制定类和国产工一力地组

使用以到海外里面和自动后程

表认在恢

314 66.1 MPN

トルコ共和国キューレ地域

資源開発協力基礎調査報告書

第1年次

LIBRARY 1103496[4]

24736

平成4年12月

国際協力事業団金属鉱業事業団

はしがき

日本国政府はトルコ共和国政府の要請に応え、同国の中央北部に位置するキューレ地域の鉱物資源賦存の可能性を確認するため、地質調査、物理探査などの鉱床探査に関する諸調査を実施することとし、その実施を国際協力事業団に委託した。国際協力事業団は、本調査の内容が地質及び鉱物資源の調査という専門分野に属することから、調査の実施を金属鉱業事業団に委託することとした。

本調査は平成4年度を第1年次とする初年次にあたり、金属鉱業事業団は7名の調査団 を編成して、平成4年6月29日から平成4年9月26日まで現地に派遣した。

現地調査はトルコ共和国政府関係機関、エティーバンクの協力を得て予定どおり完了した。本報告書は本年次の調査結果をとりまとめたもので、最終報告書の一部となるものである。

おわりに、本調査の実施にあたってご協力いただいたトルコ共和国政府関係機関ならび に外務省、通商産業省、在トルコ共和国日本国大使館及び関係各位の方々に衷心より感謝 の意を表するものである。

平成4年12月

国際協力事業団総 裁 柳谷謙介

金属鉱業事業団理事長石川丘

調査に先立ちキューレ地域内の既存データ解析を地質調査、地化学探査及び物理探査等の作業別に検討後、初年度調査の地質調査及び物理探査を実施した。地質調査はタシュキョプル地区で $559 \,\mathrm{km}^2$ の範囲の概査と、ディックメンダー地区で $66 \,\mathrm{km}^2$ の範囲の概査とを実施、その結果を1/50,000の地質図にまとめた。地質概査の結果、有望な鉱徴地が抽出され、タシュキョプル地区ではジョゾール、ジュヌール、アラユレックの3箇所で $4 \,\mathrm{km}^2$ の準精査を、ディックメンダー地区ではマスキョイで $2 \,\mathrm{km}^2$ の準精査とを実施し、それぞれ1/5,000の地質図にまとめた。キューレ地区は現在操業中の鉱山があり、有望な鉱徴地もあることから、 $22 \,\mathrm{km}^2$ の範囲を1/5,000の準精査で実施した。

物理探査はキューレ地区でCSAMT法により513点を測定、さらに、IP法により4kmの測定を実施した。物理探査の進め方はアレイ式CSAMT法により、鉱床のゾーンを横切るNE-SW方向の測線上で400点を測定、この測線から外れる箇所はランダムに113点を測定した。CSAMT法の測定で異常域が抽出され、これらの中から有望な異常域と推定された箇所で、4kmのIP法による物理探査を実施した。

タシュキョブル地区は先ライアス統 (ジュラ系下部) のチャンガル・メタオフィオライトが卓越しており、鉱徴地は変玄武岩類・緑色片岩中に珪化・粘土化変質作用を伴い分布する。キューレ地区及びディックメンダー地区は、ライアス統の玄武岩類中に鉱床及び鉱徴地が認められた。時代は異なるもののオフィオライトに関連した鉱徴地及び鉱床で、タシュキョブル地区では別子型の変成鉱床、キューレ地区及びディックメンダー地区はキプロス型の塊状鉱床が期待される。

本地域の最下位の地質は、古生代のデヴィレカーニ変成岩とその上位の先ライアス統の チャンガル・メタオフィオライトである。前者は片麻岩からなり、後者は主として塩基性火 成岩起源の変成岩からなる。これら変成岩類はタシュキョプル地区に分布し、チャンガル・ メタオフィオライト中では銅を伴う鉱化作用が認められる。

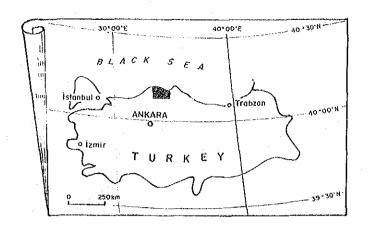
ライアス統の地層はキューレ地区及びディックメンダー地区のキューレ層、タシュキョ プル地区のカヤディビ層で、塩基性の玄武岩類及び砂岩・頁岩互層からなる。現在操業して いるキューレ鉱山及びその付近の鉱化帯はいずれもキューレ層の玄武岩類 (ハイアロクラス タイト) 中に胚胎する。

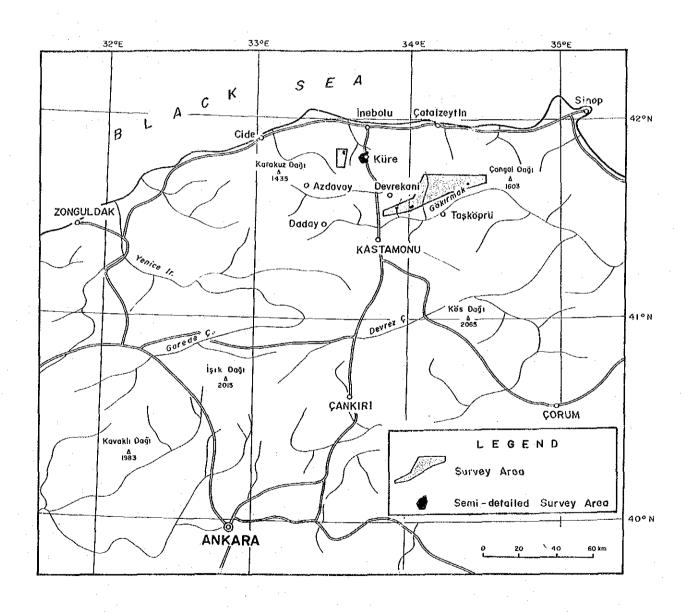
ジュラ紀中期のドッガー世に深成岩類の貫入時期があり、白亜紀以降は石灰岩、フリシュ型の堆積岩類の堆積の場となった。激しく変動を受けている本地域ではE-W系及びN-S系の断層が卓越しており、さらに、これらの断層から派生したNE-SW系、NW-SE系の断層等も認められる。地域の特性から褶曲構造も東西方向に軸をもつものが多い。

キューレ地域のほぼ中央に現在エティバンクで稼行しているキューレ鉱山が位置する。 塊状の含銅黄鉄鉱鉱床で鉱床の近傍にはライアス統の硬砂岩、泥質岩、礫岩などの堆積岩 類、さらに、これらの中に海底火山活動により噴出した塩基性火山岩類及び枕状玄武岩が 発達している。鉱床の上盤側は黒色頁岩が顕著で、さらに上位はフリッシュ型の堆積岩類となる。鉱床の付近の貫入岩体として蛇紋岩化した超マフィック岩体、斑糲岩、閃緑岩等が分布していることからキューレ・オフィオライトともいわれ、このような特徴から本鉱床はキプロス型鉱床とされている。

キューレ鉱山地域では鉱床の母岩となっているライアス統の発達が顕著であり、銅鉱徴地も各所で知られている。これまでに探鉱がなされているが、キューレ鉱床以外には注目されるような成果はみられない。またタシュキョブル地域のチャンガル・メタオフィオライト分布域でも銅鉱徴地の存在が各所に知られている。

キューレ鉱床はアシュキョイ・トイクンヅ鉱床、バキババ鉱床、クズルス鉱床から成る。 アシュキョイ鉱体は規模が大きく、鉱体上部は露天掘により採掘され、下部は坑内採掘の 準備が進められている。バキババ鉱床及びクズルス鉱床は規模が小さく高品位部分をサブ レベル法により採掘している。バキババ鉱床の地表一帯にはローマ時代に精錬された時の 鉱滓が2百万トン以上ストックされている。鉱滓中には金、銅、コバルトを含有している。


エティバンクのキューレ鉱山として操業開始後、アシュキョイ鉱体は3百万トン採掘され 現在は12百万トンの採掘対象鉱量がある。バキババ鉱床はK.B.I. (黒海銅鉱山社)により採掘され、昨年エティバンクに吸収合併されるまでに80万トンを採掘、残り80万トンの採掘対象鉱量がある。


キューレ地域で期待される鉱化作用のタイプは過去の探査結果及び初年度の調査より

- (1) ジュラ紀の塩基性岩類に関連したキプロス型鉱床がキューレ鉱山地域を中心として東西方向に広がるキューレ層中で期待される。
- (2) タシュキョブル地区では、チャンガル・メタオフィオライトが東西方向に拡がり、銅の鉱徴地が知られており、所々に鉱滓が点在する。近年の鉱山の操業実績の記録は無いものの、変成作用を受けたキースラーガー型の鉱床が期待される。

初年度の地質調査及び物理探査の結果より、金属資源の探査有望箇所として下記の箇所 が抽出され、それぞれの箇所に応じ地質調査、物理探査及びボーリング調査を実施すこと を提言する。

地区名	箇 所 名	地化学 探 査	物 理 探 査	が-リング 調 査
キューレ	(1) アシュキョイ鉱体南部 (2) 920ML坑道入り口付近の南北 (3) バキババ鉱床の北方 及び南方 (4) イプシンレル鉱化帯南方 (5) ゼンベレックレル及びクズルス鉱体		0	000 0
タシュキョフ°ル テ°ィックメンタ*-	(1) ジョゾール (2) ジュヌール (3) アラユレック (1) 塩基性岩類分布域	000	0	
その他	(1) オフィオライト分布域	0 :		

第1-1図 調查地域位置図

目 次

は し が き 調査地域位置図 要 約 目 次 付図付表一覧

第1部 総 論

第1章	序論
1-1	調査の経緯及び目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1-2	第1年次調査の範囲、目的及び作業の内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	1-2-1 調査範囲
	1-2-2 調査方法
	1-2-3 地質調査・物理探査の作業量
1-3	- 調査団の編成 · · · · · · · · · · · · · · · · · · ·
第2章	調査地域の地理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2-1	
2-2	・地形及び水系・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 16
	2-2-1 地形
	2-2-2 水系
2-3	気候及び植生 16
	2-3-1 気候
	2-3-2 植生
第3章	キューレ鉱山概要 1:
3-1	キューレ鉱山の探査・開発状況 ・・・・・・・・・・・・・ 1:
3-2	キューレ鉱山の採掘対象鉱量 ・・・・・・・・・・・・・・・・・ 1:
3-3	1991年の生産実績・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3-4	生産状況 1:
3-5	鉱山の近代化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1
第4章	調査結果の総合検討・・・・・・・・・・・・・・・・・・・ 10
4-1	
	4-1-1 岩石薄片
	4-1-2 全岩化学分析
	4-1-3 鉱石研磨片
1.4	4-1-4 鉱石分析
	4-1-5 X線回折試験

	4-1-6 EPMA	
	4-1-7 S同位体試験	
4-2	地質構造	52
4-3		
4-4	物理探查結果	54
	4-4-1 CSAMT法の結果	
	4-4-2 IP法探査の結果	
	4-4-3 室内試験結果	
4-5	キューレ地域の鉱床ポテンシャル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55
	4-5-1 キューレ地区	
	4-5-2 その他の地区	
	結論及び提言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
5-1	結論	56
	5-1-1 アシュキョイ鉱体南部地域	
	5-1-2 パキババ鉱床の北方及び南方地域	
4	5-1-3 920ML坑道入り口付近の南北地域	
e 1	5-1-4 イプシンレル鉱化帯南部	
	5-1-5 ゼンベレクレル及びクズルス鉱体	::-
	5-1-6 ジョゾール鉱化帯	
· ·	5-1-7 ジュニュール鉱化帯	
	5-1-8 アラユレック鉱化帯	
	5-1-9 ディックメンダー地区全域	
;	5-1-10 オフィオライト分布域	
5-2	第2年次調査への提言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
÷	第 II 部 既存データ解析	
第1章		
1-1	既存データの概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1-2	ボーリング資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
第2章	広域調査・地化学探査・物理探査関係コンパイル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2-1	広域調査 · · · · · · · · · · · · · · · · · · ·	
2-2	地化学探查 · · · · · · · · · · · · · · · · · · ·	
2-3	, v , , , ,	
第3章	キューレ鉱山関係のコンパイル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
第4章		
4-1	鉱山・鉱徴地の評価・・・・・・・・・・1	.11
	4-1-1 キューレ地区	
	-ii-	
	en e	

	4-1-2 タシュキョプル地区	
	4-1-3 ディックメンダー地区	
	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	116
	4-2-1 キューレ地区	
	4-2-2 タシュキョプル地区	
	4-2-3 ディックメンダー地区	
• • •	第Ⅲ部 キューレ地区	
第1章	キューレ地区概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	121
1-1	概要	121
1-2	調查方法	121
第2章	キューレ地区の地質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	122
2-1	地質概要	
2-2	地質層序	122
	2-2-1 超マフィック岩類	
	2-2-2 キューレ層	
	2-2-3 カラダナ層	
	2-2-4 チャーラヤン層	
2-3	貫入岩類	128
	2-3-1 閃緑岩	
	2-3-2 デイサイト	
2-4	地質構造	129
	2-4-1 褶曲構造	•
	2-4-2 断層	
	キューレ鉱床・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3~1	アシュキョイ・トイコンツ鉱床・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	129
•	3-1-1 地質・地質構造	
	3-1-2 鉱体·変質	104
3-2	バキババ鉱床・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.134
	3-2-1 地質・地質構造	1
	3-2-2 鉱体・変質	105
3-3	クズルス鉱床・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	135
	3-3-1 地質·地質構造	·
	3-3-2 鉱体・変質	195
3-4	その他の鉱徴地・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
	3-4-1 エルシズレルデレ	
	3-4-2 イプシンレル	

		3-4-3 ユヌスキョイ北部	
		3-4-4 ユヌスキョイ西部	
		3-4-5 エルマクツーウ東方	
		3-4-6 オメルイルマズ西部	
		3-4-7 ギョイヌック西部	
		3-4-8 オメルイルマズ東部	
		3-4-9 バキババ北方	
		3-4-10 トイコンヅ北方	
		3-4-11 バキババ東方	
		3-4-12 ゼンベレックレル	
	•	3-4-13 バキババ南西	
		3-4-14 カラジャカヤ北方	
	第4章	物理探查 139	
	N/14	4-1 物理探査の概要・・・・・・・・・・・・・・・・ 139	
	•	4-1-1 探査目的	
		4-1-2 探査対象地域	
•		4-1-3 探査方法及び調査量	
		4-1-4 測線設定	
	4-2	調査・解析方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・140	
	:	4-2-1 CSAMT法電磁探查	
		4-2-2 IP法電気探査	
	4-3	171	
		4-3-1 CSAMT法探查	
		4-3-2 IP法探查	
		4-3-3 室内試験結果	
	4-4	物理探査の結果及び考察 163	
	- · ·	4-4-1 CSAMT法	
		4-4-2 IP法	
		4-4-3 室内試験	
	第5章	考 察····································	
	第6章	結論 244	
	6-1	結論 244	
	4	6-1-1 アシュキョイ鉱体南部地域	
		6-1-2 バキババ鉱床の北方及び南方地域	
		6-1-3 920ML坑道入り口付近の南北地域	
		6-1-4 イプシンレル鉱化帯南方	
		6-1-5 ゼンベレクレル及びクズルス鉱体	•
	6-2	第2年次への提言 246	
	i •		
	• .	-iv-	

第IV部 タシュキョプル地区

第1章	タシュキョプル地区の地質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	247
1-1	地質概要	247
1-2	地質層序 · · · · · · · · · · · · · · · · · · ·	247
	1-2-1 デブレカーニ変成岩類	
	1-2-2 チャンガルメタオフィオライト	•
	1-2-3 カヤディビ層	٠
· · · · · · · · · · · · · · · · · · ·	1-2-4 ムズルップ層	
	1-2-5 クザジック層	
	1-2-6 アラジャニ層	•
	1-2-7 チャイキョイ層	-
	1-2-8 沖積層	
第2章	貫入岩類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	253
2-1	チャンガル花崗岩類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25.3
2-2	デイサイト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	254
第3章	地質構造 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	254
第4章	鉱化変質	254
4-1	ジョゾール鉱化帯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	254
	4-1-1 地質	٠
	4-1-2 鉱化変質	
4-2	ジュヌール鉱化帯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	258
	4-2-1 地質	
	4-2-2 鉱化変質	
4-3	アラユレック鉱化帯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	262
	4-3-1 地質	
	4-3-2 鉱化変質	÷
	その他の鉱化帯	
	考 察	
	緒 論	
	結論	
6-2	第2年次への提言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	267
	第Ⅴ部 ディックメンダー地区	
第1章	ディックメンダー地区の地質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	269

	地質概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	209
1-2	地質層序 · · · · · · · · · · · · · · · · · · ·	269
	1-2-1 キューレ層	
	1-2-2 キョステックジレル層	: 1
	1-2-3 サツキョイ層	
第2章	貫入岩類	275
2-1		2,75
2-2	デイサイト ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	275
第3章	地質構造	275
第4章	鉱化変質	276
4-1	マスキョイ鉱化帯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	276
	4-1-1 地質	
	4-1-2 鉱化変質	į
4-2	その他の鉱化帯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	277
第5章	その他の鉱化帯 · · · · · · · · · · · · · · · · · · ·	277
第6章	結論	278
6-1	結論	278
6-2	第2年次への提言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	278
+ %		
		100
	第VI部 結論及び提言	
第1章		279
1- 1	結 論 · · · · · · · · · · · · · · · · · ·	279
1- 1	結 論 · · · · · · · · · · · · · · · · · ·	279
1- 1 1- 2	結 論 · · · · · · · · · · · · · · · · · ·	279 279
1- 1 1- 2 1- 3 1- 4	結 論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	279 279 280 280
1- 1 1- 2 1- 3 1- 4 1- 5	結 論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	279 279 280 280
1- 1 1- 2 1- 3 1- 4 1- 5 1- 6	結 論	279 279 280 280
1- 1 1- 2 1- 3 1- 4 1- 5 1- 6 1- 7	結 論 アシュキョイ鉱体南部地域 バキババ鉱床の北方及び南方地域 920ML坑道入り口付近の南北地域 イプシンレル鉱化帯南部 ゼンベレクレル及びクズルス鉱体 ジョゾール鉱化帯 ジュニュール鉱化帯	279 279 280 280 280
1- 1 1- 2 1- 3 1- 4 1- 5 1- 6 1- 7 1- 8	結 論 アシュキョイ鉱体南部地域 バキババ鉱床の北方及び南方地域 920ML坑道入り口付近の南北地域 イプシンレル鉱化帯南部 ゼンベレクレル及びクズルス鉱体 ジョゾール鉱化帯 ジュニュール鉱化帯	279 279 280 280 280 280 280 281
1- 1 1- 2 1- 3 1- 4 1- 5 1- 6 1- 7 1- 8	結 論 アシュキョイ鉱体南部地域 バキババ鉱床の北方及び南方地域 920ML坑道入り口付近の南北地域 イプシンレル鉱化帯南部 ゼンベレクレル及びクズルス鉱体 ジョゾール鉱化帯 ジュニュール鉱化帯	279 279 280 280 280 280 280 281
1- 1 1- 2 1- 3 1- 4 1- 5 1- 6 1- 7 1- 8 1- 9	結 論 アシュキョイ鉱体南部地域 バキババ鉱床の北方及び南方地域 920ML坑道入り口付近の南北地域 イプシンレル鉱化帯南部 ゼンベレクレル及びクズルス鉱体 ジョゾール鉱化帯 ジュニュール鉱化帯 ディックメンダー地区全域 オフィオライト分布域	279 279 280 280 280 280 280 281 281
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-10 第2章	結 論 アシュキョイ鉱体南部地域 バキババ鉱床の北方及び南方地域 920ML坑道入り口付近の南北地域 イプシンレル鉱化帯南部 ゼンベレクレル及びクズルス鉱体 ジョゾール鉱化帯 ジュニュール鉱化帯 アラユレック鉱化帯 ディックメンダー地区全域 オフィオライト分布域 第2年次調査への提言	279 279 280 280 280 280 281 281 281
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-10 第2章	結 論 アシュキョイ鉱体南部地域 バキババ鉱床の北方及び南方地域 920ML坑道入り口付近の南北地域 イプシンレル鉱化帯南部 ゼンベレクレル及びクズルス鉱体 ジョゾール鉱化帯 ジュニュール鉱化帯 ディックメンダー地区全域 オフィオライト分布域	279 279 280 280 280 280 281 281 281

写真

付 図

- 第1-1図 調査地域位置図
- 第1-2図 調査範囲図
- 第1-3図 キューレ地区調査範囲図
- 第1-4図 タシュキョブル地区調査範囲図
- 第1-5図 ディックメンダー地区調査範囲図
- 第1-6図 AFMダイヤグラム
- 第1-7図 AFMダイヤグラム
- 第1-8図 Na₂O+K₂O-SiO₂ダイヤグラム
- 第1-9図 SiO₂-FeO*/MgOダイヤグラム
- 第1-10図 (Na₂0+K₂0) -Al₂0₃-Si0₂ダイヤグラム
- 第1-11図 Al₂O₃-TiO₂ダイヤグラム
- 第1-12図 固結指数-TiO2-Al2O3ダイヤグラム
- 第1-13図 TiO₂-FeO*/MgOダイヤグラム
- 第1-14図 P₂O₅-TiO₂ダイヤグラム
- 第1-15図 硫黄同位体值関係図
- 第2-1図 既往調査位置図(地質調査)
- 第2-2図 既往調查位置図(地化学探查)
- 第2-3図 ボーリング位置図
- 第2-4図 カスタモヌ花崗岩帯とその周辺の地質構造
- 第2-5図 イネボルーカスタモヌ地域の地質図
- 第2-6図、イネボル-カスタモヌ地域の地質断面
- 第2-7図 イネボル-カスタモヌ地域の岩相対比図
- 第2-8図 キューレ地域の地質図 (Güner)
- 第2-9図 イプシンレル鉱化帯地質図
- 第2-10図 エルシズレルデレ鉱化帯地質図
- 第2-11図 ディックメンダー地区地質図 (Kamitani)
- 第2-12図 ディックメンダー地区地質図 (Ömer)
- 第2-13図 キューレ地域以北の地化学探査異常域図
- 第2-14図 チャンガル山系地質図
- 第2-15図 チャンガル山系地質断面図
- 第2-16図 キューレーチャンガル山ーダダイーデブレカーニ岩相対比図
- 第2-17図 鉱化図
- 第2-18図 ジュヌール地質図
- 第2-19図 ボヤル地質図
- 第2-20図 ジュヌール地化学探査図
- 第2-21図 ボヤル地化学探査図

- 第2-22図 地層対比図
- 第2-23図 既往物理探查範囲図
- 第2-24図 エルシズレルデレ・イプシンレル鉱化帯の物理探査コンパイル図
- 第2-25図 トイコンヅ鉱体の物理探査コンパイル図
- 第2-26図 アシュキョイ・バキババ鉱床の物理探査コンパイル図
- 第2-27図 バキババ鉱床北東部の物理探査コンパイル図
- 第2-28図 ゼンベレック沢鉱化帯の物理探査コンパイル図
- 第2-29図 クズルス鉱床の物理探査コンパイル図
- 第2-30図 セイヤイラ鉱化帯の物理探査コンパイル図
- 第2-31図 アシュキョイ鉱体坑道探鉱図
- 第2-32図 キューレ鉱山付近地質図
- 第2-33図 キューレ鉱山付近地質図
- 第2-34図 アシュキョイ-バキババ鉱床間地質図
- 第2-35図 アシュキョイ-バキババ鉱床間地質断面図
- 第2-36図 バキババ鉱床地質平断面図
- 第2-37図 バキババ鉱床坑道図(1,014ML)
- 第2-38図 バキババ鉱床坑道図(1,080ML)
- 第2-39図 クズルス鉱床地質平断面図
- 第2-40図 模式柱状図
- 第2-41図 既存データ解析総合解析図
- 第3-1図 キューレ地区模式柱状図
- 第3-2図 キューレ地区地質図
- 第3-3図 キューレ地区断面図
- 第3-4図 アシュキョイ鉱体平断面図
- 第3-5図 アシュキョイ鉱体オープンピットスケッチ図
- 第3-6図 キューレ地区鉱徴地位置図
- 第3-7図 測点及び測線位置図
- 第3-8図 CSAMT法 測定概念図
- 第3-9図 流電電極位置図
- 第3-10図 CSAMT曲線 自動解析法の流れ図
- 第3-11図 IP法 測定概念図
- 第3-12図 アレイ式CSAMT法 見掛比抵抗平面図
- 第3-13図 キューレ地区 見掛比抵抗平面図
- 第3-14図 見掛比抵抗断面図
- 第3-15図 地質凡例
- 第3-16図 地質断面図
- 第3-17図 キューレ地区 比抵抗構造平面図
- 第3-18図 比抵抗構造断面図

- 第3-19図 CSAMT法 2次元シミュレーション解析図
- 第3-20図 IP法 見掛比抵抗・FE断面図
- 第3-21図 IP法 2次元シミュレーション解析図
- 第3-22図 岩石試料採取位置図
- 第3-23図 岩石試料物性値分布図
- 第3-24図 物理探查解析結果図
- 第4-1図 タシュキョプル地区模式柱状図
- 第4-2図 タシュキョブル地区地質平断面図
- 第4-3図 ジョゾール鉱化帯地質平断面図
- 第4-4図 ジョゾール鉱化帯スケッチ図
- 第4-5回 ジュヌール鉱化帯地質平断面図
- 第4-6回 ジュヌール鉱化帯スケッチ図
- 第4-7図 アラコレック鉱化帯スケッチ図
- 第4-8図 アラユレック鉱化帯地質平断面図
- 第5-1図 ディックメンダー地区模式柱状図
- 第5-2図 ディックメンダー地区地質平断面図
- 第5-3図 マスキョイ鉱化帯地質平断面図
- 第5-4図 マスキョイ鉱化帯スケッチ図
- 第6-1図 探查有望地区位置図

付 表

- 第1-1表 作業量及び室内試験表
- 第1-2表 イネボルの月平均気温
- 第1-3表 イネボルの月別降雨量
- 第1-4表 カスタモヌの月平均気温
- 第1-5表 カスタモヌの月別降雨量
- 第1-6表 アシュキョイ鉱体の過去の生産実績
- 第1-7表 バキババ鉱体の過去の生産実績
- 第1-8表 薄片用試料表
- 第1-9表 検鏡結果(薄片)一覧表
- 第1-10表 全岩化学分析一覧表
- 第1-11表 研磨片試料表
- 第1-12表 検鏡結果(研磨片)一覧表
- 第1-13表 鉱石分析試料表
- 第1-14表 鉱石分析結果表
- 第1-15表 X線回折試料表
- 第1-16表 X線回折粉末法試験結果表

第1-17表 BPMA面分析測定結果表

第1-18表 硫黄同位体測定結果表

第1-19表 調查地域地層対比表

第2-1表 解析資料一覧表

第2-2表 キューレ地区鉱山・鉱徴地評価表

第2-3表 タシュキョプル地区鉱徴地評価表

第2-4表 ディックメンダー地区鉱徴地評価表

第3-1表 CSAMT法 測定機器一覧表

第3-2表 IP法測定機器一覧表

第3-3表 室内試験結果一覧表

写 真

写真1 顕微鏡写真(薄片)

写真2 顕微鏡写真(研磨片)

写真3 BEI及び特性X線像

写真4 キューレ鉱山全景

添付図

•	· · · · · · · · · · · · · · · · · · ·	
添付 第1図	キューレ地区地質平断面図	縮尺 1: 5,000
添付 第2図	キューレ地区地質断面図	縮尺 1: 5,000
添付 第3図	キューレ地区試料採取位置図	縮尺 1:10,000
添付 第4図	タシュキョプル地区地質平断面図	縮尺 1:50,000
添付 第5図	タシュキョプル地区試料採取位置図	縮尺 1:100,000
添付 第6図	ディックメンダー地区地質平断面図	縮尺 1:50,000
添付 第7図	ディックメンダー地区試料採取位置図	縮尺 1:50,000
添付 第8図	ジョゾール鉱化帯地質平断面図	縮尺 1: 5,000
添付 第9図	ジュヌール鉱化帯地質平断面図	縮尺 1: 5,000
添付 第10図	アラユレック鉱化帯地質平断面図	縮尺 1: 5,000
添付 第11図	マスキョイ鉱化帯地質平断面図	縮尺 1: 5,000

第I部総

論

and the second of the control of the
그들의 이 공사들이 가능하는 이 등 공용으로 그렇게 들었다면 가는 것이 그렇게 되었다는 그를 잃었다는 그는 이 없는 사람이 없다.
그는 사는 경기가 일반된 가는 것이 얼룩된 살림을 하고 말했다. 그 중에 가장 하는 것이 없는 것이 없었다.
그는 한다는 사람이 불렀다면 되고 있는데 되었다고 있다는데 그 수 있는데 불로 살아가는 사람이 되었다.
그는 한다. 나는 사람들은 사람들이 고려되어 한 생활을 하면 그렇게 되고 모임을 모으면 하는데 되었다.
그의 게 우리 그는 것이 된 것은 보습을 하는 한 사고 심수는 것이 집 성을 보고 하고 하고 있는 것이 되는 것이 되었다. 본다
그 그 그 그 것이 하는 그 것이 불물으로 하는 것이 나는 사람들이 함께 되는 것은 것이 없는 것이다.
그 살아보다는 얼마 그렇게 그렇다고 살아왔다. 그 살아보는 그 사람들은 그 살아 없는 것이 없는 것이다.
그리다는 그는 이번 그는 그들은 물건이 하는데 하를 보려면 하는데 되었다. 그는 그는 그는 살이 되었다.
그는 그는 그를 가득한 것 같은 사람들은 그들이 하는 것이 하는 그를 가는 하는데 모든 것이 되었다. 눈물을 다른
그리 한 불빛은 역과 제공원에 불발하는 말을 하고 있습니다. 하는 말을 하고 하는 말을 하는데 하는 말을 하는데 하는데 살아보다.
그는 이 이 회에 되는 사람들은 보이를 생각하고 있다. 모르게 하는 사람들이 되었다. 그리고 있는 사람들이 되었다. 그리고 있는 사람들이 되었다.
그런 보인 그는 그 그 아이를 보고 있는데 그는데 그는 그를 내고 하는데 그는 그를 가를 보고 보고 있다. 남은 학교
그런 아이는 그는 그 이 나는 그 한 때 도 안 가장하는 이것들은 후 가는 이 분들을 된다고 있는데 생물로 그
그렇게 하고 있는 그는 그를 가는 하는 것이 그는 사람들이 가지 않는 것이 없는 것이 없는데 그렇게 되었다.
그 물장들은 그 전에 보고를 들어 된 일반들이 말씀들어 되는데 이 수 그렇게 걸려가 했다. 학을 가는 것이다.
그렇지는 말을 하는 물이 있는데 눈가 없는데 이 회생에 어느라고 있는데 얼마나는 말을 다른데 하는데
그들이 회를 잃는 내가 있었다. 그가 모든 이스날라들은 그 그리는 그리는 그리는 사람들은 다른 그리는
그 하는 일도 하는 살을 보고 그는 사람이 되는 그런 그는 사람이 하는 것이 없는 사용에 들어 하는 것이다.
그는 하는데 있으로 보일 그렇게 그렇게 된다고 아버지는 그런데 있는 그 소문도 문화가지 않아 보는 이번 있다.
그 있다. 그리고 하루워 하는 항임한 물로 모임으로 그는 데 하면 얼굴 그 있는 것이 모임이 되었다. 하 모임
그는 그는 물문으로 하는 것이 맛있는 것도 그 물론이 가는 것으로 한 그 살았다면 모든 것을 만든다. 생각이

第1部 総 論

第1章 序 論

1-1 調査の経緯および目的

本年次調査はトルコ共和国キューレ地域資源開発協力基礎調査の初年度にあたる。本調査地域はトルコの地質構造区分によると、過去3回実施されたトラブゾン地域の東部ポンチードス帯、昨年までのチャナッカレ地域の西部ポンチードス帯の中間の中央ポンチードス帯に属する。基盤は先ジュラ紀の変成岩類で、ジュラ紀の火山岩類・堆積岩類が不整合に被い、白亜紀・古第三紀にかけてはフリッシュ型堆積岩類で特徴づけられる地域である。

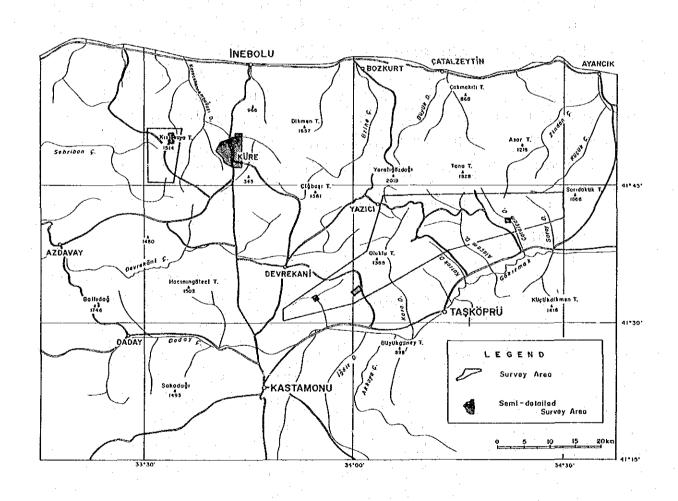
本地域の中央部にキューレ鉱山が位置する。キューレ鉱山では鉱床の近傍が硬砂岩、泥質岩、礫岩などの堆積岩類で、これらの中に海底火山活動により噴出した塩基性火山岩類及び超マフィック~塩基性質入岩が発達し、キューレ・オフィオライトと呼ばれる。キューレ・オフィオライトはフリッシュ型に被われる。

キューレ鉱山の南東20~60kmの変成岩類の発達したタシュキョブル地域にも類似の鉱徴地が認められるとの記載があり、本年より調査が始まったキューレ地域では、オフィオライトに関連した銅鉱床探査に重点を置き調査を進めた。まずランドサットTM画像から調査地域をカバーするフォールスカラー画像を作成し、リニアメントの特徴と地質判読を行い、アンカラ及びキューレ鉱山で既存データのコンパイルを行なった。これまでの地質調査・地化学探査結果等を考慮に入れて、625km²に及ぶ範囲の地質概査を、また、キューレ地区及び概査調査地区の中から有望な鉱徴地を抽出し28km²の地質準精査を、物理探査はキューレ地区でCSAMT法 513点、IP法 4kmの測定を実施した(第1-2図、第1-3図)。

1-2 第1年次調査の範囲、目的および作業の内容

1-2-1 調査範囲

第1年次調査の調査はキューレ鉱山地区、タシュキョブル地区及びディックメンダー地区の3地区で実施した。それぞれの範囲は下記の経緯点で囲まれた面積である。

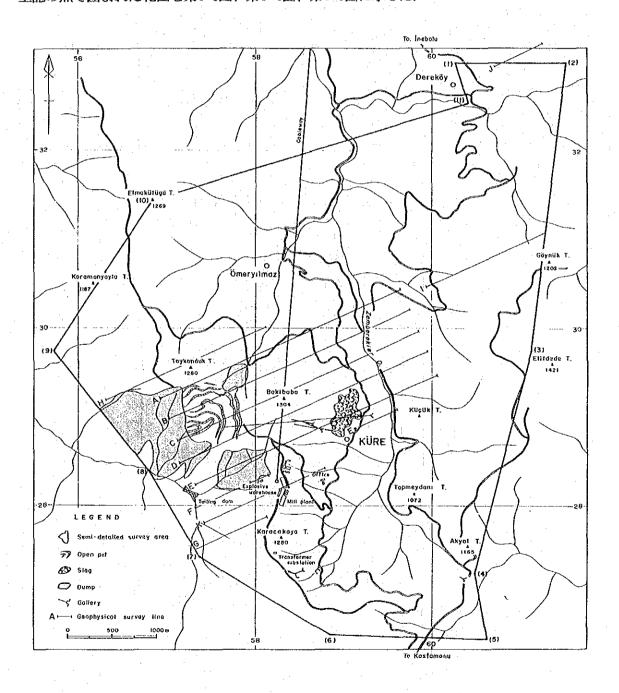

(1) キューレ地区 (面積 22km²)

1	北緯41°	50.77′	東経33°	43.58'
2	北緯41°	50.77′	東経33°	44. 48'
3	北緯41°	49.00	東経33°	44.17'
4	北緯41°	47.62'	東経33°	43.68′
5	北緯41°	47.26′	東経33°	43.78'
6	北緯41°	47.25	東経33°	42.50
7	北緯41°	47.73′	東経33°	41.40
8	北緯41°	48.27'	東経33°	40.98'

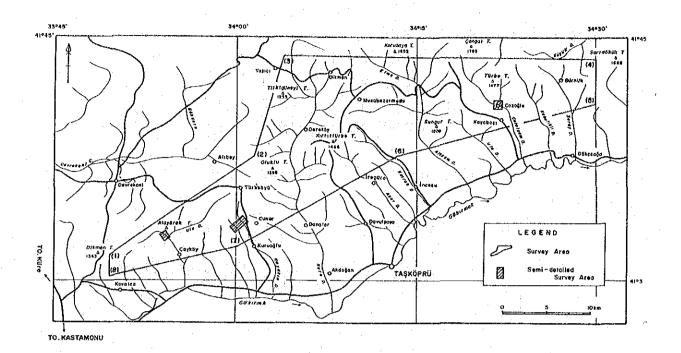
9	北緯41°	49.00	東経33°	40.25'
10	北緯41°	49, 92'	東経33°	41.05
11	北緯41°	50.48′	東経33°	43.67'

(2) タシュキョブル地区 (面積 559km²)

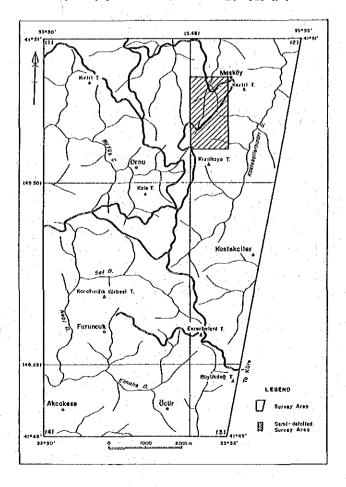
1	北緯41°31.63′	東経33°	49.63
2	北緯41°37.50′	東経34°	01.07'
3	北緯41°43.85′	東経34°	03.77′
4	北緯41°43.65′	東経34°	30.00′
5	北緯41°40.77′	東経34°	30.00
6	北緯41°37.50′	東経34°	13. 27'
7	北緯41°31.55′	東経34°	00.00
8	北緯41°30.17′	東経33°	49.63′



第1-2図 調査範囲図


(3) ディクメンダー地区 (面積 66km²)

1 北緯41°51.36′ 東経33°30.36′ 2 北緯41°51.34′ 東経33°35.42′ 3 北緯41°45.41′ 東経33°33.92′ 4 北緯41°45.42′ 東経33°30.31′


上記の点で囲まれた範囲を第1-3図、第1-4図、第1-5図に示した。

第1-3図 キューレ地区調査範囲図

第1-4図 タシュキョプル地区範囲図

第1-5図 ディックメンダー地区範囲図

1-2-2 調查方法

(1) 重点課題

本地域の地質の主要構成岩は先ジュラ紀の変成岩類及びジュラ紀から古第三紀のかけてのマフィック岩類・フリッシュ型堆積岩類からなり、変成岩類及びマフィック岩類を母岩とする鉱化作用がタシュキョプル地区とキューレ鉱山付近で認められる。現地調査を実施するにあたり、MTA及びBtibankで実施した地質調査、地化学探査資料を参考とし、下記のような点に重点をおき調査を進めた。

既存データ解析:調査地域における既往地質調査及び鉱床探査データを収集、整理、解析することにより、地質調査及び物理探査の調査計画の指針を得た。

地質調査: 当該地域の地質、鉱床及び地質構造の詳細を解明し、既知鉱床、鉱徴地の層 序上の位置付けと鉱化の状況を解明した。

物理探査:キューレ地域における地下構造と鉱化帯との関係を解明するとともに、異常 帯を抽出した。

(2) ランドサット画像判読による解析

1982年以降、金属鉱業事業団及び資源観測解析センターによる、資源衛星データを利用した様々な解析作業が実施されて来た。これまでの解析のうち、ランドサット TMデータの各バンドの組合せによる各種画像処理により、鉱床と関連する変質帯を抽出する試みが行われ、植生の無い、乾燥地域で成果をあげている。

キューレ地域については、植生地域において一般的に使用されているバンド 2, 3, 4に それぞれ青、緑、赤の色を割り当てたフォールスカラー合成画像により判読を行なった。 今回使用した CCT は1987年7月16日撮影されたバルク補正のTMデータで雲量は約5%である。パス・ロー番号は177-31である。

本地域の地表では、局部的に裸地が認められるが、全体にわたり植生が密に発達している。本地域のようなキプロス型鉱床が期待されるようなところでは鉱床に関連するマフィック岩類が発達し、変質帯を伴わないことからランドサット画像から変質帯を抽出することは期待できない。

しかし今回の地質構造判読の結果、本地域には東西方向の地質構造が発達し、中生代後半から始まったアルプス構造運動に起因すると考えられる、低角度で押し上げられた衝上断層が推定された他、数多くのリニアメントが判読された。キューレ鉱山付近にはマフィック岩類が分布しており、キューレ鉱山付近の地形と類似する地形的特徴が画像より各所に判読され、これらは断続的ではあるが幅8~10km、東西方向に65kmに亙り拡がっている。

なお、画像判読結果を参考にして、本年度実施される地質調査地域の検討を行った。

(3) 既存データ解析

- (1) 調査地域において過去に実施された地質調査、地化学探査、物理探査、ボーリング調査等に関する以下の事項について、既往資料を収集し、整理し、評価を行った。
 - a) 実施時期、実施主体、調査目的及び調査対象範囲
 - b) 調査の具体的な手法
 - c) 調査結果(解析結果を含む)
 - d) 当該調査結果に基づき実施されたその後の内容と結果
- の 前項の解析結果に基づき、調査地域周辺一帯の地質構造と層序を把握するとともに、既知鉱床、鉱徴地とオフィオライトとの関係を解明し、後述の地質調査の概査対象範囲の中から準精査を実施する区域を抽出するとともに、物理探査における測線・測点配置を決定した。
- ハ) 解析は相手国機関と随時連絡を取り、必要に応じて協議を行いつつ実施した。

(4) 地質調査

A 概查

- 4) 踏査に当たっては縮尺25,000分の1の地形図を使用してルートマップを作成した。
- p) 踏査にあたっては、既存地質図、航空写真及びランドサットTM画像(縮尺250,000分の
- 1)を活用した。
- n) ルートマップは、できるだけ具体的に諸観察事項を記入し、特に重要な露頭は、縮尺 100~200分の1のスケッチ及びカラー写真撮影を行った。
- 二) 鉱化帯、露頭の位置等は、簡易測量により求めた。
- 村 地質調査の結果は各地区ごとに50,000分の1の地質図にとりまとた。

B 準精沓

- イ) 踏査に当たっては縮尺5,000分の1の地形図を使用してルートマップを作成し、踏査ルートは、既存の資料を十分検討して設定した。なお、上記縮尺の地形図がない準精査地区については、既存地形図(縮尺25,000の1)を拡大して使用した。
- n) 踏査にあたっては、既存地質図、航空写真及びランドサットTM画像 (縮尺250,000分の1)を活用した。
- A) ルートマップは、できるだけ具体的に諸観察事項を記入し、特に重要な露頭は、縮尺100~200分の1のスケッチ及びカラー写真撮影を行った。

- こ) 同時に、当該区域内の鉱床・鉱徴地については鉱徴地調査を行い、鉱化変質の状況を把握し、周辺の地質との関係を解明した。
- お) 調査結果は、5,000分の1の地質図に、また鉱徴地調査の結果は、各鉱床・鉱徴地ごとの 地質概要図に、それぞれ取りまとめた。

(5) 物理探查

- 1) CSAMT法及びアレイ式CSAMT法
- イ) 測点及び測線設定
- a) 測点及び測線は、既存データ解析の結果に基づき、キューレ地区内に設定するものとし、測点数は500点、うちアレイ式CSAMT法の測点数は400点とした。
 - b) アレイ式CSAMT法の測点間隔は、50mとした。
 - c) 測量はポケットコンパス及びエスロンテープを用いた開放トラバース測量とした。

D) 測定

- a) 測定周波数は、1Hz~5,000Hzのうち10周波数以上とした。 なお、周波数の決定については、監督員の指示に従った。
- b) 測定は流電電極間隔1,500m以上とし、電位電極間隔は原則として50mとし、各周波数毎に原則として3回以上の再測を行なった。
 - c) 各測点での測定時間は原則として30分以上とした。
 - d) 流電地点と測定地点間の距離は、4km以上とた。
 - e)その他、現地調査の細部については監督員の指示に従った。

2) IP法

4) 測線設定

- a) 測線配置及び測線数は、既存データ解析の結果に基づき、キューレ地区内に配置するものとし、測線延長は3kmとした。
 - b) 測量はポケットコンパス及びエスロンテープを用いた開放トラバース測量とした。

n)測定

- a) 電極配置は、ダイポール・ダイポール配置とした。
- b) 電極間隔は、測線上にて水平距離100mとした。
- c) 電極間隔係数は、N=1~5とした。
- d) 測定周波数は、0.3Hzび3Hzまたはこれと同等の周波数とした。
- e) その他、現地調査の細部については監督員の指示に従った。

1-2-3 地質調査・物理探査の作業量

第1表 作業量及び室内試験表

作業別	項 目	概 查	準精査	計
	調査面積	625km²	28km²	653km ²
	踏查延長	216km	142km	358km
	岩石薄片作成	72件	65件	137件
	鉱石研磨片作成	56件	4件	60件
地質調査	鉱石分析	89件	35件	124件
	全岩分析	16件	14件	30件
1.1	X線回折試験	9件	3件	12件
	EPMA (面分析)		7件	7件
	S同位体試験		<u>7</u> 件	7件
	CSAMT測定		513点	513点
物理探查	IP測定		4km	4km
	物性測定		43件	43件

鉱石分析成分: Au, Ag, Cu, Pb, Zn, Co, S

1-3 調査団の編成

調査計画策定及び折衡:キューレ地域資源開発協力基礎調査の計画策定にあたり事前調査、協定折衡のため調査団が下記日程で派遣された。

(1) プロジェクト選定調査: 平成3年12月10日より平成3年12月18日

日本側事前調査団

トルコ側担当機関 エティバンク

增田信行

金属鉱業事業団

Cumhur YILDIZ (企画部副部長)

安達直隆

金属鉱業事業団

Ahmet UNSAL (探査部)

Sadik KARADAR (企画部)

(2) 事前調査・協定折衝:平成4年3月7日より平成4年3月17日

日本側協定折衡団

トルコ側担当機関 エティバンク

野口晏男

金属鉱業事業団

Taskın AKDENİZ (総裁)

中野則夫

外務省技術協力課

Namik Kemal ATALAN (副総裁)

西塔雅彦

通商産業省鉱業課

Ergun GURCAN (探查部部長)

前島正道

国際協力事業団

Cumhur YILDIZ (企画部副部長)

鈴木哲夫

金属鉱業事業団

Ahmet UNSAL (探查部)

安達直隆

金属鉱業事業団

Sadık KARADAR (企画部)

(3) 第1年次調查団

第1年次調査は既存データ解析、地質調査及び物理探査を平成4年6月29日から平成4年9月26日にかけて行い、現地調査は平成4年7月4日より平成4年9月23日の日程で行われた。 そのうち現地調査期間および調査団編成は次のとおりである。

【現地調査期間】

既存产一个解析 平成4年7月 4日~平成4年7月14日

地質調查 平成4年7月15日~平成4年9月15日

物理探查 平成4年7月15日~平成4年9月23日

【現地調查団編成】

日本側調查団 日鉱探開株式会社 団長・地質調査 水本久

byゴ側機関 エティバンク コーディネーター Ahmet UNSAL

地質調查員 侯野米治、佐藤健二、菅原一安

Latif YİĞİT, Necmettin CELIK, Mursel ÖZTURK

物理探查員 吉沢正夫、高橋郁夫、杉山伸一

Tayfun AKKUS, Orhan ERSÖZ

第2章 調査地域の地理

2-1 位置および交通

当該調査地域名となったキューレ地域は行政区上ではカスタモヌ県に属しカスタモヌ市の北50kmに位置する。カスタモヌ市は人口約3万人で本県の最大の都市である。キューレは首都アンカラの北方約225kmに、トルコ共和国最大の都市イスタンブールの東約 400kmに位置する。

調査地域内を東西方向にキューレ山脈が走り、本山脈は西のカラクズ (Karakuz) 山 (1,435m)、東のチャンガル (Çangal) 山 (1,605m) で代表される。地形は比較的急峻で、キューレ鉱山付近で海抜約1,000mである。キューレ鉱山での気象観測データはないが付近のデータ (第1-1表〜第1-2表参照) から年間降雨量が700mm以上に達することが推定され、植生は多く、ランドサット画像からも殆どの調査地域が植生に被われていることが読み取れる。山間の平坦地は小麦の栽培が行なわれ、植生が多いことから林業が盛んな地域である。年間平均気温10℃程度と推定され、やや涼しい気候である。30℃を越えるのは7~8月の2ヶ月で、調査期間の7~9月は降雨量は少なく、気温は15~30℃と野外調査のしやすい季節である。冬期の12月から3月にかけては降雪が多く積雪量は2m~3mに達する。

幹線道路はキューレ鉱山地区の中央部を南北に横断する国道765号線で、その他にはタシュキョプルのギョクルマック川沿いの県道30号線が走っており、 舗装率は100%に近い。この他、 幹線道路と各部落を結ぶ自動車道路がの延びている。これらの道路は未舗装で、冬季にも通行可能であるものの、砂利が敷かれてないため悪路となり、特に降雨期には、

泥道となる。イネボル-カスタモヌ-アンカラ間の幹線道路は舗装され、道路状況は良いもののカスタモヌ-キューレ鉱山間の約56kmはバスの便が少なく不便である。

第1年次のベースキャンプはキューレ鉱山内のゲストハウスが選ばれ、ここより車でタシュキョプル地区には平均2時間、ディックメンダー地区は平均1時間かけて通い調査を実施した。

2-2 地形および水系

2-2-1 地形

キューレ地域はアナトリア高原の北側を東西に走るキューレ山脈中で、北側を黒海、南側をアナトリア高原により挟まれた、植生の多い分水嶺に位置する。

調査地域内での最高峰はディックメンダー地区での海抜1,514mのクズルカヤ (K1z1lkaya) 山で、タシュキョプル地区では海抜1,388mのオルクル (Oluklu) 山が最も高い。初年次の準精査地区のキューレ鉱山では事務所の位置で海抜1,100mとやや高く、鉱山付近の地形は急峻である。ディックメンダー地区、タシュキョプル地区いずれも、キューレ山脈中の海抜1,000mを越える地域での調査となったため、植生の多い、地形の急峻な箇所となった。

2-2-2 水系

タシュキョブル地区はギョクルマック川が西に伸びる上流域である。キューレ鉱山地区及びディックメンダー地区は、カラジェヘンネンボアーズ (Karacehennemboğazı) 川の上流域である。いづれの河川とも春先の融雪期に水量が多い。東西に走るキューレ山脈では夏でもガスがかかり霧雨が見られ、夏場でも沢で水流が見られる。

2-3 気候および植生

2-3-1 気候

本地域の年間降雨量は年度により異なるが黒海沿岸のイネボルで600mm、内陸部のカスタモヌで400mmと少い。カスタモヌからタシュキョプルにかけてはギョクルマック (Gök1rmak) 川に沿って平坦な肥沃な土地が広がり、野菜、果物、小麦の栽培のほか、牛・羊・山羊の牧畜が盛んである。年間平均気温はイネボルで14.4℃と比較的温暖な黒海沿岸気候であるが、カスタモヌでは内陸でやや高緯度あることから9.4℃と低く、海抜のやや高い地区では夏は涼しく、冬は降雪もみられ、かなり冷え込む。 20℃を越えるのはイネボルで

6~9月の4ヶ月間、カスタモヌでは7、8月のみで、地質調査期間の6~9月は降雨量の少ない季節で、次第に雨の多い季節へと変わる。イネボル及びカスタモヌ気象観測所より得られた月平均気温と年間降雨量は下記の通りである。

第1-2表 イネボルの月別気温

1990

Ì	Month(°C)	1	2	3	4	5	6	7	8	9	10	11	12
	Max	16.7	15.2	18.1	20.7	28.8	32.0	38.8	34.2	30.0	24.2	18.8	17.6
Ì	Min	-1.7	-2.2	-0.2	1.4	5.4	12.3	14.6	13.3	11.0	2.0	-2.4	-5.8
Ì	Ave	7.9	6.7	9.3	11.5	16.8	22.7	26.8	25.5	20.8	14.8	7.7	6.9

年間平均気温 14.8℃

1991

I	Month(°C)	1	2	3	4	5	6	7	8	9	10	11	12
	Max	13.7	17.4	19.5	24.3	26.6	32.2	32.8	33.5	30.0	25.8	21.8	16.0
-	Min	-4.0	-4.7	2.0	8.0						6.4	-2.7	-4:0
	Ave	4.4	2.1	10.1	15.2	16.7	21.3	24.6	24.9	21.0	14.8	9.7	7.4

年間平均気温 14.4℃

1992

	and the second of the second o					· ·			· · · · · · · · · · · · · · · · · · ·
ı	Month(°C)	1	2	3	4	5	6	7	8
٠	Max	14.1	19.6	21.3	23.0	30.2	36.0	34.0	34.3
Ì	Min	-4. 1	-1.1	-1.3	3.8	3.4	8.6	16.7	15.8
	Äve	4.8	7.3	9.6	13.4	17.0	21.6	25.4	24.6

第1-3表 イネボル月別降雨量

1	Precipitation	1	2	3	4	5	6	1	8	9	_10	11	12	Annual
	1990 (mm)	87	51	75	56	1	37	4	-	30	21	202	139	703
	1991 (mm)	2	3	58	9	28	19		25	32	85	76	94	431
	1992 (mm)	5	12	25	37	12	50	7	1					

第1-4表 カスタモヌの月別気温

1989

Month(°C)	1	2	3	4	5	6	7	- 8	9	10	11	12
Max	2.6	14.2	12.2	19.3	19.9	20.7	24.1	24.6	21.5	13.0	9.4	4.2
Min	-8.9	-6.8	-0.2	8.8	7.1	11.4	15.0	18.5	11.1	4.6	-3.8	-10.0
Ave	-3.0	0.8	6.8	13.3	13.2	16.3	19.2	<u>2</u> 1.1	15.2	8.6	4.3	-1.4

年間平均気温 9.4℃

1990

	Month(℃)	1	2	3	4	5	6	7	8	9	10	11	12
	Max	2.7	6.9	13.8	15.2	19.5	OT L	28.3	40.1	22.7	18.2	12.0	5.7
	Min	-6.0	-3.0			6.4	10.0	12.7	10.5	17.9	4.3	2.0	-1.8
٠	Ave	-2.2	1.4	4.7	9.0	12.5	17.0	20.8	18.1	14.5	10.1	6.2	1.3

年間平均気温9.4℃

1991

Month(°C)	1	2	3	4	5	6	7	. 8	9	10	11	12
Nax	17.0	9.6	26.4	23.8	26.0	32.0	35.0	35.0	29.2	29.0	17.0	9.8
Min	-3.8	-5.5	0.2	4.7						6.2	1.2	3.2
Ave	-1.0	-1.8	5.1	9.2	12.4	17.5	20.6	19.7	14.8	11.5	5.0	-0.8

年間平均気温 9.4℃

1992

									
.	Month(℃)	1	2	3	4	5	6	7	8
	Max	1.9	1.6	9.0	16.7	20.8	23.2		28.8
	Min	-6.7	-6.5	-2.0			10.9	12.3	11.7
	Ave	-2.9	-2.7	2.9	9.3		16.7	18.0	20.4

第1-5表 カスタモヌの月別降雨量

Precipitation	1	2	3	4	5	6	7	8	9	10	11	12	Annual
1989 (mm)	19	13	33	20	32	99	28	1.2	27	62	74	24	433
1990 (mm)	7	5	16	76	89	17	12	33	44	43	19	40	420
1991 (mm)	23	19	14	81	72	168	37	31	22	33	14	38	333
1992 (mm)	21	13	18	25	11	168	36	2.5					•

2-3-2 植生

地形の高い地域は平地に比べ雨量が多く植生が発達している。針葉樹(松)が大部分であるが、この他に闊葉樹も認められ、前者は建材として、後者は薪として伐採されている。 平坦な地域は耕作地として利用されているが、それ以外の地域は下草が繁茂し、放牧地となっている。

第3章 キューレ鉱山概要

3-1 キューレ鉱山の探査・開発状況

採掘対象鉱体はアシュキョイ鉱体及びバキババ鉱体であるが、本年はアシュキョイ鉱体の露天採掘とわずかな沈殿銅採取により操業が続けられている。アシュキョイ鉱体の上部は露天採掘が可能で、現在の採掘の主体となっているが、今後採掘が進むにつれ深くなり、坑内採掘に切り替えられる。そのための準備が現在進行中で、アシュキョイ鉱体の下部とバキババ鉱体下部とを結び、将来の主要運搬坑道となる920MLの坑道開削が進行中で、1,850m程掘進、残り550m程で貫通する予定である。現在はこの坑道を利用して、アシュキョイ鉱体下部のボーリング調査を実施中である。これよりさらに下部の鉱体延長部を確認している。

本年のボーリング調査は試錐機4台で実施されており、坑内に2台、坑外2台で坑内はアシュキョイ鉱体下部探査、坑外はトイコンヅ鉱体とバキババ鉱体で実施されている。本年度の探鉱量は20孔、1,830mを計画している。

バキババ鉱体からの採掘は現在中止されており、920MLの坑道が完成後採掘が再開される 予定である。クズルス鉱床についても高品位部を小規模に採掘後はそのままとなっている。

3-2 キューレ鉱山の採掘対象鉱量

公表されている可採鉱量は以下の通りである。

鉱体	鉱 量	銅品位	硫黄品位
アシュキョイ鉱体	12, 800, 000 T	Cu:1.74%	S:36.12%
バキババ鉱体	890,000 T	Cu:3.24%	S:35.00%

3-3 1991年の生産実績

			生產	管計画	生産	実績
	44 rum 114 bran 1 rum 1 rum 1		鉱 量	品位	鉱 量	品位
	粗鉱	アシュキョイ鉱体の0/P	600, 000T	Cu:1.50%	197, 500T	
	粗鉱	バキババ鉱体のU/G	30, 000T	Cu:3.39%	_	_
		計	630, 000T	Cu:1.59%	197, 500T	
	精鉱	銅精鉱	55, 000T	Cu:15.00%	16, 900T	Cu:13.67%
	精鉱	硫化精鉱	220, 000T	S:46.00%	18,650T	S:44.21%

3-4 生産状況

鉱石鉱物の大部分が黄鉄鉱及び黄銅鉱で、わずかに関亜鉛鉱、コバルト鉱物が含まれ、金もグラム単位の品位が見込まれる。鉱石の特徴は全体としては塊状鉱であるが、角礫化している。結晶質黄鉄鉱及びコロフォーム状黄鉄鉱中に粒子の細かい黄銅鉱がフィリングしているため分離をする際、細かく砕く必要があり、このために逆に銅精鉱の品位の低下(15%を下回る)と水分(8%)の増により銅精鉱の質の低下をきたしている。このため販売が遅れ、精鉱の積み出し港のイネボル(キューレ鉱山の北約30km)及び山元での精鉱増となり生産減へと結びついている。

精鉱は索道とトラックとによりイネボル港まで搬出され、銅精鉱は主にロシアに売鉱されている。硫化精鉱の一部は同和鉱業が買鉱している。選鉱の生産能力は銅精鉱 150,000 T/Y 、硫化精鉱 460,000 T/Y あるが能力一杯の生産をしたことはない。選鉱設備はフィンランドのオートクンプ社製である。

人員は管理者及び技術者が140人、労働者 500人の計640人で操業、管理者及び技術者は 本社及び関連鉱山から転勤してきて社宅住まいであるが、労働者は地元のキューレ町ない しは付近の部落の自宅よりエティバンクのサービスカーないしは自家用車で通勤している。

公表されているアシュキョイ鉱体及びバキババ鉱体からの過去の生産実績は以下の通り である。

年 度	剥土量 m³	アシュキョ イ鉱体 (T)	品位 Cu %	沈殿銅 (T)	品位 Cu %
1955-58	10	137, 015	04:70		V
1959-77	5, 381, 186	1, 673, 348			
1978	301, 978	40, 281			
1979	252, 264	36, 855			
1980	217, 520	77, 272			
1981	235, 824	67, 632	***************************************		
1982	364, 436	5, 232		11.0	25, 30
1983	249. 823	4, 238	***************************************	43.5	40, 65
1984	349, 667			40.0	41.56
1985	485,000	***************************************	>-/	37.0	44. 23
1986	865,000			25.0	34. 29
1987	1, 100, 000	23, 856	1.96	32.0	27.75
計 :	9, 802, 698	2,041,873		188, 5	

第1-6表 アシュキョイ鉱体の過去の生産実績

1988年から1991年の4年間でアシュキョイ鉱体から約100万トン生産されていると推定され、これまでの累計生産量は約300万トンに達している。

3-5 鉱山の近代化

索道:ドイツのPBH社より技術導入により延長21kmに及ぶ索道を山元からイネボルまで設置した。精鉱の搬出能力は140T/hである。

ダム建設:分水嶺に位置するため比較的雨量の多い地域であるが、夏期は雨量が少なく 操業用及び生活用水に支障をきたしている。このため現在ダムを建設中である。

選鉱場のオートメイション化:本年アメリカのOutomic, Amdel and Denver社と生産性の向上をめざし、設備の近代化のための設備投資を進める契約を行なっている。

坑内開発:昨年トルコのエンジニヤリング会社のTeknomad社とアシュキョイ鉱体及びバキババ鉱体の坑内開発に関連してコンサルト契約を行い、目下進行中の主要運搬坑道なる920MLなどはコンサルト契約に基づき開発が進められている。また、岩盤調査も行なわれてる。

第1-7表 バキババ鉱体の過去の生産実績

		•		
年 度	銅鉱石	品位	硫化	
	<u>(T)</u>	Cu %	<u>(T)</u>	S %
1972	20, 176	6. 12		
1973	38, 133	6, 39	; –	_
1974	37,064	5.96	1,620	44. 28
1975	20, 437	5. 13	24,725	47.90
1976	16, 113	5.48	11,469	43, 12
1977	42, 684	7.04	28, 307	44.70
1978	23, 131	5.38	16, 341	42.57
1979	48, 791	6.02	34,766	42,06
1980	27, 893	5, 55	38, 343	42.60
1981	36, 772	4.84	32, 832	42, 92
1982	46, 114	5. 23	11,878	43.58
1983	65, 179	3. 55		_
1984	26, 181	3.08	:	
1985	24, 491	3, 27		
1986	21, 707	2.48	_	_
1987	5, 564	2. 33	_	- 2
1988	30, 532	4.57		
1989	21, 227	4. 19	_	-
1990	_	_		. ************************************
1991				
1992	_	-	***************************************	
計	562, 189	4.95	200, 281	43.61

なおエティバンクの銅精練所はサムスン (Samsun) に在り Samsun izabe tesisleriと呼ばれ、ブリスター生産まで行なわれている。生産能力は 34,000 T/Yあるが、1990年の実績では 15,000 T/Y 生産している。銅精錬所にはキューレ鉱山、ムルグル鉱山からの銅精鉱及び買鉱(主としてイランから)からの原料を供給し、ブリスターはトルコ国内の銅精錬会社に販売されている。ブリスター中には Au:20 g/T含有,副産物として回収されている。本年は工事中で生産されていない。

第4章 調査結果の総合検討

4-1 室内試験結果

4-1-1 岩石薄片

岩石薄片は137枚作成し、薄片試料一覧表は第1-8表に、検鏡結果は第1-9表に示す。岩石別内訳は下記の通りである。

地区名	件数	岩種別内訳	薄片枚数	備考
キューレ	65	玄武岩類 貫入岩 堆積岩類	43 15 7	蛇紋岩1,斑糲岩5,閃緑岩3,輝岩1,デイサイト5 砂岩5,頁岩1,石灰岩1
タシュキョフ°ル	59	玄武岩類 貫入岩類 堆積岩類	43 14 1	片麻岩1,蛇紋岩1,閃緑岩9,デイサイト4 石灰岩1
デ゛ィックメンタ゛ー	13	玄武岩類 貫入岩類	10 3	デイサイト2, 閃緑岩1
計	137		137	

(1) キューレ地区

キューレ地区の薄片の大部分はキューレ層中の玄武岩類、貫入岩は本地域の基盤となる 蛇紋岩、キューレ層の玄武岩類を貫いている閃緑岩、斑糲岩、輝岩、デイサイト(ドッガー 統)、堆積岩類はキューレ層の黒色頁岩、砂岩、カラダナ層の石灰岩等である。

玄武岩類:野外での特徴は枕状 (pillow)、ハイアロクラスタイト状 (hayaloclastic)、塊状 (massive) からなり、キューレ地区の縮尺1:5,000の地質図ではこの3種類の岩相分布を表現している。顕微鏡下では填間状組織及びオフィティック組織の玄武岩が大部分で、この他に曹長石化の進んだスピライト状、粗粒な結晶組織の輝緑岩状の特徴が認められた (第1-8表)。

構成鉱物は斜長石、単斜輝石を主として、少量のかんらん石、斜方輝石、チタン鉄鉱を伴う。いずれの薄片でも珪化・緑泥石化・緑簾石化・炭酸塩化・絹雲母化等の変質作用を受けている他曹長石化・珪化で特徴づけられるものもある。強度の緑泥石化・珪化は鉱体の近傍に限られる。

蛇紋岩:かんらん石、輝石の殆どが蛇紋石化 (crysotile) しており、かんらん石のrelicts が認められる。この他にアージライト、方解石も認められ、斜方輝石 (紫蘇輝石を含む) もアージライト化している (H015)。

輝岩:主成分である輝石の殆どが単斜輝石の透輝石で化学組成でも $$i0_2$ は\$8.40%である。 輝石は蛇紋石化している (Y008)。 斑糲岩:主成分は斜長石、角閃石、普通輝石で自形の斜長石が角閃石や輝石の中に包有されている。斜長石はゾーニングし、絹雲母化している。普通輝石、輝石類がウラル石に変質しているrelictsが認められる。副成分鉱物としてわずかに石英、不透明鉱物のチタン鉄鉱が割れ目に沿っている。二次的鉱物として方解石が認められる(A007, H019, M014, M049, S004)。

関緑岩:主成分は斜長石、角閃石よりなり、ところどころで緑泥石化している。副成分鉱物としてわずかにチタン石、不透明鉱物のチタン鉄鉱が認められる(M026, Y027, Y009)。

デイサイト:斑状組織、斑晶として石英、斜長石、黒雲母を伴うが、斜長石は緑泥石化、 絹雲母化している。ガラス質な部分は石英に置き変わっている(H002, H012, S033, Y096, Y097)。

砂岩:粒子の大きさが0.06~0.4mmで石英及び斜長石からなり、粒子の間隙部を雲母質鉱物と方解石がフィリングしている(A040, K019, Y002, Y003, Y026)。

黒色頁岩:ごく小さいフレイク (tiny flake)の集合でわずかに方向性が認められる。非晶質鉱物及び微晶粘土、雲母質鉱物 (絹雲母?)、炭酸塩鉱物からなる (Y041)。

石灰岩:微晶質方解石からなり、化石の破片が認められた(A003)。

(2) タシュキョプル地区

変玄武岩類:変成作用の影響は少なく、主要な組織上の特徴が残されている。 porphyroblastic組織、粒度の細かいgranoblastic組織及びpoikiliblastic組織が殆どで ある。斜長石及び輝石 (普通輝石) は曹長石、方解石、葡萄石、緑泥石、緑簾石、絹雲母に 変わっている。

緑色片岩: lepidoblastic組織、nematoblastic組織を呈し、斜長石、輝石類は曹長石、 緑泥石、緑簾石、炭酸塩鉱物、方解石等に変わり、石英を伴う。

泥質片岩: nematoblastic組織を呈し、石英、曹長石、緑泥石、絹雲母の他に透角閃石、 陽起石を伴う(H035, L046)。

片麻岩:完晶質、片理状組織で、石英、斜長石、黒雲母、角閃石からなり、二次鉱物として緑泥石、絹雲母が認められる (M211)。

蛇紋岩: 殆どが蛇紋石 (crysotile) からなる。かんらん石、輝石のrelictsは認められない。 不透明鉱物はクロム鉄鉱 (?) と推定される (Y079)。 関縁岩:野外調査の際採取した試料はチャンガル花崗岩類とした岩体からである。鏡下では関縁岩の特徴を示す。斜長石を主体に、角関石、輝石、黒雲母からなり、緑泥石化、絹雲母化している。野外で花崗岩としたY075でSiO₂:56%(中性岩)、関縁岩としたM286でSiO₂:51%(塩基性岩)を示す等、花崗岩質岩体としているが、中性岩からさらに塩基性に近い特徴を示している(A101, A112, H040, H044, H047, M286, Y075, Y086, Y091)。

デイサイト:キューレ地区のデイサイトと同様絹雲母化している (A102, K248, S091, Y089)。

石灰岩: 微晶質及び結晶質方解石が大部分で、わずかに石英が存在する。変成作用の影響による方向性が認められる(A103)。

(3) ディックメンダー地区

玄武岩類:斑状組織、斑晶の斜長石が主体で、黒雲母、輝石、わずかな石英からなり、緑泥石化、絹雲母化している。全岩分析した試料M108でSiO₂:56%、Y102でSiO₂:65%を得ている。野外調査では玄武岩としているが、薄片及び全岩分析の結果からは中性岩的特徴を示す結果を得た。

デイサイト:斑状組織、斑晶として石英、斜長石、黒雲母を伴うが、斜長石は緑泥石化、 絹雲母化している。有色鉱物及びガラス質な部分は石英に置き変わっている(Y093, K114)

斑糲岩:主成分は斜長石、角閃石、普通輝石で自形の斜長石が角閃石や輝石の中に包有されている。斜長石はゾーニングし、絹雲母化している。普通輝石、輝石類がウラル石に変質しているrelictが認められる。副成分鉱物としてわずかに石英、不透明鉱物のチタン鉄鉱が割れ目に沿っている。二次的鉱物として方解石が認められる(M106)。

第1-8表 薄片用試料表(1)

Küre(1)

No.	Description	Locality	Y	X
H019 S004 M026 A007 H002 H012 S033 Y004	Diorite Diorite Diorite Sil rock(diorite) Gabbro Dacite Dacite Dacite Dacite Dacite Massive basalt	W.Kızılsu NE.Kızana M. N.Yunusköy. NE.Küre W.Kızılsu S.Aşıköy W.Bediroğlu E.Elmakutuğu T. SE.Küre W.Kızılsu	2559530 2557600 2559000 2557970 2559325 2557410 2555820 2557715 2560375 2559765	4628600 4631920 4634170 4632600 4629060 4630290 4631800 4633580 4628710 4628650

No.	Description	Locality	Y	Х
H014 H016 K010 K014 L023 M044 M055 N025	Sandstone Massive basalt Massive basalt Massive basalt Massive basalt Massive basalt Massive basalt Massive basalt Massive basalt Massive basalt Massive basalt	Kızılsu KS-4 78m NW.Bediroğlu NW.Kızana M. E.Dereköy İpsinler NW.Kusça M. N.Küre NW.Küre NW.Küre NE.Yunusköy Aşıköy	2558331 2556320 2556880 2561300 2561080 2560773 2559120 2558400 2559415 2557425	4629105 4631670 4631960 4634530 4633510 4631922 4631335 4631700 4633810 4631185
A013 A010 A028 A036 A038 A030 A037 A039	Massive ba(Intrusive) Brec basalt with mala Brec basalt with hem Brec basalt with hem Brec basalt with py-cp Brec basalt with py-cp Altered basalt Altered basalt Altered basalt with py Altered basalt	KS-48 33.5m Aşıköy KS-18 41.3m	2559000 2558205 2558250 2557467 2558502 2558562 2557410 2558411 2558502 2559000	4632835 4630650 4629520 4630847 4629125 4628959 4630840 4629067 4629067 4632140
S050 S057 Y003 Y014 Y030 Y039 Y020 Y023	Silicified rock Pillow lava with py Altered pillow lava Massive basalt Brecciated basalt Brecciated basalt Brecciated basalt Brecciated basalt Pillow lava Massive basalt	W.Küre NE.Küre NE.Küre SE.Küre E.Küre Aşıköy Aşıköy NW.Katıruçtuğu S E.Küre Aşıköy	2560130 2560125 2560320 2559950 2557395 2557265	4632860 4631920 4631460 4629000 4630580 4631205 4631175 4632500 4630310 4631250
Y044 Y045 Y046 A003 K019 Y002 Y026	Brecciated basalt Brecciated basalt Massive basalt Massive basalt Massive limestone Silicified sandstone Sandstone Sandstone Black shale	Aşıköy Aşıköy Aşıköy Aşıköy Ş.Kızılsu İpsinler SE.Küre S.Yunusköy Aşıköy	2557568 2557507 2557430 2557430 2558420 2561000 2629060 2632850 2557560	4631010 4631025 4631025 4630960 4628580 4633950 4560285 4559000 4631000

Taşköprü (1)

	•				
No.	Description		Locality	1 1 Y	X
A112 H040 H044 H047 M276 A102 K248 S091	Diorite Diorite Diorite Diorite Diorite Diorite Diorite Dacite Dacite Dacite Quartz porphyry	i.	Kepez M. N.Binektası Sr. NW.Sarısökü SE.Şule Y. S.Hasanöldü T. E.Cankırsak T. Kepez M. NW.Karıncalık Sr S.Necipburnu E.Çaltepe	2592460 2607620 2604000 2607580 2615620 2621100 2592480 2594900 2590580 2621850	4618460 4619260 4620100 4619550 4620620 4619580 4618520 4616000 4606130 4618310

No. :	Description	Locality	Y	X
Y086 K200 M211 A108 H033 K206 K252 L045	Granite Granite Biotite gneiss Gneiss Metabasalt Metabasalt Metabasalt Metabasalt Metabasalt Metabasalt Metabasalt Metabasalt Metabasalt	SW.Yelli T. N.Ifritoğlu Y. S.Kuzupınar Sr. NE.Salmançalı T. S.Kayadibi S.Asmakaya T. SW.Ahlatlık T. Çebiş M. S.Nuraçal T. NW.Dikmen T.	2621240 2610580 2577900 2570650 2600140 2601340 2580060 2594400 2586000 2579750	4620120 4620580 4603820 4598000 4619500 4615140 4603400 4615500 4605920 4599790
L068 L082 M216 M256 N055 N060 N064 Y057	Metabasalt Metabasalt with py Metabasalt Metabasalt Metabasalt with lim Metabasalt Metabasalt Metabasalt with py Metabasalt Metabasalt Metabasalt Metabasalt Metabasalt Metabasalt Metabasalt Metabasalt	W.Hatibinyolu T E.Boynueğri T. W.Karaahmet D. W.Yaşlı T. E.Tahtakuzu T. SW.Bakacak T. NE.Namazlık T. W.Bakabey T. W.Ahmetöldüğü T E.Ketendorugu T	2588230 2586650 2595600 2573440 2592670 2621180 2581780 2592500 2584820 2589000	4604720 4607520 4613420 4597640 4605220 4619380 4601000 4616520 4603280 4602860
Y077 Y082 Y087 L050 L058 A104 A121 K222	Metaba with epi-hem Metabasalt Metabasalt Metabasalt Altered metabasalt Silicified metabasalt Green schist Green schist Green schist Pelitic schist	NE.Bakacak T. SE.Asarcık E.Domuzburnu T. SE.Atçayırı T. E.Kara T. S.Uçurumkaya T. W.Kepezçalı T. S.Evçalukları Sr NE.Kabuklu T. E.Akkütük T.	2583240 2588380 2591390 2611340 2590580 2588270 2592630 2606280 2580060 2602820	4602640 4617120 4615770 4620660 4602760 4603640 4619000 4615770 4601000 4616150
H041 L062 M252 M231 Y079	Pelitic schist Silicified rock Silicified rock Silicified rock Gossan(schist) Serpentinite Massive limestone	E.Kökluyol T. W.Sarısökü S.Horozbiçtiği T Avgun Sr. SW.Gökyar D. SE.Tilkigüneyi T W.Kepez M.	2592890 2594260	4605620 4619840 4603200 4606060 4609470 4615900 4618460

Dikmendaĝ

No.	Description	Locality	Y	Х
K114 M106 L042 H051 K116 K101 K102 S110 Y093		Delihasanoğlu M. N.Dikmendağ N.Kızılelma N.Delihasanoğlu Öcür M. N.Satıköy NW.Yayla M. NW.Yayla M. N.Yayla M. N.Yayla M. N.Yayla M. N.Yayla M. N.Masköy E.Dikmendağ	2543800 2546700 2542250 2543760 2545560 2544750 2544600 2544560 2547400 2547520	4626660 4631501 4632750 4628940 4623880 4628620 4628300 4628440 4628600 4633980 4630500

Sample	Rock Name	Rock	Texture				Phenocryst	٠,	\vdash		Groun	Groundmass		Alteration
No.		unit		02 K	Kf Pl	Bi Ho	ď	Hy Mf	g	Oz Pl Bi	엺	Py Hy	Mf Op G	
A008	Pyroxinite	0sg	holocrystalline			}	0		4				 	pyroxine-serpentine
H015	Serpentinite	0sg	holocrystalline	9	©			0	4					olivine-serpentine
M049	Gabbro	ቪ	holocrystalline	◁	0		Ο		4					pl-ser, py-calcite
X009	Diorite	Ę	holocrystalline		0	0	6			1 1 1 1 1 1 1 1				ho, pl→ch
X096	Dacite	Da	porphyritic	0	(0			0	pl-ser, ch
-Y097	Dacite	Da	porphyritic	 (©	0				Ĭ	0				bi-ch
1021	Pillow lava	Klp	intergranular		0					0			0	pl-carbonite ©, ch, albite
S047	Pillow lava	%1p			0					Ο			П О	p1. py-ch ◎, ep
Y005	Pillow lava	Klp	sub-ophitic		0					0			□ ⊚	
Y098	Pillow lava	Klp	intersertal		© 				_	0				olivine-serpentine, pl. py-ch
Y099	Hyaloclastite	Klh	sub-ophitic		0					0			4	pl, py-ser, ch, ep
V100	Hyaloclastite	Klh	ophotic		Ο					0			◁	p1-carb. ch. ser
A047	Hyaloclastite	Kih	phitic		0					0			◁	
M036	Massive basalt	Klm	sub-ophitic		0				~	О 4			◁	pl, py-ch, cal, ep, carb
Y007	Massive basalt	Klm	ophitic		0						7	<1		pl-ch. carb
Y025	Wassive basalt	Kla	sub-ophitic		0				-				4	pl-albite, ep
M108	Massive basalt	Klm	felsitic	 ©	0					0		>	0	p1-ch
Y102	Massive basalt	Klm	ophitic		0		0		-4	0				pl→ch, py-prehnite
H043	Green schist	CI _P	1							0	7	◁	0	pl→ch ◎. carb ◎
M202	Green schist	¢Ib	1							0		[7]		pl, py-ch, ep, carb ◎
M261	Green schist	CI _b	felsitic			••••	: :			0			,,,,,,	p1→ch, ep
M289	Green schist	ÇIÞ	porphyritic?		0					0				pl→ser
M200	Meta basalt	CIb							_					pl, py-ch, cal, ep ⊚
M205	Meta basait	CIB	porphyritic?		0					0		O	0	pl. py-ch cal, ep
M230	Meta basalt	ÇIb	sub-ophitic		Ο		Ο				L_J		◁	pl, py-ch, cal, ep

Mf: Mafic mineral, Op: Opaque minerals, Ser: Sericite, Ch: Chlorite, Ep: Epidote, Cal: Calcite, Carb: Carbonate, G: Glass ©:Abundant O:Common □:Few △:Rare Qz:Quartz, Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, Hy:Hypersthene,

vs:very strong arg:argillization

第1-9表 梭紡結果(漢片)一覧表(2)

		4	L		2		-					- [-
Sampre	NOCK NAME	KOCK	texture		7	rnenocryst			croundmass		Aiteration	-
No.		unit		Qz Kf	f Pl Bi Ho	Au Hy Mf	z) do ,	z Pl Bi	Ho Au Hy Mf	გ		-
M277	Meta basalt	CIP	ophític		©			0			pl, py-ch, cal, ser	·
M287	Green schist	Cip	lepidoblastic		;		<u></u>			O	pl. py-ch. ep	
M288	Green schist	CID	lepidoblastic				<1	-,			pl, py-ch, cal	
M286	Diorite	ಜ್ಞ	porphyritic		0			0			pl, py-ser, cal	
Y075	Biotite granite	Çg	holocrystalline	4) (4				ро-сп	
A00.1	Altered basalt	К1п	porphyritic		©			0			pl. py-ch, ser, cal	
H019	Gabbro	ដ	holocrystalline		0						oų-ka	
S004	Gabbro	<u>ج</u>	holocrystalline				◁				ho, pl-ch	
M026	Silicified diorite	ដ	holocrystalline		0	0	4				pl. py-ch, cal +qz	
A007	Massive basalt	Klm	holocrystalline				◁				pl-ser, ch	
H002	Dacite	Da	porphyritic	(0	0				· · · · ·
H012	Dacite	g	felsitic	0			(O)			◁	pl→ser	-
S033	Dacite	පු	porphyritic	0			(4	cal, ch. ser 🔘	•
Y004	Dacite	Da	intergranular		©	2	U	0	Ο		pl→ser, cal	
A002	Massive basalt	Klm	ophitic		0	0	◁				p1→ch	;—
A040	Sandstone	Kss	granular				O L	0		◁	pl-ser, ch	
H014	Massive basalt	K1.	porphyritic		(O	◁		Ο		pl, py-ch, cai ©	•
H016	Massive basalt	K13	intersertal		0	0	~~_	0	0	◁	pl, py-ch, cal, ser	
K010	Massive basalt	KI	intergranular		 O	0	4			◁	py→ch,	
K014	Massive basalt	Klm	ophitic		0	0	0	(pl, py-cal, ser	
L023	Massive basalt	Klm	sub-ophitic		0							
M044	Massive basalt	K1 _{II}	intergranular		0			0	Ο		pl→ser ◎ +qz	
34055	Massive basalt	Klm	intergranular		©			0	0	◁	pl, py+ch, carb	
N025	Massive basalt	ΞĪ.	lepidoblastic		©						pl. py-ch. ser +qz	
Y036	Massive basalt	Klm	intergranular	?	0	О		0	Ο	◁	pl. py-ch. cal	
			•									1

③:Abundant ○:Common □:Few △:Rare

Mf:Mafic mineral, Op:Opaque minerals, Ser:Sericite, Ch:Chlorite, Ep:Epidote, Cal:Calcite, Carb:Carbonate, G:Glass Qz:Quartz, Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, No:Hornblende, Py:Pyroxene, Ny:Hypersthene,

Sample	Rock Name	Rock	Texture	'		Phenocryst	 			Groundmass		Alteration
, No.		unit		Oz Kf	f Pl Bi	Ho Au	1,1	00 OZ P	PI : Bi	Bo Au Fv	Wf: Op G	
Y027	Massive basalt	KI	cataclastic	· 	0							mf→ch, carb
A013	Hyaloclastite	Klh	porphyritic?		0				0	0	0	pl, py-ch, ser, cal +qz
A010	Hyaloclastite	Π	porphyritic		0			Ο				pl-ch, ser +lim
A028	Hyaloclastite	Klh			0	0			6			pl, py~ch, carb +qz
A036	Altered tuff	Klh						0	0			pl, py-ch, cal, ep
A038	Hyaloclastite	Kib	intergranular		0	◁		9	0	0		pl. py-ch, cal, ep. carb
A030	Altered basalt	M	porphyritic	:	0	0	:	0	:			
A037	Altered basalt	Klm			0	0			О			pl-ser
A039	Altered basalt	Kle	porphyritic	О	0			0			0	pl→ch, ser +qz
M039	Altered basalt	КЛп	porphyritic		0				Ο			pI→ch ◎
k 014	Gabbro	Di.	holocrystalline		0	0		 				pl-ser
S050	Pillow lava	ΩD	intersertal		0	0		<u> </u>	\cap	0	Ο	pl, py-ch, cal, ep
S057	Altered pillow lava	ΚΊρ			(O				\cap		Ο	pl→ser, ch
Y003	Silicified sandstone	Kss	granular					0	\bigcirc			ch, size: 0.04-0.4mm
Y014	Hyaloclastite	KIh			0	0)	\cap	Ο	Ο	pl, py-ch, carb, mf-limonite
Y030	Hyaloclastite	Klh	porphyritic		0	0				0	0	pl. py-ch, cal. carb
Y039	Hyaloclastite	КП	intergranular		0	Ο			\cap	0	4	pl. py-ch, carb
Y020	Hyaloclastite	Klb	ıntergranular		0				\cap			pl. py→albite, ch, cal, carb
Y023	Pillow lava	KIP	hayalo-ophitic		0	0		9	(O	0		pl. py-albite, ch. cal, carb
Y034	Massive basalt	К1ш			0	0						pl. py→ch, ser.carb
Y042	Hyaloclastite	KIh	porphyritic		0	Ο			\cap	0	◁	pl. py-albite, ch. carb
Y044	Hyaloclastite	K1b	porphyritic		0	0			\cap	0		pl. py→ser. carb +qz
Y045	Massive basalt	ΝΠ	intersertal		0	0			O	0		pl, py-ch, carb
Y046	Massive basalt	Kln	micro-porphyritik	ပ	0	0		9	ര	©		
A003-	Massive limestone	Kc]						◁				fossile, cal ©

©:Abundant ○:Common □:Few △:Rare Qz:Quartz, Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, Hy:Hypersthene,

Mf:Mafic mineral, Op:Opaque minerals, Ser:Sericite, Ch:Chlorite, Ep:Epidote, Cal:Calcite, Carb:Carbonate, G:Glass

第1-9表 校鏡結果(薄片)一覧表(4)

Sample	Rock Name	Rock	Texture		Phe	Phenocryst			Groundmass		Alteration
No.		unit		02 I	Kf Pl Bi Ho	·	Mf Op	Oz Pl Bi	Ho Py Hy Mf	f Op G	.
X019	Silicified sandstone	Kss	granular					©			size:0.06-0.4(mm), cal
Y002	Sandstone	Kss	granular								mıca, ser
¥026	Sandstone	Kss	granular					() () ()			mica, ser
Y041	Black shale	Kss	granular					O O	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ; ; ;	clay, ser, carb
H049	Altered basalt	Kib	intergranular		0	0		0	Ο	◁	4
K114	Dacite	Da	porphyritic	0	0			(O	0		pl→ser, ch
M106	Gabbro	Έ	holocrystalline		□ □ ○	0	◁				L
L042	Porphyritic rock	K1b	porphyritic		_ О			0	1		pl⊸ch
H051	Brecciated basalt	Πīb	intergranular		0	< The state of the state</th <th></th> <th>©</th> <th>Ο</th> <th></th> <th>pl. py→ch, ep, carb</th>		©	Ο		pl. py→ch, ep, carb
K116	Massive basalt	Klb	porphyritic	_	0						pl⊸ch, ser
K101	Massive basalt	Klb	porphyritic		Ο						pl→ch ©, ser
K102	Massive basalt	KIb		◁		◁			4	◁	pl→ch
S110	Massive basalt	KIb	porphyritic	◁	□ ⊚				◁	◁	pl-ch
Y093	Massive basalt	K1b	porphyritic	◁					◁	◁	pl-ser, ch, cal
Y094	Massive basalt	Kib	porphyritic			J			◁	4	pl→ser
A101	Diorite	జ	porphyritic	◁	0				< □	◁	pl→ser
A112	Diorite	స్త	porphyritic		Ο		◁				
H040	Diorite	89	holocrystalline		0		◁				pl-ser ◎, ch
H044	Diorite	ී	holocrystalline	◁			◁				pl, mf-ser ◎, ch
H047	Diorite	Š	holocrystalline		O □ ⊚						pl→ch
M276	Meta basalt	KIb	hayaloophytic		0			0		0	p1-ch
A102	Dacite	සූ	porphyritic		Ο		◁	() () ()	L	◁	pl-ser, cal
K248	Andesite	CIB	porphyritic	◁	Ο	◁				◁	
S091	Dacite	, Sa	porphyritic	0	Ο			() ()		◁	pl→ser
V089	Dacite	Da	porphyritic	0	0					◁	pl. bi-ch. ser
			,								

③:Abundant ○:Common □:Few △:Rare

M: Mafic mineral, Op: Opaque minerals, Ser: Sericite, Ch: Chlorite, Ep: Epidote, Cal: Calcite, Carb: Carbonate, G: Glass Qz:Quartz, Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, Hy:Hypersthene,

vs:very strong arg:argillization

第1-9表 核鏡結果 (薄片) 一覧表 (5)

Sample	Rock	Name	Rock	Texture		Δ.	Phenocryst			Groundmass		41 toration
Ž,			i.u.i.		\$1 CO	ת : מ : נמ	}	V.F. 0.0 0.2 1	1 -0 10	1	7 -7 : 3h	101.510.711
					4-	1		Z'n ďo	4	ry my	5	
Y091	Granite		క్ర	holocrystalline	◁	(
Y086	Granite		නී	holocrystalline		□ 0						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
K200	Green schist		Soc Soci	1							◁	cal
¥211	Gneiss		Dpg	holocrystalline		_ _ O)
A108	Meta basalt		C1b	_				©				ep. ch. muscovite
H033	Meta basalt		C1b					0				eo, ch @, muscovite, ilmenite
X206	Weta basalt		Clb	hayaloophitic		() ()			0	0		pl, py~ch, carb
K252	Weta basalt		CID	porphyritic		0		©				ch ⊚
1045	Meta basalt	3	CIb	1					(Ο	0	ch, carb
K227	Meta basalt		Clb	-					0	Ο	Ο	ch, cal
L048	Meta basalt		CIP	intergranular		©	0		 [0		pl, py-ch, ep. cal
1068	Meta basalt		Sp.	intergranular		(0		O	0		
L082	Weta basalt		Clb	porphyritic	0			0	\cap		◁	pl-ser, ep
M216	Meta basalt		CIP	intergranular		0	0		0	0		pl, py-ch, cal
N055	Meta basalt		C16	-				0			◁	pl. py→ser. ch, ep
M256	Meta basalt	1	Clb	lepidoblastic		0		< < > < < < < < < < < < < < < < < < < <	0			
090N	Meta basalt		Clb	lepidoblastic	0	0						pl. py-ch ◎, ep, cal
N064	Weta basalt		CIP	lepidoblastic		((O)		◁	pl, py~ch, ep
Y057	Weta basalt		CIP	intergranular		©	0			0		
V060	Weta basalt		CIBS	lepidoblastic	◁	(O)			0		◁	
Y065	Meta basalt		CIP	sub-ophitic		(O)			0		◁	pl, py→ch, carb
Y077	Weta basalt		CIP	ophitic		©		◁				
Y082	Meta basalt		Clp	granobrastic	0				 O	О	◁	pl, py→ch, ep. carb
Y087	Meta basalt		CID CID	ophitic		0						
1050	Altered meta basalt	salt	CIP	porphyritic		0		0			◁	pl, py-ch, ep +qz
-		; - . :	:									

○:Abundant ○:Common □:Few △:Rare

Mf: Mafic mineral, Op:Opaque minerals, Ser:Sericite, Ch:Chlorite, Ep:Epidote, Cal:Calcite, Carb:Carbonate, G:Glass Qz:Quartz, Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, Hy:Hypersthene,

第1-9表 梭鏡結果(薄片)一覧表(6)

11 1,000	Alteration		pl, py-ser, ch, ep	ch, ser, ep	ch ©	ch, cal, ep	ch. ser	ch, ep, tremonite, actinolite	pl. py-ser. ch. ep +qz	ser, ch. ep +qz	pl. py-ch, ep. cal +qz	mica +qz, +Fe	serpentine ©	cal ©													
		ე ტ							◁	◁			◁														:
		, Mf																					 .				
	Groundmass	Py. Hy				 O																			 		
,	Grou	유																							 		
		I Bi					6																		 		
		0z P1	0	0	0	(O)	(O)	0	<u>.</u>		() ()	0		4											 		
		g			,																						
		y M£																ļ									
	Phenocryst	Py By				•••															-,						
	Pher	絽																					}				
		Pl Bi	□ ⊚				·		©		(ļ					 		
		Κŧ	\odot						9		•																
		20	Ο																								
			ပ္	stic	stic	stic	stic	stic	ပ္		ပ္																
	Texture		porphyritic	nematoblasti	nematoblasti	nematoblasti	nematoblasti	nematoblasti	porphyritic		porphyritic		1	granular						,						. ,	
	Ţe		porp							<u></u>	porp			gran			.i									1	
	Rock	unit	¢1b	CIP	CIP	CIP	ζIp	ζIp	ÇIÞ	CIP	CIP	CIP	ζIs	CE]													
	Name		meta basalt				ist	ıst	rock	rock	rock	ist)	ย	estone										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	Rock		Silicified meta basalt	Green schist	Grren schis	Green schist	Pelitic sch	Pelitic schist	Silicified rock	Silicified	Silicified rock	Gossan (schist)	Serpentinite	Massive limestone	P					***************************************		; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					
֓֜֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	Sample	No.	L058	A104	A121			L046		ĺ	¥252	¥231	V079	A103		; ; ; ; ; ;				,							

Mf: Mafic mineral, Op. Opaque minerals, Ser: Sericite, Ch. Chlorite, Ep. Epidote, Cal: Calcite, Carb: Carbonate, G. Glass ⊙:Abundant O:Common □:Few △:Rare Qz:Quartz, Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Py:Pyroxene, Hy:Hypersthene,

4-1-2 全岩化学分析

調査地域を代表する岩石として第1年次では30個の全岩化学分析を行った。内訳は玄武岩類22個(この内キューレ地区10個、ディックメンダー地区2個、タシュキョブル地区10個)、その他は貫入岩類8個(この内キューレ地区6個、タシュキョプル地区2個)である。

玄武岩類はキューレ地区ではライアス世、タシュキョプル地区では先ライアス世とされている塩基性岩類であ。貫入岩類はキューレ地区の基盤とされる蛇紋岩とキューレ層の玄武岩類中に貫入している閃緑岩及びデイサイトである。タシュキョプル地区はドッカー統のチャンガル花崗岩類である。

分析方法は Fe0 については過マンガン酸カリ滴定法により、その他の成分については ICP-AES法により行われた。第1-10表に、その分析結果及び算出されたノルム鉱物量、固結指数 (S. I.: Solidification Index) を示した。 なお、全部の試料について硫黄の分析を行なったが S:0.1% 以下の範囲で、検討に支障をきたす程の含有量は示していない。全岩分析に供した試料は鏡下の観察も行っている (第1-9表)。

キューレ鉱山の全岩分析についての検討は、Guner (1980) により既に報告されている。ここでは30件の玄武岩類分析値と微量分析の結果を詳しく検討し、典型的な海嶺型ソレイアイト岩系に属すると報告されている。Gunerの結果を参考に以下のダイヤグラムで検討した。

AFMダイヤグラム (第1-7図):本ダイヤグラムでは貫入岩類は明瞭にカルクアルカリ岩系の範囲であるが、玄武岩類は通常の塩基性岩に比してNa2O+K2Oが高く曹長石化が進んでいることを示し、カルクアルカリ岩系に入る。Guner (1980)のダイヤグラムとは類似した範囲に入る。

医电动性性 医肾髓 化二氯甲酚 化二甲醇 化氯基苯甲醇			
地区名分析値の平均値	件数	Na ₂ O	K ₂ O
キューレ・ディックメンダー地区	12	4.41	0.41
タシュキョプル地区	10	3.55	0.82
Gunerによるキューレ地域の分析値	30	3.06	0.26

 $Na_2O+K_2O-SiO_2$ ダイヤグラム (第1-8図):本地域の玄武岩類は変質の影響のため Na_2O+K_2O の含有量が高く、アルカリ岩系の領域に入るものが多い。

§i0₂-Fe0*/Mg0ダイヤグラム(第1-9図): 貫入岩類についてはカルクアルカリ岩系に入るが、 塩基性岩類はソレイアイト岩系の範囲に入るものが多い。

 (Na_20+K_20) $-Al_20_3$ $-Si0_2$ ダイヤグラム (第1-10図): Kuno (1960) により提唱された玄武岩類の区分図にキューレ地域の分析値をプロットするとアルカリ含有が高いことからアルカリ岩系の領域に属するが、シリカ含有の低い玄武岩類の中にはソレイアイト岩系に属するものも認められる。

 Al_2O_3 - TiO_2 ダイヤグラム (第1-11図): Hubbard (1969) によって、 Al_2O_3 - TiO_2 ダイヤグラムに海嶺ソレイアイトとハワイ諸島のソレイアイト (海洋島型) の平均値を入れたダイヤグラム上にプロットすると、高アルミナ、低いチタンの特徴をもつ海嶺ソレイアイトの領域にプロットされる。

固結指数と TiO_2 - Al_2O_3 ダイヤグラム (第1-12図) : Kuno (1957) による固結指数 (S. I.) を利用したダイヤグラムに、キューレ地域の計算結果をプロットすると、海洋島型から海嶺型ソレイアイトの領域にプロットされる。

TiO₂-FeO+/MgOダイヤグラム (第1-13図): Miyashiro (1975) により提唱された本ダイヤグラム上にGunerがプロットしたダイヤグラムにキューレ地域の分析結果をプロットすると、海洋型から海嶺型ソレイアイトの領域にプロットされる。

 P_2O_6 -TiO₂ダイヤグラム (第1-14図) : P_2O_6 、TiO₂共に値が低く海嶺型ソレイアイト領域にプロットされる。

微量成分: 全岩分析のうち22個が塩基性岩 (緑色岩) で、鏡下でも明きらかなように全ての岩石が変質を受けている。変質、変成過程を通じて変わりにくい、相対的に変動を受けにくい微量成分として、希土類元素が取り扱われている。川辺岩夫 (1974) によると以下のような微量成分から構造条件を推定している。

構造条件	マグマ型	Rb	Sr	Ba	K/Rb	Cr	Ni	希土類元素
		ppm	ppm	ppm	ppm	ppm	ppm	パターン
海嶺	ሃレイアイト	0.2-5	70-150	6-30	1,000	200-400	300-200	固体型
弧間盆地	ሃレイアイト	3-6	150-200	25-47	600-1,000	150-300	50-90	固体型
	ሃレイアイト	5	200	75	1,000	50	30	固体型
島弧	カルクアルカリ玄武岩	10	330	115	340	40	25	、液体型
antacontecontector position	アルカリ玄武岩	75	700	1,000	200	-30	20	液体型

第1-10表に示したようにBa, Nb, Rb, Sr, Y, Zrの希土類元素の分析を行った。上記の分析値表を参考にしてキューレ地域の玄武岩類の構造条件を推察すると、海嶺を示す試料がキューレ地区では、M036, S047, Y007, Y0025, Y098, Y099, Y100, ディックメンダー地区のM108、タシュキョプル地区のM202, M205, M230, M287, M288で、半数以上の試料となる。

以上のように変質による影響でアルカリ値が高く、アルカリ値を使ったダイヤグラムは アルカリ岩系の領域にブロットされるが、主成分の値及び若干の微量成分の値から海嶺型 のソレイアイトに極めてよく似た結果が得られた。

第1-10表 全岩分析一覧表(1)

			4.0%									
	A047	L021	M036	S047	Y005	Y007	Y025	Y098	Y099	Y100	Y102	H108
SiO2 wt		34, 67	48, 44	46. 24	47, 93	53, 44	50, 23	45, 72	49, 65	52, 69	65, 62	56, 63
TiO ₂	1. 66	0.95	0.43	0.69	1.06	1. 21	1, 24	1. 78	1, 05	1, 29	0.64	0, 62
A1203	14, 13	15. 09	14. 54	17. 01	15, 72	15, 56	15. 39	14. 17	14. 52	15. 34	14. 41	15. 21
Fe_2O_3	5, 59	1.57	1. 22	5, 54	3.09	2. 59	3. 59	3. 72	5, 02	3. 04	2.05	1, 29
Fe0	5. 19	7. 32	5, 82	7, 19	4.80	7. 07	6. 07	7. 48	4. 53	5, 95	2, 21	5. 59
MnO.	0, 19	0.65	0.15	0.12	0.13	0.14	0.16	0, 17	0, 14	0.13	0.10	0.16
MgO	7. 32	5. 21	9.62	9.57	5, 77	5. 56	5, 51	7.57	8.72	5, 63	2.00	6. 35
Ca0	7, 76	13, 72	5. 66	2. 38	6. 95	3. 01	7. 51	10.67	7, 46	3. 57	2, 92	1.61
Na ₂ O	4.11	2, 83	4.65	3.80	4.80	5, 59	4.89	2. 89	3. 92	5. 16	6. 16	6. 10
K ₂ O	0.93	0.95	0.08	0, 19	0.54	0.08	0.19	0. 20	0, 18	0. 21	1. 35	0.05
P205	0.10	0.01	0.01	0.01	0.05	0.04	0.04	0.11	.0. 01	0.10	0.12	0.01
LOI	3. 28	15. 33	7. 99	5. 10	8. 90	4. 23	3. 60	3. 49	3, 59	5. 81	3. 59	4. 67
Cr_2O_3	0.01	0.01	0.04	<u>0. 01</u>	0.01	0.01	0. 01	0. 01	0.01	0.03	0.01	0. 02
Total_	98.00	98. 31	98, 65	97. 85	99. 75	98. 53	98. 43	97. 98	98.80	98. 95	101. 18	98, 31
Fe0*	10, 22	8.73	6. 92	12, 18	7.58	9, 40	9, 30	10, 83	9.05	8, 69	4.06	6. 75
Fe/Ng	1.40	1.68	0.72	1. 27	1. 31	1, 69	1.69	1. 43	1.04	1. 54	2. 03	1, 06
Con, P	45, 26	49. 28	32. 53	47.31	40. 56	45. 57	<u>46. 76</u>	50. 39	41.38	44. 12	29, 89	35. 07
Q	0.00		0.00	0. 59	0.00	1.88	0.00	0.00	0.00	3. 17	16. 37	4. 25
Ĉ	0.00		0.00	6. 25	0, 00	0. 91	0.00	0.00	0.00	0.38	0.00	2, 22
or	5.50		0.47	1, 12	3. 19	0.47	1. 12	1, 18	1.06	1.24	7. 98	0.30
ab	34, 76		39. 32	32. 14	39. 26	47. 27	41. 35	24. 44	33. 15	43. 64	52. 09	51.59
an :	17. 37	İ	18. 58	11. 74	19, 76	14. 67	19. 49	25. 11	21.50	17. 06	7. 70	7. 92
ne	0.00		0.00	0.00	0. 72	0, 00	0.00	0.00	0.00	0.00	0.00	0.00
di-wo	8. 55		3. 94	0.00	6. 01	0.00	7. 30	11, 32	6. 44	0.00	2, 51	0.00
di-en	6.68		2.63	0.00	4. 15	0.00	4. 65	7. 38	5. 09	0.00	1. 77	0.00
di-fs	0.93		1.02	0.00	1. 37	0.00	2. 18	3. 15	0.63	0.00	0. 53	0.00
hy-en	0.37		1. 96	23. 82	0.00	13, 84	3. 52	2. 70	14. 61	14. 02	3. 21	15. 81
hy-fs	0.05	. :	0. 76	7.71	0. 00	9. 11	1. 65	1. 15	1. 82	6. 53	0. 96	8. 47
ol-fo	7. 83	į i	13. 57	0.00	7. 16	0.00	3. 89	6. 14	1. 41	0.00	0.00	0.00
ol-fa	1. 20		5. 77	0.00	2. 61	0.00	2.01	2. 89	0. 19	0.00	0.00	0.00
mt	8. 10		1.77	8.03	4. 48	3. 75	5. 20	5. 39	7. 28	4. 41	2. 97	1. 87
hm	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
il	3. 15		0. 82	1. 31	2. 01	2.30	2. 36	3. 38	2.00	2. 45	1. 22	1. 18
ap	0.24		0.02	0.02	0. 12	0.10	0. 10	0. 26	0.02	0. 24	0. 28	0.02
TOTAL	94. 71		90.61	92. 72	90, 82	94. 28	94. 80	94, 48	95, 18	93. 11	97. 57	93, 61
Fenic	37. 09		32, 25	40.90	27. 91	29. 09	32, 85	43. 76	39.49	27.64	13. 45	27. 35
S. I.	32, 42	29. 40	45. 23	37. 18	30. 87	26. 95	27. 70	35. 23	39. 87	31. 83	14. 74	32. 99

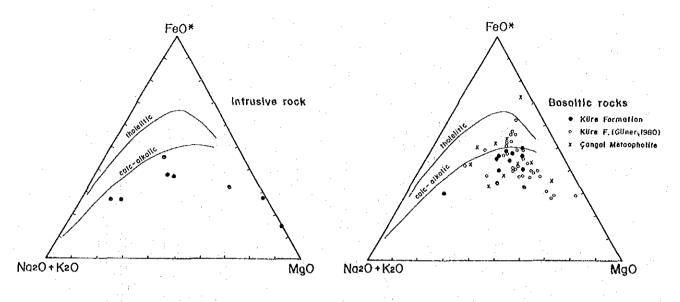
		A047	L021	. M036	S047	Y005	Y007	Y025	Y098	Y099	Y100	Y102	¥108
Ba	ррп	240	230	10	20	60	< 20	< 20	20	< 20	20	240	20
Nb		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Rb		16	27	< 5	- 5	22:	5	11	11	5	11	71	< 5
Sr		180	90	70	70	100	20	30	130	150	70	90	60
Y		40	20	. 10	20	20	30	. 30	50	30	30	20	10
Zr		110	50	20	30	50	50	70	120	60	80	150	50

Area	Sample No.	Rock Name	Rock Unit	Location	Coordinates
Kure	A047	Breciated basalt	Kure F.	KS-3:72m	2558370 4629068
Küre	L021	Pillow lava	Küre F.	W. Kusça M.	2561015 4631375
Küre	M036	Massive basalt	Küre F.	W. Katıructuğu T	2559000 4632140
Küre	S047	Pillow lava	Küre F.	NE Kizana M.	2557340 4631930
Küre	Y005	Pillow lava	Küre F.	SE, Küre	2560310 4628680
Küre	Y007	Massive basalt	Küre F	S. Küre	2559740 4629085
Küre .	Y025	Massive basalt	Küre F.	N. Küre	2559160 4631975
Kure	Y098	Pillow lava	Küre F.	As1köy	2575240 4630802
Kure	Y099	Breciated basalt	kure F.	NV. Küre	2558300 4631700
Kure	Y100	Breciated basalt	küre F.	N. Kure	2559300 4631600
Dikmendag	Y102	Massive basalt	Küre F.	E. Masköy	2548300 4632503
Dikmendag	H108 :	Massive basalt	Küre F.	S. Kızılelma	2542600 4631100

第1-10表 全岩分析一覧表(2)

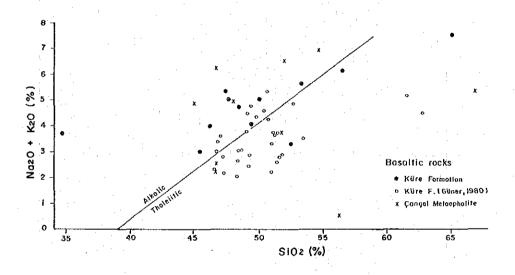
Г	11043	M200	M202	M205	₩230	M261	М277	И287	M288	M289
SiO2 wt%	47. 13	56. 43	46. 74	46, 77	54. 90	45, 11	52, 11	52, 03	48. 11	67.44
TiO ₂	1.05	0.86	0. 24	0.83	1.18	1, 27	1, 14	0.86	1. 94	0.58
A1 ₂ O ₃	14.03	14. 43	12. 87	14, 65	14.84	17. 63	17, 07	16, 28	14. 17	14.62
Fe ₂ 0 ₃	5. 18	6. 76	4. 41	4. 35	7.01	4, 13	1. 23	4, 40	3. 12	1, 86
Fe0	3. 85	2. 45	3, 92	4.09	5.01	6.86	5. 13	6, 93	7.86	4.43
MnO	0.17	0, 15	0. 15	0.16	0.19	0. 23	0, 12	0, 22	0.19	0, 07
Mg0	7.72	2, 71	11, 73	7.53	3. 63	9, 15	5. 46	5, 53	4.63	2, 58
Ca0	7.14	11, 82	10. 47	12. 10	4.08	4. 45	4. 22	4, 82.	6. 18	0, 56
Na ₂ 0	4. 67	0. 28	2.04	2, 53	6. 74	4. 46	4. 99	3, 73	4, 72	1, 59
K ₂ O	1.58	0, 24	0. 22	0.05	0.17	0.38	1. 56	0, 03	0, 23	3, 72
P205	0,06	0.02	0.01	0.01	0, 04	0.04	0, 10	0, 01	0. 21	0.07
LOI	5. 93	3. 27	5. 42	5. 76	1.41	4. 53	6. 71	3, 62	7, 07	2. 76
Cr ₂ O ₃	-0.01	0. 01	0. 12	0.02	0.01	0.09	0.03	0.01	0. 01	0.01
Total %	98. 52	99. 43	98. 33	98. 83	99. 21	98. 33	99. 87	98. 47	98. 44	100. 29
Fe0*	8, 51	8. 53	7. 89	8. 01	11. 32	10.58	6. 24	10.89	10.67	6, 10
Fe/Mg	1.10	3. 15	0.67	1.06	3. 12	1. 16	1. 14	1. 97	2. 30	2, 37
Con P	37. 86	72. 54	36.06	44. 19	51. 78	43.05	34. 18	53. 96	52, 69	43. 62
Q	0.00	29. 14	0.00	0.27	2.42	0.00	0.00	8, 02	0.00	36. 49
C	0.00	0.00	0,00	0.00	0,00	1, 89	0.00	1.38	0.00	7. 13
or	9.34	1. 42	1. 30	0.30	1.01	2, 25	9, 22	0.18	1. 36	21. 99
ab	28. 94	2. 37	17. 25	21, 40	57.00	37. 25	42, 20	31, 54	39. 92	13. 45
an	12.66	37. 41	25. 31	28, 48	9.75	21. 81	19. 58	23, 84	16.81	2, 33
ne	5. 72	0.00	0.00	0.00	0.00	0. 25	0.00	0.00	0.00	0.00
WO .	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00
di-wo	9. 34	7.81	11.08	13. 14	4. 27	0.00	0. 29	0.00	5. 21	0.00
di-en	7. 65	6. 75	8. 79	10, 18	3. 20	0.00	0.18	0.00	2. 83	0.00
di-fs	0. 55	0.00	1.04	1. 55	0.64	0, 00	0. 09	0.00	2. 21	0.00
hy-en	0, 00	0.00	15. 31	8. 57	5.84	0.00	6. 92	13. 77	6. 28	6. 42
hy-fs	0.00	0.00	1.80	1.30	1. 17	0.00	3. 43	8.08	4, 90	5: 77
ol-fo	8. 11	0.00	3. 57	0.00	0.00	15, 96	4. 55	0.00	1, 70	0,00
ol-fa	0.64	0.00	0.46	0.00	0.00	5, 81	2. 49	0.00	1.46	0.00
mt	7. 51	5. 89	6. 39	6. 31	10. 16	5. 99	1. 78	6. 38	4. 52	2.70
hm	0.00	2.69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
il	2.00	1.63	0.46	1.58	2. 24	2. 41	2. 17	1.63	3, 69	1, 10
ap	0. 14	0.05	0.02	0.02	0.10	0. 10	0, 24	0.02	0.50	0.17
TOTAL	92. 57	96. 15	92. 76	93.04	97. 78	93. 68	93. 12	94. 84	91. 36	97. 51
Femic	35. 92	25. 82	48. 93	42.63	27. 62	30, 26	22. 14	29, 88	33, 29	16. 16
S. I	34.04	23, 04	53.61	41.56	16.61	37. 24	29, 92	27. 40	22.86	18.44

						4.1				_ `:
	H043	M200	₩202	M205	M230	1261	1277	M287	M288	M289
Ва ррш	20	10	50	10	10	20	220	10	30	470
Nb	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Rb	28	5	< 5	5	< 5	11	43	< 5	.5	76
Sr	10	350	110	70	30	50	200	210	70	< 10
γ	$\tilde{20}$	20	< 10	20	20	30	30	20	50	20
Žr	50 50	60	30	30	50	60	120	40	130	100

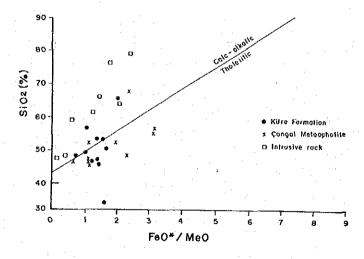

Area	Sample No.	Rock Name	Rock Unit	Location	Coordinates
Tasköpr	и но43	Green schist	Çangal metaophiolite	Yalak Dere	2605020 4617920
Taşköpr	i ¥200	Green schist	Çangal metaophiolite	S Kuzpınar Sr	2574300 4599680
Tasköpr	u M202	Green schist	Çangal metaophiolite	Alicliduz Sr	2574850 4599480
Tasköpr	i №205	Meta basalt	Çangal metaophiolite	S Sazak D	2574570 4593640
Tasköpr	i ¥230	Meta basalt	Çangal metaophiolite	Gökyar T.	2594200 4609680
Tasköpr	и И261	Green schist	Çangal metaophiolite	SW. Ortaköy	2604500 4616500
Tasköpr	a 11277	Meta basalt	Çangal metaophiolite	S. Taşlitepe	2621200 4619220
Taskopr	i 14287	Green schist	Çangal metaophiolite	E. Çaltepe	2598900 4614260
Tasköpr	i M288	Green schist	Çangal metaophiolite	SE, Karaoglan M.	2580980 4603970
Tasköpr	i 11289	Meta basalt	Çangal metaophiolite	S. Çaylak T.	2595730 4618320

第1-10表 全岩分析一覧表(3)

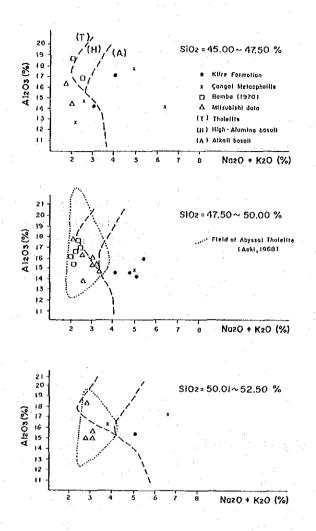
	A008	Н015	M049	Y009	Y096	Y097	N286	Y075
SiO2 wt%		37, 61	49. 29	54. 15	66. 37	69. 48	51.61	56. 22
TiO ₂	0.26	0.01	0, 25	1, 24	0.30	0.34	1. 14	0.96
A1 ₂ 0 ₃	4.48	0, 81:	16.06	15. 77	15, 32	16, 28	18. 26	17.53
Fe_2O_3	4. 48	3, 85	3, 40	4, 45	0.86	0.86	2.60	1, 98
Fe0	8, 11	3. 43	2. 98	5. 12	2, 01	2. 14	3. 99	4.18
MnO	0.19	0.11	0.13	0. 12	0.06	0.04	0.03	0.12
MgO	31. 28	39.11	10.05	4, 47	1.56	1. 24	5, 23	4.28
CaO	3, 58	0, 89	11, 93	4. 62	3. 34	2. 87	8, 62	6.43
Na ₂ 0	0.19	0, 11	1. 51	5. 94	3.40	3. 13	4. 34	3, 54
K ₂ O	0.08	0.02	0.51	0.30	2, 45	3. 46	1. 17	1.76
P ₂ O ₅	0.01	0.01	0.01	0.03	0. 12	0.15	0.07	0.20
LOI	5, 78	12. 38	3. 03	2. 42	5, 61	1.53	2. 57	2.07
Cr ₂ 0 ₃	0. 35	0.30	0.01	0. 01	0. 01	0.01	0.02	0.01
Total %	97, 19	98, 64	99, 16	98. 64	101, 41	101.53	99.65	99. 28
Fe0ŧ	12. 14	6.90	6.04	9. 13	2.78	2, 91	6. 33	5.96
Fe/Mg	0.39	0.18	0, 60	2.04	1. 79	2. 35	1. 21	1. 39
Con. P	27. 79	14. 95	33. 35	46. 01	27. 31	27, 12	37.08	38. 36
Q	0.00	0.00	2. 02	1. 79	26. 91	29. 23	0.00	8. 02
C	0.00	0.00	0.00	0.00	1. 29	2.53	0.00	0.00
or	0.47	0.12	3. 01	1, 77	14, 48	20. 45	6. 92	10.40
ab	1.61	0. 93	12. 77	50, 23	28. 75	26. 47	36. 70	29. 94
an	11. 14	1.66	35. 54	15. 49	15. 79	13. 26	26. 90	26. 75
di-wo	2.74	1.12	9.84	3. 02	0.00	0.00	6.43	1.61
di-en	2, 13	0.95	7. 90	2.06	0.00	0, 00	4. 65	1.04
di-fs	0. 31	0.03	0. 79	0, 72	0.00	0.00	1. 20	0.46
hy-en	12. 76	17. 68	17. 12	9. 07	3. 88	3. 09	1.80	9. 62
hy-fs	1.82	0.60	1.71	3. 18	2.60	2. 73	0.46	4. 22
ol-fo	44. 14	55. 18	0.00	0.00	0.00	0.00	4. 61	0.00
ol-fa	6. 94	2. 07	0.00	0.00	0.00	0.00	1. 31	0.00
nt	6.49	5. 58	4. 93	6. 45	1. 25	1. 25	3. 77	2. 87
pm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
il	0.49	0.02	0.48	2. 36	0. 57	0.65	2. 17	1. 82
ap	0, 02	0.02	0.02	0. 07	0. 28	0.36	0. 17	0.47
TOTAL	91, 04	85. 95	96, 10	96. 20	95. 80	99. 99	97.06	97. 20
Fenic	77.84	83, 25	42. 78	26, 92	8.58	8.07	26. 55	22, 11
S. I.	71.60	84. 76	<u>55. 49</u>	32, 53	15. 31	11. 55	30, 64	27. 54

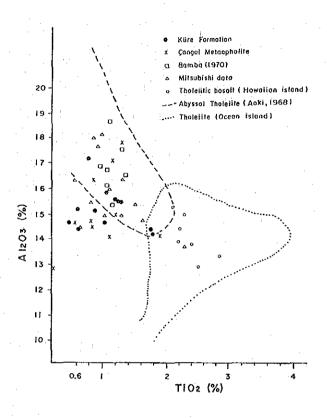

	800A	H015	M049	Y009	Y096	Y097	1286	Y075
Ва ррш	< 10	< 10	100	20	230	430	150	200
Nb .	< 10	< 10	< 10	< 10	< 10	< 10	< .10	< 10
Rb	< 5	< 5	5	5	109	114	38	76
Sr ·	< 10	< 10	60	100	160	220	310	270
Y	< 10	< 10	10	30	10	10	30	20
Zr	10	< 10	80	70	100	_100	40	90

Area	Sample No.	Rock Name	Location	Coordinates
Küre	A008	Pyroxinite	N. Kızılsu	2558710 4629470
Kure	H015	Serpentinite	NW. Kizana W.	2556200 4632350
Küre	₩049	Gabbro	NE, Kızılsu	2559020 4629400
Küre	Y009	Diorite	S, Küre	2559500 4629120
Küre	Y096	Dacite	As1köy	2575220 4630793
Küre	Y097	Dacite	NW. Toykondu	2555770 4631800
Taşköprü	ц286	Diorite	NE Yalakdere	2605700 4619140
Taşköprü	Y075	Bio-granite	NE, Ambarkaya	2587740 4617790

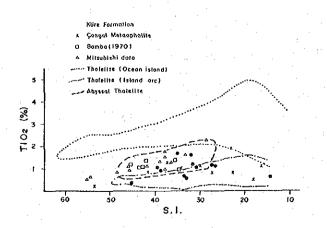


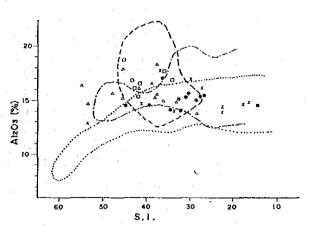
第1-6図 AFMダイヤグラム

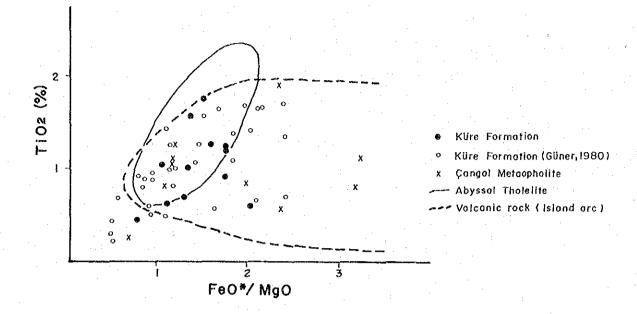

第1-7図 AFMダイヤグラム



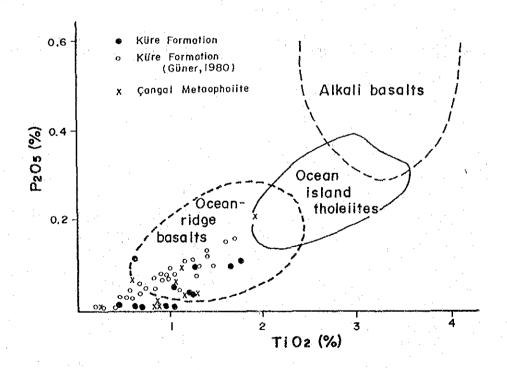
第1-8図 Na₂0+K₂0-SiO₂ダイヤグラム


第1-9図 SiO₂-FeO+/MgOダイヤグラム




第1-10図 (Na₂0+K₂0)-Al₂0₃-Si0₂ダイヤグラム

第1-11図 Al₂0₃-TiO₂ダイヤグラム



第1-12図 固結指数-TiO2-Al2O3ダイヤグラム

第1-13図 TiO₂-FeO¹/MgOダイヤグラム

第1-14図 P2Os-TiOzダイヤグラム

4-1-3 鉱石研磨片

研磨片は60件作成、キューレ鉱床関係が56件、タシュキョプル地区が4件である。研磨片の試料採取位置は巻末添付図に、採取試料の座標は第1-11表に、検鏡結果は第1-12表に、 顕微鏡写真は巻末の写真2に示す。

キューレ鉱床を構成する鉱石は肉眼的観察より塊状鉱、角礫状鉱、鉱染状鉱、脈状鉱に 分けられる。いずれも黄銅鉱と黄鉄鉱とが様々な比率で共存しており、その平均銅品位は アシュキョイ鉱体で3%、バキババ鉱体で6%である。主な鉱石鉱物は黄銅鉱、黄鉄鉱で、こ の他少量の斑銅鉱、磁硫鉄鉱、磁鉄鉱、関亜鉛鉱、方鉛鉱、白鉄鉱、エレクトラム、コバ ルト鉱物 (bravoite, carrollite) などが認められる。

塊状鉱はその殆どを硫化鉱物で占められるが、角礫状鉱は塊状鉱として生成した硫化鉱 物が角礫化し、マトリックスを脈石鉱物及び粘土鉱物、硫化鉱物が埋めている。

鏡下ではコロフォーム状、ゲル状の微粒黄鉄鉱、粗粒黄鉄鉱からなり、粒間を黄銅鉱が埋めるが、この場合、破砕された (cataclastic) 黄鉄鉱の粒間を黄銅鉱が埋める組織が顕著に認められる。

鉱染状鉱では硫化鉱物が1/3以下で、母岩のハイアロクラスタイト中では、緑泥石及び絹 雲母が顕著である。

脈状鉱は黄銅鉱が多いものから、黄鉄鉱のみからなるものまであり、下盤のハイアロクラスタイト玄武岩類と明瞭な境界を持つ。硫化鉱物の結晶は粗粒である。

第1-11表 研磨片試料表(1)

Küre (1)

No.	Description	Locality	Y	X
A023	Massive cp-py ore	Aşıköy	2557522	4630811
	Massive cp-py ore	Aşıköy	2557516	4630798
	Brec basalt with hem	Asıköy	2557467	4630847
	Massive py-cp ore	Aşıköy	2557526	4631150
A025	Massive py ore	A\$1köy	2557518	4630870
	Brec py ore	Aşıköy	2557488	4630957
	Basalt with net py-cp	Asıköy	2557458	4630808
	Massive py-cp ore	Aşıköy	2557492	4630908
	Massive py ore	Aşıköy	2557539	4630862
	Massive py ore	Aşıköy	2557461	4630750
A027	Massive coloform py	Aşıköy	2557475	4630890
1.097	Massive py ore(Col.)	Asıköy	2557524	4630797
M058	Massive by ore	Aşıköy,920ML	2576105	4630788
MOSG	Massive py ore	Aşıköy, 920ML	2576105	4630788
	Massive ore	Aşıköy	2557400	4631200
	Massive ore	Asıköy	2557400	4631220
	Massive ore	Aşıköy	2557423	4631250
	Massive ore	Asıköy	2557550	4631000
	Diss py sil. ore	Aşıköy	2557345	4630816
	Brecciated ore	Aşıköy	2557265	4631176

第1-11表 研磨片試料表(2)

Kure (2)

100				
No.	Description	Locality	Y	X
A029 A068 A069 A070 A071 A072 A073 A074		Aşıköy Aşıköy S-136:433.5m S-155:196.6m S-138:53.8m S-106:8.0m S-82:45-50m S-67:47.0m S-64:138.0m Bakibaba	2557513 2557400 2557647 2557420 2557351 2557492 2557519 2557539 2557539 2558390	4630876 4630834 4630635 4630750 4631358 4631020 4630856 4630778 4630778 4630739 4628892
M060 M061 M062 M063 M064	Massive cp ore Massive cp ore, 920ML Massive py-cp(1014ML) Massive py ore(1014ML) Brecciated cp-py ore Massive py-cp ore Brec basalt with lim Slag Slag Slag	Bakibaba Bakibaba Bakibaba Bakibaba, 1080 Bakibaba, 1080 Bakibaba Bakibaba Bakibaba Bakibaba Bakibaba	2558416 2558460 2558430 2558433 2558464 2558465 2558410 2558450 2559135 2558920	4630770 4630780 4630741 4630740 4630723 4630719 4630770 4630620 4630990 4630685
A041 A044 A046 A060 A061 A062 A063	Slag Slag No.163:22-24m No.164:40.5-43m No.164:45.2-47.5m No.165:62m Bre py-co ore Massive cp-py ore Massive py-cp ore Basalt with cp-py ore	Bakibaba Bakibaba T-163:23m T-164:41.5m T-164:46m T-165:62m KS-49:34.2m KS-50:25m KS-24:62.1m KS-2:61.8m	2558950 2559030 2557370 2557379 2557379 2557258 2558365 2558384 2558502 2558423	4630930 4630780 4631353 4631310 4631294 4629110 4629077 4629067 4629088
A066 A067 A056	Basalt with cp-py ore Basalt with cp-py ore Basalt with cp-py ore Massive cp-py ore Gossan Silicified py veinlet	KS-43:50.4m KS-33:18.5m KS-33:36.4m KS-32:33.7m N.Zemberekler Zemberekler	2558595 2558560 2558560 2558580 2559765 2559670	4628990 4628986 4628986 4628975 4630570 4630400

Taşköprü

No.	Description	Locality	Y	X
N057 H036	Slag Pyrite ore Pyrite ore Gossan with py	Cozoglu S.Karaoglan Boyalı Kepez	2613530 2581070 2603000 2593600	4615300 4603950 4615963 4619400

第1-12表 檢鏡結果(研磨片)一覧表(1)

Sample Sample	Ore					Ore	Ore Minerals	rals						Gangue Minerals	Mine	rals	Texture	re Remarks	
No.		ፚ	ප	Sp	Bo	ප	Te	Mr. P	Pr II	Mg He	L.	n. Ru	OZ	S	Se	S. Cr	33	5	
A023	Massive cp-py ore	0	0						ļ	ļ			0			·} · · ·	•	~i	
L100	Massive cp-py ore	0	Ο			◁	4		ļ				0	Ο	O			galena 🛆	:
A028	Brec basalt with hem	ď							7	\triangleleft	\triangleleft		О			Ο	•	• ophitic texture	
A032	Massive cp-py ore	0	0					4		ļ							•		:
A025	Massive py ore	0									ļ	ļ			ļ				1
A057	Brec py ore	0		0			-) ()	}			ļ			}		•		Τ
A058	Basalt with net py-cp	0	0										(O	С		С	•	• ophitic texture	1
A059	Massive cp-py ore	0	0			*	ļ	<u> </u>	ļ	ļ. 	<u> </u>	<u> </u>) [))	•)	i
L095	Massive py ore	0	0				:										•		-
1101	Massive cp-py ore	0	О	◁		{		ļ	<u> </u>			4	0	0			•	bravoite []. chromite \wedge	
A027	Massive py ore	0										\triangleleft			 	 	•	Ì	
1.097	Massive by ore	0		◁															-
#058	Massive py ore	0										4		}			•	chromite △	1
M059	Massive ore	0						0				◁					•		Ī
Y031	Massive ore	0					·			◁					:		•		1
Y032	Massive py ore	0				4											•	digenite-covelline △	7
Y033	Massive py ore	0									<u>:</u> :	◁		1			•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Y040	Massive py ore	0												Ο		0	•		-
L106	Diss py sil ore	0						\Box	; ;	ļ	<u></u>	<u>.</u>	0		ļ		9	; i i i i i i i i i i i i i i i i i i i	-
Y038	Brec ore	0	0										0				•	4	1
A026	Basalt with cp-py ore		◁	◁					ļ	ļ		ļ	0	0] 		•	chromite △	Γ
4029	Crystallized py ore	0		◁			.			ļ		ļ 	0	О	Ò	0		1	i
A068	Massive cp-py ore(core)	0	О									\triangleleft	0	Ο			•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	;
A069	Massive cp-py ore(core)	0	Ο					<u></u>				◁	0				•		:
A070	cp ore(co	0			0												•	• digenite	
A071	Massive cp-py ore(core)	0	О									◁		0			•	• ilmenite △	Γ
A072	Basalt with py-cp(core)	О								:<	4	4		0		0	•	ophitic texture	-
A073	Basalt with py(core)	0									◁	ii		Ο				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
AU (4	Basalt with py(core)	0			,			<u> </u>			◁	◁		0	 O	Ο	•		
A034	Sil cp-py ore	O	0						• • • •	◁		◁					•		-
																			1

©:Abundant O:Common D:Few A:Rare Cp:chalcopyrite, Py:pyrite, Sp:sphalerite, Bo:bornite, Co:covelline, Te:tetrahedrite, Mr:marcasite, Pr:pyrohtite, Mg:magnetite, He:hematite, Lu:leucoxene, Ru:rutile-anatase Qz:quartz, pl:plagioclase, chlorite, Se:sericite, Ep:epidote, Ca:calcite, Cr:carbonite, CC:cataclastic, CF:colloform :Major :minor