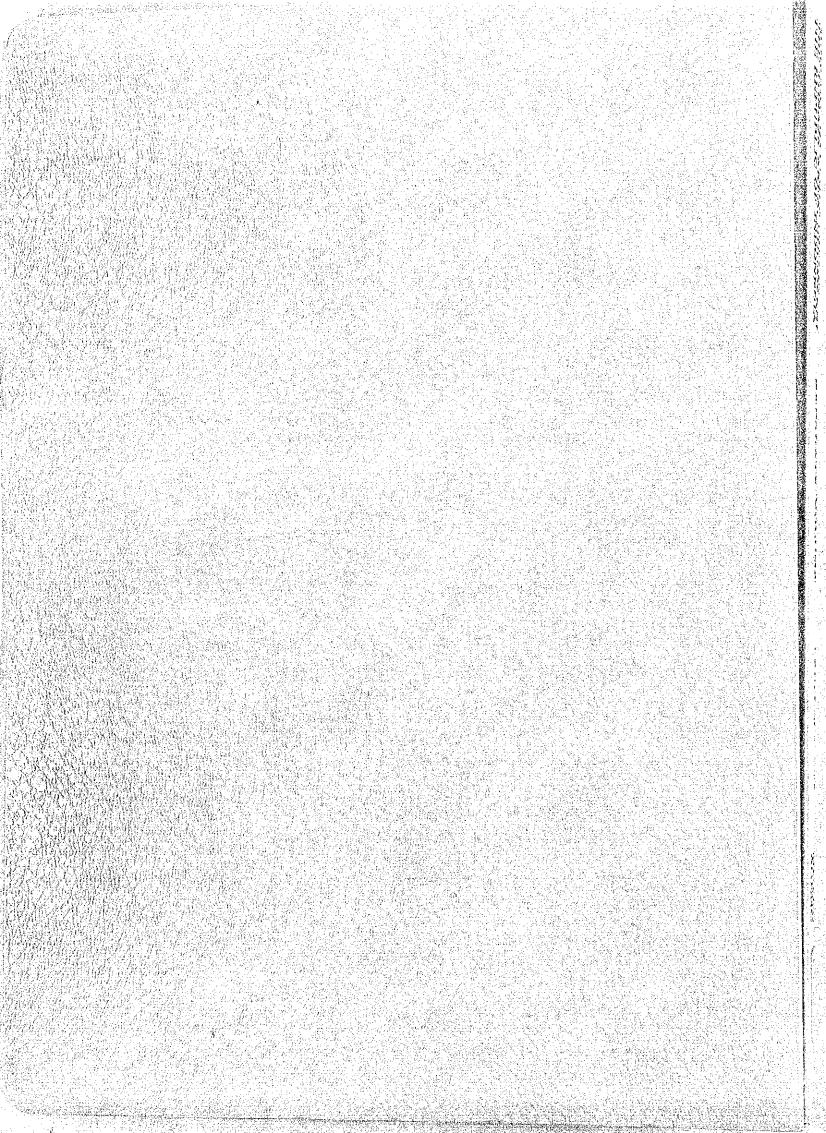
App. 1.4 Results of Chemical Analysis of Rock-chip Samples(4/8) Batuisi Prospect

batu181	Trospect	<u> </u>		·							
Sample	Au NAA	Ag	As	Bi	Cd	Ču	Нg	Мо	Рь	Sb	Zn
description	ppb	ppm	ppp	ppm	opn	pp⊯	ppb	ppm	ppn	ppm	ppæ
BTB031R	<1.	<0.02	1.0	: <0.2	0.1	28.0	30	1.4	<0.5	<0.2	86
BTB034R	2	0.06	15.4	<0.2	<0.1	240	20	2.4	<0.5	<0.2	81
BTB037R	<1.	<0.02	7.0	<0.2	<0.1	19.6	20	3.0	1.0	1.6	34
BTB039R	<u></u>	<0.02	0.6	<0.2	0.1	22.8	20	1.4	0.5	<0.2	81
BTB041R	<1	<0.02	1.0	<0.2	<0.1	27. Ó	20	0.6	0.5	<0.2	75
BTB042R	<1	0, 02	0.2	<0.2	<0.1	67.8	30	<0.2	0.5	<0.2	75
BTB043R	<1,	<0.02	1,2	0.2	<0.1	70.2	20	<0.2	<0.5	<0.2	45
BTB002Q	4	0.06	9.8	<0.2	0.1	125.5	20	12.0	1.0	0.4	48
BTB005Q	4	<0.02	4.0	0.2	<0.1	15.8	20	7.8	0.5	<0.2	11
BTB008Q	<1	0.04	2.4	<0.2	<0.1	65.6	70	14.6	<0.5	<0.2	44
BTB010Q	<1 7	0,08	2.4	<0.2	<0.1	145.5	30	16.2	0.5 1.5 1.0	<0.2	32
BTB013Q		0.24	6.4	<0.2	0.2	605	60	11.6	1.5	0.6	146
BTB015Q	19	0.46	48.4	<0.2	1.7	625	190	15.4	1.0	<0.2	473
BTB017Q	227	9, 40	33.4	63.4		3760	460	11.6	3.5	<0.2	280
BTB018Q	6	0. 26	4.8	<0.2	0.8	661	50	0.2	1.0	<0.2	274
BTB020Q	2	0.10	8.0	<0.2	0.3	378	50	<0.2	<0.5	<0.2	141
BTB021Q	1.	0.06	6, 2	0.2	0.2	188.0	50	0, 2	<0.5	0.2	176
BTB022Q	9	0, 54	10.8	<0.2		3170	70	<0.2	0.5	<0.2	76
BTB026Q	<u>\</u>	0.04	2.0	<0.2	0, 3	298	60	<0.2	0.5	<0.2	184
BTB029Q	2	<0.02	1.0	<0.2	<0.1	76.0	60	<0.2	<0.5	<0, 2 <0, 2	64
BTB031Q	5	0.04	2.8	0.2	<0.1	26.8	40	0.4	5.5		64
BTB034Q	16	4. 32	19.6	3.2		4310	420	1.2	2.5	<0.2	993
BTB035Q	12	0.72	58. 2	<0, 2	<0.1	323	40	<0.2	0. 5 1. 5	<0.2	79 62
BTB036Q	5	0.60	36.4	0.2	0.1	365	290	0. 2 0. 4	<0.5	149. 5 2. 4	12
BTB037Q	1	0. 22	16.4	0.2	<0.1	145.0	60		0.0	0.2	176
BTB038Q	8	0.14	11.8	<0.2	0.1	200	120	0.2	2.5		164
BTB041Q	8	0.02	2.0	<0.2	0.2	65.6	70	11.2	<0.5	<0.2 <0.2	142
BTB042Q	4	0.02	4.2	<0.2	0.7	91.2	40	21.8 8.2	2.0 <0.5	<0.2	8
BTB043Q	(1)	0.02	0.8	<0.2	<0.1	44.4	20		<0.5	<0.2	62
BTB044Q	2	0.74	17.2	<0.2	<0.1	1040	40	16.8 18.4	2.0	<0.2	161
BTB045Q	11	3.10	20.0	4.2		4340	70	10.4	0.5	<0.2	8
BTB046Q	<u> </u>	0.04	2.0	<0.2	<0.1	92.6	30	17.8	0.5	<0.2	15
BTR050Q	3	0, 16	6.0	<0.2	<0.1	93.0	50	19.2	0.5		
BTB053Q	<1	<0.02	3.6	<0.2	<0.1	19.0	30	16.2		<0.2	33 973
BTB054Q	300	9. 58	532	2.0	2. 3	4250	1700	26.8	9.0	3.8	77
BTC003	1	0.10	3.0	0.2	<0.1	43.8	70	2.6	10.0	<0.2	
BTC004	4	0.06	4.6	1.0	<0.1	41.8	40	1.8	11. 0 20. 5	<0.2 <0.2	96 122
BTC010	10	. 0. 08	5.4	0.6	<0.1	62.4	60	0.8			
BTC011	2	0.28	2.8	<0.2	2.0	563	320	14.2	17.5	<0.2	699
BTC012	1	0.02	1.6	<0.2	0.5	46.6	140	18.8	0.5	<0.2	216
BTC013	5	0.04	4.6	<0.2	3.1	96.8	300	20.0	1.0	<0.2	822
BTC014	3	0.02	6.6	<0.2	0, 1	38. 0	60	1.8	0.5	<0.2	103
BTC015	<1	<0.02	0.8	<0.2	<0.1	7.8	50	13.8	0.5	<0.2	27
BTC016	16	0.02	1.6	<0.2	0.7	57.8	320	20.0	2.5	<0, 2	265 76
BTC017	<1	<0.02	1.2	<0.2	<0.1	5.0	70	4.2	5.0	<0. 2 0. 2	
BTC018		0.02	2.0	<0.2		47.6	210	17.0	0. 5 20. 5	1.6	42 88
BTC019	8	0.12	18.0	0.6	<0, 1	32.8	210 40	3. 2 6. 2	<0.5	0, 2	77
BTC020	10	<0.02	4.8	<0.2	0.1	12.8				<0.2	34
BTC021	2	0. 14	0.4	<0.2	<0.1	10.2	30 40	<0.2 <0.2	<0.5 12.0	<0.2	141
BTC022	2	0.06 <0.02	6.8	<0.2	0.3	106. 5 6. 6	20	<0.2	0.5	<0.2	31
BTC023	<u>l</u>		1.2	<0.2	<0.1		30	₹0, 2	0.5	<0.2	66
BTC024	1	0.02	3.0	<0.2	<0.1	62.4 65.8	550	5.0	61.5	3, 2	185
BTC025	13	0.40	94.8	0.8	<0.1	50.6	200	0, 4	27.5	1.2	121
BTC026	10	0.08	37.0	0.6	<0.1	56.8	200 80	0.4	20.5	<0.2	116
BTC027	4	0.12	13.0	0.6	<0.1		60	1.0	20.0	0. 2	118
BTC028	3	0.08	7.0	0.8	0.1	64. 2 23. 2	20	1.8	<0.5	0. 2	92
BTC029	l	<0.02	8.0	0.2	<0.1		20	0.2	2.0	<0.2	79
BTC030	1.	0.02	15.0	0, 2	<0.1	56.0		V. 4		1.8	339
BTC031	11	0.14	28.8	0.2	2.2	197.5	90	<0.2	1.0		
BTC032	1	0.04	16.2	<0.2	0.2	66.8	20	<0.2	<0.5	0.2	85
BTC033	<1	<0.02	<0.2	0, 2	<0.1	64.0	10	<0.2	<0.5	<0.2	49
BTC034	<1	0.04	0, 8	0, 2	0, 1	23, 6	20	<0.2	<0.5	<0.2	78
BTC035	9	0.58	14.0	<0, 2	1, 0	395	170	17.2	0, 5	0.2	225
BTC036	<1 2	<0.02 0.04	0.8 7.0	<0.2 0.4	<0.1 <0.1	15.4 41.0	20 50	17. 0 2. 0	<0.5 15.0	0. 6 <0. 2	12 92
BTC037			. 77		. /11 1	. 41 []	- 5/1		. 12 11	CH 7	. 97

App. 1.4 Results of Chemical Analysis of Rock-chip Samples (5/8) Batuisi Prospect

DUCKTUL	rrospect	_		***************************************							
Sample	Au NAA	Ag	As	- Bi	Cd	Cu	llg	Мо	ԲԵ	Sb	Zn
description	ppb	ppm	ppa	ppa	ppa	ppm	ppb	hbm	nqq	ppm	ppn
BTC038	1	<0, 02	10.8	<0.2	0, 1	17.0	20	19.0	0.5	0.2	52
B1C039	6	0.04	0.8	0.2	<0.1	46. 2	20	2.0	2.0	<0.2	82
BTC040	<1	0.02	3, 4	<0.2	0,4	38. 4	10	5.0	1, 5	<0.2	21
BTC041	4	0.02	1,4,	<0.2	0.4	57.0	20	22.6	7, 5	<0.2	33
BTC042	9	0.02	10.4	<0.2	<0.1	19.8	10	14. 2	2. 5	0.2	23
BTC043	1685	1, 14	11.4	<0.2		2050	50	17.4	1.0	0.2	105
BTC044	207	0. 22	4.2	<0.2	0.4	359	30	18, 4	0.5	0.2	130
BTD017	8	0.06	33, 2	0.4	<0.1	38, 6	40	3.2	26. 5	0.6	97
8TD018	<1	<0.02	0. 2	<0.2	< 0.1	29.6	10	1, 6	0.5	0.6	17
BTD019	3	<0.02	0.8	0.2	<0.1	17.2	10	3, 6	0.5	<0.2	15
BTD020	56	0.12	14, 4	<0.2	<0.1	167. 5	30	19.0	1.0	2.2	44
BTD021	1	<0.02	1.2	<0.2	<0.1	61.8	10	4.8	0.5	<0.2	57
BTD022	6	0.02	10.6	<0.2	<0.1	78. 2	10	1.6	<0.5	<0.2	53
BTD023	<u>1</u>	0, 04	1.8	<0.2	<0.1	34.8	20	17.8	0.5	<0.2	13
BTD024	13	0. 76	19.0	<0.2	<0.1	607	10	16, 4	0.5	<0.2	100
BTD025	1	0. 26	4.0	<0.2	1.5	576	90	23.8	0.5	<0.2	370
BTD026	<1	0.02	5, 2	0. 2	<0.1	82.6	10	1.0	0.5	0.6	82
BTD027	<1	0.02	5, 2	<0.2	<0.1	254	10	2.0	<0.5	<0.2	164
BTD028	3	0, 04	7, 6	0.2	<0.1	57.4	10	1.4	0.5	<0.2	81
BTD029	16	0.40	63. 4	0.8	0.7	54. 2	130	75.0	47.5	2.4	125
BTD030	2	0.02	5.6	0.2	<0.1	7.4	20	14.0	5.0	0.2	19
BTD031	3	0.16	9, 0	0.6	0.1	65. 4	70	2.2	26. 0	0.2	156
BTD032	17	0.08	3, 2	<0.2	<0.1	83.0	10	12.8	0.5	<0.2	35
BTD033	্ব	0.02	10.4	<0.2	<0.1	45.4	10	1.8	0.5	<0.2	142
BTD034	<1	0.02	0.8	0.2	0. 1	27.8	20	1, 2	0.5	<0.2	151
BTD035	27	0.12	38, 4	0.8	0. 1	56. 4	70	2.0	17.0	1.0	95
BTD036	127	0.04	353	<0.2	0.3	31.2	10	18.4	1.5	1.8	17
BTD037	<u>1</u>	<0.02	13.0	<0.2	<0.1	4.2	10	7.2	0.5	0.2	19
BTD038	58	0.02	8.4	<0.2	0.1	59.8	10	2. 2	0.5	<0.2	66
BTD039	5	0.08	9.6	0.2	0.4	73.8	10	6.2	10.5	0.2	74
BTF001R	3	0.14	8.8	0.6	0.1	52.0	140	1.0	25.0	0.2	158
BTF002R	2	0.10	7.8	0.8	<0.1	45.0	70	0.8	19.0	0.2	126
BTF007R BTF009R	<1	0.02	0.2	0.2	<0.1	49. 0	30	0.2	1.5	<0.2 <0.2	94
	<1 6	0.12	8.6	<0.2	0.2	314 62. 4	30	0.6 <0.2	7. 5 3. 5		106 90
BTF015R		0.02	25.8	0.2	<0.1	42.2	530 110		5.0	2.4 0.4	72
BTF001Q BTF002Q	4.	0.06 0.06	17.0 6.2	0.2	<0.1 <0.1	71.2	100	0, 6 0, 2	9.0	<0.2	90
BTF007Q	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.04	1.0	0. 2 0. 2	0.4	106.0	90	<0.2	4.0	<0.2	247
BTF012Q	<u>}1</u> 26	0. 28	3.6	0.2	5.4	553	650	<0.2	2.0	<0.2	2260
B7F013Q	4	1. 42	20.8	2.8		4320	740	<0.2	1.0	<0.2	1805
BTF017Q		0.08	1.4	<0.2	<0.1	61.4	100	<0.2	$-\frac{1.0}{0.5}$	<0.2	45
BTF019Q	<1 2	0.04	5.0	<0.2	<0.1	92. 2	100	<0.2	2.0	0.2	58
BTG001	6	0.06	2. 4	0. 2	0.1	34. 4	120	32.8	1.0	0.4	62
BTG002	15	<0.02	1.8	<0.2	<0.1	25. 6	40	20.8	1.0	0.2	15
BIG003	4	0.08	40.8	0.8	<0.1	22.4	90	3.4	16. 0	1.8	112
BIG013	2		3, 6	0.2	0.1	65. 8	40	1.0	1.0	<0.2	49
BTG014	4	0.02	29, 2	0.6	<0.1	44. 4	160	0.6	22.5	7.0	30
BTG015	1	<0.02	0, 4	0.0	<0.1	51.8	30	<0.2	1.5	<0.2	60
BTG016	2	0.14	14.4	0.6	<0.1	62.6	140	2.0	20.5	0.4	117
BTG017	7	0. 26	1.8	<0.2	0.2	1300	50	0.4	1, 0	0.4	47
BTG018	6	0, 08	3.6	0. 2	<0.1	47.8	60	0.4	1.0	<0.2	86
BTG019	10	0.16	5.8	0.2	<0.1	19.0	40	0.4	1.0	1.8	8
BTG020	27	0. 02	1.8	<0.2	0.1	86, 6	40	<0.2	1.0	0.8	73
BTG021	52	0.14	6.8	0. 2	1.9	409	180	<0.2	1.5	<0.2	857
BTG022	3	0.02	2.4	0.4	5.0	78.8	450	0.4	1.5	₹0.2	2160
BTG023	<1	0.02	0. 2	0. 2	0.1	76.4	80	0.4	0.5	<0.2	64
BTG024	59	0.00	0.0	0.0	0.0	0, 0	0	0.0	0.0	0.0	0
BTG025	9	0.18	1,8	0.4	3.2	418	960	0.4	0.5	<0.2	2040
BTG026	9 4	0.02	0. 2	0. 2	0.1	46. 4	100	0.2	0, 5	<0.2	87
BTG027	6	0.16	2.6	<0.2	<0.1	283	110	0.4	0.5	<0.2	37
BTG028	<1	0, 10	7.8	<0.2	<0.1	72.0	40	0.4	0.5	<0.2	16
BTG030	2	<0, 02	0, 4	<0.2	<0.1	53.8	30	<0.2	<0.5	<0.2	69
BTG033	10	0.04	1.0	<0.2	···(0. 1	9.0	30	0.2	0.5	0.6	9
BTG034	iö	0.02	2, 4	<0.2	<0.1	43.0	30	<0.2	<0.5	<0.2	100
BTG037	2	0.02	2.0	<0.2	<0, 1	137.0	30	<0.2	<0.5	2.2	38
				<u> </u>	شتب		·				

App. 1.4 Results of Chemical Analysis of Rock-chip Samples(6/8) Batuisi Prospect


Da caro.	1100000										
Sample	Àu NAA	Ag	As	Bi	Cal	Cu	llg	Мо	Pb	Sb	Zn
descripti	ppb	ppm	ppm	pp#	ppa	ppa	ppb	ppa	ppa	pp≊	ppn
BTHOO1	<1	<0.02	2.2	0.2	0.2	10.6	40	11.2	1.0	<0.2	22
BTH002	6	0. 26	9.6	0.6	<0.1	51, 8	230	1.6	26. 5	0, 6	143
BLH008	2	0.06	9.8	0.6	<0.1	44.2	80	3. 2	23. 5	0.6	131
BTH009	3	2.56	24.0	0. 2	<0.1	108.0	100	15.6	4.5	76, 2	-13
BTHO10	1	0.22	8.2	0.2	<0.1	76.0	60	15.6	1.0	4.2	31
BTH019	4	0.02	4.2	0.2	< 0.1	52. 6	40	1.8	1.0	1.2	73
BTH020	6	0.10	11, 2	0.8	<0.1	57.0	90	2.0	15.0	1.4	86
BTH024	2	0.02	5. 0	<0.2	<0.1	58.6	10	1.4	<0.5	0.2	42
BTH025	<1	<0.02	1, 4	0.2	<0.1	33. 2	10	13.0	<0.5	<0.2	3
BTH026	5	0.02	2, 8	0, 2	0.5	89.8	30	9.8	0.5	<0.2	116
BTH027	2	<0.02	0.6	0.4	<0.1	16.2	10	13.4	<0.5	<0.2	6
BTH028	<1	0.08	2.2	< 0.2	<0, 1	400	10	10.6	<0.5	<0.2	21
BTH029	2	<0.02	1.6	0.2	<0.1	15.0	10	1.8	<0.5	<0.2	23
BTH030	2	<0.02	0.8	0.4	<0.1	3.2	10	1.6	0.5	0.6	49
BTH033	3	0.02	4.4	0.2	<0.1	129.5	10	2.2	0.5	<0.2	72
BT11036	3	0.04	18, 8	0,6	<0.1	115.0	640	2.0	1.5	1.6	100
BTH038	6	0.08	2. 2	0.6	0.1	33.4	30	2, 0	3. 5	0.4	100
BT11039	16	0.06	10.8	0.6	<0.1	65.0	60	4.2	6.5	1.2	104
BTH040	16	0.08	18.4	0.4	<0.1	164. 0	160	8.0	2. 5	1.6	57

App. 1.4 Results of Chemical Analysis of Rock-chip Samples (7/8)
Bau Prospect

Bau Pros	Au NAA	Ag	Λs	Bi	Cd	Cu	llg	Vo	Pb	Sb	Žn
descripti	ppb	. ppm	pon	ppm	ppm	ррп	ppb	ppm	ppm	pps	ppn
BAB001R	11	0.12	21. 2	0.4	<0.1	56.0	100	1.2	18. 0	1.2	82
BABOO2R	<1	<0.02	1.6	<0.2	<0.1	6.0	20	<0.2	1.0	<0.2	80
BAB003R	1	0, 02	0.4	<0.2	<0.1	12.8	20	<0.2	0.5	<0.2	91
BABOO4R	6.	<0.02	0.8	<0.2	<0,1	72.2	20	<0.2	1.0	<0.2	88
BAB005R		<0.02	1. 6 3. 2	<0.2	0.1	38.6	10	<0.2	0.5	<0.2	27
BABOOGR BABOO7R	1 4	0, 02 0, 02	3.0	<0.2 0.6	<0.1	22. 0 27. 6	10 10	0. 2 0. 4	2. 0 12. 5	<0.2 <0.2	96 97
BABOOSR	3	0. 02	5.2	0. 2	<0.1	47. 6	30	0. 2	- 11. 5	<0.2	130
BABOOSR	5	0.02	0.8	<0.2	<0.1	41, 0	10	0.6	<0.5	<0.2	74
BABOTOR	5	0.06	16.6	0. 2	<0.1	46.6	80	0.6	18. 5	0.4	96
BAB011R	3	0.04	5.0	0.4	<0.1	62.0	50	0.4	18.0	0.6	121
BAB013R	2	0.20	1.2	<0.2	0.1	228	10.	0.4	8.0	<0.2	58
BAB014R	2	0.04	17.8	0. 2	0.1	106.0	10	5.6	8.5	0.4	30
BAB015R BAB016R	2	<0.02	0.8	<0.2	<0.1	20. 4	30	<0.2	3.0	<0.2	50
BABO17R	11.	0. 12 0. 18	2. 2 13. 4	<0.2 0.6	0.1	45. 0 59. 4	30 200	1. 2 0. 4	34. 0 25. 0	<0, 2 1, 2	73 105
BAB018R	× ≺i	0.02	0.2	<0.2	<0.1	105.0	30	5.6	6.5	<0.2	60
BAB019R	8	0.02	<0.2	<0.2	<0.1	8.8	20	<0.2	2.0	<0.2	80
BACOO8R	<1	<0.02	2.4	<0.2	<0.1	59.6	10	1.2	1.0	<0.2	75
BAC009R	2	0.02	5.4	<0.2	<0.1	103.0	10	2.6	1.5	<0.2	32
BAC012R	<1	0.04	4.2	0, 6	0.1	49.4	50	0.4	19.5	<0.2	134
BACO15R	<1	<0.02	1.4	<0.2	0.1	55.0	30	1.0	2.0	<0.2	68
BACO16R BACO17R	260 5340	0. 34 0. 92	5.8 7.4	<0.2 <0.2	67. 0 0. 1	398 1230	600 40	10.4 11.4	5. 0 <0. 5	<0.2	1350
BACO31R	13	0. 92	17.8	<0.2	2.7	29.6	60	3.0	22.5	1, 2 <0. 2	13 193
BAC033R	40	0.12	12.0	0.4	0. 1	67.6	30	1.4	22. 5	0. 2	102
BAC037R	25	0.06	5.8	0. 2	0.2	63.0	70	1.4	6.0	<0.2	92
BACO48R	23	0.04	3.0	0.4	0.2	66. 2	50	2.0	13. 5	<0.2	131
BAC053R	2	<0.02	1.2	<0.2	<0.1	9.6	20	1.6	32. 5	0.4	74
BACO54R	5	0.12	13.4	0.6	0.2	60.8	110	0.8	17.0	0.4	91
BAC057R BAC060R	8 <1	0.16 <0.02	28. 6 9. 0	0.4 <0.2	0.4 <0.1	51.6 9.8	<u>110</u> 40	2. 0 2. 2	30. 0 15. 5	1.6 <0.2	119 63
BACO77R	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.02	4.4	<0.2	0.1	9.2	20	3.4	22.0	<0.2	58
BAC082R	4	<0.02	2.4	<0.2	0.3	23. 2	20	1.0	11.0	<0.2	69
BAC091R	<1	0.04	5.6	<0.2	<0.1	24.8	40	1.0	9. 5	0. 2	77
BAC093R	2	<0.02	14.4	<0.2	<0.1	2.4	20	0.6	45.0	0.2	101
BAC103R	3	0.02	19.0	<0.2	0.1	55. 2	30	0.6	4.0	<0.2	68
BAC124R	14	0.20	23. 2	<0.2	0.1	9.2	280	1.6	33. 0 26. 5	2.6	83
BAC138R BAC145R	12	0.04 <0.02	12.0 0.4	0.4 <0.2	0.1	59. 0 4. 6	90 20	0.8 10.2	1.0	1.6 <0.2	126 9
BAD001R	3	0.04	3. 2	<0.2	<0.1	330	20	20.4	1.0	<0.2	26
BADOO2R	1.	<0.02	0.6	<0.2	<0.1	88.0	20	0.6	0.5	<0.2	99
BADO04R	2	0.02	2.2	<0.2	<0.1	53.6	50	2.0	6, 5	<0.2	111
BADO05R	3	<0.02	1.2	0.2	<0.1	61.4	40	0.6	8. 5	<0.2	99
BADOOGR	2	0.04	3.0	<0.2	<0.1	90.0	90	18.8	0.5	<0.2	40
BADOO7R BADOO8R	<1	<0.02	<0.2 3.4	<0.2 <0.2	0.1 <0.1	131. 0 145. 0	30 30	2. 0 13. 4	0. 5 0. 5	<0.2 0.6	107 30
BADOOSR BADOOSR	<u> </u>	<0.02 <0.02	1.4	<0.2	0.3	56.6	20	11.2	<0.5	<0.2	58
BADOLOR	<u> </u>	0.02	4.2	0. 2	<0.1	44. 0	50	2.0	5. 5	<0.2	97
BADO11R	1	<0.02	0.4	<0.2	<0.1	7.0	20	6.4	<0.5	<0.2	23
BADO12R	2	<0.02	0.6	0.2	0.2	108.5	20	0.6	<0.5	<0.2	150
BADO13R	2	<0.02	1.6	<0.2	<0.1	45. 2	10	1.6	0.5	<0.2	65
BAD014R	<1	<0.02	0.2	<0.2	<0.1	5.8	10	7.2	<0.5	<0.2	34
BADO15R BADO16R	27	0. 18 <0. 02	32.8 1.8	<0.2 <0.2	0.1 <0.1	23. 8 55. 6	$\frac{40}{10}$	17. 8 7. 8	4.0 0.5	0. 4 <0. 2	38
BADO18R	<1 <1	<0.02	2.0	<0.2	<0.1	26. 2	30	12.6	<0.5	<0.2	32
BADO19R	<1	<0.02	3.4	<0.2	0. 2	50.8	60	16.6	0.5	0.2	<u>54</u>
BAD020R	i	<0.02	7, 4	0. 2	<0.1	29. 0	20	5.8	0. 5	<0.2	119
BADO21R	<1	<0.02	0.8	<0.2	<0. I	27. 2	20	12.8	<0.5	<0.2	8
BADO23R	3	0.08	11.8	0.2	0.2	: 13, 8	20	3. 2	43.0	<0.2	105
BADO24R	4	0.02	0.6	<0.2	0, 1	146.5	50	6.4	4.0	<0.2	62
BADO25R BADO26R	5	0.02	10.6	9.2	<0.1	872 68 0	220 80	<0.2	<0.5	<0.2	8
BADO28R	<1 6	0. 02 0. 54	0.6 9.8	<0.2 <0.2	0.6	68, 0 1485	50	12.0 14.2	16. 0 0, 5	<0.2 <0.2	96 41
BADO29R	2	<0.02	1.4	0, 2	<0.1	67.8	30	11.6	0. 5	0.4	16
	<u> </u>	-0.05	4. 3	7, 2	1	,,,,,	- 50				<u> </u>

App. 1.4 Results of Chemical Analysis of Rock-chip Samples(8/8) Bau Prospect____

bau Pros	pect										
Sample	Au NAA	Ag	As	Bi	Cd	Cu	Hg	No	Pb	Sb	Zn
descripti	ppb	ppn	ppn	ppm	ррп	ppm	ppb	ppa	ppn	ppn	ppm
BAD030R	4	0, 94	3, 4	<0, 2	0.1	3810	60	12.6	0.5	<0.2	52
BAF001R	<1	<0.02	2.0	<0.2	<0.1	24.6	20	0.2	1.0	<0.2	95
BAF002R	<1	0.02	1.6	<0.2	<0.1	37. 2	30	<0.2	1.5	<0.2	82
BAF003R	<1	<0.02	0.6	<0.2	<0.1	48. 2	20	<0.2	0.5	<0.2	80
BAF004R	73	0.02	0.6	0.2	<0.1	34.8	20	<0.2	1.0	<0.2	88
BAF005R	2	<0.02	<0.2	<0.2	0.8	14.8	10	<0.2	1.0	<0.2	101
BAFOO6R	4	0, 08	26. 6	0.6	0.1	44.0	140	1.2	30.0	<0.2	137
BAF007R	2	0, 06	5.4	0.4	0.1	50.6	50	0.2	13.0	<0.2	166
BAF008R	2	0. 28	20.0	0.4	0.2	14.6	100	0.8	376	<0.2	349
BAF009R	3	0.02	4.0	0.2	<0.1	79. 0	70	2.0	22.5	<0.2	95
BAF012R	3	0.02	1.6	0.2	<0.1	26. 0	50	1.8	8.0	<0.2	54
BAF014R	1	<0.02	0.6	<0.2	<0.1	48.4	20	1.0	3.0	<0.2	39
BAF015R	2	0.06	2.6	0.6	0.1	28. 4	20	0.2	9. 5	<0.2	89
BAGOOIR	9	0.14	10.2	0.2	<0.1	32. 2	50	4.4	26. 5	1.6	80
BAG003R	<1	<0.02	2.4	<0.2	<0.1	24.2	30	0.4	5.0	<0.2	52
BAG020R	41	0.04	2.0	0.2	0.1	42.0	50	1.2	17.0	<0.2	108
BAG023R	<1	<0.02	0.6	0.2	<0.1	5.8	30	2.4	16.0	<0.2	56
BAG033R	<1	<0.02	1.8	<0.2	<0.1	76.8	20	2.6	1.5	<0.2	50
BAG035R	5	0.02	0.4	0.2	<0.1	8. 2	60	1.8	24. 5	<0.2	67
BAG038R	3	0.02	1.2	0.2	<0.1	7.8	30	2.4	10.0	<0, 2	77
BAG039R	<1	0.02	28. 6	0.4	<0.1	57.4	20	0.4	10.5	<0.2	111
BAG042R	<1	0.18	1.2	0.2	<0.1	17.8	20	3.0	71.5	<0.2	93
BAG013R	3	0.08	14.2	0.6	<0.1	33.8	10	4.2	9, 5	<0.2	95
BAG059R	10	0.14	25, 2	0.2	<0, 1	37.8	30	3.4	45, 5	2.0	46
BAG068R	4	0.04	0.6	<0.2	<0.1	36.4	40	3.4	7.0	<0.2	91
BAG073R	3	0.08	4.2	0.2	<0.1	76. 4	40	4.0	12.0	<0.2	43
BAG078R	1	0.02	3.2	<0.2	<0.1	27.0	50	2.0	9, 5	<0.2	94
BAG080R	3	0.02	8. 2	<0.2	<0.1	29. 2	60	1.4	10.0	0.6	75
BAG082R	<1	0.12	1.4	<0.2	<0.1	9.8	30	1.2	45.0	<0.2	61
BAG084R	<1	0.02	2.6	0.2	<0.1	9.0	20	3, 6	35.0	<0.2	65
BAG094R	<1	<0.02	0.4	<0.2	<0.1	51. 2	20	0, 6	1.5	<0.2	50
BAG096R	2	<0.02	0.4	<0.2	<0.1	20. 2	30	0.4	1.5	<0.2	63
BAG113R	4	0, 06	18.2	0.6	<0.1	58. 2	60	2, 2	29. 5	0.2	132
BAG120R	6	0.10	32.0	0.6	< 0.1	41.8	370	2. 2	34. 5	1.6	125
BAG122R	i	<0.02	0.8	<0.2	<0.1	14.0	40	1.8	3. 5	<0.2	51
BAHOO1R	5	0.02	2.0	0.2	<0.1	13, 4	30	<0.2	1.0	0.4	126
BAH002R	4	0.06	5.4	<0.2	0.1	24. 2	40	1.6	3. 0	<0.2	101
BAH003R	162	0. 20	7, 4	<0.2	1.0	835	170	10.4	0.5	<0.2	56
BAH005R	62	0. 20	3.8	0, 2	88.9	110.0	2000	13.6	482	<0.2	2380
<u> </u>											

