2.3.3 Diseño preliminar

Se hicieron los diseños preliminares de las estructuras del trasvase tales como la presa Chirijos, el canal abierto, túnel y la estación de bombeo (ver Fig. 7 a Fig. 23).

(1) Presa Chirijos

1) Obras de derivación de agua

Un (1) tunel de desvio y dos (2) ataguias se consideraron en la parte aguas arriba y abajo del sitio de presa con el objeto de desviar el rio durante el periodo de construcción de las obras de la presa principal. El tunel de desviación fue localizado sobre el estribo derecho, tomando en cuenta la morfología del rio y la condición topográfica.

Se consideró una creciente probable de una (1) en 25 años con un caudal pico de 190 m³/s como caudal de diseño para el esquema de desvio, y el nivel de las obras de salida se lo ubicó a la cota 70 msnm basado en la capacidad aguas abajo de la sección del rio. Al diseñar el túnel de desvio, la velocidad máxima permisible se ha restringido a menos de 15 m/s para los túneles con recubrimiento de concreto.

El diâmetro del tunel de desvio fue determinado en consideración al nivel de agua del embalse en la parte aguas arriba y a la velocidad del flujo en el tunel. El nivel de agua del embalse fue calculado por medio de la siguiente ecuación:

R.W.L. = 0.W.L. + he he = $(1,0 + fe + fsr) V^2/(2 g)$ donde,

R.W.L: Nivel de agua del embalse (msnm)

O.W.L: Nivel de agua a la salida (asumido a 70,0 msnm)

he : Pérdida de carga en el tunel (m)

fe : Coeficiente de pérdida a la entrada (= 0,2)

fsr : Coeficiente de pérdida por fricción (= f L/D = 124,5 n² $L/D^4/3$)

donde,

n : Coeficiente de Manning (= 0,018)

L : Longitud del tunel (m)
D : Diametro del tunel (m)

Las dimensiones determinadas para el esquema de desvio del rio son las siguientes:

- Diametro del tunel de desvio : D = 5,90 m (V max. = 6,9 m/s)

- Cota de la atagula : 78,00 msnm (borde libre = 1,0 m)

- 2) Presa principal
- (a) Eje de la presa

Se estudió la alineación del eje de la presa Chirijos propuesta, y se seleccionó en base a los estudios topográficos y geológicos, tal como se lo presenta en el Anexo-H.

(b) Tipo de presa

La construcción de una presa de relleno se ha considerado factible, desde el punto de vista geológico, para la presa Chirijos. De entre algunos tipos de relleno, un relleno de tierra se consideró como económicamente superior a un tipo de relleno de roca, debido a la disponibilidad del material en las cercanias del sitio de la presa, mientras que los materiales de roca no se hallan disponibles en la vecindad del sitio de presa. Solamente se encuentran disponibles los sitios de cantera de rocas, cerca de la ciudad de Portoviejo, localizada a 40 km de distancia del sitio de presa.

Las presas de gravedad y de arco, en concreto, fueron descartadas desde el punto de vista geológico, ambas márgenes y la propia fundación se componen de limolitas del terciario, cuyo peso unitario es de alrededor de 2,0 ton/m³, y la resistencia a la compresión no confinada fue asumida en unos 50 kgf/cm², basado en los resultados geológicos realizados previamente en el área del proyecto. Estos valores de las propiedades físicomecánicas, que resultaron inferiores a las del concreto, hicieron descartar la posibilidad de escoger presas de gravedad o de arco en concreto.

(c) Borde libre y altura de coronación

La altura de coronación de la presa se determinó proporcionando un borde adecuado por encima del nivel máximo o del nivel de crecidas. El borde libre debe satisfacer los siguientes rquerimientos:

Hn = Hw + Hi + HeHf = Hw + Hi

donde, Hn: Borde libre por encima del nivel de agua máximo hasta el nivel de coronación (m)

Hf: Borde libre por encima del nivel de crecidas hasta el nivel de coronación (m)

Hw: Altura de la ola producida por el viento (estimada en 1m mediante el método combinado de S.M.B. y Saville)

Hi: Margen de seguridad para las presas de tierra (1 m)

He: Altura de la ola debido a un terremoto (= 1 m), pero se ha asumido que una crecida de diseño y un terremoto no ocurrirán al mismo tiempo.

(d) Tratamiento de la fundación

La fundación para las zonas de terraplén, que contienen materiales de baja propiedad con una profundidad de cerca de 15 m por debajo del lecho actual del rio, son excavadas hasta la linea de meteorización de la roca y reemplazadas por material apropiado, esto como resultado del análisis de estabilidad de la presa.

En la fundación de la zona del núcleo impermeable, un dentellón de 6 m de ancho y una profundidad de aproximadamente 10 m, fue diseñado hasta la linea de la roca dura. Esto ha probado ser econômicamente más factible que cualquier otro tipo de tratamiento de la fundación como podrla ser la carpeta y la pantalla continua del tipo "soletancy".

(e) Zonificación

La sección transversal de la presa se zonifica con cuatro (4) tipos diferentes de materiales de relleno. Las caracteristicas de cada zona se detallan a continuación:

Zona impermeable del núcleo

La zona impermeable del núcleo estaria compuesta de suelo arcilloso, siendo obtenida del área de préstamo localizada en la zona aguas arriba del sitio de presa. La zona del núcleo tiene un ancho de 5 m en la parte superior y una pendiente de 1:1 tanto aguas arriba como aguas abajo.

Zona de espaldones

La zona de los espaldones se ha dividido en dos (2) zonas, que son: la zona de material común y la zona de enrocamiento, desde el punto de vista de la estabilidad de la presa, de la economia y de la disponibilidad de los materiales de terraplenado. El material común es obtenido del área de préstamo aguas arriba del sitio de presa, mientras que el material de enrocamiento se lo obtiene solamente del área cercana a la ciudad de Portoviejo, lejos del sitio de presa. Esta zona de enrocamiento se la distribuye tanto en los taludes de aguas arriba y aguas

abajo con un espesor de 5 m para asegurar la estabilidad de los mismos y para prevenir la meteorización de la zona interna de material común.

Zona de filtro

Entre el núcleo y las zonas de material común, un dren inclinado se utiliza para regular la filtración de agua. El material de filtro es producido al triturar y procesar las rocas de cantera. El dren está diseñado con un espesor de 3 m en la parte superior y con una pendiente de 1:1 del lado aguas abajo.

Por debajo de la zona de material común de aguas abajo, se dispone de un dren horizontal debido a la baja permeabilidad de los materiales del terraplén y de la linea de filtración, a fin de asegurar la estabilidad del talud aguas abajo. Los materiales para el dren son los mismos que los de la zona de filtro. Los volúmenes de material para el terraplén basado en el diseño propuesto se resumen a continuación:

		<u> </u>	
	Zona	Volumen (m ³)	Materiales
(1)	Presa principal		
	- Núcleo	1.219.000	Suelo arcilloso
	- Dren vertical	27.000	Roca triturada y procesada
	- Dren horizontal	27.000	Roca triturada y procesada
•	- Material comun	1.600.000	Materiales arcillo-arenosos seleccionados
	- Enrocado	1.081.000	Roca de cantera
:	Subtotal	3.954.000	
2)	Atagula		
	- Nacleo	76.100	Suelo arcilloso
	- Comûn	108.000	Materiales arcillo-arenosos seleccionados
٠.	- Enrocado	136.000	Roca de cantera
	Subtotal	<u>320.100</u>	
ota	1	4.274.100	

(f) Analisis de estabilidad

La seguridad de la presa fue examinada en términos de la estabilidad de los taludes utilizando el método del circulo de deslizamiento y el método de la falla de la superficie del plano. Los valores de diseño utilizados para el análisis son los siguientes:

Valores	Unidad	Enrocado	Nacleo	Material común	Deposito fluvial	Roca meteorizada
Peso unitario,	ton/m ³	1,90	1,80	1,70	1,60	1,80
Peso unitario, saturado	ton/m ³	2,10	2,00	1,90	1,90	2,00
Angulo de (Ø) fricción interna	grado	40,00	31,00	32,00	20,00	25,00
Cohesion	ton/m ²	0,00	2,00	0,00	1,00	5,00

Método de la falla de la superficie del plano

Se calculó un factor de seguridad contra el deslizamiento superficial mediante la siguiente ecuación. Se adoptó un coeficiente sismico horizontal de 0,12 basado en la norma japonesa.

 $SF = (m - k \times g)/(1 + k \times g \times m) \times tan(\emptyset)$

donde,

SF: Factor de seguridad (> 1,2)

m : Pendiente del talud

k : Coeficiente sismico horizontal (= 0,12)

g: Densidad saturada/densidad sumergida para talud sumergido y 1,0 para el talud no sumergido

Ø : Angulo interno de fricción del enrocado

Método del circulo de deslizamiento

Fueron analizados los factores de seguridad contra deslizamiento a través del método de la prueba y error, de los taludes de aguas abajo y aguas arriba del cuerpo de la presa con un factor de seguridad minimo requerido de 1,2. Consecuentemente, las pendientes de aguas abajo y aguas arriba de la presa fueron determinados de 1:3,8 y de 1:3,3 respectivamente.

Casos	Coeficiente sismico	Condición estática		Condición sismica	
Casos	SISHICO	P.A.Arr.	P.A.Ab.	P.A.Arr.	P.A.Ab.
HWL	0,12	2,421	1,952	1,202	1,204
FWL	0,00	2,496	1,797	-	-
Descenso ràpido	0,06	1,630	1,782	1,212	1,387

Nota: P.A.Arr.: pendiente aguas arriba

P.A.Ab. : pendiente aguas abajo

HWL : nivel maximo del agua

FWL : nivel de crecida

3) Aliviadero

Para una presa de tierra es factible diseñar un aliviadero del tipo de vertedero de canal abierto o del tipo de túnel. Ya que el aliviadero tipo túnel presenta cierta desventaja, desde el punto de vista de la función hidráulica, en comparación con el vertedero de canal abierto, éste puede ser adoptado solamente cuando sea lo suficientemente económico que supere esta desventaja. El tipo de aliviadero escogido para la presa Chirijos es el de vertedero abierto debido a que es económicamente superior al del tipo túnel adicionalmente a su ventaja hidráulica.

El diseño del aliviadero, compuesto de: un vertedero de excesos, una rápida y un disipador de energia, fue concebido en base a condiciones hidráulicas y topográficas. Desde este punto de vista, el aliviadero tipo vertedero frontal recto no controlado con rápida fue planeado en la margen derecha de la presa Chirijos.

El aliviadero fue diseñado para descargar la creciente con probabilidad de ocurrencia de 1 en 10.000 años (el caudal pico de entrada al embalse es de 560 m³/s) y considerando el efecto de retardo del embalse, o 1,2 veces la creciente con probabilidad de ocurrencia de 1 en 200 años (360 m³/s) sin efecto de retardo (norma japonesa). Por el bien de una simple operación y mantenimiento, se determinó, a-priori, que sea un tipo de aliviadero sin compuerta, localizado sobre el estribo derecho debido a la condición topográfica. Este consiste de un vertedero sin compuerta, una rápida y un disidador de energía con un delantal horizontal.

El aliviadero sin compuerta fue diseñado con una longitud de 35 m para fàcilmente descargar el caudal pico de 1,2 veces la creciente probable 1 en 200 años, que es más critico que la creciente probable de 1 en 10.000 años con un efecto retardador de embalse. La rápida fue diseñada con una pendiente de 1:6,0 tomando en cuenta las condiciones topográficas y un ancho de 15 m surgido del análisis hidráulico del flujo no uniforme.

Para el diseño del disipador de energia se escogió una crecida probable de 1 en 100 años con una descarga pico de 275 m³/s. Desde el punto de vista hidráulico, se adoptó el tipo de pozo disipador, debido a que existen algunas casas aguas abajo del disipador de energia. Este consiste en delantal horizontal de 60 m de largo con muros de 10 m de altura.

Los diseños preliminares del plan para las obras de desvio, presa principal y aliviadero, y el perfil y sección transversal de la presa principal se presentan en la Fig. I.7.

(2) Canal abierto y sifôn

1) Trazado del canal abierto

El trazado del canal abierto fue realizado de acuerdo a las investigaciones de campo, mapas topográficos nuevos preparados en este estudio a escala 1:5.000, los mapas a escala 1:5.000 del proyecto de riego Portoviejo-Rio Chico (1972), y los mapas a escala 1:10.000 hechos por el proyecto de "Trasvase desde Daule-Peripa hacia La Esperanza y Poza Honda (1987)" y el "Proyecto Multipropósito Carrizal-Chone (1989)".

2) Tipo de canal abierto y Sifón

Los siguientes tipos de canal abierto y sifón fueron considerados tomando en cuenta las condiciones del lugar.

- a) Canal abierto con revestimiento de concreto y/o del tipo canalón
- b) Cajon (RC)
- c) Tuberia de acero (SP) y/o tuberia de concreto reforzado (RCP)

En la zona aluvial, los canales abiertos se construyen sobre la capa de suelo aluvial, la cual se presume consiste en arcilla limosa. Ya que la superficie es poco compacta, el asentamiento puede ocurrir en algunos sitios, por lo que se requerirá de compactación del suelo o reemplazo con mejor suelo, después de la excavación del canal.

En el lado montañoso del área coluvial, por otro lado, los canales abiertos se los construye sobre el suelo coluvial, sobre el suelo descompuesto o sobre la capa de roca meteorizada. El mayor problema que ocurre cuando se construye un canal abierto sobre suelo coluvial o descompuesto es la estabilidad de los taludes. En los lugares por donde el canal atraviesa pequeños rios, se deberían considerar obras de protección contra el

arrastre de desechos.

- (3) Tunel
- 1) Trazado del tunel

Los siguientes aspectos fueron considerados como criterios de diseño:

- (a) El alineamiento del túnel es recto tanto como sea posible en consideración de la geología, de las condiciones hidráulicas, del método de construcción y de la economía.
- (b) El radio minimo en las secciones curvas es el siguiente:

 $R \ge 10 D$

donde, R: Radio de la sección curva (m)

D: Diametro del tunel (m)

2) Tipo de tunel

Se ha planificado, básicamente, un tipo de túnel a flujo libre, mientras que el tipo de túnel a presión se considera solamente cuando las condiciones hidráulicas no permitan desarrollar del primer tipo de túnel. A manera de criterios de diseño se tomaron los siguientes aspectos:

- (a) El tipo de túnel es el siguiente:
 Tipo de flujo libre : Sección estándar de herradura
 Tipo de flujo a presión: Sección circular
- (b) El diàmetro minimo del tunel es el siguiente: $D \ge 2,5 \text{ m}$ donde D: Diàmetro del tunel (m)

- (c) El espesor del revestimiento de concreto, las cantida des de soporte de acero y pernos de anclaje son determinadas en base a los resultados de la investigación geológica.
- (d) La pendiente del túnel se determina tomando en cuenta el gradiente hidráulico, el método de construcción y la eficiencia económica.
- (4) Obras de toma de agua y estación de bombeo
- 1) Obras de toma de agua

El diseño de las obras de captación de agua para la estación de bombeo cerca del rio Daule fue realizado en base al diseño detallado llevado a cabo por el equipo consultor Brasilero en 1986. Topográficamente, la toma derivadora estuvo planeada en el sitio cercano de un estero, en donde, una agradación y degradación del lecho del rio, y un cambio del curso del mismo no significaran problemas en el futuro.

Al respecto de las obras de captación de la estación de bombeo Los Amarillos, los siguientes criterios de diseño se tomaron en cuenta para el sedimentador.

- (a) La capacidad de almacemiento del sedimentador es el correspondiente al volumen que genera el caudal de diseño de las obras de toma durante 10 a 20 minutos.
 - (b) La velocidad promedio en el sedimentador serà de 0,02 a 0,07 m/s.
 - (c) El nivel alto del agua en el sedimentador es menor que el nivel de agua en el canal.
 - (d) El borde libre del sedimentador serà de 1,0 m.
 - (e) La profundidad efectiva del agua en el sedimentador serà de 4,0 m y la profundidad del sedimento estarà a 1,0 m.

Las obras de toma para la estación de bombeo Severino y Altamira fueron diseñadas para estar equipadas con dos rejillas y compuertas.

2) Estación de bombeo

1. N. 24 1 27 1

Los siguientes aspectos se tomaron como consideraciones básicas:

- (a) El número apropiado y tipo de bomba se determinó por el caudal y altura de bombeo.
- (b) Se instalarà una (1) bomba de emergencia para facilitar la operación y mantenimiento.
- (c) La capacidad de cada bomba es igual para todas, (d) La fuente de energia para las bombas provendrá de la Central Daule-Peripa.

Una bomba se clasifica generalmente en tres (3) tipos dependiendo de las lineas de corriente que se forman en el interior del impelente estos son: i)del tipo voluta (centrifuga), ii)de flujo mixto y iii)de flujo axial. La bomba de flujo axial se utiliza generalmente en caso de que la altura de bombeo sea menor de 4 m, y por lo tanto no es factible para este proyecto.

Los restantes dos (2) tipos se clasifican nuevamente en bombas de eje vertical y de eje horizontal. En consideración al gran caudal y altura de bombeo en este proyecto, la bomba con eje horizontal se consideró como superior a las otras.

Las características generales de las bombas, preliminarmente determinadas, se resumen en la tabla I.8. Sin embargo, el número y tipos de bombas serán revisados en la siguiente etapa del proyecto, en base a los resultados de los estudios de los patrones de los caudales de toma de agua.

2.3.4 Cantidad de obras estimadas

Las características del proyecto de los esquemas de trasvase se resumen a continuación. La cantidad de obra de las estructuras de los esquemas de trasvases antes mencionados, fue estimada basándose en los diseños preliminares.

- (1) Esquema de trasvase Daule-Peripa presa La Esperanza
 - Tunel L = 8,3 km $D = 3,7 \text{ m} (Q = 18 \text{ m}^3/\text{s})$ $D = 2,7 \text{ m} (Q = 9 \text{ m}^3/\text{s})$
- (2) Esquema de trasvase rio Daule presa Poza Honda
 - Tuberia de presión L = 13,3 km $D = 1.500 \text{ mm } (Q = 9 \text{ m}^3/\text{s})$ $D = 1.600 \text{ mm } (Q = 10 \text{ m}^3/\text{s})$ Tunel L = 11,2 km $D = 2,7 \text{ m } (Q = 9 \text{ m}^3/\text{s})$ $D = 2,9 \text{ m } (Q = 10 \text{ m}^3/\text{s})$
- (3) Esquema de trasvase presa La Esperanza (Severino) presa Poza Honda
 - Tuberia de presión L = 250 m

 D = 1.800 mm, 2 lineas (Q = 9 m³/s)

 D = 1.900 mm, 2 lineas (Q = 10 m³/s)

 Canal abierto L = 6,9 km

 Trapezoidal, B=h=1,7 m (Q = 9 m³/s)

 Trapezoidal, B=h=1,8 m (Q = 10 m³/s)

 Sifón L = 640 m

 D = 2.600 mm (Q = 9 m³/s)

 D = 2.700 mm (Q = 10 m³/s)

 L = 10,7 km

 D = 2,7 m (Q = 9 m³/s)

 D = 2,9 m (Q = 10 m³/s)

(4) Esquema de trasvase La Esperanza (Altamira) - Rio Portoviejo

```
- Tuberia de presión L = 220 m

D = 2.000 mm, 2 lineas (Q = 12 m<sup>3</sup>/s)

- Canal abierto L = 6,52 km (Q = 12 m<sup>3</sup>/s)

L = 2,37 km (Q = 6 m<sup>3</sup>/s)

Trapezoidal, B=h=1,9 m (Q = 12 m<sup>3</sup>/s)

Trapezoidal, B=h=1,5 m (Q = 6 m<sup>3</sup>/s)

- Sifón L = 1.360 m, D=2.900 mm(Q = 12 m<sup>3</sup>/s)

L = 670 m, D=2.100 mm(Q = 6 m<sup>3</sup>/s)

L = 13 km, D=3,1 m (Q = 12 m<sup>3</sup>/s)

L = 8 km, D=2,5 m (Q = 6 m<sup>3</sup>/s)
```

- (5) Esquema de trasvase presa Poza Honda Rio Mancha Grande
 - Tunel L = 4,1 km $D = 2,5 \text{ m} (Q = 4 \text{ m}^3/\text{s})$
- (6) Esquema de trasvase La Esperanza Guarango
 - Canal abierto

 Rectangular, L=10,1 km (Q = 22 m³/s)

 Trapezoidal, L= 5,4 km (Q = 13 m³/s)

 Trapezoidal, L= 1,0 km (Q = 12,5 m³/s)

 Trapezoidal, L= 4,4 km (Q = 11 m³/s)

 Trapezoidal, L= 1,0 km (Q = 9,5 m³/s)

 Trapezoidal, L= 1,0 km (Q = 8,8 m³/s)

 Trapezoidal, L= 1,8 km (Q = 5,5 m³/s)

 Trapezoidal, L= 1,8 km (Q = 5,3 m³/s)

 Trapezoidal, L= 1,6 km (Q = 6,8 m³/s)

 Trapezoidal, L= 1,0 km (Q = 6,3 m³/s)

 Trapezoidal, L= 1,0 km (Q = 5,8 m³/s)

 Trapezoidal, L= 0,5 km (Q = 5,5 m³/s)

 Trapezoidal, L= 1,0 km (Q = 5,3 m³/s)

 Trapezoidal, L= 1,0 km (Q = 5,3 m³/s)

 Trapezoidal, L= 1,0 km (Q = 5,3 m³/s)

```
L = 350 \text{ m}, D=2.100 \text{ mmx} 2 \text{ lineas } (Q = 13 \text{ m}^3/\text{s})
        - Sifon
                                          L = 900 \text{ m}, D=2.100 \text{ mmx} 2 \text{ lineas } (Q = 12.5 \text{ m}^3/\text{s})
                                          L = 550 \text{ m}, D=2.000 \text{ mm} (Q = 5,3 \text{ m}^3/\text{s})
                                          L = 500 \text{ m}, D=2.000 \text{ mm} (Q = 6.5 \text{ m}^3/\text{s})
                                          L = 540 \text{ m}, D=2.000 \text{ mm} (Q = 6.5 \text{ m}^3/\text{s})
                                          L = 430 \text{ m}, D=2.000 \text{ mm} (Q = 5.5 \text{ m}^3/\text{s})
                                          DI-2, Guarango (2 sitios)
        - Depósito regulador
        - Tuberla de presión
                                          L = 300 \text{ m}
                                          D = 1.400 \text{ mm}, 2 \text{ lineas } (Q = 5 \text{ m}^3/\text{s})
                                          L = 6.6 \text{ km}
        - Tunel
                                          D = 2.6 \text{ m} (Q = 5 \text{ m}^3/\text{s})
        Esquema de trasvase La Esperanza - Guarango - Rio Portoviejo
(7)
                                          Rectangular, L=10,1km (Q = 32 m^3/s)
        - Canal abierto
                                          Trapezoidal, L=5,4 km (Q = 23 \text{ m}^3/\text{s})
                                          Trapezoidal, L=1,0 km (Q = 22,5 \text{ m}^3/\text{s})
                                          Trapezoidal, L=4,4 km (Q = 21 m^3/s)
                                          Trapezoidal, L=1,0 km (Q = 19,5 \text{ m}^3/\text{s})
                                          Trapezoidal, L=4,6 km (Q = 18.8 \text{ m}^3/\text{s})
                                          Trapezoidal, L=1,8 km (Q = 15.5 \text{ m}^3/\text{s})
                                          Trapezoidal, L=6,0 km (Q = 15,3 \text{ m}^3/\text{s})
                                          Trapezoidal, L=1.6 km (Q = 16.8 \text{ m}^3/\text{s})
                                          Trapezoidal, L=1,0 km (Q = 16,3 m^3/s)
                                          Trapezoidal, L=1,0 km (Q = 15.8 \text{ m}^3/\text{s})
                                          Trapezoidal, L=0,5 km (Q = 15,5 \text{ m}^3/\text{s})
                                          Trapezoidal, L=1,0 km (Q = 15,3 m^3/s)
                                          Trapezoidal, L=1,0 km (Q = 15,0 m^3/s)
                                          Trapezoidal, L=2,1 km (Q = 9,9 \text{ m}^3/\text{s})
                                          Trapezoidal, L=5.7 km (Q = 5.6 m^3/s)
                                          Trapezoidal, L=7,6 km (Q = 5,2 \text{ m}^3/\text{s})
                                          Trapezoidal, L=7,0 km (Q = 3.3 \text{ m}^3/\text{s})
                                          L = 350 \text{ m}, D=2.900 \text{ mm } \times 2 \text{ lineas } (Q = 23 \text{ m}^3/\text{s})
        - Sifon
                                          L = 900 \text{ m}, D=2.900 \text{ mm} \times 2 \text{ lineas} (Q = 22,5 \text{ m}^3/\text{s})
                                          L = 550 \text{ m}, D=3.300 \text{ mm} (Q = 16.3 \text{ m}^3/\text{s})
                                          L = 500 \text{ m}, D=3.400 \text{ mm} (Q = 16.5 \text{ m}^3/\text{s})
```

 $L = 540 \text{ m}, D=2.900 \text{ mm} (Q = 16,0 \text{ m}^3/\text{s})$ $L = 430 \text{ m}, \quad D=3.300 \text{ mm} \quad (Q = 16.5 \text{ m}^3/\text{s})$ $L = 3.140 \text{ m}, D=2.900 \text{ mm} (Q = 9.9 \text{ m}^3/\text{s})$ $L = 600 \text{ m}, \quad D=2.000 \text{ mm} \quad (Q = 5,6 \text{ m}^3/\text{s})$ $L = 2.080 \text{ m}, D=2.000 \text{ mm} (Q = 5,2 \text{ m}^3/\text{s})$ B=2,5 m, H=2,0 mL = 330 m,- Conductos DI-2, Guarango (2 sitios) - Depósito regulador - Tuberla de presión L = 300 m $D = 2.100 \text{ mm}, 2 \text{ lineas } (Q = 15 \text{ m}^3/\text{s})$ L = 6.6 km- Tunel $D = 3,4 \text{ m} (Q = 15 \text{ m}^3/\text{s})$

(8) Presa Chirijos

Hidrologia

Cuenca aportante			80 km^2
Precipitación media anual			1.220 mm
Escorrentia media anual	41	MMC	(520 mm)
Coeficiente de escorrentia			0,43
Creciente probable (1/10.000)			$560 \text{ m}^3/\text{s}$

Embalse

Capacidad bruta de almacenamiento	46 MMC
Volumen muerto	10 MMC
Almacenamiento efectivo	36 MMC
Nivel de crecientes	101,0 msnm
Nivel normal máximo de agua	98,0 msnm
Nivel minimo de agua	78,0 msnm
Cota del lecho del rio	68,0 msnm
Area del embalse al nivel màximo	$3,8~\mathrm{km}^2$

Presa

Tipo	Tierra zonificada
Altura desde la fundación	60 m
Cota de coronación	103,0 msnm
Longitud de coronación	517 m

Aliviadero

Tipo, estructura de control Aliviadero sin compuerta Conducción de agua Rápida abierta Disipador de energía Pozo disipador de energía Ancho del aliviadero 35 m Cota del aliviadero 98 msnm Caudal pico de descarga 360 m³/s

(1,2 veces la creciente con 200 años de periodo de retorno)

Toma y salida de agua

Cota de toma de agua

Capacidad de salida de agua

78 msnm $2 \text{ m}^3/\text{s}$

- 3. DISEÑO BASICO EN LA FASE II DEL ESTUDIO
- 3.1 Revisión del Tipo y de la Ruta de Trasvase

3.1.1 Ruta de trasvase seleccionada

En la tapa previa, la Alternativa-5 fue seleccionada como el plan más prometedor. Posteriormente, la ruta del trasvase para la Alternativa-5 fue revisada, y la Alternativa-5a fue finalmente escogida como el plan más econômico. Las características generales de la Alternativa-5a son las siguientes:

- (1) Esquema de trasvase Daule-Peripa presa La Esperanza
 - Tunel (Q = $18 \text{ m}^3/\text{s}$)

L = 8,3 km

D = 3,7 m (sección estàndar de herradura (2R), tipo de flujo libre)

- (2) Esquema de trasvase presa La Esperanza (Severino) presa Poza Honda
 - Estación de bombeo

Caudal total : $16.0 \text{ m}^3/\text{s}$

Altura de bombeo (max) : 76,0 m

de bombas planificadas : 5

de bombas de emergencia: 1

Caudal por c/bomba : $192 \text{ m}^3/\text{min} (3, 2 \text{ m}^3/\text{s})$

Tipo de bomba : centrifuga de doble voluta

Longitud de tuberia : 250 m

de lineas : 2

Diametro de tuberia : 2.100 mm

- Tanque de carga

B=12 m

L=18 m

- Canal abierto (Q = $16.0 \text{ m}^3/\text{s}$) L= 5.4 km (I = 1/3.000) Trapezoidal, B = h = 2,2 m

```
- Sifon (Q = 16.0 \text{ m}^3/\text{s})
                                   (B=h=2,9 m, cajon de concreto)
  L1 = 62 \text{ m}, \text{ hp} = 13 \text{ m}
  L2 = 225 \text{ m}, \text{ hp} = 38 \text{ m}
                                   (D= 3.200 mm de tuberia de concreto)
                                   (D= 3.200 mm de tubería de concreto)
  L3 = 325 \text{ m}, \text{ hp} = 47 \text{ m}
                                   (B=H=2,9 m, cajón de concreto)
  L4 = 55 \text{ m}, \text{ hp} = 7 \text{ m}
  L5 = 50 \text{ m}, \text{ hp} = 10 \text{ m}
                                                                               )
  L6 = 189 \text{ m}, \text{ hp} = 20 \text{ m}
- Tunel (Q = 16.0 \text{ m}^3/\text{s})
  L = 10.7 \text{ km} (1/1.500)
  D = 3,5 m (Sección de herradura estándar (2R), tipo de
                   flujo libre)
```

(3) Esquema de trasvase Poza Honda - Mancha Grande

```
- Tunel (Q= 4,0 m<sup>3</sup>/s)

L = 3,9 km

D = 2,5 m (Sección de herradura estándar (2R), tipo de flujo libre)
```

Basado en los resultados de la investigación de campo y de los ensayos geológicos, se procedió a revisar la localización de la estación de bombeo Severino, tanque de carga, y las rutas del canal abierto, sifones y de tres (3) túneles.

3.1.2 Pendientes econòmicas del tunel y del canal abierto

Se estudiaron las pendientes econômicas del túnel y del canal abierto para el esquema de trasvase "La Esperanza (Severino)-presa Poza Honda. Por medio del estudio comparativo de costos, se juzgaron como las opciones más econômicas, las pendientes de 1/1.500 para el túnel y 1/3.000 para el canal abierto (ver Fig. I.24). Por lo tanto, la pendiente de 1/1.500 fue adoptada como la pendiente más econômica para los otros

esquemas de trasvase, esto es: "Daule-Peripa - La Esperanza" y "Poza Honda - Rio Mancha Grande".

3.2 Diseño Hidráulico

3.2.1 Caracteristicas básicas para el diseño hidráulico

(1) Caudal de diseño y pendiente

En la primera parte del estudio de la Fase II, se logrò realizar un anàlisis más detallado del balance hidráulico y se determinaron los siguientes caudales para todos los esquemas de trasvase:

a) Esquema de trasvase presa La Esperanza (Severino) - Poza Honda

 $16 \text{ m}^3/\text{s}$

b) Esquema de trasvase Poza Honda - Rio Mancha Grande

 $4 \text{ m}^3/\text{s}$

c) Esquema de trasvase Daule-Peripa -La Esperanza

 $18 \text{ m}^3/\text{s}$

Las pendientes de diseño del canal abierto y del túnel, que fueron determinadas como las más factibles desde el punto de vista econômico, fueron:

- Canal abierto

I = 1/3.000

- Tunel

I = 1/1.500

(2) Formula del flujo

Se empleò la fòrmula de Manning para el càlculo hidràulico del flujo de los diferentes esquemas de trasvase.

$$Q = AV = A - \frac{1}{n} R^{2/3} I^{1/2}$$

donde, Q = Caudal de diseño (m³/s)

A = Area de flujo (m²)

V = Velocidad media de flujo (m/s)

h = Coeficiente de rugosidad

Concreto: 0,015, acero: 0,012

R = Radio hidraulico (m)

I = Gradiente hidraulico

(3) Velocidades permisibles del flujo

Velocidad minima permisible

La velocidad minima permisible se la determina generalmente para impedir el crecimiento de maleza acuatica y acumulación de sedimentos.

- Canal abierto \dots 0,5 0,9 m/s
- Sifon más de 1,5 veces la velocidad en el canal abierto
- Tunel mas de 1,3 veces la velocidad en el canal abierto

Velocidad maxima permisible

La velocidad màxima permisible se la determina experime \underline{n} talmente dependiendo de los diferentes tipos de materiales usados para el esquema de trasvase.

- Concreto con espesor (aproximadamente 10 cm)1,5 m/s
- Concreto con espesor (aprox. 18 cm)3,0 m/s

3.2.2 Sección transversal hidráulica

(1) Tunel

La sección transversal estándar del tipo de herradura (2R) se adopta normalmente para el tipo de flujo libre. El radio del túnel puede ser calculado mediante la siguiente fórmula, la cual

es una transformación de la fórmula de Manning.

$$r = (\frac{Qn}{1^{1/2} ab^{2/3}})^{3/8}$$

donde, r = radio del tunel (m)

a = coeficiente para el cálculo del área transversal de flujo

b = coeficiente para el cálculo del radio hidráulico

La profundidad de diseño del agua en el túnel se determina del siguiente modo:

h = 0.8 D

donde, h = profundidad de diseño del agua (m)

D = diametro del tunel (m)

El diametro minimo del tunel será de 2,5 m, en consideración de la construcción y el mantenimiento.

(2) Canal abierto

Se adoptó un canal abierto de sección trapezoidal con taludes de 1:1,5. La relación B/h escogida fue de 1,0 tomando en cuenta las apropiadas características hidráulicas y la condición topográfica en la zona de colinas. El borde libre fue de 0,3 m para un caudal de $16,0~\rm m^3/s$

(3) Transiciones

Los siguientes dos (2) tipos de transiciones fueron tomadas en cuenta para minimizar las pérdidas de carga hidráulicas debido a la variación de la sección del flujo entre el tanque de carga, canal abierto, sifón y túnel.

Transición abierta (TA)

La longitud requerida de transición abierta entre el canal

abierto y el sifón, y entre el canal abierto y el túnel puede ser calculada mediante la siguiente ecuación:

$$L = \frac{B - b}{2} \cot \Theta$$

donde, L: longitud requerida de TA (m)

B : ancho del espejo de agua en el canal abierto

b : ancho del espejo de agua en la transición cerrada (m)

θ: àngulo de contracción (generalmente menos de 10°)

En la etapa de diseño básico se calculó una longitud de 20 m para la transición abierta.

Transición cerrada (TC)

En el caso de la sección de herradura, se determina la longitud de la transición cerrada como igual al diámetro del túnel. En la etapa de diseño básico, se encontró un valor de 5 m de largo para la transición cerrada.

3.2.3 Calculos hidraulicos

Las siguientes pérdidas de carga deberán ser consideradas en un principio. Otras pérdidas de carga debido a la rejilla, pilares etc., se consideraron despreciables en este estudio.

- (1) Pérdida de carga debido a la fricción
- (2) Pérdida de carga debido a la entrada y salida del flujo
- (3) Pérdida de carga debido al cambio en la sección del canal

La pérdida de carga debido a la curvatura del canal se desprecia. El cambio del nivel del agua se expresa utilizando la fòrmula de Bernoulli del modo siguiente:

$$dh = Z_1 - Z_2 = Eh_1 + (\frac{v^2_2}{2g} - \frac{v^2_1}{2g})$$

donde, Eh: Pérdida de carga total (m)

V₁ : Velocidad en la sección de aguas arriba (m/s)

V2 : Velocidad en la sección de aguas abajo (m/s)

Z₁ : Altura del agua en la sección de aguas arriba (m)

Z₂ : Altura del agua en la sección de aguas abajo (m)

dh : Diferencia de alturas de agua entre las secciones

aguas arriba y aguas abajo (m)

Si las secciones del canal son casi uniformes o cambian gradual y continuamente en cierta distancia, la pérdida de carga puede ser considerada sólo como de fricción. En este caso el descenso de la superficie del agua debido a la fricción se considera igual a la inclinación del lecho del canal.

(1) Pérdida de carga debido a la fricción

El cálculo de la pérdida de carga debido a la fricción se realiza empleando la fórmula de Manning, en la siguiente forma:

$$h_{f} = \frac{Q^{2} L}{2} \frac{n_{1}^{2}}{R_{1}^{4/3} A_{1}^{2}} + \frac{n_{2}^{2}}{R_{2}^{4/3} A_{2}^{2}} = \frac{1}{2} \left(\frac{n_{1}^{2} V_{1}^{2}}{R_{1}^{4/3}} + \frac{n_{2}^{2} V_{2}^{2}}{R_{2}^{4/3}} \right) L$$

donde, Q

 $Q : Caudal (m^3/s)$

hf: Pérdida de carga debido a la fricción (m)

R: Radio hidraulico (m)

V : Velocidad media del flujo (m/s)

A : Sección transversal del flujo (m²)

L: Distancia calculada (m)

n : Coeficiente de rugosidad

Los subindices 1 y 2 indican las secciones de entrada y salida respectivamente.

- (2) Pérdida de carga debido a la entrada y salida del flujo y cambio del nivel del agua
 - (a) Entrada del flujo

La pérdida de carga y el cambio del nivel del agua debido a la entrada del flujo se calcula generalmente mediante la siguiente fórmula, en caso de tener una superficie hidrostática en la cual la velocidad del flujo de entrada no pueda despreciarse.

$$h_{en} = f_{e} \frac{v^2}{2g}$$

$$dh_{en} = h_{en} \frac{V^2}{2g}$$

donde, hen : Pérdida de carga debido a la entrada del flujo (m)

dhen: Cambio del nivel del agua (m)

V : Velocidad media después de la entrada del flujo (m/s)

g : Aceleración de la gravedad (m/s^2)

f_e : Coeficiente de pérdida de carga debido a la entrada

del flujo.

La pérdida de carga y el cambio del nivel del agua debido a la salida del flujo, se calculan generalmente del siguiente modo:

$$h_{ou} = f_o \frac{V_2}{2g}$$

$$dh_{ou} = h_{ou} \frac{V_2}{2g}$$

donde, hou : Pérdida de carga debido a la salida del flujo (m)

dhou: Cambio del nivel del agua (m)

V : Velocidad media antes de la salida del flujo (m/s)

g : Aceleración de la gravedad (m/s2)

f_e : Coeficiente de pérdida de carga debido a la salida del flujo, generalmente es igual a 1,0 considerando que toda la energia de velocidad en el canal se pierde.

La pérdida de carga y el cambio de los niveles del agua debido a la entrada y salida del flujo entre el canal abierto y el sifón, se consideró en un 10% de la pérdida por fricción en la etapa de diseño básico. La pérdida de carga y el cambio de los niveles de agua, para los otros casos, se consideró despreciable.

(3) Pérdida de carga y cambio del nivel del agua debido a la variación de la sección del canal

La pérdida de carga y el cambio del nivel del agua debido a la variación de la sección del canal, se calcula generalmente del siguiente modo:

(a) Contracción gradual

$$h_{gc} = h_c + h_f = h_{gc} (\frac{V_2^2}{2g} - \frac{V_1^2}{2g}) + I_m L$$

$$dh_{gc} = h_{gc} + (\frac{V_2^2}{2g} - \frac{V_1^2}{2g})$$

donde, hgc: Pérdida de carga debido a la contracción gradual (m)

h_C : Pérdida de carga debido a la contracción gradual de la

transición (m)

hf : Pérdida de carga debido a la fricción en la transición

(m)

dhgc: Cambio del nivel del agua (m)

V₁: Velocidad media antes de la contracción gradual (m/s)

V₂ : Velocidad media después de la contracción gradual

(m/s)

g : Aceleración de la gravedad (m/s²)

 $\mathbf{I_m}$: Gradiente hidráulico medio en la longitud \mathbf{L} de

transicion

$$I_{m} = \frac{I_{1} + I_{2}}{2}$$

donde, I1: Gradiente hidraulico antes de la transición

12 : Gradiente hidráulico después de la transición

L : Longitud de transición

foc : Coeficiente de pérdida de carga debido a la contrac

ción gradual.

$$L = \frac{B - b}{2} \cot \theta$$

donde, L : Longitud de la transición abierta (m)

B: Superficie de agua de un canal abierto (m)

b : Superficie de agua de una transición cerrada alcanta

rilla o canalón (m)

θ : Angulo de contracción (°) (generalmente menos de 10°)

La pérdida de carga debido a la contracción gradual normalmente aumenta grandemente con el incremento del ángulo de transición por sobre los 12°30'. En este diseño básico se empleó alrededor de 10° de ángulo de transición, por consiguiente, la pérdida de carga debido a la contracción gradual se consideró despreciable. Los resultados de los cálculos hidráulicos se presentan en la Tabla I.9.

3.3 Diseño Básico

3.3.1 Esquema de trasvase presa La Esperanza (Severino) - presa Poza Honda

(1) Estación de bombeo Severino

Las condiciones geológicas en las cercanías del sitio de la estación de bombeo son buenas. Se puede apreciar un afloramiento de una arenisca relativamente dura, de la clase CL - CM, por la

parte posterior del sitio de la estación de bombeo. Aún cuando algún estrato de canto rodado cubra la parte cercana a las riberas del río, la fundación de la estructura puede ser fácilmente ubicada sobre la capa de roca fresca. Los valores de resistencia a la compresión y permeabilidad son 130 kg/cm 2 y 1 x 10^{-5} cm/s, respectivamente.

Las caracteristicas generales de la estación de bombeo Severino son las siguientes:

Parametro	Unidad	Valor
Caudal total	m ³ /s	16,0
No de bombas planeado	# -	5
No de bombas de emergencia	#	· · · · · · · · · 1
Caudal de cada bomba	m^3/min	192
	m ³ /s	3,2
Longitud de la tuberla	m	250
No de lineas		2
Diàmetro de la tuberia	mm	2.100
Altura total de bombeo	m	76
Tipo de bomba		Centrifuga de sección
		de doble voluta
Ds	mm	1.100
Dd	mm-	750
Motor	kw	3.400
	polos	14
	voltaje	6.400
	Hz	60

El diseño básico del esquema de trasvase "Presa La Esperanza (Severino) - Presa Poza Honda" se muestra en la Fig. I.25. El diseño básico de la estación de bombeo Severino, esquema de toma de agua y el diagrama monolinear de la estación de bombeo se muestran en la Fig. I.26, I.27 e I.28. El equipo exterior fue ubicado en la zona montañosa cerca de la estación de bombeo tal como se muestra en la Fig. I.29 (ver Fig. I.25). La energía eléctrica para la estación de bombeo será suministrada desde la presa Daule-Peripa, la cual tendrá una capacidad de 130 MW en el futuro cercano. En la Fig. I.30 se muestra el mapa de la ruta

de la linea de transmisión eléctrica de 138 kV. La via de acceso hacia la estación de bombeo, de un ancho efectivo de 6 m, se aprecia en la Fig. I.31.

(2) Canal abierto y sifón (ver Figs. I.32, I.33 e I.34)

El tipo geológico en la rasante del canal abierto es el suelo coluvial descompuesto (limolita altamente meteorizada) y una capa de roca meteorizada. Como resultado de los ensayos de perforaciones y de la inspección superficial, este suelo tiene un espesor de aproximadamente 4 a 5 m y gradualmente cambia a una condición de suelo rocoso meteorizado.

Las características generales y las propiedades de ingeniería del suelo, obtenidas de los ensayos de mecánica de suelos, son las siguientes:

- (a) El suelo se clasifica como del tipo CH y MH (arcilla-limo), basado en la clasificación unificada de suelos.
- (b) Existe la posibilidad de la ocurrencia de suelos expansivos en algunos sitios, desde el punto de vista del hinchamiento y del factor de encogimiento. De los resultados del análisis del factor PVC (cambio potencial de volumen) y de las pruebas de hinchamiento, se prevé la necesidad de realizar un cambio de suelos, de suelo expansivo a suelo no expansivo.
- (c) La capa de roca meteorizada que subyace por debajo de la capa de suelo arcillo-limoso es lo suficientemente firme como para la fundación del canal abierto.
- (d) El limo y arcilla no son apropiados como material de terraplén debido a que se prevé un cambio de volumen severo. Sin embargo, la roca meteorizada y la roca de la excavación del túnel son útiles como materiales de terraplén.
- (e) Los suelos arcillosos y limosos tienen un coeficiente de permeabilidad que varia entre 1×10^{-6} cm/s a 1×10^{-7} cm/s, por lo tanto, se espera que no ocurra filtración desde el

canal abierto.

(f) Al respecto del sitio del sifón, se usaron los resultados del ensayo de penetración estándar y de laboratorio de los testigos del sondeo (B2). Los valores-N van de 7 a 25 en la capa de suelo aluvial de 9 m. La permeabilidad es algo alta $(k = 3.7 \times 10^{-3} \text{ cm/s})$.

Basado en los resultados antes mencionados, se escogió un canal revestido en concreto reforzado con una malla de acero.

Espesor del revestimiento 10 cm

Pendiente de los taludes 1:1,5

Ancho del fondo (B) 2,2 m (B = h; profundidad del agua)

Altura (H) 2,5 m (0,3 m por borde libre)

Por otra parte, también se diseño una via de inspeccion de 3,5 m de ancho con drenajes laterales. Así también se conside raron tres (3) tipos de tratamiento de la fundación.

- Tipo I Reemplazo del suelo con un material especial de filtro (15 cm) si la linea de roca meteorizada está por sobre el nivel de la rasante del canal.
- Tipo II Reemplazo del suelo con un material especial de filtro (15 cm) y fragmentos de roca de la excavación del túnel (35 cm), si la linea de roca meteorizada se encuentra ligeramente por debajo del nivel de la rasante del canal, y malla de geotextil en la base.
- Tipo III Reemplazo del suelo con un material especial de filtro (30 cm) y fragmentos de roca de la excavación del túnel (90 cm), si la linea de roca meteorizada está por debajo del nivel de la rasante del canal, y malla de geotextil en la base.

Al respecto del diseño de los sifones, se adoptaron para el diseño básico, un cajón de concreto en el caso de que la altura de caida del agua sea menor a 20 m, y tuberia de concreto en el caso de que la altura de caida sea mayor de 20 m.

(3) Tunel

Se diseñó un túnel de 3,5 m de diàmetro y 10,7 km de largo. La ruta del túnel se localiza en una àrea montañosa de 200 a 400 m en altitud. El tipo de roca se compone bàsicamente de limolita al nivel de la rasante del túnel, sin embargo, suelo coluvial y limolita meteorizada (capa de suelo) de 10 a 20 metros en espesor cubre la superficie del terreno al nivel del sitio del portal del túnel. La clasificación de la roca y las principales propiedades de ingeniería son las siguientes:

Propiedades de ingeni	eria	Portal del tunel	Parte interior de tûnel
Tipo de roca	<u></u>	Coluvial	Limolita arenosa
Clase de roca		D (suelo)	CL (roca blanda)
Velocidad de la onda de presión V	p(km/s)	1,5	2,1 - 2,3
Peso unitario γ	(g/cm ³)	1,7	2,1
Resistencia a la comp no confinada q	resión u(kgf/cm²)	2.000	10.000 - 12.000
Coeficiente de permeabilidad k	(cm/s)	$1 \times 10^{-3} - 1 \times 10^{-4}$	1 x 10 ⁻⁵

La limolita arenosa presenta una baja solidez hasta cierto grado, pero es maciza y poco fisurada. Como resultado del ensayo de rocas, el valor de la resistencia a la compresión no confinada (qu) es relativamente bajo, en comparación con la apariencia de solidez (30 kgf/cm² como minimo y 60 kgf/cm² como promedio). Ya que el testigo de perforación fue obtenido de la porción del portal (sobrecarga de 30 m de espesor), puede esperarse un

incremento del valor de que en la parte interna del tunel (asumido en 150 kgf/cm²). Basado en el coeficiente de permeabilidad ($k = 1x10^{-5}$ cm/s), se espera que el flujo de agua durante la excavación del tunel sea pequeño.

De los resultados de arriba, se consideró apropiada la utilización del Método Austriaco Nuevo de construcción de túneles (NATM). Para la excavación del túnel se precisará de una máquina excavadora tipo rozadora. Después de la excavación, se implementará un tratamiento de hormigón lanzado combinado con malla de acero. Luego, se utilizarán algunos pernos de anclaje. Finalmente, se aplicará un revestimiento de concreto con un espesor de 30 cm, en todos los tramos, y para las zonas con suelo coluvial y roca meteorizada se diseñaron estructuras de soporte de acero tipo H. Adicionalmente, se planearon tres (3) drenes para aliviar la presión del agua.

Los siguientes son los cuatro (4) tipos de sección del túnel que se han dispuesto en consideración de las condiciones de la roca en el túnel (ver Fig. I.25).

ند الله الله الله الله الله الله الله الل	Tipo I	Tipo II	Tipo III	Tipo IV
Sección	Parte interior	Parte interior	Parte interior	Portal y zona de fractur
Condición de la roca	Fresca	Blanda	Un poco meteo- rizada	Coluvial y meteorizada
Distancia (m)	4.500	4.500	1.300	350
Hormigón lanzado (cm)	10	10	15	15
Malla de acero	Ø3,2x100x100	Ø3,2x100x100	Ø3,2x100x100	Ø3,2×100×100
Pernos de anclaje	4022 x 2 m (paso 1,2 m)		8 Ø22 x 2 m (paso 1,2 m)	8 Ø22 x 2 m (paso 1,2 m)
Revestimiento de concreto	(cm) 30 (varilla w/o)	30 (varilla w/o)	30 (varilla #/simple	30) (varilla w/doble)
Perfil de acero-H	-		H125 @ 1,2 m	H125 @ 1,2 m
Drenes	3xØ50x1,5 m	3xØ50x1,5 m	3 x \$50 x 1,5 m	3 x Ø50 x 1,5 m

Por otro lado, para la construcción del túnel, y más que todo para ahorrar tiempo, se previó la construcción de ventanas, con una sección circular de 4 m de diámetro en su parte superior y una sección rectangular de 4 m para la parte inferior. Uno de éstos se localiza en el sitio del portal de salida con una longitud de 500 m y el otro ubicado a una distancia de 7,3 km del punto de salida del túnel, con una longitud de 630 m y que conecta con el rio Pata de Pájaro. Las secciones Tipo II y Tipo III corresponden a estas ventanas.

(4) Porciones de entrada y salida del tunel

No se ha considerado alguna estructura especial en la porción de entrada del túnel. El tipo de estructura cambia gradualmente desde el canal abierto hasta el inicio del túnel en la parte de transición de 20 m de longitud.

En la porción de salida del túnel se ha diseñado una compuerta de control debido a la fluctuación del nivel de agua del embalse Poza Honda. De los resultados del estudio de la operación de embalses (ver Anexo-F), la compuerta debe cerrarse cuando el nivel de agua del embalse Poza Honda sea mayor a la cota 102,50 (ver Fig. I.35).

3.3.2 Esquema de trasvase Poza Honda - Rio Mancha Grande

(1) Tunel

Se planeó la construcción de un tunel de 2,5 m de diámetro y 3,9 km de longitud. La ruta del tunel atraviesa una zona montañosa escarpada, con altitudes que van desde los 200 a 400 m, sin embargo, las condiciones topográficas a nivel de los portales de entrada y salida, muestran una zona con pendiente moderada donde la superficie del suelo se halla cubierta por depósitos coluviales (talud detritico tipo-deslizamiento) y una capa de roca altamente meteorizada.

De los resultados de la investigación sismica y de los ensayos de perforación se pudo constatar dos (2) tipos de composición geológica: (1) suelo coluvial o limolita meteorizada en la porción del portal y (2) limolita en la parte interna del tunel. A continuación se resumen sus caracteristicas:

		:	
Propiedades de ingeni	erla	Posición del portal 450 m en longitud	Parte interna del tunel
Tipo de roca	·	Coluvial Roca meteorizada	Limolita
Clase de roca		D	CL
Velocidad de la onda de presión	Vp(km/s)	1,5	2,1 - 2,3
Peso unitario	$\gamma (g/cm^2)$	1,7	2,1
Resistencia a la com presión no confinada	qu(kgf/cm ²)	10 - 20	60 - 100
Mòdulo elàstico estàtico	Es(kgf/cm ²)	2.000	10.000 - 12.000
Coeficiente de permeabilidad	K(cm/s)	1 x 10 ⁻⁴	1 x 10 ⁻⁵

En la parte interior del tunel la limolita muestra una caracteristica poco fisurada y no se encuentran zonas mayores de fractura, aunque se puede observar localmente zonas menores de corte. Debido a la poca permeabilidad, la filtración de agua al momento de la excavación del tunel será pequeña.

De los resultados arriba mencionados, se aplicó el mismo método de construcción de túneles que para el túnel del esquema de trasvase "La Esperanza - Poza Honda", es decir, el NATM. Se diseñaron también cuatro (4) tipos de sección del túnel, tomando en cuenta las condiciones de la roca en el túnel (ver Fig. I.36).

Ann date was a second part of the contract of	Tipo I	Tipo II	Tipo III	Tipo IV
Sección	Parte interior	Parte interior	Parte interior	Portal y zona de fractura
Condición de la roca	Fresca	Blanda	Un poco meteo rizada	Coluvial y meteorizada
Distancia (m)	1.300	1.300	850	450
Hormigón lanzado (cm)	10	10	15	15
Malla de acero	Ø3,2x100x100	Ø3,2x100x100	Ø3,2x100x100	Ø3,2x100x100
Pernos de anclaje	4 022 x 1,5 m (paso 1,2 m)	6 022 x1,5 m (paso 1,2 m)	6 022 x 1,5 m (paso 1,2 m)	6 Ø22 x 1,5 m (paso 1,2 m)
Revestimiento de concreto	(cm) 30 (varilla w/o)	30 (varilla w/o)	30 (varilla w/simple	30 (varilla w/doble)
Perfil de acero-H	-	.	H125 @ 1,2 m	H125 @ 1,2 m
Drenes	3 x Ø50 x 1,5 m	3 x Ø50 x 1,5 m	3 x Ø50 x 1,5 m	3 x Ø50 x 1,5 m

De igual modo que para la ruta del túnel Severino, para la zona del portal de entrada se prevé la construcción de una (1) ventana de igual diametro que el de la mencionada ruta y de una longitud de 350 m. Una via de acceso con un ancho efectivo de 6 m se muestra en la Fig. I.31.

(2) Portales de entrada y salida del túnel

En el portal de entrada se dispone de una estructura de control o disipador de energia mediante una válvula dispersora, para regular el flujo en la sección del túnel, ya que el nivel de agua del embalse Poza Honda fluctúa desde la cota 108,5 (nivel normal de agua) hasta la cota 93,5 (nivel de emergencia) durante todo el año (ver Fig. I.37).

En el portal de salida no se ha dispuesto de alguna estructura especial. La sección del túnel cambia gradualmente hasta conectarse con el canal abierto, y unirse luego al rio Mancha Grande.

3.3.3 Esquema de trasvase presa Daule-Peripa-presa La Esperanza

(1) Tunel

Este tunel esta diseñado para conectar el rio Conguillo en el embalse Daule-Peripa con el rio Membrillo en el embalse La Esperanza. La longitud del tunel es de 8,3 km y el diametro diseñado de 3,7 m.

El tipo de roca al nivel de la rasante del tunel consiste en arenisca fina y/o limolita. En 1986 un equipo de estudios brasilero investigo la geologia de la zona por medio de perforaciones. Del resultado de dicha investigación se determinaron las siguientes propiedades de ingenieria:

Peso unitario $r = 2,1 \text{ g/cm}^3$ Resistencia a la compresión no confinada $qu = 60 - 100 \text{ kgf/cm}^2$ Módulo elástico estático $Es = 10.000 - 12.000 \text{ kgf/cm}^2$ Coeficiente de permeabilidad $K = 1 \times 10^{-4} - 1 \times 10^{-5}$

Estos resultados indican un tipo de roca blanda, compacta y sin fisuras, y no se encuentran zonas serias de fractura. Casi todo el tramo del túnel atraviesa la roca blanda mencionada arriba, sin embargo, en la parte del portal, el tipo de roca es meteorizada y floja (roca clase D).

Como resultado de la investigación geológica y de los testigos de perforaciones, el equipo de estudios brasilero ha diseñado cinco (5) secciones típicas de túnel, con un diámetro de 4,4 m y una sección tipo-herradura semi estándar (ver la Fig. 1.38, el coeficiente de rugosidad promedio del concreto = 0,019).

- Tipo II Hormigón lanzado w/malla de acero + Dren
 (20 cm) (1,5 m @1,2 m x 4)
- Tipo III Hormigón lanzado w/malla de acero & varilla+Soporte de acero + Dren (30 cm) (@1,5 m)
- Tipo IV Hormigon lanzado w/malla de acero & varilla + Pernos + Soporte de acero + Dren (30 cm)
- Tipo V Hormigón lanzado w/malla de acero + revestimiento de (5 cm) concreto w/varilla doble + Dren (25 cm)

El 77% de la sección del túnel lo constituye el Tipo I, el 19% el Tipo II y el restante 4% los otros tipos. Debido a que la resistencia a la compresión no confinada es de alrededor de 100 kg/cm² en la zona del túnel, el tratamiento de 20 cm de hormigón lanzado solo y exclusivamente para el tramo de sección del túnel que cubre el 77% del total, resulta inapropiado. Por lo tanto, lo menos que se debe considerar es la utilización de pernos de anclaje a lo largo de todo el túnel. Por otro lado, se juzgó necesario aplicar un revestimiento de concreto con un coeficiente de rugosidad de 0,015 por considerarlo conveniente desde el punto de vista de la ventaja hidráulica y del mantenimiento. Por lo tanto, se recomendaron los siguientes cuatro (4) tipos de secciones de túnel en consideración al tipo de roca encontrado en el lugar del túnel (ver Fig. I.39).

	· · · · · · · · · · · · · · · · · · ·	Tipo II	Tipo III	Tipo IV
Sección	Parte interior	Parte interior	Parte interior	Portal y zona de fractura
Condición de la roca	Fresca	Blanda	Un poco meteo- rizada	Coluvial y meteorizada
Distancia (m)	3.000	3.000	2.000	300
Hormigón lanzado (cm)	10	10	15	15
Malla de acero	Ø3,2x100x100	Ø3,2x100x100	Ø3,2x100x100	Ø3,2x100x100
Pernos de anclaje	4 Ø22 x 1,5 m (paso 1,2 m)	8 Ø22 x 2,0 m (paso 1,2 m)	8 Ø22 x 2,0 m (paso 1,2 m)	8 Ø22 × 2,0 m (paso 1,2 m)
Revestimiento de concreto	•	30 (varilla ⊎/o)	30 (varilla #/simple	30) (varilla w/doble)
Perfil de acero-H	•	-	H125 @ 1,2 m	H125 @ 1,2 m
Drenes	3 x Ø50 x 1,5 m	3 x Ø50 x 1,5 m	3 x Ø50 x 1,5 m	3 x Ø50 x 1,5 m

Se establecieron tres (3) ventanas de acceso con las mismas características del túnel de la ruta Severino. Estos se localizan la primera a nivel del portal de entrada con una longitud de 400 m, la segunda a nivel del portal de salida con una longitud de 500 m, y la tercera a 4 km del portal de entrada con una longitud de 350 m, el cual conecta con el rio Conguillo.

(2) Portales de entrada y salida del túnel

En el portal de entrada se diseño una estructura de control para disipar la energia por medio de una valvula dispersora, para obtener un flujo continuo y estable en la sección del tunel, debido a que el nivel de agua del embalse Daule-Peripa fluctua entre las cotas 85 (nivel normal del agua) y la cota 60 (nivel inferior del agua).

En el portal de salida se diseño un tablero de cierre para el mantenimiento del túnel. Este se cerrará para mantenimiento cuando el nivel de agua en el embalse La Esperanza sea mayor que el nivel en la salida del túnel. Sin embargo, no será necesario, generalmente, la operación del tablero de cierre durante el año (ver Fig. I.40). La via de acceso hacia el túnel tiene un ancho efectivo de 6 m (ver Fig. I.31).

TABLAS

Tabla I.1 Lista de Datos Recolectados

	Title		Source
(1)	"La Esperanza' Carrizal-Chone (Additional St	Idies on the Redesign of the n for the Multipurpose Use of	CRM INTECSA GEOSISA June, 1984
	Volumen VI	Rediseno de las Obras de Desvio y de las Obras de Entrada (Redesign of Diversion and Inlet y	
	Volumen VII	Rediseno de la Presa y de sus Fun (Redesign of Dam and Foundation Volumen VIII Rediseno del Verteo	daciones a)
	(Redesign of S Volumen IX (Redesign of C	pillway) Rediseno de las Obras de Salida	
(2)	INTEGRAL	El Desarrollo de la Cuenca del Rio (Dam Guayas Multiple Project)	Guayas TAMS-AHT- March, 1979
		liminary Design and Cost, and Technical Feasibility)	
(3)	Poza Honda y	om Daule Peripa to La Esperanza	Consorcio Ecuatoriano - Brasileno 1987
	Diseno Definiti Documentos (F	ivo (Definitive Design) Reports)	
(4)		ple Carrizal-Chone ne Multipurpose Project)	CCAI Sep., 1989
	(Study on Princ Documento No Drenaje y Vial, (Guarrango-Lo Drainage Study Documento No	o.15 Estudio de las Conducciones F cipal Conditions) o.16a Estudio de las Redes de Riego Guarrango-Los Amarillos) os Amarillos Irrigation and () o.17 Estudio del Trasvase al valle desbasin to Portoviejo)),

Tabla I.2 Características Generales de la Presa (1/3)

(Poza Honda Dam, constructed in 1971)

(1)	Hydrology	
	Catchment area	175 km ²
	Annual mean basin rainfall	1,300 mm
	Annual mean inflow	95 MCM
	Runoff coefficient	42%
	Probable max. flood	1,120 m ³ /s
(2)	Reservoir	1,120 111 70
(20)	Gross storage capacity	98 MCM
	Dead storage	13 MCM
	Emergency storage	10 MCM
	Effective storage	75 MCM
	Flood water level	EL.112.3 m
	Normal high water level	EL.108.5 m
	Emergency water level	EL. 93.5 m
	Low water level	EL. 90.3 m
	Riverbed level	EL, 75.0 m
	Reservoir area at HWL	4.9 km ²
(3)	Dam	
, ,	Туре	Homogeneous earthfill with asphalt facing
٠.	Height 40 m	
•	Crest elevation	EL.114.3 m
	Crest length	531 m
(4)	Spillway	
• •	Type, Control structure	Non-gated overflow weir
	Water conveyance	Open chute
	Energy dissipator	Stilling basin
	Length of overflow weir	70 m
	Overflow weir level	EL.108.5 m
	Outflow peak discharge	875 m ³ /s
(5)	Intake and Outlet	
\- <i>/</i>	Intake level	EL. 89 m
	IIIIARC ICVCI	LL. U. III
	Outlet capacity	30 m ³ /s

Tabla I.2 Características Generales de la Presa (2/3)

i landa a la mar	
Hydrology	4.200 1?
	4,200 km ²
	2,700 mm
	5,000 MCM
Runoff coefficient	44%
Probable max. flood	14,350 m ³ /s
Reservoir	
	5,300 MCM
	1,300 MCM
	4,000 MCM
	EL. 88.0 m
	EL. 85.0 m
	EL. 60.0 m
	EL. 12.0 m
the control of the co	290 km ²
	•
	270 km ²
	700 14014
	700 MCM
	3,500 MCM
Irrigation	1,800 MCM
Water supply	500 MCM
Use in Manabi province	500 MCM
	Zoned earthfill
	90 m
	EL. 90.0 m
· ·	250 m
	3,000,000 m ³
•	3,000,000 til ²
·	Homogonoous carthfill
	Homogeneous earthfill
	18 km
	10 m (max. 27 m)
Embankment volume	5,900,000 m ³
Spillway	
Type, Control structure	Gated overflow weir
Water conveyance	Open chute
Energy dissipator	Stilling basin
Width of overflow weir	59 m
Overflow weir level	EL. 77.0 m
	3,480 m ³ /s
Snillway gates	
No of notes	3 nºs
	Tainter gate
	H = 8.0 m, W = 17.0 m
	65 MM 1771)
	65 MW x2 units=130MW
	510 GWh (firm)
Design head	58.2 m
Design discharge	132.3 m ³ /s per unit
	· ·
Tunnel diameter and length	9.0 m, 530 m
Outlet capacity	$400 \text{ m}^3/\text{s}$
	Catchment area Annual mean basin rainfall Annual mean inflow Runoff coefficient Probable max. flood Reservoir Gross storage capacity Dead storage Effective storage Flood water level Normal high water level Low water level Reservoir area at FWL Reservoir area at FWL Reservoir area at HWL Allocation of Reservoir Capacity Flood space Power generation Irrigation Water supply Use in Manabi province Main Dam Type Height from foundation Crest elevation Crest length Dam volume Sub-dam Type Length Average height Embankment volume Spillway Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates Nº of gates Type Dimensions Power facilities (Not yet installed as of e Installed capacity Annual energy output Design discharge Outlet facilities

Tabla I.2 Características Generales de la Presa (3/3)

(Esperanza Dam, construction suspended)

Catchment area Annual mean basin rainfall Annual mean inflow Runoff coefficient Probable max. flood (2) Reservoir Gross storage capacity Dead storage Effective storage Flood water level Low water level Low water level Low water level Reservoir area at FWL Reservoir area at HWL (3) Dam Type Height from foundation Crest elevation Crest length Dam volume Spillwa Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Dimensions Trigation outlet Low level outlet Capacity 5 m³/s	(1)	Hydrology	
Annual mean basin rainfall Annual mean inflow Runoff coefficient Probable max. flood Reservoir Gross storage capacity Dead storage Effective storage Flood water level Low water level Low water level Reservoir area at FWL Reservoir area at HWL Type Height from foundation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Tingation outlet Low level outlet Capacity 25 - 38 m³/s Capacity 110 m³/s		Catchment area	445 km ²
Annual mean inflow Runoff coefficient Probable max. flood Reservoir Gross storage capacity Dead storage Effective storage Flood water level Low water level Reservoir area at FWL Reservoir area at HWL 3) Dam Type Height from foundation Crest elevation Crest length Dam volume Spillwa Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates No of gates Type Dimensions Annual mean inflow 56% 3,040 m³/s 455 MCM 64 MCM Eft. 67.7 m EL. 66.0 m EL. 37.0 m EL. 22.0 m Reservoir area at FWL 22.7 km² Zoned earthfill F7.0 m Gated overflow weir Open chute Stilling basin Stilling basin Stilling basin Wood of gates Type Tainter gate Dimensions H = 4.0 m, W = 7.5 m (5) Outlet facilities Irrigation outlet Low level outlet Capacity 110 m³/s			1,520 mm
Runoff coefficient Probable max. flood Reservoir Gross storage capacity Dead storage Effective storage Flood water level Normal high water level Low water level Reservoir area at FWL Reservoir area at FWL Reservoir area at HWL 3. Dam Type Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates No of gates Type Tirgation outlet Low level outlet Capacity 25 - 38 m³/s Capacity 110 m³/s			
Probable max. flood Reservoir Gross storage capacity Dead storage Effective storage Flood water level Normal high water level Low water level Reservoir area at FWL Reservoir area at HWL Type Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Dimensions Type Tainter gate Low level outlet Capacity 25 - 38 m³/s Capacity 110 m³/s			
(2) Reservoir Gross storage capacity Dead storage Effective storage Flood water level Normal high water level Low water level Reservoir area at FWL Reservoir area at HWL (3) Dam Type Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Dimensions (5) Outlet facilities Irrigation outlet Low atter conveyloncy Low level outlet Capacity 25 - 38 m³/s Capacity 110 m³/s			3.040 m ³ /s
Gross storage capacity Dead storage Effective storage Effective storage Flood water level Flood water level Flood water level EL. 67.7 m Normal high water level Low water level EL. 37.0 m Riverbed level Reservoir area at FWL Reservoir area at HWL Type Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Dimensions Type Tainter gate H = 4.0 m, W = 7.5 m 455 MCM 64 MCM EL. 67.7 m EL. 66.0 m EL. 37.0 m EL. 22.0 m Zoned earthfill 57.0 m 69.0 m 69.0 m Gated overflow weir Open chute Stilling basin 3,700,000 m³ Stilling basin 39.0 m 62.0 m 900.0 m³/s Type Tainter gate H = 4.0 m, W = 7.5 m (5) Outlet facilities Irrigation outlet Low level outlet Capacity 25 - 38 m³/s Capacity 110 m³/s	(2)		5,0 to til 79
Dead storage Effective storage Effective storage Effective storage Flood water level Normal high water level Low water level EL. 67.7 m EL. 66.0 m EL. 37.0 m EL. 22.0 m Reservoir area at FWL Reservoir area at HWL Type Height from foundation Crest elevation Crest length Dam volume Spillwa Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Dimensions Outlet facilities Irrigation outlet Low water level EL. 67.7 m EL. 66.0 m EL. 37.0 m EL. 22.0 m EL. 22.0 m EL. 37.0 m Ganed earthfill 57.0 m Gated overflow Gated overflow weir Open chute Stilling basin Stilling basin Width of overflow weir Geleo overflow weir Open chute Stilling basin Width of overflow weir Geleo overflow weir Open chute Stilling basin Width of overflow weir Open chute Stilling basin Width of overflow weir A n°s Type Tainter gate H = 4.0 m, W = 7.5 m Total created Type Dimensions Under facilities Irrigation outlet Low level outlet Capacity 25 - 38 m³/s Capacity 110 m³/s	(-)		455 MCM
Effective storage Flood water level Flood water			
Flood water level Normal high water level Low water level Low water level Low water level Riverbed level Reservoir area at FWL Reservoir area at HWL Type Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Dimensions Flo. 60.0 m EL. 22.0 m EL. 22.0 m EL. 37.0 m EL. 60.0 m EL. 37.0 m EL. 22.0 m EL. 22.0 m EL. 37.0 m EL. 22.0 m EL. 22.0 m Ganed earthfill F7.0 m Gated overflow G9.0 m Gated overflow weir Open chute Stilling basin Width of overflow weir 39.0 m G2.0 m Design peak discharge Spillway gates N° of gates Type Tainter gate Dimensions H = 4.0 m, W = 7.5 m Touch facilities Irrigation outlet Low level outlet Capacity 25 - 38 m³/s Capacity 110 m³/s			
Normal high water level Low water level Riverbed level Reservoir area at FWL Reservoir area at HWL Type Height from foundation Crest elevation Crest length Dam Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Dimensions Type Tainter gate Dimensions EL. 22.0 m EL. 22.0 m Square 24.0 km² 22.7 km² Zoned earthfill 57.0 m 69.0 m 696.0 m 096.0 m			
Low water level Riverbed level Reservoir area at FWL Reservoir area at HWL Type Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Dimensions Low water level Dimensions Low level outlet EL. 22.0 m EL. 22.0 m Square 24.0 km² 22.7 km² Zoned earthfill 57.0 m 69.0 m 69.0 m 696.0 m 3,700,000 m³ Square Gated overflow weir Open chute Stilling basin 39.0 m 62.0 m 900.0 m³/s Type Tainter gate Dimensions H = 4.0 m, W = 7.5 m Capacity 25 - 38 m³/s Capacity 110 m³/s			
Riverbed level Reservoir area at FWL Reservoir area at HWL 22.7 km² 23. Dam Type Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Dimensions Type Tainter gate Dimensions EL. 22.0 m 24.0 km² 22.7 km² Zoned earthfill 57.0 m 69.0 m 69.0 m 69.0 m 696.0 m 3,700,000 m³ Stilling basin Stilling basin Width of overflow weir 39.0 m 62.0 m 900.0 m³/s Type Tainter gate Dimensions H = 4.0 m, W = 7.5 m Capacity 25 - 38 m³/s Capacity 110 m³/s			
Reservoir area at HWL (3) Dam Type Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Tainter gate Dimensions (4) Outlet facilities Irrigation outlet Low level outlet Capacity 25 - 38 m³/s Capacity 110 m³/s		Riverbed level	
Reservoir area at HWL (3) Dam Type Height from foundation		Reservoir area at FWL	24.0 km ²
Type Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N° of gates Type Dimensions Type Tainter gate Dimensions Capacity 25 - 38 m³/s Capacity 110 m³/s			22.7 km ²
Type Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates No of gates Type Dimensions Type Tainter gate Dimensions Capacity 25 - 38 m 3 /s Capacity 110 m 3 /s	(3)	- '	
Height from foundation Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates No of gates Type Dimensions Type Tainter gate Dimensions Find the foundation Find	\ - <i>\</i>		Zoned earthfill
Crest elevation Crest length Dam volume Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates Type Tipe Dimensions (5) Outlet facilities Irrigation outlet Crest elevation 69.0 m 696.0			57.0 m
Dam volume (4) Spillwa Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N $^{\circ}$ of gates Type Dimensions (5) Outlet facilities Irrigation outlet Low level outlet Sated overflow weir Open chute Stilling basin 39.0 m 62.0 m 900.0 m 3 /s Tainter gate H = 4.0 m, W = 7.5 m Capacity 25 - 38 m 3 /s Capacity 110 m 3 /s			69.0 m
Dam volume (4) Spillwa Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates N $^{\circ}$ of gates Type Dimensions (5) Outlet facilities Irrigation outlet Low level outlet Sated overflow weir Open chute Stilling basin 39.0 m 62.0 m 900.0 m 3 /s Tainter gate H = 4.0 m, W = 7.5 m Capacity 25 - 38 m 3 /s Capacity 110 m 3 /s		Crest length	696.0 m
Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates No of gates Type Dimensions Spillway Gates Type Tainter gate Dimensions Medital overflow weir Stilling basin 39.0 m 62.0 m 900.0 m ³ /s 4 no s Tainter gate H = 4.0 m, W = 7.5 m Capacity 25 - 38 m ³ /s Low level outlet Capacity 110 m ³ /s			3,700,000 m ³
Type, Control structure Water conveyance Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates No of gates Type Dimensions Stilling basin 39.0 m 62.0 m 900.0 m ³ /s 4 n ⁹ s Tainter gate H = 4.0 m, W = 7.5 m (5) Outlet facilities Irrigation outlet Low level outlet Capacity 25 - 38 m ³ /s Capacity 110 m ³ /s	(4)	Spillwa	, · · · · ·
Energy dissipator Width of overflow weir Overflow weir level Design peak discharge Spillway gates No of gates Type Tainter gate Dimensions Irrigation outlet Low level outlet Stilling basin 39.0 m 62.0 m 900.0 m ³ /s Faciliting Facilities Gapacity 25 - 38 m ³ /s Capacity 110 m ³ /s	• /		Gated overflow weir
Width of overflow weir Overflow weir level Overflow weir level Design peak discharge Spillway gates No of gates Type Tainter gate Dimensions H = 4.0 m, W = 7.5 m (5) Outlet facilities Irrigation outlet Capacity 25 - 38 m ³ /s Low level outlet Capacity 110 m ³ /s		Water conveyance	Open chute
Width of overflow weir 39.0 m Overflow weir level 62.0 m Design peak discharge 900.0 m ³ /s Spillway gates No of gates 4 no Tainter gate Dimensions H = 4.0 m, W = 7.5 m (5) Outlet facilities Irrigation outlet Capacity 25 - 38 m ³ /s Low level outlet Capacity 110 m ³ /s		Energy dissipator	Stilling basin
Design peak discharge $900.0 \text{ m}^3/\text{s}$ Spillway gates Nº of gates $4 \text{ n}^{\text{o}}\text{s}$ Tainter gate Dimensions $H = 4.0 \text{ m}, W = 7.5 \text{ m}$ (5) Outlet facilities Irrigation outlet $Capacity 25 - 38 \text{ m}^3/\text{s}$ Low level outlet $Capacity 110 \text{ m}^3/\text{s}$			
Spillway gates N° of gates Type Dimensions $H = 4.0 \text{ m}, W = 7.5 \text{ m}$ (5) Outlet facilities Irrigation outlet Low level outlet Capacity 25 - 38 m ³ /s Capacity 110 m ³ /s		Overflow weir level	62.0 m
Spillway gates No of gates Type Tainter gate Dimensions $H = 4.0 \text{ m}, W = 7.5 \text{ m}$ (5) Outlet facilities Irrigation outlet Capacity 25 - 38 m ³ /s Low level outlet Capacity 110 m ³ /s		Design peak discharge	900.0 m ³ /s
N° of gates $4 n^{\circ}$ s Type Tainter gate Dimensions $H = 4.0 \text{ m}, W = 7.5 \text{ m}$ (5) Outlet facilities Irrigation outlet Capacity $25 - 38 \text{ m}^3/\text{s}$ Low level outlet Capacity $110 \text{ m}^3/\text{s}$			
Type Tainter gate Dimensions $H = 4.0 \text{ m}, W = 7.5 \text{ m}$ (5) Outlet facilities Irrigation outlet Capacity $25 - 38 \text{ m}^3/\text{s}$ Low level outlet Capacity $110 \text{ m}^3/\text{s}$		N ^o of gates	4 nºs
Dimensions $H = 4.0 \text{ m}, W = 7.5 \text{ m}$ (5) Outlet facilities Irrigation outlet Capacity 25 - 38 m ³ /s Low level outlet Capacity 110 m ³ /s			Tainter gate
Irrigation outlet Capacity 25 - 38 m ³ /s Low level outlet Capacity 110 m ³ /s			
Low level outlet Capacity 110 m ³ /s	(5)	Outlet facilities	
Low level outlet Capacity 110 m ³ /s		Irrigation outlet	Capacity 25 - 38 m ³ /s
		Outlet for river maintenance	Capacity 5 m ³ /s

Cálculo Hidráulico para el Esquema de Trasvase "Presa La Esperanza (Severino) - Presa Poza Honda (Q = $10~\text{m}^3/\text{s}$)" Tabla I.3

(m3/s)	Œ	Structure	Slope	Loss (m)	Et (m)	A (m2)	V (m/s)	(E)	(EL m)	(m)	(EL m)	
					00000	700	Š	6			000	
10.0	250	Pipeline		0.428	13.0/0	20.0	\$	<u>6</u>			30.0	0=1.900
10					113.248		0000	000				
	47-	Head Tank		0.100								
			• .		113.148	8.344	1.198	0.073	113.075	1.800	111.275	
•	009	Open Channel	1/3,000	0.200				2.1		\$.		B=h=1.8 m
					112.948			0.073	112.875	1.800	111.075	
		Tank		0000								
					112.948	5.723	1.747	0.156	112.793			
	210	Syphon		0.202								D=2,700
					112,591				112.591			
		Tank		0.000			:		:			
					112.591	8.344	1.198	0.073	112.517	1.800	110.717	
	2700	Open Channel	1/3 000	0.900			:					B=h=1.8 m
			1 2 1 1 1		111.691			0.073	111,617	1,800	109.817	
•		Tank		0.000) ;				
.:			:		111,691	5.723	1.747	0.156	111.535		•	
	88	Syphon	•	0.250								D=2,700
					111.285		• .					
-		Tank		0000						٠		
					111.285	8.344	1,198	0.073	111.211	1.800	109.411	
	3050	Open Channel	1/3,000	1.017						:		B=h=1.8 m
	-				110.268			0.073	110.195	1.800	108.395	
		Tank		0.000						·		
•					110.268	5.723	1.747	0.156	110.112			
	170	Syphon		0.164								D=2,700
					109.949				•			
		Tank		0000								
					109.949	8.344	1.198	0.073	109.875	1.800	108.075	
	550	Open Channel	1/3,000	0.183								8-h-1.8 m
					109.765		-	0.073	109.692			
:		Transition		0000								
				٠	109.765	6.219	1.608	0.132	109,633	2.320	107.313	
	10700	Tunnel	1/1,500	7,133								D=2,900
					102.632	6.219	1.608	0.132	102.500	2.320	100.180	
		Outlet		0.000								
					000000	474	000	0010	400 001			

Cálculo Hidráulico para el Esquema de Trasvase "La Esperanza (Altamira) - Río Portoviejo (Q = 12 m $^3/s$)" (1/3) Tabla I.4

No. (12.0) (2.0) (1.0)	Discharge	de Length	th Type of		Energy Line	m	Flow Area	Flow Velocity	V^2/2g	Water Level	Water Depth	EL. of Shucture	on on	Dimension of Structure
Head Tank Coop Co	(m3/s			Stope	Loss (m)	EL (m)	A (m2)	V (m/s)	(E)	(E, m)	Ê	(EL m)		
120 220 Pypeline 0.411 94.819 0.000 0.00				•		95.229	3.140	1.911	0.186					
Head Tank	12.0				0.411	94.818		0.00	0.00				D=2,000	
Sol Open Channel 1,3,000 0,167 94,551 1,260 1,616 94,70 1,940 92,530 Tank 0,000 94,551 6,602 1,818 0,169 94,302 1,940 92,530 220 Open Channel 1,3,000 0,077 94,316 9,525 1,260 0,081 94,205 1,940 92,205 220 Open Channel 1,3,000 0,077 94,316 9,525 1,260 0,081 94,077 2,480 91,367 1020 Open Channel 1,3,000 0,078 94,327 6,772 1,772 0,160 94,077 2,480 91,351 1020 Open Channel 1,3,000 0,340 96,222 1,280 0,081 94,077 2,480 91,375 1020 Open Channel 1,3,000 0,340 96,222 1,280 0,081 94,377 2,480 91,471 1020 Open Channel 1,3,000 0,340 96,222 1,280 0,081			Head Tank		0.100		0		8	500	9	100		
Tank 0.000 94.551 6.602 1.818 0.169 94.382 1.940 92.250 1.97 94.316 9.525 1.260 0.081 94.470 1.940 92.250 1.97 94.316 9.525 1.260 0.081 94.382 1.940 92.295 1.940		200			0.167	<u>•</u>	4,525 4,525	707.	5	3	3	160.36	8≖h=1.9 m	
Tark			Tank		000	94.551			0.081	94.470	1.940	92.530		
Syphon 0.067 94.316 9.525 1.260 0.081 94.235 1.940 92.235 Open Charnel 1/3,000 0.073 94.316 9.525 1.260 0.081 94.235 1.940 92.231 Transition 0.005 94.237 6.770 1.772 0.160 94.077 2.480 91.397 Transition 0.006 93.772 9.525 1.260 0.081 93.617 2.480 91.397 Open Charnel 1/1,500 0.340 93.772 9.525 1.260 0.081 93.617 2.480 91.317 Open Charnel 1/2,000 0.340 93.722 1.260 0.081 93.617 2.480 91.317 Tank 0.000 92.225 1.260 0.081 93.617 1.940 91.411 Open Charnel 1/3,000 0.127 92.423 1.260 0.081 92.489 1.940 90.402 Tank 0.000 92.423 1.280 0.081 91.249<			£			94.551	6.602	1.818	0.169	94.382				
Tank 0.000 94.316 9.525 1.280 0.081 94.235 1.940 92.295 Open Channel 1/3,000 0.073 94.316 9.525 1.280 0.081 94.161 1.940 92.221 Transition 1/1,500 0.480 98.277 6.770 1.772 0.160 94.077 2.480 91.597 Transition 1/3,000 0.340 98.237 6.770 1.772 0.160 94.077 2.480 91.597 Open Channel 1/3,000 0.340 96.250 1.280 0.081 93.611 1.940 91.751 Open Channel 1/3,000 0.340 95.255 1.280 0.081 92.489 1.940 90.402 Syphon 0.340 92.423 6.602 1.818 0.169 92.245 1.940 90.402 Tank 0.000 92.423 1.280 0.081 92.342 1.940 90.402 Syphon 0.340 91.912 92.248 1.940		70			0.067	94.316			•				D=2,900	
Open Channel 1/3,000 0.073 94.216 9.225 1.280 0.081 94.235 1.940 92.225 Transition 0.006 94.242 6.770 1.772 0.160 94.077 2.480 91.597 Tunnel 1/1,500 0.460 94.237 6.770 1.772 0.160 94.077 2.480 91.597 Transition 0.006 93.772 9.525 1.260 0.081 93.617 2.480 91.597 Open Channel 1/3.000 0.340 93.432 1.260 0.081 93.851 1.940 91.751 Open Channel 1/3.000 0.340 93.432 1.280 0.081 93.264 91.411 Syphon 0.714 92.550 9.525 1.280 0.081 92.249 1.940 90.402 Tank 0.000 91.912 92.250 9.525 1.280 0.081 91.340 90.402 Syphon 0.343 91.912 9.525 1.280 0.081			Tank		0.000	!								
Open Channel 1/3,000 0.075 94.242 0.081 94.161 1.940 92.221 Transition 0.065 94.297 6.770 1.772 0.160 94.077 2.480 91.597 Turnel 1/1,500 0.460 93.777 6.770 1.772 0.160 94.077 2.480 91.377 Transition 0.005 93.777 6.770 1.772 0.160 94.077 2.480 91.317 Tank 0.006 93.432 6.602 1.818 0.169 93.264 91.411 Tank 0.000 92.550 9.525 1.260 0.081 92.269 1.940 91.411 Open Channel 1/3,000 0.127 92.423 1.260 0.081 92.342 1.940 90.402 Syphon 0.000 92.423 6.602 1.818 0.169 92.246 1.940 90.402 Tank 0.000 92.423 1.260 0.081 91.831 1.940 90.402					;	94.316	9.525	1.260	0.081	94,235	1.940	92.295		
Transition 0.005 94.237 6.770 1.772 0.160 94.077 2.480 91.597 Turnel 1/1,500 0.460 92.777 6.770 1.772 0.160 94.077 2.480 91.537 Transition 1/3,000 0.340 93.772 9.525 1.260 0.081 93.691 1.940 91.751 Open Charnel 1/3,000 0.340 93.722 9.525 1.260 0.081 93.264 91.751 Syphon 0.714 92.550 9.525 1.260 0.081 92.469 1.940 90.402 Tank 0.000 92.423 6.602 1.818 0.169 92.269 1.940 90.402 Syphon 0.343 91.912 92.423 1.260 0.081 92.265 1.940 90.402 Syphon 0.343 91.912 92.255 1.280 0.081 91.341 1.940 90.402 Tank 0.000 92.433 1.340 91.341 1		8			0.073	94.242			0.081	94.161	1.940	92.221	B=h=1.9 m	
Turnel 1/1,500 0.460 94.237 6.770 1.772 0.160 94.077 2.480 91.397 Transition 0.005 93.777 6.770 1.772 0.160 93.617 2.480 91.377 Open Channel 1/3,000 0.340 93.772 9.525 1.260 0.081 93.617 1.940 91.411 Syphon 0.714 92.550 1.818 0.169 93.264 90.402 Tank 0.000 92.550 1.260 0.081 92.489 1.940 91.411 Open Channel 1/3,000 0.127 92.525 1.260 0.081 92.489 1.940 90.402 Tank 0.000 92.423 6.602 1.818 0.169 92.265 1.940 90.402 Syphon 0.343 91.912 9.525 1.260 0.081 91.340 91.402 Open Channel 1/3,000 0.500 91.912 9.525 1.260 0.081 91.340 99.391			Transition		0.005		į			. !				
Transition 0.005 93.777 6.770 1.772 0.160 93.617 2480 91.137 Open Charnel 1/3,000 0.340 93.772 9.525 1.260 0.081 93.691 1.940 91.751 Tank 0.000 93.432 6.602 1.818 0.169 93.264 1.940 91.411 Syphon 0.714 92.550 9.525 1.260 0.081 92.469 1.940 90.529 Open Channel 1/3,000 0.127 92.423 1.260 0.081 92.489 1.940 90.529 Syphon 0.000 92.423 6.602 1.818 0.169 92.265 1.940 90.402 Syphon 0.343 91.912 9.525 1.260 0.081 91.231 1.940 90.402 Tank 0.000 91.912 9.525 1.260 0.081 91.331 1.940 99.391 Transition 0.005 91.412 0.081 91.347 2.480		000		1/3 5/00		34 237	6.770	1.772	0.160	76.96	2.480	91.597	D=3 100	
Transition 0.005 93.772 9.525 1.260 0.081 93.691 1.940 91.751 Open Charnel 173.000 0.340 98.432 6.602 1.818 0.169 93.351 1.940 91.751 Tank 0.000 92.550 9.525 9.525 1.260 0.081 92.469 1.940 91.411 Syphon 17ank 0.000 92.525 9.525 1.260 0.081 92.469 1.940 90.402 Tank 0.000 92.423 6.602 1.818 0.169 92.265 1.940 90.402 Syphon 0.343 91.912 92.423 6.602 1.818 0.169 92.265 1.940 90.402 Syphon 0.343 91.912 91.912 92.265 1.940 99.391 Tank 0.000 91.412 91.331 1.940 99.391 Transition 17.500 0.505 91.412 0.160 91.247 2.480 89.391 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>26.777</td><td>6.770</td><td>1.772</td><td>0.160</td><td>93.617</td><td>2.480</td><td>91.137</td><td>3</td><td></td></tr<>						26.777	6.770	1.772	0.160	93.617	2.480	91.137	3	
Open Channel 1/3,000 0.340 95.772 9.525 1.260 0.081 93.351 1.940 91.751 Tank 0.000 98.432 6.602 1.618 0.169 93.351 1.940 91.411 Syphon 0.714 92.550 9.525 1.260 0.081 92.469 1.940 90.529 Open Channel 1/3,000 0.127 92.423 1.260 0.081 92.342 1.940 90.402 Syphon 0.343 91.912 91.512 9.525 1.260 0.081 91.831 1.940 90.402 Tank 0.000 91.912 95.255 1.260 0.081 91.831 1.940 89.391 Open Channel 1/7,500 0.500 91.412 91.412 0.081 91.247 2.480 89.391 Tunnel 1/1,500 1.667 91.407 6.770 1.772 0.160 91.247 2.480 89.391			Transition		0.005			•	į	į		1		
Open Channel 1/3,000 93,432 6,602 1,818 0,169 93,351 1,940 91,411 Tank 0,000 93,432 6,602 1,818 0,169 93,264 91,411 Syphon 0,000 92,550 9,525 1,260 0,081 92,469 1,940 90,529 Tank 0,000 92,423 6,602 1,818 0,169 92,342 1,940 90,402 Syphon 0,000 92,423 6,602 1,818 0,169 92,342 1,940 90,402 Syphon 0,343 91,912 9,525 1,260 0,081 91,831 1,940 89,891 Open Channel 1/3,000 0,500 91,412 1,260 0,081 91,247 2,480 89,391 Tunnel 1/1,500 1,667 6,770 1,772 0,160 91,247 2,480 89,391		3				93.772	9.525	1.260	0.081	93.691	1.940	91.751	i 0 3	
Tank 0.000 93.432 6.602 1.618 0.169 93.264 Syphon 0.714 92.550 9.525 1.260 0.081 92.469 1.940 90.529 Tank 0.000 92.423 6.602 1.818 0.169 92.245 1.940 90.402 Syphon 0.343 91.912 1.818 0.169 92.255 1.940 90.402 Syphon 0.343 91.912 95.25 1.260 0.081 91.831 1.940 89.891 Tank 0.000 91.912 9.525 1.260 0.081 91.831 1.940 89.891 Open Channel 1/7.000 0.500 91.412 0.081 91.331 1.940 89.391 Tunnel 1/1,500 1.667 6.770 1.772 0.160 91.247 2.480 89.391		2			0.540	93.432			0.081	93.351	1.940	91.411		
Syphon 0.714 92.550 9.525 1.260 0.081 92.469 1.940 90.529 Tank 0.000 92.550 9.525 1.260 0.081 92.469 1.940 90.529 Open Channel 1/3.000 0.127 92.423 6.602 1.818 0.169 92.255 1.940 90.402 Syphon 0.343 91.912 9.525 1.260 0.081 91.831 1.940 89.891 Tank 0.000 91.912 9.525 1.260 0.081 91.831 1.940 89.391 Transition 0.005 91.412 0.081 91.247 2.480 89.391 Tunnel 1/1,500 1.667 6.770 1.772 0.160 91.247 2.480 89.391			Tank		0.000			,	ć	; ;				
Tank 0.000 92.550 9.525 1.260 0.081 92.469 1.940 90.529 Open Channel 1/3,000 0.127 92.423 1.260 0.081 92.469 1.940 90.529 Tank 0.000 92.423 6.602 1.818 0.169 92.255 1.940 90.402 Syphon 0.343 91.912 9.525 1.260 0.081 91.831 1.940 89.891 Open Channel 1/3,000 0.560 91.412 9.525 1.260 0.081 91.331 1.940 89.391 Transition 0.005 91.412 6.770 1.772 0.160 91.247 2.480 87.700 Tunnel 1/1,500 1.667 6.770 1.772 0.160 89.580 2.480 87.100		750			0.714	98.432	6.602	1.818	991.0	25. 25.			D=2.900	-
Tank 0.000 92.550 9.525 1.260 0.081 92.469 1.940 90.529 Open Channel 1/3,000 0.127 92.423 1.260 0.081 92.342 1.940 90.402 Tank 0.000 92.423 6.602 1.818 0.169 92.255 1.940 90.402 Syphon 0.343 91.912 9.525 1.260 0.081 91.831 1.940 89.891 Open Channel 1/3,000 0.560 91.412 9.525 1.260 0.081 91.331 1.940 89.391 Transition 0.005 91.412 6.770 1.772 0.160 91.247 2.480 87.700 Tunnel 1/1,500 1.667 6.770 1.772 0.160 89.580 2.480 87.100						92.550							i i	
Open Channel 1/3,000 0.127 92.423 1.818 0.081 92.342 1.940 90.402 Tank 0.000 92.423 6.602 1.818 0.169 92.255 1.940 90.402 Syphon 0.343 91.912 9.525 1.260 0.081 91.831 1.940 89.891 Tank 0.000 91.912 9.525 1.260 0.081 91.831 1.940 89.891 Transition 0.005 91.412 0.081 91.247 2.480 88.767 Tunnel 1/1,500 1.667 6.770 1.772 0.160 89.580 2.480 87.100			Tank		0.000	23	i c	G F	9	027.480	7	003		
Tank 0.000 92.423 6.602 1.818 0.169 92.255 Syphon 0.343 91.912 1.260 0.081 91.831 1.940 89.891 Tank 0.000 91.912 9.525 1.260 0.081 91.831 1.940 89.891 Open Channel 1/3.000 0.500 91.412 0.081 91.331 1.940 89.391 Transition 0.005 91.472 0.160 91.247 2.480 88.767 Tunnel 1/1,500 1.667 6.770 1.772 0.160 89.580 2.480 87.100		380			0.127	00 423	676.6	007.	9 6	36.409	1 1	90.323	В≖ի≖1.9 m	
Syphon 92.423 6.602 1.818 0.169 92.255 Tank 0.000 91.912 9,525 1.260 0.081 91.831 1.940 89.891 Open Channel 1/3,000 0.500 91.412 0.081 91.331 1.940 89.391 Tunnel 1/1,500 1.677 6,770 1.772 0.160 91.247 2.480 87.100			Tank		0.000				3	1	2			
Syphon 0.343 Tank 0.000 91.912 9.525 1.260 0.081 91.912 9.525 1.260 0.081 91.412 0.081 Transition 0.005 91.407 6.770 1.772 0.160 91.247 2.480 89.740 87.100					:	92.423	6.602	1.818	0.169	92.255				
Tank 0.000 91.912 9.525 1.260 0.081 91.831 1.940 89.891 Open Channel 1/3,000 0.500 91.412 0.081 91.331 1.940 89.391 Transition 0.005 91.407 6.770 1.772 0.160 91.247 2.480 88.767 Tunnel 1/1,500 1.667 6.770 1.772 0.160 89.580 2.480 87.100		98			0.343	91.912							D≖2,900	
Open Channel 1/3,000 0,500 91,412 0,0081 91,331 1,940 89,391 Transition 0,005 91,407 6,770 1,772 0,160 91,247 2,480 88,767 Tunnel 1/1,500 1,667 6,770 1,772 0,160 89,580 2,480 87,100			Tank		0.000	200		90	900	č		00		
Transition 0.005 91.412 0.081 91.331 1.340 89.391 Transition 0.005 91.407 6.770 1.772 0.160 91.247 2.480 88.767 Tunnel 1/1,500 1.667 89.740 6.770 1.772 0.160 89.580 2.480 87.100	; ;	1500					676.4	N	3	3	}	60,60	B=h=1.9 m	
Tunnel 1/1,500 1.667 6.770 1.772 0.160 91.247 2.480 88.767 Tunnel 1/1,500 1.667 89.740 6.770 1.772 0.160 89.580 2.480 87.100	ē		10000		200	91.412			0.081	91,331	1.940	89.391		
Tunnel 1/1,500 1.667 6.770 1.772 0.160 89.590 2.480 87.100						91.407	6.770	1.772	0.160	91.247	2.480	88,767		
		250(1/1,500		89.740	6.770	1,773	0.160	80 580	2.480	87 100	D=3,100	•

Cálculo Hidráulico para el Esquema de Trasvase "La Esperanza (Altamira) - Río Portoviejo (Q = 12 m³/s)" (2/3) Tabla I.4

Ω .	_			Energy Line		FIOW Area	FIOW VEIOCITY	V~2/29	Water Level	water Depth	EL. OF SITURIUR		Dimension of Structure
No. (m3/s)	(m) (s	Structure	Slope	Loss (m)	EL (m)	А (m2)	V (m/s)	(m)	(EL. m)	Έ	(EF. m)		
0+ 8210		Fransition		0.005									
04-8210	1040	Ocean Channel	1/2 000	787	89.735	9.525	1.260	0.081	89.654	1.940	87.714	4. 5.	·
2				į	89.389			0.081	89.308	1.940	87.368		
0+ 9250		Tank		0.000						<u>!</u>			
					89.389	6.602	1.818	0.169	89.220				
0+ 9250	180	Syphon		0.171	000							D≖2,900	
0.5 9430		Tank		0000	n 10.00								
3		í		3	89.049	9.525	1.260	0.081	88.968	1.940	87.028		
0+ 6430	1860	Open Channel	1/3,000	0.620						!		B=h=1.9 m	
77300		Transfer		. 6	88.429			0.081	88.348	1.940	86.408		
267		S S S S S S S S S S S S S S S S S S S		0.00	88.424	6.770	1.772	0.160	88.263	2.480	85,783		
0+ 11290	9830	Tunnet	1/1,500	6.553		:				<u>:</u>		D=3,100	
0, 21,00		Tespesition		200	81.870	6.770	1.772	0.160	81.710	2.480	79.230		
<u>Ş</u>	,	Sign		600	81.865	5.653	1.061	0.057	81,808	1.500	80:308		
0+21120 6.0	200	Open Channel	1/3,000	0.067			-					8=h=1.5 m	
	350				81.799			0.057	81,741	1.500	80.241		
0+ 21320		Tank		0.000	23 700	2 462	1 793	450	278				
0+:21320	200	Syphon		0,635		j	}	}				D=2.100	
					81.010								
0+21820		Tank		0.000									
0. 21820	Ş	long Change	č	Š	81.010	5.653	1.061	0.057	80.953	1.500	79.453		
200	3		23,50	3	80.877			0.057	80.819	503	79.219	E 0.	
0+ 22220		Transition		0.005									•
			:		80,872	4.026	1,490	0.113	80.758	1.920	78.838	1	
0+22220	2330	leauun 1	17,500	1.953	10	900	700	,	200 01	,	000	D=2,500	
0+ 25150		Transition		500.0	0.9.0	4.020	200	2	6.003	026.1	(0.000		
}				2	78.913	5.653	1,061	0.057	78.856	1.500	77,356		
0+ 25150	220	Open Channel	1/3,000	0.073								B=h=1.5 m	
					78.840			0.057	78.783	1.500	77.283		
0+ 25370		Tank		0.000	9	97.0	4 700		100				
0+ 25370	120	Syphon		0.152	0.040	5.405	9	200	/8.56/			D=2.100	
					78.534								
0+ 25490		1 ank		0.000	, ,	C U	,		•	•			

Cálculo Hidráulico para el Esquema de Trasvase "La Esperanza (Altamira) - Río Portoviejo (Q = 12 m $^3/s$)" (3/3) Tabla I.4

Dimension of Structure						_									
	B⊭h≖1.5 m		D=2,100			8=h=1.5 m			D=2,500			B=h=1.5 m			
EL. of Structure (EL. m)	76.737		-		76.520	4	6.384	75.903	,	72.523	73.051		73.005		73.000
Water Depth (m)	1.500				1.500	,	3,500	1.920		1.920	1.500		1.500		1.500
Water Level (EL. m)	78.237	78 141			78.020		488.77	77.823	;	74.443	74.551	.:	74.505		74.500
V^2/2g (m)	0.057	5	3		0.057	į	0.057	0.113	;	0.113	0.057		0.023		0.023
Flow Velocity V^2/2g Water Level V (m/s) (m) (EL. m)		÷	3		1.061			1.490	;	1,490	1.061		0.667		0.667
Flow Area A (m2)		3.462	9		5.653		:	4.026	,	4.026	5.653		9.000		9.000
э ЕL (m)	78.294	28.2	010	870.8	78.078	į	148.77	77.936	1	955.7	74.551	•	74.528		74.523
Energy Line Loss (m)	0.240	0.000	0.064	0.000		0.137	0.005		3.380	0.005		0.023		0.005	
Slope	1/3,000					1/3,000			1/1,500			1/3,000			
Type of Structure	720 Open Channel 1/3,000	Tank	Syphon	Tank		410 Open Channel 1/3,000	Transition		Tunnel	Transition		Open Channel		Outlet	
Length (m)	720		ଜ			410	,	.*	5070			5			
Discharge Length (m3/s) (m)															
Sta. No.	0+ 25490	0+ 26210	0+ 26210	0+ 26260		0+ 26260	0+ 26670		0+ 26670	0+31740		0+ 31740		0+31810	

Cálculo Hidráulico para el Esquema de Trasvase"Obras de Tomaen la Presa La Esperanza- Guarango (Q = $23 \text{ m}^3/\text{s} - 5 \text{ m}^3/\text{s}$)" (1/3) Tabla I.5

	Dimension of Structure																										
		7	EL. 32.0									D=2,100 * 2 Lanes							D=2,100 * 2 Lanes			EL. 24.96 Start	El. 22.96			EL. 21.85	
	EL. of Structure	(EL. m)	32.317	30.187	30,193	29,159	29.159	29.076	28.973	28.873				28.577	27.501	27.450					25.846	24.960	22.938	22.736	22.736	21.816	
.	Water Depth	(m)	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000				2.650	2.650	2.600		-			2.500	2.500	2.400	2.400	2.300	2.300	
	Water Level	(EL. m)	35,317	33.187	33.193	32.159	32.159	32.076	31.973	31.873	31.784		-	31.227	30.151	30:050			29.78		28.346	27.460	25.338	25.136	25.036	24.116	
	ly V^2/2g	(H)	0.097	0.097	0.091	0.091	0.091	0.091	0.094	0.091	0.180			0.041	0.041	0.042		9	U.166		0.039	0.039	0.034	0.034	0.034	0.034	
	Flow Velocity	V (m/s)	1,379		1.333		1.333	1,333	1,358		1.878	•		0.896	0.896	0.907		•	1.805		0.871	0.871	0.816	•	0.818	0.818	
	Flow Area	A (m2)	16.500		16.500		16.500	16.500	16.200		3.462	<u> </u>		14.509	14.509	13.780			3.462		12.625	12.625	11.640		10.695	10.695	
	Q	EL (m)	35.414	33.284	33.284	32.250	32.250	32.167	32.067	31.984	31,964		2 2 2	31.268	30.192	30.092	29.884		488 88.83	28.485	28.385	27.499	25.360	25.170	25.070	24.150	
	Energy Line	Loss (m)	0 190	3		000	6	3 6	9	0.103	0.000	0.516	0.000	1.076	0	3	0.208	0.000	1.233	0.100	88		9 6	2	3 6	0.920	0.300
		Slope	4/2 000		60		1/3 000			1/3,000				1/5,000			1/5.000				1/5.000		4/A			000'6/1	
	Type of	Structure	Outlet Open Channel		. location	Transition	Onen Channel		LORSING	Open Channel	Tank	Syphon	Tank	Open Channel	Transition		Open Channel	Tank	Syphon	Tank	Open Channel	S. C.	Onen Channel	Transition		Open Charmer	Transition
	Length	(E)	6390	}	50	3	ķ	}		310		320		5380	٠	- !	5		006		4430	650	}	}	400	4900	
	Discharge	(m3/s)	22.75						·			13.00					12.50			-	11.00		o G	8	ţ	œ./ɔ	
	Sta	S.	d	0000		0676	0- 0400	0.0740) } +	0+ 9740	0+ 10050	0+ 10050	0+ 10400	0+ 10400	0+ 15780		0+ 15780	0+ 16820	0+ 16820	0+ 17720	0+ 17720	0+ 22150	01-22800	0. 22750	2000	0+ 23/20	0+28350

Tabla I.5 Cálculo Hidráulico para el Esquema de Trasvase "Obras de Tomaen la Presa La Esperanza-Guarango ($Q = 23 \text{ m}^3/\text{s} - 5 \text{ m}^3/\text{s}$)" (2/3)

Dimension of Structure																					•									
			EL. 21.66 Start		D=1,400					000						D=2,600		EL. 62.0	;	EL. X Start	EL. 56.80 (=61,4-4.6)				D=2,000				D=2,000	
EL. of Structure		21.826	21.66	19.660			66.863						65.737	-	64 209		62.009	62.000	:	61.400	56.795				55.080	: ! !	54.747			
Water Level Water Depth	Œ	2,000	2.000				2.000					1	5.000		080		2.080	2.000		2.000	2.100				2 100		2.100			
Water Level	(EL, m)	23.826	23.660	300 03	08,480		68.863			68.451		1	67.737		66.289		64.089	64.000	;	63.400	58.895			58.139	57.180		56.847	56.635		
V^2/2g	Ê	0.024		40.4	5		0.024			0.143		0	0.022		0.063		0.063	0.022	,	0.022	0.029			0.219	0.025		0.025	0.185		
Flow Velocity	V (m/s)	0,688		4696	290.		0.688			1.672	•		0.656		1 119	!	1.112	0.656		0.656	0.756			2.070	0.700			1.911		
Flow Area	A (m2)	8.000		1530	2		8.000			3.140		6	8.000		4 723	}	4.723	8.000	•	8.000	8.925			3.140	8,925			3.140	٠,	
	EL (m)	23.850	23.660	000	69.4KB	68.887	68.887	68 593	3	68.593	67.759		67.759	66.352	66.359		64.152	64.022	:	83.422	58.924	20 400	90.400	58.358	57.205		56.872	56.822	55.765	
Energy Line	Loss (m)) ()	0.000	0.543	0.000		0.636	0,000	690	7000	0.000	1.407		3	2.200	60,00	9	0.600	0	200	0.517	0.050		0.934	0.333	080		0.870	
	Slope	ł	000,6/1				000	000,5/1					1/3,000			1/3,000			1/3,000			1/3,000				1/3,000				
Type of	Structure		Grid Chamber	Pumping St.	Pipe	Head Tank		Open Charling	Tank	Suppose		Tank	Open Channel	Transition		Tunnel	Transition		Open Channel	One Guarana		Open Channel	Tank	;	Syphon	Open Channel 1/3,000	Tank	£	Syphon	
Length	Ē		200		300			8		,			4220			9			1800			1550			200	1000			5 2	
Discharge			0.00		5.00					7,00	ì		5.25			5.25						6.75		. 1	6.50	6.25			6.00	
Sta.	No.	00000	00062 +0	0+0	0 + 0	00+ 300		n+ 200	0+ 1180	0+ 1180	-	0+ 1730	0+ 1730	0. 5050	2000	0+ 5950	19550	2003	0+ 12550	0307	200	0+ 14650	0+ 16200		0+ 16200	0+ 16700	0.17700	2	0+ 17700	

Tabla I.5 Cálculo Hidráulico para el Esquema de Trasvase "PortaldeSalidaen la Presa La Esperanza- Guarango (Q = $23 \text{ m}^3/\text{s} - 5 \text{ m}^3/\text{s}$)" (3/3)

Dimension of Structure																							
												D=2,000											
Flow Velocity V^2/2g Water Level Water Depth EL of Structure	(EL. m)		53.691		53.371		53.371								52.525		51.990		52.187		51.850		51.850
Water Depth	Œ)		2.050		2.050		2.000								2.000		2.000		1.950		1.950		1.950
Water Level	(EL: m)		55,741		55.421		55.371				55.086				54.525		53.990		54.137		53.800		53.800
V^2/2g	(m)		0.024		0.024		0.024				0.143				0.020		0.219		0.022	٠	0.022		0.022
	V (m/s)		0.688		0.688		0.688				1.672				0.625				0.653		0.653		0.653
Flow Area	A (m2)		8.354		8.354		8.000				3.140				8.000				7.654		7.654		7.654
e e	EL (m)		55.765		55.445		55.395		55.229		55.229		54.545		54.545		54.208		54.158		53.822		53.822
Energy Line	Loss (m)	0.000		0.320		0.050		0.167		0.000		0.541		0.000		0.337		0.050		0.337		-	
	Slope			1/3.000				1/3,000								1/3,000				1/3,000			
Type of	Structure Slope Loss (m)	Tank		Open Channel 1/3,000		Transtion		Open Channel 1/3,000		Tank		Syphon		Tank		1010 Open Channel		Transition		1010 Open Channel 1/3,000		Outlet	
Length	· (m)			96				200				430				1010				1010			
Discharge Length	(m3/s) (m)	:		5.75				5.50								5.25			÷	5.00			
Sta.	No.	0+ 18240		0+ 18240		0+ 19200		0+ 19200		0+ 19700		0+ 19700		0+ 20130		0+ 20130		0+21140		0+ 21140		0+ 22150	

Tabla I.6 Cálculo Hidráulico para el Esquema de Trasvase "Presa La Esperanza- Guarango - Portoviejo (Q = $33 \text{ m}^3/\text{s} - 15 \text{ m}^3/\text{s})''$ (1/4)

•	3	Type of		Energy Line	9	Flow Area	Flow Velocity	V^2/2g	Water Level Water Depth	vater Depth =	El. of Structure		Dimension of Structure
(m3/s)	Ê	Structure	Slope	Loss (m)	E E	A (m2)	V (m/s)	Έ	(EL. m)	Œ	(EL. m)		
32.75		Outlet	ı		36.651	19,432	1.685	0.145	36.506	4.408	32,098	EL. 32.0	
35.00	6390	Open Channel	1/3.000	2.130	34 521			0 145	34.376	4 408	20 069		
) }			?		3	3		
	0	0	,	•	34.521	19.097	1,676	0.143	34.378	4.370	30.008		
	3	Open Channel	1/3,000	3	33.488			0.143	33.344	4.370	28,974		
		Transition		0.000									
	Č		6	000	33.486	19.097	1.676	0.143	33.344	4.370	28.974		
	20		000,07	580.0	33.404	19.097	1.676	0.143	33.261	4.370	28.891	-	·
		Transition		0,100	200	700.01	929 +	5	44 66	010	90		•
	310	Open Channel	1/3,000	0.103	5	50.6	2	}	2	200	6.03		
				0	33.201			0,143	33.058	4.370	28.688		
		¥ .		2000	33.201	6.602	1.742	0.155	33.046				
23.00	350	Syphon		0.308			!					D=2,900 * 2 Lanes	
		Tank		0000	32.738				:				
		! !			32,738	17.789	1.293	0.085	32.653	2.668	29.985		
	2380	Open Channel	1/5,000	1.076	04 660	47.790	1 200	000		o G	90		
		Transition		0.100	Š	3	2	3	3	7,000	6000		
		i			31,562	17.498	1.286	0.084	31,478	2.646	28.832		
22.50	500	Open Channel	1/5,000	0.208	21.054								
		Tank		0000	5								
	;				31,354	6.602	1.704	0.148	31.206				
-	86	Syphon		0,760	30.446							D≈2,900 * 2 Lanes	
		Tank		0.100									
3	4				30.346	16.616	1,264	0.081	30,264	2.578	27.686		
21.00	4 5	Open Channe	1/5,000	0.836	29.460	16.616	1.264	0.081	29.378	2.578	26.800	EL. X Start	
	650	DI-2		0.000							:		
19.50	95		1/5.000	0.190	25.661	15.718	1.241	0.079	25.582	2.507	23.075		
					25.471			6.00	25.392	2,507	22.885		
		ransition		0.100	25.371	15.262	1,229	0.077	25.294	2.47:	22.823		
18.75	4600	Open Channel	1/5,000	0.920		96.34	8	1	100		60		
		Transition		0.300	2	303.61	577'	200	+/0'+2	7.5	202.13		
	23.75 32.00 23.00 23.00 19.50 19.50		250 Open Channel Transition Transition Transition Transition Trank S380 Open Channel Transition Transition Tank S380 Open Channel Transition Tank S380 Open Channel Tank	3100 Open Channel 1/3.000 Transition 310 Open Channel 1/3.000 Transition Tank 350 Open Channel 1/3.000 Tank 350 Open Channel 1/5.000 Tank 4430 Open Channel 1/5.000 Tank 4430 Open Channel 1/5.000 Tank 4430 Open Channel 1/5.000 Tank 4600 Open Channel 1/5.000 Tank 4600 Open Channel 1/5.000 Transition Transition Transition Transition Transition Transition Transition	3100 Open Channel 1/3.000 Transition 310 Open Channel 1/3.000 Transition Tank 350 Open Channel 1/3.000 Tank 350 Open Channel 1/5.000 Tank 4430 Open Channel 1/5.000 Tank 4430 Open Channel 1/5.000 Tank 4430 Open Channel 1/5.000 Tank 4600 Open Channel 1/5.000 Tank 4600 Open Channel 1/5.000 Transition Transition Transition Transition Transition Transition Transition	350 Open Channel 1/3,000 2,130 Transition 0.000 350 Open Channel 1/3,000 1,033 Transition 0.000 350 Open Channel 1/3,000 0.083 Transition 0.100 1040 Open Channel 1/5,000 0.208 Transition 0.100 1040 Open Channel 1/5,000 0.208 Transition 0.100 4430 Open Channel 1/5,000 0.208 Transition 0.100 4430 Open Channel 1/5,000 0.208 Transition 0.100 4600 Open Channel 1/5,000 0.996 650 Di-2 0.000 950 Open Channel 1/5,000 0.996 650 Open Channel 1/5,000 0.998 Transition 0.100	6390 Open Channel 1/3,000 2,130 34,521 3100 Open Channel 1/3,000 1,033 34,488 Transition 0,000 33,488 Transition 0,000 33,488 Tank 0,000 33,201 Transition 0,100 33,201 Transition 0,100 31,562 Transition 0,100 31,562 Transition 0,100 31,354 Tank 0,000 31,562 Tank 0,000 31,562 Tank 0,000 31,354 Tank 0,000 32,738 Transition 0,100 36,445 Transition 0,300 32,4451 Transition 0,300	6390 Open Channel 173.000 2.130 34.521 19.097 3100 Open Channel 173.000 1.033 33.488 19.097 Transition 0.000 33.488 19.097 Transition 0.000 33.488 19.097 Transition 0.000 33.204 19.097 Transition 0.000 33.204 19.097 Transition 0.000 32.738 17.789 S380 Open Channel 175.000 1.076 31.562 17.498 Tank 0.000 32.738 17.789 Transition 0.100 33.344 6.602 900 Syphon 0.209 31.354 6.602 900 Syphon 0.760 0.209 31.354 Tank 0.000 32.738 17.789 Transition 0.100 2.208 31.354 Tank 0.000 32.738 17.789 Transition 0.100 2.208 31.562 17.498 Tank 0.000 32.738 17.789 Transition 0.100 2.208 31.552 17.498 Transition 0.100 2.208 31.552 17.498 Transition 0.100 2.208 15.718 950 Open Channel 175.000 0.190 25.471 Transition 0.100 25.4451 15.262	Couplet Coup	Coulet C	Sign Counter Counter	6390 Open Channel 1/5,000 1,033 33.48 15.77 1,676 0,143 36.56 4,408 4.370 3100 Open Channel 1/5,000 0,083 33.48 15.77 1,676 0,143 33.344 4.370 3100 Open Channel 1/5,000 0,083 32.48 17.789 1,299 0,085 32.68 17.789 1,299 0,085 32.68 17.789 1,299 0,085 31.269 1,1742 0,165 31.046 4.370 1,1040 Open Channel 1/5,000 0,083 31.354 6.602 1,704 0,148 31.206 1,149 31.206 1,1704 0,1109 0,100 31.354 1,1571 1,15.262 1,1704 0,1109 1,1204 0,100 0,100 1,1006 1,1500 0,100 1,1006 1,1500 0,100 1,1006 1,1500 0,100 1,1006 1,1500 0,100 1,1006 1,1500 0,100 1,1006 1,1500 0,100 1,1006 1,1500 0,100 1,1006 1,1500 0,100 1,1006 1,1500 0,100 1,1006 1,1500 0,100 1,1006 1,1500 0,100 1,1006 1,120	Collect

Tabla I.6 Cálculo Hidráulico para el Esquema de Trasvase "Presa La Esperanza- Guarango - Portoviejo (Q = $33 \text{ m}^3/\text{s} - 15 \text{ m}^3/\text{s}$)" (2/4)

15.50 950 Open Channel 1/5.000 0.190 23.961 13.2352 1.177 0.0070 15.00 0.190 23.961 15.250 880 Open Channel 1/3.000 0.233 71.284 8.549 1.784 0.100 71.825 8500 Tunnel 1/3.000 1.407 69.280 1.0793 1.413 0.102 15.25 8600 Tunnel 1/3.000 0.600 69.280 8.104 1.882 0.181 15.25 1800 Open Channel 1/3.000 0.600 69.280 8.104 1.882 0.181 15.25 1800 Open Channel 1/3.000 0.600 69.280 1.579 1.413 0.102 16.25 1900 Open Channel 1/3.000 0.600 69.280 1.579 1.413 0.102 16.25 1900 Open Channel 1/3.000 0.600 69.280 11.579 1.447 0.107 16.75 1550 Open Channel 1/3.000 0.600 69.389 9.075 1.818 0.162 16.25 1000 Open Channel 1/3.000 0.539 1.5787 11.319 1.437 0.107 16.25 1000 Open Channel 1/3.000 0.333 1.4319 1.437 0.105 16.25 1000 Open Channel 1/3.000 0.333	Sta.	Discharge Length (m3/s) (m)	Length (m)	Typs of Structure	Slope	Energy Line Loss (m)		a a	Flow Velocity V (m/s)	_	Water Lev (EL. m)	€ (e)	eł Wa	ᇜ
Fumping St. 0,000 1,577 10,925 1,419 0,100 1,577 10,925 1,419 0,100 1,577 10,925 1,419 0,100 1,577 10,925 1,419 0,100 1,525 550 5yphon 1,43,000 1,407 69,280 1,784 1,882 0,102 1,525 1,800 0,000 1,407 69,280 1,413 0,102 1,525 1,800 0,000 0,000 0,100 0,000 0,100 1,525 1,800 0,000 0,100 0,100 0,100 0,100 0,100 1,407 1,413 0,102 1,413 1,413 0,102 1,413 1,413 0,102 1,413 1,413 1,413 1,413 1,413 1,413 1,415	0+ 29300	15.50	950	Open Channel	1/5.000	0.190	24.151	13.232	1.171	0.070	24.081		2301	
15.00 300 Pipe 0.576 72.153 3.462 2.166 0.233 15.50 980 Open Channel 1/3,000 0.293 71.284 8.549 1.784 0.103 15.25 550 Syphon 0.000 70.896 10.793 1.413 0.102 15.25 6600 Tunnel 1/3,000 1.407 69.280 1.413 0.102 15.25 6600 Tunnel 1/1,500 4.400 69.280 10.793 1.413 0.102 15.25 1300 Open Channel 1/3,000 0.600 64.180 10.793 1.413 0.102 16.75 1550 Open Channel 1/3,000 0.507 64.180 10.793 1.413 0.102 16.75 1550 Open Channel 1/3,000 0.517 88.488 10.793 1.413 0.102 16.50 Syphon 0.333				Grid Chamber Pumping St.	٠.	0000	23.961			0.000	23.961		2.301	2.301 21.660 19.660
15.50 980 Open Channel 1/3,000 0.293 71.577 10.925 1.419 0.103 15.25 550 Syphon 0.200 71.284 8.549 1.784 0.162 15.25 4220 Open Channel 1/3,000 1.407 69.280 1.413 0.102 15.25 4220 Open Channel 1/1,500 4.400 69.280 8.104 1.882 0.181 15.25 6600 Tunnel 1/1,500 4.400 69.280 8.104 1.882 0.181 15.25 1800 Open Channel 1/1,500 64.780 10.793 1.413 0.102 15.25 1800 Open Channel 1/3,000 0.600 64.780 10.793 1.413 0.102 16.75 1550 Open Channel 1/3,000 0.517 58.488 1.617 0.102 16.50 Syphon 0.396 57.874 11.319 1.437 0.105 16.25 16.25 11.319		15.00	300	Pipe .		9/5/0	72.153	3.462	2.166	0.239	71.913		:	:
15.50 980 Open Channel 1/3,000 0.293 71.574 10.925 1.419 0.103 71.474 Tank 0.000 71.284 8.549 1.784 0.162 71.121 15.25 550 Syphon 0.000 70.686 10.793 1.413 0.102 70.584 15.25 6500 Tunnel 1/3,000 1.407 69.280 8.104 1.882 0.181 69.089 15.25 6500 Tunnel 1/3,000 0.500 69.280 10.793 1.413 0.102 64.678 15.25 1900 Open Channel 1/3,000 0.517 88.488 9.075 1.818 0.169 59.270 16.50 500 Syphon 0.333 57.374 11.319 1.436 0.105 57.769	000 +0			Head Tank		0.000	71.577				. 1	ij	;	
15.25 550 Syphon 0.435 70.686 10.794 0.162 71.121 70.686 10.794 0.162 71.121 70.686 10.793 1.413 0.102 70.584 15.25 6600 Tunnel 1/3.000 0.600 69.280 8.104 1.882 0.181 69.099 15.25 6600 Tunnel 1/3.000 0.600 64.880 8.104 1.882 0.181 69.099 15.25 1800 Open Channel 1/3.000 0.600 64.180 10.793 1.413 0.102 64.678 16.75 1550 Open Channel 1/3.000 0.517 58.488 70.75 1.818 0.169 59.275 16.50 500 Syphon 0.333 77.374 11.319 1.436 0.105 57.759	00+ 300	15.50	980	Open Channel	1/3,000	0.293	71.577	10.925	1,419	0.103	71.474	2.090	စ္က	30 69.384
15.25 550 Syphon 0.435 77.284 8.549 1.784 0.162 71.121 15.25 Tank 0.000 70.686 10.793 1.413 0.102 70.584 15.25 4220 Open Channel 1/3.000 1.407 69.280 8.104 1.882 0.181 69.089 15.25 6600 Tunnel 1/1.500 4.400 64.880 8.104 1.882 0.181 69.089 15.25 1800 Open Channel 1/3.000 0.600 64.180 10.793 1.413 0.102 64.678 16.75 1550 Open Channel 1/3.000 0.507 64.180 10.793 1.447 0.107 58.896 16.50 500 Syphon 0.050 58.488 9.075 1.818 0.105 57.769 16.55 1000 Open Channel 1/3.000 0.533 57.374 11.319 1.436 0.105 57.769	0+ 1180			Tank		0000	71.284							
15.25 4220 Open Channel 1/3,000 1.407 69,280 1.413 0.102 70,584 15.25 66.00 Transition 0.000 69,280 8.104 1.882 0.181 69,099 15.25 66.00 Tunnel 1/1,500 4,400 64,380 8.104 1.882 0.181 69,099 15.25 1800 Open Channel 1/3,000 0.600 64,780 10,793 1,413 0.102 64,578 16.75 1550 Open Channel 1/3,000 0.600 64,180 10,793 1,413 0.102 64,578 16.75 1550 Open Channel 1/3,000 0.507 59,006 11,579 1,447 0.107 58,898 16.50 500 Syphon 0.505 58,438 9,075 1,818 0.109 57,769 16.25 1000 Open Channel 1/3,000 0.333 57,874 11,319 1,436 0.105 57,769	_	15.25	550	Syphon		0.435	71.284	8.549	1.784	0.162	71.121			
15.25 4220 Open Channel 1/3,000 1.407 70.686 10.793 1.413 0.102 70.584 15.25 6600 Transition 0.000 69.280 8.104 1.882 0.181 69.089 15.25 6600 Tunnel 1/1,500 4.400 69.280 8.104 1.882 0.181 69.089 15.25 1500 Transition 0.100 64.880 8.104 1.882 0.181 64.699 15.25 1800 Open Channel 1/3.000 0.600 64.180 10.793 1.413 0.102 64.678 16.75 1550 Open Channel 1/3.000 0.517 58.488 9.075 1.447 0.107 58.898 16.50 Syphon 0.050 58.438 9.075 1.818 0.169 57.769 16.25 1000 Open Channel 1/3.000 0.333 57.374 11.319 1.436 0.105 57.769				Tank		0000	70.686							
15.25 6600 Tunnel 1/1,500 4,400 69.280 8.104 1.882 0.181 69.099 15.25 6600 Tunnel 1/1,500 4,400 64.880 8.104 1.882 0.181 69.099 15.25 1500 Open Channel 1/3,000 0.500 64.180 10.793 1.413 0.102 64.578 16.75 1550 Open Channel 1/3,000 0.517 58.488 16.50 500 Syphon 0.333 57.374 11.319 1.436 0.105 57.769	0+ 1730	15.25	4220	Open Channel	1/3,000	1,407	70.686	10.793	1.413	0.102	70.584	2.078		68.507
15.25 6600 Tunnel 1/1,500 4,400 64,880 8,104 1,882 0,181 69,099 15.25 1800 Open Channel 1/3,000 0,517 58,488 16.25 500 Syphon Channel 1/3,000 0,333 16.25 1000 Open Channel 1/3,000 0,333 16.25 1000 Open Channel 1/3,000 0,333 16.25 1000 Open Channel 1/3,000 0,333				Transition		0.000	69.280							
15.25 1800 Open Channel 1/3.000 6.5178 64.880 8.104 1.882 0.181 64.699 15.25 1800 Open Channel 1/3.000 0.600 64.180 10.793 1.413 0.102 64.678 16.75 1550 Open Channel 1/3.000 0.517 58.898 16.50 500 Syphon 0.398 57.874 11.319 1.436 0.105 57.769	_	. 4	0088	Trinos	, t	9	69.280	8.104	1,882	0.181	660.69	2,720		66.379
15.25 1800 Open Channel 1/3.000 0.500 64.780 10.793 1.413 0.102 64.578 16.75 18.25 1800 Open Channel 1/3.000 0.500 64.180 10.793 1.413 0.102 64.578 16.75 1550 Dam Guarango 0.000 64.180 10.793 1.447 0.107 58.898 16.75 1550 Open Channel 1/3.000 0.517 58.488 9.075 1.818 0.169 58.270 16.50 Syphon 0.396 57.374 11.319 1.436 0.105 57.759	. !	2	3		2) † †	64.880	8.104	1.882	0.181	64.699	2.720	_	61.979
15.25 1800 Open Channel 1/3.000 0.600 64,180 10,793 1.413 0.102 64,078 300 Dam Guarango 0.000 59,005 11,579 1.447 0.107 58,898 16,75 1550 Open Channel 1/3,000 0.517 58,488 9,075 1.818 0.169 58,270 16,50 500 Syphon 0.399 57,874 11,319 1.436 0.105 57,769 16,25 1000 Open Channel 1/3,000 0.333	20			Transition		0.100	64 780	10 793	1.413	910	64.678	870.6		62 600
300 Dam Guarango 0,000 10,793 1,413 0,102 64,078 16,75 1550 Open Channel 1/3,000 0,517 58,489 16.50 500 Syphon 0,396 57,874 11,319 1,436 0,105 57,769 16,25 1000 Open Channel 1/3,000 0,333	0+ 12550		1800		1/3,000	0.600		3	i i					
16.75 1550 Open Channel 1/3,000 0,517 58.488 Tank 0,050 58.438 9,075 1,818 0,169 58.270 16.25 1000 Open Channel 1/3,000 0,333	Q		300	Dam Guarando		000	64.180	10.793	1.413	0.102	64.078	2.078		62.630
16.50 500 Syphon 0.333 57.874 11.319 1.436 0.105 57.769	5	45.45	1550		000 0/4	2 1	29.005	11,579	1.447	0.107	58.898	2.152		56.746
16.50 500 Syphon 0.396 57.374 11.319 1.436 0.105 57.769	3	9	}		200		58.488							
16.50 500 Syphon 0.396 57.874 11.319 1.436 0.105 57.769 16.25 1000 Open Channel 1/3,000 0.333	3			žė.		0.050	58.438	9.075	1.818	0.169	58.270			
16.25 1000 Open Channel 1/3,000 0.333	õ	16.50	200	Syphon		0.396	57.874	11,319	1.436	0.105	57.769	2.128		55.641
	0	16.25	500	Open Channel	1/3,000	0.339			:					
	į						57.491	9.075	1.763	0.159	57.332			
57.491 9.075 1.763 0.159	0+ 17700	16.00	3	Syphon		0.404	56,928							

Cálculo Hidráulico para el Esquema de Trasvase "Presa La Esperanza- Guarango - Portoviejo (Q = 33 m $^3/s$ - 15 m $^3/s$)" ($^3/4$) Tabla I.6

Sta.	Discharge Length	Length	Type of		Energy Line		Flow Area	Flow Velocity	V^22g	Water Level	Water Depth	Flow Area Flow Velocity V^22g Water Level Water Depth EL. of Structure		Dimension of Structure
ó	(m3/s)	Ê	Structure	Stope Loss	Loss (m)	EL (m)	A (m2)	V (m/s)	(m)	(EL. m)	(m)	(EL. m)		
0+ 18240			Tank		0.600									
٠						56.928	11.057	1.424	0.104	56.825	2.103	27.722		
0+ 18240	15.75	96	Open Channel 1/3,000	1/3,000	0.320									
						56,608	11.057	1.424	0.104	56.505	2.13	54.402		
0+ 19200			Transition		0.050									
						56.558	10,925	1.419	0.103	56.456	5.090	54.365		
0+ 19200	15.50	200	Open Channel 1/3,000	1/3,80	0.167									
						56,392	:							
0+ 19700			Tank		0000									
						56.392	8.549	1.784	0.162	56.229				
0+ 19700		65	Syphon		0.340						٠.		D=3,300	
			:			55,889						-		
0+ 20130			Tank		0.000									
:			:			55.389	10,660	1.407	0.101	55,788	2.065	53,723		
0+ 20130	15.25	1010	1010 Open Channel 1/3,000	1/3,000	0.337								-	
			•			55.553			0.169	55.384	2.065	53,319		
0+ 21140			Transition		0.050	٠.								
٠.						55.503	10,660	1.407	0.101	55.402	2.065	53,337		
0+ 21140	15.00	1010	1010 Open Channel	1/3,000	0.337									
						55.166	10.660	1,407	0,101	55.065	2.065	23.000		
0+ 22150														
						55.166	10.660	1.407	0.101	55.065	2.065	\$3,000	EL X Start	

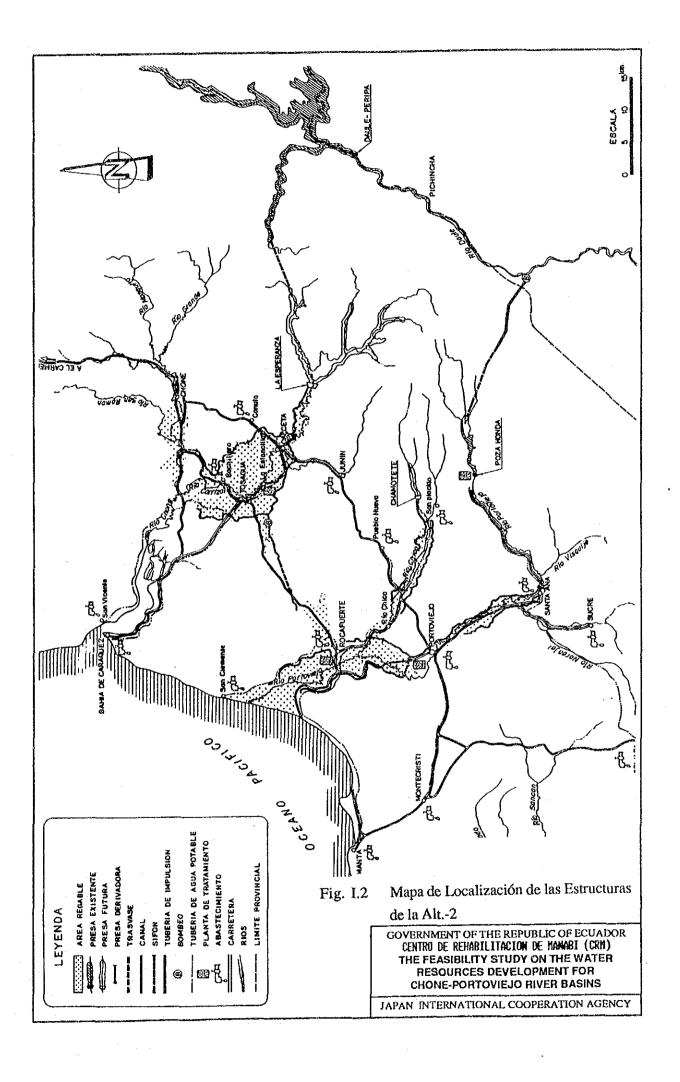
Tabla I.6 Cálculo Hidráulico para el Esquema de Trasvase "Presa La Esperanza-Guarango - Portoviejo (Q = $33 \text{ m}^3/\text{s} - 15 \text{ m}^3/\text{s}$)" (4/4)

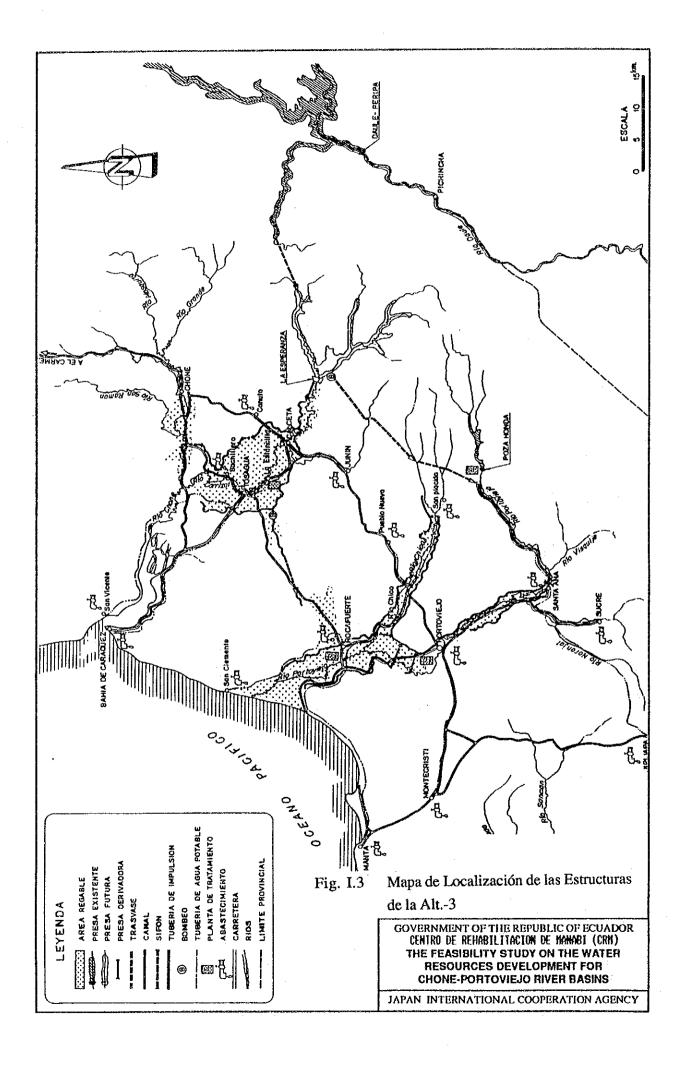
	Dimension of Structure					:																													
		EL.53.0 D=2.900					D=2.900								D=2,000				D=2.000																
	Water Level Water Depth EL. of Structure (EL. m) (m)	52.998		51,145					50.550	977	e e	50.730	50.094			49.031		48.563			45.854	44.377		43.821	43.795	44.508	44.060	390 67			43.988	43.214	43.132	42.300	
٠	Water Depth (m)	2.065		1,945			•		1.945		į	1,570	1.570			1.570		1.570			1.527	1.527		2.052	2.052	1.288	1.288	2.052	j		1.283	1.288	1,288	2,000	
	Water Level (EL. m)	55.063		53.090		1	52.777		52,495	0 0 0 1	25.25	52.300	51.664	51.544	50.601	50.601		50.133	49.994		47.382	45.904		45.873	45.847	45.796	45.348	45.317	2		45.276	44.502	44.420	44.300	
1	y V*2/2g (m)	0.115		0.056			0.115		0.056	9	3	0.042	0.042	0.162	0.162	0.042	!	٠	0.140		0.041			0.03‡	0.031	0.032		0.033			0.032		0.032	0.032	
	Flow Velocity V (m/s)	1.500		1.047			1.500		1.047		,	0.908	906.0	1.783	1.783	906.0			1,656		0.892		į	0.784	0.784	0.796		0.784			0.796		0.796	0,796	
	Flow Area A (m2)	6.602		9.453			5,602		9.453		:	6.166	6.166	3.140	3.140	6.166			3,140	٠	5.833			4,209	4.209	4,147		4 209			4.147		4.147		
	e EL (m)	55.178	53.196	53,146	52.892		52.832	52.550	52.550	000	200	52.342	51.706	51,706	50,693	50.643		30.135	50.133	47.422	47 422	45.904		45.904	45.878	45.828	45.348	45.348		45.308	45.308	44.502	44.452	44.332	
	Energy Line Loss (m)	1.867	0.050	900	\$	0000	0.227	8	3	0.158	0.050	0.636	000		0.851	0.050	0.5:0	0.000	2.571		0.000	1,518	0.000	0.026	900	8	0.480	0.000	0.040	0.00	0.806		0.050	0. 120	
	Siope			9	000'6/1				٠	1/5,000		1/5,000					1/5,000				:	1/5,000		1/5,000	-		1/5,000		1/5,000		1/5.000			1/5,900	
	Type of Structure	Syphon	Tank	000 31 - Managad Capago 0700	Open Creanite	Tank	Syphon	Tool	£	Open Channel	Diversion Tank	Open Channel	Tank	<u> </u>	Syphon	Tank	2550 Open Channel 1/5,000	Tank	Syphon	· · 1	Tank	Open Channel 1/5,000	Tank	Culvert	Took	설 당 -	Open Channel	Tank	Culvert	Tank	Open Channel 1/5.000		lank	Open Channel	Tank
٠.	Length (m)	2800		222			340			38		3180			9		2550		2080			7590		130			2400		200		4030			8	
	Discharge (m3/s)	9:30						2				5.60							5.20		: •			330											
	Sta. No.	0 +0	0+ 2800	02.04	0,40,0	0+ 4070	0+ 4410	4	2 1 1	0+ 5200	0+ 5200	0+ 8380	O. RORD		0968 +0	0+ 8980	0+ 11530	0+ 11530	0+ 13610		0+ 13610	0+ 21200	0+21200	0+ 21330	0.0499	000012140	0+ 23730	0+ 23730	0+ 23930	0+ 23830	0+ 27960		0+27960	0+ 28560	0+ 28560

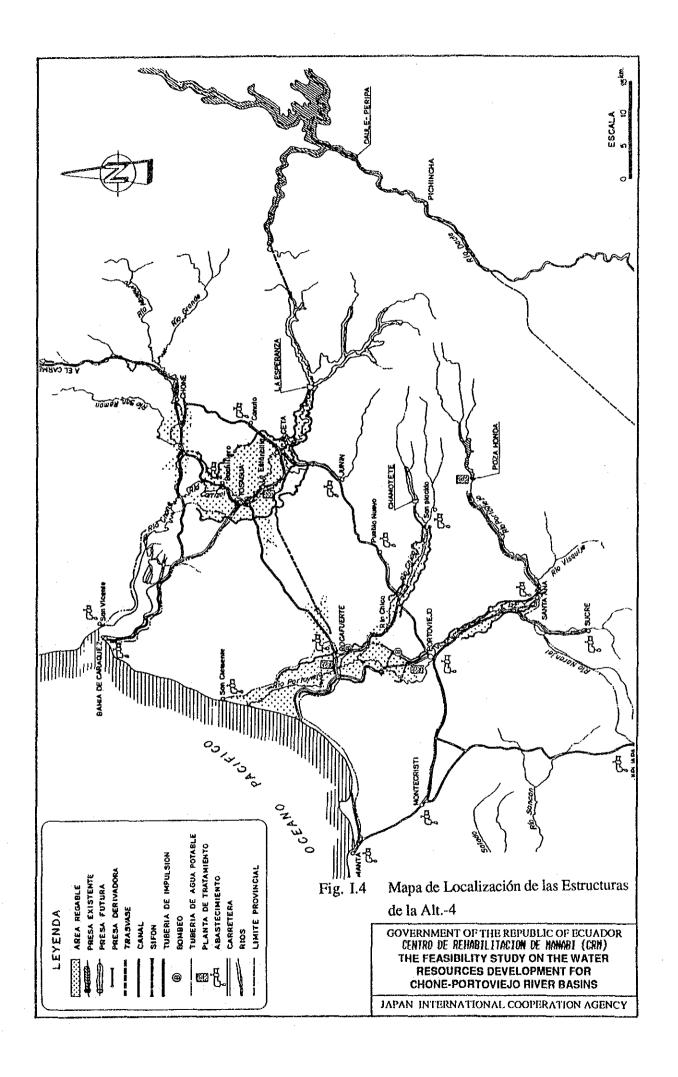
Tabla I.7 Cálculo Hidráulico para el Esquema de Trasvase "Guarango - Rocafuerte ($Q = 3 \text{ m}^3/\text{s}$)"

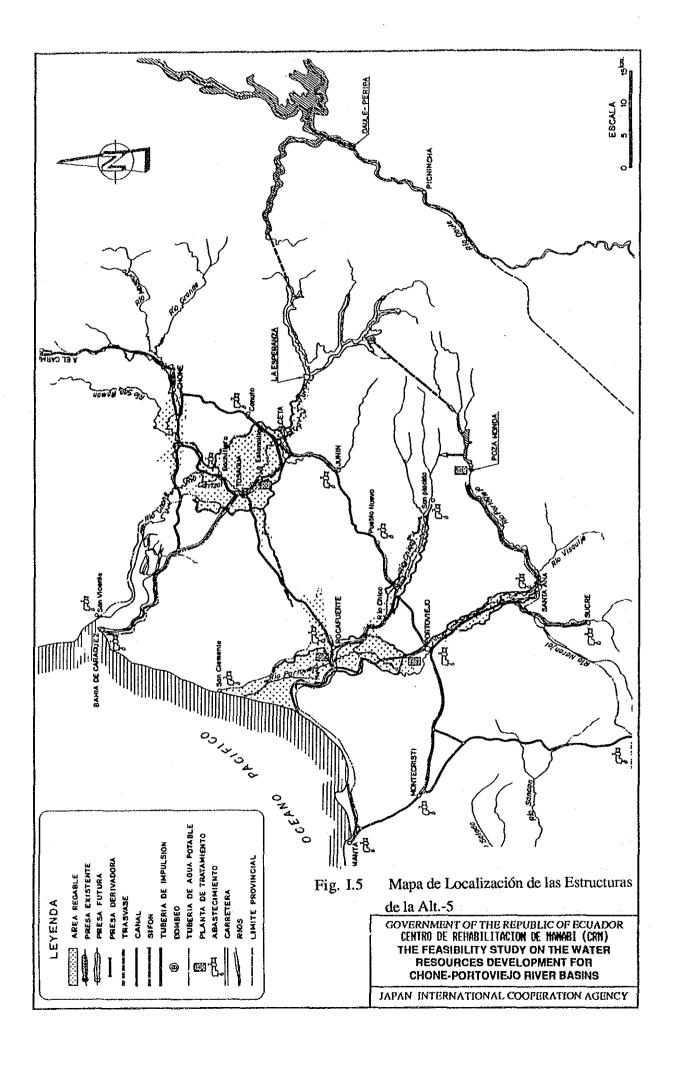
Sta.	Discharge Length	Length	Type of		Energy Line	æ	Flow Area	Flow Velocity	V^2/2g	Water Level	Water Depth	Flow Area Flow Velocity V^2/2g Water Level Water Depth EL of Structure		Dimension of Structure	
o O	(m3/s)	Ê	Structure		Slope Loss (m) EL (m) A	EL (m)	A (m2)	V (m/s)	Ê	(EL. m)	Ē)	(EL m)			
						51.812	1.275	2.353	0,282	51.529	1.129	50.400	EL. 50.4		:
o †	3.00	000	300 Open Channel 1/3,000	1/3.000	0.100	£1 712	1 275	2 253	0.080	51.420	120	50 300			
000 +0					0.100	2	<u>,</u>	200.3	207:0	671	671	00000			
0+ 300		300	Grounds	1/13	23.077										
						28.269			0.282	27.987	1.129	26.858			
009 to			Tank		0000			٠							
						28.269	1,766	1.699	0.147	28.122				-	
009 +0		3650	Syphon		6,614								D=1,500		
						21.508									
0+ 4250			Tank		0.000										
						21,508	3.188	0.941	0.045	21.463	1.129	20.333			
0+ 4250		1000	Open Channel	1/3,000	0.333										
	s.		•			21.174	3.188	0.941	0.045	21.129	1.129	20.000			
0+ 5250			W.T.P		000'0										
						21.174	3,188	0,941	0.045	21,129	1.129	20.000			

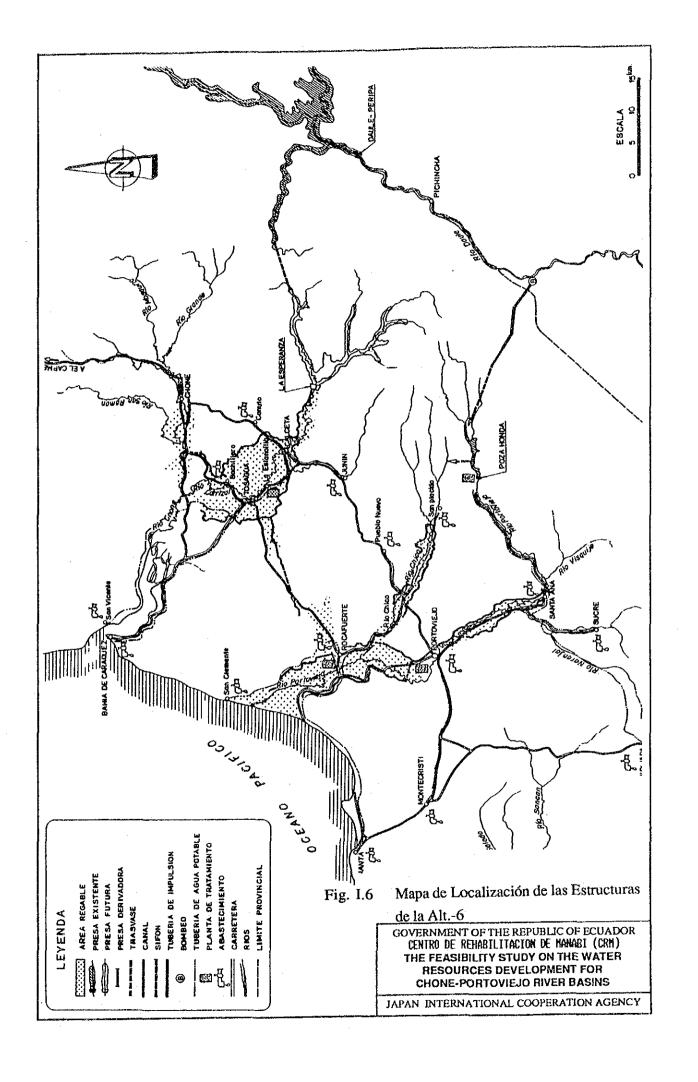

Tablal.8 Características Generales de las Estaciones de Bombeo


Item	Unit	Severino	Severino	Altamira	Amarillos	Amarillos
Total Discharge	m3/s	0.6	10.0	12.0	5.0	15.0
Nos.of Pump Planned	Nos.	3	5 0	S	2	4
Nos. of Standby Pump	Nos.		-	. 1		6mm4
Discharge of 1 Pump	m3/min	108	120			225
	m3/s	8.1	2.0	2.4	2.5	3.8
Length of Pipeline	E	250	250			300
Lane		2	2	2	2	2
Diameter of Pipeline	mm	1,800	1,900	2,000	1,400	2,100
Flow Velocity of Pipeline	s/w	2.13	2.12	2.29	1.62	2.17
Total Head	E	75	75	57	49	52
Type of Pump		Double Suction	Double Suction Double Suction	Double Suction	Double Suction Double Suction Double Suction	Double Suction
		Volute Type	Volute Type	Volute Type	Volute Type	Volute Type
DS DS	mm	006				1,200
PQ	mm	009	009	÷	700	800
Motor	Κw	2,650	2	2,750	2,850	2,550
	Pole	12	12	12	12	7
	Hz	9	9	9	96	99


Tabla I.9 Cálculo Hidráulico para el Esquema de Trasvase "Presa La Esperanza (Severino) - Presa Poza Honda (Q = 16 m³/s)"


j	3				1		PER ADE	2						
ž	(m3/e) (m)	Ē	Shocture	Sope	Loss (m) E	EL (m)	А(m2)	Λ (π/ε)	Œ	(EL.m)	(m)	A(m2) V(m/ε) (m) (EL.m) (m) (EL.m)		
6	4	Š				114,362	3.462	2.311	0.272	114.090			8	
3 5	9 <u>.</u> 8	888) (SK)	113,462		0.000	0.000				0000	
		3			3	113.362	11.786	1.358	0.094	113.268	2.170	111,098		
0 + 270		210	Open Channel	13,000 10,000	0.070	113,292			0.094	113.198	2.170	111.028		
0 + 480			- ark		0.00	113 292	8.230	1944	0.193	113.100		-		
0 + 480		នខ្ម	Syphon		0.043	93000		•					8≖H≖2.9 m	
0 + 535		(20)	Tank		0.000	000.51	,	i	į			,		
0 + 535		8	Open Charnel	1/3,000	0.063	113.056	11.786	1.358	0.094	112.962	2.170	110,792	B=h=2.2 m	
36			- 1- h		8	112.993			0.094	112.899	2.170	110.729		
					900	112,993	8.230	1,944	0.193	112,800				
0 + 725		210 225	Syphon		0.157	112 643							B≖H≖2.9 m	
0 + 935		Ì	Tank		0.000	2 6	0	950	Š	070	60,00	000		
0 + 835		2030	Open Channel	1/3,000	0.677	1,2,043	90/:	OCC.	5	64.5	2	8/2/01	8-h-2.2 m	
. 4.965				,	000	111,966			0.094	111,872	2.170	109,702		-
3		;				111.966	8.230	1,944	0.193	111.773				
2 + 365		325	Syphon		/22.0	111,546							b=H=2,9 m	
3 + 275			Tank		0.00	111.546	11,786	1.358	0.094	111,452	2.170	109.282		
3 + 275		1645	Open Channel	1/3,000	0.548								B-h-2.2 m	
026			Tank		000	110,998			0.094	110.904	2.170	108.734		
į		į			•	110,998	8.230	1.944	0.193	110.805			:	
• 920 •		ଓ ଓ	oyphon		0.038	110.766							8-н-2.9 п	
0.00			Tank	٠,	0.00	110 766	14 796	1 252	0.094	110 672	071.0	108 509		
026 +		240	Open Channel	1/3,000	0.080		3	3				2000	B=h=2.2 m	
5 + 210			Tank		0000	110.686			0.094	110.592	2.170	108.422		
		. 4	4.0		8	110.686	8.230	1,944	0.193	110.494				
		3 <u>3</u>	ey prion		9	110,459				٠.	-		E1 677#E40	
5 + 255			Tank		0.000	110.459	11 786	358	490	110.365	2.170	108 195		
5 + 255		280	Open Channel	1/3,000	0.197		}						B=h=2.2 m	
5 + 845			Tank		0.000	710.262	•		\$	10.168	2.1.2	R56'/01		
5 + 845		185	Sychon		0.132	110.262	8,230	1944	0.193	110.069			B.H	
		(189)	Took	•	8	109.937								
		Ş	ē .	4	3 6	109.937	11,786	1,358	0.094	109.843	2.170	107.673		
3 .		2	Cheri Channel	90,57	2 .	109.767			0.094	109.673	2.170	107,503	B=0=2.2 m	
6 + 540			Transition		0.000	100 767	6 947	908	791.0	109 500	2 BOO	106 800		-
6 + 540		10650	Tunnet	1/1,500	7.100				5			200000	D-3,500	
17 + 190			Outlet		0.000	102.667	8.8 4.	508.	0.16/	102.500	2,800	98,700		
						102,667	8 847	808	0.467	200 800	COR	50,00		


FIGURAS



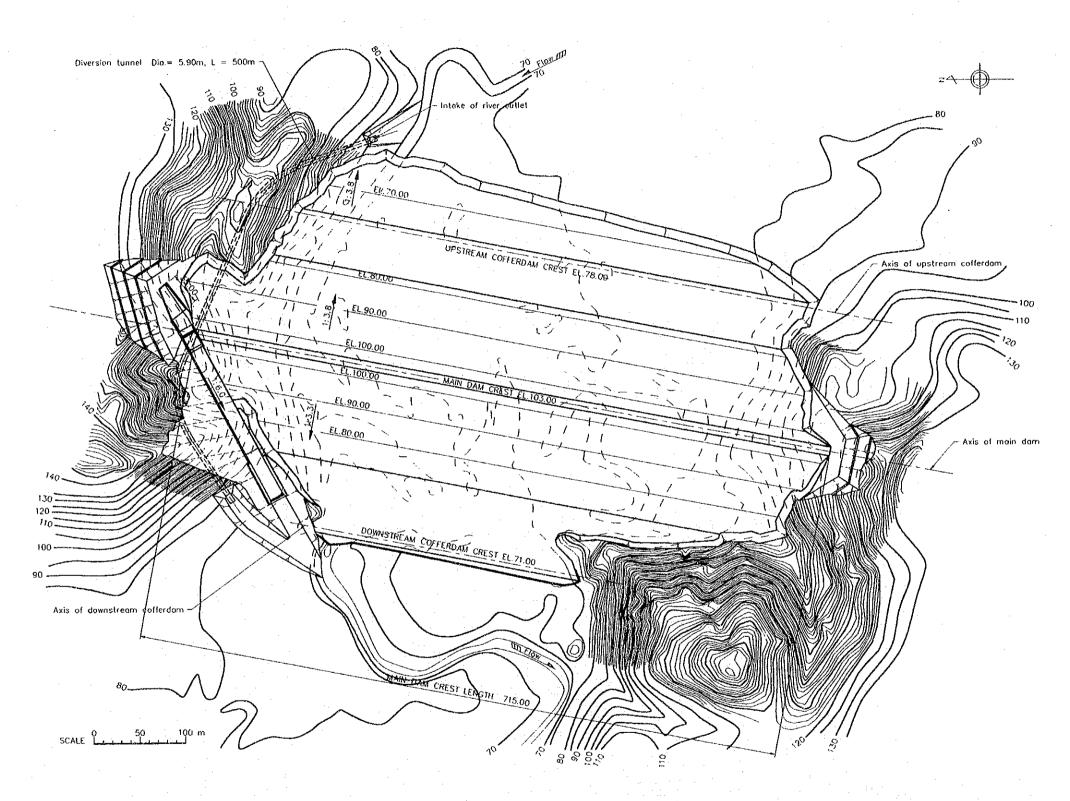
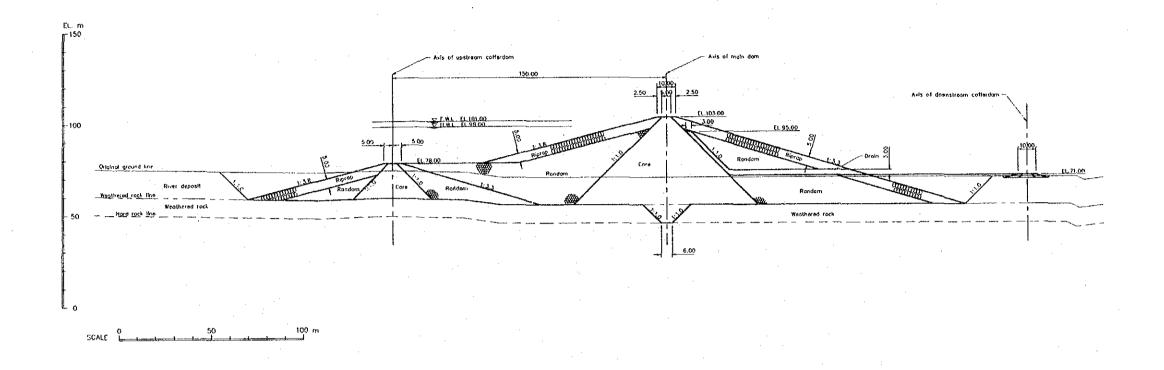
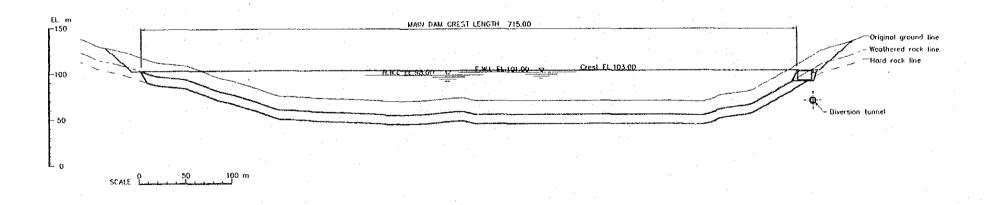
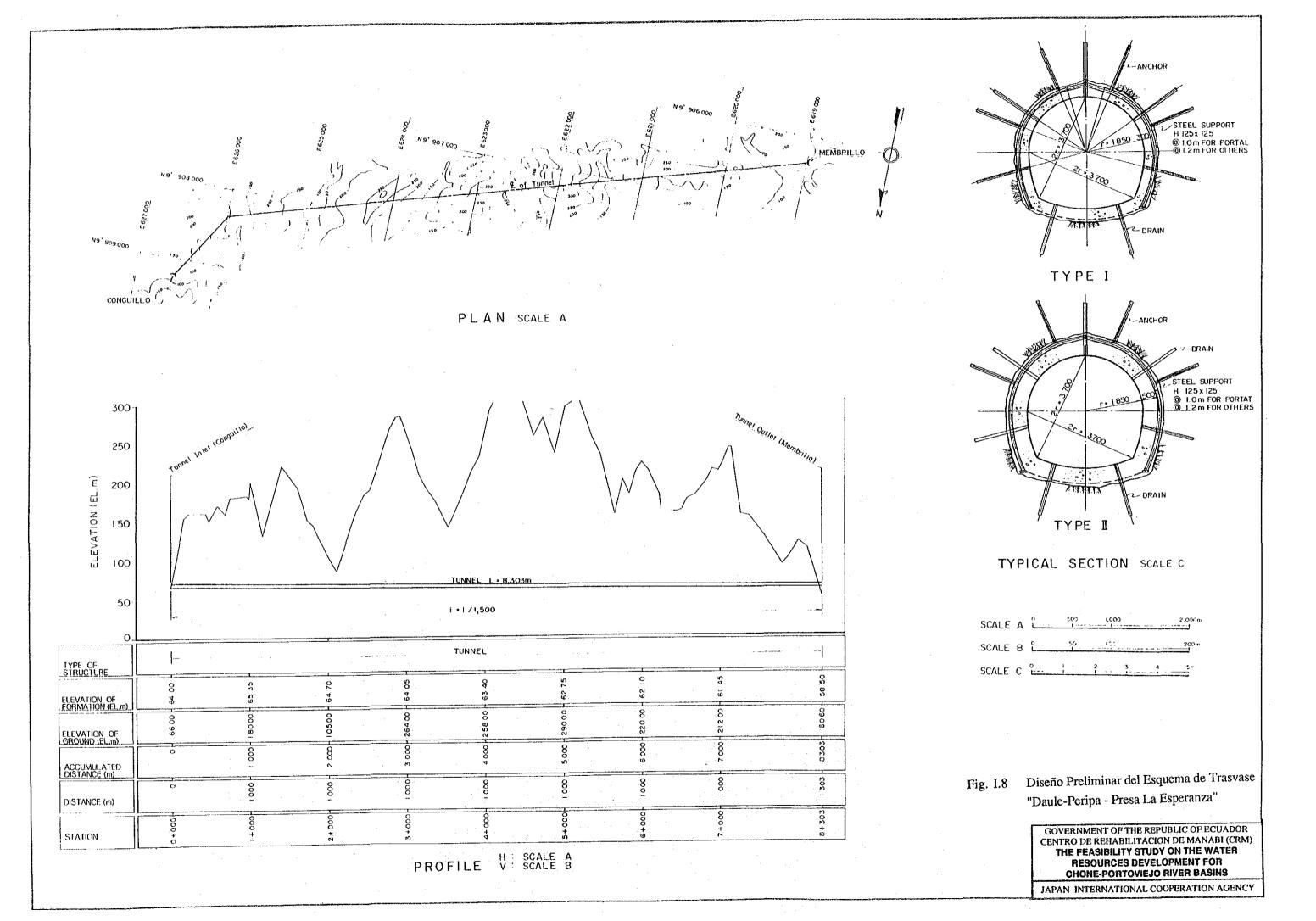
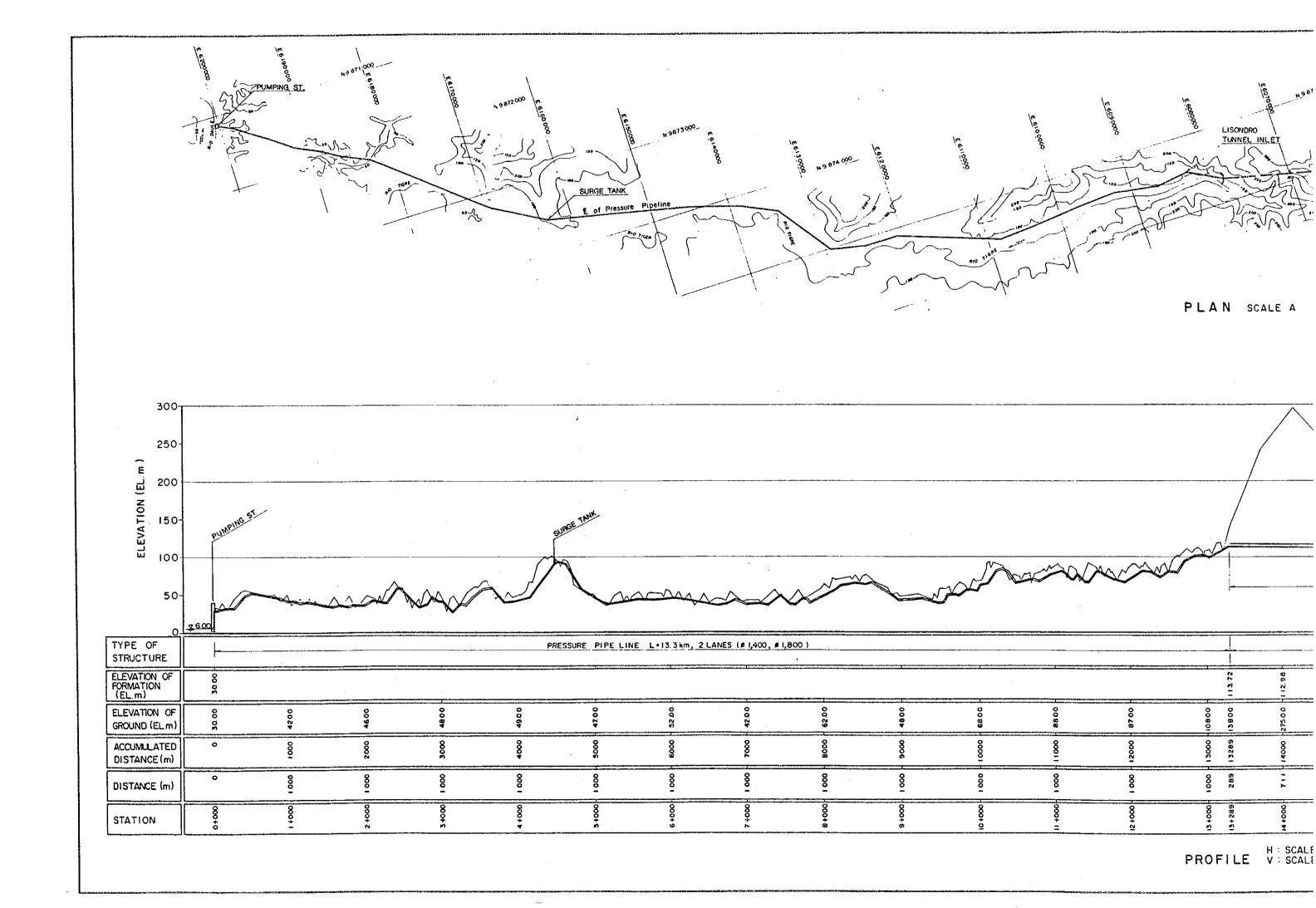
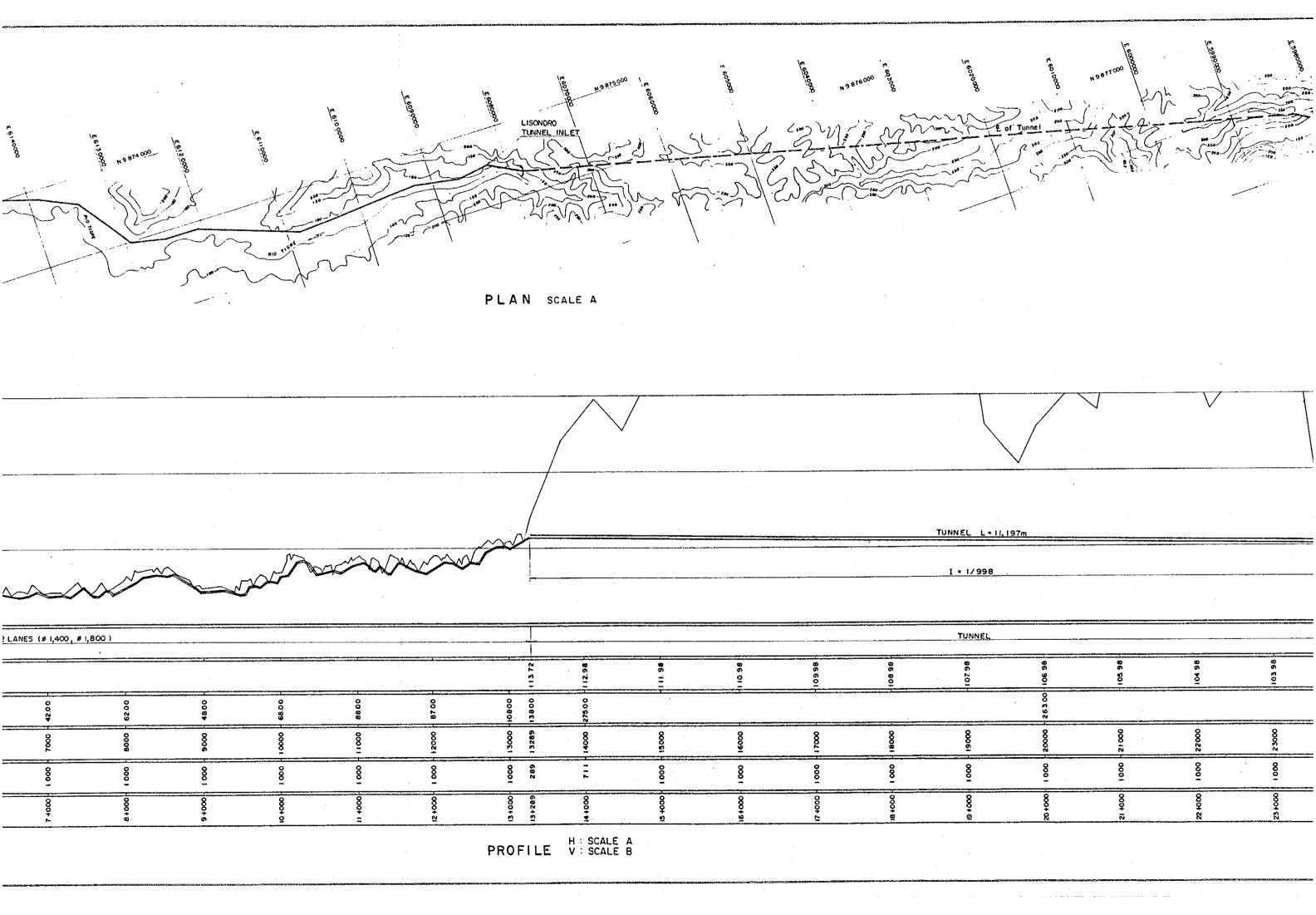



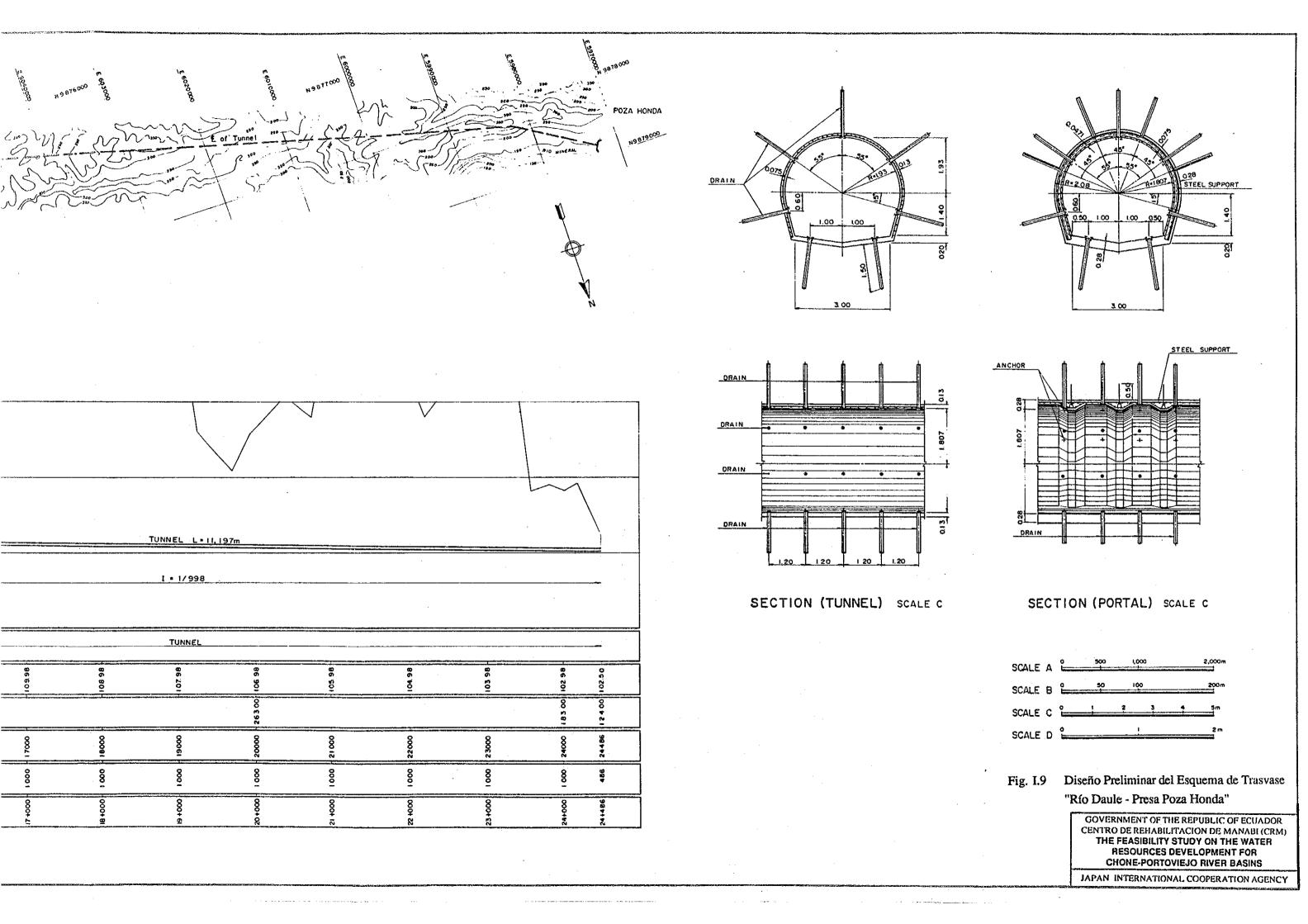
Fig. I.7 Diseño Preliminar de la Presa Chirijos (1/2)

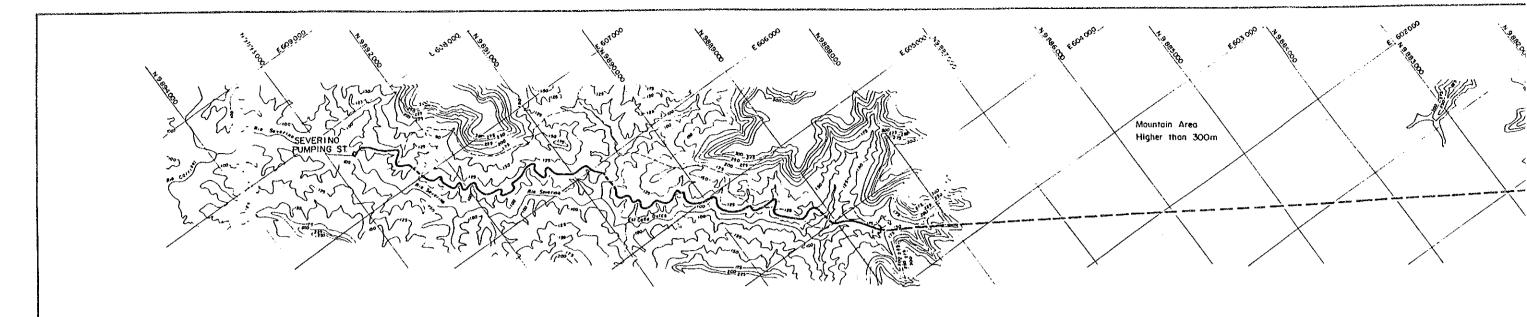
GOVERNMENT OF THE REPUBLIC OF ECUADOR CENTRO DE REHABILITACION DE MANABI (CRM)
THE FEASIBILITY STUDY ON THE WATER RESOURCES DEVELOPMENT FOR CHONE-PORTOVIEJO RIVER BASINS

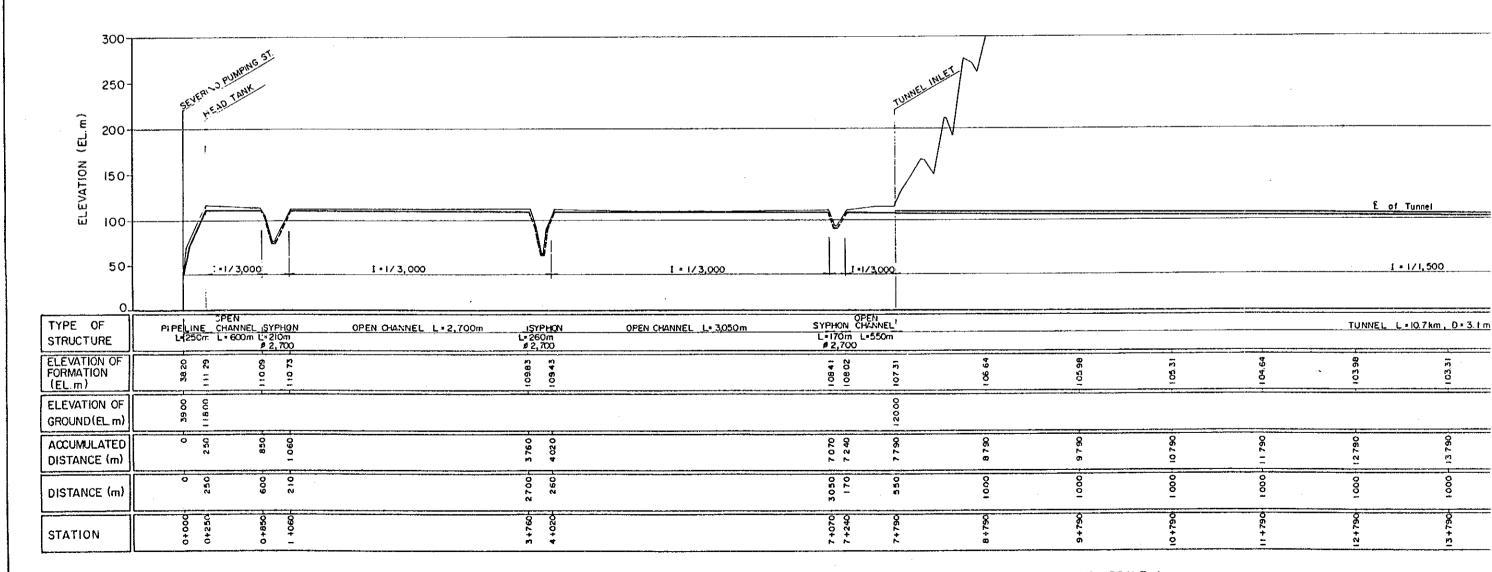
JAPAN INTERNATIONAL COOPERATION AGENCY

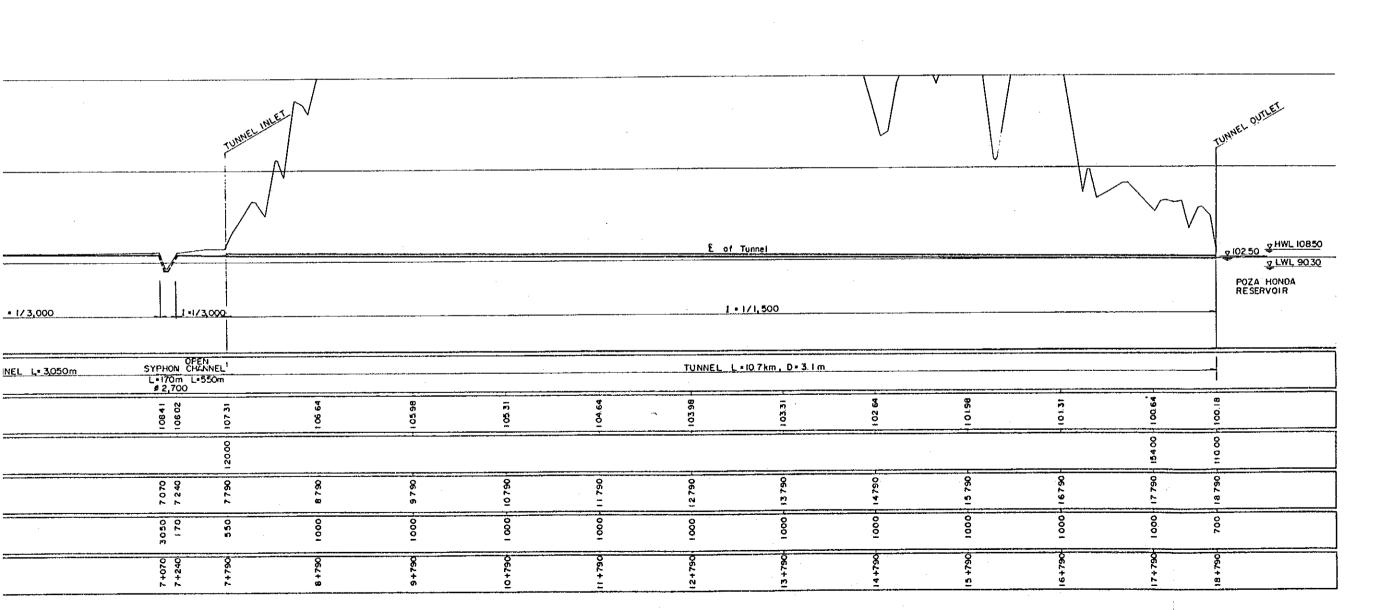

Fig. I.7 Diseño Preliminar de la Presa Chirijos (2/2)


GOVERNMENT OF THE REPUBLIC OF ECUADOR CENTRO DE REHABILITACION DE MANABI (CRM)
THE FEASIBILITY STUDY ON THE WATER RESOURCES DEVELOPMENT FOR CHONE-PORTOVIEJO RIVER BASINS


JAPAN INTERNATIONAL COOPERATION AGENCY



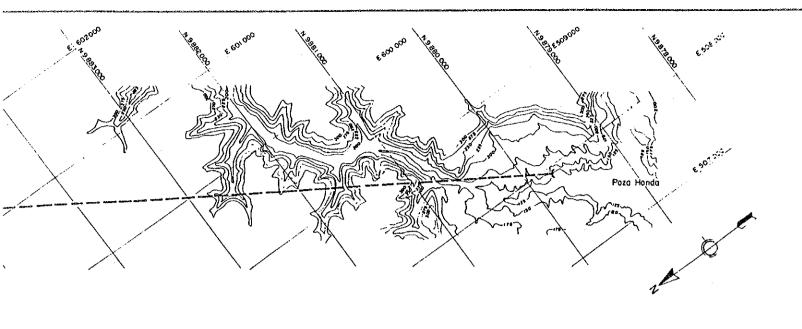


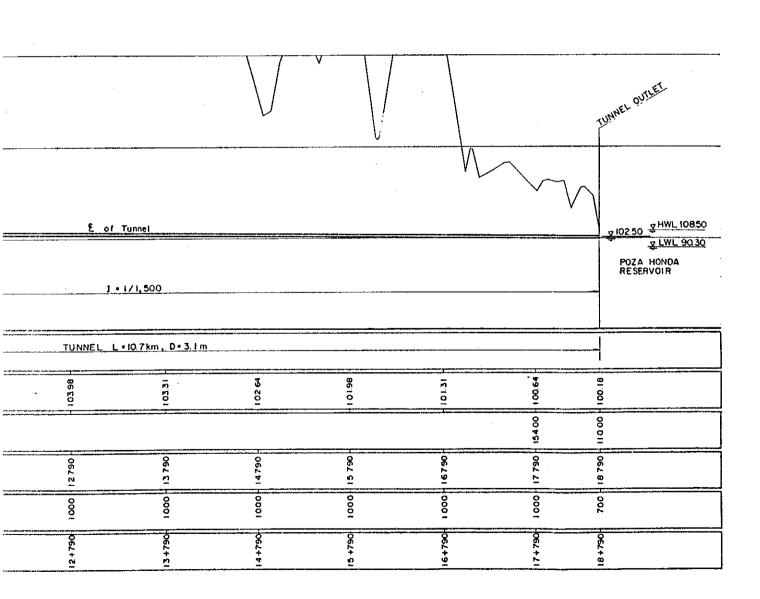

PLAN SCALE A

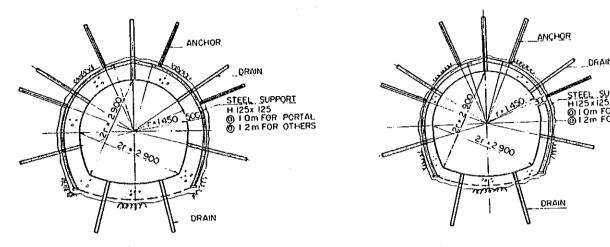
PROFILE H: SCALE A

PLAN SCALE A

PROFILE H : SCALE A V : SCALE B

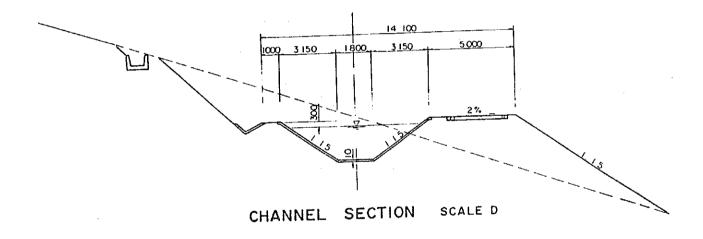

A STATE OF THE PARTY OF THE PAR


SECTION (POR


SCALE A &

SCALE C 'E

SCALE D

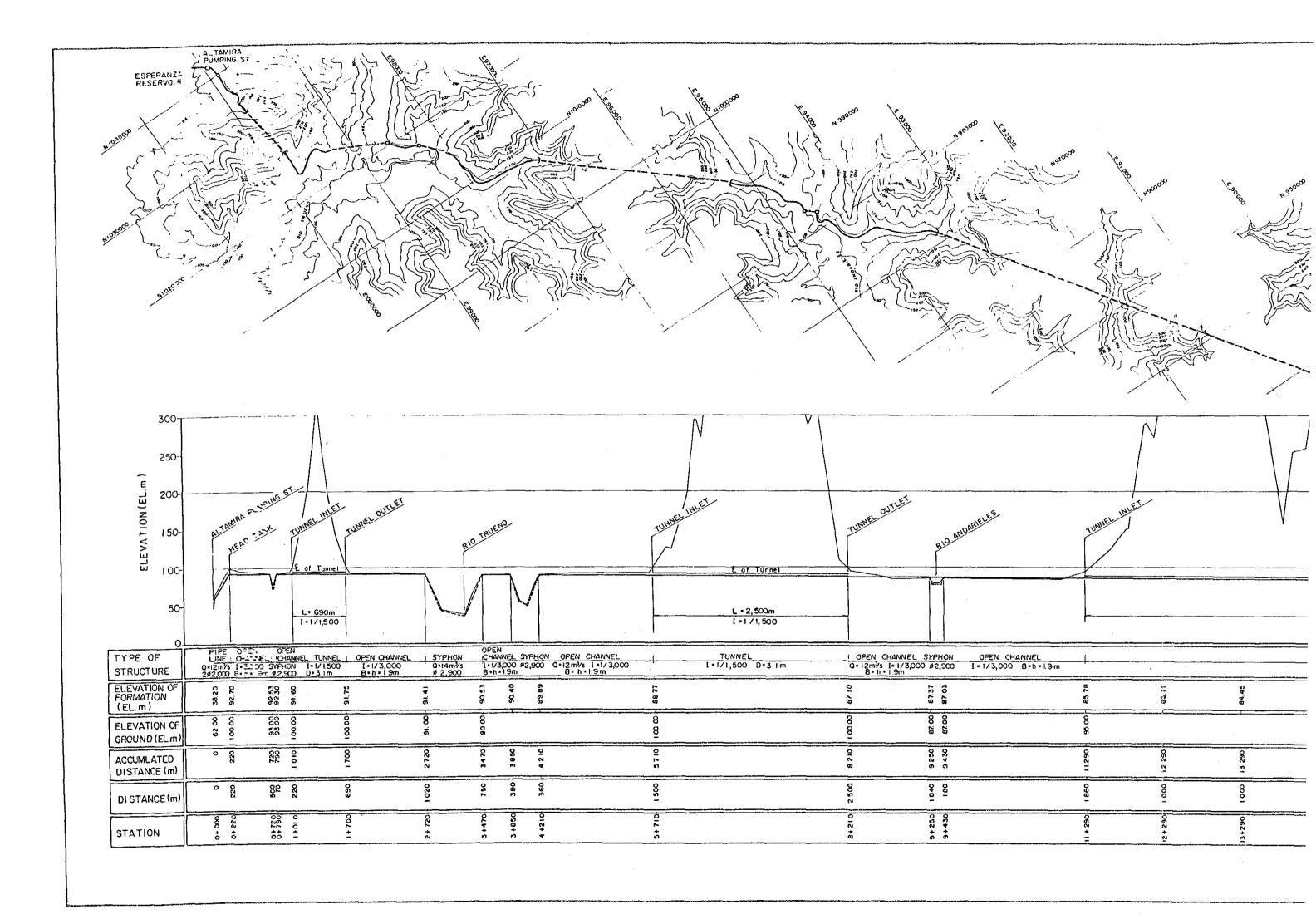


SECTION (PORTAL) SCALE C

SECTION (TUNNEL) SCALE C

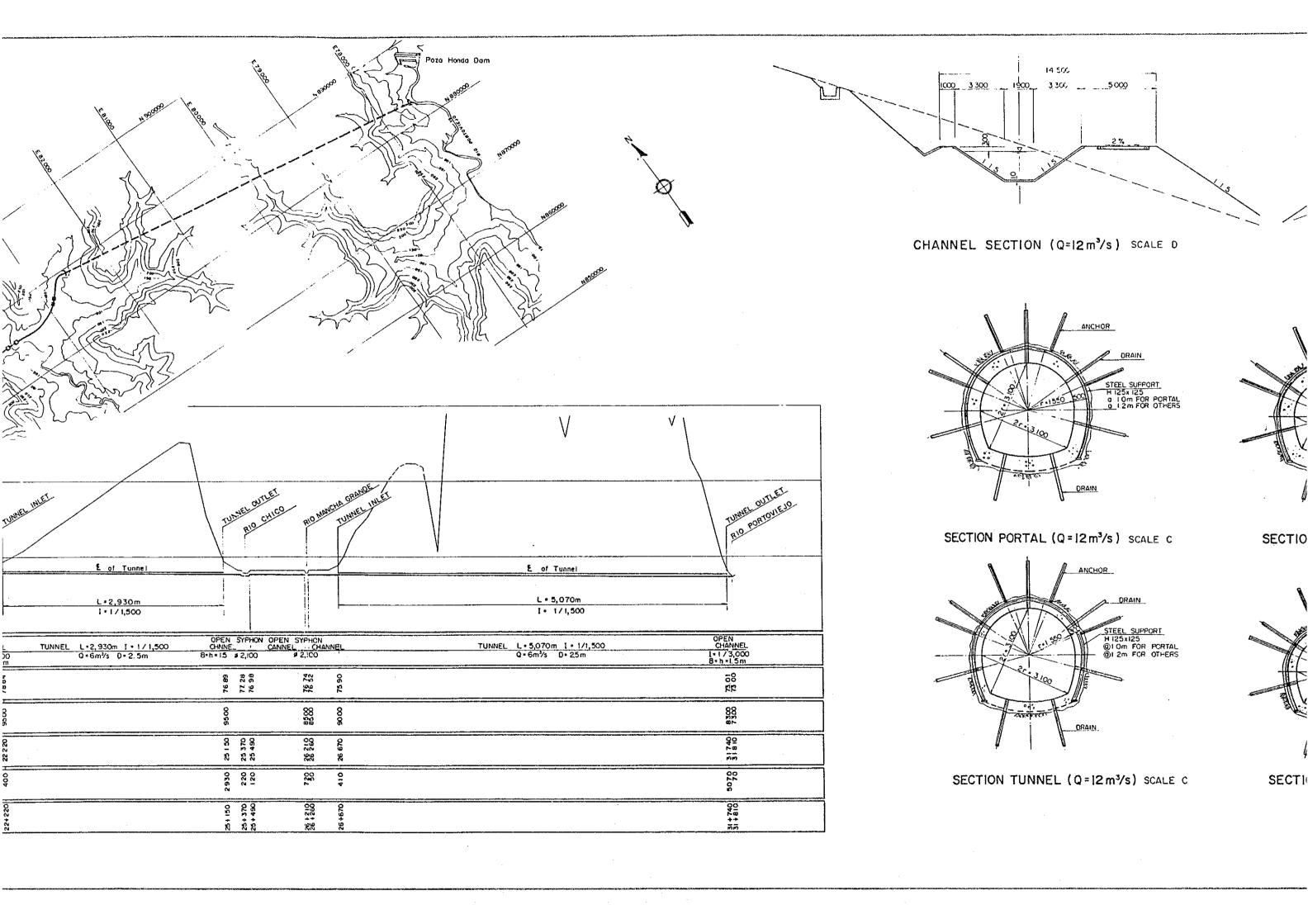
 SCALE A
 2
 500
 1000
 2000

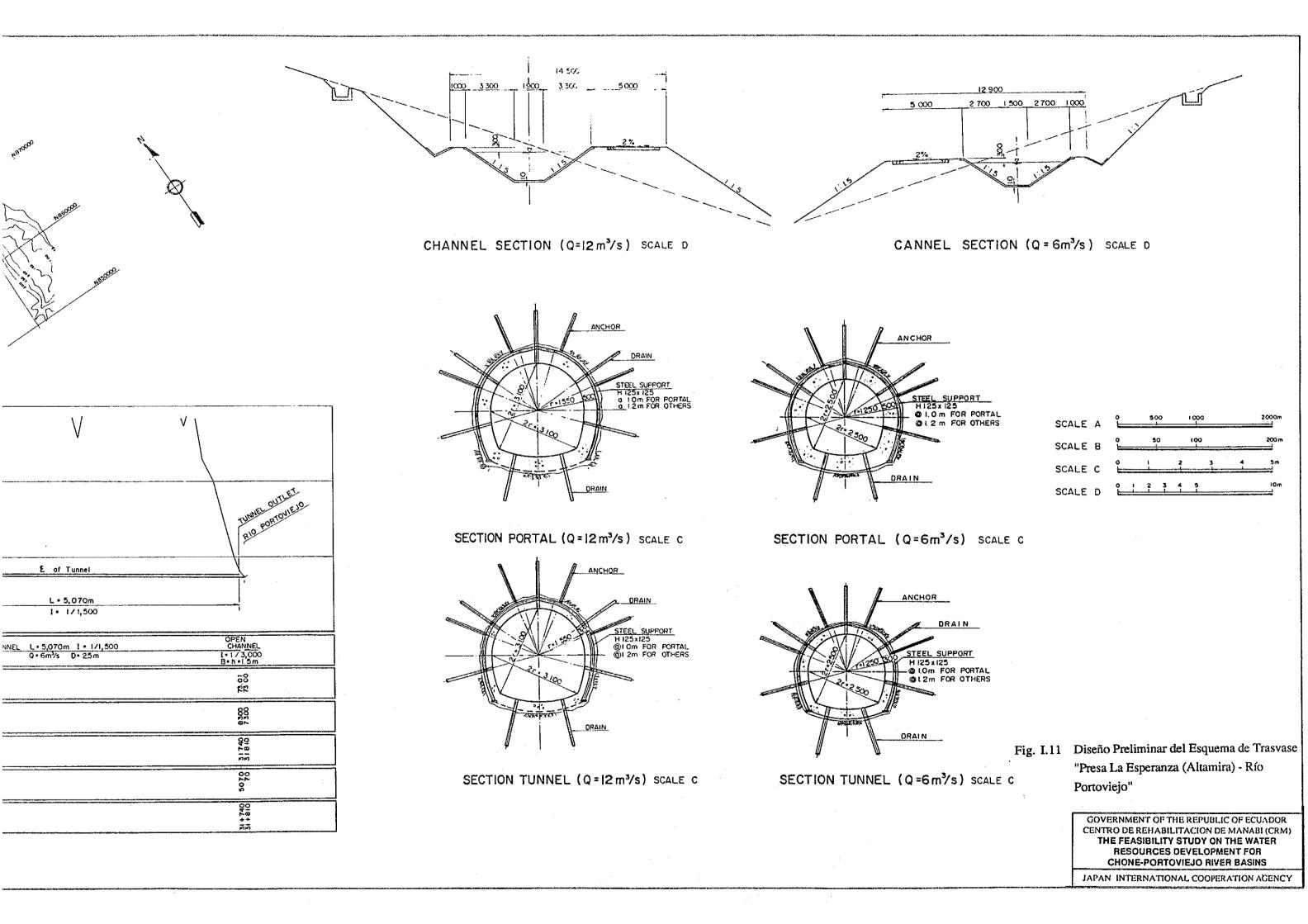
 SCALE B
 2
 50
 100
 200n

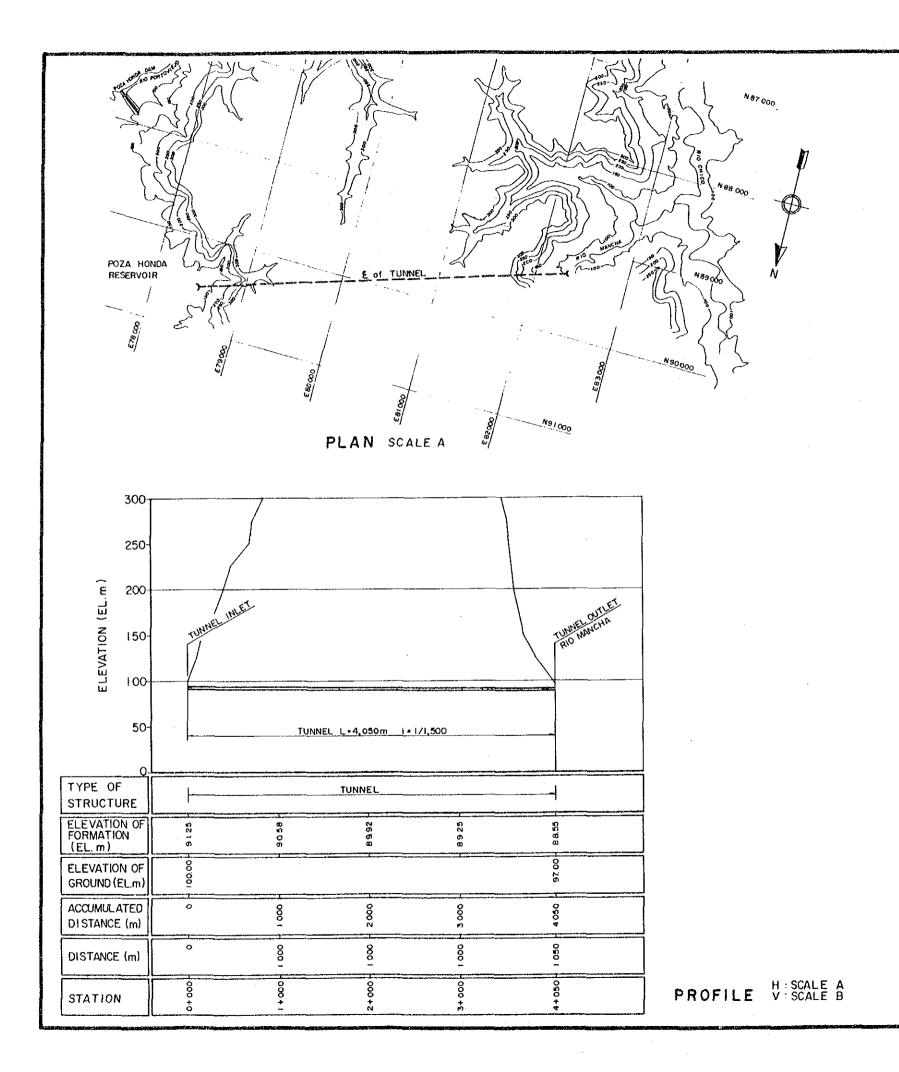

 SCALE C
 2
 1
 3
 1
 3

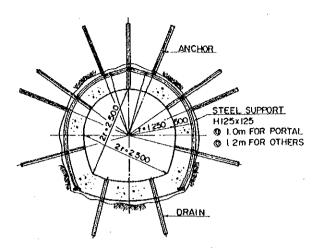
 SCALE D
 2
 3
 4
 5
 100

Fig. I.10 Diseño Preliminar del Esquema de Trasvase
"Presa La Esperanza (Severino) - Presa
Poza Honda"

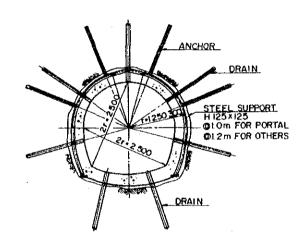

GOVERNMENT OF THE REPUBLIC OF ECUADOR CENTRO DE REHABILITACION DE MANABI (CRM)
THE FEASIBILITY STUDY ON THE WATER
RESOURCES DEVELOPMENT FOR
CHONE-PORTOVIEJO RIVER BASINS


JAPAN INTERNATIONAL COOPERATION AGENCY

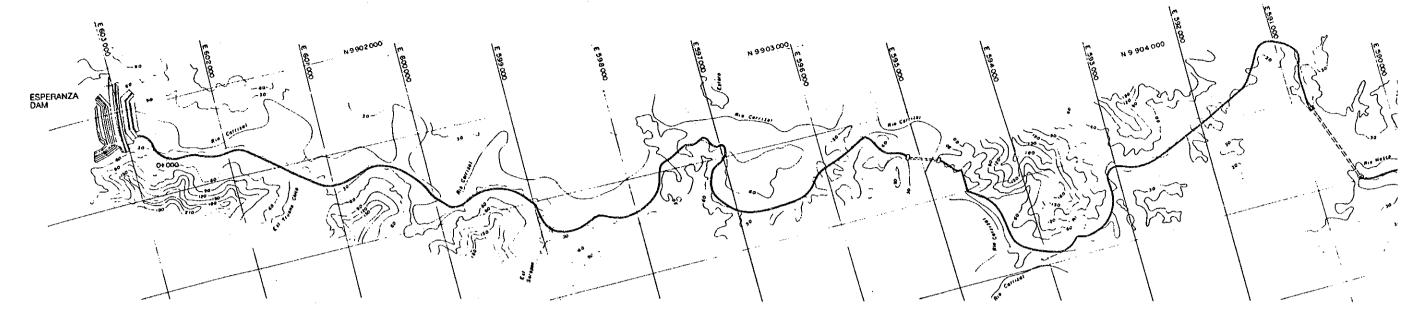




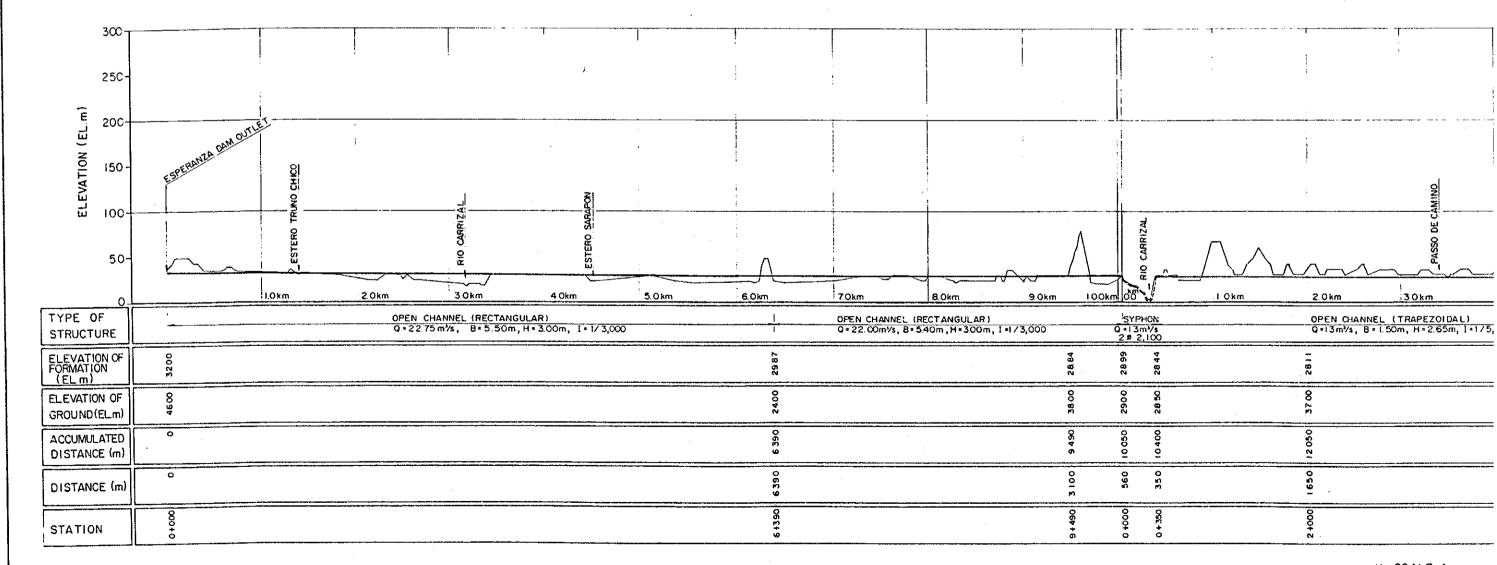
PROFILE V SCALE B

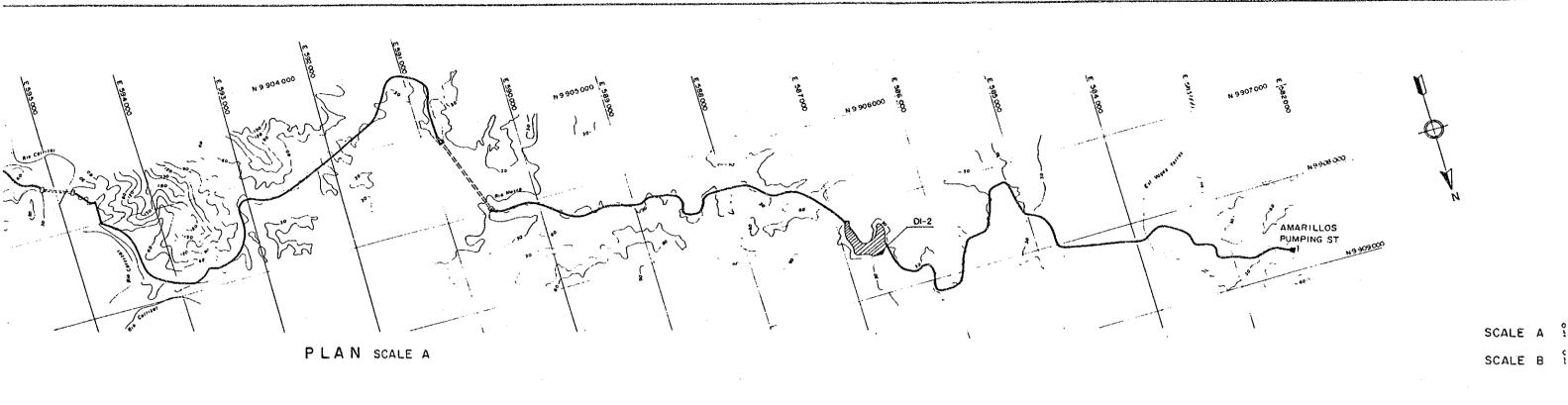


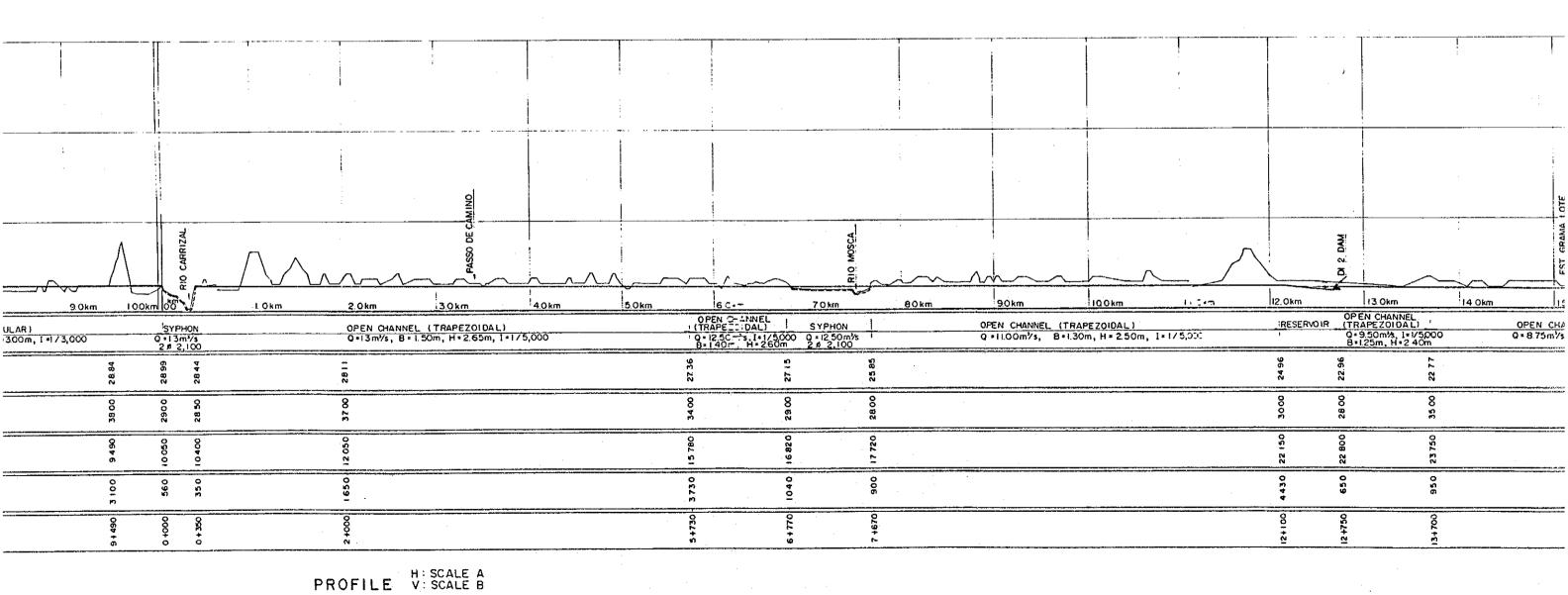
SECTION (PORTAL) SCALE C

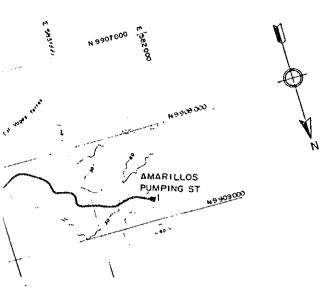

SECTION (TUNNEL) SCALE C

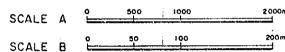
SCALE A	0 500 i,000	2,000 m
SCALE B	0 50 100	200m
SCALE C	0 2 3	4 5m

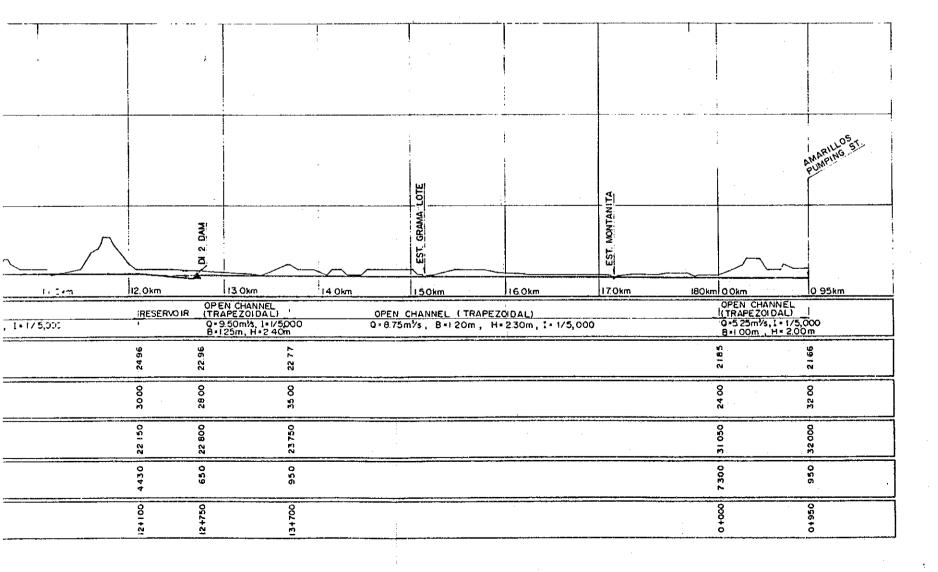

Fig. I.12 Diseño Preliminar del Esquema de Trasvase
"Presa Poza Honda - Río Mancha Grande"

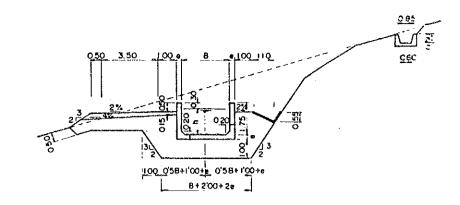

GOVERNMENT OF THE REPUBLIC OF ECUADOR CENTRO DE REHABILITACION DE MANABI (CRM)
THE FEASIBILITY STUDY ON THE WATER
RESOURCES DEVELOPMENT FOR CHONE-PORTOVIEJO RIVER BASINS

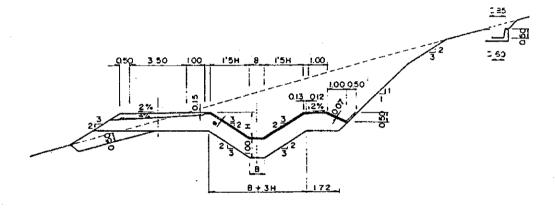

JAPAN INTERNATIONAL COOPERATION AGENCY




PLAN SCALE A







Q m³/s	V m³∕/s	1 %•	п	6 (m)	H (m)	ha (m)
26.15	1. 58	0.3	0.014	5.50	3 30	0.40
17.72	1.43	0.3	0.014	5.20	2.70	0.35
17.14	1.42	0.3	0014	5.20	2.60	0 35
16.85	1, 41	0.3	00.14	5.20	2.60	0.30
16.01	1.40	0.3	0.014	5.20	2.50	0.30
1535	1.38	0.3	0014	5.00	2.50	0.30
14.77	1.37	0.3	0.014	5.00	2.45	Q 30

TYPICAL SECTION (RECTANGULAR)

Q m³/s	V m³/s	! %•	n	(m)	H (m)	ho (m)
14.41	1.15	0.2	0014	1. 50	2.75	0.15
12.85	1.12	0.2	0.014	l. 40	2.65	0.15
11.74	1.09	0.2	0.014	1.40	2.55	0.15
11.25	.I. Q 8	02	0.014	I. 40	2.50	0 1 5
10.42	1.06	0.2	0.014	1. 30	2.45	0.15
9.68	1:04	0.2	0.014	1. 30	240	0.12
8.85	1.02	0.2	0.014	1. 20	2.30	0.12
8.05	1.00	0.2	0.014	1. 20	2.30	0.12
7.30	0.97	0.2	0.014	1. 10	2.20	0.10
6 72	0.97	0.2	0.014	1. 10	2.15	0.10
5. 92	0.93	0.2	0.014	L 00	2.05	0.10
5. 64	0.91	0.2	0.014	1.00	2.00	0.10
4. 77	0.88	0.2	0.014	1.00	1.90	0.07
3. 39	0.80	0.2	0014	1.00	1.70	007
2. 87	0.77	0.2	0014	0.80	160	007
1.68	0.80	0.2	0.014	0.60	1.30	0.07

TYPICAL SECTION (TRAPEZOIDAL)

Fig. I.13 Diseño Preliminar del Esquema de Trasvase
"Portal de salida La Esperanza - Los
Amarillos"

GOVERNMENT OF THE PEPUBLIC OF ECUADOR CENTRO DE REHABILITY CION DE MANABI (CRM)
THE FEASIBILITY STUDY ON THE WATER
RESOURCES DE PLOPMENT FOR CHONE-PORTOVIEJO RIVER BASINS

JAPAN INTERNATIONAL COOPERATION AGENCY