APPENDIXES

1. Microscopic Observation of Rocks in Thin Section(1)	
Tiruku Hill and Nguluku Hill Sub-area	
2. Microscopic Observation of Rocks in Thin Section(2) Drill Core Samples	········ A-11
3. Microscopic Observation of Ores in Polished Section-Drill Core Samples	······· A-19
4 Summary of X-rayDiffraction(1)-Kiruku Will and Nguluku Will Sub-area	1-24
"5. Summary of I-rayDiffraction(2)-Drill Core Samples	······ A-25
6. Chemical Analysis of Rock samples "Kiruku Hill and Nguluku Hill Sub-area	····· 4-26
7. Chemical Analysis of Ore samples -Drill Core Samples	······· A-27
8. Chemical Analysis of Soll samples Kiruku Hill and Nguluku Hill Sub-area	
9 Geological Log of Diamond Drill Role, MJKM-1	······· A-40
[]]. Geological Log of Dissond Drill Hole, UJKN-2	
11. Geological Log of Diamond Drill Role, NJKN-3	······ A-42
12. Geological Log of Dismond Drill Hole, MJKN-4	······i A-43
13. Geological Log of Diamond Drill Role, NJKN-5	A-44
14; Geological Log of Dismosd Drill Mole, NJKN-6	
15. Geological Log of Diamond Drill Hole, WJKM-7	······· A-46
16. Geological Log of Diamond Drill Nole, NJKN-8	
17, Geological Log of Diamond Drill Mole, NJKN-9	······ A-48
[8: Progress of Drilling Survey	
19. Summary of Drilling Results	······ A-50
20. Drilling Progress by Hole	······ A -51
21. Drilling Equipments	······ A-56
22. Amount of Consumed Materials and Diamond Bits	······ A-57

APPENDIX 1

· . . .

MICROSCOPIC OBSERVATION OF ROCKS

IN THIN SECTION(1)

Kiruku Hill and Nguluku Hill Sub-area

1. Igneous Rocks

2. Sedimentary Rocks

. .

Sample Number	Rock Name (Geologic Unit)	Macroscopical features and microscopical texture and structure	Minerals
C003	Agglo- merate	 Brownish carbonate rich rock Angular sandstone pebble (⇔ 5mm) and rounded carbonate pebbles are abundant. 	◇Detrital Material • Ankerite = 10% unhedral grain • Barite = 10% sub~unhedral grain < 1mm • Calcite = 30~40% fine grain aggregate in matrix and pebbles • Alkali feldspar = 5%
			sub-euhedral grain < 0.5mm partly replaced by carbonate •Quartz ≒ 30% extremely fine grain aggregate consisting matrix
			 Pyrite ≪ 5% subhedral-euhedral grain partly replaced by hematite Hematite ≤ 5% replacing pyrite
			 Apatite < 5% extremely fine grain Sandstone pebbles ≤ 10% Matrix ≒ (30~40%) calcite, quartz, clay minerals, Fe-oxide
E001	Agglo- merate	 Light brown brecciated rock Sandstone, mineral frag- ments (plagioclase, barite, alkali feldspar), & carbonatitic minerals aggregate (< 0.2mm) set in a matrix of carbonate (dolomite?) and extremely fine grain quartz aggregate 	 ◇Detrital Material • Alkali feldspar < 0.3mm, ≤ 5% • Plagioclase < 0.1mm, rare • Carbonate (dolomite) ≤ 1mm ≒ 20% • Sandstone, well sorted ≤ 1mm, 20% • Mg-siderite < 0.5mm ≤ 10% fine grain aggregate • Chromite < 0.2mm rare
			unhedral angular grain • Apatite < 0.2mm ≤ 5% unhedral angular • Fe-oxide (secondary) ≤ 5% replacing unknown phase (cubic?) • Barite : sub-euhedral < 0.2mm, < 5% ◇Matrix • Extremely fine grain quartz aggregrate ≤ 20%
· .	· · ·		▪Dolomite : fine grain aggregate ≦ 20%

Kiruku Hill and Nguluku Hill Sub-area (Igneous Rocks-1)

A--2

Ł

	0010 0000	, vacion				
Kirúku Hill	and Ngul	uku Hill	Sub-area	(Igneous	Rocks-2)) - 1
			1			

Sample Number	Rock Name (Geologic Unit)	Macroscopical features and microscopical texture and structure	Minerals
E010	Agglo- merate	Highly carbonatized brownish brecciated rocks, containing large pebbles = 2cm and numbers of grauules (1~3mm) Carbonate minerals and fragment are dominated but sandstone (carbonatized) pebbles and granules reaches 30% of the total thin section area.	 Detrital Material Mg-ankelite unhedral grain : massive aggregate (0.5mm) 5% Apatite subhedral~unhedral grain 5% Albite (stained) < 5% subhedral tabular grain, partly altered Alkali-feldspar (fresh microcline) and plagioclase in sandstone pebbles (2cm wide). Small subhedral plagioclase < 0.1mm, < 5% Small subhedral alkali feldspar < 0.1mm, < 5% Quartz fine grain unhedral grain < 0.1mm rare Rutile rare Fe-oxide (altered) < 5% Sndstone fragments up to 30% Matrix < 30% Dolomite (?), quartz, clay minerals, Fe-oxide
E003	Agglo- merate	Highly carbonatized brecciated rock, containing highly carbonatized volcanic rock pebbles (< 1cm), sandstone (< 0.8mm) and fragments of silicate and carbonate minerals.	 Detrital Material Plagioclase angular grain < 0.3mm, < 5% Alkali feldspar (microcline) angular grain < 0.5mm, < 5% Apatite subhedral crystal < 0.3mm, < 5% Fe-oxide partly altered (atol1 texture), < 5% Quartz Rounded grain rare Barite Small grain aggregate rare Dolomite < 0.3mm, < 5% Subhedral grain Matrix Extremely fine grain aggregate of silica minerals, clay minerals, carbonate and Fe-oxides.

A--3

Sample Number	Rock Name (Geologic Unit)	Macroscopical features and microscopical texture and structure	Minerals
G012	Extremely altered (silici- fied) rock No original Texture	Dark brown heterogeneous rock •Dark mineral veinlets are developed network texture	 MnO mineral, extremely fine grain aggregate showing feathere-like network veinlets. ≤ 40% Barite < 20% fine grained unhedral ~ subhedral crystals. SiO₂-mineral < 30% Quartz 0.1mm partly developed Tridymite (?) : extremely fine grained fibrous crystal aggregate.

Kiruku Hill and Nguluku Hill Sub-area (Igneous Rocks-3)

A--4

· ·

Kiruku Hill and Nguluku Hill Sub-area (Sedimentary rocks - 1)

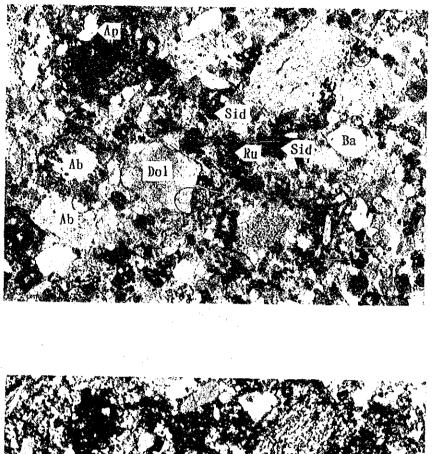
Sample	Rock Name (Geologic	Macroscopic Features	Identified Miner	als and Material
Number	Unit)	Microscopic Features	Detrital Material	Matrix
E005	Limestone	Pale brown fine grained rock with detrital fragments (up to 0.2mm) including limestone (≦1cm) with bioclast (now filled with sparite)	 Quartz < 20% sub rounded grain ≤ 0.3mm Plagioclase rare subhedral ≤ 0.3mm (rounded) Rutile rare subhedral ≤0.1mm Zircon rare subhedra≤ 0.1mm Limestone with 	•Micrite ≒ 70% •Clay minerals < 10%
			bioclast (sparite) and quartz and micritic matrix • Fe-oxide rare	
E007	Sandstone	 Pale brown fine grained rock Well sorted 	 Quartz < 50% Rounded grain < 0.1mm Plagioclase < 20%, < 0.1mm albite twin sub- hedral rounded grain K-feldspar < 0.1mm, < 20% subhedral partly replaced by sericite Muscovite < 10% Biotite < 10% Apatite < 5% Rutile < 5% Zircon rare rounded grain Baddeleyite rare fine grain, rounded shape Secondary mineral < 5% sericite, clay minerals, Fe-oxides 	
E015	Sandstone	 Light brownish fine grained rock Well sorted 	 Quartz≤ 0.3mm ≤ 60% K-feldspar≤ 30% unhedral≤ 0.3mm partly replaced by sericite Plagioclase ≤ 10% unhedral albite twin Biotite ≤ 5% Muscovite rare 	 ◇ Secondary minerals≤ 50% Sevicite Clay minerals Chlorite Fe-oxides

A--5

Kiruku Hill and Nguluku Hill Sub-area (Sedimentary rocks-2)

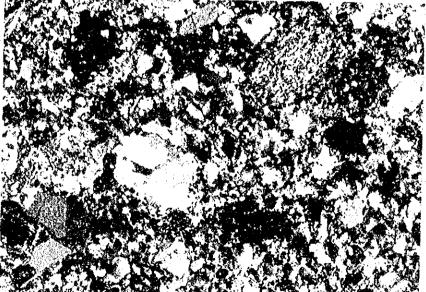
Sample	Rock Name	Macroscopic Features	Identified Miner	als and Material
Number	(Geologic Unit)	Microscopic Features	Detrital Material	Matrix
E015	Sandstone		 Zircon rare rounded grain Rutite rare un- hedral ≤ 0.1mm Fe-oxide rare Around margin of 	<u></u>
			quartz, feldspar grains, clay mineral and	
			chlorite are present. (secondary	
			minerals)	
H002	Sandstone	 Light reddish brown altered sandstone Fe-oxide veinlets (< 0.2mm wide) 	◇Relatively fresh domain Well sorted sandstone (moderately	
		are partly developed. • This rock was	altered). •Quartz < 0.6mm, ≤ 60%	
		originally well sorted medium grain sandstone	rounded shape •K-feldspar (alkali-felds) partly or totally	
			replaced by sericite ≦ 30% < 0.6mm	
			•Plagioclase ≦ 20%, < 0.5mm subrounded grain •Iron oxide < 5%	
			secondary, interstitial • Interstitial	
			secondary quartz aggregate. ◇Extensively	
			altered domain •K-felds. partly or totally altered to	
			sericite and clay mineral • Quartz :	
			relatively fresh •Barite. fine grain inter-	ni di sena di sera ang Manang ing
			stitial < 5% •Extremely fine grained quartz	
			aggregate with clay minerals •Fe-oxide veinlets	• •

А--6


Sample	Rock Name	Macroscopic Features	Identified Mineral	s and Material
Number Unit)	umber Unit) Microscopic Features		Detrital Material	Matrix
E007	Sandstone	 Pale brown medium grained rock well sorted and compact. Fine veinlets < 0.1mm wide. 	 Quartz ≤ 60% subrounded ≤ 0.6mm K-feldspar < 20% stained subrounded, < 0.6mm partly replaced by sericite Plagioclase < 20% stained albite twin Zircon rare rounded grain Barite rare fine grain aggregate surrounding Fe-oxide Fe-oxide rare altered Secondary minerals < 5% sericite, clay minerals, Fe-oxide 	

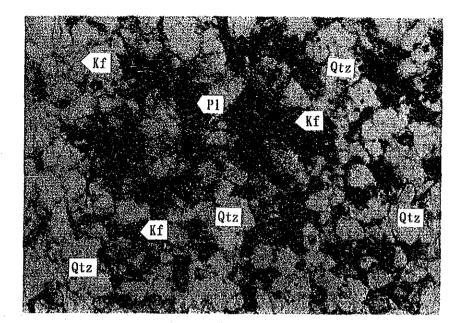
Kiruku Hill and Nguluku Hill Sub-area (Sedimentary rocks-3)

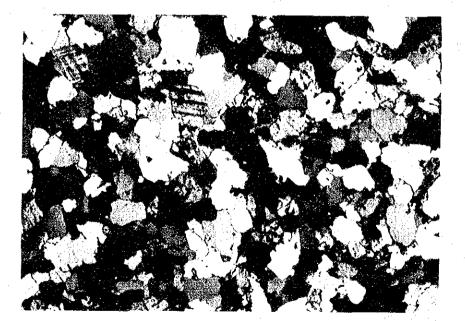
PHOTOMICROGRAPHS OF ROCKS IN THIN SECTION - Kiruku Hill and Nguluku Hill Sub-area-


Abbreviations

		quartz	Do1	:	dolomite
Kf	:	potassium feldspar	Sid	:	Mg-Siderite
Ab .	:	albite	Ba	:	Barite
Aр	:	Apatite	Ru	:	Rutile

one polar


crossed polars


1mm

Sample No : E001 Formation : Ignious rock Location : Nguluku Hill Rock Name : Agglomerate

Photomicrographs(thin section)

one polar

crossed polars

1 mm

Sample No : H007 Formation : Maji-ya-Chumvi F. Location : Kiruku Hill Rock Name : Sandstone

Photomicrographs(thin section)

APPENDIX 2

MICROSCOPIC OBSERVATION OF ROCKS IN THIN SECTION(2)

Drill Core Samples

Drill Core Samples (Sedimentary rocks-1)

Sample	Rock Name (Geologic	Macroscopic Features	Identified Miner	als and Material
Number	Unit)	Microscopic Features	Detrital Material	Matrix
KM1-T1 (MJKM-1 19.20m)	Altered sandstone (Mzm)	Well sorted medium grained sandstone	• Quartz≒ 80% ≦ 0.7mm in diameter, subrounded grain.	≒ 10% •Calcite replacing matrix. •Clay mineral
· · · · ·			•Plagioclase≒ 5% partly altered •Alkali feldspar	• Silica mineral probably quartz • Sericite • Zeolite
	· · ·		≒ 5%,microcline partly altered	
			 Muscovite rare Opaque rare Zircon rare Rutile rare 	
KM1-T2 (MJKM-1 83.30m)	Altered sandstone (Mzm)	Very well sorted fine grained sandstone	•Quartz≒ 80% ≤ 0.3mm in diameter subrounded~ subangular	 ≦ 20% Clay mineral Silica mineral probably quartz Calcite replacing matrix
			•Plagioclase≒ 5% microcline ≦ 0.3mm in diameter	• Sericite (alteration)
			•Alkali feldspar rare microcline ≦ 0.3mm in diameter	
			 Muscovite rare Biotite rare Opaque rare Rutile rare Garnet fragment rare 	
KM2-T1 (MJKM-2 80.50m)	Meadium grained sandstone (Mzm)	 Moderately sorted medium grained sandstone Thin muddy layer (1mm thick) 	•Quartz≦ 70% subangular∼ angular grain (up to 0.5mm in diameter)	⇔ 20% •Clay mineral •Sericite •Chalcedony •Opaque
			 Alkali feldspar ≦ 5% subangular ~subrounded grain(≤ 0.5mm) partly or totally altered to sericite 	

A-12

4

de la Ngga

Drill	Core Samples	(Sedimentary	rocks-2)

Sample	Rock Name (Geologic	Macroscopic Features	Identified Miner	als and Material
Number	Unit)	Microscopic Features	Detrital Material	Matrix
		г	•Plagioclase ≦ 5% subangular grain(≦ 0.5mm)	
			• Calcite < 5% platy grain (< 0.5mm) (replacement origin?)	
			•Muscovite rare lath •Opaque rare	
KM4-T1 (MJKM-4 61.50m)	Pisolitic limestone (K)	 Heterogineous pisolitic limestone containg pisoids, oncoids and bioclasts. Calcite vein (< 0.5mm thick) 	 Pisoid (= 20%) 0.5~10mm in diameter, consisting of micrite, and concentrically laminated grain. Pisoid locally consists of concentrically laminated micritic outer zone and sparry calcite core. 	 Mainly micrite Partly grain supported with a spar cement.
· ·			•Oncoids : poorly preserved < 10% (< 0.3mm)	
			•Bioclast, ≒ 20% locally abundant	
KM4-T2 (MJKM-4 142.85m)	Banded calcareous sandstone (Mzm)	₩ell sorted sandstone	•Quartz≤ 50% subangular~ angular(< 0.3mm) long axis of each grain alligned along bedding	< 20% • Clay mineral • Sericite • Chalcedony • Calcite replacing parts of matrix
194 1			• Plagioclase< 10% angular grain (< 0.2mm)	UT NOLTIA
			•Alkali feldspar ≦ 10% microcline subangular (< 0.2mm)	
			•Biotite ≦ 10% Iath	- - -

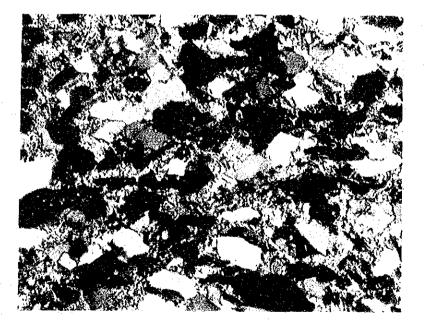
Drill Core Samples (Sedimentary rocks-3)

Sample	Rock Name	Macroscopic Features	Identified Miner	als and Material
Number	(Geologic Unit)	Microscopic Features	Detrital Material	Matrix
			 Muscovite rare Opaque mineral rare Gypsum rare 	
КМ5-Т1 (М.JКМ-5 95.15m)	 Banded sandstone Thin laminae rich in mica and opaque (Mzm) 	 Altered banded sandstone with laminae consisting dominantly of micas and opaque Well sorted Thin quartz vein (< 0.2mm thick) 	 Quarty≦ 50% subangular~ angular(< 0.2mm) Plagioclase≦ 5% (< 0.2mm) Alkali feldspar ≦ 5% microcline (< 0.2mm) Biotite << 5% lath altered Muscovite << 5% Calcite << 5% Fe-Carbonate stained grain << 5% 	= 30% • Carbonate replacing mataix • Clay mineral • Quartz
KM5-T2 (MJKM-5 95.25m)	Altered sandstone (Mzm)	• Well sorted medium grained altered sandstone	•Quartz≦ 40% angular grain (< 0.3mm)	 Platy carbonate replacing matrix
· · · ·		 Extensively carbonatized. 	•Plagioclase rare partly altered (≦ 0.3mm) (sericite)	 Clay mineral Silica mineral probably quartz
			•Alkali feldspar rare partly altered (≦ 0.3mm)	•Sericite
			 Carbonate grain (< 0.3mm) replacing feldspar? (stained) 	
			•Muscovite rare	

Sample	Rock Name	Macroscopic Features	Identified Miner	als and Material
Number	(Geologic Unit)	Microscopic Features	Detrital Material	Matrix
KMG-T1 (MJKM-6 78.90m)	Weakly banded silty sandstone (Mzm)	• Poorly sorted altered rock.	• Quartz ⇒ 30% subrounded large grain(≦ 0.5mm diameter) marginal area of the grain has a narrow band enriched in extremly fine inclusions.	> 60% • Subangular quartz abundant • Clay mineral • Opaque rare • Sericite rare
			 Lithic fragment (< 5%) subrounded sandstone (≤ 0.5mm) Zircon rare 	• Biotite rare (altered)
KM6-T2 (MJKM-6 94.00m)	Silicified sandstone (Mzm)	• Moderately well sorted coarse grained silicified sandstone	 Quartz≒ 60% subangular~ angular grain. ≤ 0.4mm in diameter Lithic fragment ≤10%, fine grained coarse grained sandstone with rounded shape Garnet rare angular fragment 	 ⇒ 30% Silica mineral probably quartz (by silicification) Clay mineral Muscovite rare (sericite)
KM6-T3 (MJKM-6 136.10m)	Pyritized sandstonə (Mzm)	 Poorly sorted sandstone Abundant pyrite 	 Quartz≤ 50% subrounded grain ≤ 0.5mm in diameter. Marginal zone of quartz grains exhibit a narrow band enriched in extremly fine unknown crystals Biotite rare 	 ≒ 50% Clay mineral Quartz Opaque(pyrite)

Drill Core Samples (Sedimentary rocks-4)

PHOTOMICROGRAPHS OF ROCKS IN THIN SECTION


-Drill Core Samples-

Abbreviations

Qtz : quartz Bi : biotite Mus : muscovite

Se : sericite Opq : opaque minerals

Bi

0. 5mm


one polar

crossed polars

Sample No : KM4-T2 Formation : Mazeras F. Location : MJKM-4, 142.85m Rock Name : Sandstone

Photomicrographs(thin section)

A--17

<u>1</u>mm

crossed polars

Sample No : KM6-T3 Formation : Mazeras F. Location : MJKM-6, 136.10m Rock Name : Poorly sorted sandstone

Photomicrographs(thin section)

APPENDIX 3

MICROSCOPIC OBSERVATION OF ORES IN POLISHED SECTION Drill Core Samples

SUMMARY OF MICROSCOPIC OBSERVATION OF ORES IN POLISHED SECTION

- Drill Core Samples -

Sample	Hole	Sampling	Ore Type	Py	çp	Sp	Py Cp Sp @tz Cal	Cal	Remarks
Number	Number	Depth(m)							
KM1-P1	I-WXIM	17.66	Pyritized sandstone	0	1	×	I	1	Py fills intergranular spaces of Qtz grains.
. •									Sp $\phi = 0.1 - 0.3 \text{mm}$
КИЗ-Р1	MJKW-3	96.10	Pyritized sandstone	0	1	×	l	l	Disseminated Py ¢ ≤0.4mm, Sp ¢=0.3mm
KM6-P1	NJKN-6	55.15	Pyritized sandstone	0	Ι	- 1	I	1	Py as veinlets, fine grains and spotty
• .									fragments
KW7-P1	NJXN-7	77.20	Pyrite vein	0	ł	I	I	l	Aggregation of fine-grained Py, φ≤0.1mm
Id-8NX	NJKM-8	66.25	Sphalerite vein	×	ł	0	\triangleleft	ł	Massibe Sp vein with rare Py(φ ≤ 0.1mm)
KN8-P2	NJKN-8	74.30	Py-Cp-Sp-Cal-Qtz vein	×	4	O	Ö	0	Cp φ =1-2mm, Py φ =0.1mm ±
KN9-P1	MJKM-9	60.67	Sp-Qtz vein	×	I	0	0	. 1	Py($\phi = 0.03$ mm) is in the wall rock
KM9-P2	MJKM-9	60.69	Sphalerite vein	×	ł	0	\triangleleft	I	Massibe Sp vein with rare Py($\phi \leq 0.01 \text{mm}$)
KM9-P3	6-₩JKW	61.48	Cp-Qtz vein	×	0	\triangleleft	Õ	\triangleleft	Срф=0.3-0.4mm, Sp ф ≤ 0.3mm, Ру ф=0.02mm
KM9-P4	MJKM-9	72.06	Cp-Qtz vein	\triangleleft	, I	×	0	Ι	Sp $\phi = 0.5 \text{mm}$, Py as veinlet(o.15 mm wide)
									and fine grains($\phi \leq 0.04$ mm)

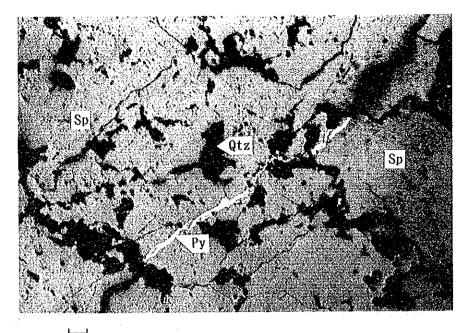
X : rare

 Δ : little

O : common

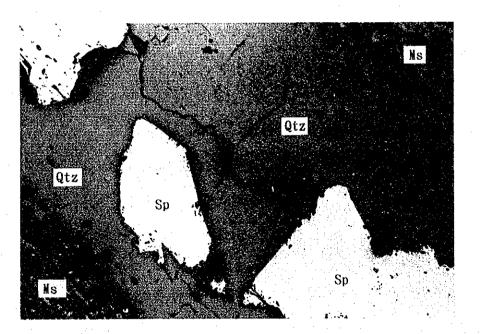
Qtz : quartz Cal : calcite

Cp : chalcopyrite
Sp : sphalerite
③ : abundant ○


Py : pyrite

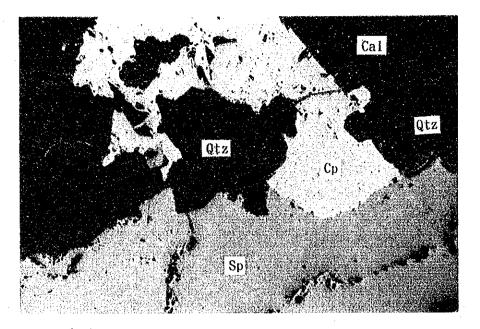
Abbreviations

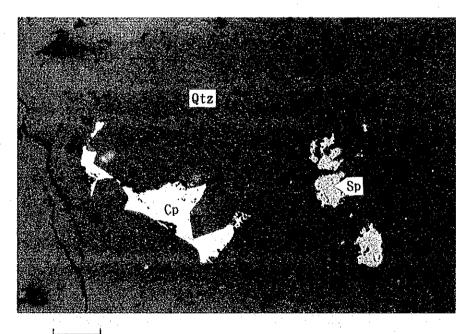
PHOTOMICROGRAPHS OF ORE MINERALS IN POLISHED SECTION - Drill Core Samples -


Abbreviations

Sp : sphalerite	Qtz : quartz
Cp : chalcopyrite	Cal : calcite
Py : pyrite	Ms : silicified mudstone

ىــــ 0.1mm


Sample No	:	KM8-P1	
Location	:	MJKM-8,	66. 25m
Ore Name	:	Py-Sp V	ein


Sample No : KN8-P2 Location : MJKM-8, 74.30m Ore Name : Py-Cp-Sp-Cal-Qtz Vein

Photomicrographs(polished section)

0. 1mm

Sample No : KM8-P2 Location : MJKM-8, 74.30m Ore Name : Py-Cp-Sp-Cal-Qtz Vein

0. 1mm

Sample No : KM9-P3 Location : MJKM-9, 61.48m Ore Name : Cp-Qtz Vein

Photomicrographs(polished section)

DIFFRACTION (1) - Kiruku Hill and Nguluku Hill Sub-area **Χ-RAY** ц SUMMARY 4 APPENDIX

								į							
Sample Number	Location	Rock Type	Ser	Otz	K-fs	Ab	Goe	Hem	Ba	Jar	Doi	Sid	Ant	Plu- gum	Other Tests/Remarks
A009	Ki ruku	Altered Ignious rock		0	0			· · · ·							
A012	Ki ruku	Limonitic concretion		Ø			Ā		∇						
B003	Kiruku	Vein in sandstone	ż	0	Ø	0									
C002	Ki ruku	Fe-Mn concretion				·	1	:	Ö		· · · ·				
E004	Kiruku	Fe-Mn concretion												4	Assay
E007	Kiruku	Altered sandstone		0		0	÷			: .					Thin section
E013	Kiruku	Altered agglomerate		0	۵ ک	Q		∇	: .		0	4	·		Assay. Thin section
6010	Kiruku	Silicified rock		0			Δ		4						Assay
G011-1	Ki ruku	Silicified rock		Ø			⊲			\bigtriangledown					
G011-2	Ki ruku	Fe-Mn aggregate		Ø			Q			1					
G012	Kiruku	Fe-Mn altered rock		Ø	1	1		· · · · ·	\bigtriangledown						Thin section
G015	Kiruku	Vein in sandstone	:	0	Ó	0			·						
H001	Ki ruku	Silicified rock		0			\bigtriangledown		Δ		Ā		·		Assay
H003	Kiruku	Limonite quartz vein		Ø				 I	- 1						
H005	Kiruku	Fe-Mn concretion													Åssay
900Н	Ki ruku	Limonitized rock					Ö								
		©≡abundant.	ant.	Ő	O = common.	 **	∆=minor.	nor.	1			? = uncertain.	ertair	ہے :	
	5	abbreviation: Ser=sericite, Sid=siderite,		Qtz=quartz, Dol=dolomi		-fs=K- Jar=já	K-fs=K-føldspar, 8. Jar=jarosite, /		Ab=albite, Ant=anatase,	3, Goe ie, PIL	=goeth Jgum=p	3oe=goethite, Hem=hem Plugum=plumbogummite	am=hem. mmite	at i te,	Goe≖goethite, Hem=hematite, Ba=barite Plugum=plumbogummite

	b 0tz K-fs Ab	0	0	0	0	⊘	0	Ø	0	0	0	0	0	0	0	
	Ser Kao 0p	0) ()	0	©	© 	© 0	Q	Þ		0	©	Þ	2 4	0	
.		4	30 △	30. 30 🛆	62.80	108.90	71.00	75. 50	95. 70	79.00	85, 50	89. 80	73. 90	66. 25	73. 90	
	Depth(m) S/M	19.20	83.30	30	9	-		·								

S/M=sericite/montmorillonite mixed-layer mineral, Ser=sericite, Kao=kaolinite, Ab=a|bite Op=opal, Otz=quartz, K-fs=K-feldspar, Py=pyrite, Ba=barite, Cal=calcite, Anke=ankerite Spha=sphalerite, Ant=anatase, Mk=makatite abbreviation:

? = uncertain.

- = rare.

 $\Delta = \min \text{nor.}$

O = common.

©=abundant.

٦

į.a.)

DIFFRACTION (2) - Drill Core Samples X-RAY ш О

SUMMARY ŝ APPENDIX APPENDIX 6 CHEMICAL ANALYSIS OF ROCK SAMPLES —Kiruku Hill and Nguluku Hill Sub-area—

er.	Ser. Sample	Νų	Ba	Чe	Mn	ዱ	Sr	QN.	μŗ	Ŋ	Y	La	ප	ΡN	ß	Eu	4	ЧЪ	Гu
No.	No.	g/t	ඔෆ්ර	26	Шdd	Шdd	ndd	udd	Indd	ШÖĞ	IJďď	Шđđ	bbœ	ШQQ	ndd	mdd	Edd -	шdd	Шăd
	1 A-005.	10	3870	3870 7.11 >10000	>10000	1670	463	150	243	8. G	220	2491	4044	782	66	30.0	ແດ ∞	17.0	2.40
2	A-013	35	2820	6.63	255	1660	266	1370	172	28.0	220	2023	2849	903	113	34.0	11.0	15.0	1.80
က	E-004	€5	7760	7760 >15.00	4990	8970	2600	1150	184	92.0	580	2221	4088	>1000	276	85.0	28.0	39.0	5.20
শ	E-006	\$? ₹	590	590 8.05	2280	>10000	588	210	28	6.3	75	245	514	181	30	8.9	3.2	5.1	0.96
ഹ	E-009	ŝ	170	6.07	1630	>10000	606	200	26	7.4	70	254	513	190	28	8,9	3.0	4.6	0.66
9	E-013	€5	740	6.06	1550	6770	611	180	24	5.9	60	195	436	158	26	8.4	2.5	4.8	0.63
	G-010	3 5	4190	13.05	8770	2350	389	066	321	8° 0	170	1655	2920	>1000	290	- 30. 0	27.0	40.0	5.30
∞	G-016	\$	2400	2400 >15.00	4210	2460	418	710	697	5.9	620	2770	4425	>1000	186	55.0	21.0	44.0	6.00
თ	H-001	520	2830	2830 6.65	1255	3440	597	305	201	7.1	270	6844	8008	>1000	136	36.0	13.0	21.0	2.60
10	H-005	ŝ	<5 >10000 >15.00 >10000	>15.00	>10000	2370	1490	വ	12	5.9	<u> 65</u>	187	234	158	17	17.0	6 .8	13.0	1. 70

A--26

APLES-· U

SAMI		2 n
CORE		Pb
-DRILL CORE SAMI		Сu
SAMPLES	-	er. Sample
ORE		Ser.
OF		
ANALYSIS		g Ba
CHEMICAL ANALYSIS OF ORE SAMPLES		Au Ai
2		Zu
APPENDIX		5P
API		Cu .

	96 m 20	0.01	0.17	•	9	÷	٠					•	٠	19.9	\$`<	10.02	ð e			19.92		> c		10.04	*	10.02	19.0	10.0	10.00						•	0.01	0.01	<0.01		<0.01	0.01							
	Ag ppa	<2 <2 <2	9 ℃	2 ° °	200	2×	27 V	~~ <	~2 Q	22	2 ¢	29	N 4	27 Q		2 0	~	V V	- 2 2 2 2	2 C	°° √ √	20	9 C 7 V	7 9 7 1	2 Q 7 N	7	2 Q	22	20	4 C 1 N	3 ¢	3 C V	10	i v	°	27 V	2°2	<2×	¢2 ∨	c-1 ·	ৰ ৫	22	2 9	>1 ≎ V	•	30	1 ° 7 V	
SAMPLES-	Au oz/T	000	ōŌ	000	100	000	000	0000	000		000		000	000	000	000				000				000		000		122							000	000	000	000	000	000	000	000.	000.					
	ย% 2	0,0	202	2°5	20.	00.	5	38	50	ດ ວິດ	33	5 <	20	2.0	200	Ë,	20	. . 5	20	22	200	5.0	2	j	- C	3 (2 (200	20,00		3-		20	30	ŝē	2	0.00	8	00.	8	0.00	<u> </u>	40	80°.0	000) 0 0 0	10	000	3
L CORE	P5 8	· •	0.003	200	80.0	.00	00.	60,00	20	50		30	<u> </u>	80.	20	0.0		3		30	50	$\frac{1}{2}$	200	20	20	n n	no.	30	200						200	0	00.	00.	00.	6.0	60	200	200		30		700 0	422.2
S –DRILL	אר 20 2	100 0>	00	100.0	20.	°.	°.'	<0.01	20			100.02		100.02	2.9	20	<u> </u>	- C		- c	200 07	⊃ <	<u> </u>	D C			3	3	50	> c	> c	> <	$> \subset$	> C	\sim	00	00	00.	. 00	<u> </u>	20.	3	20 · 0	200	* 0 3 0	, F	0.013	
SAMPLE	Sample No.	~~	M6-A2	M 6 - A 2 M 6 - A 9	M6-A2	M6-A2	M6-A2	M6-A2	M6-A2	M 6 - A 2 N 6 - A 2	28-9W		M6-A3	M6-A3	M6-A3	28-92 Ve-82	0 4 - 0 E	0 4 - 0 X	0 4 1 0 E	M6 - A3	0 4 1 4 1 4 1 4 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44-0W	MD-74	4	MI - AU		0 4 - 7 6 7 4 0	04	M7-40	M7-10	M7-10	M7-40	M7-A1	M7-A1	1	M7-A1	TV-J	N-7M	T-V-TM	M 8 - A U		04-95				~ ~	
ORE	Ser. No.	51	3 69 - 9 69 - 9 69 -	ປີ ເຊັນ ເຊັນ	200	57	ະດ ເດີຍ ເດີຍ	500		-ic 94	200	00	4 L	0 < 9 <	0 t 9 d	200					70	0 - F	4 U	0 ¢			-		, 		10		+ <u>c</u>	5 4 5 6	. 1.8	000	68	90	16	62	57 57 57	47 L 77 C	0 ¢	р г- л о	- 0		00	2
OF																																																
	a % %	2.60 <0.01	10.02	10.0>	0.07	0.09	0	0.05		⇒ ~	11.0	10.0	1.01	0.05											•			٠	٠	• 1		•	è e	•	è	<0.01			•	0.44		9	ē		÷e	. e		
ANALYSIS	Ag Ba. ppna %		10.02			0.0	2 0.0	0.0 0 0	200) -) -	20	20		20					20			, ,		20. 20.	 			20.2	20			, c	2 C V	200	2 v v v v	50. V	۰ ۵	2 0.	V	2 0.4		20	2.0.0	5- 5-				
	3	45 2 20 <2	0005	0005 <2	.0005 <2	.0005 <2 0.0	.0005 <2 0.0		: UUU5 <2 0.0		22 6000	. UUU3 <2		. UUU5 <22	2> <000																				0005 <2 <0.0	0005 <2 <0.	.0005 <2 <0.	0005 <2 0.	0005 <2 <0.	0005 <2 0.4	0005 <2 0.1						0.005 <2 <0.0	
7 CHEMICAL ANALYSIS	Au Ag B z/T ppm	0045 2	002 <0.0005 <2	22 2000 02 100 22 20 000 2 20	.001 <0.0005 <2	001 <0.0005 <2 0.0	$.002$ 0.002 $\times 0.005$ <2 0.0	.001 0.0005 <2 0.0	.001 <0.005 <0 0.0	0.0 22 CUUUS 100			002 <0.0005 <2	.008 <0.0005 <2		.UUI <u.uuud <2="" td="" u.<=""><td></td><td>.010 27 0000 20 0 000 20 0000 20 0</td><td></td><td>.001 -0 0005 -0 -0.</td><td>. VUI >U. UVU3 >Z >U.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.002 < 0.005 < 2 < 0.0</td><td>0.001 < 0.0005 < 2 < 0.0005</td><td>0.001 <0.0005 <2 <0.</td><td>0 001 <0.0005 <2 0.</td><td>001 <0.0005 <2 <0.</td><td>002 < 0.0005 < 2 0.4</td><td>001 <0.0005 <2 0.1</td><td></td><td></td><td>010 28 CD00 07 110</td><td></td><td></td><td>029 <0 0005 <2 0 0</td><td></td></u.uuud>		.010 27 0000 20 0 000 20 0000 20 0		.001 -0 0005 -0 -0.	. VUI >U. UVU3 >Z >U.														0.002 < 0.005 < 2 < 0.0	0.001 < 0.0005 < 2 < 0.0005	0.001 <0.0005 <2 <0.	0 001 <0.0005 <2 0.	001 <0.0005 <2 <0.	002 < 0.0005 < 2 0.4	001 <0.0005 <2 0.1			010 28 CD00 07 110			029 <0 0005 <2 0 0	
7 CHEMICAL ANALYSIS	n Au Ag B X oz/T ppm	.121 0.0045 2 011 0.0020 <2		003 0 001 <0 0005 <2		005 0.001 <0.0005 <2 0.0	.006 0.002 0.0005 <2 0.0	.004 0.001 0.0005 <2 0.0	.004 <0.001 <0.005 <0 0.0	0.0 22 CUUUS INU 22 CUUUS 200	.004 ~50.001 ~0.0005 <5	22 0000 10 100 00 0000 0000 0000 0000 0	.005 0.002 <0.005 <2	010 0 006 10 0005 10	22 CONT 20 CON 0 CON											.UVB U.UZ/ <u.uuuu <u.<="" <z="" td=""><td></td><td>.UU3 U.UL3 <u.uu3 <u.<="" <u.uu3="" <z="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.04 0 0.02 < 0 0.005 < 2 < 0 0</td><td>.003 <0.001 <0.0005 <2 <0.</td><td>.002 <0.001 <0.0005 <2 <0.</td><td>002 <0 001 <0,0005 <2 0.</td><td>.003 0.001 <0.0005 <2 <0.</td><td>008 0.002 < 0.005 < 2 0.4</td><td>.005 0.001 <0.005 <2 0.1</td><td>.002 0.002 <0.0005 <2 0.4</td><td>.003 0.015 <0.0005 <2 0.6</td><td></td><td></td><td></td><td>003 0.029 <0.0005 <2 0.0</td><td></td></u.uu3></td></u.uuuu>		.UU3 U.UL3 <u.uu3 <u.<="" <u.uu3="" <z="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.04 0 0.02 < 0 0.005 < 2 < 0 0</td><td>.003 <0.001 <0.0005 <2 <0.</td><td>.002 <0.001 <0.0005 <2 <0.</td><td>002 <0 001 <0,0005 <2 0.</td><td>.003 0.001 <0.0005 <2 <0.</td><td>008 0.002 < 0.005 < 2 0.4</td><td>.005 0.001 <0.005 <2 0.1</td><td>.002 0.002 <0.0005 <2 0.4</td><td>.003 0.015 <0.0005 <2 0.6</td><td></td><td></td><td></td><td>003 0.029 <0.0005 <2 0.0</td><td></td></u.uu3>							0.04 0 0.02 < 0 0.005 < 2 < 0 0	.003 <0.001 <0.0005 <2 <0.	.002 <0.001 <0.0005 <2 <0.	002 <0 001 <0,0005 <2 0.	.003 0.001 <0.0005 <2 <0.	008 0.002 < 0.005 < 2 0.4	.005 0.001 <0.005 <2 0.1	.002 0.002 <0.0005 <2 0.4	.003 0.015 <0.0005 <2 0.6				003 0.029 <0.0005 <2 0.0	
CHEMICAL ANALYSIS	b Zn Au Ag B X X oz/T ppm	.018 0.121 0.0045 2 003 0.011 0.0045 2		.001 0 003 0 001 <0 0005 <2	.001 0.004 0.001 <0.0005 <2	.001 0.005 0.001 <0.0005 <2 0.0	.001 0.006 0.002 0.0005 <2 0.0	.001 0.004 0.001 0.0005 <2 0.0	.001 0.004 <0.001 <0.005 <2 0.0	0.0 22 CUUUUS IN 12 IN 1	.UUI U.UU4 SU.UUI SU/UUD SZ DAI D DA2 ZA DAI ZA DAAF ZA	.001 0.000 0.000 0.000 52 001 0.000 0.000 0.0005 .0	.001 0.003 0.002 <0.000 <2	.006 0.009 0.008 <0.005 <2	. 100 0 000 0 000 0 100 0 0 100 0 0 100 0 100 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.441 4.463 4.401 49.400 42 4.	. 442 4.446 9.443 49.4443 42 9.	. UVE VIE VIE VIE VIE VIE VIE VIE VIE VIE V		-01 0 001 0 001 0 000 0 00 00 0 0 0 0 0			.000 0.000 0.004 0.0010 10 0.	. 100 0 000 0 000 0 000 0 000 0 0 0 0 0		.001 0.007 0.008 5.000 52 50.	.001 0.001 0.023 <0.0003 <2 0.		101 0 114 0 000 20 000E 20 20						001 0 004 0 002 <0 0005 <2 <0 0	001 0.003 <0.001 <0.0005 <2 <0.	0.001 0.002 <0.001 <0.005 <2 <0.	001 0.002 <0.001 <0.0005 <2 0.	0.001 0.003 0.001 <0.0005 <2 <0.	001 0.008 0.002 < 0.005 < 2 0.4	003 0.005 0.001 <0.0005 <2 0.1	0.003 0.002 0.002 <0.0005 <2 0.4	0.01 0.003 0.013 <0.0003 <2 0.6				001 0.003 0.029 <0.0005 <2 0.0	
7 CHEMICAL ANALYSIS	u Pb Zn Au Ag B % % oz/T ppm	006 0.018 0.121 0.0045 2 001 0.003 0.011 0.0020 <2		43-402 <0.001 0.003 0.001 <0.0005 <2 45-403 <0.001 0.003 0.001 <0.0005 <2	M5-A04 <0.001 0.004 0.001 <0.005 <2	M5-A05 <0.001 0.005 0.001 <0.0005 <2 0.0	45-Å06 <0.001 0.006 0.002 0.0005 <2 0.0	45-407 <0.001 0.004 0.001 0.005 <2 0.0	M3-AU8 <v.uvi <2="" <u.uu0="" <u.uvi="" u.u<br="" u.uv4="">45 400 - 0 001 0 000 - 0 001 -0 0005 - 0 0</v.uvi>	40-40A <0.01 0.01 0.01 <0.001 <0.000 <20 0.0	43-410 <44.001 0.002 <60.001 <60.000 <20 45.211 <6.001 0.002 <6.001 <6.0005 <5	40-AIL SUIVUL VIVUS SUIVUL SUIVUO SZ 25 20 20 20 201 0 200 0 200 20 2005 20	43-ALZ <u.uvl <2<="" <u.uud="" td="" u.uus="" u.uuz=""><td>13-A13 U.UV6 U.UU9 U.UU3 <u.uu3 <2<br="">45 414 0.000 0.010 0.005 0.0</u.uu3></td><td>10-414 U.UUZ U.UUZ U.UUD 40.000 500 50</td><td>10-110 ×0.40.0 0 010 0 000 ×2 0.00 11-110 0 000 0 010 0 000 ×2 0.000</td><td></td><td>10-1417 - 20, UUL U ULU U ULO 20, U 0005 - 0 0 26-1410 - 0 006 - 0 015 - 0 000 - 0 0005 - 0</td><td>13-14.0 U.UUO U.UIJ U.UJJ SU.UUD SZ U. KE_KIO JANAI AJAA AJAI JAVAGE JA A</td><td>10-413 <0.001 0.004 0.001 <0.005 <2 0. 16-430 0.001 0.007 0.001 0.006 10 0.0</td><td></td><td></td><td>10-144 0.000 0.000 0.004 0.0010 10 C.</td><td></td><td>10 75 0.001 0.006 0.000 20 0.000 20 0.001 20 0.0001 20 0.0000 20 0.001 20 0.001 20 0.001 20 0.001 20 0.001 20 0.001 20 0.001 20 0.0000 20 0.001 20 0.0000 20 0.001 20 0.0000</td><td>13-723 U.UUI U.UUI U.UZI SU.4UU3 SZ SU.</td><td>10-425 U.UUU U.UUU U.UZ3 <u.uuuu 0.<="" <2="" td=""><td>10-421 0.002 0.003 0.015 40.005 40.0</td><td>13-1420 V 001 V 002 V 000 V 0005 VV VV</td><td></td><td></td><td>16 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>16-400 <0.001 0.004 0.015 <0.005 <2 <0.0</td><td>K + + 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>B = A04 0 001 0 004 0 002 < 0 0005 < 2 < 0 0</td><td>[6-A05 0.001 0.003 <0.001 <0.0005 <2 <0.</td><td>6-A06 <0.001 0.002 <0.001 <0.0005 <2 <0.</td><td> 6-A07 <0.001 0.002 <0.001 <0.0005 <2 0.</td><td>[6-Å08 <0.001 0.003 0.001 <0.0005 <2 <0.</td><td>[6-A09 0.001 0.008 0.002 <0.0005 <2 0.4</td><td>16-AIO 0.003 0.005 0.001 <0.0005 <2 0.1</td><td>6-411 U.VU3 U.VU2 U.VU2 <u.vu3 <2="" td="" u.4<=""><td>0-VIZ <0.001 0.003 0.010 <0.000 <2 0.6</td><td>10-413 <0.001 0.004 0.012 <0.000 <2 0.0 2-414 <0.001 0.004 0.011 <0.0005 <2 0.0</td><td></td><td></td><td>B−AIT <0.001 0.003 0.029 <0.0005 <2 <0.0</td><td></td></u.vu3></td></u.uuuu></td></u.uvl>	13-A13 U.UV6 U.UU9 U.UU3 <u.uu3 <2<br="">45 414 0.000 0.010 0.005 0.0</u.uu3>	10-414 U.UUZ U.UUZ U.UUD 40.000 500 50	10-110 ×0.40.0 0 010 0 000 ×2 0.00 11-110 0 000 0 010 0 000 ×2 0.000		10-1417 - 20, UUL U ULU U ULO 20, U 0005 - 0 0 26-1410 - 0 006 - 0 015 - 0 000 - 0 0005 - 0	13-14.0 U.UUO U.UIJ U.UJJ SU.UUD SZ U. KE_KIO JANAI AJAA AJAI JAVAGE JA A	10-413 <0.001 0.004 0.001 <0.005 <2 0. 16-430 0.001 0.007 0.001 0.006 10 0.0			10-144 0.000 0.000 0.004 0.0010 10 C.		10 75 0.001 0.006 0.000 20 0.000 20 0.001 20 0.0001 20 0.0000 20 0.001 20 0.001 20 0.001 20 0.001 20 0.001 20 0.001 20 0.001 20 0.0000 20 0.001 20 0.0000 20 0.001 20 0.0000	13-723 U.UUI U.UUI U.UZI SU.4UU3 SZ SU.	10-425 U.UUU U.UUU U.UZ3 <u.uuuu 0.<="" <2="" td=""><td>10-421 0.002 0.003 0.015 40.005 40.0</td><td>13-1420 V 001 V 002 V 000 V 0005 VV VV</td><td></td><td></td><td>16 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>16-400 <0.001 0.004 0.015 <0.005 <2 <0.0</td><td>K + + 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>B = A04 0 001 0 004 0 002 < 0 0005 < 2 < 0 0</td><td>[6-A05 0.001 0.003 <0.001 <0.0005 <2 <0.</td><td>6-A06 <0.001 0.002 <0.001 <0.0005 <2 <0.</td><td> 6-A07 <0.001 0.002 <0.001 <0.0005 <2 0.</td><td>[6-Å08 <0.001 0.003 0.001 <0.0005 <2 <0.</td><td>[6-A09 0.001 0.008 0.002 <0.0005 <2 0.4</td><td>16-AIO 0.003 0.005 0.001 <0.0005 <2 0.1</td><td>6-411 U.VU3 U.VU2 U.VU2 <u.vu3 <2="" td="" u.4<=""><td>0-VIZ <0.001 0.003 0.010 <0.000 <2 0.6</td><td>10-413 <0.001 0.004 0.012 <0.000 <2 0.0 2-414 <0.001 0.004 0.011 <0.0005 <2 0.0</td><td></td><td></td><td>B−AIT <0.001 0.003 0.029 <0.0005 <2 <0.0</td><td></td></u.vu3></td></u.uuuu>	10-421 0.002 0.003 0.015 40.005 40.0	13-1420 V 001 V 002 V 000 V 0005 VV VV			16 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16-400 <0.001 0.004 0.015 <0.005 <2 <0.0	K + + 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B = A04 0 001 0 004 0 002 < 0 0005 < 2 < 0 0	[6-A05 0.001 0.003 <0.001 <0.0005 <2 <0.	6-A06 <0.001 0.002 <0.001 <0.0005 <2 <0.	6-A07 <0.001 0.002 <0.001 <0.0005 <2 0.	[6-Å08 <0.001 0.003 0.001 <0.0005 <2 <0.	[6-A09 0.001 0.008 0.002 <0.0005 <2 0.4	16-AIO 0.003 0.005 0.001 <0.0005 <2 0.1	6-411 U.VU3 U.VU2 U.VU2 <u.vu3 <2="" td="" u.4<=""><td>0-VIZ <0.001 0.003 0.010 <0.000 <2 0.6</td><td>10-413 <0.001 0.004 0.012 <0.000 <2 0.0 2-414 <0.001 0.004 0.011 <0.0005 <2 0.0</td><td></td><td></td><td>B−AIT <0.001 0.003 0.029 <0.0005 <2 <0.0</td><td></td></u.vu3>	0-VIZ <0.001 0.003 0.010 <0.000 <2 0.6	10-413 <0.001 0.004 0.012 <0.000 <2 0.0 2-414 <0.001 0.004 0.011 <0.0005 <2 0.0			B−AIT <0.001 0.003 0.029 <0.0005 <2 <0.0	

APPENDIX 8

CHEMICAL ANALYSIS OF SOIL SAMPLES

A--28

*Kiruku Hill *

		. 			«						·						·· •· · · · · · · · · · · · · · · · · ·		
Ser. No.	Sample No.	Au ppb	Ba ppm	Fe %	Mn ppm	P ppm	Sr ppm	Nb ppm	Th ppm	U ppm	Y ppm	La ppm	Ce ppm	Nd ppm	Sm ppm	Eu ppm	Tb ppm	Yb ppm	Lu ppm
1	KA-01	<1	650	2.80	375	340	75	45	17	4.0	30	73	150	45	7.7	1.5	1.0	3.3	0.5
2	KA-02		210	1.51	335	210	44	40	15	5.0	30	55	106	35	5.6	1.0	0.9	3. 3	0.6
3	KA-03	<1	150	1.34	350	210	49	55	18	5.0	30	67	120	35	7.0	1.0	0.9	3.6	0.6
4	KA-04	<1	210	1.17	325	260	55	65	23	5.0	40	86	124	40	7.2	1.0	1.0	3.5	0.7
5	KA-05		170	0.68	345	180	26	70	23	4.0	35	83	120	40	7.4	1.5	1.0	4.2	0.7
6	KA-06		210	0.91	445	240	48	80	28	6.0	40	104	124	50	7.5	2.0	1, 2	4.7	0.8
7	KA-07		160	1.26	800	290	41	90	30.	8.0	45	118	152	45	8.4	1.5	1.1	4.7	0.8
8	KA-08		170	1.43	630	270	39	100	31	7.0	50	115	142	45	8.4	2.0	1.2	5.1	0.9
9	KA-09		300	1.68		300	57	100	38	8.0	55	141	186	65	12.0	2.0	1.5	6.5	1.0
10	KA-10		360	1.70	985	370	68	130	44	8.0	65	155	202	65	11.0	3.0	1.6	6.8	1.1
11	KA-11		390	2.13	840	420	97	150	71	9.0	80	261	274	100	17.0	4.0	2.2	7.3	1.4
12	KA-12		290	1.02	960	230	50	145	42	9.0	70	155	188	70	12.0	2.5	1.6	8.2	1.2
13	KA-13		340	2.10		320	65	135	57	11.0	80	242	268	105	18.0	4.0	2.5	9.3	1.4
14	KA-14		520	3.25		410	100	115	47	9.0	80	209	346	100	17.0	4.5	2.4	8.5	1.3
15	KA-15		200	1.59	925	240	49	70 85	28	<u>9.0</u> -	60	112	212	60 er	11.0	2.0	1.4	6.9	1.1
16	KA-16		350	2.43	790	330	64	65	35	8.0	55	118	248	65	10.0	3.0	1.7	5.8	1.0
17	KA-17		60	0.73	210	110	18	50 55	17	6.0	40	54	100	30	5.2	1.0	1.0	5.5	0.7
18	KA-18		110	0.87	240	130	22 41	50 50	28 35	7.0 5.0	45 40	85 96	184 160	40 50	6. 9 9. 0	1.5	1.3	6.3	1.0
19	KA-19 KA-20		240 40	1.84 0.57	55 10	110 90	41		38	9.0 9.0	40 40	90 87	178	50 50	9.0 8.6	2.0 1.0	1.4 1.2	5.6	0.8
20 21	KB-01		40 160	2.21	505	110	15 31	- 35	25	9.0 9.0	40 30	68	138	45	8. 0 7. 5	1.0	1. 4	4.4 3.9	0.9 0.8
22	KB-02		170	1.95	355	130	43	70	29	8.0	40	79	150	40	7.9	1.5	1.3	5. 5 5. 2	0.8
23	KB-02 KB-03		220	1. 48	300	$150 \\ 160$	44	60	28	7.0	40	94	134	40	7.6	1.5	1. 2	<i>3. 2</i> 4. 8	0.8
24	KB-04			1.40	915	190	30	60	-26	6.0	40	85	140	45	8.7		1.3	5.4	0.9
25	KB-05		360	2.30	800	260	51	75	28	6.0	40	119	192	50	9.1	2.0	1.3	5.6	1.0
26	KB-06		240	1.30	755	200	43	140	$\overline{31}$	7.0	45	108	150	50	7.9	1.5	1.3	5.2	0.9
27	KB-07		260	2.32	925	300	69	155	60	8.0	70	219	216	90	14.0	3.5	2.2	7.5	1.2
28	KB-08		410	2.73		300	59	155	62	7.0	70	292	236	95	16.0	4.0	2.2	7.8	1.3
29	KB-09		290	2.90		330	58	135	67	9.0	65	248	240	90	15.0	4.0	2.4	7.0	1.2
30	KB-10		330	3.77		290	58	180	96	7.0	75	343	306	120	19.0	5.0	2.5	8.2	1.3
31	KB-11		390	3.23		300	71	150	83	9.0	80	310	296	110	19.0	5.0	2.6	8.5	1.5
32	KB-12	4	410		1450	360	79	160	-70	11.0	100	283	286	120	21.0	5.5	2.7	9.7	1.6
33	KB-13	3	1000	3.34	2640	600	136	235	89	12.0	90	447	584	180	29.0	8.0	3.5	9.7	1.5
34	KB-14	5	490	3.47	965	430	91	200	93	8.0	75	461	300	135	21.0	5.0	2.6	8.1	1. 2
35	KB-15	5	440	2.96	1330	390	93	185	84	9.0	90	368	282	130	20. 0	5.0	2.6	9.5	1.5
36	KB-16	6	470	3.05	1205	380	88	195	84	9.0	90	360	258	110	17.0	4.5	2. 7	12.0	1.6
37	KB-17		380	1, 88		270	75	150	_, 66	9, 0	70	247	248	80	13.0	3.5	2.1		1.5
38	KB-18		310	2.87	795	260	78	85	55	9.0	60	141	244	60	11.0	3.0	1.9	8.1	1, 3
39	KB-19		190	2.15		220	48	60	40	10.0	50	97	198	50	9.2	1.5	1.6	6.9	1.0
40	KB-20		130	1.98		210	32	65	54	13.0	70	122	266	70	12.0	1.5	1.8		1.3
41	KC-01		400	2.06		120	58	70	27	6.0	40	106	160	50	9.4	2.0	1.2	4.2	0.6
42	KC-02		230	1.76		230	48	. 70	27	7.0	40	106	142	55	8.8		1.2	4.8	0.8
43	KC-03		670		2650	300	61	80	29	6.0	45	120	232	60		3.0	1.3	5.0	0.7
44	KC-04		270	1.52	100	280	59	85	29	7.0	45	109	150	50	8.3	2.0	1.1	5.0	0.6
45	KC-05		270	1.63	940	270	54	90	39	8.0	45	137	180	55	8.9	2.0	1.3	5.4	0.9
46	KC-06		470	2.15		310	76	165	53	9.0	65	185	210	70	12.0	3.0	1.8	7.7	1.0
47	KC-07		310		1250	270	64	155	51	9.0	60 70	190	190	70	12.0	3.5	1.9	6.9	1.0
48	KC-08		570		1215	320	80	150	69	9.0	70	278	252	100	16.0	4.5		6.6	1.1
49 50	KC-09		420		1305	330	88	160 250	127	10.0	70 190	263	252	100	15.0	4.5	2.1	7.7	$\frac{1.3}{1.7}$
50	KC-10		640 590		1655	500	114	250	137	11.0	120	486	434	175	28.0	8.0		11.0	1.7
51 52	KC-11		580		1155	490 2020	119 960.	190 925	125	11.0	80	368	348 2020	130	21.0	5.5			1.4
52 52	KC-12		4130		8140		960	835	157	31.0		1130		650	96. 0		10.0		2.9
53 54	KC-13		830		1700	530 550	112	235	126	14.0 12.0	110	478	398	175	28.0	7.5		11.0	1.8
54 55	KC-14		770 620		1370	550 380	130 84	250 210	130	12. 0 10. 0	100	542	374	175	27.0	7.5		10.0	1.4
55 56	KC-15 KC-16		630 510		1385 1475	380	84 95	210	119 157	10.0	85 125	495 641	314 386	145 175	21.0	6.5		9.3	1.3
50 57	KC-10 KC-17		390	4.23		250 250	95 56	105	107	12.0	125	197	380 222	175	25. 0 12. 0	7.0 3.5		14.0 8.9	1, 9
	NO 11		000	1.10	1110	400	00	100	10	1110	10	101	444	10	16. U	0.0	1,0	<u>0. y</u>	<u>1.4</u>

*Kiruku Hill *

	т Г	noku i		` 																
	Ser. No.	Sample No.		Ba ppm			P ppm			Th ppm	U mqq	Y ppm	La ppm		Nd ppm	Sm ppm		Tb ppm	Yb ppm	Lu ppm
	58	KC-18	1	180	1, 99	810	280	55	70	64	12.0	60	142	246	65	12.0	2 5	1.7	7 1	1.2
	59	KC-19	1	230		1345		. 49	85	69	15.0	80			85	15.0		2.1	9.4	1. 2
·	60	KC-20	<1	170		1230		33	75		15.0	65	153		- 80			1.9	9. 4 9. 7	
	61	KD-01	1	190	1.31	295		33	90	32	9.0	40	92		50	8.5		1.1	5. 4	1.4
	62	KD-02	$\overline{2}$	270	1.87	550		56	85	26	8.0		. 98		50	9.1	2.5	1.4		1.1 1.0
	63	KD-03	2	310	1.78	720		66	95	28	7.0	45	107		60	9.4		1.5	5.4	0.9
	64	KD-04	- 2	240	1.97	400		65	100	27	6.0	45	- 92		50	8.0	3.0	1.3	5.4 5.4	0.9
	65	KD-05	<1	240	1.08			.46	85	22	6.0	40	101			7.5		1.0	4.2	0.9
	66	KD-06	1	340		860		72	120	39	6.0	55	135	150	65	11.0		1.6	5.4	0. <i>3</i> 0. 7
	67	KD-07	. 4	450	3.09	915		100	120	60	8.0	70	200	210	85	13.0	4.0	2.1	6.6	1.2
	68	KD-08	5	340	2.47			70	100	65	8.0	70	202	246		16.0	4.5		7.7	
	69	KD-09	10	620	4.61	1610	540	86	205	108	8.0	110	400	342	160	27.0	8.0	3.3	9.8	1.5
	70	KD-10	- 8	410	3.59	1500	- 360	. 70	210	111	8.0	105	455		175	29.0	8.0	3.8	9.7	1.5
	71	KD-11	10	550	3.94	1200	450	91	180	108	8.0	85	362	278	125	19.0	6.5	2.5	9.1	1.3
	72	KD-12	· 8·	800	3, 56	1535	560	124	190	106	11.0	105	429	366	175	28.0	8.0	3.4		1.3
	73	KD-13	. 7	740	3, 78	1280	520	113	215	95	9. 0	100	450	288	155					
	74	KD-14	14	880	4. 79			133	260	126	10.0	105	603	376	195	29.0	9.0	3.8		1.7
	75	KD-15	10	720	3.91			114	260	112	9.0	115	576	- 332	190	28.0	10.0	3.9		1.8
	76	KD-16	· 9	870	4.03				255	123	9.0	130	639	358	210	30.0	9.0	3.6	12.0	1.9
	77	KD-17	5	350	3.23			86	120	83	8.0	90	237	260	100	16.0	5.0	2.3	9.4	1.5
	78	KD-18	1	240	2.26			59	. 70	55	11.0	75	135	228	80	14. 0		1.8	8.9	1.4
	79	KD-19	<1	210	2.49			54	45	- 39	8.0	50	97	166	55	9.9	2.5	1.4	5.8	0.9
	80	KD-20	2	150	2.13			37	60	44	9.0	65	115	168	55	9.6	2.5	1.4	6.1	1.0
	81 82	KE-01 KE-02	3.		1.63		220	55	90	24	4.0	50	131	144	75	12.0	2.4	1.8	5.1	0.9
	oz 83	KE-02 KE-03	2 2	330 330	2.54 2.13	475	- 360 340	- 66	95	38	<1.0	65	139	160	80	16.0	3.7	2.2	6.5	0.9
	84	KE-04	2		2.13	665	$\frac{340}{240}$	83 51	90 105	32 33	2.0	45	109	132	60	13.0	2.7	1.4	4.7	0.9
	85	KE-04	2	200 210	2.44	720		64	105	26	2.0 2.0	50 45	140	148	70 55	14.0	2.9	2.2		0.7
	86	KE-06	3	380	2.23			.99	90	20	-3.0	- 50	108 187	142 196	-55 -75	9.0	2.4	1.1	5.0	0.6
	87	KE-07	7	500	3.20		410	99	135	36	4.0	75	214	270	115	10. 0 19. 0	2.5 4.5	1.3 2.6	6.2	0.9 1.1
	88	KE-08	7	550	3.53		410	. 71	240	96	8.0	100	339	352	150	19.0 29.0	4. <i>5</i> 6.8	2. 0 3. 5		1.1
	.89	KE-09	9.	510	5.20		480	91	280	140	6.0	115	490	422	200	41.0	7.9	4.5		1.0 1.9
	90	KE-10	13	880	5.53		680	143	380	210	7.0	135	732	536	285	42.0	10.0	5.5		1.9
	91	KE-11		1170	4.58	2110	-770	184	380	190				464		46.0				1.8
	92	KE-12	12	1690	3.74	1835	900	207	440	150		130		440	230	39.0	9.0	4.4		1.4
	93	KE-13		2860	7.01			245	555	120		190		918	440	77.0	17.0	7.4		2.2
	94	KE-14		2040	5. 93				410	160	6.0	140	926	658	325		11.0			1.3
	95	KE-15	11		5.66		910		410	150	6.0	125	939	546	305	43.0	11.0	4.2	9.4	1.4
	96	KE-16	10	900	5. 19		610	127	310	79.		115	701	428	235	38. 0	8.8	4.7	9.8	1.1
	97	KE-17	6	560	4.50		430	97	195	100	5.0	110	267	272	125	23.0	5.2		8.9	1.8
	98	KE-18	5	440	3.69		370	80	135	36	1.0	80	163	202		13.0	3.8	1.9	7.8	1.3
4	99	KE-19	: 7	240	3.26		.280	54	105	40	2.0	80	122	174	60			1.5		1.0
	00	KE-20	7.	500	3.50		270	66	120	48	7.0	80	149	216	90	13.0	3.6		6.7	1.0
	01	KF-01	4	390	2.70	545	360	84	215	41	4.0	85	250	180	105	20.0		2.3		0.7
	02	KF-02	3.	330	2.15		320	- 74	210	60	7.0	90		188	105	19.0		1.6		1.0
	.03 .04	KF-03 KF-04	4 . 3 .	450	2.41	705	390	-86	210	29	3.0	85		166	95	15.0				0.6
		KF-04 KF-05	4	430 390	2.38 2.44		370 380	84 .98	190 180	.46 56	2.0	75		154	80	13.0			7.1	
		KF-06	2	280	1.34		390		125	35	8.0 2.0	70		178	85	13.0	3.5			1.2
		KF-07	8.		3.46			- 71		100		55 110	112 331	164 366	65 150	11.0 27.0	2.5			0.8
		KF-08			3.96		530	105	355	150	3.0	145	394	444	185		6.1	2.9		1.7
		KF-09	12 1		4.47			154				145	594 428		105	33. 0 36. 0	8.3 8.8	4.01		1.1
		and the second	11		4.70			104	395	140	7.0		543	430	240	30. 0 39. 0		4.71 4.21		2.2 1.5
		KF-11		850	5.03		550	103	355	88				448	225	33. O		4.7		1.5
		KF-12	17 1		4.55			170	425	89	4.0		685		275	50.0		5.51		1.1
		KF-13	25 3	3590	7.47			264	580	170	3. 0	220			490	64.0	22.0	8.1 1		1.4
1	14	KF-14	21 2	2040	6.11	<u>3130</u>	1040	<u>215</u>	395	150	<1.0	150	943	702	300	46.0		4.4		0.7

Kiruku Hill

						••••••												····	
Ser.	Sample		Ba	Fe			Sr	Nb	Th	U	Y	La	Ce	- Nd	Sm	Eu	Tb	Yb	Lu
'No.	No.	ppb	ppm	· 5	6 ppm	ppm	ppm	ppm	ppm	ppa	ppm	ppm	ppm	ppm	ppm	$\mathbf{p}\mathbf{p}\mathbf{n}$	ppm	ppm	ppm
+ + + =		+0	1050			000	100		400										
115			1650		3 2330				120				618			12.0		8.8	1.7
116	KF-16		3120		2370		150		110	2.0	140				43.0	11.0		10.0	1.5
117	KF-17	5	760		5 2100		163		.45	<1.0	120	297	258	130	17.0	6.0		9.3	1.2
118 119	KF-18 KF-19	6	610		3 1860 1 1 1 9 E		132		47	1.0	125	234		115		5.7		9.6	1.3
120	KF-20	6 6	380 470) 1185) 1450		77		32	5.0	85	184		75	18.0	3.8	2.0	7.4	0.4
120	KG-01	7			1255				42	3.0	70	165		55		3.1		7.3	0.8
121	KG-01	1 3			1105		.09 61		104 61	10.0 7.0	115	381		155	29.0	8.0		13.0	1.4
123	KG-03	ე 3			1 780		56	1 A A A A A A A A A A A A A A A A A A A	53	7.0	95 85	305 295		140 135	25. 0 20. 0	7.0	3.8	9.4	1.2
124	KG-04	4	1) . 905		83		55 61	8.0	85	250 344		120	20.0	6.0 7.0		7.7 10.0	$\begin{array}{c} 1.3 \\ 1.3 \end{array}$
125	KG-05	- 9	780		2030		135		100	11.0	125	530		205	32.0	10.0		10.0	1.6
126	KG-06	-	950		12570		169		168	10.0	165	542		235	39.0	12.0			2.3
127	KG-07) 2210		135	390	212	10.0	180	601	532	265	46.0	15.0		16.0	2.0
128	KG-08		1230		1 2690		180		220	13.0	.250	691	656	325	60.0	20.0			
129	KG-09		1370		2280		176	450	217	10.0	190	668		265	45.0	16.0		17.0	2.8
130	KG-10		2510		2710		270		211	10.0	210	693	680	280	49.0	16.0		19.0	1.8
131	KG-11		2860		5 2780		279	510	199	10.0	230	828		345	60.0	21.0			2.6
132	KG-12		4270) 3480		311	425	236	12.0	210	968		370	66.0	20.0			2.0
133	KG-13	-40	5860		2 5430		447		30	26.0	230		1642	465		105.0			5.4
134	KG-14		4510		4670		303	505	158	10.0			1320	505	82.0	25.0		12.0	2.1
135	KG-15	14	2270	6.20	6 2290	1030	197	365	157	11.0	130	1255	928	400		17.0		13.0	14
136	KG-16	8	1700	4.4	2660	840	206	255	121	9.0	125	670		250	43.0	13.0		12.0	1.9
137	KG-17	9	890	4.74	1635	: 600	121	195	136	10.0	140	439	378	165	27.0	9.0		11.0	
138	KG-18	8.			6 1715		115	190	108	9.0	125	386	404	150	26.0	7.0		10.0	
139	KG-19	- 9			2470		131	175	120	11.0	140	381	432	155	27.0	8.5	4.0	12.0	1.8
140	KG-20	14	900		2 1930		165	130	89	12. 0	110	291	374	120	20. 0	7.0	3.2	10.0	1.2
141	KH-01	6	790		5 1200		-88	230	100	15.0		406	318	155	25.0	7.5	3.2	12.0	1.3
142	KH-02	3	360	1.69			55	140	46	9.0	70	191	178	80	16.0	4.0	1.7	8.1	1.2
143	KH-03	5	480		1005	. 310	80	150	60	8.0	75	232	226	95	16.0	4.5	2.0	6.2	1.0
144	KH-04	6	480		1220	330	81	175	75	6.0	90	334	274	125	20.0	6.0		6.7	
145	KH-05	8	580		1600	450	116	280	131	10.0	135	500	466	205	- 33. 0	10.0		11.0	1.6
146	KH-06	12	700		1600	630	138	350	145	12.0	170	529	486	220	36. 0	12.0		14.0	1.6
147	KH-07	15	990		2130	640	152	355	189	9.0	190	613	540	245	41.0	13.0		15.0	2.2
148	KH-08		1270		2850	780	143	445	192	11.0	220	579	604	250	44.0	14.0		18.0	1.9
149	KH-09				3190	760		485		10.0	250	811	918			19.0			
150	KH-10 KH-11		2040 3930		2840		306			13.0						21.0			
	KH-12						324	455	219	11.0			992		64.0	23.0		16.0	2.2
152	ки-12 КН-13				8310				221	8.0			1642	555		30.0			2.0
	KH-14						776		.370	10.0	:∂00 .⊴∦7∩	2220 2220	3630 9990	1260	170.0	50.0			3.8
	KH-15				5710		549		410 155				3040 1866		170.0			31.0	
156	KH-16		3370		3550		276	455 300	164	7.0		1121		445 320	66. 0 53. 0	20. 0 16. 0			2.0 1.5
157	KH-17		1830		2700		223	285	155	9.0		799		260		10.0		13. U 11. 0	1.5
158	KH-18		1120		2120		193	200	145			600		200 205		13.0		11. U 12. 0	1.6 1.6
159	KH-19	11	650		2150		135	170	130	9.0		444		145		6.0		12.0	
160	KH-20	13	880		2240		157	160	77	10.0	120	282		110	17.0	4.5			1. Z 1. 0
161	KI-01	5	580		1075		92	190	65	7.0	85	275		110	17.0	4. J 5. O		6.5	1.0
	KI-02		320		1050		51	175	71		80	319		120	18.0	5.0		6.7	1.1
163	KI-03	9	320		1160		57	200	91	9.0	105	397	302	145	21.0	6.5		8.6	1.5
	KI-04				2690		100	260	109		155	454	384	200	32.0		4. 7		1.8
	KI-05				1635			260	120		130	506	424	190	29.0	9.0		11.0	
	KI-06				1920		139	300		8.0	165	549	430	210	34.0	10.0		13.0	1.7
	KI-07						192			9.0	185			245	41.0	13.0			2.0
	KI-08		3080		3330				197	9.0	230	719	790	295	47, 0	15.0		16.0	2.1
	KI-09		3000		2530		297	415	199	8.0	230	642		265		18.0			2.5
	KI-10		3390		3060			665	315				1250	440	81.0	27.0			
<u>171</u>	<u>KI-11</u>	22	3620	6.23	2900	1330	361	750	254	9, 0	250	1140	1490	425	65.0	21.0			

*Kiruku Hill *

Ser.	Sample	Au	Ba	.)	Fe	Mn	P	Sr	Nb	Th	U	Ŷ	La	Ce	Nd	Sm	Eu	Tb	Yb	Lu
No.							te de la compañía de	ppm	A REAL PROPERTY OF	ppn	1.1	1	1 A A A A A A A A A A A A A A A A A A A	ppm	ppm	ppm	11.	1.1.1		ppa
	KI-12									247		240	1430	1690	580	89.0				2.7
173	KI-13							765		280	10.0					136.0			23, 0	3.4
174	KI-14 KI-15						5810 3720			498 216						271.0	80.0			5.3
176	KI-15 KI-16					4710		310	330	178	17.0			2500 1320	350	107.0	33.0 14.0			2.9 1.8
177	KI-17					2470		198	350	174			1040		320		14.0			1.0
178	KI-18		1300			3400	700	157		181	9.0		870	564	310	46.0	15.0		12.0	1.9
179	KI-19	13	620			2290	440	119	235	137	9.0	130	466	370	170	24.0	7.0		12.0	1.8
	KI-20					1645	480	125	165	111	9.0	110	291	290	115	18.0	5.5	2.9	8.7	1.5
181 182	KJ-01 KJ-02	- 3 5	430 290	1. (2. (800 985	230 270	55 64	145 145	55 57	9.0	75 80	231	232		18.0	5.0	2.2	8.2	1.3
	KJ-03	8				1010	360	76		88	7.0 6.0	110	271 427	268 324	110 160	18. 0 23. 0	4.5 8.5		7.2 11.0	1.2 1.5
184	KJ-04		670			1935	490	108		130	7.0	150	646	502	245	38.0	11.0		12.0	1.7
	KJ-05							135		136	7.0	155	689	518	265	38.0	12.0		15.0	2.1
186	KJ-06		1850	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		2110	770	171		140	7.0	180	708	564	275	42.0	14.0	5.4	16, 0	2.1
187	KJ-07		1290			2320		188	335	161	8.0	180	815	738	285		14.0			2.2
188	KJ-08 KJ-09		4670			3450		305		206	7.0	240		1140	390	61.0	20.0		18.0	2.6
189 190	KJ-10			- 1		3700 6270			665 1200	247 501	10. 0 10. 0			2220		109.0 185.0	35. 0 63. 0			3.8 7.2
191	KJ-11					5690			1230	465	6.0					146.0	50.0			6.2
192	KJ-12		3380			3290			850	308	7.0			1800		91.0	31.0			4.4
193	KJ-13					2440		852	750	373	11.0	480	1400	1830		117.0				4.8
194	KJ-14		5910			4740		388	825	317	10.0		2010		755	109.0	36.0	13. 0	26.0	4.0
195	KJ-15					5820		492		317	12.0					153.0	45.0			4.0
196 197			4530 2240			5520 4720		559 260	925 640	325 255	12. 0 9. 0			2590 1330		139.0				3.6
198	KJ-18		1080			2740		158	440	193	9.0 8.0		1340	1000 674	425	80. 0 56. 0	24.0 17.0		21. U 15. 0	3.1 2.3
199	KJ-19		1610			3050	840	232	330	183	7.0	165	597	474	225	37.0	12.0		13.0	2.3
200	KJ-20	8				1860	490	134	320	106	7.0	140	473	298	160	23.0	7.0		12.0	1.6
201	KK-01			1.		645	240	59		37	5.0	70	153	178	70	13.0	2.5		6.9	1.0
202	KK-02	3		1.		935	290	61	165	45	6.0	90	208	214	100	17.0	4.5	2.5	8.2	1.2
-203 204	KK-03 KK-04	- 7 9	640 570			1270 1715	560 450	130 84	260 310	72 96	6.0 6.0	135 140	354 475	304 360	145	24. 0 30. 0	6.5		12.0	1.8
204	KK-05		1260			2800	720	181	450	50 114	9.0	140	668	630	190 310	30. U 51. O	9.0 16.0		13.0 15.0	1.7 1.9
206	KK-06		1200			2630	690	126	400	116		175	570	468	260	42.0				1.9
207	KK-07							149	430	112				528			12.0			1.5
208	KK-08								450	133				750		47.0	13.0		13.0	2.1
	KK-09		4970			3940		429	735	178	6.0			1190		76.0	25.0		19.0	2.7
210	KK-10 KK-11		3920 4210			6030			1230 1250	382 444	6.0			2350 2160		161.0	49.0			4.5
212	KK-12								870	317	4.0 8.0			1370		153.0 100.0	52.0 36.0			5.6 5.2
213	KK-13					2850			725	243	9.0			976		68.0	23.0			4.1
214	KK-14		2950			3620			680	228	7.0			1020	450	71.0			22.0	
215	KK-15		3080			4350			1010	280	10.0	390	2130	1660		112.0	35.0			3.6
	KK-16					4430			1080	284	11.0			2130		137.0	36.0			3.7
217 218	KK-17 KK-18		3300			3560			940	260	12.0		2950			111.0				3.2
	KK-19		1020			3390 2620	860		800 665	219 186	9.0 7.0		2150			85.0	25.0			2.8
220	KK-20						620		494	134	8.0		1690 992	484	505 295	66. 0 41. 0	19.0 12.0		17.0 15.0	2.2 2.0
221		<1				760	170	53	110	23	7.0	50	85	108	45	6.6	2.0			2.0 0.8
222	KL-02	3	260	0.9	95	725	230	61	140	30	6.0	60	114	130	60	9.3	3.0		7.2	0.9
223	KL-03					1155	330		150	71	7.0	100	310	260	130	20.0	6.5	3.0	9.0	1.3
	KL-04	11	990 560				670			109	9.0	155		432	215	35.0	10.0		16.0	2.4
225 226	KL-05 KL-06	9 20	560 800			1605 2070	480 540	96 109	195 250	102 128	7.0		431	394	205	33.0	8.5		13.0	
220	KL-07		1130			1765	540 570	114	200	120 98	9.0 8.0		. 463 412	430 388	215 205	36.0 37.0	$\begin{array}{c} 11 & 0 \\ 10 & 0 \end{array}$		15.0 11.0	
228	KL-08		3190			2260	790	172	265	116		150	495	668	235	40.0	10.0 12.0		11.0 14.0	

*Kiruku Hill *

, i

Ser. Swape Au Ba Fe Ma Par Par<	-	·												·						
230 K1-10 34 245 K1-11 73606 8.71 7101 450 300 110.0 300 1010 1330 510 83.6 0.0 2.0 81.0 83.0 4.7 231 K1-1-1 936 8270 652 1100 230 440 480 4								· .	3			191	1.1			1 A A A A A A A A A A A A A A A A A A A	1 T T	10 A 10 A 10 A	1 A A A A A A A A A A A A A A A A A A A	
230 K1-10 34 245 K1-11 73606 8.71 7101 450 300 110.0 300 1010 1330 510 83.6 0.0 2.0 81.0 83.0 4.7 231 K1-1-1 936 8270 652 1100 230 440 480 4	229	KL-09	26	2620	4.33	1910					7.0	220	696	918	340	.61. 0				2.2
213 KL-11 17 73 860 871 4710 1450 280 170 287 6. 180 170 270 853 150 550 150 10. 0.3.0.6 4.4 233 KL-13 160 2240 16.0 234 10.0 310 410 310 310 36.0 4.6 22.0 9.9 26.0 3.1 234 KL-15 32 1300 7.6 2180 250 10.0 310 310 310 310 320 16.0 310 310 320 16.0 21.0 9.2 24.0 3.1 235 KL-16 28 1370 8.11 10.0 27.0 36.0 12.0 3.2 3.0 1.2 3.0 1.1 1.0 8.6 2.0 1.1 1.0 2.6 1.0 1.0 2.0 2.0 3.0 1.1 1.0 2.6 1.0 1.0 2.0 3.0 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 <td></td>																				
212 X.1.1 213 300 101 220 220 7.0 480 6.0 470 1580 220 855 156.0 8.0 28.0 18.0 38.0 18.0 38.0 18.0 38.0 18.0 38.0 18.0 38.0 88.0 28.0 18.0 38.0 88.0 28.0 18.0 38.0 48.0 28.0 18.0 38.0 48.0 28.0 18.0 38.0 48.0 28.0 18.0 38.0 48.0 28.0 18.0 38.0 48.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 28.0 18.0 18.0 18.0 18.0 </td <td></td> <td>1.1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>															1.1	1				
233 K.I-13 160 2340 6.62 2340 1100 340 1201 1201 1200 1800 88.0 28.0 88.0 28.0 13.0 33.0 4.5 235 KI-15 32 2160 7.08 350 100 100 310 81.0 300 1577 7.09 230 81.0 300 1577 7.09 230 81.0 300 1577 7.00 21.0 9.2 9.0 9.0 920 1800 1600 600 80.0 9.0 9.0 9.0 920 1800 1600 600 80.0 9.0 9.0 920 1800 1600 600 80.0 9.0 9.0 9.0 920 920 920 930 150 45 80.0 91.1 91.0																				
224 K1-14 38 62.0 7.6 2170 377 395 220 10.0 310 8111 1080 380 66,0 22.0 9.9 26.0 3.1 235 K1-16 28 1340 8.0 310 520 7.64 350 7.00 21.0 9.2 24.0 3.1 237 K1-17 28 1370 8.13 110 300 126 530 7.00 7.10 8.0 24.0 9.1 2.0 3.2 0.2 0.0 2.0 0.2 0.4 0.0 2.0 3.2 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0 0.0 2.0 2.0 0.0 0.0 2.0 1.0 0.0 0.0 2.0 1.0 0.0 0.0 2.0 1.0 0.0 0.0 2.0 1.0 0.0 0.0 2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																				
215 K. 1-16 212 100 243 8.0 250 957 744 295 70.0 21.0 9.8 25.0 3.5 238 K. 1-17 28 1370 8.13 4110 930 211 151 243 8.0 900 1650 980 530 74.0 21.0 8.6 20.0 3.1 238 K. 1-18 22 1430 7.6 3110 970 244 84.0 290 1800 1630 650 80.0 91.0														1. A 4 5						
288 KL-16 281 340 8.06 310 950 953 8.0 300 1250 886 450 710 21.0 2.2 0.9 2.2 0.9 2.0 12.0 12.0 3.1 238 KL-18 32 1300 7.54 3110 970 201 550 980 307 0 10 21.0 22.0 1.2 3.2 238 KL-19 22 1300 7.64 3100 12.0 2.4 90 150 45 90 150 45 82.0 3.0 244 KH-01 24 500 2.53 1700 400 108 120 7.0 5.10 14 82.0 1.1 4.7 0.5 2.3 1.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 4.7 0.5 2.0 2.3 3.0 1.5 2.4 4.0 100 1.0 1.0 1.1 2.0 1.0 2.0 1.0 1.1 2.0 1.1 1.0 1.1 2.0<																5. 1415 A. 19				
237 KL-17 281 134 110 930 211 155 243 9.0 250 150 980 530 74.0 9.1 22.0 3.1 238 KL-18 32 1430 7.54 310 170 246 557 225 9.0 270 2400 120 66 8.0 24.0 9.1 23.0 8.8 2.0 9.8 22.0 3.2 244 KL-20 24 640 7.8 120 55 135 174 70 15.0 5.0 2.1 101 65 5.1 2.1 101 65 5.1 3.1 1.4 7.0 1.5 2.2 100 5.5 3.8 1.1 1.4 7.0 1.5 2.2 100 5.5 3.8 1.1 1.4 7.0 1.5 2.2 120 1.4 1.0 5.5 3.8 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		4																		
238 KL-18 32 120 7.6 310 204 545 233 9.0 270 1800 1800 68.0 24.0 9.1 22.0 3.0 239 KL-19 27 2010 7.6 355 225 9.0 270 250 1400 785 101.0 24.0 9.2 20.0 3.0 244 KH-01 7.1 87 318 102 20 150 45 88.0 100 150 45 8.0 1.0 1.6 5.0 2.3 9.0 1.5 244 KH-04 7 460 3.0 14 155 400 112 100 10 250 261 130 12.0 1.5 2.1 12.0 1.5 2.1 12.0 1.6 5.0 2.3 9.0 1.5 244 KH-04 7 400 3.4 12.0 1.1 110 6.0 100 100 1		1 S																		
293 KL-19 27 210 7.46 225 1.0 270 2010 7.60 86.0 210 240.9 2.2 0.3.0 244 KK-01 21 330 1.51 920 220 56 70 19 7.0 45 930 75 14 70 14 70 16 55 135 174 70 16 55 135 174 70 16 55 23 9.0 1.5 244 KH-04 7 400 3.40 445 420 115 120 60 9.0 110 252 211 216 010 1.5 5.5 2.3 8.7 1.2 244 KH-06 7 200 3.83 1595 500 120 74 8.0 100 224 244 105 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 <							970	204	545		9.0	290	1800	1030	605	80.0				
240 KL-20 261 640 7.87 3140 1140 250 567 70 19 7.0 45 90 150 45 8.8 2.0 1.1 4.7 0.5 241 KH-01 21 320 1.5 920 220 56 70 19 7.0 45 91 1.0 85 211 216 100 16.0 5.0 2.5 1.6 5.6 0.9 100 251 120 18.0 5.5 2.3 8.7 1.2 245 KH-05 7 600 3.4 1250 100 125 120 64 8.0 100 224 224 100 5.0 2.9 2.5 1.6 1.0<							1190	266	575		9.0	270	2040	1270	670					3. 0
242 Ku-02 2 25 270 81 80 29 7.0 55 151 174 70 110 2.5 1.6 6.0 9.0 243 Ku-03 5 620 2.53 1700 400 108 125 49 11.0 85 211 216 100 16.0 5.0 2.3 8.7 1.2 245 Ku-04 7 460 3.40 1455 490 111 10 68 9.0 110 252 221 281 284 140 5.5 2.9 8.5 1.7 244 Ku-07 8 880 3.8 150 700 168 150 76 9.0 95 264 383 120 20.0 6.0 2.8 8.6 1.1 250 Ku-10 32 2100 5.6 825 140 152 9.0 130 132 230 0.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0<										260	10.0				785				22.0	3. 0
242 XH-02 2 260 2.15 925 270 81 80 29 7.0 55 151 174 70 11.0 2.5 1.6 1.0 2.5 1.6 0.5 2.1 1.6 1.0 1.6 0 0.0 1.6 0 1.0 2.5 1.6 0.5 2.3 8.7 1.2 245 KH-07 7 400 3.4 1505 500 125 120 77 9.0 1.5 2.2 1.2 1.0 5.5 2.3 8.7 1.2 247 KH-07 8 9.80 3.34 1250 620 167 1.0 9.5 2.64 3.84 1.00 1.6 0.0 1.6 1.00 1.6 0.0 1.0 5.0 1.0 1.0 0.0 1	241	KM-01	<1	330	1.51	920	220		70	19	7.0	. 45	- 90	::150	45	8.8	2.0	1.1	4.7	0.5
244 KW-04 7 460 3.40 1495 420 111 110 68 9.0 110 259 266 130 21.0 5.5 2.3 8.7 1.2 245 KW-06 7 2000 3.83 1595 500 125 120 77 9.0 125 224 244 105 1.0 6.0 2.7 9.0 1.0 247 KW-07 8 980 3.34 1250 620 167 120 64 8.0 100 224 244 105 6.0 2.7 9.0 1.0 248 KW-09 23 3240 4.21 1560 840 300 120 155 511 700 250 38.0 11.0 5.1 16.0 1.6 1.6 1.6 1.6 1.6 1.6 1.0 1.0 1.1 0.1 1.0 1.1 0.1 1.0 1.1 0.1 1.0 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	242	KM-02	2	450	2.15	925	270	81	80	29	7.0	55	135	174			2.5	1.6	5.6	0. 9
245 KW-06 7 600 3.1 41355 490 111 110 68 9.0 125 281 288 140 25.0 6.5 5.3 110.0 1.4 246 KW-06 7 290 3.83 1595 500 125 120 77 9.0 125 281 288 140 25.0 6.5 2.9 8.5 1.7 248 KW-08 10 1270 3.81 1320 700 168 150 76 9.0 9.5 264 338 120 0.0 6.0 2.8 8.6 1.1 249 KW-08 10 2700 4.85 300 170 155 9.0 190 532 700 32.0 1.0 5.1 14.0 1.9 1.0 5.1 14.0 1.9 1.0 5.1 14.0 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 2.2 3.0 1.0 5.1 1.4 1.0 1.4 1.0 2.2 3.0<	243	KM03	5	620	2.53	1700	400	108	125	49	11.0	-85	211	216	100	16.0	5.0	2.3	9,0	1.5
246 KW-06 7 2990 3.83 1595 500 125 120 77 9.0 125 281 288 140 50. 6.5 2.9 8.5 1.7 247 KW-09 10 120 6.4 8.0 100 224 244 105 1.70 6.0 2.7 9.0 1.0 248 KW-08 10 1270 5.8 1.10 5.0 1.60 1.6 1.10 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 1.0 5.0 1.	244	KN-04										105			120	18.0	5.5	2. 3	8.7	1.2
247 KH-07 8 980 3.34 1250 620 167 120 64 8.0 100 224 244 105 17.0 6.0 2.7 9.0 1.0 248 KH-08 10 1270 3.81 1320 700 166 10.0 100 166 852 1250 30.0 11.0 5.0 12.0 1.6 1.0 5.0 12.0 1.6 1.0 5.0 12.0 1.6 1.0 5.0 12.0 1.6 1.0 5.0 12.0 1.6 1.0 1.0 5.1 1.0 1.0 5.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.2 2.0 1.0 </td <td>245</td> <td>KM-05</td> <td></td> <td>130</td> <td></td> <td>5.5</td> <td>3.1</td> <td>10.0</td> <td>1.4</td>	245	KM-05													130		5.5	3.1	10.0	1.4
248 KH-08 10 1270 3.81 1320 700 168 150 76 9.0 95 264 338 120 20.0 6.0 2.8 8.6 1.1 249 KH-09 23 324.0 4.21 1560 84.0 150 150 10 150																				
249 KM-09 23 3240 4.21 1560 840 330 270 146 10.0 160 436 582 195 36.0 11.0 5.0 12.0 1.0 5.1 14.0 1.0 5.1 14.0 1.0 5.1 14.0 1.0 5.1 14.0 1.0 5.1 14.0 1.0 5.1 14.0 1.0 5.1 14.0 1.0 5.1 14.0 1.0 5.1 14.0 1.0 5.1 14.0 1.0 1.0 5.0 1.0 7.0 1.0 7.0 1.0 7.0 1.0 7.0 1.0 7.0																			-	
250 KM-10 32 4100 5.68 3250 1470 469 350 152 9.0 190 531 730 250 39.0 12.0 5.9 16.0 1.6 251 KM-11 38 2700 4.85 3090 1000 303 280 152 9.0 130 230 8.0 11.0 5.1 14.0 1.9 252 KM-13 28 840 6.31 1935 610 131 270 161 9.0 200 552 608 225 39.0 13.0 5.7 16.0 2.0 2.7 255 KM-16 8 1020 4.29 1585 700 212 170 113 9.0 140 280 354 130 22.0 6.0 3.3 12.0 1.9 2.5 KM-17 8 470 4.83 150 2.0 1.0 1.2 39.0 13.0 2.0 6.0 3.5 1.2 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9		· · ·																		
251 KM-11 38 2700 4.85 3090 1090 303 280 152 9.0 130 312 434 440 23.0 7.0 3.0 10.0 1.4 252 KM-12 9 2250 4.78 1655 1190 303 145 96 9.0 130 312 434 440 23.0 7.0 3.0 10.0 1.4 255 KM-15 24 860 6.31 1355 510 138 430 231 9.0 340 831 772 355 56.0 17.0 7.9 2.0 2.7 255 KM-16 8 1020 4.29 1585 700 212 170 113 9.0 140 280 354 130 22.0 6.0 3.3 12.0 1.8 257 KM-17 8 470 4.83 1622 370 160 160 164 80 125 706 433 364 160 28.0 9.0 36 14.0 70 <																				-
252 KM-12 9 2250 4.78 1655 1190 303 145 96 9.0 130 312 434 140 23.0 7.0 3.0 10.0 1.4 255 KM-13 28 840 6.31 1935 610 131 270 161 9.0 220 552 630 17.0 7.9 7.0 7.9 7.0 7.9 7.0 7.9 7.0																				
253 KN-13 28 840 6.31 1935 610 131 270 161 9.0 220 552 608 2253 39.0 13.0 5.7 16.0 2.0 254 KM-14 40 1170 7.2 3010 710 138 430 231 9.0 330 831 772 355 56.0 17.0 7.9 9.2.0 2.7 255 KM-16 8 1020 4.29 1585 700 212 170 113 9.0 140 280 354 130 22.0 6.5 2.8 9.4 1.3 256 KM-17 8 470 4.47 2120 390 84 225 114 9.0 150 434 364 160 28.0 9.5 3.8 1.2.0 1.8 260 KM-19 12 300 4.70 6.6 2.55 115 7.0 100 707 432 190 26.0 7.0 2.8 8.5 1.2 2.2 1.6 4.0																				
254 KM-14 40 1170 7.27 3010 710 138 430 231 9.0 330 831 772 335 56.0 17.0 7.9 22.0 2.7 255 KM-16 8 1020 4.29 1585 700 212 170 113 9.0 140 280 354 130 22.0 6.0 3.3 12.0 1.9 257 KM-17 8 470 4.83 1625 370 106 160 106 8.0 125 349 328 180 9.5 3.8 12.0 1.8 257 KM-18 12 470 4.47 2120 390 84 225 114 9.0 150 434 364 160 28.0 9.5 3.8 12.0 1.8 1.8 150 3.5 12.0 1.8 1.8 1.8 1.0 1.8 140 11.0 1.1 250 1.0 2.5 1.8 1.1 1.5 2.0 1.2 2.5 1.8 1.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																				
255 KM-15 24 860 6.35 2650 510 136 320 194 8.0 250 668 558 265 45.0 15.0 6.5 19.0 2.2 256 KM-16 8 1020 4.29 1585 700 212 170 113 9.0 140 280 334 130 22.0 6.0 3.3 12.0 1.9 257 KM-17 8 470 4.47 2120 390 84 225 114 9.0 150 434 364 130 22.0 6.0 7.0 2.8 8.9 1.3 260 KM-01 1 250 1.66 875 220 63 65 37 10.0 70 132 200 65 12.0 2.5 1.8 8.1 1.5 261 KN-01 1 250 1.66 875 200 63 65 37 10.0 75 113 200 65 1.2.0 2.5 1.8 8.1 1.5																				
256 KM-16 8 1020 4.29 1585 700 212 170 113 9.0 140 280 354 130 22.0 6.0 3.3 12.0 1.9 257 KM-17 8 470 4.83 1625 270 106 160 106 8.0 125 349 328 135 22.0 6.5 2.8 9.4 1.3 258 KM-18 12 470 4.47 2120 390 84 225 114 9.0 150 434 364 160 28.0 9.0 3.5 12.2 1.8 84 70 12.2 9.0 3.5 1.2 1.8 1.4 70 138 184 70 12.0 2.5 1.8 8.1 1.5 2.2 1.0 1.3 20.0 6.5 1.2 0 1.8 1.4 70 1.38 1.4 70 1.3 20.0 6.5 1.2 0.2 1.5 1.2 1.8 1.4 2.6 KM-04 3.330 1.75 1.15 </td <td></td>																				
257 KM-17 8 470 4.83 1625 370 106 106 106 8.0 125 349 328 135 22.0 6.5 2.8 9.4 1.3 258 KM-18 12 470 4.47 2120 390 84 225 114 9.0 150 434 364 160 28.0 9.5 3.8 12.0 1.8 250 KM-19 12 390 4.7 160 255 155 7.0 100 707 432 190 26.0 7.0 2.8 8.5 1.2 260 KN-01 1 250 1.66 875 220 89 90 36 14.0 70 138 184 70 12.0 2.5 1.8 8.1 1.5 260 KN-03 2 340 1.82 140 74 60 43 11.0 95 147 248 80 15.0 3.5 1.6 8.9 1.4 1.6 264 KN-04 3 300 1.75																				
258 KM-18 12 470 4.47 2120 390 84 225 114 9.0 150 434 364 160 28.0 9.5 3.8 12.0 1.8 259 KM-19 12 300 4.70 1625 200 54 250 134 8.0 125 706 478 205 2.0 0 0.3 5 1.20 1.3 260 KM-20 8 270 3.51 945 240 60 255 115 7.0 100 707 432 190 26.0 7.0 2.8 8.5 1.2 261 KN-01 1 250 1.6 65 37 10.0 75 113 200 65 12.0 2.5 1.6 8.9 1.4 263 KN-03 2 340 1.4 60 43 11.0 95 147 248 80 15.0 3.5 1.6 8.9 1.4 264 KN-04 3 300 2.5 560 3																				
259 KM-19 12 390 4. 70 1625 290 54 250 134 8.0 125 706 478 205 29.0 9.0 3.5 12.0 1.3 260 KN-20 8 270 3.51 945 240 60 255 115 7.0 100 707 432 190 26.0 7.0 2.8 8.5 1.2 261 KN-01 1 250 1.66 875 220 89 90 36 14.0 70 138 184 70 12.0 2.5 1.8 8.1 1.5 263 KN-02 2 240 1.82 1415 260 55 60 42 9.0 95 153 230 85 1.6 0.2 2.9 1.0 1.4 265 KN-06 3 630 2.65 150 85 64 12.0 125 238 326 16.0 4.0 2.2 7.9 1.2 267 KN-06 3 630 2.65 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				-
262 KN-02 2 240 1.30 820 250 63 65 37 10.0 75 113 200 65 12.0 2.5 1.9 6.4 1.0 263 KN-03 2 340 1.82 1180 340 74 60 43 11.0 95 147 248 80 15.0 3.5 1.6 8.9 1.4 264 KN-04 3 330 1.75 1415 260 55 60 42 9.0 95 153 230 85 17.0 3.5 1.9 6.4 1.0 266 KN-06 3 630 2.65 1500 380 110 90 46 8.0 105 161 232 95 16.0 4.0 2.2 7.9 1.2 267 KN-07 7 820 3.11 1800 450 110 145 61 9.0 101 19.0 4.5 2.8 8.6 1.1 268 KN-08 4 790 2.30		KN-01									14.0							· · · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	262	KN-02	2	240		820	250	63	65	37	10.0	. 75	113	200	65	12.0	2.5			1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	263	KN-03	2	340	1.82	1180	340	-74	60	43	11.0	95	147	-248	80	15.0	3.5	1.6	8, 9	1.4
266 KN-06 3 630 2.65 1560 380 110 90 46 8.0 105 161 232 95 16.0 4.0 2.2 7.9 1.2 267 KN-07 7 820 3.11 1860 450 110 145 61 9.0 115 191 250 110 19.0 4.5 2.3 8.7 1.4 268 KN-08 4 790 2.30 1555 430 93 155 57 9.0 90 204 246 100 16.0 4.5 2.8 8.6 1.1 269 KN-09 21 1300 5.16 4610 670 186 315 153 16.0 130 420 1300 165 26.0 8.5 3.8 11.0 1.6 270 KN-11 28 4240 4.98 2750 950 269 365 160 9.0 220 553 700 255 42.0 13.0 5.4 19.0 2.0 273 KN-	264	KN-04	3	330	1.75	1415	260	55	60	42	9.0			230	85	17.0	3.5	1.9	8, 0	1.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																	6.0			1.5
268 KN-08 4 790 2.30 155 430 93 155 57 9.0 90 204 246 100 16.0 4.5 2.8 8.6 1.1 269 KN-09 21 1300 5.16 4610 670 186 315 153 16.0 130 420 1300 165 26.0 8.5 3.8 11.0 1.6 270 KN-10 22 2430 6.10 2960 940 235 390 151 9.0 180 521 722 240 41.0 13.0 5.0 15.0 1.9 271 KN-11 28 4240 4.98 2750 950 262 240 138 9.0 180 434 532 195 30.0 11.0 5.0 14.0 2.0 2.3 273 KN-13 26 1280 6.38 2910 790 170 380 175 11.0 240 595 628 270 44.0 15.0 6.7 18.0 2.3																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									-											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
281 KO-01 <1	-																			
282 KO-02 <1																				
283 KO-03 2 290 1.81 895 270 69 105 45 13.0 95 119 214 75 12.0 2.0 1.7 11.0 2.0 284 KO-04 3 350 2.58 835 320 65 80 52 12.0 105 156 250 90 15.0 3.5 2.4 9.7 1.4		KO-02	<1	440	1.08	845		59												
																	2.0	1.7		
<u>285 K0-05 3 290 2.38 935 280 70 75 42 9.0 80 120 224 65 11.0 3.0 1.9 8.0 1.0</u>																				
	285	KO-05	3	290	2.38	935	280	70	75	42	9.0	80	120	224	65	11.0	3.0	1.9	8.0	<u>1.0</u>

Kiruku Hill

4

287 KC 288 KC 289 KC 290 KC 291 KC 292 KC 293 KC 294 KC 295 KC 296 KC 297 KC 298 KC 299 KC 297 KC 298 KC 299 KC 300 KC 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	0-06 0-07 0-08 0-10 0-11 0-12 0-13 0-14 0-15 0-14 0-15 0-16 0-17 0-18 0-19 0-20 P-01 P-02 P-03 P-04	3 8 14 23 28 15 18 29 24 9 5 4 4 2 1	1590 490 820 1120 1530 1450 850 710 560 570 460 200 190 250	3. 76 3. 93 5. 09 5. 54 5. 51 6. 14 5. 86 6. 21 6. 45 4. 21 3. 26	1240 965 2230 1530 2290 2540 2500 2660 3110 1680	340 340 500 620 690 880 850 530 560 510	84 92 139 174 194 264 225 132 120	90 150 205 345 440 410 385 335 435	58 67 91 127 168 193 185 158	9.0 10.0 7.0 10.0 10.0 11.0 11.0	110 120 115 170 200 220	160 254 404 542	208 206 248 338 462	80 85 110 200 245	14. 0 16. 0 19. 0 33. 0 38. 0	3.5 6.0	2.7 2.7 4.4	12.0	1.7 1.8 1.4 2.0
288 KC 289 KC 290 KC 291 KC 292 KC 293 KC 294 KC 295 KC 296 KC 297 KC 298 KC 299 KC 299 KC 300 KC 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	0-08 0-09 0-10 0-11 0-12 0-13 0-14 0-15 0-16 0-17 0-18 0-19 0-20 P-01 P-02 P-03	8 14 23 28 15 18 29 24 9 5 4 4 2 1	820 1120 1100 1530 1450 850 710 560 570 460 200 190	3. 76 3. 93 5. 09 5. 54 5. 51 6. 14 5. 86 6. 21 6. 45 4. 21 3. 26	965 2230 1530 2290 2540 2500 2660 3110 1680	500 620 690 880 850 530 560 510	139 174 194 264 225 132 120	205 345 440 410 385 335	91 127 168 193 185	7.0 10.0 10.0 11.0	115 170 200	254 404 542	248 338	110 200	19.0 33.0	6.0 10.0	2.7 4.4	8.7 12.0	1.4
289 KC 290 KC 291 KC 292 KC 293 KC 294 KC 295 KC 296 KC 297 KC 298 KC 299 KC 299 KC 290 KC 300 KC 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	0-09 0-10 0-11 0-12 0-13 0-14 0-15 0-16 0-17 0-18 0-19 0-20 P-01 P-02 P-03	$ \begin{array}{r} 14 \\ 23 \\ 28 \\ 15 \\ 18 \\ 29 \\ 24 \\ 9 \\ 5 \\ 4 \\ 4 \\ 2 \\ 1 \end{array} $	1120 1100 1530 1450 850 710 560 570 460 200 190	3. 93 5. 09 5. 54 5. 51 6. 14 5. 86 6. 21 6. 45 4. 21 3. 26	2230 1530 2290 2540 2500 2660 3110 1680	620 690 880 850 530 560 510	174 194 264 225 132 120	345 440 410 385 335	127 168 193 185	10.0 10.0 11.0	170 200	404 542	338	200	33.0	10.0	4 4	12.0	
290 KC 291 KC 292 KC 293 KC 294 KC 295 KC 296 KC 297 KC 298 KC 297 KC 298 KC 299 KC 300 KC 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	0-10 0-11 0-12 0-13 0-14 0-15 0-16 0-17 0-18 0-19 0-20 P-01 P-02 P-03	23 28 15 18 29 24 9 5 4 4 2 1	1100 1530 1450 850 710 560 570 460 200 190	5.09 5.54 5.51 6.14 5.86 6.21 6.45 4.21 3.26	1530 2290 2540 2500 2660 3110 1680	690 880 850 530 560 510	194 264 225 132 120	440 410 385 335	168 193 185	10.0 11.0	200	542							- 2. A
291 KC 292 KC 293 KC 293 KC 294 KC 295 KC 296 KC 297 KC 298 KC 299 KC 297 KC 298 KC 299 KC 300 KC 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	0-11 0-12 0-13 0-14 0-15 0-16 0-17 0-18 0-19 0-20 P-01 P-02 P-03	28 15 18 29 24 9 5 4 4 2 1	1530 1450 850 710 560 570 460 200 190	5.54 5.51 6.14 5.86 6.21 6.45 4.21 3.26	2290 2540 2500 2660 3110 1680	880 850 530 560 510	264 225 132 120	410 385 335	193 185	11.0			46Z	Z45	38. U	JZ. U	5 9		
292 KC 293 KC 294 KC 295 KC 296 KC 297 KC 298 KC 297 KC 298 KC 299 KC 300 KC 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	0-12 0-13 0-14 0-15 0-16 0-17 0-18 0-19 0-20 P-01 P-02 P-02 P-03	15 18 29 24 9 5 4 4 2 1	1450 850 710 560 570 460 200 190	5. 51 6. 14 5. 86 6. 21 6. 45 4. 21 3. 26	2540 2500 2660 3110 1680	850 530 560 510	225 132 120	385 335	185			660			10.0			15.0	2.3
293 KC 294 KC 295 KC 296 KC 297 KC 298 KC 299 KC 299 KC 300 KC 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	0-13 0-14 0-15 0-16 0-17 0-18 0-19 0-20 P-01 P-02 P-02 P-03	18 29 24 9 5 4 4 2 1	850 710 560 570 460 200 190	6. 14 5. 86 6. 21 6. 45 4. 21 3. 26	2500 2660 3110 1680	530 560 510	132 120	335		i i . U	230	559 528	520 472	260 220	42.0 38.0	12.0 12.0		16.0	2.5
294 K0 295 K0 296 K0 297 K0 298 K0 299 K0 300 K0 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	0-14 0-15 0-16 0-17 0-18 0-19 0-20 P-01 P-02 P-02 P-03	29 24 9 5 4 4 2 1	710 560 570 460 200 190	5.86 6.21 6.45 4.21 3.26	2660 3110 1680	560 510	120			11.0	200	320 487	412	210	36. 0 36. 0	12.0		17.0 15.0	2.4 2.4
295 K0 296 K0 297 K0 298 K0 299 K0 300 K0 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	0-15 0-16 0-17 0-18 0-19 0-20 P-01 P-02 P-03	24 9 5 4 2 1	560 570 460 200 190	6. 21 6. 45 4. 21 3. 26	3110 1680	510		4.50	190	9.0	250	570	502	240	42. 0	13.0		20.0	2.4
297 K0 298 K0 299 K0 300 K0 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 312 KP	0-17 0-18 0-19 0-20 P-01 P-02 P-03	5 4 4 2 1	570 460 200 190	6.45 4.21 3.26	1680		119	395	197	9.0	250	573	486	240	43.0	13.0		19.0	2.9
298 KO 299 KO 300 KO 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	0-18 0-19 0-20 P-01 P-02 P-03	4 4 2 1	200 190	3.26	1995	390	102	245	125	10.0	145	302	298	125	23.0	6.5	3.6	9.4	1.7
299 KO 300 KO 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 312 KP	0-19 0-20 P-01 P-02 P-03	4 2 1	190			290	80	180	77	9.0	105	201	230	90	15.0	5.0	1.9	7.2	1.3
300 KO 301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 310 KP 311 KP	0-20 P-01 P-02 P-03	2 1			520	240	49	170	86	9.0	85	232	286	85	12.0	4.5	2.2	9.3	1.5
301 KP 302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 312 KP	P-01 P-02 P-03	1	250	2.37	470	220		210	77	8.0	85	278	324	95	14.0		1.7		1.1
302 KP 303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP	P-02 P-03			1.47	385	140	41	190	60	6.0	75	259	264	80	14.0	4.0	1.9	6.0	0.9
303 KP 304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP 312 KP	P-03		220	1.26	175	140	60	110	37	9.0	75	96	146	60	9.2	2.5	1.5	7.9	1.0
304 KP 305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP 312 KP		<1 <1	910 250	1.92 1.43		750	274	165	34	11.0	95	188	318	110	18.0	4.5		8.4	1.2
305 KP 306 KP 307 KP 308 KP 309 KP 310 KP 311 KP 312 KP	1 04 -	$\frac{1}{1}$	250 370	1.43	670 1020	280 310	80 78	125 85	37 48	11.0 10.0	90 105	$\frac{115}{127}$	198 214	70	12.0	2.5		10.0	1.8
306 KP 307 KP 308 KP 309 KP 310 KP 311 KP 312 KP	P-05	· 3	360	2.30	910	300	91	130	40 65	13.0	135	134	214 244	85 75	13.0 13.0	3.0 3.5	1.9	10.0	1.6 1.9
 307 KP 308 KP 309 KP 310 KP 311 KP 312 KP 	P-06	2	280	1.78	730	260	63	105	48	10.0	105	$104 \\ 193$	186	65	12.0	1.5		11.0	1. 9
 308 KP 309 KP 310 KP 311 KP 312 KP 	P-07	: 7:		2.13		360	. 99	210	78	9.0	140	204	190	105	21.0	5.5		14.0	1. 4
310 KP 311 KP 312 KP	P-08	8	760	2.56		490	130	255	96	9.0	145	252	224	115	23.0	6.0		13.0	1.9
311 KP 312 KP	P-09	7	720	2.94	1235	570	138	155	. 77	7.0	105	190	194	90	17.0	5.5		10.0	1.4
312 KP	P-10	9	900	3, 33		590	151	235	105	9.0	135	356	300	155	27.0	8.0		12.0	2.1
	P-11	20	780	4.45		680	155	390	151	11. 0	200	555	358	230	36.0	12.0	5.6	19.0	2.4
313 KP	P-12	21	700	4. 73		450	115	370	161	9.0	210	525	376	235	40.0	13.0			2.6
017 00	P-13	17	510	5.05		340	67	290	133	10.0	185	428	372	205	30.0	10.0		16.0	2.4
	P-14	22	500	5.10		330	68	360	158	9.0	220	515	404	230	38.0	13.0		22.0	2.5
	2-15 2-16	-17 7	410 270	4.90 3.96	1970 925	330 300	86 86	320 215	139 95	9.0 8.0	180 130	450 295	388 300	190	30.0	11.0		15.0	2.4
	2-17	5	220	3. 12	680	260	72	170	55 71	8.0	130 95	212	300 262	120 75	19.0 16.0	6.0 4.5	3.1 2.4	12.0 9.5	1.9
	2-18	-1	140	1.28	310	150	43	140	42	7.0	65	122	194	50	10. U 9. 7	4.5 2.0	2. 4 1. 0	9. 0 6. 4	1.6 0.8
		<1	150	0.68	150	130	37	140	38	6.0	60	104	200	50	8.0	2.5	1.4	6. O	1.3
		<1	90	0.06	15	-60	11	- 95	15	4.0	40	47	66	25	4.6	1.0	0.9	5.8	0.9
321 KQ	2-01	<1	360	0.63	310	220	40	115	27	6.0	65	69	116	35	5.7	1.5	0.9	4.9	0.8
	Q-02	1		1.41		300	65	115	36	9.0	85	105	192	60	9.1	1.5	1.7	8, 0	1.2
	2-03	1		1.81		260		170	52	12.0	110	158	270	95	15.0	3.0	2.2	9.4	1.6
	2-04	<1	120	0.37	25	130	22	130	44	9.0	90	77	146	45	9.1	1.0		8.6	1.0
			560	2.81			95	260	125	10.0	165	247		120	22.0	5.5		13.0	18
		12	880	2.91		630	115	255	148	9.0	155	232	266	110	23.0	6.5		11.0	1.7
	}-07 }-08 ∵		1060 1080	3.45 2.92		510 680	128	230	148	9.0	160	215	260	115	23.0		4.2		1.8
	2-09 v−vo		1080	2.92 3.80		690	274 166	280 170	$\frac{170}{121}$	10. 0 7. 0	$\frac{140}{105}$	230 209	$\frac{340}{316}$	95 95	16.0	5.0			1.7
		- 5 :		2.29		540	144	255	121 97		115	209 314	326	95 130	18.0 20.0	5.0	3.1 3.2	9.2	1.3 1.2
		13	810	3.81		660	182	335	161	11.0	165	521	380	205	27.0	5. 5 8. 0		9. 5 12. 0	1.2
		17		4.45		550	141		211		185	519	388	200	32.0	9.0		12.0	2.1
		16		3.70		340	64	315	178	11.0	200		366	215	36.0	11.0		17.0	2.3
334 KQ		19	430	4.01	2400	340	72	350	179	12.0	210	486	400	220	36.0	9.5		17.0	2.5
		14		3.52		300	67	305	128	9.0	175	381	334	145	23.0	6.5			1.9
	2-16	5	430	2.40		300	91	245	85	8.0	125	233	288	95	16.0	4.5	2.4	9.7	1.6
	2-17	1		0.57	150	120	.27	185	49	7.0	80	128	178	50	7.4	1.5	1.2	6.6	0.9
		<1		0.60	295	100	25	115	29	6.0	55		120	30	5.1		0.9	5.4	0.7
		<1	40	0.48	90 5	90	13	85 95	26	6.0	40	58	100	20	3.7	0.5	0.7	4.8	0.6
		<1 <1	120 120	0.11 0.31	5 120	50 140	12 35	85 95	18 27	7.0 11.0	45 60	59 68	80 124	25 35	5.4	0.5	0.9	4.2 7.2	0.7
341 KR	20 R-01							77.1							7.0	1.0	1.3		0.9

*Kiruku Hill *

													:			•	1.1		
	Sample No.	Au ppb			Mn ppm		Sr ppm	Nb ppm	Th ppm	U ppm	Y ppm		Ce ppm	Nd ppm	Sm ppm	Eu ppm	Тb ppл	Yb ppm	Lu ppm
343	KR-03	5	560	2 83	1325	310	112	160	58	8.0	120	172	242	85	13.0	3.5	2.5	0 5	16
344	KR-04	7	450				114	200	84	8.0	125		240	100	15.0	4.0		9.5 11.0	$\begin{array}{c} 1.5\\ 1.4 \end{array}$
345	KR-05		1020		1625		183	260	107	9.0	140	211	258	115	22.0	5.0		10.0	1.4
346	KR-06		1600		2440		226	260	139	5.0	175		302	130	26.0	7.5		12.0	1. 8
347	KR-07		1770		3090		202	330	190	5.0	175		420	160	30.0	9.5		13.0	1.7
348	KR-08	10	2430	3, 89	960	1060	304	220	131	4.0	170		404	115	25. 0	8.0		11.0	1.6
349	KR-09		3290		3070		213	345	86	4.0	140	433	526	205	31. 0	8.5		9.0	1.5
350	KR-10		1530		1900		168	470	73	8.0	125		406	190	28.0	7.0	3.3	9.3	1.6
351	KR-11	9			1435		96	360	110	7.0	150		324	170	23.0	6.0		9. 8	1.5
352	KR-12				1790		82	350	119	8,0	170	437	338	185	25.0	7.5		13.0	2.0
353	KR-13	11			1115		61	320	118	7.0	160	402	276	175	24.0	7.0		12.0	1.7
354 355	KR-14				1330		77	335	116	8.0	175		304	160	25.0	7.5		12.0	1.9
356 356	KR-15 KR-16	6	470 120		1335 305		77 24	260 185	132	9.0	135		306	190	33.0	7.5		14.0	2.3
357	KR-17		80				24 11	165	84 20	7.0 5.0	90 - 90		254 66	130	17.0	5.0		10.0	1.5
358	KR-18	<1	130				14	110	24	6.0	55		124	20 30	4.2 5.2	0.5 0.5	0.6	4.4	0.6
359	KR-19	1	30				10	80	23	8.0	40		- 88	25	4.4	0.5	0.8 1.0	5.4 7.3	0.7 1.2
360	KR-20		190				38	85	24	6.0	45		122	35	6.0	0.5	0.9	4.8	1. Z 0. 8
361	KS-01	<1	80				20	75	22	5.0	60		102	35	6.7	1.5	1.0	4.2	0.7
362	KS-02	2	360	1.82	1250	290	69	160	41	7.0	125	121	176	65	13.0	3.5	2.1	7.0	1.5
363	KS-03	5	650	3.62	1050	510	176	240	61	7.0	140	166	222	80	16.0	5.0	2.5	8.4	1.6
364	KS-04	5			1245		87	260	69	6.0	160	127	166	. 75	14.0	4.5	2.3	8.4	16
365	KS-05		1410		1805		117	280	108	4.0	140	247	238	120	24.0	7.5	3.2	7.1	1.2
366	KS-06		2660		3750		244	450	199	5.0	210	427	470	215	45. 0	16.0	5.3	11.0	1. 9
367	KS-07		3190		3910		231	310	154	3.0	140	292	474	165	37.0	11.0		8.4	1.4
368	KS-08		2740		3070		298	475	149	6.0	170	422	552	210	42.0	13.0		11.0	1.9
369 370	KS-09 KS-10		3090 1730		2420 1870		374 345	590	122	7.0	195	977	904	375	61.0	18.0		10.0	1.9
371	KS-10 KS-11		1940		2550		345 227	500 445	80 111	7.0 6.0	140 160	845 526	504	270	39.0	11.0	4.0	8.4	1.5
372	KS-12		1210		2370	610	175	290	112	6.0	160	536 288	408 278	230 140	41. 0 27. 0	13.0 7.5	4.2	8.4	1.5
373	KS-13		1280		1690	670	212	275	96	8.0	150	289	210	135	24.0	7.0	3.7 3.1	9.2 8.4	1.7 1.7
374	KS-14	Š			1150	320	72	165	51	6.0	90	142	182	75	16.0	4.5	2.1	6.4 6.4	1.1
375	KS-15	6	350	1.04		260	68	225	65	7.0	105	195	256	90	17.0	5.0	2.4	6.4	1.2
376	KS-16	<1	100	0.19	55	80	19	120	28	4.0	80	59	94	30	5.5	1.0	1.0	3.9	0.7
377	KS-17	, < 1	120		150	140	19	115	25	4.0	55	60	94	30	5.6	1.0		3.4	0.6
			30			90	14	100	19	4.0	45	45	74	15	3.5	0.5	0.7	4.1	0.8
379	KS-19	<1	40	0.45			15	100	20	4.0	45	51	90	20	4.0	1.0	0.9	3.5	0.8
380	KS-20	<1	40	0.25			16	75	19	4.0	45	51	88	30	4.5	0.5	0.6	2.8	0.6
381	KT-01	4	190	0.81			44	85	35	10.0	75	83	154	55	9.9	2.5	1.3	6.3	1.1
382 383	KT-02 KT-03		290 460	1.57 3.36		270 420	60 112	120	42	10.0	95	90	180		12.0	3.0		7.2	
384	KT-04		1110		1340		113 128	150 270	82 97	10. 0 7. 0	$135 \\ 135$	152 243	236	85	16.0		2.6		1.6
385	KT-05		2310		1855		131	490	178	8.0		- 498 - 498	216 332	115 210	23.0	7.0		9.2	1.7
386	KT-06		3130		2450		229	585	232	8.0		1000	576	365	45. 0 63. 0	13. 0 18. 0		10. 0 12. 0	2.1 1.8
387	KT-07		4260		2750		442	710	295			1520			75. 0	23.0	7.5		1. o 2. 3
388	KT-08		2230		2610		274	640	259	7.0		1130	646	395	64.0	20.0		12.0	2. 0
389	KT-09		1460		1945		196	575	217	7.0	195		454	335	61.0	19.0		13.0	2.3
390	KT-10	11	1830	3.66	2480	790	226	575	169	8.0	210	727	442	300		17.0	5.8	11.0	1.9
391	KT-11	14	700		1425	480	122	235	128	6. 0	145	256	252	135	26.0	9.0	4.3	8.4	1.7
392	KT-12	5		1.41		270	92	285	96	8.0	145	142	228	75	16.0	4.0	2.4	9.2	1.7
393	KT-13		1040	1.43		340	141	195	76	9.0	105	146	240		15.0	3.5	1.8	7.3	1.4
394	KT-14	1	180	0.47	280	150	37	105	35	7.0	60		148	45	9.8		1.4	5.1	1.0
395 396	KT-15 KT-16	.1		0.81	235	170	33	115	34	4.0	55	83	152	35	7.0		1.2		0.8
390 397	KT-17	<1 <1	80 210	0.48	245 35	110 110	18 91	120	41 95	6.0	50	84	164	40	7.7	1.5	0.9	4.8	1.0
398	KT-18	<1	80	0.11		110	21 19	115 120	25 35	6.0 7.0	50 55	61 76	90 140	30 25	6.4	0.5		3.5	0.6
399	KT-19	<1	90	0.61	365	110	28	105	32	6.0	ээ 50	76 70	$\frac{140}{124}$	35 30	7.2 6.1	1.0 1.5	1.0 1.0		1.0 1.0
400	KT-20	<1	20	0.23	65	80	20 9	85	23	6. 0	50	55	88	30 25	5.6	1.0		4.0 5.0	1.0 0.9
				3. 40			<u> </u>			<u> </u>	· · · · · · · · · · · · · · · · · · ·	00	00	40	0.0	1.0	0.0	0.0	0, 0

*Nguluku Hill *

-

802 ¹ /100000	*****															-			
	Sample	Au	Ba	Fe	Mn	P	Sr	Nb	Th	U	Y	La	Ce	Nd	Sm	Eu	Tb	Yb	Lu
No.	No.	ppb	ppm	×	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppa	ppm	ppm	ppm
1	NA 01	21	100	1 0 1	BEO	010				4 6									
1 2	NA-01	<1	120	1.35			25	35	-29	4.0	40	245		130				6.7	1.0
- 3	NA-02 NA-03	<1	180	2.12	450	200	42	30	28	4.0	40	135	240		16.0		2.0	4.8	0, 9
- 4	NA-04	<1 <1	180	3.23	1180	190	37	45	24	3.0	45	- 86	174		12.0			4.0	0.6
5	NA-04	$\langle 1 \rangle$	200 140	3.05 2.11	945 520	110	38	40	19	3.0	50	123			14.0	3.5	1.9	5.2	0.8
6	NA-06	<1	140	2.56	640	210 240	34 19	35	482		45		1270		67.0				5.3
-7	NA-07	<1	60	0.87	185	110	. 9	- 35 30	35 27	13.0	40	96			9.7	2.0	1.5	4.6	0.9
8	NA-08	$\langle 1 \rangle$	60	0.53	475	110	30	35 35	32	8.0 6.0	45	75	162	50	9.2	1.0	1.1	4.2	0.8
9	NA-09	3		0.99	140	220	21	45	35	7.0	50 55	91 78	194 172		9.9	1.0	1.6	4.4	.0.8
10	NA-10	<1	80	1.14	255	350	28	35	33	7.0	50		176		10.0 11.0	1.0	1.2	5.3	0.9
11	NA-11	<1	90	1.31	300	470	33	35	30	7.0	50	74	162	45	8.9	1.5 1.0	1.4	6.8 5.4	1.0 1.1
12	NA-12	< <u>1</u>	80	0.93	305	220	22	30	26	7.0	40	58	132		9.6	0.5	1.3	6.9	1.1 1.0
13	NA-13	<1	110	1.61	450	390	33	40	37	7.0	60	187	204		15.0	1.5	1. 3	0. 9 6. 5	1.0 1.3
14	NA-14	2	80	1.45	215	180	23	.45	35	7.0	60	88	186		12.0	1.5	1.4	6.1	1. 1
15	NB-01	<1		0.71	485	240	33	40	28	5.0	40	192	322		19.0		2.0	4.6	0.7
16	NB-02	<1	70	0.47	325	100	14	40	22	6.0	40	126	232		12.0		1.5	6.0	1.0
17	NB-03	<1	90	1.15	205	130	15	20	22	7.0	40	81	164	50		1.5	1.0	3.4	0.7
18	NB-04	<1		1.98	230	280	34	35	20	5. 0	45	76	150		11.0	2.5	1.6	4 .9	0.8
19	NB-05	<1	70	0.92	535	270	19	25	23	4.0	40	71	160		9.4	1.5		4.6	0.6
20	NB-06	<1	110	1.20	640	210	25	30	24	6.0	45	77	172	50	9.7		1.4	4.8	1.1
21	NB-07	<1	120	1.86	145	240	21	20	19	4.0	45	64	162		11.0	2.5		4.0	0.7
22	NB-08	<1	50	0.71	320	170	13	20	29	6.0	45	70	142		10.0	1.0	1.2	5.2	1.1
23	NB-09	<1	40	0.47	. 20	90	8	25	36	6.0	55	77	168	55	9.2	1.0	1.4	6.8	1.1
24	NB-10	<1	50	0.55	20	130	. 8	15	24	6.0	35	64	134	40	7.9	0.5	1.2	5.0	0.9
25	NB-11	<1	90	0.43	245	290	25	20	25	7.0	45	65	136	40	8.2	1.0	1.3	6.9	1.1
26	NB-12	<1	180	1.71	715	560	48	25	32	6.0	60	82	186	60	9.9	2.0	1.3	5.0	1.1
27	NB-13	<1	140	1.76	505	780	51	25	32	7.0	50	85	184		11.0	1.5	1.3	5.7	1.1
28	NB-14		90	0.39	45	160	20	20	25	5.0	35	62	136	40	7.3	1.0	1. i	2.9	0.9
29	NC-01		100	0.47	165	120	30	25	15	4.0	35	47	104	30	6.3		0.8	4.2	0.8
30 31	NC-02 NC-03	<1	40	0.41	30	60	8	20	15	5.0	35	48	96	30	6.1	1.0	1.0	4.8	0.8
32	NC-03	<1 2	60 160	0. 70 2. 18	180	100	9 59	15	17	4.0	30	55	100	30	7.2	1.0	1.0	4.2	0.7
33	NC-04	<1	130	<i>2.</i> 10 1. 45	460 535	260 280	52 26	55 50	23	5.0	50	86	178		11.0	3.0	1.6	4.4	0.7
34	NC-06	<1	160	1. 45 3. 21	360	280 520	20 45	50 70	19 28	5. 0 7. 0	45	71	162		11.0	2.5	1.5	5.6	0.8
35	NC-07	<1	70		15	140	15	40	20	5.0	55 45	118 54	236		15.0	4.5		5.7	0.9
		<1		1.66	40	140	18	30	24	5.0 6.0	45 45	54 66	108 142		6.0				0.6
	NC-09		30	0.58	45	110	8	25	32	6.0	45 45	75	166	45 50	8.5 9.7		1.1	4.1	0.6
38	NC-10	<1		0.62	395	170	18	20	30	6.0	40	74	156	50	9.7 8.8	1.0 1.0	11	4.3	0.5
39	NC-11	<1	80	1.07	170	370	19	30	27	6.0	50	.77	162	50	9.4	1.0	1.2 1.2	5.4 5.0	0.9
40	NC-12			1.48	445	470	37	30	22	6.0	45	59	136	40	5.4 7.4	1.0	1.0	5. U 4. O	0.7 0.7
41	NC-13	<1	190	2.25	330	710	72	35	20	5.0	55	58	132	40	7.4				0.6
		<1	140	0.90	260	350	26	35	27	7.0	50	77	164	45	8.8	1.0			1.0
43	ND-01	<1	70	0.55	180	200	21	30	14	4.0	35	49	104	30	5.9	1.0	0.8		0.6
	ND-02	<1	70	0.44	70	140	10	25	9	4.0	40	35	76	20	4.0	0.5			0.5
45	ND-03			1.44	365	220	19	25	16	5.0	40	51	112	35	7.0	1.0			0.7
	ND-04	<1		1.73	290	280	55	65	21	5.0	50	83	162		11.0	2.0			0.7
		<1	190	3.54	685		69	80	22	6.0	55	109	190		L4. O		1.9		0.8
	ND-06	<1		6.01			163		24	6.0	70	148	290	115		5.5			0.8
	ND-07	<1		3.51	650	570	81	80	27	7.0	60	152	220		13. 0	3.5			1.0
			130		415	330	36	50	27	7.0	50	84	164	.50	8.1	1.5			0.7
	ND-09	<1		1.36	505	610	45	55	29	9.0	55	67	154	50	8.5	2.0			0.9
	ND-10	<1		0.27	5	80	11	20	14	4.0	30		86	30	5.3	0.5			0.3
		<1		1.39	770	230	26	40	42	8.0		104	226			1.5	1.5		0.7
	ND-12	<1 /1	90	1.93	570	330	24	35	29	7.0	55	72	160	50	9.0	1.5	1.3	5.6	0.8
	ND-13 ND-14	<1	130	2.03	540	370	49	35	30	10.0	55	72	166		9.7		1.4		0.8
	NE-01	<1 <1	100	2.96	385	330	28	40 95	33	7.0	50	93	174				1.3		0.9
UI	10-01	<u></u>	110	<u>0.89</u>	270	170	20	<u>25</u>		6.0	40		108	35	6.6	<u>1.5</u>	1.0	5.5	0.7

*Nguluku Hill *

1.18	guluku 🗄	HIII '	¥								. :	•							
Ser.	Sample	Au	Ba	Fe	Mn	P	Sr	Nb	Th	U	Y	La	Ce	Nd	Sm	Eu	Тb	Yb	Lu
No.	No,	ppb	ppm	*	ppm	ppn	ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppm	ppm	ppin	ppm	ppa	ppm
58	NE-02		110	1.02	400	150	15	.30	19	6. 0	45	54	126	35	6.6	1.0	1.0	4.8	0.6
59 60	NE-03	~1		1.81	145	210	14	20	16	5.0	40	43	96	30	5.1		1.1	4.6	0.8
60 61	NE-04 NE-05	<1 <1	200 410	2, 55 5, 75	665 825	510 1000	101 202	85 110	25 26	8.0	60 70	112 150	220	1.1	16.0 19.0	4.0	2.0 2.6	8.7	0.9
62	NE-06		1070	8.67			568	230	40	10.0	105	266	552		15. 0 35. 0		2. 0 3. 7	6.4 8.0	1.0 1.1
63	NE-07	<1	900		1270		377	170	33	9, 0	90	215	448		30.0	9.0	3.5	7.4	1.1
64	NE08	<1		3.72	530	520	64	75	- 40	· · 8. 0	55	113	256		15.0	3.5	2.0	7.0	1.0
65	NE-09	<1		2.14	685	530	50	65	34	8.0	70	89.	210		13.0	2.0	1. 3	5.8	0.8
66	NE-10	1		0.28	150	140	13	50	26	7.0	45	64	138	45	7.2	0.5	1.2	5.4	0.8
67 68	NE-11 NE-12	~1 ~1	$\frac{110}{120}$	0.65 1.79	480 810	270 290	23 29	40 45	24 38	7.0 9.0	45 65	59 82	110 180	40	6.7 12.0	$\begin{array}{c}1.0\\1.5\end{array}$	1.0	4.8	0.9
: 69	NE-13	<1	160	3.11	495	370	43	45	38	10.0	50	· 94	194		11.0		1.6 1.6	5.9 7.4	12 10
70	NE-14	<1	290	2.82	775	380	55	50	38	8.0	60	116	204		13.0	3.5	2.0	7.3	1.1
-71	NE-15	<1	180	3.46	525	350	41	40	36	6.0	45	83	188		11.0	1.5	1.3	3.8	1.0
72	NF-01	<1	220	1.41	745	460	51	30	- 26	6.0	40	64	152	45	8.6	1.5	1.2	5.4	0.8
73	NF-02	<1	120	0.94	490	250	23	30	22	7.0	45	61	142	45	8.1	1.5	1.0	7.1	0.9
74	NF-03	<u>्</u> य			555	330	21	-30	21	5.0	45	57	136	40	6.7		1.0		0.7
75 76	NF-04 NF-05	<1 <1	210 490	3.26 5.93	675	710	115 265	90 155	23 28	6.0 7.0	60 75	182 219	242		16.0	4.0	2.2	5.2	0.7
77	NF-06	<1	900				573	200	32	8.0	90	231	352 486		21.0 31.0	6.5 8.5	2.6 3.6	5.6 6.6	0.9 1.1
78	NF-07	<1	880	7.80			635	200	33	8.0	90	241	504		32.0	8.5	3.3	0.0 7.7	1.1
79	NF-08	<ĩ	930	6.02			313	190	39	9.0	.85	223	454		28.0		3. 1	6.5	1.1
80	NF-09	<1	190		590		73	95	33	8.0	55	121	266		17.0	3.5	1.8	5.0	0.6
81	NF-10	<1	260	1. 41	775	340	54	60	- 33	8.0	55	105	196		12.0	2.0	1.8	6.6	0.9
-82	NF-11	1	100	1.38	760	270	23	40	27	7.0	55	70	148			1.5	1.5	6.3	1.1
83	NF-12	· <1 /1	170	2.20	890 765	370	42	45	32	7.0	55	87	184		11.0	2.0	1.7	5.9	0.9
84 85	NF-13 NF-14	<1 <1	270 140	2. 87 2. 35	765 725	430 340	46 30	50 40	26 31	4.0 6.0	50 45	89 81	188 180		11.0		1.4	4.6	0.8
86	NF-15	<1	170	2.08	590	310	36	40	30	7.0	45 55	86	196		11. 0 12. 0	2.0 1.5	1.4 1.6	5.6 6.9	0.7 0.9
87	NG-01	<1	140	2.15	265	350	31	30	21	5.0	40	64	150	45	9.0	1.5	1.1		0.5
88	NG-02	1.1.1	130	1.77	380	300	15	25	19	6.0	40	66	150	45	8.3	1.5	1.2	5.5	0.8
89	NG-03	<1	130	1.64	275	200	19	30	20	5.0	40	59	130	45	8.1	1.5	1.1	4.6	0.6
. 90	NG-04	<1	220	2.86	640	670	123	95	26	6.0	55	128	240		18.0	4.5	2.1	4.9	0.7
91 02	NG-05 NG-06	<1	520	6.94			338 660	145	32	9.0	70	193	394		26.0	6.5	2.9	6.3	0.9
92 93	NG-07		1050 780	8. 75 7. 39			669 537	180 160	29 26	7.0 6.0	75 70	219 199	400		30. 0 26. 0		3. 1 2. 8	6.6	1.0
94	NG-08		1110	8.34			854	200	37	8.0	95	284	600		20. 0 39. 0		2. o 4. 0	6.4 6.8	0. 7 0. 9
95	NG-09	<1		6.67			389	130	38	11.0	65	203	418	155		6.5		6. 3	0.8
96	NG-10	<1	230	3.67	715	530	74	65	32	9.0	60	98	210		14.0	3.0	1.8	6.8	1.0
97	NG-11	<1	90	1.16	425	190	26	45	30	8.0	50	71	138		9.5		1.2	7.0	1.0
98	NG-12	<1	200	2.36	760	310	41	55	- 33	8.0	55	88	156		13.0	2.0	1.7	6.8	1.0
99 100	NG-13 NG-14	<1 <1	150 170	2.63 2.53	550	300 210	38	50	31	7.0	50	77 . 05	152		10.0	1.5	1.4	5.6	0.8
100	NG-14 NG-15	<1	230	2. 55	680 830	300	39 43	45 35	32 29	8.0 5.0	45 40	85 78	170 188		11.0 12.0	2.0	1.7	7.6 5.5	1.1
102	NH-01	<1		1.14	210	310	43 17	30	28	7.0	40	71	158		12.0	2.0 1.0	1.3 1.4	5.5 6.5	0.7 0.9
103	NH-02			1.35	590	280	14	30	27	6.0	40	69	150		10.0	1.5	1.4		0.8
104	NH-03		130	1.37	485	360	17	25	26	6.0	35	60	134	50	9.1	1.5	1.4	5. 0	0.7
105	NH-04		190	1.55	335	630	$101 \cdot$		33	9. 0	65	125		100	19.0	4.5	2.3	7.0	
106	NH-05		520	7.15	720		373	135	34	7.0	65	199	398			7.5	2.9	7.0	1.0
107	NH-06		1100	9.20 7.50			733	190	35	8.0	75	258	514		34.0		3.5	7.7	1.1
108 109	NH-07 NH-08	<1	940 870	7.59 8.18	1350 815		671 591	180 200	32 38	7.0	75 20	269	540		37.0 49.0		3.6	7.1	1.0
110	NH-09	<1	960	o. 10 7. 85			591 599	200	38 35	8.0 9.0	80 80	313 256	646 528		42. 0 36. 0		4.6	7.6 6.7	0.9
111	NH-10	<1	280	3.11	610	850	83	65	40	9.0	45	114	242		30. 0 13. 0	9.5 3.0	3.6 1.8	0. <i>1</i> 7. 1	0.9 1.0
112	NH-11	<1	130	1.67	665	290	31	55	33	8.0	45	86	182		11.0	2.0	1. 7	7.0	1.3
113	NH-12	<1	90	1.14	490	190	17	50	29	8.0	50	71	144		10.0	1.5	1.4		1.1
114	NH-13	<1	100	1.27	610	230	21	45	29	7.0	50	78	156	50	9.6	1.0	1.4	6.4	0.9

Nguluku Hill

		ستمضمحه							*****	· · · · · · · · ·			****		<u></u>			······	
	Sample		Ba	Fe			Sr	Nb	Th	U	Y	La	Ce	Nđ	Sm	Eu		Yb	Lu
NO.	No.	рро	ppm	<u>Ж</u>	ppm	ppn	ppm	ppn	ppm	ppin	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppa	ppm
115	NH-14	<1	190	1.58	620	310	27	45	35	9, 0	55	79	172	60	11.0	1.5	1.5	6.6	0.7
	'NH-15	< 1		1.71		300	33	45	25	6.0	50	60	138	45	8.8	1.0		4.5	0.9
117	NI-01		150	0.77	300	240	22	40	17	6.0	45	54	112	40	6.2	1.0	1.0	4.4	0.8
118	NI-02		70	0.64		230	26	40	21	6.0	50	54	114		6.9		1.2	4.0	0.8
119	NI-03	<1	140	0.75	545	200	15	35	26	6.0	55	72	160		13.0	2.0	1.4	6.2	0.9
120 121	NI-04 NI-05	<1 <1	40 400	0.47 5.77	75	120 1300	12 232	65 160	24	6.0	50	58	110	40	8.0	1.0		4.0	0.8
121	NI-06	1	400 900		1595		232 569	200	39 43	9.0 11.0	85 90	168 225	328		22.0	5.5		6.9	1.1
123	NI-07					5240		200	40 39	9.0	85	225 247	452 472		32.0 33.0	9.5	3.6 4.0	6.7	0.8
124	NI-08	<1	930		1070		737	235	38	10.0	95	268	532		40.0		4.0	6.1 6.9	1.2 0.9
125	NI-09	<1	990		1755		673	225	40	10.0	100	255	510		36.0		4.2	9.1	1.3
126	NI-10	<1	360	3.25	915		96	100	48	10.0	60	126	264			4.0	2.7	9.1	1.5
127	NI-11	<1	140	1.89	580	420	35	70	52	11. 0	60	99	204	75	11.0	2.0	2.1	7.6	1.4
128	NI-12	÷	90	1.54	345	260	24	60	37	10.0	55	100	150			1.0	1.4	8.2	1.1
129	NI-13	<1	120	1.87	550	250	29	50	34	8.0	50	71	148			1.5	1.2	5.1	1.2
130 131	NI-14 NJ-01	:<1 . <1	190 200	2.68 2.39	400 660	290 280	44	45	35	7.0	45	70	150	45	9.9	2.0		4.5	0.9
132	NJ-02	<1	200 150	2. 39	605	420	40 28	60 40	- 33 24	11.0 7.0	50 45	78 55	150 112		11.0	1.5	1.2	7.0	1.1
133	NJ-03	<1	70	1.03	175	320	11	40	27	7.0	50	55	112	45 50	8.4 8.1	2.0	1.4 1.4	3.9 6.5	1.0 0.9
134	NJ-04	<1	160	1.27	865	220	34	40	41	9.0	45	79	180		12.0	2.0	1.9	0. 5 5. 5	0.9 1.2
135	NJ-05	<1	120	0.43	30	230	50	145		12.0	55	82	158	55	9.8	2.0	1.7	5.7	1.0
136	NJ-06	<1	510	6.28		1370	272	180	35	10.0	80	174	354		23.0	6.5	2.4	5.8	1.0
137	NJ-07	<1	980	9.04			605	240	37	10.0	90	250	510		32.0	10.0	3. 5	7.9	0.9
138	NJ-08	<1	750		1550		606	220	.38	8.0	90	253	534		30.0	9.5	3.5	7.6	1.0
139 140	NJ-09 NJ-10	: 3 <1	550	7.24 2.52			346	205	34	8.0	90	233	464		28.0	9.5	3.0	6.1	0.9
140	NJ-11		340 150	2. 32	930 585	760 260	$\frac{103}{43}$	105 70	27 31 -	7.0	65 55	105 90	210		13.0	3.5	1.9	6.0	1.0
142	NJ-12	1	160	2. 31	480	290	43	60	29	7.0	50	123	176 154	- əə 55	9.5 9.3	2.0 1.5	1.6 1.2	6.6 6.2	0.9 0.8
143	NJ-13	<1	150	1.72	600	210	29	50	31	8.0	55	103	184	60	9.6	2.0	1.4	0. 2 4. 9	0. o 1. 1
144	NJ-14	<1	.90	1.43	525	200	16	50	32	8.0	55	77	166	50	9.1	1.5	1.5	4. 5 6. 8	0.7
145	NK-01	<1	230	4.60	820	440	46	70	23	5.0	50	79	166	60	9.2	3.5	1.2	4.8	0.6
146	NK-02	<1	80	1.05	365	270	28	40	20	5.0	45	49	104	40	6.2	1.0		4.2	0.6
147	NK-03	<1	140	1.98	400	260	22	40	23	7.0	45	63	142	45	8.9	1.5	1.1	4.5	0.8
148 149	NK-04 NK-05	ব ব	140 70	1.25		510	38	40	23	6.0	40	54	124	40	7.0	1.0	1.1	4.1	0.9
149 150	NK-05	<1	80	0. 41 0. 44	15 80	-120 210	15 25	40 80	28 24	6.0 6.0	40	71	150	50	8.8	1.0	1.3	4.1	0.6
151	NK-07	<1	420	2.49		1100	154	145	37	0.0 8,0	40 65	59 134	124 252		7.6 17.0	1.0 4.5	1.1 2.0	5.2 7.0	0.8
152	NK-08	<1	440		1065		219	160	34	8.0	80	159	292			4.0	2.6	7.1	1, 1
153	NK-09	<1	280	2.12	915	580	101	105	32	8.0	60	102	200		14.0	3. 5	1.8	6.0	0.9
154	NK-10	<1	110	0.88	- 385	300	29	60	22	6.0	40	53	110	40		1.0	1.1	4.2	0.7
155	NK-11	<1	120	1.91	575	230	30	60	30	8.8	65	72	154	62	10.0	1.8	1.0	4.5	0.7
156	NK-12	<1	130	1.52	560	230	28	45	27	8.7	50	73	143		7.3		1.0	5.4	0.9
157 159	NK-13	`< <u>1</u> -		1.23	815	200	31	45	24	8.1	45	63	125	46			1.0	3.8	0.9
$\frac{158}{159}$	NK-14 NL-01	3 <1	80 160	1.01 3.57	-530 380	200 400	24 39	50 35	24 23	7.2 6.3	55	66	138	48	8.8	1.4	0.9	5.5	0.8
159 160	NL-01 NL-02			1.98	405	280	59 24	зэ 35 .	22	0.3 6.4	35 45	61 54	141 120	53	7.8 7.1	2.2	1.1	5.6	
	NL-03	<1		1.51		400	34	35	18	5.1	40 40	54 52	120	50 42	6.8	1.3 1.8	0.9 0.9	3.9 3.6	0.6 0.8
162	NL-04	<1	160	1.06	640	200	30	40	35	7.6	50	71	169		12.0	1. 8	0.9	5.0 5.0	0.8
163	NL-05	<1	60	0.87	155	210	16	35	32	6.2	50	69	151	57	8.1	1.2	0.8	3.9	0.6
164	NL-06	<1	40	0.27	40	100	9	30	23	6.1	35	54	105	39	7.3	0.7	0.7	3.4	0.7
165	NL-07	<1	220	1.15	880	300	44	60 05	36	8.3	60	84	154		10.0	2.0	1.5	7.0	0.9
166	NL-08	4	180	1.81	435 ees	300	48	65	37	8.1	50	94	161		9.4	1.5	1.1	5.7	0. 9
167 168	NL-09 NL-10	<1 1	210 230	2. 29 2. 10	665 870	360 700	45 15	75 65	29 27	8.4	60 60	77 92	138			1.9	1.8	5.5	0.8
	NL-10 NL-11	<1	230 120	2.10 1,26	580	290	45 35	65 60	27 33	9.0 9.2	60 60	86 75	151 147		10.0	2.1	1.4	7.4	1.5
	NL-12	<1	160	1.85	530	280	35	65	<u>83</u> 99	9. Z 8. 7	50 50	75 83	147 193		8.0 10.0	1.7 1.7	1.0		0.8 0.9
171	NL-13	<1	150	2.45	570	270	33	60	31	11.0	45	62	154		11.0	2.4	1.6	4.6	0.9
														·····					<u> </u>

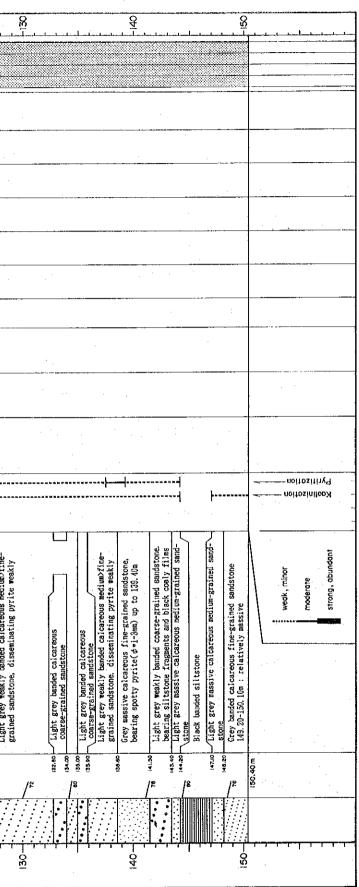
A-38

*Nguluku Hill *

	Sample No.	· _	Ba ppm	Fe %	Mn ppa	9 ppm	Sr ppm	Nb ppm	Th ppm	U mqq	Y ppm	La ppm	Ce ppm	Nd ppm	Sm ppm	Eu ppm	Tb ppm	УЬ ррл	Lu ppm
172	NL-14	<1	140	1. 73	870	200	29	55	34	8.1	50	77	185	51	10, 0	2.5	1.7	5.0	1.3
173	NH-01	_ <1	170	1, 97	600	410	37	45	26	7.1	50	62	154	52	8, 5	1.6	0.7	4.2	0.7
174	NM-02	<1	120	1, 18	525	270	33	40	29	6.7	45	75	140	48	9.5	1.1	1.1	7.1	0.8
175	NM-03	<1	90	0, 76	190	170	17	45	35	12.0	45	77	176	61	9, 6	2.8	2.1	6.1	.1.1
176	NN-04	`<1	80	0. 41	35	160	14	40	27	6.0	35	48	85	- 34	5, 9	0.9	0.7	3.9	0.5
177	<u>NM-05</u>	<1	80	1.18	345	250	22	45	37	8.2	45	73	152	61	8.8	1.1	1.2	4.5	0.8
178	NM-06	:<1	100	1.44	590	280	28	50	34	9.7	55	72	168	53	9.9	1.5	1.0	5.5	0.6
179	NM-07	<1	100	1.01	485	210	24	45	25	7.8	35	42	119	32		1.5	0.9	4.7	0.7
180	NM-08	<1	100	1.49	435	210	25	55	35	10. O	45	65	158	52		: 2. 0	1.2	7.7	14
181	NM-09	<1	110	2.11	530	250	27	50	32	9.6	40	68	138	50	7.5	1.9	0.9	3.7	0.9
182	NM-10	_<1	210	2.67	765	400	37	60	29	7.0	50	69	148	42		2.1°	1.5	5.4	1.6
183	NM-11	<1	200	2, 15	1165	370	45	60	25	7.2	55	85	169		10.0	1.3	1.1	5, 0	1.1
184	NM-12	<1	120	1.25	580	190	28	55	35	8.3	55	87	204	58	9.4	1.3	0.9	4.7	1.0
185	NM-13	<1	250	1, 73	1095	300	54	65	37	8.1	60	105	208		10.0	1.8	1.8	5.7	0.8
186	NH-14	<1	240	2.21	1250	430	49	60	33	9.1	55	104			.12.0	1.9	1.6	7.0	0.8
187	NN-01		120	1,55	565	280	25	40	26	6.8	45	73	154	54	7.9	1.7	0.9	4.9	0.6
188	NN-02	<1	110	0. 81	515	340	45	40	40	9.1	50	83	208		11.0		1.4	5.7	1.1
189	'NN-03	`<1	140	1.26	520	240	30	40	27	8.8	55	80	146		11.0	1.1	1.1	5.2	0.8
190	NN-04	<1	110	1.11	730	220	23	45	44	9.0	55	75	174	49		1.1	1.1	6.6	1.2
191	NN-05	<1	90	1.29	375	230	19	40	30	6. 7	40	72	: 157	49		1.3	1.2	4.3	0.8
192	NN-06	<1	100	1.70	395	230	29	40	37	6.7	40	82	195	57	<u>9.</u> 0	2.0	1. 1	6.4	1.1
193	NN-07	<1	150	1.42	345	250	31	35	21	5.4	35	67	116	44		1.9	1.3	4.5	0.9
194	NN-08	<1	110	1.34	400	210	26	45	30	8.8	45	- 70	142	39		1.2	1.1	3. 5	1.1
195	NN-09	_<1	260	2.49	655	460	75	50	29	6.0	50	64	140	45		1.5	1.2	5.5	1.0
196	NN-10	1	220	2.72	700	270	43	60	30	8.0	45	73	146	50			1.0	4.3	0.6
197	NN-11	<1	120	1.77	390	240	39	50	24	8.0	50	64	146	50	8.2	1.0	1.3	4.9	0.6
198	NN-12	<1	170	1.94	760	290	49	75	30	9.0	55	76	170	55		1.5	1.3	6.1	0.9
199	NN-13	<1	180	1, 53	670	300	43	60	21	8.0	45	58	132	45		1.0	1.0	4.1	0.9
200	<u>NN-14</u>	_<1	230	<u>2.63</u>	795	350	51	<u> 65 </u>	33	9.0	55	76	164	<u> </u>	<u>8.3</u>	1.5	1.5	6.5	0.9

RESULTS OF GEOCHEMICAL ANALYSIS

Mrima Hill


	Sampl No.		Ba ppm	Fe %		-	Sr ppm		Th ppm	U mqq	-	La ppm	Ce ppm	Nd ppm	Sm ppm				Lu ppm
				>15.00										>1000					
2	N-002		8030	14.50	>10000	5070	686	1360	328	9.0	430	5860	7970	>1000	>500	>100	39	29	3.9
3	M-003	46	5060	11, 15															
4	M-004	4	6100										>10000	>1000	>500	>100	81	61	8.3
- 5	N -005	. 39		15.00										>1000	>500	>100	77	- 91	12.0
6	N-006	7	6590	<u>15. 00</u>	>10000	4660	1285	3560	_407	29. 0	1420	4050	5060	>1000	>500	>100	60	106	15.0

A-39

E.IA:		0	<u>.</u>			<u>o</u>		1		Ŗ.		k	:		2	. 1 1	<u>+</u> but	, - - 4			 		ន			; ;	<u>8</u>			· · ·	<u>ڳ</u>	· · · · · · ·		8	
CORE RECOVERY	ू छ- इ																																		
	8 3																						•												
	Zn (%)									·.																									
ς γ	P																		-																
ESULT	3 8							÷ .												. :															
Ĩ	Ag (1/6)																				<u>.</u>								:						
SAY	UA (1/6)		·····						•															<u>.</u>								,			
AS	Width (m)											•																							
	Depth (a)																								:					·. ·.·		·. ·			
	Sample No.		·			·					•					• •		÷.,			• •			· .							-				:
POSITION OF EXAMINED	· · · · ·	.*							• •							· · ·									· · · ·	-							, ,		
						tion	, ki ji zo	d —	- -											<u> </u>	· .				••										
ALTERATION AND MINERALIZATION		- u(-)itozinih	Kaa	þ••	ur	ojtobix();	¦ ₽ ø		, 		•	444				••••			·			·											
DESCRIPTION		Reddish brown sandy silt	Reddish brown silty medium-grained sand	Reddish brown weathered. soft medium-grained sand-	Brown weathered, greenish grey massive siltstonc licht vellovish hnown weathered handed medium-		Yellowish brown to reddish brown weathered, banded medium-grained sandstone	Brown weathered massive coarse-grained sandstone	ned sand-	17.40-18.50m : siltstore fragments(φ<15mm) rich 17.66m : pyrite seam(lcm×6cm)	Juggt grey banded coarse-grained sandstone, bearing siltstone fragments(φ 30cm) Light grey banded calcareous medium-grained sand-	stone, bearing siltstone frgments partly Light grey weakly bunded calcareous coarse-grained	sandstone Grey banded calcareous fine-grained sandstone	Conglomerate to coarse-grained sandstone, bearing many siltstone fragments(¢ max 20cm), calcareous on on-on 20m, confreement	Light grey banded calcareous medium-grained sand- stone. rich in siltstone fragments(32, 20-32, 40m)	Grey banded calcareous five-grained sandstone, bearing spotty pyrite(ϕ =5-20mm) sporadically	Light grey massive calcareous medium-grained sandstone, bearing siltstone frgments(ϕ (lcw) partly and snoty write(σ =5-21mm) snormatically	Greenish grey massive siltstone 30 17-30 films relevenes Madimmerained wandstone		Greenish grey massive calcarcous fine-grained sandstone		Silistone inguents centric concidence inter- calating medium-grained sandstone seams	urcen to dark greenish grey massive siltstone 48.60-49.30m : bearing calcareous nodules(¢45cm)	Light grey massive calcareous fine-grained sand-stone bearing siltstone fragments(ϕ <4cm) and	sultstome seam; 32, 20m-33, jum; panced Light grey banded calcareous medium-grained sand- stone, bearing dissenjmated pyrite and spotty	pyrite aggregate(ϕ =1-8am)	Grey massive calcareous medium-grained sandstone. bearing spotty pyrite	Light grey banded calcareous medium-grained sand- stone, bearing disseminated pyrite and spotty	pyrite (φ=2-15mm) sporadically White kaolin common in intergranular spaces 62.10-62.30m : silvy	os.gurbs.ium : coarse-grained 67.50-67.55m : calcareous concretion with pyrite and coaly fragments		Litilit zrev nassive calcaranis medium-rrained cand.	stone, bearing disseminated pyrite and sporty pyrite (ϕ =5-15em) sporadically	Light grey coarse-grained sand-stone. rich in siltstone fragments(parel)can+)	
DEPTH AND CORE	ANGLE (•) (m)		8	6 . 40 7.6 7.6	8	55 11.40	/3	/8	R. 1	/3 .	2 8 1 1 1 1 1 1 1 1	9. *	8	51	8.09 /3	р ж /8	192	8	* 5.8	4,70	/ [₽] /	76 47,30		10.12	8	/3	50.30	/*	/3	/8	/8	8 12 /2		× 1	8
GEOLOGIC			\sim	>																															
SCALE G	Ē	0	r TÌ	<u>→"</u> +'' 	պոպ. ։	; ; ; ; ; 0		• * •	┶┎╌╝┎╌	; ;	┯╾┭┷╌╻		, ! ;	1 1 1 1 1	8 1. 1. 1.	4-1-	ſ <u>'</u> i	4 -	uhant:		 • • 	- Hinda	S C	" ```````	╙╓╴┰╴	riri G	 2	<u>1-</u>1-		- i - i	, , , , , , , , , , , , , , , , , , ,			8	·T- T.

<u>8</u> <u>8</u> <u>8</u> <u>8</u> ------...... ······ Alternation of light grey banded fine-grained sand stone. medium-grained sandstone and coarse-grained sandstone, no or very weakly calcareous Thickness 0.5m to lm Pyritic thin bands common Light grey banded calcareous fine-grained sand-stone, intercalating black sandy siltstone seams
 Altarnation of light grey weakly banded coarse-grained sandstone and banded medium-grained sand-stone, both calcareous and disseminating pyrite
 106, 60-106. 70m : pyritic bands. 1mm(-) wide ×6
 108. 30m : black carbonaceous fragment(φ 43cm) to silt-Light greenish grey weakly banded calcareous medium-grained sandstone buight grey banded calcareous coarse-grained sand-stone 126.70-126.90m : rich in disseminated pyrite Light grey weakly banded calcareous medium>fine-Light grey weakly banded calcareous medium>fine-grained sandstone, disseminating pyrite weakly ryr ryrite as disseminated, banded and spotty form ename / ryrite as disseminated, banded and spotty form 85, 85-86, 80m : very coarse-grained sandstone to granule conglomerate, bearing sil stone and black coaly fragments fragments fragments fragments granule conglomerate, bearing sil stone and black coaly fragments granule coalcareous fine-grained sandstone bear fragments granule coalcareous flaser bedding bed light grey banded calcareous fine-grained sand-stone Trans Creen shared sundstone 16.20 <u>Green shared sundstone</u> 110.00 <u>Greenish gree massive siltstone</u>, shared weakly disseminating very fine-grained pyrite 116.50-117.20m : rich in siltstone fragmen Pyritic concretion : 93.30m φ=1×2cm 98.60m φ=3×3.5(+)cm 99.00m φ=1.5×3cm 102.90 104.90 104.90 107.90 10.00 10.00 100.40 21.70 27.30 /\$ /8 8 8 ė ຊູ່ ģ

	• .												
	<u> </u>			8		8	R R	<u> </u>	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>8</u>	<u>e</u>	<u>8</u>	
	· · ·												
-				· .		· ·							
		10 <u></u>					·	· · · ·		· · · · · · · · · · · · · · · · · · ·	<u></u>	· · · · · · · · · · · · · · · · · · ·	
									·				
									· · · · · · · · · · · · · · · · · · ·			<u>.</u>	
	·					<u>_</u>							
				· · ·			· · ·					<u></u>	
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		·							
······································		· ·		· · ·		:							
				· ·									
+					 		1						••••••
1	1 1 1	·			,								
ed sand- e-grained	tone bearing Licareous and- 32.40m)	stone, cally ined sand- partly	sandstone odules ined	ined sand- inter-	s(\$ < 5 cm) ed sand- cm) and d ned sand- ned sand- potty	andstone, med sand- potty ces h pyrite	ined sand potty	ich in ned sand- ndstone	ty form stone to aring silt stone stone bear tone, bear	ซ์ รลเนd- กอ ธอณธ	coarse- ned sand- ride X6 (3cm) ained sand se-grained se-grained	ents reakly an eous	ined sand- rrite ium≻fine- weakly
lium-grain ts partly cous coars	ined sands sandstone, 20cm), ca 1ium-grair its(32.20-	ined sands) sporadic edium-grai ts(\$<1cm)	e egrained calcite r s fine-gre	fine-grai glomerate me seams sive silt	us noduled ine-graine $\phi < d o = 0$ $\phi = 0$	grained su dium-grain ite und spa nular spa nular spa nutar spa	edium-gra	stone, ri t) cdium-grai grained se	and spott ince sand erate, be coaly frr coaly frr ined sand sive silts sive silts bed bed ine-graine	n e-graine ly siltsto	y banded dium-grai seminating seminating seminating inter(φ fine-gr sid fine-gr sid fine-gr sid coer	cone fragm one s shared d pyrite ded calcar	parse-grai minated py reous medi ng pyrite
areous med ne frgmen ed calcar	fine-gra -grained ts(phax ts(phax agment areous me ne fragme	¢=5-20mm φ=5-20mm careous m ne frgmen ne frgmen	r Juma sp siltston ous mediu ments aud caicareou	al careous saring Con ed sandsto i grey mas	s carcareous f careous f ane fragme 20m-55.70 20m-55.70 careous me careous me (-8mm)	ls medium- lareous me prodicativy intergra grained sous concr	careous # inated pyr predically	ined sand max=10cm careous me pyrite is coarse-	ed, bended coarse-gra e congion and black $fine-granttom) mass(\phi <2cm) 1ddr beddingcareous fi$)cm careous fi black san	grey weak banded music tic bands tic bands inaceous f inaceous f grey band grey band sandstow weakly com	in silts <u>ne sandst</u> siltston ne-graine reakly ban cne	careous c i in disse ded calca isseminati
mded calc g siltsto sakly band	zalcareous to coarse e fragmen : coal fr unded calc in siltsto	ty pyrite(ssive cal ssive cal siltsto	rite(p=0 sy massive : calcare stone frag to frag	v banded o agnents-b iuu-grain k greenish	: bearing assive cal ng siltstu seam; 55. anded cald anded cald ng dissem ng dissem	calcarcou ty pyrite anded calc mg disseminispo -15mm) spo common in contro : sity : salcar : calcar and cou	assive ca ng dissem -15am) sp	coarse-gra agments(anded cal minating calcareou	a : vcry c granul granul stone calcareou is noduje m : bande ous flase anded cal	retion: ■1×2cm ■3×3.5(+ ■1.5×3cm ■1.5×3cm anded cal	of light (stone and calcareou (0m : pyri lack carbo of light of light 5m to 1m bands co	00m : rich <u>d sandstor</u> sy massive ng very fi ish grey w	aended cal JOm : rich Weakly bar dstone, di
Light grey banded calcareous medium-grained sand stone. bearing sittstone framents partly Light grey weakly banded calcareous coarse-grain sandstone	Grey banded calcareous fine-grained sandstone . Conglomerate to coarse-grained sandstone. bearli amy siltstone fragments(ømax 20cm), calcareou 20, 20-28, 30m : coal fragment Light grey banded calcareous medium-grained san stone. Tich in siltstone fragments(32, 20-32, 40m)	Grey banded calcareous fine-grained sandstone. bearing spotty pyrite(φ=5-20mm) sporadically Light grey massive calcareous medium-grained san stone. bearing silstone frymerical orthy purtly	and sporty pyrite(g = 2-dums) sportuoutity Greenish grey massive siltstone 33.17-93.50m : calcarceus medium-grained sandst bearing siltstone fragments and calcite modules ceremish grey massive calcarceous fine-grained	contractions from the second second fine-grained sar freemish grey banded calcarcous fine-grained sar stone Siltstone fragments-bearing Conglomerate, inter calating medium-grained sandstone scams Green to dark greenish grey massive siltstone	46. DU-45. JUM : Dearing Calcareous nocures ϕ ACC 40. Digit grey massive calcareous fine-grained sand stoom, bearing siltstone frequents (ϕ -(4cm) and siltstone seam; 55. 20m-55. 70m : banded Light grey banded calcareous medium grained san stone, bearing disseminated pyrite and spotty pyrite aggregate(ϕ -1-8mm)	Grey massive calcarcous medium-grained sandstone, bearing spotty pyrite Light grey banded calcareous medium-grained sand- stone, bearing disseminated pyrite and spotty pyrite ($\phi = 2$ -15am) sporadically white kaolin common in intergranular spaces 62, 10-52, 30m : silvy 63, 30-65, 70m : coarse grained 67, 50-67, 55m : calcareous concretion with pyrite eff. 50-67, 55m : calcareous concretion with pyrite	light grey massive calcarecus medium-grained sa stone, bearing disseminated pyrite and spotty pyrite (φ=5-[5mm) sporedically	<pre>light grey coarse-grained sand-stone, rich in siltstone fragments(ømax=10cm+) Light grey banded calcareous medium-grained sar stone, disseminating pyrite Grey banded calcareous coarse-grained sandston</pre>	Printle as disseminated, banded and softy form 85, 85-86, 80m : vory coarse-grained sandstone to 85, 85-86, 80m : vory coarse-grained sandstone to granule considentiale bands to the sandstone Orey banded calcaroous film-grained sandstone Green(top) to grey(bottom) massive silltstone, bear- ing calcareous nodule(φ <2cm) partly 90, 80m-bottom : banded Orey calcareous flaser bedding bed Light grey banded calcareous film-grained sand-	stone Pyritic concretion : 93.30m ϕ =1×2cm 93.60m ϕ =1×2cm 90.00m ϕ =1.5×3cm 1.5×3cm Light grev banded calcareous fine-grained sand- Light grev banded calcareous fine-grained sand- stone. intercalating black sandy siltstone seam	Alternation of light grey weakly banded coarse- grained sondson and maded madelum-grained san stone, both calcareous and disseminating pyrite 106.60-106.70m : pyritic bands. lmm(-) wide XG 108.30m : black carbonaceous fragment(\$ 43cm) 108.30m : black carbonaceous fragment(\$ 43cm) stone, medium-grained sandstone and coarse-grained stone, medium-grained sandstone and coarse-grain strattone. no or very weakly calcareous frickness 0.5m to lm Pyritic thin bands common	116.50-117.20m : rich in siltstone fragments Green shared sandstone Green shared sandstone Greenish grey massive siltstone, shared weakly disseminating very fine-grained pyrite Light greenish grey weakly banded calcareous medium-grained sandstone	Light grey banded calcareous coarse-grained sar stone 126.70-126.90m : rich in disseminated pyrite Light grey weakly banded calcareous medium>fin grained sandstone, disseminating pyrite weakly
		Store Cre Store Cre Store Cre	8.00 8.00	*7.80 Sto 51 *7.80 Sto 61 61	ss. or sto sto pyr	61.1 61.1 61.1 61.1 61.1 61.1 61.1 61.1	73.60 Lit		85.85 85 87.80 67 87.80 67 91.11 111 111 111 111 111 111	Str. Py.		5255 5255 51 51 51 51 51 51 51 51 51 51 51 51 5	84.40 12 12 12 12 12 12 12
s /s	/r /s	/8 /8			/2	/* /* /8 /8	/8 /8	/ ³ / ⁸ /			×++++		/8
᠂	¹ 1 1 1 1 1 1		4 4	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8	6	o o o	6 6	8			. I
	<u></u>		· · · · ·					,					<u>//.</u>
	· · ·	÷ .								.* :	· .		

A-40

Appendix 10 Geological Log of Diamond Drill Hole, MJKM-2

· · · · · · · · · · · · · · · · · · ·	≝ु ३с∨ हे§ु ≾	o <u>o</u>	·tttt		8		<u>8</u>			. 4		C Li 	} 	<u> </u>	<u> </u>		·····	<u>گ</u>	
CORE														F			J		
	Bg %		·										. 1						
* <u>-</u>	Zn (%)		··· · · · · · ·		•	· · .				· .		:		· .					· · ·
Ń	a 8											: •				· · · ·		· .	
RESULT	n (%																		
<u>и</u> Ш	Ag (9/1)						•									:			
SAY	Au (9/1)																		
ASS	Width (m)										· · · · ·								
	Depth (m)			·. ·								·							14. 1
	Sample No.							·. · ·		:					•		ı	<u>.</u>	
POSITION	EXAMINED CORE SAMPLES													· · · · · · · · · · · · · · · · · · ·	······				
	MINERALIZATION	-					uoitozi	inva	- ļ	{ Kaolinisotion	þ	H		timi	noltobíxO -		-{		1 cm wide1
	DESCRIPTION	Reddish brown sandy silt. containing fragments of hematitic sandstone and limonitic concretion	Reddish hematite stained light grey sandy silt, rich in quartz grains	Yeilowish orange sandy silt, bearing pebble size rock fragments	· .	Yellowish orange silty fine-grained sand	Vellowish orange sandy silt Vellowish orange sandy silt Grev limestone with breecjated texture	30.5-34. Om : dominated by light brown sandy clay, bearing limestone fragments (cavity fillings in limestone)	Dark brown fault clay. disseminating pyrite	Light brown sheared sandstone	light brown westbered weskly banded conre-grained	$\sum \sum$		50.7-55.0m : massive 56.0-58.4m : banded	Grey banded silty fine-grained sandstone, no cal- careous, disseminating minor pyrite	Brown tanded coarse-grained sandstone Grey banded medium-grained sandstone Grey banded coarse-grained sandstone, no calcareous (5, 3-65, 5arvery coarse and bearing then fraaments	Greenish grey wassive siltstone, disseminating minor pyrite Upper most part is sheared.	Light grey banded very calcareous fine-grained sandstone. disseminating minor pyrite Greenish grey weakly banded siltstone, sheared parity and disseminating minor pyrite	Alternation of dark grey, partly sheared siltstone and light grey banded very calcareous fine-grained sandstone frame and even of 1.0.7 2.411
DEPTH AND	CORE ANGLE •) (m)		- 9- I - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2 7 0		27 JO	59° 00		36.50	8	45,50	46.00 49.30 49.80	02.02	8	/% /	888 888 888 888 888 88 8	2 2 7	21:10 23:20 21:10	12 12 13
	COLUMN														·////				
SCALE G		o <u>o</u>			Soils & Col	 	<u>8</u>	-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I	<u> </u>	- anoz tiup 6 - 4 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	<u>, ~ , ~ , ~ , </u> > <		oitomio ⁻¹	Wazeras	; <u> ////</u> 8	<u>., , , , , , , , , , , , , , , , , ,</u>	UTHICHTUIT	2 2	

ŝ 8 2 20 - Pyrite w The second seco Grey banded calcareous coarse-grained sandstone. learing carbonaceous or siltetone fragments rarely sud spotty pyrite (ϕ =5-15mm) sporadically Dark greenish grey bands are composed of muscovite biotite. chilorite, and clay minerais White kaolin in intergranular spaces common coal 125.6-125.65m : black 18 /: ריך פ 8 ဗ္ဗ် 2