Appendices

Appendix 1. Correlation Table of Terminology

Appendix 1. Correlation Table of Terminology (1)

KONGOLIAN	RUSSIAN	ENGLISH	JAPANESE
МОНГОЛЬ УЛС Буга наярамдах монгол ард улс (бимау)	МОНГОЛИЯ Конгольской народной республики (NRP) Япония	MONGOLIA NONGOLIAN PEOPLE'S REPUBLIC	モンゴル国 モンゴル人民共和国 (モンゴル、(モ))
Я П О Н Зсбихоу	Я ПОНИЯ COD3 COBBTCKX CONHANNTHVECKHX PECUYEAK (CCCP) VEXOCNOBAKHA	(MPR) J A P A N (J P N) UNION OF SOVIET SOCIALIST REPUBLICS (USSR) CZECHOSLOVAK SOCIALIST	日本 ソビエト社会主義共和国連邦 (ソ連、(ソ)) チェコソロパキア(チェコ)
ЧЕХОСЛОВАК Ардалсан герман	ЧЕЛОСНОВАКНЯ ГЕРМАНСКАЯ ДЕМОКРАТИЧЕСКАЯ	REPUBLIC GERMAN DENOCRATIC REPUBLIC	ドイツ民主共和国(東独)
ALLED ALLED	PRCHYSHRKA (PAP)	POLISH PEOPLE'S REPUBLIC UNCARIAN PEOPLE'S REPUBLIC PEOPLE'S REPUBLIC OF CHINA	ボーランド人民共和国 ハンガリー人民共和国 中華人民共和国 オーダムタル地域 国際協力事業団(JICA)
ХЯТАД Уудам Тал Бус АСОНН ОЛОН УЛСНН ХАНТНН АХИЛЛАГААНН АГЕНТЛАГ	апіал Уудам Тал Район Явонских ивжаунараный орган кооперация японское агенство горного дела	Hudam Tal Area:	オーダムタル地域 国際協力事業団(JICA)
АПОНЦ ТОМОРЛОГ УУРХАЯН АГЕНТЛАГ Бимау-ын улсын геологиян тов	ЯПОНСКОВ АГЕНСТВО ГОРНОГО ДЕЛА По металлам Государтвения геолгическия центр Мир		
		LIC	地質鉱物資源省
УЛААНБААТАР Дорнод Өлзийт Хэнтий	УЛАН БАТОР Орнод Улзийт	VINERAL RESOURCES ULAANBAATAR DORNOT ULZIIT	ウランバートル ドルノト ウルジート
ӨЛЗИИТ ХЭНТИЙ ДСРНОГОВЬ ДУНДГОВЬ ӨМНӨГОВЬ Чойбалсан Даланзадгад Хөх нуур	МИНИСЛЕЧСТВО ТЕОЛОГИИ И МИЛИРАЛ- ЫНЫХ РЕСУРСЫ УЛАН БАТОР ДОРНОД УЛЗИЙТ ХЭНТИЙ ДОРНОГОВЬ ДУНДГОВЬ ЧОЙ балсан Даланзадгад Озеро Хух	HENT11 DORNOGOVI DUNDGOVI UMNUGOVI Choibalsan Dalanzadgad	ワルジート ヘンテイ ドルノゴビ (東ゴビ県) ドゥンドゴビ (中央ゴビ県) ウムヌゴビ (南ゴビ県) チョイバルサン ダランザドガド フー つ切
Хөх нуур	Озеро Хух	Lake Khuh Nongol Dornod Plane	フッフ湖 (モンゴル) ドルノト平原
Контони дорад нал Грын Сайхан туруу Хэнтэй Хангай Говы Антайн туруу Ин Панхай туруу Улз Гол Галын Гол Хэрлэн Гол Аймаг Сум	Озеро Хух Ногол Аония Рания Гурван Сайхан Хангай Гов Алы Горга Цев Их Пана Улз Река Галын Река Хэрлэн Река Аймаг Сум Дорнол	Gurvan Saihan Mountains Hentei Mts. Hangai Mts. Govi Altai Mts. In Shanhai Mts. Ulz River Galin River Kherlen River Aimag Sum	ゴルバンサイハン山地 ヘンテイ(山地) コビアルタイ山地 イヒシャンハイ山地 ヴルズ川 ガリン川 ドルレン川 県 (アイマグ) 村 (ソム) ドルノト(県)
Дорнод Дорнод Тал Чойбалсан Гурбанзагал Дашбалбар Баяндун Сэргэлэн Дөч Гол Галын Гол Хох Нуур Чойбалсан Чангэсхаан Цав	Дорнод Дорнод Порнод Поле Чойбалсан Гурбанзагал Дашбалбар Баяндун Сэргэлэн Дуч Река Галын Река Сзеро Хух Чойбалсан Чингэсхан Цан Улаан Мухар	Dornod Dornod Plane Choibalsan Gurvanzagal Dashbalbar Bayandun Sergelen Duch River Galin River Lake Khuhu	トルノト (県) ドルノト (県) チョイバルサン (村) グレバンガザル (村) グシュバルバル (村) バヤンツーン (村) ドチ (川) ガリン川 フッフ湖
Баян Уур	Чойбалсая Чингэсхан Цан Улаан Мухар Баян Уур Салхийт	Bayan Uul Salhiit	ナョイハルサン チンギスハーン ツァヴ オラーン ムホル サンウール サルヒート
Салхийт Дэлгэр Мөнх Цагааг Чудуг Худг Мардай Хөх Толгой	Дэлгэр Мунх Вагаан Чуруг Худуг Мардай Хух Холм	Deiger Munh Tsagaan-Chuluut Huduk Mardai Khuhu hill	デルデルムンフ ツァガーンチョルトホダク マルダイ フッフ 丘 トゥムルディンオポ
Төмөртыян Овоо Нухөт Даваа Хар Аяраг Хэрлэн Гол	Тумуртнйн Овоо Нухут Даваа Хар Айраг Хэрлэн Рска	Tumurtiin Ovoo Nuhutt Dawaa Har Airag Kherlen River	タフットダワー ハルアイラグ ケルレン川
Мандалговь Бор Өндөр Лугийнгол Дорноговь	Мандалговь Бор Ундур Лугийнгол Дорноговь	Mandalgovi Bor Undur Lugiingol Dornogovi Sainshand	マンダルゴビ ボルウンドゥル ルギーンゴル ドルノゴビ (東ゴビ) 県 サインシャンド

Appendix 1. Correlation Table of Terminology (2)

MONGOLIÁN	R U'S S I A N	ENGLISH	JAPANES E
Цагаансуврага Дорпоговь Өмнөговь Дундговь Даланзадгад Мапдах Мапдах Маплай Цогтцэий Хапбогд Баян Овоо Өлзцйг. Наринхудук Хармагтай Ихэ Шанхай Дучин Хурал Сэрвэн Сухайт Цааган Цав Хунгут Овооту Хира Шутэн Ухаа Худаг Өлзийт Өланзадгад	Цаган Цав Хунгут Ороду Хирэ	T s a g a a n s u v r a g a Do r no g o v i U m n u g o v i D a l a n z a d g a d Man d a h a Man d a h a T s o g t t s c c h i i H a n b o g d B a y a n O v o o U l z i i t N a r i n h u d u k H a r m a g t a i D u c h i n H u r a l S c r v e n Su h a i t T s a g a a n T s a v H u n g u t O v o o t u H i r a S y u t e n U h a a H u d a k U z i i t U m n u g o v i D u l a n z a d g a d	ツァガルフゴビリン ウィンゴビ(東) ウィブゴビリ(東) ウィブゴビリ(東) ウィブビリ(東) ヴィブビリ(東) ヴィブビリ(東) ヴィジーン ジャランジライ ママオンボート ウィブレリン ママオンボート ク ママオンボート ク ママオーン ジャート ママオー マン ママオー マン ママオー マン ママオー マン ママオー マン マン マン マン マン マン マン マン マン マン
Гоза Антан Нулу Мандал Овоо Цогт Овоо Хуртэл Харна Чойр Улгня Мушгка Худаг Баян Хушу Баян Овоот Олон Овоот Олон Овоот Хорнмт Худук Үчегт Уул Бороодон Тахирга Уул Злуд Ханаан Уул Хорны Тул Хатаан Уул	Гозь Алтай Гортай Цель Мандал Ово Цогт Ово Хуртэл Харна Чойр Улгей Баян Хушу Баян Хушу Баян Овоот Олон Овоот Олон Овоот Хоримт Хулук Упегт Уул Бородон Тахирга Ула Зут Хайлай Тут Хутин Толой Иаган Ула Зут Хайлай Тут Дага Ула Дугших Баян Худаг Рсперный Харат Шанд Азгч Ус Хлаг Аягч Онх Аларина Хар	Govi Altai Nountains Mandal Ovoo Tsogt Ovoo Hurutel Hama Choir Ulgii Mushgia Hudak Bayan Hushuu Bayan Ovoot Olon Ovoot Horimt Huduk Unegt Uul Boroodon Tahilga Uula Tsagaan Uula Zuun Hailhan Uul Hututiin Tolgoi Makangiin Huren Bul Dugshih Bayan Bor Nuruu Sultiin Hudag Reperny Haraat Shand Dersen Us Budag Ayaguch Onh Avdrangiin Har Soirig Mumh Tsagaan Tolgoi Zalaa Uul Ongon Tsagaan Tolgoi Sologoi	パヤンホオポート パヤンオポート オロンオポート ホリムトホダク ウネグトウール ポロードン タヒルガウーラ ツァガーンウーラ マァガーンハイルハンウール フツリーントルゴイ マカンギーンフレンウール ダーガウール ドグシヒ バヤンポルノロー
Морит Хөтөл Ус Өлжийт Овоо Сологой Баян Хауу Цаган Уу Өндөр Өд Хармагтай Умар Даянгол Шувуун Худаг Гурван Сайхан Сайр	Морит Хутул Ус Улжкит Ово Сологой Баян Хету Цаган Ун Ундур Уда Север Хармагтай Даянгол Шувуун Худаг Гурван Саяхан Сайр	Morit Hutul Us Ulziit Ovoo Sologoi Bayan Hetsuu Tsagaan Uul Undur Uda North Harmagtai Dayangol Shyuun Hudag Gurvan Saihan Sair	モリト フトゥルオス ウルジートオボー ソロゴイパヤン ヘツーツァガーントルゴイ ウンドゥルウダ ハルマクタイ北 ダヤンゴル ジュブーンホダク ゴルパンサイハン サイル (超川)

Appendix 2. Result of Laboratory Works

Appendix 2-1 List of Laboratory Works

Appendix 2-1 List of Laboratory Works

		Quanti	t y		
Testing items	Geologic	al survey	Geochemical	Geophysica1	Total
L	Reconnaissance	Semi-detailed	survey	SUIVEY	
	survey	survey			
1. Thin section	20	Ð	ę		28
2. Polished section	10	വ	ę	1	18
3. Whole rock chemical analysis	50	വ	က		58
4. Ore analysis	208	21		ł	229
5. Geochemical analysis					
1) (Au. Ag)	I	J.	1,900	1	1,900
2) (Au. Ag. Hg. As. Sb. W. Mo)	ł	500	101	t	601
6. X-ray diffraction test	100	000	50	1	200
7. Dating (K-Ar method)	ø	-1		1	10
8. Fluid inclusion test	74	Q	12	1	95
9. Resistivity measurment test	I	-		56	56
Total	470	593	2, 076	56	3, 195

Appendix 2- 2 Microscopic observations (Thin Section)

C VINI) CNULLEVALUATIONS VINUS	ARY WINERAL SECONDARY WINERAL	Othopytoxene Clinopytoxene Olivine Opeque minetal Sphene Glass Glass Glass Glass Chlorite Sphene Sphene Sphene Glass Chlorite Sphene Stitolite Chlorite Stitolite Stitolite Chlorite Stitolite Stito		÷		0		1 1 1 1 0 1 164 · 24 25. 91 7 44 · 27			32.74 - 45 - 38	106 14 33 83 45 58														0			
ALAUVELIC	PRIMARY MINERAL	Clinopyroxene Divine Sphene Sphene Bailee Bailee Parite Pourmaline		<u>0</u>						0	_		· ·								hand and the second sec		0		0				Ċ
u u		Diagioclass Quartz MME B00 MME	╋	010	O	÷	ist	-	0		0	_	0	dolerite	0		_	Granite O.O.		gabbro	ð	2281T	+	andstone 0	Quartz gabbro	asalt		Tourmatine rock	
		No. SAMPLE LOCALITY	1 A80301 DUGSHIH	H	3 TH80703 DUGSHIH	Z	5 A82901 NORTH HARMAGTAL	DLON DVOJT		SOIRIG	SOIRIG	SOIRIG	010601	109010	A82302 S0L0G01	A\$0101	5 A90103 TAHILGA UULA	ASCID4 TAHILGA UULA	A81501 TSAGAAN UULA	8 A81502 TSAGAAN UULA			-1-	÷		5 0H70504 9LON 0V00T	6 0S70403 DLON 0V007	27 0044305 0LON 0V00T	8 0290675 DLON 0V00T .

Appendix 2-2 microscopic observations (thin section)

,

A2-3

Appendix 2-3 Microscopic observations (Polished Section)

SECTION	
(POL I SHED	
OBSERVATION	
MICROSCOPIC	
00 01	
Appendix	

																				_
	÷Ħ	57. *	37	37 *	59	10	inates			18	0.71	22.31 *	14.09 "	9.18	17.16 "	30.05 -	26.63 -	47.5	37.37 *	
Sa	NORTH	° 21 -	0	•	° 21 -	° 22 -	co-ordinates	grid.	•	• 23	° 23 -	٥	0	° 50 -	° 27 -	• 21 -	ر. دی ہ	° 10 ⁻	• 54	
COORDINATES		" 44	* 44	. 44	. 44	* 44	show the	the detailed survey	-4-1)	14	7 . 44	. 44	7 " 44	9. 45	1 44	5 45	5 45	2 45	2 * 44	
ē :	EAST	532	54	- 10	- 23 -	- 37	numbers	etailed	o PL. II.	. 45	. 2.5	- 37.7	49.67	46.5	52.31	27.86	7 35	30.32	31.82	
	Ш	104 ° 11	104 010	104 0.11	104 ° 10	104 ° 10	Sample n	on the d	(refer to PL. I-4-1	104 07	104 55	104 ° 52	105 0 20	105 . 52	106 ° 14	106 ° 57	106 ° 58	105 35	106 45	
19vli2-9vits	N		<u>.</u>				-	<u> </u>												
lectrum							0				 									
ative-Gold	N	•	 			-	Ť	0						-			_			
alena	อ							<u> </u>										$\overline{\triangleleft}$		•
əyilləvo	C			<u> </u>	- -				\triangleleft			-								Rare
alioosled	- C			-					0			-							\triangleleft	 •
halcopyrite					•				\triangleleft										•	
ozonsgnsM-oibix	0	4				:														Poor
IstaniM-sOi	L					•				Þ	•			•	• • •		• •			 \[\]
menite	11				Q															
epidochrosite	Т				\bigtriangledown									_			-			uot
əsihisə	D	0	•	۵	\Diamond	⊲	Ö	0	0	\triangleleft	⊲	0	Ö	•	Ó	Ö	⊲	0	4	O: Common
aimədga	۸I	· .	·	·.	Ø									•						ö
ematite	H			•	Ø								0	-	•	0				
atitengal a	N			i i						_			0	į						ıdan
yrrhotite	ď											•		на) 1		•				🔘: Abundant
yrite	d		·			•		•	•			⊲		•		•		•	·	Ö
MINERAL				silicified sandstone		sh			milky wht vqz, sulfide	milky wht vqz, grn Cu	black min. chal vqz	sulfide bearing voz		silr		rich vgz		vqz	2	
· · ·		12 V	ZPV	san.	hematite skarn	silicified dol	auriferous vqz	auriferous vqz	vqz.	Vqz,	chal	sarin	magnetite, q2 v	py bearing wht sil	•••		4	gn bearing vqz	grn Cu sulf,vqz	
NAME		ide-(whit	ifiec	ite	ifie	erou	erou	wht	¥ht	min.	ie be	tîte.	aring		suli	gry si	bear	I Su	
ROCK NAME		Mn-oxide-q2 v	milky wht vqz	ilic	епаt	ilic	urif	urif	i l ky	ilky	lack	ulfi	agne	y. be	7.q2	oxdid sulf	dk gr	Cp gn	С Ц	
P4	-	×	E	S	ਸ	s	ta	G	E	:E	р	S	Ë	٩	-	0	P	0	8	
Ţ				1						2					lagta					
LOCALITY		Voot	voot	V001	voot	V001	1001	voot	Voot	voot	F	Ч			Нагл	i.		i	Uda	
D1		01on 0voot	01on 0voot	01on 0voot	01on 0voot	01on 0voot	01on 0voot	01on 0voot	Olon Ovoot	010n (Dugshih	Dugshih	Onh	Soirig	North Harmagtai	Sologoi	Sologo	Sologoi	Undur Uda	
MPLE No.					-	524 0	<u></u>	- 1		0S70510 010n 0voot						-			-1	
S.		0870505	0270302	0S70401	0S70402	0S70524	0252060	0302100	0034225	0270	SS80702	BS80814	A81002		+	H82107	H82207	S82305	H82504	
No			~1	ŝ	7	ŝ	م :	-	∞	თ	р 10	11	12	13	1	15	16		18	
					A	2-	5						4							

Appendix 2-4 Results of whole rock chemical analyses (1) \sim (2)

Appendix 2-4 Results of whole rock chemical analyses (1)

sample no.	rock name	Si02%	Ti02% A	A1203% F	Fe203% F	8	Mn0 %	NaD %	Ca0 %	Na 20%	K 20 %	P205%	101%	Total	long t	tude (east)	+) a+	itude ((arth)
100	chi micro	53. 79	1		7.10		1 ·		100	3.77	0.33	0.47		98.33	0 0			<u>ار</u>	48 -
2 A80802	chl diorite	61.76	1.20	14.26	7.27	52	0.11	0.90	2.43	4.89	2.23	0.47	3.35	100.40	104 ° 5	3 15	* 44	• 24 '	29 *
3 A80901	rhyolite tuff	73.22	0.28	13.96	2.51	69	0.09		0.97	2.48	· .	0.11	2.47	100.85	105 0	. 17 . 81	* 44	• 23 '	02 -
4 DH80704	4 meta-gabbro	54, 99	1.46	14.25	5.68		0.14				1.	0.26	1.70		104 ° 5	56 01	* 44	• 24 '	23 -
5 DH80805	5 quartz porphyry	75.96	0.25	12.46	0.86	68	0.05	1.77	0.52	3.72	1. 13		1.99	100.49	104 ° 4	15 02	* 44	。26 ′	28 *
	carbonate rock	4.67	0.05	1.13	0.17	25	0.14	1.13	49.88	0.29		<0.01	40.96	98.88	104 ° 5	57 / 40	* 44	。29,	, 8
7 TH80703	-		0.24	10.71	0.61	29	0.02		0.60	6.07	0.18	0.09	0.57	99.67	104 ° 5	55 58	* 44	• 24 '	12 -
8 A82801	meta-gabbro		0.89	15.22	4.46	21	0.12		10.18	3.43		0.24	2.34	99.03	105 ° 5	56 0 06	* 44	° 20 ′	35 *
9 A82802	diorite	60.96	0.39	17.42	0.86		0.16		3.85	7.31		0.18	4.16	101.01	105 ° 5	54 59	* 44	• 23 '	48 -
10 A82901	mafic schist	54, 98	0.67	15.20	2.78	25	0.18	4.39	6.52	4.45	1.04	0.25	2.01	98.72	105 ° 4	44 ' 41	- 44	° 19 ′	16 *
11 A82902	díorite	58.06	0.74	17.36	3.41	1.97	0. 11	2.97	3.98	5.40	4.39	0.57	1. 32		105 ° 4	44 ' 35	- 44	00	49 *
	 chl granodiorite 	65.35	0.45	16.35	2.15		0.06	2. 00	2.83	5.64	4.12	0.32	0.89	101.30	105 ° 4	45 35	* 44	° 18 '	27 -
13 A83001	green schistose tuff	37.	0.78	12.07	2.83		0.22	7.66	11.15	0.55		0.27	18.88		105 ° 5	57 25	* 44	• 25 *	08 -
	altered basalt	51.26	2.63	14.62	7.56		0.19	1.46	7.76	4, 11		1.60	5, 50	99. 75	104 ° 2	4、	* 44	• 27 '	19 *
	chi granodiorite	62.17	0.33	18.36	1.88		0.07	3.03	2.96	6.47			2.49		105 ° 2	22 55	* 44	• 43 '	24 -
<u>9</u>	pink granite	77.46	0.08	12.69	0.82	•	0.01	0.13	0.35	4.03			53		105 ° 1	7 13	1 3	• 39 '	23 -
	andesite	63.67	0.86	17.10	4.48		0.05	2.02	2.26	4.69			03		105 ° 2	21 44	44	• 43 '	43 -
18	pink chl granite	66.82	0.61	16.02	2.98		0.06	1.07	2.56	4.46			38		105 ° 4	43 2 33	* 44	° 38 '	44 *
	micródiorite	58.84	0.99	17.54	3.94		0.15	2. 49.	5.07	4.69			65	100.74	105 ° 4	•	* 44	• 39 •	04 *
20 A81703	rhyolite	70.33	0.35	15.54	1.32		0.08	0.60	1.24	4.42			04		105 ° 4	42 30	- 44	* 35 *	23 🐔
	py sil granite	77.33	0.11	12.18	1.13		<0.01	0.03	0.21	4.33			47		105 ° 5	53 09	* 44	. 20 .	20 -
	granite porphyry	71.97	0.26	14.37	1.98		0.06	0.33	1.07	4.79	4.16	0.15	0.77	100.18	105 ° 5	53 2 38	* 44	• 49 '	55 *
	monzonite	70.46	0.42	14.65	2.15		0.06	0.68	1.52	3. 32			34	100.49	106 ° 0	09 2 57	* [44	58.	31 *
-	rhyolite	73. 71	0.28	14.23	1. 45		0.01	0.25	0.31	4.36	4.13		05	100.10	106 ° 1	14 34	* 44	• 58 '	13 *
		74.65	0.09	13. 48	0.84		0.01	0.22	0.73	3.79			08	100.33	106 ° 5	51 ' 32	* 44	• 16 *	25 *
	granite	74.12	0.13	14.98	0.77		0.01	0, 20	0.62	3.09		0.15		101.20	106 * 5	ć 39	~ 44	• 27 '	45 *
{	-	1 72.04	0.32	14.58	2.33		0.08	0.17	1.27	7.25		0.24	0.96	100.91	106 ° 5	53 34	* 44	° 30 ′	35 *
••••	granite	67.25	0.24	17.08	3. 53		0.04	0.29	0.41	5.44	5.08	0.11	1.43	101.34	106 ° 5	26 / 17	* 44	。22 ′	31 -
	rhýolite	76.99	0.03	13. 32			<0.01	0.11	0.37	2.49		0.11		101.05	106 5	59 01	* 44	• 21 '	60
30 A82104	green trachybasait	48.95	2.35	17.07		5.76	0.13		3.91		3.50			99.01	106 2 5	57 ' 36	- 44	° 21 ′	52 *
	diorite	52.66	1.28	15.72	1. 18	6.41	0.17	6.14	8, 26		2.38	0.22	1.98	99.31	105 ° 5	57 42	* 44	° 21 ′	31
	chi basait	48. 44	1.54	16.74	1.72	6.50	0.15	5. 49	6.65	3.39	3.03			98.87	105 ° 5	56 53	* 44	• 21 '	18
		76.04	1	13.20	1.08	0.21	0.02	0.15			4.85	0.12	0.55	100.70	106 ° 4	16 21	* 44	. 19 .	59 *
- 1	chl ganite		0.22	14.02	1.17	0.40	0.01	0.35	0.50		6.81	0.19	1.42	100.22	106 ° 5	53 / 58	- 44	05 '	27 -
35 A82301	nepheline dolerite	47.01	1.42	16.06	4.99	5.12	0.15	6.16	4 4			0.21	6.67	98.63	106 ° 4	1 39	* 44	° 16 ′	13 *
													•						

. .

.

A2-7

Appendix 2-4 Results of whole rock chemical analyses (2)

.

3

		···-]	·]						·	r. .	[E											1
latitude (north)	13 -	24 *	20 -	14 *	24 *	03 *	48 *	, 00	រ ពីភ្ន	37 *	20 *	44 "	49	36 *	18 *	14 *	08 🖌	47 "	£ 3	11	eđ	-4-1)		
ude (I	16 '	10 '	03 、	, 10	, 60	12	54 (55 ′	56 、	54	54 '	45 '	55	56 `	. 25	23 '	23 '	22 '	21 '	23 '	etail	i L		
latit	44 °	44 °	44 0	44 °	44 °	44 °	44 °	44 °	44 °	44 °	44.0	44.	44 *	44 0	44 °	• 77	44 °	44 °	44 °	44 °	the de	to to		
		8	*	2	3 *	2	8 *	. 8	9 ×			*	. 4	*	* *	*	*	* 0	* 0	*	uo.	(refer		
de (e:	\$, 47	3	. 52	, 0	, Ţ		, v	ເຕ 、	, 32	ເຕ ໂ	1 03	~	1 28	11.	, 10	, ()	40	сл ,	, 48	ates	grid (
longitude (east)	• 41	° 38	° 38	° 40	• 38	с С	• 44	. 47	ء 20	° 45	\$4	°38 °	° 40	° 39	° 39	•	• 10	60 °		° 09	co-ordinate	survey (F
<u>°</u>	106	105	104	104	104	104	104	104	105	106	106	106	106	106	106	104	104	104	104	104	7			
Total	100.03	99.48	101.05	101.17	99.25	100.58	100.65	98.49	100.08	100.49	98.94	100.49	100.36	98.56	100.05	99.62	99.98	97.09	98.21	100.26	98.08	:99.46	100.79	
L01 %	1.11	4. 71	2.05	3.57	2.46	0.81	2.48	2.77	0.51	1. 13	1.18	1.71	0.62	5.06	2.11	4.97	0.91	2.98	4.24	3.23	2.82	9.21	6.31	
P205 %		0.34	0.25	0.19	0.55	0.10	0.96	0.64	0.12	0.14	0.19	0.09	0.08	0.47	0.43	2.23	1.07	0.18	0.18	0.27	0.18	0.17	0.18	
K20 % P	57	3. 28	2.47	3, 16	2.08	3, 88	4. 02	1. 52.	4.80	1.51	4.69	2.04	3.88	0.65	1.80	0.95	5. 10	0.18	0. 72	1. 44	0.52	0.20	0.09	
Na20 %	40	3.10	4.27	4. 15	4.07	3.98	4.09	3. 67	3.68	4.32	3.95	2.89	4.58	2.84	5.07	5.91	4.44	3.79	3.64	1.92	3.14	4.59	0.11	
Ca0 % Na	쯓	4.86	3. 23	2.80	5.63	0.55	4.61	7.99	0.58	1.67	0.52	0.42	0.36	6.72	1.04	10.98	6.08	6.96	4.64	0.65	6.20	5. 09	2, 68	÷
Mg0.% (3.60	0.44	1.56	3.37	0.33	0.98	5. 48	0.09	0.80	0.13	0.41	0.12	6.26	0.88	8.06	4.23	4.71	3. 33	2.74	4.23	2.98	1.00	,
Mn0 % I	0.01	0. 11	0.03	0.04	0.12	0.03	0.12	0.14	0.02	0.03	0.02	<0.01	0.05	0.15	0.04	0, 13.	0.08	0.20	0.17	0.06	0.17	0.15	0.07	
Fe0 %	0.24	5.05	0.29	0.77	5.14	0. 46	0.49	6.12	0.25	0.53	0.20	0.15	0.27	2.52	0.72	2.58	0.91	7.72	4.80	2.98	6.88	2.68	0. 23	
8	0.39	2.01	2.42	2.12	1.25	1.07	6.09	3.10	0.69	1.15	1.71	0.63	0.69	6.67	1.59	5.91	4.63	5.21	5.94	1. 77	4.28	7.01	2.78	
Ti02 % A1203 %Fe203	15.17	16.51	16.06	15.42	16.18	12.79	15.71	17.07	12.36	15.32	14.03	12.94	13. 47	16.92	15.73	13.40	15.04	14.88	14.72	11.11	14.37	14.52	8, 08	
i 02 % A	0.08	1.12	0.43	0.43	1. 21	0.17	1. 77	1.80	0.12	0.16	0. 53	0.08	0.11	1. 18	0.27	1.72	1.15	1.28	1. 10	0.56	1.21	1.30	0.40	
Si02 % T	73. 14	54.79	69.11	66.96	57.19	76.41	59.33	48.19	76.86	73.73	71.79	79. 13	76.13	49.12	70.37	42.78	56.34	49.00	54.73	73. 53	54.08	51.56	78.86	
		te		i									yry			salt	basalt		diorite			6	schist	
rock name		trachyandesite	e	ite	te	pink granite	ite	meta-gabbro	i eucograni te	ite	porphyrite	ite	quartz porphyry	trachybasalt	te	eline basa	nepheline bas	meta-gabbro	meta-quartz (sandstone	chi diorite	meta-tonalite	alt psamitic	
	granite	trach	dacite	andesite	diorite	pink	andesite	me ta-	leuco	tonalite	porph	rhyolite	quart	trach	granite	┣				<u> </u>				
ole no.	A82302	A82401	A90101	A90102	A90103	A90104	A8150.1	A81502	A82501	A82503	A82504	A82505	A82602	A82603	A82604	0H70503	0H70504	0S62403	0\$70403	0A62904	0124750	0290675	0783250	
sample	36 A	37 A	38 A	39 A	40 A	41 A	42 A	43 A	44 A	45 4	46 4	47	48	49 4	50	5	52 0	53 (54 (55 (56 6	57 (58 (
L	<u></u>	•••••		• • • •			·····		•					•										

Abbreviations: chl:chloritized, py:pyrite disseminated, sil:silicified

A 2-8

Appendix 2-5 Chemical compositions and CIPW Norms (1) \sim (10)

Appendix 2-5 Chemical compositions and CIPW Norms (1)

-

	(1)	(2)	(3)	(4)	(5)	(6)
sample no.	A80801	A80802	10908		DH80805	H80905
S102	53.79	61.76	73. 22	54.99	75.96	4.67
T102	1.57	1.20	0.28	1.46	0.25	0.06
A1203	14.57	14.26	13.96	14.25	12.46	1.13
Fe203	7.10	7.27	2.51	5.68	0.87	0.17
FeO	5.24	1.52	0.69	5. 32	1.68	0.25
Mn O	0.19	0.11	0.09	0.14	0.05	0.14
XgO	3. 28	0.90	1.08	3.77	1.77	1.13
CaO	4.84	2.43	0.97	4.66	0.52	49.88
Na 20	3.77	4.89	2.48	6.07	3.72	0.29
X20	0.33	2.23	2.99	0.69	1.13	0.20
P205	0.47	0.47	0.11	0.26	0.10	0.00
¥20+	0.00	0.00	0.00	0.00	0.00	' 0. 00
820-	0.00	0.00	0.00	0.00	. 0.00	0.00
Total	95.15		98.38		98.51	57.92
Fe0*	11.63		2.95	10.43	2. 48	0.40
FeO#/NgO	3. 55	8.96	2.73	2. 77	1.39	0.36
CIPW NORM						
Q	15.96	19.55	43.97	3.39	45.59	
С	0.32	0.50	5.14	0.00	4.41	
or	1.95	13.18	17.67	4.08	6.68	
ab	31.90	41.38	28.39	51.36	31.48	
an	20.97	9.02	4.10	9.60	1.93	
lc	0.00	0.90	0.00	0.00	Q. 0Q	
ле	0.00	0.00	. 0.00	0.00	0.00	
kp	0.00	0.00	0.00	0.00	0.00	
ac	0.00	0.00	0.00	0.00	0.00	
▼ 0	0.00	0.00	, 0.00	4.94	0.00	
en	8.17	2.24	2.69	9.39	4.41	
fs	1.52	0.00	0.00	2.93	2.05	
fo	0.00	0.00	0.00	0.00	6.00	
fa	0.00	0.00	0.00	0.00	0.00	
cs	0.00	0.00	0.00	0.00	0.00	
et	10.29	1.78	1.71	8.24	1.26	
hs	0.00	6.04	1.33	0.00	0.00	
il	2.98	2.28	0.53	2.77	0.47	
ru	0.00	0.00	0.00	0.00	0.00	
ap	1.11	_ I. II	0.26	0.62	0.24	
Σ femic	24.08	13.46	6.52	28.88	8.43	
D. I.	49.81	74.10	82.63	58.83	83.75	
rock series	TH	TH	CA	ŤĦ	CA	

*: Total Fe as FeO

	(7)	(8)	(9)	(10)	CID	(12
sample no.	TH80703	A82801	X82802	A82901	¥82902	A82903
si02	80.04	51.84	60.96	54.98	58.06	65.35
T102	0.24	0.89	0.39	0.67	0.74	0.45
A1203	10.71	15.22	17.42	15.20	17.36	16.35
Fe203	0.61	4.47	0.86	2.78	3.41	2.15
FeO	0.29	3.21	2.42	6.25	1.97	l. 14
XnO	0.02	0.12	0.16	0.18	0.11	0.06
NgO	0.25	5.56	2.65	4.39	2.97	2.00
CaO	0.60	10.18	3.85	6.52	3.98	2.83
Na20	6.07	3.43	7.31	4.45	5.40	5.64
K20	0.18	1.54	0.65	1.04	4.39	4.12
P205	0.09	0.24	0.18	0.25	0.57	0.32
H20+	0.00	0.00	0.00	0.00	0.00	0.00
R50-	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.10	96. 70	96.85	96.71	98. 96	100.41
Fe0‡	0.84	7. 23	3. 19	8.75	5. 04	3.07
FeO#/NgO	3.36	1.30	1.21	1.99	1.70	1.54
CIPY NORX						
Q	42.84	2.04	3.82	4.13	0.00	9.67
С	0.00	0.00	0.00	0.00	0.00	0.00
ог	1.06	9.10	3.84	6.15	25.94	24: 35
ab	51.36	29.02	61.85	37.65	45.69	47.72
ал	1.44	21.58	12.80	18.43	10.16	7:13
lc	0.00	0.00	0.00	0.00	0.00	0.00
ne	0.00	0.00	0.00	0.00	0.00	0.00
kp	0.00	0.00	0.00	0.00	0.00	0.00
ac	0.00	0.00	0.00	0.00	0.00	0.00
TO	0.40	11.43	2.14	5.14	2.46	2.02
en	0.62	13.85	6.60	10.93	6.59	4.98
fs	0.00	0.95	3.39	8.41	0.00	0.00
fo	0.00	0.00	0.00	0.00	0.57	0.00
fa	0.00	0.00	0.00	0.00	0.00	0.00
C S	0.00	0.00	0.00	0,00	0.00	0.00
at	0.30	6.48	1.25	4.03	4.56	2.57
ho	0.40	0.00	0.00	0.00	0.26	0.38
il	0.46	1.69	0.74	1.27	1.41	Q.85
ru	0.00	0.00	0.00	0.00	0.00	0.00
ap	0.21	0.57	0.43	0.59	1.35	0.76
Σ femic	2. 39	34.97	14. 55	30.37	17.20	11.56
D. I.	95.27	40.16	69.52	47.93	71.64	81.74
rock series	CA	CA	CA	TH	CY .	CA

*: Total Fe as FeO

	(13)	(14)	(15)	(16)	(17)	(18)
sample no.	A83001	A81101	A81003	H81011	881014	A81701
si02	37.55	51.26	62.17	77.46	63.67	66.82
Fi02	0.78	2.63	0.33	0.08	0.86	0.61
1203	12.07	14.62	18.36	12.69	17.10	16.02
e203	2.84	7.56	1.88	0.82	4.48	2.98
e0	4.74	1.60	2.43	0.34	0.56	0.93
n0	0.22	0.19	0.07	0.01	0.05	0.06
lgO	7.66	L.46	3.03	0.13	2.02	1.07
a0	11.15	7.76	2.96	0.35	2.26	2.56
la 20	0.55	4.11	6.47	4.03	4.69	4.46
20	2.05	1.46	0.55	4.12	2.44	4.14
205	0.27	1.60	0.34	0.11	0.23	0.22
1201	0.00	0.00	0.00	0.00	0.00	0.00
120-	0.00	0.00	0.00	0.00	0.00	0.00
Total	79.88	94.25	98.59	100.14	98.36	99.87
 Fe0‡	7. 30	8.40	4. 12	1.08	4.59	3. 61
e0‡/NgO	0.95		1.36	8.29	2. 27	3.38
CIPY NORK						
Q	0.00	9.81	11.39	37.61	19.98	18.57
C	0.00	0.00	2.54	1.22	3.41	0.07
or	12.11	8.63	3.25	24.35	14.42	24.47
ab	3.69	34.78	54.75	34.10	39.69	37.74
ал	24.41	17.13	12.49	1.02	9.09	11, 28
lc	0.00	0.00	0.00	0.00	0.00	0.00
ne	0.52	0.00	0.00	0.00	0.00	0.00
kp	0.00	0.00	0.00	0.00	0.00	0.00
ac	0.00	0.00	0.00	0.00	0.00	0.00
¥O	12.18	3.67	0.00	0.00	0.00	0.00
en	8.64	3.64	7.55	0.32	5.03	2.67
fs		0.00	2.49	0.00	0.00	0.00
fo	7.32	0.00	0.00	0.00	0.00	0.00
fa	2.32	0.00	0.00	0.00	0.00	0.00
cs	0.00	0.00	0.00	0.00	0.00	0.00
at	4.12	0.00	2.73	0.90	0.00	1.42
ho	0.00	7.56	0.00	0.20	4.48	2.00
il	1.48	3.79	0.63	0.15	1,29	1.16
ru	0.00	0.00	0.00	0.00	0.00	0.00
ap	0.64	3.79	0.81	0.26	0.54	0.52
Σfenic		22. 45	14. 20	1.83	11.35	7, 77
D. I.	16.33	53.22	69.38	96.06	74.08	80.77
rock series	TH	TH	CA	TH	CA	CV

*: Total Fe as FeO

•

. .

.

	(19)	(20)	(21)	(22)	(23)	(24
sample no.	A81702	X81703	A81801	A81802	A81803	A81804
si02	58.84	70.33	77.33	71.97	70.46	73.71
T102	0.99	0.35	0.11	0.26	0.42	0.28
A1203	17.54	15.54	12.18	14.37	14.65	14.23
Fe203	3,94	1.32	1,13	1.98	2.16	1.45
FcO	2.89	1.07	0.20	0.27	0.33	0.22
(n0	0.15	0.08	0.00	0.06	0.06	0.01
lg0	2.49	0.60	0.03	0.33	0.68	0,25
CaO	5.07	1.24	0.21	1:07	1.52	0.31
Na20	4.69	4.42	4.33	4.79	3.32	4.36
(20	2.05	3.36	4.77	4.16	5.40	4.13
P205	0.43	0.19	Q. 10	0.15	0.15	0.10
1201	0.43	0.00	0.00	0.00	0.00	0.00
1201	0.00	0.00	0.00	0.00	. 0. 00	0.00
fotal	99.08	98.50	100.39	99.41	99.15	99.05
Fe0‡	6.44	2.26	1.22	2.05	2. 27	1.52
°e0‡/Xg0	2.58	3.76	40.56	6.22	3.34	6.10
CIPY NORK						
Q	10.37	28. 54	33.97	25.82	26.63	31.80
c	0.00	2.83	0.00	0.40	0.93	2.29
or	12.11	19.86	28.19	24.58	31.91	24.41
ab	39.69	37.40	36.09	40.53	28.09	36. 89
an	20.75	4.92	0.00	4.34	6.57	0.81
10	0.00	0.00	0.00	0.00	0.00	0.00
ne	0.00	0.00	0.00	0.00	0.00	0.00
kp	0.00	0.00	0.00	0.00	0.00	0.00
ac	0.00	0.00	0.48	0.00	0.00	0.00
*0	0.68	0.00	0.00	0.00	0.00	0.00
en	6.20	1.49	0.07	0.82	1.69	0.62
fs	0.70	0.45	0.00	0.00	0.00	0.00
fo	0.00	0.00	0.00	0.00	0.00	0.00
fa	0.00	0.00	0.00	0.00	0.00	0.00
CS	0.00	0.00	0.00	0.00	0.00	0.00
ot ,	5.71	1.91	0.33	0.31	0.04	0.00
· hoo	0.00	0.00	0.74	1.76	2.13	1:45
il	1.88	0.66	0.21	6.49	0.80	0.49
ru	0.00	0.00	0.00	0.00	0.00	0.00
tu tu	1.02	0.45	0.24	0.36	0.36	0.24
Σ feaic		4.97	2. 07	3. 75	5. 02	2. 80
	62.17	4. 57 85. 79	98.25	90.94	86.64	93.10
nock series	02.17 TH	85. 19 CÅ	98. 25 TH	50. 54 TH	CY CY	78. TE

★: fotal Fe as Fe0

A 2-12

•

******	(25)	(28)	(21)	(28)	(89)	(30
sample no.		¥82002	A82003	A82101	A82103	X82104
\$102	74.65		72.04	67.25	76.99	48.95
Ti 02	0.09	0.13	0.32	0.24	0.03	2.35
A1203	13.48	14.98	14.58	17.08	13.32	17.07
Fe203	0.84		2.33	3.53	0.57	3.69
FeO	0.34	0.20	0.24	0.44	0.18	5.76
XnQ	0.01	0.01	0.08	0.04	0.00	0.13
NgO	0.22	0.20	0.17	0.29	0.11	3.14
CaO	0.73	0.62	1.27	0.41	0.37	3.91
Na 20	3.79	3.09	7.25	5.44	2.49	4.52
K20	5.00	5.60	1.43	5.08	6.04	3.50
P205	0.10	0.15	0.24	0.11	0.11	0.84
H2O+	0.00	0.00	0.00	0.00	0.00	0.00
H20-	0.00	0.00 0.00	0.00	0.00	0.00	0.00
<u>fotal</u>	99.25	99. 87	99.95	99.91	100.21	93.8 6
Fe0‡	1.10	0.89	2.34	3.62	0.69	9.08
Fe0*/Xg0	4.98	4.46	13.74		6.30	2.89
CIPY NORM	*****************					
Q	31.86	33.51	22.47	15.16	38.74	0.00
С	0.74	3.06 33.09	0.00	2.15 30.02	2.27	0.73
or	29.55	33.09	8.45	30.02	35.69	20.68
ab	32.07	26.15	61.35	46.03	21.07	38.25
an	2. 97	2.11	3.02	1.32	1.12	13.97
lc	0.00	0.00	0.00	0.00	0.00	0.00
ne	0.00	0.00	0.00	0.00	0.00	0.00
kp	0.00	0.00	0.00	0.00	0.00	0.00
ac	0.00	0.00	0.00	0.00	0.00	0.00
¥O	0.00	0.00	0.72	0.00	0.00	0.00
en	0.55	0.50	0.42	0.72	0.27	0.01
fs	0.00	0.00	0.00	0.00	0.00	0.01
fo	0.00	0.00	0.00	0.00	0.00	5.47
fa	0.00	0.00	0.00	0.00	0.00	3.00
¢\$	0.00	0.00	0.00	0.00	0.00	0.00
at	0.87	0.30	0.11	0.85	0.49	5.35
hm	0.24	0.56	2.26	2.94	0.23	0.00
11	0.17	0.25	0.61	0.46	0.06	4.46
ru	0.00	0.00	0.00	0.00	0.00	0.00
ap	0.24	0.36	0.57	0.26	0.26	1.99
	2.06	l.96	4.69	5.23	1.31	20.29
D. [.		92.75	92.26	91.21	95.50	58.93
rock series	ŤĦ	CY	TH	TH	TH	TΗ

‡: Total Fe as Fe0

.

	(31)	(32)	(33)	(34)	(35)	(3
sample no.	A82105	A82106	A82110	A82201	A82301	A8230
\$102	52.66	48. 44	76.04	72. 61	47.01	73.14
Ti02	1.28	1.54	0.12	0.22	1.42	0.08
A1203	15.72	16.74	13.20	14.02	16.06	15.17
Fe203	1.18	1.72	1.08	1.17	5.00	0.39
FeO	6.41	6.50	0.21	0.40	5.12	0.24
XnO	0.17	0.15	0.02	0.01	0.15	0.01
XgO	6.14	5.49	0.15	0.35	6.16	0.17
CaO	8.26	6.65	0.77	0.50	8.18	0.48
Na2O	2.91	3.39	3.58	2.52	2. 26	3.48
K20	2.38	3.03	4.88	6.81	0,40	5.57
P205	0.22	0.55	0.12	0.19	0.21	0.19
#20+	0.00	0.00	0.00	0.00	0.00	0.00
H20-	0.00	0.00	0.00	0.00	0.00	0.00
Ĩotal	97.33	94.20	100.15	98. 80	91.97	98.92
 FeO‡	7.47	8.05	1.18	1. 45	9. 62	0.59
Fe0#/Ng0	1.22	1.47	7.88	4.15	1.56	3.48
CIPW NORM						
Q	0.00	0.00	35.08	30.83	6.20	30:83
C	0.00	0.00	0.93	2.04	0.00	2.99
or	14.06	17.91	28.72	40.24	2.36	32.92
. ab	24.62	27.15	30.29	21.32	19.12	29.45
an	22.80	21.51	3.04	1.25	32.49	1.15
lc	0.00	0.00	0.00	0.00	0.00	0.00
ne	0.00	0.83	0.00	0.00	0.00	0.00
kp	0.00	0.00	0.00	0.00	0.00	0.00
ac	0.00	0.00	0.00	0.00	0.00	0.00
¥0	7.00	3.31	0.00	0.00	2. 81	0.00
en	15.08	1.96	0.37	0.87	15.34	0.42
fs	8.87	1.18	0.00	0.00	3.20	0.00
fo	0.15	8.21	0.00	0.00	0.00	0.00
fa	0.10	5.46	0.00	0.00	0.00	0:00
C 5	0.00	0.00	0.00	0.00	0.00	0.00
۵t	1.71	2.49	0.39	0.68	7.25	0.57
hm	0.00	0.00	0.81	0.70	0.00	0:00
i 1 .	2.43	2.93	0.23	0.42	2.70	0.15
́ги	0.00	0.00	0.00	0.00	0.00	0.00
ap	0.52	1.30	0.28	0.45	0.50	0.45
Σfenic	35.86	26. 84	2.09	3.12	31.80	1.80
D; I.	38.69	45.89	94.09	92.39	27.69	93.19
rock series	СY	TH	TH	CA	1 H	CA

‡: Total Fe as Fe0

.

	(37)	(38)	(39)	(40)	(41)	(42)
sample no.	A82401	A90101	X90102	A90103	A90104	A81501
5102	54.79	69.11	66.96	57.19	76.41	59.33
102	1.12	0.43	0.43	1.21	0.17	1.77
1203	18.51	16.06	0.43 15.42	16.18	12.79	15.71
e203	2.01	2.42	2.13	1.25	1.07	6.09
Se0	5.05	0.29	0.77	5.14	0.46	0.49
nO	0.11	0.03	0.04	0.12	0.03	0.12
lg0	3.60	0.44	1.56	3.37	0.33	0.98
a0	4.86	3.23	2.80	5.63	0.55	4.61
la 20	3.10	4.27	4.15	4.07	3.98	4.09
20	3.28	2.47	3.16	2.08	3.88	4.02
205	0.34	0.25	0.19	0.55	0.10	0.96
120+	0.00	0.00		0.00	0.00	. 0. 00
120-	0.00	0.00	0.00	0.00	0.00	0.00
[ota]	94. 77	99.00	97.61	96.79	99.77	98.17
 Fe0‡	6.86	2. 47	2. 69	8.26	1.42	5.97
°eO≉/NgO	1, 91	5.61	l.72	1.86	4.31	6.09
CIPV NORM						
Q	6.76	28.00	22.93	7.99	37.02	12.37
c	0.00	1.18	0.53	0.00	l. 28	0.00
or	19.38	14.60	18.67	12.29	22.93	23.76
ab	26.23	36.13	35.12	34.44	33.68	34.61
an	21.45	14.15	12.68	19.74	2.08	12.63
1c	0.00	0.00	0.00	0.00	0.00	0.00
ne	0.00	0.00	0.00	0.00	0.00	0.00
kp	0.00	0.00	0.00	0.00	0.00	0.00
ac	0.00	0.00	0.00	0.00	0.00	0.00
¥0	0.19	0.00	0.00	L.94	0.00	0.10
en	8.97	1.10	3.89	8.39	0.82	2.44
fs	5.97	0.00	0.00	6.63	0.00	0.00
fo	0.00	0.00	0.00	0.00	0.00	0.00
fa	0.00	0.00	0.00	0.00	0.00	0.00
cs	0.00	0.00	0.00	0.00	0.00	0.00
ot .	2.91	0.00		1.81	1.09	0.00
ha	0.00	2.42	1.19	0.00	0.32	6.09
i1	2.13	0.68	0.82	2.30	0.32	1.29
ru .	0.00	0.00	0.00	0.00	0.00	0.00
* ap	0.81	0.59	G. 45	1.30	0.24	2.27
Σfemic	20.98	4.78	7.71	22. 37	2.79	12.19
), [.	52.37	78.72	76.72	54.72	93.63	70.73
rock series	TH	TH	CA	CY	CA .	TE

.

Fotal Fe as Fe0

	(43)	(44)	(45)	(46)	(47)	(48)
sample no.	A81502	A82501	A82503	A82504	A82505	A82602
si02	48.19	76.86	73. 73	71. 79	79.13	76.13
Ti02	1.80	0.12	0.16	0.53	0.08	0.11
A1203	17.07	12.36	15.32	14.03	12.94	13,47
Fe203	3.11	0.69	1.15	1.71	0.63	0.69
Fe0	6.12	0.25	0.53	0.20	0.15	0.27
reo KnO	0.14	0.02	0.03	0.02	0.00	0.05
kg0	5.48	0.09	0.80	0.13	0.41	0.12
	7.99	0.58	1.67	0.52	0.42	0.36
Ca0	3.67	3.68	4.32	3.95	2.89	4.58
Na20			1.51	4.69	2.04	3.88
K20	1.52	4.80	0.14	0.19	0.09	0.08
P205	0.64	0.12		0.00	0.00	0.00
H2O+	0.00	0.00	0.00	0.00	0.00	0.00
H20-	0.00	0.00	0.00	0.00	.0.00	4. 44
Total	95.73	99. 57	99.36	97.76	98.78	99:74
Fe0‡	8.92	0.87	1.56	1.74	0.72	0.89
FeO*/NgO	1.63	9.68	1.96	13.37	1.75	7.42
CIPY NORM			,			
Q	0.00	36.04	38.44	30.30	53.25	33.91
c	0.00	0.34	3.87	2.32	5.43	1.27
or	8.98	28.37	8.92	27.72	12.06	22.93
ab	31.05	31.14	36.55	33.42	24.45	38.75
an	25.61	2.10	7.38	0.36	1.50	1.27
lc	0.00	0.00	0.00	0.00	0.00	6.00
ne	0.00	0.00	0.00	0.00	0.00	0.00
kp	0.00	0.00	0.00	0.00	0.00	0.00
ac	0.00	0.00	0.00	0.00	0.00	0.00
TO	4.13	0.00	0.00	0.00	0.00	0.00
en	5.99	0.22	1.99	0.32	1.02	0.30
fs	2.61	0.00	0.00	0.00	0.00	0.00
fo	5.37	0.00	0.00	0.00	0.00	0.00
fa	2.58	0.00	0.00	0.00	0.00	0.00
CS	0.00	0.00	0.00	0.00	0.00	0.00
at at	4.51	0.52	1.34	0.00	0.25	0.71
a. ho	0.00	0.33	0.22	1.71	0.46	0.20
10 il	3.42	0.23	0.30	0 47	0.15	0.21
	3.42 0.00	0.23	0.00	0.00	0.00	0.00
ru	0.00	0.28	0.33	0.45	0.21	0.19
ap 	1. 58		U. 00			
Σ femic	30.12	1.59	4.19	2.95	2.09 89.76	1.61 95.60
D. I.	40.04	95.55	83.92	91.44 TO		95.00 TH
rock series	TH	TH	CY	тя	CA ·	10

*: Total Fe as Fe0

,

	(49)	(50)	(51)	(52)	(53)	(54)
sample no.	A82603	A82604	01170503	OH70504	0\$62403	0\$7040
Si02	49.12	70.37	42.78	56. 34	49.00	54.73
Ti02	1.18	0.27	1.72	1.15	1.28	1.10
A1203	16.92	15.73	13.40	15.04	14.88	14.72
Fe203	6.67	1.59	5.92	4.63	5.22	5.94
FeO	2.52	0.72	2.58	0.91	1.72	4.80
lin0		0.04	0.13	0.08	0.20	0.17
llg0	6.26	0.88		4.23	4.71	3.33
CaO	6.72	1.04	10.98	6.08	6.96	4.64
Na 20	2.84	5.07	5.91	4.44	3.79	3.64
K20	0.65		0.95	5.10	0.18	0.72
P205	0.47	0.43	2.23	1.07	0.18	0.18
H20+	0.00	0.00	0.00	0.00	0.00	0.00
H20-	0.00	0.00	0.00	0.00	0.00	0.00
Total	93.50	97.94	94.66	99.07	94.12	93.97
Fe0#	8, 52	2.15	7.91	5. 08	12.42	10.14
FeO*/MgO	1.36	2.44	0.98	1.20	2.64	3.05
CIPW NORK		•••••••••••••••••••••••••••••••••••••••				
Q	7.69	31.65	0.00	0.00	3.36	15.34
С	0.44	4.57	0.00	0.00	0.00	0.00
or	3.84	10.64	5.61	30.14	1.06	4.25
ab	24.03	42.90	17.29	36.87	32.07	30.80
an	30.30	2.38	7.23	6.04	23.06	21.70
lc	0.00	0.00	0.00	0.00	0.00	0.00
ne	0.00	0.00	17.73	0.38	0.00	0.00
kp	- 0.00	0.00	0.00	0.00	0.00	0.00
20	0.00	0.00	0.00	0.00	0.00	0.00
¥0	0.00	0.00	13.70	7.11	4.30	0.07
ел	15.59	2.19	11.84	6.15	11.73	8.29
fs	0.00	0.00	0.00	0.00	8.12	2.41
fo	0.00	0.00	5.77	3.08	0.00	0.00
fa	0.00	0.00	0.00	0.00	0.00	0.00
cs	0.00	0.00	0.00	0.00	0.00	0.00
٥t	5.19	1.67	3.75	0.00	7.57	8.61
ha	3.09	0.44	3.33	4.63	0.00	0.00
i)	2.24	0.51	3.27	2.09	2.43	2.09
ru	0.00	0.00	0.00	0.00	0.00	0.00
ap	t. 11 	1.02	5. 28	2. 53	0.43	0.43
Σ femic	27.23	5.83	46.95	25.59	34.58	21.89
D. I.	35.57	85.19	40.63	67.39	36, 49	50.39
rock series	TH	CX	TB	CA	TH	TH

*: Total Fe as FeO

	(55)	(56)	(57)	(58)
sample no.	0162904		290675	783250
\$102	73.53	54.08	51.56	78.86
TiO2	0.56	1.21	1.30	0.40
A1203	11.11	14.37	14.52	8.08
Fe203	1.77	4.28	7.02	2.78
FeO	2.98	6.88	2.68	0.23
Nn0	0.08	0.17	0.15	0.07
lig0	2.74	4. 23	2.98	1.00
CaO	0.65	6.20	5.09	2.68
Na2O	1.92	3.14	4.59	0.11
K20	1.44	0.52	0.20	0.09
P205	0.27	0.18	0.17	0.18
#201	0.00	0.00	0.00	0.00
K20-	0.00	0.00	0.00	.0.00
Total		95.26	90.26	94.48
7e0*	4.57		9.00	2.73
FeO#/NgO	1.67	2.54	3.02	2.73
CLPV NORN				
Q	50.67	12.66	10.46	71.19
C -	5.85	0.00	0.00	3.44
or	. 8. 51	3.07	1.18	0.53
ab	16.25	26.57	38.84	0.93
an	1.48	23.58	18.42	11.90
lc	0.00	0.00	0.00	0.00
ne	0.00	0.00	0.00	0.00
kp	0.00	0.00	0.00	0.00
ac	0.00	0.00	0.00	0.00
¥0	0.00	2.51	2.39	0.00
en	6.82	10.54	7.42	2.49
fs	3.20	7.42	0.00	0.00
fo	0.00	0.00	0.00	0.00
fa	0.00	0.00	0.00	0.00
CS	0.00	0.00	0.00	0.00
nt	2.57	6.21	5.36	0.00
hm	0.00	0.00	3.32	2.78
i1	1.06	2.30	2.47	0.64
ru	0.00	0.00	0.00	0.00
ap	0.64	0.43	0.40	0.43
Σ femic	14.29	29.39	21. 37	6.33
D. I.	75.43	42.30	50.48	72.66
rock series	CA	TH	TH	CA

.

:

‡: Total Fe as FeO

CA:calc-alkalic series, TH:tholeiitic series

ABBREVIATIONS FOR ASSAY RESULT

.

.

alk	: alkaline	lm : limonite	tf : tuff
alt	: altenated	ls : limestone	trch : trachyte
and	: andesite	ltl : little	trl : translucent
argd	: argillizated	mal : malachite	trp : transparent
bas	: basalt	mdg : medium grained	v : vein
bg	: bearing	mgt : magnetite	vlt : veinlet
bre	: brecciated	monz : monzonite	vtrc : vitric
brn	: brown	ms : mudstone	wht : white
bt	: biotite	msv : massive	wk :weak
cal	: calcite	mus 🕖 : muscovite	wthd : weathered
calc	: calcareous	neph : nepheline	xln : crystalline
carb	: carbonate	ntwk : net work	
cbt	: carbonatite	ol : olivine	
ccp	: chalcopyrite	opx : orthopyroxine	
ch1	: chlorite	oxd : oxide	
cly	: clay	part : partialy	
comp	: compact	peg : pegmatite	
срх	: clinopyroxene	po : porphyry	
csg	: coase grained	po : pyrrhotite	•
cv	: covelline	po-Cu : porphyry copper	
da	: dacite	por : porphyrite	
dio	: diorite	prop : propylite	
drsy	; drusy	prs : porous	
ер	; epidote	purp : purple	
feld	: feldspar	py : pyrite	
fl	; fluorite	qp : quartz porphyry	
fng	: fine grained	qz : quartz	
gb	; gabbro	rd : red	
gd	: granodiorite	rh : rhyolite	
gn	: galena	send : secondary	
gp	: granite porphyry	sed : sedimentary rocl	k
gr	: granite	ser : serisite	
grn	: green	sil : silicified	
grnCu	: green Copper	siltst : siltstone	·
grsn	: greisen	sk : skarn	
gry	: grey	skzed : skarnized	
gyp	: gypsum	sp : sphalerite	
hb	: hornblende	ss : sandstone	
	. Notinitende		
hem	: hematite	stg : strong	
		stg : strong stkwk : stock work	

Au Ag Ser.No.Sample No. ppm ppm longitude(east)latitude(north) area name rock name 08 ' 05 " 44 ° 1.75 104 23 18 1 OS70408 1 VQZ 07 44 0 1 0 0.03 23 2 OS70409 2.104 08 18 vqz 11 0 N 3 OS70501 0.04 1 104 08 16 44 23 17 vqz 11 o ö ñ OS70505 0.03 <1 1104 07 44 23 14 vqz 4 55 n Ô 0\$70508 0.03 <1 104 44 23 Olon Ovoot 5 07 46 18 vqz 0 # 0\$70510 <1 104 44 6 0.04 07 45 23 18 Vġz " 44 Ĩ 0 0 7 0\$70511 0.98 **X1** 104 07 23 18 45 vqz *"* <u>1</u> 104 Ŷ 11 0 8 XH80501 1.86 <1 06 39 20 57 vqz " 44 0 ò 11 9 XH80502 1.44 1 104 06 45 20 56 vqz N 0 1 0 1 11 10 2 104 16 44 22 16 XH80503 16.58 49 vqz / 13 0 0 1 1 11 H90501 0.04 **K**1 26 23 51 39 104 Tahilga Ula VďZ ″ 43 ō 0 7 11 12 26 1190502 3.29 1 104 10 51 43 vqz * 44 õ 0 11 13 H81501 0.04 **X1** 104 35 53 18 vqz 44 " 44 0 H81502 0.03 1 104 38 32 14 53 40 vqz N 15 H81503 0.03 3 104 47 08 44 54 60 VQZ N Ô 16 H81504 0.06 <1 104 50 41 44 55 04 vqz 104 0 17 181505 0.03 <1 54 32 44 51 10 vqz ō N 18 H81506 0.04 <1 104 53 50 44 51 07 Tsagaan Ula ýqz 19 H90401 0.05 <1 104 0 38 40 14 53 43 vqz n 20 0.83 4 104 38 29 44 53 H90402 44 vqz 11 0.91 21 H90403 <1 104 38 16 44 53 47 vqz 22 H90404 0.05 2 104 38 16 53 52 44 ٧QZ n 23 H90405 0.05 <1 104 38 32 53 44 32 vqz 0 0.03 1 24 H90406 <1 104 36 49 54 02 44 vqz 0 " 1 1. 04 0 14 25 DH80602 0.03 <1 104 58 44 24 vqz 17 0 7 11 1 0 26 0.03 22 DH80603 <1 104 57 44 24 54 vqz 0 11 44 0 1 7 1 0.07 27 DH80604 <1 104 58 05 24 34 vqz <u>7. 19</u> 77 ¢ Ċ 0.04 1 11 28 DH80605 57 24 <1 104 13 44 ٧qz 19 0 . 11 7 0 1 vqz 29 DH80606 0.02 <1 104 57 13 44 24 23 1 0 17 6 # 30 DH80705 0.03 <1 104 55 50 44 24 vqz 7 ō 31 DH80706 0.03 <1 104 55 51 24 23 vqz " 14 7 32 DH80707 0.03 <1 1104 55 48 24 23 vqz 7 *n* . 44 44 33 TH80701 0.03 <1 104 55 58 24 12 VQZ 24 n 34 TH80702 0.03 1 104 55 58 12 alt dio 11 NH80701 ¢ 44 1 35 0.04 <1 104 22 52 59 11 vqz ¢ // 14 36 NH80702 0.03 22 <1 104 52 46 10 vġz õ // 44 37 SH80701 0.03 <1 104 56 03 23 01 vqz o Ħ, " 38 SH80702 0.03 <1 104 56 44 23 01 03 vqz ¢ # 44 N 39 HH80701 0.04 2 1105 00 04 23 24 Dugshih alt sil dio *"* <u>44</u> ò H 40 HH80702 0.03 <1 104 59 57 23 35 vqz ñ 0 ō 7 HH80703 0.03 105 41 <1 00 59 <u>" 44</u> 24 08 vqz 0 ٥ h 42 NH80802 0.03 <1 104 52 11 23 23 ٧QZ ٥ " 44 0 7 -BH80801 0.03 23 47 43 <1 104 53 13 výz *** 44** 'n 0 7 44 BH80802 0.03 <1 104 53 16 24 29 vqz " 44 ö 6 45 BH80803 0.11 <1 104 53 24 16 29 vqz " 44 ¢ ö 7 BH80804 0.05 104 46 <1 53 03 23 51 vqz 11 0 0,06 44 47 BH80805 <1 1104 53 26 24 23 vqz # ¢ 44 48 BH80806 0.03 <1 104 52 38 24 22 vqz // Û 44 49 BH80807 0.09 <1 104 52 39 24 22 vqz // 0 46 0 50 DH80801 0.03 51 44 <1 104 30 46 vqz

Appendix	2~6	Assay	Results	(ore	analyses	Au,	Ag)	(1)
----------	-----	-------	---------	------	----------	-----	-----	-----

[Au	Ag		[
Ser. No.	Sample No.	ppm	ppm	longitude(east)	latitude(north)	area name	rock name
51	DH80802	0.03	2		44 ° 30 ′ 46 ″		Vqz
52	DII80803	0.04	3	104 ° 46 ′ 16 ″	44 ° 30 ′ 30 ″	1	sil rk
53	DH80804	0.03	<1		44 ° 30 ′ 30 ″	Dugshih	sil rk
54	DS80805	0.04		· · · · · · · · · · · · · · · · · · ·	44 ° 30 ′ 30 ″		vqz
55	DS80807	0.03			44 ° 30 ′ 30 ″		VQZ
56	H80903	0.03			44 ° 22 ′ 01 ″		VQZ
57	H81001	0.03			44 ° 35 ′ 50 ″		Vqz
58	H81002	0.03		· · · · · · · · · · · · · · · · · · ·	44 ° 35 ′ 53 ″		Vqz
59	H81003	0.03			44 ° 36 ′ 32 ″		Vqz
60	H81004	0.04		the second s	44 ° 36 ′ 32 ″		phyl ss
61	H81005	0.03			44 ° 36 ′ 28 ″		Vqz
62	H81006	0.03		105 ° 20 ′ 49 ″	44 ° 36 ′ 02 ″		vqz
63	H81007	0.03		105 ° 20 ′ 50 ″	44 ° 36 ′ 14 ″	Onh	vqz
64	H81008	0.03		105 ° 20 ′ 08 ″	44 ° 38 ′ 45 ″		VQZ .
65	H81009	0.03			44 ° 38 ′ 40 ″		vqz
66	H81010	0.03		105 ° 20 ′ 49 ″	44 ° 39 ′ 03 ″		vqz
67	1181012	0.03		105 ° 17 ′ 26 ″	44 ° 40 ′ 46 ″		vqz
68	H81013	0.03	<u> </u>	105 ° 18 ′ 12 ″	44 ° 41 ′ 03 ″		vqz
69	H81015	0.03			44 ° 43 ′ 24 ″		vgz
70	H81702	0.03			45 ° 38 ′ 46 ″		VQZ
71	H81703	0.03			45 ° 38 ′ 35 ″	1	vqz
72	H81705	0.03	· · · · · · · · · · · · · · · · · · ·		45 ° 38 ′ 51 ″	1	qzvlt
73	H81706	0.03			45 ° 38 ′ 59 ″		vgz
74	H81707	0.05		105 ° 44 ′ 19 ″	45 ° 38 ′ 45 ″		VQZ
75	H81708	0.03		105 ° 44 ′ 01 ″	45 ° 38 ′ 36 ″	Soirig	VQZ
76	H81709	0.03			45 ° 34 ′ 49 ″	UUTIE	VQZ
17	H81710	0.03	F		45 ° 34 ′ 37 ″	i	Vgz
78	H81711	0.04		105 ° 52 ′ 47 ″	45° 49′ 53″		VQZ
79	H81712	0.04		105 ° 52 ′ 46 ″	45 ° 49 ′ 54 ″		vqz
80	H81713	0.04			45 ° 49 ′ 57 ″		VQZ
81	H81714	0.04		· · · · · · · · · · · · · · · · · · ·	45°49′57″		
82	H81715	0.03			45 ° 50 ′ 09 ″		VQZ VQZ
83	S81703	0.03			45 ° 50 ′ 05 ″		
84	H81801	0.03			45 ° 50 ′ 28 ″		vqz sil rk
85	H81802	0.05			45 ° 50 ′ 33 ″	Soirig	sil rk
86	H81803	0.03		100 00 04	45 ° 50 ′ 10 ″		sil rk
87	H81804	0.03			15 0 84 / 20 8		
88	H81805	0.03	<1		45 ° 52 ′ 02 ″ 45 ° 52 ′ 12 ″	1	sil rk
89	H81806	0.04			45 ° 52 ′ 24 ″	ł	sil rk
90	H82701	0.12	$\langle 1 \rangle$	105 ° 44 ′ 03 ″	44 ° 31 ′ 26 ″		
90 91	H82702	0.04		105 ° 54 ′ 57 ″.	44 ° 28 ′ 52 ″		VQZ
92	1182702	0.03	<1	105 ° 55 ′ 22 ″	44 ° 28 ′ 46 ″	1	VQZ VQZ
<u>93</u>	H82808	0.03			44 ° 24 ′ 08 ″		VQZ
94	H82809	0.02			44 ° 24 ′ 14 ″	North	
94 95	H82810	0.02			44 ° 24 ′ 14 44 ° 24 ′ 02 ″	Harmagtai	VQZ
96	H82811	0.02	<u>1</u>		44 ° 24 ′ 06 ″	naimagtai	VQZ
<u>90</u> 97	H82813	0.03			44 ° 22 ′ 34 ″	· ·	VQZ
91	H82814	0.03	<u> </u>		44 ° 21 ′ 47 ″		VQZ
99	H82815	0.02			44 ° 21 ′ 45 ″		VQZ
	H82903	0.03			44 21 45 44 ° 18 ′ 27 ″		VQZ
100	102303	0.03		100 40 01	<u>10 61 10 61 10 10 10 10 10 10 10 10 10 10 10 10 10</u>	·	vqz

Appendix 2-6 Assay Results (ore analyses Au, Ag) (2)

Appendix 2-6 /	Assay Results	(ore analyses	Au.	Ag)	(3)	•

		Au	Ag				
	Sample No.	ppm	ppm		latitude(north)	area name	rock name
101	<u>H82911</u>	0.04		100 10 40	14 61 11		VQZ
102	1182913	0.04		100 14 00	112 21 10		<u>vqż</u>
103	1182914	0.04			44 61 11		Vqz
104	H82915	0.04		100 14 11	44 61 19		VQZ
105	H82916	0.03	<1	100 13 37	44 67 17		vqz
106	1183001	0.03	<1	100 14 VI	44 21 09		vqz
107	H83002	0.04		100 10 41	44 61 16		vqz
108	H83003	0.03		106 ° 13 ′ 06 ″	44 41 30	•	VQZ
109	H83004	0.04		HAA TA TA	44 61 01		VQZ
110	H83005	0.04			44 21 30		vqz
111	1183006	0.05		μυο το σι	44 29 04		vqz
112	H83007	0.03			44 ° 29 ′ 00 ″		vqz
113	H83008	0.05	• • • • • • • • • • • • • • • • • • •		44 ° 28 ′ 57 ″		vqz
114	H83009	0.04		106 ° 12 ′ 42 ″	44 ° 27 ′ 08 ″		vgż
115	H83010	0.04			44 ° 27 ′ 05 ″	, ,	vqz
116	H83011	0.04			44 ° 26 ′ 52 ″		Vqz
117	H83012	0.04			44 ° 26 ′ 35 ″		vqz
118	H83013	0.04			44 ° 26 ′ 28 ″		vqz
119	H83014	0.03		106 ° 09 ′ 54 ″	44 ° 26 ′ 55 ″		vqz
120	1183015	0.04		106 ° 10 ′ 12 ″	44 ° 26 ′ 54 ″		VQZ
121	H83016	0.04		106 ° 09 ′ 58 ″	44 ° 26 ′ 52 ″	North	vqz
122	H83017	0.04		106 ° 09 ′ 00 ″		Harmagtai	vqz
123	H83018	0.03			44 ° 25 ′ 47 ″		vqz
124	H83019	0.03			44 ° 24 ′ 59 ″		vqz
125	H83021	0.05	<1	105 ° 57 ′ 25 ″	44 ° 25 ′ 08 ″		vqz
126	H83101	0.03	<1		44 ° 26 ′ 58 ″		vqz
127	H83102	0.04	<1	105 ° 59 ′ 37 ″	44 ° 27 ′ 34 ″		VQZ
128	H83103	0.03	<1	105 ° 57 ′ 53 ″	44 ° 28 ′ 15 ″		vgz
129	H83104	0.03	<1	105 ° 57 ′ 23 ″	44 ° 28 ′ 17 ″		VQŻ
130	H83105	0.03	<1		44 ° 28 ′ 33 ″		VQZ
131	H83106	0.03	<1	105 ° 56 ′ 07 ″	44 ° 28 ′ 47 ″		vqz
132	H83107	0.03	<1	105 ° 41 ′ 54 ″	44 ° 25 ′ 58 ″	. :	vqz
133	H83108	0.04	<1	105 ° 42 ′ 11 ″	44 ° 25 ′ 57 ″		Vqz
134	H83109	0.32	_<1		44 ° 25 ′ 55 ″	· · ·	vqż
135	H83110	0.03	<1	105 ° 43 ′ 14 ″	44 ° 25 ′ 46 ″		VQZ
136	[;] H83111	0.03	<1	105 ° 43 ′ 32 ″	44 ° 25 ′ 54 ″	•	VQZ
137	H83112	0.04	<1	105 ° 46 ′ 47 ″	44 ° 25 ′ 26 ″		vqz
138	H83113	0.03			44 ° 25 ′ 32 ″		vqz
139	H83114	0.04			44 ° 25 ′ 16 ″		vqz
140	H83115	0.03			44 ° 25 ′ 35 ″		voz
141	H83116	0.04			44 ° 25 ′ 28 ″		vqz
142	H82001	0.03		106 ° 51 ′ 59 ″	45 ° 31 ′ 59 ″		sil rk
143	H82002	0.04			45 ° 31 ′ 43 ″	· · ·	sil rk
144	H82003	0.04			45 ° 31 ′ 20 ″	•	sil rk
145	H82004	0.03		106 ° 50 ′ 15 ″	45 ° 30 ′ 28 ″	· .	vqz
146	H82005	0.03			45 ° 30 ′ 28 ″	Sologoi	sil rk
147	H82006	0.15			45 ° 30 ′ 08 ″		VQZ
148	H82008	0.04		106 ° 50 ′ 28 ″	45 ° 29 ′ 40 ″		sil rk
149	H82009	0.04		106 ° 53 ′ 41 ″	45 ° 30 ′ 33 ″		VQZ
145	H82010	0.03		106 ° 53 ′ 34 ″	45 ° 30 ′ 36 ″	. • •	VQZ

		Au	Ag			
	Sample No.	ppm	ppm	longitude(east)latitude(n		rock name
151	H82101	0.04			32 ″	sil rk
152	H82103	0.19	2		55 ″	VQZ
153	H82104	0.04	1	06 ° 58 ′ 22 ″ 45 ° 21 ′	48 ″	VQZ
154	H82105	0.03	<1		43 ″	sil rk
155	H82106	0.04	2	06 ° 57 ′ 37 ″ 45 ° 21 ′	39 "	sil rk
156	1182107	0.22	22	06 ° 57 ′ 28 ″ 45 ° 21 ′	30 *	vqz
157	H82108	0.06	2	06 ° 57 ′ 19 ″ 45 ° 21 ′	27 ″	VQZ
158	H82109	0.04			35 ″	sil rk
159	H82110	0.46			20 ″	vqz
160	H82111	0.06			15 "	Vqz
161	H82112	0.05		06 ° 55 ′ 34 ″ 45 ° 21 ′	19 "	skarn
162	H82113	0.04			08 //	sil rk
163	H82114	0.05			02 "	sil rk
164	H82115	0.04			32 "	Vqz
165	H82116	0.04			47 "	sil rk
166	H82117	0.04			59 "	sil rk
160	H82201	0.04			23 "	sil rk
	H82201 H82202			VV VV 14 40 VV	50 "	sil rk
168		0.05		06 ° 53 ′ 58 ″ 45 ° 05 ′	50	
169	H82203	0.05			21 3010801	VQZ
170	H82204	0.04		00 04 20 40 00	01	sil rk
171	H82206	0.04		00 04 00 40 00	00	sil rk
172	H82207	0.04		00 00 01 40 00	41	sil rk
173	H82208	0.04		00 30 09 43 00	<u> 20 </u>	sil rk
174	H82209	0.05		06 ° 44 ′ 37 ″ 45 ° 10 ′	41	sil rk
175	H82211	0.04		<u>06 ° 45 ′ 05 ″ 45 ° 10 ′</u>	44	sil rk
176	H82212	0.04			44 ″	sil rk
177	H82213	0.05			<u>39 "</u>	sil rk
178	H82301	0.04			05 "	vqz
179	H82302	0.04			13 "	VQZ
180	H82303	0.04		· · · · · · · · · · · · · · · · · · ·	34 ″	VQZ
181	H82304	0.04	<1		14 ″	vqz
182	H82305	0.04	<1	06 ° 40 ′ 09 ″ 45 ° 16 ′	19 ″	vqz
183	H82310	0.04	<1	06 ° 36 ′ 30 ″ 45 ° 10 ′	48 ″	Vqz
184	ll82311	0.04	<1	06 ° 36 ′ 44 ″ 45 ° 10 ′	46 ″	vqz
185	A82305	0.06	6	06 ° 36 ′ 30 ″ 45 ° 10 ′	48 ″	vqz
186	H82401	0.04			33 ″	sil rk
187	H82402	0.04	<1		07 "	sil limesto
188	H82403	0.04			32 "	alt mud stor
189	H82404	0.04			36 "	sil rk
190	H82405	0.03			41 ″	Vqz
191	H82406	0.04			34 ″	vqz
192	H82407	0.04	<1		26 "	vqz
193	H82408	0.03			21 "	VQZ
194	H82409	0.03			28 "	VqZ
195	H82410	0.03	3		30 ″	vqz
195	H82411	0.03		00 00 04 40 10	24 "	
190	H82504	0.03		00 00 41 40 10	37 ″	VQZ VQZ
				VV 4J JZ 44 J4	01	VQZ
198 199	H82505 H82601	0.04		00 40 55 44 41	24 ″ Undur Uda 20 ″	vqz vqz
			< 1		731 1	

Appendix 2-6 Assay Results (ore analyses Au, Ag) (4)

.

,

		<u>Au</u>	Ag				
er. No.	Sample No.	ppm	ppm		latitude(north)	area name	rock name
1	OA62702	0.08	<u><1</u>	104 ° 08 ′ 36 ″	44 ° 23 ′ 08 ″		sil rk
2	OA62902	0.05		104 ° 09 ′ 49 ″	44 ° 22 ′ 34 ″		vqz
3	OA62903	0.04		104 ° 09 ′ 48 ″	44 ° 22 ′ 57 ″	•	qz-cal v
4	OA63002	0.05	<1	<u>104 ° 10 ′ 06 ″</u>	44 ° 22 ′ 57 ″		chl-qz v
5	OA70101	0.04	<1	104 ° 10 ′ 25 ″	44 ° 22 ′ 44 ″		cal-qz v
6	OA70202	0.05	<1	<u>104 ° 10 ′ 44 ″</u>	44 ° 22 ′ 49 ″		vqz
7	OA70204	0.04	<1	<u>104 ° 10 ′ 47 ″ </u>	44 ° 22 ′ 04 ″		vqz
8	OA70301	0.04	<u><1</u>	<u>104 ° 11 ′ 04 ″</u>	44 ° 22 ′ 32 ″		sil zone+vgz
9	OS62603	0.04	<1	<u>104 ° 09 ′ 37 ″</u>	44 ° 23 ′ 12 ″		vgz
10	OS70202	0.04	<1	104 ° 10 ′ 17 ″	44 ° 22 ′ 54 ″	01on Ovoot	vqz
11	OS70302	0.05	<1	104 ° 10 ′ 54 ″	44 ° 22 ′ 37 ″		vqz
12	OS70401	0.04		<u>104 ° 11 ′ 01 ″</u>	44 ° 21 ′ 37 ″		sil ss
13	OS70402	0.05		104 ° 10 ′ 57 ″	44 ° 21 ′ 59 ″		hm skarn
14	OS70515	0.04		104 ° 08 ′ 41 ″.	44 ° 23 ′ 05 ″		alt sch
15	OS70516	0.04	<1	104 ° 08 ′ 42 ″	44 ° 23 ′ 06 ″		VQZ
16	OS70518	0.08	1	<u>104 ° 08 ′ 42 ″</u>	44 ° 23 ′ 07 ″.		alt sch
17:	<u>0\$70521</u>	0.04		104 ° 10 ′ 37 ″	44 ° 22 ′ 12 ″		VQZ
18	<u>0\$70522</u>	0.04		<u>104 ° 10 ′ 37 ″</u>	44 ° 22 ′ 11 ″		alt dol sch
19	OS70523	0.03		<u>104 ° 10 ′ 37 ″</u>	44 ° 22 ′ 10 ″		alt dol sch
20	OS70524	0.04	3	104 ° 10 ′ 37 ″	44 ° 22 ′ 10 ″		alt dol sch

Appendix 2-6 Assay Results (ore analyses Au, Ag) (5)

Appendix 2-7 Assay Results (geochemical analyses) $(1)\sim(50)$

	Sampl		Au	Ag	
		Distance	ppb	ppm	Description
1	0	3100	74		wht ~ brn vgz
2	0	3300	(1		grn mdg tfs phyl ss
3	0	3550	<1		lt grn phyl sh
4	0	4000	<1		grn-gry fng ss
5	0	4200	44		grn mer dio
6	0	4325	95		rd-brn mer phyl dio
7	0	4350	2974	<0.2	wht vqz & rd-brn ~ grn phyl rk
8	0	4375	72		wht ~ brn vqz
9	0	4400	22		wht ~ brn vqz
10	0	4425	41		lt grn-gry fng phyl ss
11	0	4450	3		lt grn-gry fng ss
12	0	4550	<1		grn-gry mdg-fng phyl ss
13	0	4850	<1		grn-gry mdg-fng phyl.ss
14	1	3050	<1		wht vqz
15	1	4250	<1	<0.2	rd-brn phyl ss
16	1	4300	190		wht Im vqz
17	1	4325	149		wht vgz grn phyl rk
18	1	<u>4350</u>	2670		rd-brn sil hard dio w/ qzvlt
19	1	4375	80		lt grn-gry fng phyl ss
20	1	4400	2	<0.2	rd-brn ~ grn fng phyl hf & qzvlt
21	1	4425	3		rd-brn ~ brn (1m) ~ wht vqz
22	1	4450	2935	<0.2	rd-brn hg phyl rk, wk argd
23	1	4475	514		rd-brn hg phyl rk
24	1	5000	<1		grn-gry mdg phyllss
25	2	3200	82	<0.2	grn mdg dio wthd
26	2	3550	. K1	<0.2	grn mer dio
27	2	3750	1	<0.2	grn mcr dio wthd
28	2	3950	<1	<0.2	grn-gry mdg hf
29	2	4150	. : (1)	<0.2	lt grn-gry fng phyl ss
30	2	4250	53		rd-brn phyl sil rk
31	2	4275	163	<0,2	wht ~ brn vqz
32	2	4300	47	, <0. 2	
33	2	4325	57	. <0.2	wht-brn vqz
34	z	4350	2841		rd-brnandg sil dio
35	2	4375	69		wht vqz
36	2	4400	75		pnk-dk gry mdg sil dio w/ qzvlt
37	2				rd-grn-gry mdg hg phyl dio
38	2	4600	· 1		rd-brn fng phyl ss
39	2	4750	6		lt grn-gry mdg phyl ss
40	2	4950	20		gry-brn sil lm ss
41	3	3100	1		grn csg dio pnk qz
42	ž	4100	24		It grn gry fng ss
43	3	4225	38		wht lm vqz
40	3	4250	85	<0.2	rd-brn-grn mdg sil dio lm qzvlt
45	3	4275	99		wht vqz
46	3	4213	175		rd-brn mdg phyl dio
40	3	4300	239		grn-blk sil dio
	<u> </u>	4325	334		rd-brn mdg phyl dio
		40101	334	NV. 4	
<u>48</u> 49	3	4425	7		rd-brn mdg phyl dio

Appendix 2-7 Assay Results (geochemical analyses) (1)

٠

•

0 11	Sampl		<u>Au</u>	Ag	Ďtt
		Distance	ppb	ppm	Description
51	3	5000	<u> </u>		grn-gry fng phyl ss
52	4	3000	15		grn mcr phyl dio
53		3250	<u><1</u> 2		grn mer dio
54		3500	2	<0.2 <0.2	
<u>55</u> 56	<u>4</u> 4	3750	<1		grn mdg dio grn mdg dio
57 57		3950	23		
	4	-4200	51		rd-brn phyl sh vqz
58	4	4225 4250			wht \sim brn vgz
59	4		362		
60	4	4300	22		rd-blk-grn mdg dio
61	4	4350	1		rd-brn mdg phyl dio
62	4	4400	67		rd-grn mer dio pnk qz
63	4	4450	<u>54</u>		rd-brn mcr phyl dio
64	4	4550	5		rd-grn mdg phyl dio
65	4	4700	2		grn mdg phyl dio pnk qz
66	4	4900	1		grn gry phyl dio
67	5	3100	<u> </u>	<u> <0. 2</u>	grn mer dio
68	5	3475		<0.2	grn mdg dio
69	5	4000			grn mdg dio
70	5	4100	. 16		rd-brn phyl rk (dio) wthd
71	5	4135	1		wht voz
12	5	4150			wht vqz
73	5	4175	10		wht ~ brn vqz
74	5	4200	100		rd-brn partly grn hg phyl dk w/ qzvl
75	5	4225	496		wht ~ brn vqz
76	5	4250	45		pale rd-grn lm mdg dió pnk qz
11	5	4300	469	<u><u><u> </u></u></u>	rd-brn mdg phyl dio
78	5	4350	53		rd-lt grn mdg hf
79	5	4450	40		lt grn-gry mdg phyl ss
80	5	4500	8		grn-gry fng ss
81	5	4600	5		rd-grn mdg phyl dio
82.	. 5	4800	8		grn mdg dio
83	6	3700	8		gin mer dio
84	6				grn csg dio
85	6	4050	2927	<0.2	wht vqz
86	6	4075	199	<0.2	wht vqz
87	6	4100	106		rd-brn phyl (dio) & wht qzvlt
88	6	4125	. 89		rd-brn phyl (dio)
89	6	4150	143		wht'vgz
90	6	4175	2814		wht vqz
91	6	4200	149		rd-brn mdg dio
92	6	4250	108	<0.2	rd-brn mdg dio
93	6	4300	18		grn mcr dio
94	6	4400	. 9		grn mer dio
95	6	4500	14	<0.2	rd-grn mdg phyl dio
96	6	4600	18	<0.2	rd-grn mdg phyl dio
97	6	4800	1	<0.2	grn mdg dio pnk qz
98	6	5000	5	<0.2	grn mdg dio
99	7	3100	± 11 ·	<0.2	grn mcr dio
100	7	3500	24	<0.2	

Appendix 2-7 Assay Results (geochemical analyses) (2)

	Sampl	e	Au	Ag	
Ser. No.		Distance	ppb	ppm	Description
101	1	3900	3	<0.2	grn-gry hf
102	1	4000	65	<0.2	rd brn-gry hg phyl dio
103	1	4025	2205	<0.2	wht vqz
104	1	4050	38	<0.2	purp ~ brn hg phyl dio
105	1	4075	45	<0.2	rd-brn hg phyl alt rk (dio)
106	1	4100	149	<0.2	purp ~ brn hg phyl dio, wthd
107	<u>1</u> 1	4125	564	<0.2	wht vqz
108	1	4200	2052	<0.2	rd-brn~grn mdg dio
109	<u>1</u> 1	4300	4		grn-blk mdg dio pnk qz
110	1	4500	2		pale-pnk grn mdg phyl dio
111	1	4700	4		wht vgz w/ blk band
112	7	4900	2	<0.2	grn mdg dio pnk qz
113	8	3700	28	<0.2	grn mdg dio
114	8	3925	658_	<u><0</u> . 2	wht vqz
115	8	3950	21	<0.2	purp rd alt mer dio
116	8	3975	709_		rd-brn sil dio & qzvlt
117	8	4000	7		wht vqz
118	8	4025	6	<0.2	rd-brn phyl sh
119	8	4050	25	<0.2	wht vqz
120	8	4100	20	<0.2	wht vqz
121	8	4125	4	<0.2	wht lm vqz
122	8	4150	4		rd-grn gry hg phyl dio
123	8	4225	7	<0.2	grn mdg dio, lm
124	8	4400	<1		grn mer dio
125	8	4600	2		grn csg dio pnk qz
126	8	4700	1		grn csg dio rd-brn alt band pnk qz
127	8	4800	1	<0.2	
128	9	3100	2	<0.2	
129	9	3300	3	<0.2	lt grn-gry phyl sh
130	9	3800	14		grn mdg dio
131	9	3850	183		rd-grn mdg dio
132	9	3900	4782	<0:2	wht vqz
133	9	3950	961		purp-lm wht vqz
134	9	4000	49	<0.2	rd-brn hg phyl sdy sh
135	9	4100	8	<0.2	wht~brn vgz
136	9	4150	12		lt grn-gry sil fng phyl ss
137	9	4250	21	<0.2	grn-gry fng ss
138	9	4400	5	<0.2	grn mcr dio
139	ġ	4750	3		grn mdg dio
140	ġ	5000	3		grn-gry mdg hf
141	10	3700	3		It grn-gry fng ss
142	10	3800	7		rd-dp grn mcr dio
143	10	3850	13		rd-brn alt wk argd rk
144	10	3900	9		It grn-gry mdg hg phyl ss
145	10	3950	15		It grn-gry mdg hg phyl ss
146	10	4050	26		It grn-gry mdg hg phyl ss
147	10	4100	19.		rd-brn alt sheared wk argd rk
148	10	4150	195		wht vgz
140	10	4200	3		grn-gry mdg sil ss
140	10	4350	2		grn-gry fng phyl ss

Appendix 2-7 Assay Results (geochemical analyses) (3)

,

	Sampl		Au	Ag	
		Distance	_ ppb		Description
151	11		4	<0.2	grn gry fng ss
152	11	3650	20	<0.2	lt grn-gry fng ss
153	11	3700	3	<0.2	grn mcr dio rd-brn ~ brn (1m) ~ wht vqz
154	11	3750	3	<0.2	rd-brn ~ brn (lm) ~ wht vqz
155	11	3800	5		wht vgz
156	11	3850	4	<0.2	
157	11	3900	3		lt grn-gry fng phyl ss
158	11	3950	16		lt grn-gry sdy phyl sh
159	11	4000	104		wht vqz
160	11	4050	3	<0.2	lt grn-gry mdg sil ss w/ qzvlt
161	11	4200	5		lt grn-gry fng phyl ss
162	11	4800	4		grn mdg dio
163	12	3300	3		grn-grý fng ss
164	12	3500	3		grn-gry fng ss
165	12	3600	· 3·		grn-gry fng ss
166	12	3800			rd-brn mer dio
167	12	3850	29	<0.2	wht vqz
168	12	3900	7	<0.2	grn-gry fng sil ss
169	12	3950	6	<0.2	wht vqz
170	12	4000	22		pale rd-gry mdg sil ss
171	12	4100	5		pale rd-gry mdg sil ss
172	12	4300		_ ` <0. 2 :	grn-gry mdg phyl ss
173	12	5000	4	<0.2	grn and (marginal dio)
174	13	3550	10		grn-gry fng phyl, ss
175	13	3650	:144	<0.2	grn-gry mdg sil ss
176	13		3521	<0. 2 ^c	red-grn mcr dio
177	13	3750	17		grn-dk gry and
178	13	3800	40		rd brn mer dio, wthd
179	13	3850	: 130	<0.2	grn mcr dio
180	13	3900	8		wht vqz
181	13	4000	13		rd brn mcr dio, 1m
182	13	4100	6		grn mdg dio pnk qz & cal v
183	13	4500	6	<0.2	grn-gry mdg sil ss
184	13	4700	4	<0; 2	grn mcr dio
185	13	4900	2	<0.2	grn_mcr dio
186	14	3000	10	<0.2	grn mcr dio
187	14	3300	1	<0.2	grn-gry mdg phyl ss
188	14	3500	3	<0.2	lt grn-gry sdy sh
189	14	3600	3	<0.2	rd-brn mdg phyl sil ss
190	14	3650	25	<0.2	wht vqz
191	14	3700	5		dk grn mdg dio
192	14	3750	13	<0.2	
193	14	3800	270		dk grn mer dio
194	14	3850	731	<0.2	
195	14	4100	7		rd-brn alt rk, wthd
196	14	4300	1		grn mdg dio, wthd
197	15	3600	37		It grn-gry fng mdg phyl ss
198	15	3650	32	<0.2	
199	15	3700	165	<0.2	
200	15	3750	4458	<0.2	

Appendix 2-7 Assay Results (geochemical analyses) (4)

.

<u> </u>	Sampl		Au	Ag	
Ser. No.		Distance	ppb	ppm	Description
201	15	3800	635		grn-gry mer dio
202	15	3900	115		grn-gry fng phyl ss
203	15	3950	21		rd-dp grn mer phyl dio
204	15	4250	1	<0.2	
205	15	4450	2	<0.2	
206	15	4800	- 1	<0.2	
207	15	5000	13		grn gry mdg phyl dio
208	16	3600	190:		lt grn-gry fng phyl ss
<u>209</u>	16	3650	42		rd-grn fng mer dio
210	16	3700	647		wht vqz
211	16	3725	251		wht vqz
212	16	3775	272		lt grn-yel mdg dio, many py, lm
213	16	3800	.1384		lt grn-gry mdg dio, py & wht vqz w/ py
214	16	3850	316		dk grn mcr dio
215	16	3900	12		dk grn mcr dio
<u>216</u>	16	4200	38		grn mdg sil hf
217	16	4900	99	<0.2	
218	17	3100	4		phyl ss
219	17	3500	8		lt grn-gry phyl sh, wthd
220	17	3600	30	<0.2	lt grn-gry phyl ss
221	17	3650	. 9	<0.2	lt grn-gry phyl sh, wthd
222	17	3700	245	<0.2	It grn-gry phyl sh, wthd
223	17	3750	270	<0.2	dk grn mdg dio, py, pnk qz
224	17	3800	139	<0.2	dk grn mdg dio, py, pnk qz, wthd & vqz
225	17	3900	13	<0.2	phyl ss
226	17	4450	3	.<0.2	grn gry fng ss
227	17	4800	:7	<0.2	grn mcr dio
228	17	5000	1	<0.2	
229	18	3000	<1	<0.2	
230	18	3250	. 2	<0.2	
231	18	3500	<1		grn-gry phyl; sheared
232	18	3600	13		grn-gry phyl, sheared
233	18	3700	1338		grn mcr dio wht vgz
234	18	3750	286	.<0.2	rd-brn mdg dio wht vqz
235	18	3800	58		grn-gry mdg ss
236	18	3900	18	<0.2	dk grn mer dio, pnk vqz, wthd
237	18	4000	<1	<0.2	grn-gry mdg sil ss
238	18	4250	<1	. <0.2	grn-gry mdg sil ss
239	18	4550	<1		grn-gry fng ss, wthd
240	19	3400	5	<0.2	lt grn-gry fng sil ss
241	19	3600	27	<0.2	lt grn-gry sdy sh
242	19	3650	14	<0.2	dk grn mcr dio
243	19	3700	1694		grn mdg dio & wht qz vlet, py, partly rd-b
244	19	3750	36		dk grn mer dio, py
245	19	3800	1		grn-gry phyl sh
246	19	3900	25		grn-gry mdg ss
247	19	4100	<1		grn-gry phyl ss, wthd
248	19	4400	<1		lt grn-gry fng phyl ss
249	19	4700	1		grn-gry fng ss
250	19	4900	11		It grn-gry fng ss, sheared

Appendix 2-7 Assay Results (geochemical analyses) (5)

•

~	Sampl		Au	Ag	
Ser. No.		Distance	ppb	· ppm	Description
251	20	3650	28	<0.2	
252	20	3700	282	<0.2	
253	20	3850-	21	<0.2	phyl ss
254	20	3950	2	<0.2	
255	20	4050	3	<0.2	
256	20	4200	<1	<u><0.2</u>	
257	20	4500	. 1	. <0. 2	
258	20	5000	<1	<u> (0. 2.</u>	dk grn-gry mdg sil ss
259	21	500	<1		dk grn mdg dio pnk qz, wthd
260	21	650	25		wht vqz
261	21	675	5		granulated wht ~ brn vqz
262	21	.700	81		granulated wht vqz
263	. 21.	750	7		brn mer ~ mdg dio
264	21	900	121		rd-brn mcr dio, wthd
265	21	1100	<1		grn-gry csg sil ss
266	21	2000	4		grn-gry mdg sil ss
267	21	2100	1:	<0. 2 [.]	
268	21	2900	<1	<0.2	
269	21	3150	<1	<0.2	
270	21	3500	4	<0.2	
271	21	3700	12		grn-gry phyl sh
272	21	3850	3	<0.2	
273	21	3900	9		wht qz-tor v
274	21	.3950	34		grn-grý mer dio
275	21	4000	14		rd-brn mer dio
276	21	4300	<1		grn-gry fng ss
277	21	4650	2		grn-gry phyl sh
278	21	4800	3		grn-gry phyl sh
279	22	300	3	<0.2	
280	22	600	6	<0. <u>2</u>	
281	22	625.	6	<0. <u>2</u>	
282	22	650	17	<0.2	
283	22	700	. 5	<0.2	
284	22	750	20		rd-orange alt rk, wthd lm
285	22	900	15		pale rd-brn mdg sil ss
286	22	1100	2		grn-gry fng phyl ss
287	22	1700	1		gry fng sil ss
288	22	1900	1		grn-gry phyl sh
289	22	2000	. 3	<u><0. 2</u>	
290	22	2100	2	<0 <u>.</u> 2	
291	22	2200	• 1 •	<0.2	
292	22	2300	13	<0.2	
293	22	2700	4	<0.2	
294	22	3300	. 2	<0.2	grn-gry fng phyl ss
295	22	3550	5	<0.2	grn-gry fng phyl ss
296	22	3700	4	<0.2	
297	22	3800	13	<0.2	rd-grn mdg sil ss
298	22	3850	4	<0.2	
299	22	3900	4	<0.2	grn md~coag dio
300	22	3950	7	(0 2	grn mdg dio

Appendix 2-7 Assay Results (geochemical analyses) (6)

0 N	Sampl		Au	Ag	Description
		Distance	ppb	ppm (0,0	Description
301	22	4000	15		grn ~ rd-brn mcr dio, cal v (powder)
302	22	4100	8		grn ~ gry fng sil ss
303	22	4200	2		$grn \sim gry fng sil ss$
304	22	4400	<u>, i 1</u>		rd-grn hf
305	22	4750	<u><1</u>		grn-gry sdy phyl sh
306	23	0	4		rd-brn alt rk, wthd
307	23	700	2		rd-brn alt dio
308	23	800	· 6		rd-brn alt phyl dio
309	23		<u> </u>		rd-grn mdg dio
310	23	1000	<1		fresh grn mdg dio, wthd
311	23	1150	. 1		dk grn-gry mcr dio
312	23	1350	, 2 ·	<0.2	grn-gry fng sil ss
313	23	1950	2	<0.2	grn-gry mdg sil ss
314	23	2050	0		grn-gry mdg sil ss
315	23	2150	2		grn-gry mdg sil ss
316	23	2200	<1	<0.2	dk grn-gry sil ss
317	23	2300	<1	<0.2	dk grn-gry sil ss
318	23	2400	<1	<0.2	grn-gry fng~mdg sil ss
319	23	2950	<1		grn-gry fng~mdg sil ss
320	23	3200	3		lt grn-gry fng ss
321	23	3750	1		lt grn-gry hg phyl ss
322	23	3850	1		dk grn mer dio
323	23	3950	. 2		dk rd ~ dk grn mcr ~ mdg sil dio
324	23	4050	101		hem rd mdg dio
325	23	. 4150	6		dk rd-brn ~ grn_mdg dio
326	23	4250	2		dk grn mer dio
327	23	4350	1	<0.2	red-grn dio, wthd
328	23	4550	5		grn-gry hg phyl sheared dio
329	23	4750	1		dk rd-brn mer dio
330	24	100	2		grn-gry mdg dio
331	24	200	1		rd-brn hg phyl dio
332	24	500	1		grn-gry fng sil ss
333	24	900	5		rd-brn ~ grn mdg dio
334	24	1500	1		fresh grn mcr dio
335	24	2050	<u>1</u> 3		dk grn-gry phyl mdg ss
335	24	2050	47		grn-gry md ~ fng phyl ss
330		2100	41	<u> </u>	grn-gry md ~ fng phyl ss
	. 24		4		
338		2250			grn-gry md ~ fng phyl ss
339	24	2650	<u>, 1</u>		grn-gry hg phyl ss
340	24	3050	2		grn-gry phyl ss
341	24	3350	1		grn-gry fng phyl ss
342	24	3550	4		dk grn-gry mdg phyl ss
343	24	3850	3		grn-gry fng phyl ss
344	24	4000	3		grn-gry and
345	24	4050	30		grn mer dio
346	24	4100	5		rd-brn mer dio
347	24	4150	2		dk grn mer dio
348	24	4200	5		dk grn mcr dio
349	24	4250	12		dk grn mdg dio feld
350	24	4400	2	<02	rd-brn hg phyl sheared rk (dio)

Appendix 2-7 Assay Results (geochemical analyses) (7)

	Sampl		Au	Ag	
		Distance	ppb	ppm	Description
351	- 24	4500	1		vqz-tor
352	24	4750	1		grn-gry mcr dio
353	25	200	35		grn hg phyl mer dio
354	25	300	800		rd-brn ~ grn mdg dio & wht vqz
355	25	400	16		dp grn mer dio, pnk qz
356	25	700	32		rd-brn phyl dio
357	25	725	724		wht vqz & rd-brn sil phyl dio
358	25	750	138		pnk alt mer dio
359	25	975	10		rd-brn sil phyl dio
360	25	1175	2		grn-gry mcr dio, wthd
361	25	1675	0		fresh grn mdg'dio
362	25	1775	<1		fresh grn mdg dio
363	35	2025	20	<0.2	rd-brn hg phyl dio
364	25	2050	1840	<0.2	rd-brn hg phyl dio
365	25	2075	36	<0.2	rd-brn ~ dk grn phyl mer dio
366	25	2100	35 -	<0.2	wht vqz
367	25	2150	15	<0.2	grn-gry phyl ss
368	25	2200	12	<0.2	grn-gry phyl ss
369	25	2400	5	<0.2	grn-gry phyl sh
370	26	0	14	<0.2	grn-gry mcr dio
371	26	200	16 [.]		grn mdg dio pnk qz
372	26	275	77		rd-dk grn mdg dio py & vqz
373	· 26 ·	550	49.		rd-brn mdg phyl dio pnk qz
374	26	650	30		rd-brn ~ yel-grn mdg dio
375	26	675	89		It gry phyl ser dio wht vgz
376	26	700	31		lt gry sil dio (ss)
377	26	900	10		grn phyl mcr dio
378	26	950	2544		rd-brn ~ grn phyl mer dio
379	26	1050	53		grn-gry mdg vitreous ss
380	26	1750	3	<0.2	
381	26	1850	3		dp fresh grn mdg dio
382	26	1950	5		grn high phyl dio & powder cal v
383	26	2000	2		rd-brn ~ grn phyl mdg dio, py
384	26	2025	5		rd-brn ~ grn phyl mdg dio, py
385	26	2050	66		rd-brn ~ grn phyl mdg dio, py
386	26	2100	1056	<0.2	
387	26	2125	184		wht vqz
388	26	2150	81		wht voz & lt grn-gry sdy sch (and)
389	26	2200	15		rd-brn lt grn-gry phyl ss
390	27	250	6		grn-gry mdg ss (mcr dio)
391	27	550	191		dk grn-gry mdg dio
392	27	650	202		dk rd-brn phyl dio
393	27	700	163		yel-brn 1m dio
394	27	725	120		wht vqz
395	27	800	2		fresh grn mcr dio
395	27	900	93		dk grn mdg dio pnk qz
397	27	1000	13		wht vqz
398	27	1100	13		pale rd-grn-gry mdg ss (mcr dio)
399	27	1300	2	<u>(U. 2</u>	grn-gry mdg ss
400	27	1750	(1	KU. Z	fresh grn mcr dio ep vlt

Appendix 2-7 Assay Results (geochemical analyses) (8)

<u> </u>	Sampl		Au	Ag	Dense to the
		Distance		ppm	Description
401	27		2941		wht vgz
402	27	2000	. 35		grn mdg phyl dio pnk qz
403	27	2025	.:52		red-brn phyl mcr dio pnk qz
404	27	2050	154	. (0, 7	wht. yqz
405	27	2075	52		grn-gry phyl ser mer dio pnk qz
406	27	2100	38		rd-brn-gry phyl and
407	27	2125	219		
408	27	2200	9		grn-gry mdg phyl ss (and)
409	27	2300	40		Bin Bis and on bin de (ana)
410	27	2550	. 2		grn-gry phyl sh pnk qz
411	27	3000	2		grn-gry fn-mdg phyl ss
412	28	300	. 5	(0.2	grn-gry ss
413	28	500	3	<u> </u>	grn-gry mcr dio
414	<u>28</u> 28	650	13	<u>(U.Z</u>	
415		700	5	<u><u> </u></u>	rd-brn mdg quartzite
416	<u>28</u> 28	800	<u> 2 3 </u>		fresh grn mcr dio
417		850	<u> </u>		grn-gry mdg dio
418	28	900			rd-brn dio
419	28	1000			dk grn mdg dio
420	28	1800	. 3		dk grn and
421	28	1900	119		rd-brn grn mdg phyl dio
422	28	1925	1118		
423	28	1950	3755		wht:vqz
424	28	1975	8024		wht vqz grn dio
425	28	2000	56		wht vqz
426	28	2025	2534		rd-brn mdg dio
427	28	2050	290	<0. Z	wht vqz
428	28	2075	3290	<u> (U. Z</u>	wht vqz
429	28	2100	211		grn-gry phyl ser chl dio
430	28	2150	14		grn-gry mdg phyl ser ss
431	28	2450	13	<0.2	
432	29	625	34	<0.2	
433	29	675	8		rd-brn mdg dio
434	29	.700	90		WAT. VQZ
435	29	725	25		
436	29	750	19		wht \sim brn vqz, lm & yel brn dio
437	29	775	4		rd-brn yel-brn mcr dio, 1m, qzvlt
438	29	800	1201		yel brn mdg dio, 1m, qzvlt
439	29	850	39		grn-gry mer dio
440	29	900	. 8	<0.2	grn-gry mdg dio, pnk cal
441	29		55		rd brn mdg dio, pnk cal
442	29	1025	4		grn mdg dio, pl pnk cal
443	29	1125	5		grn-gry fng ss
444	29	1325	3		grn-gry mdg dio
445	29	1925	891	<0.2	rd brn-grn mer dio
446	29	1950	127		rd-brn grn mer dio 1m
447	29	1975	831		wht vqz & rd-brn dio
448	29	2000	<u>757</u> :		wht vqz
449	29	2025	3060	<0.2	
450	29	2050	1615	<0.2	wht vqz

Appendix 2-7 Assay Results (geochemical analyses) (9)