
# THE REPUBLIC OF TURNS



314 66.1 MPN

## THE REPUBLIC OF TURKEY REPORT ON THE MINERAL EXPLORATION OF KURE AREA

HASET

## ANGER RESIDENCE CONFIATION ACENSY SUBJECT HER WAS ALCOHOLOGY OF JAPAN

ne de la companya de la co

> MANA AR (S)

# THE REPUBLIC OF TURKEY REPORT ON THE MINERAL EXPLORATION OF KÜRE AREA

PHASE 1



24737.

**DECEMBER 1992** 

JAPAN INTERNATIONAL COOPERATION AGENCY METAL MINING AGENCY OF JAPAN

### PREFACE

In response to the request of the Government of the Republic of Turkey, the Japanese Government decided to conduct a Mineral Exploration Project in the Kure Area and entrusted the survey to Japan International Cooperation Agency (JICA) and Metal Mining Agency of Japan (MMAJ).

The JICA and MMAJ sent a survey team headed by Mr. Hisashi Mizumoto to the Republic of Turkey from 29 June to 26 September 1992.

The team exchanged views with the officials concerned of the Government of the Republic of Turkey and conducted a field survey in the Küre area. After the team returned to Japan, further studies were made and the present report is the result.

We hope that this report will serve towards the development of this project and contribute to the promotion of friendly relations between our two countries.

We wish to express our deep appreciation to the officials concerned of the Government of the Republic of Turkey for the close cooperation extended to the team.

December 1992

Kensuke YANAGIYA

President,

Japan International Cooperation Agency

Takashi ISHIKAWA

President,

Metal Mining Agency of Japan

Kensuka Mana

### Summary

Geoscientific and resources information and data acquired through previous geological, geochemical, and geophysical surveys of the Küre Area were made available to the survey team. They were analyzed and interpreted. The results formed the basis in planning and implementing the geological and geophysical field survey of the first year of the project.

Geological reconnaissance survey was carried out covering 559km² in the Taşköprü Zone and 66km² in the Dikmendag Zone and the results are expressed in 1/50,000 scale geological maps. Several promising mineral prospects were extracted from the above survey and a total of 4km² was geologically surveyed in semi-detail at Cozoglu, Cünür, and Alayürek of Taşköprü Zone, and also 2km² at Masköy of Dikmendag Zone. The results of the semi-detailed survey are shown in 1/5,000 scale geological maps. There is an operating mine at Küre Mining Zone with promising mineral prospects and thus similar semi-detailed survey was carried out over 22km² of that zone.

In geophysical prospecting, 513 stations were measured by CSAMT method and 4 line-km by IP method in the Küre Mining Zone. The method employed was CSAMT array with 400 measurements in the east-west direction transecting the ore deposit and 113 measurements set randomly outside of the above traverse. IP was applied in order to assess the CSAMT anomalies.

In the Taşköprü Zone, Çangal Meta-ophiolite of pre-Lias time is dominant, and the mineral prospects occur in the basalt and green schist. The mineralizations accompanied by silicification and argillization. In the Küre Mining and Dikmendağ Zones, ore deposits and prospects were found in the basaltic rocks of the Lias Series. Although different in age, possible ophiolite-related mineralization are Besshi-type metamorphic deposit in the Taşköprü Zone, and Cyprus-type massive deposit in the Küre Mining and Dikmendağ Zones.

The lowermost geologic units of this area are Paleozoic Devrekani Metamorphics and the overlying Pre-Lias Çangal Meta-ophiolite. The former unit consists of gneiss and the latter mainly of metamorphic rocks of mafic igneous origin. These metamorphic bodies occur in the Taşköprü Zone. Mineralization of copper is observed in the meta-ophiolite.

The formations of the Lias Series are the Küre Formation of the Küre Mining and Dikmendag Zones, and the Kayadibi Formation of the Taşköprü

Zone. They comprise mafic basaltic rocks and sandstone-shale alternations. The presently operating Küre Mine and the prospects in the vicinity are all hosted by the basaltic rocks (hyaloclastite) of the Küre Formation.

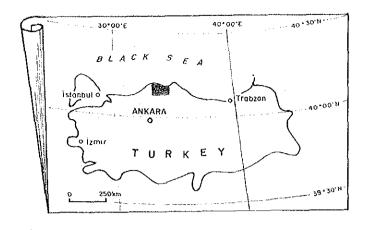
During the Dogger Epoch in Middle Jurassic, intrusive activities took place and this became the site of limestone and flysch-type deposition. Strong tectonic movements occurred in this area and E-W and N-S system faults are dominant together with branch faults of the NE-SW and NW-SE system. Many of the fold structures have E-W trending axis in line with the general regional trend.

Küre Mine operated by Etibank is located in the central part of the survey area. The mineralization is massive cupriferous pyrite type. Lias sedimentary rocks such as sandstone, pelitic rocks, and conglomerate occur together with mafic submarine volcanic rocks and pillow basalt. The hanging wall is dominantly black shale with flysch-type sediments in the higher horizons. The intrusive bodies near the deposit consist of serpentinized ultramafic rocks, gabbro, and diorite. These are called Küre Ophiolite. From these characteristics, this mineralization is considered to be of Cyprus-type.

In the Küre Mining Zone, the Lias Series, the host formation of the ore deposits, is very well developed and copper mineral showings are found in many localities. These have been explored in the past, but notable orebodies have not been found with the exception of the Küre Deposit. Copper showings are known to occur in several localities in the green metamorphic rocks of the Taşköprü Zone.

The Küre Mine comprises Aşıköy-Toykondu, Bakibaba, and Kızılsu Deposits. The Aşıköy is a large orebody and the upper part is being mined by open pit method and preparations are underway for tunneling of the lower parts. The Bakibaba and Kızılsu are small deposits and the high-grade parts are being mined by sub-level method. There is a stock of more than 2 million tons of slag from smelting in the Roman period near the Bakibaba Deposit. The slag contains gold, copper, and cobalt. Since the start of mining as the Küre Mine of Etibank, the Aşıköy produced 3 million tons of ore and there are, at present, ore reserves of 12 million tons. Bakibaba was mined by K.B.I. (Black Sea Mining Co.) until it merged with Etibank last year (1991) with a total production of 800 thousand tons. The remaining ore reserves are said to be 800 thousand tons.

The results of the past exploration and the present survey indicate that:


- 1. Cyprus-type deposits related to the Jurassic mafic rocks in the Küre Formation which extends in the east-west direction around the Küre Mine.
- 2. Metamorphosed Besshi-type deposits in the Çangal Meta-ophiolite which extends in the east-west direction in the Taşköprü Zone with sporadic distribution of slag heaps and copper showings.

are the type of mineralization which would be the target of future exploration activities.

The following localities were extracted as being promising for metallic exploration as the result of the geological and geophysical survey of the first phase. It is recommended that geological survey, geophysical prospecting, and drilling be conducted in these localities in accordance with the conditions of each site.

| Zone           | Promising Localities                                                                                                                                                                       | Geochemical<br>Survey | Geophysical<br>Prospecting | l                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|----------------------|
| Küre<br>Mining | Southern Part of Aşıköy Orebody<br>Vicinity of Entrance to Gallery 920ML<br>North and South of Bakibaba Deposit<br>South of İpsinler Mineralized Zone.<br>Zemberekler and Kızılsu Deposits |                       | Reco                       | Reco<br>Reco<br>Reco |
| Taşköprü       | Cozoğlu Mineralized Zone<br>Cünür Mineralized Zone<br>Alayürek Mineralized Zone                                                                                                            | Reco<br>Reco          | Reco<br>Reco               |                      |
|                | Distribution Area of Basic Rock                                                                                                                                                            | Reco ?                | Reco                       |                      |

Reco: recommendation



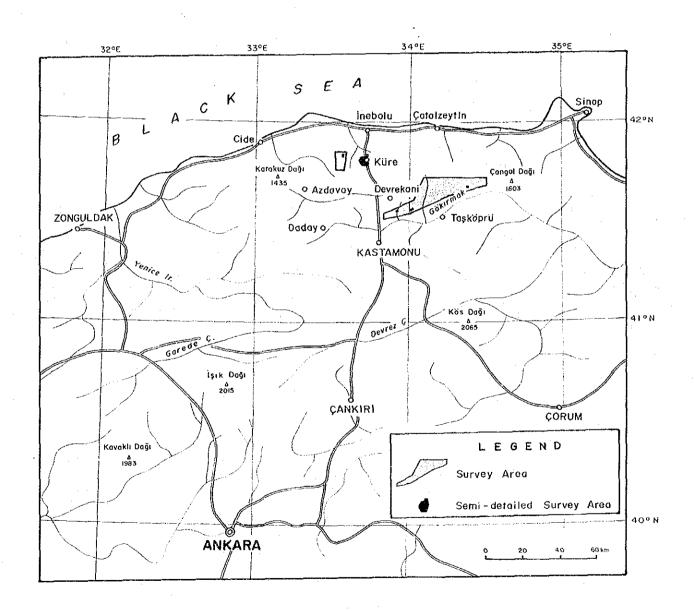



Figure 1-1 Index Map of the Survey Area

### CONTENTS

PREFACE
INDEX MAP OF THE SURVEY AREA
SUMMARY
CONTENTS
LIST OF FIGURES AND TABLES

### PART 1 OVERVIEW

|                                                               | 4    |
|---------------------------------------------------------------|------|
| Chapter 1 Introduction                                        |      |
| 1-1 Background and Objective of the Survey                    |      |
| 1-2 Areal Extent and Work Operation of the First Phase Survey | .: 2 |
| 1-2-1 Coordinates and Contents of the Survey Areas            |      |
| 1-2-2 Priority Activities of the Survey                       |      |
| 1-3 Members of the First Phase Survey                         | 8    |
| Chapter 2 Geography                                           | 9    |
| 2-1 Location and Access                                       |      |
| 2-2 Topography and Drainage                                   | . 10 |
| 2-2-1 Topography                                              |      |
| 2-2-2 Drainage                                                |      |
| 2-3 Climate and Vegetation                                    | . 11 |
| 2-3-1 Climate                                                 | •    |
| 2-3-2 Vegetation                                              |      |
| Chapter 3 Outline of the Küre Mine                            |      |
| 3-1 History of Mine                                           | . 13 |
| 3-2 Mining Activity of Küre Mine                              | . 13 |
| 3-2-1 Investment                                              |      |
| 3-2-2 Aşıköy Open Pit                                         |      |
| 3-2-3 Aşıköy Underground Mining                               |      |
| 3-2-4 Milling Operation                                       |      |
| 3-2-5 Cable Railway Transportation                            |      |
| 3-2-6 Stripping and Production Activities                     |      |
| 3-2-7 Supporting Services                                     |      |
| 3-2-8 Rationalization of Mine                                 |      |
| Chapter 4 Results of Investigation                            | . 17 |
| 4-1 Laboratory Work                                           | . 17 |
| 4-1-1 Thin Section Microscopy                                 |      |
| 4-1-2 Total Chemical Analysis                                 |      |
| 4-1-3 Ore Microscopy                                          |      |
| 4-1-4 Ore Assay                                               |      |

| 4-1-5 X-ray Diffraction                                               |      |
|-----------------------------------------------------------------------|------|
| 4-1-6 EPMA                                                            |      |
| 4-1-7 Sulfur Isotope Studies                                          |      |
| 4-2 Geologic Structure                                                | . 55 |
| 4-3 Mineralization Inferred from the Results of the Geological Survey | . 57 |
| 4-4 Results of Geophysical Prospecting                                | . 57 |
| 4-4-1 CSAMT Results                                                   | •    |
| 4-4-2 Results of IP Prospecting                                       |      |
| 4-4-3 Results of Laboratory Tests                                     |      |
| 4-5 Mineral Potential of Küre Area                                    | . 59 |
| 4-5-1 Küre Mining Zone                                                |      |
| 4-5-2 Other Zones                                                     |      |
| Chapter 5 Conclusions and Recommendations                             | . 60 |
| 5-1 Conclusions                                                       |      |
| 5-1- 1 Southern Part of Aşiköy Orebody                                |      |
| 5-1- 2 Vicinity of Entrance to Gallery 920 ML                         |      |
| 5-1- 3 North and South of Bakibaba Deposit                            | •    |
| 5-1- 4 South of İpsinler Mineralized Zone                             |      |
| 5-1- 5 Zemberekler and Kızılsu Deposit                                |      |
| 5-1- 6 Cozoglu Mineralized Zones                                      |      |
| 5-1- 7 Cünür Mineralized Zones                                        |      |
| 5-1- 8 Alayürek Mineralized Zones                                     |      |
| 5-1- 9 Basic Rock Area of the Dikmendag Zone                          |      |
| 5-1-10 Ophiolite Area                                                 |      |
| 5-2 Recommendations for the Second Phase Survey                       | . 64 |
| PART 2 COMPILE OF PREVIOUS SURVEY                                     |      |
|                                                                       |      |
| Chapter 1 Previous Survey of the Küre Area                            | . 65 |
| 1-1 Outline                                                           | . 65 |
| 1-2 Data of Drilled Holes                                             | . 68 |
| Chapter 2 Compile of the Previous Survey                              |      |
| 2-1 Regional Geology                                                  | 69   |
| 2-2 Geochemical Prospecting                                           | . 92 |
| 2-3 Geophysical Prospecting                                           | 107  |
| Chapter 3 Compile of the Küre Mine                                    | 123  |
| Chapter 4 Interpretation of Data Compile                              | 139  |
| 4-1 Evaluation of Ore Deposits and Mineral Occurrence                 | 139  |
| 4-1-1 Introduction                                                    |      |
| 4-1-2 Küre Mining Zone                                                |      |
| 4-1-3 Taşköprü Zone                                                   |      |
| 4-1-4 Dikmendag Zone                                                  |      |

| 4-2 Summary of Compiled Data              | 146 |
|-------------------------------------------|-----|
| 4-2-1 Küre Mining Zone                    |     |
| 4-2-2 Taşköprü Zone                       |     |
| 4-2-3 Dikmendag Zone                      |     |
|                                           |     |
| PART 3 KURE MINING ZONE                   |     |
|                                           |     |
| Chapter 1 Geology of Küre Mining Zone     |     |
| 1-1 Outline                               |     |
| 1-2 Survey Methods                        |     |
| Chapter 2 Geology of the Küre Mining Zone |     |
| 2-1 Outline of Geology and Ore Deposits   |     |
| 2-2 Stratigraphy                          | 153 |
| 2-2-1 Ultramafic Rocks                    |     |
| 2-2-2 Küre Formation                      |     |
| 2-2-3 Karadana Formation                  |     |
| 2-2-4 Çağlayan Formation                  |     |
| 2-2-5 Talus Deposits                      |     |
| 2-3 Intrusive Rocks                       | 159 |
| 2-3-1 Diorite                             |     |
| 2-3-2 Dacite                              |     |
| 2-4 Geologic Structure                    | 160 |
| 2-4-1 Fold Structure                      |     |
| 2-4-2 Fault Structure                     |     |
| Chapter 3 Küre Deposit                    |     |
| 3-1 Aşıköy and Toykondu Deposits          | 161 |
| 3-1-1 Geology and Geologic Structure      |     |
| 3-1-2 Orebodies and Alteration            |     |
| 3-2 Bakibaba Deposit                      | 166 |
| 3-2-1 Geology and Geologic Structure      |     |
| 3-2-2 Orebodies and Alteration            |     |
| 3-3 Kızılsu Deposit                       | 167 |
| 3-3-1 Geology and Geologic Structure      |     |
| 3-3-2 Orebodies and Alteration            |     |
| 3-4 Other Mineral Showings                | 169 |
| 3-4- 1 Ersizlerdere                       |     |
| 3-4- 2 İpsinler                           |     |
| 3-4- 3 Northern Yunusköy                  |     |
| 3-4- 4 Western Yunusköy                   |     |
| 3-4- 5 East of Elmakütüğü                 |     |
| 3-4- 6 Western Ömeryılmaz                 |     |
| 3-4- 7 Western Göynük                     |     |

|                                                       | •     |
|-------------------------------------------------------|-------|
| 3-4- 8 Eastern Ömeryılmaz                             |       |
| 3-4- 9 North of Bakibaba                              |       |
| 3-4-10 North of Toykondu                              |       |
| 3-4-11 East of Bakibaba                               |       |
| 3-4-12 Zemberekler                                    |       |
| 3-4-13 Southwest of Bakibaba                          |       |
| 3-4-14 North of Karacakaya                            |       |
| Chapter 4 Geophysical Prospecting                     | 171   |
| 4-1 Outline of Geophysical Prospecting                |       |
| 4-1-1 Objectives                                      |       |
| 4-1-2 Area of Survey                                  |       |
| 4-1-3 Prospecting Methods                             | •     |
| 4-1-4 Selection of Traverse Lines                     |       |
|                                                       | 175   |
| 4-2 Methods Employed for Survey and Analysis          | . 110 |
| 4-2-1 CSAMT Method                                    |       |
| 4-2-2 IP Method                                       | 104   |
| 4-3 Results of Geophysical Prospecting                | 104   |
| 4-3-1 CSAMT Method                                    |       |
| 4-3-2 IP Method                                       |       |
| 4-3-3 Laboratory Tests                                |       |
| 4-4 Summary of Geophysical Prospecting and Discussion | 197   |
| 4-4-1 CSAMT Prospecting                               | :     |
| 4-4-2 IP Prospecting                                  |       |
| 4-4-3 Laboratory Tests                                |       |
| Chapter 5 Discussions                                 |       |
| Chapter 6 Conclusions and Recommendations             | 281   |
| 6-1 Conclusions                                       | 281   |
| 6-1-1 Southern Part of Aşıköy Deposits                |       |
| 6-1-2 Vicinity of Entrance to Gallery 920 ML          |       |
| 6-1-3 North and South of Bakibaba Deposit             |       |
| 6-1-4 South of Ipsinler Mineralized Zone              |       |
| 6-1-5 Zemberekler and Kızılsu Deposit                 |       |
| 6-2 Recommendations for Second Phase Survey           | 282   |
|                                                       |       |
| PART 4 TAŞKÖPRÜ ZONE                                  |       |
|                                                       |       |
| Chapter 1 Geology of the Taşköprü Zone                | 285   |
| 1-1 Outline of Geology                                |       |
| 1-2 Stratigraphy                                      |       |
| 1-2-1 Devrekani Metamorphic Rocks                     |       |
| 1-2-2 Çangal Meta-ophiolites                          | 4     |
| 1-2-3 Kayadibi Formation                              |       |
| L a O majorator rommonda                              | •     |
|                                                       |       |
| iv                                                    |       |
|                                                       |       |

|   | 1-2-4 Muzrup Formation                          |     |
|---|-------------------------------------------------|-----|
| * | 1-2-5 Kızacık Formation                         |     |
|   | 1-2-6 Alaçam Formation                          |     |
|   | 1-2-7 Çayköy Formation                          |     |
|   | 1-2-8 Alluvium                                  |     |
|   | Chapter 2 Intrusive Rocks                       | 293 |
|   | 2-1 Çangal Granite                              | 293 |
|   | 2-2 Dacite                                      | 293 |
|   | Chapter 3 Geologic Structure                    | 293 |
|   | Chapter 4 Mineralization and Alteration         | 294 |
|   | 4-1 Cozoglu Mineralized Zones                   |     |
|   | 4-1-1 Geology                                   |     |
|   | 4-1-2 Mineralization and Alteration             |     |
|   | 4-2 Cünür Mineralized Zones                     | 298 |
|   | 4-2-1 Geology                                   |     |
|   | 4-2-2 Mineralization and Alteration             |     |
|   | 4-3 Alayürek Mineralized Zones                  | 302 |
|   | 4-3-1 Geology                                   |     |
|   | 4-3-2 Mineralization and Alteration             |     |
|   | 4-4 Other Mineralized Zones                     | 305 |
|   | Chapter 5 Discussions                           | 306 |
|   | Chapter 6 Conclusions and Recommendations       |     |
|   | 6-1 Conclusions                                 | 306 |
|   | 6-2 Recommendations for the Second Phase Survey | 308 |
|   |                                                 |     |
|   | PART 5 DIKMENDAĞ ZONE                           |     |
|   |                                                 |     |
|   | Chapter 1 Geology of the Dikmendag Zone         |     |
|   | 1-1 Outline of Geology                          |     |
|   | 1-2 Stratigraphy                                | 309 |
|   | 1-2-1 Küre Formation                            |     |
|   | 1-2-2 Köstekciler Formation                     |     |
|   | 1-2-3 Satiköy Formation                         |     |
|   | Chapter 2 Intrusive Rocks                       |     |
|   | 2-1 Diorite Rocks                               |     |
|   | 2-2 Dacite                                      |     |
|   | Chapter 3 Geologic Structure                    |     |
|   | Chapter 4 Mineralization and Alteration         |     |
|   | 4-1 Masköy Mineralized Zones                    | 314 |
| • | 4-1-1 Geology                                   |     |
|   | 4-1-2 Mineralization and Alteration             |     |
|   | 4-2 The Other Mineralized Zones                 | 318 |
|   |                                                 |     |
|   | <b>v</b>                                        |     |
|   |                                                 |     |

|                                                       | -   |
|-------------------------------------------------------|-----|
| Chapter 5 Discussions                                 | 318 |
| Chapter 6 Conclusions and Recommendations             | 319 |
| 6-1 Conclusions                                       | 319 |
| 6-2 Recommendations for the Second Phase Survey       | 319 |
|                                                       |     |
|                                                       |     |
| PART 6 CONCLUSIONS AND RECOMMENDATIONS                |     |
|                                                       |     |
| Chapter 1 Conclusions                                 |     |
| 1- 1 Southern Part of Aşıköy Deposits                 | 321 |
| 1- 2 Vicinity of Entrance to Gallery 920 ML           | 322 |
| 1- 3 North and South of Bakibaba Deposit              | 322 |
| 1- 4 South of İpsinler Mineralized Zone               | 322 |
| 1- 5 Zemberekler and Kızılsu Deposit                  | 322 |
| 1- 6 Cozoglu Mineralized Zones                        | 322 |
| 1- 7 Cünür Mineralized Zones                          | 323 |
| 1- 8 Alayürek Mineralized Zones                       | 323 |
| 1- 9 Basic Rock Area of the Dikmendag                 | 323 |
| 1-10 Ophiolite Area                                   | 324 |
| Chapter 2 Recommendations for the Second Phase Survey | 324 |
|                                                       |     |
| Relevant Literature                                   | 327 |
|                                                       |     |
|                                                       |     |
| Photographs                                           |     |
|                                                       | •   |
| Photo. 1 Microscopic Photograph (Thin Section)        |     |
| Photo. 2 Microscopic Photograph (Polished Section)    |     |
| Photo. 3 BEI and Characteristic X-Ray Images          |     |
| Photo. 4 Photograph of Küre Mine                      | . * |
|                                                       |     |

### FIGURES

- Figure 1- 1 Index Map of the Survey Area
- Figure 1- 2 Location Map of the Küre Area
- Figure 1- 3 Location Map of the Küre Mining Zone
- Figure 1- 4 Location Map of the Taşköprü Zone
- Figure 1-5 Location Map of the Dikmendag Zone
- Figure 1- 6 AFM Diagram
- Figure 1- 7 SiO<sub>2</sub>-(Na<sub>2</sub>O-K<sub>2</sub>O) Diagram for Basic Volcanics
- Figure 1- 8 SiO<sub>2</sub>-FeO\*/MgO Diagram
- Figure 1- 9 Al<sub>2</sub>O<sub>3</sub>-(Na<sub>2</sub>O-K<sub>2</sub>O)-SiO<sub>2</sub> Diagrams
- Figure 1-10 Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> Diagrams
- Figure 1-11 S.I.-TiO2 and Al2O3 Diagram
- Figure 1-12 TiO<sub>2</sub>-FeO\*/MgO Diagram
- Figure 1-13 Po05-Ti09 Diagrams
- Figure 1-14 Sulfur Isotopic Variation in Nature and Ore Deposits
- Figure 2- 1 Index Map of Previous Work related to Geology Survey
- Figure 2- 2 Index Map of Previous Work related to Geochemical Prospecting
- Figure 2- 3 Location of Drilled Holes
- Figure 2- 4 Structural-Geologic Map of Kastamonu Granitoid Belt and Surrounding Areas
- Figure 2- 5 Geologic Map of the Inebolu-Kastamonu Area
- Figure 2- 6 Geologic Cross Sections of the Inebolu-Kastamonu Area
- Figure 2- 7 Facies Map of the Inebolu-Kastamonu Area
- Figure 2-8 Geologic Map of the Küre Mine Area (Güner)
- Figure 2- 9 Geologic Map of the İpsinler
- Figure 2-10 Geologic Map of the Ersizlerdere
- Figure 2-11 Geologic Map of the Dikmendag Zone (Kamitani)
- Figure 2-12 Geologic Map of the Dikmendag Zone (Omer)
- Figure 2-13 Anomaly Map of the North of Küre Mine
- Figure 2-14 Geologic Map of the Cangal Mountains
- Figure 2-15 Geologic Cross Sections of the Cangal Mountains
- Figure 2-16 Correlation Map in the Küre-Devrekani Area
- Figure 2-17 Mineralized Map
- Figure 2-18 Geologic Map of the Cünür Mineral Occurrence
- Figure 2-19 Geologic Map of the Boyalı Mineral Occurrence
- Figure 2-20 Geochemical Anomaly Map of Cünür
- Figure 2-21 Geochemical Anomaly Map of Boyali
- Figure 2-22 Correlation Map of Stratigraphy
- Figure 2-23 Index Map of Previous Work related to Geophysical Prospecting
- Figure 2-24 Geophysical Compiled Map of Ersizlerdere and Ipsinler

- Figure 2-25 Geophysical Compiled Map of Toykondu Ore Zones
- Figure 2-26 Geophysical Compiled Map of Aşıköy-Bakibaba Ore Zones
- Figure 2-27 Geophysical Compiled Map of Northeast of Bakibaba
- Figure 2-28 Geophysical Compiled Map of Zemberekler
- Figure 2-29 Geophysical Compiled Map of Kızılsu Ore Zones
- Figure 2-30 Geophysical Compiled Map of Sey Yayla
- Figure 2-31 Exploration Map of the Aşıköy Orebody
- Figure 2-32 Geologic Map of the Küre Mine Area
- Figure 2-33 Geologic Map of the Küre Mine Area
- Figure 2-34 Geologic Map of the Aşıköy-Bakibaba Deposits
- Figure 2-35 Geologic Cross Sections of the Aşıköy-Bakibaba Deposits
- Figure 2-36 Geologic Map and Cross Sections of the Bakibaba Deposit
- Figure 2-37 Galley Map of the Bakibaba Orebody (1,014ML)
- Figure 2-38 Galley Map of the Bakibaba Orebody (1,080ML)
- Figure 2-39 Geologic Map and Cross Sections of the Kızılsu Deposit
- Figure 2-40 Schematic Column in the Küre Area
- Figure 2-41 Compiled Map of the Previous Works in the Küre Area
- Figure 3- 1 Schematic Column in the Küre Mining Zone
- Figure 3- 2 Geologic Map of the Küre Mining Zone
- Figure 3- 3 Geologic Cross Section of the Küre Mining Zone
- Figure 3- 4 Geologic Map and Cross Sections of the Aşıköy Orebody
- Figure 3- 5 Sketch of Aşıköy Open Pit
- Figure 3- 6 Mineral Showing Map of Küre Mining Zone
- Figure 3-7 Location Map of Survey Points and Lines
- Figure 3-8 Survey Configuration of CSAMT Method
- Figure 3- 9 Location Map of Transmitting Dipole
- Figure 3-10 Flow Chart of 1-d. Automatic Interpretation for CSAMT Data
- Figure 3-11 Survey Configuration of IP Method
- Figure 3-12 Array CSAMT Plane Map of Apparent Resistivity
- Figure 3-13 Küre Mining Zone Plane Map of Apparent Resistivity
- Figure 3-14 Pseudosection of Apparent Resistivity
- Figure 3-15 Legend for Geologic Cross Section
- Figure 3-16 Geological Cross Section for CSAMT and IP Methods
- Figure 3-17 Küre Mining Zone Plane Map of Resistivity Structure
- Figure 3-18 Cross Section of Resistivity Structure
- Figure 3-19 CSAMT 2-d. Simulation Analysis
- Figure 3-20 IP Pseudosection of Resistivity and FE
- Figure 2-21 IP 2-d. Model Simulation Analysis
- Figure 3-22 Location Map of Rock Samples
- Figure 3-23 Distribution for Resistivity and FE of Rock Samples
- Figure 3-24 Geophysical Interpretation Map
- Figure 4- 1 Schematic Column in the Taşköprü Zone

- Figure 4- 2 Geologic Map and Cross Sections of the Taşköprü Zone
- Figure 4- 3 Geologic Map and Cross Sections of Cozoglu Locality
- Figure 4- 4 Sketch of Cozoglu Mineralized Zones
- Figure 4-5 Geologic Map and Cross Sections of the Cünür Locality
- Figure 4- 6 Sketch of Cünür Mineralized Zones
- Figure 4-7 Geologic Map and Cross Sections of Alayurek Locality
- Figure 4-8 Sketch of Alayurek Mineralized Zones
- Figure 5- 1 Schematic Column in the Dikmendag Zone
- Figure 5- 2 Geologic Map and Cross Sections of the Dikmendag Zone
- Figure 5-3 Geologic Map and Cross Sections of the Masköy Locality
- Figure 5- 4 Sketch of Masköy Mineralized Zones
- Figure 6- 1 Recommendation Map

### **TABLES**

- Table 1- 1 Coordinates of Survey Areas
- Table 1- 2 Survey Contents
- Table 1- 3 Laboratory Studies
- Table 1- 4 Average Monthly Temperature of Inebolu
- Table 1- 5 Monthly Precipitation of Inebolu
- Table 1- 6 Average Monthly Temperature of Kastamonu
- Table 1- 7 Monthly Precipitation of Kastamonu
- Table 1- 8 Observable Reserves
- Table 1- 9 Production of the Aşıköy Ore
- Table 1-10 Production of the Bakibaba Ore
- Table 1-11 Rock Groups of the Thin Sections
- Table 1-12 Samples of the Thin Sections
- Table 1-13 Microscopic Observations of the Thin Sections
- Table 1-14 Chemical Analysis and CIPW Norms
- Table 1-15 Samples of the Polished Sections
- Table 1-16 Microscopic Observations of the Polished Sections
- Table 1-17 Samples of the Ore Analysis
- Table 1-18 Analytical Results of the Ore Samples
- Table 1-19 X-Ray Diffractive Samples
- Table 1-20 X-Ray Diffractive Analysis
- Table 1-21 Analytical Results of EPMA
- Table 1-22 834S Values of Sulfur Isotope
- Table 1-23 Correlation in the Küre Area
- Table 2- 1 Report List of Compiled Data
- Table 2- 2 Classification of the Drilled Holes
- Table 2- 3 Evaluation Lists of the Küre Mineralized Zones

- Table 2- 4 Evaluation Lists of the Tasköprü Mineralized Zones
- Table 2-5 Evaluation Lists of the Dikmendag Mineralized Zones
- Table 3- 1 Equipments of CSAMT Method
- Table 3- 2 Equipments of IP Method
- Table 3- 3 Results of Physical Property of Rock Samples

### PLATES

- PL. 1 Geologic Map of the Küre Mining Zone (Scale 1:5,000)
- PL. 2 Geologic Cross Sections of the Kure Mining Zone (Scale 1:5,000)
- PL. 3 Sample Location Map of the Küre Mining Zone (Scale 1:10,000)
- PL. 4 Geologic Map and Cross Sections of the Taşköprü Zone (Scale 1:50,000)
- PL. 5 Sample Location Map of the Taşköprü Zone (Scale 1:100,000)
- PL. 6 Geologic Map and Cross Sections of the Dikmendag Zone (Scale 1:50,000)
- PL. 7 Sample Location Map of the Dikmendag Zone (Scale 1:25,000)
- PL. 8 Geologic Map and Cross Sections of the Cozoglu Locality (Scale 1:5,000)
- PL. 9 Geologic Map and Cross Sections of the Cünür Locality (Scale 1:5,000)
- PL.10 Geologic Map and Cross Sections of the Alayürek Locality (Scale 1:5,000)
- PL.11 Geologic Map and Cross Sections of the Masköy Locality (Scale 1:5,000)

## PART 1 OVERVIEW

| 그 보다 생물하는 사람들이 한민을 받고 있는 하셨다면요? 그는 그는 그는 한민국은 사람이 하를 살았다.                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                  |
| en el stille de la companya de la companya de la companya de la companya de la companya de la companya de la c<br>La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
| 그런 하나 회문인들이 생물하는 이 아들은 사람들을 들을 뿐다고 그렇게 하셨다는데 그는 어떻게 하는 것이다.                                                                                                                                                                      |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
| 그런 물실보다는 것이 이 기를 보는 말래요. 그렇게 이 없고, 그렇게 하고 하는 아니라 말이 되었다.                                                                                                                                                                         |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
| 그렇게 하는 어느는 이 없는 것은 사람들에게 되는 그리는 어디를 만들고 있는 것은 그를 하고 있는 것을 하는 것이다.                                                                                                                                                                |
| 그들은 그리고 토토 그 말에도 안에도 한 과 중 그 때문은 사이를 보고 있는데 그 그를 하는데 된다.                                                                                                                                                                         |
|                                                                                                                                                                                                                                  |
| 근목 양생들은 경기 가족 회사 이 경기를 하고 보다는 물론을 받아 됐다. 이번 살고 있는 것이 없었다.                                                                                                                                                                        |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |

### PART 1 OVERVIEW

### CHAPTER 1 INTRODUCTION

### 1-1 Background and Objective of the Survey

The survey was conducted with the purpose of clarifying the metal deposits and of assessing the metallic resource potential of the Küre Area. Prior to the field survey, data related to previous work (data compile) were studied, and Landsat image analysis of an area of  $7,700 \,\mathrm{km}^2$  was carried out. As a result of these studies, three promising Zones, Küre, Taşköprü and Dikmendağ, were delineated for field work of the first phase. Reconnaissance and semi-detailed surveys were conducted in these zones.

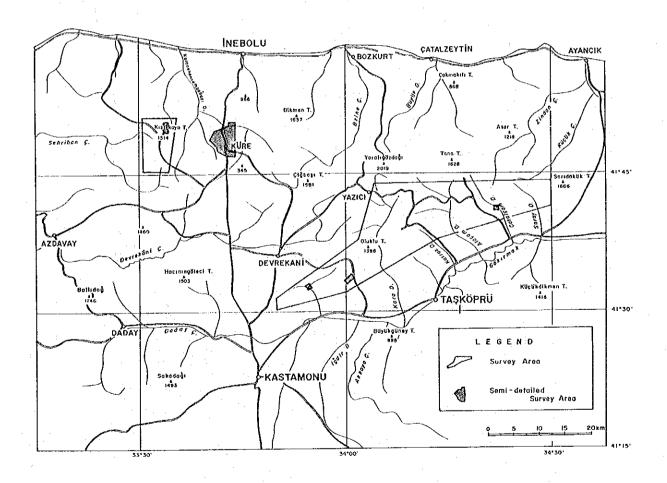



Figure 1-2 Location Map of the Küre Area

### 1-2 Areal Extent and Work Operation of the First Phase Survey

### 1-2-1 Coordinates and Contents of the Survey Areas

The localities surveyed during the period of this report is shown in Figures 1-2, 1-3 and 1-4. The survey contents and laboratory studies are shown by Tables 1-1, 1-2 and 1-3.

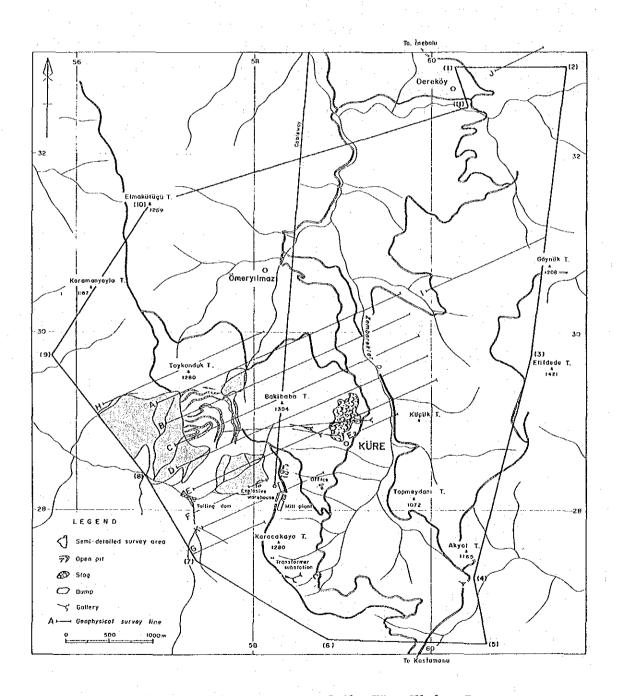



Figure 1-3 Location Map of the Küre Mining Zone

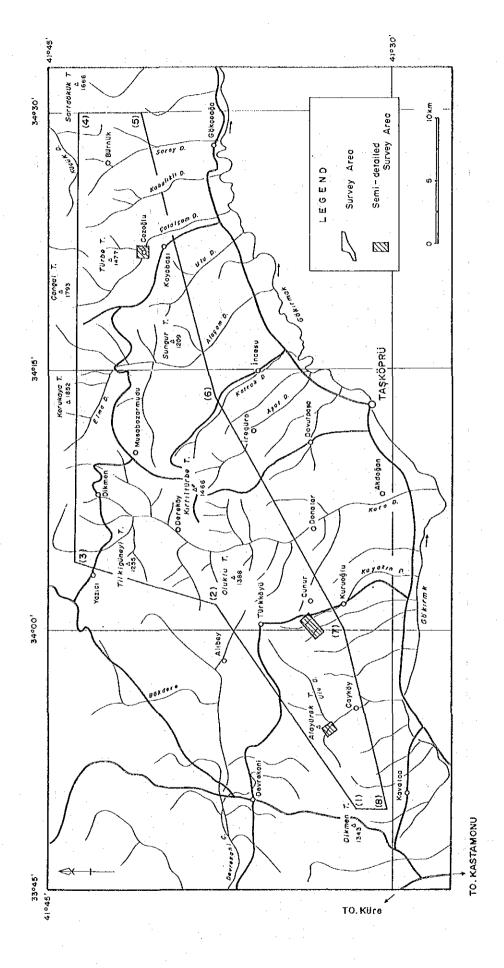



Figure 1-4 Location map of the Taşkoprú Zone

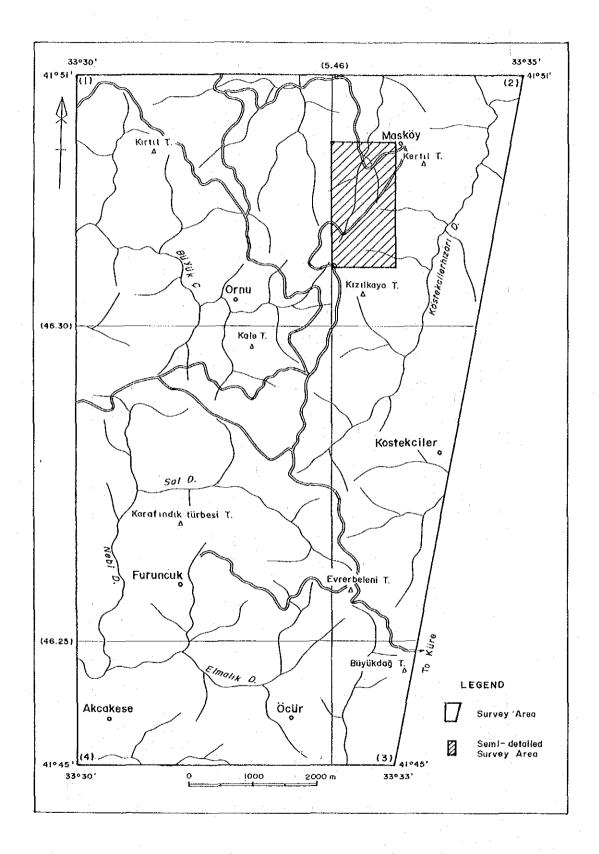



Figure 1-5 Location Map of the Dikmendag Zone

Table 1-1 Coordinates of Survey Areas

### Reconnaissance Areas

| Survey Area    |   | Latitude  | Longitude |   | Latitude  | Longitude |
|----------------|---|-----------|-----------|---|-----------|-----------|
| Taşköprü Zone  | 1 | 41°31.63' | 33°49.63' | 2 | 41°37.50' | 34°01.07' |
|                | 3 | 41°43.85' | 34°03.77' | 4 | 41°43.65' | 34°30.00' |
|                | 5 | 41°40.77' | 34°30.00' | 6 | 41°37.50' | 34°13.27' |
|                | 7 | 41°31.55' | 34°00.00' | 8 | 41°30.17' | 33°49.63' |
| Dikmendaĝ Zone | 1 | 41°51.36' | 33°30.36' | 2 | 41°51.34' | 33°35.42' |
|                | 3 | 41°45.41' | 33°33.92' | 4 | 41°45.42' | 33°30.31' |

### Semi-detailed Areas

| Survey Area          |    | Latitude  | Longitude |              | Latitude  | Longitude |
|----------------------|----|-----------|-----------|--------------|-----------|-----------|
| Küre Mining Zone     | 1  | 41°50.77' | 33°43.58' | 2            | 41°50.77' | 33°44.48' |
|                      | 3  | 41°49.00' | 33°44.17' | 4            | 41°47.62' | 33°43.68' |
| and the second       | 5  | 41°47.26' | 33°43.78' | 6            | 41°47.25' | 33°42.50' |
|                      | 7  | 41°47.73' | 33°41.40' | 8            | 41°48.27' | 33°40.98' |
|                      | 9  | 41°49.00' | 33°40.25' | 10           | 41°49.92' | 33°41.05' |
|                      | 11 | 41°50.48' | 33°43.67' |              |           |           |
| Masköy of Dikmendağ  | 1  | 41°50.80' | 33°33.22' | 2            | 41°50.80' | 33°33.95' |
|                      | 3  | 41°49.70' | 33°33.95' | 4            | 41°49.70' | 33°33.22' |
| Alayürek of Taşköprü | 1. | 41°32.78' | 33°53.78' | 2            | 41°33.01' | 33°54.32' |
|                      | 3  | 41°32.75' | 33°54.80' | 4            | 41°32.38' | 33°54.27' |
| Cünür of Taşköprü    | 1  | 41°33.32' | 33°58.42' | 2            | 41°34.05′ | 33°59.48' |
|                      | 3  | 41°33.63' | 33°59.97' | 4            | 41°32.92' | 33°58.90' |
|                      |    |           |           | <del> </del> |           |           |
| Cozoglu of Taşköprü  | 1  | 41°41.01' | 34°21.53' | 2            | 41°41.01' | 34°22.27' |
|                      | -3 | 41°40.58' | 34°22.27' | 4            | 41°40.58' | 34°21.53' |

Table 1-2 Survey Contents

| Survey      | Localities                    | Type of Survey                                                          | Amount                                                                                        |
|-------------|-------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Geological  | Küre<br>Taşköprü<br>Dikmendağ | semi-detailed reconnaissance semi-detailed reconnaissance semi-detailed | 22 km <sup>2</sup> 559 km <sup>2</sup> 4 km <sup>2</sup> 66 km <sup>2</sup> 2 km <sup>2</sup> |
| Geophysical | Küre                          | CSAMT<br>IP method                                                      | 513 point<br>4 km                                                                             |

Table 1-3 Laboratory Studies

| Type of Study                                  | Amount  |
|------------------------------------------------|---------|
| Ore Grade Analysis (Au, Ag, Cu, Pb, Zn, Co, S) | 124 pcs |
| Whole Rock Analysis                            | 30 pcs  |
| Thin Section                                   | 137 pcs |
| Polished Section                               | 60 pcs  |
| ЕРМА                                           | 7 pcs   |
| S-Isotope                                      | 7 pcs   |
| X-ray Diffraction                              | 12 pcs  |
| Rock Resistivity and Polarization              | 43 pcs  |

### 1-2-2 Priority Activities of the Survey

### (1) Geological Survey

The following problems and items were the priority activities during the first phase survey.

Collection of basic rocks and mineralized samples with emphasis on delineated altered and mineralized zones.

Relationship between ophiolites and mineralization.

Extent of mineralization at depth.

Determination of geophysical anomalous zones and clarification of their characteristics.

### (2) Geophysical Prospecting

The individual line length and measuring points of the Kure Mining Zone are as follows:

| Method       | Line Name | Length(m) | Number of Points |
|--------------|-----------|-----------|------------------|
|              | A         | 3,000     | 60               |
|              | В         | 3,000     | 60               |
|              | С         | 3,000     | 60               |
| ARRAY CSAMT  | D         | 3,000     | 60               |
|              | E         | 3,000     | 60               |
|              | F         | 900       | 18               |
|              | G         | 900       | 18               |
| ,            | н         | 2,000     | 40               |
|              | I         | 600       | 12               |
|              | J         | 600       | 12               |
| RANDOM CSAMT |           |           | 113              |
|              | DD        | 1,000     | 30               |
| IP           | II        | 1,500     | 55               |
|              | К         | 1,500     | 55               |

The following specifications were applied for these prospectings.

- Array CSAMT Method a) Spacing of measuring point:50m
  - b) Frequency: 4 Hz-2,048 Hz
  - c) Transmitting Dipole:1,900m
  - d) Maximum Current:11 amp

IP Method

- a) Electrode Configuration: Dipole
- b) Electrode Spacing: 100m, horizontal
- c) Frequency: 0.3 and 3 Hz
- d) Electrode Separation Coefficient: 1-5

Laboratory rock measurements were conducted with the same frequencies on representative rock and ore samples collected in the field. Forty three samples were measured.

### 1-3 Members of the First Phase Survey

(1) Mission for Project Finding

From 10 December 1991 to 18 December 1991

Turkish Members

Cumhur YILDIZ Sadık KAFADAR Planning and Coordination Department Planning and Coordination Department

Ahmet UNSAL

Mineral Exploration Department

Japanese Members

Nobuvuki MASUDA

Metal Mining Agency of Japan (MMAJ)

Naotaka ADACHI

Metal Mining Agency of Japan (MMAJ)

(2) Mission for Scope of Work

From 7 March 1992 to 17 March 1992

Turkish Members

Taskın AKDENİZ

General Manager, Etibank

N. Kemal ATALAN

Assistant General Manager

Ergün GÜRCAN

Head of Mineral Exploration Department

Cumhur YILDIZ

Ass. Director of Planning and

Coordination Department

Japanese Members

Yasuo NOGUCHI

Metal Mining Agency of Japan

Norio NAKANO

Ministry of Foreign Affairs

Masahiko NISHITOH

Ministry of International Trade

and Industry

Masamichi MAEJIMA

Japan International Cooperation Agency

Nobuvuki MASUDA

Metal Mining Agency of Japan (MMAJ)

Tetsuo SUZUKI

Metal Mining Agency of Japan (MMAJ)

Naotaka ADACHI

Metal Mining Agency of Japan (MMAJ)

(3) Coordinators of MMAJ and Survey Team

From 11 July 1992 to 18 July 1992

: Nobuyuki OKAMOTO

From 9 September to 17 September 1992 : Takafumi TSUJIMOTO

:Kazuko MATSUMOTO

Survey Team: Geological and Geophysical Surveys: June 30-September 23

(4) Members Participating in the Project Turkish Side

Assistant General Manager

Ibrahim BOZAN

Planning and Coordination Department

Director

Ayhan ALP

Mining Engineer Sadık KAFADAR

Mineral Exploration Department

Director

Ergün GÜRCAN

Küre Mine

General Manager Kemal Aydın ÇELİK

Deputy Manager Fuat ATALAY

Deputy Manager Mehmet ZENGÍN

Deputy Manager Írfan ŞİŞMANOĞLU

Survey Members of Etibank

Coordinator Ahmet ÜNSAL
Geologist Latif YİĞİT
Geologist Necmettin ÇELİK
Geologist Mürsel ÖZTÜRK
Geophysicist Tayfun AKKUŞ

Geophysicist Orhan ERSÖZ

### Japanese Side

Metal Mining Agency of Japan

Coordinator Takafumi TSUJIMOTO
Coordinator Kazuko MATSUMOTO
Coordinator Nobuyuki OKAMOTO

Survey Members of NED

Team leader Hisashi MIZUMOTO Geologist Yoneharu MATANO

Geologist Yoneharu MATANU Geologist Kenji SATO

Geologist Kazuyasu SUGAWARA
Geophysicist Masao YOSHIZAWA
Geophysicist Ikuo TAKAHASHI
Geophysicist Shinichi SUGIYAMA

### CHAPTER 2 GEOGRAPHY

### 2-1 Location and Access

The Küre mining district is in Küre County, Kastamonu Province, about 255 km from Ankara. Kastamonu is the capital of the province and is the largest city in the northern Anatolia. Küre mine is located approximately 60km north of Kastamonu and about 300km west of the largest city in Turkey, Istanbul. The coordinates of 41°41' north and 33°42' east are near its center. The population of Kastamonu city is about 50,000. Taşköprü is the second largest city of the Kastamonu Province, and its population is more than 20,000, and

population of Küre town is about 4,000. Besides, small villages are scattered in the area.

By road, the distance from Ankara to Küre is approximately 300km through Çankırı and Kastamonu, long-distance bus takes 5 hours. The survey area is under the jurisdiction of Küre Mine which has the second most productive copper district in the Republic Turkey.

Main roads are almost totally paved. There are automobile roads which connects the major highways and the villages. These roads are unpaved, accessible but become very bad roads in the winter because they are not gravel roads, in the wet season they become extremely muddy. The major highway between Ankara and İnebolu via Kastamonu is paved and the about 240km can be covered by car in about four hours. The base camp of the first phase survey was set in Küre mine and the field work for Taşköprü and Dikmendağ was conducted by using rent a car for transport from Küre mine. The travel time from Küre mine to Taşköprü was one and half hours, to Dikmendağ one hour.

### 2-2 Topography and Drainage

### 2-2-1 Topography

The Küre Area located in the northern part of Anatolia plateau is bound to the north by Black Sea, to the west by Karakuz Mountain (highest peak 1,435m), to the east by Çangal Mountain (highest peak 1,605m), and to the south by the northern Anatolia Fault extending in E-W direction. Within the Landsat images used, the highest peak of the area is the Kös Mountain with elevation of 2,065m which is located near the southernmost part of the survey area.

As the survey Area is in the central Pontids Mountains the terrain is mountainous, with narrow valleys and moderately sharp ridges. The elevation range from 650m, in the gorge of the Zemberekler River on the küre mining area to 1,304m, Bakibaba Mountain. There are many villages in the flat area below 600m elevation and vegetables and fruits are actively cultivated. Above 1,000m in the higher lands, cultivation of wheat and cattle raising are very active.

### 2-2-2 Drainage

Küre and Dikmendag areas are located in the upstream part of Karacehennembogazı River which flows into the Black Sea. Taşköprü area is in the upstream part of the Gökırmak System which flows into Taşköprü basin and into the Black Sea. All of these rivers flow during the snow-melting season in early spring, but otherwise are dry.

### 2-3 Climate and Vegetation

### 2-3-1 Climate

Because of the survey area with fairly high elevation, the weather fluctuates rapidly and temperature range from very cold to hot. The area is generally cold about eight months of the year, and the winters are quite snowy. The summers are delightfully warm, and occasionally hot, and blanketing fog or brief showers are not uncommon. It is inferred that the annual precipitation of the Küre mining area amount to more than 600 mm and the annual average temperature is cool at 10°C, but since it is in higher latitude. The monthly average temperature and precipitation published by the Kastamonu and Inebolu Meteorological Stations are as follows.

Table 1-4 Average Monthly Temperature of Inebolu

1990

| Month(°C)               | Jan  | Feb  | Mar  | Apl | May | June | July | Aug  | Sep  | Oct                 | Nov. | Dec  | Annual |
|-------------------------|------|------|------|-----|-----|------|------|------|------|---------------------|------|------|--------|
| Max.<br>Min.<br>Average | -1.7 | -2.2 | -0.2 | 1.4 | 5.4 | 12.3 | 14.6 | 13.3 | 11.0 | 24.2<br>2.0<br>14.8 | -2.4 | -5.8 |        |

1991

| Month(°C)               | Jan  | Feb  | Mar | Apl | May | June | July | Aug  | Sep  | Oct.                | Nov  | Dec  | Annual |
|-------------------------|------|------|-----|-----|-----|------|------|------|------|---------------------|------|------|--------|
| Max.<br>Min.<br>Average | -4.0 | -4.7 | 2.0 | 8.0 | 5.6 | 12.0 | 16.4 | 14.6 | 13.2 | 25.8<br>6.4<br>14.8 | -2.7 | -4.0 | 14.4   |

1992

| Month(°C)               | Jan | Feb  | Mar  | Apl | Мау | June                | July | Aug  | Sep | Oct | Nov | Dec | Annual |
|-------------------------|-----|------|------|-----|-----|---------------------|------|------|-----|-----|-----|-----|--------|
| Max.<br>Min.<br>Average |     | -1.1 | -1.3 | 3.8 | 3.4 | 36.0<br>8.6<br>21.6 | 16.7 | 15.8 |     |     |     |     |        |

Table 1-5 Monthly Precipitation of Inebolu

| <del> </del>                        | Jan          | Feb           | Mar            | Apl           | May           | June           | July        | Aug     | Sep      | Oct      | Nov       | Dec       | Annual     |
|-------------------------------------|--------------|---------------|----------------|---------------|---------------|----------------|-------------|---------|----------|----------|-----------|-----------|------------|
| 1990 (mm)<br>1991 (mm)<br>1992 (mm) | 87<br>2<br>5 | 51<br>3<br>12 | 75<br>58<br>25 | 56<br>9<br>37 | 1<br>28<br>12 | 37<br>19<br>50 | 4<br>-<br>7 | 25<br>1 | 30<br>32 | 21<br>85 | 202<br>76 | 199<br>94 | 763<br>431 |

Table 1-6 Average Monthly Temperature of Kastamonu

1989

| Month(°C)  | Jan  | Feb  | Mar  | Apl  | May  | June | July           | Aug  | Sep  | Oct | Nov  | Dec  | Annual |
|------------|------|------|------|------|------|------|----------------|------|------|-----|------|------|--------|
| Max<br>Min | -8.9 | -6.8 | -0.2 | 8.8  | 7.1  | 11.4 | $24.1 \\ 15.0$ | 18.5 | 11.1 | 4.6 | -3.8 | 10.0 |        |
| Average    | -3.0 | 0.8  | 6.8  | 13.3 | 13.2 | 16.3 | 19.2           | 21.1 | 15.2 | 8.6 | 4.3  | -1.4 | 9.4    |

1990

| Month(°C)  | Jan | Feb: | Mar | Apl | May | June | July | Aug          | Sep | Oct | Nov | Dec | Annual |
|------------|-----|------|-----|-----|-----|------|------|--------------|-----|-----|-----|-----|--------|
| Max<br>Min |     |      |     |     |     |      |      | 26.1<br>10.5 |     |     |     |     |        |
|            |     |      |     |     |     |      |      |              |     |     |     |     | 9.4    |

1991

| Month(°C) | Jan  | Feb  | Mar                | Apl | May | June | July | Aug  | Sep | Oct | Nov: | Dec | Annual |
|-----------|------|------|--------------------|-----|-----|------|------|------|-----|-----|------|-----|--------|
| Min       | -3.8 | -5.5 | 26.4<br>0.2<br>5.1 | 4.7 | 7.2 | 11.5 | 12.7 | 12.6 | 0.5 | 6.2 | 1.2  | 3.2 |        |

1992

| Month(°C) | Jan  | Feb  | Mar  | Ap1 | May | June | July | Aug                  | Sep | Oct | Nov | Dec | Annual |
|-----------|------|------|------|-----|-----|------|------|----------------------|-----|-----|-----|-----|--------|
|           | -6.7 | -6.5 | -2.0 | 2.3 | 5.2 | 10.9 | 12.3 | 28.8<br>11.7<br>20.4 |     |     |     |     |        |

Table 1-7 Monthly Precipitation of Kastamonu

|                                              | Jan | Feb                 | Mar                  | Apl                  | May                  | June                   | July                 | Aug                    | Sep            | Oct            | Мом            | Dec            | Annua1            |
|----------------------------------------------|-----|---------------------|----------------------|----------------------|----------------------|------------------------|----------------------|------------------------|----------------|----------------|----------------|----------------|-------------------|
| 1989 (mm<br>1990 (mm<br>1991 (mm<br>1992 (mm | ) 7 | 13<br>5<br>19<br>13 | 33<br>16<br>14<br>18 | 20<br>76<br>81<br>25 | 32<br>89<br>72<br>11 | 99<br>17<br>168<br>168 | 28<br>12<br>37<br>36 | 1.2<br>33<br>31<br>2.5 | 27<br>44<br>22 | 62<br>43<br>33 | 74<br>19<br>14 | 24<br>40<br>38 | 433<br>420<br>333 |

### 2-3-2 Vegetation

The large amount of precipitation is reflected in the luxurious growth of the vegetation. About three-fourths of the area is covered with forest, which is locally quite dense, and the flat parts of the area now in wheat fields has apparently been cultivated for farming, but other parts are used for grazing. Some of the forest contains trees large enough to support

timber industry, but much of it consists of trees and bushes too small to be used for timber. The trees are dominantly deciduous but locally, especially on Toykondu, Bakibaba, and the high southern area of Taşköprü and Dikmendağ, conifers (pines and cedars) predominate.

### CHAPTER 3 OUTLINE OF THE KÜRE MINE

### 3-1 History of the Mine

The oldest works in the area are not exactly known but the old tunnels have been built in Roman and Greek style. The only evidence for the old works are the presence of slag dumps. During the Ottoman Empire the iron and copper used in construction of cannon balls for the conquest of the Istanbul were supplied from Küre mine.

Ottoman Empire works continued intermittently until 1845. Between 1845-1895 the mine was operated by the Byzantine (Prof. Nikitin, 1925).

Between 1895 and 1913 years, various foreign companies worked in the area. Prospecting and Mining Ltd. company examined slags. According to this, reserves of 1,500,000 tons with 1 % Cu and 200,000 ton with 2-2.5 % Cu are present.

The works between 1914 and 1925 was continued by French Balya Karaaydin Company. After the establishment of the Turkish Republic, Prof. V. Nikitin confirmed the slag values within 1925-1939 period.

After this the M.T.A. continued the works and gave the work to V. Kovenko in 1939, the geological and geophysical studies were carried out, then Bakibaba, Aşıköy and Kızılsu deposits were delineated. Geological and geophysical studies, and drilling were carried out by Etibank since 1939, reserve estimations were completed by Mr. Kudret Sarıcan 1n 1968.

In November 1968, Bakibaba ore deposit was transferred to the Black Sea Copper Works Corporation from Etibank. The project and production preparations were continued until 1972 and began production in the same year.

### 3-2 Mining Activity of Küre Mine

### 3-2-1 Investment

Etibank had meetings with Outokumpu Company (Finland) and, evaluated the

Küre-Aşıköy ore, it is understood that copper concentrate (15% Cu and 46% S) with 82% productivity can be gained when the concentrator is fed with crude ore with 1.73% Cu and 37% S. An agreement was signed between Etibank and Outokumpu Company in august 1977 to design the concentrator foundation and supply the outer equipment in return for the Finland Government credit and establishment of concentrator foundation which can operate 600 000ton/year ore from Aşıköy open pit; 270 000 ton/year ore from Aşıköy underground mining and 60 000 ton/year ore from Bakibaba underground mining.

And it was taken into the Etibank's investment program with "Küre Copper facility investment". It is made up of 5 different units; 1) Aşıköy open pit, 2) Aşıköy underground mining, 3) concentrator facility: a- enrichment, b- concentrate drying, c- heat power station, 4) cable railway facility, 5) İnebolu loading facility.

## 3-2-2 Aşıköy Open Pit

It was determined that the Aşıköy ore deposit can be operated by a open pit from the current level to + 948 ML (meter level) and open pit project was prepared in 1986. By taking care of the general dip angles of 35° and 40° and keeping the 12 m. step height constant; step slope angles and step widths were determined to be 72° and 76° and 13m and 11m respectively.

## 3-2-3 Aşıköy Underground Mining

Because the 948 ML of Asiköy orebody is the base boundary of the open pit operation, the economical and modern underground mining methods have to be operated from 948 ML to the 756 ML. Detailed engineering works were done and award stage has come through. Ore production and mining transportation will be conducted in two stages.

The crude ores of Bakibaba orebody will be transported to Küre copper-pyrite milling plant and crushed, then 920 ML gallery for main transportation are conducted, now, passed through the lower part of Bakibaba orebody and has reached beneath the Aşıköy orebody, it will be transporting the material, equipment and workers to the underground and to dump the underground water out.

The 1991 reserve condition is given in the following table.

Table 1-8 Observable Reserves

|              | G    | rade    | Drowed     | Duchahla  | n        | mot ol     |
|--------------|------|---------|------------|-----------|----------|------------|
| Ore Reserves | Cu%  | S%      | Proved     | Probable  | Possible | Total      |
| Aşiköy       | 1.74 | 37.06   | 11,573,643 | 1,450,378 | 1 -      | 13,024,021 |
| Bakibaba     | 3.24 |         | 855,848    |           |          | 855,848    |
| Kızılsu      | 1.30 |         |            | 1,540,000 |          | 1,540,000  |
| Toykondu     | 3.00 |         |            | 400,000   |          | 400,000    |
| Total        |      | 1 1 5 1 | 12,429,491 | 3,390,378 |          | 15,819,869 |

## 3-2-4 Milling Operation

Enrichment: 90,000 ton/year copper concentrate with 15% Cu grade and 460,000 ton/year pyrite concentrate with 46% S grade will be produced by feeding the concentrator with 930 000 ton/year ore of 1.73% Cu and 37% S grades. The ores supplied from open pit and underground mining, are transported the ore grain-store with 100 m<sup>3</sup>. They are crushed to be different sizes like 15 cm, 20mm. The crushed ore is prepared for the flotation by transporting it to the four different conditioning tank of 25 m<sup>3</sup>. After the flotation, the copper concentrate is cleaned, transported to the filter and to drying circuit.

# 3-2-5 Cable Railway Transportation

The cable railway transportation was decided to be economical for the transporting of the dried concentrates. Therefore, an agreement between Etibank and West German Company PBH Wesserhutte AG. PHB company guarantied all the detailed engineering works and the supply of main equipments.

### 3-2-6 Stripping and Production Activities

Stripping and open pit: Production has been continuing in the open pit since 1985, and the amounts of stripping and ore production are given in the following table.

Precipitation pools: Precipitated copper is produced by precipitating the copper by reacting the copper sulfate water with the tin clippings and waste iron in the channels. The precipitated copper amounts and grades are shown in Table 1-9.

Table 1-9 Production of the Asıköy Ore

| 97      | Amount<br>of   | Production of | of O/P | Precipi | tation |
|---------|----------------|---------------|--------|---------|--------|
| Year    | Stripping      | Amount        | Cu     | Amount  | Cu     |
|         | m <sup>3</sup> | ton           | %      | ton     | %      |
| 1955-58 |                | 137,015       |        |         |        |
| 1959-77 | 5,381,186      | 1,673,348     |        |         | :      |
| 1978-80 | 771,762        | 154,408       |        |         |        |
| 1981-83 | 850,083        | 77,102        | 1      | 54.5    | 37.55  |
| 1984-86 | 1,699,667      | _             |        | 102.0   | 40.75  |
| 1987    | 1,100,000      | 23,856        | 1.96   | 32.0    | 27.75  |

Table 1-10 Production of the Bakibaba Ore

| Year                                              | Copper                                       | Ore                          | Sulfur  | Ore |
|---------------------------------------------------|----------------------------------------------|------------------------------|---------|-----|
|                                                   | Amount                                       | Cu                           | Amount  | S   |
|                                                   | ton                                          | %                            | ton     | %   |
| 1972-73<br>1974-82<br>1983-89<br>1990-92<br>Total | 58,309<br>298,999<br>194,881<br>-<br>562,189 | 6.30<br>5.71<br>3.53<br>4.95 | 200,281 | -   |

### 3-2-7 Supporting Services

Laboratory equipments have jaw crusher, roller pin crusher, marble mill, pulverization and flotation cell for ore preparation. There are atomic absorption instrument, electrolysis instrument, sulfur analysis instrument, distillation instrument, digital libra and microscope. Chemical analysis of Cu, S, Fe, Co, Zn, CaO and FeS can be conducted. Moisture and density, sieve analysis and measurement of water hardness can be done.

Energy: Electricity is supplied by the T.E.K. (Turkish Electric Power Corporation). 34.5 Kvolt electricity is reduced to 6.3 kvolt in the power station and used as distribution tension. 6.3 Kvolt is used in the mills and 0.4 kvolt is used in the concentrates, crusher, Aşıköy, water pump, social foundations etc. The reducing power station at each unit; reduces the 6.3 kvolt tension to 0.4 kvolt. Two generators of 380 and 200 watt can be able to feeds the places which can stop the process for energy cuttings.

### 3-2-8 Rationalization of Mine

Aşıköy mine development project was signed between Etibank and Teknomad A.Ş. on 2 January 1991 concerning engineering services of Aşıköy Orebody. Teknomad handed in the bidding file concerning primary development of Aşıköy underground mine on 4 March 1991.

Automation project of Küre concentrator was sighed with Outomec, Amdel and Denver participated in the bidding on 13 August 1992. It will increase productivity by reducing the loses caused by manual control.

### CHAPTER 4 RESULTS OF INVESTIGATION

### 4-1 Laboratory Work

### 4-1-1 Thin Section Microscopy

A total of 137 thin sections were prepared. List of sectioned samples is shown in Table 1-12 and the results of the microscopic studies in Table 1-13. A summary of the results are as follows.

| Zone           | pes | Kind of Rocks                                  | pcs     | Remarks                                                                                      |
|----------------|-----|------------------------------------------------|---------|----------------------------------------------------------------------------------------------|
| Küre<br>Mining | 65  | Basic rocks<br>Intrusives<br>Sedimentary Rocks |         | serpentinite 1, gabbro 5, diorite 3 pyroxenite 1, dacite 5 sandstone 5, shale 1, limestone 1 |
| Taşköprü       |     | Basic rocks<br>Intrusives<br>Sedimentary Rock  |         | Gneiss 1, Serpentinite 1, Diorite 9<br>Dacite 4,<br>Limestone 1                              |
| Dikmendaĝ      | 13  | Basic rocks<br>Intrusives                      | 10<br>3 | Dacite 2,Diorite 1                                                                           |
|                | 137 |                                                | 137     |                                                                                              |

Table 1-11 Rock Groups of the Thin Sections

### (1) Küre Mining Zone

The rocks studied from this zone are; basaltic rocks of the Küre Formation, serpentine which forms the basement, diorite which intruded into the Küre basalt, gabbro, pyroxenite, dacite (Dogger Series), black shale and sandstone of the Küre Formation, and limestone of the Karadana Formation.

Basaltic rocks: These rocks occur as pillow, hyaloclastite, and massive in form. These three types of lithology is expressed in the 1/5,000 scale geological map of this zone. Most of the basalts have intersertal and ophitic textures. There are some albitized spilitic rocks and coarse-grained diabase-type rocks (Table 1-13).

The constituent minerals are mainly plagioclase and clinopyroxene with small amount of olivine, orthopyroxene and ilmenite. The rocks are altered to various degrees. The common alteration found in these rocks is chloritization, epidotization, carbonitization, sericitization, and silicification. Albitization is also found. Strong chloritization and silicification occur only near the orebody.

Serpentinite: Almost all of the olivine and pyroxene have altered to crysotile and there are relicts of olivine. Calcite also occur (sample HO15).

Pyroxenite: The major constituent, pyroxene is almost all diopside and the  $SiO_2$  content is 38.40%. The pyroxene is serpentinized (sample Y008).

Gabbro: The major constituents are plagioclase, hornblende, and augite. Idiomorphic plagioclase is surrounded by amphibole and pyroxene. The plagioclase is zoned and sericitized. Some of the pyroxene have been altered to uralite and relicts are observed. Small amounts of accessory quartz and opaque ilmenite occur along the fissures. There are secondary calcite (samples A007, H019, M014, M049, S004).

Diorite: The major constituent minerals are plagioclase and hornblende, some of the hornblende is chlorititized. Small amounts of accessory sphene and ilmenite occur (samples M026, Y027, Y009).

Dacite: Quartz, plagioclase, biotite form the phenocrysts of the porphyritic texture. The plagioclase is chloritized and sericitized. Glass has devitrified to quartz (samples H002, H012, S033, Y096, Y097).

Sandstone: The constituent minerals are quartz and plagioclase. The grain size ranges from 0.06-0.4mm. Mica and calcite occur filling the interstitial space between the sand grains (samples A040, K019, Y002, Y003, Y026).

Black shale: The constituents are amorphous minerals, minute clay micaceous mineral and carbonates. These are very minute flakes with slight orientation (sample Y041).

Limestone: This rock consists of microcrystalline calcite and fossil fragments have been found (sample A003).

### (2) Taşköprü Zone

Basaltic rocks: These rocks were not affected strongly by metamorphism and major characteristics of the rocks still remain. Porphyroblastic, granoblastic, and poikiloblastic textures are the common textures found in these rocks. Plagioclase and pyroxene (augite) have been altered to albite, prennite, chlorite, epidote, and sericite.

Table 1-12 Samples of the Thin Sections(1)

# Küre Mining Zone

|      |                        | T                |         |          |
|------|------------------------|------------------|---------|----------|
| No.  | Description            | Locality         | Y       | Х        |
| A001 | Diorite                | W.Kızılsu        | 2559530 | 4628600  |
| H019 | Diorite                | NE.Kızana M.     | 2557600 | 4631920  |
|      | Diorite                | N. Yunusköy.     | 2559000 | 4634170  |
| M026 | Sil rock(diorite)      | NE.Küre          | 2557970 | 4632600  |
| A007 |                        | W.Kızılsu        | 2559325 | 4629060  |
|      | Dacite                 | S.Aşıköy         | 2557410 | 4630290  |
|      |                        | W.Bediroğlu      | 2555820 | 4631800  |
|      | Dacite                 | R Plantities: m  |         |          |
| S033 |                        | E.Elmakütüğü T.  | 2557715 | 4633580  |
| Y004 | Dacite                 | SE.Küre          | 2560375 | 4628710  |
| A002 | Massive basalt         | W.Kızılsu        | 2559765 | 4628650  |
| A040 |                        | Kızılsu KS-4 78m | 2558331 | 4629105  |
|      | Massive basalt         | NW.Bediroglu     | 2556320 | 4631670  |
| H016 | Massive ba with ep-hem | NW.Kızana M.     | 2556880 | 4631960  |
| K010 | Massive basalt         | E.Dereköy        | 2561300 | 4634530  |
|      | Massive basalt         | İpsinler         | 2561080 | 4633510  |
|      | Massive basalt         | NW.Kuşça M.      | 2560773 | 4631922  |
|      | Massive basalt         | N.Küre           | 2559120 | 4631335  |
|      | Massive basalt         | NW.Küre          | 2558400 | 4631700  |
|      | Massive basalt         | NE. Yunusköy     | 2559415 | 4633810  |
| Y036 |                        | Aşıköy           | 2557425 | 4631185  |
| 1030 | Massive basait         | прікоу           |         | <u> </u> |
| Y027 |                        | S.Yunusköy       | 2559000 | 4632835  |
| A013 | Brec basalt with mala  | Aşıköy           | 2558205 | 4630650  |
| A010 | Brec basalt with hem   | N.Kızılsu        | 2558250 | 4629520  |
| A028 | Brec basalt with hem   | Aşıköy           | 2557467 | 4630847  |
| A036 | Brec basalt with py-cp | KS-25 34.8m      | 2558502 | 4629125  |
| A038 | Brec basalt with py-cp | Ks-48 33.5m      | 2558562 | 4628959  |
|      | Altered basalt         | Aşıköy           | 2557410 | 4630840  |
|      | Altered basalt         | KŚ-18 41.3m      | 2558411 | 4629067  |
| 4039 | Altered basalt with py | KS-24 38m        | 2558502 | 4629067  |
| MOSO | Altered basalt         | N.Küre           | 2559000 | 4632140  |
|      |                        |                  |         |          |
|      | Silicified rock        | W.Küre           | 2556625 | 4632860  |
|      | Pillow lava with py    | NE.Küre          | 2560130 | 4631920  |
| S057 | Altered pillow lava    | NE Küre          | 2560125 | 4631460  |
|      | Massive basalt         | SE.Küre          | 2560320 | 4629000  |
|      | Brecciated basalt      | E. Küre          | 2559950 | 4630580  |
|      | Brecciated basalt      | Aşıköy           | 2557395 | 4631205  |
|      | Brecciated basalt      | Aşıköy           | 2557265 | 4631175  |
|      | Brecciated basalt      | NW.Katıruçtuğu S | 2559000 | 4632500  |
|      | Pillow lava            | E.Küre           | 2559570 | 4630310  |
|      | Massive basalt         | Aşıköy           | 2557435 | 4631250  |
|      |                        |                  |         |          |
| Y042 | Brecciated basalt      | Aşıköy           | 2557568 | 4631010  |
|      | Brecciated basalt      | Aşıköy           | 2557507 | 4631025  |
|      | Massive basalt         | Aşıköy           | 2557430 | 4631025  |
| Y046 |                        | Aşıköy           | 2557430 | 4630960  |
|      | Massive limestone      | Ş.Kızılsu        | 2558420 | 4628580  |
| K019 |                        | İpsinler         | 2561000 | 4633950  |
| Y002 |                        | SE.Küre          | 2629060 | 4560285  |
| Y026 | Sandstone              | S.Yunusköy       | 2632850 | 4559000  |
| Y041 | Black shale            | Aşıköy           | 2557560 | 4631000  |
| L    | l <u></u>              | L                |         |          |

Table 1-12 Samples of the Thin Sections(2)

# Taşköprü Zone

| No.              | Description            | Locality         | Y       | Х        |
|------------------|------------------------|------------------|---------|----------|
| A101             | Diorite                | Kepez M.         | 2592460 | 4618460  |
|                  | Diorite                | N.Binektaşı Sr.  | 2607620 | 4619260  |
|                  | Diorite                | NW.Sarısökü      | 2604000 | 4620100  |
|                  | Diorite                | SE.Şule Y.       | 2607580 | 4619550  |
|                  | Diorite                | S.Hasanöldü T.   | 2615620 | 4620620  |
|                  | Diorite                | E.Çankırsak T.   | 2621100 | 4619580  |
|                  | Dacite                 | Kepez M.         | 2592480 | 4618520  |
|                  | Dacite                 | NW Karincalik Sr | 2594900 | 4616000  |
|                  | Dacite                 | S.Negipburnu     | 2590580 | 4606130  |
|                  | Quartz porphyry        | E.Çaltepe        | 2621850 | 4618310  |
| VOOL             | Granite                | SW, Yelli T.     | 2621240 | 4620120  |
|                  | Granite                | N. İfritoğlu Y.  | 2610580 | 4620580  |
|                  | Biotite gneiss         | S.Kuzupinar Sr.  | 2577900 | 4603820  |
|                  | Gneiss                 | NE Salmançalı T. | 2570650 | 4598000  |
|                  | Meta basalt            | S.Kayadibi       | 2600140 | 4619500  |
|                  | Meta basalt            | S. Asmakaya T.   | 2601340 | 4615140  |
|                  | Meta basalt            | SW.Ahlatlik T.   | 2580060 | 4603400  |
|                  |                        |                  | 2594400 | 4615500  |
|                  | Meta basalt            | Çebiş M.         |         |          |
|                  | Meta basalt            | S.Nuraçal T.     | 2586000 | 4605920  |
| KZZ7             | Meta basalt            | NW.Dikmen T.     | 2579750 | 4599790  |
| L048             | Meta basalt            | W.Hatibinyolu T  | 2588230 | 4604720  |
|                  | Meta basalt with py    | E.Boynuegri T.   | 2586650 | 4607520  |
| L082 (           | Meta basalt            | W.Karaahmet D.   | 2595600 | [4613420 |
| M216             | Meta basalt            | W.Yaşlı T.       | 2573440 | 4597640  |
| M256             | Meta basalt with lim   | E. Tahtakuzu T.  | 2592670 | 4605220  |
| N055             | Meta basalt            | SW.Bakacak T.    | 2621180 | 4619380  |
| N060             | Meta basalt with py    | NE Namazlık T.   | 2581780 | 4601000  |
|                  | Meta basalt            | W.Bakabey T.     | 2592500 | 4616520  |
|                  | Meta basalt            | W.Ahmetöldüğü T  | 2584820 | 4603280  |
|                  | Meta basalt with py    | E.Ketendoruğu T  | 2589000 | 4602860  |
| V065             | Meta ba with epi-hem   | NE.Bakacak T.    | 2583240 | 4602640  |
|                  | Meta basalt            | SE Asarcık       | 2588380 | 4617120  |
|                  | Meta basalt            | E.Domuzburnu T.  | 2591390 | 4615770  |
|                  | Meta basalt            | SE.Atçayırı T.   | 2611340 | 4620660  |
|                  | Altered meta basalt    | E.Kara T.        | 2590580 | 4602760  |
|                  | Silicified meta basalt | S.Uçurumkaya T.  | 2588270 | 4603640  |
|                  | Green schist           | W.Kepezçalı T.   | 2592630 | 4619000  |
|                  | Green schist           | S.Evçalukları Sr | 2606280 | 4615770  |
| 12999  <br>12999 | Green schist           | NE.Kabuklu T.    | 2580060 | 4601000  |
|                  | Pelitic schist         | E.Akkütük T.     | 2602820 | 4616150  |
| TOAG             | Dolitic schiot         | E.Kökluyol T.    | 2586100 | 4605620  |
|                  | Pelitic schist         |                  |         |          |
|                  | Silicified rock        | W.Sarısoku       | 2604000 | 4619840  |
|                  | Silicified rock        | S.Horozbiçtiği T | 2586300 | 4603200  |
|                  | Silicified rock        | Avgun Sr.        | 2592890 | 4606060  |
|                  | Gossan(schist)         | SW.Gökyar D.     | 2594260 | 4609470  |
| Y079             | Serpentinite           | SE Tilkigüneyi T | 2589500 | 4615900  |
| A103             | Massive limestone      | W.Kepez M.       | 2592210 | 4618460  |

Table 1-12 Samples of the Thin Sections(3)

Dikmendag Zone

| No.                                                                  | Description                                                                                                                                                                                          | Locality                                                                                                                                      | Y                                                                                                          | X                                                                                                                     |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| K114<br>M106<br>L042<br>H051<br>K116<br>K101<br>K102<br>S110<br>Y093 | Sil dacite with py Dacite Diorite Porphyritic rock Brecciated basalt Massive basalt Massive basalt with py Massive basalt Massive basalt Massive basalt Massive basalt Massive basalt Massive basalt | Delihasanoğlu M. N.Dikmendağ N.Kızılelma N.Delihasanoğlu Öcür M. N.Satıköy NW.Yayla M. NW.Yayla M. N.Yayla M. N.Yayla M. N.Masköy E.Dikmendağ | 2543800<br>2546700<br>2542250<br>2543760<br>2545560<br>2546400<br>2544750<br>2544600<br>2547560<br>2547520 | 4626660<br>4631501<br>4632750<br>4628940<br>4623880<br>4628620<br>4628300<br>4628440<br>4628600<br>4633980<br>4630500 |

Green schist: The constituent minerals are plagioclase and pyroxene which have been metamorphosed to albite, chlorite, epidote, carbonates, and calcite. The texture is lepidoblastic and nematoblastic.

Pelitic schist: The rock has nematoblastic texture and the constituent minerals are quartz, albite, chlorite, sericite with tremolite and actinolite (sample H035, L046).

Gneiss: This has holocrystalline texture and the constituent minerals are quartz, plagioclase, biotite, and hornblende with secondary chlorite and sericite.

Serpentinite: Crysotile is almost the sole constituent of this rock. There are no relicts of olivine or pyroxene. Opaque constituent is probably chromite (sample Y079).

Diorite: The sample is from a body named Çangal Granite during the field survey. The major mineral is plagioclase with hornblende, pyroxene, and biotite. They are chloritized and sericitized. The sample considered in the field as granite, Y075, has SiO<sub>2</sub> content of 56% (intermediate rock) and that labeled as diorite, M286, has 51% (mafic rock). Therefore, although believed to be granitic in the field it has the characteristics of intermediate to mafic rocks (samples A101, A112, H040, H044, H047, M286, Y075, Y086, Y091).

Dacite: This is sericitized as in the case of the dacite in the Küre Zone (samples A102, K248, S091, Y089).

Limestone: The constituent mineral is mostly microcrystalline and crystalline calcite with minor quartz. The crystals are oriented by the effect of meta-

morphism.

## (3) Dikmendag Zone

Basaltic rocks: This has porphyritic texture and the phenocrysts are mostly plagioclase, and biotite and pyroxene. They are chloritized and sericitized. There is a very minor amount of quartz. The SiO<sub>2</sub> content is 56% for sample M108 and 65 for Y102. Although field label for this rock is basalt, the chemistry and microscopic work indicate intermediate nature.

Dacite: This has porphyritic texture and the phenocrysts are quartz, plagioclase, and biotite. The plagioclase is chloritized and sericitized. Glass has been devitrified to quartz (samples Y093, K114).

Gabbro: The major constituent minerals are plagioclase, hornblende, and augite. The idiomorphic plagioclase is surrounded by hornblende and pyroxene. The plagioclase is zoned and sericitized. There are relicts of pyroxenes altered to uralite. Small amount of quartz and opaque ilmenite fill the cracks as accessories. Calcite occurs as a secondary mineral (sample M106).

# 4-1-2 Total Chemical Analysis

A total of 30 samples representing the survey area of the first year were selected for total chemical analysis. They are 22 basalt samples (10 from Küre Mining, 2 from Dikmendag, and 10 from Taşköprü Zones), eight intrusive samples (6 from Küre Mining and 2 from Taşköprü Zones).

The basaltic rocks are considered to be of Lias Epoch in the Küre Mining Zone and pre-Lias in the Taşköprü Zone. The intrusive rocks are the basement serpentinite in the Küre Mining Zone, and the diorite and dacite intruded into the basalts of the Küre Formation. The samples from the Taşköprü Zone are Çangal Granite of the Dogger Epoch.

The analysis was carried out by potassium permanganate titration for FeO and the ICP-AES method for other elements. The normative minerals and solidification index (SI) were calculated from the analytical results and are shown in Table 1-14. Sulfur contents were determined for all samples, but they are all less than 0.1%, negligible for various considerations. The analyzed samples have been studied microscopically (Table 1-13). Güner(1980) reported on the analytical results of the Küre Mine. He used both major and minor contents of 30 basalt samples and concluded that these were typical ridge-type tholeite. The following consideration was made referring to the results of Güner and Kosaka (1975).

Table 1-13 Microscopic Observations of the Thin Sections (1)

| Processive basel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample       | Rock Name      | Rock | Texture         |           |     | Phenocryst |   |          | Groundmass | မှာ      | Alteration                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|------|-----------------|-----------|-----|------------|---|----------|------------|----------|-------------------------------|
| Prroxinite   0sg   bolocrystalline   ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.          |                | unit |                 |           | P1  | Py         | M | PI       | Ho Py      | Mf Op    |                               |
| Serpentinite         0         0         0         0           Gabbro         Diocrystalline         0         0         0         0           Diocite         Diocrystalline         0         0         0         0         0           Dacite         Da porphyritic         0         0         0         0         0         0           Philor law         Kip         invergranular         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                          | A008         | Pyroxinite     | 0sg  | _               |           |     | 0          | ◁ |          |            |          | pyroxine-serpentine           |
| Discrite   Discriptabilitie   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H015         | Serpentinite   | 0sg  |                 | 0)        | 6   | <b>(</b> ) |   |          |            |          | olivine-serpentine            |
| Diorite   Di   Diocrystalline   ©   ©   □ □   □   □   □   □   □   □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M049         | Gabbro         | Di   | holocrystalline | <br> <br> | 0   | 0          | ◁ |          |            |          | pl-ser, py-calcite            |
| Dacite         Da         porphyritic         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○                                           | Y009         | Diorite        | Di   | holocrystalline |           | 0   | <b>©</b>   |   |          |            |          | һо, рІ→сһ                     |
| Decire         Da         Do         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □                                          | ¥096         | Dacite         | ğ    | porphyritic     | 0         | (O) |            |   | <b>©</b> |            |          | pl-ser, ch                    |
| Pillow lava   Kip intergranular   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y097         | Dacite         | Da   | porphyritic     | (O)       |     |            |   | 0        |            |          | bi→ch                         |
| Fillow lava   Kip sub-ophitic   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17071        | Pillow lava    | KIp  | intergranular   |           | 0   |            |   |          |            | 0        | pl-carbonite ©, ch. albite    |
| Pillow lava   Klp sub-ophitic   ©   □   ○   □   ○   □   ○   □   ○   □   ○   □   ○   □   ○   □   ○   □   ○   □   ○   □   ○   □   ○   □   ○   □   □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S047         | Pillow lava    | Klp  | sub-ophitic     |           | 0   |            |   | 0        |            | <u>П</u> | pl, py→ch ©, ep               |
| Fillow lava   Kip intersertai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y005         | Pillow lava    | Klp  | sub-ophitic     |           | 0   |            |   | 0        |            |          | pl-albite, calcite            |
| Hyaloclastite         Kih         sub-ophitic         ○         □         ○         □           Hyaloclastite         Kih         phitic         ○         □         ○         □           Massive basalt         Kim         sub-ophitic         ○         □         ○         □           Massive basalt         Kim         sub-ophitic         ○         □         ○         ○           Massive basalt         Kim         sub-ophitic         ○         ○         ○         □           Massive basalt         Kim         sphitic         ○         ○         ○         ○         □           Green schist         Clb         -         ○         ○         ○         ○         □           Green schist         Clb         -         ○         ○         ○         ○         □           Green schist         Clb         -         ○         ○         ○         ○         □           Green schist         Clb         -         ○         ○         ○         ○         ○           Green schist         Clb         -         ○         ○         ○         ○         ○           Green schist         Cl                               | X098         | Pillow lava    | Klp  | intersertal     |           | 0   |            |   | 0        |            |          | olivine-serpentine, pl. py-ch |
| Hyaloclastite         Kih         ophotic         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         ○         □         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○                                       | ¥099         | Hyaloclastite  | Klħ  | sub-ophitic     |           | 0   |            |   | 0        |            | ◁        | pl, py→ser, ch, ep            |
| Hyaloclastite         KIh         phitic         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         □         ○         ○         □         ○         ○         □         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○         ○                                        | V100         | Hyaloclastite  | K1h  | ophotic         |           | 0   |            |   | 0        |            | ◁        | pl-carb, ch. ser              |
| Massive basalt         Klm         sub-ophitic         O         O         O           Massive basalt         Klm         sub-ophitic         O         O         O         O           Massive basalt         Klm         felsitic         O         O         O         O         O           Green schist         Clb         -         O         O         O         O         O         O           Green schist         Clb         -         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O                                 | A047         | Hyaloclastite  | KIh  | phitic          |           | 0   |            |   | 0        |            | ◁        |                               |
| Massive basalt         Klm         ophitic         ©         Cl         Cl           Massive basalt         Klm         felsitic         Cl         Cl         Cl         Cl           Green schist         Clb         -         Cl         Cl         Cl         Cl           Green schist         Clb         -         Cl         Cl         Cl         Cl           Green schist         Clb         porphyritic?         Cl         Cl         Cl         Cl           Meta basalt         Clb         porphyritic?         Cl         Cl         Cl         Cl         Cl           Meta basalt         Clb         sub-ophitic         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl         Cl | M036         | Massive basalt | КІш  | sub-ophitic     |           | 0   |            |   |          |            | ◁        | pl. py⊸ch, cal, ep, carb      |
| Massive basalt         Klm         sub-ophitic         ©         C         C         C           Massive basalt         Klm         pophitic         C         C         C         C         C           Green schist         Clb         -         C         C         C         C         C           Green schist         Clb         -         C         C         C         C         C           Green schist         Clb         felsitic         C         C         C         C         C           Green schist         Clb         porphyritic?         C         C         C         C         C         C           Meta basalt         Clb         porphyritic?         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C<                          | Y007         | Massive basalt | Klm  | ophitic         | •         | 0   |            | : | 0        | ◁          |          | pl-ch, carb                   |
| Massive basalt         Klm         felsitic         ©         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O                                     | Y025         | Massive basalt | Klm  | sub-ophitic     |           | 0   |            |   |          |            | ◁        | pl⊸albite, ep                 |
| Massive basalt         Klm         ophitic         O         O         O           Green schist         Clb         -         O         O         O           Green schist         Clb         feren schist         O         O         O           Green schist         Clb         porphyritic?         O         O         O           Meta basalt         Clb         porphyritic?         O         O         O         O           Meta basalt         Clb         sub-ophitic         O         O         O         O         O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>#1</b> 08 | Massive basalt | Klm  | felsitic        | <b>(</b>  | 0   |            |   | 0        |            | 0        | pl→ch                         |
| Green schist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y102         | Massive basait | Klm  | :               |           | 0   | Ο          |   |          |            |          | pl→ch, py~prehnite            |
| Green schist   Clb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H043         | Green schist   | CJP  |                 |           |     |            |   | Ο        | ◁          | Ο        | pl-ch ©, carb ©               |
| Green schist         C1b         felsitic         O         O           Green schist         C1b         porphyritic?         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O<                                | ¥202         | Green schist   | CIP  | 1               |           |     |            |   |          |            |          | pl. py~ch, ep, carb ©         |
| Green schist   Clb   porphyritic ?   O     O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M261         | Green schist   | CIP  | felsitic        |           |     |            | : |          |            |          | pl⊸ch, ep                     |
| Meta basalt         Clb         Clb         O         O         O         O         O           Meta basalt         Clb         sub-ophitic         O         O         O         O         O         O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M289         | Green schist   | CIP. |                 |           | 0   |            |   | <b>©</b> |            |          | pl→ser                        |
| Meta basalt         (Ib sub-ophitic         O         O         O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>M</b> 200 | Weta basalt    | CID  |                 |           |     |            |   |          |            |          | pl, py⊸ch, cal, ep ⊚          |
| Weta basalt   Clb   sub-ophitic   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W205         | Meta basalt    | CIP  | porphyritic     |           | 0   |            |   | 0        | Ο          | 0        | pl. py-ch. cal, ep            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>M</b> 230 | Meta basalt    | CIP  | sub-ophitic     |           | 0   | 0          |   |          |            | ◁        | pl, py→ch, cal, ep            |

Mf:Mafic mineral, Op:Opaque minerals, Ser:Sericite, Ch:Chlorite, Ep:Epidote, Cal:Calcite, Carb:Carbonate, G:Glass Qz.Quartz. Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, By:Hypersthene. ○:Abundant ○:Common □:Few △:Rare arg:argillization vs:very strong

Table 1-13 Microscopic Observations of the Thin Sections (2)

| Rock Name          | Rock | Texture         |            | -Ph      | Phenocryst |          | Groundmass                              |        | Alteration          |
|--------------------|------|-----------------|------------|----------|------------|----------|-----------------------------------------|--------|---------------------|
|                    | unit |                 | Qz Kf      | Pl Bi Ho | Au By Mf   | 0p 0z P1 | Bi Ho Au Hy Mf                          | f 0p G | -                   |
| Meta basalt        | ¢1p  | ophitic         |            | 0        |            | 0        |                                         |        | pl. py→cn. cal. ser |
| Green schist       | CID  | lepidoblastı    |            |          |            | O<br>©   |                                         |        | pl. py-ch. ep       |
| Green schist       | CID  | lepidoblastic   |            |          |            | <b>⊚</b> |                                         |        | ру-сћ.              |
| Diorite            | ଞ    | porphyritic     | <u>-</u> : |          |            | 0        |                                         |        |                     |
| Biotite granite    | 8    | holocrystalline | ◁          | 0        |            | ◁        | 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        | ho-ch               |
| Altered basalt     | Klm  | porphyritic     |            | ©        |            | 0        |                                         |        | pl. py-ch. ser, cal |
| Gabbro             | Ωï   | holocrystalline |            | 0        |            |          |                                         |        | py→ho               |
| Gabbro             | Di   | holocrystalline |            | 0        | <b>©</b>   | 4        |                                         |        | ho, pl∸ch           |
| Silicified diorite | Di   | holocrystalline |            | 0        | 0          | ◁        |                                         |        | pl. py-ch. cal +qz  |
| Massive basalt     | КІп  | holocrystalline |            | 0        | Ο          | 4        |                                         |        | pl-ser, ch          |
| Dacite             | Da   | porphyritic     | 0          | □<br>□   |            | ()<br>() |                                         |        |                     |
| Dacite             | Ва   | felsitic        | <b>(</b>   |          |            | □<br>⊚   |                                         | ◁      | pl→ser              |
| Dacite             | Дa   | porphyritic     | (O)        |          |            |          |                                         | 4      | cal, ch, ser 🔘      |
| Dacite             | Ďa   | intergranular   |            | <b>(</b> |            | 0        | Ο                                       |        | pl-ser, cal         |
| Massive basalt     | КІш  | ophitic         |            | 0        | О          |          |                                         |        | pl→ch               |
| Sandstone          | Kss  | granular        |            |          |            | 0        |                                         | ◁      | pl→ser, ch          |
| ssive basalt       | Klm  | porphyritic     |            | <b>(</b> | 0          |          | 0                                       |        | pl. py-ch, cal ◎    |
| Massive basalt     | Kin  | intersertal     |            | <b>(</b> | Ο          | Ο        | Ο                                       | 4      |                     |
| Massive basalt     | Klm  | intergranular   |            | 0        | 0          | O<br>⊲   |                                         | 4      | pl. py-ch. ser, cal |
| Massive basalt     | K1m  | ophítíc         |            | 0        | 0          | 0        |                                         |        |                     |
| Massive basalt     | Кlп  | sub-ophitic     |            | <b>(</b> |            |          |                                         |        | pl⊸ch               |
| Wassive basalt     | KIm  | intergranular   |            | 0        |            | 0        | 0                                       |        | pl→ser © +qz        |
| Massive basalt     | Кіп  | intergranular   |            | <b>©</b> |            |          | Ο                                       | <      | pl. py-ch, carb     |
| Wassive basalt     | Klm  | lepidoblastic   |            | <b>©</b> |            |          |                                         |        |                     |
| Massive basalt     | Klm  | intergranular   |            | <b>o</b> | 0          | 0        | 0                                       | 4      | ру⊶сћ.              |

○:Abundant O:Common □:Few △:Rare

Mf:Mafic mineral, Op:Opaque minerals, Ser:Sericite, Ch:Chlorite, Ep:Epidote, Cal:Calcite, Carb:Carbonate, G:Glass Qz:Quartz, Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, Hy:Hypersthene,

vs:very strong arg:argillization +qz:silicification

Table 1-13 Microscopic Observations of the Thin Sections (3)

| No.<br>Y027<br>A013 |                      |      |                   |            |             |         |          |          |          |                              |
|---------------------|----------------------|------|-------------------|------------|-------------|---------|----------|----------|----------|------------------------------|
|                     |                      | unit | 9                 | Qz Kf Pl   | Bi Ho Au Hy | y Mf Op | Qz Pl Bi | Ho Au Hy | Mf Op G  |                              |
|                     | Massive basalt       | КЪш  | cataclastic       | <b>(</b>   |             |         |          |          |          | mf-ch, carb                  |
| -                   | Hyaloclastite        | Klh  | porphyritic?      | 0          |             |         | 0        | 0        | 0        | pl, py-ch, ser, cal +qz      |
|                     | Hyaloclastite        |      | porphyritic       | 0          |             | :       | 0        |          |          | pl→ch, ser +lim              |
| A028 E              | Hyaloclastite        | Kih  | intergranular     | Ο          | Ο           |         | 0        |          |          | pl. py-ch. carb +qz          |
| A036 A              | Altered tuff         | КЪ   | 1                 |            |             |         | о<br>О   |          |          | pl, py~ch, cal, ep           |
| A038 E              | Hyaloclastite        | Klh  | intergranular     | 0          | 4           |         | 0        | 0        |          | pl. py-ch. cal, ep. carb     |
| A030                | Altered basalt       | КЪ   | porphyritic       | Ο          | Ο           |         | <b>©</b> |          |          | pi⊷ch +qz                    |
| A037                | Altered basalt       | Kl   | poikilitic        | 0          | 0           |         | 0        |          |          | pl→ser                       |
| A039                | Altered basalt       | Κlm  | porphyritic (     | 0          |             |         | <b>©</b> |          | <b>©</b> | pl⊸ch, ser +qz               |
| M039                | Altered basalt       | Klm  | porphyritic       | 0          |             |         | 0        |          |          | pl→ch ◎                      |
| M014 (              | Gabbro               | Di   | holocrystalline   | 0          | 0           |         |          |          |          | pl-ser                       |
|                     | Pillow lava          | Klp  | intersertal       | 0          | Ο           |         | Ο        | Ο        | 0        | pl, py~ch. cal, ep           |
| S057                | Altered pillow lava  | Klp  | intergranular     | 0          |             |         | 0        |          | 0        | pl→ser, ch                   |
| Y003                | Silicified sandstone | Kss  | granular          |            |             |         | 0        |          |          | ch, size:0.04-0.4mm          |
| Y014 I              | Hyaloclastite        | Klh  | porphyritic       | <b>©</b>   | 0           |         | 0        | Ο        | 0        | pl. py-ch, carb, mf→limonite |
| ;                   | Hyaloclastite        | K1ħ  | porphyritic       | ©          | Ο           |         | 0        | 0        | 0        | pl, py~ch, cal. carb         |
| Y039                | Hyaloclastite        | Klh  | intergranular     | <b>(</b>   | Ο           |         | Ο        | 0        | ◁        | pi, py-ch, carb              |
|                     | Hyaloclastite        | Klb  | intergranular     | <b>(</b>   |             |         | 0        |          |          | pl, py~albite, ch, cal. carb |
|                     | Pillow lava          | Klp  | hayalo-ophitic    | <b>(</b> ) | Ο           |         | 0        | Ο        |          | pl, py⊸albite, ch, cal, carb |
| Y034                | Massive basalt       | Klm  | ophitic           | <b>(</b>   | Ο           |         |          |          |          | py~ch, ser,                  |
| Y042                | Hyaloclastite        | KIh  | porphyritic       | <b>(</b>   | Ο           |         | 0        | 0        | ◁        | pl, py-albite, ch, carb      |
| -                   | Hyaloclastite        | KIh  | porphyritic       | <b>©</b>   | O           |         | 0        | 0        |          | pl. py→ser, carb +qz         |
| Y045                | Massive basalt       | K1m  | intersertal       | <b>(</b> ) | 0           |         | 0        | 0        |          | pl. py→ch, carb              |
| Y046                | Massive basalt       | Klm  | micro-porphyritic | <b>©</b>   | Ο           |         | 0        | <b>(</b> |          |                              |
| A003                | Massive limestone    | Kc1  | crystocrystalline |            |             |         | 4        |          |          | fossile, cal ③               |

Mf:Mafic mineral, Op:Opaque minerals, Ser:Sericite, Ch:Chlorite, Ep:Epidote, Cal:Calcite, Carb:Carbonate, G:Glass ©:Abundant O:Common □:Few △:Rare Qz:Quartz, Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, Hy:Hypersthene,

vs:very strong arg:argillization +qz:silicification

Table 1-13 Microscopic Observations of the Thin Sections (4)

| Sample | Rock Name            | Rock     | Texture         |      | щ          | Phenocryst |          |          | Groundmass |           | Alteration             |
|--------|----------------------|----------|-----------------|------|------------|------------|----------|----------|------------|-----------|------------------------|
| No.    |                      | unit     |                 | Qz K | Kf Pl Bi F | Ho Py Hy 1 | Mf: 0p ( | Qz Pl Bi | Ho Py Hy   | 7 Mf Op G |                        |
| K019   | Silicified sandstone | Kss      | granular        |      |            |            |          | (O)      |            |           | size:0.06-0.4(mm). cal |
| X002   | Sandstone            | Kss      | granular        |      |            |            |          |          |            |           | mica, ser              |
| Y026   | Sandstone            | Kss      | granular        |      |            |            |          |          |            |           | mica, ser              |
| Y041   | Black shale          | Kss      | granular        |      |            |            |          | 0        |            |           | clay, ser, carb        |
| E049   | Altered basalt       | X1b      | intergranular   |      | (O         | 0          |          |          | 0          | ⊲         | pl, py~ch, ep, carb    |
| K114   | Dacite               | Da       | porphyritic     | 0    | <b>©</b>   |            |          | (O)      |            | 0         | pl~ser, ch             |
| M106   | Gabbro               | ij       | holocrystalline |      | <br>©      | 0          | ◁        |          |            |           | 1                      |
| L042   | Porphyritic rock     | KIb      | porphyritic     |      | <u></u> О  |            |          | 0        |            |           | pl→ch                  |
| H051   | Brecciated basalt    | KIb      | ıntergranular   |      | Ο          | ◁          |          | 0        | Ο          |           | pl. py-ch, ep. carb    |
| K116   | Massive basalt       | ΩIp      | porphyritic     |      | 0          |            |          |          |            |           | pl-ch, ser             |
| K101   | Massive basalt       | Klb      | porphyritic     |      | 0          |            |          |          |            |           | pl-ch ©. ser           |
| K102   | Massive basalt       | KIb      | porphyritic     | ◁    | □<br>⊚     | ◁          |          |          | ◁          | ◁         | pl→ch                  |
| S110   | Massive basalt       | KIb      | porphyritic     | ◁    |            |            |          |          | ◁          | ◁         | กI→ch                  |
| Y093   | Massive basalt       | KIb      | porphyritic     | ◁    | П<br>О     |            |          |          | ◁          | ◁         | pl-ser, ch, cal        |
| Y094   | Massive basalt       | KIb      | porphyritic     |      | O          |            |          |          | ◁          | ◁         | pl→ser                 |
| A101   | Diorite              | 85       | porphyritic     | 4    | 0          |            |          |          | ◁          | ◁         | pl→ser                 |
| A112   | Diorite              | జ        | porphyritic     |      | 0          |            | ◁        |          |            |           |                        |
| H040   | Diorite              | පි       | bolccrystalline |      |            | 0          | ব        |          |            |           | pl∹ser ©, ch           |
| B044   | Diorite              | ශී       | holocrystalline |      |            |            | ◁        |          |            |           | pl, mf⊸ser ©, ch       |
| H047   | Diorite              | జ        | holocrystalline |      |            | 0          |          |          |            |           | pl→ch                  |
| M276   | Meta basalt          | K1b      | hayaloophytic   |      | 0          |            |          | 0        |            | ◁         | pl⊸ch                  |
| A102   | Dacite               | Za<br>Ba | porphyritic     |      | 0          |            | 4        | ()<br>() |            | ⊲         | pl→ser, cal            |
| K248   | Andesite             | CID      | porphyritic     | ◁    | 0          | ◁          |          | 0        |            | ⊲         |                        |
| S091   | Dacite               | Da.      | porphyritic     | 0    | 0          |            |          | O<br>©   |            | ◁         | pl-ser                 |
| Y089   | Dacite               | g        | porphyritic     | 0    | 0          |            |          |          |            | ◁         | pl, bi-ch, ser         |

vs:very strong arg:argillization

Mf: Mafic mineral, Op: Opaque minerals. Ser: Sericite, Ch: Chlorite, Ep: Epidote, Cal: Calcite, Carb: Carbonate, G: Glass ⊙:Abundant O:Common □:Few △:Rare Qz:Quartz, Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, Hy:Hypersthene,

26

Table 1-13 Microscopic Observations of the Thin Sections (5)

| Sample | Rock Name           | Rock      | k Texture       |       | M          | Phenocryst |       |          | Groundmass | dmass   |      | Alteration                    |
|--------|---------------------|-----------|-----------------|-------|------------|------------|-------|----------|------------|---------|------|-------------------------------|
| No.    |                     | unit      | t               | Qz Kf | f Pl Bi Ho | Py Hy      | Mf Op | Qz Pl B  | Bi Ho Py   | y Hy Mf | OD G |                               |
| Y091   | Granite             | 8         | holocrystalline | 4     | <b>©</b>   |            |       |          |            |         |      |                               |
| ¥086   | Granite             | පු        | holocrystalline |       |            |            |       |          |            |         |      |                               |
| K200   | Green schist        | Dpg       | 1               |       |            |            |       |          |            |         | 4    | cal                           |
| K211   | Gneiss              | Dpg       | holocrystalline |       |            |            |       |          |            |         |      |                               |
| A108   | Meta basalt         | Clb       | ı               |       |            |            |       | □<br>⊚   |            |         |      | ep. ch, muscovite             |
| H033   | Meta basalt         | CIP       | ı               |       |            |            |       | 0        |            |         |      | eo, ch @, muscovite, ilmenite |
| K206   | Meta basalt         | CIP       | hayaloophitic   |       | ()<br>()   |            |       | 0        | 0          |         |      | ] pl. py-ch. carb             |
| K252   | Meta basalt         | Clb       | porphyritic     |       | 0          |            |       | <b>(</b> |            |         |      | ch ©                          |
| L045   | Weta basalt         | CIP       | -               |       |            |            |       | 0        | ····       |         | 0    | ch, carb                      |
| K227   | Meta basalt         | CIP       | ŀ               |       |            |            |       | 0        | <u> </u>   | 0       | 0    | ch, cal                       |
| L048   | Meta basalt         | CIP       | intergranular   |       | (O)        | 0          |       | 0        |            |         |      | pl. py-ch, ep. cal            |
| 1068   | Meta basalt         | CIP       |                 |       | 0          | Ο          |       | Ο        | 0          |         |      | pl, py-ep, carb               |
| L082   | Meta basalt         | CIP       | porphyritic     | 0     |            |            |       | ()<br>() |            |         | ◁    |                               |
| M216   | Weta basalt         | CIP       |                 |       | 0          | 0          |       | 0        | 0          | ····    |      | pl, py-ch, cal                |
| N055   | Meta basalt         | CIP       |                 |       |            |            |       | 0        |            |         | ◁    | pl. py-ser. ch, ep            |
| M256   | Meta basalt         | CIP       | lepidoblast     |       | 0          |            |       | 0        |            |         |      |                               |
| N060   | Meta basalt         | ŝ         | lepidoblastic   | 0     | <br>O      |            |       |          |            |         |      | pl, py-ch ©, ep. cal          |
| N064   | Meta basalt         | Clp       | lepidoblast     |       | <b>(</b>   |            |       | 0        |            |         | 4    | pl, py-ch, ep                 |
| Y057   | Meta basalt         | ÇIP       | intergranul     |       | (O)        | 0          |       |          | 0          |         |      |                               |
| X060   | Weta basalt         | CIP?      | ? lepidoblastic | ◁     | 0          |            | :     | 0        |            |         | ◁    |                               |
| Y065   | Weta basalt         | CIP       | sub-ophitic     |       | ©          |            |       | 0        |            |         | 4    | pl. py-ch. carb               |
| Y077   | Meta basalt         | GP<br>CIP |                 |       | (O         |            |       | ◁        |            |         |      | pl, py-ch, ep +qz             |
| Y082   | Meta basalt         | CIP       |                 | 0     |            |            |       | Ο        | 0          |         | 4    | pl. py-ch, ep. carb           |
| Y087   | Meta basalt         | CIP       | ophitic         |       | Ο          |            |       |          |            |         |      |                               |
| 1050   | Altered meta basalt | CIP       | porphyritic     |       | Ο          |            |       | ©        |            | ·····   | ◁    | pl, py-ch, ep +qz             |
|        |                     |           |                 |       |            | -          | ·<br> |          |            | -       |      |                               |

Mf:Mafic mineral, Op:Opaque minerals, Ser:Sericite, Ch:Chlorite, Ep:Epidote, Cal:Calcite, Carb:Carbonate, G:Glass ⊘:Abundant O:Common □:Few △:Rare Qz:Quartz, Xf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, Hy:Hypersthene,

vs:very strong arg:argillization +qz:silicification

Table 1-13 Microscopic Observations of the Thin Sections (6)

| Alteration |                            | pl, py-ser, ch, ep     | ch, ser, ep   | ch ©          | ch, cal, ep   | ch, ser        | ch, ep, tremonite, actinolite | pl. py→ser. ch. ep +qz | ser, ch. ep +qz | pl, py→ch, ep, cal +qz | mica +qz, +Fe   | serpentine © | ca1 ©             |      |      |   |   | : |      | 1 |   |      |
|------------|----------------------------|------------------------|---------------|---------------|---------------|----------------|-------------------------------|------------------------|-----------------|------------------------|-----------------|--------------|-------------------|------|------|---|---|---|------|---|---|------|
|            | රි                         |                        |               |               |               |                |                               | ◁                      | 4               |                        |                 | ◁            |                   | <br> | <br> |   |   |   | <br> |   |   | <br> |
| Groundmass | Mf                         |                        |               |               | 0             |                |                               |                        |                 |                        |                 |              |                   |      |      |   |   |   |      |   | : |      |
|            | Qz Pl Bi F                 | 0                      | 0             | 0             | <b>©</b>      | (O)            | 0                             |                        |                 | O<br>©                 | ©               |              | ◁                 |      | <br> |   |   |   |      |   |   |      |
| Phenocryst | Qz Kf Pl Bi Ho Py Hy Mf Op |                        |               |               |               |                |                               | (O)                    |                 | 0                      |                 |              |                   |      |      |   |   |   |      |   |   |      |
| Texture    |                            | porphyritic            | nematoblastic | nematoblastic | nematoblastic | nematoblastic  | nematoblastic                 | porphyritic            |                 | porphyritic            | 1               | F            | granular          |      |      |   |   |   |      |   |   |      |
| Rock       | unit                       | ¢1Þ                    | CIP           | CIP           | ÇIÞ           | Clp            | C]<br>D                       | C1b                    | CIP             | CIP                    | SP              | ÇIS          | 단                 |      |      | · |   |   |      |   |   |      |
| Rock Name  |                            | Silicified meta basalt | Green schist  | Grren schist  | Green schist  | Pelitic schist | Pelitic schist                | Silicified rock        | Silicified rock | Silicified rock        | Gossan (schist) | Serpentinite | Massive limestone |      |      |   |   |   |      |   |   |      |
| Sample     | No.                        | L058                   | A104          |               |               | H035           | L046                          | H041                   | 1062            | M252                   | M231            | Y079         | A103              |      |      |   | : |   |      |   |   |      |

◎:Abundant ○:Common □:Few △:Rare

Mf:Mafic mineral, Op:Opaque minerals, Ser:Sericite, Ch:Chlorite, Ep:Epidote, Cal:Calcite, Carb:Carbonate, G:Glass Qz:Quartz, Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, Hy:Hypersthene, arg:argillization +qz:silicification vs:very strong **AFM diagram** (Figure 1-6): The intrusive rocks clearly plots within the range of calc-alkali rock series. The Na<sub>2</sub>O+K<sub>2</sub>O of the basalts is higher than normal mafic rocks and indicates the strong albitization. It belongs to the calc-alkali rock series. It lies within the range similar to that of Güner (1980).

Na<sub>2</sub>O+K<sub>2</sub>O-SiO<sub>2</sub> diagram (Figure 1-7): The basalts of this area have high Na<sub>2</sub>O+K<sub>2</sub>O content because of alteration and many of them plot in the alkali rock series range.

SiO<sub>2</sub>-FeO/MgO diagram (Figure 1-8): Most of the intrusive rocks plot in the calc-alkali rock series while many of the basic rocks fall in the tholeiite range.

Alkali-alumina-silica diagram (Figure 1-9): In the basalt classification of Kuno (1960), the rocks of the Küre Area plot in the alkali rock series because of their high alkali content, but some of the low silica basalts are observed to fall in the tholeiite group.

Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> diagram (Figure 1-10): In the diagram with average values of ridge-type and ocean island- type tholeiites plotted (Hubbard, 1969), The present rocks plots in the high alumina-low titanium ridge-tholeiite group.

S.I. and titanium-alumina diagram (Figure 1-11): In the diagram using the solidification index by Kuno (1957), the rocks of the Küre Area plots in the area ranging from the ridge-type to ocean-island-type.

TiO<sub>2</sub>-FeO/MgO diagram (Figure 1-12):In the diagram by Miyashiro (1975) with Güner's plots, the results of the present work plot in the area ranging from ridge to ocean-island-type tholeiite.

P<sub>2</sub>O<sub>5</sub>-TiO<sub>2</sub> diagram (Figure 1-13):These rocks have low titanium and phosphorus contents and plots in the ridge-type tholeiite range.

Minor elements: As evident from the total analysis and microscopic observation, all 22 samples of mafic rocks (green rocks) are altered. The content of rare earth elements is considered to be relatively less affected by alteration and metamorphism. Kawabe (1974) has inferred tectonic conditions from the minor element content and his method is applied as follows.

The contents of rare earths Ba, Nb, Sr, Y. Zr were determined and the results are laid out in Figure 1-14. The tectonic conditions of the basalt

samples are inferred from these rare earths to be; ocean ridge type M036, S047, Y007, Y0025, Y098, Y099, Y100 in the Küre Zone, M108 in Dikmendag, and M202, M205, M230, M287, M288 in Taşköprü Zone. These amount to more than half of the samples.

It is seen that although the alkali contents are high in the altered basalts and they plot in the alkali rock area of the diagrams, the major chemical components and some minor element contents both indicate ridge-type tholeite as the original rock.

| Condition of<br>Structure | Magma Type     | Rb<br>ppm | Sr<br>ppm | Ba<br>ppm | K/Rb      | Cr<br>ppm            | Ni<br>ppm | Rare Metal<br>Pattern |
|---------------------------|----------------|-----------|-----------|-----------|-----------|----------------------|-----------|-----------------------|
| Ridge                     | Tholeiites     | 0.2-5     | 70-150    | 6-30      | 1,000     | 200-400              | 300-200   | Solid Type            |
| Island basin              | Tholeiites     | 3-6       | 150-200   | 25-47     | 600-1,000 | 1 <sup>5</sup> 0-300 | 50-90     | Solid Type            |
|                           | Tholeiites     | 5         | 200       | 75        | 1,000     | 50                   | 30        | Solid Type            |
| Island                    | Calc-alkali B. | 10        | 330       | 115       | 340       | 40                   | 25        | Liquid Type           |
|                           | Alkali Basalt  | . 75      | 700       | 1,000     | 200       | 30                   | 20        | Liquid Type           |

Table 1-14 Chemical Analysis and CIPW Norms (1)

|                                | A047 1 | L021   | моз6   | S047   | Y005   | Y007    | Y025    | Y098   | Y099   | Y100   | Y102    | M108   |
|--------------------------------|--------|--------|--------|--------|--------|---------|---------|--------|--------|--------|---------|--------|
| SiO2 wt%                       | 47. 73 | 34. 67 | 48. 44 | 46, 24 | 47. 93 | 53. 44  | 50, 23  | 45. 72 | 49.65  | 52. 69 | 65, 62  | 56.63  |
| TiO <sub>2</sub>               | 1, 66  | 0. 95  | 0.43   | 0.69   | 1.06   | 1. 21   | 1, 24   | 1.78   | 1.05   | 1, 29  | 0.64    | 0.62   |
| Al <sub>2</sub> O <sub>3</sub> | 14, 13 | 15. 09 | 14. 54 | 17.01  | 15. 72 | 15, 56  | 15, 39  | 14, 17 | 14, 52 | 15. 34 | 14, 41  | 15, 21 |
| Fe <sub>2</sub> 0 <sub>3</sub> | 5, 59  | 1.57   | 1, 22  | 5. 54  | 3.09   | 2, 59   | 3, 59   | 3, 72  | 5. 02  | 3.04   | 2.05    | 1. 29  |
| Fe0                            | 5. 19  | 7. 32  | 5. 82  | 7. 19  | 4.80   | - 7. 07 | - 6. 07 | 7.48   | 4, 53  | 5, 95  | 2. 21   | 5. 59  |
| MnO :                          | 0. 19  | 0.65   | 0. 15  | 0. 12  | 0.13   | 0, 14   | 0.16    | 0, 17  | 0.14   | 0. 13  | 0.10    | 0.16   |
| MgO                            | 7. 32  | 5. 21  | 9, 62  | 9.57   | 5. 77  | 5.56    | 5. 51   | 7. 57  | 8. 72  | 5. 63  | 2.00    | 6, 35  |
| Ca0                            | 7, 76  | 13. 72 | 5.66   | 2.38   | 6. 95  | 3, 01   | 7, 51   | 10.67  | 7.46   | 3.57   | 2. 92   | 1.61   |
| Na <sub>2</sub> 0              | 4, 11  | 2. 83  | 4. 65  | 3.80   | 4.80   | 5. 59   | 4.89    | 2, 89  | 3. 92  | 5. 16  | 6. 16   | 6. 10  |
| K <sub>2</sub> 0               | 0, 93  | 0. 95  | 0.08   | 0.19   | 0. 54  | 0.08    | 0.19    | 0.20   | 0. 18  | 0. 21  | 1. 35   | 0.05   |
| P <sub>2</sub> O <sub>5</sub>  | 0.10   | 0. 01  | 0. 01  | 0.01   | 0.05   | 0.04    | 0.04    | 0.11   | 0.01   | 0.10   | 0.12    | 0. 01  |
| LOI                            | 3, 28  | 15, 33 | 7. 99  | 5. 10  | 8. 90  | 4. 23   | 3.60    | 3. 49  | 3. 59  | 5.81   | 3, 59   | 4. 67  |
| $\operatorname{Cr}_2 0_3$      | 0.01   | 0.01   | 0.04   | 0.01   | 0, 01  | 0, 01   | 0.01    | 0, 01  | 0.01   | 0, 03  | 0.01    | 0.02   |
| Total                          | 98. 00 | 98. 31 | 98.65  | 97. 85 | 99. 75 | 98. 53  | 98. 43  | 97. 98 | 98.80  | 98. 95 | 101. 18 | 98. 31 |
| Fe0*                           | 10. 22 | 8. 73  | 6. 92  | 12. 18 | 7.58   | 9.40    | 9. 30   | 10, 83 | 9.05   | 8. 69  | 4.06    | 6. 75  |
| Fe/Mg                          | 1. 40  | 1. 68  | 0.72   | 1. 27  | 1. 31  | 1.69    | 1. 69   | 1, 43  | 1.04   | 1.54   | 2.03    | 1.06   |
| Con, P                         | 45, 26 | 49. 28 | 32. 53 | 47. 31 | 40.56  | 45. 57  | 46.76   | 50, 39 | 41.38  | 44. 12 | 29. 89  | 35. 07 |
| Q                              | 0.00   |        | 0.00   | 0. 59  | 0.00   | 1.88    | 0.00    | 0.00   | 0.00   | 3. 17  | 16. 37  | 4. 25  |
| [C                             | 0.00   |        | 0.00   | 6. 25  | 0.00   | 0. 91   | 0.00    | 0.00   | 0.00   | 0.38   | 0.00    | 2. 22  |
| or                             | 5, 50  |        | 0.47   | 1. 12  | 3. 19  | 0.47    | 1, 12   | 1. 18  | 1.06   | 1.24   | 7. 98   | 0.30   |
| ab                             | 34. 76 |        | 39. 32 | 32. 14 | 39. 26 | 47, 27  | 41. 35  | 24. 44 | 33. 15 | 43. 64 | 52. 09  | 51. 59 |
| an                             | 17. 37 |        | 18. 58 | 11. 74 | 19, 76 | 14.67   | 19. 49  | 25. 11 | 21. 50 | 17.06  | 7.70    | 7. 92  |
| ne                             | 0.00   |        | 0.00   | 0.00   | 0.72   | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00   |
| di-wo                          | 8. 55  |        | 3. 94  | 0.00   | 6.01   | 0.00    | 7. 30   | 11. 32 | 6. 44  | 0.00   | 2, 51   | 0.00   |
| di-en                          | 6, 68  |        | 2. 63  | 0,00   | 4. 15  | 0.00    | 4. 65   | 7. 38  | 5.09   | 0.00   | 1. 77   | 0.00   |
| di-fs                          | 0.93   | . ]    | 1. 02  | 0.00   | 1. 37  | 0.00    | 2. 18   | 3. 15  | 0.63   | 0.00   | 0.53    | 0.00   |
| hy-en                          | 0.37   |        | 1. 96  | 23.82  | 0.00   | 13, 84  | 3. 52   | 2. 70  | 14.61  | 14. 02 | 3. 21   | 15. 81 |
| hy-fs                          | 0, 05  |        | 0. 76  | 7. 71  | 0.00   | 9. 11   | 1.65    | 1. 15  | 1.82   | 6. 53  | 0.96    | 8. 47  |
| ol-fo                          | 7. 83  |        | 13. 57 | 0.00   | 7. 16  | 0.00    | 3. 89   | 6. 14  | 1. 41  | 0.00   | 0.00    | 0.00   |
| ol-fa                          | 1. 20  |        | 5. 77  | 0.00   | 2. 61  | 0.00    | 2.01    | 2. 89  | 0.19   | 0.00   | 0.00    | 0.00   |
| nt                             | 8, 10  |        | 1. 77  | 8. 03  | 4. 48  | 3. 75   | 5. 20   | 5. 39  | 7. 28  | 4. 41  | 2.97    | 1.87   |
| hm                             | 0.00   |        | 0.00   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   | 0.00    | 0.00   |
| il                             | 3. 15  |        | 0. 82  | 1. 31  | 2. 01  | 2. 30   | 2. 36   | 3. 38  | 2. 00  | 2. 45  | 1. 22   | 1. 18  |
| ap                             | 0. 24  |        | 0. 02  | 0.02   | 0. 12  | 0. 10   | 0.10    | 0. 26  | 0. 02  | 0. 24  | 0. 28   | 0. 02  |
| TOTAL                          | 94. 71 |        | 90.61  | 92.72  | 90. 82 | 94. 28  | 94. 80  | 94. 48 | 95. 18 | 93, 11 | 97. 57  | 93. 61 |
| Femic                          | 37. 09 |        | 32. 25 | 40. 90 | 27. 91 | 29.09   | 32. 85  | 43. 76 | 39. 49 | 27. 64 | 13. 45  | 27, 35 |
| S. I.                          | 32. 42 | 29. 40 | 45, 23 | 37. 18 | 30. 87 | 26. 95  | 27. 70  | 35. 23 | 39. 87 | 31, 83 | 14. 74  | 32. 99 |

|    | ,   | A047 | L021 | М036 | S047 | Y005 | Y007_ | Y025 | Y098        | Y099 | Y100 | Y102 | M108 |
|----|-----|------|------|------|------|------|-------|------|-------------|------|------|------|------|
| Ba | ррш | 240  | 230  | 10   | 20   | 60   | < 20  | < 20 | 20          | < 20 | 20   | 240  | 20   |
| Nb |     | < 10 | < 10 | < 10 | < 10 | < 10 | < 10  | < 10 | < 10        | < 10 | < 10 | < 10 | < 10 |
| Rb |     | 16   | 27   | ₹ 5  | 5    | 22   | 5     | 11   | 11          | 5    | 11   | 71   | < 5  |
| Sr |     | 180  | 90   | 70   | 70   | 100  | 20    | 30   | 130         | 150  | 70   | 90   | 60   |
| Y  |     | 40   | 20   | 10   | 20   | 20   | 30    | 30   | 50          | 30   | 30   | 20   | 10   |
| Zr |     | 110  | 50   | 20   | 30   | 50   | 50_   | 70   | 1 <u>20</u> | 60   | 80   | 150  | 50   |

| Area      | Sample No. | Rock Name        | Rock Unit | Location         | Coordinates     |
|-----------|------------|------------------|-----------|------------------|-----------------|
|           |            |                  | Kure F.   | KS-3:72m         | 2558370 4629068 |
| Küre      | A047       | Breciated basalt |           |                  |                 |
| Kure      | L021       | Pillow lava      | Kure F.   | W. Kusça M.      | 2561015 4631375 |
| Küre      | M036       | Massive basalt   | Kure F.   | W. Katıructuğu T | 2559000 4632140 |
| Küre      | S047       | Pillow lava      | Küre F.   | NE, Kizana M,    | 2557340 4631930 |
| Küre      | Y005       | Pillow lava      | Kure F.   | SE Küre          | 2560310 4628680 |
| Küre      | Y007       | Massive basalt   | Kure F.   | S, Küre          | 2559740 4629085 |
| Kure      | Y025       | Massive basalt   | Küre F.   | N. Küre          | 2559160 4631975 |
| Küre      | Y098       | Pillow lava      | Küre F.   | Asıköy 💮         | 2575240 4630802 |
| Küre      | Y099       | Breciated basalt | küre F    | NW Küre          | 2558300 4631700 |
| Küre      | Y100       | Breciated basalt | küre F.   | N. Küre          | 2559300 4631600 |
| Dikmendag | Y102       | Massive basalt   | Küre F.   | E, Masköy        | 2548300 4632503 |
| Dikmendag | M108       | Massive basalt   | Küre F.   | S. Kızılelma     | 2542600 4631100 |

Table 1-14 Chemical Analysis and CIPW Norms (2)

|                                | 11043  | M200   | M202   | M205   | №230   | M261   | M277   | M287    | M288   | M289    |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|---------|--------|---------|
| SiO2 wt%                       | 47. 13 | 56. 43 | 46. 74 | 46. 77 | 54. 90 | 45. 11 | 52, 11 | 52.03   | 48. 11 | 67.44   |
| TiO <sub>2</sub>               | 1, 05  | 0.86   | 0. 24  | 0.83   | 1, 18  | 1, 27  | 1, 14  | 0.86    | 1. 94  | 0.58    |
| A1 <sub>2</sub> O <sub>3</sub> | 14.03  | 14, 43 | 12. 87 | 14.65  | 14. 84 | 17. 63 | 17. 07 | 16. 28  | 14. 17 | 14, 62  |
| Fe <sub>2</sub> 0 <sub>3</sub> | 5, 18  | 6.76   | 4. 41  | 4. 35  | 7. 01  | 4. 13  | 1. 23  | 4. 40   | 3. 12  | 1.86    |
| Fe0                            | 3.85   | 2, 45  | 3, 92  | 4.09   | 5. 01  | 6.86   | 5. 13  | 6.93    | 7, 86  | 4. 43   |
| MnO                            | 0.17   | 0. 15  | 0. 15  | 0.16   | 0.19   | 0, 23  | 0. 12  | 0. 22   | 0. 19  | 0.07    |
| l MgO                          | 7. 72  | 2.71   | 11. 73 | 7. 53  | 3. 63  | 9, 15  | 5. 46  | 5. 53   | 4. 63  | 2.58    |
| Ca0                            | 7. 14  | 11.82  | 10. 47 | 12.10  | 4.08   | 4. 45  | 4. 22  | 4. 82   | 6. 18  | 0.56    |
| Na <sub>2</sub> 0              | 4.67   | 0. 28  | 2.04   | 2.53   | 6. 74  | 4. 46  | 4.99   | 3. 73   | 4. 72  | 1.59    |
| K <sub>2</sub> O               | 1, 58  | 0, 24  | 0, 22  | 0.05   | 0. 17  | 0, 38  | 1, 56  | 0.03    | 0. 23  | 3, 72   |
| P <sub>2</sub> O <sub>5</sub>  | 0, 06  | 0.02   | 0. 01  | 0.01   | 0.04   | 0.04   | 0. 10  | 0, 01   | 0, 21  | 0.07    |
| LOI                            | 5, 93  | 3, 27  | 5. 42  | 5, 76  | 1, 41  | 4. 53  | 6.71   | 3. 62   | 7. 07  | 2. 76   |
| Cr <sub>2</sub> O <sub>3</sub> | 0.01   | 0. 01  | 0. 12  | 0.02   | 0.01   | 0.09   | 0.03   | 0.01    | 0.01   | 0. 01   |
| Total %                        | 98. 52 | 99. 43 | 98. 33 | 98. 83 | 99. 21 | 98. 33 | 99.87  | 98, 47  | 98. 44 | 100. 29 |
| Fe0≱                           | 8. 51  | 8. 53  | 7. 89  | 8. 01  | 11, 32 | 10.58  | 6. 24  | 10.89   | 10, 67 | 6. 10   |
| Fe/Mg                          | 1, 10  | 3. 15  | 0. 67  | 1.06   | 3. 12  | 1, 16  | 1. 14  | . 1. 97 | 2. 30  | 2. 37   |
| Con. P                         | 37.86  | 72. 54 | 36.06  | 44. 19 | 51. 78 | 43.05  | 34. 18 | 53. 96  | 52.69  | 43, 62  |
| Q                              | 0.00   | 29. 14 | 0.00   | 0. 27  | 2. 42  | 0.00   | 0.00   | 8. 02   | 0.00   | 36. 49  |
| C                              | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 1.89   | 0.00   | 1. 38   | 0.00   | 7, 13   |
| or                             | 9. 34  | 1.42   | 1. 30  | 0.30   | 1, 01  | 2. 25  | 9. 22  | 0. 18   | 1. 36  | 21. 99  |
| ab                             | 28. 94 | 2. 37  | 17. 25 | 21. 40 | 57. 00 | 37. 25 | 42.20  | 31. 54  | 39. 92 | 13, 45  |
| an                             | 12.66  | 37, 41 | 25. 31 | 28.48  | 9.75   | 21, 81 | 19.58  | 23.84   | 16.81  | 2.33    |
| ne                             | 5, 72  | 0.00   | 0.00   | 0.00   | 0.00   | 0. 25  | 0.00   | 0.00    | 0, 00  | 0.00    |
| WO                             | 0.00   | 1.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00    | 0.00   | 0.00    |
| di-wo                          | 9. 34  | 7. 81  | 11, 08 | 13. 14 | 4. 27  | 0.00   | 0. 29  | 0.00    | 5. 21  | 0, 00   |
| di-en                          | 7.65   | 6. 75  | 8. 79  | 10. 18 | 3. 20  | 0.00   | 0, 18  | 0.00    | 2. 83  | 0.00    |
| di-fs                          | 0. 55  | 0.00   | 1.04   | 1.55   | 0.64   | 0.00   | 0.09   | 0.00    | 2. 21  | 0.00    |
| hy-en                          | 0.00   | 0.00   | 15. 31 | 8. 57  | 5, 84  | 0.00   | 6. 92  | 13. 77  | 6. 28  | 6. 42   |
| hy-fs                          | 0. 00  | 0.00   | 1.80   | 1.30   | 1. 17  | 0.00   | 3. 43  | 8.08    | 4. 90  | 5. 77   |
| ol-fo                          | 8. 11  | 0.00   | 3. 57  | 0.00   | 0, 00  | 15, 96 | 4. 55  | 0, 00   | 1.70   | 0.00    |
| ol-fa                          | 0.64   | 0.00   | 0.46   | 0.00   | 0.00   | 5. 81  | 2.49   | 0.00    | 1.46   | 0.00    |
| mt                             | 7. 51  | 5. 89  | 6.39   | 6.31   | 10. 16 | 5. 99  | 1. 78  | 6.38    | 4. 52  | 2. 70   |
| ha                             | 0.00   | 2. 69  | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0, 00   | 0.00   | 0.00    |
| il                             | 2.00   | 1.63   | 0. 46  | 1.58   | 2. 24  | 2, 41  | 2. 17  | 1.63    | 3, 69. | 1. 10   |
| ap                             | 0.14   | 0.05   | 0.02   | 0, 02  | 0. 10  | 0.10   | 0. 24  | 0.02    | 0.50   | 0. 17   |
| TOTAL                          | 92. 57 | 96. 15 | 92. 76 | 93. 04 | 97. 78 | 93. 68 | 93. 12 | 94.84   | 91. 36 | 97. 51  |
| Femic                          | 35, 92 | 25, 82 | 48. 93 | 42. 63 | 27. 62 | 30. 26 | 22, 14 | 29. 88  | 33. 29 | 16. 16  |
| S. I                           | 34. 04 | 23. 04 | 53. 61 | 41.56  | 16, 61 | 37, 24 | 29. 92 | 27.40   | 22. 86 | 18. 44  |

|        | 11043  | ₩200 | M202 | M205 | M230  | ₩261_ | M277 | 11287 | M288 | M289 |
|--------|--------|------|------|------|-------|-------|------|-------|------|------|
| Ba ppm | 20     | 10   | 50   | 10   | 10    | 20    | 220  | 10    | 30   | 470  |
| Nb     | . < 10 | < 10 | < 10 | < 10 | < 10  | < 10  | < 10 | < 10  | < 10 | < 10 |
| Rb -   | . 28   | 5    | < 5  | 5    | . < 5 | 11    | 43   | < 5   | 5    | 76   |
| Sr     | 10     | 350  | 110  | 70   | :30   | 50    | 200  | 210   | 70   | < 10 |
| Y      | 20     | 20   | < 10 | 20   | 20    | 30    | 30   | 20    | 50   | . 20 |
| Zr     | 50     | 60   | 30   | 30   | 50    | 60_   | 120  | 40    | 130  | 100  |

| Area     | Sample No. | Rock Name    | Rock Unit            | Location        | Coordinates     |
|----------|------------|--------------|----------------------|-----------------|-----------------|
| Taşköprü | H043       | Green schist | Çangal metaophiolite | Yalak Dere      | 2605020 4617920 |
| Tasköprü | M200       | Green schist | Cangal metaophiolite | S Kuzpınar Sr   | 2574300 4599680 |
| Tasköprü | M202       | Green schist | Çangal metaophiolite | Alicliduz Sr    | 2574850 4599480 |
| Tasköprü | ¥205       | Meta basalt  | Cangal metaophiolite | S. Sazak D.     | 2574570 4593640 |
| Tasköprü | M230       | Meta basalt  | Cangal metaophiolite | Gökyar T        | 2594200 4609680 |
| Tasköprü | M261       | Green schist | Cangal metaophiolite | SW. Ortaköy     | 2604500 4616500 |
| Tasköprü |            | Meta basalt  | Cangal metaophiolite | S Taslitepe     | 2621200 4619220 |
| Tasköprü | 11287      | Green schist | Cangal metaophiolite | E. Caltepe      | 2598900 4614260 |
| Tasköprü |            | Green schist | Cangal metaophiolite | SE Karaoglan M. | 2580980 4603970 |
| Taşköprü |            | Meta basalt  | Çangal metaophiolite | S. Çaylak T.    | 2595730 4618320 |
|          |            |              |                      |                 |                 |

Table 1-14 Chemical Analysis and CIPW Norms (3)

|                                | A008   | H015   | M049   | Y009   | Y096    | Y097   | M286   | Y075   |
|--------------------------------|--------|--------|--------|--------|---------|--------|--------|--------|
| SiO2 wt%                       | 38. 40 | 37. 61 | 49. 29 | 54. 15 | 66. 37  | 69. 48 | 51. 61 | 56. 22 |
| TiO <sub>2</sub>               | 0. 26  | 0.01   | 0. 25  | 1. 24  | 0, 30   | 0.34   | 1.14   | 0.96   |
| A1203                          | 4, 48  | 0, 81  | 16.06  | 15, 77 | 15, 32  | 16. 28 | 18, 26 | 17. 53 |
| Fe <sub>2</sub> O <sub>3</sub> | 4. 48  | 3, 85  | 3. 40  | 4, 45  | 0.86    | 0, 86  | 2.60   | 1, 98  |
| Fe0                            | 8. 11  | 3. 43  | 2, 98  | 5. 12  | 2.01    | - 2.14 | 3, 99  | 4.18   |
| NnO I                          | 0. 19  | 0.11   | 0. 13  | 0. 12  | 0, 06   | 0.04   | 0.03   | 0.12   |
| MgO                            | 31, 28 | 39. 11 | 10.05  | 4. 47  | 1, 56   | 1, 24  | 5, 23  | 4. 28  |
| CaO                            | 3. 58  | 0.89   | 11. 93 | 4, 62  | 3. 34   | 2, 87  | 8. 62  | 6.43   |
| Na <sub>2</sub> 0              | 0. 19  | 0.11   | 1.51   | 5. 94  | 3. 40   | 3. 13  | 4. 34  | 3, 54  |
| K <sub>2</sub> Ö               | 0.08   | 0. 02  | 0.51   | 0.30   | 2.45    | 3. 46  | 1. 17  | 1, 76  |
| P <sub>2</sub> O <sub>5</sub>  | 0. 01  | 0. 01  | 0.01   | 0.03   | 0.12    | 0.15   | 0.07   | 0. 20  |
| LOI                            | 5. 78  | 12. 38 | 3. 03  | 2, 42  | 5. 61   | 1, 53  | 2. 57  | 2, 07  |
| $Cr_2O_3$                      | 0, 35  | 0, 30  | 0.01   | 0.01   | 0.01    | 0.01   | 0.02   | 0.01   |
| Total %                        | 97. 19 | 98.64  | 99. 16 | 98. 64 | 101, 41 | 101.53 | 99, 65 | 99, 28 |
| Fe0*                           | 12. 14 | 6. 90  | 6. 04  | 9. 13  | 2.78    | 2. 91  | 6, 33  | 5. 96  |
| Fe/Mg                          | 0.39   | 0.18   | 0.60   | 2.04   | 1.79    | 2, 35  | 1. 21  | 1. 39  |
| Con, P                         | 27. 79 | 14. 95 | 33. 35 | 46, 01 | 27. 31  | 27. 12 | 37. 08 | 38. 36 |
| Q                              | 0.00   | 0, 00  | 2.02   | 1. 79  | 26, 91  | 29. 23 | 0.00   | 8. 02  |
| C                              | 0.00   | 0.00   | 0.00   | 0.00   | 1. 29   | 2, 53  | 0.00   | 0.00   |
| or                             | 0.47   | 0. 12  | 3. 01  | 1, 77  | 14, 48  | 20.45  | 6. 92  | 10.40  |
| ab                             | 1, 61  | 0. 93  | 12. 77 | 50, 23 | 28, 75  | 26. 47 | 36. 70 | 29. 94 |
| an                             | 11, 14 | 1, 66  | 35. 54 | 15. 49 | 15. 79  | 13, 26 | 26. 90 | 26. 75 |
| di-wo                          | 2. 74  | 1. 12  | 9.84   | 3. 02  | 0.00    | 0.00   | 6. 43  | 1. 61  |
| di-en                          | 2, 13  | 0.95   | 7. 90  | 2.06   | 0.00    | 0.00   | 4.65   | 1.04   |
| di-fs                          | 0.31   | 0.03   | 0.79   | 0.72   | 0.00    | 0.00   | 1. 20  | 0.46   |
| hy-en                          | 12. 76 | 17.68  | 17. 12 | 9.07   | 3.88    | 3. 09  | 1.80   | . 9.62 |
| hy-fs                          | 1. 82  | 0.60   | 1.71   | 3. 18  | 2, 60   | 2. 73  | 0.46   | 4. 22  |
| ol-fo                          | 44. 14 | 55. 18 | 0.00   | 0.00   | 0.00    | 0.00   | 4.61   | 0, 00  |
| ol-fa                          | 6.94   | 2.07   | 0.00   | 0.00   | 0.00    | 0.00   | 1. 31  | 0.00   |
| nt                             | 6. 49  | 5. 58  | 4. 93  | 6.45   | 1. 25   | 1. 25  | 3. 77  | 2, 87  |
| hø                             | 0.00   | 0.00   | 0.00   | 0.00   | 0.00    | 0.00   | 0.00   | 0.00   |
| il                             | 0.49   | 0. 02  | 0.48   | 2. 36  | 0.57    | 0.65   | 2. 17  | 1. 82  |
| ap                             | 0.02   | 0.02   | 0.02   | 0.07   | 0. 28   | 0. 36  | 0. 17  | 0. 47  |
| TOTAL                          | 91.04  | 85. 95 | 96, 10 | 96, 20 | 95, 80  | 99. 99 | 97.06  | 97. 20 |
| Femic                          | 77. 84 | 83. 25 | 42.78  | 26, 92 | 8. 58   | 8. 07  | 26. 55 | 22. 11 |
| S. I.                          | 71.60  | 84. 76 | 55, 49 | 32, 53 | 15. 31  | 11.55  | 30. 64 | 27. 54 |

|        | A008 | Н015 | ¥049 | Y009 | Y096 | Y097 | И286 | Y075 |
|--------|------|------|------|------|------|------|------|------|
| Ва ррш | < 10 | < 10 | 100  | 20   | 230  | 430  | 150  | 200  |
| Nb     | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 |
| Rb     | < 5  | < 5  | 5    | - 5  | 109  | 114  | 38   | 76   |
| Sr     | < 10 | < 10 | 60   | 100  | 160  | 220  | 310  | 270  |
| Y      | < 10 | < 10 | 10   | 30   | 10   | 10   | 30   | 20   |
| Zr     | 10   | < 10 | 80   | 70   | 100  | 100  | 40   | 90   |

|          |            |              |               | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
|----------|------------|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area     | Sample No. | Rock Name    | Location      | Coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Küre     | A008       | Pyroxinite   | N. Kızılsu    | 2558710 4629470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Küre     | н015       | Serpentinite | NW, Kizana W, | 2556200 4632350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kiire    | ₩049       | Gabbro       | NE. Kızılsu   | 2559020 4629400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Küre     | Y009       | Diorite      | S. Küre       | 2559500 4629120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Küre     | Y096       | Dacite       | Aş1köy        | 2575220 4630793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Küre     | Y097       | Dacite       | NW. Toykondu  | 2555770 4631800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tasköprü | M286       | Diorite      | NE. Yalakdere | 2605700 4619140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tasköprü |            | Bio-granite  | NE, Ambarkaya | 2587740 4617790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

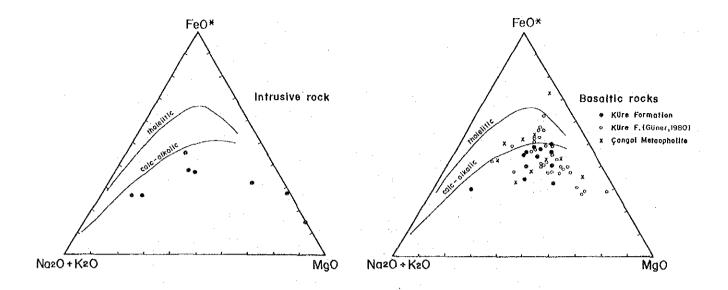



Figure 1-6 AFM Diagram

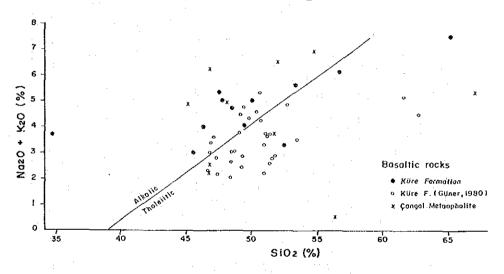



Figure 1-7 SiO<sub>2</sub>-(Na<sub>2</sub>O-K<sub>2</sub>O) Diagram for Basic Volcanics

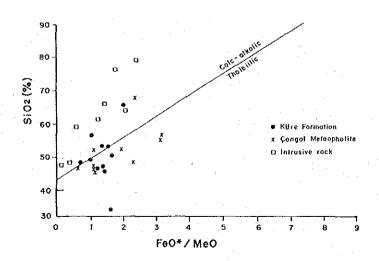



Figure 1-8  $SiO_2$ -FeO\*/MgO Diagram

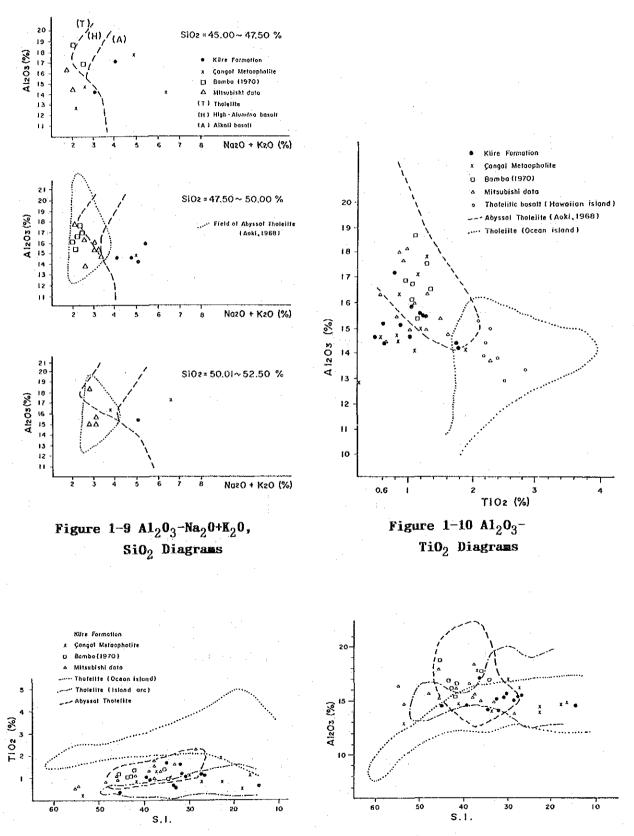



Figure 1-11 S.I.-TiO $_2$  and Al $_2$ O $_3$  Diagram

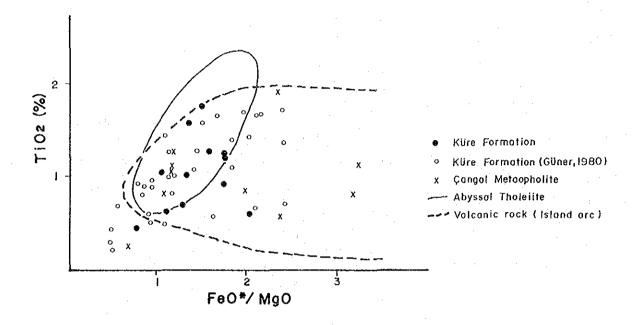



Figure 1-12 TiO2-FeO\*/MgO Diagram

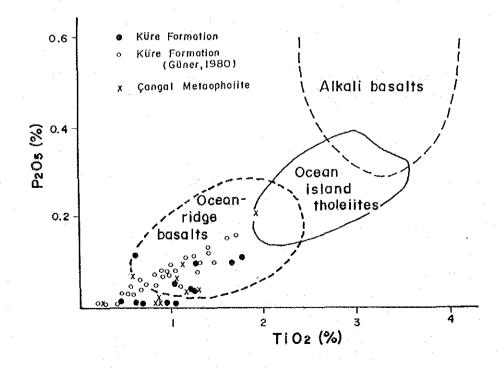



Figure 1-13 P205-TiO2 Diagrams

### 4-1-3 Ore Microscopy

A total of 60 polished sections were prepared, 56 samples from Küre Deposits and four from Taşköprü Zone. The sampling locations are shown in the appended map, the coordinates in Table 1-15, the results of microscopic studies in Table 1-16, and photomicrographs in Photo 2 of the appendix.

The ores of the Küre Deposits are massive, brecciated, disseminated and vein ores. All of these ores contain chalcopyrite and pyrite in varying proportions and the average grade of copper is 3% in Aşıköy Orebody and 6% in Bakibaba Deposit. The major ore minerals are chalcopyrite and pyrite with minor content of bornite, pyrrhotite, magnetite, sphalerite, galena, marcasite, electrum, bravoite, carrollite and others.

Massive ores consist mostly of sulfides, but the brecciated ore contains gangue and clay minerals filling the matrix of the breccias.

The massive ores contain minute pyrite grains in colloform and gel form together with coarse pyrite and chalcopyrite occurs filling the interstices. In many cases the pyrite is cataclastic.

The amount of sulfides in the disseminated ores is less than a third. The basalt host rocks are considerably altered with occurrence of chlorite and sericite.

The mineral content of the vein ores ranges from chalcopyrite-rich to only pyrite and the boundary of vein ores with the foot wall basalt is sharp. The sulfide minerals are coarse-grained.

The microscopic characteristics of the ores are summarized as follows.

Pyrite: It is observed abundantly and consist of two types; one of them is euhedral-subhedral, interfingered with cataclastic structure. This type of pyrite which is the oldest sulfide mineral is replaced by the other sulfide minerals. This type of pyrite sometimes show zonation. The other pyrite type is colloform (melnicovite) pyrite. Concentric crusted, kidney-like, grape-like and locally with radial texture melnicovite (colloform) pyrites grew within each other with chalcopyrite and sphalerite. Melnicovite pyrites are generally very minute grains

Chalcopyrite: It is very abundant. Chalcopyrite fills the interspaces and cataclastic fractures of euhedral cataclastic pyrites and sometimes is

associated with the concentric crusted kidney-like, radial texture of melnicovite (colloform) pyrites.

Sphalerite and galena: These minerals are observed as small anhedral grains within the chalcopyrite, gangue minerals and pyrites. Sphalerite contains local chalcopyrite exsolutions.

Cobalt minerals: Carrollite has the same crystal structure as pyrite and is a polymorph of linnaeite and bravoite are observed. The former mineral occurs as small grains and the latter as large crystals. There are high cobalt parts in the veins.

Titanium minerals: Leucoxene, rutile, and anatase occur in the ores. These minerals form fine exsolution texture in pyrite. Leucoxene occurs in gangue minerals as an alteration product of mafic minerals. The other two minerals occur as minute crystals in pyrite and gangue mineral.

Minerals in slags: Sulfide content is chalcopyrite, bornite, digenite, and pyrrhotite. Also wustite and hercynite characteristic of slags were identified.

Table 1-15 Samples of the Polished Sections (1)

Küre Mining Zone (1)

| No.  | Description           | Locality      | 10 <b>Y</b> -110 | <b>X</b> ,,,, |
|------|-----------------------|---------------|------------------|---------------|
| A023 | Massive cp-py ore     | Aşıköy        | 2557522          | 4630811       |
|      | Massive cp-py ore     | Aşıköy        | 2557516          | 4630798       |
|      | Brec basalt with hem  | Aşıköy        | 2557467          | 4630847       |
| A032 | Massive py-cp ore     | Aşıköy        | 2557526          | 4631150       |
|      | Massive py ore        | Aşıköy        | 2557518          | 4630870       |
|      | Brec py ore           | Aşıköy        | 2557488          | 4630957       |
| A058 | Basalt with net py-cp | Aşıköy        | 2557458          | 4630808       |
|      | Massive py-cp ore     | Aşıköy        | 2557492          | 4630908       |
| L095 | Massive py ore        | Aşıköy        | 2557539          | 4630862       |
| L101 | Massive py ore        | Aşıköy        | 2557461          | 4630750       |
| A027 | Massive colloform py  | Aşıköy        | 2557475          | 4630890       |
|      | Massive py ore(Col.)  | Asıköy        | 2557524          | 4630797       |
|      | Massive py ore        | Aşıköy,920ML  | 2576105          | 4630788       |
|      | Massive py ore        | Aşıköy, 920ML | 2576105          | 4630788       |
|      | Massive ore           | Asıköy        | 2557400          | 4631200       |
| Y032 | Massive ore           | Aşıköy        | 2557400          | 4631220       |
| Y033 | Massive ore           | Aşıköy        | 2557423          | 4631250       |
| Y040 | Massive ore           | Aşıköy        | 2557550          | 4631000       |
| L106 | Diss py sil. ore      | Aşıköy        | 2557345          | 4630816       |
|      | Brecciated ore        | Aşıköy        | 2557265          | 4631176       |

Table 1-15 Samples of the Polished Sections (2)

# Küre Mining Zone (2)

| No.  | Description            | Locality       | Y        | Х       |
|------|------------------------|----------------|----------|---------|
| A026 | Basalt with cp-py ore  | Aşıköy         | 2557513  | 4630876 |
| A029 | Crystallized py ore    | Aşıköy         | 2557400  | 4630834 |
| A068 | Massive py-cp          | S-136:433.5m   | 2557647  | 4630635 |
| A069 | Massive py-cp          | S-155:196.6m   | 2557420  | 4630750 |
|      | Massive cp ore         | S-138:53.8m    | 2557351  | 4631358 |
| A071 | Massive py-cp ore      | S-106:8.0m     | 2557492  | 4631020 |
| A072 | Basalt with py-cp      | S-82:45-50m    | 2557519  | 4630856 |
| A073 | Bre basalt with py     | S-67:47.0m     | 2557327  | 4630778 |
|      | Basalt with py         | S-64:138.0m    | 2557539  | 4630739 |
| A034 | Silicified cp-py ore   | Bakibaba       | 2558390  | 4628892 |
| A035 | Massive cp ore         | Bakibaba       | 2558416  | 4630770 |
| M060 | Massive cp ore, 920ML  | Bakibaba       | 2558460  | 4630780 |
| M061 | Massive py-cp(1014ML)  | Bakibaba       | 2558430  | 4630741 |
| M062 | Massive py ore(1014ML) | Bakibaba       | 2558433  | 4630740 |
| M063 | Brecciated cp-py ore   | Bakibaba, 1080 | 2558464  | 4630723 |
| M064 | Massive py-cp ore      | Bakibaba,1080  | 2558465  | 4630719 |
| K064 | Brec basalt with lim   | Bakibaba       | 2558410  | 4630770 |
| A017 | Slag                   | Bakibaba       | 2558450  | 4630620 |
| H025 | Slag                   | Bakibaba       | 2559135  | 4630990 |
| N091 | Slag                   | Bakibaba       | 2558920  | 4630685 |
| N094 | Slag                   | Bakibaba       | 2558950  | 4630930 |
| N097 |                        | Bakibaba       | 2559030  | 4630780 |
| A041 | No.163:22-24m          | T-163:23m      | 2557370  | 4631353 |
|      | No.164:40.5-43m        | T-164:41.5m    | 2557379  | 4631310 |
| A046 | No.164:45.2-47.5m      | T-164:46m      | 2557379  | 4631310 |
|      | No.165:62m             | T-165:62m      | 2557258  | 4631294 |
| A061 | Bre py-co ore          | KS-49:34.2m    | 2558365  | 4629110 |
| A062 | Massive cp-py ore      | KS-50:25m      | 2558384  | 4629077 |
| A063 | Massive py-cp ore      | KS-24:62.1m    | 2558502  | 4629067 |
| A064 | Basalt with cp-py ore  | KS-2:61.8m     | 2558423  | 4629088 |
| A065 | Basalt with cp-py ore  | KS-43:50.4m    | 2558595  | 4628990 |
| A066 | Basalt with cp-py ore  | KS-33:18.5m    | 2558560  | 4628986 |
| A067 | Basalt with cp-py ore  | KS-33:36.4m    | 2558560  | 4628986 |
| A056 | Massive cp-py ore      | KS-32:33.7m    | 2558580  | 4628975 |
| L013 | Gossan                 | N.Zemberekler  | 2559765  | 4630570 |
| Y012 | Silicified py veinlet  | Zemberekler    | 2559670  | 4630400 |
|      |                        | l              | <u> </u> |         |

# Taşköprü Zone

| No.          | Description                                        | Locality                                  | Y                                        | Х                                        |
|--------------|----------------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| N057<br>H036 | Slag<br>Pyrite ore<br>Pyrite ore<br>Gossan with py | Cozoğlu<br>S.Karaoğlan<br>Boyalı<br>Kepez | 2613530<br>2581070<br>2603000<br>2593600 | 4615300<br>4603950<br>4615963<br>4619400 |

Table 1-16 Microscopic Observations of the Polished Sections(1)

| Sample | 0re                     |           |   |      | 0       | Ore M | Winerals        | 1s              |        |    |                 | -  | පී | Gangue Minerals | linera    |    | Texture   | Remarks                |
|--------|-------------------------|-----------|---|------|---------|-------|-----------------|-----------------|--------|----|-----------------|----|----|-----------------|-----------|----|-----------|------------------------|
| No.    |                         | Py        | S | Sp B | Bo<br>C | Co    | Te Mr           | Pr              | g<br>R | He | Ľ               | Ru | 0z | Ch Se           | S         | CL | CC CF     |                        |
| A023   | Massive cp-py ore       | 0         | 0 |      |         |       |                 |                 |        |    | ◁               |    | 0  |                 |           | -  | <b>83</b> | native gold △          |
| L100   | Massive cp-py ore       | 0         | О |      | 7       | <     |                 | η               |        |    |                 |    | 0  | ()<br>()        | 0         |    |           | galena 🛆               |
| A028   | Brec basalt with hem    |           |   |      |         |       |                 |                 | ◁      | ◁  | ◁               |    | О  |                 |           | 0  | •         | ophitic texture        |
| A032   | Massive cp-py ore       | 0         | О |      |         |       | $\triangleleft$ |                 |        |    |                 |    |    |                 |           |    | <b>9</b>  |                        |
| A025   | Massive py ore          | 0         |   |      |         |       |                 |                 |        |    |                 |    |    |                 |           |    | •         |                        |
| A057   | Brec py ore             | 0         |   | 0    |         |       | O               |                 |        |    |                 |    |    |                 |           |    | •         |                        |
| A058   | Basalt with net py-cp   | 0         | 0 |      |         |       |                 |                 |        | ◁  |                 | ◁  | 0  | 0               |           | 0  | •         | ophitic texture        |
| A059   | . 0                     | 0         | О |      |         |       |                 |                 |        |    |                 |    |    |                 |           |    | •         |                        |
| L095   | Massive py ore          | 0         | О |      |         |       | Ш               |                 |        |    |                 |    |    |                 |           |    | •         |                        |
| L101   | Massive cp-py ore       | 0         | Ο | ◁    |         | : :   |                 |                 |        |    |                 | ◁  | 0  | 0               |           |    | <b>a</b>  | bravoite □, chromite △ |
| A027   | Massive py ore          | 0         |   |      |         |       |                 |                 |        |    |                 | ◁  |    |                 |           |    | •         |                        |
| 1097   | Massive py ore          | 0         |   | <  ✓ |         |       |                 |                 |        |    |                 |    |    |                 |           |    | •         |                        |
| M058   | Massive py ore          | 0         |   |      |         |       |                 |                 |        |    |                 | ◁  |    |                 |           |    | •         | chromite △             |
| M059   | Massive ore             | 0         |   |      |         |       | 0               |                 |        |    |                 | ◁  |    |                 |           |    | •         |                        |
| Y031   | Massive ore             | 0         |   |      |         |       |                 | $\triangleleft$ |        | ◁  |                 |    |    |                 |           |    | •         |                        |
| Y032   | Massive py ore          | 0         |   |      | 7       | ◁     |                 |                 |        |    |                 |    |    |                 |           |    | •         | digenite-covelline △   |
| Y033   | Massive py ore          | 0         |   |      |         |       |                 |                 |        |    |                 | ◁  |    |                 |           |    | •         |                        |
| ¥040   | Massive py ore          | 0         |   |      |         |       |                 |                 |        |    |                 |    |    | Ц<br>О          |           | 0  | <b>*</b>  |                        |
| L106   | Diss py sil ore         | 0         |   |      |         |       | Ц               |                 |        |    |                 |    | 0  |                 |           |    | •         |                        |
| Y038   | Brec ore                | 0         | 0 |      |         |       |                 |                 |        |    |                 |    | 0  |                 |           |    | •         |                        |
| A026   | Basalt with cp-py ore   |           | ◁ | ◁    |         |       |                 |                 |        |    | $\triangleleft$ |    | 0  | П<br>О          | · · · · · |    | •         | chromite △             |
| A029   | Crystallized py ore     | 0         |   | ◁    |         |       |                 |                 |        |    |                 |    | 0  | О<br>О          |           | 0  |           |                        |
| A068   | Massive cp-py ore(core) | 0         | 0 |      |         |       |                 |                 |        |    |                 | ◁  | 0  | 0               |           |    | •         |                        |
| A069   | Massive cp-py ore(core) | 0         | О |      |         |       |                 |                 |        |    |                 | ◁  | 0  |                 |           |    | •         |                        |
| A070   | Massive cp ore(core)    | 0         |   |      | $\cap$  | L     |                 |                 |        |    |                 |    |    |                 |           |    | •         | digenite               |
| A071   | Massive cp-py ore(core) | <u>()</u> | О |      |         |       | Ш               |                 | -,     |    |                 | ◁  |    | 0               |           | 11 | •         | ilmenite △             |
| A072   | Basalt with py-cp(core) | 0         |   |      |         |       |                 |                 |        | ◁  | ◁               | ◁  |    | О               |           | 0  | •         | ophitic texture        |
| A073   | Basalt with py(core)    | Ο         |   |      |         |       | LJ              |                 |        |    | ◁               | ◁  |    | ⊔<br>0          |           |    |           |                        |
| A074   | Basalt with py(core)    | Ο         |   |      |         |       |                 |                 |        |    | ◁               | ◁  |    | O<br>O          |           | 0  | 6         |                        |
| A034   | Sil cp-py ore           | 0         | О |      | •••     |       |                 |                 |        | ◁  |                 | ◁  |    |                 |           |    | •         |                        |
|        |                         |           |   |      |         |       |                 |                 |        |    |                 |    |    |                 |           |    |           |                        |

©:Abundant ○:Common □:Few △:Rare Cp:chalcopyrite, Py:pyrite, Sp:sphalerite, Bo:bornite, Co:covelline, Te:tetrahedrite, Mr:marcasite, Pr:pyrohtite, Mg:magnetite, He:hematite, Lu:leucoxene, Ru:rutile-anatase Qz:quartz, pl:plagioclase, chlorite, Se:sericite, Ep:epidote, Ca:calcite, Cr:carbonite, CC:cataclastic, CF:colloform ●:Major ●:minor

Table 1-16 Microscopic Observations of the Polished Sections(2)

| e Remarks       |                |                | chromite △             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       | limonite, bravoite △ | 45 | digenite, wustite, | hersinite, fayalite |      |                 |      | * \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | bravoite                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | * * * * * * * * * * * * * * * * * * * | carrollite $\triangle$  |                         | limonite   | chromite △ |             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | bravoite △              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | sphane, chromite $\triangle$ | :               | galena 🛆   | ilmenite △, actinolite | marachite limonite < |
|-----------------|----------------|----------------|------------------------|---------------------------------------|---------------------------------------|-------|----------------------|----|--------------------|---------------------|------|-----------------|------|-----------------------------------------|-------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|-------------------------|------------|------------|-------------|-----------------------------------------|-------------------------|-----------------------------------------|------------------------------|-----------------|------------|------------------------|----------------------|
| Texture         | CC   CF        | •              | •                      | •                                     |                                       |       |                      |    |                    |                     |      |                 |      | <b>3</b>                                |                         | •                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e<br>6                                | •                       | •                       |            |            | •           | •                                       | •                       | •                                       | ļ                            |                 |            |                        |                      |
|                 | $\vdash$       |                |                        |                                       |                                       |       |                      |    |                    |                     |      |                 |      |                                         |                         | , , , , , , , , , , , , , , , , , , , , |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                         |                         | 0          |            |             |                                         |                         |                                         |                              |                 | O          |                        |                      |
| Gangue Minerals | Qz Ch Se Ca Cr | 0              | 0                      | 0                                     | 4                                     | 0 0 0 | 0                    | 0  |                    |                     |      |                 |      | 0                                       |                         | 0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0                                   |                         | 0                       | 0          |            | 0<br>0<br>0 | 0                                       | 0                       |                                         |                              |                 | Ö<br>O     | )<br>()                | C<br>C<br>©          |
|                 | Lu Ru          | 4              |                        |                                       |                                       |       |                      | 4  |                    |                     |      |                 |      |                                         |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                     | ,                       | ◁                       | 4          | abla       |             | ◁                                       | -                       | 4                                       |                              |                 |            | ◁                      | <                    |
|                 | Mg He L        |                | -2                     |                                       |                                       |       |                      | 7  | <u></u>            | 4                   | 4    |                 |      |                                         |                         |                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                     |                         |                         | 7          | 7.         | ◁           |                                         |                         |                                         |                              |                 |            |                        | <                    |
| Minerals        | Te Mr Pr       |                | 2                      |                                       | 4                                     |       |                      |    | <u>}</u>           | 1                   | 4    | ◁               | ◁    |                                         |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                         |                         |            |            |             | 4                                       | :                       |                                         | 4                            |                 |            |                        |                      |
| Ore Mi          | ප              |                |                        |                                       | 4                                     |       |                      |    | <u> </u>           | 4                   |      |                 |      |                                         |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                         |                         |            |            |             | ◁                                       |                         |                                         |                              |                 |            | ◁                      | <br><                |
|                 | Sp Bo          |                | }<br>}                 |                                       |                                       |       | ◁                    |    | <\                 | <                   | ◁    | 7               | 4    |                                         |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                         | ◁                       |            |            |             | ◁                                       | <br>                    |                                         |                              | $\triangleleft$ |            |                        |                      |
|                 | Py .           | ()<br>()       | 0                      | ļ                                     | 0                                     | 0     | 0                    | 4  | $\triangleleft$    | 4                   | ◁    | $\triangleleft$ | ◁    | ()<br>()                                | <u></u> О               | □<br>⊚                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ()<br>()                              | □<br>⊚                  | □<br>⊚                  |            |            | П<br>О      | 0                                       | □<br>⊚                  |                                         |                              |                 |            | ] [<br>()              | C                    |
| Ore             |                | Massive cp ore | Massive cp ore (920ML) | Ç                                     | Massive py ore(1014ML)                | ore   | Massive py-cp ore    | ğ  | Slag               | Slag                | Slag | Slag            | Slag | Massive cp-py ore(core)                 | Massive cp-py ore(core) | Massive cp-py ore(core)                 | Massive cp-py ore(core)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o ore(core                            | Massive cp-py ore(core) | Massive cp-py ore(core) | with cp-py |            | with        | Basalt with cp-py(core)                 | Massive cp-py ore(core) | Gossan                                  | Silicified py veinlet        | Slag            | Pyrite ore | i i                    | Gossan with nv       |
| Sample          | No.            | A035           | M060                   | M061                                  | M062                                  | M063  | ¥064                 |    |                    | H025                | N091 | N094            | N097 | A041                                    | A044                    | A046                                    | A060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A061                                  | A062                    | A063                    | A064       | A065       | A066        | V067                                    | A056                    | L013                                    | Y012                         | A122            |            |                        | 200                  |

©:Abundant O:Common □:Few △:Rare Cp:chalcopyrite, Py:pyrite, Sp.sphalerite, Bo:bornite, Co:covelline, Te:tetrahedrite, Mr:marcasite, Pr:pyrohtite, Mg:magnetite, He:hematite, Lu:leucoxene, Ru:rutile-anatase Qz:quartz, pl:plagioclase, chlorite, Se:sericite, Ep:epidote, Ca:calcite, Cr:carbonite, CC:cataclastic, CF:colloform ●:Major ●:minor

### 4-1-4 Ore Assay

The ores were assayed as follows. The sampling localities are shown in the sampling map and the locations described in Table 1-17.

| Zone                                                | Amount                    |
|-----------------------------------------------------|---------------------------|
| Küre Mining Zone<br>Taşköprü Zone<br>Dikmendağ Area | 89 pcs<br>30 pcs<br>5 pcs |
| Total                                               | 124 pcs                   |

Gold: Although there are high-grade ores such as 8g/t in the Bakibaba samples, most of them contain 1-2g/t. The maximum grade of Toykondu samples is 4g/t. There were samples containing around 1g/t from Kizilsu Deposit, surface gossan at Bakibaba, and slags at Bakibaba.

Silver: The silver content of most of the ores is less than the limit of detection. The maximum value found is 25g/t at Küre and 100g/t at Taşköprü.

Copper, lead, and zinc: Some copper content was discovered by the semi-detailed survey at Taşköprü, but notable showings were not discovered. Almost all samples contained less than 1% lead and zinc.

Cobalt: The maximum content at Küre: is 0.5% and 0.01% or less at other localities. Content of 3.31% was found in the slag at Bakibaba.

Sulfur: The content is high at Küre ranging from 40 to 50%, but is several percent in other localities.

Table 1-17 Samples of the Ore Analysis (1) Küre Mining Zone (1)

| No.                                                          | Description                                                                                                                                                                                          | Locality                                                                   | Y                                                                                               | Х                                                                                                          |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| A042<br>A043<br>A044<br>A045<br>A046<br>A023<br>L100<br>A032 | No.163:22-24m<br>No.163:24-25.7m<br>No.164:39.2-40.5m<br>No.164:40.5-43m<br>No.164:43-45.2m<br>No.164:45.2-47.5m<br>Massive cp-py ore<br>Massive cp-py ore<br>Massive py-cp ore<br>Massive py-cp ore | Toykondu Toykondu Toykondu Toykondu Toykondu Toykondu Aşıköy Aşıköy Aşıköy | 2557370<br>2557379<br>2557379<br>2557379<br>2557379<br>2557522<br>2557516<br>2557526<br>2557339 | 4631353<br>4631353<br>4631310<br>4631310<br>4631310<br>4631310<br>4630811<br>4630798<br>4631150<br>4630835 |

|              | s sone (n)                                                            | <u></u>                    |                               |                               |
|--------------|-----------------------------------------------------------------------|----------------------------|-------------------------------|-------------------------------|
| No.          | Description                                                           | Locality                   | Y                             | X                             |
| L095         | Massive py ore                                                        | Aşıköy                     | 2557518                       | 4630870                       |
|              | Massive py ore                                                        | Aşıköy                     | 2557539                       | 4630862                       |
|              | Massive py ore                                                        | Aşıköy                     | 2557521                       | 4630793                       |
| L098         | Massive py ore                                                        | Aşıköy                     | 2557524                       | 4630802                       |
|              | Massive py ore                                                        | Aşıköy                     | 2557516                       | 4630791                       |
| L101<br>L102 | Massive py ore<br> Massive py ore<br> Massive py ore                  | Aşıköy<br>Aşıköy<br>Aşıköy | 2557461<br>2557468<br>2557350 | 4630750<br>4630790<br>4630817 |
| A027         | Massive colloform py                                                  | Aşıköy                     | 2557475                       | 4630890                       |
|              | Massive py ore(Col.)                                                  | Aşıköy                     | 2557524                       | 4630797                       |
| M059         | Massive py ore                                                        | Aşıköy,920ML               | 2576105                       | 4630788                       |
|              | Massive py ore                                                        | Aşıköy,920ML               | 2576105                       | 4630788                       |
| Y032         | Massive ore                                                           | Aşıköy                     | 2557400                       | 4631200                       |
|              | Massive ore                                                           | Aşıköy                     | 2557400                       | 4631220                       |
| Y040         | Massive ore                                                           | Aşıköy                     | 2557423                       | 4631250                       |
|              | Massive ore                                                           | Aşıköy                     | 2557550                       | 4631000                       |
| L104         | Diss py ore                                                           | Aşıköy                     | 2557422                       | 4630806                       |
|              | Diss py arg ore                                                       | Aşıköy                     | 2557405                       | 4630813                       |
| L106         | Diss py sil. ore                                                      | Aşıköy                     | 2557345                       | 4630816                       |
| L107         | Diss py ore                                                           | Aşıköy                     | 2557330                       | 4630835                       |
| L111         | Diss py ore                                                           | Aşıköy                     | 2557389                       | 4630841                       |
|              | Diss py ore                                                           | Aşıköy                     | 2557395                       | 4630844                       |
| Y038         | Diss py ore                                                           | Aşıköy                     | 2557335                       | 4630807                       |
|              | Brecciated ore                                                        | Aşıköy                     | 2557265                       | 4631176                       |
| A029         | Crystallized py ore                                                   | Aşıköy<br>Aşıköy           | 2557513<br>2557400<br>2557439 | 4630876<br>4630834<br>4630875 |
| A076         | Crystallized py ore<br>Pyrite Concentrate(A)<br>Pyrite Concentrate(B) | Aşıköy<br>Aşıköy<br>Aşıköy | 2307438                       | 4030013                       |
| Ã078         | Pyrite Concentrate(C)                                                 | Aşıköy                     |                               |                               |
| A080         | Copper Concentrate(A)<br>Copper Concentrate(B)                        | Aşıköy<br>Aşıköy           |                               |                               |
| A013         | Copper Concentrate(C)<br> Basalt with malachite                       | Aşıköy<br>Bakibaba         | 2558200                       | 4630650                       |
| A035         | Silicified cp-py ore                                                  | Bakibaba                   | 2559330                       | 4630830                       |
|              | Massive cp ore                                                        | Bakibaba                   | 2559330                       | 4630830                       |
| K064         | Massive cp ore, 920ML                                                 | Bakibaba                   | 2558460                       | 4630780                       |
|              | Brec basalt with lim                                                  | Bakibaba                   | 2558600                       | 4630780                       |
| M061         | Massive py-cp(1014ML) Massive py ore(1014ML)                          | Bakibaba                   | 2558430                       | 4630741                       |
| M062         |                                                                       | Bakibaba                   | 2558433                       | 4630740                       |
| M063         | Brecciated cp-py ore                                                  | Bakibaba,1080              | 2558464                       | 4630723                       |
| M064         | Massive py-cp ore                                                     | Bakibaba,1080              | 2558465                       | 4630719                       |
| N083         | Gossan                                                                | Bakibaba                   | 2558495                       | 4630950                       |
| N084         | Gossan                                                                | Bakibaba                   | 2558490                       | 4630405                       |
| N086         | Gossan                                                                | Bakibaba                   | 2558482                       | 4630857                       |
|              | Gossan                                                                | Bakibaba                   | 2558550                       | 4630910                       |
| N087         | Gossan                                                                | Bakibaba                   | 2558538                       | 4630860                       |
| N088         |                                                                       | Bakibaba                   | 2558538                       | 4630820                       |
| N089         |                                                                       | Bakibaba                   | 2558532                       | 4630763                       |
| N090         |                                                                       | Bakibaba                   | 2558521                       | 4630685                       |
| A017         | Slag                                                                  | Bakibaba                   | 2558450                       | 4630620                       |
| H025         | Slag                                                                  | Bakibaba                   | 2559135                       | 4630990                       |
| N091         | Slag                                                                  | Bakibaba                   | 2558920                       | 4630685                       |
| N092         |                                                                       | Bakibaba                   | 2558900                       | 4630770                       |
| N093         | Slag                                                                  | Bakibaba                   | 2558850                       | 4630735                       |
| N094         |                                                                       | Bakibaba                   | 2558950                       | 4630930                       |
| N095         | Slag                                                                  | Bakibaba                   | 2559050                       | 4631035                       |
| N096         |                                                                       | Bakibaba                   | 2559150                       | 4630865                       |
| N097         | Slag                                                                  | Bakibaba                   | 2559030                       | 4630780                       |
| A050         | Gossan                                                                | Kızılsu                    | 2558339                       | 4629135                       |
|              |                                                                       |                            |                               |                               |

Table 1-17 Samples of the Ore Analysis (3)

Küre Mining Zone (3)

| No.  | Description                             | Locality       | Y       | Х       |
|------|-----------------------------------------|----------------|---------|---------|
| A051 | Gossan                                  | Kızılsu        | 2558487 | 4629041 |
| A052 | Slag                                    | Kızılsu        | 2558453 | 4629063 |
| A053 |                                         | Kızılsu        | 2558537 | 4629039 |
| A054 | Gossan                                  | Kızılsu        | 2558528 | 4629058 |
| A055 | Gossan                                  | Kızılsu        | 2558561 | 4629042 |
|      | KS-32:33.7m                             | Kızılsu        | 2558580 | 4628975 |
|      | Gossan with py                          | Ersizler       | 2561200 | 4634535 |
|      | Gossan                                  | İpsinler       | 2561020 | 4633840 |
| L013 | Gossan                                  | N.Zemberekler  | 2559765 | 4630570 |
| L014 | Gossan                                  | N.Zemberekler  | 2559640 | 4630630 |
| L015 | Gossan                                  | N.Zemberekler  | 2559625 | 4630675 |
| L019 | [ T T S T T T T T T T T T T T T T T T T | NE Bakibaba    | 2559460 | 4631360 |
| L028 |                                         | SE. Ipsinler   | 2561500 | 4632540 |
| M044 | Basalt with py                          | NE.Bakibaba    | 2559110 | 4631375 |
| N029 | Basalt with py                          | SW Ipsinler    | 2559650 | 4632670 |
| N039 |                                         | S. Ipsinler    | 2559840 | 4632060 |
|      | Silicified py veinlet                   | Zemberekler D. | 2559670 | 4630400 |
|      | Silicified py veinlet                   | N. Bakibaba    | 2558980 | 4632490 |
| Y024 | Silicified py veinlet                   | Zemberekler D. | 2559500 | 4630250 |

Taşköprü Zone

| No.  | Description            | Locality       | Y       | Х       |
|------|------------------------|----------------|---------|---------|
| A122 | Slag                   | Cozoglu        | 2613600 | 4615200 |
| A123 | Altered basalt with ma | Cozoglu        | 2613600 | 4615200 |
| Y200 | Gr.sch with Ox Cu      | Cozoglu        | 2613590 | 4615510 |
| Y203 | Gr.sch with Ox Cu      | Cozoglu        | 2613700 | 4615460 |
| Y204 | Qtz vein with Ox Cu    | Cozoglu        | 2613760 | 4615440 |
| Y207 | Slag                   | Cozoglu        | 2613580 | 4615300 |
| H032 | Pyrite ore             | Sey Y          | 2597510 | 4612100 |
| N057 | Pyrite ore             | S.Karaoglan    | 2581070 | 4603950 |
| Н036 | Pyrite ore             | Boyalı         | 2603000 | 4615963 |
| н037 | Slag                   | Boyalı         | 2603800 | 4616160 |
| H038 | Gossan                 | Boyalı         | 2604100 | 4615800 |
| K228 |                        | N. Sökü        | 2578760 | 4600000 |
|      | Gossan with py         | N. Sökü        | 2580100 | 4600500 |
| Y067 | Quartz vein with mala  | N. Sökü        | 2583380 | 4602340 |
|      | Basalt with seco.cp    | W.Cünür        | 2582030 | 4601320 |
|      | Limonitic rock         | Süleymanköy    | 2590590 | 4602700 |
|      | Limonitic rock         | Süleymanköy    | 2590820 | 4602500 |
|      | Gossan                 | SE.Deliimam M. | 2594470 | 4609140 |
|      | Basalt with py         | NE.Gano M.     | 2592900 | 4604800 |
| N063 | Gossan(Basalt with py) | S.Dikmen       | 2594300 | 4616800 |
| N066 | Gossan with py         | Kepez          | 2593600 | 4619400 |
| N072 |                        | NW Sarpin      | 2597100 | 4618800 |
| N108 |                        | S. Alayürek    | 2575430 | 4600045 |
| N111 |                        | S. Alayürek    | 2575470 | 4600090 |
|      | Arg.gr.sch with py     | S. Alayürek    | 2575300 | 4600160 |
| S076 | Slag                   | S.Alayürek     | 2575360 | 4600080 |
| S077 |                        | S. Alayürek    | 2575370 | 4600060 |
| S095 |                        | S.Alayürek     | 2592340 | 4608510 |
| S097 | Gossan(g.s with py)    | S.Alayürek     | 2607500 | 4612700 |
| A075 | Altered basalt with py | SE.Karakuz Y.  | 2596625 | 4619625 |

Table 1-17 Samples of the Ore Analysis (4)

# Dikmendag Zone

| No.                  | Description                                                                   | Locality                                                       | Y                                                   | Х                                                   |
|----------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| S111<br>K405<br>S261 | Gossan<br>Slag with magnetite<br>Slag<br>Sil rock with py<br>Sil rock with py | SE.Kale T.<br>SE.Kale T.<br>SW.Kale T.<br>S.Masköy<br>S.Masköy | 2547000<br>2545690<br>2544380<br>2546585<br>2546565 | 4632340<br>4629000<br>4629330<br>4631900<br>4631835 |

(1) Copper Ore Samples collected from Open Pit of Aşıköy Orebody

Table 1-18 Analytical Results of the Ore Samples (1)

| Sample                                                                                                                                | Au                                                                                                         | Ag                                                                                           | Cu                                                                                                                           | Pb                                                                                                           | Zn                                                                                                                   | Co                                                                                                                             | S                                                                                                                                                     | Remarks                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| No.                                                                                                                                   | g/T                                                                                                        | g/T                                                                                          | %                                                                                                                            | %                                                                                                            | %                                                                                                                    | %                                                                                                                              | %                                                                                                                                                     |                                                                 |
| A023<br>A025<br>A026<br>A027<br>A032<br>L095<br>L1096<br>L100<br>L101<br>L102<br>L105<br>L108<br>L112<br>Y031<br>Y032<br>Y033<br>Y040 | 0.3<br><0.1<br>0.2<br>1.6<br><0.1<br><0.1<br>1.9<br>0.8<br><0.1<br><0.1<br>0.3<br>1.5<br>3.4<br>1.8<br>8.5 | 15<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 8.38<br>2.66<br>1.65<br>1.30<br>1.45<br>1.69<br>1.38<br>1.55<br>3.78<br>1.48<br>3.22<br>1.73<br>2.88<br>1.49<br>1.60<br>2.38 | 0.06<br>0.04<br>0.06<br>0.06<br>0.02<br>0.19<br>0.07<br>0.07<br>0.07<br>0.04<br>0.02<br>0.04<br>0.02<br>0.02 | 1.56<br>0.05<br>0.17<br>0.05<br>0.12<br>0.05<br>0.08<br>0.13<br>0.05<br>0.87<br>0.21<br>0.07<br>0.03<br>0.05<br>0.11 | 0.10<br>0.24<br>0.07<br>0.04<br>0.11<br>0.03<br>0.08<br>0.04<br>0.08<br>0.05<br><0.006<br>0.13<br>0.03<br>0.02<br>0.31<br>0.11 | 46.21<br>44.01<br>13.09<br>45.55<br>44.93<br>46.51<br>45.91<br>43.29<br>43.26<br>42.56<br>49.81<br>49.56<br>43.59<br>42.60<br>47.71<br>40.60<br>45.40 | EPMA, S-isotope<br>EPMA<br>S-isotope<br>EPMA, S-isotope<br>EPMA |

(2) Pyrite Ore Samples collected from Open Pit of Aşıköy Orebody

Table 1-18 Analytical Results of the Ore Samples (2)

| Sample                                                                                       | Au                                                                             | Ag                                    | Cu                                                                           | Pb                                                                                    | Zn                                                                                   | Co                                                                                           | S                                                                                                        | Remarks   |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|
| No.                                                                                          | g/T                                                                            | g/T                                   | %                                                                            | %                                                                                     | %                                                                                    | %                                                                                            | %                                                                                                        |           |
| A029<br>L097<br>L098<br>L099<br>L103<br>L104<br>L106<br>L107<br>L109<br>L110<br>L111<br>Y038 | <pre>&lt;0.1 1.4 &lt;0.1 0.6 &lt;0.1 0.5 0.8 3.0 &lt;0.1 &lt;0.1 0.6 0.8</pre> | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.07<br>0.31<br>0.54<br>0.81<br>0.04<br>0.28<br>0.12<br>0.20<br>0.04<br>0.03 | 0.19<br>0.07<br>0.20<br>0.19<br>0.12<br>0.15<br>0.01<br><0.01<br>0.01<br>0.04<br>0.02 | 0.10<br>0.07<br>0.05<br>0.08<br>0.11<br>0.12<br>0.05<br>0.11<br>0.12<br>0.54<br>0.06 | 0.04<br>0.05<br>0.04<br>0.06<br>0.08<br>0.06<br>0.01<br>0.01<br>0.03<br>0.05<br>0.11<br>0.03 | 47.11<br>48.95<br>48.04<br>43.69<br>20.49<br>30.63<br>40.51<br>46.57<br>48.68<br>39.81<br>46.99<br>44.14 | S-isotope |