
B-3

B - 4

				PROJECT :O4VAG	INTERNATIONAL	L 414	HART						
				LOCATION : <u>Swe</u>		25. 13						GROU	
10 4 F C	 5	14480	I NICH WE SK	NATERIALS DESCRIPTION	CONSISTERCI	τ	,	i- 0			30 C		ļ
0			1.00		37169	100	K	Ľ		Ĩ			
			2.00	Story CLAT, date brane.		100		1					†
\$			2 00	· · · · · · · · · · · · · · · · · · ·	YERY STIFF	100			Ţ				
			200	Clayer Sold of trans of	GENSE						Ļ		
2			2.99	Sandy CLAY with rocae of Urmaniste, Meane	HARD		 						
			200		DENSE	78					7		1
13		ļ	209	SITY EANS with four grave),		••							ļ
		I	2.00		VERY DERSE	78					_	70	
		Ì	2.20 2.00	Sandy SILT with Maxie et		67				-		78	
20 -			200	grevet, light breven . 	HAR 0	100							
			205	Soder Silt, trans		57							Ĩ
25	Ш		200		HARQ	100	•						
				Cfoges SiLT ലത്താണം തിരാസി, brown		100						<u> </u>	
30 			200	END OF HOLE AT 30 00 m.		100	_						Ī
ļ							-	-					Í
	1								_	-			Į
ł		ļ											
Ţ					ļ		_	-			-+		
		F					_						
1		L.		· · · · · · · · · · · · · · · · · · ·		Ĩ				Τ			

B - 5

INTERNATIONAL AIRPORT PROJECT : O AVAO LOCATION : Sood , Down Day BORSHOLE REFERENCE ELEVATION : 17.64 GROUNI 2445 HA VB THUCKINESS ONSISTENCY (w) м- аюжял зо см. MATERIALS DESCRIPTION 50 1 ELAN 11/24 SANO 2.0 100 2.00 100 -200 78 67 67 67 EAV DENSE 33 33 45 58 33 33 TRY DENSE ţ 33 2.00 u OF HOLE AT 30.00 m

					PROJECT :PROPOSED	CAVIO INTERN	Dorff	<u>L</u> R	ICA I				•••	
					LOCATION . See , Or					•				
					BOREHOLE REFERENCE EL	EVATION :	24.0	9 a.					GR	CUNI
SCALE	11 J D	ŝ.	GAA PH	THICKNEER	HATEMALS DESCRIPTION	CONSISTENCI	AECOVE AT	N	:	10w			іч. 50 б	
٥	tr	1	77		SINY CLAY with money of send, redeate brown	1	1.	Ν	Ĩ	Ĭ.	Ī	Γ	Ĩ	ĒÌ
		ĥ	Τſ	1.00	R gay. Clear sill with gravel and small grant of	STIFF	44	\uparrow	ñ		1	F	┢	\mathbf{H}
	Q.			1.00	eand, grapes arous in dark gray,	FIRM	4.5	12	2				Γ	\Box
		U		1.92	silly CLAT, lique groy, very majer.	VERT SOFT	100	P	2	e	1	3	Ł	•
Ι,	Ţ.	Π	Π	001	Sandy dayer SiLT, narr our.	1	100			Ľ		ļ.,	Į	
ľ	Ħ			100	· · · ·	VERT STIFF	100	ľ		k -			 	Ц
	┝.	Щ	Щ	100	··· · fedilah Waxa .		<u>.</u>			à	-		╞	$\left \cdot \right $
	ð	ļ	1	00.1	Siling Sand , midden beren .	DENSE	100		÷		6		┝	H
-	1	ļţ	-	1.00			49	:		17	Þ		İ	H
10	Ð.		- 1	1.00	Partin graded Stift with odraks crowd, Ugal frown. Silly StARD, Jim in coaces preinod, galand down.	ศาลม	64	F		ø		F	-	H
		1	П	100	Silly SAND, fire to coacce greated, gayned drawn.	1	13		$\left[\right]$					Π
				1.00	Pourly graded SAND, light trum.	-				1	5			\square
	Ц.			100			67				Ž			Ц
15.	×	1	1	1.00	with fixe in course greated gravel.		n	-		À				
1.	H	ĮĮ	j	100	2 C		50			4 -			[]	
ļ.	H	Ī	1	100	SINY SAND , Herr anova .		67	<u> </u>		Ŀ		_		
-	H	Ŧ	#	1.03		QENSE	58			.]	5			
-	H	ł	ŧŀ	100	 with diffs some of bb sectors is postford 		- 44			_		\geq		
20-	H.	ţ	16		grevel	· F(8.9	40	-		9	1			·
	Η.	Ĥ	π÷		Bandy SiLT , light boyun.	HARO	43			Ы	~		79	
{	-	Ш	m	100	Sandy Sitt, light krows	HARO	<u>67</u> 33		-	-	-		100	
•	H.	H	π	.08 100		. .	43							
		Ŧ	П				38			-	-		\sim	
		1	11		Stilly Samo . Ilger anore	VERY DENSE	67		Ì				104	
		\$	٦F	.00			47	·		1				
				<u></u>			89					Δ		
				100	Sense SILT, ligar promo	HARD	89		_	_	_			4
30	.	Ш	Щ				99			_	4	\geq	b	
	$\left - \right $		┝		END OF HOLE AT 3000m.	· · ·			-1		-			
			ł							-	-+	_		
			ł								\dashv	-	-	<u> </u>
	-		ŀ	-				÷	-	-+	-+			
1			ł	-1					-+	+		÷	-+	-
			-			· · · ·	• • • • • •	-+		\uparrow	+	-		
			r	1				-†	-+	+	+	-		-1
1			Γ	1					1	+	Ť	-+	┫	Ť
Ī			Γ			. 1		-†	1	1	T		-†	-1
	<u>]</u> .	l	Γ				[1	7	1	1	1	Τ
1			ſ					1		-†	-†	-	-+	ī
I			ſ				(1	T	1	1	1	7	1
T]		ſ	1		İ		-1	1	1	1	-1	1	

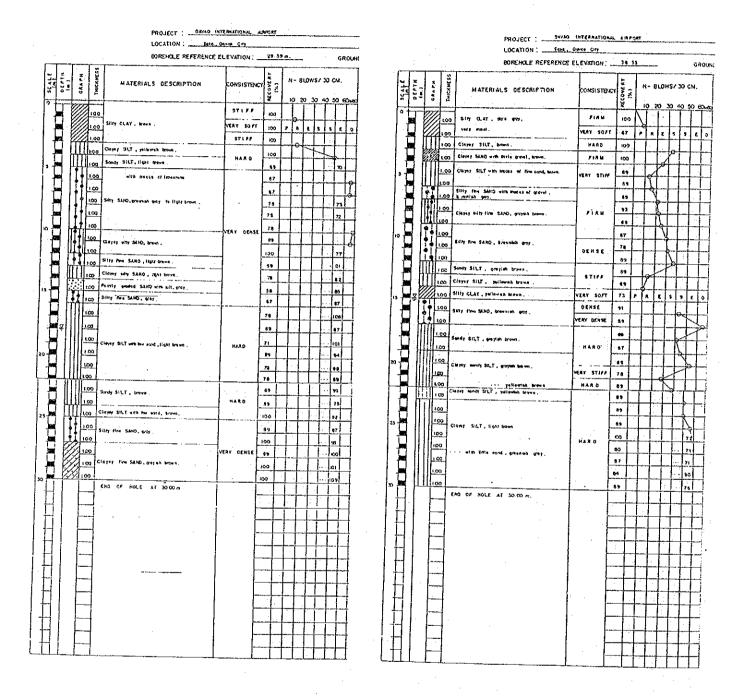
C - 1

Mechanical Boring Logs (4)

C-2

PROJECT : PROPOSED

WAD INTERAL

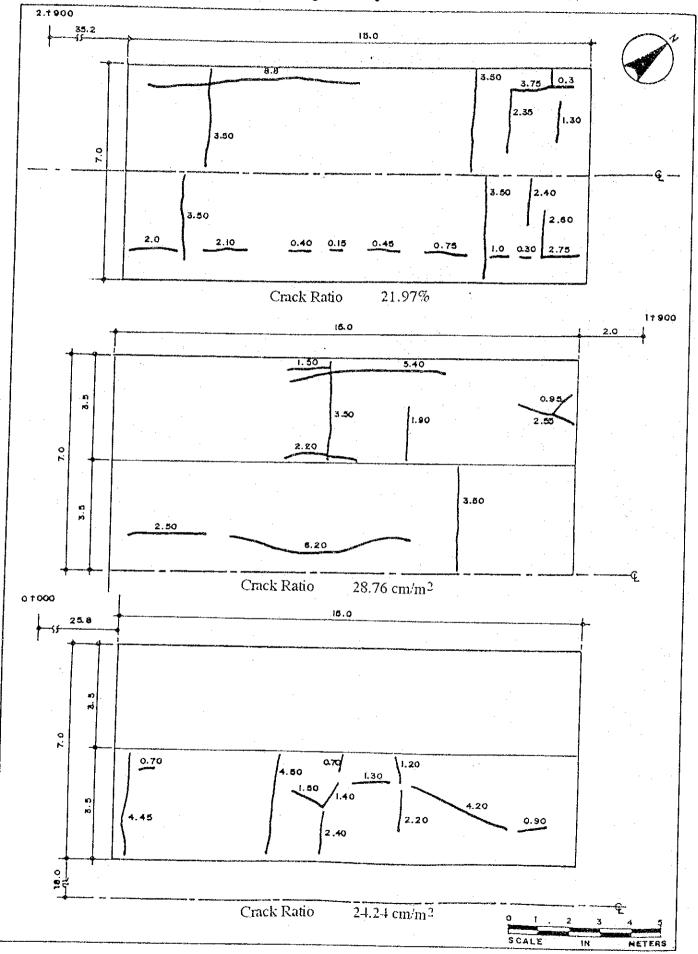

C - 3

				LOCATION : Sana, Para	ç17								
				BOREHOLE REFERENCE EI	EVATION:	22.13	м.					GRO	OUNL
36416	DEFT2	GAAN	THICKNERS	MATERIALS DESCRIPTION	CONSISTENCY	AECOVE NY (7.1			 ເວນ			м. ю е	
101	J	1	100	· · · custy gray,	SOFT	73	L		[Γ	1	Π
11		V//	100	stity CLAY wild increase of some .	\$7177	100	Ň	Γ	Γ	[Γ		\Box
14		V/	1.00	fulkist .an -	SOFT	100	1	ľ		Γ			\square
1			1.00		VERY LOOSE	100	ľ			5	3	I	в
		li I	1.00	······································	LOOSE	100		Γ		1	1		
11		m	100			19	[]	Γ	Γ				
1			1.00	Clayor SILT with some send, brown.	ліхн ,	. 69	ľ						\square
1			le9			33	Γĭ					\square	\Box
		2 4		Sills SAND with gravel, light brown.	VERT DENSE	67	Ĺ			F	-		
1		V//	1 ₀ 2	Silly CLAY with some ercral, light braws.	WERY STIFF	100				Ľ.	-	\square	Ĭ
[¹⁰]		Ű	100		STIFF	.69		1	r			\Box	
		III	1.00	Cleary SILT with gravel,		190		1	5				
		Ш	100	light Brown .	VERY STUFF	100			ľ				
ļŢ		77	100	Silly CLAY with gravel, light grown, melet.]	45		Γ	Γ			\square	Π
		ΠŢ	100		FLAN	*							
		lŦ †	160		DENSE	67			$ \ \ \ \ \ \ \ \ \ \ \ \ \ $				Π
11		li i	LCO	· - · · · · · · · · · · · · · · · · · ·	VEAT GENSE	76.							
11]	111	LÓO.	Silly Salo atta gant ,	DENSE	58			-			90-	
1		11		Tight prove.	VERY DENSE	87				×	/		
			100			71	•					2	
20-		ŦŤ	1.00 1.00			47							
11].			Silly C.AT. Have brain.	VERY DENSE	76	<u> </u>			•••			1
Ì					YEAT CENSE	89					• • • •	109	1
11	ן ב	ĬŤ	100	Silly Sato win grand, hown	1047 50536	100						77	Τ
	וכ	ΪſΪ	1.00	Sandy SILT with games, readan brown .	KARO	67	·					93	7
1.5].[1.4	100	SILLY FIME SAND, Grown .	VERT ODISE	Ta			Ì		59		1
ΙŢ]		100	Clarger SILT , reation bases, marth		89				.		1.9	1
11	ונ		100	Cinge & and Sil,T. know, maint,		84							1
10			1.00		RARO	78]	7
11]		100	Clayer SILT . camparid, aroun .		78						104	
 ∞[- 1	END OF HELE AT 30.00 m.									Ī
IT													
ΙŤ	1				•				-			T	
ΙT	1					- 1			Ĩ				
1 t	1						-	1		Ĩ	1	T	
1 1	11							_		İ	Ť	1	1
1 †	11								-			1	1
1 †	1	•					1	_					1
1 †	1								-1			-1	
†	1								-1	1		1	1
†	11								•		1	1	
+	11	- I			}		-	-	-		-1	\neg	-
†	11								-	-		+	-
+	+	ŀ					-		-	-	-	-+	+
<u> </u>			ł		السيرين ورواري						,i		المعي

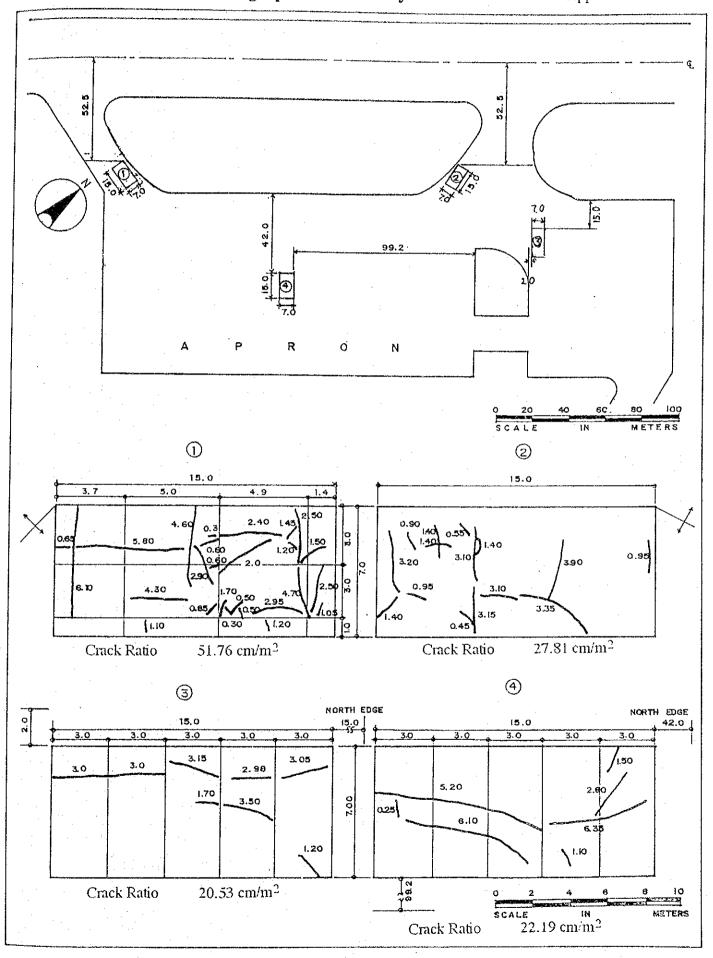
				PROJECT : PROPOSED		104AL	-0-4-	<u>AR</u> P	<u>. 1</u>				
				LOCATION : 3444, Oura									
		÷.,		BORSHOLE REFERENCE EL	EVANON :	21.4	0					GRO	OUNC
2 12 24	H1430		HICKHESE	MATERIALS DESCRIPTION	CONSISTENCY	ACOVE AY	N	H 8	юw	573	50 c	м.	
0		ĻĽ	Ľ	· · · · · · · · · · · · · · · · · · ·	ļ.,	ž	1	0.2	0.3	<u>e -</u>	<u>0 5</u>	0 9	<u>}-9</u>
ľ	H	Ø	100	SINy CLAY webtacos of	FIRK		þ.	[Ļ	 		
	Щ.		1.00	4844 , Brank ,		49	10	<u> </u>			<u> </u> .		
1.	×	¥4	100		VERY SOFT	11	ŀ	<u> -</u>	5	1.5	<u> </u>	ε	0
	H.	11		SILTY SAND, graunal grap. LIMESTONE, light brown.	VERT DENSE	100	ļ	ļ	Ŀ	<u></u>	40.	10	
ġ.	H.		10.12	filty SAID granta ger.	TIME	20	•			Ŀ	Ĺ,		
	Н		0.75	SIIIS GRAVEL INDE CHEVE.		70			<u>.</u>		40	13	
		臣	<u> </u>	LINESTONE, weethand with reide	ĺ		-	. 1		ĺ			
	H	逹	11.83	and cavilies, light brown .		15 36							
E.			0.80		1	47					60		
	Ŋ.	111	0.75	SITY SAND, Prewiek gey to		24	•				30.	40	
Q .	<u> </u>	H1	0.62	SIIIY SAND, Brewick givy 70 Habi gay,		0	•				40.		
		1111	0.75	LINESTOKE, washcrut, light bruns ,		7	•	•			ioz	I	
1	Π.	44 T		silly salo, press pay,	YERY GENIE	22	<u> </u>						
	D		100			74		-	÷.		103		
	0			Powly product SLAD, presaling prof.	i .	74					1.43		-
15-	Π.	144	1.00		1	45	ŀ	\square			es.	-0	
	n.	+ +	0.90	Silty MANVEL with the second,							, ,		
	团		0.65	Light borns .]	n	-	H			10,	-	
-	Η	111	9.42			42			-				
-		LT L	1.00			100	⊢	H		÷	_		
20-		I i i	ιœ	Silly Sond) oran tirta genest, Septimenen.		100	<u> </u>					ə	
-		1	1.00	· · · · · · · · · · · · · · · · · · ·		47					\$3		
-	ы. Г		1.00	Clevey \$420 cita asona proval, light tream.		78	[-			85		
	Ì.	6	100	sing SAND with fur gravel,		83	ļ				È-	74	
			1.00	lion: brews,	VERT CENSE							79	
2-		11	100			78	÷				••	87	
	M	n t	100			e 3					<u>}</u>		
	H.		100			69							
	H		1.00	Sandy St.T. yellowish brown .	HARG	75			<u>.</u>	•••••		78	_
			100			83	-	-	_		L.	103	
30			100		VERY DENSE	39						106	
				END OF HOLE AT 30.00 M.									
								_			[]		
					•				-				
	4										Ĺ		
	Ļ										ļ		
											1		
							1.	L			!		Ц
	4						L	<u> </u>			1		
]	L		1		L	L		
						L	L			Ľ	L		
11	1						}			1	[
11					ł					1			
11				· ·			1				Γ		
							Γ						
									_				

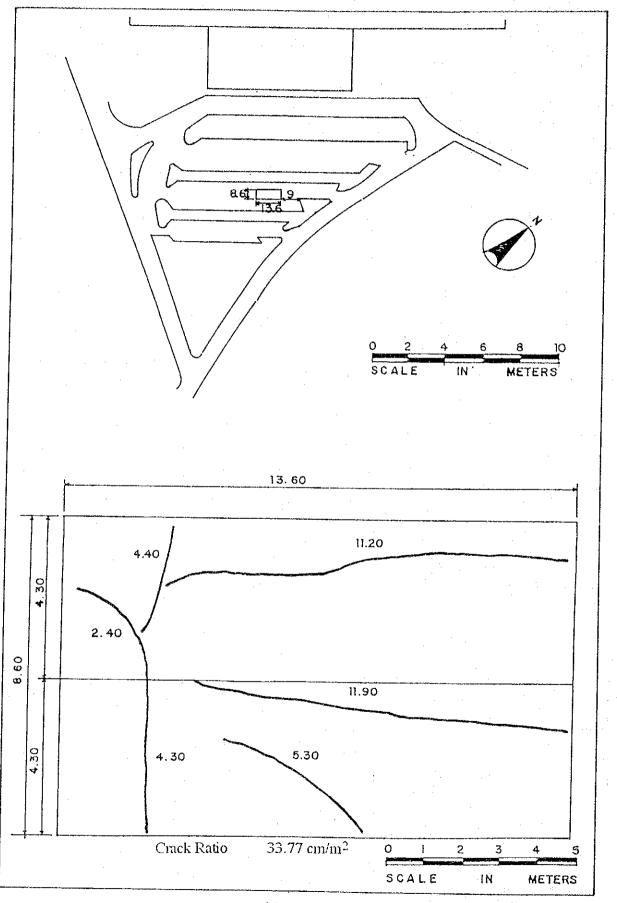
C - 4

C - 5



Borehole	Type of Soil	Compressive Strength (kg/sq.cm)	Depth (m)
A-1	Silty clay	3.02	2.00 - 2.30
A-5	Silty clay	3.48	1.50 - 1.75
A-7	Silty sand	1.14	1.50 - 1.65
A-10	Silty sand	0.23	1.30 - 1.46
A-13	Silty silt	3.11	1.74 - 2.15
A-16	Silty sand	2.14	1.32 - 1.80
A-19	Silty clay	4.80	0.85 - 1.15
A-25	Silty clay	0.83	1.55 - 1.75
C-1	Silty clay	2.61	3.55 - 4.00
C-2	Silty sand	1.23	3.55 - 4.00
C-3	Silty clay	0.61	2.55 - 3.00
C-4	Silty clay	1.39	1.55 - 2.00
C-5	Silty clay	4.56	1.55 - 2.00
C-5	Silty clay	2.59	14.55 - 15.00


Result of Unconfined Compression Test


Appendix - 3.9.1

A3 - 26

Condition of Existing Apron and Taxiway Pavement Surface Appendix - 3.9.2

Condition of Existing Car Parking Pavement Surface

A3 - 28

APPENDIX TO CHAPTER 4

Estimation of GRDP in Future by Region and Main City

2010 3. J. 34.4.5 4.0 5.5 5.6 3 2005 3.5 3.5 2.0.0 Nic 2000 4.0 4.5.8 4.5.8 5.0 4.7 5.2 1995 4.0 4.3 5.9 6.0 ---ထုက္ကေ 10 4 69 69 990 6.2 6.6 4.9 4.1 4.6 83,019 9,019 2,729 15,250 5,026 9,835 9,835 9,037 9,037 2010 229,454 $\begin{array}{c} 14.062\\ 15.746\\ 8.639\end{array}$ 3,1811,6591,308992 406 311 1,402 3,173 2005 193,192 804 333 275 068 2,6802,5051,3171,0852000 162,665 2,256 1,965 1,041 897 55,377 6,778 2,624 2,624 11,992 11,992 4,270 8,591 14,537 6,557 6,256 6,256 11,465 6,269 6,283 6,283 650 272 241 810 1995 1,484 793 719 $\begin{array}{c} \mathbf{43,696} \\ \mathbf{5,723} \\ \mathbf{5,723} \\ \mathbf{2550} \\ \mathbf{2550} \\ \mathbf{2391} \\ \mathbf{10,391} \\ \mathbf{10,391} \\ \mathbf{10,391} \\ \mathbf{11,065} \\ \mathbf{11,06$ 133,700 .845 509 217 207 599 109,889 1,114592 572 1990 34,321 4,810 2,466 8,963 8,963 3,484 3,484 7,238 8,384 8,384 4,091 4,091 6.116 7,8494,297.497 397 172 176 176 1985 89,885 26,670 4,006 2,372 7,665 12,916 3,1176,5816,2802,2713,2594,8196,4183,511307 135 149 321 823 430 450 197 Note: Davao is included in Region 11. Manila) ORO BENERAL SANTOS CAGAYAN de C ZAMBOANGA NCR (Metro 4000000000 $\sim \sim$ COTABATO REGION 2 . SURIGAO REGION REGION REGION REGION REGION REGION REGION REGION REGION REGION REGION BUTUAN DAVAO CEBU [ota]

Appendix - 4.2.1

Gi(t): Growth Rate for the period (t),

(t). 2010 with 1990

G(L): Growth Rate of the total in Philippine for the period Estimatations are made for the years 1995, 2000, 2005 and

year.

the base

as S

Gi(t) = (G(t)/G(t-1))*Gi(t-1)

Applied formula for the estimate of future values

A4 - 1

Formulation of Total Demand Model by Regression Analysis

from/to	Distance	GDP		Total
Davao		(i)	(j)	Demand
Zamboanga	740	1497	572	58840
Cagayan	483	1497	592	435426
Cebu	743	1497	1114	411163
Manila	1450	1497	34321	604100
Butuan	286	1497	397	715000
Cotabato	226	1497	172	703000
Surigao	419	1497	176	230000
G.Santos	142	1497	440	639000

Logarithm

Distance	(i)*(j)	Demand
6.6066501	13.660357	10.982577
6.1800166	13.694725	12.984080
7.2793188	17.754731	13.311495
5.6559918	13.295154	13.480037
5.4205349	12.458712	13.463112
6.0378709	12.481702	12.345834
4.9558270	13.397993	13.367659
	$\begin{array}{c} 6.6066501\\ 8.1800166\\ 5.6106960\\ 7.2793188\\ 5.6559918\\ 5.4205349\\ 6.0378709 \end{array}$	Distance (i)*(j) 6.6066501 13.660357 6.1800166 13.694725 6.6106960 14.326930 7.2793188 17.754731 5.6559918 13.295154 5.4205349 12.458712 6.0378709 12.481702 4.9558270 13.397993

Results of Regression Analysis

Constant value:		14.752050	
Standard deviation for estimated Y:		0.0863612	
Determination coefficient(R ²):		0.9459338	
Number of samples:		5	
Degree of freedom:		2	
Coefficiet of correlation(R):		0.9725912	
Coefficient of X:	-0.983938		
Standard deviation for X:	0.1676239	0.0612936	
		and the second second second second second second second second second second second second second second second	

Estimate Model for Total Passenger Traffic

TR = Exp(14.752050)*(GDPi*GDPj)^0.3222623*DIST^-0.983938

R = 0.9725912

Estimation of Passenger Traffic Volume based on Capacities

1. Sea Transportation

(1) Number of Services by route

- a) Davao Cebu Manila : 2/week
- b) Davao Zamboanga Manila : 1/week

(2) Accommodation Capacity / ship : 1,200 persons/ship

(3) 52 weeks/year

(4) Estimated Number of Passengers

a)	Davao -	Zamboanga	:	1 x	2	Х	52 J	c 1200	Х	0.3 =	=	37,440
	Davao -							(1200				49,920
c)	Davao -	Manila :										249,600
۰,	Dardo	(1)		1 x	2	X	52 5	1200	Х	0.6 =	Ξ	74,880
		(2)		2 x	2	Х	52.2	¢ 1200	X	0.7 =	z	174,720

2. Bus Transportation

(1) Number of Services by route

a) Davao - Cagayan de Oro + Cebu	: 43(21.5x2)/day	
 b) Davao - Manila c) Davao - Butuan d) Davao - Cotabato e) Davao - Surigao f) Davao - G. Santos 	: 5(2.5 x 2)/day : 56/day : 55/day : 18/day : 50/day	

(2) Accommodation of Bus : 50 persons/vehicle

(3) Estimation of Number of Passengers

al	Davan -	Cagayan de Or	ro :	43 x	50 x 0.7	x 365	.	549,000
	Davao -		:	5 x	50 x 0.8	x 365	=	73,000
	Davao -			56 x	50 x 0.7	x 365	=	715,000
		Cotabato			50 x 0.7			703,000
		Surigao	:	18 x	50 x 0.7	x 365	=	230,000
		G. Santos	:	50 x	50 x 0.7	x 365	=	639,000

Concept of MD Model

This model explains the modal shares using two different distributions concerning time value and total time cost (time and fare cost calculated in time (hours)) of passengers. They are expressed as follows:

- g(x): Distribution function of time value of passengers (x = l/v, v:time value, 10 pesos/hour)
- f (u) : Distribution function of total cost of passengers (u : total time cost, hours)

It is generally assumed that these distribution functions follow normal logarithmic type of distribution.

In this model, a passenger chooses a mode of which sacrificial value is smaller than that of other mode of transportation. The sacrificial value is expressed in terms of time in logarithm as follows:

$$S = ln(t+c/v)$$

where, S : Sacrificial value t : Trip time (hour) v : Time value (10 pesos) c : Fare of a transportation mode

Considering three modes of transportation, air, sea and road, a passenger chooses air transportation if S1 is smaller than S2 and S3. here, "1" denotes air, "2" denotes road and "3" denotes ship.

Substitutional time value for S1 and S2 which gives S1 equals to S2 is calculated as follows:

$$v'_{1-2} = \frac{C_1 - C_2}{t_2 - t_1}$$
 or $x'_{1-2} = \frac{t_2 - t_1}{C_1 - C_2}$

Substitutional time value for S2 and S3 which gives S2 equals to S3 is calculated as follows:

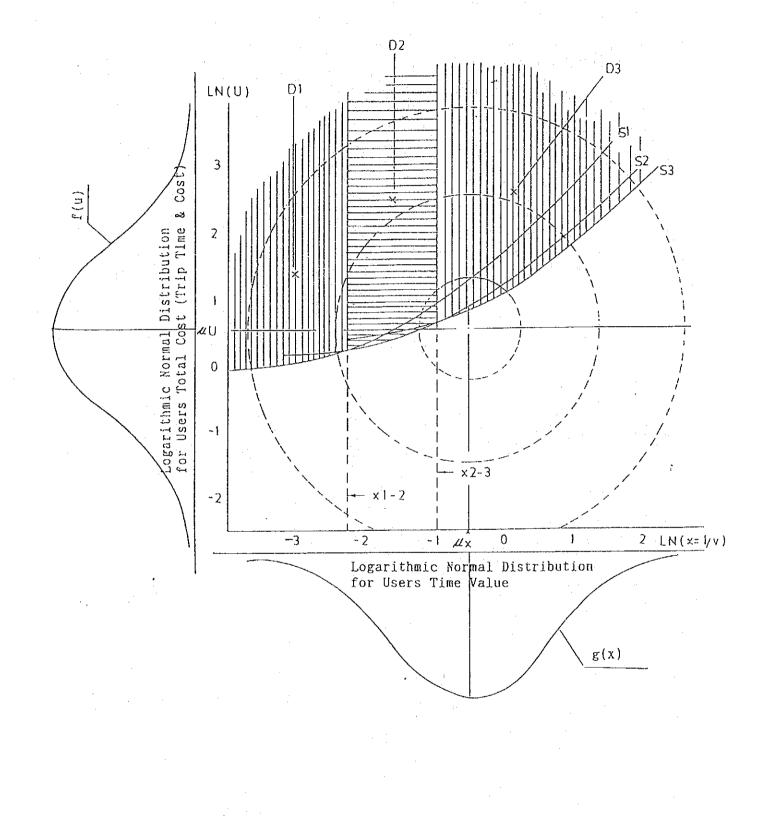
$$v'2-3 = \frac{C2 - C3}{t3 - t2}$$
 or $x'2-3 = \frac{t3 - t2}{C2 - C3}$

Illustrating the two distribution functions in a figure, air passengers account for D1 of the all potential passengers, road passenger account for D2 of the all potential passengers and ship passengers account for D3 of the all potential passengers. D1, D2 and D3 are expressed as follows:

D1 =
$$\int_{\infty}^{x'1-2} g(x) \bullet \int_{S-1}^{\infty} f(u) dx \bullet du$$

D2 =
$$\int_{x'1-2}^{x'2-3} g(x) \bullet \int_{S2}^{\infty} dx \bullet du$$

A4 - 4


$$D3 = \int_{x^2-3}^{\infty} g(x) \cdot \int_{s^3}^{\infty} f(u) \, dx \cdot du$$

The share of air transportation (H1), road transportation (H2) and sea transportation (H3) are obtained as follows:

$$H1 = D1/(D1 + D2 + D3)$$

$$H2 = D2/(D1 + D2 + D3)$$

$$H3 = D3/(D1 + D2 + D3)$$

A4 - 6

44-1404-9 ⁻¹⁰ 0-0400 habita da da anti-anti-anti-anti-anti-anti-anti-anti-	1990	1995	2000	2005	2010
mean value of In (1/v)	- 0.700	- 0.896	- 1.092	- 1.264	- 1.436
for Low Projection	- 0.700	- 0.848	- 0.996	- 1.119	- 1.243
for High Projection	- 0.700	- 0.944	- 1.188	- 1.384	- 1.580
deviation of Ln (I/v)	1.421	1.421	1.421	1.421	1.421
mean value of Ln (U)	2.35	2.35	2.35	2.35	2.35
deviation of In (U)	2.09	2.09	2.09	2.09	2.09

Parameters of MD Model

In the above mentioned parameters, v means average time value (10 pesos per hour) which is assumed to increase according to the growth of GDP in this Study. The value of v is obtained by the following formula.

The growth factor of GDP of the total Philippines (1990 = 1.0)

 $v = GS^k \cdot v90$

where, v : Average time value in the future (10 pesos)

v90 : Average time value in 1990 (20.14 pesos)

GS :

k

: Parameter, k = 1.0

Economic Data for Model Formulation

 $\frac{141.9}{2,403.4}$ 5,423.4 118.5 1990 1.0000 3.7450 487.5 17.5040141.9 144.79 378.48 0.7813 I.6157 1.8125 106.0 43.9 484.4 24.3105 1.066.3 5,423. []3. 4 1989 5,163.21.0000 5,163.2 1,180.5 113.8 83.0 125.5 2,219.4 $\begin{array}{c}1.9503\\28,359.7\\125.5\end{array}$ 3.7450 310.82 272.9 137.96 2,865.8 1.8800 104.0 453.2 16.2260 395, 359.0 0.792542.4 3 55,310.0359.17 922.6 21.7367 109.6 4.427 988 4,840.2 4,840.2 285.15 1,192.9 49,365.0 2.0124 24,530.4 1.0000 3,949.913.9170109.4 76.1 283.8 125.5 128.15 2,897.1 102.1 803.0 21.0947 38.1 115.7 2,094.9 L.7562 0.7842 406.4 3.7450 318.69 115.7 126 371,260.0 107. 275.45 3.7450 73.6 109.2 4,497.2 4,497.2 1987 $\begin{array}{c} 144.64 \\ 2,406.6 \\ 101.8 \end{array}$ 1.0000 1,107.4 3,325.512.9620256.6115.62.106 20,232.2 109.2 282.34 0.7009 402.8 990.5 708.4 20.5677 31.4 109.2 L.7974 105.4 348,085.0 42,609.0 Achieved 1986 4,205.4 1.0000 271.093.7033 73.2 1,985.2 101 8 4,205.4 20.3857 30.8 102.5 886.6 103.2 12.6110 232.6 106.6 0.6709 1,925.3 2.171517,752.4 168.52 251.65 101 2,933.6 38,654.0 2.1774334,540.0 375.1 107 627.1 101 1985 3,974.2 1.00003,974.2 $\begin{array}{c} 320,169.0\\ 238.54\\ 1,342.2\\ 100.0 \end{array}$ 38,924.0 2.2002 86.7 1,823.2 619.3 100.0 313.943.622118.6073 32.9 100 2.94402,626.012.3690 212.3 17,691.1 229.22 0.7008 327.1 100 100 100 100 612.7 1.00003,724.8 97.2 3,724.8 351.403.523899.784.11,750.92.8459615.2 97.7 2.1331 18,774.6 237.52 1,264.5 98.4 1984 2,306.8 $\begin{array}{c} 539.4 \\ 16.6987 \\ 32.3 \\ 84.1 \\ 84.1 \end{array}$ 203.0 205.980.879693.3 40,048.0 234.211.3630 300, 348.0 9 84. 373.883.4548108.256.53,355.9 1.0000 3,355.9 93.6 1983 1,668.5 2.5533 653.5 853.5 95.6 2,068.610.0990 204.886.80.9024 199.9 89 1,186.196.211.1127 34.6 56.5 17,383.5 36,733.0 2.1131 56.5 281,709.0 237.51 180.35384. Deflater(1985=100) 0eflater(1985=100) Deflater(1985=100))eflater(1985=100) Deflater(1985=100) 0eflater(1985=100) Deflater(1985=100) 0cflater(1985=100) Riyals(billion) D.Mark(billion Rupees(billion Riyals/US\$ US\$(billion) Pesos(billion) Rupees/US\$ US\$(billion) JS\$(billion) JS\$(billion) JS\$(billion) US\$(million) JS\$(billion) S.\$(million) Yen(billion) US\$(billion) A.\$(billion) JS\$(billion) D.Mark/US\$ Pesos /US\$ S.\$/US\$ Yen/US\$ A.\$/US\$ Rate 2 Saudi Arabia 3 West Germany 8 Philippine 5 Singapore 7 Australia 6 Japan 4 India I USA

A4 - 8

Passenger Traffic Data for Model Formulation

\sim	
(in thousands	
-	
c from/to Philippine (
3	
[rom/	
Traffic	
ir Passenger	
Λίr	
Intenational	

1990	646.0 485.7 485.7 186.0 34.8 641.3 2,048.1 2,048.1 14.8	0 888 8
1989	$\begin{array}{c} 738.7\\ 453.7\\ 453.7\\ 173.2\\ 16.7\\ 16.7\\ 16.7\\ 2,317.0\\ 2,317.0\\ 137.8\end{array}$	A 507 A
1988	672.2 672.2 489.1 203.3 40.9 591.2 1,785.5 1,785.5	2 000 2
1987 -	626.4 480.8 480.8 36.0 579.2 1,557.5 137.0	3 567 7
1986 Achiovec	578.8 578.8 442.5 129.0 31.3 31.3 513.6 118.4	3.036 1
1985	412.2 459.1 117.0 26.5 512.4 1,245.4 1,245.4	2.907.3
1984	505.4 403.2 118.9 28.2 525.4 1,227.0 114.7	2,922.8
1983	405.7 364.6 144.1 65.0 335.4 1,276.7 134.2	2,725.7
Regions	North America Middle East Europe Indian Sub-Continent South East Asia North Rast Asia South West Pacific	lotal
	og 101 or 101 or 00	

Appendix - 4.3.2

A4 - 9

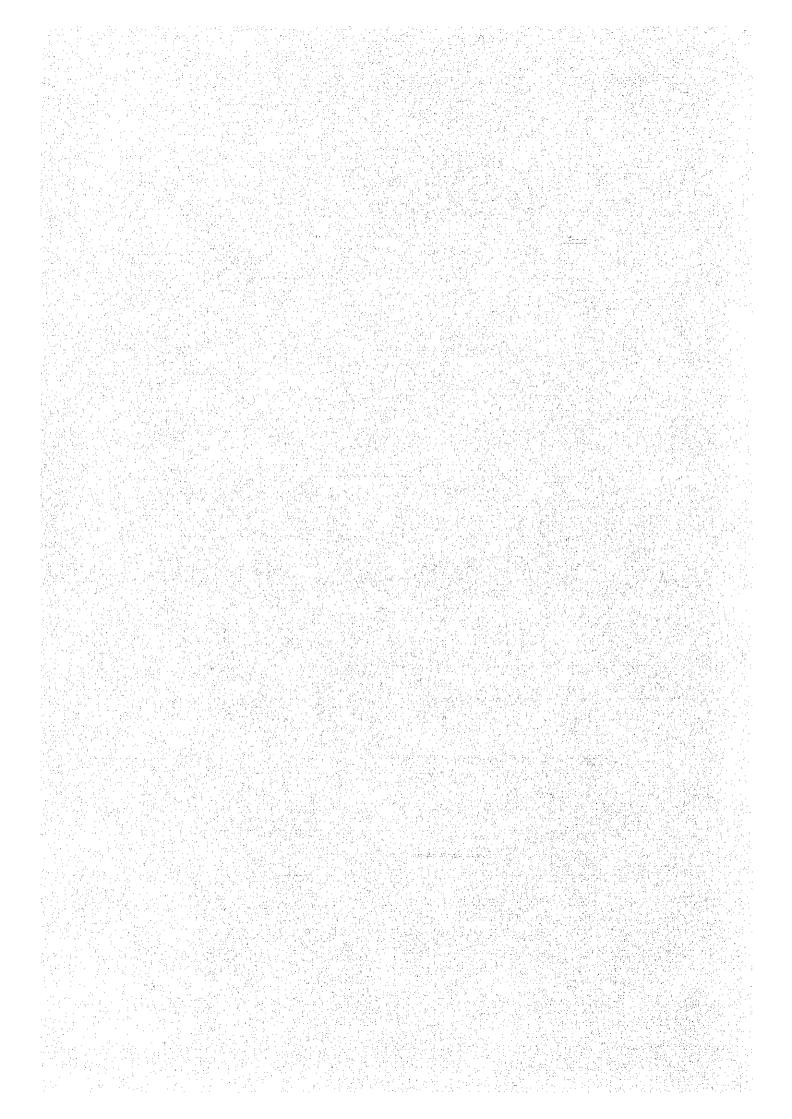
Input Data for Formulation of Domestic Cargo Demand Model

Domestic Cargo volume from/to Davao International Airport

	1981	1982	1983	1984	1985	1986	1987	1988	1989
Total Cargo	4,339	5,084	6,641	7,524	9,437		12,228	and the second rates of th	

Gross Domestic Product

(In million pesos; at 1972 constant Prices)


The second second second second second second second second second second second second second second second se							~~,·		
	1981	1982	1983	1984	1985	1986	1987	1988	1989
Region XI	5,987	6,169	6,424	6,300	6,418	6,700	7,121		

											F	vppendix -	· ••••
· · · ·			1990	109,889			1990	· · ·		622 158 2,509 568	3,788 1,058 8,703	$\frac{4}{5}, \frac{022}{462}$	
	• •		1989	107,144			1989	13,745 10,257 24,002	9,116 10,013 19,129	814 157 2,470 522	3,411 1,833 9,207	$\frac{4}{4},165$ $\frac{4}{6}73$ 8,838	
			1988	101,449			1988						
Model		·	1987	95,373			1987	11,010 8,793 19,803	4,306 9,970 14,276	284 1,311 416	2,423 586 5,020	3,736 4,385 8,121	
Cargo Demand Model		ippine rices)	1086	91,181	·	pines	1,986	10,200 7,369 17,569	3,525 8,734 12,259	171 1,187 389	1,910 519 4,176	3,412 2,594 6,006	
		Total Philippine constant prices)	1985	89,885		√to Philig	1985	8,240 7,809 16,049	5,285 8,990 14,275	101 1,116 680	2,320 724 4,941	3,451 3,505 6,956	
ernationa			1984	93,927		Cargo from	1984	$\begin{array}{c} 8,459\\ 17,315\\ 25,774\end{array}$	6,360 7,673 14,033	114 171 998	3,333 1,293 5,909	3,313 3,155 6,468	
Formulation of International		Gross Domestic Product of Total Philippine (in million pesos at 1972 constant prices)	1983	99,920		International Air Cargo from/to Philippines	1983	5,912 6,493 12,405	4,524 6,583 11,107	245 101 1,340 730	3,138 1,503 7,057	2,966 2,820 5,786	-
ormulatic		Gross I (in mi)	1982	98,999		Internat	1982	3, 149 7, 433 10, 582	$\begin{array}{c} 5,742 \\ 15,540 \\ 21,282 \end{array}$	54 32	86	1,534 2,040 3,574	
L			1981	96,208		ı	1981	1,764 1,600 3,364	$ \begin{array}{c} 872 \\ 2,588 \\ 3,460 \\ \end{array} $	142 39 470 387	1,504 1,111 3,653	1,012 916 1,928	
Input Data fo		(1)		- - -		(2)	×	Manila - Tokyo Tokyo - Manila Subtotal	Manila - Hongkong Hongkong - Manila Subtotal	Manila - Honolulu Honolulu - Manila Manila - Los Angels Los Angels - Manila	Manila - S. Francisco S. Francisco - Manila Subtotal	Manila - Singapore Singapore - Manila Subtotal	Data source : ICAO

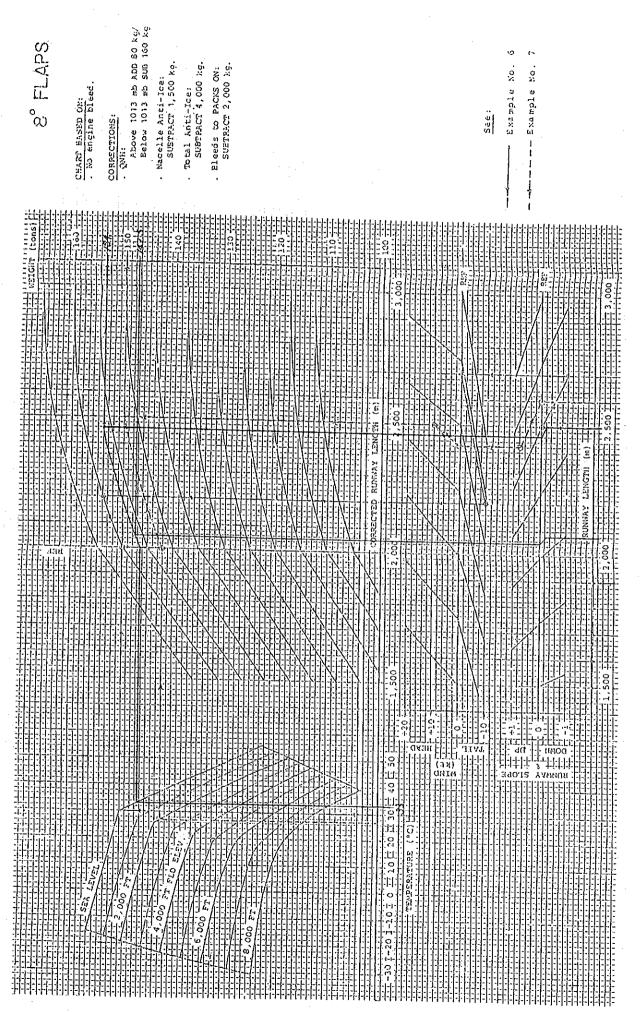
Appendix - 4.5.1

A4 - 11

APPENDIX TO CHAPTER 5

Runway Length Requirement of A300 to Tokyo

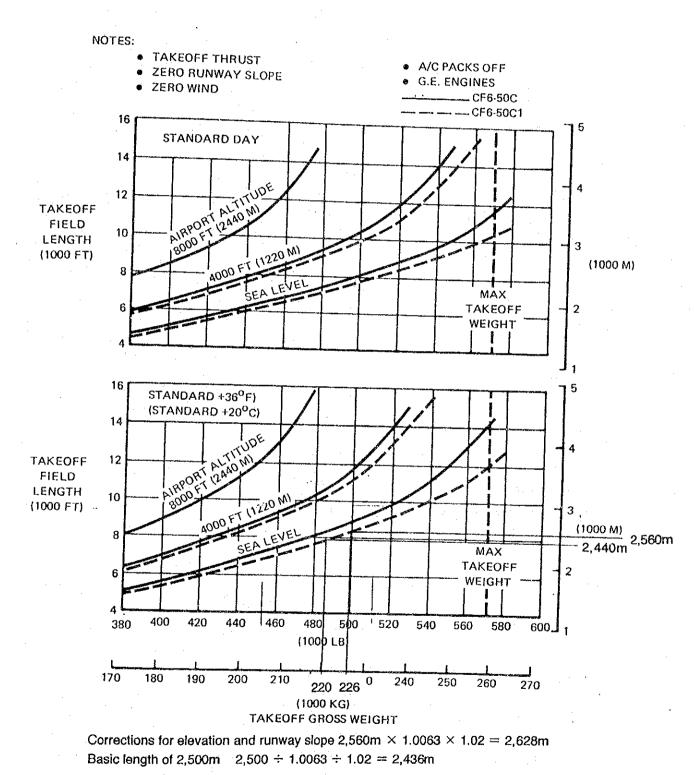
Runway Length Requirement


A300-B4	
Tokyo	1,974 NM
Manual	PAL Aircraft Operations Manual A300
Aircraft Data	PAL
Operating Weight Empty	93.225 ton
Maximum Payload	32.775 ton
Fuel Comsumption	6.579 ton/hr
Ave. Speed	477 Kts
Passenger Load	0.091 ton/pax 200 LB
Number of PAX	244
Maximum Takeoff Weight	165.000 ton
Runway Condition	
Elevation	27 m
Temperature	32.7 C
Runway Slope	0.2 %
Wind	0.0 kt
Maximum Takeoff Weight	165.000 ton
Runway Length Requirement	2,930 m PAL
	4,000 m PAL Aircraft Operations Manual A300
Maximum Payload	32.775 ton
Cruising Time	4.138 hr
Distance to Alt. Airport	233.600 NM 269 sm Osaka
Cruising Time to Alt. Airport	0.490 hr
Total Cruising Time	4.628 hr
Fuel Comsumption	30.448 ton
Takeoff Weight	156.448 ton 344,968 LB
Runway Length Requirement	2,920 m FL0
Full Pax Load	22.136 ton
Takeoff Weight	145.809 ton 321,509 LB
Runway Length Requirement	1,940 m FL8
	1,920 m FL15
Allowable Payload under 2,50	0m
Allowable Takeoff Weight	154.000 ton FL8
Maximum Cargo Volume	10.639 ton
Allowable Cargo Volume	8.191 ton 77.0%
	••••••••••••••••••••••••••••••••••••••

Runway Length Requirement of A300 to Hong Kong

Runway Length Requirement

A300-B4			
Hong Kong	1,128 NM		
Manual	PAL Aircraft Operation	ations Manual A30	0
Aircraft Data	PAL	• •	
Operating Weight Empty	93.225 ton	· · ·	
Maximum Payload	32.775 ton	· .	
Fuel Comsumption	6.579 ton/hr		
Ave. Speed	477 Kts		
Passenger Load	0.091 ton/pax	200 LB	
Number of PAX	244		
Maximum Takeoff Weight	165.000 ton	· · · · · ·	
Runway Condition			
Elevation	27 m		
Temperature	32.7 C		
Runway Slope	0.2 %		
Wind	0.0 kt		
Maximum Takeoff Weight	165.000 ton		
Runway Length Requirement	2,930 m	PAL	
	4,000 m		erations Manual A300
Maximum Payload	32.775 ton		
Cruising Time	2.365 hr		
Distance to Alt. Airport	427.253 NM	492 sm	Taipei
Cruising Time to Alt. Airport	0.896 hr		f
Total Cruising Time	3.260 hr		
Fuel Comsumption	21.451 ton	· · · ·	
Takeoff Weight	147.451 ton	325,129 LB	
Runway Length Requirement	2,080 m	JFL8	
· · 1	En a constant and free and the second second second second second second second second second second second se		


A5 - 2

A5-3

DC-10 30C				
Sydney	OCI NIN			-
Manual	2,861 NM			
	Characteristics			
Aircraft Data	Characteristics	PAL	· · ·	
Operating Weight Empty	120.742 ton		123.500	
Maximum Payload	46.180 ton		43.700	
Fuel Comsumption	8.821 ton/hr		45.700	
Ave. Speed	485.000 Kts			
Passenger Load	0.091 ton/pay	r 1	and the second sec	
Maximum Takeoff Weight	251.744 ton	•	259.455	:
Number of PAX	274		200.400	
Runway Condition				
Elevation	27 m			1
Temperature	32.7 C			· .
Runway Slope	0.2 %			· · · · ·
Wind	0.0 kt			1
Maximum Takeoff Weight	259.455 ton			
Runway Length Requirement	3,520 m	PAL	1	
	3,660 m	Charac	eteristics	· · · ·
Morinum Barles I			· :	
Maximum Payload Cruising Time	43.700 ton			
Distance to Alt. Almost	5.899 hr			
Distance to Alt. Airport Cruising Time to Alt. Airport	381.228 NM	· .	439 sm	Melbourne
Cotal Cruising Time to Alt. Airport	0.786 hr		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
Total Cruising Time Tuel Comsumption	6.685 hr			
	58.968 ton			
Derating Weight Empty akeoff Weight	123.500 ton		· · · · · · · ·	
Lunway Length Requirement	226.168 ton	1 .	498,701 LB	
cannay Longen Requirement	2,630 m	 -	8,150 FT	
'ull Pax Load	24:024+			· .
akeoff Weight	24.934 ton			
unway Length Requirement	207.402 ton	· · ·	457,322 LB	
	2,103 m		6,900 FT	
llowable Cargo Volume				
llowable Takeoff Weight	220.000			:.
laximum Cargo Volume	18.766			· · · · · ·
llowable Cargo Volume	12.598			

A5-4

3.3 FAR TAKEOFF RUNWAY LENGTH REQUIREMENTS MODEL DC-10 SERIES 30 AND 30CF

Runway Length Requirement

MD11

Honolulu	
Manual	

4,599 NM Characteristics

AITCIMU DATA	rcraft Data
--------------	-------------

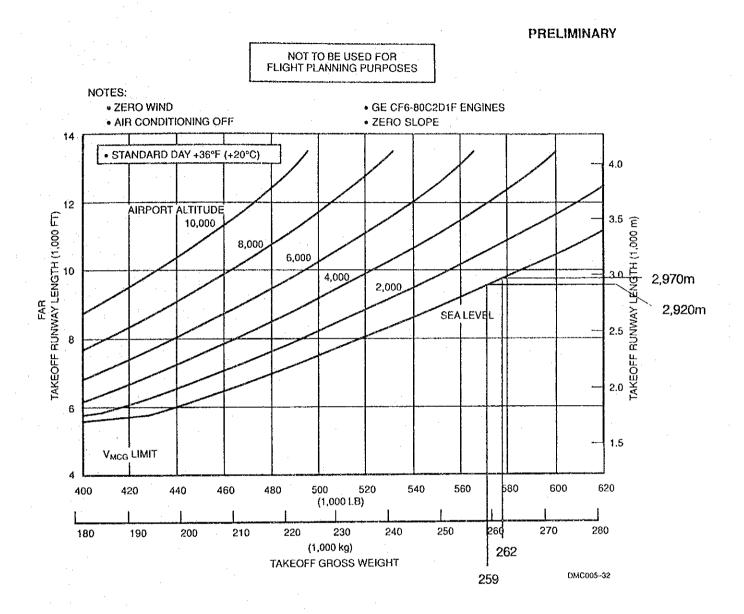
Aircraft Data	Characteristics
Operating Weight Empty	129.657 ton
Maximum Payload	51.780 ton
Fuel Comsumption	8.821 ton/hr
Ave. Speed	485.000 Kts
Passenger Load	0.091 ton/pax
Maximum Takeoff Weight	273.288 ton

Runway Condition

27 m
32.7 C
0.2 %
0.0 kt

Maximum Takeoff Weight	273.3 ton		
Runway Length Requirement	3,231 m		
Maximum Payload			
Cruising Time	9.482 hr		
Distance to Alt Aimost	1077 ETA NIXA		

Distance to Alt. Airport	187.574 NM
Cruising Time to Alt. Airport	0.387 hr
Total Cruising Time	9.869 hr
Fuel Comsumption	87.056 ton
Operating Weight Empty	123.500 ton
Takeoff Weight	262.336 ton
Runway Length Requirement	3,048 m

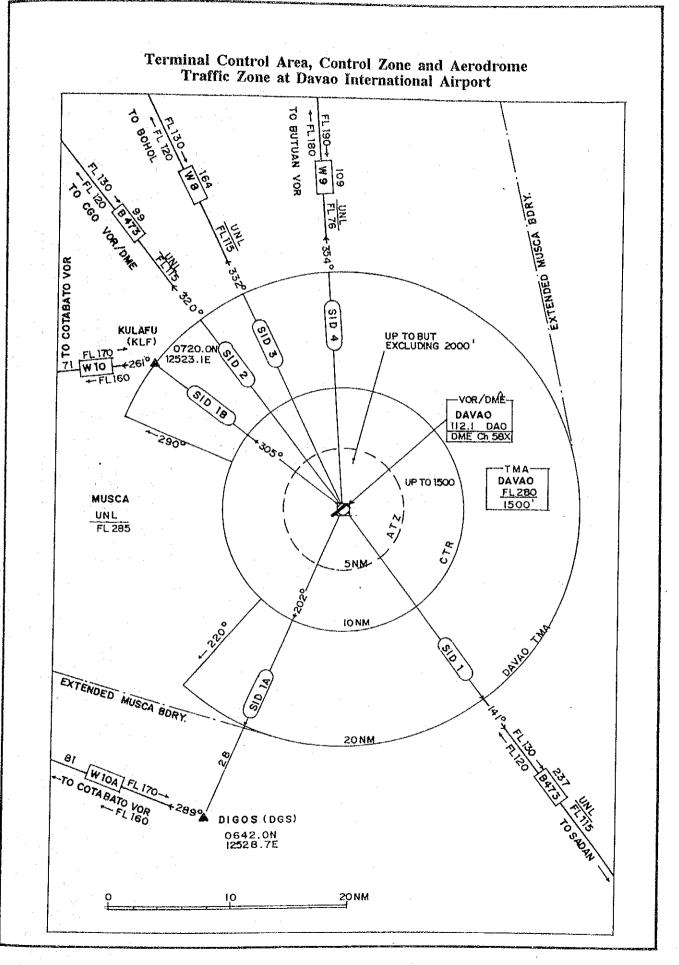

Allowable Payload under 3,000m

Allowable Takeoff Weight	259.0 ton	· · ·
Full Pax Load	37.310	i.
Maximum Cargo Volume	14.470	a
Allowable Cargo Volume	11.134	76.9%

10,600 FT

216 sm

578,452



3.3.3 STANDARD DAY +36°F (+20°C) MODEL MD-11 GE ENGINE

Corrections for elevation and runway slope 2,970m × (1 + 0.07 × 27/300) × (1 + 0.10 × 0.2) = 2,970m × 1.0063 × 1.02 = 3,048m Basic Length of 3,000m 3,000m \div 1.0063 \div 1.02 = 2,923m

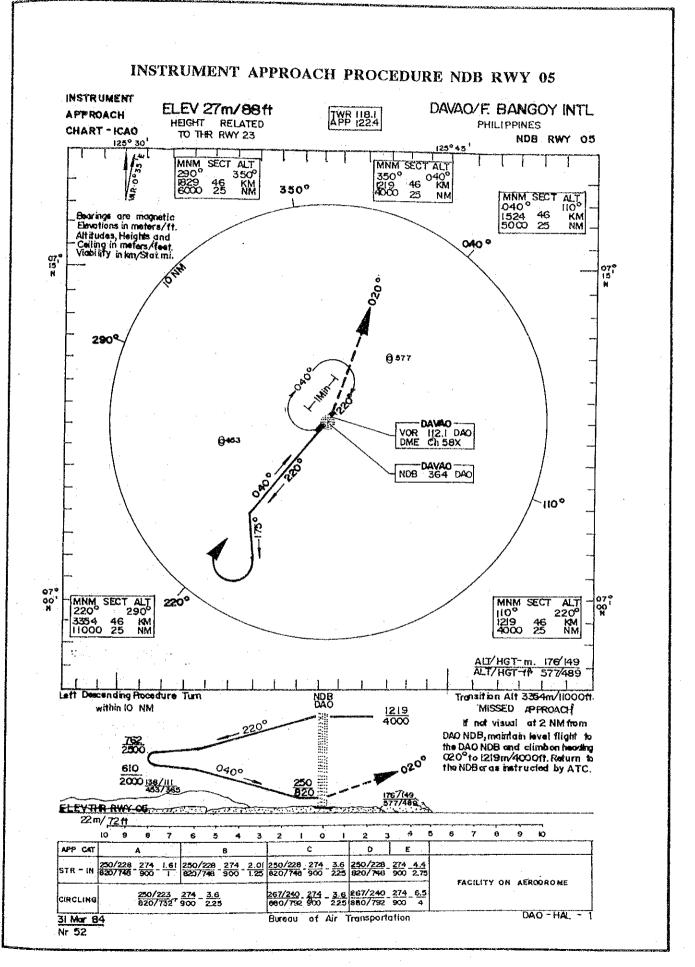
APPENDIX TO CHAPTER 6

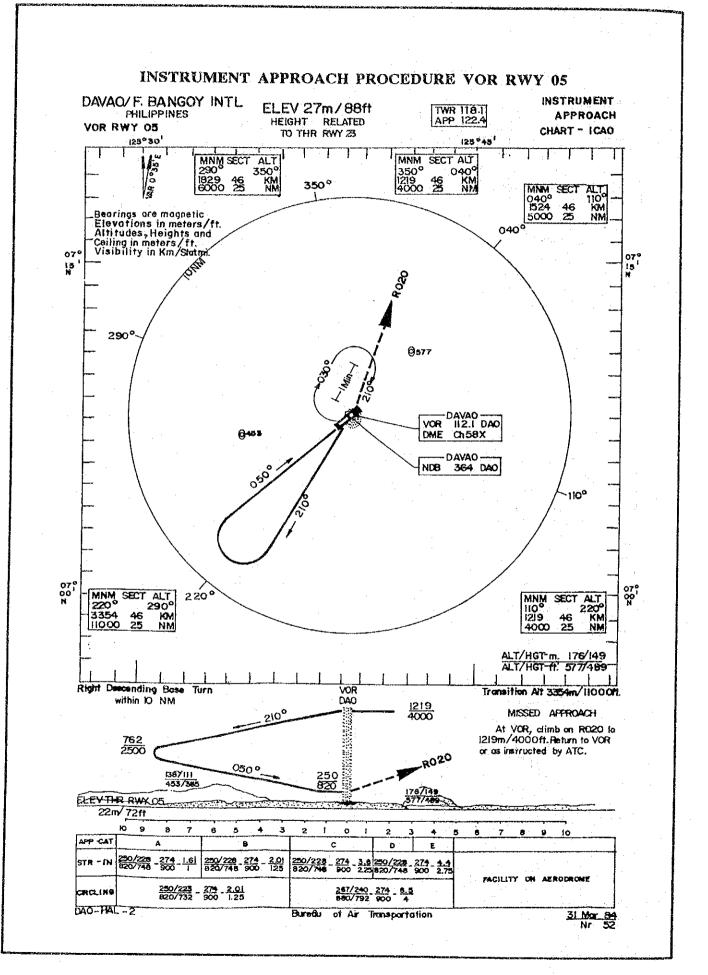
Appendix - 6.2.1

A6 - 1

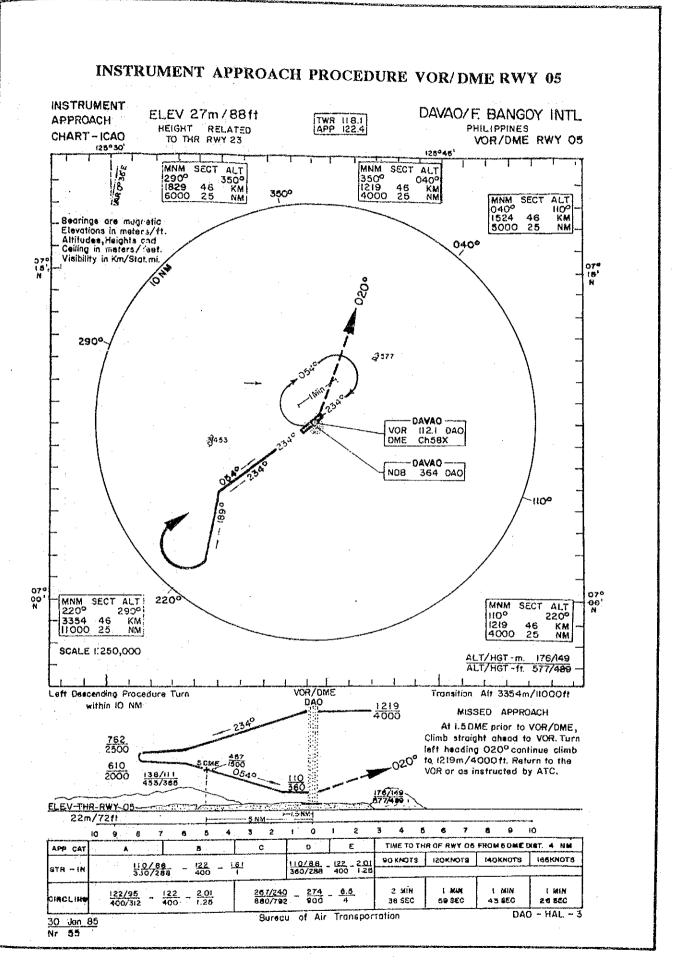
Dimension of Davao Terminal Control Area, Control Zone and Aerodrome Traffic Zone

NAME AND LATERAL LIMIT	UPPER Limit Lower Limit	UNIT PROVIDING SERVICE	RADIO CALL SIGN	REMARKS
DAVAO TERMINAL CONTROL AREA (TMA) Sectors bounded by arc of 20 NM radius centered on Davao VOR/DME 07°08'12"N 125°39'35"E between R-290 clockwise to R-220, and by arc of 10 NM radius centered on Davao VOR between R-220 clockwise to R-290	FL 280 1,500 ft	APP DAVAO* ACC MACTAN**	RTF: Davao Approach (En)	TMA/Visual Exempted * From 1,500 ft to FL 115 ** From FL 128 to FL280 (See charts pages RAC 3-1 and RAC 3-1.11)

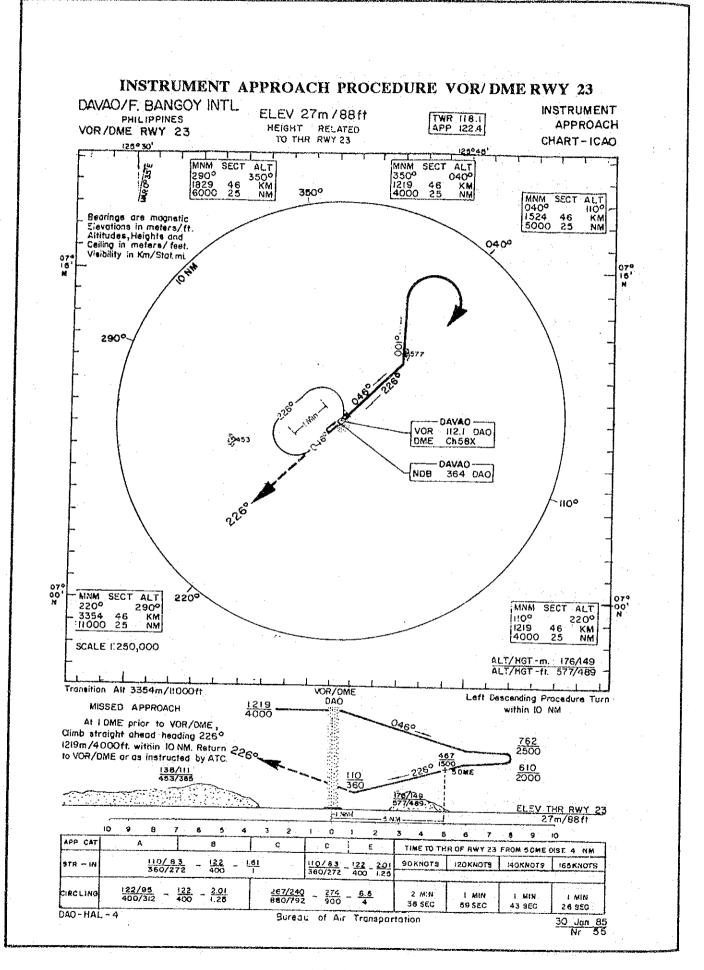

Davao Terminal Control Area

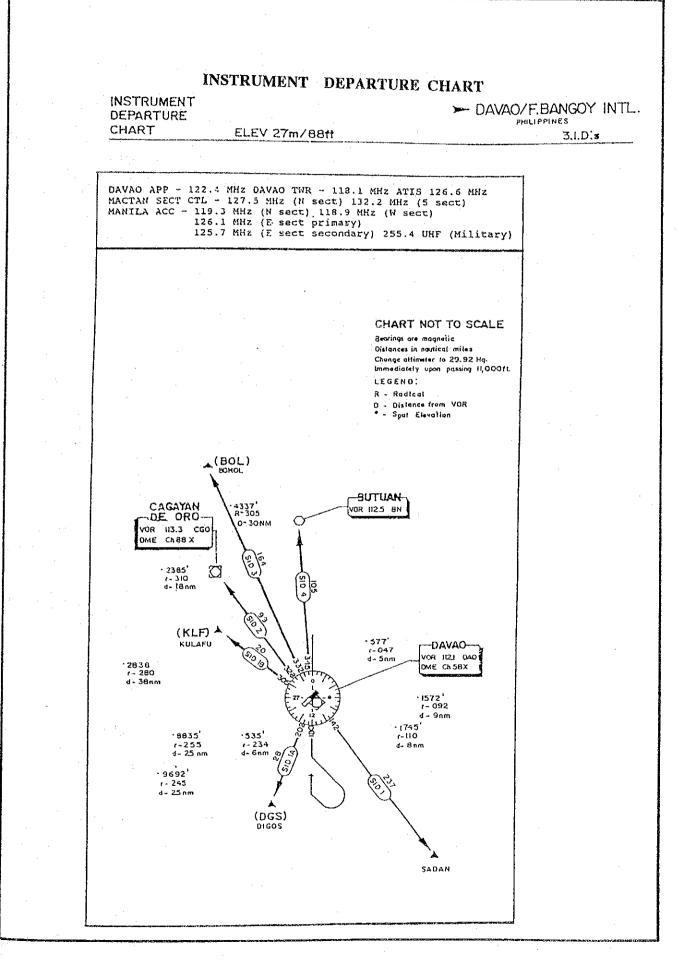

Source: AIP Philippines

Davao Control Zone (CTR) and Aerodrome Traffic Zone (ATZ)


TOWER	HOURS (GMT)	LATERAL LIMIT	UPPER LIMIT (FT)	LANGUAGE	REMARKS
DAVAO H24 TOWER	H24	CTR: Circle, 10 NM radius centered on the Davao VOR/DME (07°08'12"N 125°39'24"E)	1,500 feet	En	Instrument/Visual flights are controlled. CTR controlled by DAVAO APP.
	A	ATZ: Circle, 5 NM radius centered on aerodrome reference point (07°07'48"N 125°38'48"E)	up to but excluding 2,000 feet		VFR, aerodrome traffic are controlled.

Source: AIP Philippines





Appendix - 6.2.5

A6 - 5

A6-7

		DEPARTURE ROUTE DESCRIPTI	ON
	TAKE - OFF	PROCEDURE	REMARKS
	Rwy 05 - Left turn within 5 NM Rwy 23 - Left turn within 5 NM	Intercept and track out on R-142 to assigned level.	VMC climb during day time may be authorized by ATC depending on traffic conditions.
	Rwy 05 - Left turn within 5 NM	Cross DAO VOR/DME at 5000 ft.	
1-A	Durin 02 Laft sum middle CAD (above. Track out on R-202 to cross DIGOS at FL 160 or above.	
	Rwy 23 - Left turn within 5 NM	1	
	Rwy 05 - Left turn within 5 NM	a left climbing procedure turn within 10 NM to cross DAO VOR/	
1-B	Rwy 23 - Left turn within 5 NM	DME at 8000 ft. or above. Track out on R-305 to cross KULAFU at FL 160 or above.	•
	Rwy 05 - Left turn within 5 NM	Climb on R-180 to 4000 ft. Make	
2	Rwy 23 - Left turn within 5 NM	a left climbing procedure turn within 10 NM to cross DAO VOR DME at 8000 ft. or above. Track out on R-320 to cross 20 DME at	
		FL 120 or above.	•
	Rwy 05 - Left turn within 5 NM	Climb on R-180 to 4000 ft. Make	
3	Rwy 23 - Left turn within 5 NM	a left climbing procedure turn within 10 NM to cross DAO VOR/ DME at 8000 ft. or above. Track	
		out on R-332 to cross 20 DME at FL 120 or above.	
	Rwy 05 - Left turn within 5 NM	Climb on R-180 to 4000 ft. Make	
4	Rwy 23 - Left turn within 5 NM	a left climbing procedure turn within 10 NM to cross DAO VOR/ DME at 8000 ft. or above. Track	
		out on R-354 to assigned level	

INSTRUMENT DEPARTURE ROUTE DESCRIPTION

Source: AIP Philippines

A6-8

Capacity Analysis of Existing Passenger Terminal Building

The capacities of the major components of the existing passenger terminal building are evaluated by using the criteria of IATA (International Air Transportation Association) and the data obtained from the passenger processing time survey. The capacities are calculated for the following two cases:

Domestic case : No. of present peak hour passengers: 310 pax in one way. International case : No. of present peak hour passengers : 30 pax in one way.

The capacities of the major components between existing and requirements are summarized as follows.

1. Domestic

		Requirements	Existing
1.1	Departure Curb Length	23 m	16 m
1.2	Departure Concourse	1,165 sq.m	180 sq.m
1.3	Security Check before Check-in Lobby	1 unit	None
1.4	Check-in Counters	9 Counters	7 counters
1.5	Queuing Area - Check-in	.85 sq.m	80 sq.m
1.6	Security Check before Pre-Departure Hall	1 unit	1 unit
1.7	Pre-Departure Hall	455 sq.m	705 sq.m
1.8	Baggage Claim Area	310 sq.m	240 sq.m
1.9	No. of Baggage Claim Devices	1 Device	None
1.10	Arrival Concourse	1,150 sq.m	None
1.11	Arrival Curb Length	23 m	10 m
0	International		· · ·
2.	International	D	.
0 4 ·	Departure Quick Langeth	Requirements	Existing
2.1	Departure Curb Length	2.0 m	None
2.2	Departure Concourse	153 sq.m	None
2.3	Security Check before Check-in	1 unit	None
2.4	Customs Inspection-Departure	1 Position	1 Position
2,5	Check-in Counters	2 Counters	1 Counter
2.6	Queuing Area-check-in	9 sq.m	4 sq.m
2.7	Terminal Fee Counter	1 counter	1 counter
2.8	Passport Control-Departure	1 Position	1 Position
2.9	Security Check-before Pre-Departure Hall	1 unit	None
2.10	Pre-Departure Hall	55 sq.m	None
2.11	Passport Control-Arrival	1 Position	1 Position
2.12	Queuing Area-Passport	9 sq.m	4 sq.m
	Control-Arrival	• • • • •	-r oq.m
2.13	Baggage Claim Area	30 sq.m	None
2.14	No. of Baggage	1 Device	None
	Claim Devices		
2.15	Customs Inspection-Arrival	1 Position	1 Position
2.16	Queuing Area-Arrival Customs	7 sq.m	None
2.17	Arrival Concourse	110 sq.m	None
2.18	Arrival Curb Length	2 m	None

- 1. Domestic case
- 1.1 Departure Curb

L=0.095 ap meters + (10%)

Where, L = Curb length required (m) a = No. of peak hour passengers: 310 pax p = Proportion of passenger using car/taxi: 0.7

L= $0.095 \times 310 \times 0.7 = 20.6 + 2.1 = 22.7 = 23m$ L= 23 m existing curb length= 16m

1.2 Departure Concourse

A= 0.75 a (1+0) sq.m

Where, A = Area required (sq.m) a = No. of peak hour passengers : 310 pax 0 = No. of visitors per passenger : 4 assumed

Note : 1. 20-minute average occupancy time assumed 2. Space required per person : 1.5 sq.m assumed

 $A = 0.75 \times 310 (1+4) = 1,165 \text{ sq.m}$ A = 1.165 sq.m Existing departure concourse = 180 sq.m

1.3 Security check before Check-in Lobby

N= a/300 Unit

Where, N = X-Ray unit required (unit) a = No. of peak hour passengers: 310 pax

Note : 1. Capacity of X-Ray unit: 600 pcs./hour assumed 2. No. of baggage items per passenger: 2 pcs.assumed

N=310/300 = 1 unit N=1 unitexisting unit= none

1.4 <u>Check-in Counter</u>

N = at/60 counters + (10%)

Where, N = Check-in counters required (counters) a = No. of peak hour passengers: 310 pax t = Average processing time per passenger : 1.5 minutes

 $N = \frac{310 \text{ x } 15/60}{9 \text{ counters}} = 7.75 + (0.78) = 8.5 = 9$ N = <u>9 counters</u> Existing counter = <u>7 counters</u> 1.5 <u>Queueing Area- Check-in</u>

A = 0.25 a sq.m + (10%)

Where, A = Area required (sq.m)a = No. of peak hour passengers: 310 pax

Note : 1. Space required per passenger: 1.5 sq.m assumed

 $\begin{array}{l} A = 0.25 \text{ x } 310 = 77.5 + 7.8 = 85.3 = 85 \\ A = \underline{85 \text{ sg.m}} & \text{Existing queueing area} = \underline{80 \text{ sg.m}} \end{array}$

1.6 Security Check before Pre-Departure Hall

The result is the same as No. 1.3

N=<u>1 unit</u> Existing unit = 1 unit

1.7 <u>Pre- Departure Hall</u>

i

A= C (ui + vk/30) sq.m + (10%)

Where, A = Area required (sq.m)
 C = No. of peak hour passengers: 310 pax
 U = Average occupancy time per long-haul passenger: 50 minutes assumed
 V = Average occupany time per short-haul passenger: 30 minutes assumed

= Proportion of long-haul passenger: 0.5 assumed

Note : Space required per passenger : 2.0 sq.m assumed

 $A= 310 (50 \times 0.5 + 30 \times 0.5/30) = 413 + 4 = 455$ A= 455 sq.m Existing pre-departure hall = 705 sq.m

1.8 Baggage claim Area (excluding claim devices)

A = ews/60 sq.m + (10%)

s

Where, A = Area required (sq.m)

e = No. of peak hour passengers : 310 pax

w = Average occupancy time per passenger: 30 minutes assumed

= Space required per passenger : 1.8 sq.m assumed

 $A = \frac{310 \text{ x } 30 \text{ x } 1.8}{60} = 279 + 28 = 307 = 310$ A= <u>310 sq.m</u> Existing baggage claim area= <u>240 sq.m</u>

1.9 Number of Baggage Claim Devices

Wide-body aircraft (Required claim length: 50-60m)

N = eq/425

Narrow- body aircraft (Required claim length: 30-40m)

N = er/300

Where,	N e		Claim devices required No. of peak hour passengers: 310 pax
	q r	=	Proportion of passengers arriving by wide-body aircraft: 0.65 Proportion of passengers arriving by narrow-body aircraft: 0.35
Note :	1	. A	verage claim device occupancy time per wide and narrow-body aircraft: 5 minutes and 20 minutes assumed respectively.

Wide-body aircraft

 $N = 310 \times 0.65/425 = 0.47 = 1$

N = 1 device

Existing baggage device = none

Narrow- body aircraft

 $N = 310 \times 0.35/300 = 0.36$

N = 0 device

Existing baggage device = none

1.10 Arrivals Concourse

A= 0.375 (d+2do) sq.m + (10%)

Where, A Area required (sq.m) =

No. of peak hour passengers= 310 pax d = 0

No. of visitors per passengers : 4 assumed =

- 1 Average occupancy time per passenger:15 minutes assumed Note :
 - 2. Average occupancy time per visitor : 30 minutes assumed
 - 3. Space required per person: 1:5 sq.m assumed

 $A = 0.375 \times (310 + 2 \times 310 \times 4) = 1,046 + 104 = 1,150$ A = 1,150 sq.mExisting arrival concourse=<u>None</u>

1.11 Arrivals Curb

> The result is the same as No.1.1 L = 23mExisting curb length= 10m

2. International Case

Although there are temporary components installed or arranged in the arrival hall of the existing passenger terminal building the major components required for the present demands (peak hour passenger= 30 pax) are estimates for the evaluation.

2.1 Departure Curb

L= 0.095 ap meters + (10%)

Where, L = Curb length required (m)a = No. of peak hour passengers: 30 pax p = Proportion of passenger using car/taxi: 0.7 L= 0.095 x 30 x 0.7 = 1.9m + 0.2 = 2.1 = 2 L= 2 m Existing curb length= None

2.2 Departure Concourse

A = 0.75 a(1 + 0) sq.m

Where, A = Area required (sq.m) a = No. of peak hour pax: 30 pax 0 = No. of visitors per passenger: 4 assumed

Note: 1. 20-minute average occupancy time assumed 2. Space required per person: 1.5 sq.m assumed

 $A=0.75 \times 30 (1 + 4) = 112$ $A=\underline{112 \text{ sq.m}}$ Existing departure concourse= <u>none</u>

2.3 <u>Security check before Check-in Lobby</u>

N= a/300 unit

Where, N = X-Ray unit required (unit) a = No. of peak hour passenger= 30 pax
Note : 1. Capacity of X-Ray unit: 600 pcs/hour assumed 2. No. of baggage items per passenger: 2 pcs.assumed

 $N= \frac{30}{300} = 0.1 = \underline{1 \text{ unit}}$ N= 1 unit Existing unit = <u>None</u>

2.4 <u>Customs Inspection - Departure</u>

N = at/60 position

Where,	Ν	==	No. of customs positions required
	а	= '	No. of peak hour pax: 30 pax
	ŧ	=	Average processing time per passenger : 0.75 minutes
· .			(45 seconds)

 $N = 30 \times 0.75/60 = 0.37 = 1$

N = 1 position

Existing Customs = 1 position

2.5 Check-in Counter

N = at/60 counter: + (10%)

Where, N = Check-in counters required (counter) a = No. of peak hour passenger: 30 pax t = Average processing time per passenger : 2.50 minutes (2 minutes 30 seconds)

N = 30 X 2.5/60 = 1.25 + 0.125 = 1.37 = 2N = <u>2 counters</u> Existing counter = <u>1 counter</u>

2.6 Queueing Area- Check-in

A = 0.25 a sq.m + (10%)

Where, A = Area required (sq.m)a = No. of peak hour passengers: 30 pax

Note : 1. Space required per passenger: 1.5 sq.m assumed

 $A = 0.25 \times 30 = 7.5 + 0.75 = 8.25 = 9$ A = 9 sq.m Existing queueing area = 4 sq.m

2.7 <u>Terminal Fee Counter</u>

N = at/60 counters + (10%)

Where, N = Terminal fee counter required a = No. of peak hour passengers: 30 pax t = Average processing time per passenger: 0.42 minutes (25 seconds) N= 30 x 0.42/60 = 0.21 + 0.021 = 0.23 = 1 N= 1 counter Existing counter = 1 counter

2.8 Passport Control - Departure

N = a ts/60 positions + (10%)

Where, N = Control position required (positions) a = No. of peak hour passengers: 30 pax t = Average processing time per passenger : 1 minute

 $N= 30 \times 1/60 = 0.6 + 0.06 = 0.66 = 1.0$ N= <u>1 position</u> Existing control position = <u>1 position</u>

2.9 Security check before Pre-Departure Hall

The result is the same as No. 2.3

N= <u>1 unit</u>

Existing queueing area = <u>none</u>

2.10 Pre-Departure Hall

A = C t/30 sq.m + (10%)

Where, A = Area required (sq.m)C = No. of peak hour passe

C = No. of peak hour passengers: 30 paxt = Average occupancy time per passance

= Average occupancy time per passenger : 50 minutes assumed

Note : 1. Space required per passenger: 2.0 sq.m assumed

 $A= 30 \times 50/30 = 50 + 5 = 55$ A= 55 sq.mExisting pre-departure hall= none

2.11 Passport Control-Arrival

N = dt/60 positions + (10%)

Where, N = Control positions required d = No. of peak hour passengers: 30 pax t = Average processing time per passenger: 0.75 minutes (45 seconds)

 $N= 30 \times 0.75/60 = 0.375 + 0.04 = 0.41 = 1$ N= <u>1 position</u> Existing control position= <u>1</u> position

2.12 <u>Queueing Area = Passport Control - Arrival</u>

The result is the same as No. 2.6

A = 9 sq.m

Existing queueing area= 4 sq.m

2.13 Baggage Claim Area (Excluding claim devices)

A = ews/60 sq.m + (10%)

w

s

Where, A = Area required (sq.m)

- e = No. of peak hour passengers: 30 pax
 - = Average occupancy time per passenger : 30 minutes assumed
 - = Space required per passenger: 1.8 sq. m assumed

 $\begin{array}{l} A=30 \ x \ 30 \ x \ 1.8/60 = 27 + 2.7 = 29.7 = \ 30 \\ A=\underline{30 \ sq. \ m} \\ \end{array}$ Existing baggage claim area= <u>none</u>

2.14 Number of Baggage Claim Devices

Narrow-body aircraft (Required claim length: 30-40m) N= er/300

Where, N = claim devices required

e = No. of peak hour passengers: 30 pax

r = Proportion of passengers arriving by narrow-body aircraft: 1.0

Note : 1. Average claim device occupancy time per narrow-body aircraft: 20minutes assumed

 $N = 30 \times 1/300 = 0.1 = 1.0$ N = 1 unit Existing baggage device = None

2.15 Customs Inspection-Arrival

N = eft/60 position + (10%)

Where, N = No. of customs positions required No. of peak hour passengers: 30 pax e f Proportion of passengers to be customs inspected : 0.80 = t ΣΞ Average processing time per passenger: 2.0 minutes $N = 30 \times 0.8 \times 2.0/60 = 0.80 + 0.08 = 0.88 = 1.0$

N = 1 position Existing customs= 1 position

2.16 **Queveing Area- Arrival Customs**

A = 0.25 ef (sq.m) + (10%)

Where, A = Area required (sq.m) No. of peak hour passengers: 30 pax е = f = Proportion of passengers to be inspected: 0.80

Note : 1. Space required per passengers: 1.5 sq.m assumed

 $A = 0.25 \times 30 \times 0.8 = 6 + 0.6 = 6.6 = 7.0$ A=7 sq.mExisting queveing area= none

2.17Arrivals Concourse

A = 0.375 (d + 2 d0) sq.m + (10%)

Where, A = Area required (sq.m)

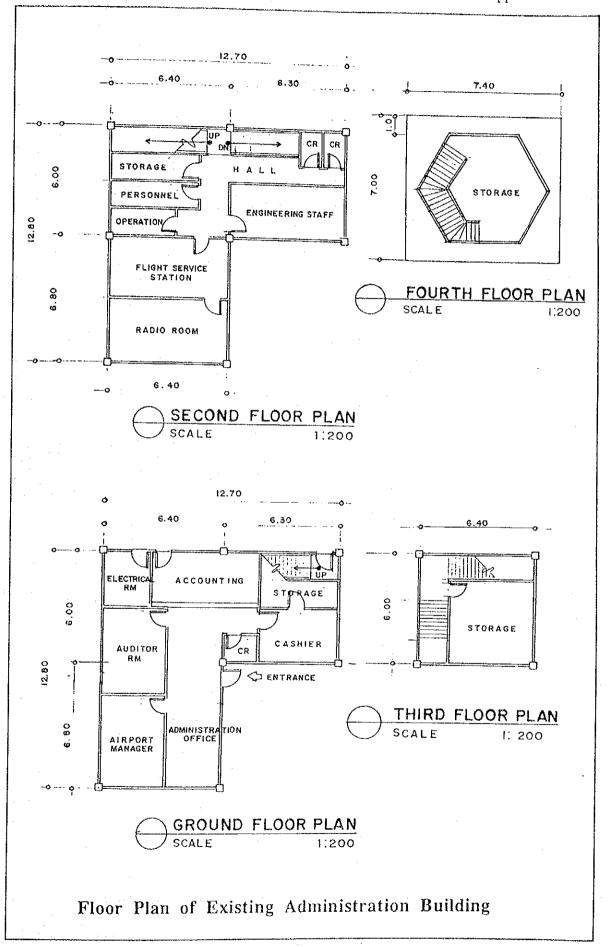
d No. of peak hour passengers: 30 pax -----0

= No. of visitors per passenger: 4 assumed

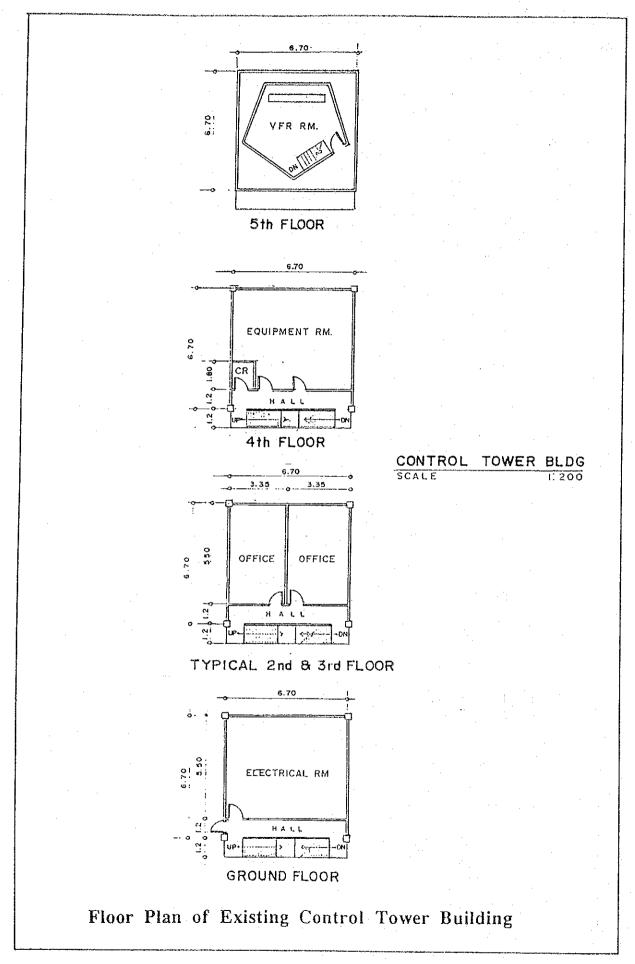
Note : 1. Average occupancy time per passenger : 15 minutes assumed 2. Average occupancy time per visitor: 30 minutes assumed

A = 0.375 x (30 + 2 x 30 x 4) = 101 + 10 = 111A = 111 sq.mExisting arrival concourse= none

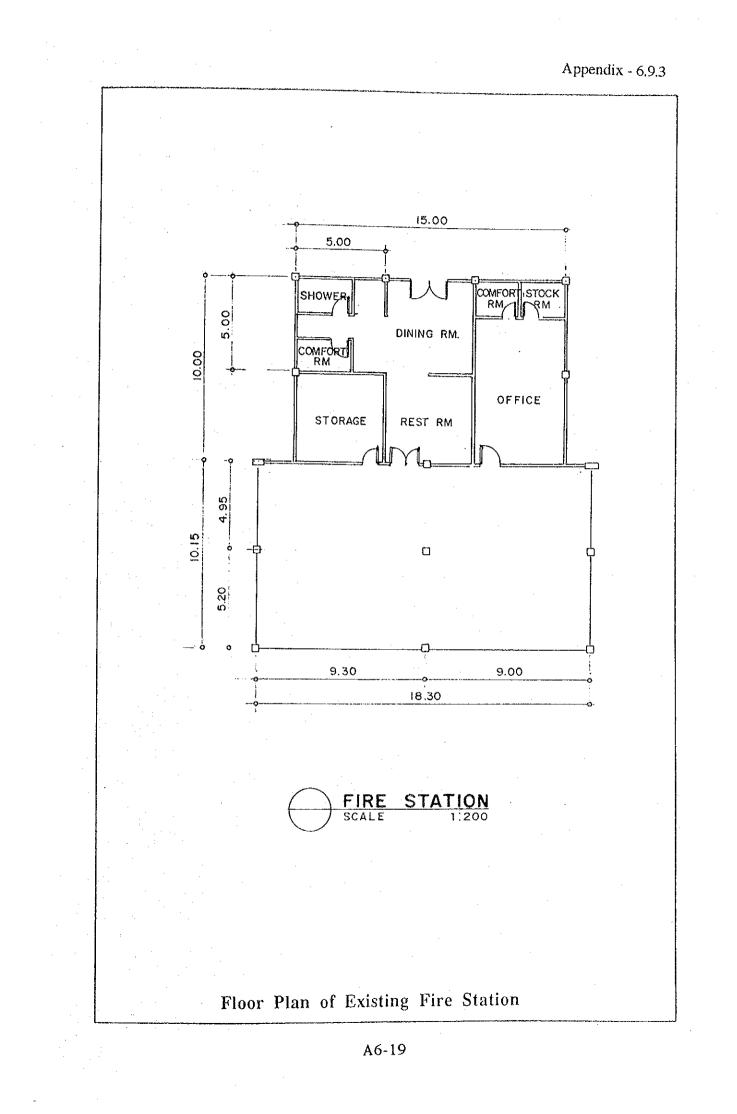
2.18Arrivals Curb


The result is the same as No. 2.1

L=2m


Existing curb length= none

A6 - 16


Appendix - 6.9.1

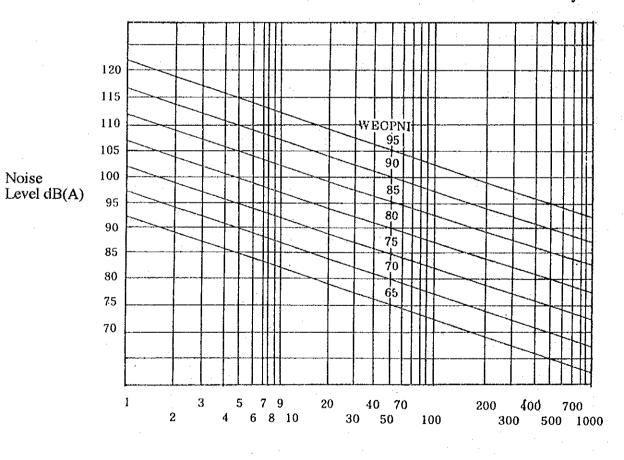
Appendix - 6.9.2

A6-18

Definition of WECPNL

WECPNL (Weighted Equivalent Continuous Perceived Noise Level) is an index to evaluate an aircraft noise and has been used as an environmental criteria.

The WECPNL is total energy of perceived noise in a day being indicated in logarithm and is corrected in terms of difference in sense of perceiving noise depending on the time zone.


The WECPNL is calculated by the following formula.

WECPNL = $\overline{dB(A)}$ + 10 log N - 27 N = N₁ + 3N₂ + 10N₃

dB(A)	:	Average of peak levels of total noise perceived in a day
Nı	:	Daily aircraft movements in the daytime (7:00~19:00)
N2	:	Daily aircraft movements in the evening (19:00-22:00)
N3	:	Daily aircraft movements in the night (22:00~7:00)

The graph to estimate WECPNL based on the noise level and aircraft movement is shown below:

Note : N is only Ni

Aircraft Movement

Conditions for Preparation of Aircraft Noise Contours

(1) Number of Cases

The aircraft noise contours will be calculated for the following three cases.

Casel	Target Year 1992 (Present condition)
Case2	Target Year 2000 (Medium-term)
Case3	Target Year 2010 (Long-term)

(2) Dimension of the Runway

Case1 and Case2	:2,500m x 45m
Case3	:3,000m x 45m

(3) Daily Aircraft Movements

See Table A6.18.1

(4) Procedure of Approach and Departure

Straight in approach and straight climb procedures for both runways.

(5) Ratio of Departure to Arrival

Arrival : Departure = 1:1

(6) Approach Angle

Runway 05 : 3° Runway 23 : 3°

(7) Ratio of runway Use

Runway 05 : 60% Runway 23 : 40%

Table A6.18.1 Daily Aircraft Movements in Each Case

Case1 (1992)

Aircraft Type	. DC10	A300	B737	F50,HS748	Total
		·		(YS11)	
Annual Aircraft Movements	0	1,460	1,460	834	3,754
Daily Aircraft Movements	0.00	4.00	4.00	2.28	10.28
7:00-19:00	0.00	3.00	2.00	2.28	
19:00-22:00	0.00	0.00	0.00	0.00	
22:00-7:00	0.00	1.00	2.00	0.00	

Case2 (2000)

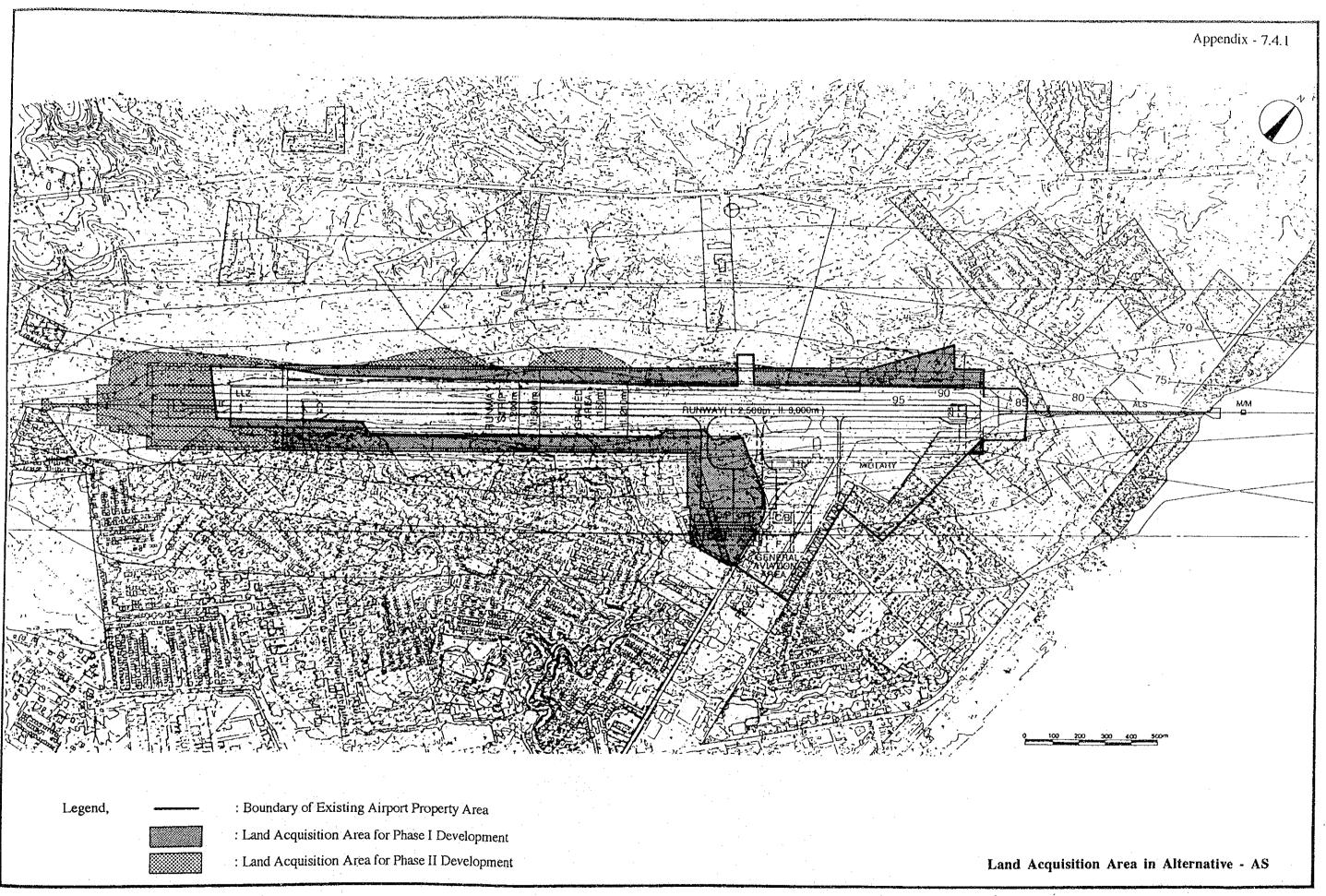
Aircraft Type	DC10	A300	B737	F50,HS748	Total
				(YS11)	
Annual Aircraft Movements	12	2,936	3,043	1,092	7,083
Daily Aircraft Movements	0.03	8.04	8.34	2.99	19.41
7:00-19:00	0.03	6.44	6.67	2.39	
19:00-22:00	0.00	0.80	0.83	0.30	
22:00-7:00	0.00	0.80	0.83	0.30	

Case3 (2010)

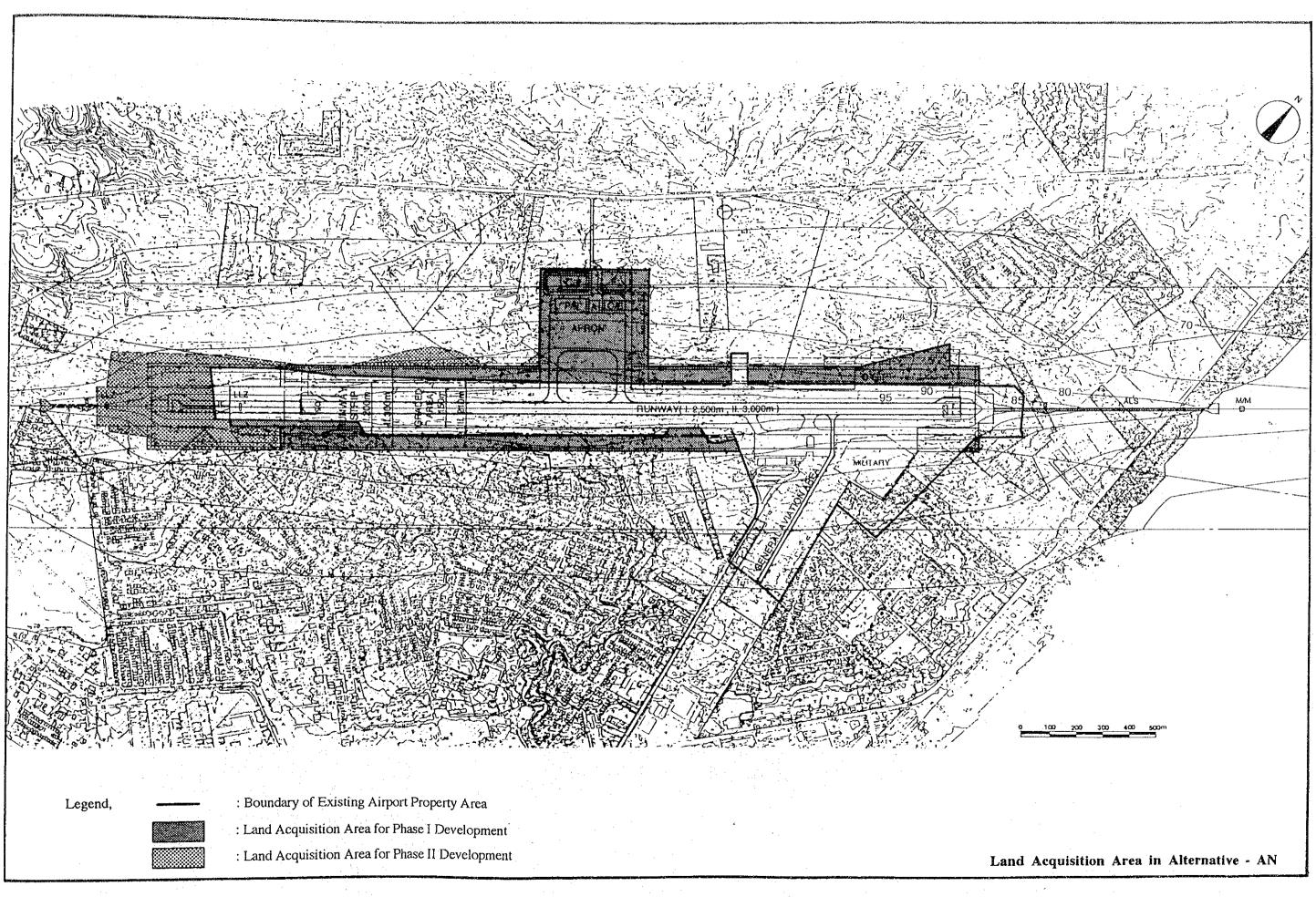
Aircrait Type	DC10	A300	B737	F50,HS748	Total
			f	(YS11)	1.1
Annual Aircraft Movements	210	6,634	1,432	1,664	9,940
Daily Aircraft Movements	0.58	18.18	3.92	4.56	27.23
7:00-19:00	0.46	14.54	3.14	3.65	
19:00-22:00	0.06	1.82	0.39	0.46	
22:00-7:00	0.06	1.82	0.39	0.46	

Impact of Aircraft Noise

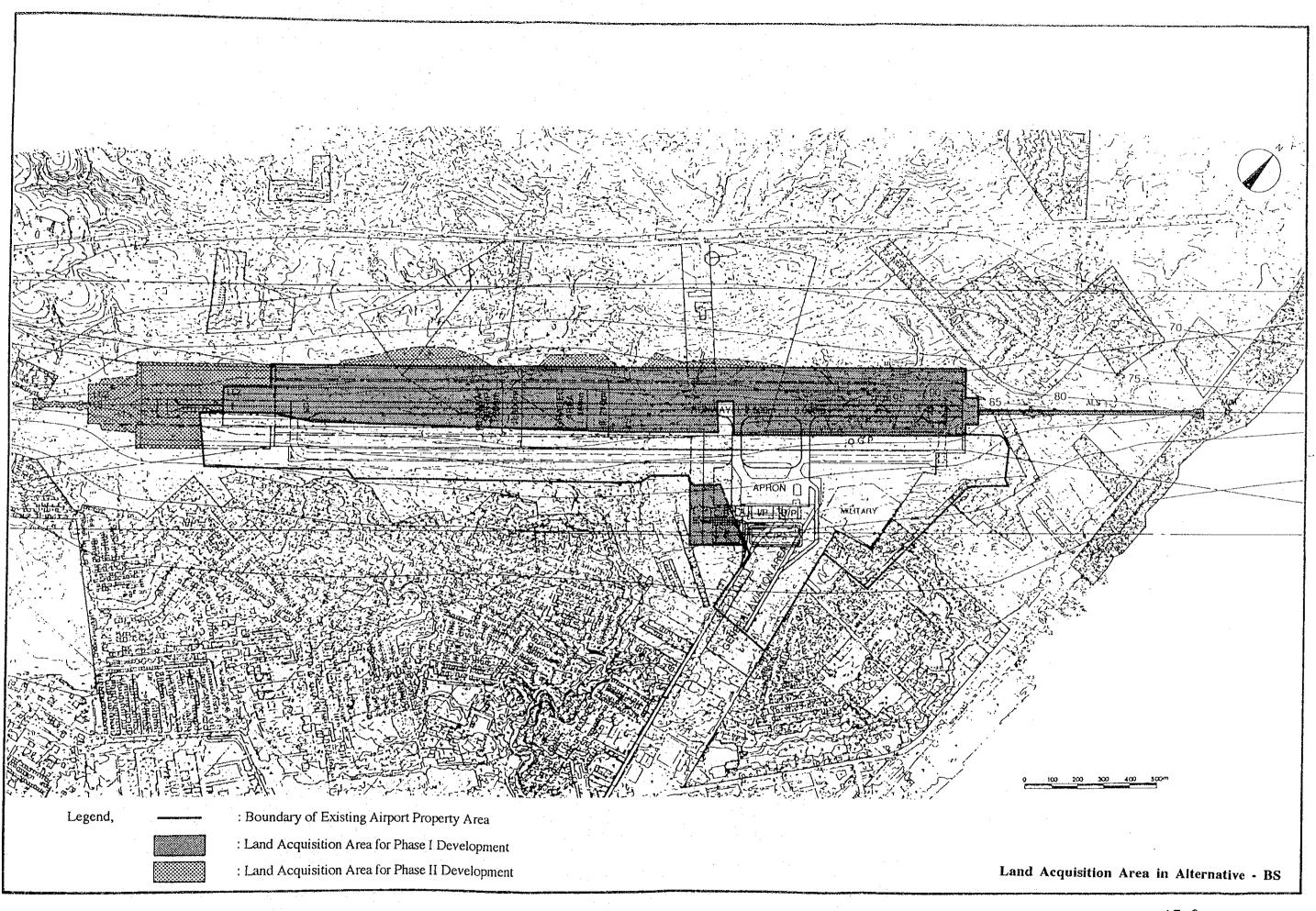
·		In 1992			
WECPNL	Hospital	School	Church	House	Total
More than					
95	0	o	0	0	0
95 - 90					
	0	0	2	23	25
90 - 85		h			
	0	. 1	1	267	269
85 - 80					
	0	0	5	763	768
80 - 75					
	0	2	6	2,116	2,124
75 - 70					
	0	4	14	4,032	4,050


In 2000

ويجرب مشارق المحمد بالتركي والمحمد المترك		11/2000		1	1. A 1. A 1. A 1. A 1. A 1. A 1. A 1. A
WECPNL	Hospital	School	Church	House	Total
More than					
95	0	о	0	o	0
95 - 90					
	0	0	1	14	15
90 - 85	· [
	0	0	2	211	213
85 - 80					
	0	0	3	667	670
80 - 75					
	0	2	7	1,938	1,947
75 - 70					
	0	4	6	3,937	3,947


ln 2010

		11,2010			and the second second second second second second second second second second second second second second second
WECPNL	Hospital	School	Church	House	Total
More than			1		
95	0	Ó	0	0	0
95 - 90		: . : .			
	0	0	· 0	34	34
90 - 85				1	
	0	1	3.	232	236
85 - 80					
	0	2	3	632	637
80 - 75					
	0	0	5	1,685	1,690
75 - 70					
	1	5	11	4,066	4,083


APPENDIX TO CHAPTER 7

. '

A7 - 2

A7 - 3