### III.2.6 Ridge Height Examination Trial in Furrow Irrigation

#### (1) Objectives

To investigate the adequate ridge height in peat -muck soil in the flood plain edge.

(2) Results and discussions

Stem length on the 20 cm ridge height plot at W-2 and M-5-1 fields in the early growth stage was bigger than in other plots but this difference was no longer apparent in the later growth stage. Leaf yellowing which was related to acid soil occurred at M-5-1 field in the early growth stage but improved gradually following the successive rains. Growth was afterwards generally good, especially at the W-2 field whose soils included sandy soil. The tried variety at the W-2 and M-5-1 fields reached maturation at the end of November and beginning of December, and were harvested on the 14th of December.

The results of the yield survey shows the unit yield at W-2 field for the 10 cm and 15 cm ridge height plots as 3,923 kg/ha, the yield of the 20 cm plot at the same field was 4,066 kg/ha. The unit yield at M-5-1 for the 10 cm and 20 cm ridge height plots was 1,699 kg/ha and the yield of the 15 cm plot at the same field was 2,144 kg/ha. According to the results mentioned above, the difference of unit yield among plots was small at W-2 field whose soil included sandy soil and a low ground water level, but at M-5-1 field whose peat-muck soil was pilled up more than 1m thick, the unit yield of 15 cm plot was higher than the other plot. The difference of the unit yield between W-2 and M-5-1 field came out more than twice bigger than expected. Therefore this made it clear that the selection of an adequate verification area for upland crop irrigation is quite important. The results of the yield survey and the growth observation are shown in Tables III.2.12 and III.2.13.

| THE OWNER AND A DESCRIPTION OF A DESCRIP |      | a a church a | ayan ayaan ya ahaya a | NAMES AND A DESCRIPTION OF |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ranking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Year | Observed Rainfall                                                                                               | Probability                                                                                                     | Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1982 | 724.3                                                                                                           | 3.84615                                                                                                         | 26.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1984 | 752.5                                                                                                           | 11.53846                                                                                                        | 8.666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1983 | 760.2                                                                                                           | 19.23077                                                                                                        | 5.200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1985 | 763.4                                                                                                           | 26.92308                                                                                                        | 3.714286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1987 | 779.6                                                                                                           | 34.61539                                                                                                        | 2.888889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1988 | 835.6                                                                                                           | 42.30770                                                                                                        | 2.363636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1990 | 876.5                                                                                                           | 50.00000                                                                                                        | 2.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1980 | 883.7                                                                                                           | 57.69231                                                                                                        | 1.733333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1981 | 920.9                                                                                                           | 65.38461                                                                                                        | 1.529412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1986 | 927.7                                                                                                           | 73.07692                                                                                                        | 1.368421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1979 | 950.3                                                                                                           | 80.76923                                                                                                        | 1.238095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1991 | 966.1                                                                                                           | 88.46154                                                                                                        | 1.130435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1989 | 1078.2                                                                                                          | 96.15384                                                                                                        | 1.040000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Table III.2.1 | <b>Rainfall Frequency and Return Period at Mongu</b> |
|---------------|------------------------------------------------------|
|               |                                                      |

Table III.2.2 Daily Rainfall (mm) at Mongu 1983

| MAR APR MAY JUN JUL AUG SEP OCT NOV DEC | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 | 0.0 15.5 0.0 0.0 0.0 0.0 0.0 0.4 | 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.4 | 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 | 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 | 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 5.9 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.3 | 0.0 0.0 0.0 0.0 0.0 0.0 7.6 | 0.0     | 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 9.3 2.5 | 0.0 0.0 0.0 0.0 0.0 0.0 3.3 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 | 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 | 0.0 0.0 |  |
|-----------------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------------|---------------------------------|-------------------------------------|-----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------|---------|---------------------------------|---------------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------|---------------------------------|---------|--|
| FEB                                     | 32.0                            | 0.0                              | 0.0                             | 0.0                             | 0.0                             | 0.0                             | 24.3                        | 0.0                              | 3.7                             | 25.8                            | 13.8                            | 5.2                                 | 1.7                             | 0.3                                 | 0.0                         | 0.0                             | 0.0                             | 0.0                             | 14.0                            | 0.0                             | 0.0                         | 0.0     | 0.0                             | 4.2                             | 0.0                         | 0.0                         | 0.0                         | 0.0                             | •                               |         |  |
| MON JAN                                 | 4.8                             | 1.0                              | 0.6                             | 0.0                             | 15.0                            | 1.5                             |                             |                                  | 9 14                            |                                 | 1 0.0                           | 2 0.0                               | 3 00                            | 4 27.4                              |                             |                                 | · ·                             |                                 |                                 |                                 |                             | 22 18.2 |                                 |                                 |                             |                             |                             |                                 |                                 |         |  |

Table III.2.3 Daily Mean Temprtature (°C) at Mongu 1983

|      | L    |      | \$   |      |      | 1411 | 77.77 |      | 5120        | ł    | NON      | しられ  |
|------|------|------|------|------|------|------|-------|------|-------------|------|----------|------|
| DAY  | NAL  | L-FB | MAK  | Ark  | MAY  | ND   | nor   | AUG  | 1<br>1<br>2 | 5    | <b>S</b> | 2    |
|      | 22.4 | 23.2 | 26.1 | 24.6 | 24.3 | 19.6 | 20.4  | 18.9 | 21.8        | 27.9 | 26.1     | 22.8 |
| 61   | 22.4 | 23.2 | 25.3 | 24.6 | 23.8 | 19.9 | 20.3  | 19.7 | 22.2        | 28.4 | 25.8     | 22.2 |
| τŋ.  | 22.2 | 25.4 | 25.0 | 24.9 | 23.1 | 19.5 | 18.3  | 19.2 | 23.2        | 28.9 | 23.4     | 21.0 |
| 4    | 23.6 | 22.1 | 25.1 | 23.8 | 23.2 | 19.8 | 17.3  | 19.2 | 24.0        | 273  | 24.2     | 23.5 |
| Ś    | 22.9 | 25.0 | 24.9 | 22.3 | 21.8 | 20.2 | 17.8  | 18.8 | 24.7        | 27.3 | 26.8     | 21.9 |
| Ŷ    | 21.1 | 21.9 | 25.1 | 22.6 | 21.1 | 20.8 | 18.8  | 19.1 | 24.3        | 27.2 | 26.9     | 23.7 |
| ~    | 21.5 | 23.7 | 24.9 | 21.3 | 20.6 | 21.6 | 20.4  | 18.5 | 23.3        | 26.9 | 26.4     | 22.6 |
| ∞    | 24.5 | 22.7 | 24.3 | 22.7 | 21.5 | 20.8 | 20.8  | 19.1 | 23.6        | 28.1 | 26.1     | 23.5 |
| ō    | 23.3 | 22.9 | 23.3 | 23.0 | 21.8 | 20.5 | 20.1  | 16.8 | 22.5        | 27.0 | 20.5     | 23.5 |
| 10   | 22.9 | 20.8 | 22.1 | 22.8 | 22.6 | 19.2 | 0.91  | 16.8 | 24.5        | 27.8 | 24.1     | 24.2 |
| 11   | 24.6 | 22.2 | 22.3 | 24.0 | 23.7 | 19.6 | 18.9  | 17.6 | 23.7        | 27.1 | 24.6     | 22.4 |
| 12   | 25.0 | 20.8 | 22.8 | 22.7 | 23.6 | 20.9 | 18.6  | 16.6 | 21.1        | 27.9 | 25.3     | 23.1 |
| 13   | 22.4 | 23.1 | 23.3 | 22.3 | 22.9 | 18.3 | 18.0  | 16.7 | 23.1        | 27.0 | 25.4     | 22.1 |
| 14   | 21.6 | 24.5 | 22.9 | 24.5 | 22.4 | 19.1 | 18.9  | 17.2 | 22.9        | 28.0 | 22.1     | 23.5 |
| 15   | 22.5 | 23.4 | 24.8 | 21 1 | 24.0 | 20.4 | 19.3  | 18.0 | 22.7        | 26.4 | 24.9     | 24.6 |
| 9    | 23.6 | 23.5 | 23.4 | 24.1 | 23.6 | 20.8 | 19.6  | 18.6 | 24.2        | 24.3 | 21.5     | 24.5 |
| 17   | 22.9 | 24.2 | 24.3 | 25.2 | 24.0 | 21.2 | 20.1  | 19.6 | 24.1        | 23.9 | 24.3     | 20.8 |
| 18   | 23.2 | 23.6 | 24.1 | 24.3 | 23.4 | 18.3 | 18.7  | 20.8 | 23.7        | 25.6 | 24.7     | 21.1 |
| 19   | 22.4 | 24.0 | 23.5 | 24.5 | 22.8 | 14.7 | 17.9  | 19.6 | 21.6        | 22.2 | 26.2     | 22.4 |
| 20   | 23.1 | 25.7 | 23.8 | 25.2 | 21.9 | 15.9 | 18.0  | 20.3 | 22.9        | 24.9 | 23.9     | 21.6 |
| 21   | 22.1 | 23.6 | 25.0 | 23.8 | 22.1 | 17.6 | 18.5  | 19.1 | 22.3        | 24.6 | 21.2     | 21.8 |
| 22   | 22.1 | 24.9 | 21.3 | 22.8 | 21.3 | 18.3 | 19.4  | 19.4 | 21.3        | 23.9 | 23.6     | 21.7 |
| 23   | 23.2 | 26.1 | 24.3 | 21.5 | 19.3 | 18.3 | 20.1  | 20.0 | 19.3        | 20.1 | 20.4     | 23.0 |
| 24   | 22.3 | 25.9 | 25.4 | 22.3 | 17.9 | 17.7 | 20.5  | 18.5 | 20.4        | 21.9 | 23.9     | 21.4 |
| 25   | 23.2 | 26.2 | 22.3 | 22.6 | 19.3 | 19.3 | 19.8  | 18.4 | 22.1        | 23.5 | 22.8     | 22.3 |
| 26   | 21.4 | 25.3 | 23.5 | 21.6 | 22.1 | 18.7 | 20.6  | 19.2 | 22.3        | 26.0 | 23.5     | 23.2 |
| 27   | 23.3 | 25.9 | 25.3 | 20.8 | 20.5 | 18.6 | 19.4  | 20.3 | 24.0        | 24.5 | 24.9     | 23.1 |
| 00   | 22.6 | 27.6 | 24.7 | 21.6 | 18.6 | 17.9 | 17.9  | 22.1 | 23.9        | 25.5 | 24.8     | 20.7 |
| 29   | 22.4 |      | 22.8 | 22.5 | 18.1 | 18.3 | 18.6  | 23.4 | 23.7        | 26.2 | 22.5     | 22.9 |
| 06   | 24.6 |      | 23.4 | 24.6 | 17.5 | 20.6 | 19.0  | 25.5 | 23.7        | 25.5 | 23.9     | 23.6 |
| 31   | 23.7 |      | 24.2 |      | 18.7 |      | 18.8  | 24.2 | •           | 25.6 | ·        | 21.7 |
| MEAN | 22.0 | 24.0 | 0.40 | 23.7 | 212  | 19.2 | 19.2  | 19.4 | 22.9        | 25.9 | 24.2     | 22.6 |
| MEAN |      | 0.72 | 2.17 |      |      |      |       |      |             |      |          |      |

Table III.2.4 Daily Mean Relative Humidity (%) at Mongu 1983

| DAY     | <b>-</b> | 5   | m ·  | 4        | <u>~</u> | 9  |      | <b>00</b> | <u>6</u> | 2  |    | 12   | m .<br>- 1 | 4   | 5   | 16  | 17 | ×0 | 61 | 8  | 21   | 22 | - 23     | 24 | 25  | 26        | 27         | 58   | 29  | 90<br>M | 31  | MEAN |
|---------|----------|-----|------|----------|----------|----|------|-----------|----------|----|----|------|------------|-----|-----|-----|----|----|----|----|------|----|----------|----|-----|-----------|------------|------|-----|---------|-----|------|
| MON JAN | 83       | 83  | 83   | - 79     | 80       | 87 | . 85 | 5         | 08<br>   | 8  | 12 | - 68 | 80         | 80  | 87  | 83  | 68 | 5  | 68 | 87 | 87   | 32 |          |    | 83  | 95        | <b>5</b>   | 86   | 86  | 20      |     | 83   |
| Y FEB   | 62       |     |      |          |          |    |      |           |          |    |    |      |            |     |     |     |    |    |    |    |      |    |          |    |     |           | 99         | 43   |     |         | •   | 75   |
| 3 MAR   | 82       |     |      |          |          |    | •    |           |          |    |    |      |            |     | • . |     |    |    |    |    |      |    |          |    |     |           | 11         | 63   | 65  | 59.     | 56  | 76   |
|         |          |     |      |          |          |    |      |           |          |    |    |      |            |     |     |     |    | ·  |    |    |      |    |          | •  |     | • .       | -          |      |     |         |     | 9    |
| APR     | 56       | 58  | 50 · | 71       | 78       | 71 | 83   | 75        | 76       | 78 | 74 | õ    | 32         | 73  | 66  | 72  | 21 | 65 | 52 | 53 | 53   | 55 |          |    | 7   | 1.        | S          | 4    |     |         |     | 66   |
| МАҮ     | 59       | 60  | - 19 | 2        | 67       | 61 | 63   | 55        | 57       | 56 | 54 | 57   | 62         | 66  | 61  | 62  | 56 | 56 | 57 | 60 | 58   | 62 | 40       | 32 | 43. | 4         | 48         | 36   | 43  | 40      | 33  | z    |
| NDI .   | 39       | 48  | 50   | 45       | 4        | 47 | 52   | ¥         | 54       | 51 | 52 | 58   | 68         | 90  | 48  | 51  | 52 | 47 | 42 | 47 | 53   | 48 | 48       | 52 | 45  | 41        | 38         | 43   | 20  | 50      |     | 49   |
| In      | 47 -     | 45  | 46   | 53       | 49       | 47 | 49   | 2         | 51       | 47 | 49 | 45   | 46         | 41  | 39  | 33  | 33 | 44 | 56 | 52 | 52   | 43 | 39       | 36 | 43  | 42        | 35         | 24   | 31  | 50      | 50  | 4    |
| AUG     | 49       | 4   | 3    | 33       | 45       | 41 | 43   | 25        | 21       | ä  | 35 | 40   | 40         | 38  | 33  | 29  | 28 | 27 | 28 | 30 | 35   | 29 | 28       | 4  | 49  | 49.       | 43         | 37   | 39  | 35      | 27  | 36   |
| SEP     | . 33     | 35  | 33   | 4        | 29       | 26 | 32   | 31        | 25       | 25 | 29 | 31   | 22         | 25  | 33  | 30  | 30 | 32 | 22 | 26 | - 31 | 38 | 26       | 19 | 15  | 18        | 28         | 25   | 25  | 28      | · ( | 28   |
| oct     | 32       | 32  | 39   | 1        | 40       | 25 | 30   | 26        | 32       | 29 | 23 | 26   | 23         | 39. | 43  | 58  | 59 | 55 | 73 | 51 | 2    | 69 | 89       | 81 | 70  | 54        | 53         | - 59 | 48  | 57      | 56  | 48   |
| NOV     | 53       | 52  |      | 39<br>59 | 99       | 64 | 53   | 5         | 80       | 12 | 99 | 99   | 63         | 79  | 65  | 71. | \$ | 62 | 56 | 20 | 68   | 75 | 87       | 74 | 80  | <i>11</i> | <b>6</b> 9 | 10   | LL. | 67      |     | 68   |
| DEC     | 83       | 3 8 | 52   | 5        | 74       | 08 | 76   | 75        | 22       | 81 | 18 | 55   | 77         | 69  | 68  | 88  | 68 | 83 | 86 | 87 | 88   | 82 | 80<br>80 | 83 | 61  | 76        | 95         | 82   | 8   | 11      | 85  | 80   |

Table III.2.5 Daily Mean Wind Speed (miles/day) at Mongu 1983

Table III.2.6 Daily Duration of Sunshine (hrs) at Mongu 1983

| MON      | IAN        | n n n    | MAR   | APR  | MAY  | Nill |      | <u>011</u> V | SED  | TOC. | NON  | Lac  |
|----------|------------|----------|-------|------|------|------|------|--------------|------|------|------|------|
| DAY      | 1          |          | VILIA |      |      |      | 1    | 2            | 2770 | 3    |      | 2    |
| -        | 0.4        | 11.7     | 10.7  | 9.2  | 9.7  | 10.3 | 9.3  | 10.6         | 10.6 | 9.1  | 5.2  | 5.2  |
| 6        | 2.1        | 4.8      | 11.5  | 9.9  | 9.7  | 10.3 | 7.2  | 10:2         | 10.7 | 9.3  | 8.5  | 3.2  |
| m        | 3.5        | 11.2     | 1.11  | 9.2  | 6.8  | 10.5 | 10.4 | 10.6         | 10.3 | 9.3  | 4.6  | 4.8  |
| 4        | 3.9        | 2.6      | 9.2   | 6.4  | 10.1 | 10.4 | 10.3 | 10,4         | 10.1 | 8.7  | 3.6  | 4,9  |
| Ņ        | 7.5        | 8.5      | 4.6   | 2.2  | 10.0 | 10.3 | 10.4 | 10.2         | 10.1 | 9.3  | 4.6  | 3.0  |
| 9        | 7.4        | 3.4      | 7.4   | 10.7 | 10.2 | 10.0 | 10.6 | 10.2         | 10.3 | 0.6  | 6.8  | 10.2 |
| r~       | 6.5        | 4.9      | 6.8   | 2.0  | 10.0 | 9.3  | 9.8  | 9.1          | 10.3 | 10.7 | 8.8  | 4.2  |
| 00       | 11.2       | 43       | 5.1   | 9.2  | 10.7 | 10.0 | 9.0  | 10.3         | 10.2 | 10.4 | 5.2  | 8.8  |
| <u>م</u> | 8.7        | 2.6      | 4.6   | 8.5  | 10,4 | 10.3 | 9.5  | 10.4         | 10.3 | 8.8  | 2.7  | 0.8  |
| 10       | 7.9        | 0.1      | 4.2   | 7.2  | 10.5 | 10.4 | 10.5 | 10.6         | 10.3 | 9.7  | 5.1  | 7.3  |
| 11       | 11.6       | 8.2      | 4.9   | 8.9  | 10.0 | 10.4 | 10.4 | 10.6         | 10.5 | 11.3 | 5.1  | 7.2  |
| 12       | 10.3       | 3.0      | 2.6   | 4.5  | 8.5  | 10.1 | 10.4 | 10.7         | 10.4 | 11.4 | 4.8  | 6.7  |
| 13       | 8.2        | 8.1      | 7.5   | 8.0  | 10.7 | 0.0  | 10.3 | 10.6         | 10.5 | 10:9 | 3.2  | 7.1  |
| 4        | 6.8        | 7.5      | 13    | 9.4  | 10.7 | 10.3 | 10.3 | 10.7         | 10.3 | 9.1  | 0.1  | 8.9  |
| 15       | 8.6        | 8.3      | 10.2  | 9.2  | 10.2 | 9.8  | 10.3 | 10.7         | 10.4 | 10.5 | 9.5  | 11.9 |
| 16       | 9.7        | 10.8     | 5.6   | 9.8  | 10.5 | 9.8  | 10.4 | 10.3         | 9.4  | 5.4  | 4 8  | 10.0 |
| 17.      | 3.5        | 11.8     | 10.9  | 9.7  | 10.4 | 10.0 | 10.4 | 10.2         | 9.2  | 4.4  | 1.11 | 2.4  |
| 00       | 6.4        | 11.7     | 11.0  | 10.5 | 6.6  | 10.5 | 10.2 | 10.3         | 9.6  | 10.1 | 8.3  | 2.5  |
| 19       | 4.7        | 9.3      | 3.9   | 6.7  | 10.7 | 10.6 | 10.7 | 10.4         | 9.2  | 4.9  | 11.0 | 9.3  |
| 20       | 5.2        | 11.6     | 7.0   | 10.1 | 10.7 | 10.6 | 10.8 | 10.2         | 9.7  | 4.5  | 7.3  | 4.3  |
| 21       | 5.7        | 12.2     | 10.4  | 10.4 | 10.1 | 10.4 | 10.6 | 10.4         | 6.6  | 1.6  | 2.4  | 3.9  |
| 22       | 5.4        | 12.1     | 8.5   | 10.6 | 10.0 | 10.3 | 10.6 | 10.5         | 7.9  | 7.1  | 8.2  | 3.6  |
| 53       | 1.6        | 11.2     | 7.1   | 10.5 | 10.6 | 10.4 | 10.6 | 10.4         | 9.6  | 1.4  | 1.2  | 7.0  |
| 24       | 2.0        | 8.9      | 7.8   | 10.1 | 10.7 | 10.4 | 10.5 | 10.1         | 10.7 | 6.0  | 10.4 | 1.6  |
| 25       | 5.0        | 10.9     | 2.5   | 10.2 | 10.6 | 10.4 | 10.3 | 10.4         | 10.7 | 6.5  | 5.3  | 3.2  |
| 26       | 1.6        | 11.7     | 7.6   | 10.6 | 10.6 | 10.3 | 10.2 | 10.4         | 10.8 | L'L  | 6.7  | 6.4  |
| 27       | 7.9        | 10.9     | 10.6  | 10.5 | 10.0 | 10.3 | 10.6 | 10.4         | 10.3 | 9.2  | 8.5  | 1.5  |
| 28       | 1.6        | 11.7     | 4.7   | 10.5 | 10.9 | 10.4 | 10.6 | 10.3         | 10.7 | 10.4 | 10.3 | 0.4  |
| 29       | 7.5        |          | 4.6   | 10.6 | 10.7 | 10.2 | 10.7 | 10.3         | 10.7 | 12.0 | 6.7  | 4.1  |
| 30       | 10.9       |          | 11.0  | 6.6  | 10.8 | 93   | 10.2 | 9.4          | 10.7 | 8.8  | 8.6  | 6.5  |
| 31       | 6.6        | •        | 11.0  | • .  | 10.7 |      | 9.6  | 10.2         |      | 9.2  |      | 2.7  |
| MEAN     | <b>U</b> 7 | * 0      | 070 . | 00   | . Ut | 00   | 0.01 | 10.2         | 10.5 | 20   | 5 7  | 56   |
| MEAN     | 7.0        | 8.4<br>4 | 71    | 0.7  | 7.07 | 7.7  | 7.01 | C.U1         | 70.4 | ر.0  | 0.0  | 0.0  |

| NOV DEC                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
| 6.4<br>7 3                                                                                                                                                                                                                             |
| 7.1<br>7.4                                                                                                                                                                                                                             |
| 5.7<br>5.2                                                                                                                                                                                                                             |
| 5.5<br>5.7<br>5.0                                                                                                                                                                                                                      |
| ∞ ∞ ⊶ 4                                                                                                                                                                                                                                |
| 5.1<br>- 4.<br>3.3<br>2.8<br>3.3<br>3.3<br>2.8                                                                                                                                                                                         |
| 4 0.0 5<br>2.6 1.1<br>2.6 3<br>2.6 3<br>2.6 3<br>2.6 3<br>2.6 5<br>2.6 5<br>2.6 5<br>2.6 5<br>2.6 5<br>2.6 5<br>2.6 5<br>2.6 5<br>5<br>2.6 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 2.3 4<br>2.7 2                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                        |

Reference Cron Evanotransniration for Mongu 1983 Table III.2.7

# Table III.2.8Furrow Flow Rate, Furrow Intake Rate and Required IrrigationTime Depend on Furrow Irrigation Test

| Slope | Furrow Flow<br>Amount<br>I/s | Furrow Flow Rate $t = \alpha \cdot L^{\beta}$ | Furrow Intake Rate<br>$I = K \cdot T^{II}$ | Required Irrigation<br>Time<br>(min) |
|-------|------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------|
|       | 0.25                         | $t = 0.09 \cdot L^{1.43}$                     | $I = 29.7 \cdot T^{0.597}$                 | 25.5                                 |
| 1/250 | 0.50                         | $t = 0.11 \cdot L^{1.26}$                     | $I = 64.8 \cdot T^{0.746}$                 | 13.7                                 |
|       | 0.67                         | $t = 0.07 \cdot L^{1.28}$                     | $I = 101.7 \cdot T^{0.756}$                | 10.4                                 |
|       | 0.25                         | $t = 0.50 \cdot L^{0.93}$                     | $l = 29.7 \cdot T^{0.597}$                 | 20.8                                 |
| 1/500 | 0.50                         | $t = 0.60 \cdot L^{1.01}$                     | $I = 64.8 \cdot T^{0.746}$                 | 13.4                                 |
|       | 0.67                         | $t = 0.13 \cdot L^{1.28}$                     | $I = 101.7 \cdot T^{0.756}$                | 9.0                                  |

| Table III.2.9 The Results of Yield Survey for | the Paddy Kice. | Irrigation Trial |
|-----------------------------------------------|-----------------|------------------|
|-----------------------------------------------|-----------------|------------------|

|                                        | Culm Length<br>(cm) | No. of<br>Panicles/m <sup>2</sup> | Grain Yield<br>(g/m <sup>2</sup> ) | G/S ratio |
|----------------------------------------|---------------------|-----------------------------------|------------------------------------|-----------|
| Continuous Irrigation Plot             |                     |                                   |                                    |           |
| (1)                                    | 45.0                | 111                               | 281                                | 1.24      |
| (2)                                    | 44.0                | 188                               | 396                                | 1.05      |
| Average                                | 44.5                | 149.5                             | 339                                | 1.15      |
| 4 days Intermittent Irrigation<br>Plot |                     |                                   |                                    |           |
| (1)                                    | 40.7                | 179                               | 315                                | 1.15      |
| (2)                                    | 38.7                | 226                               | 400                                | 1.23      |
| Average                                | 39.7                | 202.5                             | 358                                | 1.19      |
| 7 days Intermittent Irrigation<br>Plot |                     |                                   |                                    |           |
| (1)                                    | 44.4                | 285                               | 459                                | 0.70      |
| (2)                                    | 36.2                | 270                               | 371                                | 0.85      |
| Average                                | 40.3                | 277.5                             | 415                                | 0.78      |
| Rain Fed Plot                          |                     |                                   |                                    |           |
| (1)                                    | 37.6                | 164                               | 371                                | 1,56      |
| (2)                                    | 33.2                | 183                               | 210                                | 0.85      |
| Average                                | 35.4                | 173.5                             | 291                                | 1.21      |

where) G/S ratio is Grain/Straw ratio

The rain fed plot was benefiting from the seepage water out of the secondary irrigation canal.

|                                                        | Namusł                    | nakende       |                           |                   | Lea                       | alui          |                           |               |
|--------------------------------------------------------|---------------------------|---------------|---------------------------|-------------------|---------------------------|---------------|---------------------------|---------------|
|                                                        | W                         | -2            | Black<br>Dresse           | c Soil<br>ed Plot |                           | Dressed<br>ot | No Treat                  | ment Plot     |
|                                                        | End of<br>Rainy<br>Season | Dry<br>Season | End of<br>Rainy<br>Season | Dry<br>Season     | End of<br>Rainy<br>Season | Dry<br>Season | End of<br>Rainy<br>Season | Dry<br>Season |
| Accumulated<br>Infiltration<br>Volume (mm)<br>(Elapsed | 9.5                       | 64.1          | 115.3                     | 329.4             | 54.0                      | 308.7         | 582.0                     | 535.7         |
| 60min.)                                                | 31                        | 244           | 241                       | 852               | 121                       | 584           | 1,059                     | 861           |
| Initial Intake<br>Rate (mm/hr)<br>Basic Intake         | 3                         | 21            | 69                        | 149               | 28                        | 471           | 414 .                     | 4 <b>89</b>   |

### Table III.2.10 Intake Rate and Accumulated Infiltration Volume

## Table III.2.11The Results of Yield Survey for the Interrow Spacing<br/>Examination Trial

|                            | S-3-1 | S-3-2 | S-3-3 | Average | Unit Yield |
|----------------------------|-------|-------|-------|---------|------------|
| A (Interrow Spacing 80 cm) | 51 g  | 49 g  | 35 g  | 45.0 g  | 1.8 ton/ha |
| B (Interrow Spacing 65 cm) | 33 g  | 44 g  | 41 g  | 39.3 g  | 2.0 ton/ha |
| C (Interrow Spacing 50 cm) | 26 g  | 30 g  | 35 g  | 30.3 g  | 2.0 ton/ha |

where) Each value except unit yield is grain yield per plant.

# Table III.2.12The Results of Yield Survey for the Ridge Height<br/>Examination Trial

| , «موجه المراجع المراجع<br>المراجع المراجع | S-2-3 | S-2-4 | S-2-8  | Average | Unit Yield |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|---------|------------|
| A (Ridge Height 10 cm)                                                                                                                                                                                                             | 107 g | 101 g | 75 g   | 93.3 g  | 3.9 ton/ha |
| B (Ridge Height 15 cm)                                                                                                                                                                                                             | 121 g | 63 g  | 96 g   | 93.3 g  | 3.9 ton/ha |
| C (Ridge Height 20 cm)                                                                                                                                                                                                             | 114 g | 81 g  | 95 g - | 96.7 g  | 4.1 ton/ha |
|                                                                                                                                                                                                                                    | M-5-1 | M-5-2 | M-5-3  | Average | Unit Yield |
| A (Ridge Height 10 cm)                                                                                                                                                                                                             | 46 g  | 41 g  | 32 g   | 39.7 g  | 1.7 ton/ha |
| B (Ridge Height 15 cm)                                                                                                                                                                                                             | 47 g  | 49 g  | 57 g   | 51.0 g  | 2.1 ton/ha |
| C (Ridge Height 20 cm)                                                                                                                                                                                                             | 36 g  | 40 g  | 43 g   | 39.7 g  | 1.7 ton/ha |

where) Each value except unit yield is grain yield per plant.

|                                                    | ÷     |       |       |                       | - 41 - 1<br> | · .    |       |       |       |       | (Un     | it: cm)  |
|----------------------------------------------------|-------|-------|-------|-----------------------|--------------|--------|-------|-------|-------|-------|---------|----------|
| 92844/20-3440/2000 \$1/1/1/10-2009-111-4217/200944 | I     | W-2-3 |       |                       | W-2-4        | 1      | 1     | W-2-8 |       |       | Average | 3        |
|                                                    | A     | В     | C     | <b>C</b> <sup>1</sup> | A            | В      | В     | C     | Α     | A     | В       | С        |
| 11th - Sep.                                        | 17.8  | 16.8  | 22.9  | 14.9                  | 15.8         | 15.6   | 22.6  | 21.6  | 22.0  | 18.6  | 18.3    | 19.8     |
| 30th - Sep.                                        | 54.2  | 58.4  | 67.9  | 52.2                  | 57.3         | 55.1   | 63.4  | 56.2  | 60.4  | 58.5  | 57.3    | 62.2     |
| 30th - Oct.                                        | 135.1 | 160.5 | 165.6 | 139.5                 | 154.9        | 150.9  | 131.3 | 142.5 | 125.2 | 138.4 | 147.6   | 149.2    |
| 13th - Dec.                                        | 134.3 | 155.6 | 148.5 | 148.5                 | 157.5        | 152.1  | 136.6 | 141.8 | 135.3 | 142.4 | 148.1   | 147.8    |
|                                                    |       | W-2-3 |       |                       | W-2-4        |        |       | W-2-8 |       |       | Average | <b>;</b> |
|                                                    | : A   | В     | С     | C                     | A            | :<br>B | В     | C     | A     | Α     | В       | C.       |
| 11th - Sep.                                        | 17.8  | 19.1  | 22.0  | 23.7                  | 21.4         | 22.3   | 22.1  | 22.6  | 22.1  | 20.4  | 21.4    | 22.8     |
| 30th - Sep.                                        | 44.9  | 45.3  | 47.6  | 54.1                  | 47.1         | 48.6   | 48.0  | 47.0  | 48.9  | 47.0  | 47.3    | 49.8     |
| 30th - Oct.                                        | 108.4 | 106.6 | 108.0 | 117.8                 | 110.1        | 106.2  | 112.2 | 111.1 | 112.8 | 110.4 | 108.3   | 112.3    |
| 13th - Dec.                                        | 136.8 | 121,9 | 124.6 | 128.0                 | 130.5        | 139.2  | 139.5 | 129.8 | 126.1 | 131.1 | 133.5   | 127.5    |

Table III.2.13The Results of Growth Observation for Ridge Height<br/>Examination Trial (Plant Height)

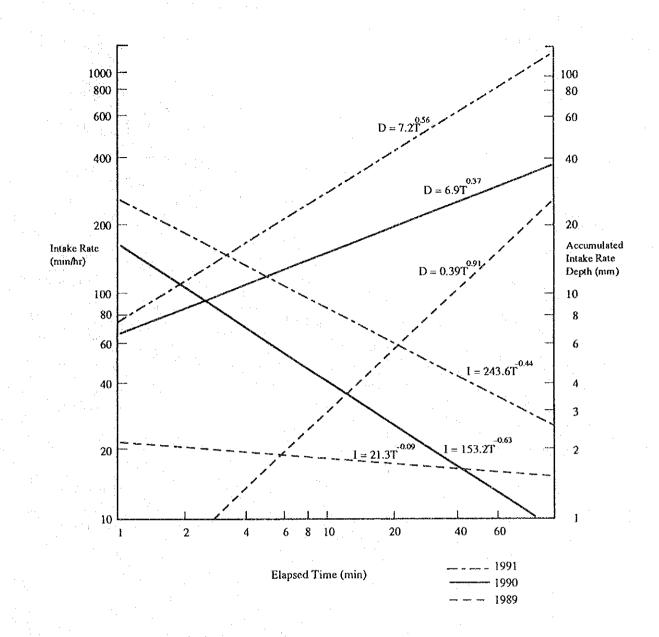



Figure III.2.6 Infiltration Curve for Namushakende

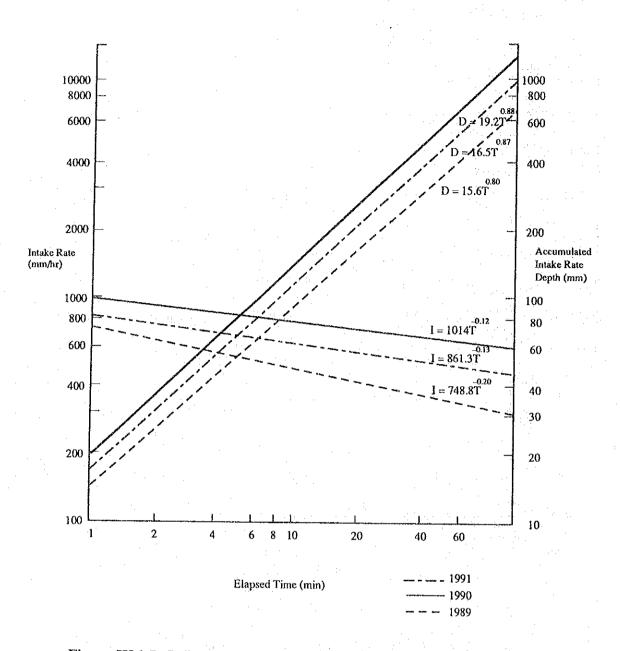
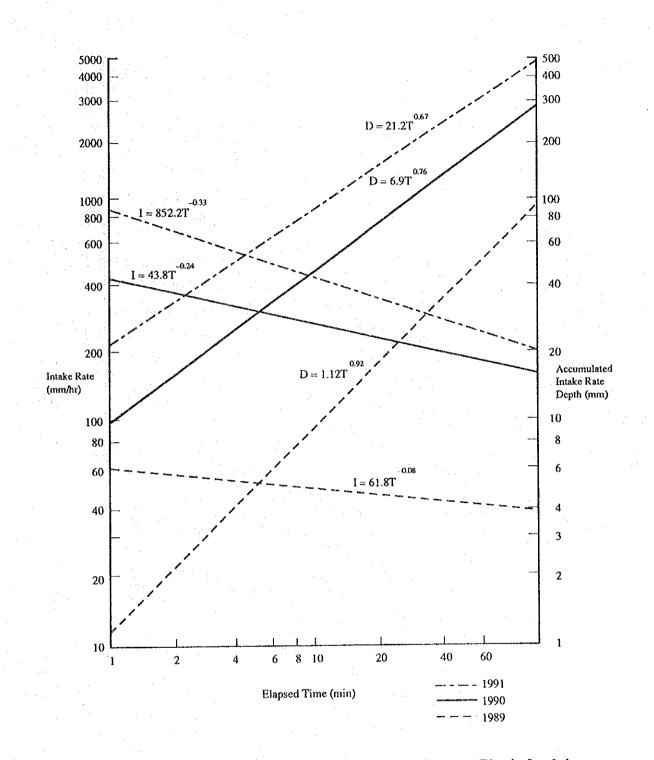
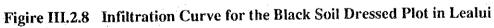





Figure III.2.7 Infiltration Curve for the No Treatment Plot in Lealui





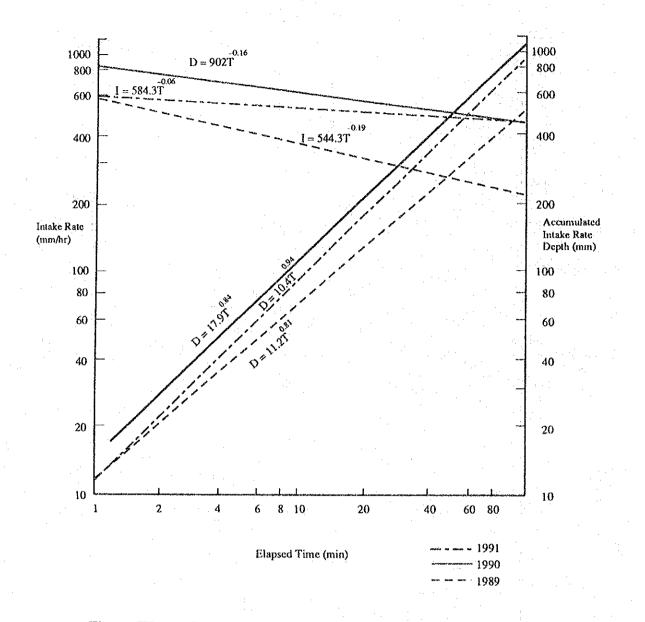



Figure III.2.9 Curve for the Cattle Manure Dressed Plot in Lealui

### **III.3** Farm Land Consolidation Guideline

#### **III.3.1** Exceedance - Probability of Little Zambezi Water Levels

(1) Water level records of Little Zambezi at Matongo

Water level records of Little Zambezi at Matongo for 21 years from 1971/72 to 1991/92 are given in the Table III.4.1. These date were collected from the Department of Water Affairs at Mongu during the period of the AVS.

All the values in the Table III.4.1 were converted in meters from the original data presented in feet from the staff gauge readings. Finally, the corresponding water levels values above sea level were obtained by adding a correction height of 1,007.38 m gotten from the leveling survey. (Connection of the staff gauge readings to the national B.M.).

Exceedance - Probability of Little Zambezi water levels

(2)

By using the values of annual maximum water levels of the Little Zambezi at Motongo, the probability of exceedance was computed by the Hazen method.

Results of the computation are shown in the Table III.3.1.

| Ranking | Year | Max. Water Levels<br>(m) | Probability<br>(%) | Return Period<br>(years) |
|---------|------|--------------------------|--------------------|--------------------------|
| 1       | 1978 | 1,104.57                 | 2.5                | 40.0                     |
| 2       | 1979 | 1,014.55                 | 7.5                | 13.3                     |
| 3       | 1975 | 1,014.36                 | 12.5               | 8.0                      |
| 4       | 1976 | 1,014.27                 | 17.5               | 5.7                      |
| 5       | 1989 | 1,014.14                 | 22.5               | 4.4                      |
| 6       | 1980 | 1,014.09                 | 27.5               | 3,6                      |
| 7       | 1981 | 1,014.06                 | 32.5               | 3.1                      |
| 8       | 1977 | 1,013.86                 | 37.5               | 2.7                      |
| 9       | 1986 | 1,013.82                 | 42.5               | 2.4                      |
| 10      | 1988 | 1,013.79                 | 47.5               | 2.1                      |
| 11      | 1987 | 1,013.69                 | 52.5               | 1.9                      |
| 12      | 1974 | 1,013.64                 | 57.5               | 1.7                      |
| 13      | 1991 | 1,013.60                 | 62.5               | 1.6                      |
| 14      | 1985 | 1,013.54                 | 67.5               | 1.5                      |
| 15      | 1984 | 1,013.39                 | 72.5               | 1.4                      |
| 16      | 1982 | 1,013.18                 | 77.5               | 1.3                      |
| 17      | 1990 | 1,012.85                 | 82.5               | 1.2                      |
| 18      | 1973 | 1,012.84                 | 87.5               | 1.1                      |
| 19      | 1983 | 1,012.81                 | 92.5               | 1.1                      |
| 20      | 1992 | 1,012.57                 | 97.5               | 1.0                      |

# Table III.3.1Computation Results of Exceedance - Probability of Little ZambeziWater Levels at Matongo

**III.3.2** Analysis of Creep Length for the Peripheral Road

(1) General

When running water is blocked by an impervious wall of an embankment constructed on permeable ground, the difference of water head across the wall ( $\Delta$ H) can act to move soil of minimum grain size as the water permeates through the ground. This can create voids in the ground, leading to the destruction of the foundation. This action is called "piping".

To prevent this phenomenon, a safe creep length must be ensured under the foundation of the embankment.

The creep length to be ensured must be the larger of the values calculated by the following two methods.

i) Bligh's method

 $L \ge C \cdot \Delta H$ 

where L

: length of creep length measured along the foundation face of the embankment. (which may differ from the actual percolation path) (m).

- C : coefficient which varies depending on the type of the foundation ground. (Table III.3.2)
- $\Delta H$ : maximum head difference at upstream and downstream sides. (m)

### ii) Lane's method

Lane defined the effect of the horizontal creep length as 1/3 of the vertical creep length, and established the weighted creep length by dividing the total of vertical and horizontal creep length by the difference between water heads, and defined the ratio as shown in Table III.3.2.

 $L' \ge C' \cdot \Delta H$ 

where L' : length of weighted creep length (m),  $L' = \sum lv + 1/3 \sum lh$ 

- $l\nu$ : creep length of vertical direction (inclination of more than 45 degrees)
- *lh* : creep length of horizontal direction (inclination below 45 degrees)
- C': coefficient which varies with the type of ground (Table III.3.2)
- $\Delta H$ : maximum difference between water heads (m)

| Foundation                         | Bligh's<br>coefficient<br>(c)         | Lane's<br>coefficient<br>(c') |
|------------------------------------|---------------------------------------|-------------------------------|
| Silly and or clay                  | 18                                    | 8.5                           |
| Fine sand                          | 15                                    | 7.0                           |
| Medium sand                        | _                                     | 6.0                           |
| Coarse sand                        | 12                                    | 5.0                           |
| Gravel                             |                                       | 4.0                           |
| Coarse gravel                      |                                       | 3.5                           |
| Sandy gravel                       | 9 1 2                                 |                               |
| Cobble stone with gravel           | — .                                   | 3.0                           |
| Rocks with cobble stone and gravel | · · · · · -                           | 2.5                           |
| Rocks with gravel and sand         | 4~6                                   | ·                             |
| Soft clay                          | _                                     | 3.0                           |
| Medium clay                        | · · · · · · · · · · · · · · · · · · · | 2.0                           |
| Heavy clay                         |                                       | 1.8                           |
| Hard clay                          |                                       | 1.6                           |

### Table III.3.2 Coefficients of Bligh and Lane's Methods

### (2) Creep length and necessary depth of cut-off wall

To ensure a creep length longer than L or L' obtained from the above two calculations, a cut-off wall is normally provided into the foundation ground.

- 1) Creep length
  - i) Bligh's method

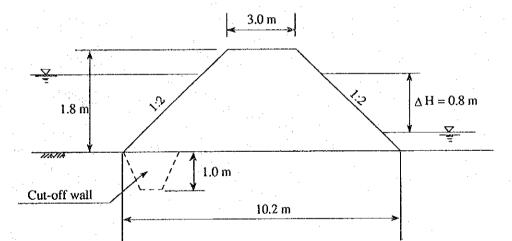
 $C \cdot \Delta H = 13.5 \times 0.8 = 10.8 \text{ m}$ (C = 13.5 : medium sand)

 $L = 10.2 \text{ m} < C \cdot \Delta H$  ..... out

ii) Lane's method

$$C' \cdot \Delta H = 6.0 \times 0.8 = 4.8 \text{ m}$$
  
(C' = 6.0 : medium sand)  
L' = 10.2 m × 1/3 = 3.4 m < C' ·  $\Delta H$ ...... out

Therefore, a cut-off wall is required.


2) Depth of cut-off wall

According to the above results, a necessary depth of cut-off wall is decided by the Lane's method. The shortage of creep length is 1.4 m (4.8 m - 3.4 m).

Therefore, 1.0 m depth of cut-off wall made with impervious material such as clayey soil is recommendable.

As a result, the value of creep length will be as follows:

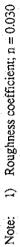
$$L' = 10.2 \times 1/3 + 1.0 \times 2 = 5.4 \text{ m} > \text{C'} \cdot \Delta \text{H}$$
..... OK



### **III.3.3 Hydraulic Design of Canals**

#### (1) Hydraulic analysis of typical irrigation canals

Water depths and flow velocities of typical irrigation canals which are presented in the guideline were computed by using the Manning's formula, and heights of canal embankments were given considering these water depths and freeboard.


The results of hydraulic computation as well as main design dimensions of the canals are shown in Table III.3.3.

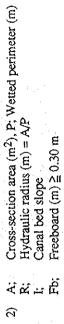
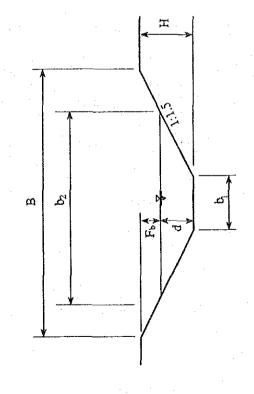

### (2) Hydraulic design of general canals

Table III.3.4 (1), III.3.4 (2) and Table III.3.4 (3) show the relationship of bed gradient and flow velocity based on the canal bed width, given a typical canal side slopes.


Table III.3.3 Hydraulic and Structural Dimensions of Typical Irrigation Canals

|              | 0                   |        | P1   | b2   | U    | >                   | = 1/n · R <sup>2/</sup> | $V = 1/n \cdot R^{2/3} \cdot 1^{1/2} (m/s)$ | ()<br>()      | р<br>Ц | Ħ    | Ĩ   | A    |                        |
|--------------|---------------------|--------|------|------|------|---------------------|-------------------------|---------------------------------------------|---------------|--------|------|-----|------|------------------------|
| •<br>• .     | (m <sup>3</sup> /s) |        | (m)  | (m)  | (m)  | A (m <sup>2</sup> ) | P (m)                   | R (m)                                       | R (m) V (m/s) | (m)    | (m)  | (m) | (m)  | Remarks                |
| $\Theta_{i}$ | 0.087               | 1/1000 | 0.40 | 1.33 | 0.31 | 0.268               | 1.518                   | 0.177                                       | 0.33          | 0.30   | 0.61 | 0.7 | 2.50 | Irrigation area: 50 ha |
| ©            | 0.069               | F      | 0:30 | 1.20 | 0.30 | 0.225               | 1.382                   | 0.163                                       | 0.31          | 0.30   | 0.60 | 0.6 | 2.10 | 40 ha                  |
| 0            | 0.052               | 1/500  | 0.25 | 0.94 | 0.23 | 0.137               | 1.079                   | 0.127                                       | 0.38          | 0.30   | 0.53 | 0.6 | 2.05 | 30 ha                  |
| €            | 0.035               | #      | 0.20 | 0.80 | 0.20 | 0.100               | 0.921                   | 0.109                                       | 0.34          | 0.30   | 0.50 | 0.5 | 1.70 | 20 ha                  |
| 6            | 0.017               | *      | 0.15 | 0.60 | 0.15 | 0.056               | 0.691                   | 0.081                                       | 0.28          | 0.30   | 0.45 | 0.5 | 1.65 | 10 ha                  |





- $Q = A \cdot V (m^3/s)$ ଳ



|                                          |           |            | ·     | D: Water depth (m) | V : Mean velocity (m/sec) | Q : Discharge (m3/sec) |       |              |      |      |       |      |         | - <b>1</b> |                                         |          |       |      |         | -     | $V = 0.3 \sim 0.6 \text{ m/s}$ | ·<br>· |       |                  |      |       |      |          |       |      |      |         |
|------------------------------------------|-----------|------------|-------|--------------------|---------------------------|------------------------|-------|--------------|------|------|-------|------|---------|------------|-----------------------------------------|----------|-------|------|---------|-------|--------------------------------|--------|-------|------------------|------|-------|------|----------|-------|------|------|---------|
|                                          | 8         | 00         | 9     | 0                  | <b>ന</b> ്                | 61                     | Ś     | 5            |      | -    | 55    | ç    |         | 67         | 5                                       | <u>9</u> | 6     | ç    | ġ       | 59    | 9                              | ц      | 62    | <del>1</del> 5 . | 2    | 49    | 20   |          | 32    | 00   | 60 K | ~       |
| i.                                       | 0001/1    | 0.20       | 0.01  | 0.2                | 0.2                       | 0.01                   | 0.2   | 0.2          | 0.0  | 0.3  | 0.0   | 0.3  | 0       | 0.0        | 0.3                                     | 0        | 0     | 0.4  | 0       | 0.1   | 0                              | ð:     | 0.1   | 0                | ò    | 0.2   | 0    | ò        | 03    | 0    | õĉ   | 5       |
|                                          | 1/900     | 0.20       | 0.017 | 0.20               | 0.25                      | 0.020                  | 0.25  | 0.29         | 0.30 | 0.32 | 0.058 | 0.30 | 0.34    | 0.071      | 0.35                                    | 0.38     | 0.113 | 0.40 | 0.42    | 0.167 | 0.40                           | 0,43   | 0.189 | 0.45             | 0.47 | 0.262 | 0:50 | 0.50     | 0.350 | 0.50 | 0.51 | 700'0   |
| erocity r.o                              | 1/800     | 0.20       | 0.018 | 0.20               | 0.26                      | 0.021                  | 0.25  | 0.30         | 0.30 | 0.34 | 0.062 | 0.30 | 0.36    | 0.075      | 0.35                                    | 0.40     | 0.120 | 0.40 | 0.44    | 0.177 | 0.40                           | 0.46   | 0.200 | 0.45             | 0.49 | 0.278 | 0.50 | 0.53     | 0.372 | 0.50 | 0.54 | 0.4UJ   |
|                                          | 00/1      | 0.20       | 0.019 | 0.20               | 0.28                      | 0.022                  | 0.25  | 0.32         | 0.30 | 0.37 | 0.066 | 0.30 | 0.38    | 0.081      | 0.35                                    | 0.43     | 0.128 | 0,40 | 0.47    | 0.190 | 0,40                           | 0.49   | 0.214 | 0.45             | 0.53 | 0.297 | 020  | 0.57     | 0.397 | 0.50 | 0.58 | CC4-7   |
| S = 1 : 1<br>N = 0.03                    | 1/600     | 0.20       | 0.020 | 0.20               | 0,30                      | 0.024                  | 0.25  | 0.35         | 0.30 | 0.40 | 0.071 | 0.30 | 0.42    | 0.087      | 0.35                                    | 0.47     | 0.138 | 0.40 | 0.51    | 0.205 | 0.40                           | 0.53   | 0.231 | 0.45             | 0.57 | 0.321 | 0.50 | 0.61     | 0.429 | 0.50 | 0.62 | 0.400   |
| : S                                      | 1/500     | 0.20       | 0.022 | 0.20               | 0.33                      | 0.026                  | 0.25  | 0.38         | 0.30 | 0.43 | 0.078 | 0.30 | 0.45    | 0.095      | 0.35                                    | 0.51     | 0.152 | 0.40 | 0.56    | 0.225 | 0.40                           | 0.58   | 0.253 | 0.45             | 0.63 | 0.351 | 0.50 | 0.67     | 0.470 | 0.50 | 0.68 | 61C'A . |
| :<br>of Roughnes                         | 1/400     | 0.20       | 0.025 | 0.20               | 0.37                      | 0.030                  | 0.25  | 0.43         | 0.30 | 0.48 | 0.087 | 0.30 | 0.51    | 0.107      | 0.35                                    | 0.57     | 0.169 | 0.40 | 0.63    | 0.251 | 0.40                           | 0.64   | 0.283 | 0.45             | 0.70 | 0.393 | 0.50 | 0.75     | 0.526 | 0.50 | 0.76 | 5/C.V   |
| Side Slope :<br>Coefficient of Roughness | 1/300     | 0.20       | 0.029 | 0.20               | 0.43                      | 0.034                  | 0.25  | 0.50<br>0.60 | 0.30 | 0.56 | 0.101 | 0.30 | 0.59    | 0.123      | 0.35                                    | 0.66     | 0.196 | 0.40 | 0.73    | 0.290 | 0.40                           | 0.74   | 0.327 | 0.45             | 0.81 | 0.454 | 0.50 | 0.87     | 0.607 | 0.50 | 0.88 | 700'0   |
|                                          | 1/200     | 0.20       | 0.035 | 0.20               | 0.52                      | 0.042                  | 0.25  | 0.61         | 030  | 0.69 | 0.123 | 0.30 | 0.72    | 0.151      | 0.35                                    | 0.81     | 0.240 | 0.40 | 0.89    | 0.355 | 0.40                           | 16.0   | 0.401 | 0.45             | 660  | 0.556 | 0.50 | 1.06     | 0.743 | 0.50 | 1.08 | 118.U   |
|                                          | 1/100     | 0.20       | 0.050 | 0.20               | 0,74                      | 0.059                  | 0.25  | 0.86         | 020  | 0.97 | 0.174 | 0.30 | 1.02    | 0.213      | 0.35                                    | 1.14     | 0.339 | 0.40 | 1.26    | 0.502 | 0.40                           | 1.29   | 0.567 | 0.45             | 1.40 | 0.786 | 0.50 | 1.50     | 1.051 | 0.50 | 1.53 | 1.14/   |
|                                          | ··        | : :<br>< D | ë     | :a                 | .:<br>^ ·                 | <br>Ø                  | <br>Q | > c          | żċ   |      | ö     | Q    | .:<br>> | ö          | :<br>D                                  |          | ö     | ä    | ۷:<br>: | ö     | ä                              |        | ð     | ü                | ~ ~  | ö     | ä    | ۲:<br>۲: | ö     | :0   |      | 2       |
|                                          | Bed Width | 015        |       |                    | 0.20                      |                        |       | 0.25         |      | 0.30 |       |      | 0.40    |            | ••••••••••••••••••••••••••••••••••••••• | 0.50     |       |      | 0.60    |       |                                | 0.70   | •     |                  | 0.80 | •     |      | 060      |       | -    | 1,00 |         |

Table III.3.4 (1) Hydraulic Design of Canal by Mannings Mean Flow Velocity Formula (1/3)

|                                                                                         |                                       |           |              |       | (                  | ec)                                            | · .  |                |      |               |      | -    |       |        | ·    |       | :     |         | . •                       |               |       |        |          |       |      |       |      |               |             |
|-----------------------------------------------------------------------------------------|---------------------------------------|-----------|--------------|-------|--------------------|------------------------------------------------|------|----------------|------|---------------|------|------|-------|--------|------|-------|-------|---------|---------------------------|---------------|-------|--------|----------|-------|------|-------|------|---------------|-------------|
| · :                                                                                     | · · · · · · · · · · · · · · · · · · · |           | • •          |       | D: Water depth (m) | v : Mean velocity (m/<br>Q : Discharge (m3/sec |      |                |      | •             |      |      |       |        |      |       |       |         | $V = 0.3 \approx 0.6 m/s$ | 2             |       |        |          |       | · .  |       |      |               |             |
| <u> </u>                                                                                |                                       | 1/1000    | 0.20         | 0.021 | 0.20               | 0.024                                          | 0.25 | 0.28<br>0.043  | 0:30 | 0.31<br>0.071 | 0.30 | 0.33 | 0.083 | 0.35   | 0.37 | 101.0 | 0,40  | 0,40    |                           | 0.41          | 0.213 | 0.45   | 0.45     | 0.295 | 0.50 | 0.394 | 0.50 | 0.49<br>0.424 |             |
| Table III.3.4 (2) Hydraulic Design of Canal by Mannings Mean Flow Velocity Formula (2/3 |                                       | 1/900     | 0.20         | 0.022 | 0.20               | 0.025                                          | 0.25 | 0.29           | 0.30 | 0.33<br>0.075 | 0.30 | 0.34 | 0.088 | 0.35   | 0.39 | 0.120 | 0.40  | 0.42    | UV V                      | 0.43          | 0.225 | 0.45   | 0.47     | 115.0 | 0.50 | 0.416 | 0.50 | 0.51<br>0.447 |             |
| elocity Fo                                                                              |                                       | 1/800     | 0.20         | 0.023 | 0.20               | 0.027                                          | 0.25 | 0.31<br>0.049  | 0:30 | 0.35          | 0.30 | 0.37 | 0.093 | 0.35   | 0.41 | 0.140 | 0.40  | 0.45    |                           | 0.45<br>94 95 | 0.238 | 0.45   | 0.50     | 0.330 | 0.50 | 0.441 | 0.50 | 0.54<br>0.475 |             |
| n Flow V                                                                                | • •                                   | 1/700     | 0.20         | 0.025 | 0.20               | 0.029                                          | 0.25 | 0.33<br>0.052  | 0.30 | 0.38          | 0.30 | 0.39 | 0.099 | 0.35   | 0.44 | 00110 | 0.40  | 0.48    | 0.40                      | 0.49          | 0.255 | 0.45   | 0.53     | 555.0 | 0.50 | 0.471 | 0.50 | 0.58<br>0.507 |             |
| nings Mea                                                                               | S = 1. 5<br>N = 0.03                  | 1/600     | 0.20         | 0.027 | 0.20               | 0.031                                          | 0.25 | 0.36           | 020  | 0.41<br>0.091 | 0.30 | 0.42 | 0,107 | 0.35   | 0.47 | 107.0 | 0.40  | 0.52    |                           | 0.53          | 0.275 | 0.45   | 0.57     | 0.381 | 0.50 | 0.509 | 0.50 | 0.63<br>0.548 | )<br>}<br>} |
| l by Manr                                                                               | SSS                                   | 1/500     | 0.20<br>0.33 | 0.030 | 0.20               | 0.034                                          | 0.25 | 0.39           | 0:30 | 0.100         | 0.30 | 0.46 | 0.118 | 0.35   | 0.52 | COT 0 | 0.40  | 0.57    |                           | 0.58          | 0.302 | 0.45   | 0.63     | 0.417 | 0.50 | 0.558 | 0.50 | 0.69          | ****        |
| a of Canal                                                                              | :<br>of Roughness                     | 1/400     | 0.20<br>0.37 | 0.033 | 0.20               | 0.038                                          | 0.25 | 0.069          | 0.30 | 0.50<br>0.112 | 0.30 | 0.52 | 0.131 | 0.35   | 0.58 | 107.0 | 0.40  | 0.64    | 0 10                      | 0.65          | 0.337 | 0.45   | 0.70     | 0.467 | 0.50 | 0.623 | 0.50 | 0.77<br>0.671 |             |
| ulic Design                                                                             | Side Slope<br>Coefficient o           | 1/300     | 0.20<br>0.42 | 0.038 | 0.20               | 0.044                                          | 0.25 | 0.079<br>0.079 | 0.30 | 0.57          | 0.30 | 0.60 | 0.152 | 0.35   | 0.67 | 6770  | 0.40  | 0.73    |                           | 0.75          | 0.389 | 0.45   | 0.81     | 0.539 | 0.50 | 0.720 | 0.50 | 0.89<br>0.775 | 2           |
| ) Hydrau                                                                                |                                       | 1/200     | 0.20<br>0.52 | 0.047 | 0.20               | 0.054                                          | 0.25 | 0.62           | 0:30 | 0.158         | 0.30 | 0.73 | 0.186 | 0.35   | 0.82 | CK7.0 | 0.40  | 060     | 104.0                     | 0.92          | 0.477 | 0.45   | 0.99     | 0.660 | 0.50 | 0.882 | 0.50 | 1.09<br>0.949 |             |
| III.3.4 (2)                                                                             |                                       | 1/100     | 0.20         | 0.066 | 0.20               | 0.076                                          | 0.25 | 0.138          | 0.30 | 0.99          | 0:30 | 1.03 | 0.263 | 0.35   | 1.15 | 0.414 | 0.40  | 1.27    | 010                       | 1.30          | 0.674 | 0.45   | 1.41     | 0.933 | 0.50 | 1.247 | 0.50 | 1.53<br>1.342 | 1121        |
| Table                                                                                   |                                       |           | <br>С >      | ö     | Q;                 | > 0                                            | ä    | > 0            | D:   | :. ::<br>> 0  | , ä  | V:   | ö     | С<br>С |      | <br>כ | <br>D | <br>> c | <br>                      | י י<br>ר ל    | ö     | с<br>С | : ^<br>` | ö     | Q >  | Ö     | : D  | <br>> c       | У           |
|                                                                                         |                                       | Bed Width | 0.15         | •     |                    | 0710                                           |      | 0.25           |      | 0.30          |      | 0.40 |       |        | 0.50 |       |       | 0.60    |                           | 0.70          |       |        | 0.80     |       | 000  |       |      | 1.00          |             |

Table III 3.4 (2) Hydraulic Desion of Canal by Manninos Mean Flow Velocity Formula (2/3)

|                                                              |                                          |           |         |         |       | D: Water depth (m) | V : Mean velocity (m/sec) | Q : Discharge (m3/sec) | •<br>• |                 |        | F<br> |      |       |         |      |        |           |      |       |         |         |       | V = 0.3 - 0.6  m/s |               | · · · · · · · · · · · · · · · · · · · |            |                        |        |          |      | -      |        |       |       |
|--------------------------------------------------------------|------------------------------------------|-----------|---------|---------|-------|--------------------|---------------------------|------------------------|--------|-----------------|--------|-------|------|-------|---------|------|--------|-----------|------|-------|---------|---------|-------|--------------------|---------------|---------------------------------------|------------|------------------------|--------|----------|------|--------|--------|-------|-------|
|                                                              | -<br>                                    | 1/1000    | 0.20    | 0.24    | 0.026 | 0.20               | 0.24                      | 0:029                  | 0.25   | 0.28            | 0.053  | 0.30  | 0.32 | 0.085 | 0:30    | 0.33 | 0.098  | 0.35      | 0.37 | 0.153 | 0.40    | 0.40    | 0.224 | 0.40               | 0.41          | 0.245                                 | 0.45       | 0.<br>4                | 0.339  | 0.50     | 0.48 | 0.452  | 0.50   | 0.48  | 0.482 |
| Design of Canal by Mannings Mean Flow Velocity Formula (3/3) |                                          | 1/900     | 0.20    | 0.25    | 0.027 | 0.20               | 0.26                      | 0.031                  | 0.25   | 0.30            | 0.055  | 0.30  | 0.33 | 060.0 | 0.30    | 0.34 | 0.103  | 0.35      | 0.38 | 0.161 | 0.40    | 0.42    | 0.237 | 0.40               | 0.43          | 0.258                                 | 0.45       | 0.47                   | 0.357  | 0.50     | 0.50 | 0.476  | 0.50   | 0.51  | 80C.U |
| locity For                                                   |                                          | 1/800     | 0.20    | 0.26    | 0.029 | 0.20               | 0.27                      | 0.032                  | 0.25   | 0.31            | 0.059  | 0:30  | 0.35 | 0.096 | 0:30    | 0.37 | 0.109  | 0.35      | 0.41 | 0.171 | 0.40    | 0.45    | 0.251 | 0.40               | 0.46          | 0.274                                 | 0.45       | 0.50                   | 0.376  | 0.50     | 0.53 | 0.505  | 05.0   | 0.54  | YCC.U |
| a Flow Ve                                                    |                                          | 1/700     | 0.20    | 0.28    | 0.031 | 0.20               | 0.29                      | 0.035                  | 0.25   | 0.34            | 0.063  | 0.30  | 0.38 | 0.102 | 0.30    | 0.39 | 0.117  | 0.35      | 0.44 | 0.183 | 0.40    | 0.48    | 0.268 | 0.40               | 0.49          | 567.0                                 | 0.40       | 0.53                   | 0.4.0  | 0.50     | 0.57 | 0.540  | 0.50   | 0.58  | 0/00  |
| ungs Mea                                                     | S = 1 : 2<br>N = 0.03                    | 1/600     | 0.20    | 0.30    | 0.033 | 0.20               | 0.31                      | 0.037                  | 0.25   | 0.36            | 0.068  | 0:30  | 0.41 | 0.110 | 0:30    | 0.42 | 0.126  | 0.35      | 0.47 | 0.198 | 0.40    | 0.52    | 0.290 | 0.40               | 0.53          | 015.U                                 | 0.40<br>71 | 0.57                   | 0.437  | 0.50     | 0.61 | 0.583  | 0.50   | 0.62  | 770.0 |
| Dy Mann                                                      | : SSS                                    | 1/500     | 0.20    | 0.33    | 0.037 | 0.20               | 0.34                      | 0.041                  | 0.25   | 0.40            | 0.074  | 0.30  | 0.45 | 0.121 | 0.30    | 0.46 | 0.138  | 0.35      | 0.52 | 0.217 | 0.40    | 0.57    | 0.317 | 0.40               | 0.58          | 04010                                 | 6 C        | 0.03                   | 6/4/0  | 0.50     | 0.67 | 0.639  | 0.50   | 0.68  | 1000  |
| l of Canal                                                   | Side Slope :<br>Coefficient of Roughness | 1/400     | 0.20    | 0.37    | 0.041 | 0.20               | 0.38                      | 0.046                  | 0.25   | 40<br>40<br>200 | 0.083  | 0.30  | 0.50 | 0.135 | 0.30    | 0.52 | 0.155  | 0.35      | 0.58 | 0.242 | 0.40    | 0.63    | 0.355 | 0.40               | 0.65          | 100.0                                 | 9 6<br>6   | 0.10                   | CCC.0  | 0.50     | c/.0 | 0.714  | 0.50   | 0.767 |       |
|                                                              | Side Slope<br>Coefficien                 | 1/300     | 0.20    | 0.43    | 0.04/ | 0.20               | 0.44                      | 5CU.U                  | 0.25   | 0.51            | 960'0  | 0.30  | 0.58 | 0.156 | 0.30    | 0.60 | -6/1.0 | 0.35      | 0.67 | 0.280 | 0.40    | 0.73    | 0.410 | 0.40               | 0.75          | 0.44                                  |            | 16.0                   | 010.0  | 0.50     | 18.0 | 0.825  | 0.50   | 0.88  |       |
| ave music (c) entrance                                       | ·                                        |           | 0.20    | 5C.0    | ocn.n | 0.20               | 400                       | C00.0                  | 0.25   | 0.63            | 0.117  | 0.30  | 0.71 | 0.191 | 0.30    | 0.73 | 0.219  | 0.35      | 0.82 | 0.542 | 0.40    | 0.90    | 0.502 | 0.40               | 0.91<br>0 540 | 34.0                                  |            | 757 0                  | 1C 'n  | 0.50     | 5    | 1.010  | 0.50   | 1 077 |       |
| C) + C-111                                                   |                                          | 1/100     | 0.20    | 0.74    | 700.0 | 0.20               | 0.70                      | 760'0                  | 0.25   | 68.0            | 0.100  | 0.30  | 1.00 | 0.270 | 0.30    | 20.1 | 016.0  | 0.35      | 1.15 | 0.404 | 0.40    | 1.27    | 0.710 | 0,40               | 1.29          | 2420                                  |            | 24-1<br>1-4-1<br>1-4-1 | 1 0.1  | 0.50     | 0C-1 | 1.4.28 | 0.50   | 7021  |       |
|                                                              |                                          |           | Ä:      | <br>> ( | איל   |                    | <br>> (                   |                        | <br>0; |                 | <br>כי | ;     |      | <br>כ | <br>A : |      | <br>>  | .:<br>A ; |      | <br>> | <br>С ; | <br>> ( | <br>2 | .:<br>A :          |               |                                       | >          |                        | ,<br>Y | י<br>ג ר | > c  | ר י    | <br>;  | > C   |       |
|                                                              |                                          | Bed Width | i.<br>F | CI.0    |       |                    | 07-0                      |                        | L<br>C | C7:0            |        |       | 05.0 |       |         | 0.40 |        | 1         | 000  |       |         | 0.60    | . •   | t                  | 0.70          |                                       | 080        | 0000                   |        | Uou      | 050  |        | ç<br>F | 20-T  |       |

Table III.3.4 (3) Hydraulic Design of Canal by Mannings Mean Flow Velocity Formula (3/3)