NOTE: THE DIMENSION DIMENSION(KN)INTO	EPS 1.20E-05 1.20E-05	
0 E	 	
	E (t/m2) 2.70E+07 2.70E+07	
	L (m) 15.000 15.000	
	I - J Pin - Fix Fix - Pin	M(tm/Rad) Free Free Free
(m) 0.0000 0.0000	I (m4) I - J 0.261600 Pin - Fix 0.261600 Fix - Pin	Y (t/m) Fix Fix Fix
0000 0000 0000	J A (m2) 2.88000 3.2.88000	X (t/m) Free Fix Free
3 2 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	# H N	N 8
	0 H M	
	and the second s	

										,				
-				. :										
	Pj (t/m)	- 83.653 - 83.653			. 1		Pj (t/m)	-40.000		:		Pj (t/m)	-40.000	
	Pi (t/m)	-16.731 -16.731 -83.653 -83.653					Pi (t/m)	-160.000				Pi (t/m)	-160.000 -40.000 -40.000	
	Lo (m)	15.000					Lo (m)	15.000	0.0		·* .	Lo (m)	15.000	~ ~
	Li (m)	0.001 14.999 0.000 0.000	-2543.052 (t) 0.000 (t)		Load	. 1	Li (m)	5.625	-760.000 (t) 0.000 (t)	LOAD		Li (m)	9.375	-1360.000 (t)
		•	N N + H + H		: HA Lo				» π » π	 H &				N K
					No.		i.			, o				
	Ţ	1111	1 (1) M		•	•	î	2.2		٠		1	2112	
	o N	- 01 - 1 0			÷.		No	ਜ਼ ਜ਼			-	No	ललाठा .	
				100								•	:	

C-No No 1

N N

.. oN

					•		
ROTA.(mmRad)	0.0000		·	RM (tm)	0.0000000000000000000000000000000000000		
3 Y-DIS.(mm)	0.00000		:	3 RY (t)	269.766 880.469 209.766		
Case. X-Dis.(mm)	0.00000			Case. RX (t)	0.0000		
2 Y-DIS.(mm) ROTA.(mmRad)	0.00000	ROTA. (mmRad)	0.00000 0.34317 0.00000	RM (tm)	0000	RM (tm)	000000000000000000000000000000000000000
2 Y-DIS.(mm)	0.00000	s Y-DIS.(mm)	0.00000	2 RY (t)	349.609 460.781 -50.391	5 RY (1)	1117.560 3617.300 1018.560
Case. X-DIS.(mm)	000000.0	Case. X-DIS.(mm)	000000000000000000000000000000000000000	Case. RX (t)	0.000	Case. RX (t)	0.000
ROTA.(mmRad)	0.00000	ROTA.(mmRad)	0.00000 0.00000	RM (tm)	000000000000000000000000000000000000000	RM (tm)	0000.0
Y-DIS.(mm) ROTA.	0.00000	4 Y-DIS.(mm)	0.00000	1 RY (t)	487.277 1568.500 487.277	4 RY (t)	1249.300 2924.810 589.298
Case. X-DIS.(mm)	0.00000	Case. X-DIS.(mm)	0.00000	Case. RX (t)	000000000000000000000000000000000000000	Case. RX (t)	000.0
No.	35.	No.	- d d	No.	3	No.	– თ თ

	N C	000.0	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4D	S (t)	269.766	194.766	119.766	44.765	-30.234	-105.234	-340.234	-415.234	-490.234	390.234	315.234	240.234	165.234	90.234	15.234	-59.766	-134.756	-209.766
Case 3 HA LOAD	X (tm)	000.0	435.498	730.371	884.619	898.242	771.240	203.613	-504.639	-1353.516	-1353.516	-692.139	-171.387	208.740	448.242	547.119	505.371	322.998	0.000
•	N Ct)	0.000	0.000	0.000	0000	00000	0000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.00	000.0
	S (t)	349.609	274.609	199.609	124.609	-110,391	-185,391	-260.391	-335,391	-410.391	50.391	50.391	50,391	50.391	50,391	50,391	50.391	50.391	50.391
Case 2 HA Loa	M (tm)	000.0	585.205	1029.785	1333.740	1197.070	919.775	501.855	-56.689	-755.859	-755,859	-661.377	-566.895	-472.412	-377.930	-283.447	-188.965	-94.482	0.000
O	(2) N	0.000	0.000	0.000	00000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0,000	000.0
load	\$ (‡)	487.277	313.697	156.848	-0.002	-156.851	-313.700	-470.550	-627,399	-784.249	784,249	627.399	470.550	313.700	156.851	0.002	-156.848	-313.697	-487.277
Case 1 Dead load	M (tm)	0.000	735.245	1176.381	1323.424	1176.374	735.232	-0.002	-1029.329	-2352.749	-2352.749	-1029.329	-0.002	735.232	1176.374	1323.424	1176.381	735.245	0.000
ວັ	L(m)	0.00.0	1.875	3.750	5.625	7.500	9.375	11.250	13.125	15.000	0.000	1.875	3.750	5.625	7.500	9.375	11.250	13.125	15.000
	No.	2-2	. *	%	*	*	بن *	ω *	ر *	2- 1	ر د	 *	<> *	"	*	₩	·9 *	*	3- 2

ω.

1726,150 1385,948 1045,745 105,543 365,341 -315,139 -655,265 1018,556

PICK-UP No.

	N (t)	00000	0.000	0.000	00000	000.0	0.000	0000	000.0	0.000	0.000	00000	0.000	0.000	0.000	0000	0.000	0.000	00000
M. MINIMOM	(+)	1249.298	754.265	414.063	73.861	-266.341	-606.543	-1210.745	-1550.948	-1891.150	1726.150	1385.948	732.503	516.051	299.599	83.147	-133,305	-349,757	-589.298
.	M (tm)	000.0	1733.210	2828.518	3285.947	3105.496	2287.167	335 959	-2253.128	-5480.094	-5480.094	-2562.503	-935.379	235.141	999,813	1358.637	1311.613	858.742	0.000
	Case	ე 4	- S	- - -			ທ - ວ	- - 2	C- 2	۲- ت	C- 5	C- 22	۲. 4	C- 4	0-1-0 4	C- 4	Ç. 4	C- 4	-5
	N (£)	00000	0.000	0.000	000.0	0.000	0.000	000.0	0.000	0.000	0.000	000.0	00000	000.0	0.000	0.000	0.000	0.000	00000
W. WAX. MUN	s Œ	1249.298	886,007	545.805	205,603	-398.599	-738.801	-1079.003	-1419.205	-1759.408	1165.408	948.955	1045,745	705.543	365.341	25.139	-315.063	-655.265	-589.298
· Ivi	M (tm)	00000	1980.227	3322.551	4026.996	3598.563	2532.250	828.059	-1514.012	-4493.962	-4493.962	-2511.746	-282.791	1359.042	2362.996	2729.072	2457.268	1547.585	0.000
	Case	? 4	Ω 4	ე -	۲- 4	ი -	٠- 4		- - -	C- 4	- 4								
	(m)	00000		•	•	•	•	11,250	•	15.000	0.000	1.875	3.750	5.625	7.500	9.375	11.250	13.125	15.000
	No.	2 - 1	*	c) *	ب	₹	ъ *	ა *	(~	1 -1	က ၊ ၃	*	c) *	ო *	च *	w *	9	· · ·	3 - 2

	1
	۱
	٠
	-
	î
	1
	•
	,
	٠
	4
	ı

		2.,																		
	S. MINIMUM	S (t)	1117.556	754.265	414.063	73.861	-398.599	-738.801	-1210.745	-1550.948	-1891.150	1165.408	948.955	732.503	516.051	299.599	25.139	-315.063	-655,265	-1018,556
	ů.	M (tm)	0.000	1733,210	2828.518	3285.947	3598.563	2532.250	335,959	-2253,128	-5480.094	-4493,962	-2511.746	-935,379	235.141	999.813	2729.072	2457.268	1547,585	00000
		Case	ပ်		Ω 10			٠ <u>٠</u>	ر د د د	ပ္	ე -	۲. 4	 4	C- 4	C- 4		ပ -	ပ္	را دا	ဂ က အ
	14	N (t)	000.0	0.000	0.000	0000	0,000	0.000	00000	00000	0.000	0.000	0.000	0.000	0.000	00000	0.000	0.000	0.000	000.0
	S. MAXIMUM	s (t)	1249.298		545.805	205,603	-266.341	-606.543	~1079.003	-1419.205	-1759.408	1726.150	1385.948	1045.745	705.543	365.341	83.147	-133.305	-349.757	-589.298
FICK-UP No. 1 *	Ś	M (tm)	0.000	1980.227	3322.551	4026.996	3105.496	2287.167	828.059	-1514,012	-4493.962	-5480.094	-2562,503	~282.791	1359.042	2362.996	1358.637	1311.613	858.742	0.000
FICK-C		Case	C- 4	C-7	C 4	C 4	C- 2	C- 5	C- 4	C 4	C- 4	ი - ა	C- 52	C- 2	ى ئ	က် အ	0 -4	C- 4	-5 4	C- 4
1		(m)	000.0	1.875	75	5.625	7.500	37	25	13.125	15.000	0.000	1.875	3.750	θ.	7.500	9.375	4	13,125	15.000
		No.	1 - 13	→	رن *	ю *	*	w *	φ *	*	2 - 1	(C)	*	*	ന *	*	₩	φ *	!~	3 - 2

PICK-UP No. 1

	N (t)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	000.0	00000	0000	000.0	000.0	0.00	0.000
N. MINIMUM	S (t)	1249.298	886.007	545,805	205.603	-398,599	~738.801	-1079.003	-1419.205	-1759.408	1165.408	948.955	732.503	516,051	299,599	83,147	-133.305	-349.757	-589.298
N	M (tm)	00000	1980.227	3322.551	4026:996	3598.863	2532,250	828,059	-1514.012	-4493.962	-4493.962	-2511.746	-935.379	235.141	999.813	1358.637	1311.613	858.742	0.000
	Case	٠ - 4	- - - 4	C- 4	- 4 - 7	- <u>7</u>	C- 4	C 7	ր 4	ი -	4	C- 4	C- 4	Ω - 7	Q-1-7	Q0	-	C- 4	Q
	N (£)	0.00.0	000.0	0.000	0.000	0.000	0.000	0.000	000.0	00000	0.000	0.000	000.0	0.000	0.000	0.000	0.00.0	0.000	000.0
N. MAXIMUM	S (t)	1249.298	886.007	545.805	205.603	-398.599	-738.801	-1079.003	-1419.205	-1759.408	1165.408	948,955	732.503	516.051	299,599	83.147	-133.305	-349.757	-589.298
Z	M (tm)	0.000	1980.227	3322,551	4026.996	3598.563	2532,250	828.059	-1514.012	-4493.962	-4493.962	-2511.746	-935.379	235.141	999.813	1358.637	1311.613	858.742	0.000
	Case	-5 -4	C- 4	۲- ۲-	-O -4	Դ 	? 4	C- 4	۲. 4.	C- 4	- - 4	C- 4	۲- 4			C- 4			-D
	(m) 1	-	1.875		5.625	ı.	r,	11.250	3.7	٠.	000:0	.87	3.750	.62	.50	.37	23.55	ë	15.000
	No.	1 - 2	**	۰۵ *	რ *	**	ιΩ *	ب *	· *	2 - 1	1 2 3	*	€1 *	₩ *	*	₩ *	₩	*	3 - 2

Calculation for bending moment

middle span

b =
$$250^{\text{cm}}$$
, (b_o=60) h=100 d=87.5 d'=12.5
Mu. max = $4027.0/3 \times 1.05 = 1410.0$ KNm/Girder
As = $\begin{pmatrix} Y_{32} - 4^{\text{NO}} = 8.042 \times 4 \\ Y_{25} - 4^{\text{NO}} = 4.909 \times 4 \end{pmatrix} = 51.804 \text{ cm}^2$
 $\chi = \frac{0.87 \times 41000 \times 51.804}{0.40 \times 3000 \times 250} = 8.6^{\text{cm}}$
Z = $87.5 - \frac{8.6}{2} = 83.2^{\text{cm}} \le 0.95 \times 87.5 = 83.2^{\text{cm}}$

 $M_{RS} = 0.87 \times 41000 \times 51.804 \times 83.2 \times 10^{-5} = 1537.4^{KNm} > Mu = 1410.0^{NNm}$ $M_{BC} = 0.40 \times 3000 \times 250 \times 8.6 \times 83.2 \times 10^{-5} = 2146.5^{KNm} > Mu = 1410.0^{Nm}$

middle fulcrum

b =
$$60^{\text{cm}}$$
 h= 100 d= 88.5 d'= 11.5

Mu.min= $-5480.1/3 \times 1.05 = 1918.1$ KN/m

As = $\left(\begin{array}{c} Y_{12} - 4^{\text{NO}} = 1.131 \times 4 \\ Y_{32} - 4^{\text{NO}} \times 2 = 8.042 \times 8 \end{array}\right) = 68.860 \text{ cm}^2$

As '= $Y_{32} - 4^{\text{NO}} \times 2 = 8.042 \times 4^{\text{NO}} = 32.168 \text{ cm}^2$
 $\chi = \frac{(0.87 \times 68.860 - 0.72 \times 32.168) \times 41000}{0.40 \times 3000 \times 60} = 20.8 \text{ cm}$
 $Z = 88.5 - \frac{20.8}{2} = 78.1^{\text{cm}} \le 0.95 \times 88.5 = 84.1^{\text{cm}}$ OK

 $M_{RS} = 0.87 \times 41000 \times 68.860 \times 78.1 \times 10^{-5} = 1918.3^{KNm} > Mu = 1918.1^{NNm}$ $M_{RC} = (0.72 \times 41000 \times 32.168 \times 81.0 + 0.40 \times 3000 \times 60 \times 20.8 \times 78.1)$ $\times 10^{-6} = 1938.8^{\text{KNm}} > \text{Mu} = 1918.1^{\text{NNm}}$

OK

OK

Calculation for shearing force

 $Su.max = 886.0/3 \times 1.10 = 324.9 \text{ KN/Girder}$ Edge support Su.min $= -1551.0/3 \times 1.10 = 568.7$ KN/Girder middle Support the shearing bar is arrange same at No2 vehicle bridge.

Calculation of deck slab for No. () Vehicle bridge (U.L.S)

1. Span and bending moment

a) Span
$$\ell = (2.200 - 0.60) = 1.600^{m}$$

b) moment of middle span :

$$M = \left\{ \begin{array}{ll} 0.8 \, (0.12 \, \ell + 0.07) & P \times^2/_3 + \frac{1}{10} \omega \, d \, \ell^2 \, \right\} \times 1.5 \times 1.1 \\ &= \left\{ \begin{array}{ll} 0.8 \, (0.12 \times 1.60 + 0.07) & \times 100 & \times^2/_3 + \frac{1}{10} \times 4.72 \times 1.60^2 \, \right\} \times 1.5 \times 1.1 \\ &= 25.1^{\text{KNm/m}} \end{array} \right\}$$

c) moment of each fulcrum :

$$M = \left\{ (0.15 \ \text{ℓ} + 0.125) \ \text{$P + \frac{1}{10} \omega d \ \ell^2$} \right\} \times 1.5 \times 1.1$$

$$= \left\{ (0.15 \times 1.60 + 0.125) \times 100 \times \frac{2}{3} + \frac{1}{10} \times 4.72 \times 1.60^2 \right\} \times 1.5 \times 1.1$$

$$= 44.1^{\text{KNM/M}}$$

2. Calculation of stress

a) middle span
$$b = 100^{cm}$$
 $h = 200$ $d = 15.0$ $d' = 5.0$

$$As = Y_{12} - 200^{c+c} = 1.131/0.200 = 5.655 \text{ cm}^2$$

$$P = \frac{5.655}{100 \times 15.0} \times 100 = 0.377 \%$$

$$x = \frac{0.87 \times 41000 \times 5.655}{0.40 \times 3000 \times 100} = 1.6^{cm}$$

$$Z = 15.0 - \frac{1}{2} \times 1.6 = 14.2^{cm} < 0.95 \times 15.0 = 14.3^{cm}$$

$$M_{RS} = 0.87 \times 41000 \times 5.655 \times 14.2 \times 10^{-5} = 28.6^{\text{KNm}} > 25.1^{\text{KNm}}$$

 $M_{RC} = 0.40 \times 3000 \times 100 \times 1.6 \times 14.2 \times 10^{-5} = 27.3^{\text{KNm}} > 25.1^{\text{KNm}}$

b) each fulcrum
$$b = 100^{cm}$$
 $h = 20$ $d = 16.0$ $d' = 4.0$

$$As = Y_{16} - 200^{ctc} = 2.011/0.200 = 10.055 \text{ cm}^2$$

$$P = \frac{10.055}{100 \times 16.0} \times 100 = 0.628 \%$$

$$X = \frac{0.87 \times 41000 \times 10.550}{0.40 \times 3000 \times 100} = 3.2^{\circ n}$$

$$Z = 16.0 - \frac{1}{2} \times 3.2 = 14.4^{cm} < 0.95 \times 16.0 = 15.2^{cm}$$

$$M_{RS} = 0.87 \times 41000 \times 10.055 \times 14.4 \times 10^{-5} = 51.6^{KNm} > 44.1^{KNm}$$

$$M_{RC} = 0.40 \times 3000 \times 100 \times 3.2 \times 14.4 \times 10^{-5} = 55.3^{KNm} > 44.1^{KNm}$$
 OK

Calculation of Shoe

Girder-edge and Parapet face of abutment 1) quantity of expantion between

```
(0,80 (+50)""!
                                                                    for temperature : dt = a \times T \times L = (1.0 \times 10^{-5} \times 15.0 \times L)^{11} = (0.150 \times L)^{11111}
for shrinkage : ds = a \times T \times L \times D = (10 \times 10^{-5} \times 200 \times L \times 0.8) = (0.150 \times L)^{11111}
for creep : dc = \frac{P}{E \times A} \times \Phi \times L \times D = \frac{750}{27 \times 10^{6}} \times 1.9 \times L \times 0.8 = (0.430 \times L)^{11111}
_quantity_of expantion or shrinkage (maximum)
                                                                                                                                                                                                                                                                                                                    tor other
```

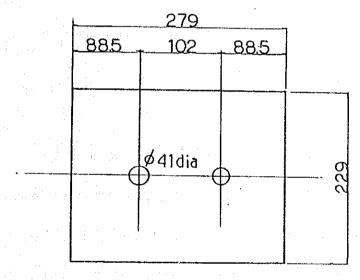
-coefficient of thermal expantion or shrinkage -quantity of temperature variance -girder length -coefficient of decrease fcu = strength of concrete (30 Minn²) =0.5 fcu /2 =0.5×300/2 = young's modulus -creep.factor

NO ① Vehicle bridge calculation of shoe

edge fulcrum Rd =
$$487.3 \times 3 \times 1.1$$

$$RL = 349.7 / 3 \times 1.1$$

= 178.7 KN/choe


= 128.3

$$Rmax = 307.0$$

 $dL = (0.80L + 5) = (0.80 \times 15.0 + 5) = 17 \text{ mm}$

middle fulcrum Rd = $1568.5 / 3 \times 1.1$

(Fix) RL =
$$880.5 / 3 \times 1.1$$

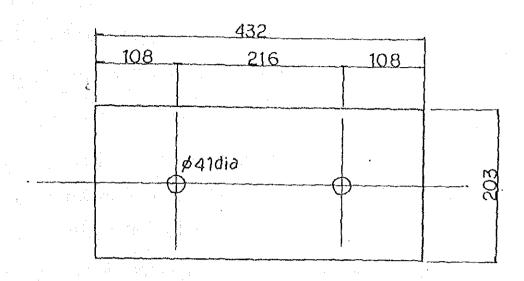
1) edge fulcrum (mov) shoe = $b \times a \times t = 279 \text{ mm} \times 229 \times 37$ (A₁, A₂)

vertical pressure

$$AS = 27.9 \times 22.9 - \frac{\pi}{4} \times 4.1^2 \times 2 = 612.5 \text{ cm}^2$$

$$VC = \frac{R \text{ max}}{As} = \frac{307.0 \times 10^3}{612.5} = 510 \text{ N/cm}^2 < Vca = 800 \text{ N/cm}^2$$

Dotel bar ϕ 20 mm \times 500 mm \times 2


$$Ab = \frac{\pi}{A} \times 2.0^2 \times 2 = 6.283 \text{ cm}^2$$

 $Hd = 178.7 \times 0.15$ = 26.8 KN/choe --- temperaature state shearing stress

$$\tau s = \frac{1.48 \text{ Hd}}{\text{Ab}} = \frac{1.43 \times 26.8 \times 10^3}{6.283} = 6100 \text{ N/cm}^2 < 9000 \text{ N/cm}^2$$

anchor cap $----\phi 80 \,\mathrm{mm} \times 250 \,\mathrm{mm} \times 2 \,\mathrm{NO/shoe}$

2) middle fulcrum (Fix) shoe: $b \times a \times t = 432 \text{ mm} \times 203 \times 18$

Vertical pressure

$$AS = 43.2 \times 20.3 - \frac{\pi}{4} \times 4.1^2 \times 2 = 850.5 \text{ cm}^2$$

$$VC = \frac{Rmax}{AC} = \frac{898.0}{850.5} = 1060 \text{ N/cm}^2 ÷ Vca = 1600 \text{ N/cm}^2$$

Dowal bar ϕ 40 mm \times 900 mm \times 2 NO/shoe

$$Ab = \frac{\pi}{4} \times 4.0^2 \times 2 = 25.133 \text{ cm}^2$$

Hd = $(178.7 \times 2 + 575.2) \times 0.1$ = 93.3 KN/choe seismic state shearing stress

$$\tau s = \frac{1.65 \text{Hd}}{\text{Ab}} = \frac{1.65 \times 93.3 \times 10^3}{25.133} = 6200 \text{ N/cm}^2 < 9000 \text{ N/cm}^2$$

anchor cap ---- \$50mm × 450mm × 2 NO/shoe

No. ① VEHICLE -Substructure

- 1. Reaction from superstructure
 - 1) For ABUT (Movable) ... S.L.S

For all width of Abut (B=7.200m)

dead load Rd = 487.3 KN/Abut

live load R @ = 349.7 KN/Abut

total R = 837.0 KN/Abut

For Unit width of Abut

(1) For Vertical load

$$Rd = \frac{1}{7.20} \times 487.3 = 67.678 \text{ km/m}$$

$$R \ell = \frac{1}{7.20} \times 349.7 = 48.557 \text{ kN/m}$$

$$R = = 116.235 \text{ kN/m}$$

(2) For Horizontal force for temperature or seismic.

$$H_T = H_D = 67.678 \times 0.15 = 10.152 \text{ km/m}$$

- 2) For Pier (Fixed) ··· S.L.S
 - (1) For Vertical load

dead load Rd = 1568.5 KN

live load $R \ell = 880.5$ KN

total R = 2449.0 KN

- (2) For Horizontal load
 - a) Longitudinal direction

braking load: $H_8 = (8 \cdot L + 200) \frac{2}{3} = (8 \times 30.0 + 200) \frac{2}{3} = 293.4$ KN

seismic load : $H_D = (2 \times 487.3 + 1568.5) \times 0.10 = 254.3$ KM

b) Crossing direction

Skidding load: Hs = $250 \times \frac{2}{3}$ = 166.7 KN

seismic load : $H_D = 1568.5 \times 0.10$ = 156.9 KN

	1
	7
4	×
	2
FILE	=
7	ă
	4
4	Ţ
ુ ર	ı,
U	4
_	2
Ł	j
Ξ	-
VEHICLE	•
G	3
5	7
٦,	
٠.	
_	•
ģ	,
C	•
1	:
	-
×	
*	

				* CONTRACTOR AND	77	T ABU I	4		REACTION OF DEAD LOAD	B.
· · · ·	í	i	. į						A STATE FORD	AD.
Ê	Ŋ	T T	لد	(1) SHAPE AND SIZE	SIS	Щ			HORIZONTAL FORCE FOR	H
:	НО	# OH	-	9.500 (m)	æ	OR	Н	5.000 (m)	TEMPERATURE. SEISMIC	H
	Ŧ	n	•	. I.200 (m)	(E)	. 31	. II	· 1.500 (m)		
	H2			0.000 (m)	(E)	B2	H	· 1.100 (m)	SITUATION OF REACTION	RX
	#	u	-	0.000 (m)	(m)	B3	n	<0.300 (m)	AND HORIZONTAL FORCE	> œ
	H.4	ti .		7.500 (m)	(m)	B4	Ħ	2.400 (m)		9
	H2	, n		0.000 (m)	(E)	83 53	H	, 0.800 (m)		90
	9H	n	-	0.800 (m)	(E)	9 80	11	0.000 (m)		ЖH
	BW1	. 11		1.000 (m)	(m)	RUI	ıt	0.500 (m)	SEISMIC COEFFICIENT	KHS
	B#2	. 11		1.000 (m)	(H)	HU2	н	0.500 (m)		
	I.	n	•	HW1 = .0.500 (m)	(E)				UNIT VOLUME WEIGHTS	
	HW2	D		HW2 = 0.500 (m)	(E)					GAMC =

NOTE: THE DIMENSION(t)BE EXCHANG TO

DIMENSION(KN)INTO THIS CALCULATION

REACTION OF DEAD LOAD	BL	B	48.557 (t)	£
LIVE LOAD	E.	e a	67.678 (t)	£)
HORIZONTAL FORCE FOR	Ŧ	p.	10.152 (1)	(E)
TEMPERATURE.SEISMIC	H	n	10.152 (t)	(1)
SITUATION OF REACTION	RX	н	0.250 (m)	(m)
AND HORIZONTAL FORCE	<u>%</u>	11	0.100 (m)	(m)
	9.	n	34.300	34.300 (t/m^2)
	90	11	000.0	0.000 (t/m^2)
	KH	Ħ	0.10	
SEISMIC COEFFICIENT	KHS	11	00.0	
UNIT VOLUME WEIGHTS	. A C	1	- 0 6	,
FOR BACK TELL	GAM1		19.600 (t/m^3)	(t/m/3)
(UNDER WATER)	GAM1S	н	10.800 (t/m^3)	(1/m/3)
INTERNALFRICTIONANGLEFAL	FAL	11	35.000 (*)	•
FOR ABOVE TOE SLAB	GAM2	H	18.600 (t/m^3)	(t/m^3)
<pre></pre>	GAM2S	II	9.800 (t/m^3)	(t/m^3)
FOR WATER	WATS		9.800 (t/m^3)	(t/m^3)

FOR FOUNDATION GROUND

COHESIVE DOWER

FRICTION FACTER

ALLOWABLE PRESSURE

FOR CONTRACTOR CONTRACT

CALCULATION OF WEIGHT AND FORCE OR LOAD

5	V(t)	H(t)	(m) X	l Y(m)	l MX(t·m)	MY(t·m)
- 40	8.496 134.700 94.400	0.850 19.470 9.440	19.470 2.050 9.440 2.500 l	8.900 4.550 0.400	20.815 399.135 236.000	7.561 88.589 3.776
23	297.596	29.760			655.950	ľ

V = X*Y*BW*GAM1 MX = V*X

(2) EARTH a) BACK FILLING

S	V(t)	H(t)	(m)X	Х(m)	MX(t·m)	MY(t·m)
H 4	56.448 352.800	5.645	3.800	8.900	214.502	50.239 1 160.524
	+					
レント	409.248	40.925	:		0.0000000000000000000000000000000000000	010 769

* SURCHAGE OF TOE SLAB

No.	V(t)	H(t)	(m) X	Y(m)	MX(t·m)	MY(t·m)
9	13.950	0.000	0.750	1.050	10.463	0.000
23	13.950	0.000			10.463	0.000

V = X*Y*BW*GAMI MX = V*X

(3) REACTION

r	T
RMY(t·m)	0.000 85.277 85.277
RMX(t.m)	238.282 238.282 138.740
RH(t)	0.000 10.152 10.152
RV(t)	116.235 116.235 67.678
STATE	ORDINARY TEMPERA SFISMIC

RMX= RV*X

RMY= RH*Y

(4) EARTH PRESSURE FACTOR

	ORDINAR	Y OR 1PERAURE	SEISM	2
SIN (8) COS (8)	0.2497 0.5736 0.8192	0.2508 0.2022 0.9793	0.3056 0.3007 0.9537	0.3277 0.0000 1.0000

(5) EARTH PRESSURE

	() ()	H(t)	X(m)	Y(m)	MX(t-m) MY(t-m)	MY(t.m)
	46.672	66.655	5.000		233.369	216 6191
	126.682	1 180.921	5.000		633 4111	110.070
	94.384	134.794	5 000		471 019	175.276
,	31.234	44.606	5.000	0.641	156.1681	28.5901
	81.271	257.758	0000			
	60.550	192.040	2000	4.033	200.003	816.2331
	20.037	63.550	5.000	0.641	100 1871	74.002
	,		•	•		

(6) BUOYANCY

	V(t)	H(t)	X(m)	Y(m)	MX(t·m)	MY(t-m)
- 	92.610	0.000	0.000 3.650	0.000	338.027	0.000
	-61.750	0.0001 2.496	2.496	0.0001	154.128	0.0001

TOTAL OF ACTION FORCE

1. EXCLUDE BUOYANCY

(1) ORDINARY.... FOR FOUNDATION

OAD	l va	l H(t)	MX(t-m)	MY(t-m)
~~ ~~	297.596 409.248	0.000	655.950 1555.140	0.000
				316.612
	126.682	1 180.921	633.411	572.917
				0000
ר כ		000.0		000.0
C 7		0.000		0.000
TOTAL	1102.990	247.576	3664.640	889.529

 $4 \text{ Mo} = \Sigma MX - \Sigma MY = 2775.110 (t·m)$

(2) ORDINARY FOR INVERSION OR SLIDE

	V(t)	H(t)	MX(t·m)	MY(t·m)
SAME 1(1)	297.596 1	0.000	655.950 1555.140	0.000
	46.672	66.655	233.362	316.612
	126.682	180.921	633.411	572.917
	67.678	000.0	138.740	000.0
	13.950	0.000	10.463	0.000
	961.827	247.576	3227.070	889.529

 $Mo = \Sigma MX - \Sigma MY = 2337.540 (t.m)$

(3) TEMPERATURE...FOR FOUNDATION

	j v(t)	H(t)	MX(t-m)	MY(t-m)
SAME	297.596	0.000	655.950	0.000
13	46.672 126.682 116.235 92.610 13.950	66.655 180.921 10.152 0.000	233.362 633.411 238.282 338.027 10.463	316.612 572.917 85.277 0.000
	1102.990	257.728	3664.640	974.806

 $4 \text{ MO} = \Sigma MX - \Sigma MY = 2689.830 (t·m)$

(4) TEMPERATURE ... INVERSION OR SLIDE

	VCE	H(t)	MX(t-m)	MY(t-m)
SAME	297.596	0.000	655.950	0.000
	126.682	66.655	233.362	316.612
	67.678 13.950	10.152	138.740	85.277 0.000
	961.827	257.728	3227.070	974.806

 $MO = \Sigma MX - \Sigma MY = 2252.260 (t.)$

(S) SEISMIC

	V(t)	H(t)	MX(t·m)	MY(t-m)
SAME	297.596	29.760 40.925	655.950	99.926
9	81.271	257.758 10.152	406.353 138.740	816.233
	13.950	0.00.0	10.463	0
	869.743	338.594	2766.650 1	1212 200

J = MO = 2MX - 2MY = 1554.450 (t·m)

2-INCLUDE BUOYANGY COORDINARY

	V(-t)	H(t)	MX(t·m)	MY(t-m)
	297.596 409.248	0.000	655.950 1555.140	0.000
	46.672	65.655		
	31.234	134.794	156 168	543.568
:	ω.	0.000		0
	•	0.000	- 1	0.00
-	13.950	0.000	10.463	000.0
	-61.750	0.000	-154.128	000
	1040.180	246.055	3505.180	888.870

 $Mo = \Sigma MX - \Sigma MY = 2616.310 (t·m)$

(2) ORDINARY

l V(t)	H(t)	MX(t·m)	MY(t.m)
297.596	0.000	655.950 1	0.000
46.672	·	က်	υ.
•	134.794	ä	543.668
	44.606		φ.
•	0.000	138.740	0.00
•	0.000	-	0.000
-61.750	0.000	-154.128	00.0
899.012	246.055	3067.620	888.870

 $Mo = \Sigma MX - \Sigma MY = 2178.750 (t·m)$

(3) TEMPERATURE

	V(t)	H(t)	MX(t·m)	MY(t-m)
	297.596	0.000	655.950	200
	409.248	0.000	1555.140	0000
	46.672	66.655	233.362	216.61
-	94.384		471.918	543.668
		1 44.606 1	156,168	28.59
•		1 10.152	238.282	85.277
		1 000.0	338.027 1	0.00
	Q.	000.0	10.463	000.0
	-61.750	000.0	-154.128	0.000
	1040.180	256.207	3505.180	974.147

 $Mo = \Sigma MX - \Sigma MY = 2531.040 (t·m)$

· TEMPERATURE

V(t)	H(t)	MX(t·m)	MY(t-m)
1 297.596	0.000	655.950	0.000
 409.248	000.0	55.1	000.0
ဖ			36
94.384	134.794	71.9	543.668
_;		56.1	00
7		α,	u
		10.4	0
-		4	0.000
899.012	256.207	3067.620	974 147

 $Mo = \Sigma MX - \Sigma MY = 2093.470 (t·m)$

5) SEI SMIC

VCt)	H(t)	MX(t-m)	MY(t·m)
297.596 409.248	29.760 40.925	L	99.926
	192.040		774.56
 20.037 1	63.550	100.187	40.732
		138.740	85.27
		10.463	0.00
 -61.750	0.000	1 -154.128	0.00
 807.309	336.427	2609.100	1211.260

 $Mo = \Sigma MX - \Sigma MY = 1397.850 (t·m)$

TOTAL FORCE FOR UNDER FONDATION CENTER

LOAD	l v(t)	H(t)	Mo(8.m)	e(m)	Mc(t·m)
A					
	02.9	ហ	775 1		
2	9.195	77 67		•	٠
:	•		0./00	٠	•
יני.	02.9	57.72	589.8		
4	961.827	57.72	2252 280	α α α α α α α α α α α α α α α α α α α	. 6
u	•				•
'n	20	338.59	L)	0.713	619.906
	40.3	246	515.3	-0 015	u
67	899,012	246.055	2178 750	220.0	300
က	40.1	256		4	;
•			3	٠	'n
4.	٠,	56	093,4	•	5.6
нЭ	07.3	36	397 8	780	

e = B0/2 - Mo/V : Mc =

WHERE

A AND B.EXCLUDE OF BOUYANCY OR INCLUDE BOUYANCY

1. ORDINARY : FOR FOUNDATION

2. . FOR INVERSION OR SLIDE

3. TENPERATURE: STATE OF 1

..

5. SEISMIC

CALCULATION OF SECURITY FOR DIRECT FOUNDATION

	(m) e (m)	1 0.070 < 0.	04 0.158 < 0.8	0.713 <	1 0.077 < 0.	60 1 0.171 < 0.83	0.769 < 1.
NC	Mc(t·m)	67.0	152.30	19.9	3.7	54.0	0.4
FOR INVERSION	(v(t)	1.82	961.827	9.74	9.01	899.012	7.30
FOR		— (V.	ກ	, (Vι	ก

= Mc/V

FOR SLIDE A'(m^2) V(t) Hb(t) Hu(t) A 4.86 961.827 247.576 480.91 2 4.68 961.827 257.728 480.91 3 57 869.743 338.594 434.87 B 1 4.85 899.012 246.055 449.51 2 4.66 899.012 256.207 449.51 3 3 3 3 3 3 3 4 66 899.012 256.207 449.51 3 3 46 807.300 256.207 449.51 4 4 4 4 4 4 4 4 5 6 6 6 6 6 4 6 6 6 6 4 6 6 6 4 6 6 6 5 7 7 6 7 7 7 7 7 7 7 7 7 7	•	S.Y.		Ġ,	∞.	1.28	00	7.5	
FOR SLIDE A'(m^2) V(t) Hb(t) 1	-	Hu(t)		ĕ.	š	34.	19	49.5	
FOR SLIDE A (m^2) V(t) 1		Hb(t)		47.57	57,72	38.59	46.05	56.20	0.7
FOR SLID A (m ² 2) A	·	V(t)		61.82	61.82	69.74	99.01	99.01	00.00
	SEID	A'(m^2)	ı				α,	9	V
A W	Ō		*	C	Λi	າ ດ		~ ~	ĸ
			∢.	ن بند	·	Ω	<u>n</u>	≟≟*.	

Hu = C*A' + V*tan(φB)

Fs = Hu/Hb

FOR CONTACT PRESSURE UNDER FOUNDATION

~ ~~ ~	T	** *** *** *** *	v	
2	5.000	869.743 338.594 619.906	0.713	322.726 25.171 441.000
3	5.000	1102.990 257.728 67.653	0.061	236.835 204.362 294.000
	5.000	1102.990 247.576 -17.624	5.000	224.828 216.369 294.000
STATE	B (m) L (m)	V (t) H H (t) Mc (t-m)	x (n)	Qmax(t/m^2) Qmin(t/m^2)
	ATE 1 3	TATE 1 3 5.000 (m) 5.000 5.000 5.000 1.000	(m) 5.000 5.000 5. (m) 1.000 1.000 1. (t) 1.000 1.000 1. (t) 247.576 257.728 338. (t.m) -17.624 67.653 619.	(m) 5.000 5.000 5. (m) 1.000 1.000 1. (m) 1.000

_	NCLUDE	BOUYANCY	NCY	
လ	TATE	-	ъ	ß
ย า	(m) (m)	5.000	5.000	5.000
× H X	(t) (t) (t·m)	1040.180 246.055 -15.868	1040.180 256.207 69.409	807.309 336.427 620.428
0 X	(m) (m)	-0.015	5.000	0.769
Q Q	Qmax(t/m^2) Qmin(t/m^2)	211.844 204.227 294.000	224.694 191.378 294.000	310.365 12.559 441.000

 $Q = V/(B*L) + 6*Mc/(L*B^2)$

Q = 2*V/(L*X) : X = 3*(B0/2-Mc/V)

No. ① VEHICLE - ABUT

Calculation for Vertical wall ... U.L.S

1. Action force

(1) state of mormal road ... only earth pressure

$$M_{1} = \frac{1}{6} \times 19.6 \times 0.251 \times 8.70^{3} \times 1.5 \times 1.1 = 890.9 \text{ knm}$$

$$M_{2} = \frac{1}{2} \times 34.3 \times \frac{2}{3} \times 0.251 \times 8.70^{2} \times 1.5 \times 1.1 = 358.4 \text{ knm}$$

$$M_{U} = \frac{1}{2} \times 34.3 \times \frac{2}{3} \times 0.251 \times 8.70^{2} \times 1.5 \times 1.1 = 358.4 \text{ knm}$$

$$S_{1} = \frac{1}{2} \times 19.6 \times 0.251 \times 8.70^{2} \times 1.5 \times 1.1 = 307.2^{KN}$$

$$S_{2} = 34.3 \times \frac{2}{3} \times 19.6 \times 0.251 \times 8.70 \times 1.5 \times 1.1 = 129.9^{KN}$$

$$S_{3} = \frac{1}{2} \times 19.6 \times 0.251 \times 8.70 \times 1.5 \times 1.1 = 307.2^{KN}$$

$$= 437.1^{KN}$$

(2) State of temperature and normal load

$$Mu = 1249.3 + 10.152 \times 7.70 \times 1.3 \times 1.1 = 1361.1 \text{ KNM}$$

$$Su = 437.1 + 10.152 \times 1.3 \times 1.1 = 451.6 \text{ KN}$$

(3) State of seismic

Mu =
$$(\frac{1}{6} \times 19.6 \times 0.328 \times 8.70^3 + 10.152 \times 7.70) \times 1.35 \times 1.1 = 1293.2 \text{ KMm}$$

Su = $(\frac{1}{2} \times 19.6 \times 0.328 \times 8.70^3 + 10.152) \times 1.35 \times 1.1 = 376.4 \text{ KN}$

2. Calculation of stress

section b =
$$100^{\text{cm}}$$
 h = 110 d = 103.0 d = 7.0

As = $Y_{32} - 150^{\text{ctc}} = 8.042/0.150 = 53.613$ cm

$$P = \frac{53.613}{100 \times 103.0} \times 100 = 0.520 \%$$

$$\chi = \frac{0.87 \times 41000 \times 53.613}{0.40 \times 2500 \times 100} = 19.2^{\text{cm}}$$

$$Z = 103.0 - \frac{19.2}{2} = 93.4^{\text{cm}} < 0.95 \times 101.5 = 96.4^{\text{cm}} \text{ OK}$$

$$M_{RS} = 0.87 \times 41000 \times 53.613 \times 93.4 \times 10^{-5} = 1786.1^{\text{KNm}} > \text{Mu} = 1361.1^{\text{KNm}}$$

$$M_{RC} = 0.40 \times 2500 \times 100 \times 19.2 \times 93.4 \times 10^{-5} = 1793.3^{\text{KNm}} > \text{Mu} = 1361.1^{\text{Nm}}$$

$$V_{C} = \frac{451.6 \times 10^{3}}{100 \times 103.0} = 43.9 \text{ N/cm}^{2}$$

$$< V_{Ca} = 50.0 + 15.0 \left(\frac{0.520 - 0.50}{0.50} \right) = 50.6 \text{ N/cm}^{2}$$

$$OK$$

Calculation of stability for S.L.S.

1) action force for bottom of Foundation

state load	Normal	Temperature	Seismic
Ики	1103.0	1103.0	869.8
H KN	247.6	257.8	$\begin{array}{c} 338.6 \times 0.8 \\ = 270.9 \end{array}$
Мким	-17.7 ≑ 0	67.7	× 377.5

$$\times \left\{ \frac{5.00}{2} - (2766.7 - 1212.2 \times 0.8) / 869.8 \right\} \times 869.8 = 377.5^{\text{KN/m}}$$

2) Stability for Foundation

(1) Normal state

$$e = \frac{M}{N} = 0$$

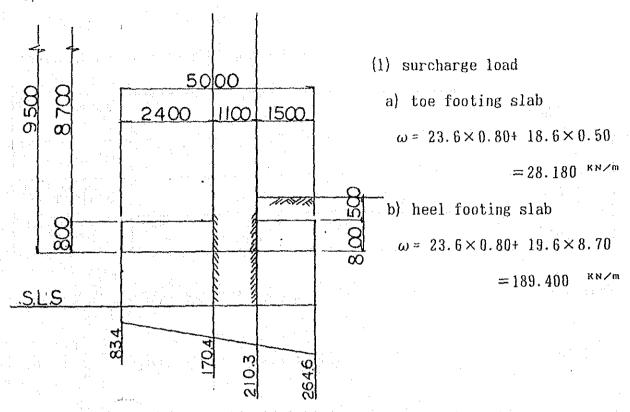
$$q = \frac{N}{B} = \frac{1103.0}{5.00} = 220.6 \text{ KN/m}^2 < qa = 300 \text{ KN/m}^2$$

$$Fs = \frac{N \cdot \mu}{H} = \frac{1103.0 \times 0.50}{247.6} = 2.2 > 1.5 \text{ OK}$$

(2) Temperature state

$$e = \frac{M}{N} \stackrel{=}{=} \frac{67.7}{1103.0} = 0.062^{m} < \frac{B}{6} = \frac{5.00}{6} = 0.833^{m}$$

$$q = \frac{N}{B} (1 \pm \frac{6e}{B}) = \frac{1103.0}{5.00} (1 \pm \frac{6 \times 0.062}{5.00}) = {237.1 \text{ KN/m}^{2} \atop 204.1 \text{ KN/m}^{2}} = qa = 300 \text{KN/m}^{2}$$


$$F_{S} = \frac{N \cdot \mu}{H} = \frac{1103.0 \times 0.50}{247.8} = 2.1 > 1.5 \qquad \text{OK}$$

(3) seismic state

$$e = \frac{M}{N} = \frac{377.5}{869.8} = 0.434^{m} < \frac{B}{6} = 0.833^{m}$$

$$q = \frac{N}{B} \left(1 \pm \frac{6e}{B}\right) = \frac{869.8}{5.00} \left(1 \pm \frac{6 \times 0.434}{5.00}\right) = \left(\frac{264.6 \text{ KN/m}^{2}}{83.4 \text{ KN/m}^{2}}\right) = \frac{869.8 \times 0.50}{270.9} = 1.6 > 1.5$$

3) Calculation of action force for each section ... seismic state

- (2) Calculation of bending moment and shearing force
 - a) toe footing slab

$$M = \frac{1.50^{2}}{6} \quad (2 \times 264.6 + 210.3) - \frac{1.50^{2}}{2} \times 28.180 = 245.6 \text{ KMm}$$

$$S = \frac{1.50}{2} \quad (264.6 + 210.3) - 1.50 \times 28.180 = 313.9 \text{ KN}$$

b) heel footing slab

$$M = \frac{2.40^2}{2} \times 189.400 - \frac{2.40^2}{2} (2 \times 83.4 + 170.4) = 221.8^{\text{ KMm}}$$

$$S = 2.40 \times 189.400 - \frac{2.40}{2} (83.4+170.4) = 150.0 KN$$

Calculat	ion	o f	stah	ilit.v	for	U.	L. S.
OUTOUTO	U J. V. 11	U.L	3040	*****		~ • • • • • • • • • • • • • • • • • • •	4, 7,

load	Ики	Нки	Мкыш
Normal	$ \begin{array}{c} 1103.0 \times 1.2 \times 1.05 \\ = 1522.2 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	×1 216.1
Temperature	1522.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{※2} 356.7
Seismic	$\begin{array}{c} 869.8 \times 1.2 \times 1.15 \\ = 1200.4 \end{array}$	$\begin{array}{c} 338.6 \times 1.35 \times 1.1 \\ = 502.9 \end{array}$	※ 3 983.1

$$\times 1$$
 M= $\left\{ \frac{5.00}{2} - (3664.7 \times 1.38 - 889.6 \times 1.65) / 1522.2 \right\} \times 1522.2 = 216.1^{\text{KNm}}$

$$\times 2$$
 M= $\left\{\frac{5.00}{2}$ - (3664.7×1.38-974.8 ×1.65) $/$ 1522.2 $\right\}$ ×1522.2= 356.7^{KNm}

$$\times 3 \quad \mathbf{M} = \left\{ \frac{5.00}{2} - \left(2766.7 \times 1.38 - 1212.2 \times 1.485 \right) \middle/ 1200.4 \right\} \times 1200.4 = 983.1^{\text{KNm}}$$

Stability for Foundation

(1) Normal state

$$e = \frac{216.1}{1522.2} = 0.141^{m} < \frac{B}{6} = \frac{5.00}{6} = 0.833^{m}$$

$$q = \frac{1522.2}{5.00} (1 \pm \frac{6 \times 0.141}{5.00}) = \begin{pmatrix} 356.0 & KN/m^2 \\ 253.0 & KN/m^2 \end{pmatrix} < qa$$

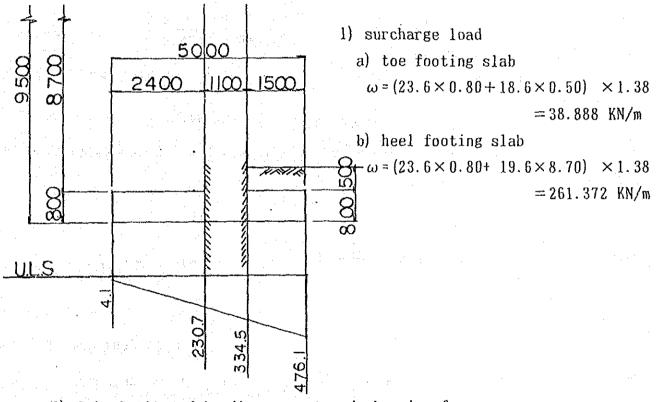
Fs =
$$\frac{1522.2 \times 0.50}{408.6}$$
 = 1.8 > 1.1

(2) Temperature state

$$e = \frac{356.7}{1522.2} = 0.235^{m} < \frac{B}{6} = 0.833^{m}$$

$$q = \frac{1522.2}{5.00} (1 \pm \frac{6 \times 0.235}{5.00}) = {390.3 \text{ KN/m}^2 < qa}$$

$$Fs = \frac{1522.2 \times 0.50}{425.6} = 1.7 > 1.1$$


(3) seismic state

$$e = \frac{983.1}{1200.4} = 0.819^{m} < \frac{B}{6} = 0.833^{m}$$

$$q = \frac{1200.4}{5.00} \left(1 \pm \frac{6 \times 0.819}{5.00} \right) = \left(\frac{476.1 \text{ KN/m}^{2}}{4.1 \text{ KN/m}^{2}} < qa \right)$$

$$Fs = \frac{1200.4 \times 0.50}{502.9} = 1.2 > 1.1$$

Calculation of action force for each section ... seismic state

- 2) Calculation of bending moment and shearing force
 - a) toe footing slab

$$M = \frac{1.50^{2}}{6} (2 \times 476.1 + 334.5) - \frac{1.50^{2}}{2} \times 38.888 = 438.8 \text{ KNm}$$

$$S = \frac{1.50}{2} (476.1 + 334.5) -1.50 \times 38.888 = 549.7 \text{ KN}$$

b) heel footing slab

$$M = \frac{2.40^2}{2} \times 261.372 - \frac{2.40^2}{6} (2 \times 4.1 + 230.7) = 523.4 \text{ KNm}$$

$$S = 2.40 \times 261.372 - \frac{2.40}{2} (4.1+230.7) = 345.6 \text{ KN}$$

No. ① VEHICLE - ABUT

Calculation of stress for footing slab (U.L.S)

1) heel footing slab

section
$$b = 100^{cm}$$
 $h = 80$ $d = 73.5$ $d' = 6.5$

$$As = Y_{25} - 150^{cec} = 4.909/0.150 = 32.727 \text{ cm}$$

$$P = \frac{32.727}{100 \times 73.5} \times 100 = 0.445 \%$$

$$x = \frac{0.87 \times 41000 \times 32.727}{0.40 \times 2500 \times 100} = 11.8^{cm}$$

$$Z = 73.5 - \frac{11.8}{2} = 67.6^{cm} < 0.95 \times 73.5 = 69.8^{cm}$$

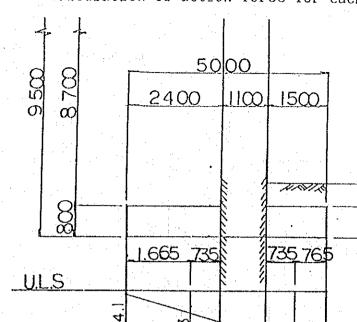
$$M_{RS} = 0.87 \times 41000 \times 32.727 \times 67.6 \times 10^{-5} = 789.1^{KNm} > Mu = 523.4^{KNm}$$

$$M_{RC} = 0.40 \times 2500 \times 100 \times 11.8 \times 67.6 \times 10^{-5} = 797.6^{KNm} > Mu = 532.4^{KNm} \text{ OK}$$

$$Vc = \frac{345.6 \times 10^{3}}{100 \times 73.5} = 47.1 \text{ N/cm}^{2}$$

$$< V ca = \left\{ 35.0 + 15.0 \left(\frac{0.445 - 0.25}{0.25} \right) \right\} \times 2 = 93.4 \text{ N/cm}^{2} \text{ OK}$$

2) toe footing slab


section
$$b = 100^{cm}$$
 $h = 80$ $d = 73.5$ $d' = 6$.

 $As = Y_{25} - 150^{c+c} = 4.909/0.150 = 32.727$ cm

 $P = \frac{32.727}{100 \times 73.5} \times 100 = 0.445 \%$
 $Mu = 438.8^{KNm} < M_R = 789.1^{KNm} \cdots \text{ from 1})$ OK

 $Vc = \frac{549.7 \times 10^3}{100 \times 73.5} = 74.8 \text{ N/cm}^2$
 $< V ca = 93.4 \text{ N/cm}^2 \cdots \text{ from 1})$ OK

Calculation of action force for each section ... seismic state

- 1) surcharge load
 - a) toe footing slab

$$\omega = (23.6 \times 0.80 + 18.6 \times 0.50) \times 1.38$$

=38.888 KN/m

b) heel footing slab

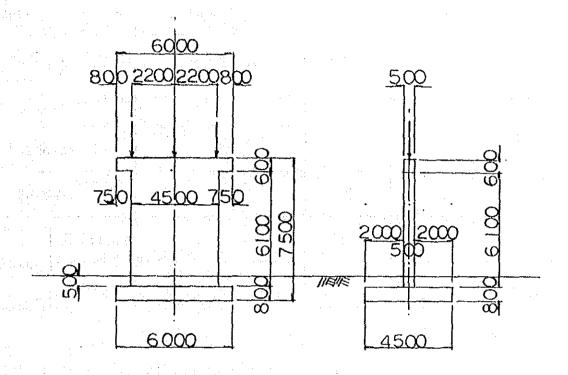
$$\Theta = (23.6 \times 0.80 + 19.6 \times 8.70) \times 1.38$$

= 261.372 KN/m

2) Calculation of shearing force --- Check of Critical section toe footing slab and heel footing slab

$$St = \frac{0.765}{2}(476.1 + 403.9) - 38.888 \times 0.765$$
 = 306.8 KN

Sh =
$$261372 \times 1.665 - \frac{1.665}{2} (4.1 + 161,3)$$


3) Calculation of Shearing stress

for toe footing slab

$$V_{\rm C} = \frac{306.8 \times 10^3}{100 \times 73.5} = 32.8 \text{ N/cm}^2$$

$$< V_{CQ} = 35.0 + 15.0 \frac{0.445 - 0.25}{0.25} = 46.7 \text{ N/cm}^2$$
 Ok

1. Shape and size

2. Calculation of pillar

- 1) Action force for bottom of pillar (S.L.S)
- a) Longitudinal direction

	load	И _{ки}	Нкиш	y ^m	$M = H \cdot y^{\kappa_{Nm}}$
Super	Rd	1568.5	_		<u> </u>
strucut	ure R &	880.5			
Pi11	ar	23.6 (45 × 6.1+6.0 × 0.6) × 0.5=366.4	36.7	3.400	124.8
Brak	ing		293.4	6.800	1995. 2
Seis	mic		254.3	6.800	1729.2
S	Braking	2815.4	293.4		1995.2
State	Seismic	1934.9	291.0		1854.0

b) Crossing direction

		Nĸn	Нкиш	y ^m	$M = H \cdot \lambda_{K \bowtie w}$
Super	Rd	1568.5			<u></u>
strucut	ure R @	880.5			
Pil1	ar	366.4	36.7	3.400	124.8
Skidd	ling		166.7	7.600	1267.0
Seis	smic		156.9	7.600	1192.5
C	Skidding	2815.4	166.7		1267.0
State	Seismic	1934.9	193.6		1317.3

2) Action force for bottom of pillar (U.L.S)

a) Longitudinal direction

load State	N×N	Нкы	Мкиш
Braking	$ \begin{array}{r} 2815.4 \times 1.2 \times 1.15 \\ = 3885.3 \end{array} $	$ \begin{array}{r} 293.4 \times 1.25 \times 1.1 \\ = 403.5 \end{array} $	$ \begin{array}{r} 1995.2 \times 1.25 \times 1.1 \\ $
Seismic	$1934.9 \times 1.2 \times 1.15 \\ = 2670.2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1854.0 \times 1.5 \times 1.1 = 3059.1$

b) Crossing direction

load State	Nĸĸ	HĸN	MKNW
Skidding	$ \begin{array}{r} 2815.4 \times 1.2 \times 1.15 \\ = 3885.3 \end{array} $	$166.7 \times 1.25 \times 1.1 = 229.3$	$1267.0 \times 1.25 \times 1.1 = 1742.1$
Seismíc	$1934.9 \times 1.2 \times 1.15 \\ = 2670.2$	$193.6 \times 1.5 \times 1.1 = 319.5$	$ \begin{array}{rcl} 1317.3 \times 1.5 & \times 1.1 \\ &= 2173.6 \end{array} $

No. ① VEHICLE - PIER

3) Calculation of stress

a) Longitudibal direction of seismic (U.L.S)

section
$$b = 450^{\text{cm}}$$
 $h = 50$ $d = 42.5$ $d' = 7.5$

As $= \text{As}' = Y_{32} - 37^{\text{NO}} = 8.042 \times 37 = 297.554 \text{ cm}^2$

Ma $= 3059.1 + 2670.2$ ($0.425 - \frac{0.50}{2}$) $= 3526.4 \text{ kNm}$

$$\chi = \frac{(0.87 - 0.72) \times 41000 \times 297.554}{0.40 \times 2500 \times 450} = 4.4 \text{ cm}$$
 $Z = 42.5 - \frac{4.4}{2} = 40.3 \text{ cm} \leq 0.95 \times 42.5 = 40.3 \text{ cm}$ OK

$$\begin{split} M_{RS} = 0.87 \times 41000 &\times 297.554 \times 40.3 \times 10^{-5} = 4277.3^{\text{KNm}} > \text{Mu} = 3526.4^{\text{KNm}} \\ M_{RC} = 0.72 \times 41000 &\times 297.554 \times 35.0 + 0.40 \times 2500 \times 450 \times 4.4 \times 40.3) \\ &\times 10^{-5} = 3872.3^{\text{KNm}} > \text{Mu} = 3526.4^{\text{KNm}} \end{split}$$

Asn=A'sn =
$$297.554 - \frac{2670.2 \times 10^3}{0.87 \times 41000} = 226.7$$
 cm²

< A su = A 'su = $Y_{32} - 29^{NO} (150^{c+c}) = 8.042 \times 29 = 233.16 \text{ cm}^2$ OK $P = \frac{233.16}{450 \times 42.5} \times 100 = 1.209 \%$

$$Vc = \frac{480.2 \times 10^{2}}{450 \times 42.5} = 25.2 \text{ N/cm}^{2}$$

$$< V ca = 65.0 + 20.0 \ (\frac{1.219 - 1.00}{1.00}) = 69.4 \ \text{N/cm}^2$$
 OK

b) Crossing direction

This case is abridge.

** NO-1-VEHICLE-PIER

NPUT-DATA

(1) SHAPE AND SIZE ... (UNIT: m)

DIMENSION(KN) INTO THIS CALCULATION NOTE: THE DIMENSIONCE BE EXCHANG TO

(c) FOOTING

3.000	2.250	0.000
¥FI. ≈	BFL =	DH ==
6.000	4.500	0.800
n	н	11
[i.,]≇	B.	H

(d) OTHER

(2) LOAD-CASE
DIRECTION
DI SKIDDING

(3) UNIT VOLUME WEIGHT

BACKF | LL rs = 18.600 (t/m^3 CONCRETE re = 23.600 (

rs' = 9.800 (t/m'3)---UNDER WATER = 9.800 (t/m^3) WATER

(4) COEFFICIENT OF SEISMIC Kh = 0.10 --- STRUCTURE

WEIGHT OF STRUCTURE AND SURCHARGE OF SOIL (1) BEAM AND PILLAR FOR BOTTOM OF PILLAR

>	۷ (t)	r	3	ê X	. (m) X	X (m) Y (m) Mx(t·m)	My(t·m)
2	1.24		2.12	1,500			13.17
8	21.24		2.12	-1.500	6.200	-31.86	13.17
	00.00		00.0	2.500		•	00.0
	0.00	_	0.00	1 -2.500	5.900	0.00	00.0
	0.00	_	0.00	1.125 1	5.900	0.00	00.0
	0.00		00.0	125	5.900	00.0	00.00
			00.0	\circ	00000	٠	00.0
: '	0.00	_	0.00	1 0.000 1	0.000	00.0	00.0
305			30.58	000.0	2.950	•	90.22
34	348.30	<u> </u>	34.83			0.00	116.55

(2) FOUNDATION

No.	V (t)	H (t)	(m) x	Y (m)	Mx(t·m) My(t·m)	My(t-m)
	00.0	0.00	0.917	0.800	00.0	00.00
. 7	00:0	00.0	1 -0.917	0.800	00.00	1 0.00
ო	00.0	00.0	1 0000 1	0.800	00.0	00.00
4	509.76	50.98	0.000	0.400	00.00	20.39
¥ F	509.76	50.98			0.00	20.39

(3) SURCHARGE OF SOIL

١				
· — ·	00.00		230.67	WS
_ ;	٠.	0	ഗ	7
	00.00	-1.583	00.0	ω
	৽	∞	۰.	ب س
	9	. 25	õ	**
	ທ	ល	11.6	<u>ლ</u>
	۰.	00.	4.	~
	٥.	00.	4	F-4
	Mx(t·m)	X (m)	V (t)	NO.

ON REACTION FROM SUPERSTRUCTURE REACTION FROM SUPERSTRUCTURE

	<u> </u>			
6	1568.50 880.50 0.000	2449.00	166.70	156.90
(વ)	1568.50	2449.00	00.0	293.40 1 254.30 1 0.900 1
		Z R		
		100		

(a) : LONGITUDINAL DIRECTION (b) : GROSSING DIRECTION

HOR! ZOTAL

ACTION FORCE FOR BOTTOM OF PILLAR (S.r.S) LONGITHDINAL DIRECTION

ON NORMAL STATE

X R 12449.001 0.001 0.0001 0.0001 0.001 0.001 0.001 0.001		V (t) 1	H (t)	H (t) 1 X (m) Y (m)	Y (m) I	Mx (t·m)	Mx (t·m) My (t·m)
348.301 0.001 0.0001 0.0001 0.001	N N	2449.001	0.001		0.0001	00.00	
	WD	348.301	0.001		0.000	0.00	

 $Mo = \Sigma Mx + \Sigma My = 0.00 (t.m)$

(2) BRAKING STATE

	V (t)	V (t) H (t) X (m)	X (m)	Y (m)	1	Σ (g	Mx (t·m) My (t·m)
M M	2449.001	293.401		7.4061		100	2171.16
O∧	348.30	0 00	:	0.0001 0.0001		100	0.001 0.001
ITOTAL (Br.)	2797.301	293.40			0.0	- 8	0.001 2171.16

: $Mo = \Sigma Mx + \Sigma My = 2171.16$ (t.m.

(3) SEISMIC STATE

1998.37	00.00		1	289.13	1916.80	TOTAL (SL)
1881.82	0.001	3.346	0.000	34.83	348.30	XX DQ
My (t·m)	Mx (t·m) My (t·m)	Y (m) I	X (m)	H (t)	V (E) 1	

 $Mo = \Sigma Mx + \Sigma My = 1998.37$ (t·m)

CROSSING DIRECTION

a SKIDDING STETE

	V (t)	H (t)	H (t) X (m) Y (m)	Y (m)	Mx (t-m)	Mx (t-m) My (t-m)
M W D	2449.00		166.701 0.0001	7.400	0.001	1233.581
TOTAL (KC) 2797.301		166.70	1		0.001	1233.58

 $Mo = \Sigma Mx + \Sigma My = 1233.58$ (t.n

(2) SEISMIC STATE

	v (t)	y (t) H (t) X (m)		, (ш) <u>Ү</u>	Y (m) Mx (t-m) My (t-m)	Му (t-ш)
i Rd i	1568.50	156.901 0.0001	0.000	7:400	0.001	1161.05
QM :	348.30	34.83	0.0001		0.001	116.55
ITOTAL (SC)	1916.801	191.731	-	-	0.001	0.001 1277.61

 $Mo = \Sigma Mx + \Sigma My = 1277.61$ (t·m)

BUOYANCY

NOMALISEISMIC	0.00 -211.68 0.00	-211.68
NOMAL	0.00 -21.60 0.00	-21.60
	PILLAR FOOTING SLAB	- 1

	V. (t)	H (t)	(ш) х	Y (m)	$V_{\varepsilon}(t)$ H (t) X (m) Y (m) MX (t·m) My (t·m)	My (t	ê
TOTALCNLY	2797.30	0.00	1		0.00		8
ևլ ≽չ	509.76	0.00	0.000	0.000	0.00		88
 ≥≥	230.67	0.00	0.000	0.001 0.0001 0.0001		:	0.00
TOTAL		1					
<(3537.73	0.00	1		00.0		0.00
<u> </u>	3516.13	0.00			00.0		00.

(2) BLAKING STATE

	V (t)	V (t) H (t) X (m) Y (m)	(m) X	Y (m)	Mx (t·m)	Mx (t·m) My (t·m)
TOTAL(BL)	2797.301	293.40			0.001	2171.16
<u></u>					0.001	234.72
l ≥:	1 509.761	0.00				
آ الد	230.67	0.00	0.000	0.0001		0.00
M∩	-21.60					
TOTAL						
_ <<	1 3537.731	293.401	-		0.001	2405.88
œ	3516.13	293.401			0.00	2405.88

Mvo = Vo*BFD , Mho = Ho*FH

	V (t) H (t) X (m) Y (m) Mx (t·m) My (t·m)	H (t)	(m) X	Y (m)	×	(t·m)	My (t-n
TOTAL(Sr) 1916.80	1916.80	289.13	1			0.001	1998.3
LLI ≥	509.761	50.98		0.400	:	000	231.301
== 	230.671	0.00	0.0001	0.0001		0.0	0:
TOTAL						+	
√ 00	2657.231	340.11			.:	0.00	2250.071 2250.071

CROSSING DIRECTION (1) NORMAL STATE

	V (t)	V (t) H (t) X (m)	(E) X	(m) X	Mx (t.m	Y (m) Mx (t·m) My (t·m)
Childica	2797.301	166.701			0.0	1233.58
}_ ≥	509.761	0.00		0.000	000	
_ Щ	230.67	0.00	0.0001			0.001
N N	-21.601					
TOTAL:	3537 73	166.701			ć	
(α	3516.131	166.70		1	0.00	366.94

	(1) A		X (m) X	Y (m)	×	(t-m)	H (t) X (m) Y (m) Mx (t·m) My (t·m)
total(Sc) 1	916.801	191.73			<u> </u>	0.00	1277.61
;≥ √.	509.76	50.98	0.000	0.400		000	
 ∭	230.67	0.00	00000	0.000		0.001	00.00
TOTOT	120.112					- + .	
	2657.231	242.71				0.00	1451.39

: Mo = $\Sigma Mx + \Sigma My = 1451.39$ (t·m) NOTICE

NOTE : TOTAL: A--- EXCLUDE OF BUOYANCY TOTAL: B--- INCLUDE OF BUOYANCY

. •					
	1 2				
E 1	(m)	6.000	6.000	6.000	6.000
V Н Мс ((t) ((t) (t·m)	3537.73 166.70 1366.94	2657.23 242.71 1451.39	3516.13 166.70 1366.94	2445.55 242.71 1451.39
υ×	E (E)	0.386	0.546	0.389	0.593
Qmax(t/m^2) Qmin(t/m^2)	/m^2) /m^2)	181.655 80.400	152.171	180.855	144.331
		294.000		294.000	

 $Q = V/(B*L) + 6*Mc/(L*B^22)$ Q = 2*V/(L*X), X = 3*(B/2-Mc/V)

3

(1)

3537. 2657. 1 3516. 1 2445.

0.389 < 1.000 0.593 < 2.000

3516.130 | 1366.940 | 2445.550 | 1451.390 |

0.386 < 1.000 0.546 < 2.000

2657.230 | 1366.940 | 2657.230 | 1451.390 |

^ æ ~

1 Mc(t-m)

V (t)

| V(t) | H(t) | Fs | 3537.730 | 166.700 | 10.611 > 1.500 | 2657.230 | 242.706 | 5.474 > 1.200 | 2445.550 | 242.706 | 5.038 > 1.200 | C = 0.00 (t/m²2) , tan(φB) = 0.50

 $Hu = C*A' + V*tan(\phi B)$ Fs = Hu/Hb

8

(g

			:
~		•	~
(t/m^2		4	7 11 / 1
		, .	٠
Qa = 350.00	:		20.0
Q		ζ	" כ
:			

 $\tan(\phi B) = 0.5000$

4.500

6.000

4.500

8 8

2657.23 340.11 2250.07

3537.73 293.40 2405.88

3537.73 0.00 0.00

> (t)| (t·m)|

0.847

0.680

0.000

E E

210.406

12.218

131.027

Qmax(t/m^2)| Qmin(t/m^2)|

<u>@</u>

294.000

			,
3537.730 3537.730 2657.230	0.000 2405.880 2250.070	0.000 < 0.680 < 0.847 <	0.750
3516.130 3516.130 2445.550	0.000 2405.880 2250.070	0.000 < 0.684 < 0.920 <	0.750

4.500 2445.55 340.11 2250.07 0.920 3.990 204.317 3516.13 293.40 2405.88 4.500 249.036 0.684 294.000 3516.13 0.00 0.00 4.500 0.000 130.227 .e.e : t t . E E Qmax(t/m^2)| Qmin(t/m^2)| > I X 'a ...

注) Q = V/(B*L) + 6*Mc/(L*B^2)
Q = 2*V/(L*X) , X = 3*(B/2-Mc/V)

1.500

5.992 >

0.000 293.400 340.106

3516.130 | 3516.130 | 2445.550 |

tan(\$\phi B) = 0.50

0.00 (t/m^2)

။ ပ

6.029 > 1.500 3.906 > 1.200

0.000 293.400 340.106

3537.730 | 3537.750 | 2657.230 |

ζĊ,

^ -

<u>ب</u>

(3)

 $Hu = C*A' + V*tan(\phi B)$ Fs = Hu/Hb

3 - 42

No. 1 VEHICLE - PIER

3. Calculation of Foundation

- 1) Calculation of stability for bottom foundation
 - (1) Action force
 - a) Longitudinal direction ... U.L.S

load State	N KN	Н ки	M KNm
Braking	$3537.8 \times 1.2 \times 1.15 \\ = 4882.2$	$ \begin{array}{r} 293.4 \times 1.25 \times 1.1 \\ = 403.5 \end{array} $	$2405.9 \times 1.25 \times 1.1 = 3308.2$
Seismic	$2657.3 \times 1.2 \times 1.15 = 3667.1$	$340.2 \times 1.5 \times 1.1$ = 561.4	$ \begin{array}{rcl} 2250.1 \times 1.5 & \times 1.1 \\ &= 3712.7 \end{array} $

b) Crossing direction ... U.L.S

load State	И ки	Н ки	М киш
Skidding	$3537.8 \times 1.2 \times 1.15$ = 4882.2	$166.7 \times 1.25 \times 1.1 = 229.2$	$1367.0 \times 1.25 \times 1.1$ = 1879.7
Seismic	$2657.3 \times 1.2 \times 1.15 = 3667.1$	$242.7 \times 1.5 \times 1.1 = 400.5$	$1451.4 \times 1.5 \times 1.1 = 2394.8$

(2) Stability for Foundation

- a) Longitudinal direction for U.L.S
- (1) Braking state

$$e = \frac{M}{N} = \frac{3308 \cdot 2}{4882 \cdot 2} = 0.678^{m} < \frac{B}{6} = \frac{4.50}{6} = 0.75^{m}$$

$$q = \frac{N}{B \cdot L} (1 \pm \frac{6e}{B}) = \frac{4882 \cdot 2}{4.50 \times 6.00} (1 \pm \frac{6 \times 0.678}{4.50}) = {344 \cdot 3 \text{ KN/m}^{2} \over 17.4 \text{ KN/m}^{2}} < qa = Fs = \frac{N \cdot \mu}{H} = \frac{4882 \cdot 2 \times 0.50}{403 \cdot 5} = 6.0 > 1.1$$

(2) seismic state

$$e = \frac{M}{N} = \frac{3712.7}{3667.1} = 1.013^{m} > \frac{B}{6} = 0.75^{m}$$

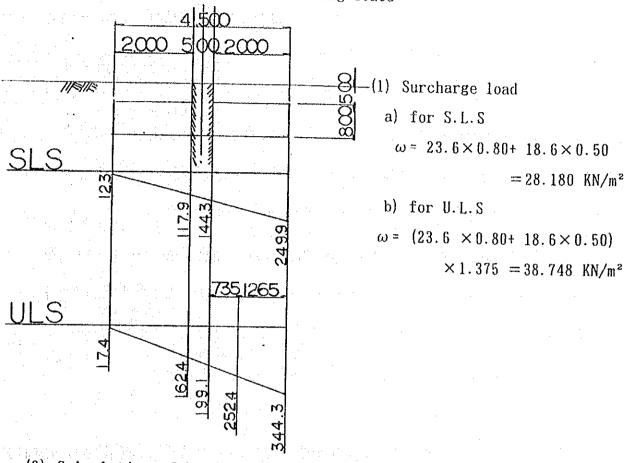
$$\chi = \frac{B}{2} - e = \frac{4.50}{2} - 1.013 = 1.237^{m}$$

$$q_{max} = \frac{2 \cdot N}{3 \cdot x \cdot L} = \frac{2 \times 3667.1}{3 \times 1.237 \times 6.00} = 329.4 \text{ KN/m}^{2} < qa = \frac{N \cdot \mu}{H} = \frac{3667.1 \times 0.50}{561.4} = 3.2 > 1.1$$

- b) Crossing direction for U.L.S.
- (1) Skidding state

$$e = \frac{M}{N} = \frac{1879.7}{4882.2} = 0.386^{m} < \frac{B}{6} = 1.000^{m}$$

$$q = \frac{N}{BL} (1 \pm \frac{6e}{B}) = \frac{4882.2}{6.00 \times 4.50} (1 \pm \frac{6 \times 0.386}{6.00}) = {250.7 \text{ KN/m}^{2} \over 111.0 \text{ KN/m}^{2}} < qa = \frac{10.000}{111.0 \text{ KN/m}^{2}} < qa$$


(2) seismic state

$$e = \frac{M}{N} = \frac{2394.8}{3667.1} = 0.653^{m} < \frac{B}{6} = 1.000^{m}$$

$$q = \frac{N}{BL} (1 \pm \frac{6e}{B}) = \frac{3667.1}{6.00 \times 4.50} (1 \pm \frac{6 \times 0.653}{6.00}) = {224.5 \text{ KN/m}^{2} < qa} = \frac{N \cdot \mu}{H} = \frac{3667.1 \times 0.50}{400.5} = 4.5 > 1.1$$

Calculation of action force for each section

Longitudinal direction — Braking state

- (2) Calculation of bending moment and shearing force
 - a) for S.L.S

$$M = \frac{2.00^{2}}{6} \quad (2 \times 249.9 + 144.3) - \frac{2.00^{2}}{2} \times 28.180 = 373.1 \text{ KNm}$$

$$S = \frac{2.00}{2} \quad (249.9 + 144.3) - 2.00 \times 28.180 = 337.9 \text{ KN}$$

$$M = \frac{2.00^{2}}{6} \quad (2 \times 12.3 + 117.9) - \frac{2.00^{2}}{2} \times 28.180 = -17.8 \text{ KNm}$$

$$S = \frac{2.00}{2} \quad (12.3 + 117.9) - 2.00 \times 28.180 = 73.9 \text{ KN}$$

b) for U.L.S

$$M = \frac{2.00^{2}}{6} (2 \times 344.3 + 199.1) - \frac{2.00^{2}}{2} \times 38.748 = 514.3 \text{ KNm}$$

$$S = \frac{2.00}{2} (344.3 + 199.1) - 2.00 \times 38.748 = 465.9 \text{ KN}$$

$$M = \frac{2.00^{2}}{6} (2 \times 17.4 + 162.7) - \frac{2.00^{2}}{2} \times 38.748 = 54.1 \text{ KNm}$$

$$S = \frac{2.00}{2} (17.4 + 162.7) - 2.00 \times 38.748 = 102.6 \text{ KN}$$

Calculation of stress for footing slab ... U.S.I.

section
$$b = 100^{cm} h = 80 d = 73.5 d' = 6.5$$

$$As = Y_{25} - 150^{ctc} = 4.909/0.15 = 32.727 \text{ cm}^2$$

$$P = \frac{32.727}{100 \times 73.5} \times 100 = 0.445 \%$$

$$x = \frac{0.87 \times 41000 \times 32.727}{0.40 \times 2500 \times 100} = 11.8^{\text{cm}}$$

$$Z = 73.5 - \frac{11.8}{2} = 67.6^{\text{cm}} \le 0.95 \times 73.5 = 69.8^{\text{cm}}$$

$$M_{RS} = 0.87 \times 41000 \times 32.727 \times 67.6 \times 10^{-5} = 789.1^{KNm} > M_{H} =$$

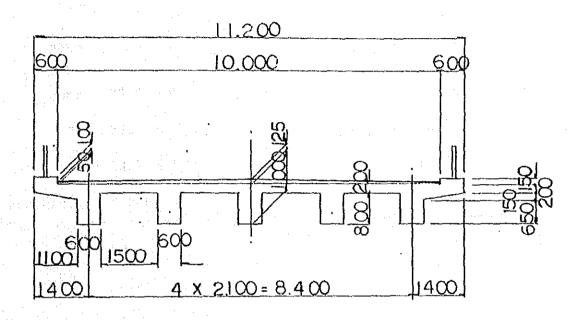
$$M_{RC} = 0.40 \times 2500 \times 100 \times 11.8 \times 67.6 \times 10^{-5} = 797.6^{KNm} > Mu =$$

$$Vc = \frac{465.9 \times 10^3}{100 \times 73.5} = 63.4 \text{ N/cm}^2$$

$$< V ca = 35.0 + 15.0 \quad (\frac{0.445 - 0.25}{0.25}) \times 2 = 93.4 \text{ N/cm}^2$$
 OK

Check of Critical section for Shearing torce

$$S = \frac{1.265}{2} (344.3 + 252.4) - 1.265 \times 38.748 = 328.4 \text{KN}$$


$$V_{C} = \frac{328.4 \times 10^{3}}{100 \times 73.5} = 44.7 \text{ N/cm}^{2}$$

$$< Vcq = 35.0 + 15.0. \frac{0.445 - 0.25}{0.25} = 46.7 \text{ N/cm}^2 \text{ ok}$$

OVER BRIDGE(2) W=10m

No.② VEHICLE BRIDGE ... Superstructure

1. Shape and size

2. Factor of section

Shape	$b \times h = A \ (m^2)$	y (m)	Ay (m³)	$I_0 = Ay^2 + \frac{bh^3}{12} (m^4)$
	11.20 × 0.20=2.240	0.100	0.224	0.0299
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.600	1.440	0.9920
Σ	4.640		1.664	1.0219

$$\overline{y} = \frac{\sum A y^2}{\sum A} = \frac{1.664}{4.640} = 0.358$$
 m

$$\cdot$$
 I = I₀ - A \overline{y}^2 = 1.0219 - 4.640 × 0.358² = 0.4272 m⁴

No.2 VEHICLE BRIDGE

3. Load

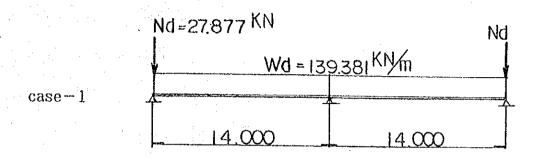
1) Dead load

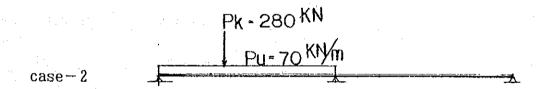
pave :
$$22.6 \times \frac{0.05+0.125}{2} \times 10.00 = 19.775 \times 10.00$$

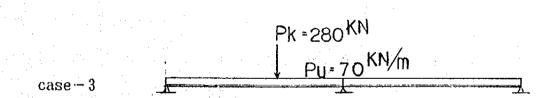
conc : $23.6 \times 0.150 \times 0.600 \times 2 = 4.248$

" : $23.6 \times (11.20 \times 0.20 + 1.10 \times 0.15) = 56.758$

" : $23.6 \times 0.60 \times 0.80 \times 5 = 56.640$


guardrall : $0.980 \times 2 = 1.960$
 ωd :


2) Live load (HA-load)


load of all width

for U.D.L
$$Pu=30.0 \times (2+\frac{1}{3}) = 70.0 \text{ kN/m}$$

for K.E.L $P_K=120.0 \times (2+\frac{1}{3}) = 280.0 \text{ kN/m}$

3) Loaded figure

<u> </u>	
ğ	
ė	
Ä	
O	
•=	
£	
⋝	
N	
2	

EPS	8 S 0 D 1 L			L-No	70
E	1.20E+05 1.20E-05		·	L - N 0	
E (t/m2)	2.70E+07			L-No	
	,			L-No 6 6	17.250
L (m)	14.000			L	28 10.500
۱. ب	Pin - Fix Fix - Pin	M(tm/Rad)	Free Free Co	L	8.750 10.500 12.250 8.750 10.500 12.250
		Æ			7.000
I (m4)	0.4272	((t/m)	FFF XXX	N 2	5.25 5.25 5.25 5.25 5.25 5.25
A (m2)	4.64000	^		L-No	
∢.	4.4	X (t/m)	H Hreeke	L-No	1.750
	∾ m				~ ~
П	H 61	•	~ 0 0	o N	-1 c)
No	H (1)	•		Z	

: Dead load

C-No 1 C-No 2 No 4 No 5

BOTA (mmRed)	0.0000 0.1845 0.0000			RM (tm)	0.0000000000000000000000000000000000000	·	
3 Y-DIS.(mm)	0.0000000000000000000000000000000000000			3 RY (t)	445.840 1453.320 340.840		
Case.				Case. RX (t)	00000		
ROTA. (mmRad)	0.00000	ROTA.(mmRad)	0.00000	RM (tm)	0.000	RM (tm)	0.0000
2 Y-DIS.(mm)	1,000	5 Y-DIS.(mm)	0.00000	2 RY (t)	581.191 762.617 -83.809	5 RY (t)	1783.920 5764.040 1610.670
Case. X-DIS.(mm)	0.00000	Case. X-DIS.(mm)	000000000000000000000000000000000000000	Case.	000000	Case. RX (t)	0.000
ROTA. (mmRad)	0.00000	ROTA.(mmRad)	0.00000	RM (tm)	0.000	RM (tm)	0.0000
1 Y-DIS.(mm)	0.00000	4 Y-DIS.(mm)	000000000000000000000000000000000000000	1 RY (t)	759.624 2439.170 759.624	4 RY (t)	2007.250 4624.380 909.997
Case. X-DIS.(mm)	0.00000	Case. X-DIS.(mm)	0.00000	Case. RX (t)	0.000	Case. RX (t)	0.0000
No.	00 00	No.	- 0. E	o o	61 69	No.	35.

	N (£)	000000	· · · ·	00000000		
•						
	e load S (t)	445.840 323.340 200.840 78.340	98.66 91.66 14.16	216.660 394.660 271.660 149.160 26.660 -218.340		
	Case 3 HA Liv M (tm)	0.000 673.032 1131.689 1375.972 1405.879	221.41 332.56 770.64 088.24	1076 1076 1279 302.681 302.681 874.722 764.189 0.000		
	N C	000000000000000000000000000000000000000		000000000000000000000000000000000000000	Z 000000000000000000000000000000000000	000000000000000000000000000000000000000
ing series of the series of th	e load S (t)	581.19 458.69 336.19 213.69	33.80 36.30 78.80	00000000000000000000000000000000000000	S (t) 1783.917 1206.717 667.987 129.257 -948.204 -1948.934 -2487.664 -3026.394	2737.644 2198.914 1660.184 1121.454 582.723 43.993 -494.737 -1033.467
	Case 2 HA Liv	0.000 909.897 1605.420 2086.567 1863.340	425.73 773.76 -92.59 173.32	111 11821 12830 12	Case 5 M (tm) 0.000 2583.182 4223.547 4921.135 4675.978 548.733 -3333.290 -8158.090	-8158.090 -3838.602 -461.892 1972.041 3463.196 4011.573 3617.172 2279.994
1 1 mg	N (t)	00000		00000000	c 000000000000000000000000000000000000	000000000
	load S (t)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31.75 31.75 75.67 19.58	975.670 731.753 487.836 243.920 0.003 -243.914 -487.831	S (t) 2007.247 1430.047 891.317 352.587 -648.143 -1186.874 -1725.604 -2264.334	1821.314 1484.709 1148.104 811.499 474.893 138.268 198.317 -534.922
	Case 1 Dead M (tm)	0.000 1067.158 1707.435 1920.857 1707.424	067.13 10.00 493.99 414.84)e eeco	Case 4 (tm) M (tm) 0.000 2974.009 5005.203 6093.618 5430.756 3825.756 1276.699 -2214.496	-6648.469 -3755.700 -1451.989 262.663 1388.256 1924.790 1872.265 1230.681
Вr	C(m)	0.000 1.750 3.500 7.000	F 10 40 C	1.750 3.500 5.250 7.000 8.750 12.250 14.000	L(m) 0.000 1.750 3.500 5.250 7.000 8.750 10.500 12.250	0.000 1.750 3.500 7.000 7.000 10.500 14.000
2 Vehicle	N	1 * * * * 0 ~ 0 0 4	***! I		1 * * * * * * * 1 N N N N N N N N N N N	0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NO S						

No 2 vehicle Br

PICK-UP No.

M. MINIMUM (t) 2007.247 1206.717 667.987 129.257 -409.473 -948.934 -2487.664 2737.644 2198.914 1148.104 811.499 474.893 138.238 1938.327 1939.997 Ø M (tm) -8158,090 -3838,602 -1451,989 262,663 1924,790 1872,265 1230,681 2583.182 4223.547 4921.135 4675.946 3487.978 548.733 -3333.290 N (t) MAXIMUM 2007.247 1430.047 891.317 352.587 -11868.143 -11725.604 -2264.334 1821.314 1484.709 11660.184 1121.454 582.723 494.737 -1033.467 S (t) Σ 0.000 2974.009 5005.203 5430.756 3825.11276.699 -2214.496 -6648.469 -3755.700 -461.892 1972.041 3463.196 3463.196 2279.994 M (tm) 0.000 1.750 3.500 7.000 7.000 10.500 14.000 Ê

,_
_
-
>
_
_
۶.
ъ.
4
<1
_
Ξ
ø.
٠.
Ú.
•

	N (t)	000.0	0.00	0000	0000	0.000	0.00	000.0	000.0	0.000	00000	000.0	000.0	000.0	000.0	000.0	0000	000	0.000	
S. MINIMUM.	s (t)	1783.917	1206.717	667.987	129.257	-648.143	-1186.874	-1948.934	-2487.564	-3026.394	1821.314	1484.709	1148.104	811.499	474.893	43.993	-494.737	-1033.467	-1610.667	
'n	M (tm)	00000	2583.182	4223.547	4921.135	5430,756	3825.116	548.733	-3333.290	-8158.090	-6648,469	-3755.700	-1451.989	262,663	1388.256	4011.573	3617.172	2279.994	0.000	
:	Case	ທ - ວ	Ω -Ω	က ပုံ	C- 5	ე 1	C- 4	် ပ	ro sa	ပ		-0 -7	? 4	ր 4	C- 4	မ - ပ	ပ်	ი ქ	ပ လ	
	N (t)	00000	0.00	0.000	000.0	0.000	000.0	000.0	0.000	0.000	0.000	0.000	0.000	000.0	0.000	000.0	0.000	000.0	00000	
S. MAKIMUM	S · (t)	2007.247	1430.047	891.317	352.587	-409.473	-948.204	-1725.604	-2264.334	-2803.064	2737.644	2198.914	1660.184	1121.454	582.723	138.288	-198.317	-534.922	-909.997	
'n	M (tm)	000.0	2974.009	5005.203	6093.618	4675.946	3487.978	1276.699	-2214.496	-6648.469	-8158.090	-3838,602	-461.892	1972.041	3463.196	1924.790	1872.265	1230.681	000 0	
	Case	۲- ۲-	٠ د د	ر- 1	C 4	C- 5	C- 2	1	ر 4	C- 4	C- 5	ر د د	ပ္ပ	а С	ر ب	Ω 4	C- 4	C-7	C- 4	
	L (m)	00000	1.750	3.500	5.250	7.000	8.750	10.500	12.250	14.000	000.0	1.750	3.500	5.250	7.000	8.750	10.500	12.250	14.000	
. 9	o Z	1 - 2	,~; *	د) *	ტ *	**	ιΩ *	φ.	· *	- Z	7 7 7	*	دء *	ლ *	*	ιΩ *	¢ *	*	2 I E	

ON.

No.2 VEHICLE BRIDGE

1. Calculation for bending moment

1) Middle span

section
$$b=245^{cm}(b_0=60)$$
 $h=100$ $d=87.5$ $d'=12.5$ Mu. max = $6093.7/5 \times 1.05 = 1279.7$ KNm/Girder

As = $\begin{pmatrix} Y_{32} - 4^{NO} = 8.042 \times 4 \\ Y_{25} - 4^{NO} = 4.909 \times 4 \end{pmatrix} = 51.804$ cm²
 $x = \frac{0.87 \times 41000 \times 51.804}{0.40 \times 3000 \times 245} = 8.6$ cm

 $Z = 87.5 - \frac{8.6}{2} = 83.2$ cm $\leq 0.95 \times 87.5 = 83.2$ cm

 $M_{Rs} = 0.87 \times 41000 \times 51.804 \times 83.2 \times 10^{-5} = 1537.4^{\text{KNm}} > \text{Mu} = 1279.7^{\text{KNm}}$ $M_{Rc} = 0.40 \times 3000 \times 245 \times 8.6 \times 83.2 \times 10^{-5} = 2103.6^{\text{KNm}} > \text{Mu} = 1279.7^{\text{KNm}}$ OK

2) Middle fulcrum

section
$$b=60^{cm}$$
 $h=100$ $d=88.5$ $d'=11.5$

Mu.min=8158.1/5×1.05= 1713.2 KNm/Girder

As = Y₃₂-4^{NO} ×2 = 8.042×8^{NO} = 64.336 cm²

A's = Y₃₂-4^{NO} = 8.042×4^{NO} = 32.168 cm²
 $\chi = \frac{(0.87 \times 64.336 - 0.72 \times 32.168) \times 41000}{0.40 \times 3000 \times 60} = 18.8^{cm}$
 $Z = 88.5 - \frac{18.8}{2} = 79.1^{cm} \le 0.95 \times 88.5 = 84.1^{cm}$

[Rs=0.87×41000 ×64.336×79.1×10⁻⁵=1813.0^{KNm} > Mn=1713.2

$$M_{RS} = 0.87 \times 41000 \times 64.336 \times 79.1 \times 10^{-5} = 1813.0^{\text{KNm}} > \text{Mu} = 1713.2^{\text{KNm}}$$
 $M_{RC} = (0.72 \times 41000 \times 32.168 \times 81.0 + 0.40 \times 3000 \times 60 \times 18.8 \times 79.1)$
 $\times 10^{-5} = 1840.0^{\text{KNm}} > \text{Mu} = 1713.2^{\text{KNm}}$ OI

2. Calculation of shearing force

1) Edge fulcrum Su. max=1430.1
$$^{\text{KN}}$$
/5×1.1 = 371.9 KN/Girder section b=60 $^{\text{cm}}$ h=100 d=87.5 d'=12.5
$$Vc = \frac{371.9 \times 10^3}{60.0 \times 87.5} = 70.9 \text{ N/cm}^2$$

$$As = \begin{pmatrix} Y_{32} - 4^{Nu} \\ Y_{25} - 4^{Nu} \end{pmatrix} = 51.804 \text{ cm}^2$$

$$P = \frac{51.804}{60.0 \times 87.5} \times 100 = 0.987 \%$$

$$V ca = 55.0 + 15.0 \left(\frac{0.987 - 0.50}{0.50} \right) = 69.7 \text{ N/cm}^2 < Vc = 70.9 \text{ N/cm}^2$$

2) Middle fulcrum Su. min=2487.7^{KN}/ $5 \times 1.1 = 547.3$ KN/Girder

section
$$b = 60^{cm}$$
 $h = 100$ $d = 88.5$ $d' = 11.5$

$$Vc = \frac{547.3 \times 10^3}{60.0 \times 88.5} = 103.1 \text{ N/cm}^2$$

$$As = Y_{32} - 4^{No} \times 2 = 64.336 \text{ cm}^2$$

$$P = \frac{64.336}{60.0 \times 88.5} \times 100 = 1.212 \%$$

$$V ca = 70.0 + 20.0 \left(\frac{1.212 - 1.00}{1.00} \right) = 74.3 \text{ N/cm}^2 < Vc = 103.1 \text{ N/cm}^2$$

shearing bar

$$Y_{16} - 300^{\text{ctc}} \cdots A_{v} = 2.011 \times 2^{\text{NU}} = 4.022$$

$$Vs = 0.87 fy (Av/bsv) = 0.87 \times 41000 (4.022/60.0 \times 30.0) = 79.7 N/cm2$$

Edge support

$$Va = Vca+Vsa = 69.7 + 79.7 = 149.4 \text{ N/cm}^2 > V = 70.9 \text{ N/cm}^2$$

Middle suport

$$Va = Vca + Vsa = 74.3 + 79.7 = 154.0 \text{ N/cm}^2 > V = 103.1 \text{ N/cm}^2 \text{ OK}$$

Calculation of deck slab for No. 2 Vehicle bridge (U.L.S)

1. Span and bending moment

a) Span :
$$\ell = (2.100 - 0.60) = 1.500^{m}$$

b) moment of middle span :

$$M = \left\{ \begin{array}{l} 0.8 \, (0.12 \, \ell + 0.07) \quad P + \frac{1}{10} \omega \, d \cdot \ell^2 \\ \end{array} \right\} \times 1.5 \times 1.1$$

$$= \left\{ \begin{array}{l} 0.8 \, (0.12 \times 1.50 + 0.07) \\ \end{array} \right. \times 100 \left. + \frac{1}{10} \times 4.720 \right. \times 1.50^2 \left. \right\} \times 1.5 \times 1.1$$

$$= 34.7^{\text{KNZm}}$$

c) moment of middle fulcrum :

$$M = \left\{ (0.15 \,\ell + 0.125) \,P + \frac{1}{10} \omega \,d \cdot \ell^2 \right\} \times 1.5 \times 1.1$$

$$= \left\{ (0.15 \,\times 1.50 + 0.125) \times 100 + \frac{1}{10} \times 4.720 \times 1.50^2 \right\} \times 1.5 \times 1.1$$

$$= 59.5^{\text{KN/m}}$$

- 2. Calculation of stress
 - a) middle span

b =
$$100^{\text{cm}}$$
 h = 20 d = 15.0 d' = 5.0
As = $Y_{12} - 150^{\text{ctc}} = 1.131/0.150 = 7.540 \text{ cm}^2$
P = $\frac{7.540}{100 \times 15.0} \times 100$ = 0.503 %
 $\chi = \frac{0.87 \times 41000 \times 7.540}{0.40 \times 3000 \times 100}$ = 2.4cm
Z = $15.0 - \frac{2.4}{2}$ = 13.8^{cm} < 0.95×15.0=14.3cm 0K

$$M_{RS} = 0.87 \times 41000 \times 7.540 \times 13.8 \times 10^{-5} = 37.1^{KNm} > Mu = 34.7^{KNm}$$

 $M_{RC} = 0.40 \times 3000 \times 100 \times 2.4 \times 13.8 \times 10^{-5} = 39.7^{KNm} > Mu = 34.7^{KNm}$ OK

b) middle fulcrum

$$b = 100^{\text{cm}} \quad h = 20 \quad d = 16.0 \quad d' = 4.0$$

$$As = Y_{15} - 150^{\text{ctc}} = 2.011/0.150 = 13.407 \text{ cm}^2$$

$$P = \frac{13.407}{100 \times 16.0} \times 100 = 0.838 \%$$

$$x = \frac{0.87 \times 41000 \times 13.407}{0.40 \times 3000 \times 100} = 4.0^{\text{cm}}$$

$$Z = 16.0 - \frac{4.0}{2} = 14.00^{\text{cm}} < 0.95 \times 16.0 = 15.2^{\text{cm}}$$
OK

 $M_{RS} = 0.87 \times 41000 \times 13.407 \times 14.00 \times 10^{-5} = 66.9^{KNm} > Mu = 59.5^{KNm}$ $M_{RC} = 0.40 \times 3000 \times 100 \times 4.0 \times 14.00 \times 10^{-5} = 67.2^{KNm} > Mu = 59.5^{KNm}$ OK

Calculation of Shoe

Girder-edge and Parapet face of abutment I) quantity of expantion between

```
=(0.80[+50)<sup>(IMI)</sup>
                                                                           for temperature : dt = a \times T \times L = (1.0 \times 10^{5} \times 15.0 \times L)^{11} = (0.150 \times L)^{11} for shrinkage = ds = a \times T \times L \times b = (1.0 \times 10^{5} \times 200 \times L \times 0.8) = (0.160 \times L)^{1} for creep = dc = \frac{P}{E \times A} \times \Phi \times L \times b = \frac{750}{27 \times 10^{6}} \times 1.9 \times L \times 0.8 = (0.430 \times L)^{1}
_quantity of expantion or shrinkage (maximum)
                                                                                                                                                                                                                                                                                                                                                          for other
```

-coefficient of thermal expantion or shrinkage -quantity of temperature variance -girder length...... fou = strength of concrete (30 N/mm²) =coefficient of decrease P/A = 0.5 fcu /2 -0.5 x 300 /2 = young's modulus -creep.factor

NO ② Vehicle bridge

edge fulcrum Rd = $759.7/5 \times 1.1$ = 167.2 KN/choe (MOV) $RL = 581.2/5 \times 1.1$ = 127.8 Rmax = = 295.0 :. $dL = (0.80L + 5) = (0.80 \times 14.0 + 5)$ = 17 mm middle fulcrum Rd = $2439.2/5 \times 1.1$ = 536.7 KN/choe $RL = 1453, 4/5 \times 1, 1$ (Fix) = 319.8 Rmax = = 856.5

Notice: this case is apply NOO vehicle

医格特里氏菌 化二氯化

No.② VEHICLE - Substructure

- 1. Reaction from superstructure
 - 1) For ABUT (Movable) ... S.L.S.
 - (1) For Vertical load ($B=11.200^{m}$)

 dead load Rd = 759.624^{kN} live load R ℓ = 581.192^{kN} total load R = 1340.816^{kN}
 - (2) For Horizontal force for temperature or seismic $H_T = H_D = 759.624 \times 0.15 = 113.944^{KN}$
 - 2) For Pier (Fixed) ··· S.L.S.

 - (2) For Horizontal load

 - b) Crossing direction $\text{skidding load H}_{\text{S}} = 250.000^{\text{KN}}$ $\text{seismic load H}_{\text{D}} = 2439.170 \times 0.10 = 243.920^{\text{KN}}$

*
¥
- 7
1.0
fire
ABUT
"
•
٠.
CLE
_
O
-4
퓹
'n
\leq
٦.
٠.
S-ON
۸
\simeq
-

	S. T.	APE	SHAPE AND SIZE	SIZ	GI			:	
	9H	i .	9.500	9.500 (m)	30		5.000 (m)	Ê	
- " :	H.	11	1.100 (m)	(m)	Ä	п	1.500	(E)	
	H2	11	0.000	(E)	B2		1.100	(æ)	
	H3	ii	00000	(E)	B3	11	0.300	(a)	
:	X.	11	7.500	(m)	B4	. 11	2.400	(B)	
	T.		0.000	(E)	BS	n	0.800	Ê	
	Н6	31	0.900	(E)	B6		0.000	Ê	
	341	ii M	11.200	(e	HU1	n	0.500	æ	
	BW2	N	11.200	(E)	HU2	n	0.500	Œ	
	HWI		0.500	(m)				*	
	HW2	n n	0.500	(E)					

NOTE: THE DIMENSIONCE) BE EXCHANG TO DIMENSION(KN) INTO THIS CALCULATION

9.800 (t/m^3)	WATS	FOR WATER
9.800 (t/m^3)	GAM2S =	(UNDERWATER) GAM2S
18.600 (t/m^3)	GAM2 =	FOR ABOVE TOE SLAB
35.000 (*)	FAi =	INTERNALFRICTIONANGLEFAI
10:800 (t/m^3)	GAMIS =	(UNDER WATER)
19.600 (t/m^3)	GAM1 =	FOR BACK FILL
23.600 (t/m^3)	GAMC =	FOR CONCRETE
		UNIT VOLUME WEIGHTS
00.0	KHS =	SEISMIC COEFFICIENT
0.10	H H	
0.000 (t/m^2)	G G	
34.300 (t/m^2)	= 76	
0.100 (m)	RY	AND HORIZONTAL FORCE
0.350 (m)	н Х	SITUATION OF REACTION
113.944 (t)	= QH	TEMPERATURE SEISMIC
113.944 (t)	= LH	HORIZONTAL FORCE FOR
7.59.624 (1)	RD	LIVE LOAD
581,192 (t)	BL =	REACTION OF DEAD LOAD

CALCULATION OF WEIGHT AND FORCE OR LOAD

(1) CONCRETE

1 87.226 8.723 2.450 8.950 213.703 78.067 4 2180.640 218.064 2.050 4.650 4470.310 1014.000 8 1189.440 118.944 2.500 1 0.450 2973.600 53.525	NO.	V(t)	H(1)	X(m)	1 Y(m)	MX(t-m)	MY(t·m)
1 218.064 1 2.050 4.650 4470.310 118.944 2.500 0.450 2973.600	м	87.226	8.723	2,450		213.703	78.067
118.944 2.500 L 0.450 2973.600	4	1 2180.640 1	218.064	2.050		1 4470.310	1014.000
	00	1189.440	118.944	2.500	- di	1 2973.600	53.525

(2) EARTH 4) BACK FILLING

NO.	V(t)	H(t)	X(m)	Y(m)	MX(t·m)	MY(t·m)
~ 각	579.533 (57.953	3.800	8.950	15015.200	1837,380
22	4530.890	453.089			17217.400	2356,060

BY SURCHAG OF TOE SLAB

000.0	117.180			0.000	156.240	23
0.000	117.180	1.150	0.000 0.750	0.000	156.240	9
MY(t·m)	MX(t·m)	Y(m)	X(m)	II(t)	۷(\$)	NO.

V = X*Y*BW*GAMI MX = V*X

II = V*KIIS MY = II*Y

(3) REACTION

STATE RV(t) RII(t)	RII(t)	RMX(t.m) RMY(t.m)	RMY(t.m)
lordinar y 1340,820	0000	2614.590	0.000
	113.944	1 2614.590	968.524
	113.944	1 1481.270	968.524

RMX= RV*X

RMY= RII*Y

(4) EARTH PRESSURE FACTOR

	Urdinary or	ry or	F Seismic	
	-	שות שו מו שו		
	1 0.2497	0.2508	1 0.3056 1	0.3277
(8) NIS !	0.5736	0.2022	1 00:3007	000000
1 COS (8)	0.8192	0.9793	1 0.9537 ;	1.0000

(5) EARTH PRESSURE

	-	!	•	-		
	32	921	(E)X	Y(m)	Y(m) MX(t·m) MY(t·m)	MY(t·m)
<u>.</u>	522.731	746.538		4.750	2613.660	3546.060
	11418.840	12026.320		3.167	7094.2101	6416.670
	11031.470	11473.090		4.100	1 5157.350	6035.680
_	373.537	373.537 533.466	1 5.000	0.689	0.689 1867.680	367.768
		_				
_,	1 910.231	12886.890	1 5.000	3.167		9141.810
:	661.720	12098.710	1 5.000	4.100	1 3308,6001 8604,7101	8604.710
	239.635	1 760.027	1 5.000	1 0.689	11198.1801	523.958

(6) BUOYANCY

V(t)	11(t)	X(m)X	Y(m)	MX(t·m)	MY(t-m)
1037.230	0.000	3.6501	0000.0	3785.9001	000.0
-746.480 -746.480	0.000	2.496	0.0000	-1863.4301	0.0001

TOTAL OF ACTION FORCE

1. EXCLUDE BUOYANCY

(1) ORDI NARY ··· FOR FOUNDATION

OAD	l V(t)	IICE	WX(t·m)	MY(t·m)
<u>× 1</u>	3457 310		7277	000
Ω Ω	4530.890	000.0	17217.400	0.000
	522.731	746.538	2613,660 1	3546.060
Ξ.	1418.840	2026.320	7094.210	6416,670
	1340.820	000.0	2614.590	0.000
	1037.230 1	0.000	3785.900 1	0.00
	156.240	0.000	117.180	000.000
DTAL	TOTAL 112464,100		2772.860 41100.500	9962.730

 $Mo = \Sigma MX - \Sigma MY = 31137.800 (t·m)$

COORDINARY -- FOR INVERSION OR SLIDE

	1 V(L)	H(t)	MX(t·m)	MY(t·m)
SAME	3457.310	0.000	17217.430	0.000
	522.731	746.538	1 2613.660 1	3546.060
- -	1 1418.840	1 2026.320	1 7094.210	6416.670
	759.624	1 0000 1	1 1481,270	00000
	156.240	0000	117.180	0.000
-	110845.600 2772.860	2772.860	36181.300	9962.730

 $Mo = \Sigma MX - \Sigma MY = 26218.600 (t·m)$

(3) TEMPERATURE ... FOR FOUNDATION

	! V(t)	H(t)	MX(t·m)	MY(t·m)
SAME	3457.310 4530.890	0.00.0	7657.610 17217.400	0.000
1(1)	522.731	746.538	2613.660	3546.060
<u> </u>	1418.840	2026.320	7094.210	
	1037.230	000.0	3785.900	968.524
	1 156.240	0.000	117.180	
	112464.100	2886.800	41100.500 10931.300	10931.300

 $Mo = \Sigma MX - \Sigma MY = 30169.300 (t.m)$

" TEMPERATURE ... INVERSION OR SLIDE

	V(t)	(3)11	MX(t-m)	MY(t-m)
A M R	3457.310	0.000	7657.610 17217.400	0.000
- - - -	522.731	746.538	2613.660	3546.050
	759.624	113.944	1481.270	968.524
	10845.600	2886.800	36181,300	008.18601

 $Mo = \Sigma MX - \Sigma MY = 25250.100 (t·m)$

(S) SEISMIC

	(vct)	H(t)	MX(t·m)	MY(t·m)
	3457.310	345.731	7657.610	1145,590
SAME	4530.890	453.089	17217.400	2356.060
-	910.231	2886.890	4551.160	9141.810
-	1 759.624	113.944	1481.270 1	968.524
	156.240	0.000	117.180	0.000
	9814.290	3799.650	31024.600	13612.000

 $10 = \Sigma MX - \Sigma MY = 17412.600 (t·m)$

2. INCLUDE BUOYANCY

	V(t)	1100	MX(t-m)	MY(t·m)
		0.000	7657.610	0.000
	4530.890	000.0	17217.400	000.0
:	522.731	746.538	2613,660	3546.060
٠.	•	1 1473.090	5157.350	6039.680
	ö	1 533.466	1867.680	367.768
ei T	1340.820	000.0	2614.590	0.00
.:	1037,230	000.0	3785.900	0000.0
	1 156.240	000.0	117.180	000.0
	-746.480	0.000	-1863.430	000:0
	111703.700	1 2753.100	39167,900	9953.510

 $Mo = \Sigma MX - \Sigma MY = 29214.400 (t·m)$

(2) ORDINARY

1 V(t)	!!(t)	MX(t·m)	MY(t·m)
1 3457.310	0.000	7557.610	0.000
1 4530.890	000.0	17217.400	000.0
8	746.538		3546.060
1 1031.470	733	5157.350	6039.680
ς,	1 533.466	۲.	367.768
Ö	0000.0	-	0.00
6.2	00000	117.180	0.00
1 -746.480	0.000	က်	0.000
110085.300	1 2753.100	34248.700	9953.510

 $Mo = \Sigma MX - \Sigma MY = 24295.200 (t·m)$

(3) TEMPERATURE

	V(t)	li(t)	MX(t·m)	MY(t-m)
! — 	3457.310	0.000	7657.610 17217.400	0.000
•	522.731		2613.660	3546.060
	. 47	1473.090	5157.350	6039.680
:	3.53		67.6	367.768
	0.82		14.5	968,524
- - -	7.23		85.9	0.000
	.0		17.1	0.000
	-746.480	0.000	63.4	0.000
	11703.700	2867.040	39167.900	10922.000

 $Mo = \Sigma MX - \Sigma MY = 28245.900 (t·m)$

(4) TEMPERATURE

·	V(t)	H(t)	MX(t·m)	MY(t-m)
	3457.310	0.000	7657.610	0.000
	4530.890	00000	17217.400	000.0
<u> </u>	522.731		2613.660	
	1031.470	1473.090	1 5157.350	6039,680
_	373.537	E,	1 1867,680	
	759.624	ь	1481.270	968.524
	156.240	000.0	117.180	0.000
	-746.480	000.0	-1863.430	000.0
	10085.300	2867.040	34248.700	10922.000

 $Mo = \Sigma MX - \Sigma MY = 23326.700 (t·m)$

(S) SEISMIC

V(t)	11(1)	MX(t-m)	MY(t-m)
3457.310	345.731	7657.610	1145.590
4530.890	453.089	17217.400	50
	2098.710	3308.600	8604.710
239.635	i 750.027	1198.180	523.958
ဖ	113.944	1481.270	968.524
156.240	1 0000 1	117.180	0.000
-746.480	0.000	-1863.430	000:0
9058.940	3771.500	29116.800	13598.900

 $Mo = \Sigma MX - \Sigma MY = 15518.000 (t·m)$

TOTAL FORCE FOR UNDER FOUNDATION CENTER

r T	~											. <u></u>
(m-		333	4	85	02	۱ - ۱		934				
Mc(t-m)		22	800	065	89	7123		44	-	0	8	7129
e(m)		0.002	0.083	0.079	0.172	0.726	_	0.004	0.091	0.087	0.187	0.787
		00	- 00	1.00	00	. I 009		400	200	900	- 00	000
Mo(t·m)	.*	φ.	Ö	3	25250.1			9214	4295	28245.9	3326.7	α,
11(1)	-	772.860	772.860	86.800	2886.800	199.650		ın	ıa	167.040	£D.	71.500
		27	-2	- -	- - -	37		27	27	28	28	37
V(t)		246	084	12464.100	0845.6	9814.290		1703.7	10085.300	11703.700	10085.300	9058.940
OAD			~		4	ហ		_	~	ლ	4.	s S
7	⋖		_	_			n					

= D0/2 - Mo/V : Mc

五元万円

A AND B: EXCLUDE OF BOUYANCY OR INCLUDE BOUYANCY

1. ORDINARY : FOR FOUNDATION

FOR INVERSION OR SLIDE

3. TENPERATURE: STATE OF 1

...

5. SEISMIC

2) Factor of calculation for reaction of piles.

S P P -
$$\phi 500^{mm} \times 9^{mm} \times 8.500^{m}$$

Ap =
$$\frac{\pi}{4}$$
 (0.500² - 0.482²) = 0.01388 m²

Ip =
$$\frac{\pi}{64}$$
 (0.500⁴ - 0.482⁴) = 0.000418 m⁴

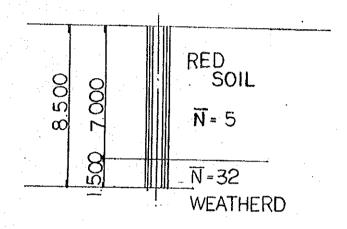
$$Ep = 20.58 \times 10^7 \text{ KN/m}^2$$

$$K_H = \alpha E_0 D^{-\frac{3}{4}} = 0.8 \times 7 \times 5 \times 50^{-\frac{3}{4}} \times 9.8 = 14.6 \text{ N/cm}^3 = 14600 \text{ KN/m}^3$$

$$Kv = \alpha \frac{Ap Ep}{\ell}$$

where

$$\alpha = 0.027 \frac{\ell}{D} + 0.200$$


$$= 0.027 \times \frac{8.50}{0.50} + 0.200 = 0.659$$

$$\therefore K v = 0.659 \times \frac{0.01388 \times 20.58 \times 10^7}{8.5}$$

$$= 2.215 \times 10^{5} \text{ KN/m} = 221500 \text{ KN/m}$$

$$B = \sqrt[4]{\frac{K \cdot D}{4 E I}} = \sqrt[4]{\frac{14600 \times 0.50}{4 \times 20.58 \times 10^7 \times 0.000418}} = 0.382 \text{ m}^{-1}$$

- 2. Factor for pile of Foundation
 - 1) Vertical force for ground of a front of piles.

From Meyerhof formula

Ru =
$$(40 \text{ N A} + \frac{\text{N c}}{2} - \text{A c}) \times 9.8$$

= $\left\{40 \times 32 \times \frac{\pi \times 0.50}{4} + \pi \times 0.50 \left(\frac{5}{2} \times 7.00 + \frac{32}{2} \times 1.50\right)\right\} \times 9.8$
= $(251.3 + 65.2) \times 9.8$
= 3101.7 KN/a pile

allowable strength of a front ground

$$Ra = \frac{1}{n}Ru = \frac{1}{3} \times 3101.7 = 1035$$
 KN/a pile = 1000 KN/a pile

		(t.m) 118,19 18,19	
		7888	
00g . ###	(mm) (mm) (m.rad)	(t) 189.98 189.98 189.98	
9814.290 3799.650 7123.110	11.099500 2.215420 0.921947	(t) 873.61 490.72 107.82	
> X X	11 11 11 X X X X X X X X X X X X X X X	X (m) 1.875 0.000 1.875	
	re-		

		(t.m) -176.81 -176.81		e de		• .	(t·m) -172.15 -172.15
(t) (t·m)	(mm) (mm) (m.rad)			·	(t) (t) (t m)	(mm) (mm) (m.rad)	(t) 138.64 138.64 138.64
12464.100 2886.800 990.857	7.992180 2.813560 0.363338	(t) 774.10 623.20 472.30			12464.100 2772.860 22.335	7,584070 2,813560 0,278126	(t) 738.71 523.20 507.69
n a u >≃≍	и и и «Х «Х «Х	X (B) 1.875 -1.875) H H	2 00 00 00 00 00 00 00 00 00 00 00 00 00	X (m) 1.875 0.000
		H 01 00	4 - 26				c) w

```
> I X
                                                                                                       (mm )
(mm )
(m.rad)
8 H H
                      8 00 00
4 X
                                                                                                       < ×
∀ ⊗ ⊗
```

No. ② VEHICLE - ABUT-

Calculation of stability for foundation pile

1) Action force for foundation bottom ... U.L.S.

load State	Ики	H _{KN}	Мкыш
Normal	$12464.1 \times 1.380 \\ = 17200.5$	$\begin{array}{c} 2772.9 \times 1.65 \\ = 4575.3 \end{array}$	× 2721.2
Temperature	17200.5	$\begin{array}{c} 2886.8 \times 1.65 \\ = 4763.3 \end{array}$	* 4319.2
Seismic	$ 9814.3 \times 1.380 \\ = 13543.8 $	$ 3799.7 \times 1.35 \times 1.1 \\ = 5642.6 $	* 11259.4

```
D =
                       0.500
                               (m
           [. =
                       8.500
                               (m
           Ho=
                       0.000
                               (m
                               (m<sup>4</sup>)
           · ] =
                  0.0004180
           E =
                  %20.500E+07 (t/m^2)
                              (t/m^3)
           Kh=
                   14600.00
           Kv=
                  221500.00
                               (t/m )
         0.38202
                   (m^-1)
\beta *L =
         3.24715
                  > 3.0
    1
            1.875
                            8
                                     0.0
    2
            0.000
                            4
                                     0.0
    3
           -1.875
                            8
                                     0.0
            19177.8
                      (t/m
 K1 =
 K2 =
            25042.5
                      (t/rad.
                                )
 K3 =
            25042.5
                      (t·m/m
                                )
                      (t·m/rad.)
 K4 =
            65318.3
                (t)
                       1500.00
                                   1500.00
                (t<sub>.</sub>)
                       -300.00
                                   -300.00
                (t')
                        300.00
                                     300.00
                (mm)
                         25.00
                                      25.00
     V =
            17200.500
                         (t
     H =
              4575.300
                        (t)
     M =
              2721.200
                         (t \cdot m)
  δx
           12.794600
       Ξ
                         (mm)
  δу
            3.882730
       #3
                         (mm
       =
            0.663196
  α
                         (m.rad)
               (t)
   (m)
                           (t).
                                       (t·m)
 1.875
           1135.46
                        228.77
                                      -277.09
 0.000
            860.03
                        228.77
                                      -277.09
```

584.59

228.77

-277.09

-1.875

1

2

3

```
V = 17200.500 (t)
H = 4763.300 (t)
M = 4319.200 (t m)
```

$$\delta x = 13.468400$$
 (mm)
 $\delta y = 3.882730$ (mm)
 $\alpha = 0.803794$ (m.rad)

$$V = 13543.800 \text{ (t)}$$

 $H = 5642.600 \text{ (t)}$
 $M = 11259.400 \text{ (t \cdot m)}$

$$\delta x = 16.566400$$
 (mm)
 $\delta y = 3.057290$ (mm)
 $\alpha = 1.420680$ (m.rad)

Calculation of stress for each section

A. Vertical wall

a) State of normal load (earth pressure only)

$$M_{1} = \frac{1}{6} \times 19.6 \times 0.251 \times 8.60^{3} \times 1.5 \times 1.1 = 860.6 \text{ KNm/m}$$

$$M_{2} = \frac{1}{2} \times 34.3 \times 0.251 \times 8.60^{2} \times 1.5 \times 1.1 = 525.4 \text{ KNm/m}$$

$$M = = 1386.0 \text{ KNm/m}$$

$$S_{1} = \frac{1}{2} \times 19.6 \times 0.251 \times 8.60^{2} \times 1.5 \times 1.1 = 300.2 \text{ KN/m}$$

$$S_{2} = 34.3 \times 0.251 \times 8.6 \times 1.5 \times 1.1 = 122.2 \text{ KN/m}$$

$$S = = 422.4 \text{ KN/m}$$

b) State of temperature and normal load

$$M = 1386.0 + 113.944/11.2 \times 7.60 \times 1.3 \times 1.1 = 1496.6 \text{ KNm/m}$$

 $S = 422.4 + 113.944/11.2 \times 1.3 \times 1.1 = 437.0 \text{ KNm/m}$

c) State of seismic load

$$M = \left\{ \frac{1}{6} \times 19.6 \times 0.328 \times 8.60^{3} + 113.944/11.20 \times 7.60 \right\} \times 1.35 \times 1.1$$

$$= 1126.9 \text{ KNm/m}$$

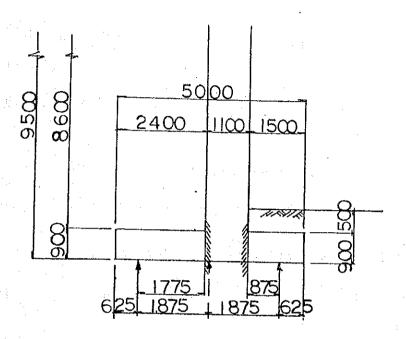
$$S = \left\{ \frac{1}{2} \times 19.6 \times 0.328 \times 8.60^{2} + 113.944/11.20 \right\} \times 1.35 \times 1.1$$

$$= 368.2 \text{ KNm/m}$$

d) Calculation of stress

this case is abridge from No.① Vehicle-Abutment

$$A_8 = Y_{32} - 150^{\text{ctc}} = 8.042/0.150 = 53.613 \text{ cm}^2$$


$$P = \frac{53.613}{100 \times 103.0} \times 100 = 0.520 \%$$

$$M_{Ra} = 1786.1^{KNm} > Mu = 1496.6^{KNm}$$
 OK

$$V_{\rm C} = \frac{437.0 \times 10^3}{100 \times 103.0} = 42.5 \text{ N/cm}^2$$
 < $V_{\rm Ca} = 50.6 \text{ N/cm}^2$ OK

Calculation for Footing slab (S.L.S.)

1) Shape and size

- 2) Surcharge load
- a) toe footing slab

$$\omega = 23.6 \times 0.90 + 18.6 \times 0.50 = 30.540$$
 KN/m

b) heel footing slab

$$\omega = 23.6 \times 0.90 + 19.6 \times 8.60 = 189.800 \text{ KN/m}$$

- 3) Calculation of bending moment and shearing force
 - a) toe footing slab ... Seismic state

$$M = 8 \times 873.6 \times 0.875 / 11.20 - \frac{1.50^{2}}{2} \times 30.540 = 511.7 \text{ KNM/m}$$

$$S = 8 \times 873.6 / 11.20 - 1.50 \times 30.540 = 578.2 \text{ KNM/m}$$

b) heel footing slab ... Seismic state

$$M = \frac{2.40^{2}}{2} \times 189.800 - 8 \times 107.8 \times 1.775 / 11.20 = 410.0 \text{ KNm/m}$$

$$S = 2:40 \times 189.800 - 8 \times 107.8 / 11.20$$

Calculation for footing slab (U.L.S.)

- 1) Surcharge load
 - a) toe footing slab

$$\omega = (23.6 \times 0.90 + 18.6 \times 0.50) \times 1.2 \times 1.15 = 42.145 \text{ kN/m}$$

b) heel footing slab

$$\omega = (23.6 \times 0.90 + 19.6 \times 8.60) \times 1.2 \times 1.15 = 261.924 \text{ kN/m}$$

- 2) Calculation of bending moment and shearing force
 - a) toe footing slab ... Seismic state

$$M = 8 \times 1267.2 \times 0.875 / 11.20 - \frac{1.50^{2}}{2} \times 42.145 = 744.6 \text{ knm/m}$$

$$S = 8 \times 1267.2 / 11.20 - 1.50 \times 42.145 = 841.9 \text{ knm/m}$$

b) heel footing slab ... Seismic state

$$M = \frac{2.40^{2}}{2} \times 261.924 - 8 \times 87.2 \times 1.775 / 11.20 = 643.8 \text{ KNM/m}$$

$$S = 2.40 \times 261.924 - 8 \times 87.2 / 11.20 = 566.4 \text{ KNM/m}$$

No.2 VEHICLE - ABUT-

Calculation of stress for footing slab

1) For toe footing slab (U.L.S.)

section b =
$$100^{\text{cm}}$$
 h = 90 d = 75.0 d' = 15.0
As = $Y_{25} - 150^{\text{ctc}} = 4.909/0.150$ = 32.727 cm²

$$P = \frac{32.727}{100 \times 75.0} \times 100$$
 = 0.436%

$$\chi = \frac{0.87 \times 41000 \times 32.727}{0.40 \times 2500 \times 100} = 11.8^{\text{cm}}$$

$$Z = 75.0 - \frac{11.8}{2} = 69.1^{\text{cm}} < 0.95 \times 75.0 = 71.2^{\text{cm}}$$

$$M_{RS} = 0.87 \times 41000 \times 32.727 \times 69.1 \times 10^{-5} = 806.7^{\text{KNm}} > \text{Mu} = 744.6^{\text{KNm}}$$

$$M_{RC} = 0.40 \times 2500 \times 100 \times 11.8 \times 69.1 \times 10^{-5} = 815.4^{\text{KNm}} > \text{Mu} = 744.6^{\text{KNm}}$$

$$V_{C} = \frac{841.9 \times 10^{3}}{100 \times 75.0} = 112.3 \text{ N/cm}^{2}$$

shearing bar

$$A_{sv} = \frac{100 (112.3 - 92.3) \times 60.0}{0.87 \times 41000} = 3.4 \text{ cm}^2$$

$$< Y_{16} - U \text{ type } \cdots A_{S} = 2.011 \times 2 = 4.022 \text{ cm}^2 \text{ OF}$$

 $< V ca = \left\{ 35.0 + 15.0 \left(\frac{0.436 - 0.25}{0.25} \right) \right\} \times 2 = 92.3 \text{ N/cm}^2$

2) For heel footing slab (U.L.S.)

section b =
$$100^{\text{cm}}$$
 h = 90 d = 82.5 d' = 7.5

As = $Y_{2.5} - 150^{\text{cec}}$ = 32.727 cm²

P = $\frac{32.727}{100 \times 82.5} \times 100$ = 0.397%

$$x = \frac{0.87 \times 41000 \times 32.727}{0.40 \times 2500 \times 100} = 11.8^{\text{cm}}$$

Z = $82.5 - \frac{11.8}{2} = 76.6^{\text{cm}} < 0.95 \times 82.5 = 78.4^{\text{cm}}$ OK

M_{RS} = $0.87 \times 41000 \times 32.727 \times 76.6 \times 10^{-5} = 894.3^{\text{KNm}} > \text{Mu} = 643.8^{\text{KNm}}$

M_{RC} = $0.40 \times 2500 \times 100 \times 11.8 \times 76.6 \times 10^{-5} = 903.8^{\text{KNm}} > \text{Mu} = 643.8^{\text{KNm}}$ OK

V c = $\frac{566.4 \times 10^3}{100 \times 82.5} = 68.7 \text{ N/cm}^2$

< V ca = $\left\{35.0 + 15.0 \left(\frac{0.397 - 0.25}{0.25}\right)\right\} \times 2 = 87.6 \text{ N/cm}^2$ OK

Calculation of foundation pile

- 1) For S.L.S.
 - a) state of temperature

$$500^{mm} \times 9^{mm} \times 8.500^{m}$$
factor of pile $E = 2.06 \times 10^{8} \text{ N/cm}^{2}$
 $Ap = 138.8 \text{ cm}^{2}$
 $Z = 1670 \text{ cm}^{3}$

$$\sigma c = \frac{N}{Ap} + \frac{M}{Zp}$$

$$= \frac{774.1 \times 10^{3}}{138.8 \times 0.80} + \frac{176.8 \times 10^{5}}{1674 \times 0.80}$$

$$= 6971 + 13202 = 20173 \text{ N/cm}^{2} < \sigma \text{ ca} = 24000 \text{ N/cm}^{2}$$

b) state of seismic

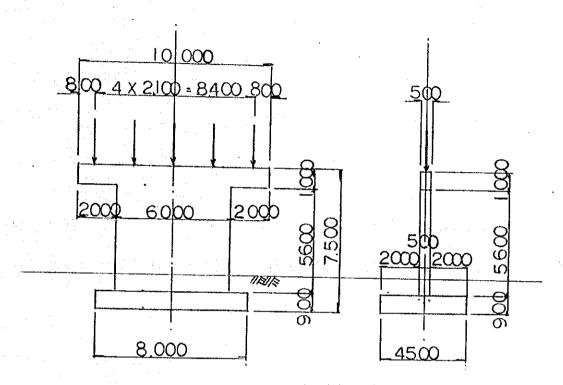
$$\sigma c = \frac{873.6 \times 10^{3}}{138.8 \times 0.80} + \frac{218.2 \times 10^{5}}{1674 \times 0.80}$$

$$= 7868 + 16292 = 24160 \text{ N/cm}^{2} \Rightarrow \sigma ca = 24000 \text{ N/cm}^{2}$$

- 2) For U.L.S.
 - a) state of temperature

$$\sigma c = \frac{1193.9 \times 10^{3}}{138.8 \times 0.80} + \frac{284.8 \times 10^{5}}{1674 \times 0.80}$$

$$= 10752 + 21266 = 32018 \text{ N/cm}^{2} < \sigma \text{ ca} = 36000 \text{ N/cm}^{2}$$


b) state of seismic

$$\sigma c = \frac{1267.2 \times 10^{3}}{138.8 \times 0.80} + \frac{322.1 \times 10^{5}}{1674 \times 0.80}$$

$$= 11412 + 24052 = 35464 \text{ N/cm}^{2} < \sigma \text{ ca} = 36000 \text{ N/cm}^{2}$$

Calculation of Beam

1) Shape and size

2) Load from superstructure

Rd = 2439.170
$$/5 \times 1.1$$
 = 536.6 KN/shoes
R ℓ = 1453.320 $/5 \times 1.1$ = 319.8 KN/shoes
R = 856.4 KN/shoes

- 3) Calculation of bending moment and shearing force
- a) for S.L.S

$$M = 856.4 \times 1.20$$
 $= 1027.7^{KNm}$
 $S = 856.4$ $= 856.4^{KNm}$

b) for U.L.S

$$M = (536.6 \times 1.38 + 319.8 \times 1.65) \times 1.20 = 1521.8^{KNm}$$

$$S = 536.6 \times 1.38 + 319.8 \times 1.65 = 1268.2^{KNm}$$

4) Calculation of stress

section
$$b = 50^{cm}$$
 $h = 100$ $d = 87.5$ $d' = 12.5$

a) for S.L.S.

As =
$$Y_{32} - 4^{NO} \times 2 = 8.042/8^{NO} = 64.336 \text{ cm}^2 \text{ (As'} = Y_{25} - 4^{NO} = 19.636 \text{ cm}^2\text{)}$$

$$P = \frac{64.336}{50 \times 87.5} \times 100 = 1.470 \%$$

$$\chi = \frac{0.80 \times 41000 \times 64.336}{\frac{1}{2} \times 0.50 \times 2500 \times 50} = 67.5^{\text{cm}}$$

$$Z = 87.5 - \frac{67.5}{3} = 65.0^{\text{cm}} < 0.95 \times 87.5 = 83.1^{\text{cm}}$$

 $M_{RS} = 0.80 \times 41000 \times 64.336 \times 65.0 \times 10^{-5} = 1371.6^{KNm} > M_{S} = 1027.7^{KNm}$

$$M_{RC} = \frac{1}{2} \times 0.50 \times 2500 \times 50 \times 67.5 \times 65.0 \times 10^{-5} = 1371.1^{KNm} > Ms = 1027.7^{KNm}$$

b) for U.L.S.

$$x = \frac{(0.87 \times 64.336 \times 0.72 \times 19.636) \times 41000}{0.40 \times 2500 \times 50} = 34.4^{\text{cm}}$$

$$Z = 87.5 - \frac{34.4}{2} = 70.3^{\text{cm}} < 0.95 \times 87.5 = 83.1^{\text{cm}}$$

 $M_{RS} = 0.87 \times 41000 \times 64.336 \times 70.3 \times 10^{-6} = 1613.3^{KNm} > Mu = 1521.8^{KNm}$

 $M_{Rc} = (0.72 \times 41000 \times 19.636 \times 79.5 + 0.40 \times 2500 \times 50 \times 34.4 \times 70.3)$

$$\times 10^{-5} = 1670.0^{\text{KNm}} > \text{Mu} = 1521.8^{\text{KNm}} \text{ OK}$$

$$V_{\rm C} = \frac{1268.2 \times 10^3}{50 \times 87.5} = 289.9 \, \text{N/cm}^2$$

$$< V ca = \left\{ 65.0 + 20.0 \left(\frac{1.470 - 1.00}{1.00} \right) \right\} \frac{2 \times 87.5}{1200} = 108.5 \text{ OUT}$$

shearing bar ... $Y_{16}-150^{ctc}=2.011\times2=4.022$ cm²

$$Vs = 0.87 \times 41000 \times 4.022 / 50 \times 15.0 = 191.2 \text{ N/cm}^2$$

$$Vs + Vca = 191.2 + 1085 = 2997 \text{ N/cm}^2 > Vc = 289.9 \text{ N/cm}^2 \text{ OK}$$

Calculation of pillar

Action force from output of computer (U.L.S.)

Longitudinal direction for seismic

$$N = 2953.65 \times 1.380 = 4076.0 \text{ KM}$$

$$H = 447.29 \times 1.650 = 738.0 \text{ KN}$$

$$M = 2835.12 \times 1.650 = 4678.0 \text{ KNm}$$

Calculation of stress

section
$$b = 600^{cm} h = 50 d = 42.5 d' = 7.5$$

$$As = A's = Y_{32} - 100^{ctc} (60^{NO}) = 8.042/60^{NO} = 482.520 \text{ cm}^2$$

$$Ma = 4678.0 - 4076.0 (0.425 - \frac{50}{2}) = 5391.3 KNM$$

$$x = \frac{(0.87 - 0.72) \times 41000 \times 482.520}{0.40 \times 2500 \times 600} = 5.0^{\text{cm}}$$

$$Z = 42.5 - \frac{5.0}{2} = 40.0^{\text{cm}} \le 0.95 \times 42.5 = 40.4^{\text{cm}}$$

$$M_{Rs} = 0.87 \times 41000 \times 482.520 \times 40.0 \times 10^{-5} = 6884.6^{\text{KNm}} > \text{Ma} = 5391.3^{\text{KNm}}$$

$$M_{RC} = (0.72 \times 41000 \times 482.520 \times 35.0 + 0.40 \times 2500 \times 600 \times 5.0 \times 40.0)$$

$$\times 10^{-5} = 6185.4^{\text{KNm}} > \text{Ma} = 5391.3^{\text{KNm}}$$

OK.

A sn = A'sn = 482.520
$$-\frac{4076.0 \times 10^3}{0.87 \times 41000}$$
 = 368.3 cm²

$$<$$
 A su = A'su = Y₃₂ - 125° t° (47^{NO}) = 8.042 × 47 = 378.0^{KNm} 0K

$$P = \frac{378.0}{600 \times 42.5} \times 100 = 1.482 \%$$

$$Vc = \frac{738.0 \times 10^{3}}{600 \times 42.5} = 29.0 \text{ N/cm}^{2}$$

$$< V ca = 65.0 + 20.0 \left(\frac{1.482 - 1.00}{1.00} \right) = 74.6 \text{ N/cm}^2$$
 OK

```
INPUT - DATA
(1) SHAPE AND SIZE -- (UNIT: m)
  (a) BEAM
           5.000
                   BL1 =
                          0.500
    BWR =
           5.000
                   BL2 =
                          0.000
    DW1 =
           2.000
                   DL3 =
                          0.000
    BW2 =
           2.000
                   BL4 =
                          0.000
    112
           1.000
    113
           0.000
    H4
           0.000
                                       NOTE: THE DIMENSION(1) BE EXCHANG TO
                                          DIMENSION(KN)INTO THIS CALCULATION
  (b) PILLAR (RECTANGULAR)
    CWU =
           6.000
                   CLU =
                          0.500
    CWL =
           6.000
                          0.500
           5.600
  (c) FOOTING
           8.000
                   WFL =
                          4.000
           4.500
                   BFL =
                          2,250
           0.900
                          0.000
  (a) OTHER
    WIII =
           0.000
                          0.000
           1.000
(2) LOAD-CASE
      DIRECTION
   D)CROSSING
                                     , SKIDDING.
```

DIRECTION DIRECTION DIRECTION DIRECTION DIRECTION NORMAL BRAKING, SEISMIC, SCIONIC, SKIDDING, SKIDDIN

4 - 40

WEIGHT OF STRUCTURE AND SURCHARGE OF SOIL (1) BEAM AND PILLAR FOR BOTTOM OF PILLAR

No.	V (t)	H (t)	X (m)	Y (m)	Mx(t·m)	My(t·m)
1 2 3 1 4 1 5 6 1 7 1 8 9 1 W D	59.00 59.00 0.00 0.00 0.00 0.00 0.00 396.48	5.90 5.90 0.00 0.00 0.00 0.00 0.00 39.65	-3.667 1.500 -1.500 0.000	6.100 6.100 5.600 5.600 5.600 0.000 0.000 2.800	147.50 -147.50 0.00	35.99 35.99 0.00 0.00 0.00 0.00 0.00 0.00 111.01

(2) FOUNDATION

No.	V (t)	II (t)	X (m)	Y (m)	Mx(t·m)	My(t·m)
l 1 2 1 3 1 4 1	0.00		0.000	0.900 0.900 0.900 0.450	0.00	0.00 0.00 0.00 34.41
WF	764.64	76.46			0.00	34.41

(3) SURCHARGE OF SOIL

			
NO.	V (t)	X (m)	Mx(t·m)
1 1 1	9.30	0.000	0.00
1 2 1	9.30	0.000	0.00
1 3: I	297.60	1.250	372.00
1 4⊟⊨	297.60	-1.250	-372.00
151.	0.00	1.583	0.00
1 6 1	0.00	-1.583	0.00
7	0.00	0.000	0.00
WS	613.80		0.00

REACTION FROM SUPERSTRUCTURE (1) REACTION FROM SUPERSTRUCTURE

	(6)	(b)
	2439.17 1453.32	2439.17 1453.32 0.000
ΣR	3892.49	3892.49
	0.00 424.00 395.84 0.100	250.00 243.92 0.900

a): LONGITUDINAL DIRECTION

(b): CROSSING DIRECTION

REACTION OF VERTICAL DEAD LOAD : Rd LIVE LOAD : RL SITUATION

HORIZONTAL FORCE
NORMAL STATE OR SKIDDING
BRAKING STATE
SEISMIC STATE

ACTION FORCE FOR BOTTOM OF PILLAR (S.r.S) LONGITHDINAL DIRECTION

11) NORMAL STATE

•							
	į	V (t)	II (t)	X (m)	Y (m)	Mx (t·m)	My (t·m)
	ΣRi WD]	3892.49 514.48	0.00 0.00	0.000		v	
total	(N L)	4406.97	0.00			0.00	0.00

: $Mo = \Sigma Mx + \Sigma My = 0.00$ (t·m)

(2) BRAKING STATE

and the second second	8							
. :	!	V (1)	II (t)	X (m)	Y (m)	Mx (t·	m)	My (t·m)
W	/D¦	3892.491 514.48	424.00	0.000! 0.000!	6.700	0.	001	2840.80
total(E	3 r)j	4406.97	424.00			0.	00	2840.80

: Mo = $\Sigma Mx + \Sigma My = 2840.80$ (t·m)

(3) SEISMIC STATE .

	V (t)	II (t)	X (m)	Y (m) I	Mx (t·m)	My (t·m)
Rd WD	2439.17 514.48	395.84 51.45	0.000	6.700 3.557	0.00	2652.13 182.99
total(SL)	2953.65	447.29			0.00	2835.12

CROSSING DIRECTION

ω SKIDDING STEATE

T	V (t)	H (t)	X (m)	Y (m)	Mx (t·m)i	My (t·m)
ΣR WD	3892.49 514.48	250.00 0.00	0.000 0.000	7.500 0.000	0.00	1875.00
total(Kc)	4406.97	250.00			0.00	1875.00

: $M_0 = \Sigma Mx + \Sigma My = 1875.00$ (t·m)

(2) SEISMIC S	CTATE	MO = 210	Δ			
(2) SEISMIC (SIMIE				<u> </u>	
	V (t)	II (t)	X (m)	Y (m)	Mx (t·m)	My (t⋅m)
Rd WD	2439.171 514.48	243.92 51.45	0.000	7.500 3.557	0.00	1829.40 182.99
total(Sc)	2953.65	295.37			0.00	2012.39

ACTION FORCE FOR BOTTOM OF FOUNDATION BUOYANCY

	NOMAL	SEISMIC
PILLAR FOOTING LSLAB	0.00 -32.40 0.00	0.00 -317.52 0.00
Wu	-32.40	-317.52

LONGITUDINAL DIRECTION

O NORMAL STATE

	i v (t) i	II (t)	X (m)	Y (m)	Mx (t·m)	My (t·m)
total(NL) WF WE WD	4406.97 764.64 613.80 -32.40	0.001 0.001 0.001	0.0001			0.00
TOTAL B	 5785.41 5753.01	0.00			0.001 0.001	0.00

 $: Mo = \Sigma Mx + \Sigma My = 0.00 \quad (t \cdot m)$

(2) BLAKING STATE

		·				
	v (t)	II (t)	X (m)	Y (m)	Mx (t·m)	My (t·m)
total(BL)	4406.97	424.00	—		0.00	2840.80
VA/ E			I. — I	1	0.001	381.60
VV I	764.641	0.00	0.0001	0.0001	0.001	0.00
WE	613.80	0.00	0.0001	0.0001	0.001	0.00
WU.	-32.401		!	— i		:
TOTAL						
Α 1	5785.411	424.00			0.001	3222.40
Ŕ	5753.01	424.00	<u> </u>	1	0.00	3222.40
		WF 764.641 WE 613.801 WU -32.401 TOTAL 5785.411	total(BL) 4406.97 424.00 WF 764.64 0.00 WE 613.80 0.00 WU -32.40 TOTAL A 5785.41 424.00	total(BL) 4406.97 424.00 —	total(BL) 4406.97 424.00	total(BL) 4406.97 424.00 — — 0.00

: Mo = $\Sigma Mx + \Sigma My = 3222.40$ (t·m)

(3) SEISMIC STATE

[V (L)	II (t)	X (m)	Y (m)	Mx (t·m)i	My (t·m)
į	total(Sr)	2953.65	447.29	I		0.001	2835.12
ì	WF	764.64	76.46			0.001	34.41
-	พับั	613.80 -317.52	0.00	0.000	0.000	0.001	0.00
· .	TOTAL		500 55		1	0.00	2070 00
į	B	4332.091 4014.57	523.75 523.75		:	0.001	

: $Mo = \sum Mx + \sum My = 3272.09$ (t·m)

Mvo = Vo*BFD , Mho = Ilo*FII

CROSSING DIRECTION

	NORMAL ST	AIC.	<u> 113 - 11 - 1</u>			. *	
		V (t)	11 (£)	X (m)	Y (m)	Mx (t·m)	My (t·m
	total(kc). MHO	4406.97				0.001	1875.0
1	WF	764.64			0.000	0.001	0.0
1	พน	-32.40]	0.0
l	TOTAL	5785.41	250.00				
1	i B	5753.01		•	I	0.001 0.001	2100.0

(2) SEISMIC STATE

1		V (t)	II (t)	X (m)	Y (m)	Mx (t·m)	My (t·m)
1	total(Sc) WHO	2953.65	295.37			0.001	2012.39 265.83
	WF WE WU	764.64 613.80 -317.52	0.00			0.001	34.41 0.00 ———————————————————————————————————
1	TOTAL A B	4332.09 4014.57				0.001	2312.63 2312.63

NOTICE : Mho = llo*FII

NOTE: TOTAL: A ... EXCLUDE OF BUOYANCY

TOTAL: B ... INCLUDE OF BUOYANCY

```
CALCULATION OF STABILITY FOR
                           PILE OF FOUNDATION SLS
    INPUT DATA OF PILE
    CONDITION OF PILE : FIXED OF PILE HEAD
   CONDITION OF PILE : HINGE OF PILE FRONT
DIAMETER OF PILE
                      D =
                           0.5000000
                      | =
                           0.0004180
                                       (m^4
  FACTOR OF PILE
                      F =
                          20.50000*10^7 (t/m^2)
                     Κv
CONDITION OF
             NUMBER
    GROUND OF LAYER DEPTH
                              SPRINGFACTOR OF HRIZONTAL
                       (m)
                      8.50
                              14600.00
ARRANGEMENT
  LONGITUDINAL DIRECTION
           NUMBER ...
         OF LINE
                     DISTANCE NUMBER ANGLE
                     1.600
                                          0.0
                     -1.600
                                          0.0
  CROSSING DIRECTION
            NUMBER
            OF LINE
                     DISTANCE NUMBER ANGLE
                      3.300
                                   2
                      1.100
                                          0.0
                3
                     -1.100
                                          0.0
                     -3,300
                                          0.0
SPRING FACTOR OF CROSSING DIRECTION
                  FIXED OF PILE HEAD
                      18733.9
                                t/rad.
              K3
                      24647.3
                              ( t.m/m
              K4
                      64789.0
                              (t·m/rad.)
ALLOWABLE VALUE
                                         U.L.S
  VERTICAL FORCE=PUSH (t)
                               1000.00
                                         1500.00
                   =PULL (t)
                               -200.00
                                         -300.00
  HORIZONTAL
                          (t)
                               200.00
                                         300.00
               EORCE
                          (mm)
                                15.00
                                          25.00
  DEFLECTION
```

RESULT OF CALCULATION LONGITUDINAL DIRECTION (I) NORMAL STATE ACTION LOAD VERTICAL FORCE 5785.410 (t HORIZONTAL FORCE 0.000 (t (t·m) MOMENT FIXED OF PILEHEAD DEFLECTION HORIZONTAL δx = δy = 0.000000 (mm VERTICAL 3.264900 (mm α 0.000000 (m.rad) ROTATION ANGLE REACTION FOR PILES LINE DISTANCE VERTICAL HORIZONTAL MOMENT

-1.600

(2) BRAKING STATE

5785.410 H = 424.000 M = 3222.400 (t·m)

723.18

0.00

δx = 3.866280 (mm δу = 3.264900 am) α 0.788336 (m.rad)

(t) 1002.56 (m) (t) (t·m) -44.22 53.00 1.600 53.00 -1.600 -44.22 443.79

(3)SEISMIC STATE

4332.090 (t 523.752 || = (t 3272.090

δx = 4.581510 (mm δу 2.444750 (mm 0.826067 (m.rad) α

(t) (m) (t) (t·m) -59.40 1.600 834.27 65.47 -1.600 248.75 65.47 -59.40

LONGITUDINAL DIRECTION ... INCLUDE OF BUOYANCY (1) NOMAL STATE

(2) BRAKING STATE

$$V = 5753.010$$
 (t)
 $H = 424.000$ (t)
 $M = 3222.400$ (t·m)

$$\delta x = 3.866280$$
 (mm)
 $\delta y = 3.246620$ (mm)
 $\alpha = 0.788336$ (m.rad)

(3) SEISMIC STATE

CROSSING DIRECTION

(1) SKIDDING STATE

$$V = 5785.410$$
 (t)
 $II = 250.000$ (t)
 $M = 2100.000$ (t·m)

$$\delta x = 1.959160$$
 (mm)
 $\delta y = 3.264900$ (mm)
 $\alpha = 0.221223$ (m.rad)

	(m)	(t)	(t)	(t·m)
1	3.300	884.88	31.25	-33.96
2	1.100	777.08	31.25	-33.96
3	-1.100	669.28	31.25	-33.96
4	-3.300	561.47	31.25	-33.96

(2) SEISMIC STATE

$$V = 4332.090$$
 (t)
 $H = 371.832$ (t)
 $M = 2312.630$ (t·m)

$$\delta x = 2.816760$$
 (mm)
 $\delta y = 2.444750$ (mm)
 $\alpha = 0.255188$ (m.rad)

	(m)	(t)	(t)	(t·m)
1	3.300	728.04	46.48	-52.89
$\tilde{2}$	1.100	603.69	46.48	-52.89
3	-1.100	479.34	46.48	-52.89
4	-3.300	354.98	46.48	-52.89

CROSSING DIPECTION ... INCLUDE OF BUOYANCY

(1) SKIDDING STATE

$$V = 5753.010$$
 (t)
 $H = 250.000$ (t)
 $M = 2100.000$ (t·m)

$$\delta x = 1.959160$$
 (mm)
 $\delta y = 3.246620$ (mm)
 $\alpha = 0.221223$ (m.rad)

	(m)	(t)	(t)	(t·m)
1	3.300	880.83	31.25	+33.96
2	1.100	773.03	31.25	-33.96
3	-1.100	665.23	31.25	-33.96
4	-3.300	557.42	31.25	-33.96

(2) SEISMIC STATE

$$V = 4014.570$$
 (t)
 $H = 371.832$ (t)
 $M = 2312.630$ (t·m)

$$\delta x = 2.816760$$
 (mm)
 $\delta y = 2.265560$ (mm)
 $\alpha = 0.255188$ (m.rad)

	(m)	(t)	(t)	(t·m)
1	3.300	688.35	46.48	-52.89
$\tilde{2}$	1.100	564.00	46.48	-52.89
3	-1.100	439.65	46.48	-52.89
4	-3.300	315.29	46.48	-52.89

CALCULATION OF STABILITY FOR PILE OF FOUNDATION... U.L.S.

```
0.500
                       8.500
                               (m
           llo=
                       0.000
                               (m
                               (m<sup>4</sup>)
           I =
                  0.0004180
           E =
                  20.500E+07 (t/m^2)
                              (t/m^3)
           Kh =
                   14600.00
           Kv=
                  221500.00
                               (t/m
         0.37904
                   (m^{-1})
β*L =
         3.22183
                   > 3.0
```

```
1 1.600 4 0.0
2 -1.600 4 0.0
```

$$K1 = 18733.9$$
 (t/m)
 $K2 = 24647.3$ (t/rad.)
 $K3 = 24647.3$ (t·m/m)
 $K4 = 64789.0$ (t·m/rad.)

No. ① VEHICLE - PIER-

Calculation of stability for foundation pile

1) Action force for foundation bottom ... U.L.S.

(1) Longitudinal direction

State load	N ^{kn}	Нки	M KNm
Normal	5785.4×1.380 = 7983.9	<u>-</u>	
Braking	7983.9	$424.0 \times 1.375 \\ = 583.0$	$3222.4 \times 1.375 = 4430.8$
Seismic	$4332.1 \times 1.380 \\ = 5978.3$	523.8×1.65 = 863.8	$3272.1 \times 1.65 \\ = 5399.0$

(1) Crossing direction

load State	Ики	Нки	Mĸnm
Skidding	7983.9	$ 250.0 \times 1.375 \\ = 343.8 $	$2100.0 \times 1.375 \\ = 2887.5$
Seismic	5978.3	371.9×1.65 = 613.7	$2312.7 \times 1.65 \\ = 3816.0$

LONGITUDINAL DIRECTION INCLUDE OF BUOYANCY (1) NORMAL STATE

V =	7978.300	(t)
)) =	0.000	(t)
<u></u> } =	0.000	(t -	m)

$$\delta x = 0.000000$$
 (mm)
 $\delta y = 4.502430$ (mm)
 $\alpha = 0.000000$ (m.rad)

(2) BRAKING STATE

$$\delta x = 5.316140$$
 (mm)
 $\delta y = 4.505590$ (mm)
 $\alpha = 1.083960$ (m.rad)

(3)SEISMIC STATE

$$V = 5978.300 (t)$$
 $H = 863.800 (t)$
 $M = 5399.000 (t m)$

$$6x = 7.556760$$
 (mm)
 $6y = 3.373760$ (mm)
 $\alpha = 1.362910$ (m.rad)

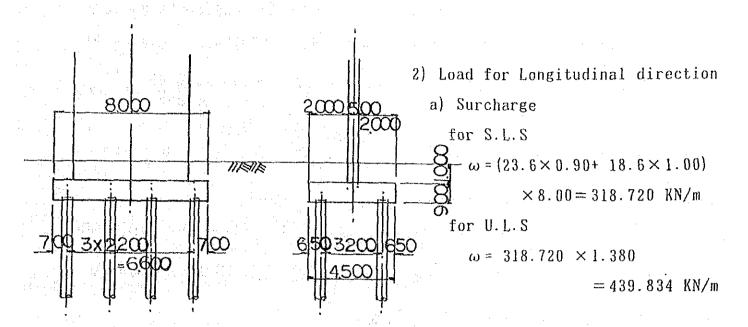
CROSSING DIRECTION ... INCLUDE OF BUOYANCY (1) SKIDDING STATE

(2) SEISMIC STATE

$$V = 5978.300 \text{ (t)}$$

$$II = 613.700 \text{ (t)}$$

$$M = 3816.000 \text{ (t · m)}$$


$$\delta x = 4.648880 \text{ (mm)}$$

$$\delta y = 3.373760 \text{ (mm)}$$

$$\alpha = 0.421096 \text{ (m.rad)}$$

	10.00			
	(m)	(t)	(t)	(t·m)
1	3.300	1055.09	76.71	-87.30
2	1.100	849.89	76.71	-87.30
3	-1.100	644.69	76.71	-87.30
4	-3.300	439.49	76.71	-87.30

Calculation of stress for footing of foundation

- 3) Calculation of bending moment and shearing force
 - a) Braking state (S.L.S)

$$M = 4 \times 1002.6 \times 1.35 - \frac{2.00^{2}}{2} \times 318.720 = 4776.6 \text{ KNm}$$

$$S = 4 \times 1002.6 - 2.00 \times 318.720 = 3373.0 \text{ KN}$$

b) Braking state (U.L.S)

$$M = 4 \times 1382.2 \times 1.35 - \frac{2.00^{2}}{2} \times 439.834 = 6584.3 \text{ KNm}$$

$$S = 4 \times 1382.2 - 2.00 \times 439.834 = 4649.2 \text{ KN}$$

- 4) Calculation of stress
 - a) for U.L.S.

section
$$b = 800^{\text{cm}}$$
 $h = 90$ $d = 75.0$ $d' = 15.0$

As $= Y_{25} - 125^{\text{ctc}} (63^{\text{NO}}) = 4.909 \times 63^{\text{NO}} = 309.267 \text{ cm}^2$

$$P = \frac{309.267}{800 \times 75} \times 100 = 0.515 \%$$

$$\alpha = \frac{0.87 \times 41000 \times 309.267}{0.40 \times 2500 \times 800} = 13.8^{\text{cm}}$$

$$Z = 75.0 - \frac{13.8}{2} = 68.1^{\text{cm}} < 0.95 \times 75.0 = 71.2^{\text{cm}}$$
 OK

$$M_{RS} = 0.87 \times 41000 \times 309.267 \times 68.1 \times 10^{-5} = 7512.5^{\text{KNm}} > \text{Mu} = 6584.3^{\text{KNm}}$$
 $M_{RC} = 0.40 \times 2500 \times 800 \times 13.8 \times 68.1 \times 10^{-5} = 7518.2^{\text{KNm}} > \text{Mu} = 6584.3^{\text{KNm}}$
 $0 \times 649.2 \times 10^{3}$

$$Vc = \frac{4649.2 \times 10^3}{800 \times 75.0} = 77.5 \text{ N/cm}^2$$

$$< V ca = \left\{ 50.0 + 15.0 \left(\frac{0.515 - 0.50}{0.50} \right) \right\} \frac{2 \times 75.0}{135.0} = 56.0 \text{ N/cm}^2 \text{OUT}$$

Shearing bar --- Y16 - 28 x 500
$$^{\circ}$$
 = 2,011 x 28 = 56.3 $^{\circ}$ Vs = 0.87 x 41000 x 56.3 $/$ 800 x 50.0 = 50.2 $^{\circ}$ /cm²

$$V_S + V_{CO} = 50.2 + 56.0 = 106.2 > V_{C} = 77.5$$
 OK

b) for S.L.S.

$$x = \frac{0.80 \times 41000 \times 309.267}{\frac{1}{2} \times 0.50 \times 2500 \times 800} = 20.4^{\text{cm}}$$

$$Z = 75.0 - \frac{20.4}{3} = 68.2^{\text{cm}} < 0.95 \times 75.0 = 71.2^{\text{cm}}$$

 $M_{RS} = 0.80 \times 41000 \times 309.267 \times 68.2 \times 10^{-5} = 6918.2^{KNm} > M_{S} = 4776.6^{KNm}$

$$M_{RC} = \frac{1}{2} \times 0.50 \times 2500 \times 800 \times 20.4 \times 68.2 \times 10^{-5} = 6956.4^{KNm} > Ms = 4776.6^{KNm}$$
 OK

Calculation of piles of foundation (U.L.S)

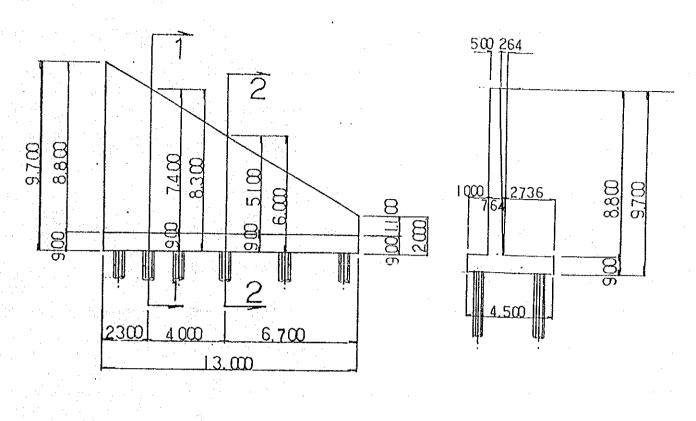
a) factor of pile

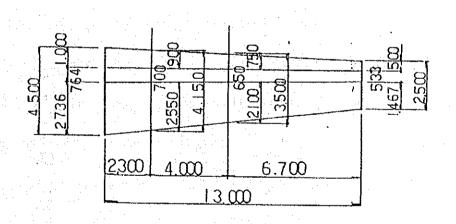
$$\phi 500 \times 9 \times 8.500^{m} \text{ ... SPP}$$

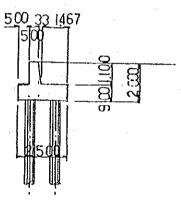
A p = $\frac{\pi}{4}$ (50.0² - 48.2²) = 138.8 cm²

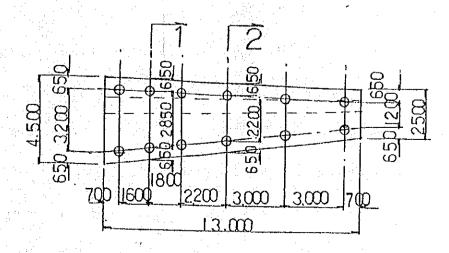
I p = $\frac{\pi}{64}$ (50.0⁴ - 48.2⁴) = 41850 cm²

Z p = $\frac{\text{Ip}}{\text{D/2}}$ = $\frac{41850}{50.0} \times 2$ = 1674 cm²


b) for Braking state


$$\sigma c = \frac{N}{Ap} + \frac{M}{Zp} = \frac{1382.2 \times 10^{3}}{138.8 \times 0.80} + \frac{60.8 \times 10^{5}}{1674 \times 0.80}$$
$$= 12448 + 4540 = 16700 \text{ N/cm}^{2} < \sigma \text{ ca} = 29500 \text{ N/cm}^{2}$$


c) for Seismic state


$$\sigma c = \frac{N}{Ap} + \frac{M}{Zp} = \frac{1230.3 \times 10^{3}}{138.8 \times 0.80} + \frac{98.0 \times 10^{5}}{1674 \times 0.80}$$
$$= 11080 + 7318 = 18400 \text{ N/cm}^{2} < \sigma \text{ ca} = 29500 \text{ N/cm}^{2}$$

RETAINING WALL OF NO@VEHICLE BRIDGE

CALCULATION OF RETAINING WALL FOR NO-2 VEHICLE BRIDGE

6500 reg. 16 de 15 de 15

 $\beta = 0.000 (°)$ HS2 = 1.500 (m)

HW1 = 2.000 (m)

NOTE: THE DIMENSIONCED BE EXCHANG TO DIMENSION(KN) INTO THIS CALCULATION

0.000 (*)

0.000 (*)

Ка:

•

.

0.000 (°) 8.300 (m)

0.000 (*)

.

: ... • • : • : • :

70:

.

19.600 (t/m3)

2.000 (m) 6.300 (m) 10.780 (t/m³)

0.000 (t/m²)

0.000 (t/m²)

.

.

= Ka*7 O*H - 2*C* /Ka + Ka*Q

 $pl = 0.000 (t/m^2)$

 $p2 = 41.160 (t/m^2)$

 $p3 = 48.347 (t/m^2)$

P1 = (p1+p2) * h1 / 2 = 129.654 (t/m)

P2 = (p2+p3) * Hw / 2 = 89.507 (t/m)

= PI + P2 = 219.16I (t/m)

Pv = 0.000 (t/m)

Ph = 219.161 (t/m)

= 2.823 (m)

(m) 0000 (m)

48, 346

x(m) 1.150 1.150 1.150 1.533 2.875 2.875 0.450
#8.146 0.000 17.464 0.000 17.464 0.000 17.464 0.000 192.930 0.000 14.504 0.000 0

622.613 622.613 My(t·m) 308.935 1085.560 4.520 0.000 1399.020 Mx(t·m) 225.041 | 225.041 H(t) 192.930 384.356 10.044 587.330 V(t)

445.550

442.304

0.753 0.873

225.041

587.330 510.400

219.161

= B0/2 - Mo/V

ø

Mc(t-m)

e(m)

H(t)

¥(t)

776.406 (t·m) Ħ $\sum_{i \in \mathcal{M}} X_i$ Ν×× S.

1.70 (m)

757.435 Mc(t·m) 751.916 0.753 0.873 e (m) 372.573 382.569 H(t) 998.461 867.680 V(t)

> 308.935 1085.560 4.520 0.000 1232.220 613.530 (t·m) 219.161 219.161 Ν× 192.930 384.356 10.044 0.000 -75.930 510.400 ΣMx

H

H

Š

618.693

My(t·m)

Mx(t·m)

H(t)

V(t)

 \mathbb{C}

ď

618.693

62 4

3

A =
$$138.8 \times 0.90 = 125 \text{ cm}^2$$

I = $41800 \times 0.90 = 37600 \text{ cm}^4$
Z = $1670 \times 0.90 = 1500 \text{ cm}^3$

$$E = 2.1 \times 10^6 \text{ N/cm}^2 = 20.58 \times 10^6 \text{ N/cm}^2 = 2.058 \times 10^8 \text{ KN/cm}^2$$

KH =
$$\alpha E_* D^{-\frac{3}{4}}$$
 = 0.8 × (7×5) × 500^{- $\frac{3}{4}$} = 1.489 Kg/cm³ = 14.6 KN/cm³ = 14600 KN/m³

$$KV = \alpha \frac{A_P E_P}{L}$$
 where $\alpha = 0.027 \frac{L}{D} + 0.200 = 0.659$

$$= 0.659 \times \frac{138.8 \times 10^{-4} \times 2.058 \times 10^{8}}{8.50} = 22.146 \times 10^{4} \text{ KN/m} = 221500 \text{ KN/m}$$

$$\beta = \sqrt[4]{\frac{\text{KHD}}{4\text{El}}} = \sqrt[4]{\frac{14600 \times 0.500}{4 \times 2.058 \times 10^8 \times 4.18 \times 10^{-4}}} = 0.382 \text{ m}^{-1}$$

			*	
		€	*	
	·		*	
	00	0	* * * * * * * * * * * * * * * * * * *	
	t·m) 08.1		* * * *	•
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(-)		•
			9000040808080809999	E .
, ad)	9 0 0 0	÷:	02776 11200000000000000000000000000000000000	41 t 07 m
(t) (t) (m) (m)	966		िल्लाल । — । । । । । । । । । । । । । । । । ।	62.4
000 180 180		2	000000000000000000000000000000000000000	1
38.46 32.55 51.9 3400 3860 8540	t) .10	(t·#	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X E
22.50) 606 68			E Z
11 II I	e egin di			·
> = = = = = = = = = = = = = = = = = = =	#) 425 55	C	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	th E
8 & &	, I		00040004	8.10
				203
	H (V)	, e	827.83.7.00.84.4.00.00.00.00.00.00.00.00.00.00.00.00.	H H
		.	04 111111111111 600 0400004400941	Mmax Im
				.2.
		(a)	000000000000000000000000000000000000000	
		e e a majere		
		÷		
	00	···	0000	
~ ^ ^ ^ ~	00			
(1,4/1) (1,4/1) (1,4/1) (1,4/1)		~~~		
000 000 000 000 000 000	ਜਜ	rad. m/m m/rad	000.00 0.00 15.00 15.00	
.5000000 0041800 100E+07 221500.0 (t/m		(t/ra (t/ra (t·m/	1000	
0.5000000 0.0041800 2.100E+07 221500.0 (t/m³	ď	0 01 01 00		
6	8010 a	7 C C A 2 A A Q 4 L L C	t t t t t t t t t t t t t t t t t t t	
の 1	े के हैं लाल 1	4 0 0 0 y ro ro o w ro co d		
		1 11 11 11		
	H 63	- N W 4		

	*	,				
	$\widehat{\mathbf{f}}$		•			
	*	;				
	1	•	* :			
	_	*				
	·	*	and and and and and	* * * * * * * * * * * * * * * * * * *		
			* * * * * .	* *		
					4	
•	î .	٠				
	•	-	,			
	2 4	222	∞ co o o o 4	8087785	E	
	• • •			O 00 00 00 00 4	→ E	* .
	7 8 K	F 60		24.50 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45	16	
					2 8	
The second of the second						
	9.2	∞ α ιο α	304001	0407040	ī	
in the second of			~ ~ ~ ~ ~ m.	oo⊬o,~oo	и п	
•				8460460		
	1.				8 L X E	
					M.m.	
	.:	** ** ** *				
		1				
-	0.00	S S S S	000446	41187821	E.	
	· • •			0004004	+ €	
	8 4	~ (~ rb (r	on Inde		800	
		- -	1 1		 0	
en e					20	
	0,00	2000	_ 0000 000 000 000 000 000 000 000 000	ဝတကတဝထူး		
Ê				0 H S O O O	lt n	
•	~ ~ ~ .	12 (4 /	ကြောက် ကို ကို မေ အယူ တွေ လူ လုံး လုံ	222		
•	01 m	1 1	111311	1 1 1 1	Maax 1 m	
	1	÷			Æ	
	100			•		
	0000	0000	000000	000000		
	*					
		4-100	യയക്കുറി	M 0) A A M 0)		
			1004400	804400		
		00	। ए. ए. व. व. ए. ए	887780		
		ન ને જો જો	1 0 0 4 4 0 0	8 2 7 7 8 8		
			. ധ പ 4 ന് സ്	0007700		
			തെ 4 4 ന്റ	0007700		
		1 - 0 0	வெளை 4 4 மி	0007700		
		. പ്ര	തെ കുക്ക്	0007700		
		ച ക്ക് വ	வெளை செ.சும் ம	. α α γ γ α α		
		ન ને જે જે	തെ കുക്ക്	30 00 00 00 00 00 00 00 00 00 00 00 00 0		
		ન નાં રાં રાં	ത്ത് എന്ന്	66 80 77 77 80 80 88		
		ન ને એ એ	ത്ത് എന്ന് ഗ്	66 80 77 77 80 80 88		
		ન ને એ એ	ത്ത് എന്ന് ഗ്	8007000		
			ကြိုက် ကြော်ကို တို့တို့	66 80 77 77 80 80 88		
			തെ 4 4 ന് വ	66 80 77 77 80 80 88		
			0 0 0	(t·m) -201.80 -201.80 8		
			0 0 0) (t·m) 29 -201.80 7 -201.80 8		
			0 0 0	t) (t·m) 6 -29 -201.80 7 -29 -201.80 8		
			(mm) 33 (mm) 44 (m.rad) 44.) (t·m) 29 -201.80 7 -201.80 8		
	(t,) (t,) (t, ii)		0 0 0	t) (t·m) 6 -29 -201.80 7 -29 -201.80 8		
	0 (t.) 3 (t.) 6 (t.)		(mm) 33 (mm) 44 (m.rad) 44 (m.rad) 45 (m.rad)	t) (t·m) 6 -29 -201.80 7 -29 -201.80 8		
	.680 (t) 0 .573 (t) 0 .435 (t·m)		(mm) 33 (mm) 44 (m.rad) 44 (m.rad) 45 (m.rad)	(t) (t·m) 2 186.29 -201.80 6 186.29 -201.80 8		
	.680 (t) 0 .573 (t) 0 .435 (t·m)		(mm) 33 (mm) 44 (m.rad) 44 (m.rad) 45 (m.rad)	t) (t) (t·m) -22 186.29 -201.80 7 -46 186.29 -201.80 8		
	680 (t) 573 (t) 435 (t·m)		350000 (mm) 3 958650 (mm) 4 290660 (m.rad) 4	(t) (t) (t·m) 6 41.22 186.29 -201.80 7 26.46 186.29 -201.80 8		
	.680 (t) 0 .573 (t) 0 .435 (t·m)		(mm) 33 (mm) 44 (m.rad) 44 (m.rad) 45 (m.rad)	(t) (t) (t·m) 1.22 186.29 -201.80 7 6.46 186.29 -201.80 8		

× × ∞ ∞ ∞

H U H

calculation of reaction for foundation pile (U.L.S)

section	(1)				
	load	V (KN)	H (KN)	MX (KNm)	MY (KNm)
	concrete of				
	stucture,	587.330×1.7		1399.02×1.7	·.
	surcherge of	$\times 1.2 \times 1.15$	- ·	×1.2×1.15	.
	heel slab			e Europe San	
	and toe slab				
		a di Alberta	225. 041×1. 7		622.613×1.7
:	earth pressure	. -	×1.5×1.10	- -	×1.5×1.10
	total	1377.9	660.0	3282. 1	1825.8

$$e = \frac{4.150}{2} - \frac{3282.1 - 1825.8}{1377.9} = 1.018 \text{ m}$$

Me =
$$1377.9 \times 1.018$$
 = 1402.7 KNm

```
D =
                        0.500
                                 (m
                                        )
                        8.500
                                (m
            Ho=
                        0.000
                                (m
            I =
                   0.0041800
                                (m^4
            E = 
                   2.060E+07
                                (t/m^2)
            Kh=
                   14600.00
                                (t/m^3)
            Kv=
                   221500.00
                                (t/m
ß
    = -
         0.38155
                    (m^{-1})
\beta * L =
         3.24320
                   > 3.0
```

```
1
          1.425
                                  0.0
  2
         -1.425
                         1
                                  0.0
Ř1 =
         19201.4
                    (t/m
K2 =
         25102.5
                    (t/rad.
K3 =
         25102.5
                    (t·m/m
                              )
```

65554.0

```
    (t)
    1500.00
    1500.00

    (t)
    100.00
    100.00

    (t)
    500.00
    500.00

    (mm)
    25.00
    25.00
```

(t·m/rad.)

K4 =

```
1377.900
                       (t ·)
                      (t)
   H =
            660.000
   M =
           1402.700
                       (t \cdot m)
δx
                       (mm )
(mm )
        20.255394
бу
   · =
         3.110384
\alpha
         2.347610
                       (m.rad)
                       330.00
```

-52.04

-1,425

330.00

-354.57

-354.57

(m)	(t · m)	(t)	(t·m)	(t)	(-)	0	(+1)
0.00	354.57	330.00	: 0.00	330.00			*
0.50	207.62	258.77	: -135.59	216.34		I	*
1.00	94.61	194.65	: -220.21	125.87	•	I *	
1.50	11,51	139.25	: -265.02	56.70		*	
2.00	-46.20	93.14	: -280.04	6.26	•	* [
2.50	-83.14	56.12	: -273.93	-28.33	•	* [
3.00	-103.72	27.51	: -253.86	-50.02	• >	k I	
3.50	-111.89			-61.60	• *	k [
4.00	-111.09		: -193.51	-65.61	• ' \$	k 1	•
4.50	-104.16	the state of the s	: -160.86	-64.27	• >	k [
5.00	-93.36	-24.24	: -129.82	-59.46		* I	
5.50	-80.40	-27.18	: -101.72	-52.72		* I	
6.00	-66.51	-28.13	: -77.21	-45.27		* [
6.50	-52.47	-27.87	-56,40	-38.07		*]	
7.00	-38.74	-27.03	: -38.98	-31.81		*]	
7.50	-25.46	-26.09	: -24.34	-27.02		* I	
8.00	-12.61	-25.39	: -11.67	-24.01		*	
8.50	0.00	-25.13	: 0.00	-22.99		*	
	the state of the s	7.7					

calculation of foundationpile for section (1)

factor of pile :
$$\phi 500 \text{ mm} \times 9 \text{ mm} \times 8500 \text{ m}$$

 $E = 2058 \times 10^7 \text{ N/cm}^2$
 $Ap = 138.8 \text{ cm}^2$
 $Z = 1670 \text{ cm}^3$

Stress for

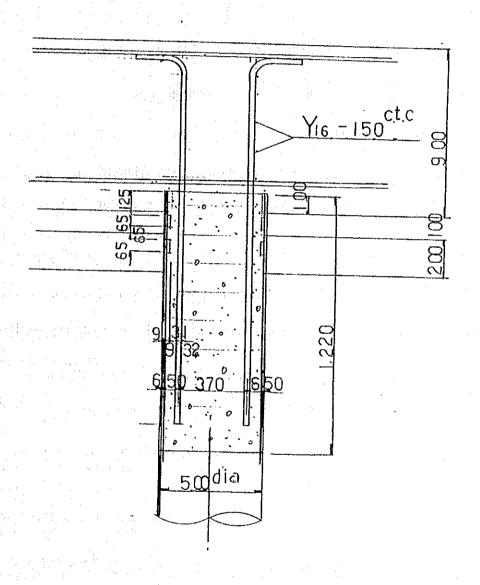
bending moment and axis force Mmax = 208.10 KNm Nmax = 909.10 KN

S. L. S
$$\sigma = \frac{\frac{N \max}{Ap} + \frac{M \max}{z}}{2}$$

$$= \frac{909.1 \times 10^3}{138.8 \times 0.9} + \frac{208.10 \times 10^5}{1670 \times 0.9}$$

=
$$7277.5 + 13845.6 = 21120 \text{ N/cm}^2 < 24000 \text{ N/cm}^2$$

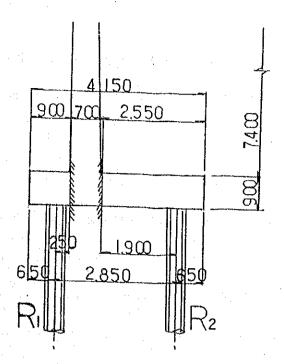
U, L, S
$$\sigma = \frac{1430.0 \times 10^3}{138.8 \times 0.9} + \frac{354.6 \times 10^5}{1670 \times 0.9}$$


=
$$11447.4 + 23592.8 = 35040 \text{ N/cm}^2 < 41000 \times 0.87 = 35670 \text{ N/cm}^2$$

Calculation of join bar.

with Pile head and Footingslab

ı stress	
M []	354.60
N [1430.00
s t	0.00
R [cm]	32.50
Rs [cm]	no 18.50
As [cm^2]-Y32-12	2'=96.510
n = Es/Ec	15.00
$P=As/(\pi*R^2)$	2.908
e = M/N [cm]	24.80
e / R	0.763
Rs / R	0.569
ϕ [rad.]	1.636
M'=M+N*R []	819.35
C C C C C C C C C C C C C C C C C C C	0.700
S	0.332
Z	0.407
σc [/cm^2]	1671.9
$\sigma s [/cm^2]$	11869.2
τc [/cm ²]	0.00
τm [/cm ²]	0.00
σca [/cm^2]	2000.0
σsa [./cm^2]	35700.0
τα [/cm^2]	0.00


Re	Sis	stin	gr	nomer	n t	
	•	······································			_	
R Rs As	[c		•	18	.50 .50 510	
. N ,	Γ.	1.		1430	.00	
		/ci				
Yg X					.50	
Ec Esc Est			,	0.003 0.001 -0.004	423	
C Cs Ts]]]		1710. 61. -342.	921	
Mru	[]		409	.69	

DETAIL OF PILE HEAD

Calculation of each section

1) S, L, S

(1) Surcharge or Reaction of Pile

$$W1 = 23.6 \times 0.90 + 18.6 \times 0.60 = 32.40 \text{ KN/m}$$

$$W2 = 23.6 \times 0.90 + 19.6 \times 7.40 = 166.280 \text{ KN/m}$$

$$R1 = 909.10 \text{ KN} / 1.7 = 534.8 \text{ KN} / \text{m}$$

$$R2 = 89.36 \text{ KN} / 1.7 = 52.6 \text{ KN} / \text{m}$$

- (2) Caluculation of bending moment and shearing force
 - a) Vertical wall

$$M = \frac{1}{6} \times 19.6 \times 0.333 \times 7.40^3 = 440.8 \text{ KNm}$$

$$S = \frac{1}{2} \times 19.6 \times 0.333 \times 7.40^2 = 178.7 \text{ KN}$$

b) toe footing slab

$$M = 534.8 \times 0.25 - \frac{0.90^2}{2} \times 32.40 = 120.6 \text{ KNm}$$

$$S = 534.8 \times 0.25 - 0.90 \times 32.40 = 505.7 \text{ KN}$$

C) heel footing slab

$$M = \frac{2.550^{2}}{2} \times 166.280 - 52.6 \times 1.90 = 440.7 \text{ KNm}$$

$$S = 2.55 \times 166.280 - 52.6 \times 1.90 = 324.1 \text{ KN}$$

(1) Surcharge or Reaction of Pila

$$W1 = 1.2 \times 1.15 \times 32400 = 44.712 \text{ KN/m}$$

$$R1 = 1429.940 \text{ KN} / 1.7 = 841.2 \text{ KN} / \text{m}$$

$$R2 = -52.040 \text{ KN} / 1.7 = -30.6 \text{ KN} / \text{m}$$

- (2) Caluculation of bending moment and shearing force
 - a) Vertical wall

$$M = 440.8 \times 1.5 \times 1.15$$

= 760.4 KNm

$$S = 178.7 \times 1.5 \times 1.15$$

= 308.3 KN

b) toe footing slab

$$M = 841.2 \times 0.25 - \frac{0.90^2}{2} \times 44.712 = 192.2 \text{ KNm}$$

$$S = 841.2 \times 0.25 - 0.90 \times 44.712 = 801.0 \text{ KN}$$

C) heel footing slab

$$M = \frac{2.55^2}{2} \times 229.467 + 30.6 \times 1.90 = 804.1 \text{ KNm}$$

$$S = 2.55 \times 229.467 + 30.6 \times 1.90 = 643.3 \text{ KN}$$

- d) calculation of stress (U.L.S)
- (a) Vertical wall

$$b=100cm$$
 $h=72cm$ $d=65.5$ $d'=6.5$

As =
$$Y25 - 125$$
 ctc = $4.909 / 0.125 = 39.272$ cm²

$$P = \frac{39.272}{100 \times 65.5} \times 100 = 0.600\%$$

$$X = \frac{0.87 \times 41000 \times 39.272}{0.40 \times 2500 \times 100} = 14.0 \text{ cm}$$

$$Z = 65.5 - \frac{1}{2} \times 14.0 = 58.5 \text{ cm} < 0.95 \times 65.5 = 62.2 \text{ cm}$$

MRS = $0.87 \times 41000 \times 39.272 \times 58.5 \times 10^{-5} = 819.5 \text{ KNm} > 760.4 \text{ KNm}$

MRC = $0.40 \times 2500 \times 100 \times 14.0 \times 58.5 \times 10^{-5} = 819.0 \text{ KNm} > 760.4 \text{ KNm}$

OK

b) toe footing slab

$$b=100cm$$
 $h=40cm$ $d=83.5$ $d'=6.5$

As =
$$Y25-125$$
 ctc = 4.909/0.125 = 39.272 cm²

$$P = \frac{39.272}{100 \times 83.5} \times 100 = 0.470\%$$

$$\tau a = \{35.0 + 15.0 \frac{(0.470 - 0.25)}{0.25}\} \times 2=96.4 \text{ N/cm}^2$$

$$\tau = \frac{801.0 \times 10^3}{100 \times 83.5} = 96.0 \text{ N/cm}^2 < \tau \epsilon = 96.4 \text{ N/cm}^2$$

C) heel footing slab

As =
$$Y25 - 125$$
 ctc = 4.909 $\angle 0.125$ = 39.272 cm²

$$P = \frac{39.272}{100 \times 83.5} \times 100 = 0.470\%$$

$$X = \frac{0.87 \times 41000 \times 39.272}{0.40 \times 2500 \times 100} = 14.0 \text{ cm}$$

$$Z = 83.5 - 14.0 = 76.5 \text{ cm} < 0.95 \times 83.5 = 79.3 \text{ cm}^{-2}$$

MRS =
$$0.87 \times 41000 \times 39.272 \times 76.5 \times 10^{-5}$$
 = 1071.6 KNm > 804.1 KNm

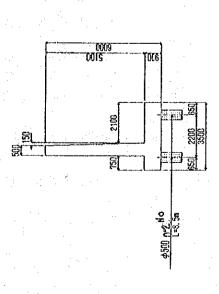
$$MRC = 0.40 \times 2500 \times 100 \times 14.0 \times 76.5 \times 10^{-5} = 1071.0 \text{ KNm} > 804.1 \text{ KNm}$$

$$\tau = \frac{643.3 \times 10^3}{100 \times 83.5} = 77.1 \text{ N/cm}^2 < \tau = 96.0 \text{ N/cm}^2$$

OK

$$GAMC = 23.600 (t/m3)$$

$$GAM1 = 19.600 (t/m3)$$


$$GAM1S = 10.780 (t/m3)$$

$$FAi = 30.000 (°)$$

$$GAM2 = 18.600 (t/m3)$$

$$GAM2S = 9.780 (t/m3)$$

$$WATS = 9.800 (t/m3)$$

$$\beta = 0.000 (°)$$
 $HS2 = 1.500 (m)$
 $HW1 = 2.000 (m)$

0.000 (t/m²) 19.600 (t/m³) 0.000 (t/m²) 6.000 (m) 0.000.0 0.000.0 = (p1+p2) * H / 2 = 117.600 (t/m)Ph = 117.600 (t/m)0.000 (t/m) = Ka*ro*II - 2*C* VKa + Ka*Q $p1 = 0.000 (t/m^2)$ $p2 = 39.200 (t/m^2)$ ₽ • 0.000 (°) 0.000 (°) 0.000 (*) $\cos^2(\phi-\theta)$ cos 0 *cos(0+8)* 1+ = 0.333

2.000 (m) 0.000 (m)

Ka

0.000 (*)

6.000 (m) 2.000 (m)

19.600 (t/m³) 10.780 (t/m³)

4.000 (m)

0.000 (t/m²) 0.000 (t/m²)

$$p1 = 0.000 (t/m^2)$$

= Ka*ro*H - 2*C* VKa + Ka*Q

$$p2 = 26.133 (t/m^2)$$

$$p3 = 33.320 (t/m^2)$$

$$P1 = (p1+p2) * h1 / 2 = 52.267 (t/m)$$

$$P2 = (p2+p3) * Hw / 2 = 59.453 (t/m)$$

= 111.720 (t/m)

P = P1 + P2

$$Ph = 111.720 (t/m)$$

 $Pv = 0.000 (t/m)$

$$=$$
 2.070 (m)

0.000 (m)

V(t) H(t) X(m) Y(m) Mx(t-m) Mx 74.340 0.000 1.750 0.450 130.095 60.180 0.000 1.300 2.600 11.755 143.547 0.000 1.350 4.300 10.121 7.497 0.000 1.350 4.300 10.121 7.497 0.000 1.350 3.450 524.415 217.413 0.000 2.450 3.450 524.415 V = Xi*Yi*GAMI II = V*XIII W = Xi*Yi*GAMI II = Xi*XIII W = Xi*Yi*Yi*GAMI II = Xi*XIII W = Xi*Yi*GAMI II = Xi*XIII W = Xi*Yi*Yi*GAMI II = Xi*XIII W = Xi*Yi*Yi*Yi*Yi*Yi*Yi*Yi*Yi*Yi*Yi*Yi*Yi*Yi		(4)				
74.340 0.000 1.750 0.450 130.095 60.180 0.000 1.000 3.450 60.180 11.735 143.547 0.000 1.350 4.300 10.121 1 0.000 1.350 4.300 10.121 1 0.000 1.350 4.300 10.121 1 0.000 1.350 3.450 514.294 15 1 0.000 1.350 1.0121 1 0.000 1.350 1 0.000	My(t-m)		V(t) H(t)	(m)×	y(m)	Mx <t-m) td="" <=""></t-m)>
X	0.000				2.000	0.000
= Xi*Yi*GAMC	0.000	-	0.000 111.720	3.500 1	2.070	000.0
V(t) H(t) x(m) y(m) Mx(t·m) 7.497 0.000 1.350 4.300 10.121 217.413 0.000 2.450 3.450 514.294 = Xi*Yi*GAM1 = V*X = Xi*Yi*GAM1 = V*X = V*X	(2)					
V(t) H(t) x(m) y(m) Mx(t-m) 7.497 0.000 1.350 4.300 10.121 209.916 0.000 2.450 3.450 514.294 217.413 0.000			V(t) i H(t)	(m)×	у(ш)	Mx(t-m)
7.497 H(t) x(m) y(m) Mx(t·m) 7.497 0.000 1.350 4.300 10.121 209.916 0.000 2.450 3.450 514.294 10.121			01 100			
7.497 0.000 1.350 4.300 10.121 217.413 0.000 2.450 3.450 514.294 217.413 0.000	My(t-m)	-	122.812	2.442		-55.705
= Xi*Yi*GAMI	0.000.0		-64.925	1.828		-118.672
= Xi*Yi*GAM1 = V*K = V*X	0.000					
11(t) x(m) y(m) Mx(t·m) 70 0.000 3.139						
11(t) X(m) Y(m) MX(t·m) 70 0.000 3.139						
0.000 0.375 0.000 1	My(t·m)					
	000.0	:				
8.370 0.000 3.139	0.000					

		*** ***	
Mc(t.m)	151.963		
e(m)	0.411	%c	
II(t)	117.600	••	
V(t)	369.330	= B0/2 - M0/V B0 : e : 1 : 3 :	
		9 1 3 3	

0.503	* ^ =		
	жс =	٠	
111.720	••	•	
1 304.405	e = B0/2 - Mo/V	BO :	

V(t)	M(t) I	e(m)	Mc(t·m)
960.258	305.760	0.411	395.105
791.453	290.472	0.503	398.051

	ê		200	200
	My(t-m)	1	235.200	235.200
)	10	.000	64 1
	Mx(t·m)	202.010 524.415	0.0	729.564
) (17.600	117.600
	H(t)		117	117.
		47 13	00	30
	(1)A	143.54	0.000	369.330
<u>.</u>				

231.280	610.892	111.720	304.405	
231.280	524.415 524.415 3.139 0.000 -118.672	111.720	217.413 8.370 0.000 -64.925	
	202.010 524.415			
My(t·m)	Mx(t·m)	H(t)	V(t)	

ΣMy = 379.612 (t·m)

. ×wΩ

11

Š

	*.			^	*					
		*		£	*					
		and the			*					
	. *	6 6		0	* **** *** **	~	4 H H H	* * *	* * *	* *
	en e	(m)			٠	*)		•		
iani. Ngjarjanjan) H H		<u> </u>	•					
					ထံကလူလူ မ	 4 00 01 0	ာဖက္စ	440	00 t~ 0	n (2)
200	ad)	~ 8 8 ~ 8 8		a	20000 04000	2 57 57 8 2 57 50 64		7.9	22.	
**************************************	(52.6			W O W W	111	111	111	1 1 1	1
80 W		-	•		0 8 4 0 1	-01-1	် ကြောက္လ	ଦ୍ୟ ମ	040	, , O
.25 10	0 0 0 0 0 0			£ . 13	62.0 02.2 23.2		000	ထ မ မ	∞ io	
960 305 395	66029(16763(32240(002 ::		Ü	l		1 1 1	1 1	77	
	004	∞								• ••
II 11 II	ų u n	00	et die	 ~	80804	2 4 0 0 1 0 0 4	0.00	0 0 0 0 0 10 0	2200) m
> I X	α× αωω	(#) 100	;	±	20807 20807	44-4-	 		12.	• • • • • •
		म्म न्त !			. स	**	1	1 1 1	1 1 1	'
	8			~	2007	0 0 0 C	4 2 6	2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	800 800 4	.00
		~ ∾		÷ :	339	245	503.	338	8 2 5 5	
		•	·	~	I	1 1 1	1 1 1	1 1 1	1 1	
			• .		00000					
			,	Ê	00146					
		,								
					+ <u>1</u>					
							•			
					0000	2				-
		00			0000	,				
		00								
££££	0		, , , , , , , , , , , , , , , , , , ,		0000	.				
0000	, ш ³)	इन्त इन्त	t/m t/rad. t·m/m t·m/ra		200.00	•				
000 1418 0E+	(t/m 14600				100	1				
0.5000000 0.0041800 2.100E+07 221500.0			φηηω (Φηηη		0002	ì				
	m) .50	(00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	294. 341. 491.		222	•			٠	
M M M M M M M M M M M M M M M M M M M	(m)	× TT	1928 253 253 664					•		
			+ 2							
		, ⊣ ⇔								

다 - E

-129.80 + 2.07 r

Mmax m m

156.87 t·m 0.00 m

Mmax n El

XXXX 4 2 2 4

3 -26.97 -28.84 -28.34 -26.31 -25.31 -20.18 -17.05 0.00 44,0 (t·m) 1148 8823 38823 38923 10023 10034 10 (t·m) Œ (mm) (mm) (m.rad) 4 X 8 00 00

t . B

-123.31 2.07

Mmax = Im =

۴. m

147.78

Mmax == Im I

-- C

Section(2)

calculation of riaction for foundation pile (U,L,S)

load	n (kn)	H (KN)	MX (KNm)	Mg(KNm)
concrete of			·	
stucture,	369.330×2.6		729.564×2.6	
surcherge of	×1.2×1.15	. —	×1.2×1.15	
heel slab	=1325. 156		=2617.676	
and toe slab				
		117.6×2.6		235. 200 × 2. 6
earth pressure		$\times 1.5 \times 1.10$	· <u></u>	×1.5×1.10
		=527. 436		=1054.872
total	1325. 2	527. 5	2617.7	1054.9

$$e = \frac{3500}{2} - \frac{2617.7 - 1054.9}{1325.2} = 0.571 \text{ m}$$

$$Me = 1325.2 \times 0.571$$

= 756.7 KNm

```
0.500
                                   (m
                                           )
             L =
                          8.500
                                   (m
                                           )
             Ho=
                          0.000
                                   (m
                                           .)
             I =
                                   (m<sup>4</sup>
                     0.0041800
             E =
                                   (t/m^2)
                     2.060E+07
             Kh=
                                   (t/m^3)
                      14600.00
             Kv =
                     221500.00
                                   (t/m
                      (m^-1)
β
          0.38155
\beta * L =
          3.24320
                      > 3.0 · · · ·
```

```
(m)
1 1.100 1 0.0
2 -1.100 1 0.0
```

```
K1 = 19201.4 \text{ (t/m )}
K2 = 25102.5 \text{ (t/rad.)}
K3 = 25102.5 \text{ (t·m/m )}
K4 = 65554.0 \text{ (t·m/rad.)}
```

```
    (t)
    1500.00
    1500.00

    (t)
    100.00
    100.00

    (t)
    500.00
    500.00

    (mm)
    25.00
    25.00
```

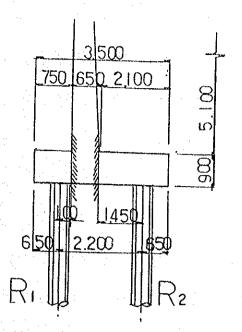
```
1325.200
                       (t
             527.500
                       (t)
             756.700
                      (t \cdot m)
      8 8
         16.879493
                      (mm
  δу
          2.991422
                      (mm
                           )
          2.404504
 α
                      (m.rad)
(m)
          (t)
                      (t)
                                   (t·m)
1.100
          1248.46
                      263.75
                                   -266.09
-1.100
          76.74
                      263.75
                                  -266.09
```

1

(m) (t·m)	(t)	(t·m)	(t)	(-)	0	(+)
0.00 20	66.09	263.75 :	0.00	263.75			*
0.50	49.20	204.75 :	-108.37	172.91	•	1	*
1.00	30.26	152.22 :	-176.00	100.60	•	I *	
1.50	-4.29	107.27 :	-211.82	45.32	. •	*	
2.00 -4	48.33	70.20 :	-223.82	5.01	*	I	
2.50 -7	75.76	40.73 :	-218.93	-22.65	• *	I	
3.00 -9	90.22	18.21 :	-202.89	-39.98	* *	I	
3.50 -9	94.97	1.74 :	-180.30	-49.24	. *	1	
4.00 -9	92.81	-9.64 :	-154.66	-52.44	• *	I	
4.50 -8	36.01	-16.94 :	-128.57	-51.37	• *	I	
5.00 -7	76.39	-21.09 :	-103.75	-47.53	• *	I	
5.50 -6	65.30	-22.97 :	-81.30	-42.14	• *	I	
6.00 -5	53.68	-23.32 :	-61.71	-36.18	*	I	
6.50 -4	12.13	-22.77 :	-45.08	-30.43	• *	I	
7.00 -8	30.97	-21.83 :	-31.16	-25.43	*	I	
7.50 -2	20.30	-20.89 :	-19.46	-21.59	. *	I	-
8.00 -1	0.03	-20.22 :	-9.32	-19.19		*	•
8.50	0.00	-19.98 :	0.00	-18.37		*	
and the second second second second		•					

Calculation of fundation pile --- section (2)

factor of pile $\phi 500 \times 9 \times 8500$ $E = 2058 \times 10^8 \text{ KN/cm}^2$ $Ap = 138.8 \text{ cm}^2$ $Z = 1670 \text{ cm}^3$


Stress for berding moment and axis force

S, L, S
$$\sigma = \frac{802.33 \times 10^3}{138.80 \times 0.9} + \frac{156.87 \times 10^5}{1670 \times 0.9}$$

= $6422.8 + 10437.2 = 16860 \text{ N/cm}^2 < 24000 \text{ N/cm}^2$

S. L. S
$$\sigma = \frac{1248.46 \times 10^3}{138.80 \times 0.9} + \frac{266.09 \times 10^5}{1670 \times 0.9}$$

= 9994.1+17703.9 = 27700 N/cm² < $41000 \times 0.87 = 35600$ N/cm²

U.L.S

(1) Surcharge

$$W1 = (23.6 \times 0.90 + 18.6 \times 0.60) \times 1.2 \times 1.15 = 44.712 \text{ KN/m}$$

$$W2 = (23.6 \times 0.90 + 19.6 \times 5.10) \times 1.2 \times 1.15 = 167.256 \text{ KN/m}$$

$$R1 = 1248.46 \text{ KN/2.60m} = 480.2 \text{ KN/m}$$

$$R2 = 76.74 \text{ KN/2.60m} = 29.5 \text{ KN/m}$$

(2) Calculation of bending moment and shearing force

a) Vertical wall

$$M = \frac{1}{6} \times 19.6 \times 0.333 \times 5.10^{3} \times 1.5 \times 1.15 = 248.9 \text{ KNm}$$

$$S = \frac{1}{100} \times 19.6 \times 0.333 \times 5.10^2 \times 1.5 \times 1.15 = 146.4 \text{ KN}$$

b) toe footing slab

$$M = 1$$
 = 1.00 =

C) heel footing slab

$$M = \frac{2.10^2}{\times 167.256 - 29.5 \times 1.45} = 326.1 \text{ KNm}$$

$$\frac{2}{\text{S}} = 2.10 \times 167.256 - 29.5 \times 1.45 = 326.0 \text{ KN}$$

d)calculation of stress for each section (U.L.S)

a) Vertical wall

As =
$$Y25 - 250$$
 ctc = 4.909/0.250 = 19.635 cm²

$$P = \frac{19.635}{100 \times 58.5} \times 100 = 0.335\%$$

$$X = \frac{0.87 \times 41000 \times 19.635}{0.40 \times 2500 \times 100} = 7.00 \text{ cm}$$

$$Z = 58.5 - \frac{1}{2} \times 7.00 = 55.0 \text{ cm} < 0.95 \times 58.5 = 55.6 \text{ cm}$$

MRS =
$$0.87 \times 41000 \times 19.635 \times 55.0 \times 10^{-5}$$
 = 385.2 KNm > 248.9 KNm

MRC =
$$0.40 \times 2500 \times 100 \times 7.0 \times 55.0 \times 10^{-5}$$
 = 385.0 KNm > 248.9 KNm

b) toe footing slab

$$b=100cm$$
 $h=90cm$ $d=83.5$ $d'=6.5$

$$As = Y25 - 250$$
 ctc = 19.635 cm²

$$P = \frac{19.636}{100 \times 83.5} \times 100 = 0.235\% > 0.15\%$$

$$\tau = \frac{480.2 \times 10^3}{100 \times 83.5} = 57.5 \text{ N/cm}^2 < \tau \text{ a = 35.0} \times \frac{0.235}{0.25} \times 2 = 65.8 \text{ N/cm}^2$$

C) heel footing slab

$$As = Y25 - 250$$
 ctc = 19.636 cm²

$$P = \frac{19.636}{100 \times 83.5} \times 100 = 0.235\% > 0.15\%$$

$$X = \frac{0.87 \times 41000 \times 19.636}{0.40 \times 2500 \times 100} = 7.00 \text{ cm}$$

$$Z = 83.5 - \frac{1}{2} \times 7.00 = 8.00 \text{ cm} \div 0.95 \times 83.5 \div 80 \text{ cm}$$
 OK

MRS =
$$0.87 \times 41000 \times 19.636 \times 80.0 \times 10^{-5}$$
 = $560.0 \text{ KNm} > 326.1 \text{ KNm}$

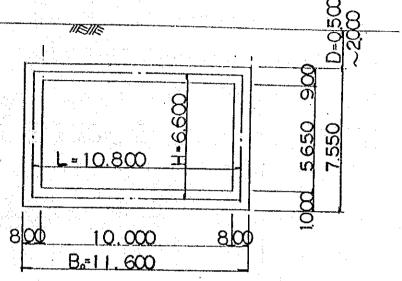
MRC =
$$0.40 \times 2500 \times 100 \times 7.00 \times 80.0 \times 10^{-5}$$
 = $560.0 \text{ KNm} > 326.1 \text{ KNm}$ OK

$$\tau = \frac{326.0 \times 10^{3}}{100 \times 83.5} = 39.1 \text{ N/cm}^{2} < \tau \text{ a = 65.8 N/cm}^{2}$$

CALUCULATION OF

BOX CULVERTS

VEHICLE BOX CULVERTS - |-|--|-184


WATER BOX CULVERTS — 2-1--2-107

PEDESTRIAN BOX CULVERTS — 3-1--3-50

VEHICLE BOX CULVERTS

NO 0 BOX CULVERT FOR RORD

1) Shape and Size

Where

 D^{m} depth of asphalt and similar surface soil.

2) Factor of section

$$A = 1.00 \times 0.80$$

$$= 0.8000 \text{ m}^{2}$$

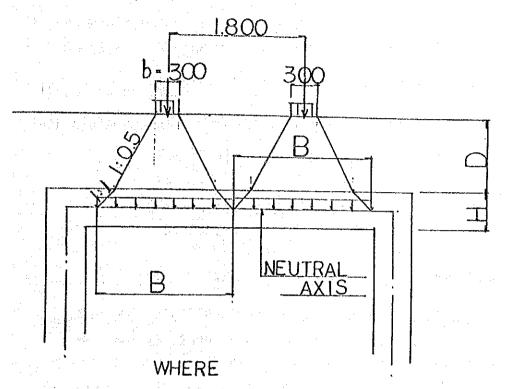
$$I = \frac{1.00 \times 0.80^{3}}{12} = 0.04267\text{m}^{4}$$

$$A = 1.00 \times 0.90$$

$$= 0.9000 \text{ m}^{2}$$

$$= 0.06075 \text{ m}^{4}$$

$$A = 1.00 \times 1.00$$


$$= 1.000 \text{ m}^{2}$$

$$I = \frac{1.00 \times 1.00^{3}}{12} = 0.08333 \text{ m}^{4}$$

$$EC = 25 \text{ KN/mm}^{2}$$

$$= 2.5 \times 10^{7} \text{ KN/m}^{2}$$

LIVE LOAD --- HB loading

D = DEPTH OF ASPHALT AND SIMILAR SURFACE SOIL

H = DEPTH OF CONCRTE SLAB

DISPERSAL OF WHEEL

LOADED STRENGTH

$$P = \frac{10.0 \times \text{Uno}}{\text{B} \times \text{L}} \text{ (KN/m}^2)$$

WHERE

Uno = NUMBER OF UNITS = 30 L = WIDTH OF HB-VEHICLE = 3500^m