PEOPLE'S REPUBLIC OF BANGLADESH BANGLADESH WATER DEVELOPMENT BOARD

FEASIBILITY STUDY ON THE KURIGRAM IRRIGATION AND FLOOD CONTROL PROJECT - SOUTH UNIT

VOLUME II

APPENDIXES

MARCH, 1993

Japan International Cooperation Agency Tokyo, Japan

PEOPLE'S REPUBLIC OF BANGLADESH BANGLADESH WATER DEVELOPMENT BOARD

FEASIBILITY STUDY ON THE KURIGRAM IRRIGATION AND FLOOD CONTROL PROJECT - SOUTH UNIT

VOLUME II

APPENDIXES

MARCH, 1993

Japan International Cooperation Agency Tokyo, Japan

FEASIBILITY STUDY ON KURIGRAM IRRIGATION AND FLOOD CONTROL PROJECT (SOUTH UNIT)

VOLUME II APPENDIXES

Contents

Appendix - I	Topographic Survey
Appendix - II	Meteorology and Hydrology (incl. Water Quality Analysis)
Appendix - III	Geology and Soil Mechanics
Appendix - IV	Existing STW/DTW Schemes and Ground Water Potential
Appendix - V	Soil and Land Classification
Appendix - VI	Socio-Economic Baseline Survey
Appendix - VII	Public Consultation Survey
Appendix - VIII	Agriculture
Appendix - IX	Inland Fishery
Appendix - X	Erosion Protection
Appendix - XI	Irrigation and Drainage
Appendix - XII	Facility Planning and Preliminary Designs
Appendix - XIII	Cost Estimates and Implementation Schedule
Appendix - XIV	Project Justification
Appendix - XV	Environmental Impact Assessment (EIA)
Appendix - XVI	Organization and Management

- i -

Abbrebiation

AED	Agro-Ecological Division
BADC	Bangladesh Agricultural Development Corporation
BBS	Bangladesh Bureau of Statistics
ВКВ	Bangladesh Krishi (agricultural) Bank
BRDB	Bangladesh Rural Development Board
BWDB	Bangladesh Water Development Board
CAD	Command Area Development
CIDA	Canadian International Development Agency
DAE	Department of Agricultural Extension
DOF	Department of Fisheries
DOL	Department of Livestock
DTW	Deep Tubewell (with positive displacement pump)
EE	Executive Engineer
EIRR	Economic Internal Rate of Return
GDP	Gross Domestic Product
GOB	Government of Bangladesh
FAP	Flood Action Plan
FAO	Food and Agriculture Organization
FFW	Food-For-Works
FPCO	Flood Plan Coordination Organization
FCD	Flood Control and Drainage
FCD/I	Flood control. Drainage and Irrigation
IBRD	International Bank for Reconstruction and Development (world Bank)
IDA	International Development Association (World Bank)
IFAD	International Fund For Agricultural Development
HYV	High Yielding Variety
IICA	Janan International Cooperation Agency
LCS	Landless Contracting Society
LGED	Local Government Engineering Department (former LGEB)
LUP	Low Lift Pump
MPO	Master Plan Organization
NGO	Non-governmental Organization
NPV	Net Present Value
NPVR	Net Present Value Ratio
NWP	National Water Plan
O&M	Operation and Maintenance
DBC	Project Beneficiary Committee
	Project Coordination Committee
	Project Impact Evaluation
	Project Implementation Office
riu STW	Shallow Tubewell (with suction nump)
ST YY SAV	Score of Work
0/.W 8/CE:	Stopdard Conversion Factor
SCF	Statuato Conversion Lacion Superintending Engineer
DE LICCA	Juporint Control Connective Association
	United Nations Development Programme
UNDP	Unicu realions Develophicille riveralinite Unagila Nirhabi Officar (principal staff officar of Unagila Darishad)
	Upazita Puroani Officer (principal stati Officer Of Opazita Farishall)
WAKPU	Water Resources Framming Organization (tormetry MPO)
WFF	wong roog roogramme
WHO	world Health Organization

Glossary

Aman	Main monsoon season paddy crop (Aug./Sept Nov/Dec.)	
Aus	Late dry season/early monsoon paddy crop (Mar./Apr July/Aug.)	
Beel, Bil	Small lake, swamp or body of year-round standing water	
Boro	Winter (dry) season paddy crop (Dec./Jan Apr.)	
Bundh	Earthen embankment	
Chhatak	290 - 350 grammes	
Chain	100 feet	
Cropping intensity	Ratio of acreage of crops cultivated in a year to the total acreage under cultivation	
Crore	Ten million (10,000,000)	
Ghog	Animal burrow in embankment	
Ghee	Edible oild made from milk	
Khal	Natural channel/minor river/tidal creek	
Khalashis	"Cleaner" (actually guard) of regulator/sluice	
Khas	Government owned	
Kharif	Summer (wet) season	
Kutcha	Locally made, not manufactured; earthen (of roads, structures)	
Lakh	Hundred thousand (100,000)	
Maund	37.3 kg	
Mauza	Revenue village (comprise several physical settlements)	
Nala	Excavated canals	
Parishad	Elected council of Upazila or Union	
Rabi	Winter (dry) season	
Thana	New Administrative unit between Union and Zila	
Union	Administrative level below Upazila, typically 10 per Upazila	
Upazila	Former Administrative unit between Union and Zila	
Zila	District, main sub-regional administrative unit	

- iii -

Abbreviation of Measurements

Length				Volum	e		
mm	= millimeter			lit.	= liter		
cm	= centimeter	a	0.39 in.	m3	= cubic meter		1,000 lit.
m	= meter	=	1.09 yd.	MCM	= million m3		
km	= kilometer	=	0.62 ml.	ft3	= cubic feet	=	0.028 m3
in.	= inch	÷	2.54 cm	ac-in	= acre-inch	=	102.80 m3
ft.	= foot	=	30.48 cm	ac-fi	= acre-feet	=	1,234 m3
yd.	= yard	=	91.44 cm				·
ml.	= mile	-	1.61 km				
							· · ·
							÷ .
Area				Weight			
m2	= square meter	=	10.76 ft2	kg	= kilogram	==	2.20 lb
km2	= square kilometer	=	100 ha	ton	= ton	=	1,000 kg
ha	= hectare		2.47 ac	lb	= pound	=	0.454 kg
ac	= acre	=	0.405 ha	md	= maund	=	37.32 kg
ft2	= square feet	=	0.09 m2	Ck.	= Chhatak	=	0.30 kg
mile2	= square mile	= .	2.59 km2				
	•			· · ·			
<u>Time</u>			÷	Electri	<u>c Measures</u>		
sec.	= second			kW	= kilowatt		1,000 watt
min.	= minute			MW	= Megawatt	=	1,000 kW
hr.	= hour			GW	= Gigawatt	- =	1,000 MW
day	= 84,600 sec.			kV	= Kilovolt	a	1,000 volt
yr.	= year						

Other	Measures
--------------	----------

yr.

Derived Measures

1992)

%	= percent	m3/sec = 35.31 ft3/sec	
lakh	= ten thousand	ft3/sec = 0.028 m3/sec	
crore	= 10 million	md/ac = 92.23 kg/ha =	0.092 ton/ha
HP	= horse power = 0.746 kW	ton/ha = 2.47 tons/acre =	10.84 md/ac
TPH	= ton per hour	ton/acre = 0.405 ton/ha =	4.39 md/ac

Currency

Tk	=	Taka	(US\$1.0 = Tk38.8 = ¥125, as of February,
US\$	≒	US dollar	
¥	-	Japanese Yen	

APPENDIX - I

TOPOGRAPHIC SURVEY

FEASIBILITY STUDY ON

KURIGRAM IRRIGATION AND FLOOD CONTROL PROJECT (SOUTH UNIT)

APPENDIX - I TOPOGRAPHIC SURVEY

TABLE OF CONTENTS

CHAPTER	1	ACTIVITIES OF TOPOGRAPHIC SURVEY	Page 1 - 2
1.1 1.2	Surv Surv	ey Works in Phase 1 ey Works in Phase II	1 - 2 1 - 2
CHAPTER	2	AVAILAVILITIY OF TOPOGRAPHIC MAP OF THE STUDY AREA	1 - 3
CHAPTER	3	AVAILAVILITIY OF BENCH MARK OF THE STUDY AREA	I - 3

LIST OF TABLES

		Page
Table 1.1	Quantities of Canal Surveys	I - 5
Table 1.2	List of Drawings	I - 6
Table 1.3	List of JKS-Bench Marks	1-7

LIST OF FIGURES

			Page
Fig.	1.1	Chart of the Surveyed Location (Phase I)	1 - 8
Fig.	1.2	Chart of the Surveyed Location (Phase II)	1 - 9
Fig.	1.3	Description of JKS Bench Mark	I-10

APPENDIX - I TOPOGRAPHIC SURVEY

1. Activities of Topographic Survey

Topographic survey was carried out by the Survey Corporation (641/1, Bara Moghbazar Dhaka - 1217, Phone : 415130) under the JICA Study Team during the period from January 6 to March 7, 1992 in Phase I, and the period from July 28 to October, 1992 in Phase II.

1.1 Survey Works in Phase I

The following survey works were carried out along the Dharla river during the period of phase I. Chart of the surveyed location is shown in Fig. 1.1.

- 1) Longitudinal surveys was carried out on the right bank of flood embankment, and also was tied to WAPDA BM No.77 in another 6km. Total 34.5km was surveyed with back cheking,
- 2) Cross Sectional surveys across the Dharla river, 30 sections were carried out with an average length of 3,000m at the interval of 500 to 1,000m, from the right bank upto the left bank which is existed,
- 3) 12 numbers of new Bench Mark(BM), named JKS(JICA Kurigram South) were established along the right bank. Description of the BM is shown in Fig. 1.3. As the control elevtion point for the JKS-BMS, WAPDA BM No.77 was used. Values and location of JKS-BMS are shown in Table 1.3, and
- 4) Drawings which were Described, based on the above surveys, are shown in Table 1.2.

1.2 Survey Works in Phase II

The following survey works were carried out along the existing rivers and drainage canals (named Main Channel-A to F), and route of proposed Ratnai Diversion Channel. Chart of the surveyed location is shown in Fig. I.2, and quantities of canal survey are shown in Table I.1.

- 1) Longitudinal surveys, in total 190.5km were carried out along the each Main Channel with back cheking,
- 2) Cross sectional surveys across the Channels, in total 759 sections, were carried out with an average length of 150m at the interval of 200 to 400,
- 27 numbers of plane table survey, in total area 397,000m², were carried out at the proposed structure site (for Irrigation Regulators, Check Gates, Bridges), in scale of 1/200 to 1/1,000,
- 24 numbers of JKS Bench Mark, Whuch are same specification of Phase
 I, were established along the Main Channels. Values and locations are shown in Table1.3,

Nan	ne of Loca	ation	Main		Area
Thana	Union	Mauza	Channel	Station	(ha)
Lalmonirhat	Kulaghat	Banagram	A	3+300	140
Kurigram	Kathalbari	Pratap	Α	32+000	100
Ulipur	Ulipur	Narikelbari	В	41+000	110

5)

For proposed Demonstration Farm, Level surveys and land use surveys were carried out at the following three(3) sites, on scale of 1/2,500, to revise the Mauza Maps, and

6) Drawings which were Described, based on the above surveys, are shown in Table 1.2.

2. Availability of Topographic Map of the Study Area

In the Study area, the following scaled topographic maps prepared during the time of Pakistan, are available. These maps are based on the aerial photographs taken by Hessrs Air Survey Co.,Ltd.,London in 1953 and the ground control survey in 1960/61. The maps have not been revised since that time. The maps are generally accurate,however, geographical features, especially the river courses, shapes and widths, are drastically changed already.

1)	Scaled 1/15,840	Printed in two(2) colors, with contour
-		interval of one(1) foot shown few BM
		valures in PWD
2)	Scaled 1/50,000	Printed in six(6) colors

3. Availability of Bench Marks of the Study Area

In Bangladesh, the datum for leveling is known as GTS(the Great Trigonometrical Survey), basedon Mean See Level(MSL) as determined from the period tidal records along the coast of Indo-Pakistan Sub-Continent(1958 to 1909). Other widely used datum is PWD(the Public Works Department). The relative height between GTS and PWD is "PWD = GTS + 1.509 feet".

As Bench Mark(BM) of the Study area, three(3) WAPDA BMs are available. These BMs have been established in 1962/62, the time of East Pakistan, based on PWD datum, by WAPDA. The purpose are maintenance a system of river gauge elevation control, and once used for planning of the regulators by BWDB. Original values of these BMs are as follows.

BM No.	Station	E.L. in feet	E.L.in meter	Remarks
No.45.5	Chilmari	77.22 ft	23.437 m	Not available
No.76	Taluk Simulbari	101.13 ft	30.824 m	Not available
No.77	Kurigram	87.92 ft	26.798 m	Available

However, BMs of No.45.5 and No.76 are not available at presence, due to eroding the river coast. in case of No.76 BM, according to the river gauge master, the BM have been sifted to the Temporary Bench Mark(TBM) valued in 30.750 m, before the BM damaged. But the reliable result of leveling surveys, to be tied to WAPDA BM No.77, which was carried out by Survey Corporation in this time, height of this TBM is 30.160 m, for information.

And also, BM values are shown on the topographic maps scaled 1/15,840, however, most of the those BMs of the Study area have been damaged or missing and not reliable any more.

I - 4

Main	Longitudinal	Cross Sectional	Plane	JAS-BM	
Channel	(km)	(Nos.)	(Nos.)	(sq.m)	(Nos.)
A	64.4	302	11	207,000	6
B	55.9	261	. 6	60,000	8
$\mathbf{C} = \mathbf{C}$	35.9	146	5	70,000	4
D	13.2	3	1	20,000	- 1
E	10.0	3	2	20,000	0
F	7.8	. 27	2	20,000	2
Ratnai Diversion	3.3	17	0	0	1
Total	190.5	759	27	397,000	22

Table 1.1 Quantities of Canal Survey

Phase	Surveys	Drawing	Scale	Numbers
I/II		No.		
	(River Survey)	understandigen ander and and and		ала. А
	1.Longitudinal	RLS	H=1/5,000 V=1/500	10
ĩ	Ū.	RLL	H=1/1,000 V=1/100	48
	2. Cross Sectional	RCS	H=1/5,000 V=1/500	, ¹³
		RCL	H=1/1,000 V=1/100	a <u>6</u> 0
	Sub-total			131
n an	(Canal Survey)			
	1.Longitudinal			
	Clannel - A	AL	H=1/5,000 V=1/500	19
			H=1/1,000 V=1/100	93
	Clannel - B	BL	H=1/5,000 V=1/500	16
			H=1/1,000 V=1/100	80
•	Clannel - C	CL	H=1/5,000 V=1/500	11
			H=1/1,000 V=1/100	52
	Clannel - D,E	DEL	H=1/50,000 V=1/500	1
	Clannel - F	FL	H=1/5,000 V=1/500	3
			H=1/1,000 V=1/100	15
	Ratnai Diversion	HL	H=1/5,000 V=1/500	. 1
			H=1/1,000 V=1/100	5
11	2. Cross Sectional			
	Clannel - A	AC	H=1/500 V=1/100	43
	Clannel - B	BC	H=1/500 V=1/100	36
	Clannel - C	CC	H=1/500 V=1/100	19
	Clannel - D	DC	H=1/500 V=1/100	1
	Clannel - E	EC	H=1/500 V=1/100	1
	Clannel - F	FC	H=1/500 V=1/100	. 5
	Ratnai Diversion	HC		3
	3. Plane Table			
	Clannel - A	AS	S=1/1,000 ~ 1/200	11
	Clannel - B	BS	S=1/1,000 ~ 1/200	6
	Clannel - C	CS	S=1/1,000 ~ 1/200	5
	Clannel - D	DS	S=1/1.000 ~ 1/200	
	Clannel - E	ES	S=1/1.000 ~ 1/200	2
	Clannel - F	FS	S=1/1.000 ~ 1/200	
	4 Demonstration Farm	MA	S = 1/2500	2
	Sub-total	1741 \$	No Al My Corr	434
Changes and the second s	Tatal	an sher and she and a second she and	ĊĸĸĸĸŎŢĸĸĊĸŢŎĬŎĬĬĊĸĔŎĊĸŎŎĬĬĬĊŎĸŢĔĊĸŎŖŎĬŎŎŎŎĸŎĸŎĬĬĬŎŢĸŢŎŎŎŎŢ	565

Table 1.2 List of Drawings

I - 6

ſ	Phase	No. of	No. of Station		Value Latitude			gitude	Name of Location			
	1010 134 TO 100 10 15 TO DO	JKS-BM	(m)	(m)				* *_**********************************	Thana	Union	Mauza	
		t i i i i i i i i i i i i i i i i i i i	3+420	30 907	25"	58 4'	89*	28.31	Latmonichat	Mohalhat	Rumka	
		2	6+000	30.821	25	57.2'	89	29.0	Lalmonirhat	Kniaghat	Banagram	
		3	8+500	30.989	25	56.2'	89°	30.0'	Lalmonichat	Kulaghat	Banagram	
		4	10+900	30.915	25	55.2'	89'	30.8	Lalmonirhat	Kulaghat	Kulaghat	
	Phase - I	5	13+100	30.217	25	54.2'	89*	31.3'	Lalmonirhat	Kulaghat	Khatamari	
		6	15+500	31.274	25	52.7	89*	33.1'	Lalmonirhat	Barobari	Baliram	
		7	18+100	27.795	25	52.9'	89″	31.8'	Lalmonirhat	Barobari	Barabasuria	
		8	20+600	27.093	25	52.7°	89"	33.1'	Rajarhat	Chhinai	Kulua	
		9	23+300	29.087	25°	51.4'	89"	35.4'	Kurigram	Holokhana	Sanyasi	
		10	26+200	27.681	25	51.5	89°	37.0'	Kurigram	Holokhana	Holokhana	
		11	27+640	29.054	25	51.9'	89°	37.6	Kurigram	Holokhana	Bher Bheri	
ł		12	· :	28.006	25	51.0	891	38.7'	Kurigram	Holokhana	Subharkuthi	
			ور و و و و و و و و و و و و و و و و و و									
Ì		Cleanad										
l			A	21 577	.25'	55 T	20*	30.21	Lalmonichat	Knianhet	Kulophot	
ļ		AD	107027	30.854	. 20 25'	53.8	80°	31 5'	Lamonichat	Kulaghat	Renhenemen	
ļ		Δ7	13+336 22+820	30.654	25	51.0	80°	34.2'	Raischat	Chhinsi	Kaina	
			22+020 28÷185	20.042	25	50.5	89*	36.1	K urigram	Khatalhari	Sibram	
		AS	33+855	28 677	25	48.5	89	36.2	Kurigram	Khatalbari	Jat Gobardhan	
ļ		AG	63+387	27.372	25	41.1	89	41.7	Kurigram	Hatia	Anantapur	
		Channel -	B								· · · · · · ·	
		B1	3+780	28.157	25	49.2'	89	33.9'	Rajarhat	Rajarhat	Paikpara	
		B2	8+414	29.005	25	47.8	89`	32.5	Rajarhat	Rajarhat	Kismat Punker	
1		B3	12+745	28.359	25	46.3'	89'	31.4'	Rajarhat	Rajarhat	Chandamari	
	Phase - II	B4	21+745	27.781	25	43.8'	89°	33.3'	Rajarhat	Nazim Khan	Manarkuti	
I		B5	31+200	28.115	25°	40.5	89'	32.9'	Ulipur	Thetrai	Gorai Piar	
		B6	43 967	26.025	25	39.3'	89*	37.1'	Ulipur	Gunaigach	Ramdas Dheniram	
I	'	B7	51+714	26.129	25°	37.9'	89`	39.6'	Ulipur	Tabakpur	Boru Tabakpur	
ĺ	· · · ·	B8	55+776	26.380	25	37.1	89	41.4'	Chilmari	Ranigonj	Dakshin Udri	
		Channel -	C		14	÷		· .				
		C1	5+562	27.691	25	46.9'	89	34.5'	Rajarhat	Chairpashar	Taluk Asharu	
		C2	11+370	27.609	25	44.9'	89	35.5'	Rajarhat	Umarmojid	Balakandi	
		C3	22+412	26.228	25	41.3'	89	37.1'	Ulipur	Dharanibari	Kisnmat Malatibar	
		C4	29+033	25.448	25	39.7'	89	40.1	Unpur	Unanisrani	Naora	
		Channel -	D	07000	25	15 74	00'	יריכי	Runingan	Duetonie	Comi	
		D1 Channel	0+325 E	21.333	23	43.1	67	21.1	vonkum	Dorgahon	00181	
Ì		Channel -	15. A. 733	27 466	°.	50.7	80	37.5	Kurioram	Kathalbari	Khalisa Kalua	
		82	10+302	27,400	25	48.6'	80	37 3'	Kurigram	Balgachha	Kale	
		Channel	H H	20,300	w	U.U	37	51.5	1 . u. Q. min	~~~~~~~~~~		
.]		Hi	0+000	32 449	25'	58 P	89'	26.7	Lalmonirhat	Mogalhat	Durakuti	
- 1	1.4	[¹¹⁵	0.000	Je. 177	· • • • ·		~			Ψ.		

I - 8

APPENDIX - II

METEOROLOGY AND HYDROLOGY

FEASIBILITY STUDY ON

KURIGRAM IRRIGATION AND FLOOD CONTROL PROJECT (SOUTH UNIT)

APPENDIX - II METEOROLOGY AND HYDROLOGY

TABLE OF CONTENTS

CHAPTER	1 INTRODUCTION	I
1.1	Objectives	1
1.2	Meteorological and Hydrological Data	Ĩ
1.2	1 Meteorological Data	í
1.2	2 Rainfall Data	i
1.2	3 Water Level Data	ĩ
1.2	4 Discharge Data	Î
CHAPTER	2 METEOROLOGICAL AND HYDROLOGICAL	
	CONDITIONS	I
2.1	Climate	I
2.1.	1 Temperature	I
2.1.	2 Humidity	1
2.1	3 Sunshine Hours	1
2.1.	4 Wind Speed	I
2.1.	5 Evaporation	I
2.2	Rainfall	Ĩ
2.3	Water Level	I
2.4	Discharge	1
CHAPTER	3 HYDROLOGICAL PROBABILITY ANALYSIS	I
a di seconda		
3.1	Methodology	ł
3.2	Probability	. I
3.2	1 Rainfall	I
3.2	2 Water Level	I
3.2.	3 Discharge	ĭ

II- 1

LIST OF TABLES

			Page
Table	11.1.1	Meteorological Data Availability	· 11-8
Table	11,1.2	Rainfall Data Availability	11-8
Table	11.1.3	Water Level Data Availability	11-8
Table	U.1.4	Discharge Data Availability	II- 8
Table	II.2.1	Monthly Mean Meteorological Data at Rangpur	11-9
Table	11.2.2	Monthly Mean Maximum Temperature at Rangpur	11-10
Table	II.2.3	Monthly Mean Minimum Temperature at Rangpur	11-11
Table	H.2.4	Monthly Mean Temperature at Rangpur	11-12
Table	11.2.5	Monthly Mean Humidity at Rangpur	11-13
Table	11.2.6	Monthly Mean Sunshine Hours at Rangpur	11-14
Table	11.2.7	Monthly Mean Evaporation at Rangpur	11-14
Table	11.2.8	Monthly Mean Wind Velocity at Rangpur	· 11-15
Table	H.2.9	Annual Rainfall Data	11-10
Table	11.2.10	Annual Maximum Daily Rainfall	H-1/
Table	11.2.11	Annual Maximum 5-day Period Rainfall	11-18
Table	11.2.12	Correlation Coefficient of 10-daily Rainfall	II-19. II-00
Table	11.2.13	Monthly and Annual Rainfall at Chilmari (163) mm	II-20
Table	11.2.14	Monthly and Annual Rainfall at Kaunia (178) mm	11-21
Table	11.2.15	Monthly and Annual Rainfall at Kurigram (182) mm	11-22
Table	11.2.16	Monthly and Annual Rainfall at Lalmonirhat (183) mm	II-23
Table	II.2.17	Monthly and Annual Rainfall at Sundarganj (178) mm	11-24
Table	II.2.18	Monthly and Annual Rainfall at Ulipur (222) mm	11-25
Table	II.2.19	Annual Maximum Water Level (m/PWD)	11-26
Table	11.2.20	Annual Minimum Water Level (m/PWD)	11-27
Table	11.2.21	Monthly Mean Water Level at Kurigram (No.77) (m/PWD)	11-28
Table	11.2.22	Monthly Mean Water Level at Talkshimulbari (No.76) (m/PWD)	11-29
Table	II.2.23	Monthly Mean Water Level at Kaunia (No.294) (m/PWD)	11-30
Table	II.2.24	Monthly Mean Water Level at Noonkawa (No.45) (m/PWD)	11-31
Table	11.2.25	Monthly Mean Water Level at Chilmari (No.45.5) (m/PWD)	11-32
Table	11.2.26	Rating Curve Formula for Kurigram Gauging Station	11-33
Table	H.2.27	Flow Regime at Kurigram (cu.m)	11-34
Table	11.2.28	Monthly Mean Discharge at Kurigram (No.77) (cu.m)	11-35
			11.26
Table	11.3.1	Yearly Rainfall Frequencies	11-30
Table	11.3.2	Daily Rainfall Frequencies	11-50
Table	II.3.3	5-days Period Rainfall Frequencies	Ш-3/
Table	11.3.4	Flood Water Level Frequencies for Each Gauging Stations	11-37
Table	11.3.5	Minimum Water Level Frequencies for Each Gauging Station	11-38
Table	11.3.6	Flood Discharge Frequencies at Kurigram (cu.m)	11-38
Table	H.3.7	Minimum Discharge Frequencies at Kurigram (cu.m)	11-39
Table	II.3.8	Droughty Discharge (355 days) Frequencies at Kurigram (cu.m)	II-39

II- 2

LIST OF FIGURES

Fig.	N.1.1	Location of Meteorological and Hydrological Stations	<u>Page</u> 11-40
Fig.	11.2.1	Thiessen Polygon and Isohyetal Map	11-41
Fig.	11.2.2	Monthly Climatological Variations at Rangpur	11-42
Fig.	11.2.3	Monthly Rainfall Pattern	11-43
Fig.	11.2.4	Monthly Water Level Pattern	II-44

APPENDIX II METEOROLOGY AND HYDROLOGY

1. Introduction

1.1 <u>Objectives</u>

The objective of the meteorological and hydrological study is to grasp the meteorological and hydrological characteristics of the Study area, to provide useful information necessary for the formulation of the irrigation and drainage plan.

1.2 Meteorological and Hydrological Data

1.2.1 Meteorological Data

The meteorological data at the Rangpur Station (Station No. P10208) located 40km west from Kurigram were obtained from Meteorological Department, because no meteorological data except rainfall is available in the Study area. The collected data cover the daily data series of maximum, minimum and mean temperatures, relative humidity, sunshine hours, wind speed and evaporation. Available data are shown in Table II.1.1.

1.2.2 Rainfall Data

There are seven(7) rainfall stations in and around the Study area. From the Thiessen Polygon analysis, the following six(6) stations except Pirgacha(202) were selected for data analysis.

All the rainfall data of these stations were collected from the Surface Water Hydrology Section-2 of BWDB for the period of about 30 years from 1960 to 1990.

Available data are shown in Table II.1.2.

Station	(No.)	Coefficient of Thiessen Polygon				
Chilmari Kaunia Kurigram Lalmanirhat Sundarganj Ulipur	(163) (178) (182) (183) (218) (222)	0.16 0.09 0.28 0.15 0.01 0.31				
1	. ,					

1.2.3 Water Level Data

There are total seven(7) water level gauging stations in and around the Study area; two(2) for the Dharla river, two(2) for the Teesta river and three(3) for the Brahmaputra river. All daily data were collected from Surface Water Hydrology Section-2 of the BWDB for the period of about 30 years from 1960 to 1990 (except Haripur and Bahadurabad). Available data are shown in Table II.1.3.

From the condition of available data, the following five(5) stations except Haripur (294.5) and Bahadurabad (46.9) were selected for data analysis.

Station	(No.)	River
Talukshimulbari Kurigram Kaunia Noonkawa Chilmari	(76) (77) (294) (45) (45.5)	Dharla Dharla Teesta Brahmaputra Brahmaputra
		•

1.2.4 Discharge Data

Discharge data at the Talukshimulbari and Kurigram stations of the Dharla river and at the Kaunia of the Teesta river are also available. Available discharge data period is about 18 years from 1973 to 1990 at Kurigram, but discharge data at Talukshimulbari have many lacking. Available data are shown in Table II.1.4.

Location of meteorological and hydrological stations are shown in Fig.II.1.1.

2. Meteorological and Hydrological Conditions

2.1 <u>Climate</u>

2.1.1 <u>Temperature</u>

Maximum temperatures vary from about 24 to 34°C, minimum temperature range between about 10 to 26°C and mean temperature range between about 17 to 29°C.

2.1.2 Humidity

The relative Humidity is high through the year with average humidity varying from 68 to 87 percent. The humidity is highest during monsoon period June to September.

2.1.3 Sunshine Hours

Sunshine hours of average monthly ranges between 4.1 to 5.5 hrs/day during the monsoon period and 6.5 to 8.5 hrs/day during the other months.

2.1.4 Wind Speed

The wind speed are relatively low and the average speed of monthly are 2 to 4 m/sec.

2.1.5 Evaporation

Maximum evaporation of average monthly ranges between 2.3 to 6.0 mm. The summary data of above mentioned is shown in Table II.2.1 to II.2.8. All of meteorological data are collected as daily format and arranged as 10-days period for the purpose of irrigation calculation.

2.2 Rainfall

All of rainfall data are collected by daily format, however data requirement for the Study analysis have generally related to 10-daily total. Hence 10-daily series rainfall have been tabulated for six(6) main stations. Annual rainfall for each stations are from 1975 to 2582 mm/year (listed in Table II.2.9). Annual maximum daily rainfall and 5-day period rainfall are listed in Table II.2.10 and II.2.11 respectively.

Isohyetal map with Thiessen polygon is shown in Figure II.2.1. It's shown that monthly rainfall distribution is concentrated in Monsoon season from June to September and there is few rainfall in Non-Monsoon season from November to March. Areal distribution in the Study area is shown that yearly rainfall is gradually reducing from northern part (2500mm/year) to southern part (2000mm/year) in Figure II.2.1.

Correlation coefficient of 10-daily total rainfall is tabulated in Table II.2.12. Monthly and annual rainfall at each stations are listed in Table II.2.13 to II.2.18.

2.3 Water Level

All of water level data are collected by daily format, however, data requirement for he Study analysis have generally related to 10-daily mean. Hence 10-daily mean water level have been tabulated for five(5) water level gauging stations. Annual maximum and minimum water level are shown in Table II.19 and II.2.20. The highest water level was recorded at Taluksimulbari in Dharla river 32.76m/PWD in 1966 and lowest water level was 25.64m/PWD in 1982. And the highest water level was recorded at Kurigram in Dharla river 27.500m/PWD in 1987 and lowest water level was 21.75m/PWD in 1960. Monthly mean water level for each stations are listed in Table II.2.21 to II.2.25.

2.4 Discharge

Discharge data are needed on the irrigation intake and flood control design. Discharge data at Kurigram gauging station in the Dharla river is available about 18-years from 1973 to 1990. Annual rating curve at Kurigram gauging station is calculated by Least square method, and result is shown in Table II.2.26. But discharge observation data in 1976 and 1977 is not available, so rating curve in these years are calculated by using the data in 1975 and 1978.

Annual maximum and minimum discharge at Kurigram are calculated from annual maximum and minimum water level (listed Table II.2.27) by using rating formula (listed Table II.2.26). Monthly mean discharge at Kurigram is listed in Table II.2.28.

Monthly pattern for climatological, rainfall and water level are shown in Fig.II.2.2 to II.2.4.

3

Hydrological Probability Analysis

3.1 Methodology

Gumbel-Chow method and Thomas plotting are adopted for hydrological probability analysis in this Study.

Formula of Gumbel-Chow method is as follow.

X = s K + Xmwhere, Xm : mean

s : standard deviation

$$K = -\frac{26}{p} \stackrel{\stackrel{\scriptstyle}{\models}}{=} 0.5772 + \log_e \stackrel{\stackrel{\scriptstyle}{\models}}{=} \log_e \frac{T}{T - 1} \stackrel{\scriptstyle}{\stackrel{\scriptstyle}{\leftarrow}}$$

T (years)	200	100	50	25	20	10	5	2	
K	3.683	3.137	2.592	2.043	1.867	1.304	0.72	-0.164	

3.2 Probability

3.2.1 Rainfall

Probability analysis of rainfall was carried out for duration of 1-day, 5-days and yearly rainfall to produce estimates of the annual frequency. Yearly, daily and 5-day period rainfall probability on each period at main six(6) stations are tabulated in Table II.3.1 to II.3.3.

3.2.2 Water Level

Water level data are collected from 1960 to 1990. Twenty eight(28) data at Kurigram and twenty six(26) data at Talukshimulbari are available on annual maximum water level.

And twenty nine(29) data at Kurigram and twenty eight(28) data at Talukshimulbari are available on annual minimum water level. Water level probability on main six(6) gauging stations are tabulated in Table II.3.4 and II.3.5.

3.2.3 Discharge

Discharge frequency analysis is done at Kurigram gauging station that is objective river for irrigation intake and having long period data.

Flood maximum, minimum and droughty discharge frequency at Kurigram is tabulated in Table II.3.6 to II.3.8.

Item	<u> </u>	1960 ¦)	1970 	1	1980 		990
Temperatur M M A Humidity Sunshine Hou Wind Speed Evaporation	fax. fin. we. irs	+ * * * * * + * * * * + * * * * + * * * *	**** ***+- ***+-	+++++ ++++++++++++++++++++++++++++++++	++ ++ ++ *++++	***+++ ***+++ ***+*** +*++** ++++*+ ++++*+ ++++++	-******+ -****** -******** -***********	

Table II.1.1 Meteorological Data Availability

Table II.1.2 Rainfall Data Availability

Station (No.)	1960 	1970 	198	0	1990 	{
Chilmari(163) Kaunia(178) Kurigram(182) Lalmanirhat(183) Pirgacha(202) Sundarganj(218) Ulipur(222)	++ +++ ++ *++ ++ *++ ++ *++ ++ *++ ++ *++ *+*++ *+**+ *+***	**+++*** **+ **+ *** **+ **** *** **+ *** *** * * * * * * * * * * * * * * * *	********* ********* ********* ********	***** ***** ***** +**** ***** *****	* * * * * *	

Table 11.1.3 Water Level Data Availability

·									
Station	1960		1970		1	380		199	30
(NO.)	Į	Į.	ļ	ļ	· Į		1	t.	ļ
	F .	1	•		•			•	•
Noonkawa (45)	++*	****	*+**	****	* * *	* **	****	**	
Chilmari(45.5)	+	****	****	****	* *	**	****	* *	
Bahadurabad(46.9)	* * *	****	****	****	***	* * * *	****	**	
Talukshimulbari(76)	+ +.	* * * * *	+ **	* * * *	***	* * * *	****	**	
Kurigram(77)	* + *	**+**	*+**	* * * *	***	**+*	****	**	
Kaunia(294)	*****	*+**	+ ++	*+*+	***	****	****	**	
Haripur(294.5)					***			*	

Table II.1.4 Discharge Data Availability

Station (No.)	1960	1	1:	070		1980		199	10	
Talukshimulbari(76)	• •	•	****	****		1 	***	***		•
Kurigram(77)				***++*********						
Kaunia(294)			**	***	**	****	***	* * *		
t) data complete	·····				1-1		· · · · · ·	· · · · ·		
") uara compiere	-	r)	HOU	comp	rere	2	i i i			

Table II.2.1 Monthly Mean Meteorological Data at Rangpur

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Set.	Oct.	Nov.	Dec.	Ave.
Temperature						_J- <u></u>	· · · ·			· · · · ·			
(_C)													
Maximum	24.2	26.7	31.0	33.4	32.4	32.1	31.6	32.0	31.6	30.8	28.5	25.3	30.0
Minimum	10.2	12.2	16.0	20.3	22.5	24.7	25.6	26.3	25.2	22.3	16.9	12.2	19.5
Average	17.3	19.4	23.5	26.9	27.5	28.4	28.6	29.2	28.4	26.6	22.7	18.8	24.8
Kumidity	81.8	76.0	67.9	71.1	79.8	85.0	87.0	85.8	87.0	85.0	82.5	83.4	81.0
(*)		· · ·											
5. A			1.3										
Sunshine	7.73	7.98	7.83	7.39	6.51	5.48	4.09	5.15	4.92	7.32	8.51	7.72	6.72
(hrs)													
Rind	2,.7	3.0	3.9	4.0	3.5	3.4	3.3	3.4	3.1	2.7	3.0	2.7	3.2
(knot)													
Evaporation	2.3	4.0	5.3	6.0	5.2	4.6	4.4	4.5	3.5	3.5	3.1	2.3	4.1
(mn/day)													

П-9

Table	11.2.2	Monthly	Меап	Maximum	Temperature	at	Kangpur
-------	--------	---------	------	---------	-------------	----	---------

										· · · ·		<u></u>
Year	Apr.	Kay	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
		·								. : 		
1959	-	-	-		<u>.</u> .	-	-	-	-	24.7	29.3	29.4
1960	37.7	36.0	31.8	31.3	32.2	30.8	31.4	28.6	26.6	25.5	24.6	32.0
1961	34.6	32.5	31.2	32.3	32.3	31.7	30.6	27.1	23.5	23.4	27.4	32.5
1962	36.5	30.8	31.6	32,3	31.3	32.9	30.9	28.8	25.7	24.9	29.7	30.4
1963	32.6	30.9	32.3	31.2	31.8	33.0	31.1	27.3	25.9	23.5	27.8	32.5
1964	32.5	32.1	31.6	30.7	32.2	31.9	30.9	29.0	24.9	25.7	27.2	31.2
1965	31.8	32.8	31.3	31.1	30.5	31.2	30.9	27.0	25.6	24.9	29.7	34.1
1966	38.1	35.2	31.8	32.0	31.6	31.9	30.0	27.8	25.4	25.1	28.8	30.6
1967	32.4	33.1	33.8	31.8	34.2	32.3	30.5	29.1	27.3	-	-	-
1968	-	-	, : -	-	-	. .	-	-		25.4	28.6	31.9
1969	34.9	33.3	33.5	32.7	32.6	32.7	31.0	28.0	25.7	24.1	26.8	32.8
1970	37.5	36.6	31.6	31.6	32.5	32.6	31.7	30.2	26.1	25.3	27.0	••
1971	-		31.9	33.1	32.6	32.4	31.9	30.2	. 	26.1	25.5	30.5
1972	34.3	38.0	35.8	34.2	-	33.6	33.0	32.2	28.6		-	
1973	~	~	-	-	-	-		<u>ب</u>	-		-	-
1974	-	-	-	-	~	-	-	- 4.	-	-	•	~
1975	. **	-	· -	-	-	-	-	-	-	-	-	-
1976	_	-	_	-				-	-	-		
1977	· _		-	-	-			-	-	27.4	27.6	31.4
1978	33.2	30.4	30.7	30.9	32.7	30.8	31.5	27.5		17.0	19.5	-
1979	-	-	-	-	32.0	30.8	29.6	27.3	23.3	23.2	25.8	30.3
1980	33.2	29.5	31.4	31.1	30.5	31.4	29.2	28.3	25.7	-	26.3	30.4
1981	29.9	30.5	33.1	-	-	-	32.1	28.7	24.2	25.0	26.1	29.6
1982	31.2	33.3	31.0	31.7	31.5	31.8	30.8	27.2	24.0	22.7	25.5	30.5
1983	31.9	30.0	32.3	31.7	31.4	30.3	30.3	28.8	23.7	22.4	25.5	31.7
1984	33.9	29.9	31.1	30.9	32.3	30.5	31.0	28.2	24.4	23.7	25.6	31.9
1985	33.2	31.3	32.2	30.5	32.3	30.9	30.8	28.1	25.5	23.7	26.7	32.2
1986	30.3	31.6	32.4	31.5	32.6	30.1	28.9	27.9	24.4	24.1	27.6	29.7
1987	32.1	33.1	32.5	30.4	30.7	30.9	30.5	28.2	25.7	24.9	27.7	30.1
1988	32.3	31.0	31.7	31.8	31.5	31.8	31.4	28.6	26.0	23.1	25.4	30.3
1989	34.6	32.6	32.0	31.0	32.5	30.7	31.4	28.0	23.7	24.2	25.4	27.9
1990	29.5	31.8	31.8	31.8	32,4	31.5	28.7	29.5	26.1	~		-
mean	33.4	32.4	32.1	31.6	32.0	31.6	30.8	28.5	25.3	24.2	26.7	31.0

ÎI - 10

 Table II.2.3
 Monthly Mean Minimum Temperature at Rangpur

Year	Apr.	May	June	July	Aug,	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
1959	-	-			-	-	-			9.8	13.4	16.5
1960	20.8	24.0	25.0	25.9	26.5	25.7	23.0	16.0	13.5	11.8	11.4	17.0
1961	21.3	23.3	25.2	26.2	26.4	25.6	21.9	16.2	10.1	8.9	13.1	15.6
1982	21.8	22.2	24.3	26.2	25.8	25.9	21.8	15.6	11.7	9.8	12.4	16.3
1963	20.5	22.4	25.2	26.1	26.5	26.3	22.5	16.3	13.0	9.0	12.5	18.1
1964	20.8	22.7	24.8	25.5	26.1	25.6	23.8	17.0	10.8	10.0	11.1	13.7
1965	20.0	22.7	25.2	25.8	26.0	25.3	22.0	15.9	11.0	11.1	13.8	16.5
1956	21.2	23.3	24.3	25.5	-	25.0	20.8	16.0	11.7	94	11.3	14.0
1967	17.1	22.0	25.0	25.8	27.7	26.1	22.4	17.1	12.5	· _	-	
1968	-	· ••	-	-	-	-	~	-	· -	7.3	9.7	12.3
1969	18.1	21.4	21.2	26.2	26.3	25.5	21.4	17.1	11.7	9.6	12.0	15.3
1970	19.6	22.8	23.9	24.7	25.5	25.3	21.5	17.0	9,7	9.7	9.6	
1971		:-		-	25.7	24.4	22.0	17.5	•	9.4	10.6	12.6
1972	13.7	14.3	16.7	21.3	- '	21.9	21.3	18.8	12.4	**	<u> </u>	-
1973		-	-	-	· –	-	-	-	-	-	•	-
1974	~	-	-	~	-	-		-		-	-	~
1975	-	-	-	••		-		-	· -	-	-	÷
1976	•	-	-`	-	-	-	-	-	-	-	-	-
1977	. –	-	-		-	•	- ,		-	10.6	13.5	·
1978	20.7	23.8	25.9	26.1	27.1	25.2	23.1	18.2	11.8	12.6	12.5	15.8
1979	20.5	24.3	25.6	25.0	26.0	25.5	22.5	19.2	13.1	10.2	14.0	17.6
1980	23.8	22.3	25.9	26.8	26.3	26.2	22.5	17.3	14.0	-	13.3	16.8
1981	20.0	22.4	25.8	-	-	- :	22.9	16.2	12.6	11.5	12.4	16.2
1982	20.8	23.8	25.4	25.1	26.6	25.8	22.5	16.6	12.3	10.1	10.6	16.1
1983	19.3	22.3	25.0	26.2	26.4	25.3	23.3	16.8	11.8	10.3	12.1	16.5
1984	21.6	22.8	25.7	25.3	26.2	24.2	22.7	15.4	12.0	10.1	12.2	17.6
1985	21.7	22.7	25.2	25.2	26.3	24.8	21.9	15.7	12.6	10.8	11.4	15.4
1986	20.2	21.6	25.0	25.3	25.8	23.7	20.5	16.9	12.9	11.1	13.4	17.4
1987	21.3	23.0	25.6	25.9	25.9	25.4	22.6	17.7	13.6	11.4	14.0	17.9
1988	21.7	23.7	25.6	26.1	26.2	25.4	22.7	17.5	14.1	10.0	11.5	16.2
1989	20.8	23.7	25.1	25.4	26.4	25.1	23.3	16.7	11.8	11.6	13.9	16.5
1990	20.5	23.7	25.6	26.1	26.3	25.2	21.3	17.3	12.6		· •	-
mean	20.3	22.5	24.7	25.6	26.3	25.2	22.3	16.9	12.2	10.2	12.2	16.0

11 - 11

Table 11.2.4 Monthly Mean Temperature at Rangpur

Ŷ	'ear	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
1	959										17.4	21.4	23.0
1	960	29.3	30.0	28.4	28.6	29.4	28.3	27.2	22.3	19.6	18.7	18.1	24.5
1	961	28.1	28.0	28.3	29.3	29.4	28.7	26.6	21.7	16.9	16.2	20.2	24.1
1	962	29.2	26.5	28.3	29.2	28.6	29.4	26.5	22.2	18.8	17.4	21.1	23.4
1	963	26.6	26.9	28.8	28.7	29.1	29.6	26.8	21.9	19.5	16.5	20.1	25.3
1	964	26.7	27.4	28.2	28.1	29.2	28.8	27.4	23.2	17.9	17.9	19.2	22.5
1	965	25.9	27.9	28.3	28.5	28.2	28.3	26.5	21.5	18.3	17.9	21.8	25.3
1	966	29.8	29.2	28.1	28.8	28.9	28.5	25.5	21.9	18.5	17.3	20.0	22.3
1	967	24.8	27.6	29.4	28.8	30.9	29.2	26.6	23.1	19.9	. -	· · ·	· -
1	968	~	-	- -	•	·	-	-	-	~	16.4	18.5	22.1
1	969	26.6	27.4	27.3	29.5	29.5	29.1	26.3	22.5	18.8	16.9	19.4	24.0
1	970	28.5	29.6	27.8	28.2	29.1	29.0	26.6	23.5	18.2	17.5	18.4	•
1	971	-	-	-	-	29.2	28.4	26.9	23.9	-	17.8	18.1	21.6
1	972	23.9	26.2	26.2	27.7	-	27.8	27.2	25.5	20.5	· - ·	4	
1	973	-	-	· _	- '	-	-	-		-	-		·
1	974	-		-	-	-	-	-	-	-	•	•	. –
1	975	- '	-		-	-	-	*		•	-	-	·
1	976		· -	-	: _	-	-	~	-	-	-	-	· 🛥
1	977	-		-	-	-	-		-	· -	19.0	20.6	-
1	978	27.1	27.2	28.3	28.5	29.9	28.0	27.4	22.7	-	15.2	15.9	
1	979	-	· _	-	-	29.0	28.2	25.6	23.2	18.6	16.7	19.7	24.0
1	980	28.6	26.0	28.7	28.9	28.5	29.0	25.9	22.8	19.8	-	19.8	23.6
1	981	25.0	26.4	29.3	-			27.5	22.5	18.3	18.3	19.3	23.0
1	982	26.0	28.6	28.2	29.0	29.1	28.8	26.7	22.0	18.2	16.4	18.1	23.3
1	983	25.9	26.1	28.7	29.0	28.9	27.8	26.8	22.8	17.6	16.3	18.8	24.1
1	984	27.8	26.4	28.4	28.1	29.3	27.4	26.9	21.8	18.2	17.0	18.9	24.8
1	985	27.5	27.1	28.6	27.9	29.3	27.9	26.4	21.9	19.1	17.2	19.0	23.8
1	986	25.3	26.6	28.8	28.5	29.2	26.9	24.8	22.5	18.7	17.6	20.5	23.5
1	987	26.7	28.1	29.1	28.2	28.3	28.1	26.6	23.0	19.7	18.2	20.9	24.1
1	988	27.0	27.3	28.7	29.0	28.8	28.7	27.1	22.9	20.1	16.7	18.5	23.3
1	989	27.8	28.1	28.8	28.4	29.5	28.0	27.4	22.4	17.7	17.9	19.7	22.3
1	990	25.0	27.8	28.7	28.9	29.4	28.3	25.1	23.4	19.4			-
រា	ean	26.9	27.5	28.4	28.6	29.2	28.4	26.6	22.7	18.8	17.3	19.4	23.5

II - 12
Table II.2.5 Monthly Mean Humidity at Rangpur

Year	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
1959			-			·····				77.3	72.9	67.8
1960	50.4	69.9	86.5	87.5	86.6	89.6	83.3	83.0	87.8	83.5	76.0	62.7
1961	63.1	80.1	86.4	85.6	87.6	85.8	87.0	83.3	85.2	81.7	74.5	61.1
1962	60.2	82.7	87.5	85.9	88.6	86.9	83.1	82.0	82.9	77.6	65.8	66.7
1963	71.6	80.9	86.0	89.2	87.9	85.1	84.8	80.6	79.9	74.2	71.5	65.0
1964	75.1	82.0	86.9	89.4	85.4	85.9	85.4	80.1	.77.7	76.5	72.0	67.3
1965	70.2	79.1	86.7	85.5	87.2	85.7	81.3	82.3	79.5	81.2	74.1	61.0
1966	67.0	73.3	86.9	88.2	89.1	87.2	84.6	86.1	83.1	81.0	76.6	75.9
1967	72.8	76.8	79.0	84.0	79.1	83.7	85.7	84.9	85.1	-		-
1968	-	• •	-		-	·		-	· _	82.3	77.7	75.4
1969	76.5	78.3	79.2	85.7	84.4	84.3	84.1	83.7	83.6	85.5	83.6	78.0
1970	75.2	79.0	85.7	87.0	85.3	87.2	89.0	84.5	84.0	86.7	83.7	_
1971	· _	-	89.3	86.8	87.8	87.2	87.8	88.3	97.5	86.2	87.6	80.9
1972	78.8	80.1	82.7	85.8	_	86.3	87.3	88.0	88.6	89.0	84.7	84.7
1973	83.3	84.5	85.4	83.7	82.7	86.7	85.3	86.1	87.7	_	-	_'
1974				_	_	-	- <u>-</u> -	_	-	88.2	87.8	87.5
1975	83.8	85.5	85.2	87.9	89.0	90,9	92.0	91.8	91.7	91.0	90.8	88.0
1976	88.3	87.4	89.4	91.1	89.5	86.7	89.3	92.0	91.7	90.8		
1977	81.8	80.0	83.7	85.3	86.9	87.2	90.2	ŝ	90.6	88.7	88.2	40.3
1978	62.2	82.1	87.1	88.1	81.3	85.2	75.5	76.4	70.1	69.3	61.7	46.4
1979	55.6	65.9	78.4	86.2	81.3	82.1	80.7	79.6	78.7	73.2	67.6	61.9
1980	66.5	79,4	84.0	84.1	85.6	85.9	82.5	72.7	73.3	77.2	68.9	61.0
1981	73.0	80,8	81.1	-		~ .	75,4	71.2	74.5	73.7	64.4	63.2
1982	69.6	74.1	84.1	84.7	82.8	85.2	80.0	76.9	77.5	75.6	65.9	57.3
1983	63.2	81.2	82.2	85.3	83.8	87.1	85.6	80.2	85.9	84.3	73.7	65.2
1984	66.5	85.7	85,8	88.7	84.5	88.7	87.2	79.3	84.3	81.6	77.3	67.0
1985	70.4	80.7	85.1	89.1	85.0	88.0	85.8	82.0	82.6	83.5	71.3	56.0
1986	74.8	78.3	84.7	86.8	84.8	89.7	87.2	84.4	83.3	85.0	82.8	76.1
1987	76.1	80.0	88,1	91.5	88.5	90.5	87.9	86.5	87.5	84.6	78.1	72.0
1988	74.7	83.9	85.4	87.5	89.4	87.9	84.8	80.6	82.6	79.6	71.3	71.3
1989	60.6	78.5	84.3	88.6	84.6	90.3	85.8	84.1	82.5	84.5	76.8	72.9
1990	79.7	83.6	86.8	87.9	86.5	88.3	87.7	79.2	80.2	~	-	-
mean	71.1	79.8	85.0	87.0	85.8	87.0	85.0	82.5	83,4	81.8	76.0	67.9
			÷									

H - 13

Table 11.2.6 Monthly Mean Sunshine Hours at Rangpur

											· · ·	
Year	Apr.	May.	Jun	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
1979	-			-	48.5	64.1	71.4		66.7	81.7	66.2	70.0
1980	75.2	63.4	60.6	53.9	50.9	54.4	.82.4	96.8	88.9	82.5	91.8	78.9
1981	77.3	77.3	84.6	-	-	·	107.8	102.1	83.0	90.9	93.3	93.1
1982	77.8	92.2	39.7	43.5	60.9	59.2	84.4	75.8	67.6	· -	85.8	90.6
1983	67.1	66.0	68.4	53.4	-		62.7	91.5	71.6	-	·	83.7
1984	86.5	39.4	56.4	31.0	56.7	45.9	59.7	-	77.0		-	61.5
1985	70.2		51.4	-	··	55.3	80.1	86.6	70.4	76.4	83.5	77.2
1986	-	-	-	~	· . -	37.2	_	·· _	92.4	78.7	84.8	74.8
1987	78.3	91.2	47.6	27.4	44.5	38.2	68.5	73.9	82.6	76.1	71.9	81.6
1988	-	63.7	53.5	41.5	30.2	49.2	78.5	81.1	79.7	76.2	79.1	76.4
1989	74.9	64.2	58.4	35.4	65.2	34.7	72.2	79.4	69.4	62.0	65.8	72.3
1990	62.6	68.1	48.2	39.0	59.7	53.8	51.7	84.8	77.3	71.1	76.0	79.3
1991	68.9	25.2	33.8	42.9	46.8	-	59.3	78.9	-		· _	
mean	73.9	65.1	54.8	40.9	51.5	49.2	73.2	85.1	77.2	77.3	79:8	78.3
									:			

Table II.2.7 Monthly Mean Evaporation at Rangpur

								•				
Year	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
1982	-	-	-	-	·		~	-	_	-	7.4	5.4
1983	· 		3.7	3.8	· _		. ~	3.3	2.3	2.3	3.3	5.1
1984		4.7	-	~ .	~		3.8	3.4	2.1	2.3	3.1	5.7
1985	7.0	5.9	5.5	6.3	5.7	3.9	3.2	2.8	2.4	2.4	3.7	6.6
1986	5.5	5.6	5.0	4.5	4.8	3.6	3.2	2.6	2.4	2.4	3.5	4.8
1987	5.9	6.4	5.2	4.2	4.0	3.1	3.2	2.9	2.6	2.4	3.5	5.0
1988	5.9	5,5	4.0	4.3	2.8	3.7	3.8	3.4	2.4	2.2	4.4	5.8
1989	7.2	5.7	4.7	4.0	4.6	3.2	4.0	2.8	1.9	2.1	3.0	4.2
1990	4.5	3.9	4.4	4.1	4.8	3.5	3.2	3.2	2.4	2.2	3.7	5.2
1991	5,9	3.6	4.0	4.2	· -				· · ·	. i. i	-	·_
mean	6.0	5.2	4.6	4.4	4.5	3.5	3.5	3.1	2.3	2.3	4.0	5.3

Table II.2.8 Monthly Mean Wind Velocity at Rangpur

Yea	r Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	feb.	Mar.
195	9 -			 _	-		<u> </u>			2.2	2.3	2.9
196	0 3.6	3.3	2.7	2.9	2.8	2.4	2.3	2.4	2.0	2.0	2.4	3.4
196	1 3 3	3.7	2.8	2.6	2.8	2.5	2.2	2.4	2.9	1.7	1.8	2.6
196	2 3.8	3.1	2.5	2.5	2.8	2.4	2.2	2.0	2.0	2.2	2.4	3.0
196	3 3.7	3.4	3.1	2.6	2.9	2.2	2.2	2.4	2.1	2.8	2.5	3.4
196	4 3.2	2.7	3.6	3.2	3.2	2.7	2.9	2.5	2.4	2.1	2.2	2.5
196	5 3.5	3.4	3.5	3.0	3.1	2.3	2.0	2.3	2.7	2.5	2.1	3.1
196	6 2.9	3.1	3.9	2.5	2.6	2.4	2.4	2.1	2.3	2.3	2.8	3.3
196	7 4.3	3.7	2.9	3.5	2.2	2.3	2.4	2.0	2.2	2.2	2.4	3.4
196	68 -	-	-	-	-	-	-	-		-	-	-
196	59 2.9	2.3	2.6	2.6	2.8	2.8	2.4	2.5	2.2		2.6	4.4
197	0 4.0	3.1	2.8	2.5	2.2	2.8	2.4	2.8	-	2.2	3.2	-
197	- n	-	2.5	2.7	3.3	3.2	2.4	3.7	-	2.0	2.2	2.8
197	2 3.2	3.6	2.8	2.5	-	2.3	2.4	2.2	2.0	2.1	2.0	2.5
197	3 3 3	2.2	2.1	2.8	2.1	2.3	2.2	2.4	2.1	2.0	2.0	2.3
197	4 -		-	~	-	-	-	-	· -	~		-
197	5 2.5	2.2	2.1	2.1	3.0	2.3	2.0	2.0	-	~	5.2	4.6
197	6 2:9	2.7	2.9	2.4	2.8	2.2	2.2	2.0		2.1	· -	-
197	7 2.6	2.9	2.1	2.2	2.2	2.0	2.0	-	2.0	2.2	2.0	4.4
197	4.3	4.2	3.3	2.8	3.0	3.4	3.1	3.1	3,0	3.4	4.2	5.6
197	79 4.4	· -	4.8	5.4	4.6	5.0	3.1	2.6	2.8		3.4	
198	30 4.0	3.6	3.5	3.9	3.8	3.4	3.0	3.0	2.4		2.7	4.3
198	31 3.8	3.1	3.4	. -	-	-	~	3.7	2.9	3.7	4.5	4.8
198	32 4.7	4.4	3.9	3.7	5.1	3.0	3.1	-	· _	3.5	3.7	4.4
198	33 4.7	-	3.6	3.5	4.2	3.5	3.8	4.1	3.4	-	3.8	4.8
198	34 4.9	4.5	5.1	4.7	5.5	4.5	-	5.0	4.4	4.3	4.3	6.1
198	35 5.7	5.9	4.6	4.9	5.1	4.4	3.8	4.2	· -	4,0	4.8	5.7
198	36 6.5	4.4	5.4	5.0	4.8	5.1	4.3	4.1	-	3.6	4.3	4.8
198	37 5.6	4.4	4.2	4.6	4.6	3.8	3.3	3.8	4.0	3.5	3.5	4.5
198	38 5.3	5.1	6.2	4.1	4.0	4.0	3.8	5.0	3.7	-	-	•
mei	an 4.0	3.5	3.4	3.3	3.4	3.1	2.7	3.0	2.7	2.7	3.0	3.9
		1.0										

Table 11.2.9 Annual Rainfall Data

		······					
Year	Chil	Kaunia	Kuri	Lalma	Pir	Sundar	Ulipur
	mari		gram	nirhat	gacha	ganj	
1962		2372				1612	1687
1963	· · · _		- .	2194	: 	- -	2717
1964	- -	2216	2260	3195	2293	1974	3006
1965	1721	1434	2143	2183	1624	1729	2423
1966	1751	1817	1937		1799	1764	2178
1967	1695	2126	1891	-	1469	1614	1828
1968	2341	2374	2274	2961	2316	1867	2679
1969	2207	2459	2194	2677	2430	2003	2390
1970	· _	-	~~		-		
1971	· 	·	·	· · <u>-</u>	1483	-	· -
1972	_	_	1864	1592	887	1483	-
1973	3358	3575	3249	3245	2730	2627	2671
1974	3838	4951	3355	4071	2779	2944	2978
1975	1771	2130	1690	2061	1674	1546	1499
1976	1943	1654	2228	1677	1964	1497	1765
1977	2275	2295	2145	2770	1985	2224	2199
1978	1784	1735	1707	2127	1888	1356	1591
1979	1812	2392	2446	2480	1770	1374	2054
1980	1729	1841	1835	1995	2228	2028	2002
1981	1421	2252	1609	2010	2378		1876
1982	_	-	2365	2453	-	**	1965
1983	2290	2267	2378	2107	-	2462	2052
1984	2778	3002	2861	3354	2502	2295	2666
1985	1810	2736	2450	2926	1789	2128	2111
1986	2559	2434	2487	2364	2013	2464	2572
1987	3231	3820	2980	3991	2941	3197	2857
1988	2989	2549	3173		2603	1777	3024
1989	2676	2803	2857	2294	2595	2196	2480
1990	2699	2526	2733	2657	2674	1759	2518
Ave.	2304	2478	2364	2582	2116	1997	2300

Table II.2.10 Annual Maximum Daily Rainfall

:	· :						
Year	Chil	Kaunia	Kuri	Lalma	Pir	Sundar	Ulipur
	mari		gram	nirhat	gacha	ganj	
1961	-	÷		· •	-	-	
1962		181.1	137.2	138.2		132.6	209.6
1963	168.9	. <u>-</u> -	. .	161.5	195.6	-	138.9
1964	· -	119.1	127.2	186.9	210.8	97.8	127.0
1965	139.7	101.6	115.6	142.7	148.6	81.3	118.1
1966	158.8	152.4	152.9	119.4	159.0	81.3	168.9
1967	91.2	251.2	108.2		96.5	241.3	79.8
1968	153.7	191.8	147.3	211.8	172.7	186.7	218.9
1969	222.2	174.0	176.0	234.7	175.3	157.5	304.8
1970	204.5	152.9	157.6	136.1	95.2	180.3	175.3
1971	-	234.5	-		109.2	133.4	
1972	**	-	129.5	114.3	69.8	215.9	
1973	219.7	321.3	235.0	238.8	223.5	208.3	292.1
1974	168.9	281.2	203.2	254.0	215.9	132.1	203.2
1975	86.4	194.6	88.9	137.2	81.8	101.6	117.3
1976	88.9	226.1	279.4	174.0	355.6	142.2	133.4
1977	102.9	121.4	119.4	196.6	127.0	114.3	83.8
1978	99.1	153.7	115.6	121.9	71.6	127.0	148.6
1979	141.0	260.3	284.5	150.6	245.9	88.9	177.8
1980	88.9	148.б	132.1	122.7	171.4	141 7	117.6
1981	121.9	185.4	134.6	154.2	185.4		159.5
1982	· _	177.8	274.3	240.0	-		158.7
1983	116.3	165.1	215.9	139.7	157.5	157.0	114.3
1984	172.2	196.9	156.2	203.2	210.8	142.2	139.7
1985	165.1	218.4	138.4	161.3	151.1	190.5	139.7
1986	242.6	113.0	139.7	171.5	165.1	129.5	119.4
1987	306.1	228.6	180.3	216.4	226.1	228.6	228.6
1988	237.5	138.0	203.2	-	204.0	114.3	129.5
1989	255.0	210.0	220.0	252.0	200.0	200.0	300.0
1990	315.0	215.0	214.0	225.0	140.5	80.0	300.3
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1		

Table 11.2.11 Annual Maximum 5-day Period Rainfall

		· · ·					
Voor	Chil	Kaunia	Kuri	Lalma	Pir	Sundar	Ulipur
ltar	mari	••••	gram	nirhat	gacha	ganj	
	•			·	<u>.</u>		
1962		515.2	316.3	213.8	- 1	241.8	275.9
1963	353.0	-		257.5	323.4	~	429.7
1964	·	307.1	289.0	342.4	339.1	266.7	350.6
1965	297.7	165.1	257.5	345.1	206.8	188.0	294.1
1966	405.4	258.5	314.4	282.2	368.0	350.3	340.3
1967	198.8	394.7	222.9		173.4	343.0	192.4
1968	393.0	309.7	311.2	432.8	351.5	280.7	401.2
1969	452.0	486.4	308.9	422.1	364.6	330.2	500.8
1970	393.7	279.6	305.1	294.3	200.7	340.4	300.1
1971		296.6	-		212.2	212.2	_
1972	. —	-	286.1	200.7	197.3	283.3	
1973	505.0	549.1	584.4	520.7	577.3	-	698.5
1974	582.4	474.8	460.8	462.3	399.0	411.4	432.4
1975	190.5	226.9	217.0	219.8	165.4	179.0	266.2
1976	243.9	288.3	604.5	457.2	870.0	266.7	335.9
1977	290.8	269.0	226.1	416.6	236.6	208.3	220.5
1978	266.0	278.7	248.9	257.1	332.3	177.8	282.1
1979	287.0	459.6	411.5	323.3	334.3	223.5	381.5
1980	213.4	279.4	209.5	264.7	245.1	271.0	179.8
1981	238.8	426.7	246.4	398.3	420.4	-	249.9
1982	:	317.8	391.2	397.7			271.5
1983	271.5	386.1	312.6	226.3	270.2	284.7	252.2
1984	314.5	431.9	328.0	381.4	393.7	272.3	333.3
1985	337.9	401.3	307.3	369.1	276.9	336.6	321.3
1986	593.9	255.3	279.4	338.5	301.0	349.2	377.2
1987	560.5	635.0	457.1	540.3	536.0	523.8	492.8
1988	442.7	458.0	448.0		332.9	285.9	396.3
1989	372.5	415.0	345.0	362.7	350.7	338,0	438.8
1990	426.0	259.5	322.0	425.6	281.5	195.0	387.6
					· · ·	· . 1	

Table II.2.12 Correlation Coefficient of 10-daily Rainfall.

	LAL	KAU	PIR	SUN	KUR	ULI	CHI
 LAL		D.838	0.822	0.808	0.855	0.841	0.796
KAU	0,838		0.825	0.820	0.856	0.839	0.818
PIR	0.822	0.825	_	0.823	0.839	0.858	0.804
SUN	0.808	0.820	0.823		0.842	0.876	0.839
KUR	0.855	0:856	0.839	0.842	· -	0.900	0.869
ULI	0.841	0.839	0.858	0.876	0.900	. –	0.905
CHI	0.796	0.818	0.804	0.839	0.869	0.905	
· · · ·	LAL:	Lalma	nirhat				<u></u>
	KAU:	Kauni	a				
	PIR:	Pirga	cha				
	SUN:	Sunda	rganj				
	KUR:	Kurig	ram				
	ULI:	Ulipu	r				

II - 19 +. i

CHI: Chilmari

Table II.2.13 Monthly and Annual Rainfall at Chilmari (163) mm.

			. *										
Year	Apr.	Мау	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Har.	Total
1962	<u> </u>					· •		_		0.0	0.0	33.0	-
1953	104.1	76.8	755.8	474.9		218.5	÷	_	0.0	0.0	0.0	6.4	
1964	•		~	-	-	-	-	_`	-	-	. - .	-	• ·
1955	2.5	425.4	262.6	402.3	361.2	188.2	58.4	0.0	0.0	19.9	0.0	0.0	1720.5
1966	7.6	375.8	221.3	279.4	612.6	4.1	165.0	0.0	0.0	6.4	0.0	78.4	1750.6
1967	116.9	312.3	323.4	369.6	233.0	225.0	53.3	0.0	0.0	0.0	0.0	61.1	1694.6
1968	55.6	340.1	566.8	637.1	244 4	181.4	253.5	0.0	0.0	3.0	0.0	58.2	2341.1
1969	210.4	516.3	476.2	230.0	455.6	203.3	25.4	26.4	0.0	24.1	31.8	7.6	2207.1
1970	25.9	328.7	1025.5	655.2	20.9	230.6	271.7	0.0	0.0	11.4	· _	-	· _
1971	87.9	81.0	207.6	-	-	-		·	-	-		-	-
1972	· _ `		-	-	121.0	239.3	84.9	2.5	0.0	5.9	29.5	11.0	
1973	40.9	374.3	1139.0	358.9	387.1	683.0	304.1	10.2	3.8	3.8	0.5	52.8	3358.4
1974	140.3	469.8	612.6	1265.8	514.5	728.8	86.2	17.5	0.0	0.0	2.5	0.0	3838.0
1975	169.2	404.0	113.2	447.0	221.0	328.8	81.3	0.0	0.0	0.0	6.4	0.0	1770.9
1976	221.0	301.6	519.4	443.3	342.3	87.5	27.9	0.0	0.0	0.0	0.0	0.0	1943.0
1977	200.7	296.3	745.0	292.7	177.7	147.4	367.8	33.6	7.6	0.0	4.5	2.1	2275.4
1978	71.9	487.5	486.3	320.2	105.7	239.0	57.9	11.2	0.0	0.0	4.3	0.0	1784.1
1979	32.3	101.3	137.6	631.8	394.4	340.3	104.1	8.9	40.6	0.0	17.8	2.5	1811.6
1980	77.9	380.7	415.8	220.5	197.5	280.5	110.5	0.0	0.0	15.3	22.9	7.6	1729.2
1981	118.1	486.4	52.6	460.9	147.3	116.9	8.9	0.0	22.9	0,0	0.0	7.4	1421.4
1982	159.3	60.6	326.0	278.2	: 	-	-		0.0	0.0	0.0	30.5	
1983	30.5	409.7	345.1	504.3	423.6	245.3	262.0	0.0	33.0	20.3	10.2	6.4	2290.4
1984	74.9	340.2	681.9	654.0	172.3	647.9	148.5	0.0	21.6	0.0	21.6	15.2	2778.1
1985	81.5	177.1	435.7	686.4	144.5	213.4	65.0	0.0	δ.1	0.0	0.0	0.0	1809.7
1986	201.4	252.2	308.6	306.4	284.2	412.8	664.1	12.7	18.3	0.0	11.4	86.6	2558.7
1987	90.2	218.7	493.7	922.4	834.4	386.9	157.8	32.0	.1.3	0.0	53.9	39.4	3230.7
1988	101.5	401.8	794.3	734.4	506.7	227.0	33.9	116.8	3.0	32.9	34.5	2.0	2988.8
1989	0.0	682.2	353.0	833.9	86.0	599.5	48.0	0.0	1.5	0.0	23.0	48.4	2675.5
1990	226.6	498.6	482.8	358.9	255.4	322,5	505.5	0.0	0.0	7.2	8.0	33.5	2699.0
Ave.	101.9	338.4	472.4	510.7	301.8	299.9	164.4	. 11.3	6.1	5.6	10.9	22.7	2303.5

Table 11.2.14 Monthly and Annual Rainfall at Kaunia (178) mm

				1. Sec. 1. Sec. 1.	1								
Year	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	. Mar.	Total
1952	0.0	467.1	652.6	211.1	618.1	232.2	175.6	0.0	0.0	0.0	0.0	15.2	2371.9
1963			870.1	-	238.1	340.3	-	-	· ' -	-	~	-	-
1964	103.7	278.6	446.3	616.4	211.3	377.9	181.8	0.0	0.0	0.0	0.0	0.0	2216.0
1965	79.2	345.9	142.2	302.2	412.5	88.9	47.0	0.0	0.0	16.2	0.0	0.0	1434.1
1966	7.6	514.9	268.0	316.1	365.5	156.1	27,5	3.8	0.0	21.6	0.0	135.9	1817.0
1967	3.8	164.7	517.9	692.8	421.7	234,9	77.9	0.0	0.0	4.3	4.8	3.3	2126.1
1968	16.3	237.0	633.3	630.5	191.3	414.3	192.8	0.0	0.0	18.8	0.0	39.4	2373.7
1969	168.6	559.6	423.8	505.4	370,9	286.8	44.1	54.1	0.0	24.9	10.9	9.9	2459.0
1970	80.5	236.5	651.2	607.6	167.7	465.0	101.1	б.1	0.0	8.9	-	-	-
1971	242.4	147.4	775.9	278.7	344.6	194.7	346.8	-	0.0	2.5	22.9	32.0	-
1972	47.7	131.3	-	· _	201.6	159.7	118.0	1.8	0.0	17.8	24.9	11.5	-
1973	44.2	642.9	1155.7	329.3	144.0	616.2	215.8	51.4	0.0	21.3	0.0	54.6	3275.4
1974	189.5	795.1	668.2	1161.6	678.6	1046.0	402.9	0.0	0.0	0.0	8.9	0.0	4950.8
1975	215.4	445.2	98.1	640.1	105.4	424.6	189.8	0.0	0.0	0.0	10.9	0.0	2129.5
1976	332.5	236.3	422.2	531.1	101.9	26.4	3.3	0.0	0.0	0.0	0.0	0.0	1653.7
1977	137.4	346.4	602.0	385.5	360.3	156.5	220.5	54.7	11.5	1.8	3.8	14.5	2294.9
1978	112.0	263.0	448.4	474.6	103.8	312.8	1.5	0.0	0.0	5.8	13.4	0.0	1735.3
1979	30.8	97.7	164.8	581.5	699.5	609.8	153.6	11.4	8.9	0.0	10.7	17.7	2392.4
1980	68.6	304.7	316.2	396.7	463.4	219.8	59.6	0.0	0.0	4.8	0.0	7.6	1841.4
1981	158.4	449.4	134.7	853.3	299.6	349.3	0.0	0.0	4.1	0.0	1.5	1.5	2251.8
1982		44.9	671.9	683.6	338.3	607.5	49.5	· •	-	-	-	-	
1983	41.8	390.0	170.8	821.6	261.6	303.3	251.4	0.0	20.3	5.1	0,0	1.3	2267.2
1984	90.2	238.9	872.7	835.6	242.6	574.3	120.7	0.0	1.3	0.0	5.1	20.3	3001.7
1985	153.6	350.5	817.9	793.7	250.0	272.0	90.2	0.0	7.6	0.0	0.0	0.0	2735.5
1986	212 1	229.8	240.3	424.3	245.1	673.1	325.2	0.0	33.0	0.0	0.0	50.8	2433.7
1987	100.5	342.8	628.7	1554.6	649.0	270.6	180.3	0.0	0.0	0.0	60.9	33.0	3820.4
1988	148.6	304.6	466.2	425.0	730.0	391.5	18.5	55.0	0.0	5.0	5.0	0.0	2549.4
1989	0.0	441.0	475.0	679.2	458.0	458.3	90.0	31.0	0.0	0.0	12.5	157.5	2802.5
1990	179.5	454.0	634.5	189.0	276.0	425.0	325.0	0.0	0.0	25.0	7.0	10.5	2525.5
Ave.	110.0	337.9	513.2	589.7	343.1	368.5	143.2	10.4	3.2	6.8	7.8	23.7	2477.5
1.1.1													

Table II.2.15 Monthly and Annual Rainfall at Kurigram (182) mm

Total	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sep.	Aug.	July	June	May	Apr.	Year
	0.0	27.9	12.7	1.3	0.0	158,5	228.7	56.2	329.5	415.0			1961
· · -	 .	0.0	-	-	0.0	79.2	138.9	528.2	175.1	297.0	505.8	2.3	1962
1. *	. · ••	· –	4	·	-		-		-	-	· ••		1963
2260.2	75.2	19.7	0.0	0.0	0.0	310.9	251.8	141.4	483.5	474.6	434.0	69.1	1964
2142.7	0.0	0.0	5.8	0.0	32.0	47.7	235.3	410,1	443.8	454.1	419.4	94.5	1965
1937.0	168.9	0.0	1.0	11.7	41.7	32.4	180.7	383.8	300.3	263.2	528.7	24.6	1966
1891.3	32.2	0.0	3.8	0.0	0.0	108.4	305.9	236.6	367.1	292.0	417.6	127.7	1967
2273,8	19.6	0.0	11.4	0.0	0.0	242.8	365.3	228.6	546.9	577.6	241.0	40.6	1968
2194.4	7.8	0.0	61,4	0.0	56.9	36.1	194.3	431.8	390.9	457.3	394.8	163.1	1969
-	-		0.0	0.0	0.0	·183.6	314.9	115.9	511.2	739.1	290.8	63.8	1970
ала т.	· ••	-	-	-	-			-		· -	-	-	1971
1864:3	27.9	17.8	0.0	0.0	63.5	114.8	213.3	154.8	373.8	578.0	208.3	112.1	1972
3249.3	85.6	0.0	19.0	7.4	61.0	62.8	597.1	288.5	229.7	1433.7	401.5	63.0	1973
3354.8	2.5	1.3	0.0	0.0	0.0	287.0	583.1	251.3	969.5	665.0	312.6	282.5	1974
1689.5	0.0	0.0	0.0	0.0	0.0	174.1	256.0	137.3	384.0	102.7	473.5	161.9	1975
2227.7	5.1	12.7	0.0	0.0	0.0	0.0	81.3	295.3	767.6	688.3	313.5	63.9	1976
2134.7	0.0	0.0	0.0	2.5	35.6	213,3	149.9	439.4	236.4	591.7	208.1	257.8	1977
1706.5	0.0	3.8	0.0	0.0	0.0	6.3	457.2	44.5	299.7	540.9	227.1	127.0	1978
2445.6	26.7	17.8	0.0	2.5	1.3	157.6	415.3	657.8	786.1	278.6	86.9	14.0	1979
1834.6	40.6	17.8	8.9	0.0	0.0	60.9	380.9	233.7	309.8	239.9	425.3	116.8	1980
1608.8	34.3	0.0	0.0	52.1	0.0	0.0	210.7	274.3	471.2	115.5	368.3	82.4	1981
2364.8	41.9	21.6	3.1	0.0	3.8	62.3	635.0	285.6	403.6	624.7	219,6	63.6	1982
2378.4	2.5	0.0	2.5	25.4	0.0	186.6	354.6	308.9	745.5	350.4	300,7	101.3	1983
2861.4	21.8	14.7	0.0	0.0	0.0	116.7	592.5	144.6	751.9	761.6	378.8	78.8	1984
2450.4	0.0	0.0	0.0	20.3	0.0	73.4	383.8	194.5	695.6	627.2	309.8	145.0	1985
2487.0	55.3	0.0	0.0	12.7	7.6	371.9	562.3	210.0	583.5	333.1	229.8	120.8	1986
2979.9	36.6	67.4	0.0	0.0	0.0	305.7	312.4	606.9	870.2	491.2	165.0	124.5	1987
3172.7	0.0	35.0	13.5	0.0	81.0	16.0	332.7	702.1	686.3	666.7	488.6	150.8	1988
2856.8	146.5	33.5	0.0	0.0	0.0	24.0	672.6	93.6	890.8	492.8	503.0	0.0	1989
2732.8	25.0	0.0	7.0	0.0	0.0	352.0	459.8	289.0	156.5	816.1	399.4	228.0	1990
2364 0	32.9	10.8	5.6	5.0	13.7	135.2	352.4	290.9	505.7	513.1	342.7	105.2	Ave

Table II.2.16 Monthly and Annual Rainfall at Lalmonirhat (183) mm

Year	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1962		469.4	485.0	211.9	545.4	191.3	49.8	0.0	0.0	0.0		21.6	<u></u>
1963	203.1	280.9	427.5	596.4	331.7	235.3	70.0	20.3	0.0	0.0	0,0	29.0	2194.2
1964	78.4	464.9	650.5	864.7	322.1	515.6	237.3	0.0	0.0	0.0	24.6	36.8	3194.9
1965	50.8	410.3	291.8	573.1	521.8	191.7	25.0	0.0	0.0	18.1	0.0	0.0	2182.6
1966	0.8	-	306.0	414.9	421.0	244.2	73.1	19.8	0.0	0.0	0.0	147.5	-
1967		· _	· _	. <u>~</u>	•••	-	-	-	-	-		-	-
1968	29.0	186.0	797.9	596.9	566.4	475.0	273.2	0.0	0.0	9.6	0.0	27.1	2961.1
1969	160.7	531.9	545.0	675.0	362.0	275.9	21.3	56.4	~ * 0.0	33.3	15.5	0.0	2677.0
1970	116.5	314.2	548.5	749.7	143.5	286.3	109.2	0.0	0.0	4.5	- '	· -	-
1971	. 		-	-	-	. ~	-	·_	-	-		-	-
1972	70.0	119.9	343.1	707.2	144.8	63.5	77.0	0.0	0.0	25.4	2.5	38.5	1591.9
1973	64.6	405.2	1253.5	208.3	243.8	665.5	226.1	63.5	0.0	0.0	0.0	114.3	3244.8
1974	215.9	533.5	670.6	990.7	984.2	527.2	105.4	15.2	0.0	0.0	0.0	27.9	4070.6
1975	294.6	473.7	228.7	618.5	217.5	195.9	31.9	0.0	0.0	0.0	0.0	0.0	2050.8
1976	41.9	41.8	349.8	756.2	397.3	74.7	15.2	0.0	0.0	0.0	0.0	0.0	1676.9
1977	169.5	212.5	659.9	474.8	602.6	187.8	383.1	53.3	3.3	0.0	5.1	17.8	2769.7
1978	173.5	364.6	530.0	595.9	88.6	372.9	0.0	0.0	0.0	0.0	0.5	1.0	2127.0
1979	16.3	112.4	312.2	621.9	594.1	561.1	199.4	21.6	0.0	0.0	3.8	37.6	2480.4
1980	104.9	330.7	263.5	212.5	645.4	293.5	90.5	0.0	0.0	5.5	34.8	13.2	1994.5
1981	102.4	507.2	104.8	584.5	358.6	245.4	0.0	0.0	44.7	0.0	0.0	62.0	2009.6
1982	67.8	198.5	474.4	657.6	296.7	678.2	54.6	ρ.0	0.0	0.8	6.9	17,5	2453.0
1983	96.7	464.2	224.3	518.9	247.6	265.2	235.4	0.0	23.6	10.1	0.0	20.8	2105.8
1984	152.9	387.1	737.4	585.4	203.1	922.6	301.0	0.0	5.6	0.0	30.1	28.7	3353.9
1985	278.2	417.4	447.9	963.5	368.1	357.7	74.5	0.0	18.3	0.0	0,0	0.0	2925.6
1986	102.8	265.2	377.8	482.6	452.8	299.4	265.8	14.8	22.1	0.0	13.2	67.9	2364.4
1987	95.3	309.8	859.3	1107.3	834.8	232.4	435.1	8.4	0.0	0.0	69.8	37.6	3990.8
1988		, , 	•	-	-	-	-	**	÷	-	-	-	
1989	0.0	443.4	408.9	637.0	252.0	431.0	16.0	15.0	10.2	0.0	0.3	80.0	2293.8
1990	115.4	305.6	739.5	208.3	345.0	434.8	382.3	0.0	0.0	29.0	22.2	75.0	2657.1
Ave,	112.1	342.0	501.5	600.5	407.3	354.8	144.4	11.1	4.9	5.2	9.6	36.1	2581.8
		· .				. •	•					· -	

Table 11.2.17 Monthly and Annual Rainfall at Sundarganj (178) mm

•	Year	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
	1962	3.0	414.3	419.1	324.7	205.5	125.7	75.0	0.0	0.0	0.0	0.0	44.4	1611.7
	1963	92.0	317.6	565.3	~	176.5	167.7	137.9	17.8	0.0	0.0	8.9	8,9	
	1964	54.6	276.2	458.5	511.6	217.2	179.0	276.9	0.0	0.0	0.0	0.0	0.0	1974.0
	1965	0.0	315.0	274.3	280.7	514.5	313.7	30.5	0.0	0.0	0.0	0.0	0.0	1728.7
	1966	50,8	517.8	175.7	310.8	532.0	24.1	2.5	4.3	0.0	0.0	0.0	145.8	1763.8
	1967	25.4	383.6	260.4	256.5	235.0	364.5	55.9	0.0	0.0	0.0	0.0	33.0	1614.3
	1958	62.2	389.8	488.8	448.1	0.0	389.5	0.0	0.0	0.0	0.0	0.0	88.8	1867.2
	1969	127.0	397.5	496.3	373.6	356.6	216.0	0.0	2.5	0.0	21.6	11.4	0.0	2002.5
	1970	29.3	340.2	784.5	723.1	141.0	360.6	264.2	2.5	-	-	~	× 4	-
	1971	188.4	394.9	445.8	220.9	103.8	293.4	181.7	-		-	-	40.6	· _
	1972	20.3	48.4	425.8	450.9	158.9	290.6	28.0	0.0	0.0	0.0	31.8	17.8	1482.5
	1973	144.9	416.6	868.7	143.0	290.9	683.2	80.0	0.0	0.0	0.0	0.0	0.0	2627.3
	1974	152.4	408.8	487.7	950.9	347.8	438.2	158.7	0.0	0.0	0.0	0.0	0.0	2944.5
	1975	202.0	371.0	135.9	374.6	139.7	297.2	15.3	0.0	0.0	0.0	10.0	0.0	1545.7
	1976	114.3	133.4	441.8	395.3	239.9	171.5	0.0	0.0	0.0	0.0	0.0	0.0	1497.2
	1977	159.3	425.9	562.6	299.1	346.6	129.6	298.4	1.3	1.3	0.0	0.0	0.0	2224.1
	1978	110.4	341.6	426.7	278.1	12.8	186.6	0.0	0.0	0.0	0.0	0.0	0.0	1356.2
	1979	1.3	124.4	133.3	470.9	336.3	272.8	0.0	0.0	31.7	0.0	0.0	3.3	1374.0
	1980	81.0	288.0	504.6	240.7	442.8	272.7	111.8	0.0	0.0	44 4	11.4	30.5	2027.9
	1981	-	-	~			-	•	-	-		-		· _ `
	1982	-	-	~		-		. •		-	-	· ·		
	1983	0.0	375.0	503.0	515.7	361.6	389.0	302.2	0.0	15.2	0.0	0.0	0.0	2461.7
	1984	53.3	335.3	525.1	617.4	72.6	495.4	175.3	0.0	5.1	0.0	2.5	12.7	2294.7
	1985	35.5	226.0	366.5	783.1	368.4	236.5	110.6	0.0	1.3	0.0	0.0	0.0	2127.9
	1986	240.1	246.0	334.2	362.0	299.7	410.3	486.0	0.0	38.1	0.0	10.2	36.9	2463.5
	1987	63.5	146.1	423.1	956.3	873.0	398.7	214.8	19.1	0.0	0.0	53.8	48.8	3197.2
	1988	55.9	101.1	432.9	341.8	457.3	261.8	0.0	103.3	0.0	0.7	22.0	0.0	1776.8
	1989	0.0	513.5	313.5	920.0	72.0	347.3	13.0	0.0	0.0	0.0	0.7	16.0	2196.0
	1990	136.0	348.0	356.0	187.0	300.0	202.2	230.0	0.0	0.0	0.0	0.0	0.0	1759.2
	Ave,	81.5	318.4	430.0	451.5	281.9	293.3	120.3	5.8	3.7	2.7	δ.5	20.3	1996.6
														1. A.

Table II.2.18 Monthly and Annual Rainfall at Ulipur (222) mm

÷													
Year	Apr.	Hay	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Total
1962	0.3	463.4	443.1	198.5	343.3	91.4	72.1	0.0	0.0	0.0	0.0	74.8	1686.9
1953	176.9	459.1	593.2	877.2	338.4	138.9	82.3	22.6	0.0	0.0	25.4	2.5	2716.5
1964	66.0	354.0	762.4	694.2	344.5	350.1	381.5	0.0	0.0	0.0	19.5	34.2	3006.4
1965	86.9	466.3	258.8	501.4	611.5	330,9	75.7	14.0	10.2	61.2	0.0	5.9	2422.8
1966	0.0	605.7	203.8	450.3	544,8	110.1	108.5	50.8	0.0	5.3	0.0	98.6	2177.9
1967	140.9	353.5	272.3	336.6	317.5	304.3	74.1	0.0	0.0	0.0	0.0	28.4	1827.6
1968	47.0	213.2	670.9	727.6	289.6	353.3	305.8	0.0	0.0	8.1	0.0	63.3	2678.8
1969	171.2	583.5	597.5	395.6	430.9	171.6	22.5	0.0	0.0	12.2	4.6	0.0	2389.8
1970	79.7	285.6	803.1	563.9	169.5	209.5	221.2	11.0	0.0	15.4	0.0		-
1971	-	-	'	-	-		-	-	-	-	-	-	
1972	· - '	-	514.0	562.9	88.0	231.9	99.9	0.0	0.0	8.6	19.8	21.8	-
1973	39.6	326.6	763.4	273.0	249.2	774.0	78.8	6.6	6.9	20.3	0.0	132.1	2670.5
1974	243.4	264.9	704.7	1023.0	240.2	354.7	146.6	0.0	0.0	0.0	0.0	0.0	2977.5
1975	140.2	399.4	87.1	380.2	116.1	312.6	54.4	0.0	0.0	0.0	9.1	0.0	1499.1
1976	55.4	186.5	453.3	656,6	323.1	85.0	0.0	0.0	0.0	0.0	5.3	0.0	1765.2
1977	163.3	276.8	684.4	293.0	239.2	182.6	311.7	30.5	5.1	0.0	0.0	12.7	2199.3
1978	99.5	278.0	428.5	421.8	108.6	235.2	5.6	0.0	0.0	4.1	7.1	3.0	1591.4
1979	52.8	109.2	142.6	720.5	451.7	412.4	62.0	14.0	44.5	0.0	19.0	24.7	2053.5
1980	142.0	419.8	340.9	299.5	310.3	290.1	119.9	0.0	0.0	7.7	33.5	38.1	2001.8
1981	98.3	471.6	52.9	573.5	289.9	297.0	0.0	0.0	31.7	0.0	0.0	61.5	1876.4
1982	168.7	129.7	492.3	413.7	341.3	334.4	59.7	3.0	0.0	4.1	0.0	17.8	1964.7
1983	29.8	316.8	332.8	507.4	318.2	264.3	227.4	0.0	41.9	7.9	0.0	5.3	2051.8
1984	75.7	289.6	684.6	790.0	124.9	517.3	153.9	0.0	8.9	0.0	0.0	21.0	2665.9
1985	131.3	170,6	504.9	683.1	215.8	302.6	94.7	0.0	7.6	0.0	0.0	0.0	2110.6
1986	123.4	227.3	399.8	355.9	356.1	524.4	441.4	20.3	14.0	0.0	3.8	105.6	2572.0
1987	88.1	248.6	357.8	917.4	652.1	274.5	191.0	8.1	0.0	0.0	83.1	36.6	28 57.3
1988	124.2	303.2	698.2	646.8	605.7	477.4	11.1	99.7	0.0	16.6	41.4	0.0	3024.3
1989	0.0	577.0	259.4	1005.1	66.0	504.0	17.0	0.0	0.0	0.0	9.8	41.2	2479.5
1990	182.8	421.1	392.9	285.5	308.3	476.6	430.8	0.0	0.0	3.2	14.0	3.2	2518.4
Ave.	101.0	340.8	460.7	555.5	314.1	318.3	137.5	10.0	6.1	δ.2	10.6	30.8	2299.5

Table H.2.1	9 Annual	Maximum	Water	Level	(m/PWD)
-------------	----------	---------	-------	-------	---------

anautia tarak terresean	•	Baha	Chilmari	Noonkawa	Year
bad Simulbari					
19.475 - 26.485 29.575		19			1960
18.905 - 29.362		18		-	1961
19.990 30.430 27.020 29.606	-	19	25.065	28.065	1962
29.438	· · ·				1963
19.840 - 26.700 29.377	-	19		27.710	1964
19.690 30.575 26.610 -	~	19	23.245	27.585	1965
19.615 32.755 26.350 29.980	· . · · · · -	19	23.805	27.445	1966
19.495 30.648 26.320 29.529		19	23.965	27.385	1967
19.795 30.891 26.525 30.520	• <u> </u>	19	24.040	27.525	1968
19.840 29.962 25.870 29.444	· – .	19	23.785	27.580	1969
20.195 29.970 26.275 29.691	. .	20	24.185	27.875	1970
18.745		18	24.075	27.110	1971
19.980 30.115 27.035 29.802		19	24.090	27.935	1972
19.880 30.410 26.195 30.145	-	19	23.880	27.790	1973
20.255 30.540 26.715 29.926		20	24.460	27.985	1974
19.600 31.135 26.515 30.017	· · · ·	19	23.775	27.545	1975
19.865 30.968 26.305 30.099	· · - · ·	19	23.895	27.630	1976
19.990 30.937 26.182 30.136	-	19	24.110	27.768	1977
19.630 30.989 25.832 29.992	22.510	19	23.677	27.411	1978
19.782 30.617 26.365 30.225	23.090	19	-	27.315	1979
20.102 31.196 26.579 30.023	23.800	20	24.245	27.935	1980
19.480 30.785 26.579 30.157		19		27.295	1981
19.420 30.850 26.480 29.986		19	-		1982
19.930 31.440 26.620 30.130		19	24.105	26.710	1983
20.110 31.740 27.380 30.080	-	20	24.260	26,450	1984
19.620 31.130 26.745 30.050	-	19	23.925	26.510	1985
19.150 30.730 25.910 29.990	- 	19	23.440	26.195	1986
19.710 32.050 27.500 30.470	-	19	24.560	26.700	1987
20.620 31.200 27.410 30.430		20	25.060	28.100	1988
19.580 30.970 26.330 30.200	·	19	23.575	26.110	1989
19.390 30.530 25.900 30.100		19	23.690	25,990	1990

Table II.2.	.20 Annual	Minimum	Water	Level	(m/PWD)
-------------	------------	---------	-------	-------	---------

Year	Noonkawa	Chilmari	Bahadura	Taluk	Kurigram	Kaunia	Haripur
an a			bad	Simulbari			
						· · · · · · · · · · · · · · · · · · ·	
1960	-4'	-	12.220	26.575	21.775	26.436	-
1961	-		11.950	-	-	26.603	
1962	21.640	16.425	12.405	26.850	22.035	26.722	-
1963	-	-		-	-	26.829	-
1964	21.900	-	12.970	· _	22.325	27.045	-
1965	21.715	16.385	13.165	27.024	22.050	- .	
1966	21.730	16.595	13.235	26.775	21.960	27.195	
1967	21.395	16.625	13.300	26.761	22.295	27.426	·
1968	21.580	16.795	13.410	26.899	22.235	27.304	-
1969	21.350	16.505	13.135	26.770	22.815	25.963	-
1970	21.275	16.580	13.030	26.740	22.370	27.243	·
1971	21.290	16.490	13.000		22.310		-
1972	21.320	16.915	13.045	27.438	22.310	27.789	~
1973	21.975	17.070	13.365	26.930	22.420	27.493	-
1974	21.775	16.915	13.350	27.005	22.615	27.594	· ••
1975	21.700	17.000	13.010	27.080	22.570	27.640	-
1976	21.870	16.720	12.885	26.868	22.235	27.752	-
1977	21.611	16.313	13.015	26.883	22.327	27.871	-
1978	20.970	16.017	13.015	27.280	22.311	27.859	20.102
1979	21.290		13.259	27.264	22.540	27.830	19.895
1980	21.710	17.175	13.244	27.233	22.189	27.789	19.825
1981	21.230	-	13.040	26.640	22.129	27.962	
1982	20.700	·	13.120	27.215	22.570	27.270	-
1983	20.915	16.630	13.050	27.190	22.390	27.470	-
1984	20.350	17.345	13.480	27.820	22.360	27.560	-
1985	20.260	17.625	13.240	27.840	22.470	27.835	-
1986	20.260	17.265	13.150	27.530	22.195	27.480	~
1987	19,990	17.355	13.380	27.520	22.190	27.540	
1988	20.170	17.650	13.680	27.380	22.115	27.370	-
1989	19.980	17.575	13.660	27.300	22.100	27.570	i entr
1990	20.020	17.610	13.350	27.250	21.980 .	27,670	
and the second second		•	·				

.

Table II.2.21 Monthly Mean Water Level at Kurigram (No.77) (m/PWD)

Year	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
			<u> </u>			<u> </u>				0.000	01 012	21 025
1960	21.923	22.103	23.570	25.105	24.359	25.233	23.545	.22.484	22,169	21.999	21.913	21-825
1961	-	-	•*	~	~	•	-			· 3	-	
1962	22.074	22.659	24.176	25.145	25,908	25.067	23.844	23.262	22.831	-		
1963	_	7	-	-	-	-	-	~	-	*	-	-
1964	22.629	22.987	24.251	25.711	25.383	25.122	23.865	23.141	22.776	22.509	22.405	22.350
1965	22.431	22.651	23,760	24.944	25.690	24.900	23.676	23.274	22.861	22.517	22.241	22.091
1965	22.009	22.271	24.111	25.254	25.442	25.236	23.652	23.167	23.062	22.940	22,813	22.798
1967	22.715	23.209	99	25.436	24.094	23.918	23.653	23.039	22.806	22.613	22.443	22.354
1958	22.275	22.791	23.997	25.444	24.622	24.468	24.646	24.104	23.407	23.176	23.029	22.942
1969	22.923	23.392	24.325	25.156	24.706	24.775	24.237	23.779	23.533	23.350	23.146	23.067
1970	23.091	23.242	24.613	25.338	25.017	24.815	24.106	22.978	22.603	22.497	22.448	22.402
1971			•.	-	-	-		-	-	22.544	22.471	-
1972	22.449	23,191	24.577	25.346	24.916	24.641	23.867	23,295	23,002	22,876	22.765	22.727
1973	22.507	23.186	25.146	24.693	25.282	24.629	24.230	23.424	22,997	22.849	22,132	22.622
1974	22.978	23.802	24.581	25.744	25.085	25.619	24.645	23.307	23.026	22.877	22.746	22.665
1975	22.617	22.745	23.777	25.295	24.874	25.114	24.366	23.284	22,982	22.834	22.761	22.653
1976	22.613	23.258	24.452	25.527	25.255	24.227	23.434	22.913	22.746	22.534	22.394	22.287
1977	22.696	23.078	24.559	25.037	25.410	24.733	24.128	23.143	22.742	22.723	22.689	22.566
1978	22.484	22.841	23.847	28.306	24.630	24.691	24.002	23.364	23.077	22. 928	22.827	22.692
1979	22.628	22.922	22.889	24.870	25.105	25.419	24.756	23.432	23.205	22.869	22.702	22.651
1980	22.543	22.940	24.177	25.052	25.757	24.978	24.056	23.125	22.723	22.512	22.388	22.252
1981	22.299	22.687	23.160	25.613	25.720	25.285	23.785	23.106	22.872	22.712	22.602	22.555
1982	22.677	22.800	23.877	25.831	24.581	24.808	23.759	23.247	22.992	22.819	22.720	22.642
1983	22.503	23.217	24.169	~ .	24.892	25.585	24.172	23.172	22.852		-	22.438
1984	22.468	23.553	25.110	26.030	24,965	25.805	24.488	23.790	23.421	23.150	22.985	22.852
1985	22.660	23.087	24.664	25.899	24.920	25,127	24.181	23.219	22.957	22.867	22.658	22.534
1986	22.505	22.867	23.670	24.875	24.541	24.911	23.919	22.802	22.489	22.288	22.216	22.295
1987	22.312	22.673	23.698	25.523	25.556	24.905	23.935	22.936	22.547	22.380	22.288	22.274
1988	22.264	22.762	23.571	25.206	25.647	25.119	23.487	22.556	22.441	22.298	22.273	22.207
1989	22.134	22.568	24.429	25.273	24.567	25.067	23.943	22.823	22.486	22.361	22.289	22.245
1990	22.376	23.061	24.666	25.213	25.025	24.879	24.423	22.888	22.462	22.308	22.133	22.028
Mean	22.492	22.948	24.142	25.440	25.070	24.967	24.029	23.180	22.860	22.681	22.561	22.482
								1				

11 - 28

Table II.2.22 Monthly Mean Water Level at Talkshimulbari (No.76) (m/PWD)

Year	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
1960	· •			-					26.853	26.747	26.683	26.631
1961	, - .	-	-		6 -	. - .	-		- ·	-	-	-
1962	26.872	27.330	28.404	28.297	28.921	28.425	27.409	27.029	26.918	-	-	-
1963		-	-	-	· -	-	-	- ·		-		
1964	¹	-	-	-	-	••	-	-	-	-	-	
1965	27.132	27.412	28.165	28.981	29.655	28.810	27.635	27.406	27.183	27.106	27.061	27.044
1966	27.049	27.050	28.279	29.368	29.524	28,900	27.624	27,155	27.019	26.932	26.842	25.844
1967	26.812	27.223	28.637	29.436	28.322	28.381	28.071	27.356	27.216	27.102	27.031	26.992
1968	26.940	27.456	28.228	29.526	28.934	28.948	28,728	27.778	27,603	27.483	27.409	27.396
1969	27.395	27.773	28.538	29.094	28.518	28.284	27.543	27.150	27.035	26.962	26.902	26.818
1970	26.835	27.089	28.197	28.876	28.623	28.455	28.077	27.415	27.241	27.165	-	-
1971	-	-	-		-	-	-	-	-	-	_	
1972	27.698	28.028	28.909	29.421	28.641	28.791	28.140	27.701	27.605	27.547	27.504	27.470
1973	27.452	27.836	29.045	28.623	29.013	28.278	27.980	27.503	27.288	27.220	27.100	26.986
1974	27.132	27.725	28.003	29.066	28.940	28.827	27.943	27.685	27.434	27.354	27.269	27.158
1975	27.165	27,485	28.730	29.749	29.060	29.533	28.680	27.865	27.566	27.455	27.438	27.334
1976	27.321	28.122	29.055	29.653	29.554	28.889	28.147	27,500	27.211	27.047	26.946	26.889
1977	27.394	27.952	28.965	29.385	29.862	29.089	28,592	27.768	27.480	27.443	27.467	27,458
1978	27.558	28.046	28.952	29.750	28.914	28.968	28.307	27,819	27.533	27.412	27.383	27.321
1979	27.331	27.764	27.726	29.086	29.289	29.525	28.901	27.833	27,800	27.629	27.539	27.451
1980	27,438	27.790	28,787	29.324	29:800	29.097	28.375	27.788	27.532	27.410	27.324	27:236
1981	27.359	27.747	28.375	29.764	29.535	29.133	27.666	27.119	26.981	26.944	26.869	26.700
1982	26,865	27.088	28.303	30.047	28.819	29.171	28.181	27.811	27.700	27.479	27.316	27.237
1983	27,235	28.134	28,995	30.310	29.356	30.197	28,809	28.240	28.104	28.041	27.955	27.870
1984	27.911	28.534	29.310	30.342	29.506	30.372	29.388	28.787	28.453	28.352	28.311	28.223
1985	28.238	28.506	29,515	30.395	29.558	29.640	29.032	28.451	28.204	28.080	27,969	27.886
1986	27.880	28.151	28.780	29.573	29.448	29.690	28.855	28.088	27.811	27.681	27.591	27.609
1987	27.616	27.944	28.741	30.090	30.008	29,493	28.689	28.064	27.776	27.648	27.587	27.565
1988	27.590	27, 904	28.348	29.676	29.962	29.664	28,500	27.661	27.530	27.498	27.460	27.414
1989	27.344	27.780	29.514	29.745	29.246	29.708	28.720	28.089	27.674	27.514	27.432	27.444
1990	27.594	28,119	29.089	29.471	29.481	29.353	28.851	28.044	27.838	27.782	27.588	27.327
Hean	27.352	27.769	28.676	29.502	29.250	29.139	28.340	27.735	27.504	27.424	27.359	27.292

Table 11.2.23 Monthly Mean Water Level at Kauma (1882)	Table	[1.2.23 Monthly	/ Mean	Water	Level	at	Kaunia	(No.294)	(m/PWI))
--	-------	-----------------	--------	-------	-------	----	--------	----------	--------	----

~	Year	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	flar.
-			01 131	20 204	28 876	28 522	78,759	27.977	27.046	26.720	26.590	25,588	26.619
	1960	20.722	27.13/	20.294	20.070	28 017	28.586	28.116	27.208	26.895	26.721	26.733	26.819
	1961	20,810	27.332	20,200	20.004	20.517	28.710	27.931	27.389	27.140	26.939	26.765	26,864
	1952	20,997	27.525	20.505	20.703	78 942	28.516	28,196	27.728	27.368	27,169	27.177	27.163
	1963	27.129	27.079	20.391	29,040	28.806	28 687	28.157	27.527	27.262	27.125	27.080	27.184
	1964	27.532	21,009	20.470	20.331	-		_	-	-	-	-	-
	1965	-	~. 07.062	20 610	20 000	20 304	20 059	28.242	27.607	27.300	27,263	27.275	27.450
	1966	27.410	27.805	20.010	20.000	23,304	28 786	28,403	27.846	27.728	27.647	27.540	27.721
	1967	27.613	28,158	~ ••• •••	20.929	20.003	28 002	28 722	27,833	27.600	27.499	27.369	27.421
	1968	27.841	28.176	28,033	29.130	29.03/	20.332	27 328	26.506	26.156	26.017	26.860	27.187
	1969	27.594	28.028	28.819	29.041	20.940	20.005	28 515	28,042	27.835	27.669	27.690	
	1970	27.569	28.076	28.903	29.328	29.000	20,030	10.315	-			_	••
	1971	-	-	-	~	-		- 28 500	28 259	27,986	27.898	27.819	27.973
	1972	-	28.707	28.934	29.117	29.154	20,990	20,005	20,205	27.727	27.615	27.521	27.583
	1973	28.215	28.555	29.175	28.980	29.200	29.007	- 20 008	28 085	27 741	27 640	27.710	27.740
	1974	27.954	28.498	28,970	29.502	29.200	29.222	20.990	20.003	27 027	27 792		_
	1975	27.911	28.514	29.092	29.518	29.285	29.001	20,090	20.117	28 106	27 080	27 808	27:850
	1976	28.190	28.677	29,293	29.5/1	29.084	29.200	20.010	20.317	28 146	28 003	27 925	27, 923
	1977	28.395	28.765	29.377	29.628	29.790	29.440	29.143	20 215	20.140	28 013	27 965	27 918
	1978	28.290	28.885	29.504	29.653	29.525	29.302	20.024	20.312	20.102	20.013	27 883	28 074
	1979	28.163	28.605	28.905	29.616	29.582	29.3/1	20.992	20.230	20.177	27 002	27.003	20.074
	1980	28.380	28.689	29.314	29,569	29,602	29.379	28.805	20.234	20,021	27.903	27.003	27.327
	1981	28.177	28.634	28.955	29,549	29.495	29.280	28.000	28.317	20.137	20.020	20.000	20.101
	1982	28.457	28.610	29.212	29.627	29.352	29.264	28.304	27.700	27.400	27,305	. 27. 323	27.407
	1983	27.932	28.647	29.051	29.509	29.164	29.394	28.520	27.814	27.604	27.5/4	27.531	27.582
	1984	27.724	28,411	29.153	29.557	29.078	29.371	28,587	28.142	29.492	27.758	27.808	27.948
	1985	28.155	28.390	29.133	29,606	29.160	29.298	28.745	28.266	28.004	27.917	27.849	27.881
	1985	28.075	28.342	28.840	29.335	29.080	29.222	28.728	28.074	27.885	27.736	27.662	27.823
	1987	28.079	28.348	28.908	29.415	29.431	29.366	28.777	28.276	27.890	27,670	27.608	27,760
	1988	27.986	28.450	28.819	29.411	29.702	29.200	28,415	27.757	27,554	27.453	27.426	27.531
	1989	27.741	28.287	29.084	29.333	29.119	29.300	28.620	28.064	27.744	27.663	27.661	26.918
	1990	28.054	28.425	29.137	29.370	29.123	29.118	28,746	28.148	27.915	27.893	27.805	27.857
	Mean	27.826	28.286	28.930	29.294	29.219	29.107	28.528	27.886	27.714	27.533	27475	27.570
						19 C.							

Table 11.2.24 Monthly Mean Water Level at Noonkawa (No.45) (m/PWD)

Year	Apr.	Мау	June	Jujy	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Har.
1962	22.137	23.531	25.469	26.364	27.133	26.210	24.134	22.882	22.233	-		~
1963	÷	-	-	~	~	~	-	~ :	-	-	-	-
1964	22.778	23.430	25,093	26.849	26.562	25.998	24.468	23.195	22.442	28.511	21.978	21.959
1965	22.603	23.793	25.347	26.332	26.729	25.849	23.898	23.061	22.207	21.946	21.796	21.951
1966	22.626	23.426	25.640	26.316	26.697	26.269	24.052	22.612	22.278	21.922	21.769	22.021
1967	22.294	23.311	25.011	26.723	25.475	25.148	24.705	22.806	22.089	21.693	21.462	21.687
1968	22.388	23.752	25.782	27.030	25.907	25.780	24.944	22.872	22.180	21.836	21.664	21.742
1969	22.214	23.326	25.339	26.885	26.194	25.918	23.665	22.368	21.782	21.445	21.391	21.829
1970	22.731	24.429	25.821	26.958	26.751	25.751	25.081	22.754	21.539	21.330	21.294	21.305
1971	21.878	23.440	25.715	26,471	26.437	25.070	in .	_'	-	-	21.404	21.369
1972	22.041	24.093	25.652	26.489	26.191	25.911	24.485	22.838	21,987	21.616	21.407	21.874
1973	22.894	24.479	25.260	25.788	26.495	25.319	24.523	23.066	22.544	22.304	22.120	22.325
1974	22.972	24.501	25.816	27.486	26.814	26.865	24.983	23.492	22.712	21.835	21.871	21.966
1975	22.746	23.850	25.195	26.688	26.482	26,461	25.422	23.613	22.677	22.113	21.937	22.093
1976	22.274	23.307	25.368	26.669	26.253	25.654	24.266	23.266	22.765	22.297	22.070	22.509
1977	23.737	25.075	26.720	26.955	27.437	26.394	25.169	23.172	22.190	21.743	21.556	21.701
1978	22.230	23.256	25.313	26.518	26.288	25.524	24.248	22,574	21,958	21.402	21.123	21.112
1979	22.022	23.551	23.849	26.553	26.273	26,140	25.647	23.498	22.873	22.244	22.123	22.367
1980	23.199	24.547	25,687	26.535	27.113	26.078	25.122	23.254	22.488	22.035	21.869	21.913
1981	22.558	23.352	24.511	26.886	26.468	26.060	24.377	22.585	21.803	21.450	21.268	21.364
1982	-	-				-	-	-	-	-	-	-
1983	22.496	23.465	24.074	25.780	24.862	25.481	23.966	21.845	21.055	20.942	20.927	20.851
1984	21.545	22.947	24.499	25.406	24.541	24.910	23.362	22.062	21.587	21.502	21.416	21.740
1985	22.584	23.014	24,363	26.002	24.977	25.082	23,439	21.559	20,882	20.539	20.398	20.607
1985	21.452	22.350	23.414	25.045	24,680	25.326	23.847	21.885	21.135	20.628	20.345	20.627
1987	21.701	22.256	23.809	25.737	25.808	25.241	23.812	21.645	20.754	20.240	20.086	20.044
1988	21.443	23.001	24.652	25.901	26.107	25.553	24.519	21.782	20.924	20.306	20.346	20.584
1989	21.543	22.827	24.445	25.416	24.342	24.574	23.092	21.595	15.884	20.111	20.252	20.445
1990	21.748	22.945	24.966	25.507	24.947	24.855	24.541	21.900	20.988	20.447	20.198	20.478
Hean	22.327	23,528	25.104	26.344	26.073	25,682	24.376	22.622	21.691	21.697	21.314	21.479

1I - 31

Table 11.2.25 Monthly Mean Water Level at Chilmari (No.45.5) (m/PWD)

Year	Apr.	May	June	July	Aug .	Sep.	Oct.	Nov	Dec.	Jan.	Feb.	Mar.
1962	18,089	19.847	22.223	23.445	24.192	23.462	20.776	18.255	16.829			
1063			_		-	-	-		-		-	-
1064		<u>~</u>	-	· _ · ·	_ .		-	-	-	-	~	-
1065	17 837	19.547	21,111	22.112	22.706	21.746	20.041	19.056	17.821	17.180	16.676	16.575
1905	17 384	18.614	21.678	23.021	23.394	22.931	20.926	18.741	17.488	17.273	16.709	16.808
1067	17 111	18 662	20.992	23.153	22.033	21.549	20.992	18.416	17.389	16.932	16.714	16.935
1907	17 867	10.000	21 940	23,294	22.378	22,179	21.379	18.958	17.642	17.139	16.907	17.035
1000	17.668	10 1/15	21 648	23,135	22.427	22.262	19.963	18.182	17.384	16.823	16.619	17.045
1020	17.000	20 518	22 169	23.243	23.060	22.159	21.509	18,908	17.429	16.859	-	
1071	17 810	20.010	21 982	23,490	23.207	22.000	21.862	-	- ·	-	16.683	17.124
1072	19,019	20.110	21.930	22.648	22.514	22.139	20.571	18.779	17.716	17.217	17.003	17.317
1073	10.200	10 786	22.020	22.054	22.915	21.863	20.749	18.822	17.979	17.398	17.200	17.328
1074	18 137	20 705	22.091	23.824	23.267	23.31?	21.337	19.108	17.980	17.260	17.055	17.118
1974	10.157	19 465	21.286	23,084	22.641	22.549	21.747	19.273	18.138	17.438	17.136	17.539
1975	18 287	10 380	21.598	22,999	22.728	22.105	20.382	18.735	17.965	17.209	16.885	17.404
1077	10.207	20.773	22.879	23.021	23.626	22.871	21.449	19.128	17.903	17.034	16.639	16.447
1079	17 287	10.088	21:591	22.775	22,420	21.884	20.368	18.395	17.523	16.616	16.238	16.212
1070	11.201	111000		-	-	_	-	-	-	~	-	
1080	18 405	20 332	21.570	22.777	23.563	22.270	21.346	19,087	17.890	17.429	17.235	17.711
1081	10.403	20.332	-		-		-	-	-		- :	. ·
1003	-	-	-	-	_	_		_	-	_	_	~
1904	- 11 م 11	20 097	21.656	23.086	22.576	23.210	21.476	18.925	18,186	17.532	17.101	17.068
1905	18 507	20.328	22.214	23,372	22.736	23.132	21.356	19.600	18.559	17,890	17.644	18.173
1085	10.54	20.320	22.339	23.463	22.647	22.803	21.347	19.513	18.558	18.093	17.737	17.843
1086	19.900	10 919	20,902	22.560	22,338	22.875	21.668	19.738	18.481	17.792	17.375	17.752
1900	10.004	19.515	21.477	23.487	23.639	23.127	21.752	18,900	18.291	17.801	17.505	18,100
1088	18 803	20,238	21.961	23.228	23,493	23.081	22.057	19.456	18.569	17.903	17.793	17.877
1000	18 614	20.013	21,897	23,113	22.503	22.694	21.765	19.557	18.262	17.731	17,794	17.906
1000	10.014	20.514	22.640	23.107	22.847	22.749	22.477	19.587	18,468	18,110	17.837	17.967
1220	18 101	10 874	21,825	23.066	22.910	22.540	21.221	19.005	17.933	17, 394	17, 113	17 331
nean	10,101	13.073	514064	201000				101003		P.C. 12	10.1173	11.001

YEAR	Formula	Nos.of data available	correlation coefficient	
 1973	Q= 63.8(H-21)^1.540	12	0.774	
1974	Q= 17.3(H-21)^3.158	11	0.983	
1975	Q= 24.8(H-21)^2.804	11	0.990	
1976	*Q= 29.8(H-21)^2.530	-	-	
1977	*Q= 29.8(H-21)^2.530		~	
1978	Q= 32.3(H-21)^2.435	17	0.911	
1979	Q= 38.2(H-21)^1.938	13	0.954	
1980	0= 46.5(H-21)^2.073	11	0.948	
1981	Q= 32.6(H-21)^2.206	11	0.965	
1982	Q= 19.7(K-21)^2.795	25	0.988	
1983	Q= 29.4(H-21)^2.479	24	0.977	
1984	Q= 18.2(H-21)^2.424	9	0.863	
1985	Q= 25.0(H-21)^2.615	33	0.968	
1986	Q= 45.0(H-21)^2.273	48	0.986	
1987	Q= 38.6(N-21)^2.398	41	0.989	
1988	Q= 37.4(H-21)^2.544	27	0.992	
1989	Q= 39.1(H-21)^2.422	26	0.992	
1990	Q= 47.1(H-21)^2.383	25	0.992	

Those Formula are derived from Observed Discharge and Water level Data using Least squares.

remark

*) using 28 data in 1975 and 1978

Table II.2.27 Flow Regime at Kurigram (cu.m)

Year			Discharge(cu.m)						
	Max.	95day	125day	275day	355day	Min.			
1973	3563	865	260	100	51	48			
1974	4253	1211	295	125	83	78			
1975	2976	942	175	120	92	87			
1976	2030	592	167	93	55	50			
1977	1913	743	192	118	84	60			
1978	1496	607	222	136	81	62			
1979	990	419	165	107	93	89			
1980	1640	654	192	111	73	66			
1981	1413	494	137	94	53	43			
1982	2254	492	142	94	73	69			
1983	2080	649	191	91	· 4.	67			
1984	1594	504	199	- 98	43	38			
1985	2363	750	180	111	75	68			
1986	1641	632	175	92	69	67			
1987	3377	825	150	81	64	59			
1988	4128	683	119	71	53	49			
1989.	2147	797	133	73	51	49			
1990	2046	1090	219	92	48	45			
-				· .					

Table	11.2.28	Monthly Mean	Discharge	at	Kurigram	(No.77)	(cu.m)
-------	---------	--------------	-----------	----	----------	---------	--------

Year	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
1973	120-1	214.8	578.8	480.1	606.6	468.5	389.3	250.0	185.2	164.4	148.7	134.4
1974	156.7	472.1	1074.8	2431.8	1670.3	2225.2	1078.4	245.8	161.1	126.7	100.7	86.7
1975	95.5	119.3	526.5	1531.6	1156.6	1329.3	779.3	256.6	169.2	136.0	121.4	101.5
1976	100.2	236.1	718.8	1386.9	1184.5	583.1	291.8	154.0	122.7	88.1	69.2	56.4
1977	115.9	194.4	754.2	1034.3	1314.1	854.8	567.5	207.1	121.8	118.2	112.2	92.8
1978	85.5	151.5	447.2	1004.5	755.5	789.9	479.2	263.0	191.8	159.8	140.2	116.3
1979	98.3	137.1	133.4	545.5	597.3	695.6	512.5	214.4	177.3	128.6	107.1	101.1
1980	169.4	343.3	1639.2	3226.8	4908.1	2842.1	1354.7	445.9	235.9	159.2	123.7	90.9
1981	58.5	105.3	189.5	962.7	1003.2	826.9	320.9	168.9	130.0	106.9	92.3	86.4
1982	84.2	102.5	448.2	1641.7	757.2	867.9	342.4	190.7	135.6	105.0	90.0	79.0
1983	80.8	216.0	545.3	-	869.2	1303.2	529.4	202.7	137.4	-	-	72.4
1984	46.3	202.7	575.2	931.0	530.7	845.1	380.1	220.1	155.4	115.9	96.0	81.2
1985	95.2	177.5	766.9	1621.9	910.2	1034,9	538.8	202.9	144.7	128.5	93.9	76.7
1986	114.4	186.4	451.9	981.4	830.9	1014.4	531.5	172.5	111.6	80.2	70.3	81.1
1987	74.8	133.2	475.2	1464.2	1570.6	1018.8	540.3	190.3	110.4	83.6	70.9	69.2
1988	69.8	177.8	453.9	1528.1	2015.0	1510.2	409.9	115.8	94.8	72.7	69.2	60.3
1989	53.0	157.0	794.6	1339.6	865.0	1191.8	564.0	169.9	102.2	82.5	72.3	66.6
1990	102.3	271.5	1075.9	1465.2	1328.5	1209.8	948.0	217.1	117.3	90.0	63.6	50.4
Mean	95.6	199.9	647.2	1386.9	1270.8	1145.1	586.6	216.0	144.7	114.5	96.6	83.5

Table II.3.1 Yearly I	tainfall Frequencies
-----------------------	----------------------

						(mm/vr)	· · ·	
Station	Ave. S	Yearl 2 yr	y Rainfa 5 yr	all Fred 10 yr	20 yr	25 yr	50 yr	100yr
Chilmari	2303.14 628.42	2200	2756	3123	3476	3587	3932	4275
Kaunia	2481.52 720.80	2363	3000	3421	3827	3954	4350	4743
Kurigram	2362.23 478.02	2284	2706	2986	3254	3389	3601	3862
Lalmanir	2581.87 645.02	2476	3046	3423	3786	3900	4254	4605
hat Pirgacha	2117.25 494.66	2036	2473	2762	3041	3128	3399	3669
Sundar	1984.22 459.25	1909	2315	2583	2842	2922	3175	3425
ganj Vlipur	2298.89 444.84	2226	2619	2879	3129	3208	3452	3694
		· ·				:		

Table II.3.2 Daily Rainfall Frequencies

Station	Ave.	S	Daily	Rainfal	1 Frequ	iencies(ายา)
•		;	5 yr	10 yr	20 yr	50 yr	100yr
Chilmari	169.44	66.53	217.3	256.2	293.7	341.9	378.2
Kaunia	189.41	52.67	227.1	257.7	287.2	325.1	353.7
Kurigram	169.86	53.84	208.6	240.1	270.4	309.4	338.7
Lalmanir hat	177.10	44.38	209.1	235.0	250.0	292.1	316.3
Pirgacha	169.11	61.06	213.1	248.7	283.1	327.4	360.6
Rangpur	171.75	47.86	206.2	234.2	261.1	295.8	321.9
Sundar gan i	146.40	46.47	179.9	207.0	233.2	266.9	292.2
Ulipur	169.44	65.06	216.3	254.3	290.9	338.1	373.5

Table 11.3.3 5-days Period Rainfall Frequencies

Station	Ave.	S	Daily	Rainfall	Frequ	encies(n	un)
			5 yr	10 yr	20 yr	50 yr	100yr
Chilmari	359.62	116.75	443.7	511.9	577.6	662.2	725.9
Kaunia	363,90	110.75	443.6	508.3	570.7	651.0	711.3
Kurigram	333.74	100.88	406.4	465.3	522.1	595.2	650.2
Lalmanir hat	352.02	92.79	418.8	473.0	525.3	592.5	643.1
Pirgacha	335.57	143.44	438.8	522.6	603.4	707.4	785.6
Rangpur	326.42	118.77	411.9	481.3	548.2	634.3	699.0
Sundar gani	286.39	78.33	342.8	388.5	432.6	489.4	532.1
Ulipur	348.26	107.82	425.9	488.9	549.6	627.7	686.5

Ave.: Average S:Standard deviation

Table II.3.4 Flood Water Level Frequencies for Each Gauging Stations

Station	River	Ave.	5	F	lood Pea	k Freque	ncies(m/	PKD)			
				2 yr	5 уг	10 yr	20 уг	25 уг	50 yr	100yr	200yr
Noonkawa	Brahmaputra	27.321	0.618	27.219	27.766	28.127	28.475	28.583	28.923	29.260	29.597
Chilmari	Brahmaputra	24.038	0.427	23.968	24.345	24.594	24.835	24.911	25.145	25.377	25.611
Bahadura	Brahmaputra	19.723	0.380	19.660	19,997	20.219	20.432	20,499	20.708	20.915	21.122
bad Talukshi	Dhar la	30.815	0.494	30.807	31.171	31.459	31.737	32.138	32.095	32.365	33.126
mulbari Kurigram	Ohar la	26.526	0.434	26.454	26.838	27.092	27.336	27.412	27.651	27.887	28.124
Kaunia	Teesta	29.948	0,317	29.896	30.176	30.361	30.540	30.595	30.770	30.942	31.116

by Gumbel-Chow Method

Table II.3.5 Minimum Water Level Frequencies for Each Gauging Station

Station	River	Flood Peak Frequencies(m/PHD)							
		2 yr	3 уг	5 yr	10 yr	20 yr	50 yr	100yr	
Talukshi mulbari	Dharla	27.10	26.97	26.86	26.74	26.65	26.56	26.50	
Kurigram	Dhar la	22.23	22.14	22.05	21.95	21.88	21.80	21.75	

by Thomas Plotting

Table II.3.6 Flood Discharge Frequencies at Kurigram (cu.m)

Return Period	Discharge(cub.m) Maximum	·····
2	2049	
5	2883	
10	3434	
20	3965	
25	4130	
50	4628	
100	5162	
200	5677	
Ave.	2204	
S.	943	

Ave. : average

S. : standard deviation

Return	Discharge(cub.m)	
Period	Minimum	
2	66	
3	58	
5	52	
10	46	
20	41	
50	37	
100	34	

Table II.3.7 Minimum Discharge Frequencies at Kurigram (cu.m)

by Thomas plotting

Table II.3.8 Droughty Discharge (355 days) Frequencies at Kurigram (cu.m)

		an a
ſ	Return Period	Discharge (cu.m/sec)
	2	67
Î	3	64
	5	55
ſ	10	50
	20	45
	50	41
	100	38
:	·	67
. i.		64
		55
		50
	· · · · ·	45
		41

11 - 39

Fig. II.1.1 Location of Meteorological and Hydrological Stations

Fig. II.2.1 Thiessen Polygon and Isohyetal Map

Fig. II.2.2 Monthly Climatological Variations at Rangpur II-42

Fig. 11.2.3 Monthly Rainfall Pattern

		· ·									****							सन्दर्भ									loge	1	lee al	MAS	1
			4 19-02		1167			SFP	orn	мом	DEC	JAN	feə{	HAH	到	<u>E</u>	70	0	APR	HAY	NIN	JUL	≜UG	SEP	001	NOV	10E L	JAN		=	-
	31.	0													===		20		1												ŧ÷
		_		==				==			E≣∓						===									iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		1	all		E
	1111	\equiv		==	=	\equiv					hi	m11]	ba	ri		Ŧ		0	===				11-			NDA			Ë,		Ē
	30.	0		<u></u>		_			1. L L 1	in a refi	11.7.4		1	111	E	Ē	6 (·		11			Ξ			477		<u>f</u>				E
					-		<u> </u>		1		ш т ;														:r::						Ŀ
		Ξ							Ē	=		EΞ	123		<u></u>		11	=7	==		<u>1</u>										ł÷
	29.	0			==}											=	26.	0	1				1.11					ΞĒ			Ē
		===]				-	=			ΕΞ						L.T.		<u> </u> ====			=							in:	=::		Ē
		-			==}		T.			1	177		;==	<u> </u>	<u> </u>				E			1			ΞΞ	·· <u>·</u> ;					E
	28	n	\equiv		24	-	10		Ē						<u></u>		25.	. 0 :							===				23	====	F
	20										<u>H</u>	1				<u></u>		<u>اج</u>			===	<u> </u>				E					F,
												Ì			=			Ť			===			ΕЩ		ΈΞ		1			E
	111111 17 17	n E							===	<u> </u>	\equiv		<u> </u>				24	. Öł			=				E≣		===	E	1		F
=p==;	21.	03							15	+		1					<u>Ť:</u>	<u> </u>		F===					<u> </u>	1.1	<u> </u>			<u> </u>	Æ
												+++	=					_					==:				1	172			Ŧ
										日日	H						23	0		===	=		1112			+		177			÷
	26	. 0 -		-		==	<u> </u>	F===			==						<u></u>	<u> </u>					Ξu	11	===	122		<u> </u>			Æ
									121	<u> </u>		1					~~~·		===		===							F===	1	==	1=
												<u> </u> ===			<u>⊨</u> ≓]		t:==		===			1	 11				==	12-11			Ŧ
						_	E===	=		<u> </u>	1	†		ţ		-	22	. 0	1===			12:22									Ŧ
						=:		[<u></u>				<u> </u>		Ē					=		ļ;	<u> </u>		==	<u>t</u> ⊞	===	=				ŧ
	r					_		=	Ē	<u>+-</u>	1-+	<u>h</u> -			E	드다	ter t	E:	1===			H	<u> </u>	ii-	<u> </u>			<u> </u> :	1		1
<u></u>	27	0 -					<u> </u>	1			1	r.,			<u> </u>	Ξ.	21	. 0				==						1	1=	<u> </u>	E
<u></u>			===				TT.	-			2									==		i===			=			1	1==	=	E
	L=							i	=	<u> </u>			i-r-	22								E	<u></u>	12-					1		ŧ
ene	76	0.3						<u>;=</u> :	E:	Κu	iri	qra	ani i	<u> </u>	\equiv	Ξ.	20.	. 0 -				<u>+</u>									Ŧ
EQE;	20							l==	臣	177	ĽΞ	Ē÷	E:								1		<u>.</u>			17227		1===			ŧ
- <u> </u>					<u>ا ا</u>		==	1		I +		1							\equiv		===		=		1	1		E	1		÷
<u> </u> >=			==	=				<u> </u>	E=	11	1	ΙΞ		<u> </u>		•	=		<u>t —</u>		<u> </u> =	t							1==		÷
5.	<u>25</u> .	0=	=			-			1=		E	1					===		三		<u>=</u> =					1		1	(<u>==</u>		18
		==			\equiv	=	<u> </u>	E	==	<u> </u>	1							Ē	1222		==				E	[<u></u>	İΞ				Ŧ
ΞQΞ	<u></u>	ΕΞ	E	=		Ξ		1=		<u>F</u>		1==						E	1===			<u> </u>		1		1	Ξ	<u>1==</u>	1==		1
ΞŴΞ	24	. 03						1					=	1			<u>}</u> ==	7	=			<u> </u>	Ē			<u> 1</u>		13	=	;==	Ŧ
172			\equiv	==			<u> </u>	Ę . .			. m		<u> </u>						ŧ			F===	ļ			<u>+</u>		+			Ŧ
≣ _H Ξ		\equiv	===	 ==			t	1	<u> </u>	1:==	1	<u>i</u>			133		137	Fa						1:22	=	<u>is</u>	E			<u> </u>	Ŧ
- ΦΞ	23	0-					1	<u> </u>		\equiv				1 ,	=	=	24	.0	-				<u> </u>			<u>i</u>	1=	1:1-	1:	<u> </u>	Ŧ
- 1 -			==				<u> </u>	=	È	!==	==]	1	1	173	1-1-1	t∺÷÷	1			1		<u> </u>	1122	1.44	1	1=	1		<u> </u>	Ŧ
33								i		Ē	1	1	=				1	Ē		1	1		<u> </u>	1		1:	12	1			Ŧ
	$\frac{1}{22}$	n	<u> </u>	12				<u> </u>		<u>F</u>	1-1-1	1	Æ		1727		23	.0	=	<u></u>			\equiv	H				1			4
- <u>-</u> - ·		<u> </u>	i di	1			ΕΞ			<u> </u>	<u> </u>		122					1	1			2	1			E	[==	1			Ŧ
				=		_		1	;-	1	1	1			ĒŦ		=	E		1	==	33	1	i=]==	1:				;	ī ļ
122	1==					_	12-3		12	i	1	1:11			1	=	22	0			1==	Ш		1	1	+		, F ,	• • • • •	1717	٦È
												<u> </u>		-	1		Ē	<u>.</u>	=	1===	1					1	LC.	<u>111</u>	IMd	11	÷
1			===					<u></u>	E	<u> </u>		1	1		=						1===		ł			ł	1		1		-1
			1	1				<u>i</u>	1==27	Ē	1		1	133		ļ	1	1.7	1==	;		1=		1:=	1	1:22	1	:			1
	<u>31</u> .	0 -	i=					1==	1	-	122	-		1	1===	☴,	Z 1	. U	1	==		1::	1		1.22		-	1=		-	-
	i	-			1		=	1	1	ţ <u>二</u>	122	1	1=	£ -	1	1	1=	Ē	1=		E		1-2	1	1		133				+
	<u> </u>	E		1	1	=	ti -	<u> </u>	13	<u> </u> '	ĸ		i a	+++	-	<u> </u>	Ť	Ē		1	1	1=	12					43	=	1	
<u> </u>	30.	0 =				_	1	=	ŧ.	ŧ=.			Ē	1==	1		20	. 0		1		1	1-11	12:	1	1		1	133	1:	3
1=	Ē	E	=	1=	1	E	扫	1	E	1=		1			1=	t=	1==	1		Ē	=	=	1==	1	1==	1		1.22			Ę
				1===		E	1		====	F.			1===	Ξ				E.			E	1	Ei:		1	1	: : :::	122	123	1	3
<u>;</u> ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	29	0	E	E			E	1	1		1=		1=	<u>+</u>	12-	E	19	.0		1	13	1	E	Æ			╢═		13		4
==	<u>, </u>	<u></u>	1=	F==	F	-	t÷:	1		{	ŧ		1	1=	1	<u> </u>	E	ŦΞ	1=-	÷=	1 <u>=</u>	E:	ΞŹ	1	1=	1	=	1==	12		3
							f:	1	1	1=	433		h=:		1=::	<u></u>		1	1==	1	-		ĮÆ.	1=	1	1	1=	1	1=		Ħ
	20	<u> </u>	1==		1	tΞ	1	1	1		巨	1	1±	1	1==	Ë	18	.0	1==	1			1=		1	17.5		<u></u>	1		=1
- <u></u>	20	. 0 *		E	1==		£	Ξ	1===	4	= 三			ŧΞ		1	Ţ,	Ť	13		1=		1=	1=	臣	127		1=	1=		1
	<u></u>	EE	1=	1	1==		t	1	133	1-	ΗŒ	+	¢	<u>i</u>	1		1	亖	1=		E	1=	1=				1	1-	1=		H
	Œ			<u>h</u>		<u></u>		\equiv	1	1	t E	4	<u>+:=</u>	<u> </u>	1=		<u>יייר:</u> קיר		123	t==		4	15	1		12		1	: <u> </u>	1	3
	27	. 0	1	1		-	E=	; ;	1:12	1	1		1	1.11	1	1	1 /	<u>;</u>	1==	1.7-	-	Ē		-1		1	:		1		1
	1=1			Ì=		t:	1	1==		+		7:22		1	<u> ::::</u>	1	14			1	=	-E		1		4	12	111	12		
	1==	1==		<u> </u>	三	<u> </u>		1	151	=	민프	12	194			1	- 1		455	1=	1-=	1:::	1	:1::!		4:		-1	1222		-
	26	. 0	1					<u>;</u>		1					1-	1	10	. 0	1=			-1		1			1=		<u>†</u> =		-
-	1	t===			t==	Ē	17	i=	13			-1:37	1 II II	ΗΞ	: =		-		:1:::	1===		:	Ē	4:4	:===	:1:12	:[==	1	-1	:1: <i>7</i>	:]
	1	t====	+	1	1	1	E.	1	1-47]==	:	;] <u></u>	1:1	1 17		12	4==	1	:1==	1		41=	4	: E:	41	4=	:[==	P€	eri	od]
- [+	+																_												T	

Fig. II.2.4 Monthly Water Level Pattern

APPENDIX - III GEOLOGY

GEOLOGY AND SOIL MECHANICS

FEASIBILITY STUDY ON

KURIGRAM IRRIGATION AND FLOOD CONTROL PROJECT (SOUTH UNIT)

APPENDIX - III GEOLOGY AND SOIL MECHANICS

TABLE OF CONTENTS

	Page
CHAPTER 1 INTRODUCTION	ПІ-3
CHAPTER 2 DATA COLLECTION AND REVIEW	111-3
CHAPTER 3 TOPOGRAPHY AND GEOLOGY	Ш-З
 3.1 General Topography and Geology. 3.2 Topography and Geology of the Study Arca 	Ш-3 Ш-4
CHAPTER 4 SEISMICITY	111-5
 4.1 Tectonic Features. 4.2 Past Earthquake Damages in Bangladesh. 4.3 Seismic Zoning of Bangladesh. 4.4 Seismicity of the Study Area. 4.4.1 Used Data for Seismicity Analysis. 4.4.2 Intensity and Acceleration Analysis. 4.4.3 Frequency Analysis. 4.4.4 Design Seismicity . 	III-5 III-5 III-6 III-6 III-6 III-6 III-7 III-8
CHAPTER 5 SOIL MECHANICAL CONDITION	Ш-9
CHAPTER 6 TEST BORING WORKS	MI-10
 6.1 Site Selection of the Test Borings	HI-10 III-10 III-10 III-10 III-10 III-10 III-11 III-11 III-11 III-12
CHAPTER 7 BEARING CAPACITY OF FOUNDATION GROUND	111-12
CHAPTER 8 RECOMMENDATION FOR THE HARICHARI REGULATOR REHABILITATION	III-13
CHAPTER 9 STABILITY ANALYSIS OF EMBANKMENT SLOPES	111-13
CHAPTER 10 RESISTANCE AGAINST EROSION	III-14
CHAPTER 11 POSSIBILITY OF LIQUEFACTION	III-14

LIST OF TABLES

		LIST_OF_TABLES	Page
a. 1 I	W 0 1		III-16
Table	111,2.1	List of References	111-17
Table	111.4.1	Earthquakes Likely Affecting to the Study Area	NT 10
Table	UI.4.2	Earthquake Intensity and Acceleration of the Project Area	111-19

LIST OF FIGURES

Fig.	111.2.1	Physical Landform in Bangladesh	111-21
Fig.	III.3.1	Tectonic Plates in the South to Southeast Asia	111-22
Fig.	111.3.2	Generalized Tectonic Map of Bangladesh and Adjoining Area	111-23
Fig	111.3.3	Physiographic Units of the Study Area	111-24
Fig.	III.3.4	Geological Panel Diagram of the Study Area	111-25
Fig.	111.4.1	Seismic Zoning Map of Bangladesh	111-26
Fig.	III.4.2	Earthquake Intensity and Frequency	III-27
Fig.	111.4,3	Seismic Recurrence Curve	111-28
Fig.	111.5.1	Location of Sampling for Previous Laboratory Tests	III-29
Fig.	111.6.1	Location of Test Boring Sites	III-30
Fig.	III.6.2	Location of Each Boring Sites	111-31
Fig.	111.6.3	Summary of Boring Logs	III-33
Fig.	III.6.4	Proposed Pumping Station Site	III-36
Fig.	III.7.1	Relationship between Internal Friction Angle and N-values	111-44
Fig.	111.7.2	Bearing Capacity Factor	III 45
Fig.	III.9.1	Janbu's Stability Chart	III-46
Fig.	III.11.1	Possibility of Liquefaction	III-47
APPENDIX-III GEOLOGY AND SOIL MECHANICS

1. Introduction

Geotechnical investigation of the Feasibility Study on the Kurigram Irrigation and Flood Control Project -South Unit was conducted in order to clarify the surface geological condition of the Study area and to obtain basic data for foundation design of the structures by the execution of test boring as well as field reconnaissance and review of the existing data.

The main items conducted in geotechnical investigation are as follows:

To collect and review of the existing data and reports from government agencies concerned,

To carry out field reconnaissance survey for general soil condition of the Study area,

To execute the test boring works including standard penetration test (SPT) at 1 m interval at the 4 selected major structure sites, and

To study on seismicity, bearing capacity of foundation, slope stability, erosion resistance and liquefaction.

2. Data Collection and Review

During the field work of investigation in the Phase I Stage, the Study Team visited various governmental offices concerned, exchanged the views on the geotechnical matters with the officials and collected data.

The collected data regarding to the topographical, geological and soil mechanical information are shown in Table III.2.1, List of References.

3. Topography and Geology

3.1 General Topography and Geology

The entire land of Bangladesh is referred as a part of the Bengal Basin filled in the Tertiary to Quaternary period. Bangladesh is been generally described as a delta or a flat alluvial plain formed by the continued process of erosion and deposition of the detritus carried by the several ancient and recent rivers. The three major rivers in the country are the Ganges, the Brahmaputra and the Megna. These rivers originate from the glaciers of the Himalayas. The thickness of sediment cover over the basement rocks, is about 180 meters along the Rangpur-Dinajpur axis and increases southeastward to over 3,600 meters in the eastern part of the country.

The landform of Bangladesh is physiographically divided into 3 categories of Tertiary Hills, Pleistocene Uplands and Recent Plain corresponding to the geological features which consist of pre-Tertiary rocks, Tertiary sedimentary rocks, Pleistocene deposits and alluvial deposits. The Tertiary Hills are distributed in the southeastern part of the country, the only region that experienced upheaval contemporaneously with Himalayan Orogeny, whereas the rocks of pre-Tertiary and Tertiary ages are subsided in the depth influenced by Himalayan Orogeny throughout the country except this area. The Tertiary Hills formed mainly of sandstones and shales occupy about 18 % of the country. Their average height is around 300 m above the sea level having the highest peak of 1,003 m at Mowduk Mual on the Bangladesh-Myanmar Border.

The Pleistocene Uplands are developed mainly in the Madhupur tract, north of the Dhaka city, and the Barind tract in the northwest of the country. These Uplands rise like islands above the flood plains. The upland covers an area of about 10 % of the country. The height of the Madhupur tract varies from 9 m to 18 m. The Barind Upland attains a height of about 40 m in places. Pleistocene deposit of the Uplands overlying pre-Tertiary and Tertiary rocks settles in the depth of scores or more meters in the part. However, the parts of them crop out locally in the quite limited areas where the Pleistocene deposit was eroded away in the lowering time of sea level (i.e the sea regression) from Pleistocene to lower Holocene time.

The Recent Plains consisting of the alluvial deposits occupy about 72 % of the country. The alluvial deposits are distributed almost allover the country, filling the valleys of the glacial epoch. The Recent Plains are divided into Piedmont Plain, Floodplain, Deltaic Plain, Tidal Plain and Coastal Plain.

The Piedmont Plain in the northwest area rolls down from north to south. The Floodplains of continental deposits are further sub-divided as the Teesta floodplain, Brahmaputra floodplain, Ganges river floodplain, Meghna river floodplain, Meghna estuarine floodplain and Surma-Kusiyara floodplain. The Deltaic Plains is built up by both marine and continental deposits. The Tidal Plains are composed predominantly of marine deposits. The most of them are situated in the very low land area less than 3 m above the sea level.

The physiographic landform in Bangladesh is shown on Fig.III.2.1.

Structurally, on a geological time scale, the northern Indian plate is sliding under the South-East Asian Plate, forming the Himalayas and warping/shearing the adjoining geological structures. Along the eastern border of the country, the 2 plates are rubbing each other similarly warping/shearing the adjoining geological structures. Accordingly the northern and eastern sides the country are an active tectonic area.

In Bangladesh, the principal tectonic units are divided into 2 parts bounded by the Calcutta-Mymensingh Hinge. The hinge line runs southwest from Mymensingh, about 50 km north of Dhaka, to Culcutta, the capital of West Bengal in India. The northwest of the hinge line is the Precambrian Platform, and the southeast is the Bengal Foredeep. However, no active seismic movement has been related to the above mentioned tectonic element.

The Tectonic Plates in the South to Southeast Asia and Generalized Tectonic Map of Bangladesh and Adjoining Area are shown on Figs.III.3.1 and III.3.2 respectively.

3.2 Topography and Geology of the Study Area

The Study area is situated in the most northern part of Bangladesh, and is encircled by a ring levee located in the Kurigram and Lalmonirhat districts. The area is bounded by the Dharla river in the north, Teesta river in the south, Brahmaputra river in the east and railway embankment in the west as shown on the Location Map.

Phisiographically, as shown on Fig.III.3.3, the most of Study area extends on the lower Teesta floodplain, but the old Teesta meander floodplain is developed partially in the northern part, the active and young Teesta meander floodplain is developed on the northeastern

periphery along the Dharla river, the active and young Brahmaputra flood plain is developed locally on the right bank of the Brahmaputra river at the southeastern part, and the active and young Teesta meander flood plain is developed along the Teesta river in the southwestern periphery.

The elevation of land surface of the area varies from about 34 m above the sea level in the north and about 21 m in the south. The land has a very gentle slope of about 1/5,300 from northwest to southeast. In the nearly flat land, some undulations with irregular relief due to low pockets, gullies and depressions are sporadically found.

Physiographic units of the Study area is shown on Fig.III.3.3.

The Study area is geologically underlain by alluvium which have formed by the interstream and meander deposits of the rivers Teesta, Brahmaputra and Dharla. The alluvium in the Study area consists of the silt and clay in the upper most portion, the fine sand, the fine to medium sand with gravel and the medium to coarse sand with gravel in the deeper portion.

The geological condition in the Study area is shown on Fig.III.3.4 as panel diagram.

4. <u>Seismicity</u>

4.1 <u>Tectonic Features</u>

As shown on the Tectonic Map (Fig.III.3.2), there are major fault systems: the Main Boundary Thrust and the Disang Thrust in the northeastern region of India, and the Arakan Yoma Suture along the India-Myanmar Ranges. These regions are known as high seismic activity zones where major earthquakes frequently occur. Although not many significant earthquakes have occurred in Bangladesh, the land particularly in the northern and eastern parts have been affected by the earthquakes occurred in the adjacent regions mentioned above.

4.2 Past Earthquake Damages in Bangladesh

Major earthquakes affected Bangladesh have been summarized by F.H.Khan (1991) as below:

(1) Bengal Earthquake of 1885

The earthquake of July 14,1885 severely rocked the central and northwestern parts of Bangladesh causing considerable damages.

(2) Great Assam Earthquake of 1897

The earthquake occurred in the afternoon of July 12, 1897 in northeastern India and having a magnitude of 8.7 in the Richter scale, has been classed as one of the greatest in history. The Shillong Plateau in Assam region was the epicentral tract of this earthquake. It caused severe damages over a large area of Assam, Bengal and Bihar, and was felt over an area of 600,000 km². The earthquake was followed aftershocks continuing a number of years.

(3) Srimangal Earthquake of 1918

This is a major earthquake with epicenter in Bangladesh. It occurred at 16:21 on July 8, 1918. It had a magnitude 7.6 in the Richter scale and the epicenter was in the Bbalisera valley just south of Srimangal of Sylhet district.

(4) Assam Earthquake of 1950

This is another great earthquake and had a magnitude of 8.5 in the Richter scale. It occurred in the afternoon of August 15,1950 with epicenter in the extreme northeast corner of India. This earthquake caused great destruction and killed 532 persons in northeastern India. Aftershocks of this earthquake also continuous over a long period.

In addition to the above, according to B.L.C.Johnson (1982), the Teesta river, flowing southern boundary of the Study area, has been changed its river course from a tributary of the Ganges to existing tributary of the Brahmaputra by the Great Assam Earthquake of 1897.

4.3 Seismic Zoning of Bangladesh

The report to prepare a seismic zoning map of Bangladesh and to suggest a code for earthquake resistant design of structures has been published in 1979 by the Committee of Experts / the Geological Survey of Bangladesh. The report recommended Bangladesh to be sub-divided into three zones I, II and III, and suggests the basic horizontal seismic coefficient of 0.08 for zone I, 0.05 for zone II and 0.04 for zone III. Zone I covers northeast Bangladesh including the Study area and is designated as the most active seismic zone. Zone II runs from northwest to southeast covering the central part of Bangladesh. Zone III covers the southeast part of Bangladesh and is designated as the least active seismic zone.

The Seismic Zoning Map of Bangladesh is shown on Fig.III.4.1.

4.4 Seismicity of the Study Area

4.4.1 Used Data for Seismicity Analysis

Seismicity analysis for the Study area was carried out based on the data of past earthquake covering the period from September 1833 to June 1971. According to the collected data, earthquakes likely affecting to the Study area were 92 events over a period of 138 years. The data cover the recorded earthquakes with epicenters located within at least 500 km distance from major structure site in the Study area at N 25.9°/ E.89.6°. The data were obtained from the report of Seismic Zoning Map of Bangladesh published by the Geological Survey of Bangladesh.

Within the recorded period of 138 years, the maximum magnitude was 8.7 of the Great Assam Earthquake in 1897, and its epicenter was 295 km away from the Study area. The nearest earthquake occurred 63 km away from the site in 1949 with the magnitude of 6.0.

The earthquakes likely to affect the Study area are shown in Table III.4.1.

4.4.2 Intensity and Acceleration Analysis

The effective intensity and acceleration at the Study area caused by each event of the recorded earthquakes were estimated by the several method. The formulae used for the study are as follows:

- (1) Intensity
 - 1) Cornell's method (1968) Imm = $8.0+1.5M-2.5Ln(d^2+h^2+400)^{0.5}$
 - 2) Kawasumi's method (1951) $Ij = 2M-4.6052\log d - 0.00183d - 0.307$ (When d>100 km) $Ij = 2(M-\log r) - 0.01688r - 3.9916$ (When d<100 km)
 - Where, Imm : Intensity in Modified Mercalli (MM) Scale
 - Ij: Intensity in Japan Meteorological Agency (JMA) Scale
 - M : Magnitude of earthquake in Richter Scale
 - Ln : Natural logarithm
 - d : Distance from epicenter to the site in km
 - h : Depth of focus in km
 - r : Distance from focus to the site in km
- (2) Acceleration
 - 1) Richter's method (1942) log $\alpha = \text{Imm/3} - 0.5$
 - 2) Kawasumi's method (1951) $\alpha = 0.45 \times 10^{(Ij/2)}$ (When Ij<5.5) $\alpha = 20 \times 10^{(Ij/5)}$ (When 5.5</br>
 - 3) Cornell's method (1968)

 $\alpha = 2000 \ e^{0.8} \ M/(d^2 + h^2 + 400)$

- 4) Esteva's method (1976) $\alpha = 5000 e^{0.8M}/(r + 40)^2$
- 5) Katayama's method (1974) $\alpha = 980(0.203 \ e^{0.9464M}(r+30)^{-1.637})$ Where, α : Peak ground acceleration in gal or cm/sec² e: The exponential constant

Intensities and accelerations likely to affect the Study area, estimated through the above methods, are shown in Table III.4.2.

4.4.3 Frequency Analysis

Plotting the cumulative number of converted frequency in 100 years (Nc) and the intensity (I) on a logarithm-normal graph, the following formulae were obtained by the minimum square method as shown on Fig.III.4.2.

logNc = -0.227I+2.041 (I : MM Scale) logNc = -0.221I+1.393 (I : JMA Scale)

The expected maximum intensities in a probable return period of 50 years and 100 years were obtained from above formulae. Furthermore, the maximum ground accelerations (α) corresponding to the maximum intensities were also obtained by the Richter's and Kawasumi's methods as follows.

50 years return period (Nc=2.0) I = 7.67 in MM Scale $\alpha = 114$ gal (Richter) I = 4.94 in JMA Scale $\alpha = 133$ gal (Kawasumi) 100 years return period (Nc=1.0) I = 8.99 in MM Scale $\alpha = 314$ gal (Richter) I = 6.30 in JMA Scale $\alpha = 364$ gal (Kawasumi)

On the other hand, the maximum ground accelerations to be expected in the same probable return periods were directly obtained by plotting the recurrence interval (Tr) and peak ground acceleration on a log-log graph as shown on Fig.II- 8. The recurrence interval of Tr was computed by the following equation.

Tr = P/n

Where, P: The observatory period (Years) n: The serial number of an earthquake in observatory period (Nos.)

Relationship between the recurrence interval (Tr) and the maximum ground acceleration (α) is obtained as below.

 $log(\alpha)=1.322log(Tr)-0.308$ (Cornell) $log(\alpha)=1.616log(Tr)+0.056$ (Esteva) $log(\alpha)=1.129log(Tr)-0.029$ (Katayama)

The maximum ground accelerations for the 50 and 100 years return period obtained from above formulae are as follows.

50 years return period 90 gal (Cornell) 107 gal (Esteva) 77 gal (Katayama)

100 years return period 227 gal (Cornell) 239 gal (Esteva) 169 gal (Katayama)

4.4.4 Design Seismicity

Design seismic coefficient for the the Study area, which is obtained by dividing the maximum acceleration (gal or cm/sec²) by g or 980 cm/sec² varies from 0.08 to 0.14 on the basis of 50 years return period and from 0.17 to 0.37 on the basis of 100 years return period.

However, the design seismic coefficient has been generally taken lower than the return period of 100 years even the case in the area of high seismicity. Such modification is based on consideration that the horizontal component of acceleration can be less than the estimated maximum value and the duration of the peak acceleration to act upon structures is very limited. Furthermore, based on the scale and importance of proposed structures, the available return period for determination of the seismic coefficient in the Study area will be adopted in 50 years.

Consequently conditions, the horizontal seismic coefficient of 0.08, the same value as the Bangladesh standard, is recommended for the design criteria of the structures in the Study area.

5. Soil Mechanical Condition

In the Project area, consisting of both Kurigram South and North units, the soil mechanical laboratory tests of total 195 samples have been previously made through the following 3 stages. Sampling depths varies from 0.5 m to 98.2 m from the ground surface.

(1) Original F/S Stage

The test was made in 1968 for 72 samples taken from auger holes (South unit 29 holes, North unit 2 holes) which bored along the existing embankment alignment, and in 1969 for 22 samples taken from exploratory borings at the proposed pumping station (1 hole) and the proposed barrage sites(3 holes). The laboratory test had been made by the Hydraulic Research Laboratory.

(2) Revised and Updated F/S Stage

The test for 51 soil samples obtained from exploratory borings (South unit 8 holes, North unit 3 holes) was done in 1974 by the same Laboratory as the test of original F/S stage.

(3) North Unit F/S Stage

In the feasibility study of the North Unit, the laboratory soil test had been carried out in 1989 by the JICA study team. In this study, 30 samples from augerborings (15 holes) and 20 samples taken from 1 exploratory boring at the proposed pumping station site were tested.

The sampling locations for the previous laboratory tests and the test results are shown in Fig.III.5.1. According to the grain size of this table, about a half of samples in the upper portion was classified as silty materials, and the remainings were sandy materials.

Test item			Silty N	Aaterials	Sandy	materials
			0 - 5 m	below 5 m	0 - 5 m	below 5 m
Natural moisture content		(%)	33.15	22.03	21.72	
Wet density	Ŷw	(t/m^2)	1.634		1.675	1.924
Dry density	γd	(t/m^2)	1.295		1.375	1.581
Grain size	D10	(mm)	0.0108	0.0077	0.0469	0.1144
	D30	(mm)	0.0227	0.0280	0.0999	0.2403
	D50	(mm)	0.0341	0.0535	0.1343	0.4663
	D60	(mm)	0.0491	0.0705	0.1492	0.7626
Uniformity coefficient	Cu		7.9	10.6	3.4	7.8
Curvature coefficient	Cz		1.4	1.5	1.4	1.7
Liquid limit	LL	(%)	41.4		38,4	
Plasticity limit	PL	(%)	27.9		27.4	
Plasticity index	PI		13.5		11.0	
Direct shear test	C	(t/m^2)	0.74		0.43	0.10
	Ó	(°)	16.6		25.9	33.8
Triaxial compression test	ć	(t/m^2)	0.70		0.64	0.50
	φ.	(°)	16.0		25.8	31.8

Mean values of silty and sandy materials aresummarized as follows.

6. Test Boring Works

6.1 Site Selection of the Test Borings

Through the preparatory work of the Study, 2 major structure sites, the proposed pumping station and barrage sites, were selected as the first priority sites. Based on the field reconnaissance and review of the existing data, 2 regulator sites, Ratnai and Harichari regulator sites, were newly added.

Location map of the selected test boring sites are shown on Fig.III.6.1.

6.2 Locations and Present Condition of the Selected Boring Sites

6.2.1 Proposed Pumping Station Site

Proposed pumping station is located at Bumka village in Lalmonirhat district, and is about 3 km distant along the main embankment from its starting point of the northernmost of the Study area. The site is nearly flat on the old Teesta meander floodplain. The ground height of the site is about 32 m above the sea level.

Two (2) test borings including SPT, BB-1 and BB-2, were sunk to the depth of 20 m each. The location of the boring holes are just inside of the main levee. Other than the above, one exploratoly boring with SPT had been carried out to a depth of about 22 m (72 fl) in November 1969. The previous boring point is about 300 m south of proposed pump station site.

6.2.2 Proposed Barrage Site

Proposed barrage is planned at Holokhana village in Kurigram district across the Dharla river. The site is located about 30 km downstream from the northernmost of the Study area and is about 6 km north of Kurigram town.

Through the previous feasibility study, 3 borings had been sunk at Surer Kuthi village, about 3 km south of the proposed barrage site, in December, 1968. According to this, N-values more than 30 appear at the depth of 20 m below the ground surface. Therefore the boring depths were changed from 20 m to 30 m in 3 holes.

Total 4 test borings with SPT, BI-1, BI-2, BI-3 and BI-4, were conducted along the proposed barrage axis; three holes on the right bank of the main stream of the Dharla river and the rest one, BI-4, on the left bank.

6.2.3 Ratnai Regulator Site

Ratnai regulator, having 8 gates, had been constructed on he Ratnai river at Bari Bonomali villagein Lalmonirhat district in late June, 1982. It is located on the old Teesta meander floodplain, and at about 14 km along the main embankment from its starting point.

The Ratnai regulator was severely damaged by the flood occurred in June, 1983. The river course of the Ratnai has also been shifted to the south due to this flood. Accordingly the Ratnai regulator has been abandoned since 1983. Existing river course of the Ratnai flows about 40 m south from the previous river course at the crossing section with the main

embankment. Considering the present situation mentioned above, it is recommended that the Ratnai regulator shall be newly constructed.

According to the information by BWDB, every foundation of the existing regulators had been designed based on the N-values obtained from SPT at its design stage. However the record of previous borings could not found.

One (1) test boring, BR-1, was sunk to 20 m at the spot just outside of the main embankment on the right bank of the existing Ratnai river.

6.2.4 Harichari Regulator Site

The Harichari regulator has 12 gates and has been constructed in late December, 1979. It is located at the southernmost of the Study area near the confluence of the Brahmaputra and the Teesta rivers where the active and young Teesta meander floodplain is distributed.

Foundation of the apron portion and a part of side wall of the regulator have been damaged by the flood in September, 1991. Accordingly the rehabilitation of the Ratnai regulator shall be required as soon as possible.

Although there are the previous boring records made in 1976, in order to clarify the further detailed geological condition of the apron portion, 1 test boring was made at the right bank of the canal.

The schematic location maps of each selected test boring spots are shown on Fig.III.6.2.

6.3 Work Items and Quantities of the Test Borings

The test boring work consists of core boring and standard penetration test (SPT) at 1 m interval. For 3 holes among 4 in total in the proposed barrage site, the scheduled boring length was changed from 20 m each to 30 m each according to the previous boring records. The selected boring sites and their quantities are as follows:

(1) Proposed pump station site Core boring 20 m/hole x 2 holes = 40 m SPT (1 m interval) 40 nos.

(2) Proposed barrage site Core boring 30 m/hole x 3 holes = 90 m 20 m/hole x 1 hole = 20 m SPT 110 nos.

(3) Ratnai regulator site Core boring 20 m/hole x 1 hole = 20 m SPT 20 nos.

(4) Harichari regulator site
 Core boring 20 m/hole x 1 hole = 20 m
 SPT 20 nos.

6.4 **Operation of the Test Boring Works**

After preparation of the Technical Specifications by he JICA Study Team, the test boring works including SPT were carried out at the four selected major structure sites in the period from mid January to early March, 1992. The field operation was done during the period from January 25 to February 20. 1992, by the local contractor, Aqua Soil Engineers, under supervision of the JICA Study Team.

6.5 Geotechnical Condition

The geotechnical condition of all the test boring sites are quite similar, although the sites are apart each other within the distance from 10 to 40 km. The surface geological materials of the boring sites are underlain by alluvium which is principally composed of sandy strata intercalated with thin silty layers in the shalower portion. The sandy strata generally consist of very fine to fine sand in the upper section and medium to coarse sand in the deeper section. A small quantity of pebbles are partially found in the deeper section. The groundwater levels observed in the boreholes are generally shallow with the depth of 0.60 to 4.90 m from the ground surface, although it was later half of the dry season. The N-values at each site obtained from SPT vary from 1 to 49. The layers having more than 20 of average N-values appear in the depth of below 16 to 21 m except the Ratnai regulator site. More than 30 of average N-values appear only proposed barrage site at the depth below 29 m.

Summarized boring logs and of each hole are shown on Figs.III.6.3 and III.6.4.

7. Bearing Capacity of Foundation Ground

The bearing capacity of foundation bed at the proposed Bumka pumping station, Holokhana barrage and Ratnai regulator sites was calculated based on the SPT.

The test borings revealed that the foundation beds of the proposed structures consist of sandy strata. On the relationship between the N-value and internal friction angle of sandy strata, several formulae have been proposed by Terzaghi-Peck, Meyehof, Dunham and Osaki as shown on Fig.II-14. As the foundation beds of the proposed structures consist of uniform size paticles, the following Dunham's formula was adopted to determine the design internal friction angle.

$\phi = \sqrt{12N + 15}$

The long term allowable bearing capacity having a safety factor of 3.0 on the sandy ground was calculated by the following Terzaghi's formula (1963) for a rectangular type shallow foundation.

$da \simeq 1/3((0.3-0.1 \times D/L) \times D \times \gamma_1 \times ini + \gamma_2 \times D \times inu$	$x B/L$ x B x γ_1 x Nr + γ_2 x Df x Nq)
---	---

/here ,	qa	:	Allowable bearing capacity (1/m ²)
	γ1	:	Unit weight (t/m ³) of foundation bed below the footing
			bottom base, subtracting 1.0 under water level (γ_1 ')
	γ2	:	unit weight of overlying foundation bed (or backfill) above
			the footing bottom, subtracting 1.0 below groundwater level
			(\(\(\)2'))
	Nr, Nq	:	Bearing capacity factor, see Fig.III.7.2
	В	:	Shorter side length of foundation base (m)
	L	:	Longer side length of foundation base (m)
	Df	:	Depth of foundation bottom (m)

Based on the general design criteria for each structure, the design values and estimated allowable bearing capacities are calculated as follows:

		Pump House (Bumka)	Barrage (Holokhana)	Ratnai Regulator (Bari Bonomali)
Y1, Y2	(t/m^3)	1.7	1.7	1.7
Y1'Y2'	(t/m^3)	0.7	0.7	0.7
Df	(m)	15	2	4
В	(m)	16	689	7
L	(m)	29	22	17
N-value		20	10	8
ф	(*)	: 30	26	25
Nr		6.5	3.6	3.2
Ng		12	8.0	7.7
qa	(t/m ²)	52.8	12.9	9.6

8. Recommendation for the Harichari Regulator Rehabilitation

According to the results of the test boring of BH-1 carried out at downstream side of the existing Harichari regulator, the surface stratum consist of very loose fine sand and its N-values were only 2 to 6. From this geotechnical condition, it can be said that the risk of scoring or piping at the downstream side of the regulator is high. Therefore, sheet piling as countermeasures against scoring or piping is recommended in the rehabilitation work of the regulator.

9. Stability Analysis of Embankment Slopes

As the embankment materials for the flood levees, irrigation canals and approach roads to the structures, both the sandy and silty soil strata destributed in the shallow portion of the Study area shall be used. Accordingly the stability analysis was made on both the embankments of silty and sandy soil materials. The embankment are assumed to have a slope of 1:3 and a 4.2 m wide crest width to match the existing levees. The required safety factors of embankment was determined at not less than 1.5 against the normal condition and not less than 1.2 against the seismic condition.

The analysis for the sandy soil embankments was made by the linear sliding method. The safety factors were calculated by the following formulae against the normal and seismic conditions.

> $Fs = \tan \phi / t \text{ an } \theta \quad (\text{Normal condition})$ $Fs = (1 - k \tan \theta) \tan \phi / (\tan \theta + k) \quad (\text{Seismic condition})$ where, Fs : Safety factor

θ : Slope angle 1:3 = 18.4°
φ : Internal friction angle = 30°
k : Seismic coefficient = 0.08

The design internal friction angle was empirically selected based on the results of previous laboratory tests.

The calculated safety factors were as follows:

(1) Normal condition Fs=tan30° / tan18.4°=0.577 / 0.333=1.73 > 1.5.....ok

(2) Seismic condition

 $F_{s}=(1-0.08 \times \tan 30^{\circ})\tan 18.4^{\circ}/(\tan 30^{\circ}+0.08)=1.65 > 1.2....ok$

On the other hand, the stability analysis for the silty soil embankment was carried out assuming the embankment height from 5 to 10 m. The analysis was made by using the Janbu's slope stability chart as shown on Fig.III.9.1.

The safety factor was calculated with the stability chart and the following formula.

 $Fs = N \times C / \gamma / H$ Stability factor = 5.53Ν where, Cohesion of materials, means undrained shearstrength (Cu) C in the chart = 3.0 t/m^2 Density of materials, means saturated density(γ_{sat}) in the γ chart = 1.339 t/m^3 . The value was obtained by the following relation. $\gamma_{sat} = \gamma_d + e/(1+e)$ γ_{d} (dry density) =1.295 t/m³ e (void ratio) = (Gs/ γ_d)-1 Gs (specific gravity) = 2.66 t/m^3 Slope height (m) H

The design values of C and γ for the analysis were empirically selected based on the previous laboratory tests.

The safety factors against the various embankment heights are calculated as follows:

H = 5 m Fs = 5.53 x 3.0/1.339/5 = 2.48 > 1.5...ok Fs = 5.53 x 3.0/1.339/6 = 2.07 > 1.5ok H = 6 m $F_{s} = 5.53 \times 3.0/1.339/7 = 1.77 > 1.5$...ok H = 7 m $F_S = 5.53 \times 3.0/1.339/8 = 1.55 > 1.5$...ok $H \approx 8 m$ $Fs = 5.53 \times 3.0/1.339/9 = 1.38 < 1.5$ H = 9 m...no $Fs = 5.53 \times 3.0/1.339/10 = 1.23 < 1.5$..no H =10 m

From the stability analysis results, it can be judged that the embankment height with slope of 1:3 must not be more than 8 m to have a safety factor not less than 1.5. For the embankment of 1:3 slope heigher than 8 m, counterweight berms are recommended to secure the stability.

10. <u>Resistance against Erosion</u>

The embankment materials of surface layers consist of the silty layer and the poorlygraded fine sand. Their uniformity coefficient was 7.9 of the silty layer and 3.4 of the sand layer. These materials have an extremely small erosion resistance. It is known that the surface layers in the Study area are easily eroded in the river bank of the Dharla, Teesta and Brahmaputra rivers. The existing flood embankment also is found to have been damaged by the erosion due to stream flow and rainfall in many places.

Accordingly the slope protection works such as the concrete lining, earth lining or sod facing should be furnished even in stable condition against the sliding failure.

11. Possibility of Liquefaction

In general, the sand layer foundation which conforms to the following conditions is considered to have risk of being liquefied by an earthquake.

- The layer within the depth of 15 to 20 m from the ground surface a) b)
 - Pure sand layer consisting of uniform medium-sized particles
- Layer saturated below the groundwater table c)
- d) Poor compacted

The possibility of lipuefaction is judged to be high under the following conditions.

- The content of silt and clay is less than 10% and the average grain size 1) D50=0.075-2.0 mm. Particularly, the sand layer with D50=0.12-1.0 mm and a uniformity coefficient (Cu) of below 10 has a large risk of becoming lipuefied. For the sand layer with a uniformity coefficient less than 5, the risk is considered extremely high.
- 2) The N-values of SPT fall within the range of "C" in Fig.II-17.

The average grain size, Cu and percentage of N-nalue in the range"C" for each 5 m are summarized below:

Depth	D50	Cu	N-value in the range "C" (%)
Up to 5 m	0.143	3.4	52.5
6 m - 10 m	0.131	3.1	35.0
11 m - 15 m	0.187	2.6	17.5
16 m - 20 m	0.249	6.8	5.0
Average	0.178	4.0	28.8

As seen from the above table, D50s of sandy materials up to the depth of 20 m fall between 0.12 and 1.0 mm. Particularly the size up to the depth of 15 m was very fine. While the uniformity coefficients of them were less than 10.

The N-values of SPT for sand layers at the all test boring sites were plotted against the depth in Fig.II-17. The results show that about 29 % of the testing values falls within the range "C" and most of all the remaining samples are plotted within the range "B". Of which the rate of first 5 m shows more than 50 %.

As mentioned in the section of seismic analysis, the ground acceleration during the earthquakes of 50 years return period is estimated at about 80 gal in the Study area. This acceleration is not judged to be so high.

The foundation basement of the major proposed structures were planned at comparative deep portion which located below the most risky section of up to 5 m, i.e. in the depth of 15 m at the pumping station and in the depth of 8 m at the barrage site.

It is judged from above consideration that the sand layer foundation in the Study area has no high risk of being liquefied during earthquake. However, considering the possibility of liquefaction, carefully compaction such as heavy tamping which adopted during construction of the existing Teesta barrage will be required for the large-scale and important structures.

No	Title	Author	Year
	Geological Map of Bangladesh (1:1.000,000)	Geological Survey of Bangladesh	1990
11-02	Geology of Bangladesh	F.H.Khan	1991
11-03	Geography of Bangladesh	Haroun & Rashid	1991
11-04	Bandadesh, Heineman Educational Books	B.L.C.Johnson	1982
11-05	Quaternary Geology of the Bengal Basin	Morgan, J.P. & W.G.McIntire	1959
11-06	Major Tectonic in Pakistan.Part II-Eastern Province	M.I.Bakhtine	1966
IJ-07	Tectonic Classification of Bengal Basin	Alam,M	1972
11-08	Seismic Zoning of Bangladesh & Outline of a	Committee of Experts/ Geological	1979
	Code for Earthquake Resistant Design of Structures	Survey of Bangladesh	
11-09	Land Resources Appraisal of Bangladesh for	Hugh Brammer/FAO	1981
	Agricultural Development, Report 2 Agroecological	- - -	
	Regions of Bangladesh		
H-10	Reconnaissance Soil Survey of Kurigram and	Project of Government of	1970
	Gaibanda Subdivisions, Rangpur District 1969,	Pakistan/UNDP/FAO	:
	Vol. I - Main Report		
H-11	Hydrogeology of North-Eastern Rangpur Covering	Ground Water Circle-II BWDB	Sep.1984
	Teesta Barrage Area BWDB, Water Supply Paper		
	452		
II-12	Hydrogeological Map of Greater Rangpur District	Ground Water Circle-II BWDB	Apr.1987
	BWDB, Water Supply Paper 486		
II-13	Materials Testing Report Number Soils-30 (68)	Hydraulic Research Laboratory	Jun.1968
	Kurigram Flood Control & Irrigation, Auger Holes		
	1 to 29		
11-14	Kurigram Flood Control & Irrigation Project F/S	PAKISTAN TECHNO-CONSULT	Dec.1969
	Report (First Draft), Vol.I, ll		
II-15	Kurigram Flood Control & Irrigation Project F/S	PAKISTAN TECHNO-CONSULT	Oct.1971
	Report (Second Draft), Vol.I, II	LTD.	
II-16	Kurigram Flood Control & Irrigation Project F/S	TECHNO CONSULT EASTERN	Jan.1975
	Report (Revised & Updated), Vol.I, II, III	LTD.	. *
II-17	Kurigram Irrigation & Flood Control Project North	ЛСА	Oct.1990
	Unit F/S Final Report, Vol.I, II		
11-18	Flood Action Plan North West Regional Study	UK-ODA/JICA	Oct.1991
	(FAP-2) Interim Report, Vol.I, II		

Table III.2.1 LIST OF REFERENCES

Table III.4.1 Earthquakes Likely Affecting to the Study Area (1/2)

No.		Date		Epicenter	 t	Magnitude	Depth*	Distance**
	Day	/Mon. /	Yr.	Latitude(N) Long	gitude(E)	(Richter)	(km)	(km)
1	26	Aug.	1833	27.5	86.5	7.5	0	362
2	10	Jan.	1869	24.3	92.2	7.5	0	316
3	12	Jun.	1897	25.8	90.9	8.7	0	134
4	17	Feb.	1909	27.0	87.0	5.0	0	291
5	8	Jul.	1918	24.3	91.7	7.6	0	275
6	9	Sep.	1923	25.3	91.0	7.1	0	159
7	30	Jan.	1924	25.0	93,0	6.0	0	361
8	23	Oct.	1926	25.0	93.0	5.5	0	361
9	2	Jul.	1930	25.8	90.2	7.1	0	63
10	-3	Jul.	1930	25.8	90.2	5.5	0	63
11	4	jul.	1930	25.8	90.2	5.5	0	63
12	8	Jul.	1930	25.8	90.8	5.5	0	124
13	11	Jul.	1930	25.0	93.8	5.5	0	440
14	13	Jul.	1930	25.8	90.8	5.5	0	124
15	6	Mar.	1932	25.5	92.5	5.0	0	300
16	24	Mar.	1932	25.8	90.2	5.5	. 0	63
17	27	Mar.	1932	25.5	92.5	5.5	0	300
18	9	Nov.	- 1932	26.5	92.0	5.5	0	255
19	6 :	Mar.	1932	25.7	90.5	5.8	0	95
20	15	Jan.	1934	26.6	86.8	8.3	0	293
21	= 21	May	1935	29.0	89.2	6.0	0	343
22	18	Jun.	1936	26.6	90.3	5.5	0	108
23	7	Sep.	1936	27.5	87.0	5.1	0	318
24	9	Mar.	1937	27.0	92.0	5.5	0	413
25	21	Mar.	1937	25.5	94.0	5.5	0	452
26	29	Jan.	1938	27.5	87.0	6.0	U O	318
27	26	Feb.	1938	28.0	90.5	3.3	0	230
28	27	May	1939	24.3	94.1	0.8	0	491
29	4	Jan.	1939	28.5	80.0 01.0	5.5 5 5	0	420
30	13	Feb.	1939	27.0	92.0	3.3	0	213 173
- 31	11	May	1940	24.9	94.1	5.5	0	472
52	2	Aug.	1940	20.0	90.3	5.5	0	220
33	21	Jan.	1941	27.2	92.0	6.3	0	203
34	23	Jan.	1941	27.0	92.0	0.5	0	275
35	6	Sep.	1941	27.0	92.0	J.J 5 5	0	213
36	. 8	Feb.	1943	27.0	92.0	5.5 7 7	0	47J 461
- 57	23	Oct.	1943	20.8	94.0	6.0	0	205
38	24	Dec.	1944	24.1	92.2	6.0	0	293
39	19	May	1945	23.1	90.9	0.0 6 D	0	312
40	10	Mar.	1940	20.4	92.0	5.5	0	404
41	29	INOV.	194/	21.9	92.9 04 0	ی. 5 ج		. 404
42	1	Mar.	1040	20.0	24.U QG A	5.5	0	401 67
43	10	Dec.	1949	20.0	09.0	6.0	0	250
44	20	Heb.	1930	20,U 27,0	- 01.0	5.0	0	200
45	10	Aug.	1930	21.7	91.9 07.5	5.5		346
40	10	Aug.	1720	21.0	14.0	0.5	<u></u>	540

Note * : No records ** : from epicenter to project site (25.9N, 89.6E) Source : II- 08

						Manitude	Denth*	Distance**
No.		Date		Epicenter	1 (17)	(Dichter)	(km)	(km)
	Day	/Mon. /	Yr.	Latitude(N) Longi	tude(E)	<u>(Ricinci)</u>		323
47	17	Aug.	1950	27.9	91.9	63	Ő	268
48	24	Dec.	1950	24.4	91.7	6.8	õ	83
49	7	Apr.	1951	25.8	90.4	0.0 6.0	ŏ	496
50	18	Oct.	1951	28.3	93.7	0.0 6 A	ň	452
51	. 7	Nov.	1952	25.5	94.0	6.0	, Õ	301
52	23	Feb.	1954	27.8	91.7	0.0	Ő	177
53	12	Jun.	1956	24.8	90.9	0.0	0	458
54	1	Jul.	1957	24.4	93.8	5 0	ň	170
55	9	Feb.	1958	24.9	90.9	5.0	0 0	346
56	13	Feb.	1958	27.5	92.3).) 55	ů ů	421
57	23	Nov.	1958	28.8	86.9	つい こう たう	0	347
58	22	Feb.	1959	28.5	91.5),/ 55	0	494
59	7	Jan.	1959	24.0	94.0	5.5	0	418
60	2	Nov.	1959	28.0	93.0	5.0	0	360
61	26	May	1960	27.0	93.0	5.0	0	13/
62	29	Jul.	1960	26.9	90.3	6.5	0	116
63	21	Aug.	1960	26.4	88.6	5.5	0	257
64	29	Sep.	1961	28.0	87.0	5.2	. 0	222
65	6	Nov.	1961	26.7	91.9	5.5	0	120
66	25	Dec.	1961	27.0	90.0	5.5	0	150
67	30	Oct.	1962	26.6	93.3	5.5	0	201
68	18	Feb.	1964	27.5	91.1	5.5	0	233
69	-18	Feb.	1964	25.0	94.3	5.4	0	490
70	30	Aug.	1964	27.6	88.3	5.2	0	230
71	1	Sep.	1964	27.2	92.3	5.7	0	. 312
72	21	Oct.	1964	28.1	93.8	5.9	0	493
73	12	Jan.	1965	27.6	88.0	6.1	0	249
74	11	Apr.	1965	26.7	92.3	5.1	0	291
75	18	Jûn.	1965	25.0	93.8	-5.9	· · · 0	440
76	9	Dec.	1965	27.5	92.5	5.3	.0	346
77	26	Sep.	1966	27.5	92.6	5.6	· 0	355
78	6	Sep.	1967	24.2	91.7	5.0	0	282
79	15	Sep.	1967	27.4	91.8	5.8	0	280
80	14	Nov.	1967	24.0	91.5	5.1	0	282
81	12	Jun.	1968	26.0	91.1	5.5	0	155
82	18	Aug.	1968	26.4	90.6	5.2	0	118
83	27	Dec.	1968	24.1	91.6	5.2	0	282
84	25	Jan.	1969	22.9	92.3	5.4	0	426
85	26	Feb.	1969	26.6	92.4	5.0	0	297
86	1	Jun.	1969	25.8	91.8	5.0	0	226
87	30	Jun.	1969	26.9	92.6	5.1	0	327
ŘŔ	5	Nov.	1969	27.7	90.2	5.0	0	209
89	19	Feb.	1970	27.4	94.0	5.5	0	480
90	25	Jul	1970	25.7	88.5	5.2	0	113
91	2	Feb	1971	23.8	91.8	5.4	Ő	319
92	17	Jul	1971	26.5	93.2	5.3	ŏ	375

Table III.4.1 Earthquakes Likely Affecting to the Study Area (2/2)

Note * : No records ** : from epicenter to project site (25.9N, 89.6E) Source : II- 08

					,										
No.	,,	Date		Epi	icenter M	Aagnitude	Depth D	istance	Inte	ensity	· · · · · · · · · · · · · · · · · · ·	Peak A	celeration	 }	
	Dav	Mon	/Yr	Latinde	Longitude	(Richter)			ммс	IMA	Richter k	awacumi	Leteva K	atavamel	Cornell
	<i>2</i> u j	,		(N)	(E)	((km)	(km)		20171	(gal)	(eal)	(gal)	(gal)	(gal)
1	2	Nov.	1959	28.0	93.0	5.0	0	418	0.4	0.0	0	. 0		1	1
2	. 18	Feb.	1964	25.0	94.3	5.4	0	490	0.6	0.0	1	Ó	1	1	1
3	- 26	May	1960	27.0	93.0	5.0	0	369	0.7	0.0	1	0	2	1	1
4	. 7	Jan.	1959	24.0	94.0	5.5	0	494	0.7	0.0	1	0	1	1	1
5	19	Feb.	1970	27.4	94.0	5.5	0	480	0.8	0.0	· 1	0	2	1	1
6	1	Mar.	1948	26.8	94.0	5.5	0	461	0.9	0.0	1	0	2	1	. 1
7	25	Jan.	1969	22.9	92.3	- 5.4	<u>0</u>	426	1.0	0.0	1	0	2	1	1
8	21	Mar.	1937	25.5	94.0	5.5	0	452	1.0	0.0	1	0	2	1	1
9	11	Jul.	1930	25.0	93.8	5.5	0	440	1.0	0.0	1	0	2	2	1
10) 4	Jan.	1939	28.5	86.5	5.5	0	426	1.1	0.0	1	. 0	2	. 2	1
11	17	Jul.	1971	26.5	.93.2	5,5	Ű	315	1.1	0.0	1	. 0	2	2	ļ
12	23	Nov.	1958	28.8	86.9	5.5	. 0	421	1.1	.0.0	1	0	2	2	1
13	30	Jun.	1909	20.9	92.0	5.1	0	210	1.2	0.0	1	0	2	2	1
. 14		Sep.	1930	0 27.5	07.0	5.1 5 A	0	200	1.2	0.0	1	0	2	2	· 1
10	0	jviar.	1932	23.3	92.5	5.0	0	300	1.4	0.0	1	0	2	2	1
10	29	Eab	1947	21.9	92,9		0	202	1.2	0.0	1	0	. 2	5	1
1/	17	Feu. Eab	1000	20.0	87.0	5.0	ŏ	297	1.5	0.0	· 1 1	0		2	1
10	0 17	Dec	1065	27.0	92.5	53	ň	346	1.3	0.0	1	ŏ	2	. 5	1
20	21	Oct.	1064	281	93.8	59	ŏ	403	1.5	0.0	1	· õ	ž	2	î
21	่ว้ก	Oct	1962	26.6	93 3	55	ŏ	387	1.2	0.0	î	ŏ	2	2	i
22	6	Sen	1967	24.2	91.7	5.0	ŏ	282	1.4	0.0	1	ŏ	3	$\overline{2}$	í
23	i ii	Apr.	1965	26.7	92.3	5.1	ō	291	1.5	0.0	ĩ	Ō	3	2	1
- 24	18	Oct.	1951	28.3	93.7	6.0	0	496	1.5	0.0	1	- 0	2	2	1
25	23	Oct.	1926	25.0	93.0	5.5	0	361	1.5	0.0	1	0	3	2	1
26	- 14	Nov.	1967	24.0	91.5	5.1	0	282	1.5	0.0	· 1	0	3	2	1
27	29	Sep.	1961	28.0	87.0	5.5	0	352	1.6	0.0	1	0	3	2	1
- 28	: 11	May	1940) 24.9	94.1	6.0	0	472	1.6	0.0	1	0	2	2	1
- 29	13	Feb.	1958	27.5	92.5	5.5	0	346	1.6	0.0	1	0	3	2.	1
- 30) 18	Jun.	1965	i. 25.0	93.8	5.9	0	440	1.6	0.0	1	0	2	2	1
- 31	2	Feb.	1971	23.8	91.8	5.4	0	319	1.7	0.0	1	0	3	2	1
32	. 27	Dec.	1968	24.1	91.6	5.2	0	282	1.7	0.0	1	0	3	2	2
33	7	Nov.	1952	25.5	94.0	6.0	0	452	1.7	0.0	1	0	3	2	1
- 34	26	Sep.	1966	5 27.5	92.6	5.6	0	355	1.7	0.0	1	0	3	2	1
35	16	Aug.	1950	27.9	91.9	5.5	0	323	1.8	0.0	1	0	· · ·	2	2
36	22	Feb.	1959	28.5	91.5	5.7	U O	347	1.9	0.0	1	0	د ،		2
37	1	Jun.	1965	25.8	91.8	5.0	0	220	1.9	0.0	1	0	4	3	2
	21	Mar.	1932	20.0	92.5	3.3	0	200	2.0	0.0	1	0	4	2	2
		NOV.	1909	21.1	90.2	5.0	0	209	2.1	0.0	2	0	-4	2	2
40	1 1	Sep.	104	21.2	92.3	5.1	0	230	2.2	0.0	2	0	4	2	2
41	່ <u>ວ</u> ບ ເ	Aug.	1904	27.0	00,0	5.2	ň	230	2.2	0.0	ź	ů ů	4	3	2
42	12	Iviai.	1020	27.0	92.0	5.5	. 0	275	2.2	0.0	2	ŏ	4	ž	2
4J 14	CI A	San	10/1	27.0 27.0	02.0	5.5	0	275	22	0.0	2	ŏ	4	3	$\tilde{2}$
44 15	0 ; 0	Gob	10/1	27.0	92.0	5.5	D D	275	2.2	0.0	$\tilde{2}$	ŏ	4	วั	2
4J 46	20	Ion	1024	21.0	03.0	6.0	ŏ	361	23	0.0	$\tilde{2}$	ŏ	4	ž	$\tilde{2}$
A7	0. 10	Nov	1030	- 20.0 > 26.5	02 N	55	ŏ	255	2.4	0.0	$\tilde{2}$	ŏ	5	3	$\tilde{2}$
19	21	May	1035	20.2	20 D	6.0	ŏ	343	2.4	0.0	$\tilde{2}$	Ď	. 4	4	$\overline{\overline{2}}$
40	6	Nov	1961	267	91.9	5.5	ŏ	252	2.4	0.0	$\tilde{2}$	0	. 5	4	3
50	26	Feb.	1938	28.0	90.5	5.5	<u>0</u>	250	2.4	0.0	2	0	5	4	3

Table III.4.2 Earthquake Intensity and Acceleration of the Project Area (1/2)

Note, MMS : Modified Mercalli Scale JMA : Japan Meteorilogical Agency Scale

				1 Lundian	of	the	Project	Area
Table III.4.2	Earthquake	Intensity	and	Acceleration	01	tue	Trojece	

				(2/2)) - ¹ .	:										
		Data		- Con	Contor	Magnitude	Depth	Distance	Int	ensity		Peak Ac	celerati	on		(1)
No.	Day	Date	rý,	iqa ebutue I	Longitude	(Richter)	Depute	, jotane e	MMS	JMÅ	Richter l	Kawasumi	Esteva	Kata	iyama	Cornell
	Day	nuon,	/11.	(N)	(E)	. ((km)	(km)			(gal)	<u>(gal)</u>	<u>(gal)</u>		(gai)	(gai)
51	3	Ang	1940	28.0	90.5	5.5	0	250	2.4	0.0	· .2	· · · · ·	· · · ⊃ ≶		4	
52	17	Aug	1950	27.9	91.9	6.0	0	323	2.5	0.0	2		L .	, ¹	4	. 2
53	29	Jan.	1938	27.5	87.0	6.0	0	318	2.6	0.0	2	. 0	2		·	3
54	18	Feb.	1964	27.5	91.1	5,5	0	235	2.6	0.0	2		ر ۲	1 - F	A	
55	15	Sen.	1967	27.4	91.8	5.8	0	- 280	2.6	0.0	2	. 0.			Å	2
56	27	May	1939	24.3	94.1	6.8	0	491	2.6	. 0.0	2	- ñ	5		4	2
57	16	Mar.	1946	26.4	92.6	6.0	- 0	312	2.6	0.0	2	· · · · · ·	6		A	4
58	. 9	Feb.	1958	24.9	90.9	5.0	0	170	2.6	0.0	4	. 0	Š		4	2
59	23	Jan.	1941	27.0	92.8	6.3	0	350	2.7	0,0		0	5		4	. 3
60	24	Dec.	1944	24.7	92.2	6.0	0	295	2.8	0.0	2	. 1	6		6	ž
61	16	Aug.	1950	27.5	92.5	6.5	0	346	3.1	0.4	3	1	7		6	4
62	26	Feb.	1950	28.0	90,5	6.0		250	3.2	0.2	- 4	1	7		6	4
63	21	Jan.	1941	27.2	92.0	6.3	Ő	285	3.2	0.4	4	1	Ŕ		š	4
64	12	Jan.	1965	27.6	88.0	6.1	0	249	3.4	0.4	4	1	8		ંગ	4
65	- 24	Dec.	1950	24.4	91.7	6.3	0	268	. 3.2	1.0	נ ב	1	6		ή	3
66	23	Oct.	1943	26.8	94.0	7.2	0	461	3.5	1.0	2	÷ 1	8	· .	4	4
67	23	Feb.	1954	27.8	91.7	6.5	0	301	3.5	0.7	3	1	. 7		8	3
68	1	Jul.	1957	24.4	93.8	7.3	0	458	3.6	1.1	Ş	. 2	11		7	
69	12	Jun.	1968	26.0	91.1	5.5	0	155	3.6	0.3	5	1	11		\$. 6
70	18	Aug.	1968	26.4	90.6	5.2	· 0	118	3.8	0.3	. 0.		13		o o	10
71	- 25	Jul.	1970	25.7	88.5	5.2	0	113	3.9	0.4	7	1	14		ŏ	
72	12	Jun.	1956	24.8	90.9	6.0	0	- 137	4.0	. 1.0	. 7	1	1.0	· .	0	0
. 73	. 25	Dec.	1961	27.0	90.0	5.5	0.	130	4.1	0.7	. /	· 1	14		10	10
74	- 8	Jul.	1930	25.8	90.8	5.5	0	124	4.2	0.8	Ö.	1	15		10	10
75	13	Jul.	1930	25.8	90.8	5.5	.0	124	4.2	0.8	0	1	17		10	12
- 76	21	Aug.	1960	26.4	88.6	5.5	0	116	4.3	1.0		1	1/		10	10
77	19	May	1945	25.1	90.9	6.0	0	128	4.3	1.5		2	10		11	14
78	18	Jun.	1936	26.6	90.3	5.5	. 0	108	4.5	1.1	10	4	17	· · ·	14	A .
79	26	Aug.	1833	27.5	86.5	7.5	. 0	362	4.5	. 2.2	. 10	0	14		17	. U Q
80	10	Jan.	1869	24.3	92.2	7.5	0	316	4.9	2.0	13	9	10		10	: 00
81	6	Mar.	1932	25.7	90.5	5.8	U O	20	2.5	2.1	10		- 29		10	1
82	8	Jul.	1918	24.3	91.7	7.6	. 0	215	3.4	3.2	19	10	26		23	
83	-29	Jul.	1960	26.9	90.3	6.5	0	134	2.2	2.1	21	10	20		. 22	20
84	- 3	Jul.	1930	25.8	90.2	5.5	0	-63	2.8	2.4	21	7	- 29		22	
85	4	Jul.	1930	25,8	90.2	5.5	0	63	5.8	2.4	27	1	20	;	- 22	20
86	24	Mar.	1932	25.8	90.2	5.5	0	63	2.8	2.4	21	1	39		24	50
87	9	Sep.	1923	25.3	91.0	7.1	0	159	6.0	2.5	51	24	3/		20	23
88	15	Jan.	1934	26.6	86.8	8.3	. 0	295	6.1	4.3	35	02	- 35		38	<u>1</u> /
89	10	Dec.	1949	26.0	89.0	6.0	. 0	62	0.6	5.4	49	22	29	÷.,	30	
90	7	Apr.	1951	25.8	90.4	6.8	0	83	7.1	4.4	13	/0	/6	e ji k	: 54	60
91	2	Jul.	1930	25.8	90.2	7.1	0 0	63	8.2	5.6	169	260	139		. 99	122
92	12	Jun.	1897	25.8	90.9	8.7		134	8.8	7.1	267	515	174		178	. 115

Note, MMS : Modified Mercalli Scale JMA : Japan Meteorilogical Agency Scale

III - 23