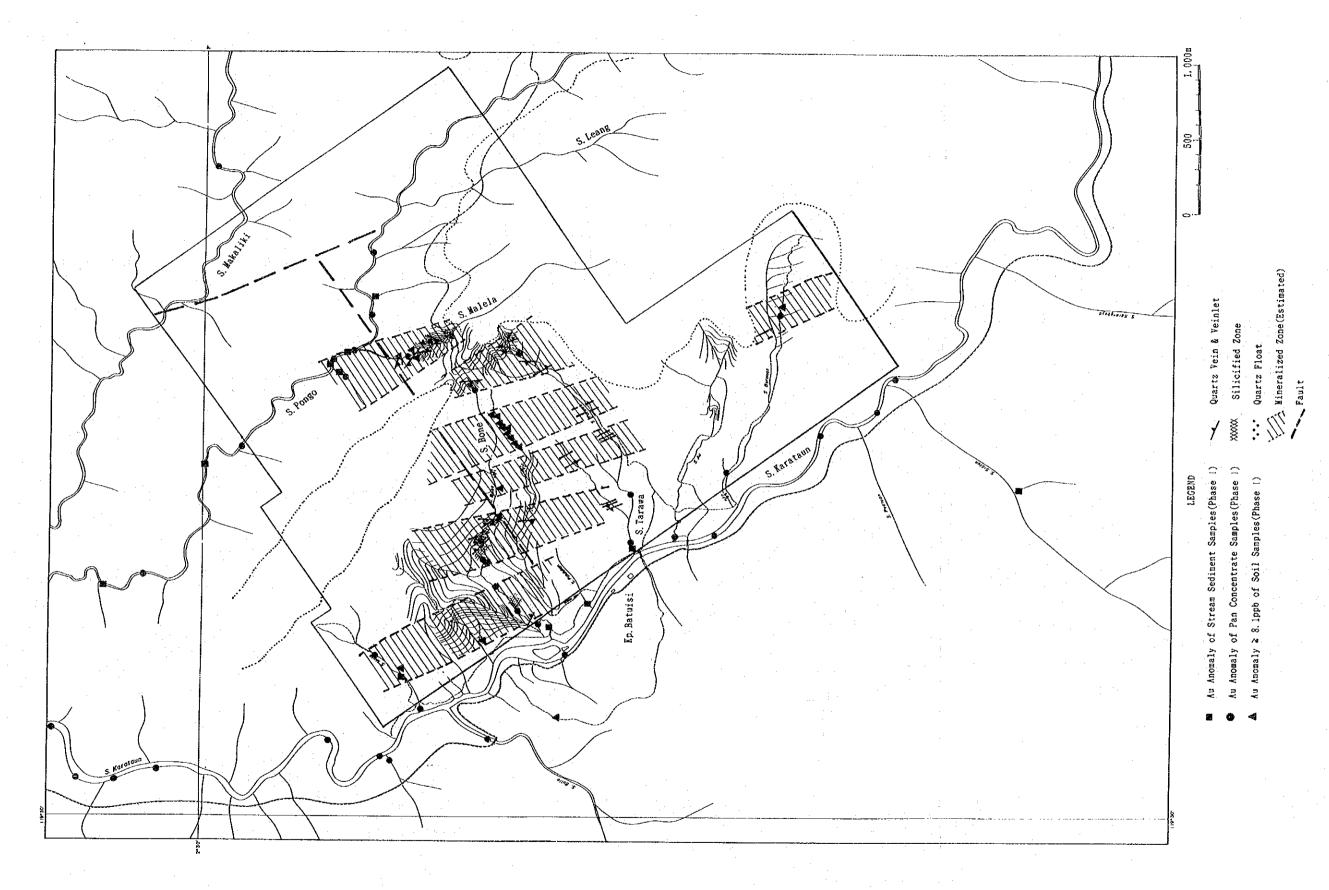
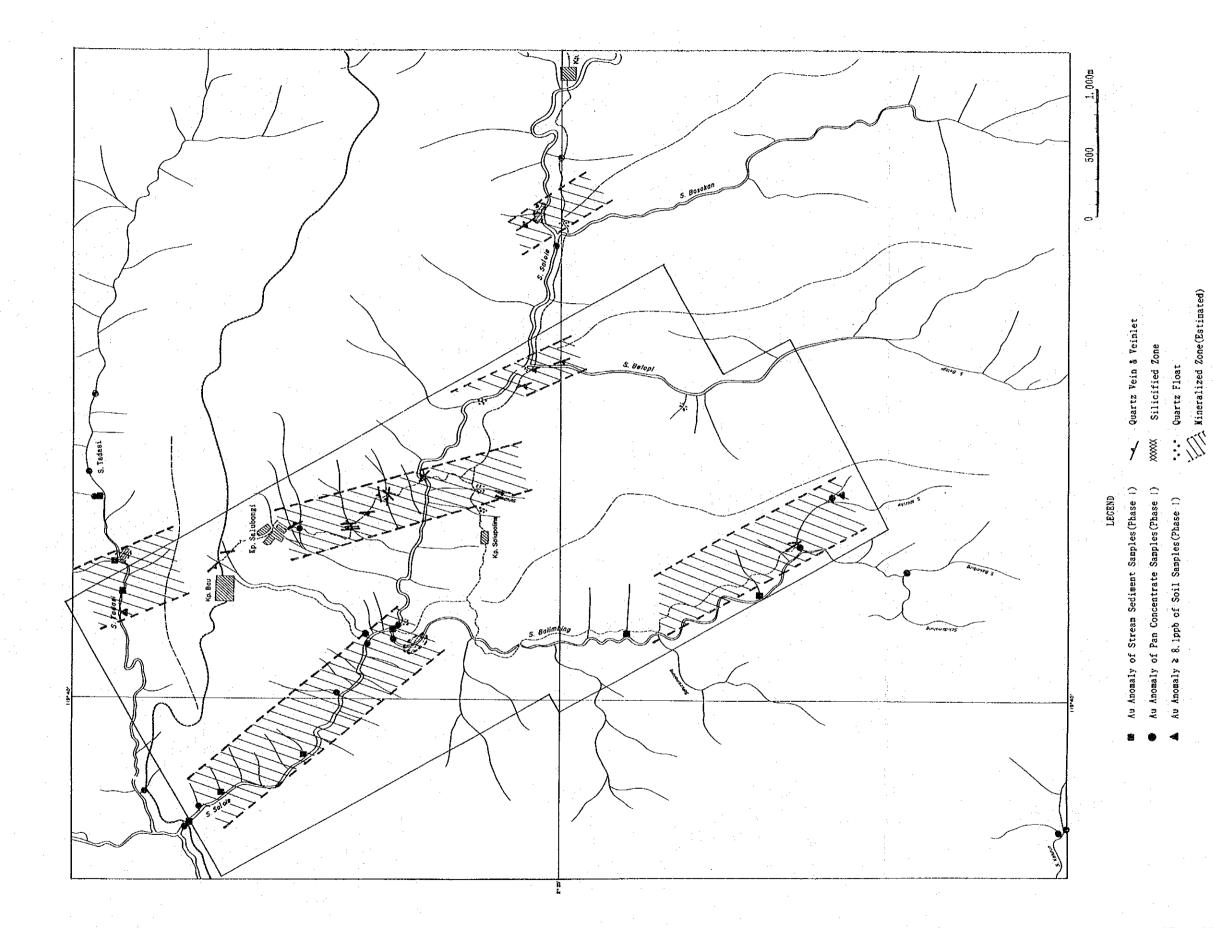

第 2-7表 土壌試料の相関マトリックス (1991)


	Au	٨g	As	Bi	Sb	llg	Cu	Pb	Zn	Ba	Мо
Αu	1.00	0.03	0.05	0.05	0.09	-0.00	0. 17	0. 02	0. 11	~0. 03	-0.06
Åg		1.00	0.30	0. 24	0. 20	0. 07	0.11	0. 32	0.16	0. 33	0. 37
As			1.00	0.36	0.41	0.07	0.00	0.56	0. 01	0. 45	0. 56
- Bi				1.00	0.06	0.05	-0. 12	0. 54	-0. 01	0. 52	0. 35
Sb					1.00	0.09	0. 24	0.07	0. 18	-0. 05	0. 24
Hg		4.	٠			1.00	0.04	-0.00	-0.07	-0.02	0. 07
Cu							1.00	-0. 30	0. 70	-0. 21	-0.03
Pb						ty i		1.00	-0.07	0.80	0. 55
Zn								٠.	1. 00	0. 07	-0. 03
Ba							-			1. 00	0. 45
No							1 :	٠		٠.	1. 00

第 2-8表 土壌試料の主成分分析結果表(1991)


	. 1	L		2		3		4
	Eigen-	Factor	Eigen-	Factor	Eigen-	Factor	Eigen-	Factor
	vector	Loading	vector	Loading	vector	Loading	vector	Loading
Au	0.006	0. 010	0. 212	0. 299	-0. 118	-0. 127	0. 927	0. 919
Ag	0. 286	0. 525	0. 211	0. 297	0. 011	0. 012	-0. 159	-0. 158
: As	0. 408	0. 749	0. 130	0. 183	0. 242	0. 261	0.038	0. 038
Bi	0. 366	0. 672	-0.054	-0. 076	-0. 174	-0. 188	0. 165	0. 164
Sb	0.140	0. 256	0.383	0. 541	0.487	0. 526	0.027	0. 027
lig	0.039	0. 072	0.048	0.068	0. 581	0. 628	0./109	0. 108
Cu	-0. 096	-0. 177	0. 623	0. 880	-0. 128	-0. 138	-0.095	-0.094
Pb	0. 479	0. 879	-0, 139	-0. 196	-0. 147	-0. 159	0.063	0.063
Zn	-0. 004	-0. 007	0. 566	0. 799	-0. 384	-0. 415	-0. 178	-0. 177
Ba	0.440	0. 808	-0.103	-0. 145	-0. 325	-0. 351	-0. 037	-0. 036
Мо	0. 405	0.744	0.059	0. 083	0. 177	0. 191	-0.168	-0. 166
Eigen	3.	367	1.	994	1.	167	0.	983
Prop	0.	306	0.	181	0.	106	0.	089
Cum Pr	0.	306	0.	487	0.	594	0,	683

第 2-3図 土壌分析値のヒストグラム (11元素)

第 2-4図 バトゥイン地区金鉱化作用の鉱徴分布図

第 2-5図 バウ地区金鉱化作用の鉱徴分布図

1-4 水銀ガス地化学探査及び植物地化学探査

(1) 水銀ガス地化学探査 (1) (1)

携帯型水銀測定器を使って土壌試料採取孔中の水銀ガス濃度の測定を行った。使用した 測定器は、日本インスツルメント社製のマーキュリー・スニッファーのモデルPM-1A である。この測定器は金アマルガム化法を採用しており、その測定理論については、第1 年次報告書に説明を掲載した。検出限界は0.01ナノグラム、検出上限は 100ナノグラムで ある。

試料孔は、直径45mm、深さは50cmのもので、ハンドオーガにより掘削した。孔中にPV Cチューブを約40cmの深さまで挿入し、孔口を密閉した。

孔中から土壌ガスを 1.2リットル吸引して現場にて濃度測定を行った。測定は50地点で実施した。水銀測定は、バトゥイシ地区の東西方向に約 2kmの測線に沿って、主要な石英脈を横断する形で設定された(植物試料採取ラインと同じ)。測定孔の間隔は、ライン沿いに平均 50mとしたが、石英脈の近くでは(半径 35m以内)10m 間隔に近接させて設定した。水銀ガス測定位置図を第 2-6図に示した。

土壌中の水銀ガス測定結果は、土壌の地化学的分析結果と併せて解析した。土壌の11元素の地化学分析値と、土壌中の水銀ガス濃度との間の相関係数を検討したが、Hg(ガス、ナノグラム)とHg(土壌、ppm)の相関係数値は、7パーセント未満であった。その他の元素との間にも、いかなる相関も見出せなかった。

第 2-8図は、側線に沿う地化学的模式断面を表す。幅約200mのAu異常域がはっきりと認められる。その近くには、Cu、Pb及びZnの異常が弱いものだが分布する。しかしながら、llgに関しては、土壌ガス、土壌ともに異常が認められない。

(2) 植物葉による地化学探査

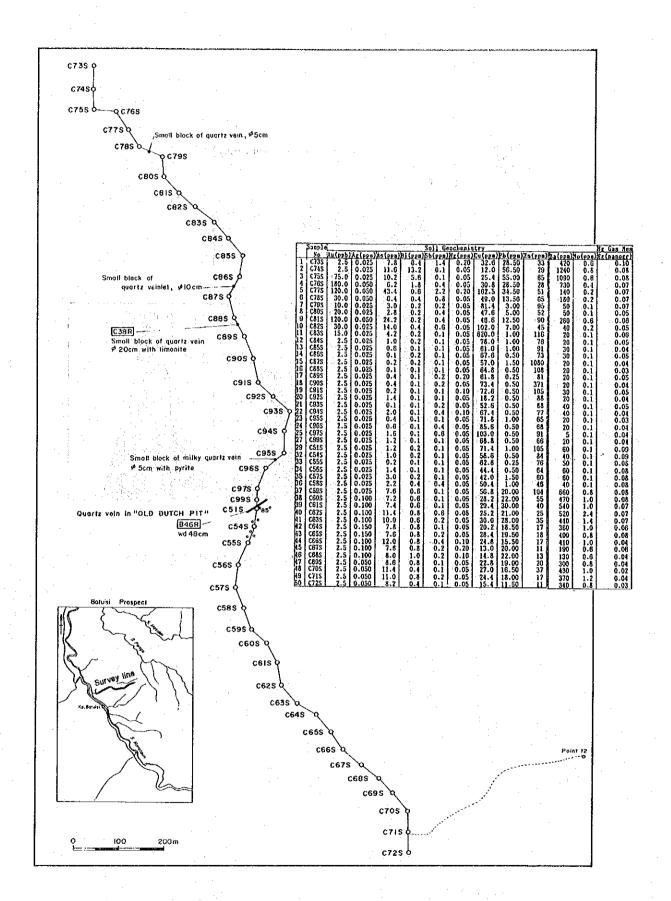
植物の葉による植物地化学探査の試験サンプリングがバトゥイシ地区で実施された。試料採取は、水銀ガス測定と同じライン上で行われた。 試料採取個所は合計して10地点で、それぞれにおいて土壌試料採取孔から半径 20m以内の範囲から試料を集めた。石英脈に接近する個所が4地点(石英脈から 50m以内)、石英脈から 100ないし150m離れて2地点、そして残りの4地点が脈から離れた個所である(700から900m)。今回の試験では6種類の草本植物を採取した。その内訳は、2種類がシダ類一 Kadak及び Potok。萱類が1種一Tille。 残りの3種が広葉草本類である一 Reubombo、Lito、Tilutilu。試料採取に際しては、葉柄と茎は葉から除去し、葉のみを水洗し、天日乾燥した。乾燥重量で約 100グラムをケメックス社に送って分析した。分析成分は次の7成分である; Au、As、Sb、Cu、Pb、Zn、Ba。分析の方法と検出限界については第 2-9表を参照されたい。化学分析の結果は、第1年次報告書に載せた。

結果は、期待に反していた。大多数の試料からは極めて低い金属元素の含有値が示され

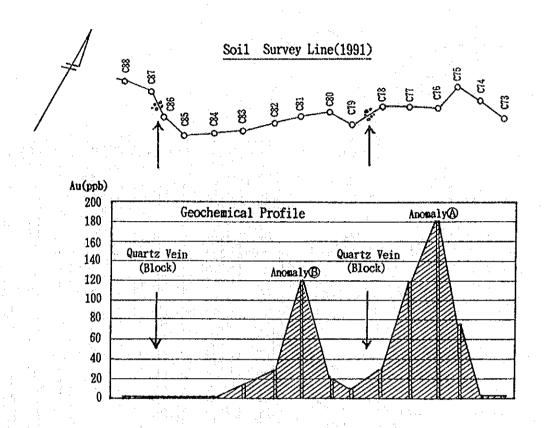
たのみであった。例えば、葉中のAuの含有量の最高値は、0.8ppbであった(試料28-®, Ti-lutilu)。植物の葉には、金属元素の濃集現象は全然見つからなかった。第2-9図は、植物葉中のAuと幾つかのベースメタル元素の、含有値の変動を表した模式断面図である。断面図上の各試料点の代表値は、分析値の平均を用いた。断面線は水銀ガスの時のものと同一である。

第 2-9表 植物葉試料の分析方法

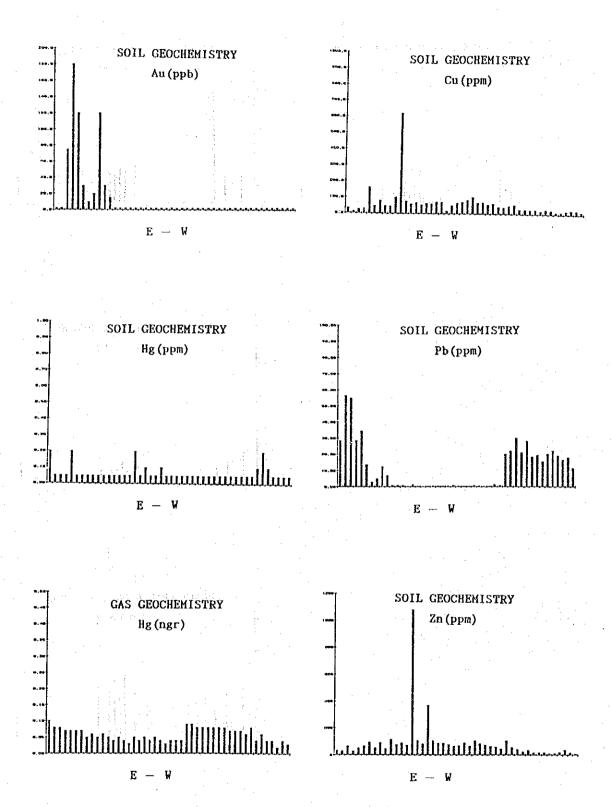
Element	Wethods of Analysis	Detection Limit	Upper Limit
	rest in a single contract of the contract of t		
Au	Fire assay with NAA finish	0.2 ppb	1 ppm
As	Aqua regia hydride with NAA finish	10 ppb	0.01 %
Sb	HCl/KClO ₃ extraction with NAA finish	5 ppb	0.01 %
Cu	Nitric aqua regia with AA finish	1 ррш	1 %
Pb	ditto	1 ррт	1 %
Zn	ditto	1 ppm	1 %
Ba	Total digestion with AA finish	10 ppm	1 %

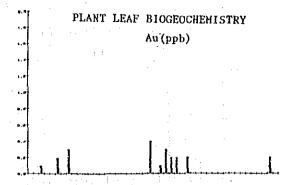

* NAA means Neutron Activation Analysis
AA means Atomic Absorption Method

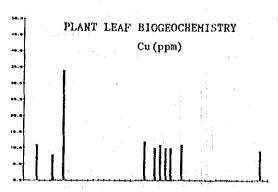
第2-10表 植物の葉サンプルリスト

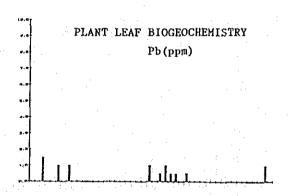

Г	Sample	Name of Samples	Sample:	Name of Samples
1`	No.	numb of oumproo	No.	in the state of th
\vdash	3-0		6-0	
	25-0	ln:Reubombo	8-0	ln:Potok
	28-0	sn:Asteraceae	23-0	sn:Polypodiaceae
	30-0	eupatorium inulifolium	49-0	dryopteris sp
1	32-0		3-0	
İ	34-0		6-\$	
	3-0		8-0	
	6-0		23-0	ln:Lito
	8-0		25−©	sn:Schizaeaceae
	23-Ø	ln:Tille	28-0	lygodium palmatum
	25-0	sn:Poaceae	30-®	
	28-0	imperata cylindrica	32-©	
	30-∅	gia triprograma ja katalogia (j. 1	34-\$	
	32-₽		49-0	
	34-0		3-6	医多面切除的 医骶直动脉
ļ.,	49-∅		6-0	
	3-0		8-\$	
	6-3		23-6	ln:Tilutilu
	8-0		25-0	sn:Taecaceae
1.	23-0	ln:Kadak	28-0	tacea pulmata
	25-0	sn:Dovalliaceae	30-®	
1	28-0	nephiolepis sp.	32-6	
1.	30-0		34-6	
	32-0		49-®	
1:.	34-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
L	49-0	*1 in-legal name en-raise	ntific no	

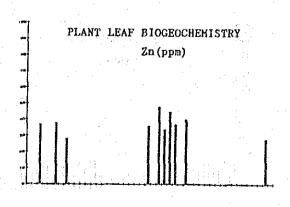
*1 In-local name, sn-scientific name


*2 The first two digits of sample number show the hole number. The last digit (0-6) shows the kind of plant.


第 2-6図 タラワ川北西尾根における土壌試料採取及び水銀ガス測定位置図




第 2-7図 タラワ川北西尾根における地化学異常分布断面図



第 2-8図 タラワ川北西尾根における地化学異常の模式断面図

第 2-9図 タラワ川北西尾根における植物地化学異常の模式断面図

1-5 第1年次地化学探査の結論

(1) 広域的地化学探查

河床堆積物による広域地化学探査の結果により、金鉱化作用のポテンシャル地域として 6地区が選び出された。その選定に際しては、パンニング調査と地質調査の結果も併せて 考慮された。その内のバトゥイシとバウの2地区については、第1年次に準精査が行われ た。残りの4地区の内では、レブタン川地区とカリアンゴ地区が金とベースメタルの探査 地として興味のあるものであった。

第 2-2図は,第1年次調査地域北半部における広域的な金の地化学異常の分布図である。この図では,河床堆積物のAu異常域とパンニング精鉱中に金が検出された地域が示されている。レブタン川地区では,比較的大きな地化学異常域が発見された。同地区では,Auの異常値は明確に認識できるものであった。カリアンゴ地区においても,比較的纏まった金の地化学異常が見出された。よって,この2地区が次の調査の候補地として選ばれた。そして,両地区において,地質調査,パンニング調査,土壌地化学探査からなる準精査を第2年次に行うことが提案された。

(2) 地化学探査の準精査

1. [1] 14 [1] 15 [1] 15 [1] 15 [1] 15 [1] 15 [1] 15 [1] 15 [1] 15 [1] 15 [1] 15 [1] 15 [1] 15 [1] 15 [1] 15 [1

バトゥイシとパウ地区における地化学探査の準精査,即ちパンニング調査と土壌地化学 探査の結果に関しては、地質調査結果と併せて総合的に解析した結果、有望な異常域が数 帯把握された。次期主要探鉱対象としては、バトゥイシ地区のタラワ川上流域とマレラ川 流域、及びパウ地区の東部と西部の地化学異常帯が抽出された。

第 2-4図は、バトゥイシ地区の金の鉱徴分布を表している。また、第 2-5図は、バウ地区の金の鉱徴分布を表している。鉱化帯の予想範囲は、石英脈と石英転石帯及び地化学異常値の分布に基づいて描かれた。バトゥイシとバウの2地区に対しては、第2年次において土壌と岩石地化学探査の精査が必要であると提案された。これらの地域の金鉱化作用の特性を解明するためには、タラワ川上流域、マレラ川下流域等の有望箇所において、トレンチやボーリング調査を実施して連続試料の採取を行うことが有効であると指摘された。

第2章 バトゥイシ地区

2-1 地区の概要

バトゥイン地区は、調査地域の北西部に位置し、カラタウン川とポンゴ川上流の間にある。カラタウン川の標高は、バトゥイン橋のところが海抜150mである。地区内には、標高600m以上の脊嶺が北西方向に走る。地区の地質は、ラティモジョン層の変堆積岩類を主とする。地区の南東に隣接して、ママサ花崗岩体が露出する。尾根付近には、バルプ凝灰岩類に属する石英安山岩溶岩ないし火山角礫岩が分布する。これらの新規火山岩類は非常に急峻な地形を形作っている。

本地区においては、第1年次に地質調査の準精査、パンニング調査及び土壌地化学探査の予察調査が面積約 50km²の範囲に実施された。その調査では、石英脈の分析結果に関しては期待に沿わなかったものの、積極的な地質調査・地化学探査の結果が得られた。土壌地化学探査の顕著な示徴が2カ所把握された。1つはAuの顕著な異常が、タラワ川上流の北西尾根に把握された。他は、マレラ川の中流で見出された。その他に、数カ所の異常が地区内に検出された。これらの異常域は、土壌のAu異常、パンニングと河床堆積物の異常、そして石英脈・石英ストックワークの産出から構成されている。各異常帯の走向は、石英脈の走向から解釈して NNWと推定された。

以上の結果に基づいて、精密調査の対象地域として、地区中央部が抽出された。面積は 約 15km²である。本年度の調査内容は、地質調査の精査、土壌地化学探査(グリッド調査) 、岩石地化学探査及び浅いトレンチ調査からなる。それと共に、タラワ河上流北西尾根に おいて、予察目的の小規模ボーリングが実施された。

2-2 地質調査

(1) 調査方法:

バトゥイシ地区において、地質調査の精査が、グリッド土壌地化学探査、岩石地化学探査と同時に実施された。地質調査のために、バトゥイシ部落にベースキャンプが設営された。それと共に、1行程が1、2週間のフライングキャンプが実施された。50メートル長の検縄とコンパスを使ってグリッド測量が実施され、昨年の地形図を修正し、縮尺1:5,000 のルートマップが作成された。石英脈の露頭とトレンチは、詳細に調査された(縮尺1:50ないし 1:200のスケッチが作成された)。

現場においては、地質と変質程度が調査され、主要露頭と石英転石帯において化学分析と室内試験用に試料の採取が行われた。変質程度の調査に際しては、地質技師によって次に述べる基準に従った判定がなされ、野帳に記載された。

①珪化 ;強(S)、中(M)、弱(W)、なし(N)

②緑泥石化;強(S)、中(M)、弱(W)、なし(N)

③黄鉄鉱化;強(S)、中(M)、弱(W)、なし(N)

その他、硫化鉱物の鉱築作用や、粘土変質作用及び石英網状脈の状況について詳しく調 査された。

地質調査の結果は、縮尺1:10,000の地質図に纏められた。変質図についても、作成検討された。総延長約75kmの踏査が行われ、80件の鉱石分析試料が採取された。鉱石研磨片とX線解析試料の個数は、本年はそれぞれ5、4であった。

(2) 地質及び地質構造

ラティモジョン層 (K1) : 地区の主要部は、ラティモジョン層に属する頁岩、シルト岩、 凝灰質頁岩、安山岩、そして粗粒玄武岩から構成される。

ti ko dalah Jakesan tengah kacaman kecamatan di balan kelalah j

頁岩とシルト岩は、一般に暗灰色から褐色の塊状の外観を呈する。頁岩の一部には、弱い変成作用が認められ、千枚岩様を呈する。頁岩、シルト岩の傾向は様々に変化するが、広域的に見ると、一般走向 N-SないしNWで傾斜 Wを示す。大まかな傾向として、堆積岩類の下部は頁岩が、上部にはシルト岩が卓越している。

安山岩ないし塩基性溶岩は、タラワ川上流とマレラ川中流に分布する。その一部は、弱変成を受けて粗粒玄武岩的組織を表す。ラティモジョン層のこれらの火山岩相については、本地区では堆積岩相の上位に分布する。それらの漸移帯は、凝灰質頁岩と頁岩ないしシルト岩、そして溶岩の互層とからなる。

バルブ凝灰岩類 (Qt) :地区内の標高の高い所 (海抜600m以上) には、安山岩質ないし石英安山岩質の溶岩と火山角礫岩が発達する。これらのバルプ凝灰岩類に属する新規火山岩類は、カラタウン川とポンゴ川に挟まれた地域に分布する。非常に急峻な地形をなすために、しばしば踏査不能の箇所をなす。

記れ、お園との手の機関では関係性議が開始して出り、よりにつかけりであた。

貫入岩類:地区内に、貫入岩類としては、閃緑岩の小岩株と安山岩脈が産出する。タラワ川中流には、閃緑岩岩株が頁岩中に産出する。化学組成的には閃緑岩から花崗閃緑岩のもので、斜長石、正長石、黒雲母、石英及び普通角閃石から構成される。閃緑岩岩株は、ポンゴ川とマカリキ川に挟まれた地域にも分布する。これらの岩株は、共通して、WF方向に伸長した形態を呈する。

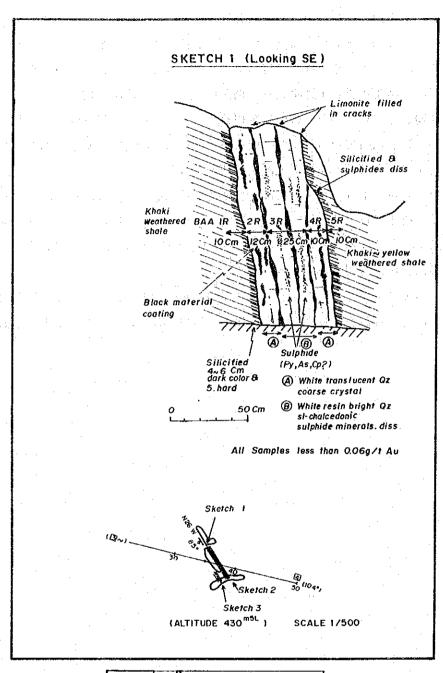
安山岩脈は、カラタウン川沿いの頁岩中に小規模に分布する。大多数は、普通角閃石安山岩であるが、その他に黒雲母安山岩も産出する。

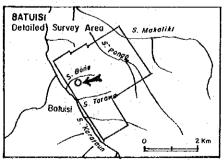
地質構造的には、パトゥイン地区は広域的複背斜構造の西翼部に位置する。ママサ花崗 岩バソリスが地区の南東部に広く露出している。この花崗岩潜頭岩体が地区の下部にも賦 存していることが予想される。 2組の断層系が地区内に認められている。それは、 E-W系とNW系である。 E-W系の断層はマレラ川とボネ川に分布する。NW系のものはボネ川に産出する。後者が前者によって切られている。

(3) 鉱化作用及び熱水変質作用

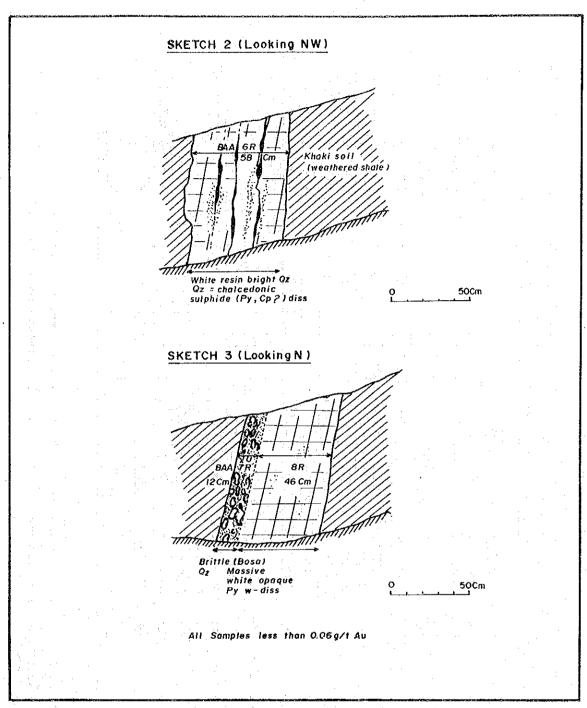
タラワ川中流、タラワ川上流及びマレラ川中流域において、石英脈・石英ストックワー クの旺盛な発達が観察された。

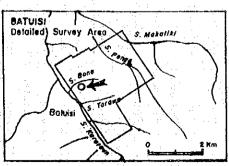
タラワ川中流とその支流域では、20条以上の石英脈の分布が把握された。石英脈は塊状で、幅2.8mに達するものも観察された。走向については、種々のものがあった。 NNW系で傾斜 Wが最も多く、次いでN-S系と NW系が認められた。タラワ川中流域の石英中には一般に、黄銅鉱、黄鉄鉱、硫砒鉄鉱、閃亜鉛鉱等の硫化鉱物が少量含有されている。石英脈の金品位は、一般に非常に低い。石英脈付近の頁岩やシルト岩は、強度に珪化変質している。脈の周囲の母岩は、中程度の緑泥石化変質作用を被っている。これらの石英脈は、北西及び南東方向に伸びている。タラワ川とボネ川の間の尾根にあるオールドグッチ・ピットには、幅50cmの塊状石英脈が見出されている(第2-10図参照)。この石英脈の北西延長部がボネ川中流にまで追跡される。また、その南東延長部は、タラワ川中流域にて把握されている。


一群の石英脈・石英ストックワークがタラワ川とボネ川の上流域に分布していた。本グループの石英は、一般に、白色から淡灰色で樹脂状光沢を帯て半透明のものである。幅は、数センチから70cmである。個々の脈の傾向は種々であるが、共通して緩傾斜のストックワークの性質を示す。主として、NNWとN-SからNNE系のものが多く見出された。タラワ川上流からボネ川上流の地域に散点的に露出するとともに、両者の中間部の尾根付近には、石英転石帯が見つかった。転石はこれらの脈の地表に現れた部分であると解釈できる。黄鉄鉱がこれらの石英中に僅かに認められた。第2-15表に掲げたように、幾つかの石英試料からは、地化学的に重要なレベルの金の含有が検出された。周囲の母岩中の変質は、強くない。現地調査では、中程度の珪化と弱い緑泥石化作用が検知された。本グループの石英脈・石英ストックワークは、その後にバトゥイン地区で実施されたトレンチ調査とボーリング調査の主要対象になった。


マレラ川では、安山岩と黒色頁岩中に金の鉱化作用が胚胎しているのが見つかった。安山岩中の石英脈は、白色、塊状、中ないし粗粒のもので、黄鉄鉱と黄銅鉱を伴う。脈幅は、10cmから最大3mに及ぶ。安山岩中には、石英ストックワークも認められた。黒色頁岩中には、石英細脈が胚胎する。脈の方向は、種々であるが、マレラ川においては、NNW系が優勢である。本年の調査では、ポンゴ川の枝沢において石英脈数条が把握された。そこでは、NNE系 V傾斜と、E-W系 N傾斜の2系統の脈が認められた。

タラワ川、ボネ川、マレラ川等の脈石英は、共通して塊状を呈する。これらの石英は、 鏡下で特徴ある様相を示した。石英には、しばしば破砕された組織が認められた。塊状の 石英は破砕されており、割目は微晶質石英細脈によって充填されている。塊状石英の割目 には、緑泥石、粘土鉱物、不透明鉱石鉱物が観察される。後から切ってくる石英に伴う不 透明鉱石鉱物としては、細粒の黄鉄鉱が認められる。そして、部分的に酸化して、酸化鉄 鉱物(褐鉄鉱)となっている。一部の塊状石英脈に石英と共生する氷長石が観察された。 また、石英を切る方解石と重晶石の細脈が観察された。


マレラ川の石英ストックワークには、特徴ある硫化鉱物の組合わせが認められた。それは、黄鉄鉱、硫砒鉄鉱、黄銅鉱、そして斑銅鉱の組合わせである。黄鉄鉱は、部分的に酸化鉄(褐鉄鉱)に置換わっており、黄銅鉱は、銅藍と孔雀石に変化している。鉱石の顕微鏡観察結果は、第2-12表に纏めた。


石英脈・石英ストックワークに随伴する母岩の変質作用としては、X線粉末回折法による解析で、珪化、緑泥石化及び絹雲母化作用が検出されている。その結果は、第2-13表に纏めてある。

第2-10図 オールドダッチピットにおける石英脈の産状スケッチ (1)

第2-10図 オールドダッチピットにおける石英脈の産状スケッチ (2)

第2-11表 薄片檢鎖結果表

,	1			H	1	1	١	F		;		2	2.00	11/ 00	1		7.1	
Sampre	Sample Locality	KOCK Name	rorma-	rorma- lexture r	ruenocryst/Crystal fragment	ryst	Srys	rai r	ragme	<u></u>		3		Groundmas/ malily	ati iy		13 14 14 14	Alleration
Ñ.			tion	5	Q2 Kf	P1	Bi	EP	Px 0	01 Ep	д С) (kz	뷥	ΡΙ	品	Px G	[5]	
	[S. LEBUTANG]						:											
LEBIT	S. Lebutang	ite	Κv	Hol(fine)	4	4		*			-						PI-K£	Pl•Kf•Hb-Ch, Py diss(w)
LEB2T	S. Lebutang	Microdiorite	Tag	Hypd-gr.		•		•	4	•	•			♦			PI•Hb	PI•tb-ch•&
LEB3T	S. Lebutang	Phyllite	KIS	Clastic (0		•				•			٠	:		CH, Qz	CH, Qz-veinlet
LEB4T	S. Lebutang	Siltstone	Kls	Clastic (Ο	◁	0			•	•			•			Cb, 02	Ch, Qz-veinlets, Py diss
LEBST		Granite	Tag	Hypd-gr. 2	□□	•.	◁	◁	•								Kf-Pl	Ef.Pl-Ch-Se
LEBST	S. Lebutang		Κv	Porphyritic		0		◁	•		•			Ο			PI.H	Pl•Hb-Ch•Se
LEC12T	LEC12T S. Peko	Qz•Ep vein	ı	Fractured	•						•						1	
LED12T	m,	Daci te	Qt	Porphyritic 🛆	<u> </u>	•		◁	◁		•			0	٠	•	집	
LED14T	S. Petangunan Andesite	Andesite	Klvi	Brecciated		0			◁		-			4			PI-P	PI+Px+Se+Ca
LED24T	LED24T S. Petangunan Tuff breccia		Klv2	Clastic	◁	0			◁			•		◁			P1-Ch	
LEDZ6T	LED26T S. Piku		Tog	Hol-gr.	◆	•	٠	◁			•		;				If-Ch-Se	•%•
LED28T	LED28T S. Malolo	Andesite	Qt	Porphyritic		•		0	0		<u>·</u>			Ó	٠	•	Px-Ho-Ch	Ch
	[KARIANGO]		1 - 6	13 1 1 14 15 15							-							
KAD1T	S. Uroh	Inffaceous sandstone	Tmb_3	Clastic	•	0								٠				
KADST	S. Uroh		Iv	Porphyritic		•	4	•			•			O			PI-E	PI. ED-Se-Ch
KAD8T	S. Kariango	Granodiorite	Tng	Porphyritic		•	◁	•	•			•		0			P. P.	Pl-Qz-Se-Ca, Px-Hb-Ch, sili
KAD12T	KAD12T S. Uroh		Tmv	Brecciated		O	٠							◁			• PI-Se-Ch	••Ch
KAG2T	S. Ruruh	Diorite porphyry	Tæđ	Porphyritic		4			0		•		_	0		•	Px•P	Px+P1-Ch-Ca
KAH7T	S. Kanan		Tog	Porphyritic		3	4		4		•			0	•		P1-K	Pl-Se-Ch-Cz, silicified
KAHGT	S. Kanan	Granodiorite	Tag	Porphyritic		O					•	•	◁	0			P1~Se•Ca	•Ca
	(BAU)				· .			•	<u> </u>									
BAC16T	BAC16T S. Salubongi	Oz vein	1	-	$\frac{\triangleleft}{\bullet}$: <u>-</u>		_				_	Mf-S	Kf-Se, Qz-veinlet
													l					

Abundance of Minerals : . Athundant, O; Common, A; Rare, .; Trace

Abbreviations
Formation Names: KI:Latinojong For., Tmb;Beropa Tuffs, Qt;Barupu Tuffs, Tmg;Mamasa granite, Tmd;Diorite, Kv;Andesitic volcanic neck, Tv;Andesite(dyke)
Texture : Hol:Holocrystalline, Hypd-gr:Hypidiomorphic-granular
Rinerals : Qz;Quartz, Kf;Potash feldspar,Pi;Plagioclase,Bi;Biotite,Hb;Hormblende, Px;Pyroxene, Oi;Olivine, Ep;Epidote, Op;Opaque Minerals, Gi;Glass,
Ch;Chlorite, Se;Sericite, Ca;Carbonates

第2-12表 鉱石研磨片檢鏡結果表

Remarks	OI		• Ouartz float	• Quartz vein (Wd=12cm)	(Wd=7	vein (Wd=2	Vera		THE TO COMPOSE OF THE		110年に (ログーンハケモ) チェックタ ヘチ		11:01:01:01:01:01:01:01:01:01:01:01:01:0	vermiet arfz-enid	A CALL TA CONTROL OF TAXABLE OF T	Sulphide wellst in Allers	= 0		Vein		. Andesite houlder Dv. discominated	Sulphide vein (Wallsham)		sin (Wd=50cm)	ore			N Dy netuk To composed of hematite & limonit	ite network	fl To composed of limo s	Silicified some near marts v	16. O. Common A. Bana	Ta. C. Common.	: ry:ryrite, As:Arsenopyrite, Cp:Chalcopyrite	
als	Ga Bn Cv				•	•	•				•		•					:			····		•		•		***************************************	••				onf Minors	1	1011	
Minerals	Cp Sp		•	 	•	•	•	•)		•	•	•	•	•	•		••••	•	•	•		•						Abundance	Abbaniance or	BIVO IUUR	
	As		•		•				• • • •	•	•		•		•		•	•						•	0								:		
	Py		4	. * * * * * * * * * * * * * * * * * * *	4	•	4	•		•	•		<) —	<	۱ •	•	•	•			•	•	4	0	•		•		•	◁		٠		
Locality		Batuisi	S. Tarawa	T-2, 79m	S. Bone	T-6, 22m	T-5, 47m	S.Kayulalong			S.Malela	<u> </u>	S.Balimbing	S. Mariku	S.Balimbing	S.Balimbing	S.Salole	S.Salubongi	S.Salubongi	S.Lebutang	S.Taroto	S.Taroto	S.Lebutang	S.Peko	S.Lebutang	S.Peko	Kariango	S.Suluan	S.Suluan	S.Suluan	S.Saluan				
Sample	No.		BAA53K	BAA62K	BAA75K	BAA99K	BAA103K	BTB17K		BTC43K	BTF16K		BAB2K	BAB5K	BAB18K	BAB19K	BAC8K	BAC16K	BAC17K		LEB11K	LEB17K	LEB25K	LEC13K	LEFIK	LEG11X		KAB2K	KAB8K	KAB9K	KABIOK				

第2-13表 X線解析結果表(1)

		F					. [1		οŢ					o	,	Ī			•	-			-	Π	Î	
	E :	잌					• • • •		ï	1	Ì		•••			ļ	†'''							ان ا				†
		- -		-						+	+		•			 !								• • •				ļ
	<u>a</u> .	1-		- ‡		•		٠	-				‡	-			ļ			-							}	. .
1,5	#1SCellaneous	LA CO		ij		•	ر. 199						}				ļ.,				.		. !			ļ	ļ.,	
1	۲ ز تارن	3			ļ.				ļ.						۸.,			.ļ.		<u>`</u>			į					
	٤				1				Ĺ	!					•						1	•			1			•
7	121	4											. !		•									60	1		-	
ľa		1) (C	<u></u>						į); (e: • (Ö			()	1	C) (ار ار	١	O.	Ö	0	0.0	Ö
	_			_i.) (C	э. Э.(<u></u>	(O)	6) (0	$\overline{\bigcirc}$	1	Ÿ	1	<u>.</u>) (C	5 l		4.5		C	.i—
Cilianto	יייייייייייייייייייייייייייייייייייייי	-		Î			_				7	1	- `	-				î						_	<u></u>	9		
3	٦ :	1		+							.ļ.		-								-	. . .					ļ.,.	
L		-	_	+	+	<u> </u>	_;		ŀ	ļ.,	-	+	-	1	_	: 		_	1	_	i.	1	1	-				
270	3 2	7		1			_			1	1				إ.			1		1			. i.					
Ş	3					1												0)	(C) ()						
Carhonate	(2 11 C:	3										Ï	1					o				()	0				
E			•	İ	Ì	1	†	_			-	İ	Ť	÷	İ	-			•		1	÷	+	+			-	
Sulfate m	Al Gu Is			<u> </u>		-	+			-	1		+				ļ		-		-	-	- -				٠,	
Sm		-		ļ.		-				ļ.,	<u> </u>	+.	4.	. .	-				ļ	-	-	-	- -	.	-			
	1	+-		ŀ	÷	+	+	_		-	-	-	+		+			L	!		1	1	<u>:</u>		_			
	×	-1					_			ļ	ļ.,	1				_				<u>.</u>								
	H												!			.												
eraj	Ka				C)	C	Э	0	٠						0	•		-	o		,			•	0	•	0
Min	Nu Ka										•	Ť	1		Ť	-	**				***				1			
Clay Minera	က္တ		•••	<u>.</u>			+			o	ļ	ļ	 	4.	: .	-		ļ			0	٠,	j.					0
ت				0		c	.ļ.				_	ļ	-	i						ļ								
	No : Ch			Ï		-	-	- 4		٠,٠.		ļ.,	ļ.,	إ	٠			ļ		ļ			C	į				
	Ĭ	Ŀ		-	L	E	3		8	_	_	<u> </u>	ļ.	1	1	1	<u> </u>	_	_		<u> </u>			(2	•	0	
g			Pit	Pit		7	5 E			7-78.7		<u> </u>					.	ы		D.0					20	ь0	50	
Location		7.15	ដូ	Dutch Pr	Ē	1	2 0	5	7-40.	7-	2	را ال	jē	E		B	dig	uiqu	8	ig.		ã		1		g G	ď	
3		Batuisi	Z	골	22	દ	3 2 4	2		. 77	Π	10	Ë	=	10	다. 10.0년 11.10.0년	[Bau] S. Balimbing	a Ii	Mariku	alia	Bau	Saluboner	o o) 	STITE	a::	Balimbing	Lipak
		E32	01d D	010	7-2	£~	i E	5	က်	T-4	Ţ-7	J-4	7-4	7	Ę		S S S S S S S	SB	S	S,	S	S	ď	Ó	0 0	N M	S.B	S
Bock	unit	[Z	A	-1	,	Ι,	:	ı	M	,	1		Ī	10		Κv	1	Κv	1	II.	,	×	4		3	d:	
	_2			ទ	İ	<u> </u>	†	†		-		-	•		-	†						-	-	+	Ť	+	-	
l			i.	Ve				:					ite	ite										-				
			9A 2	Ę.	site		-				1		des	See										ξ	3			췽
g		į	ن س	0	nde							e E	Б П	n ai		1	ıte	ı te	Ę.		쫑	1	ą	7	,	2		<u>ء</u>
	. :	:	ري د	ia le	n a						ഉ	esi	у. У	i Q			rol	22.0	Ĝ	S	e H		683	ï		0	ان	TO.
Altered Rock			hale	.(s	Ä	4	+	4.	×		201	and	S	Z	-	4	Sap	다. 이	F	ş	dy.		and	5		Sal	11.	9
4			I(s	wal	k V	kTO	Ě	}; 4:.	KWO.	ø	je	.5	g	8	Ć		oft	H.	ott.	Ż	뜅		Я	ú	4	5	ğ.,	텔
		1	LWa	11D8	2018	to	ţ	3	ვ:	Andesite	ici,	/ein	Ċij	17	5	3	E,	/eın	S t	vein.	i.	èin	7ein	ğ	3	g E	ਰੂ: ਫ਼ੁੰ:	핅
			8	Hangingwall (shale) of Qz vein	Oz stockwork in andesite	Oz stockwork	ક		3	ğq.	Silicified zone	2	Silicified zone in andesite	Silicified zone in andesite	Oz stockwork	3	Brown, soft saprolite	ίχ Ż	Brown, soft, limonitic	Oz-vein, Py-diss	Silicified dyke rock	Oz vein	ZO	Altered silinified mont		prown, sort saprorite	brown, limonitic	Wz-veinlet in white rock
<u>e</u>			_		<u>۲</u>		ķ		ا							t		7	-:					;	1		∹	7
Sample	횔		¥	Ç	BAA59X	BAA 78X	B4489Y	Ċ	DAROSA	BAA87X	BAA96X	I44X	145X	477	BTC2X	3	BABIX	ğ.	BABAX	BAB6X	BAC95X	BAC16X	BAD8X	BAFIX	Sec.	אלים מים	DATO	PALLA
	d			-1	3 3 3	1 B		÷	<u>م</u>		ΩQ ⊗	6	_	_		1	- PO	4	e e		:	യ		B	α	a c	n i	2
	ᆁ			4		7		1	_	_	٠.	زدر	=	H	2	1	7	7	1	7		SO P	67	2	ç	7 ¢	7 6	3

Abbreviations: ©:Abundant, O:Common, O:Few, w:Eare, Mo:Montmorillonite, Ch:Chlorite, Se:Sericite, Mu:Muscovite, Ka:Kaoline, Kr:Kixed layer, Ha:Halloysite, Al:Alumite, Gy:Gypsum, Ja:Jarosite, Ca:Calcite, Ak:Ankerite, Si:Siderite, Cr:α-Cristobalite, Tr:Tridymite, Qz:Quartz, Pl:Plagioclase, Kf:Potash feldspar, Py:Pyrite, Go:Goethite, He:Hematite, Im:Ilmenite, Ho:Hornblende, At:Anatase,

第2-13表 X線解析結果表(2)

Rock Rock mit	on Clay Mineral Sulfate m. Carbonate Silicate Feld Miscellaneous m	1 1 KF) (C			O (0				
No No No No No No No No			utang]	aroto	aroto	C) (Sauk		riangol	0		
		unit	rgillaceous andesite Kv S T	aprolite/alluvial Kv S. 1	KV S. T	KV S P	ountry rock of bedded Pv Kv S T	Δ Δ Δ	2 4	Treated polymorate datale AV O. F	hite argillaceous tuff Tmb1 S.S	ale green argillaceous tuff [mb] S.S	0 0	The second secon

Abbreviations: ©:Abundant, O:Common, O:Few, •:Rare, Mo:Montmorillonite, Ch:Chlorite, Se:Sericite, Mu:Muscovite, Ka:Kaoline, Mx:Mixed layer, Ha:Halloysite, Al:Alumite, Gy:Gypsum, Ja:Jarosite, Ca:Calcite, Ak:Ankerite, Si:Siderite, Cr:a-Cristobalite, Tr:Tridymite, Qz:Quartz, Pl:Plagioclase, Kf:Potash feldspar, Py:Pyrite, Go:Goethite, He:Hematite, In:Ilmenite, Ho:Hornblende, At:Anatase,

第2-14表 鉱石試料の分析方法

Element	Methods of Analysis	Detection	Upper
		Limit	Limit
Ψn	Fire assay with AA finish	0.06 g/t	600 g/t
Ag	Nitric aqua regia with ICP-AES finish		500 g/t
පි	ditto	Ü	9.50 %
ď.	ditto	0.001.8	6 % 20 C
Zu	ditto	0.001 %	2 CC &
e.	ditto	0.001	e 3

% AA means Atomic Absorption Method

* Chemical analysis

conducted by Chemex Labs Ltd.

第2-15表 鉱石試料の分析結果 (パトゥイシ地区) (1)

	·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·			. <u></u>		·
Sample	Widt	Au	Ag	Cu	Pb	Zn	Fe	Sample type and locality
No.	(cm	(g/t)	(g/t)	(%)	(%)	(%)	(%)	
BAA2A	12	<0.06	2	0. 077	0,001	0. 148	4, 99	Qz vein, Old Dutch Pit
BAA7A	12	<0.06	<2	0.003	<0.001	0.007	4. 92	Qz vein, Old Dutch Pit
BAA32A	5	0. 19	2	0.014	0.004	0. 010	11. 70	Qz veinlet, T-1,5,4m
BAA35A	25	0. 19	<2	0.003	<0.001	0.001	0. 87	Qz vein, T-1, 32.0m
BAA59A	42	<0.06	<2	0. 015	0.003	0.007	4. 97	Qz stockwork, T-2,78.0m
BAA62A	12	<0.06	<2	0. 019	0.002	0.010	5. 32	Qz vein, T-2, 78.0m
BAA63A	230	0. 12	<2	0. 038	0.004	0.011	5. 97	Qz stockwork, T-1,23.7m
BAA64A	15	0. 12	<2	0. 028	0.003	0.008	4. 15	Qz vein, T-1, 25. Om
BAA66A	200	0. 09	<2	0. 081	0.004	0.014	5. 22	Qz stockwork, T-1,24.0m
BAA68A	80*	0. 53	<2	0.065	<0.001	0. 025	4. 12	Qz vein, S. Bone
BAA72A	200	<0.06	2	0.009	0.001	0.007	5. 60	Qz stockwork, T-3, 37.0m
BAA77A	330	0. 16	2	0. 027	0.001	0. 012	5. 97	Qz stockwork, T-1, 17, 2m
BAA79A	320	1. 52	<2	0.024	0.002	0. 011	7. 98	Qz stockwork, T-1, 30, 4m
BAA81A	200	<0.06	<2	0.016	0.002	0.006	5. 96	Qz stockwork, T-2, 26.5m
BAA83A	330	<0.06	2	0. 012	0.002	0.009	7. 32	Qz stockwork, T-3, 36, 7m
BAA84A	300	<0.06	. 2	0.005	0.002	0.007	4. 93	Qz stockwork, T-3,48.5m
BAA85A	16	<0.06	<2	0.009	0.004	0. 008	5. 08	Qz vein, T-4,77.2m
BAA94A	28	<0.06	<2	0. 153	0.001	0. 025	5. 36	Qz vein, T-4,91.6m
вал96а	200	0. 72	<2	0.008	0.002	0.008	3. 59	Sili zone, T-4, 111. Om
ВАЛ99Л	24	<0.06	2	0. 045	0.002	0. 014	4. 95	Qz vein, T-6, 22. 0m
BTB6A		0. 19	16	>3. 00	0.001	0. 041	6. 04	Qz float, N2, 22-23
BTB12A		<0.06	<2	0. 088	<0.001	0. 025	7. 78	Qz float, N1, 12-13
BTB17A		0. 16	8	1. 735	<0.001	0. 031	3.80	Qz float, S2, 10-11
BTB19A	20	<0.06	<2	0. 147	0.001	0.063	5. 29	Shear zone, S2, 10-11
BTB20A	60	<0.06	<2	0. 037	<0.001	0.017	5. 34	Qz vein, S2, 10-11
BTB22A	15	<0.06	2	0, 511	<0.001	0. 012	1. 60	Qz vein, S2,10-11
BTB23A		<0.06	2	0. 558	<0.001	0. 571	5. 05	Qz float, S4, 3-4
ВТВЗ4А		<0.06	- 4	0. 659	0.001	0. 123	8. 76	Sili float, \$3, 21-22
втв35а		0. 16	4	0. 232	<0.001	0.041	10.80	Qz float, S3, 24-25
втвз8а	40	<0.06	<2	0. 039	<0.001	0.013	6. 14	Qz vein, S3, 33-34
ВТВ45А		<0.06	6	0. 956	0.001	0. 023	3. 31	Qz float, S4, 30-31
ВТВ54А		0. 22	22	1. 570	<0.001	0. 100	9. 85	Qz float, NSO, 23-24
втсза	50	<0.06	<2	0. 041	0.001	0. 780	6. 38	Qz vein, N16, 7-8
втк8л	7	1. 34	8	1. 460	0. 002	1. 255	13. 00	Qz-Py-Cp vein, S. Tarawa
	-							

第2-15表 鉱石試料の分析結果 (バトゥイシ地区)(2)

Sample	78 i d + b	4	Ag	Cu	Pb	Zn	Fe	Sample type and locality
	7.15							Sample type and locality
No.	(cm)	(g/t)	(g/t)	(%)	(%)	(%)	(%)	
втк25ьа	50	<0.06	2	0. 527	<0.001	0, 205	1, 86	Qz vein, S.Kayulalong
BTK26A	200	<0.06	4	0. 926	0.002	0.061	3, 13	Qz vein, S.Kayulalong
BTK27A	100+	<0.06	2	0. 594	0.001	0. 041	2. 11	Qz vein, S. Kayulalong
BTF14A		<0.06	2	0. 022	<0.001	0. 010	6. 76	Qz stockwork, S. Malela
BTF16A	70	<0.06	6	1. 215	0.001	0. 027	3. 25	Qz stockwork, S. Malela
BTF18A	35	<0.06	2	0.501	0.001	0.008	1, 82	Qz vein, N2, 47-48
BTF18rA	40	<0.06	2	0. 023	0.002	0. 002	2. 60	Qz vein, N4,44-45
BTF20A		<0.06	2	0. 587	0.001	0.009	2.04	Qz float, N4-6, 48-49
BTF22A	15	<0.06	<2	0. 020	<0.001	0. 142	7. 56	Qz vein, NSO-N2, 42-43
BTF25A	10	<0.06	4	0. 446	0.001	0.009	1. 39	Qz vein, NSO, 42-43
BTG1A		<0.06	2	0.004	0.001	0.007	6. 13	Qz veinlet, N4, 49-50
BTG7A		0.40	8	1.740	<0.001	0. 032	4. 35	Qz float, N4-6,50-51
BTH36A	15	<0.06	2	0.010	0.001	0.007	4. 79	Oz stockwork, S. Batupapan
втнз9а	20	<0.06	<2	0.007	0.001	0.010	6. 05	Sili rock, S.Batupapan

2-3 土壤地化学探查

(1) 試料採取及び分析方法

バトゥイシ地区の面積 15km²の地域において、土壌地化学探査の精査(グリッド調査)が実施された。土壌試料採取は、ハンドオーガによって、地表から40ないし80cmの深度の残留土壌のB層を対象に行われた。試料の採取は、側線間隔200mで、採取間隔 50mのグリッドに従って実施された。方位54°(N54°E)の基線が、トランシットと 50mテープを用いて、設置された。

試料採取班は、一般に地質技師1名と測量技師1名、及び数名の助手から構成されていた。測量技師の指導で試料孔削孔と土壌の採取が行われ、同時に地質技師により、観察と記載がなされた。土壌試料の野外観察の内容を次に掲げる。

- ①採取位置(グリッド経緯)
- ②試料番号
- (3)試料の種類 (残留性、崖錐性、堆積性、耕地性)
- ④地形 (尾根、斜面、山麓、冲積地、平地)
- ⑤層準 (A、BF、BT、BM、C)
- ⑥深度
- ⑦色
- ⑧組織(有機質、砂質、シルト質、粘土質、含礫状)
- ⑨粗粒物(石質礫、石英破片、ピソライト、その他)
- の岩盤の種類

試料は、現場で天日で乾燥した後、 -80メッシュに粉砕されて、カナダのケメックス社に送られた。分析成分は次の8成分である; Au、Ag、As、Sb、IIg、Cu、Pb、Zn。分析方法及び検出限界を第2-16表に示した。本地区からは第2年次において、総計 1,514試料が採取され分析に供された。

(2) データの統計解析

化学分析値の統計的解析処理に当たっては、地化学的データが対数正規分布をなすとの 仮定に基づいて、個々の分析値を対数変換して計算を行った。検出限界未満の分析値に関 しては、検出限界値の半分を代入する方法をとった。

統計解析のまず最初に、その地化学的データの統計的特性の検討を行った。基本統計量の計算、各元素の産出頻度分布の図化、8元素相互間の相関係数の検討などを行った。次に、主成分分析の手法を用いて、統計的に有意な元素の組合わせを抽出する計算が行われた。

基本統計量

検出限界未満の試料数の比率が高かった元素は、AuとSbの2元素である。Ag、As、Hgと

ベースメタル元素は、正規分布に近い形を示している。一方、AuとSbはL分布を表す。第 2-17表に、基本統計量の諸数字を掲げている。

第2-18表は、8元素間の相関係数のマトリックスである。Ag-As、As-Pb、Cu-Znの元素間に弱い相関関係が認められた。

主成分分析

固有値が 1.0以上の値を取ることを基準にして、第2主成分までの2主成分を選んで検討を実施した。固有ベクトル、因子負荷量、寄与率、及び累積寄与率の値が2主成分について計算された。その結果は第2-19表に掲載されている。

①第1主成分:因子負荷量が 0.5以上の値をとったのは、Au、As、Sb、llg、Cu及びZnの諸元素についてであった。本主成分の寄与率の値は0.31であった。第1主成分は、Au及びベースメタル元素の組合わせに関係する主成分であると解釈された。

②第2主成分:本主成分は、Cuに関して正の相関を示した。

以上のごとく、Auといくつかのベースメタル元素との間には、統計的に有意な対応関係が存在する可能性が示された。

(3) 土壌の地化学異常域

地化学異常の閾値は、平均値+標準偏差、及び平均値+標準偏差の2倍の2段階で機械的に計算された。その閾値によって、各試料点は3種類のマークで図面上に表現された。 各元素毎の土壌試料の地化学異常域分布図を、別冊資料に掲げた。

本地区内において、3カ所の主要Au地化学異常域と、数カ所の弱いAu異常域が識別された。これらのAu異常域には、CuとZnの異常域がほぼ重なる。この関係は、含金石英脈・石英ストックワークの鉱物組合わせに調和的である。主成分分析で示されたAuとAs、IIg等との弱い関係は、それらの元素の平面的分布を見る限りにおいては認められなかった。

Au等の主要地化学異常域は、地区の脊嶺部を中心とする2,500m (NE-SW) × 1,500m (NW-SE) の範囲に集中的に分布している。

タラワ川上流域

マレラ川流域

マレラ川流域には、細長い異常帯が見つかった。この地帯は、石英脈が旺盛に分布している。

マレラ川とポンゴ川に挟まれた地域に、はっきりしたAu異常帯が発見された。その分布範囲は、およそ500m (E-W) $\times 400m$ (N-S) である。最高値708ppbまでのAu異常が含まれる。本異常域内には、CuとZnの異常も見出されている。

ポネ川中流域

一群のAu異常が、タラワ川中流からボネ川中流にかけての地域において把握された。その分布範囲は、およそ600m(E-W)×400m(N-S)である。オールドダッチ・ピット等の石英脈数条がこの異常域に分布する。

タラワ川中流域

タラワ川中流域において、数カ所のAu異常が見つかった。それぞれが大略石英脈露頭の 場所に対応している。それらは分散的なものが多く、Au値も低い。

第2-16表 土壌試料の分析方法

Element	Methods of Analysis	Detection	Upper
		Limit	Limit
Au	Fire assay with NAA finish	1 ppb	10°ppm
Ag	HC1/KC103 extract'n with ICP-AES fin	0.02 ppm	0.02 %
As	ditto	0.2 ppm	0.5 %
Sb	ditto	0, 2 ррт	0.1 %
llg	HNO ₃ /HCl cold vapour with AA finish	10 ppb	0.01 %
Cu	HC1/KC103 extract'n with ICP-AES fin	0.2 ррт	0.5 %
Pb	ditto	0.5 ррт	0.5 %
Zn	ditto	1 ppm	0.5 %

* AA means Atomic Absorption Nethod

▼ NAA means Neutron Activation Nethod

第2-17表 土壌試料の基本統計量

·.	Au	Λg	As	Sb	Hg	Cu	Pb	Zn
	(ppb)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)
Log Nean (N)	2. 1	0. 05	4. 2	0. 2	57. 6	30. 8	9. 6	66. 8
Max Value	1340	0.50	71.0	12.8	1500	838	77. 5	1185
Min Value	· <1	<0.02	<0.2	<0.2	10	2.0	<0.5	10
Std Dev (σ)	0.6	0. 34	0. 5	0.4	0. 2	0.4	0. 6	0. 2
N+σ	8. 8	0. 10	13. 1	0.5	92. 9	74.1	38. 3	107. 6
M+2 o	37. 7	0. 22	40. 6	1.3	149.8	178. 1	153. 3	173. 4
No of Samples								
less D Lmt %	36. 0	7.0	1.7	44. 2	0	0	1.5	0

* Number of Samples = 1,514

第2-18表 土壌試料の相関マトリックス

	Au	Ag	As	Sb	llg	Cu	Pb	Zn
Λu	1. 00	0. 09	0. 15	0. 46	0. 16	0. 36	-0. 14	0. 20
Ag		1.00	0. 52	0.11	0. 33	-0.02	0.42	0.08
As	:		1.00	0. 33	0.42	0.04	0. 55	0.04
Sb			5. · · ·	1.00	0.31	0.43	-0. 04	0. 26
Hg			-		1. 00	0.17	0. 28	0. 07
Cu						· · 1. 00	-0. 53	0. 67
Pb	i	12.	:	:		٠	1. 00	-0. 28
Zn :					.*			1.00

第2-19表 土壌試料の主成分分析結果表

f	· · · · · · · · · · · · · · · · · · ·						
•		1	2				
	Eigen-	Factor	Eigen-	Factor			
	vector	Loading	vector	Loading			
Au	0. 379	0.600	0. 128	0. 196			
Ag	0. 273	0. 432	-0.384	-0. 588			
As	0. 353	0. 559	-0. 422	-0. 646			
Sb -	0. 470	0. 745	0.056	0. 085			
Hg	0. 358	0. 568	-0. 257	-0. 392			
Cu	0. 425	0. 673	0. 394	0. 603			
Pb	0. 008	0. 012	- 0. 585	-0. 894			
Zn	0. 358	0.567	0.302	0. 461			
Eigen	2.	510	2. 338				
Prop	0.	314	0. 292				
Cùn Pr	0.	314	0. 606				

2-4 岩石地化学探查

(1) 試料採取及び分析方法

バトゥイシ地区の地質精査と平行して、岩石地化学探査試料の採取が実施された。試料は、主要石英脈の露頭、鉱化変質岩及び主な石英転石帯から採取された。

調査に際して、地質技師により変質程度の観察が行われ、野帳に記載された。記載の基準は地質調査のものと同様である(前章参照)。採取された岩石地化学試料数は、 総計 214件であった。

岩石地化学試料は、化学分析を行った。分析は、ケメックス社において、8成分について行われた; Au、Ag、As、Sb、Hg、Cu、Pb、Zn。分析方法については、第2-20表に述べられている。主な分析結果は、第2-21表に載せた。

(2) データの統計解析

岩石地化学データの統計解析は、土壌と同様の方法で行われた。

(3) 岩石地化学探査の異常域

岩石地化学試料の採取点は、異常域を図化して解析するほどに十分な分布をしていないため、鉱石試料及び土壌試料の結果を併用して検討した。岩石地化学試料によって、数カ所にAuの異常が検出された。Au異常に密接に伴うAg、Cu及びZnの異常が発見された。

タラワ川上流域

本地域には、多数の石英脈と石英転石帯が分布するが、それらの内から、地化学的に異常な値が検出された。Auの最高値は300ppb、Agは 9.58ppm、Cuは4,250ppmであった。

マレラ川流域

マレラ川とポンゴ川の間に広がる土壌による地化学異常域内の石英脈と石英転石帯の中から、Ag、Cu及びZnの異常が得られた。

ボネ川中流域

ボネ川中流域においては、最高値Au1,685ppb (石英転石)までのAu異常が検出された。 それらの試料には、黄鉄鉱、褐鉄鉱及び孔雀石の含有が認められた。オールドダッチ・ピットにつながる石英脈の準露頭からは、Auの異常値が検出された(最高値172ppb)。

タラワ川中流域

タラワ川の枝沢であるカユララン川の石英転石帯から、Au (227ppb)、Ag (9.40ppm)、Cu (3.760ppm) の異常値が見つかった。

タラワ川中流に位置する石英脈の露頭からは、Auの異常値(127ppb)が得られた。この 試料位置は、鉱石分析でAu 1.34g/tという値を示した石英脈の露頭から僅か100mしか離れ ていない。

第2-20表 岩石地化学試料の分析方法

			and the second of the second o
Element	Methods of Analysis	Detection	Upper
		Limit ,	Limit
Au	Fire assay with NAA finish	1 ppb	10 ppm
Ag	HC1/KC10 ₃ extract'n with ICP-AES fin	0.02 ppm	0.02 %
As	ditto	0.2 ppm	0.5 %
Sb	ditto	0.2 ррп	0.1 %
llg	HNO ₃ /HC1 cold vapour with AA finish	10 ppb	0.01 %
Cu	HC1/KC10 ₃ extract'n with ICP-AES fin	0.2 ppm	0.5 %
Pb	ditto	0.5 ррм	0.5 %
Zn	ditto	1 ppm	0.5 %

^{*} AA means Atomic Absorption Method

^{*} NAA means Neutron Activation Method

第2-21表 岩石地化学試料の分析結果 (バトゥイシ地区)

C	1 .	1	T		T		Т	1	
Sample		Ag	As	Sb	llg	Cu	РЬ	Zn	Sample type
No.	(ppb			(ppm)	 		(ppm)	(ppm)	and locality
BAA42Q		0. 28	5.4	<0.2	820	543	19. 0	2190	Qz float, S. Bone(J1)
BTB17Q	227	9. 40	33. 4	<0.2	460	3760	3. 5	280	Qz float, S2, 10-11
BTB34Q	16	4. 32	19.6	<0.2	420	4310	2. 5	993	Sili float, S3, 21-22
BTB45Q	11	3. 10	20.0	<0.2	70	4340	2.0	161	Qz float, S4, 30-31
BTB54Q	300	9. 58	532	3.8	1700	4250	9.0	973	Qz float, NSO. 23-24
BTC43Q	1685	1. 14	11.4	0. 2	50	2050	1.0	105	Qz float, N3, 18-19
BTC44Q	207	0. 22	4. 2	0. 2	30	359	0.5	130	Qz float, N3, 19-20
BTD36Q	127	0.04	353	1.8	10	37. 2	1.8	17	Qz vein, S. Tarawa
BTF13Q	4	1. 42	20. 8	<0.2	740	4320	1.0	1805	Sili rock, N3, 46-47
BTG24Q	59	0. 24	12	<2	<1000	3290	<2	6740	Qz float, N4,46-47
вти9Q	3	2. 56	24. 0	76. 2	100	108. 0	4.5	13	Qz float, N1,52-53
BAA1T	146	0. 02	20.6	0.8	80	56. 2	25. 0	110	T-1, 0, 4-4, 0m
BAA2T	109	0. 02	25. 4	1. 0	80	56. 6	31.0	84	T-1, 4. 0-8. 0m
ваазт	154	0.02	21. 8	0.8	70	57. 4	25. 0	77	T-1, 8, 0-12, 0m
BAA4T	368	0. 06	20. 2	1. 2	70	96. 4	20. 0	70	T-1, 12. 0-16. 0m
ВАА5Т:	246	0. 02	44. 4	1.4	80	140.0	25. 0	100	T-1. 16. 0-20. 0m
ваа6т.	184	0.02	40. 8	1.6	100	187. 0	34. 5	117	T-1. 20. 0-24. 0m
BAA7T	163	0. 02	44. 4	1.6	110	398	85. 0	120	T-1, 24. 0-28. 0m
валят	570	0.08	108.5	1.6	130	170.0	50.0	95	T-1, 28. 0-32. 0m
ваа9т	987	<0.02	164. 0	1.6	120	115.0	26. 5	54	T-1, 32. 0-36. 0m
BAA10T	494	0. 02	106.0	3. 2	160	153.0	46. 0	77	T-1, 36. 0-40, 0m
BAA11T	118	0. 02	28. 6	3. 4	130	188. 0	48. 0	79	T-1. 40. 0-44. 2m
BAA12T	133	<0.02	40. 0	5. 2	150	152. 5	40.0	79	T-2, 0, 35-4, 0m
ВАА13Т	139	0. 02	28. 6	3.8	170	163. 0	33. 0	65	T-2, 4, 0-8, 0m
136T	479	0. 08	108. 0	1.0	100	73. 2	20. 5	90	T-4, 108. 0-111. 0m
137T	1165	0. 20	291	1.4	90	110. 5	9. 5		T-4, 111. 0-113. 0m
T881	386	0. 02	205	0.6	90	126. 0	11. 5	ŀ	T-4, 113, 0-115, 0m

第2-22表 岩石地化学試料の基本統計量

	Au	Ag	Λs	Sb	llg	Cu	Pb	Zn
	(ppb)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)
Log Mean (M)	4. 3	0, 03	5. 7	0. 3	59. 9	84. 5	2.4	86. 1
Nax Value	1685	9. 58	532	149. 5	2000	4340	95	6740
Min Value	<1	<0.02	<0.2	<0.2	10	3. 2	<0.5	3
Std Dev (σ)	0.8	0.61	0.6	0.6	0.4	0.5	0.8	0.5
N+ o	25. 8	0. 14	23. 7	1, 2	160.9	284. 4	14. 7	273.0
N+2σ	153, 6	0. 56	98. 2	4. 5	431. 7	957.6	88. 6	865. 7
No of Samples		ı				19		
less D Lmt %	29. 9	25. 3	1.5	61. 7	0	0	16.0	0

* Number of Samples = 324

第2-23表 岩石地化学試料の相関マトリックス

 							·	
·	Au	Λg	As	Sb	Hg :	Cu	Pb	Zn
Au	1.00	0.19	0.64	0.42	0. 43	0. 35	0.56	0. 27
Ag		1.00	0. 25	0.03	0.39	0.61	-0.01	0. 26
As			1.00	0. 57	0. 38	0.31	0. 58	0.14
Sb				1.00	0.36	0.08	0.46	-0. 15
Hg					1, 00	0.40	0. 53	0.44
Cu			1.1		100	1.00	0. 02	0. 52
Pb	1. 1		1.1				1.00	0. 17
Zn								1.00

第2-24表 岩石地化学試料の主成分分析結果表

	1		2			
	Eigen-	Factor	Eigen-	Factor		
	vector	Loading	vector	Loading		
Λu	0. 424	0. 781	-0. 139	-0. 185		
Ag	0. 258	0. 474	0.446	0. 595		
As	0. 426	0. 785	-0. 228	-0.304		
Sb	0. 307	0. 566	-0. 422	-0. 562		
Hg	0. 415	0.764	0.093	0. 124		
Cu	0. 321	0. 591	0. 478	0. 638		
Pb	0. 373	0. 687	-0. 353	-0. 470		
Zn	0. 252	0.464	0. 436	0. 582		
Eigen	3.	393	1. 779			
Prop	0.	424	0. 222			
Cum Pr	0.	424	0. 646			

2-5 トレンチ調査

(1) 調査方法

バトゥイシ地区では、本年度手掘りによって6列の浅いトレンチ調査が行われた。総延長は、438.0mになった。トレンチ調査は、土壌地化学探査で得られた2カ所のAu異常、タラワ川北西尾根とボネ川北斜面、において実施された。その対象としたのは、①風化岩盤の地化学的連続試料を取る、②石英脈と変質母岩の中の金の産状を解明する、の二つであった。トレンチの詳細は、次の表に纏めた。

			and the second second		
Trench	Locality	Eleva-	Azimuth	Length	No. of
No.		tion		male male de	Samples
T-1	Hill	560 m	40 °	43.8 m	11 pcs
T-2	Northwest	565	43	99. 3	25
T-3	of S. Tarawa	600	44	47. 7	13
T-4		555	51/44	120. 8	29
T-5	N of S. Bone	480	44/60	95. 6	23
T-6		470	56	30. 8	8
Tota1		17. 1. 1.		438. 0	109

トレンチの片壁は、地質技師によって縮尺1:100でスケッチされた。石英脈に関しては、 次の記載要領に従って観察がなされた。

- (1)年
- ②透明度(透明、半透明、不透明、乳状)
- ③光沢(蛋白石状、樹脂状、光沢質)
- ④粒径(細、中、粗、結晶質)
- ⑤組織(塊状、細縞状、縞状、粒状、破砕質)
- ⑥外観(緻密質、硬質、晶洞質、脆弱質)
- ⑦包有物
- ⑧硫化鉱物

粘土脈に遭遇した場合には、その色、組織、硬度(肌触り)及び硫化鉱物の鉱染状況が 観察され、野帳に記載された。

トレンチからは、風化岩盤試料が採取され、地化学レベルの分析がなされた。採取試料の数は、109件である。石英脈とその周囲の岩石試料は、鉱石試料として採取された。石英脈の試料は、流体包有物試料としても採取された。石英脈とその周囲の変質岩石試料は、X線粉末回折試料として供された。鉱石分析、流体包有物試料、鉱石研磨片、そしてX線試料としては、それぞれ44、27、3、8の試料が得られた。

(2) 調査結果

地質断而

トレンチは人力にて掘削された。従って、深さはあまり取れず、1.6mないし2.8m程度であった。地質断面は、表土層と地表付近の風化岩盤からなっていた。トレンチT-2及びT-3の一部では、表土の中に礫層(崖錘礫)が認められた。

表土は、主として褐色ないしカーキ色の残留土壌から構成される。土壌学上の分類で言うと、褐色山林土のA及びB層に相当する。本地域では、A層の発達は微弱であった。表土は地表から20cmないし60cmまで分布していた。

T-2及びT-3の一部では、表土の中に礫層が認められた。礫層は、種々の岩石礫一頁岩、シルト岩、粗粒玄武岩、安山岩、石英安山岩(ベロパ凝灰岩類)及び石英等一と土壌とからなっている。礫の円磨度は、円礫(安山岩、石英安山岩)から角礫(石英)まで様々である。礫の大きさは、数センチメートルのものから、最大のものはボールダーサイズ(径1m)まであった。石英の角礫が、本礫層の下底部にしばしば認められた。礫層の成因については、崖錘性のものと解釈された。礫は、付近の地形的高所にその根源があると考えられる。付近の地形状況から判断して、礫の移動距離はそれほど遠く離れているとは考えにくく、恐らく2、3百メートルもないものと推定される。昨年度把握された、土壌のAu異常の1(試料C-76のAu180ppb)が、T-2の礫層中に検出されたものであることが判明した。

風化岩盤が表土と礫層の下に現れる。岩石は風化を受けてサプロライトとなっており、原岩構造が良く保たれていた。原岩は、ラティモジョン層の頁岩、シルト岩、凝灰質頁岩及び安山岩からなっている。サプロライトは褐色ないし赤褐色を示し、その一部の、特に鉱化帯近傍のものは褐鉄鉱質となっていた。風化作用の影響は、トレンチ断面に広範囲に認められた。サプロライトは、しばしば赤色ラテライト質を示していた。サプロライト中に胚胎する石英脈は、壊れてザラメ状になっていた。黄鉄鉱は、酸化して褐鉄鉱化し、残存鉱物の痕跡しか認められなかった。

鉱化作用

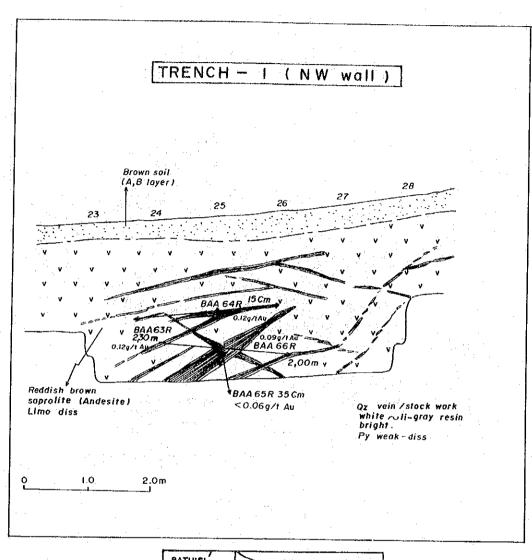
石英脈と石英ストックワークの発達が、トレンチによって確認された。

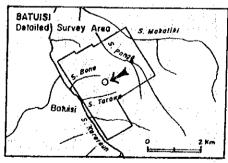
T-1では、石英ストックワーク帯が3帯把握された。それらは、17.2~20.5m (ゾーン幅3.3m)、23.5~27.0m (ゾーン幅3.5m)、30.4~33.6m (ゾーン幅3.2m)である。石英脈・石英ストックワークは、赤褐色で強度に風化を受けた安山岩と凝灰質頁岩を母岩として産出する。石英は、白色から淡灰色の樹脂状光沢を有する。個々の石英脈は、レンズ形態を呈し、幅2,3センチメートルから65cmまでのものである。緩傾斜の網状ないしストックワーク状の構造を有する。微量の黄鉄鉱と褐鉄鉱が、しばしば石英中に鉱染状に含有されていた。レンズ状石英脈の周囲のサプロライトは珪化を受け、また、弱い葉理を示した。その葉理を詳細に調査した結果、剪断性応力を受けた産物ではないかと推定された。そのようなサプロライトの中には、しばしば幅ミリメートルサイズの薄い割目が認められた。割目は、黄鉄鉱後の褐鉄鉱と石英により充填されている。第2-11図に、T-1におけるストックワークの産状スケッチを掲げた。

T-2においては、石英ストックワーク帯が同じように 3 帯把握された。最も旺盛なのは、 $76.3 \sim 79.7 \text{m}$ (ゾーン幅3.4 m)であった。脈幅最大 38 cmまでの石英脈が、礫層の下の帯黄ないし帯赤褐色の斑紋状サプロライト中に産出していた。石英は、白色で樹脂状光沢を帯びる。黄鉄鉱の鉱染を伴う。石英脈の周囲のサプロライトは、T-1におけると同様に強度に掲鉄鉱化していた。石英脈の走向は NNWで、 $40 \sim 60 ^{\circ}$ E 傾斜を示した。本ゾーンのスケッチを第 $2 \sim 12$ 図に示した。

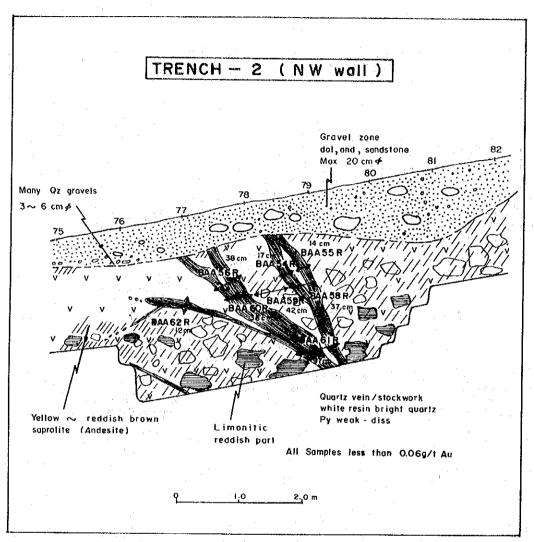
T-3では、2帯の石英ストックワークを捕らえた。それは、 $36.7\sim40.0m$ (ゾーン幅3.3m)と、 $48.5\sim51.5m$ (ゾーン幅3.0m)である。石英はレンズ状のもので、最大幅42cmまでのものである。白色で僅かに褐色を帯びていた。周りの母岩は、赤褐色褐鉄鉱質のサプロライト(T-1、T-2と同じ)である。本ゾーンの延長は、トレンチの北方20mの沢(ボネ川最上流部)に露出しているのが見つかっている。

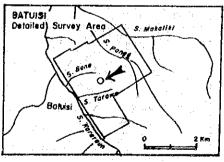
トレンチT-4は、頁岩と安山岩の境界部において開削された。トレンチの下部には主として頁岩が産出し(部分的に凝灰質)、その上位には安山岩溶岩が現れた。石英脈の顕著なもの4条と、強珪化帯1カ所がトレンチの75mから端(121m)までの範囲に見出された。幅28cmまでの白色石英脈は、褐色ないし赤褐色の斑紋状サプロライト中に見つかった。石英脈の走向は NW-SEで、3条がNE傾斜を、残りの1条がSW傾斜を示した。トレンチのNE端付近には、ゾーン幅約 10mの珪化帯が産出した。本帯は、淡灰色の強珪化岩(原岩頁岩)と白色ないし淡灰色の石英ストックワークからなるものである。珪化岩中には、ミリメートル幅の褐鉄鉱細脈の分布が観察された。

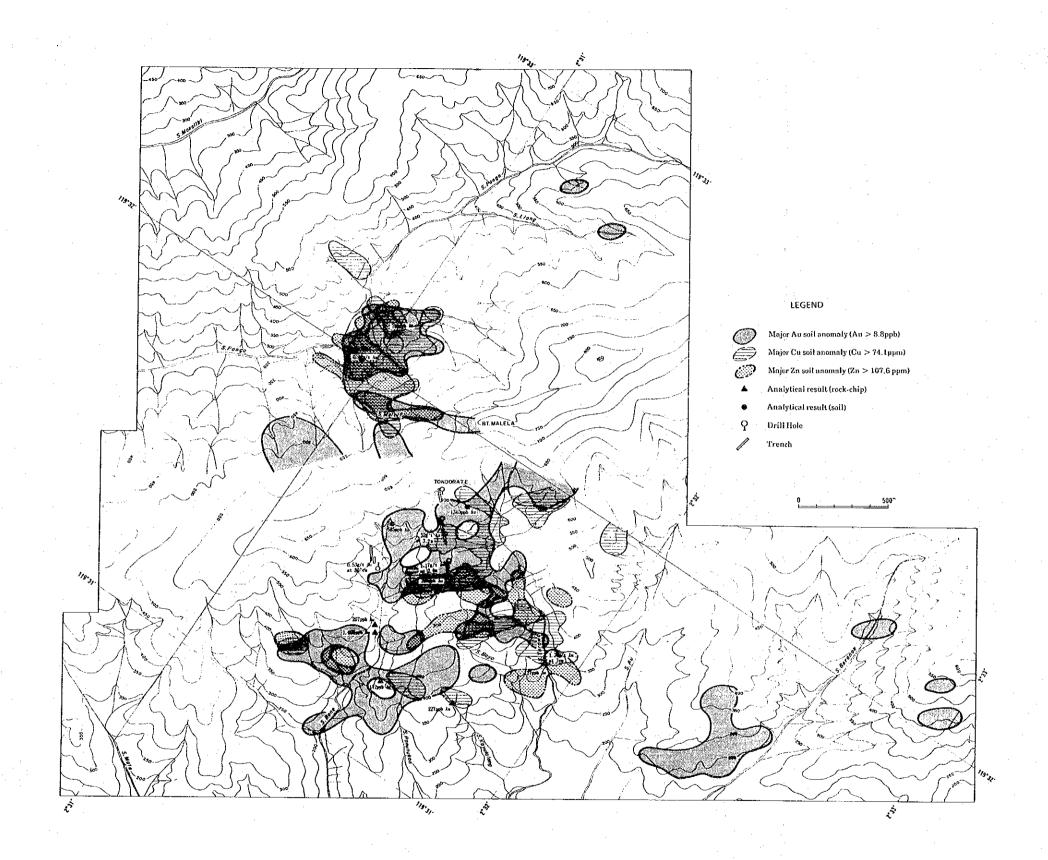

T-5とT-6の2列のトレンチは、ボネ川の上流北岸に開削された。両トレンチ共にボネ川北岸で発見された優勢な石英脈露頭の北延長部を探鉱するために実施された。その石英脈は、露出する部分及びトレンチにて把握された部分で見ると、塊状で幅最大 230cm


に及ぶ厚いものであった。脈の一部分には、細粒の黄鉄鉱が強く鉱染していた。走向は Nないし NNE、傾斜が28~41°Wである。周囲の頁岩(黒色ないし暗灰色)は、部分的に珪化を受けていた。本石英脈については、走向方向に150mほど追跡された。

石英脈・石英ストックワーク中に金を発見したのは、最初はパンニング法によってである。トレンチ試料を採取して、現地にて粉砕し、椀掛を行った。試料をトレンチ断面の各所から採取し、試行を行った。その結果、金粒が幾つかの椀掛試料から見つかった。この方法により、金の産状に関する幾つかの特徴が把握された。それは、①金粒はかなり粗いもので、最大 500ミクロンに達する、②金は黄鉄鉱、褐鉄鉱に密接に伴う、③金は石英脈ばかりでなく、その近くの母岩からも発見される、であった。金粒の幾つかは、石英ストックワーク帯の範囲の、強く褐鉄鉱が鉱染したサプロライトからも検出された。以上の諸点は、後で鉱石分析と室内試験により確認された。トレンチ試料の主な分析結果を、第2-15表に示す。鉱石研磨片の顕微鏡観察によると、T-2の石英ストックワーク中の石英試料からは、非常に微細な黄鉄鉱が鉱染する様相が認められた。黄鉄鉱はほとんど完全に酸化鉄鉱物によって交代されていた。また、T-5とT-6の石英脈からの石英試料中に、少量の黄鉄鉱、硫砒鉄鉱、黄銅鉱及び閃亜鉛鉱が認められた。石英中には、銅藍と酸化鉄鉱物(褐鉄鉱)もまた同定されている。


代表的な石英脈・石英ストックワークの石英試料の薄片を鏡下にて観察したが、破砕組織が認められた。試料はT-2の 79m付近の石英脈から取ったものである。石英は直径 2mmまでの中粒のもので、それが破砕作用を被っていた。割目は、細粒の石英と不透明鉱物(恐らく褐鉄鉱と推定される)によって充填されていた。


X線粉末回折法で変質鉱物の組合わせを調べた結果、主として石英、緑泥石、絹雲母、 炭酸塩鉱物からなるものであることが分かった。トレンチ断面には、しばしばカオリンが 認められたが、風化の産物と解釈された。



第2-11図 T-1トレンチにおける石英ストックワークの産状スケッチ

第2-12図 T-2トレンチにおける石英ストックワークの産状スケッチ

第2-13図 バトゥイシ地区における土壌・岩石地化学異常域分布図

2-6 流体包有物試験

(1) 試験方法

バトゥイシ地区において、石英チップ試料を各所から採取して、流体包有物試験を行った。本年度は 144試料が採取された。その内訳は、石英の露頭・転石試料が90件、トレンチからが27件、残りの27件がボーリングコアからのものであった。さらに試験的に、レブタン川地区から4件のチップが採取された。

石英チップ試料については、現場にて全章に述べた基準に従って記載がなされた。加工 したチップは、実験室において加熱顕微鏡で観察された。流体包有物の形態的観察は、包 有物とその含有鉱物の生成環境に関する重要な情報を提供してくれるものである。従って、 加熱試験に入る前に、十分な観察を行う必要がある。次に述べる項目についての顕微鏡観 察が実施された。

- ①初生ないし擬二次包有物と二次包有物の識別
- ②サイズ、形と表面の滑らかさの観察
- ③充填度
- ④固相鉱物があれば、その種類の同定
- ⑤流体の沸騰現象を示す事象の有無

重要試料については、顕微鏡写真が撮影された。

2相包有物と多相包有物については、顕微鏡に付属した加熱台(Linkam社製TH-600型)で均質化温度の測定がなされた。測定されたのは、初生ないし擬二次包有物だけである。平均して1試料当たり約20個の包有物の測定が行われた。各試料の均質化温度の代表値としては、測定値の算術平均値が用いられた。標準偏差値も試料の特性を表す指標として計算検討された。さらに、温度測定の結果を平面図上にプロットして、地質学的検討を行った。

(2) 試験結果

本地区の石英中の包有物は、おしなべて微細であり、そのため均質化温度測定が極めて困難であった。直径が10ミクロンを上回る包有物は、あるにしても極めて稀であった。この結果、 148試料を測定したが、有意な測定値が得られた物は96試料に限られてしまった。包有物の試験結果を第2-25表に示した。

包有物観察結果

鏡下で観察測定された流体包有物は、全体で 2,000個近くであった。その98パーセントは、液相に富む2相包有物であった。気相に富む包有物の比率は、2パーセント以下になった。実際の気体包有物の比率は、さらに低くなると考えられる。十分注意して観察同定を行ったが、見まちがいの可能性は残っている。何故ならば、3次元的な分布を持つ包有物

を試料の平面上で観測するのであるから、見る方向によって気相 - 液相の比率が、さまざまの割合で現れ得るからである。しかしいずれにしても、このように少数の気体包有物しか含まないという事実は、本地区の石英脈の生成過程においては、沸騰現象が生じなかったことを示唆している。

多相包有物は、9試料中に発見された。その内5試料は、タラワ川上流及びボネ川上流の石英ストックワークから採取されたものである。娘鉱物としては、岩塩結晶と不透明鉱石鉱物が見つかった。不透明鉱石鉱物の1つは多分黄鉄鉱であると思われる。

均質化温度

流体包有物の均質化温度は、180°Cから320°Cの範囲に分散した。しかし、その大多数は、200°Cから280°Cの範囲に収まった。

ある程度の金品位が得られた石英試料 (例えば、BAA68FがAu 0.53g/t、BD4-7FがAu 0.3 7g/t等) 中の均質化温度 (平均値) は、210°Cから260°Cの範囲を示した。

石英の種類を塊状石英脈とストックワーク石英に分類して、それぞれの均質化温度分布を調べて見た。第2-14図に、2区分したそれぞれのタイプの石英の均質化温度分布を、頻度分布図で表した。ストックワーク石英の均質化温度の最多頻度は、240~250°Cに現れた。一方、塊状石英脈の均質化温度の最多頻度は、250~260°Cに出現した。これらの差は小さかった。

第2-15図に、試料毎の均質化温度平均値の分布平面図を掲げる。試料採取位置の高度差を考慮しても、平面図上に特記すべき温度傾向は認められなかった。

第2-25表 流体包有物試験結果(1)

[Sample	Locality	n	Ave	SD	Remarks
1	BAA2F	Tarawa Bone area	NA			
2	BAA3F		32	234	17.03	Gas Incl (+)
3	BAA4F		20	249	16.48	
4	BAA9F		16	235	24.78	Gas Incl(+)
5	BAA14F		17	241	17.24	: .
6	BAA18F		NΛ	· : :		
7	BAA19F		18	250	6.27	
8	BAA21F		26	249	19.60	Poly Incl(+)
9	BAA22F		3	274	5.44	Gas Incl (+)
10	BAA24F		14	235	42.69	Poly Incl(+), Gas Incl(+)
11	BAA27F		9	208	12.56	
12	BAA30F	:	30	245	20.24	Poly Incl(+), Gas Incl(+)
13	BAA47F		20	227	15.66	
14	BAA49F		NA			
15	BAA51F		24	230	25.88	
16	BAA52F		23	230	16.44	Gas Incl(+)
17	BAA67F	1 1	NA			
18	BAA68F	:	13	262	10.99	
19	BAA88F		NA		***************************************	
20	BAA92F		17	276	16.24	Poly Incl(+)
21	BTB2F		10	216	20.85	
22	BTB3F	:	NA	1 1	***************************************	1
23	BTB4F		5	269	10.48	
24	BTB6F		6	206	18.79	
25	BTB8F		7	268	13.05	
26	BTB9F		21	271	16.04	
27	BTB10F		20	217	11.19	
28	BTB11F		NA			
29	BTB13F		15	246	7.70	
30	BTB15F		NA			
31	BTB16F		NA			
32	BTB17F		21	233	11.08	;
33	BTB18F		NA			1 1 1
34	BTB21F		13	191	9.63	:
35	BTB22F		12	223	18.03	
36	BTB25F		NA	0.00	16	
37	BTB26F		23	236	18.77	
38	BTB27F		NA			
39	BTB30F		NA	021	14 04	
40	BTB31F		20	274	14.24	
41	BTB32F		NA	050	10 54	
42	BTB33F		30	252	10.54	
43	BTB35F		18	250	15.60	
44	BTB36F		NA	004	00 01	Con Incl (I)
45	BTB37F		23	224	32.31	Gas Incl(+)
46	BTB38F		NA	000	10 00	:
47	BTB39F		9	255	10.89	
48	BTB40F		12	229	16.76	
49	BTB41F	***************************************	NA.		ΔΛ <u>Α</u> Δ	
50	BTB43F		22	244	20.22	

第2-25表 流体包有物試験結果(2)

	Sample	Locality	n	Ave	SD	Remarks
51	BTB44F	Tarawa·Bone Area	14	250	22.94	
52	BTB45F		NA			
53	BTB46F		20	228	13.20	
54	BTB47F		NA	1		
55	BTB48F		16	220	14.97	Poly Incl (+)
56	BTB50F		32	229	16.38	
57	BTB51F		NΛ	1		,
58	BTB56F		NA	1		
59	BTC1F		NA	1		
60	BTK7F	74	18	241	15.31	
61	BTK8F		NA			
62	ВТК9 Г		16	244	14.07	
63	BTK10F		NA			Take Market Comment
64	BTK20F		21	236	14.66	the state of the s
65	BTK22F		NA			21 2 2
66	BTK24F		14	269	12.45	Poly Incl(+)
67	BTK25F		24	275	13.57	
68	BTK26F		NA			7 - 7 - 7
69	BTK27F		29	262	22.56	
70	BTK28F		32	263	17.58	
71	BTK29F		NA			
72	BTK30F		21	247	17.06	
73	BTK32F		NA		11100	:
74	BTK33F		23	247	20.75	
75	BTF19F	Pongo Malela area	12	221	25.55	Gas Incl(+)
76	BTF20F	TONGO MATCIA ALCA	25	271	21.91	Poly Incl(+), Gas Incl(+)
77	BTF21F	:	NA		. D1. V1	1019 11101 (7), 040 11101 (7)
78	BTF22F		13	260	25.21	Poly Incl(+), Gas Incl(+)
79	BTF23F	9	14	264	12.78	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
80	BTF24F		NA			1
81	BTF25F		17	270	15.09	
82	BTF26F		10	261	12.43	
83	BTG2F		20	248	14.79	art out of the second
84	BTG3F	- A - B	NA	0,10		
85	BTG5F		14	224	11.87	
86	BTG6F	***************************************	3.3	220	11.32	
87	T13F		NA	v		
88	T16F		NA			
89	Т26Г		NA	:		
90	T35F		18	216	30.40	
91	BAA33F	T-1	NA	210		
92	BAA34F	T-1	6	218	15,66	Poly Incl (+)
93	BAA35F	T-1	13	250	16.16	TOLY THOTY:
94	BAA37F	T-2	6	209	7.07	
95	BAA38F	T-2	35	236	29.13	Gas Incl (+)
96	BAA39F	T-2	11	238	26.77	400 11101 / /
97	BAA43F	T-2	NA	230		
98	BAA54F	T-2	NA.	5 7		
99	BAA56F	T-2	23	207	13.83	
100	BAA58F	T-2	28	252	15.95	
100	DUVAOL		20	202	10.00	

第2-25表 流体包有物試験結果(3)

	Sample	Locality	n	Ave	SD	Remarks
101	BAA63F	T-1	19	252	$\frac{3\nu}{22.10}$	Gas Incl(+)
102	BAA64F	T-1	NA	404	66.10	uas IIICI (T)
103	BAA65F		11	266	9.96	
	********************	T-1	************	400	3.30	
104	BAA66F	T-1	NA 20	0.40	10 10	
105	BAA69F	T-3	29	243	12.12	
106	BAA70F	T-3	NA.			
107	BAA71F	T-3	26	253	13.16	
108	BAA84F	T-3 T-4	17	245	9.39	
109	BAA85F	1-4	42	245	10.74	
110	BAA86F	T-4	14	284	16.53	
111	BAA94F	T-4	13	255	15.80	
112	BAA98F	T-5	12	206	14.06	
113	BAA99F	T-6	21	209	13.65	
114	142F	T-4	NA	ļ		
115	I44F	T-4	NA	ļ		
116	146F	T-4	NA		1	
117	I48F	T-4	25	267	13.63	
118	BD1-6F	MJT-1, 30.72m	31	224	32.79	***************************************
119	BD1-17F	MJT-1, 60.27m	NA			
120	BD1-21F	MJT-1, 68.85m	21	237	11.96	
121	BD1-24F	MJT-1, 72.00m	23	236	16.82	
122	BD1-27F	MJT-1, 73.30m	NA			:
123	BD1-29F	MJT-1, 75.10m	NA			
124	BD2-8F	MJT-2, 14.50m	28	225	15.02	
125	BD2-17F	MJT-2, 19.45m	17	214	13.19	
126	BD2-20F	MJT-2, 21.15m	NA			
127	BD2-23F	MJT-2, 35.06m	31	255	10.99	
128	BD2-28F	MJT-2, 48.95m	13	186	6.13	
129	BD2-33F	MJT-2, 59.45m	NA			
130	BD3-3F	MJT-3, 12.80m	NA	· · · · · · · · · · · · · · · · · · ·		
131	BD3-4F	MJT-3, 13.90m	28	247	13.03	
132	BD3-7F	MJT-3, 25.50m	NA			
133	BD3-9F	MJT-3, 27.50m	NA			
134	BD3-12F	MJT-3, 51.30m	10	242	10.01	
135	BD3-17F	MJT-3, 80.05m	NA	1.17		
136	BD4-7F	MJT-4, 14.05m	28	235	14.55	
137	BD4-11F	MJT-4, 53.70m	24	238	18.92	
138	BD4-13F	MJT-4, 54.40m	19	211	11.52	
139	BD4-17F	MJT-4, 56.90m	20	224	13.40	
140	BD4-21F	MJT-4, 61.10m	22	229	17.84	
141	BD4-23F	MJT-4, 63.80m	24	238	13.59	
142	BD4-25F	MJT-4, 79.30m	13	222	12.36	
143	BD5-4F	MJT-5, 48.70m	22	220	13.65	
144	BD5-6F	MJT-5, 49.40m	15	189	13.08	
145	LEB3F	S. Taroto	30	286	20.49	
146	LEB10F	S. Taroto	21	264	18.81	Gas Incl (+)
147	LEB20F	S. Taroto	6	278	13.17	
	LEC15F	S. Peko	33	243	14.41	
						ired f-inclusions

Abbreviations:

n; number of measured f-inclusions

NA; homo-temp not available

Ave; arithmetic mean of homo-temp (°C)

SD; standard deviation (°C)

```
10
                                                                                                                                     15
                                                                                                                                                           20 %
                            180<= T <190
190<= T <200
200<= T <210
210<= T <220
220<= T <230
230<= T <240
240<= T <250
250<= T <260
260<= T <270
270<= T <280
280<= T <290
290<= T <300
300<= T <310
310<= T <320
320<= T <330
                                                                    XXXXXXXX
XXXXXXXXXXXXXXX
                                                                    Whole Data (1,765 Fluid Inclusions)
                            180<= T <190

190<= T <200

200<= T <210

210<= T <220

230<= T <230

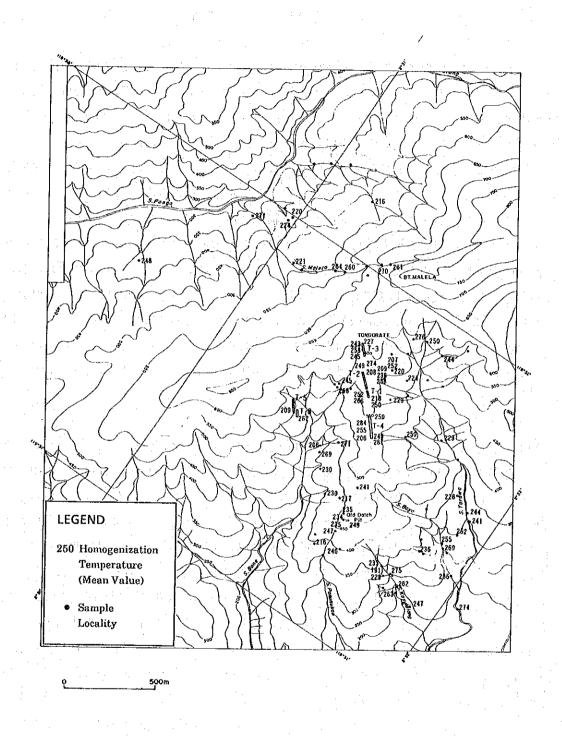
230<= T <240

240<= T <250

250<= T <260

260<= T <270

270<= T <280


280<= T <290

290<= T <310

310<= T <320

320<= T <330
                                                                    XXXXXXXX
                                                                   XXXXXXXXXXX
Stockwork Type (953 Fluid Inclusions)
                                                                 180<= T <190
190<= T <200
200<= T <210
210<= T <220
220<= T <230
230<= T <240
240<= T <250
250<= T <260
260<= T <270
                            260<= T <270
270<= T <280
280<= T <290
290<= T <300
300<= T <310
310<= T <320
320<= T <330
Massive Type (812 Fluid Inclusions)
```

第2-14図 流体包有物均質化温度のヒストグラム

第2-15図 均質化温度(平均値)分布図

2-7 考察

バトゥイン地区の含金石英脈・石英ストックワークは、白亜系ラティモジョン層に属す る頁岩、シルト岩、凝灰岩および安山岩の互層中に胚胎している。地質構造的に見ると、 本地区はママサ花崗岩体の迸入によって生起したと解釈される複背斜構造の西翼部に位置 している。広域的に見ると、花崗岩バソリスの迸入により発生した圧縮主応力の推定方向 は、NNEないしN-Sと考えられている(第1年次報告書参照)。しかし本地区では、鉱脈系 列の中で卓越する方向は MNW系であり、広域的なものと一致しない。それにもかかわらず、 地質的には鉱脈の生成と花崗岩体を結ぶ現象が存在している。石英脈・石英ストックワー ク帯の周辺には、閃緑岩岩株が分布する。それらの岩株は、一般にNWないし NNW方向に伸 長している。それらの岩体は、ママサ花崗岩の派生岩体と解釈される。そこで、花崗岩体 の迸入によって本地区に局所的に発生した圧縮応力が NNW方向のもので、その応力場によっ て鉱脈パターンが形成されたと考えられた。 NNW系の鉱脈は最大圧縮主応力の方向に沿う 正断層的裂罅に形成されたものと解釈できる。それに次いで優勢な N-S系及びNW系鉱脈は、 同時に生成した共役横ずれ断層的裂罅に胚胎したと考えられる。本地区にそれほど優勢で はないが、 R-W系のものは逆断層的割目に胚胎したものであろう。応力-歪み場は、実際 には3次元のものであるので、上向きの力を考慮しなければならない。この点に関連して、 緩傾斜のストックワークの生成メカニズムを解明することは非常に難解な問題として残っ ton

地区内には、2つの型の石英と硫化鉱物の鉱化作用が3地域において識別された。タラワ川中流域には、20条を超える塊状の石英脈が把握された。タラワ川上流からボネ川上流にかけての地域には、1群の石英脈と石英ストックワークが発見された。この地域においては、主として石英ストックワークが旺盛に発達する特徴が認められた。この状況は、本年度のトレンチ調査で確かめられた。塊状石英脈は、ポンゴ川とマレラ川の間においても認められた。マレラ川沿いの地域では石英脈に石英ストックワークが伴って分布する。

上記鉱化帯の中の鉱脈露頭、石英転石、岩石、トレンチ試料等の分析によって、ある程度の有意な金品位が検出された。代表的なものとしては、タラワ川中流の塊状石英脈の一部分から幅 7cmでAu 1.34g/tが得られた。ボネ川中流で採取した岩石地化学試料(石英)からは、Au 1,685 ppbという値が得られている。ボネ川上流北岸の塊状石英脈露頭の一部分からは、幅80⁺cm、Au 0.53g/t の品位が得られた。トレンチのチャンネルサンプルでは、最高Au 1.52g/t (幅3.2m) が得られている。ポンゴ川の石英転石帯の試料からは、Au0.40g/t の品位が得られた。これらの石英試料には共通して、少量の黄鉄鉱、黄銅鉱等の硫化鉱物と、その酸化鉱物が含まれる。石英脈には、その他微量の硫砒鉄鉱、閃亜鉛鉱および斑銅鉱が識別された。石英の脈生成作用に伴って、強い珪化と中程度の緑泥石化作用が認められた。

土壌及び岩石地化学探査により、3帯の顕著な金異常域を含む数帯の異常域が抽出された。主要な金異常域は:①タラワ川上流域、②マレラ川流域、及び③ボネ川中流域、の3カ所で把握された。これらの金異常域は、尾根地帯を中心とする 2,500m(NE-SW)×1,500m(NW-SE) の範囲に分布する。土壌試料中のAu化学分析値は比較的高く、100ppbを超える試料が20以上の地点から検出され、最高値は1,340ppbに達した(①の地域)。また、CuとZnの異常域がAuの異常域とほぼ重なった。地化学異常の分布は、石英脈・石英ストックワークの発達する地域と良い一致を示している。個々の異常域の地化学的特性は、そこの箇所における地質現象によって解釈が可能である。

流体包有物のシステマティクな試験を実施した結果、本地区の鉱化作用に関する興味あるデータが得られた。包有物の均質化温度は、 180℃から 320℃の範囲にあった。この温度分布は、日本の代表的な新第三紀浅熱水含金石英脈と比較するとやや高い。この温度範囲は、むしろ北日本の大谷鉱山に見られるような中熱水含金石英脈に比定できるであろう。日本の浅熱水金鉱床の均質化温度範囲は、180~240℃と纏められている。一方、中熱水金鉱床の場合は、もっと高いと考えられている(Enjoji & Takenouchi, 1976)。これによると、バトゥイシ地区の含金石英脈は、中熱水条件下で生成されたことを示唆している。沸騰現象が認められないことも、地表近くの環境下ではない所で生成したことを示している。このタイプの鉱床は、金の品位変動が激しい傾向があると言われており、この特性を考慮して、鉱化作用の評価を下す必要があろう。

第3章 バウ地区

3-1 地区の概要

バウ地区は、調査地域中央北部に位置し、サロレ川とその支流域にある。この地域一帯は、スラウェシ島中西部の中でも最も奥部に相当し、海抜1,000mを超える急峻な山々に囲まれている。本地区の標高は、460m(サロレ川の橋)から1,000mの間にある。外界からの通行は至って困難である。

本地区の地質は、ラティモジョン層の主として黒色頁岩、安山岩及び粗粒玄武岩とからなる。地区の地質構造上の位置は、ママサ花崗岩バソリスの进入により形成された広域複背斜の東翼部に当たる。ラティモジョン層の中には、花崗岩質小岩株や岩脈が分布する。

第1年次においては、面積約 50km²の地域に対して、地質調査の準精査、パンニング調査及び土壌地化学探査の予察調査が行われた。その結果、鉱化帯数カ所が選び出された。それらの鉱化帯は、石英脈の露頭、変質帯(黄鉄鉱鉱染帯を主とする)、パンニングと河床堆積物による地化学異常及び土壌のAu異常とからなるものである。バウ部落からサロレ川とベロビ川の合流点にかけて分布する東部の地化学異常帯には、少量の硫化鉱物を伴う石英脈と石英細脈が見出された。西部の地化学異常帯は、バリンビン川からサロレ川下流にかけての地域に把握されたもので、その範囲にパンニングと河床堆積物によるAuの地化学異常が散在する。同帯には、石英転石と黄鉄鉱の鉱染帯も発見された。これらの鉱徴の分布から、両帯の走向は大略 NNWであると解釈された。

第1年次調査の結果、その西半分の面積 15km²の範囲が次の調査の対象地として選択された。第2年次においては、精密調査が実施された。その内容は、地質の精査、土壌地化学探査および岩石地化学探査であった。

3-2 地質調査

(1) 調査方法

バウ地区においては、地質の精査が、土壌地化学探査および岩石地化学探査と平行して実施された。ベースキャンプはバウ部落に置かれた。それと共に一連のフライングキャンプによる調査が行われた。調査は地形条件の制約によって、沢沿いと尾根伝いにを主に行われた。試料の採取点は、対象地域に可能な限り均質に分布するように計画された。しかし、地形が険しい箇所では計画位置よりも多少ずらして採取が行われることもあった。縮尺1:10,000のルートマップが作成され、地質調査結果は、1:10,000の地質図に纏められた。踏査延長は50km、27件の鉱石分析試料が得られた。鉱石研磨片とX線解析試料については、本年はそれぞれ7と11であった。

(2) 地質及び地質構造

ラティモジョン層 (Klv):本層は、頁岩、安山岩溶岩、安山岩質凝灰岩及び粗粒玄武岩とからなる。頁岩は本地区に広く分布する。その色は、暗灰色から黒色であり、一般に塊状を呈する。断層の付近では千枚岩質になっている。本岩と花崗岩質貫入岩体の接触部では、頁岩中の有機物が熱の影響で変質し暗色化し、樹脂光沢を持つようになっている現象が観察された。

安山岩溶岩は、プロピライトの様相を示した。溶岩の周縁部では、しばしば水冷破砕構造が認められ、また、本岩中には頁岩の薄層を挟んでおり、海底噴出溶岩であると理解された。

凝灰岩としては、細粒凝灰岩と火山礫凝灰岩が産出する。これらの火山砕屑岩相は、黒色頁岩と安山岩の互層中に挟在されている。

粗粒玄武岩は、地区の南部に広く露出する。本岩には貫入岩相を呈する部分があり、周囲の黒色頁岩、安山岩とは急角度で交わる。その部分の側岩は、強く硬化している。接触部付近には、珪化及び黄鉄鉱化作用の影響が認められた。

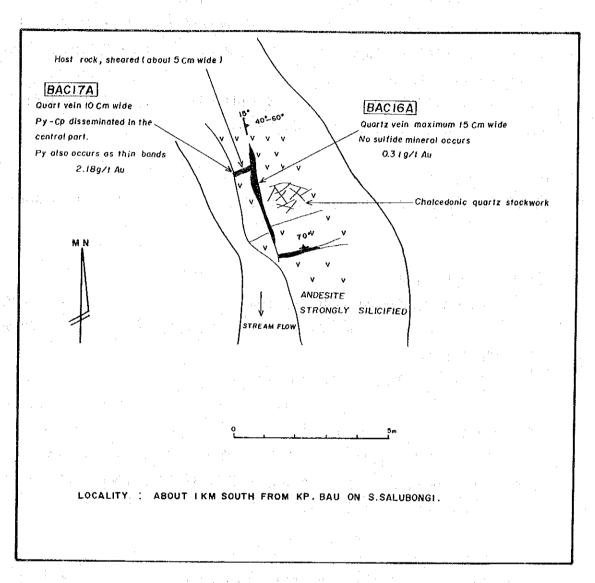
貫入岩類: 貫入岩としては、花崗閃緑岩と閃緑岩の岩株やシルが、主として地区の北部に分布している。

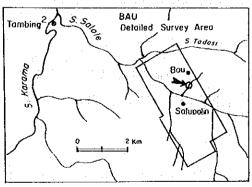
ラティモジョン層の堆積岩・火山砕屑岩類の一般走向は NW-SEで、20~40°W傾斜を有する。貫入岩類は、サロレ川北部に NW-SE方向に配列している。

地区の南部には断層の存在が推定されている。それらは、粗粒玄武岩を取り囲む配置で分布している。

(3) 鉱化作用及び熱水変質作用

バウ地区では、本年度の調査で2つの型の鉱化作用と随伴する変質作用が識別された。 その第1は、少量の硫化鉱物を伴う石英脈の鉱化作用であり、第2は、貫入岩体周辺にお ける黄鉄鉱の鉱染作用である。


本地区の石英脈は、走向傾斜のパターンによって2系統に分けられた。NNW系E傾斜のものと、NE系でSEないしNW傾斜のものである。石英脈の脈幅は、両方とも 1cmから2mの範囲にあるが、大多数は30cm未満のものである。


硫化鉱物の随伴は、主としてNE系の石英脈に認められた。石英中に細粒鉱染状に含有される。 NNW系の石英脈には、硫化鉱物は極微量含まれるのみであった。黄鉄鉱、硫砒鉄鉱、黄銅鉱が広く認められ、また、時には石英中に閃亜鉛鉱や方鉛鉱が散見された。バリンビン川の石英試料には、斑銅鉱が同定された。サルボンギ川においては、NE系の石英脈が N

NW系の石英脈に切られている産状が見出された。第2-16図に脈の交差状況のスケッチを掲げた。NE系の石英脈の硫化鉱物の付近に、少量の金が含まれている。そこで得られた最高値は、10cmでAu 2.18g/t (BAC17A) であった。

現地にて認められた脈石鉱物は、石英、緑泥石、モンモリロン石及び絹雲母であった。

黄鉄鉱の鉱染作用が、関緑岩岩株中に観察された。火成岩貫入岩体の周囲の黒色頁岩は、 黄鉄鉱鉱染と珪化作用を被っている。この種の黄鉄鉱の鉱染作用は、地区の北部に分布し ている。第1年次に地化学探査(河床堆積物とパンニング精鉱)で検出された金異常の分 布はこれらの鉱染帯に空間的に対応している。この事実は、本地区における低レベルの金 異常が黄鉄鉱鉱染帯を根源としていることを示している。

第2-16図 サルボンギ川における石英脈の産状スケッチ

3-3 土壤地化学探查

(1) 試料採取及び分析方法

バウ地区の面積 15km²の地域において、土壌地化学探査の精査が実施された。土壌試料 採取は、ハンドオーガによって、地表から40ないし70cmの深度の残留土壌のB層を対象に 行われた。試料の採取は、沢沿いと尾根伝いに、採取点がまんべんなく散らばるように地 形の制約範囲内で実施された。

試料の処理と分析方法については、バトゥイシ地区と同様な方法が取られた。本地区からは第2年次において、総計 506試料が採取分析された。

(2) データの統計解析

土壌試料のデータ処理と統計解析方法については、バトゥイシ地区と同じ手法が適用された。

(3) 土壌の地化学異常域

一定レベルの異常値(最高値 Au 165ppb)が得られたとは言え、それらの分布は分散的であった。統計解析によると、Auとその他のベースメタル元素との間には、有意な関係が認められなかった。

代表的な異常域について、以下説明を述べる。

サルボンギ川

サロレ川とベロピ川の合流点からサルボンギ川中流域にかけて、数カ所にAu異常(最高 22ppb) が認められた。その分布は、黄鉄鉱や黄銅鉱を含む石英脈の位置と大略一致する。 しかし、それらは小規模分散的なものである。

ベロピ川西岸

ベロピ川西岸地域には、CuとZnの異常値が密に分布している状況が把握された。

パリンピン川

バリンビン川中流域において、Au異常域が数カ所把握された。その最も大きいものは、 長さ 1kmに及ぶもので、塊状安山岩中に見出された。Au値の最高は 64ppbである。

サロレ川下流

Au異常域数カ所が、サロレ川下流において見つかった。それらは分散的なもので、Asの 異常が伴って来る。黒色頁岩中の黄鉄鉱鉱染帯の場所に大まかに一致する。

3-4 岩石地化学探查

(1) 試料採取及び分析方法

バウ地区の地質精査と平行して、岩石地化学探査試料の採取が実施された。試料は、地区内に産出する主要石英脈の露頭、鉱化変質岩及び主な石英転石帯から採取された。調査時の記載基準は、バトゥイシ地区と同じ内容である。試料の処理と分析方法は、バトゥイシ地区と同様である。採取された岩石地化学試料数は、総計 104件であった。

(2) データの統計解析

バウ地区の岩石地化学データの統計解析は、バトゥイシ地区と同様の方法で行われた。

(3) 岩石地化学探査の異常域

地区内には、多数の露頭と転石があったが、岩石地化学探査の異常値が得られたのは、その内のごく一部からであった。

サルボンギ川

サルボンギ川の石英脈からは、他と比べて卓越するAu値が得られた。同じ試料から、Cu、Zn、Agについての異常も併せて得られた。サロレ川とベロピ川の合流点からバウ部落にかけての範囲には、その他にも散点的にAu、Agとベースメタル元素の異常が見出された。

サロレ川下流

サロレ川下流地域に低レベルのAu異常値が検出された。それらの位置は、閃緑岩に伴う 黄鉄鉱鉱染帯に対応する。

第2-26表 鉱石試料の分析結果 (バウ, レブタン川, カリヤンゴ地区)

				4 4 4			the entire transfer of the contract of the con
Width	Au	Ag	Cu	Pb	Zn	Fe	Sample type and locality
(cm)	(g/t)	(g/t)	(%)	(%)	(%)	(%)	
			eri (j. j.		3		Bau
9	0.09	10	0.032	0.056	0. 101	8. 15	Qz veinlet, S.Patoso
7	0.37	26	0.330	0.007	0.304	38. 40	Limo veinlet, S. Mariku
	0. 25	<2	0.010	<0.001	0.006	7. 24	Limo diss, S. Salole
15	0. 31	2	0.048	<0.001	0. 202	1.64	Qz vein, S. Salubongi
10	2. 18	2	0.096	<0.001	0.001	0.81	Qz vein, S. Salubongi
	<0.06	<2.	0.003	0.006	0.008	6.03	Sili rock, S. Tadasi
	<0.06	2	0.016	<0.001	0.010	5. 69	Sili rock, S. Beropi
	<0.06	2	0.004	<0.001	0.008	9.00	Qz float, S Belopi
70	0.40	4	0.371	<0.001	0.017	7. 23	Qz vein, Gn. Salupolin
							S. Lebutang
÷	<0.06	<2	0.007	0.003	0.013	12. 75	Qz float, S. Lebutang
	<0.06	2	0.006	0.001	0.009	11. 30	Andesite boulder, S. Taroto
	<0.06	2	0.011	<0.001	0.007	9. 72	Andesite boulder, S. Taroto
	<0.06	2	0.001	<0.001	0.006	8. 43	Andesite boulder, S. Taroto
. 5	<0.06	<2	0.001	0.001	0.009	9. 10	Qz veinlet, S. Taroto
35	<0.06	2	0.011	<0.001	0.018	9. 14	Shear zone, S. Taroto
5	<0.06	2	0.016	<0.001	0.009	10. 35	Limo veinlet, S. Taroto
7	<0.06	4	0.011	0.001	0.015	14. 40	Qz veinlet, S. Taroto
3	<0.06	2	0.045	0.001	0.042	4: 71	Qz veinlet, S.Peko
2	<0.06	-2.	0.047	0.001	0, 153	9. 83	Qz veinlet, S.Peko
5	<0.06	2.	0.066	<0.001	0.061	8. 49	Sili andesite, S. Peko
	<0.06	2	0.004	0.001	0.017	9. 34	Shear zone, S. Peko
2	<0.06	2	0.010	0.001	0.013	7. 94	Qz veinlet, S. Penasean
	<0.06	4	0.866	<0.001	0.005	1. 11	Qz float, S.Lelating
· ·	<0.06	4	0. 129	0.001	0. 013	24. 30	Py float, S. Lelating
	0.09	6	0. 626	0.002	0.016	33. 10	Py veinlet, S. Peko
							Kariango
	<0.06	4	0.006	0.003	0. 057	42.30	Limo diss, S. Ledan
	<0.06	2	0.003	0.001	0.068	47.30	Limo diss, S. Ledan
	<0.06	2	0.001	<0.001	0. 002	8. 02	Limo float, S. Suluan
10	<0.06	2	0.008	<0.001	0.019	7, 72	Shear zone, S. Suluan
	<0.06	- 2	0.008	0.001	0.017	14. 35	Sili zone, Jl Kariango
	<0.06	10	0.027	<0.001	0. 005	11. 50	Lino network, S. Uroh
	(cm) 9 7	(cm) (g/t) 9 0.09 7 0.37 0.25 15 0.31 10 2.18 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 5 <0.06 5 <0.06 5 <0.06 5 <0.06 2 <0.06 5 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06	(cm) (g/t) (g/t) 9 0.09 10 7 0.37 26 - 0.25 <2	(cm) (g/t) (%) 9 0.09 10 0.032 7 0.37 26 0.330 - 0.25 <2	(cm) (g/t) (g/t) (%) (%) 9 0.09 10 0.032 0.056 7 0.37 26 0.330 0.007 - 0.25 <2	(cm) (g/t) (%) (%) (%) 9 0.09 10 0.032 0.056 0.101 7 0.37 26 0.330 0.007 0.304 - 0.25 <2	(cm) (g/t) (%) (%) (%) (%) 9 0.09 10 0.032 0.056 0.101 8.15 7 0.37 26 0.330 0.007 0.304 38.40 0.25 2.0010 <0.001

* Details of assaying same as in Table 2-14

第2-27表 岩石地化学試料の分析結果 (バウ地区)

Sample	Au	Ag	As	Sb	llg	Cu	Pb	Zn	Sample type
No.	(ppb)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	and locality
BAC16R	260	0. 34	5.8	<0.2	600	398	5.0	1350	Qz vein, S.Salubongi
BAC17R	5340	0. 92	7.4	1.2	40	1230	<0.5	13	Qz vein, S. Salubongi
BAD30R	4	0.94	3. 4	<0.2	.60	3810	0.5	52	And, S. Tendanmetang
BAH3R	162	0. 20	7.4	<0.2	170	835	0.5	56	Qz vein, Gn. Salupolin

3-5 考 察

バウ地区においては、2種類の鉱化作用が識別された。

地区の東部と南部には、石英脈と石英細脈が産出する。石英脈には少量の硫化鉱物が含有されている。その一部には、金品位が最高 2.18g/t得られた。地区内の石英脈・石英細脈の産出箇所は10カ所以上見出された。しかし、鉱脈規模が小さく、連続性に欠けるものであった。土壌地化学探査により、地区内にAuとCuの異常域が検出されたが、異常のレベルが低く、纏まりがないものであった。これらの事実から見て、石英脈型の金鉱化作用は発展性が期待できないと思われる。

本地区北部では、閃緑岩周辺の黒色頁岩中に黄鉄鉱の鉱染帯が把握された。その部分の 鉱石分析結果によると、全くの低品位のものであった。また、その付近に認められた土壌 及び岩石地化学探査のAu異常も小規模散点状のもので、期待外れであった。

第4章 レブタン川地区

4-1 地区の概要

レブタン川地区は、レブタン川とその支流域に位置し、ペタングナン川、レラティン川、タロド川及びタロト川流域を包含する。バトゥイシ地区とバウ地区の間に挟まれる。地区内では、その西端にあるペタングナン部落が、唯一のまとまった集落をなすものである。地区主要部は、荒い傾斜地と急峻な山岳地帯からなっている。本地域への交通は、非常に困難である。地質的には、白亜系ラティモジョン層の変堆積岩類分布域にある。ママサ花 協岩体の直接北部に位置する。

第1年次の広域調査によって、地区内に金の賦存を示す鉱徴が発見された。河床堆積物による地化学探査で、一連の強いAu異常が検出された。同時に、パンニング調査の異常も見つかった。石英転石帯も数ケ所で把握され、石英中には黄鉄鉱及び緑泥石が見出された。地区内のタロト川上流には、変質した安山岩質の地層中に、強い黄鉄鉱の鉱染帯が発見された。その付近には、古い砂金の採取跡があり、褐鉄鉱を伴う石英転石帯が見受けられた。

本年度は、地質調査の準精査、パンニング調査及び土壌地化学探査の予察調査が実施された。本年の調査対象面積は、 60km²であった。

4-2 地質調査

(1) 調査方法

レブタン川地区では、地質調査の準精査が、パンニング調査と土壌地化学探査に平行して実施された。地質調査は、地区内にベースとなる集落がほとんどないため、フライング形式で行われた。縮尺1:10,000のルートマップが作成され、その結果は1:25,000の地質図に纏められた。総延長 100km以上の踏査が行われ、鉱石分析試料、鉱石研磨片と岩石薄片、X線解析試料が、それぞれ37、6、12、7件採取された。

(2) 地質及び地質構造

レブタン川地区の地質は、ラティモジョン層の頁岩、凝灰岩、安山岩と、バルプ凝灰岩類の石英安山岩質火山岩類からなっている。ラティモジョン層中には、花崗岩と安山岩岩脈が貫入している。

ラティモジョン層 (K1) :地区内には、ラティモジョン層上部層 (K1sとK1v) が分布する。 K1s部層は、 灰色細砂岩 (グレイワッケ) の薄層を挟む灰色ないし黒色頁岩が卓越している。このメンバーは、レブタン川中・下流、タロド川及びレラティン川において発達する。頁岩は、灰色ないし黒色を示す。層理の発達する部位は脆く、薄板状に剥離する。しかし一方、塊状部もあり、硬質の性質を示す。レブタン川上流の頁岩の一部は、変成作用を受けて、千枚岩様から黒雲母片岩に変わっていた。この変成部の南端には、ママ

サ花崗岩バソリスが进入している。後述する安山岩岩株に接する頁岩は、硬化し、珪化作用を受けている。その部分には弱い黄鉄鉱鉱染作用が認められた。

K1v部層は、 頁岩、安山岩溶岩、安山岩質凝灰岩等の互層から構成されている。このメンバーは、ペタングナン川の北部に主に分布し、走向NEでNWに緩傾斜の傾向を持つ。安山岩溶岩は緑色のもので、4ユニットに区分できる。その層厚は、50ないし250mであった。安山岩質火山砕屑岩は、淡緑色ないし緑色で、粗粒の凝灰岩及び凝灰角礫岩を主とする。砂質ないし細粒凝灰岩薄層が、一部に認められた。

安山岩の貫入岩相が、地区の南部のタロド川の南からレラティン川にかけての地域に分布している。岩株状を呈し、2.7km (N-S) ×6km (E-N) の大きさの楕円形を示す。塊状、緻密かつ堅硬で、緑色から緑灰色の岩石である。強い珪化と、黄鉄鉱鉱染及び緑簾石化が認められた。

バルプ凝灰岩類 (Qt) : 数種類の岩相が認められた。

灰色粗粒の石英安山岩。粗粒の長石と黒雲母の斑晶が特徴的な岩相で、タンマププ山に 分布する。

長石巨晶を含む石英安山岩。レラティン川の西部と南部にのみ露出する。、

粗粒凝灰岩、細粒凝灰岩及び火山角礫岩の互層。タロド川上流域に分布する。

緑灰色安山岩質火山岩。集塊岩と溶岩相で、ペタングナン川の北岸の標高600m以上の高 所に分布する。

礫岩。レラティン川の標高900m以上の高所に分布する。花崗岩を覆う箇所がある。頁岩、 花崗岩、安山岩等の円礫を含有している。

貫入岩類 : 花崗岩 (Tgm) と安山岩岩脈が分布する。

花崗岩は、岩株2カ所が認められた。1つは、レブタン川沿いの標高1,200m以上の所に 産出する。斑晶としては、黒雲母、輝石、長石巨晶が観察された。他の岩株は、レラティ ン川の支流のピク川に露出する。こちらの方は、長石、黒雲母、輝石及び石英斑晶が認め られた。

タロド川の北部では、ラティモジョン層の火山砕屑岩類中に幅10から150mの安山岩岩脈が産出する。緑色ないし緑灰色で、細粒緻密な岩相を示す。

ラティモジョン層の上位メンバーである K1v部層は、地区の北部に分布し、走向NE、NW 緩傾斜を示す。地区中央から東部にかけては、その下のメンバーであるK1s部層がK1vを取り囲むように広く分布している。中部から南部にかけては、 E-W方向に伸長する安山岩貫入岩相が広い範囲を占めている。

地区南方には、ママサ花崗岩のバソリスが広がっている。花崗岩迸入の影響は、周辺の

地帯のラティモジョン層に熱的影響の形で認識された。

断層は、3条が地区内に認められた。そのうちの2つは、N70~80°E 走向を有し、安山 岩の貫入後に動いたと解釈された。

(3) 鉱化作用及び熱水変質作用

地区内に総計して、30条以上の石英脈と褐鉄鉱細脈が把握された。大多数は、1 ないし50cmの細いものである。石英脈は、一般に細粒の白色ないし乳白色の石英からなる。塊状で、特定の内部構造を持たないものである。一部の石英脈には、少量の白色粘土と方解石を伴っていた。硫化鉱物の産状は、2種類あって、その1は、石英脈の周りの母岩に鉱染する黄鉄鉱・黄銅鉱の形を取る。もう1種類は、褐鉄鉱が石英脈を切る剪断割目を充填するものである。

石英脈の発達帯としては、3地域が顕著であった。それは、ペタングナン川、タロド川、 タロト川である。

ペタングナン川では、ラティモジョン層の安山岩溶岩、安山岩質火山砕屑岩及び頁岩を母岩とする石英細脈(幅1~5cm)が分布している。石英脈は、走向方向で2グループに分けられた。N10~55°E系と、N10~15°W系である。両グループ共に、張力割目を満たしたものと解釈された。この範囲には、硫化鉱物は認められなかった。

タロド川の南岸においては、2グループの石英脈、N20~50°Eと N5~30°Wが識別された。本地帯は、安山岩岩株北縁に沿って胚胎する。弱いが黄鉄鉱と黄銅鉱の鉱染を伴う。母岩の頁岩と安山岩は強く珪化作用を被っており、緑簾石化及び黄鉄鉱鉱染も部分的に認められた。

タロト川とペコ川上流には、剪断帯に胚胎したと思われる石英-黄鉄鉱の鉱化作用が見っけられた。本帯は、安山岩岩株の東部にあり、付近一帯には石英転石帯が広がっている。石英脈の脈幅は、数センチメートルから35cmある。母岩は変質して珪化と黄鉄鉱の鉱染を被っていた。剪断帯ないし割目には黄鉄鉱と黄銅鉱が認められた。

タロト川は、かつて砂金の採取が盛んであった。砂金は、次のような状況の所から採集 された。

沢は狭く急峻な斜面に囲まれている。そこには、安山岩の礫ないしボールダーサイズの 亜角礫からなる崖錐堆積物が分布する。岩礫の表面は褐鉄鉱薄膜が覆っている。礫間は安 山岩の砂と泥が埋めている。礫層の下部は風化した安山岩に移り変わる。安山岩は、強度 に珪化し、中程度に緑泥石化している。安山岩には、黄鉄鉱の鉱染ないし不規則細脈の胚 胎が認められる。

この箇所の安山岩礫と間隙を埋める泥の中に金が検出された。金は、安山岩中の黄鉄鉱の鉱化に伴って来るものと解釈できる。

タロト川からペコ川にかけての、およそ1,200m (N-S) ×500m (E-W) の範囲には、このような鉱化を示す地表徴候が分布する。

鏡下にて観察された硫化鉱物は、黄鉄鉱、硫砒鉄鉱、黄銅鉱そして閃亜鉛鉱である。黄 鉄鉱は酸化鉄(褐鉄鉱)により、黄銅鉱は銅藍によって、それぞれ交代されていた。 鉱化に随伴する主要変質鉱物としては、石英と緑泥石が挙げられる。

4-3 パンニング調査

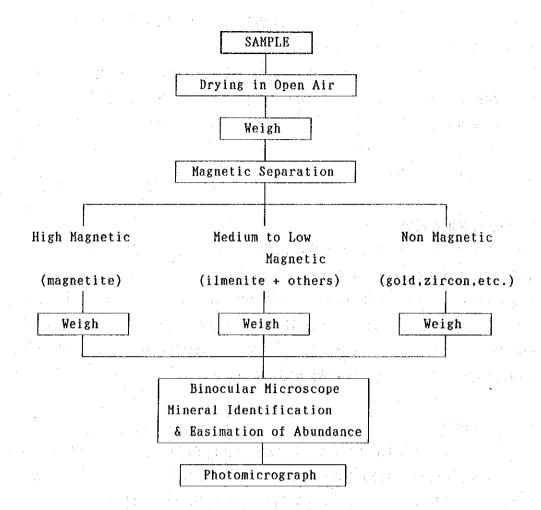
(1) 試料の採取と重鉱物分析法

レブタン川地区においては、本年度の調査でパンニング調査が実施された。パンニング試料は、水流の流速が急速に変化するトラップサイトにおいて、約2リットルの砂礫層試料を椀かけすることにより採取された。各採集点においては、5グラム程度の精鉱が集められた。現場では、金粒の数・粒度と重鉱物の観察を大まかに行い、後で実験室において、顕微鏡により詳細なチェックを繰り返した。金と重鉱物分析の方法を第2-17図に図示した。本地区からは、合計 126件の精鉱試料が採取された。

(2) 顕微鏡観察結果

レブタン川地区の精鉱試料のうち、金粒が検出されたのは9試料であった。その内8試料は、タロト川とその枝沢からのものであった。金は、細粒ないし極細粒 (FC~VFC) のものが多く、粒径最大は500ミクロンであった。精鉱中に頻繁に認められた鉱物は、柘榴石、緑簾石、ジルコン、チタン鉄鉱、黄鉄鉱、酸化鉄鉱物である。その他に、コランダム、金紅石、重晶石等が少数だが観察された。

(3) パンニング調査による異常域


金粒が検出された9試料の内、8試料はタロト川とその枝沢からのものであった。また、残りの1試料が見つかったのはカナン川であるが、その場所はタロト川の南々東約 1kmである。これらのパンニング異常は、ほぼ N-S方向を向いた狭い地帯に集中していた。

4-4 土壌地化学探査

(1) 試料採取及び分析方法

レブタン川地区において、土壌地化学探査の準精査が実施された。土壌試料採取は、ハンドオーガにより、残留土壌のB層を対象に行われた。試料の採取は、沢沿いと尾根伝いに実施された。

試料の処理と分析方法については、バトゥイシ地区と同様な方法が取られた。本年度は合計 606試料が採取分析された。採取の密度は、およそ1km²に10試料の割合である。

第2-17図 金・重鉱物解析のフローチャート

(2) データの統計解析

土壌試料のデータ処理と統計解析方法については、バトゥイシ地区と同じ手法が適用された。

(3) 土壌の地化学異常域

本地区内に数カ所のAu異常域が把握された。統計解析によると、Auとその他のベースメタル元素との間には、有意な関係が認められなかった。

代表的な異常域は次の通りである。

タロト川

はっきりした土壌のAu異常域が、タロト川沿いに把握された。最高値は、Au 90ppbである。その分布は、N-S方向に伸長し、ペコ川までの1,200m以上の範囲を占める。異常が検出された場所には、黄鉄鉱の鉱化作用が認められ、また、パンニング異常の箇所に概略一致する。また、パンニング調査で金が見つかったカナン川にも、小規模の土壌によるAu異常が検出された。その場所は、タロト川の異常帯の南々東に該当する。

タロドバシシ川

本異常は、タロト川異常帯の北方 2kmに当たる。ここにおいては、低レベルのAu異常 (最高値 22ppb) 数点が NNW方向に並ぶ。タロト川、カナン川、そしてタロドバシシ川の 3異常域を総合すると、延長が 4km以上のほぼ1直線をなす。

パモンデ川

タロド川の支流のパモンデ川に、土壌によるAu異常が得られた。本地域には、石英の転 石帯が分布している。

レブタン川中流

レブタン川中流域において、土壌中のAu異常が数点ほど見出された。それらは、散点的かつ低レベル(最高値 23ppb)のものであった。

4-5 考 察

レブタン川地区のタロト川流域には、次のような特徴を持つ金鉱化作用が見いだされた。

- ①金の鉱化作用はラティモジョン層に属する塊状安山岩中に認められた。
- ②金は専ら強い珪化作用を伴う黄鉄鉱の鉱染ないし不規則細脈に来ている。
- ③金の鉱徴は、剪断帯に規制されたものと考えられる石英脈分布域と重なって いる。

これらの特徴は、バトゥイシ地区では認められないものであり、本地区特有のものである。

この地区には、地化学異常も発見されている。土壌地化学探査による中ないし小規模のAu地化学異常域が、カナン川ータロト川ーペコ川ータロドバシシ川と連続している。これら一連の異常域は、ほぼ N-S方向に配列している。このような地化学的状況から見て、本帯の金鉱化作用は、N-S系の剪断帯に規制されたものと解釈される。

地表鉱徴はこのように旺盛なものであるが、鉱石分析結果は期待に反するものであった。 本鉱化作用は、地表試料の分析結果から見て、剪断帯に胚胎する黄鉄鉱の鉱染に伴う低品 位のものである可能性が強いと判断される。

本地区内に産出するその他の石英脈露頭や地化学異常については、小規模・散点的なものと評価される。

第5章 カリヤンゴ地区

5-1 地区の概要

カリヤンゴ地区は、バウ地区の北東に位置し、ウロ川下流域に沿っている。地質的には、他の3地区と異なり、中新統中部ないし上部の地層からなっている。地区南部は、ベロパ 凝灰岩類の安山岩質凝灰岩とシルト岩から構成される。その上に、バルプ凝灰岩類に属する石英安山岩質凝灰岩と同質溶岩が覆っている。一方、地区の北部は、トラジャ層の砂岩・黒色頁岩の厚い互層が地表に露出している。

第1年次の広域調査により、カリヤンゴ部落の北側に、河床堆積物の異常が発見された。 それは、Cu、Pb、Zn及びAgの異常からなるものであった。地区内の地表には、鉱化を示す 徴候は認められなかった。その段階では、十分詳細な調査が出来ていなかった。

本年度は、面積 40km²の地区が選ばれて、そこで地質調査の準精査、パンニング調査及び土壌地化学探査の予察調査が実施された。

5-2 地質調査

(1) 調査方法

カリヤンゴ地区では、地質調査の準精査が行われた。調査は、カリヤンゴ部落をベースキャンプとした踏査とフライングキャンプによるものを併用して行われた。縮尺1:10,000のルートマップが作成され、その結果は1:25,000の地質図に纏められた。総延長70km以上の踏査が行われ、鉱石分析試料、鉱石研磨片、岩石薄片、X線用解析用変質岩試料が、それぞれ13、4、7、3件採取された。

(2) 地質及び地質構造

レブタン川地区の地質は、下位より上位に向けて、トラジャ層、ベロパ凝灰岩類及びバルプ凝灰岩類からなっている。トラジャ層とベロパ凝灰岩類中には、閃緑岩、安山岩、そして輝緑岩岩脈が貫入している。

トラジャ層(Tet) :本層はカリヤンゴ川とカナン川に露出している。本層露頭の東縁は、ベロパ凝灰岩類の上部メンバーと NNW-SSE系の断層で接する。西部と北部の境界は、ベロパ凝灰岩類の中部メンバーとそれぞれN-S及びNE-SW系の断層で接する。本層は、暗灰色で淘汰の良い砂岩を主としている。砂岩中には黒色頁岩の薄層を挟む。

ベロバ凝灰岩類 (Tmb) : ベロパ凝灰岩類は本地域では3部層に区分できる。下部層 (Tmb₁)、中部層 (Tmb₂)、上部層 (Tmb₃) である。

ベロパ凝灰岩類の下部層は、主として緑灰色安山岩質凝灰岩と灰色シルト岩とからなる。 本部層は、スルアン川に沿って N-S方向に伸びた分布を示す。安山岩質凝灰岩層は火山礫 凝灰岩から凝灰角礫岩の岩相を有する。凝灰角礫岩は、カリヤンゴ川の南に分布し、火山 礫凝灰岩及び細粒凝灰岩は、レダン川やスルアン川地域に分布する。

中部層は、ボヤハアン部落からウロ川の西部にかけての地域に露出し、 NNWの走向を示す。中部層は堆積岩類を主とし、凝灰岩、灰色頁岩、シルト岩等からなる。上部層との間は漸移する。

上部層は、 NNEの走向を持ち、地区東部に露出する。砂岩とシルト岩を主要メンバーと し、安山岩質凝灰岩と溶岩を挟在する。

バルブ凝灰岩類 (Qt) :本岩類は、石英安山岩質凝灰岩 (上部) と石英安山岩 (下部) からなる。本岩類の分布は、レダン部落からベロッパ部落にかけての高地を占め、また、ウロ川とスルアン川の合流点付近のレモ山にも認められる。

貫入岩類 : 輝緑岩、閃緑岩、安山岩等の岩脈が地区内に分布する。

輝緑岩は、ウロ川とルルウ川に産出する。それぞれ NNE、N-S、NNWの各方向に伸長している。これらは、推定断層に沿って配列しているものと考えられる。

関縁岩岩株がウロ川に露出している。それらの岩体の配列は、大略 NNE方向を向く。この配列は、断層に沿うものである。

安山岩岩脈は、スルアン川中流域とレダン川上流域に分布が認められる。 N-S方向に長い形態を示している。

トラジャ層とその上位の地層との間は、不整合関係を示し、地区内では、断層によって境されている。トラジャ層の中に、 NNE方向の軸を有する背斜構造が認められた。この構造は、上位の地層には及んでいず、従ってベロパ凝灰岩類堆積以前に形成された変形構造と解釈された。ベロパ凝灰岩類は変形を受けているが、それによる緩い背斜構造はスルアン川付近において N-S方向の軸を示すものである。従って、両翼部は N-S走向の単斜構造を示している。一方北部においては、ベロパ凝灰岩の構造が変化し、B-W走向でN傾斜を示す。

地区内にはN-SないしNNW系の断層が数条見出された。貫入岩類の多くは、これらの断層沿いに産出している。

(3) 鉱化作用及び熱水変質作用

カリヤンゴ地区においては、小規模な酸化鉄の産出を除くと、特記すべき鉱化作用が見出されなかった。スルアン川東部付近の斜面には小規模の酸化鉄の網状細脈が発見された。ベロパ凝灰岩類の下部メンバー中に胚胎する。N-S方向に伸びる300m×20mの分布範囲を占める。黄鉄鉱はほぼ完全に酸化して、褐鉄鉱、鏡鉄鉱及び赤鉄鉱に変わっている。本ゾー

ン中には、磁鉄鉱も認められた。

5-3 パンニング調査

(1) 試料の採取と重鉱物分析法

カリャンゴ地区においては、パンニング調査が実施された。パンニング精鉱試料の採取 と処理については、レブタン川地区におけるものと同様な方法が採られた。本地区からは、 合計80件の精鉱試料が採取され、金と重鉱物の分析が行われた。

(2) 顕微鏡観察結果

カリヤンゴ地区の精鉱試料のうち、金粒が検出されたのは1試料のみであった。その金は、極細粒 (VFC) のものであった。精鉱中に認められた主要鉱物は、柘榴石、緑簾石、ジルコン、チタン鉄鉱、黄鉄鉱、酸化鉄鉱物である。その他に、辰砂、コランダム、白鉄鉱等が少数だが観察された。

(3) パンニング調査による異常域

金粒が検出された1試料は、ウロ川とカリヤンゴ川の合流点近くに位置している。その 他には異常は認められなかった。

5-4 土壌地化学探査

(1) 試料採取及び分析方法

カリヤンゴ地区において、土壌地化学探査の準精査が実施された。土壌試料採取は、ハンドオーガにより、残留土壌のB層を対象に行われた。試料の採取は、沢沿いと尾根伝いに実施された。

試料の処理と分析方法については、バトゥイシ地区と同様な方法が取られた。本年度は合計 404試料が採取分析された。採取の密度は、およそ1km²に10試料の割合である。

(2) データの統計解析

土壌試料のデータ処理と統計解析方法については、バトゥイシ地区と同じ手法が適用された。

(3) 土壌の地化学異常域

本地区内には、1カ所の広がりのあるAu異常域と、もう1カ所の小規模なAu異常域が把握された。統計解析によると、Auとその他のベースメタル元素との間には、有意な関係が認められなかった。

代表的な異常域は次の通りである。

ウロ川南西側

広がりのある土壌のAu異常域が、ウロ川中流南西側に把握された。最高値 Au17ppbまでの低レベルの異常値からなるものである。その分布は、1,500m (N-S) $\times 1,000m$ (E-W) の規模を有する。異常が検出された箇所は、ベロパ凝灰岩類 (Tmb_1) 中の褐鉄鉱網状細脈帯の下手に位置している。

カリヤンゴ川下流

本異常は、小規模のAu異常である(最高値 12ppb)。パンニングにより金が見つかった 箇所の近くに検出された。

5-5 考 察

本地区内では、スルアン川東側付近の斜面のベロパ凝灰岩類に属する安山岩質凝灰岩中に、小規模な褐鉄鉱網状細脈帯が見出された。この褐鉄鉱帯の下手には、土壌による低レベルのAu異常が検出された。これによって、ベロパ凝灰岩類中の黄鉄鉱の鉱化作用が低レベルの金の根源であろうと推定された。しかし、鉱石分析の結果は、見るべきものがなかった。

第6章 ボーリング調査

6-1 ボーリング調査の概要

バトゥイシ地区のタラワ川上流付近において、予察目的の小規模なダイアモンドボーリングが計画された。ボーリング調査範囲は、第1年次の予備調査で土壌のAu異常が見つかった地域である。ボーリングサイト周辺の地質は、ラティモジョン層の頁岩・安山岩からなる。地表には石英転石ブロックが散在する。第2章で既に述べたごとく、6列の浅いトレンチが、本年度現地調査の早い段階で当該異常域に開削された。鉱化作用を示す幾つかの徴候―石英脈・石英ストックワークや珪化帯の産出等―がトレンチにて把握された。このトレンチ結果を基にして、ボーリングターゲットが検討され、ボーリング孔位置が決定された。

ボーリングの目的としては、①地表鉱徽の下部の状況把握、及び②土壌によるAu地化学 異常域の走向延長部の状況把握、の2点があった。計画されたボーリングプログラムは、 1孔深度 80mの傾斜ボーリングを5本、合計400mを実施するものであった。ターゲット把 握の深度は、地表から 50mに想定された。孔別の位置、方向傾斜等については、次表に纏 めてある。

Hole	Locality	Grid Coordinates		Eleva-	Azimuth	Incli-	Hole
No.		N	A PER S	tion	i de la companya de l	nation	Length
MJT-1	Hill	55S	1, 695E	605 m	235 °	-60 °	80.3 m
NJT-2	Northwest	558	1, 535E	580	235	-60	80.3
мјт-з	of S. Tarawa	658	1, 440E	560	235	-60	80. 3
NJT-4		908	1, 290E	560	235	-60	80. 3
MJT-5	N of S. Bone	290N	1, 250E	455	55	-60	80.3
Tota1			ii.	1 1			401.5 m

縮尺 1:200でボーリング柱状図が作成され、コアはカラー写真が撮られた。分析試料数は 105件、流体包有物試験用石英試料が27個採取された。鉱石研磨片とX線解析試料が、それぞれ20件ずつ採取された。

- 6-2 工法、使用機器及び工程
- 6-2-1 使用機器

工 法

表土と礫層(地表下約8m)に対しては、NWケーシングシュー(直径92nm)により掘削され、NWケーシングパイプが挿入された。岩石の風化帯は、NXダイアモンドビットとNX-STHのコアチューブを使い普通工法で掘削された。風化帯は、深度20ないし 30mまで続き、この間はBWケーシングパイプが挿入された。着盤した後は、BQオーバーサイズのダイアモンドビット(直径60mm)と BQ-WLコアチューブを使用して、ワイアーライン工法により掘削された。掘削には通常、ベントナイトベースの泥水にマッドオイルと CMCを混合したものが使用された。亀裂の発達する箇所では、テルストップとシークレイ(石綿)が添加され、逸水防止対策に用いられた。逸水と孔壁崩壊が同時に発生した時には、孔内セメンテーションが施行された。

使用機器

ボーリング調査地は交通不便な土地にあり、車の走れる道路は存在しない。そのため、 資材運搬は、馬か人力で行わざるを得なかった。本地域ではこの制約条件によって、特別 製の機器が使用された。試錐機は、吉田鉄工所製YBM-05DA型の、最大分解パーツ重量が55 kgの軽量な機械が導入された。その他の機材、櫓、試錐ポンプ、マッドミキサー等もこの 重量制限に準じて選定された。試錐機をはじめとする使用機器の仕様を、第2-28表に纏め て掲載した。ダイアモンドビット及び消耗品については、第2-29及び2-30表に掲げた。

作業形態

ボーリングの掘進作業は、1日3交替制(1方8時間)で行われた。櫓組立て、搬入、 搬出等の付帯作業は、1日1方で行われた。1方のクルーメンバーは通常、ボーリング技 師1名と助手3名から構成された。付帯作業に際しては、それに約14名の作業員が加わっ て行われた。ボーリング作業用のベースキャンプがサイト近くに建設され、また、バトゥ イシ部落からベースキャンプ及びボーリングサイトに通じる歩道が開削された。

運搬

ボーリング資材は、横浜からスラバヤ経由でウジュンパンダンまで、船で運ばれた。ウジュンパンダンに到着後、そこからタレルーまではトラック運送された。タレルーには、資材の一時保管所が設けられ、荷解きと小運搬用の分解・梱包がなされた。その倉庫は、燃料、食糧、キャンプ用資材の集積所としても使われた。タレルーからガルンパン(カラマ川沿いに約60km)までは積載重量約 600kgのエンジンカヌーが運搬手段として用いられ

た。ガルンパンーバトゥイシ間の16kmは、馬と人力で運ばれた。バトゥイシ部落からボーリングサイトまでは歩道が建設され、資材は人夫により運搬された。

キャンプへの燃料・食糧の補給は、最低4週間に1回の割で行われた。燃料・食糧は、 ウジュンパンダンないしマムジュで調達され、上述のルートに沿って運込まれた。

用 水

ボーリング用水は、ボネ川の中流からポンプで汲上げられた。ヘッド差300mの揚水のために、2段階のポンプ座が設けられた。そのための配管総延長は、1,000mに達した。

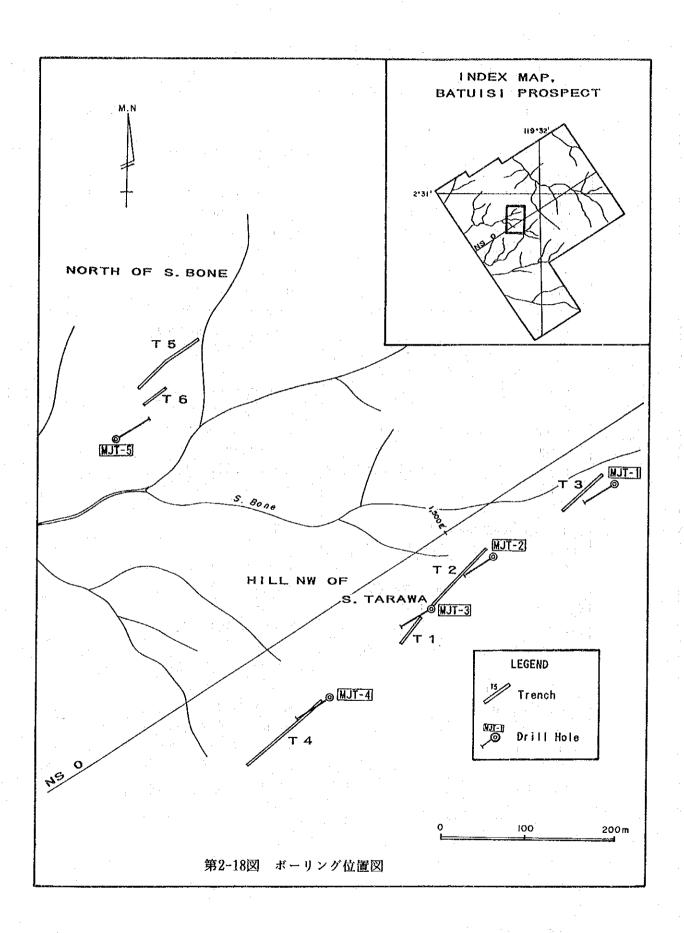
撤収

ボーリングの終了後、機械類は次年度の作業のためにベースキャンプに保管された。ボーリング孔は塞がれ、サイトは修復された。採取されたコアーは一部が分析用に切取られ、残りは倉庫に保管された。

6-2-2 掘進工程

各孔の掘進工程を以下に記述する。作業時間総括(第2-31表)、掘進作業実績(第2-32~2-36表)、掘進成績(第2-37~2-41表)及び工程図(第2-19~2-23図)をそれぞれの図表に示した。

MJT-1:表土とサプロライト帯に対しては、孔口から 10.0mまでが、NWメタルケーシングシューを使って掘削がなされ、NWケーシングパイプが挿入された。 21.0mまでのサプロライトに対しては、NXダイアモンドビットとNX-STHコアチューブを使って、普通工法により掘削がなされた。深度7.2mにおいて、部分逸水が発生した。BWケーシングパイプは、21.0m まで挿入された。強風化帯でのコア採取率を上げるために、濃厚ベントナイト泥水とコアパックチューブを採用した(各孔共通)。 21.0mから孔底(80.3m)までは、BQダイアモンドビットと BQ-WLコアチューブを使って、ワイアーライン工法により掘削がなされた。循環泥水としては、ベントナイトをベースに、 CMC、リボナイト及びマッドオイルを添加したものが使われた。深度 69.6mにて逸水が発生したが、そこは、塊状石英脈の中で無数の微細な亀裂が発達する箇所であった。逸水防止のために、テルストップとシークレーが投入された。本孔の総合コア採取率は 99.0%になった。


MJT-2:本孔では、表土と礫層が深度 8.0mまで分布していた。本孔では、非常に厚い塊状の石英脈が比較的浅い所 ($9.0\sim21.3$ m) に産出した。石英脈の一部は強い風化作用のためザラメ状を呈していた。そのような箇所からは、砂状の石英切屑だけが回収された。そのためこの部分のコア採取率は、低くならざるを得なかった。孔口から 10.0mま

ではNWケーシングパイプが挿入され、 20.0mまではBWケーシングパイプが挿入された。深度 16.0mの塊状石英脈の真ん中で逸水が発生し、その対策のため、テルストップとシークレーが投入された。 20.0mから孔底 (80.3m) までは、BQダイアモンドビットと BQ-乳コアチューブを使って、ワイアーライン工法により掘削がなされた。本孔の総合コア採取率は92.3%になった。

MJT-3:本孔では、孔口から 10.0mまではNWケーシングパイプが、 20.0mまではBWケーシングパイプがそれぞれ挿入された。深度 12.7mの石英ストックワーク帯の発達箇所で逸水が発生し、その対策のため、ベントナイト、 CMCに加えて、テルストップとシークレーが投入された。 20.0mから孔底(80.3m)までは、BQダイアモンドビットと BQ-WLコアチューブを使って、ワイアーライン工法により掘削がなされた。本孔の総合コア採取率は、これまでの経験を生かした掘削によりほぼ100%に達した。

MJT-4:表土とサプロライト帯に対しては、NWダイアモンドケーシングシューを使って掘削がなされ、孔口から6.0mまでNWケーシングパイプが挿入された。 深度20.0mまでのサプロライトに対しては、NXダイアモンドビットとNX-STHコアチューブを使って普通工法により掘削がなされ、BWケーシングパイプが挿入された。20.0mから孔底(80.3m)までは、BQダイアモンドビットと BQ-WLコアチューブを使って、ワイアーライン工法により掘削がなされた。サプロライトと黒色頁岩層は非常に柔らかく、水を通すと解けてしまう性質のものであった。従ってこのゾーンに対しては、細心の注意をもって掘削作業が行われたが、一部に低いコア採取率の箇所ができてしまった。深度54.5mにて逸水が発生したが、そこは、石英脈の中に対応していた。逸水防止のために、テルストップとシークレーが投入された。本孔の総合コア採取率は89.0%であった。

MJT-5 : 地表付近の6.0mは、NNダイアモンドケーシングシューを使って掘削がなされ、NNケーシングパイプが挿入された。深度 6.0mから30.0mまでの間の珪化した安山岩中には、無数の亀裂が発達していた。このゾーンの 19.0mまでは、BNケーシングパイプが挿入された。しかしながら、19.0mから30.0mの間に完全逸水と孔壁崩壊が一度に発生した。この逸水帯は、孔内セメンテーション(2回、25.5mと30.0m)によって克服された。本孔の総合コア採取率は 95.6%であった。

第2-28表 ボーリング使用機器リスト

D 1111 II W 1.1 VDW OF DA	
Drilling machine; Model YBM-05DA	1 set
Capacity	110 m (40.5 mm*) / 50 m (65 mm*)
Dimensions (L x W x H)	$1,040 \times 550 \times 950$ mm
Weight	230 kg (excl engine)
Hoisting capacity	500 kg
Spindle speed	57, 110, 225 rpm
Engine ; Model DY-41B	7.5 ps/1,750 rpm
Drilling pump ; Model MG-5h	1 set
Piston diameter	68 mm
Stroke	60 mm
Capacity	70 l/min (discharge)
Dimensions (L x W x H)	1,630 × 470 × 680 mm
Weight	200 kg (excl engine)
Engine ; Model NFAD7	6.0 ps/2,600 rpm
Water supply pump; Model TA-800	3 sets
Plunger type	3 planger lateral
Capacity	88 l/min (discharge)
Dimensions (L x \ X H)	554 x 354 x 424 mm
Weight	29 kg (excl engine)
Engine ; Model LA90ASES	8.0 ps/1,800 rpm
Derrick	1 set
Height	5.5 m
Maximum load capacity	3, 000 kg
Mud mixer ; Model MCE-100A	1 set
Capacity	100 ℓ / 800 rpm
Engine ; Model NSA40C	4.5 ps/2,400 rpm
Generator ; Model YDG-3005	2 sets
Capacity	2. 7 KVA (100V, 27A)
Generator ; Nodel YSG-2005	2 sets
Capacity	1.7 KVA (100V.17A)
Drilling tools	
Drilling rods	40.5 mm 1.5 m × 20 pcs
	BQ-WL 3.0 m x 36 pcs
Casing pipes	NW CP 1.0 m x 10 pcs
	BW CP 1.5 m x 20 pcs
	DH OF I.O III A BO POO
Core tubes	NX-STH 1.5 m x 2 pcs

第2-29表 ダイアモンドビット使用状況表

Item	Size	Bit		Drillig	Meterage/	Each Bit		Total
8 3 C		No.	MJT-1	MJT-2	MJT-3	MJT-4	NJT-5	(m)
	NX	3537889-1	16.00					16.00
		3537889-2		12.00	10.00			22.00
		3537889÷3				14.00		14. 00
.*		3537889-4		,			13. 00	13. 00
	:							1 1
		Total	16.00	12. 00	10.00	14.00	13.00	65.00
			Average	Drilling	Length/B	it 1	6. 25 m	
	BQ	NT303-24	28. 00	1.1				28. 00
		10910	23. 70	- 4	: -			23. 70
Diamond		12612	7. 60	11. 10	1			18.70
Bit		11848		29. 30				29. 30
		11849		19. 90	5. 50			25. 40
		11850			30. 20			30. 20
		11852			24. 60	:		24. 60
		11855				26.00		26. 00
		11856				20. 70		20. 70
	. 1	11859				13. 60	6. 50	20. 10
		11860					4. 50	4. 50
		101812					25. 20	25. 20
* 1		101813			1 1		25. 10	25. 10
	Ī	Total	59. 30	60. 30	60. 30	60. 30	61.30	301.50
			Average	Drilling	Length/B	it 2	3, 20 m	Aug to the first
Diamond	NW	12685			10.00	6. 00	6. 00	22. 00
Casing								
Shoe	ļ		2					
. [-	. [Total			10.00	6. 00	6.00	22.00
			Average	Drilling	Length/B	it 2	2. 00	:

第2-30表 消耗品使用数量表

Expendable Item	Spec	1 11 1		Cc	nsumptio	n :		Total
		Unit	MJT-1	MJT-2	МЈТ-3	MJT-4	MJT-5	Amount
Diesel fuel		l	730	660	550	600	720	3, 260
Gasoline		l	160	140	140	150	180	770
Hydraulic oil		l	14	10	10	12	20	66
Engine oil		l	3	3	3	3	10	22
Grease		kg	3	3	2	3	10	21
Bentonite		kg	825	575	500	625	650	2, 625
CHC		kg	40	23	21	42	31	157
Seaclay		kg	34	31	25	60	10	160
Libonite		kg	18	_	25	40	- -	83
Tel-Stop		kg	15	24	23	45	25	132
Mud-0i1		l	20	18	17	30	45	130
Cement		kg	80	80	80	80	480	800
Diamond bit	NX	pcs	. 1	1	∢	1	←	3
Diamond bit	BQ	pcs	3	2	2	3	3	13
Diamond reamer	NX	pcs	1	←	1	←	1	3
Diamond reamer	BQ	pcs	2	1	1	1	1	6
Metal casing shoe	NA	pcs	1	«	_			1
Diamond casing shoe	NW	pcs	-	· <u>-</u>	1	. :←	· ←	1
Core barrel assembly	BQ	set	1	· ←	· 	←	. ←	1
Core lifter	NX	pcs	1	←	←	1	←	2
Core lifter case	NX	pcs	1	«	←	1	←	2
Core lifter	BQ	pcs	2	1	1	: 2	1	7
Core lifter case	BQ	pcs	1	1	1	. 1	1	5
Double core tube	NX	pcs	1	←	←	←	,←	1
Inner tube	BQ	pcs	1	←	←	1 1	←-	2
Inner tube stabilizer	BQ	pcs	1	-	←-	1	←	2
Thrust ball bearing	BQ	pcs	1	1	1	1	1	5
Chack piece	40. 5	set	1	<	€	←	€	1
Cylinder liner	NG-5	pcs	1	←	←	←.	←-	1
Piston rod	MG-5	pcs	1	←	←	←	←	1
Piston rubber	MG-5	pcs	1	1	1	1	←	4
V-packing	MG-5	pcs	1	1	1	1	←	4
Wire line cable		m	200		←	←	. ←	200
Core case	NQ	pcs	3	3	3	3	3	15
Core case	BQ	pcs	6	6	6.	6	6	30

第2-31表 作業時間総括表

								-		-
	Grand	Total		Ξ	16.00 160.00	16.00 160.00	8 00 135 00	157.00	244.00	856.00
			tion	3	1			12.00	4.00 40.00 244.00	92.00
ine ≋2	Disman-1	tlement		3	8.00	-	8.00			40.00 32.00 92.00 856.00
Working Time %2	Assem- Disman-Trans-	blage tlementporta-		3	8.00	8.00	8.00			40.00
<u>2</u>	Sub-	total		3	61.40 66.20 128.00	60.20 67.40 128.00	57.40 111.00	66.30 133.00	113.00 192.00	692.00
	Drill- Other Sub-	Work		(F)	66.20	67.40	57.40	66.30	1-1	371, 10
ļ.,	Drill-	ıng		<u>E</u>			53, 20	66.30	79.00	320. 50
Man Working %1	Worker			(man)	352.0	273.0	42.0 208.0	246.0	410.0	1, 489. 0
Man Wo	Drilling Total Engineer Worker	1 -		(shift) (shift) (man) (man)	36.0	36.0	42.0	44.0	62.0	107.0 220.0 1, 489.0 320.50 371, 10 692.00
ft	Tota1	Shift		(shift)	20.0	20.0	16.5	20.0	30.5	107.0
Shift	Drilling	Shift		(shift)	15.0	15.0	13.0	16.0	23. 5	82.5
		Length		9	79. 5	74.1	80.3	71.5	76.8	382.2
Drilling	Drilling Core	Length Length	·	9	80.3	80.3	80.3	80.3	80.3	401.5
	Bit	Size			NX/B0	NX/B0	NX/B0	NX/B0	NX/BQ	
	Hole	No.	··········		MJT-1	MJT-2	MJT-3	NJT-4	MJT-5	Tota1

%¹ Geological logging inclusive %² Site preparation and road constraction exclusive

第2-32表 掘進作業実績表 (MJT-1)

Date	Dril1	ing Leng	th (m)	Daily T	otal (m)	Shift	(shift)	Man Work	ing(man)
	Shift 1	Shift 2	Shift 3	Drill'g	Core L	Drill'g	Tota1	Eng'er	Worker
Sep30	Prepara	tion							
Oct 1	ditto				٠.				
2	Assemb1	age							
3	5.0	_		5. 0	5.0				į
4	2. 1		_	2. 1	2. 1				
5	5.7	_		5. 7	5. 7				
6	7.2	4.0	7. 3	18. 5	18.5				
7	2. 9	5.3	6.5	14. 7	14.7				
8	3. 0	7. 9	3.9	14. 8	14.8				
9	6. 2	5. 7	7.6	19.5	18. 7				
10	Take-ou	t CP							
11	Dismant	lement				15. 0	20.0	36.0	352. 0
Total				80.3	79.5	15.0	20.0	36.0	352. 0

第2-33表 掘進作業実績表 (MJT-2)

Date	Drill	ing Leng	th (m)	Daily T	otal (m)	Shift	(shift)	Man Work	ing(man)
,	Shift 1	Shift 2	Shift 3	Drill'g	Core L	Drill'g	Total	Eng'er	Worker
0ct12	Transpo	rtation		.*					
13	ditto								
14	Assembl	age							
15	8.0			8. 0	8.0				
16	4. 4	. —	_	4.4	2. 4				
17	3. 3	3. 9	1.7	8.9	4.7				
18	9.8	_	-	9.8	9.8				
19	6. 1	6. 3	7. 7	20.1	20. 1				
20	5.4	3.8	6.4	15. 6	15. 6				
21	5.6	3. 4	4.5	13. 5	13. 5				
22	Take-ou	t CP				·			
23	Dismant	lement				150	20. 0	36.0	273. 0
Total				80. 3	74. 1	15.0	20.0	36. 0	273.0

第2-34表 掘進作業実績表 (MJT-3)

Date	Dri11	ing Leng	th (m)	Daily 1	otal (m)	Shift	(shift)	Man Work	ing(man)
	Shift 1	Shift 2	Shift 3	Drill'g	Core L	Drill'g	Total	Eng'er	Worker
0ct24	Transpo	rtation	:			1. 1		· ·	
25	Assemb1	age						1	. ::
26	7. 0	_		7.0	7.0				
27	8.6	-		8.6	8.6				
28	9.9	_	. 	9. 9	9.9		-	1 1 1 1 2	
. 29	5.0	5. 1	4. 0	14. 1	14.1			:	
30	5. 2	5. 7	5. 2	16. 1	16. 1				
31	4.0	5.3	6. 8	16. 1	16. 1				
Nov 1	8.5		· <u></u>	8.5	8.5				
2	Take-ou	t CP & D	ismantle	ment					
3	Dismant	lement(&	Transpo	rtation	to MJT-4) 13.0	16.5	42.0	208.0
Total				80.3	80. 3	13.0	16. 5	42. 0	208. 0

			,				-	•	
		1. 1.	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			,	g Book is	1 (1 1	1
Date	Drill	ing Leng	th (m)	Daily T	otal (m)	Shift	(shift)	Nan Work	ing(man)
:	Shift 1	Shift 2	Shift 3	Drill'g	Core L	Drill'g	Tota1	Eng'er	Worker
Nov 3	Transpo	rtation	(& Disma	ntlement	of MJT-	3)			·
4	ditto								
5	Assemb1	age							
6	6.0	_	_	6.0	6.0				
7	8. 1	. –		8. 1	8.1				
. 8	8.7			8. 7	7.3				
9	4.1	3. 7	3. 2	11.0	10.6				<u>;</u>
10	3.6	4. 6	3. 4	11.6	9.6				
11	4.0	4.1	4.0	12. 1	7. 1				
12	4.3	4.9	7. 5	16.7	16. 7	:			
13	6. 1	Take-ou	t CP	6. 1	6.1				
14	Dismant	lement(&	Transpo	rtation	to MJT-5) 16.0	20.0	44. 0	246. 0
Total				80. 3	71. 5	16.0	20.0	44. 0	246. 0

第2-36表 掘進作業実績表 (MJT-5)

		71.	D OVA	MARCH 11-7	-><->		9,		
				2	1.1	* 1			· .
Date	Dril1	ing Leng	th (m)	Daily T	otal (m)	Shift	(shift)	Man Work	ing(man)
	Shift 1	Shift 2	Shift 3	Drill'g	Core L	Drill'g	Tota1	Eng'er	Worker
Nov14	Transpo	rtation(& Disma	ntlement	of MJT-	4)	·	. :	
15	ditto						·		
16	ditto					·			
17	Assemb1	age			1				1.00
18	5.0	1.0	· <u></u>	6. 0	6.0				
19	3.3	2. 7	3.5	9.5	9.0				
20	3. 2	1.7	3. 9	8.8	: 7. 5				
21	1.2	Cementa	tion	1. 2	1. 2			1 1	1 1
22	Cementa	tion		_	:				
23	2.7	1.8	Cement	4.5	3. 3				1 .
24	1.6	7.4	7. 2	16. 2	15. 7				
25	3.6	5. 4	5. 5	14.5	14. 5				
26	7.0	8. 5	4. 1	19.6	19. 6			'	
27	Dismant	lement &	Demobi1	ization					
28	Demobil	ization							
29	Demobil	ization				23. 5	30.5	 -	410.0
Total		j:		80.3	76. 8	23. 5	30.5	62.0	410.0

第2-37表 掘進成繙表 (M J T - 1)

		Survey	ey Period		Total	Man Day
		Period	Day	Work Day Off Day	y Engineer	1 3
Operation Preparation		~ Oct. 2 .1992	3.0	3.0	0.6	130.0
Drilling	0ct. 3	~ 0ct. 9		7.0	21.0	181.0
Removing		~ 0ct.11	2.0	2.0 0	0.9	41.0
Total			12.0	12.0	36.0	352.0
Drilling Length	E		E	Core Reco	Recovery of 50 m Hc	Hole
Length		Overburden			Core	Cumulative
Planned	80.0		0.2	Depth of Hole		
Increase/De-		Core			Recovery	Rec
crease in L'th	+ 0.3	Length	79.5	$0 \sim 50.0 \text{ m}$	100.0	0.001
Length		Core	%	50.0 ~ 80.3 m	4.79	0.66
Drilled	80.3	Recovery	99.0			
Working Hours		ų	/o %			
Drilling	9	61.40 48.2	38.6	Efficie	Efficiency of Drilling	
Other Work	9	66.20 51.8	41.4	Total Length		1
Recovering		1	1	Total Work Days		6.7
Sub-total	12	28.00 100.0	80.0	Total Length		m/shift
Assemblage	: -	8.00	5.0	Total Shifts		4.0
Dismantlement		8.00	5.0			-1
Water		-		Drilling	Drilling Length/Each Bit	Bit (m)
Transportation	ם.			Bit Size	NX E	MN OS
Transportation		0.00	10.0	Drilled Length	11.0 59	59.3 10.0
Grand Total		90.09	100.0	Core Length	11.0	58.5 10.0
Casing Pipe Inser	rted				-	
		Meterage				
Size Meterag	<u>.</u> ن	Drilling Length	Recovery			
		00 ×	(6)		19	
O.L.	0	17.5	100 ປ			
2.1	0.0	26.2	100.0			
		3 . 7 .	>		٠	

第2-38表 掘進成續表 (MJT-2)

	Vavery	Survey Period			F + 0 F	Nac Cak
	١.	200	Honly Don	-	- 1	۱
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ושנו	Day	FOIR DAY	UII DAY	Engineer	WOLKEL
Preparation	0ct.12 ~ 0ct.14.1992	3.0	3.0	c	0.6	59.0
Drilling	t.15 ~	7.0	7.0	0	21.0	205.0
Removing	0ct.22 ~ 0ct.23	2.0	2.0	0	0.9	39.0
		12.0	12.0	0	36.0	273.0
Drilling Length	u	E	ပိ	Core Recovery	of 50 m Hol	a)
Length	Overburden				Core	Cumulative
Planned	80.0	8.0	Depth	Depth of Hole		Core
Increase/De-		-			Recovery	Recovery
crease in L'th	+ 0.3 Length	74.1	₹	. 50.0 m	6.68	6.68
Length	ວ	.%	~ 0.0≤	80.3	100.0	92.3
Drilled	80.3 Recovery	92.3	:		-	
Working Hours	% U	<i>%</i>				-
Drilling	60.20 47.1	37.7		Efficiency of	of Drilling	:
Other Work		1.14	Total	Length		m/day
Recovering	1.00	9.0	Total	Total Work Days		6.7
Sub-total	128.00 100.0	80.0	Total	Length		m/shift
Assemblage	8.00	5.0	Total	Shifts		4.0
Dismantlement	8.00	5.0				
Water				Drilling Length/Each	gth/Each Bit	(m)
Transportation		1	Bit Size	e	NX BO	
Transportation	16.00	10.0	Drilled	Drilled Length	10.0 60.3	3 - 10.0
Grand Total	160.00	100.0	Core Le	Length	3.8 60.3	3 10.0
Casing Pipe Inserted	rted					
ļ			•			
Size Meterage	Drilling Length	Recovery		٠		
5	001 × (E)	(%)		. '	:	. :
NW 10.	.0 12.5	100.0				
BW 20.	.0 24.9	70.9				

第2-39表 掘進成續表 (MJT-3)

Man Day	Worker		41.0	137.0	30.0	208.0	le I	Cumulative	Core	Recovery	100.0	-				veb/⊞	7.6, 2,	m/shift	6.4		(m)	MM	3	ر. د							
Total	Engineer		8.0	28.0	0.9	42.0	οţ	Core		Recovery	100.0	100.0			Efficiency of Drilling						gth/Each Bit (m	NX BO	0	0							••
	Off Day		0	0	0	0	Core Recovery		Depth of Hole		~ 50.0 m	۳.			Efficiency	Length	Work Days	Length			Drilling Length/Each	ze	led Length	Length							
	Work Day		2.0	7.0	1.5	10.5	-		Jept		0	50.0				Total	Total	1	Total			Bit Size	Drille	Core L					·	:	. ·
ey Period	Day	Ġ	2.0	7.0	1.5	10.5	E		0.0		80.3	6.9	100.0		39.5	42.7	l	82.2	5.9	5.9		l	5.9	100.0			Recovery	(%)	100.0	100.0	
Survey	Period		≀	$.26 \sim Nov.$	7. $2 \sim \text{Nov. } 3$		E	Overburden	00.00	_	+0.3 Length	Core	80.3 Recovery		48.0	57.40 52.0	1	111.00 100.0	8.00	8.00			8.00	135.00		Meterage	Drilling Length	001 ×	12.5	24.9	
			aration		Removing	Total a the date	Drilling Length		1		th	Length	Drilled 8	Working Hours	Drilling	Other Work	Recovering	Sub-total	Assemblage	Dismantlement	Water	Transportation	Transportation	Grand Total	Casing Pipe Inserted		Size Meterage	(E)	10	BW 20.0	

第2-40表 捆進成續表 (MJT-4)

	Nov. 3 ~ Nov. 5,1992 Nov. 13 ~ Nov. 13 Nov. 13 ~ Nov. 14 Nov. 13 ~ Nov. 14 RO. 0 Core +0.3 Length Core 80.3 Recovery 66.30 50.0 66.30 50.0 133.00 100.0	Da		Off Day 0 0 0 Core Recovery h of Hole > 50.0 m 80.3 m Efficiency of Length Work Days Length	Off Day Engineer 0 10.0 0 44.0 re Recovery of 50 m Hol Core of Hole Recovery 50.0 m 91.6 80.3 m 85.7 Efficiency of Drilling ength ength	Worker 49.0 182.0 15.0 246.0 e Cumulative Core Recovery 91.6 91.6 89.0
Assemblage Dismantlement Water Transportation Transportation Grand Total Casing Pipe Inserter Size Meterag	8.00 4.00 12.00 157.00 ted Meterage age Drilling Leng x 100 x 100 x 100 x 100 0 7.5 0 24.9	Recc 100 1	Total Shifts Drilling Bit Size Drilled Length Core Length	Leng	Bit BQ 60. 52.	