G-2 Water Management Plan

				(1/2)
Description	Case-1	Case-2	Case-3	Case-4
l. Rotation type	(Rotation-1) Main canal Branch Sub-branch ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 5days	(Rotation-2-1) Main canal 	(Rotation-2-2) Main canal 5 5 5 Main chanal 5 5 5 Main canal 5 5 5 Main canal 6 5 5 Main canal 6 5 5 Main canal 6 5 5 Main canal 6 5 5 Main canal 7 5 5 Main canal	(Rotation-3) Main canal Branch
2. Canal water flow - Bahr Yusef main canal - Branch canal - Sub-branch canal	24 hrs continuous Three-turn rotation -do- (5/10)	24 hrs cont 24 hrs cont Three-turn		24 hrs continuous 24 hrs continuous 24 hrs continuous
		- Rotation block: Upstream,middle stream & down- stream.	- Rotation block: 1/3 area from up- stream, middlestream & downstream.	
- Meskas	Pump rotation (16 hr/d)	Pump rotati	on (16 hr/d)	Pump rotation (16 hr/d)
3. Capacity of canal - Bahr Yusef main canal - Branch canal - Sub-branch canal - Meskas	Same as others Large Large Same as others	Same as others Snall Large Same as others		Sama as others Small Small Same as others
4. Distribution control poi - Bahr Yusef main canal - Branch canal - Sub-branch canal - Meskas - No of control point	nt At regulators by ID At intake gate by ID (None) At intake pumps by WUA - Small	At intake gate by At intake gate by	D (W.L. & quantity) ID (W.L. & quantity) ID (Gate open/close) / WUA (Pump operation)	At regulators by ID At intake gate by ID (None) At intake pumps by WUA - Many
 5. Operation & maintenance Delivery facility Distribution control system O/M staff required 	Same as others Less complicated - Careful rotation block planning is required. - Many IAS staff required.	careful rot planning ar		Same as others Complicated - Careful pump operation control at on-farm level is particularly required - Many IAS staff required.

Table G-2-1 Comparison of Irrigation Rotation System

(2/2)

	<u> </u>			(2/2)
Description	Case-1	Case-2	Case-3	Case-4
B. Night storage - Bahr Yusef main canal - Branch/sub-branch - Meskas	(Not considered) Short in capacity *(3.9 hrs) (Not considered)	(Not considered) Short in capacity *(5.5hrs) (Not considered)	(Not considered) Sufficient in capacity *(8.1hrs) (Not considered)	(Not considered) Sufficient in capacity (11,8hrs) (Not considered)
. Necessity of WUA	Less necessary	Necessary		Most necessary
3. Necessity of communica- tion & evaluation system	Necessary	Necessary		Most necessary
9. Environmental aspect	Same as present	Little affect on mo weed control.	osquito control and	Rather affect on mosquito weed & schistosomiasis.
10.Problems and const- raints of the present system	2) 3] [Constraints 1)] 2) [3] [3] [water distribution, Ineffective outflow par Low irrigation efficier 16 hrs/day irrigation f orimary factor. Canal check(regulator)	tail shortage that result rtly due to the present r hey caused by the present time, thus night time flo is downstream water leve rate water use due to far	otation system, and protation system. We considered as control system.
 11. System function expecte Water control/utili- zation conveniency Ineffective outflow Tail shortage occurrence Equitable water supply Water Users Associatio Irrigation efficiency (At main system) (At micro system) Affection to water- logging 	<pre>d d - Easy for supplier but severe for users Much outflow is unavoi- dable Frequent due to farmers' trend of over irrigation - Often hard to attain Hard to function Could be improved Become lower than others - Least affect.</pre>	 Much outflow is unavoidable. Sometimes unavoi- dable. 		 Risky for supplier and secure for users, Could be minimized. Less frequency and could be avoided. Could be attained. Will be functioned Could be improved. Could be improved. Most affect.
12. Judgement	- Present system but not recommendable.	- Not recommendable.	- Recommendable.	- Less recommendable due to unrealistic water use system at present.

Note: *: Figure shows night storage capacity by hours taken from Harika canal study as described in next page.

(cont
G-2-1
able

6

Study of night storage capacity at Harika branch canal. ×

can be estimated from differences between design water levels and storage \cdot water levels at branch and sub-branch canals. The study is undertaken at Harika branch canal and sub-branch canals at the pilot areas by rotation Since irrigation time by pump operation is constrained to be 18 hours and canal water flow is designed to be 24 hours, night storage shall be considered on the improved canal system. Possible night storage capacity types.

1) Storage capacity at sub-branch canals

 Storage capacity at pilot areas Storage capacity at pilot areas Kom El Hasel sub-branch (L=2.3km) V= 9,210 m3 Mazlet Ramadan sub-branch (L=2.4km) V= 6,980 m3 El Baghour sub-branch (L=6.4km) V=13,370 m3 3rd branch (L=2.56km) V= 7,910 m3 	Total for sub-branch (L=11.1km) V=29,550 m3 Total for 3rd branch (L=2.56km) V= 7,910 m3 - average storage capacity per km For sub-branch 29,560m3 / 11.1km = 2,650 m3/km For 3rd branch 7,910m3 / 2.56km = 3,090 m3/km	<pre>2) Storage capacity at Harika branch canal For 1st reach (L=11.75km) V= 75,030 m3 For 2nd reach (L=11.00km) V= 37,580 m3 For 3rd reach (L=10.11km) V= 26,990 m3</pre>	Total for Harika canal V=139,650 m3 3) Storage capacity for 8 hours by rotation type	 a. Case-1 (rotation-1) inflow volume at Marika intakc inflow volume at Marika intakc storage volume storage volume storage volume (Harika) = 138,650 m3 (5ub-branch) 2,660 m3 × 45.24 km = 120,330 m3 (3rd branch) 3,090 m3 × 12.11 km = 37,420 m3
--	--	--	---	---

	intake
	llarika
_	at
otation-2-1)	volume
5	inflow
Case-2	,
Å	

6.978 m3/s × 8 × 3600	= 200,970 m3	m 3
 storage volume 		
(Harika) volume at Ist reach	= 75,080	п3
(Sub-branch) 2,680 m3 * 15.79 km	= 42,000	m 3
(3rd branch) 3,090 m3 * 6.86 km	= 21,200	ш3
Total	138,280 m3	B 3

 ·	= 200,970 m3		= 139,650 m3	= 42,000 m3	= 21,200 m3
c. Lase-3 (rotation-Z-Z) - inflow volume at Harika intake	6.978 m3/s * 8 * 3600	- storage volume	(Harika)	(Sub-branch) 2,660 m3 × 15.79 km	(3rd branch) 3,090 m3 * 5.85 km

138,280 / 200,970 * 8 hrs = 5.5 hrs

storage ratio by hour	202,850 / 200,970 × 8 hrs = 8.1 hrs	
- stora		

202,850 m3

Total

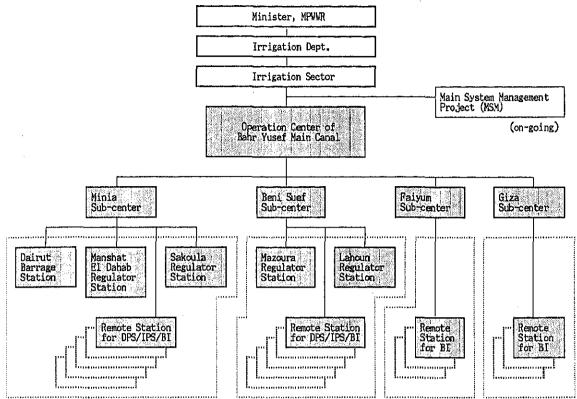
 inflow volume at Harika intake d. Case-4 (rotation-3)

= 200,370 m3		= 120,330 m3	= 37,420 m3	297,400 m3
6.978 n3/s * 8 * 3600	- storage volume (Harika)	(Sub-branch) 2,660 m3 x 45.24 km	(3rd branch) 3,090 m3 * 12.11 km	Total

ł

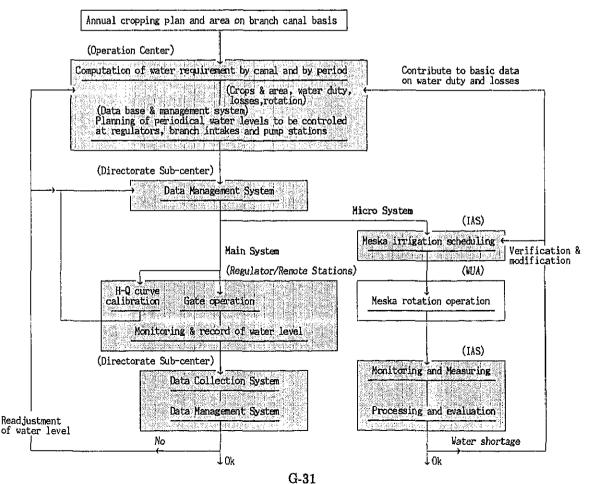
297,400 / 200,970 * 8 hrs = 11.8 hrs

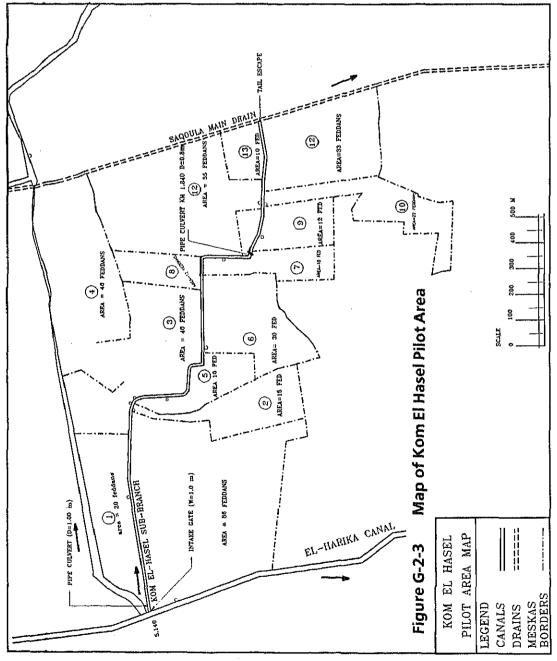
storage ratio by hour


297,400 m3 - storage ratio by hour 297,400 / 602,900 * 8 hrs = 3.9 hrs Total

Identification of Problems and Solutions on On-farm Irrigation System Improvement Table G-2-2 ÷

									9	(Causes)
	1) Ov	с н	rrig:	ation	hy r	sduno	- E D	stree	d E	1) Over irrigation by pumps (upstream priority)
		2) 法	Many direct intakes to Meskas	Lrect	inta	akes	t M	skas		
	. 	<u> </u>	3) Ina	nbəpr	ater	rese	nt i	Tiga T	tio	Inadequate present irrigation rotation & farmers unreliability
			4	No.	coop	erati	onal	guou	farn	4) No cooperation among farmers (individual pump operation)
				ຄ	Mair	Can	al w	ater	leve	Main canal water levels not well maintained
					ତ		tage	ofı	ight	Shortage of night storage capacity
						5	On-f:	RTB 0	eliv	7) On-farm delivery inconveniency
							8	oor	lanc	Poor land leveling
					_,,		L	6)]	Jupro	Improper structure conditions (tail escapes, etc)
(Problems)								L	ବ୍ର	10) lack of canal maintenance
1) Water shortage in sub-branch canals	x X	X	*	*	····	 		☆		
2) Much water level fluctuation				☆						
3) Irrigation from drainage canals	☆				*					
4) Low irrigation efficiency	× X	*	X			☆	☆			
5) Inequitable distribution (tail water shortage)	\%		☆					·	[
6) Much ineffective outflow		<u> </u>	X	☆	☆			☆		
7) Thickly growing of water plants/weeds									☆	(Solutions)
	¥		★		⊀					1) Irrigation rotation system improvement
			*	*						2) Distribution system improve.(main system)
	×	¥	` ¥							3) Establishment of WUAs (on-farm system)
		6 +9	<u>.</u>		×	÷		⊀		4) Sub-branch canal improvement
	×	×			4400- 14	×	¥			5) Meska intake & on-farm improvement
•					 			×	×	6) Strengthening of maintanance


! -


Figure G-2-1 Proposed Organizational Structure for Operation and Maintenance of the Main System

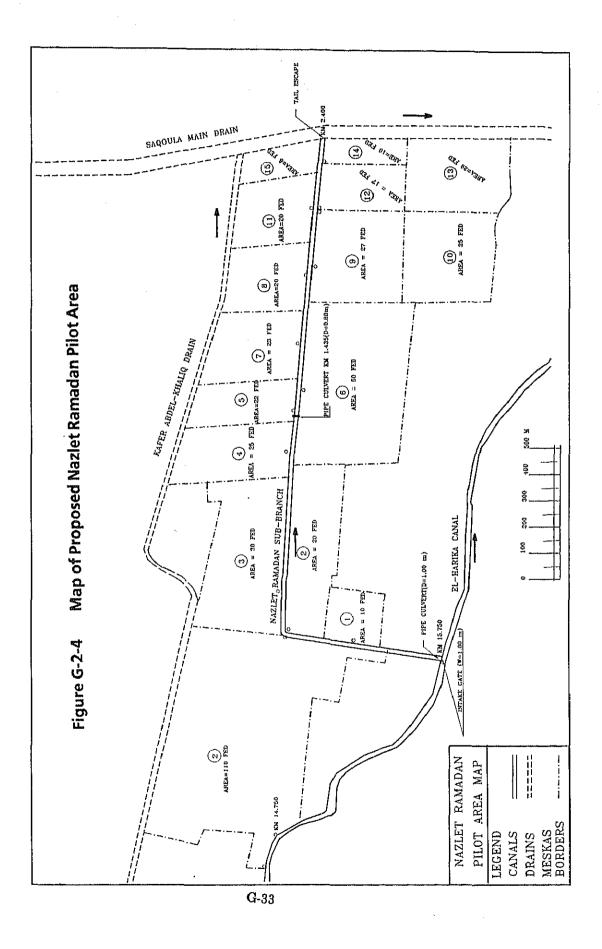

(IPS: Irrigation pump station, DPS: Drainage pump station, BI: Branch intake)

Figure G-2-2 Chart of Proposed Water Distribution Control System for Bahr Yusef Canal

.:

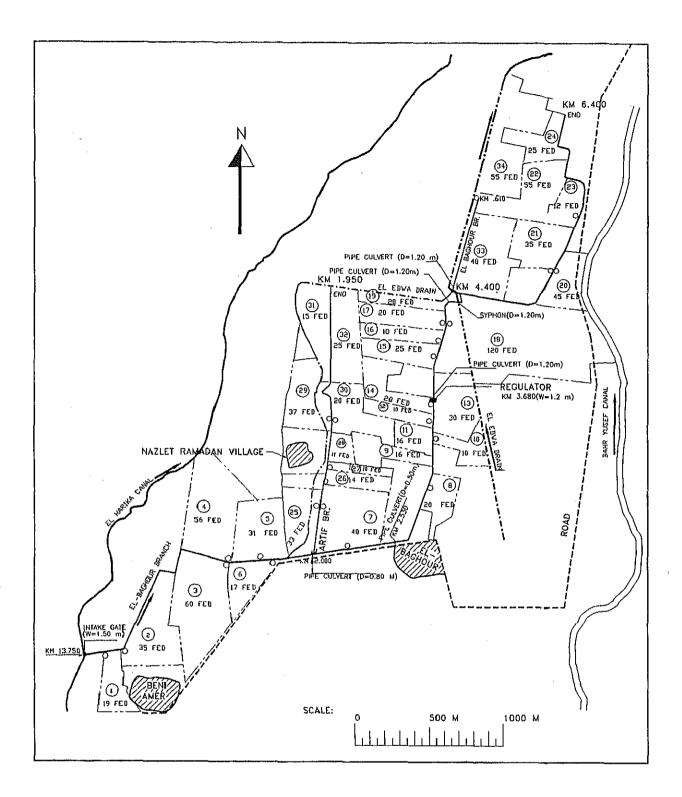
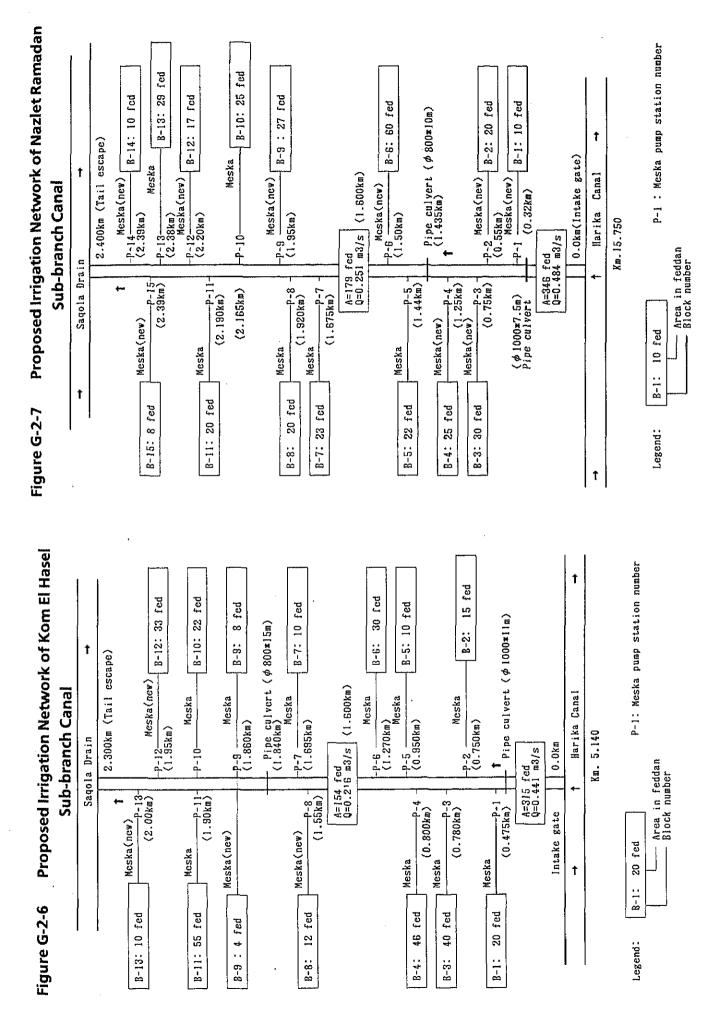



Figure G-2-5 Map of Proposed El Baghour Pilot Area

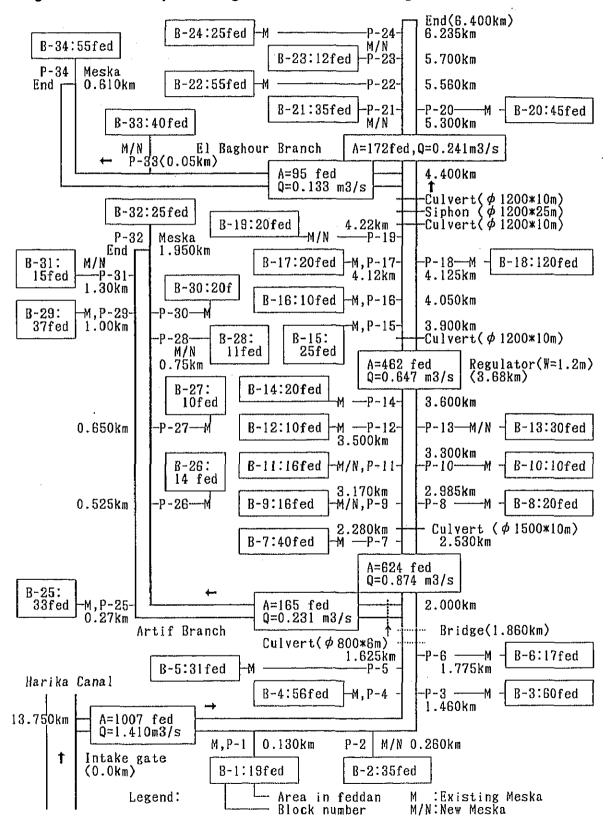
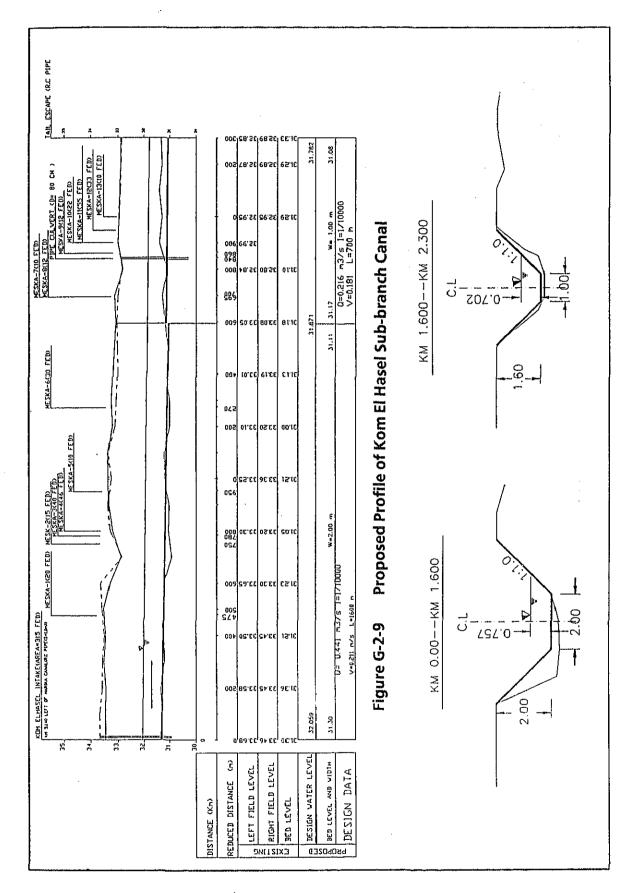
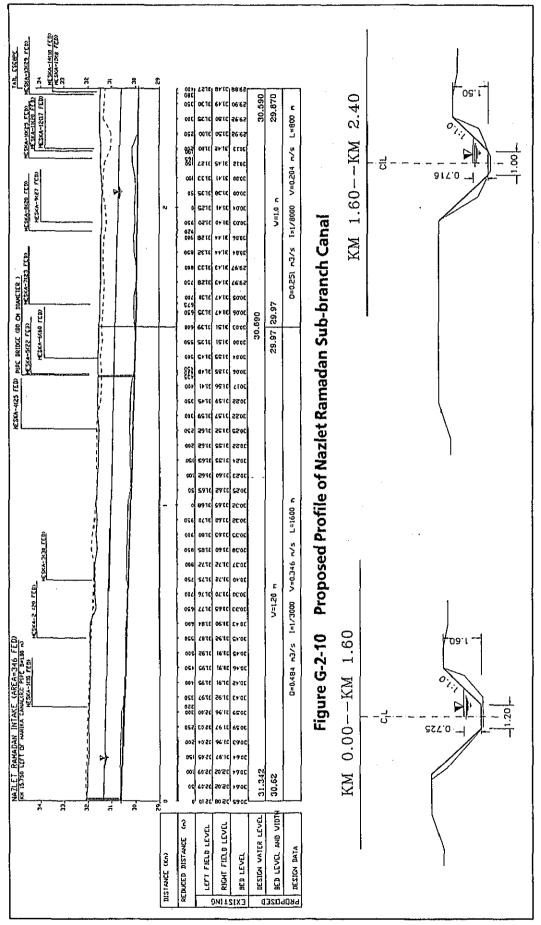
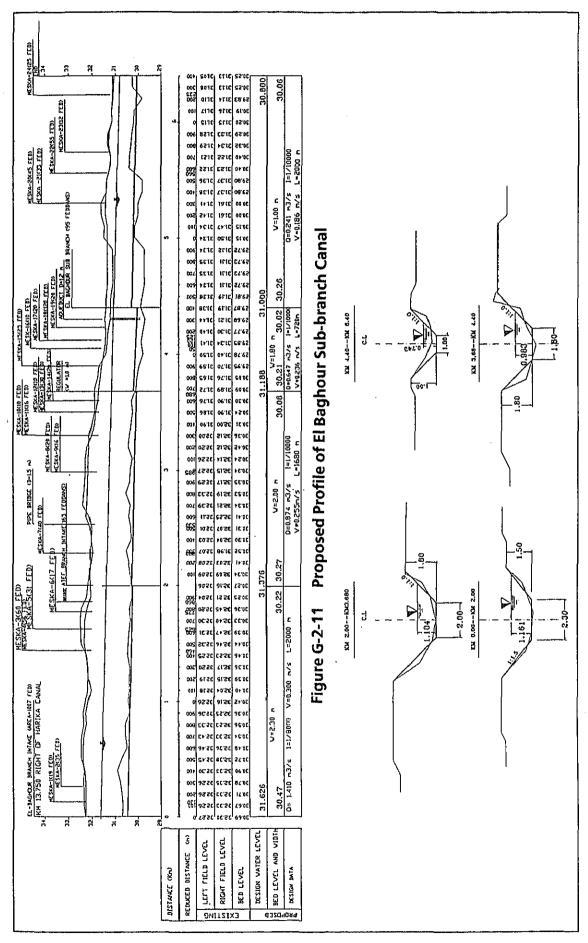
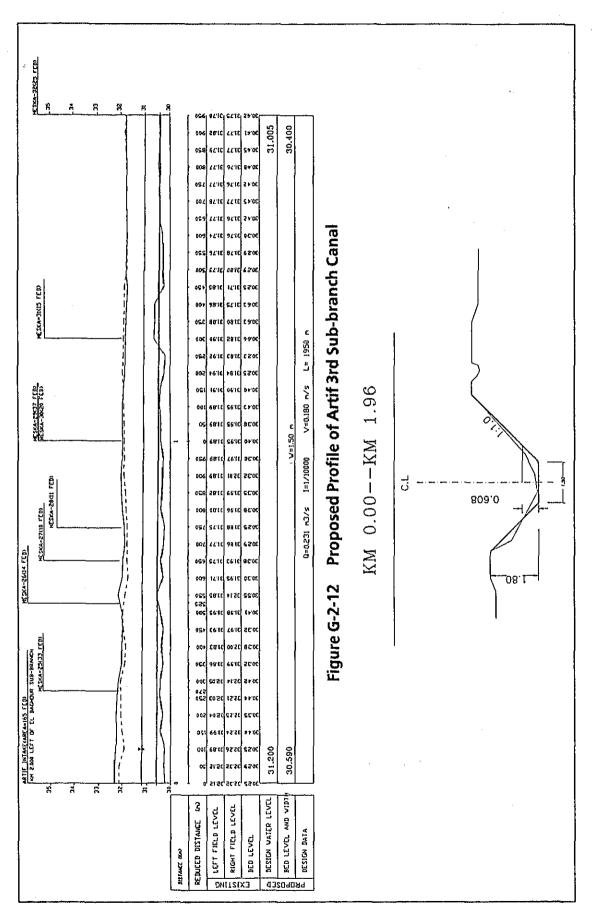
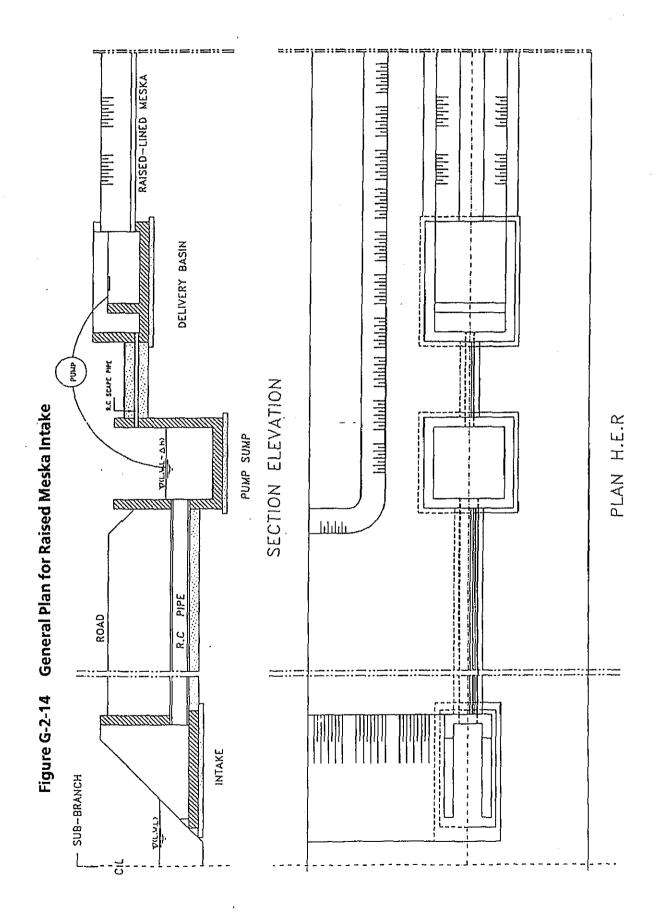






Figure G-2-8 Proposed Irrigation Network of El Baghour Sub-branch Canal


ena jul

Comparison of Meska Improvement Alternatives Table G-2-3

				-			(1/2)
Description	Open Low Le	vel Meska	Ope	n Raised Meska		Closed Pipe	line Meska
Description	Earth	Lined	Earth	RC Flume	Trapezoid Sec.	PVC Pipe	RC Pipe
1. Structure		₿ <u>^</u> \$_∕	<u></u>	_ <u></u>			₽ <u>́</u>
	Compacted earth	Plane concrete Cast-in-place	Compacted earth	Precast reinf- orced concrete	Plane concrete Cast-in-place	Buried low pre sure pipeline	Buried low pre sure pipeline
2. Water flow	-Gravity ti -Lift from (Slow delive.)	Meska to Marwa		till sub-branch m sub-branch to Quick deli	Neaka very)	-Gravity till s -Lift from sub- (Quick deli	branch to Meska
3. Water losses -Convey. loss -Distri, loss	-Large -Large	-Small -Large	-Middle -Small	- Sma - Sma		-Very small -Small	-Small -Small
4. Construction easiness	-Hard earth work finish. w/ compaction	-Less diffi- culty	-Less diffi- culty	-Easy -Lifting equi- pment requir.	-Easy	-Easy	-Easy except pipe joint
5. Land required for improve- ment	-None, almost t existing	he same as	-Some area is necessary to widen	-None -New area may be produced	-none, almost the same as existing	-None -New area will	be produced
6. Operation & maintenance of facility	-By WUA -Hard cleaning & weeding	-By WUA -Easy	-By WUA -Easy	- By - Ea	VUA Isy	-By WUA -Required spe- cialist for pipe mainte.	-By WUA -Difficult pipe repair
	ontrol -Difficult to c -Difficult and inconvenient due to pump			ntroled with one evenient for farm		-Could be controled -Easy and convenient	

٠ 			· · · · · · · · · · · · · · · · · · ·				(2/2)
Description	Open Low Le	vel Meska	Оре	n Raised Meska		Closed Pipe	line Meska
	Earth	Lined	Earth	RC flume	Trapezoid Sec.	PVC Pipe	RC Pipe
8. Acceptability for farmers with concern to WUA	-Acceptable for farmers -WUA will not b	-Not accepta- ble e functioned	-Acceptable f	or farmers		-Less accepta due to invis	ble for farmers ible water flow
9. Economy -Const. cost -Opera. cost -Maintena.cost	-Low -High -High	-lst highest -High -Middle	-Lovest -Low -Low	-High -Low -Low	-Middle -Low -Low	-2nd highest -Middle -Middle	-3rd highest -Middle -Middle
0. Others					-Common struc- ture in Egypt	-Quite unfami system for f	
11.Principles of Meska impro- vement	2)Toa	stablish conveni void direct inta ne point lifting mprove on-farm i	ke water from th at Meska intake	e branch or sub-	branch canals th	WUAs be function rough introducti veniency.	ed. on
2.Judgement	-Not recommendable	-Not recommendable	-2nd recommendable	~Less recommendable	-lst recommendable	~less recommendable	-Not recommendable

List of Meskas at Pilot Areas in Proposed ${\bf k}$ Table G-2-4

`

(2/2)

Irrigation Network

	New						(Evt)	\$																																	
	Exist/New		Existing	Existing	Evicting	Fristing	Fuiet no	Fxisting	Nev	Existing	Existing	Existing	New	2			Ncv	Nev	Nev	Nev	LXISLING	Rvieting	Existing	New	Existing	Existing	Existing	New	Nev				Existing	Existing	Existing	CAISTIN	EXISTING FVisting	New	Existing	Nev	Existing
l n + n ko	Pumps	(Dia.* No.)	ഥ	₩ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ο α	<u>م</u>	o e		о co	ഥ	ယ	∞	د م	Þ			ယ	ഹ	en (ເລ	ωœ	с с	0	ខ	ю e	<u>ه</u> م	ം ശ	¢6 ×1	co		د	ф 8 8 8 8 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7	0	∞	ഹം	9	α	$\sim \alpha$	ഗ	œ	ŝ
Mocka	ncska Length	(ш)	300	300	0028	540		340	120	170	500	850	250	101	5,125		180	600	500	400	350	048	300	320	650	300	220	70	300	5,620	00 x	600 800	790	300	400			300	500	250	350
Aros	Served	(Fed) Area	1 20	15	י מ ל מ	2 C	202	39	12	12	22	55	33	77	315		10											12		346	Area	35.4	09	ß	5		040	3 4	10	16	10
1/0	87L Bank	o-branch		C×4 ⊷		2 04	: 0	< D4	:		Я	-	Det	J		Sub-branc		24	_ _	 		4	<u>ب</u> د	×	×.		* *		ب		-	× 04	: 6 2	-1		¥.	ച റ 	« _	0.04		ن ـ.
	Location	(Km) Hasel Sub	0.47	0.750	0, 200	0.950	020-0	1.895	1.550	1.860	1.300	1.900	1.950	nnn-7		adan	0.320	0.550	0.750	1.250	1 500	1.000	1.920	1.950	2.165	2.190	2.380	2.390	2.390		Sub-	0.260	1.460	1.460	1.625	0//1	2-280	3 170	3.300	3.300	3.500
Mocks	No.	. Kom El	-	2 - 2 7 - 2		+ \r - z 75		-10	- ~~ - ×	ດ - ະ	M-10	M-11	M-12		Total	. Nazlet		¥-2	- 2 - 2	¥:	2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		- 8-2	M-9	M-10	-	21-2	M-14	M-15	Total		-2- -2-) (C) - 2 - (C) - 2 - (C) - (C	M-4	ທ 2 ສະສ	ם נ ב	- 0 E 2		M-10	M-11	M-12

Table G-2-4	G-2-4	(cont′d)	t'd)				(2)
Meska No.	Location	R/L Bank	Area Served	Meska Length	Intake Pumps	Exist/New	39
	(Km)		(Fcd)	(m)	I #		
M-14	3.600		50	200	φ6 x 2	Existing	
M-15	3.900		25	550	ശ	Existing	
M-15	4.050		10	400	ω	Existing	
M-17	4.120		20	450	ശ	Existing	
M-18	4.125	Ċ:	120	1,650	∞	Existing	
81-W	4.220	د	20	580	ഗ	Nev	
M-20	5.300	0.c	45	560	∞	Existing	
M-21	5.300	<u>د</u>	35	350	φ	Nev	
N-22	5.560	ب	55	925		Existing	
M-23	5.700	<u>د</u> _	12	250	ω	Nev	
M-24	6.235	. د	25	400	æ	Existing	
M-25	0.270	د.	33	400	8	Existing.	Art
M-26	0.525	24	14	400	Ø8 *1	Existing	
M-27	0.650	D <	10	400	œ	Existing	Ţ
M-28	0.750	¥	11	200	Q	New	'
M-29	1.000		37	500	ω	Existing	'
м-30	1.000	~	20	250	ക	Existing	1
M-31	1.300		15	500	∞	Nev	•
M-32	1.950	6 4	25	200	ക	Existing	•
м-33		~	40	500	œ	NCY	Bas
M-34	0.610	t	55	1,50	¢8 *2	Existing	

Proposed On-farm Improvement in Pilot Area Table G-2-5

Baghour B. -do-

16,810

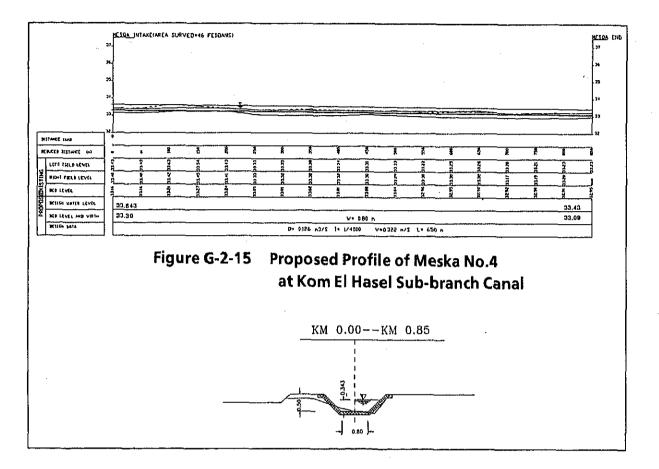
1007

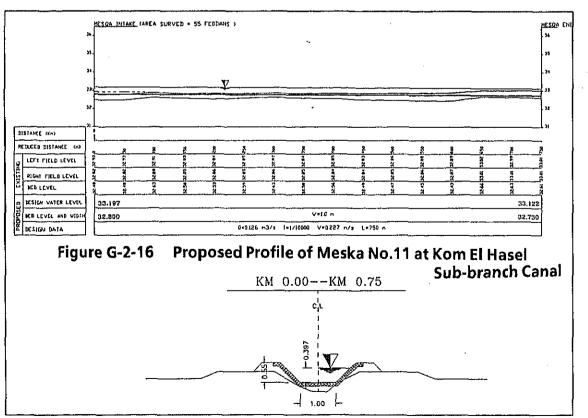
Total

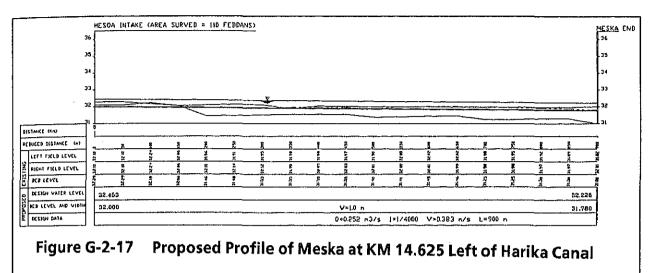
Artif B. - do -- do -

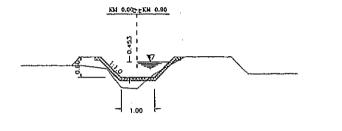
Command area (fed) (Net irrigated area (fed) (Net irrigated area (fed) (- No. of Meskas (No) - Length of Meskas (m) 5, 2. Meska new construction (No) - Length of Meskas (m) 3. Meska intake construction (No) - No. of intakes (No) 4. Access road improvement (km) 5	Hasel Ramadan	lan Baghour	Total
(No) (п) (п) (No) (п) ion (No)	550 73 421 6	780 1,800 645 1,388	3,130 2,454
(u) (u) (u) (u) (u) (u) (ku)			4
(NO) (NO) (ON) (NO) (Km)	5.625 6.000	18.600	30.225
(No) (m) ion t (km)			
(en X	ç	9 10	22
No) Kii)	800 3,120	3.910	78.300
(No)	•	•	•
(km)	15	21 41	77
(km)			
	2.3 5.	5.5 1.9	9.7
5. Farm land levelling			
(fed)	85 13	130 280	495

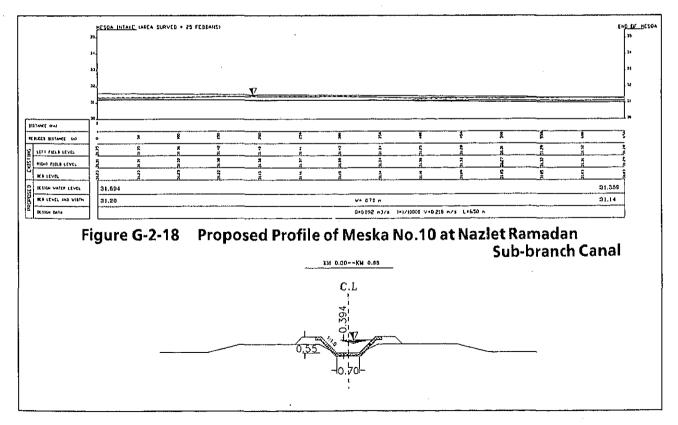
Proposed Meska Rotation Scheduling at Pilot Areas Table G-2-6


.


Note: 1. Irrigation time is 16 hours per day. 2. Assuming that pump capacity is 46 lps (165.6 m3/h) for φ6" pump, and 63 lps (226.8 m3/h) for φ8" pump.


										(U2)
Block			5	Maximum	Design		Meska Pump Op	eration Schedu	ling	
No.	Area	Total W.R. (15 days)	Pumps	W.R.	Opera. Hour	lst day	2nd day	3rd day	4th day	5th day
3 51 5	(fed)	(m3)		(lps)	(hrs)	6h 22h	6h 22h	6h 22h	8h 22h	6h 22h
3, E1 E B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-7 B-8 B-9 B-10	19 35 60 56 31 17 40 20 16 10	Sub-branch Ar 11,828 21,787 37,350 34,880 19,298 10,582 24,900 12,450 9,960 6,225	ea φ6 *2 φ8 *3 φ8 *2 φ8 *	92 126 189 126 92 63 126 92 63 46	35.7 48.0 54.9 76.9 58.3 46.7 54.9 37.6 43.9 37.6			- 3.7 	6.9 — 7 10.3	6.9
8-11 B-12 B-13 B-14 B-15 B-16 B-17 B-18 B-19 B-20	16 10 30 20 25 10 20 120 20 45	9,980 6,225 18,675 15,562 6,225 12,450 74,700 12,450 28,013	\$\$ *1 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	63 46 92 92 92 46 92 252 92 126	43.9 37.6 56.4 37.6 47.0 37.6 82.3 37.6 82.3 37.6 61.8	5.6	8.4	11.9 5.6 15 5.6 5.6 5.6 5.6		8
8-21 8-22 8-23 8-24 8-25 8-26 8-26 8-27 8-28 8-29 - B-30	35 55 12 25 33 14 10 11 37 20	$\begin{array}{c} 21,787\\ 34,238\\ 7,470\\ 15,562\\ 20,542\\ 8,715\\ 6,225\\ 6,848\\ 23,032\\ 12,450\end{array}$	φ8 *2 φ8 *2 φ6 *1 φ8 *1 φ6 *1 φ6 *1 φ8 *2 φ6 *1 φ6 *1 φ6 *2 φ6 *2	126 128 46 92 126 63 46 46 126 92	48.0 75.5 45.1 47.0 45.3 38.4 37.6 41.4 50.8 37.6			$\begin{array}{c c} 3.1 \\ 15 \\ \hline \\ 6.4 \\ 9.4 \\ \hline \\ 5.6 \\ \hline \\ \hline \end{array}$	3 	
B-31 B-32 B-33 B-34	15 25 40 55	9,338 15,562 24,900 34,238	φ8 *1 φ6 *2 φ8 *2 φ8 *2 φ8 *2	63 92 126 126	41.2 47.0 54.9 75.5	11.5	6.9	15 <u></u>		
Total	1007	626,857				125,318	125,199	125,519	125,626	125, 269


(2/2)


(1/2)

APPENDIX H

.

AGRICULTURE

H - 1 Present Agriculture

i,

.

H - 2 Agricultural Plan

PRESENT AGRICULTURE H - 1

Table H-1-1 Cultivable Land, Cropped Acreage in Command Area

Governorate	Minia	Beni Suef	Faiyum	Giza	Total
Cultivable	121	66	347	117	651
Cropped Area (A)	85	59	313	108	565
(old land)	(65)	(52)	(313)	(108)	(538)
(new land)	(20)	(7)	(0)	(0)	(27)
Annual Crop Acreage (B)					
Total	138	106	559	244	1,047
(old land)	(111)	(96)	(559)	(244)	(1,010)
(new land)	(27)	(10)	(0)	(0)	(37)
Crop Intensity (B/A)					
(old land)	171	186	179	225	188
(new land)	135	142	-	-	137

Source : Calculated from data by related Governorate Offices.

Table H-1-2 Crop Composition in Old Land under Command

(unit:1,000 feddan)

(unit: 1,000 feddan)

Quan / Saagan	1	Whole Go	vernorate	S		Bahr Yu	sef Comm	and Area	L
Crop/Season	Minia	B, Suef	Faiyum	Giza	Minia	B. Suef	Faiyum	Giza	Total
Winter Crop	352.8	190.3	263.3	127.8	51,4	44.4	263.3	80.5	439.6
Wheat	134.4	61.5	77.6	12.1	19.0	15.6	77.6	7.6	119.8
Berseem *	98.3	66.9	124.4	57.0	10.0	11.3	124.4	72.8	188.5
Broadbean	78.6	41.4	21.5	2.2	13,4	10.4	21.5	1.4	46.7
Vegetables	5.6	6.8	6.6	39.5	2.0	1.8	6.6	24.9	35.3
Others	35.9	13.7	33.2	17.0	7.0	5.3	33,2	3.8	49.3
Summer Crop	319.8	187.3	178.0	144.7	48.7	32.3	178.0	91.2	350.2
Maize	169.2	59.9	43.1	60.4	23.4	12.0	43.1	38.1	116.6
Cotton	77.8	55.2	39.7	-	16.7	13.2	39.7	-	69.6
Soybean	43.1	11.3	-	(3.6)	1.6	-	-	$\{17.1\}$	{18.7}
Sorghum	3.8	-	37.2	1.2	-	-	37.2	0.8	38.0
Vegetables	11.0	37.7	29.3	44.7	1.0	4.2	29.3	28.1	62.6
Others	14.9	23.2	28.7	34.8	6.0	2.9	28.7	7.1	44.7
Nili Crop	57.7	91.9	102.2	88.2	7.7	18.4	102.5	55.6	183.9
Maize	45.2	76.3	51.8	43.4	7.1	14.1	51.8	27.3	100.3
Vegetables	3.1	7.8	37.0	36.9	0.6	2.0	37.0	23.2	62.8
Others	9.4	7.8	13.4	7.9	0.0	2.3	13.1	5.1	20.8
Perennial Crop**	58.7	10.3	19.5	28.4	3.8	1.0	19.5	17.0	41.3
Total	789.4	479.8	563.0	389.1	111.6	96.1	563.0	244.3	1,015.0

Source : MALR

() groundnut, { } fodder but total { } includes it. B Suef: Beni Suef * berseem includes long and short crops. ** including sugarcane Note.

Table H-1-3	Cropping Acreage in	n Command Area,	Minia Governorate
·			

Crop/Year	1986	1987	1988	1989	1990	Average	C. I.**
Winter Crop						<u>-</u>	<u></u>
Wheat	16,650	18,730	20,777	18,568	20,097	18,964	29.2
Broadbean	12,693	12,816	13,090	13,654	14,918	13,435	20,7
Fenugreek	1,255	802	1,707	737	1,222	1,144	1.8
Long Berseem	10,192	10,217	8,847	10,836	10,237	10,065	15.5
Short Berseem	3,218	2,953	4,731	2,660	2,900	3,292	5.1
Onion	15	0	0	0	103	24	-
Garlic	841	62 3	804	677	732	735	1,1
Potato	12	0	0	11	58	16	-
Medicinal Crop	0	0	9	44	0	11	-
Vegetables	2,332	1,682	1,663	2,168	1,989	1,967	3,0
Gourds/Others	2,514	2,346	2,097	959	666	1,717	2.6
Sub-Total	49,722	50,169	53,725	50,314	52,922	51,370	79.0
Summer Crop							
Cotton	16,593	16,715	16,851	17,020	16,398	16,716	25.7
Maize	22,541	22,904	23,155	23,661	24,695	23,391	36.0
Sugarcane	435	377	438	376	350	395	0.6
Sesame	808	954	921	1,003	1,313	1,000	1.5
Soyabean	2,756	1,428	1,285	1,248	1,340	1,610	2.5
Groundnut	152	463	528	1,278	1,390	763	1.2
Sunflower	0	0	0	0	181	36	-
Vegetables	1,650	1,145	868	615	934	1,042	1.6
Others	5,128	4,823	4,886	3,244	2,320	4,081	6.3
Sub - Total	50,063	48,809	48,932	48,445	48,921	49,034	75.3
Nili Crop							
Maize	6,095	7,564	6,808	7,258	7,537	7,052	10.8
Vegetables	601	368	476	697	841	597	1.0
Others	57	0	29	0	108	38	-
<u>Sub - Total</u>	6,753	7,932	7,313	7,955	8,486	7,687	11.8
Perennial Crop**	3,381	3,537	3,598	3,484	3,371	3,476	5.3
<u>Grand Total</u>	109,919	110,447	113,568	110,208	113,700	111,567	171.4

(unit:feddan)

Source : MALR

Note : *Fruit Garden, ** Cropping Intensity (Total cropped acreage 65,032 feddan) Figures indicating commanded acreages from Bahr Yousef, demarcated by planimetrical measurement on basic maps (scale : 100,000)

Crop / Year	1986	1987	1988	1989	1990	Average	C . I.
Winter Crop							
Wheat	12,618	15,563	15,271	16,051	18,421	15,585	30.3
Broadbean	8,738	9,760	11,745	11,936	9,956	10,000 10,427	20.3
Barley	1,934	1,742	954	821	574	1,205	2.3
Fenugreek	648	416	604	1,380	523	714	1,4
Lupin	74	127	33	40	45	64	- I, T
Long Berseem	13,659	11,551	9,913	10,392	11,036	11,310	22,0
Onion	2,158	2,254	3,394	2,057	2,395	2,452	4,8
Garlic	148	536	575	375	2,000 597	446	0.9
Medicinal Crops	221	621	517	406	371	427	0.8
Vegerables	1,930	1,652	1,867	1,606	1,849	1,781	3.5
Others	24	-, 75	32	31	17	36	0.0
Sub-Total	42,152	44,297	44,905	45,095	45,784	44,447	86.3
Summer Crop				·····	,	,,	00.0
Cotton	13,006	13,265	13,517	13,876	12,416	13,216	25.7
Maize	7,673	13,038	11,419	14,402	13,367	11,980	23.3
Sugarcane	162	32	, 37	40	32	60	
Sesame	610	556	589	475	856	617	1.2
Groundnut	396	300	395	550	274	383	0.8
Sunflower	601	1,942	1,851	1,442	1,661	1,499	2.9
Vegetables	2,877	4,077	4,303	5,651	3,671	4,176	8.1
Others	823	231	191	240	324	362	0.7
<u>Sub - Total</u>	26,148	33,441	32,302	36,673	32,901	32,293	62.7
Nili Crop		,	,	,	,	0-,200	04.1
Maize	13,478	14,395	15,455	13,240	14,038	14,121	27.5
Sorghum	5,472	2,009	878	541	2,201	2,220	4.4
Vegetables	1,610	1,536	2,572	1,946	2,465	2,026	3.9
Fodder Crop	153	29	6	-,	-,100	40	-
Others	9	85	0	5	- 1	20	_
<u>Sub - Total</u>	20,722	18,054	18,911	15,743	18,706	18,427	35.8
Perennial Crop**	897	1,019	959	948	942	953	1.9
<u>Grand Total</u>	89,919	96,811	97,077	98,462	98,333	96,120	186.7

Table H-1-4 Cropping Acreage in Command Area, Beni Suef Governorate

(unit : feddan)

Source : MALR

.

Note : * Cropping Intensity (Total 51,481 feddan) ** Fruit Garden

.

Table H-1-5 Cropping Acreage in Command Area, Faiyum Governorate

(unit : feddan)

Crop/Year	1986	1987	1988		1990	Average	C. I.
Winter Crop	_						
Wheat	60,163	72,513	77,408	86,490	91,169	77,549	24.8
Broadbean	17,056	20,298	26,766	21,847	21,660	21,525	6.9
Barley	12,824	13,035	12,513	6,373	7,220	10,393	3,3
Fenugreeek	4,107	5,747	3,094	1,863	2,150	3,392	1.1
Lupin	128	73	103	37	68	82	-
Long Berseem	120,083	98,241	81,871	89,019	104,308	98,704	31.6
Short Berseem	27,815	30,559	25,876	23,397	20,970	25,723	8.2
Onion	4,410	2,305	4,542	1,391	1,912	2,912	0.9
Lentil	34	75	137	46	50	68	-
Garlic	95	306	361	159	242	231	0.1
Vegertables	5,470	7,377	7,063	5,441	7,785	6,627	2.1
Flax	577	511	797	933	515	667	0.2
Ohter	10,814	11,525	11,039	12,075	10,935	11,278	3.6
Sub-Total	263,576	262,565	251,570	249,071	268,984	259,151	82.8
Summer Crop				·	-	,	
Cotton	41,405	40,045	41,041	39,759	36,197	39,689	12.7
Maize	29,604	46,206	44,120	46,206	53,151	43,857	14.0
Sorghum	39,868	37,495	43,713	32,764	32,108	37,190	11.9
Sugarcane	309	309	-	240	240	220	
Sesame	1,448	1,487	1,430	1,487	1,271	1,425	0.5
Groundnut	112	116	168	147	54	, 119	
Sunflower	9,325	10,239	10,366	4,633	6,948	8,302	2.7
Oil sunflower	-	1,115	3,000	6,500	10,022	4,127	1.3
Vegetables	35,358	32,590	30,492	28,595	19,531	29,313	9.4
Matsedge	2,988	2,827	2,176	1,184	1,222	2,079	0.7
Rice	12,109	12,784	11,569	12,560	13,703	12,545	4.0
Soyabean	291	273	131	-	-	139	-
<u>Sub - Total</u>	172,817	185,486	188,206	174,075	174,447	179,005	57.2
Nili Crop					-	·	
Maize	35,380	47,705	55,946	55,563	64,490	51,817	16.6
Sorghum	5,064	4,161	1,983	3,116	1,908	3,246	1.0
Rice	1,908	1,510	1,004	963	934	1,264	0.4
Vegetables	34,713	34,611	43,321	43,372	29,146	37,033	11.9
Fodder Crop	23,015	5,587	2,783	12,999	-	8,877	2.8
Others		-	-	15	10	5	-
Sub - Total	100,080	93,574	105,037	116,028	96,488	102,242	32.7
Perennial Crop**	17,720	18,902	20,110	20,022	19,907	19,332	6.2
<u>Grand Total</u>	554,193	560,527	564,923	559,196	559,826	558,730	178.9

Source : MALR Note : * Cropping Intensity (Total 312,835 feddan) ** Fruits

Table H-1-6 Cropping Acreage in Command Area, Giza Governorate

(unit:feddan)

Crop / Year	1986	1987	1988	1989	1990	Average	C. I.
Winter Crop							*
Wheat	6,602	7,651	7,220	6,815	9,752	7,608	7.0
Broadbean	1,427	1,535	1,898	1,362	777	1,399	1.3
Barley	485	488	423	503	396	459	0.4
Fenugreek	566	466	435	601	331	479	0.4
Lupin	560	471	423	444	293	438	0.4
Long Berseem	37,330	31,095	32,670	32,253	46,321	35,934	33.1
Short Berseem	4,353	3,823	7,171	7,260	8,822	6,886	6.4
Onion	1,000	1,002	852	1,676	1,195	1,145	1,1
Garlic	199	331	289	239	472	306	0.3
Berseem Seed	-	-	-	2,814	1,769	917	0.8
Vegerables	27,794	26,408	24,744	22,524	23,174	24,929	23.0
Sub-Total	80,316	76,270	76,125	76,491	93,302	80,500	74.2
Summer Crop					-	ŗ	
Maize	30,754	37,768	39,446	40,954	41,481	38,082	35.1
'Sorghum	1,252	945	742	394	544	775	0.7
Sugarcane	733	770	913	956	956	866	0.8
Sesame	242	266	254	226	587	315	0.3
Groundnut	1,794	1,672	2,579	2,806	2,354	2,241	2.1
Sunflower	127	239	262	241	223	219	0.2
Onion	3,003	2,005	2,557	4,639	4,665	3,374	3.1
Vegetables	30,415	28,070	27,197	27,675	27,372	28,146	26.0
Fodder Crops	21,053	19,255	18,534	16,471	10,399	17,142	15.8
Others	66	59	0	3	9	27	-
<u>Sub - Total</u>	89,439	91,049	92,487	94,370	88,590	91,187	84.1
Nili Crop							
Maize	21,114	25,930	27,084	31,523	31,029	27,336	25.2
Sorghum	1,183	1,001	786	418	456	769	0.7
Vegetables	27,334	21,894	18,542	23,748	24,592	23,222	21.4
Fodder Crop	5,263	4,814	4,634	4,118	2,599	4,286	4.0
Others	-		-	-	23	4	-
<u>Sub - Total</u>	54,894	53,639	51,046	59,807	58,699	55,617	51.3
Perennial Crop**	12,175	16,762	17,537	19,046	19,582	17,020	15.7
Grand Total	236,824	237,720	237,195	249,714	260,173	244,324	225.3

Source : MALR

Note : * Cropping Intensity (Total 108,405 feddan) ** Fruit Garden

.

	•	Total			Minia		E	Beni Sue	f
Crop / Year	Area	Yield	Produc- tion	Area	Yield	Produc- tion	Area	Yield	Produc- tion
Winter Crop									
Wheat	5,008	1.47	7,351	4,646	1.50	6,960	362	1.08	391
Broadbean	1,121	0.58	648	1,030	0.58	597	91	0.56	51
Long Berseem	3,028	12.62	38,203	1,546	12,72	19,663	1,482	12.51	18,540
Short Berseem	2,041	9.50	19,390	816	9,80	7,997	1,225	9,30	11,393
Barley	627	0.93	585	434	0.96	417	193	0.87	168
Onion	839	7.85	6,582	655	8,00	5,240	184	7.29	1,342
Seed Onion	94	3.07	289	94	3.07	289	0	0	, 0
Garlic	2,042	6,50	13,273	527	5.35	2,819	1,515	6.90	10,454
Tomato	3,155	18,32	57,787	2,958	18,40	54,428	197	17.05	3,359
Lupin	77	0.49	38	71	0.49	35	6	0.50	. 3
Sub-Total	18,032	(CI	= 66.7%)	12,777	(CI	=65.1%)	5,255	(CI	=70.9%)
Summer Crop									
Maize	1,681	1.51	2,530	1,250	1.53	1,913	431	1.43	617
Sorghum	1,496	1.37	2,054	1,198	1,34	1,605	298	1.51	449
Groundnut	2,237	0.51	1,140	1,915	0.52	995	322	0,45	145
Sesame	2,307	0.40	912	2,243	0.40	897	64	0.23	15
Sunflower	166	0.52	86	86	0.63	54	80	0.40	32
Soyabean	30	0.60	18	30	0.60	18	0	0	0
Cucumber etc.	548	5.23	2,866	475	5.20	2,479	73	5.43	396
Cantaloup	100	10.00	1,000	100	10,00	1,000	0	0	0
Watermelon	3,226	4.43	14,303	1,943	4.72	9,171	1,283	4.00	5,132
Tomato	650	15.38	10,000	620	15.40	9,548	30	15.07	452
Fodder	5,100	14.10	71,900	2,760	13.75	37,455	2,340	14.72	34,445
Sub - Total	17,541	(CI	=64.9%)	12,620	(CI	=64.3%)	4,921		=66.4%)
Garden Crops	1,317	3.50	4,610	970			347		
		(CI	=4.9%)		(CI	=4.9%)		(CI	=4.9%)
Total	36,890	(CI=	136.5%)	26,367	(CI =	134.3%)	10,523		142.2%)
<u>Total Area</u>	27,025		(100%)	19,615		(100%)	7,410		(100%)

(unit: feddan, ton/feddan, ton and % for C. I.)

.

Agricultural offices concerned, Upper Egypt Development Company. No nili crop is separately classified for new expansion land. Source :

Note :

: (CI) Cropping intensity as per cent of total reclaimed crop acreage. Table H-1-8 Area under Horticultural and Fodder Crop Production

(unit: 1000 feddan, ()% of total crop acreage)

.

	Mi	Minia	Beni	Beni Suef	Faiyum	Gi	Giza	To	Total
Urop/ Season	Total G.	Com. A.	Total G.	Com. A.	Total G.	Total G.	Com. A.	Total G.	Com. A.
Vegetables	(4.3)	(5.6)	(20.2)	(15.5)	(23.4)	(70.4)	(70.4)	(35.8)	(29.8)
Summer Crop	11.0	2.0	37.7	1.8	6.6	44.7	28.1	100.0	38.5
	(2.4)	(3.0)	(14.6)	(3.5)	(2.1)	(26.0)	(26.0)	(13.5)	(1.1)
Nile Crop	3.1	0.6	7.8	2.0	37.0	36.9	23.2	84.8	62.8
ſ	(0.7)	(1.0)	(3.0)	(3.9)	(11.9)	(21.4)	(21.4)	(11.4)	(11.7)
Winter Crop	5.6	1.0	6.8	4.2	29.3	39.6	24.9	81.3	59.4
ſ	(1.2)	(1.6)	(2.6)	(8.1)	(9.4)	(23.0)	(23.0)	(6.01)	(11.0)
Fruit Trees	23.9	3.5	1.7	1.0	19.3	27.0	17.0	77.3	40.8
	(5.2)	(5.3)	(2.7)	(1.9)	(6.2)	(15.7)	(15.7)	(10.4)	(1.6)
Other Crops [*]	6.0	ſ	2.3	0.4	3.7	7.2	4.5	19.2	8.6
	(1.3)	(-)	(0.9)	(0.8)	(1.2)	(4.2)	(4.2)	(2.6)	(1.6)
Fodder Crops**	1.0	0.0	2.5	0.0	8.9	34.0	21.4	46.4	30.3
	(0.2)	(-)	(1.0)	(-)	(2.8)	(19.8)	(19.8)	(6.2)	(5.6)
Total Area	50.6	7.1	64.2	9.4	104.8	189.4	119.1	409.0	240.4
Total %	(10.8)	(10.9)	(24.8)	(17.8)	(33.6)	(110.1)	(110.1)	(55.0)	(44.6)
Source: MALR		· · · · · · · · · · · · · · · · · · ·		ملم محصم آمحدم فرم	2000 - 20000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2	Labelana maa	·		

G; governorate, Com. A.; command area *; medicinal crops etc. **; berseem excluded •• Note Table H-1-9 Comparison of Summer Crop Composition between Wet and Dry Areas (Al Ghork Command Area, Faiyum in 1989/90) (unit: % in brackets, 1,000 feddan)

Forage (46) 2.5(54)Garden (20, 0.02)Tomato Maize (31) (31) (31) (32)Vegetables $\begin{pmatrix} 0.3\\ (6) \\ (4) \\ (94) \end{pmatrix}$ Sesame 0.03 (4) (96) Peanut 0.04 ං ල Rice Sunflower 0.5 (16) 2.8 (84) Maize $\begin{array}{c}
3.6 \\
6.8 \\
6.8 \\
(71)
\end{array}$ Cotton (50)(50)Dry Zone (%) Wet Zone Crop (%) (%)

Source: MPWWR Faiyum Office Note : Both summer and nili

: Both summer and nili rice are included in "Rice".

(unit: given for each item)

	Suitable	Dept of	Capillary	Maximum**	Critical***	Soil Salt
Crop	Texture	Root Zone	Water *	Requirement	Wilting Day	Tolerance
unit adopted		em	mm/100 cm	mm/day	day	ECmmho/cm#
Summer Crop		ΡQ	RS	Т	PR./T QS/T	Desired Max.
Cotton	H Caly	100 - 170	130 - 90	5.9/jul.	22.0 - 25.9	7.7 - 27
Maize	CL-C	100 - 170	120 - 80	9.9Jul.	12.1 - 13.7	1,6 - 12
Sorghum	CL - C	100 - 200	110 - 75	6.9/Aug.	15.9 - 21.7	4.0 - 18
Sugarcane	L-CL	120 - 220	130 - 90	10.6/Aug.	13.2 - 18.7	2.0 - 10
Soybean	SL-CL	60 - 130	100 - 75	9.7/Jul.	6.2 - 10.0	5.0 - 10
Sunflower	SL - L	80 - 150	90 - 60	6.0/Aug.	12.0 - 15.0	5.3 - 15
Groundnut	S-SL	50 - 100	80 - 55	4.4/Jul.	9.1 - 12.5	3.2 - 7
Tomato	L-CL	70 - 150	180 - 60	5.7/Jun.	22,1 - 15,8	2.5 - 13
Melon	SL-CL	100 - 150	70 - 50	5.5/Jul.	12.7 - 13.6	2.2 - 16
Fodder	S-HC	50 - 150	100 - 70	9.0/Aug.	5.6 - 11.7	2.8 - 26
Rice	L-C	40 - 100	500 - 300	11.1/Jul.	18.0 - 27.0	3.0 - 12
Winter Crop						
Wheat	SL-C	100 - 150	105-70	3.4/Mar.	30.9 - 30.9	6.0 - 20
Broadbean	L-HC	50 - 70	90 - 65	4.0/Feb.	11.3 - 114.	1.6 - 12
Berseem	CL-HC	60 - 90	70 - 50	6.0/Apr.	7.0 - 7.5	1.59 - 19
Barley	S-CL	100 - 150	110 - 75	3.2/Feb.	34.4 - 35.2	8.0 - 28
Cabbage	L-CL	40 - 50	70 - 50	5.5/Mar.	5.1 - 4.5	1.8 - 1.2
Onion	S-CL	30 - 50	50 - 35	4.4/Feb.	3.4 - 4.0	1.2-8
					012 210	2.14 0
<u>Fruit Tree</u>						
Grape	L-HC	100 - 200	70 - 50	3.7/Jul.	18.9 - 27.0	1.5 - 12
Citrus	SL-C	120 - 150	100-70	4,1/Jul.	29.3 - 25.6	1.7 - 8
Olive	S-SL	120 - 170	130 - 95	3.2/Jul.	48.8 - 50.5	2.7 - 14

Note: Root zone measured from soil surface, * capillary water indicating water available to plant in 100 cm soil layer, left (CL - C) - right (S - SL), ** maximum requirement presenting likely ET-crop value during peak month, *** critical wilting day calculated from left three columns indicating how many days elapse after sufficient irrigation until permanent wilting begins. Practical irrigation interval may be set shorter than these days. # As to salt tolerance, left figures give 100% yield level, right ones giving critical soil-water EC value for crop survival.

Source: FAO irrigation manual

Season	Crop	1986	1987	1988	1989	1990	Average
Winter	Wheat	1.90	2,14	2.07	2,19	2.49	2.17
	Broadbean	1.00	1.13	1.15	1,19	1.14	1.12
	Fenugreek	0.85	0.95	0.92	1.03	0.94	0.95
	Long Berseem	28.14	28.71	29.14	27.87	30.08	28,72
	Short Berseem	6.42	6.24	6.51	6.66	6.26	6.45
	Garlic	12.04	10.77	11,49	11.49	12.81	11.94
<u>Summer</u>	Cotton	0.87	0.85	0.73	0.69	0.68	0.76
	Maize	2.30	1.82	2.27	2.47	2.43	2,35
	Soybean	0.79	1.01	1.05	1.12	1.05	0.97
	Sesame	0.46	0.45	0.46	0.51	0.38	0.48
	Groundnut	0.80	0.77	0.77	0.75	0.75	0.76
	Sunflower	0.87	0.86	0.86	0.86	0.88	0.87
	Sugarcane	40.94	40.52	41.08	41.43	44.39	41.61
<u>Nili</u>	Maize	1.78	1.84	1.90	1.64	1.70	1.76
~							······································

Table H-1-11 Field Crop Yields in Bahr Yusef Command Area in Minia

Source : MALR

.

Note : Yields of other field crops and vegetables are only available on the basis for the total Minia Governorate

Table H-1-12 Field Crop Yields in Bahr Yusef Command Area, Beni Suef

(unit: ton/feddan)

(unit: ton/feddan)

Season	Crop	1986	1987	1988	1989	1990	Average
<u>Winter</u>	Wheat	1.91	2.57	2,70	2.72	2,78	2.57
	Broadbean	1.14	1.15	1.16	1.12	1,14	1.14
	Fenugreek	0.72	0.77	0.73	0.74	0.72	0.74
	Long Berseem	27.16	26.97	27.06	27.15	27.88	27.16
	Barley	1.37	1.39	1.42	1.42	1.46	1,40
	Lupin	0.82	0.88	0.75	0.83	0.65	0.81
	Garlic	7.74	8.16	8.15	8.10	8.10	8.09
	Onion	6.84	7.46	7.29	7.37	7.50	7.29
<u>Summer</u>	Cotton	0.70	0.69	0.60	0.64	0.70	0.66
	Maize	1.98	2.09	2.08	2,9	2.12	2.08
	Soybean	1.00	0.82	0,56	0.93	0.85	0.86
	Sesame	0.32	0.36	0.37	0.41	0,41	0.38
	Groundnut	0.79	0.81	0.83	0.83	0.84	0.82
	Sunflower	1.09	1.07	1.09	1.11	1.14	1.10
	Sugarcane	23.87	28.18	28.46	29.56	30.27	28.97
<u>Nili</u>	Maize	1.46	1.66	1.55	1.74	1.85	1.67
	Sorghum	1.50	1.56	1.48	1.55	1.72	1.55
	Onion	6.75	6.86	7.15	7.19	7.50	6.96

Source : MALR

.

Note : Yields of other field crops and vegetables are only available on the basis for the total Beni Suef Governorate

,

· .	Table H-1-13	Field Crop Yields in the Governorates Concerned

(unit: ton/feddan)

						(41110,	winitequali,
Season	Crop Name	1986	1987	1988	1989	1990	Average
Minia Gov	vernorate					· ·	
<u>Winter</u>	Wheat	1,66	2.02	2.11	2.02	2.44	2.07
	Broadbean	1.0 9	1.24	1.08	1.17	0.94	1.10
	Barley	1.51	1.55	1.55	1.57	1.47	1.53
	Fenugreek	0.82	0.83	0.87	0.93	0.88	0.88
	Lupin	0,69	0.71	0.72	0.77	0.72	0.72
	Long Berseem	29.12	28.98	31.22	28.76	29,78	29.60
	Short Berseem	6.51	6.48	6.98	6.74	6.14	6.60
	Onion	4.43	5.49	6.70	12.07	7.28	9.50
	Garlic	9.02	9.47	11.61	7,11	12.03	10.83
	Soybean	0.69	0.93	0.91	0,82	0.89	0.85
	Potato	7.61	6.58	7.10	4,87	7.80	6.88
Summer	Cotton	0.89	0.87	0.74	0,78	0.77	0.81
	Maize	2,56	2.45	2.62	2.64	2.68	2.62
	Sorghum	1.90	2.01	1,94	1,96	2.00	1.96
	Sesame	0.52	0.53	0.55	0.54	0.55	0.54
	Groundnut	0.87	0.88	0.98	0.95	0.97	0.94
	Sunflower	0.87	0.86	0.86	0,86	0.88	0.87
	Sugarcane	40,59	38.26	41.25	40.08	43.19	40.87
Nili	Maize	2,06	2.09	2.17	1,80	1.89	2,05
	Sorghum	1,77	1.44	1.77	1.61	1.86	1.72
Beni Suef <u>Winter</u>	Governorate						
	Wheat	2.07	2.67	2.80	2,88	2.93	2.67
	Broadbean	1,18	1,19	1.20	1.18	1.18	1,19
	Barley	1.51	1,45	1.46	1.45	1.48	1.47
	Fenugreek	0.78	0,79	0.79	0,78	0.78	0.78
	Lupin	0,96	0.97	0.97	1.00	1.01	0.98
	Long Berseem	30.28	30,97	30.48	29.75	29.75	30,45
	Short Berseem	7.81	7.79	7.76	7.95	7.95	7.81
	Onion	7,90	7.93	7.91	8,01	8.01	7.81
	Garlic	8.63	8,63	8.70	8,71	8.71	8.68
	Soybean	1,08	1,19	1.20	1.12	1.12	1.09
Summer	Cotton	0.76	0,68	0.69	0.77	0.77	0.72
	Maize	2.11	2,12	2.19	2.31	2.31	2.17
	Sorghum	1.60	1.66	1.80	1.82	1.82	1.74
	Sesame	0.35	0.35	0.37	1.82	0.41	0.39
	Groundnut	0.78	0,81	0.82	0.41	0.41	0.89
	Sunflower	1,14	1,17	1.14	0.41	1.23	1.17
	Rice	1.00	1.00	1.10	1.29	1.23	1,17
	Sugarcane	26.38	25,98	26.01	1.29 26.47	26.47	26.26
<u>Nili</u>	Maize	1.70	1.75	1.81	20.47	20.47	1.84
	Sorghum	49	1 56	165	1 60	្រានប	1 5 6
	Sorghum Onion	$1.49 \\ 6.72$	1.56 6.98	$1.65 \\ 7.24$	1.69 7.25	$1.69 \\ 7.25$	1.56 7.08

Source : MALR

Table H-1-14 Yields of Field Crops in Bahr Yusef Command/Governorates

(unit : ton/feddan)

Season	Crop Name	1986	1987	1988	1989	1990	Average
Faiyum	Governorate						
Winter	Wheat	2.51	2.86	2.28	2.31	2.52	2,49
	Broadbean	1.28	1.30	1.31	1.43	1.22	1,31
	Barley	1.25	1.26	1.26	1.21	1.40	1,28
	Fenugreek	0.85	0.94	0.93	0.95	0.96	0.93
	Lupin	0.36	0.32	0.34	0.44	0.36	0.36
	Long Berseem	18.40	20.97	18.00	19.10	19,50	19.2 0
	Short Berseem	4.90	4.80	4,90	8.20	5.30	5.00
	Onion	13,20	12.74	13.24	13.17	13,25	13.12
	Garlic	6,53	6.31	6.53	6.62	6,54	6,51
	Soybean	0.25	0.48	0.38	-	-	0.37
Summer	Cotton	1.04	0.67	0,58	0.70	0,86	0,77
	Maize	1.81	1.88	2.13	2.32	2.45	2,12
	Sorghum	1,61	1,62	1.61	1.75	1.78	1.67
	Sesame	0,53	0.53	0.54	0.53	0.56	0.54
	Groundnut	0.48	0.48	0.48	0.49	0.49	0.48
	Sunflower	0.73	0.75	0.73	0.73	0.76	0.74
	Sugarcane	32,80	31.70	-		32.00	32.23
	Rice	2,23	2.46	2.47	2.60	2.81	2.51
Nili	Maize	0.94	1.03	1,06	1.09	1.12	1.05
	Sorghum	1,15	1.15	1,17	1.14	1.14	1.15
Giza Gov	vernorate				·		
Winter	Whear	2.10	2.42	2,36	2.58	2.54	2.41
	Broadbean	0,93	1.03	1.04	1.00	1.04 1.00	0.99
	Barley	1,59	1.62	1.62	1.57	1.66	1.60
	Fenugreek	0.74	0.79	0.91	0.82	0.86	0.82
	Lupin	0.88	0.92	0.92	0.95	0.80 0.94	0.82
	Long Berseem	32.29	32.63	32,32	31.04	0.54 28.54	31.72
	Short Berseem	04.23	02.00		5.22	28.54 9.83	6.99
	Onion	7.10	7.21	7.60	7.70	9.83 4.73	6.99 6.84
	Garlic	5.88	5.83	5.60	5,78	4.73 5.97	
	Soyabean	1.00	0.56	0.00	0,87		5.85
Summer	Cotton	1.00	0.00		0,07	1.21	0.91
	Maize	2.06	2.18	2.38	- 9.40	0.70	
	Sorghum	2.00 1.55	2.18 1.55	$\frac{2.38}{1.43}$	2.60	2.79	2.42
	Sesame	0.49	0.48	1.43 0.51	1.48	- 0. KO	1.51
	Groundnut	0.49	0.48		0.51	0.53	0.51
	Sunflower	0.98 1.49		1.05	1.06	1.05	1.02
	Sugarcane		1.36	1.33	1.29	1.56	1.39
	Onion	35,52	35.07	35.31	-	34.00	34.98
Nili	Maize	-	-	· -	7.07	7.40	7.30
**111	Sorghum	-	-	-	2.02	2.24	2.13
	Sorghum Onion	6 70	-	-	1.48		1.48
	Rice	6.72	6.98	7.24	7.23	7.25	7.08
	TTCG	-	-	-	1.08	1.19	1.14

Source : MALR

:

Table H-1-155 - Year Average Yields of Vegetable in Related Governorates(1986-1990)

Governorate	Mi	nia	Beni	Suef	Fai	yum	G	iza
Governorate	yield	area	yield	area	yield	area	yield	area
Winter Vegetables			- <u></u>	·	·		·······	
Tomato	11.06	4,611	11.35	2.491	15.38	21,895	15.99	18,14
Eggplant	8.45	121	9.26	1.579	7.29	45	9.22	2,006
Green pepper	5.06	37	6.95	54	7.00	27	8,98	3,518
Spinach	5.27	50	6.74	82	5.49	1,235	10.33	1,053
Cauliflower	8.52	77	-		9.70	304	12.59	953
Cabbage	7.58	203	13.69	357	16.83	1,641	14,81	2,16
Green peas	5.87	4	3.90	89	-	-	4.74	1,555
Green kindney	5.50	3	3.89	4	-	-	4.13	4,33
Cucumber	-	-	-	-	-	-	6,70	1,91
Squash	8.42	82	8.11	59	8.11	644	8.30	2,73
Summer Vegetables								_,
Potato	8.09	3,076	12.03	440	8.149	42	10.58	6,49
Tomato	13.33	3,458	12.01	3.454	13,33	1,228	19.18	11,65
Eggplant	8.45	123	10,98	629	7.95	210	9,64	3,35
Green pepper	5.97	209	8,59	155	6,31	364	10.33	5,02
Watermelon	4.66	17,528	10,29	3.685	10.63	4,347	13.32	75
Egyptian marrow	-	-	11,89	148	5,83	244	12.22	2,07
Okra	6.82	194	5.71	168	4.55	267	7.81	2,60
Green kidney	6,66	64	3,86	520	-		4.30	5,02
Cucumber	-	-	6,85	1,764	4.40	1,164	7.20	2,39
Squash	6.79	163	10,54	189	8,39	462	8.28	1,48
Cantaloup, melon	7.15	2,067	13,28	12,925	6.23	1,514	11.35	1,54
Vili Begetables		,		,		-,	11.00	1,0 1
Potato	8.06	6,758	10.58	1,078	7.27	11	9,82	15,75
Tomato	11.66	1,465	10.73	8,521	15,15	35,304	10.86	8,28
Eggplant	8.80	65	9.90	91	8.21	104	1.73	82
Green pepper	6.30	75	6,30	95	7.62	101	7.39	1,14
Cabbage	7.63	172	13,54	142	19.10	488	9.04	1,88
Green kidney	5.01	27	3.38	128	-0,10 -		3.87	2,90
Cucumber	-		7.11	139	4.60	304	5.92	2,99
Squash	7.66	73	9.99	94	3.29	299	3. <i>32</i> 8.73	1,56

(unit : ton/feddan, feddan)

Source : MALR

÷

•

Table H-1-16 5-Year Average Yields of Fruit in Related Governorates

(unit : ton/f	eddan,	fedda	n)
---------------	--------	-------	----

Conomonoto	Mi	nia	Beni	Suef	Faiy	um	Giz	a
Governorate	yield	area	yield	area	yield	area	yield	area
Orange	4,99	1,317	6.37	2,873	6.71	1,887	5.93	5,350
Mandarin	5,64	826	5.93	759	5.74	268	6.82	3,586
Lime	5.16	272	7.37	91	5.54	7,191	7.26	1,058
Grapefruit	5.00	1	4.33	15	-	-	3.54	41
Grapes	5.50	19,889	9.56	2,714	9.29	2,593	6.84	4,893
Mango	6.53	217	8.09	90	8.87	932	4.29	4,799
Banana	1.55	507	10.23	251	9,59	22	11.64	2,54
Fig	9.54	263	2.02	9	15.72	157	6.11	36
Guava	6.60	05	5.81	204	5.57	237	5.85	838
Pomegranate	6.61	141	4.43	6	3.62	24	10.12	21
Apricot	3.48	0	1.00	0	4.74	2,686	6.50	17
Apple	5.00	29	2.45	4	4.27	133	5.96	172
Pear	4.85	13	2.67	6	3,98	214	3.77	65
Plum	4.38	16	5.13	27	4.80	3	6.46	3,211
Olive	2.26	0	4.39	6	6.26	1,780	4.94	27

Source : MALR

Table H-1-17 Land Productivity by The land Classification

(unit : 100 feddan, ()% share)

Land Class	Minia G.	Minia G.	Beni Suef G.	Beni Suef G.	Faiyum G.	Giza G.	{Egypt}
Ι	49.7 (9.4)	2.2 (1.7)	26.1 (13.7)	0 (-)	0.6 (0.2)	14.0 (9.0)	{ 5}
II	271.4 (51.3)	47.6 (36.6)	21.1 (11.1)	9.2 (17.5)	84.2 (18.0)	79.0 (51.0)	{60}
II	92.0 (17.4)	31.4 (24.3)	90.8 (47.6)	30.5 (57.9)	180.3 (38.6)	22.0 (14.2)	{22}
IV	27.5 (5.2)	13.5 (10.5)	18.0 (9.4)	5.3 (10.1)	77.6 (16.6)	4.9 (3.1)	{ 5}
V - f	35.3 (6.7)	25.7 (19.9)	1.2 (0.6)	0.3 (0.5)	64.4 (13.8)	5.0 (3.2)	
V - n	1.3 (0.2)	0.4 (0.3)	1.1 (0.6)	2.7 (5.0)	- (-)	30.1 (19.5)	{ 0}
VI - f	49.8 (9.4)	8.7 (6.7)	2.9 (1.5)	0.7 (1.3)	- (-)	- (-)	{ 0}
VI - n	1.8 (0.3)	0.2 (0.0)	29.7 (15.5)	4.0 (7.7)	59.7 (12.8)	- (-)	{ 0}
Total1	528.8 (100)	129.7 (100)	190.9 (100)	52.7 (100)	466.8 (100)	155.0 (100)	{100}

Note : G ; Total Governorate, C ; Bahr Yusef Command Area, B. Suef ; Beni Suef where Ehenesia District Data area taken for its Command Area. I ; no hazard, II ; one hazard, III ; fairly restriction but rectifiable, IV ; severely limiting but manageable, f ; flooded, n ; non agricultural, V ; Highly hazardous affecting growth / yield, VI ; not suitable for farming.

Source : MALR original source Soil and Water Research Institute 1976 - 1981

Table H-1-18 Achievement of Land Improvement by MALE	Table H-1-18	Achievement	of Land	Improvement by	MALR
--	--------------	-------------	---------	----------------	------

(unit : feddan, ()% of t	total cropping area)
---------------------------	----------------------

.

Governorate	Subsoi	ling	Gypsum I	Mising	Channel C	leaning	Project Period
Minia	115,052	(25.1)	170,574	(37.2)	31,536	(6.9)	1980 - 1990
Beni Suef	204,783	(79.1)	60,688	(23.4)	6,601	(2.5)	1980 - 1990
Faiyum	83.240	(26.6)	122,761	(39.2)	21,921	(7.0)	1985 - 1990
Giza	17,201	(10.0)	25,690	(14.9)	75,939	(44.1)	1984 - 1990

Source : MOA, EALIP (Egyptian Agricultural Land Improvement Programme)

Table H-1-19 Crop Yield Response to Land Improvement in Beni Suef

(unit : ton/feddan and %)

Crop	Applied	Average Yield	First	Yeat	Second	l Year	Third	Year
Variety	Improvement	Increment in%	Yi	(Yo)	Yi	(Yo)	Yi	(Yo)
Subsoiling only (1985))	·····		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		,		
Wheat (Sakha 69)	d.o.	8.7	2.22	(1.95)	2.18	(2.07)	2.25	(2.10)
Broadbean	d.o.	22.6	1.32	(1.01)	1.21	(1.01)	1.09	(0.93)
Barley	d.o.	29,3	1.26	(0.96)	1.38	(1.02)	1.02	(0.84)
Cotton (Giza 75)	d.o.	38,3	0.63	(0.55)	10.71	(0.39)	0.55	(0.39)
Mili Maize	d.o.	18.4	1.22	(0.98)	1.19	(0.98)	1.09	(0.91)
Gypsum (1985) - Subs	oiling (1986))				, ,		(,
Wheat (Sakha 69)	d.o.	5.9		(-)	3.65	(3.30)	3.60	(3.30)
Wheat (Giza 157)	d.o.	15.0	2.10	(1.80)	2,33	(2.05)	2.25	(1.98)
Broadbean	d.o.	20.3	1.32	(1.09)	1,32	(1.09)	1.32	(1.12)
Barley	d.o.	21.2	1.74	(1,56)	1,86	91.32)	1.80	(1.62)
Cotton	d.o.	32.1	0.95	(0,71)	0.74	(0.55)	0.71	(0.55)
Maize (Giza 2)	d.o.	35.5	2.10	(1.82)	2.45	(1.61)	2.24	(1.61)
Nili Maize	d.o.	29,0	1.19	(1.05)	1,44	(0.94)	1.33	(0.98)
Subsoiling (1985) - Gy	psum (1986))						、 · · · - <i>·</i> /
Wheat (Sakha 69)	d.o.	10.6	-	(-)	-	(-)	3.45	(3.12)
Wheat (Giza 157)	d.o.	15.7	1.91	(1.43)	3.30	(3.08)	2.55	(2.06)
Broadbean	d.o.	14.2	1.19	(1,16)	1,32	(1.16)	1.32	(1.16)
Cotton (Giza 75)	d.o.	23,2	1.31	(1.09)	0.93	(0.74)	0.96	(0.79)
Sunflower	d.o.	35.0	0.70	(0.50)	0.70	(0.50)	0.50	(0.40)
NiliMaize	d.o.	42.2	1.78	(0.94)	1.40	(1.05)	1.54	(1.09)
Subsoiling - Canal Cl	eaning (1986	5)				<u>(</u> ,		(2100)
Wheat (Sakha 69)	d.o.	5.9	-	(-)		(-)	2.70	(2,55)
Wheat (Giza 157)	d.o.	21.4	1.16	(1.22)	2.82	(2.55)		(-)
Broadbean	d.o.	19.9	1.12	(0,90)	1,13	(0.93)	1,01	(0.88)
Cotton (Giza 75)	d.o.	20.0	5.50	(4.50)	5,50	(4.50)	5.20	(4.50)
Sunflower	d.o.	21.3	0.90	(0.74)	-	(-)	-	(-)
NiliMaize	d.o.	15.5	1,15	(1.05)	1.12	(0.91)	1.36	(1.19)

Source : MALR Giza Governorate Office, Original ; MALR, EALIP (elsewhere cited.)

Note : Figure in brackets (Yo) represent yields of unimproved plots adjacent to improved ones. d.o. ; ditto, first year etc. ; number of years passed since improvement is implemented, average ; 3-year mean (the first the third year) rate of yield.

Table H-1-20 Crop Composition in Harika Canal Command Area (5 - year Average During 1986 - 1990)

(unit: 1,000 feddan, %)

Winter Crop	Maghaga	Edwa	Fashne	Total	Summer Crop	Maghaga	Edwa	Fashne	Total
Wheat	1.9	6.1	3.1	11,1	Cotton	1.3	5.6	1.9	8.8
Broadbean	0.5	5.0	1.4	6.9	Maize	1.9	5,9	2,9	10.7
S. Berseem	0.3	1.4	-	1.7	Groundmut	-	0.07	-	0.1
L. Berseem	0.7	2.9	0.9	4.5	Sesame	-	0.15	-	0.1
Vegetable		1.0	0.1	1.1	Soyabean	-	-	0.06	0.1
Berley	-	-	0.3	0.3	Sunflower	-	0.04	0.03	0.1
Garlic	0.1	0.04	-	0.1	Vegetable	-	0.7	0.3	1.0
Onion Seed	-	-	0.7	0.7	<u>Total Summer</u>	3.3	12.5	5.2	21.0
Aromatic	-	-	0.2	0.2	(C.I.Summer)	(86)	(67)	(75)	(71)
Total Winter*	3.4	16.4	6.7	26.5	Sorghum	. .	-	0.1	0.1
(C. I. Winter)	(79) *	(74)*	(97) *	(90) *	Vegetalbes	-	0.7	0.05	0.7
Garden Crop	0.01	0.3	0.9	1.2	Maize	0.2	3.2	0.4	3.8
Total Annual	6.6	30.3	13.4	50.4	<u>Total Nili</u>	0.2	3.9	0.55	4.6
(C. I. Annual)	(170)	(161)	(181)	(175)	(C. I. Nili)	(5)	(20)	(9)	(14)

Source : MALR

Note :

L; long,, Garden Crop; perennial fruit etc. C.I.; Cropping Intensity * including garden crops. Fugures include all villages coveres by Harika Canal,

63% of acreage inder Harika command. Source : MOA

Table H-1-21	Crop Yields in Harika Canal Command Area
	(5 - year Average During 1986 - 1990)

(unit: 1,000 feddan)

Winter Crop	Maghaga	Edwa	Fashne	Total	Summer Crop	Maghaga	Edwa	Fashne	Total
Wheat	2.16	2.01	2,25	2.22	Cotton	0.69	0.76	0.70	0.74
Broadbean	1.16	1.10	1.20	1.13	Maize	2.03	1.88	2.10	1.96
S. Berseem	. –	-	5.00	5.00	Groundmut	-	-	0.36	0,36
L. Berseem	28.30	28.80	29.80	29.00	Sesame	-	0.28	-	0.28
Berley	-	-	1.38	1,38	Soyabean	-	-	0.9 1	0.91
Garlic	9.70	11.60	9.70	9.70	Sunflower	-	-	1.00	1.00
Onion	_	-	7.40	7.40	Nili Crop	-	-	7.4	7.4
Seedfenugreek	-	5.10	5.70	5.30	Maize	1.96	1.96	1.96	1.96
					Sorghum	-	-	1.69	1.69

Source : Calculated from Crop Data from two related Governorates

Table H-1-22 Land Class Distribution in Harika Canal Command Area

(unit: percent)

District	Class I	Class II	Class III	Class IV	Class Vf	Class Vn	Class VIf	Class VIn
Maghaga	0	22,0	63.5	2.5	5.6	0	6.3	0
Edwa	0	37.1	46.6	6.2	4.7	0.1	5.3	0
Fachne	3.6	48.1	28.0	5.7	0.3	6.0	0.1	8.2
Total (%)	0.5	35.5	48.0	5.5	4.3	0.2	4.8	1.2

Source : MALR EALIP

Chemical Fertilizer Supply by PBDAC, 1990/91 Table H-1-23

	•		mmer	/Nili Cr	op				Winte	r Crop		
Governorate	Req	uired	Deli	vered	Dose /	feddan	Reg	uired		vered	Dose/	feddan
	<u>N</u>	P_2O_δ	N	P_2O_5	N	P_2O_5	N	P205	N	P_2O_5	N	P205
Minia	278	62	262	73	99	25	117	57	171	72	59	
(Edwa)	15	3	18	4	83	20	14	5	19	8	77	20 29
(Samalout)	32	7	32	10	76	18	23	, 9	44	15	54	
(Mallawi)	35	12	51	11	132	29	12	ě	23	11	55	21
Beni Suef	154	31	126	30	89	18	97	33	112	53	56	14
(Fashne)	22	5	24	4	67	14	14	5	19	9	42	19 15
(Wasta)	24	5	17	4	76	16	16	5	14	7	52	10
Faiyum	131	20	93	9	63	20	102	44	116	43	49	21
(Itsa)	37	6	20	7	58	9	23	10	28	10	36	21 15
(Abshwai)	28	15	4	7	48	25	27	11	22	10		
Giza	172	46	123	27	155	40	64	36	114	9 41	46	19
(Aiyat)	36	22	10	5	198	115	13	8	19	41	58	75
(Saff)	20	14	5	4	163	113	13	8	19 25	10	69 107	42 36
<u> </u>												20

(unit: 1,000 ton 15.5% N and 15% P equivalent, component kg N, P2 O5 / feddan)

Source : Note :

PBDAC, Cairo HQ. Only a few representative districts are selected for reference.

Crop	Variety (HYV)	Recent Trends
Wheat	Giza 164,162, Sakha 69, Beni - Suef 5	For early varieties, high nitrogen
Duram Wheat	Sohag 1, Beni - Suef 1	does applied to.
Broadbean	Giza 402	with potash application.
Berseem	Sakha 3, 4, 6, Giza 7, 15	mainly for long berseem
Maize	Hybrid Zawi 3, Giza 3, 204, 215	exclusively for summer crop
Cotton	Giza 83, 80, 75 Giza 45	early varieties, 83 popular
Soyabean	Fattah 71, Kolosh	mainly in Minia, rhizobium
		inoculation indispensable
Groundnut	Giza 4, 5	mainly in Giza
Sugarcane	C-9	exclusively in Minia
Winter Onion	Giza 6	around Sids Experiment Farm

Table H-1-24 High Yielding Varieties in Command Area

Source : Related Governorate Agricultural Offices

Table H-1-25 Livestock Herd in Command and Related Governorates

(unit : head)

C	Cat	tle	Buff	alo	Camel/House	Donkey	Sheep	Goat
Specy	Adult	Calves	Adult	Calves	All ages	d. o.	d. o.	d. o.
Total Gove	ernorate *							
Minia	94,988	47,024	84,180	38,771	7,066	129,691	136,872	176,055
Beni Suef	125,969	33,204	82,635	34,130	3,903	82,222	129,538	68,590
Faiyum	101,806	50,399	63,626	29,305	6,953	96,913	130,366	57,011
Giza	54,106	107,790	88,488	131,940	n. a.	n. a.	187,540	24,866
Total Bahr	· Yousef Co	ommand **						
Mini	10,488	6,677	11,954	5,506	1,003	18,416	19,436	25,000
Beni Suef	25,043	6,601	16,428	6,785	776	16,346	253753	13,636
Faiyum	101,806	50,399	63,626	29,305	6,953	96,193	130,366	57,011
Giza	34,087	67,908	55,717	83,122	. 0	21,000	118,150	15,666
Total Heac	ls in the Co	ommand A	rea **					111,333
	171,424	131,585	147,755	124,718	8,732	152,675	293,705	

MALR (1989), ** estimated from carrying capacity / acreage coverage Poultry data are excluded because of little dependency on local feeds. Herds kept by urban livestock keepers not included. Source : Note :

Table H-1-26 Self-Supplied Feeds in Command Area

÷

•

(unit : feddan, ton/feddan, 1,000 ton)

			Minia				B	Beni Suef	f			[Faiyum					Giza		
Governorate	Area	Yld.1	Prod.	TDN	DCP	Area	Yld.1	Prod.	TDN	DCP	Area	Yld.1	Prod.	TDN	DCP	Area	1 PLA	Prod.	TDN	DCP
Berseem							,													
Long Crop	10.1	28.7	290	35.0	6.1	11.3	27.2	307	37.2	6.5	98.7	19.2	1,895	229.8	39.8	35.9	31.7	1,138	137.7	23.9
Short Crop	3.3	6.5	21	2.5	0.4	ı	ı	1	ł	ı	25.7	5.0	129	15.4	2.7	6.9	6.9	48	5.8	1.0
Fodder																				
Summer	ł	I	ı	1	I	I	ı	1	I	ı	ı	I	ı	١	1	17.1	21.4	366	70.0	4.0
Nily	I	•	ł	I	I	0.2	0.0	0	•	•	8.9	6.5	58	11.1	0.7	4.3	11.7	50	9.5	0.6
Stover																				
Maize	30.5	3.3	101	157	1.2	26.1	2.8	73	11.3	0.9	95.8	2.3	221	34.3	2.7	65.4	3.5	226	35.0	2.7
Sorghum	I	I	ı	1	I	2.2	2.8	9	0.7	0.1	40.4	2.9	118	14.3	1.3	1.5	2.8	4	0.5	1.0
Straw																				
Wheat	19.0	2.6	49	18.8	0.5	15.6	3.1	48	18.3	0.5	77.5	3.0	232	88.1	2.3	7.6	2.9	22	8.4	0.2
Rice	I	I	ı	I	I	I	ı	1	I	ι	12.5	2.9	36	5.6	0.4	I	I	I	I	I
Barley	I	I	ı	1	I	1.2	1.6	7	0.7	0.0	10.4	I.4	15	5.8	0.1	0.5	1.6	H	0.3	0.0
Residue																				
Legumes	15.1	0.2	က	1.4	0.1	10.8	0.2	~	1.1	0.1	21.6	0.3	9	2.6	0.3	3.6	0.2	- (0.2	0.0
Sugarcane	0.4	4.0	0	0.8	0.0	0.1	2.0	0	0.1	0.0	0.2	3.5	T	0.3	0.0	0.9	3.5	ო	1.5	0.2
Total	78.4	·	466	74.2	8.3	67.5	ı	438	69.4	8.1	391.7	I	2,711	407.3	50.3	143.7	I	1,859	268.9	32.6
D. O. B (%)			66.7	50.5	78.3			70.0	53.6	80.2			74.7	60.2	84.5			63.8	53.4	76.4
Source : Note :	Calcul YId. = Crop :	lated fro : yield,] Bersee	Calculated from data and those from governorate offices Yld. = yield, Prod. = production, D.O.B. = Nutrition Crop : Berseem Fodder MaizeS SorghumS WheatS F	and tho product der Ma	se from tion, I izeS So	m governorate off D. O. B. = Nutri SorghumS Whee	orate of = Nutr S Whe	fices itional atS Rice	depend	ate offices Nutritional dependency on berseem, WheatS RiceS BarleyS LegumesR	berseer egumes		* : Sorghun SugarcaneR	 * : Sorghum grain is sold away for poultry industry. 	ı is sold	away fc	r poult	ry indu	stry.	

H-17

(unit : L. U. ton)

Livestock Unit, Feed Rate in Command Area

Table H-1-27

	Cattle	ttle	Buffalo	alo	Other L.L. *	L.L. *	Sheep/Goat	/ Goat		Production	**
COVERINGER	e Adult	Calves	Adult	Calves	Adult	Calves	Adult	Calves	Adult	Meat of L.L.	Calves
				in L. U	L. U					in ton -	
Minia	8,390	1,669	12,957	1,666	4,910	768	1,111	547	2,200	970	220
Beni Suef	20,034	1,650	17,206	2,053	4,359	682	985	492	3,700	1,710	200
Faiyum	81,445	12,600	70,579	8,865	25,843	4,038	4,834	2,343	16,100	16,200	0/6
Giza	27,263	14,585	51,458	20,116	8,400	1,315	4,760	4,043	12,100	21,000	980
Total	137,132	30,504	152,200	32,700	43,512	6,800	11,690	7,425	34,100	39,880	2,340
Source :	Same as in the foregoing table, and production calculated from MALR data.	foregoing tat	ole, and prod	uction calcul	ated from M	ALR data.					
Note :	* L. L. = other large livestock, ** including goat meat,	· large livesto	ck, ** inclu	uding goat m	eat,						
	1 L. U. (livestock unit) = equivalent to 500 kg. live weight, conversion factor as follows	sck unit) = eq	quivalent to	500 kg. live v	weight, conv	ersion factor	as follows				
	cattle ; adult = $0.8 \text{ L. U.}/\text{head}$, calf =	= 0.8 L. U. /Ł	read, calf =	= 0.25 L. U./	head, buffi	0.25 L. U. / head, buffalo ; adult = 1.0 L. U.,		calf = 0.275 L. U.	L. U.		
	camel ; same as buffalo, donkey ; equivalent to 1/3 of cattle L. U.,	as buffalo, doi	nkey ; equiv	ralent to 1/3 o	of cattle L. U						•
	$sheen and mat \cdot adult = 0.051, 11 / head$	$\cdot \cdot admlt = 0$	051.11 /hos		mma = 0.0551. 11 / head	/ head					

sheep and goat ; adult = 0.05 L. U. / head, young = 0.025 L. U. / head,

Feed Requirement for providing the following table from figures of this table :

.

; 1.15 ton TDN/L. U., 0.105 ton DCP/L. U. for all species,	; 2.34 ton TDN/L. U., 0.472 ton DCP/L. U. for all species,	; 0.28 ton TDN / ton, 0.070 ton DCP / ton of milk, all species	0.400 ton DCP / ton of all kind of meats.
1.15 ton TDN / L. U.,	2.34 ton TDN / L. U.,	0.28 ton TDN / ton,	3.70 ton TDN / ton,
annual maintenance	annual growth for calves etc. ;	milk production ;	meat production

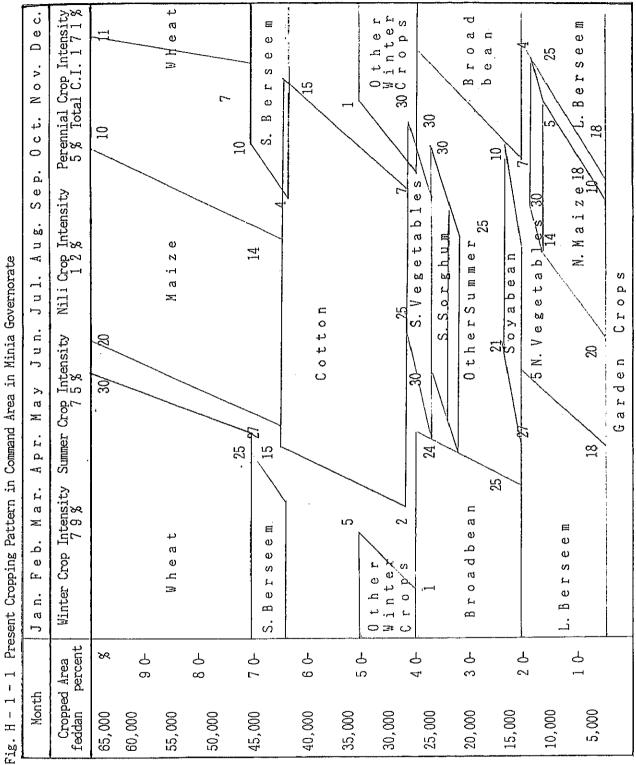
Table H-1-28

Governorate	Minia	Beni Suef	Faiyum	Giza	Total
(adult herd size)	(27.4)	(42.6)	(182.7)	(91.9)	(344,6)
TDN for maintenance	31.5	49.0	210.1	105.7	396.3
DCP for maintenance	2.9	4.5	19.2	9.6	36.2
(young herd size)	(4.6)	(4.9)	(27.8)	(40.1)	(77.4)
TDN for herd growth	10.8	11.5	65.1	93,8	181.2
DCP for herd growth	2.2	2.3	13.1	18.9	36.5
(milk production)	2,2	3.7	16.1	12,1	34.1
TDN for milking	0.6	1.0	4.5	3.4	9.5
DCP for milking	0.2	0.3	1.1	0.8	2.4
(meat production)	1.2	1.9	17.2	22,0	42.3
TDN for fattening	4.5	7.0	63.6	81,4	158.5
DCP for fattening	0.5	0.7	3.9	8.8	16.9
Total TDN demand (a)	47.4	68.5	343.3	284.3	743.5
Total DCP demand (x)	5.8	7.8	40.3	38.1	92.0
Available TDN * (b)	63.1	59.0	346.2	228,6	696.9
Available DCP * (y)	7,1	6.9	42.8	27.7	84.5
Balance of TDN (b - a)	+ 15.7	- 9.5	+ 2.9	- 55.7	(6%) - 46.6
Balance of DCP (y - x)	+ 1.3	- 0.9	+ 2.5	- 10.4	(8%) - 7.5
TDN shortage ** (%)	(60) 16.2	(60) 41.0	(60) 205.5	(62) 177.7	(59) 440.5
DCP shortage ** (%)	(72) 4.2	(82) 6.4	(83) 33.6	(83) 31.6	(80) 75.8

(unit : 1,000 ton, 1,000 LU)

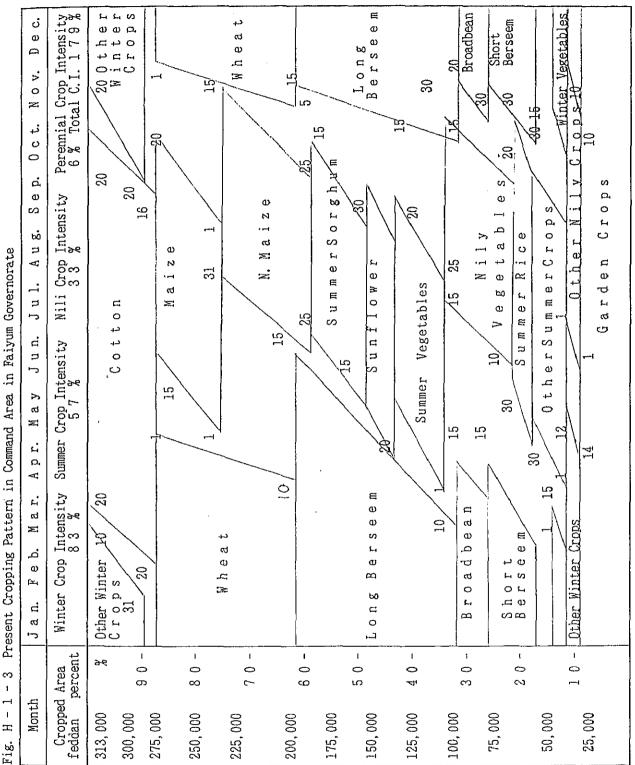
Source : derived from the foregoing table

Note : * from the foregoing table as self suppliable, 15 % deducted as loss of harvesting / feeding.

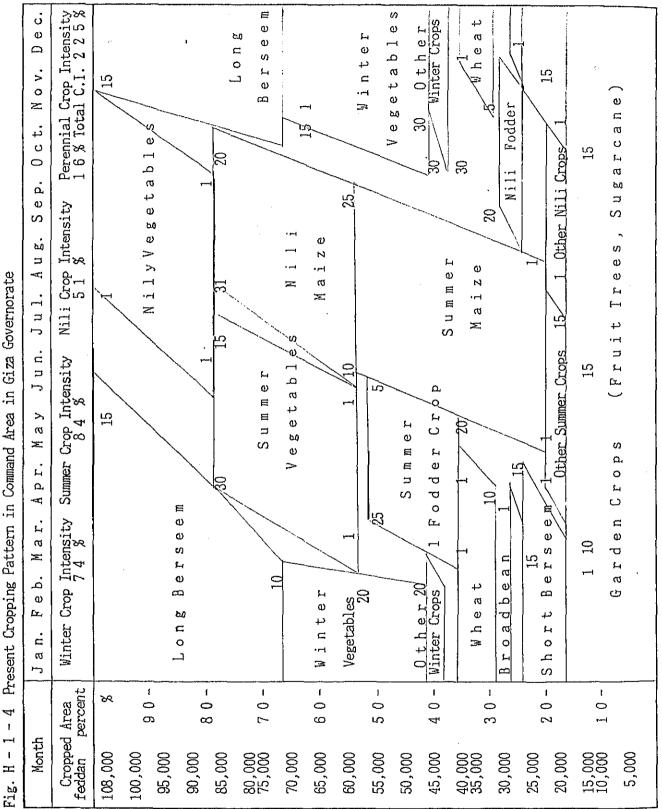

** in case if berseem is not cropped any more.

Present Crop Production in Command Area Table H- 1-29

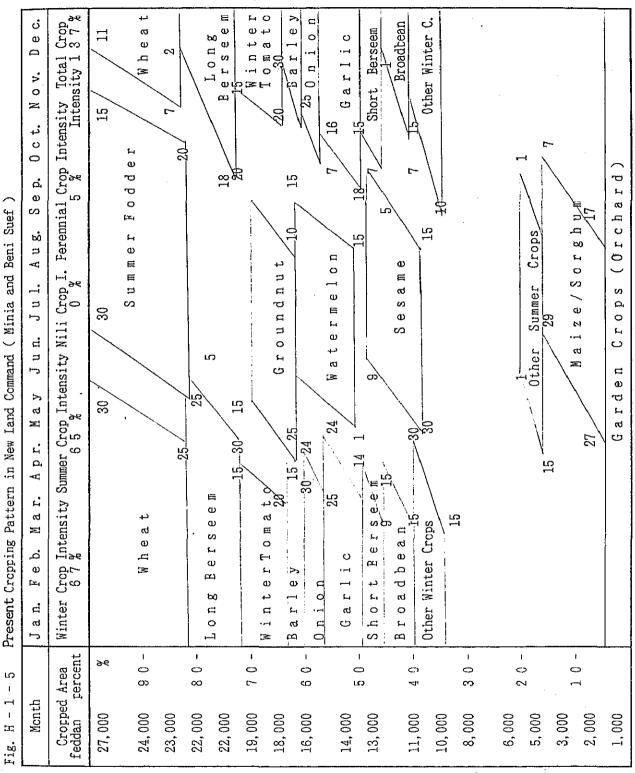
(unit: feddan, Yi = yield in ton/feddan, Pr = production i ton)


Yi Pr Area Yi Pr		7 7,351 <u>0</u> 8 648 0 3 38,203
		040 38,203
	648 38.203	
	00,200	19,390
2 14.7 0.58 12.6	2	9.93 0.93
<u>ໝີ</u> ນດີ ເດີ ເປັ		
18,335 1,385 1,139,826 48,133 734 393		4 7,832 5 1 484
		45 6.84 06 4.85 29 16.00
0321-780		4 306 3. 24,929 9 0
193,097 28,198 28,117 128,615 13,303 3,155 38,205	128,615 13,303 3,155 38,205	1,504 101,923 174,809 1,963
2.49 1.31 5.00 1.28 1.28	5.00 1.28	0.93 13.1 15.4 15.5 -
259,151 77,549 21,525 98,704	1 1 4	25,723 3,392 3,392 2,912 2,912 231 6,627 11,278
40,053 11,887 307,180		0 1,687 528 17,875 3,608 17,792 17,792
2.57 1.14 27.00		- 1.40 0.74 7.29 8.09 9.99
$\frac{44,447}{15,585}$ 10,427 11,310	¢	$\begin{array}{c} 0 \\ 1,205 \\ 714 \\ 2,452 \\ 2,452 \\ 2,452 \\ 1,781 \\ 1,781 \\ 0 \end{array}$
41,154 15,047 289,067		21,233 21,233 1,087 1,087 228 8,776 21,755 0
2.17 1.12 28.00		6.45 - 0.95 9.50 11.9 -
<u>51,370</u> 18,964 13,435	10,065	3,292 1,144 1,144 1,967 1,967
Winter C	Wheat Broadbean L. Berseem	S. Berseem Barley Fenugreek Onion*** Garlic Sugarbeet Others

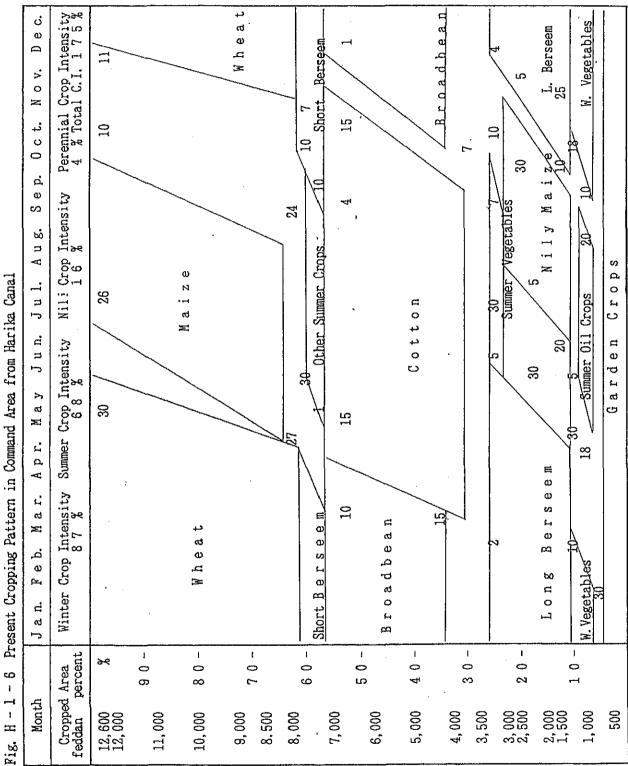
Source : Derived from foregoing tables Note : * given as a summer crop, ** including oil-sunflower, *** including seed onion, others specified in Table H-2-15


--wintercrops-Perennial Crop Intensity 2 % Total C.I. 1 8 7 % 'n -W. Vegetables 2 റ E On ion 2 7 ar le Φ ക دب 30 **о** д đ Ω 60 മ <u>ы</u> Ф ഹ Lon Φ S കമ > ч 8 ц Ц ဓို 0 ക 3 30 2 ഫ 12 r~-ئہ 20 ප් ο ស្ត b l e s 12 0 à 30 22 ġ ក្ម Intensity % Φ ഹ ๙ Ś ŝ ω در ه Sorghum ы ьо • – • Ś ы 100 ----Чц <u>.</u> ದ ρ Crop 3 6 z \mathbf{z} 0 Ν Summer æ Jul. ക Ч l e s Nili -1-0-M NirT Nili ы \circ ជ • ••• 0 ർ mer etab Sunfj د Other z Jип. د o Intensity 3 % 20 ខ្ល ථ 15 0 φ ပ 4 31 E 60 ഹ May ສູຍ പ 52 Crop 6 3 s s co 25 20-30 52 30 Summer 30 Åpr. 30 왭 30 Intensity 8 6 % Other Winter Crops -15 а т. ស្ដ 디 ഗ 15 Onion × ರ 5 E Φ 4 ഹ ġ ക ഫ ¢ Winter Crop <u>W. Vegetables</u> മ Barrle ക ъ ധ ſr. ,c S പ ы Winter с 0 o 3 \$-1 ä ക ч с, В щ മ പ I Cropped Area feddan percent 1 I. Т t Т Т Т ł 96 0 0 Q 0 O 0 0 0 Ô တ ∞ c~-ഗ ഹ d, ന 2 ---Month 25, 000 22, 500 20,000 10,000 5,000 51,50050,00047,50045,000 42,500 40,000 37, 500 35,000 32, 500 30,000 27,50015,000 17,500 12, 500 500 2, 500 :12 ніс. 16 t~-

Present Cropping Pattern in Command Area in Beni Suef Governorate **∽**1 ſ


Present Cropping Pattern in Command Area in Faiyum Governorate ന 1 H - 1

H-23


Present Cropping Pattern in Command Area in Giza Governorate

H-24

Present Cropping Pattern in New Land Command (Minia and Beni Suef ശ

H-25

Present Cropping Pattern in Command Area from Harika Canal

H-2 AGRICULTURAL PLAN

		Present			Proposed	
	Planted	Yield	Production	Planted	Yield	Production
Crops	Área			Area		_
Winter	(fed)	(ton/fed)	(1000 ton)	(fed)	(ton/fed)	(1000 ton)
Wheat	18964	2.17	41.2	23391	2.38	55.7
Broadbean	13435	1.12	15.0	13435	1.23	16.5
Fenugreek	1144	0.95	1.1	1144	1.09	1.2
L.Berseem	10065	28.72	289.1	8065	29.15	235.1
S.Berseem	3292	6.45	21.2	3292	7.83	25.8
Onion	24	9.50	0.2	24	10.74	0.3
Garlic	735	11.94	8.8	735	13.73	10.1
Potato	16	6.88	0.1	16	8,00	0.1
Medicinal crops	11	0.72	0.0	11	0.78	0.0
Tomato	1967	11.06	21.8	1967	13.37	26.3
Squash	1717	4.50	7.7	1717	5.62	9.6
	51370			53797		
Summer						
Cotton	16716	0.76	12.7	16716	0.85	14.2
Maize	23391	2.35	55.0	25391	2.96	75.2
Sugarcane	395	41.61	16.4	395	46.19	18.2
Sesame	1000	0.48	0.5	1000	0.56	0.6
Soybean	1610	0.97	1.6	1610	1.16	1.9
Groundnut	763	0.76	0.6	763	1.09	0,8
Sunflower	36	0.87	0.0	36	1.02	0.0
Watermelon	1042	4.66	4.9	1042	5.82	6.1
Cucumber	4081	6.79	27.7	4081	7.64	31.2
	49034			51034		
Nili	1			,		
Maize	7052	1.76	12.4	7052	2.11	14.9
Potato	597	8.06	4.8	597	8.97	5.4
Sorghum	38	1.52	0.1	38	1,70	0,1
Fodder	0	0.00	0.0	25391	25.00	634.8
	7687			33078		
Orchard	ļ]			
Grape	3476	5.50	19.1	3476	5.90	20.5
Total	111567	-	-	141385	-	-

Table H-2-1 Present and Proposed Crop Production in the Command Area in Minia

		Present			Proposed	
	Planted	Yield	Production	Planted	Yield	Production
Crops	Area			Area		
Winter	(fed)	(ton/fed)	(1000 ton)	(fed)	(ton/fed)	(1000 ton)
Wheat	15585	2.57	40.1	18235	2,82	51.4
Broadbean	10427	1.14	11.9	10427	1.25	13.0
Barley	1205	1.40	1.7	1205	1.65	2.0
Fenugreek	714	0.74	0.5	714	0.84	0.6
Lupin	64	0.81	0.1	64	0.91	0.1
L.Berseem	11310	27.16	307.2	11310	27.70	313.3
Alfalfa	0	0.00	0.0	2106	25,00	52.7
Onion	2452	7.29	17,9	2452	8.47	20.8
Garlic	446	8.09	3.6	446	9,38	4.2
Medicinal crops	427	0.78	0.3	427	0.95	0.4
Tomato	1781	9.99	17.8	1781	11.58	20,6
Lentil	36	0.44	0.0	36	0.50	0.0
	44447	1		49203		
Summer						
Cotton	13216	0.66	8.7	13216	0.83	11.0
Maize	11980	2.08	24.9	11980	2.62	31.4
Sugarcane	60	28.97	1.7	60	35.14	2.1
Sesame	617	0.38	0.2	617	0.48	0.3
Groundnut	383	0.82	0.3	383	1.03	0.4
Sunflower	1499	1.10	1.6	1499	1.50	2.2
Cantaloup	4176	4.17	17.4	4176	4.85	20.3
Sorghum	362	1.74	0.6	362	2.09	0.8
	32293			32293		
Nili						
Maize	14121	1.67	23.6	14121	2.12	29.9
Sorghum	2220	1.55	3.4	2220	1.89	4.2
Tomato	2026	10.74	21.8	2026	12.35	25.0
Fodder	40	24.00	1.0	40	27.00	1.1
Onion	20	6.96	0.1	20	7.50	0.2
	18427			18427		
Orchard						
Mandarin	953	6.37	6.1	953	6.66	6.3
Total	96120	-		100876	-	-

Table H-2-2 Present and Proposed Crop Production in the Command Area in Beni Suef

Table H-2-3 Present and Proposed Crop Production in the Command Area in Faiyum

		Present			Proposed	
	Planted	Yield	Production	Planted	Yield	Production
Crops	Area			<u>Area</u>		
Winter	(fed)	(ton/fed)	(1000 ton)	(fed)	(ton/fed)	(1000 ton)
Wheat	77549	2,49	193.1	77549	2.62	203.2
Broadbean	21525	1.31	28.2	31395	1.50	47.1
Barley	10393	1.28	13.3	10393	1.63	16.9
Fenugreek	3392	0.93	3.2	3392	1.01	3.4
Lentil	150	0.81	0.1	150	0.84	0.1
L.Berseem	98704	19,20	1895.1	88834	24.00	2132.0
S.Berseem	25723	5.00	128.6	25723	6.25	160.8
Onion	2912	13.12	38.2	2912	15.10	44.0
Garlic	231	6.51	1.5	231	7.50	1.7
Tomato	6627	15.38	101.9	6627	17.80	118.0
Flax	667	2.76	1.8	667	3.31	2.2
Sugarbeet	11278	15.50	174.8	11278	19,60	221.0
	259151			259151		
Summer						
Cotton	39689	0.77	30.6	39689	1.01	40.1
Maize	43857	2.12	93.0	48243	2.56	123.5
Sorghum	37190	1.67	62.1	20259	1.93	39.1
Sugarcane	220	32.23	7.1	220	35.00	7.7
Sesame	1425	0.54	0.8	1425	0.61	0.9
Groundnut	119	0.48	0.1	119	0.60	0.1
Sunflower	12429	0.74	9.2	12429	0.97	12.1
Watermelon	29313	10.63	311.6	29313	11.22	328.9
Fodder	0	0.00	0.0	49578	25.00	1239.5
Gourd	2079	3.50	7.3	2079	4.06	8.4
Rice	12545	2.51	31.5	12545	2.90	36.4
Soybean	139	0.60	0.1	139	0.80	0.1
	179005			216038		
Nili						
Maize	51817	1.05	54.4	51817	1.17	60.6
Sorghum	3246	1.15	3.7	3246	1.27	4.1
Rice	1264	1.19	1.5	1264	1.46	1.8
Tomato	37033	15.15	561.0	49578	17.42	863.6
Fodder	8882	15.60	138.6	8882	21.00	186.5
	102242	1		114787		
Orchard			1			
Lime	19332	5.54		19332	5.98	115.6
Total	559730	-	-	609308	-	-

Table H-2-4	Present and Proposed Crop Production in the Command Area in Giza
-------------	--

·····		Present			Proposed	
	Planted	Yield	Production	Planted		Production
Crops	Area			Area		1
Winter	(fed)	(ton/fed)	(1000 ton)	(fed)	(ton/fed)	(1000 ton)
Wheat	7608	2.41	18.3	7608	2.65	20.2
Broadbean	1399	0.99	1.4	1399	1.40	2.0
Barley	459	1.60	0.7	459	2,02	0.9
Fenugreek	479	0.82	0.4	479	0.88	0.4
Lupin	438	0.92	0.4	438	0.97	0.4
L.Berseem	35934	31.72	1139.8	35934	32.85	1180.4
S.Berseem	6886	6.99	48.1	6886	8.46	58.3
Onion	1145	6.84	7.8	1145	7.93	9.1
Garlic	306	4.85	1.5	306	5.69	1.7
Beseem seed	917	0.35	0.3	917	0.40	0.4
Tomato	24929	16.00	398.9	24929	19.00	473.7
	80500			80500		
Summer						
Maize	38082	2.42	92,2	38082	3.06	116.5
Sorghum] 775	1.51	1.2	775	1.82	1.4
Sugarcane	866	35.00	30.3	866	43.70	37.8
Sesame	315	0.51	0.2	315	0.56	0.2
Groundnut	2241	1.02	2.3	2241	1.22	2.7
Sunflower	219	1.39	0.3	219	1.74	0.4
Onion	3374	7.08	23.9	3374	7.71	26.0
Tomato	28146	19.17	539.6	28146	22.05	620.6
Fodder	17142	16.80	288.0	17142	21.00	360.0
Gourd	27	3.26	0.1	27	4.23	0.1
	91187			91187		
Nili	1					
Maize	27336	2.13	58.2	27336	2.44	66.7
Sorghum	769	1.48	1.1	769	1.61	1.2
Potato	23222	9.82	228.0	23222	11.39	264.5
Fodder	4286	24.00	102.9	4286	28.00	120.0
Onion	4	4.96	0.0	4	5.80	0.0
	55617	1		55617		
Orchard	l l'	1				
Orange	17020	6,00	102.1	17020	7.00	119.1
<u>Total</u>	244324	-		244324	- 1	

'n

Table H-2-5

Present and Proposed Crop Production in New Land in the Command

		Present			Proposed	
	Planted	Yield	Production	Planted	Yield	Production
Crops	Area			Area		
Winter	(fed)	(ton/fed)	$(10\overline{00} \text{ ton})$	(fed)	(ton/fed)	(1000 ton)
Wheat	5008	1.47	7.4	7459	1,60	11.9
Broadbean	1121	0.58	0.7	1589	0.80	1.3
Barley	627	0.93	0.6	2145	1.19	2.6
L.Berseem	3028	12.60	38.2	3461	13.70	47.4
Alfalfa/Berseem	2041	11.80	24.1	4051	13.30	53.9
Onion	839	10.47	8.8	3038	11.81	35.9
Garlic	2042	6.50	13.3	2334	6.53	15.2
Lupin	77	0.49	0.0	77	0.57	0.0
Tomato	3155	18.30	57.7	3809	19.00	72.4
Seed onion	94	3.07	0.3	94	3.20	0.3
	18032			28057	{	ł
Summer			•			
Maize	1681	1.50	2.5	2256	1,91	4.3
Sorghum	1496	1.37	2.0	1641	1,67	2.7
Sesame	2307	0.40	0.9	2925	0.49	1.4
Soybean	30	0,60	0.0	30	0.75	0.0
Groundnut	2237	0.51	1.1	2559	0.70	1.8
Sunflower	121	0.52	0.1	442	0.67	0.3
Watermelon	3226	4.43	14.3	4883	5.53	27.0
Cantaloup	100	10.00	1.0	110	10.50	1.2
Cucumber	548	5.23	2.9	971	6.27	6.1
Melon	0	0.00	0.0	356	5.40	1.9
Tomato	650	15.40	10.0	1670	15.70	26.2
Fodder) 5100	14.10	71.9	6080	15.35	93.3
	17496			23923	1	
Orchard			1		ļ	
Olive	1317	3.50	4.6	2116	5,60	11.8
Total	36845	<u> </u>	l	54096	1	<u> </u>

- , <u> </u>		Present			Proposed	
	Planted	Yield	Production	Planted	Yield	Production
Crops	Area			Area		
Winter	(fed)	(ton/fed)	(1000 t6n)	(fed)	(ton/fed)	(1000 ton)
Wheat				5500	1.47	8.1
Broadbean				800	0.58	0.5
L.Beseem				5900	12.60	74.3
S.Berseem				1300	6,45	8.4
Barley				900	0.93	0.8
Onion	1]		2400	10.47	25.1
Seed Onion				50	3.07	0.2
Garlic				2100	6.50	13.7
Tomato				3700	18.30	67.7
Sugarbeet				7600	15.50	117.8
Alfalfa				3000	11.80	35.4
				33250		
Summer		ļ.				
Maize				2550	1.50	3.8
Sorghum				800	1.37	1.1
Groundnut				1900	0.51	1.0
Sesame				1900	0.40	0,8
Sunflower				3250	0.52	1.7
Squash		1	;	900	4.50	4.1
Cantaloup				650	10.00	6.5
Watermelon				3400	4.43	15.1
Tomato				5350	15.40	82.4
Sordan]			3800	14.10	53.6
Napiergrass				2500	14.10	35.3
				27000		
Orchard						
0live				4900	3.50	17.2
Total				65150	-	

.

Table H-2-6 Proposed Crop Production in Expansion Area in the Command

				3			(unit: feddan)
			Old Land			New Land	Land
Land Season	Minia	Beni Suef	Faiyum	Giza	Sub-Total	Reclaimed	Expansion
Current Pattern (A)			;				
Winter Crops	51,370	44,447	259,151	80,500		18,032	0
Summer Crops	49,034	32,293	179,005	91,187		17,496	0
Nili Crops	7,688	18,427	102, 242	55,617		* '	0
Perennial Crop	3,476	953	19,332	17,020		1,317	0
Total Annual	<u>111,568</u>	<u>96,120</u>	559,730	244,324		36,845	0
Cropped Land	65,032	51,481	312,835	108,405		27,025	0
Cropping Intensity	171.5	186.7	178.9	225.4		136.3	0
Command Area	114,101	57,295	361,589	137,300	670,285		
			·			28,057	33,250
Proposed Pattern (B)		-				23,923	27,000
Winter Crops	53,797	49,203	259,151	80,500		+ t	* '
Summer Crops	51,034	32,293	216,038	91,187		2,116	4,900
Nili Crops	33,078	18,427	114,787	55,617		<u>54,096</u>	<u>65,150</u>
Perennial Crop	3,476	953	19,332	17,020		37,245	47,600
Total Annual	141,385	<u>100,876</u>	609,308	244,324		145.2	1369
Cropped Land	65,032 (57%)	51,481 (90%)	312,835 (87%)	108,405 (79%)	537,753		
Cr. Intensity	217.4	195.9	194.8	225.4		67 - 75	0 - 70
Changes Between (A) and (B) in Cropping Intensity	3) in Cropping Intensit	<u>v (%) A - B</u>				64 - 64	0-57
Winter Crops	79 - 83	86 - 96	83 - 83	74 - 74		 * 	* '
Summer Crops	75 - 78	63 - 63	57 - 69	84-84		5 - G	0-10
Nili Crops	12-51	36-36	33 - 37	51 - 51		136 - 145	0137
Perennial Crops	ນ. ບັ	1 - 1	6 - 6	16-16			
<u>Cropping Intensity</u>	172 - 217	186 - 196	179 - 195	225 - 225			
Source : Summer Note : *; inclu	Summerized from the foregoing * ; included in summer crop	g tables		Total Cropped Land in Old Land 537,753 fed / 670,285 = 80%	d in Old Land ,285 = 80%		

Table H-2-7 Present and Proposed Crop Acreage for Old and New Land

H-33

Table H-2-8 Proposed Self-Suppliable Feeds in Command Area

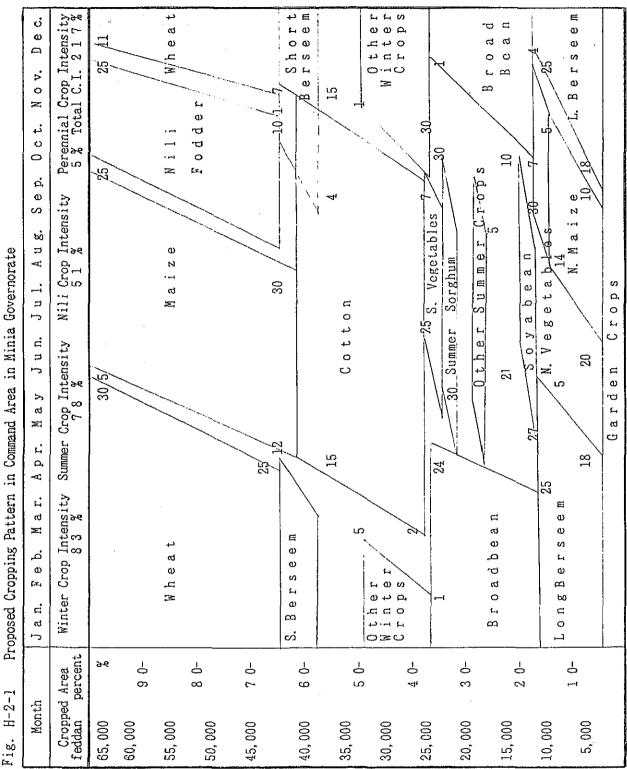
,

(unit: feddan, ton/feddan, 1,000 ton)

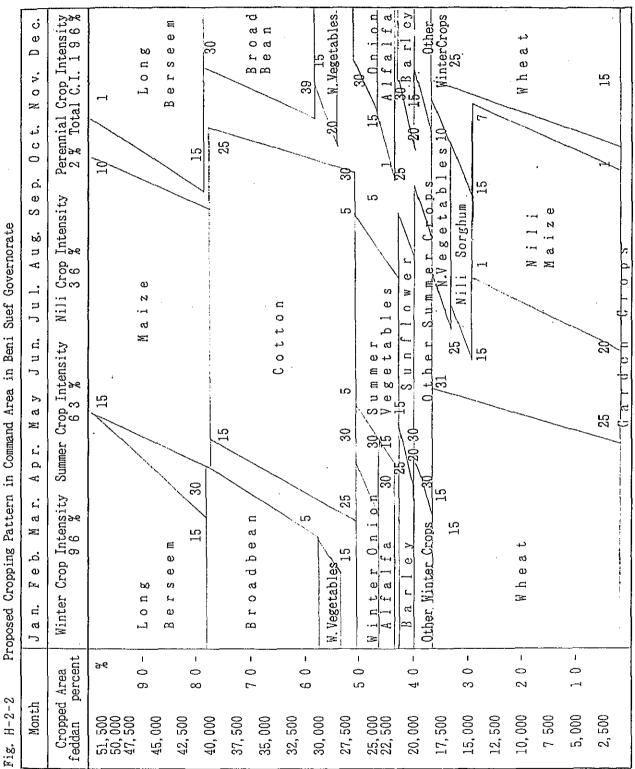
		0.	9	4	~) 4			- 0		2	,	0			ന	100				
ì		DCP	24.6	÷	30 60	0.4		57	0.0		0.2		0.0		32	34.3	75.				ଜ୍ଞା
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		TDN	141.9	8.2	66 1	6.1		47 S	0.6		10.3	1	0.3	(С, К И	282.7	53.1				Alfalfa
Î	Giza	Prod.	1,173	68	346	222	I	307	- 70		27	ı		•	cr	ں 1.963	63.2			y.	cane
		YId.	32.6	9.8	20.2	7.5	ı	4.7	3.1		3.6	1	2.0	(л и С и	י י ר				industr	<u>Sugarcane</u>
		Area	35.9	6.9	17.1	4.3	I	65.4	1.5		7.6		0.5	(9 0 0 0	143.7				oultry	<u>Legume R.</u>
		DCP	56.9	3.4	74	0.8	I	4.6	0.8		2.4	0.5	0.1	0	2 C C	0.0 76.0	79.3			ay for I	
		TDN	328.5	19.2	128.9	13.4	I	43.1	1.0		91.9	6.7	6.2	(9 6 7 0	0.3 649.9	53.5			sold aw	<u>Barleys</u>
	Faiyum	Prod.	2,709	161	674	202	ł	978	75		242	43	16	,	9 -	4.275				grain is	
	۲ <u>ب</u>	Yld.	30.5	6.3	13.6	6.7	1	8	3.2		3.1	3.1	1.5	(0 0 7 0		•			ghum (<u>Rice S.</u>
		Area	88.8	25.7	49 G	8.9	ı	100.0	23.5		77.5	13.8	10.4	2	21.6	420.0				t, *: sor	<u>Wheat</u>
·		DCP	7.8	ı	1	•	1.4	- -	0.1		0.7	ı	0.0	. 1		0.0 11.4				erseem	F
		TDN	44.5	ı	ı	ı	6.1	16.3	0.9		25.5	ı	1.0	1	1.1	95.5	46.6			acy on b	<u>Sorghum</u>
	Beni Suef	Prod.	367	ı	1	0	53	105	8		67	ı	က	¢	NC	605 605	60.7	1	offices	epender	୍ଥି ଅ
	Å	YId.	32.4	1	ı	0.0	25.0	07	3.4 2.4		3.7	I	2.1	(0.2 0 0	0 '	1		rnorate	tional d	Maiz
		Area	11.3	ı	1	0.2	2.1	96.1	2.5		18.2	•	1.2	0	2.0T	72.5			m gove	: Nutri(
		DCP	5.5	0.5	•	I	ı	5	- ' -		0.7	I	ı	1	0.1	0 0 0 0	70.6		lose fro	DOB =	Fodder
		TDN	31.7	2.9	ı		I	666			28.0	1	I	•	C	87.0	39.8	•	a and tl	uction,	Berseem
	Minia	Prod.	263	24	ı	I	I	142	2 f		73	'	I	Ċ	n c	508	56.5	• •	LR dat	= prod	Ber
	Yld.	32.6	7.4	ı	•	I	VV	Η ' F		3.1	I	I	('(7.7	τ, ι τ			om MA	, Prod.	Crop :	
		Area	8.1	3.3	I	I	•	20 E			23.3	ı	1	1	15.1	82.7			alted fr	= yield	tents (
	of one of the other	GOVERNOLAGE	<u>Berseem</u> Long Crop	Short Crop	<u>Fodder</u> Summer	Nili	Winter	Stover	Sorghum*	Straw	Wheat	Rice	Barley	Residue	Legumes	Total	DOB (%)	i	Source: calcualted from MALR data and those from governorate offices	Note : YId. = yield, Prod. = production, DOB = Nutritional dependency on berseem, *: sorghum grain is sold away for poultry industry.	Nutrient Contents Crop :

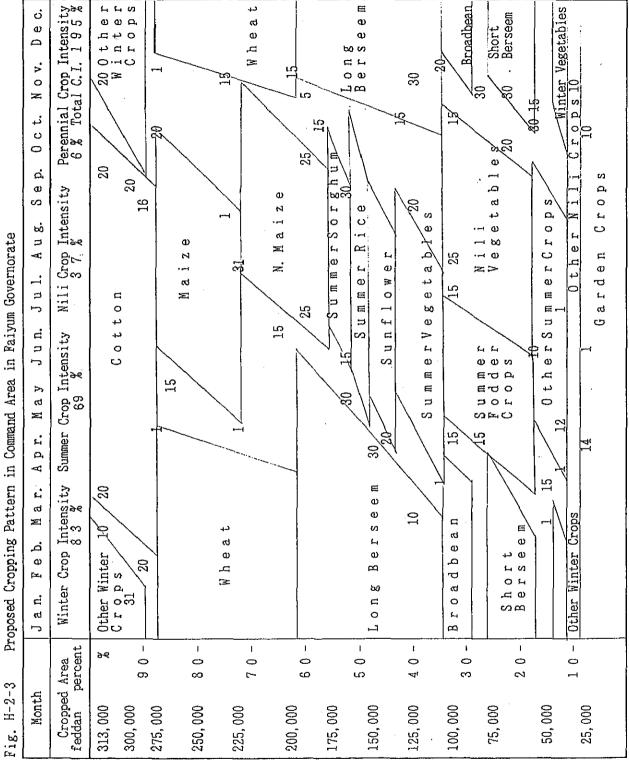
11.6 2.6 48.0 3.0 45.8 4.6 39.6 0.8 15.5 1.2 38.0 1.0 11.9 15.5 1.2 19.1 1.1 12.1 2.1 crop etc. TDN content (%) : crop etc. DCP content (%) :

Table H-2-9

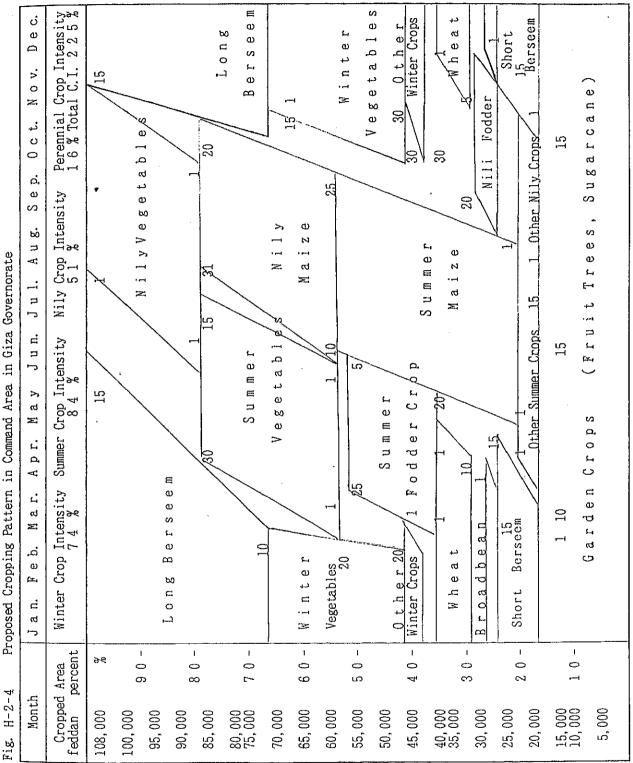

Proposed Feed Balance of Livestock Herd in Command Area

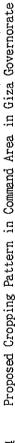
				(unit: 1,000	ton, 1000 L.U
Governorate	Minia	Beni Suef	Faiyum	Giza	Total
(adult herd size)	(30.3)	(47.0)	(223.1)	(112.2)	(412.6)
TDN for maintenance	34.8	54.1	256.5	129.1	474.5
DCP for maintenance	3.2	5.0	23.4	11.7	43.3
(young herd size)	(5.1)	(5.4)	(33.9)	(49.0)	(93.4)
TDN for herd growth	11.9	12.7	79.5	114.5	218.6
DCP for herd growth	2.4	2.5	16.0	23,1	44.0
(milk production)	<u>2.9</u>	<u>4.9</u>	<u>23.5</u>	<u>17.7</u>	<u>49.0</u>
TDN for milking	0.8	1,3	6.6	5.0	13.7
DCP for milking	0.2	0.4	1.6	1.2	3.4
(meat production)	<u>1.5</u>	<u>2.3</u>	<u>25.2</u>	<u>32.2</u>	<u>61.2</u>
TDN for fattening	5.5	8.5	93.2	119.3	226.5
DCP for fattening	0.5	0.9	10.1	12.9	24.4
Total TDN demand (c)	53.0	76.6	435.8	367.9	933.3
Total DCP demand (z)	6.3	8.8	51.1	48.9	115.1
Available TDN* (b)	74.0	81.2	552.4	240.3	947.9
Available DCP* (y)	7.2	9.7	64.6	29.1	110.6
Balance of TDN (b - c)	+ 21.0	+ 4.6	+ 116.6	- 127.6	+ 14.6
Balance of DCP (y - z)	+ 0.9	+ 0.9	+ 13.5	- 19.8	- 4.5
TDN shortage** (%)	· _	-		34.7	-
DCP shortage** (%)	-	-	-	40.5	3.9
Balance, TDN (b - a) #	+ 26.6	+ 12.7	- + 209.1	- 44.0	+ 204.4
Balance, DCP (y - x) #	+ 0.9	+ 1.9	+ 25.2	- 9.0	+ 18.8


(unit: 1.000 ton, 1000 L.U)


Source : Note :

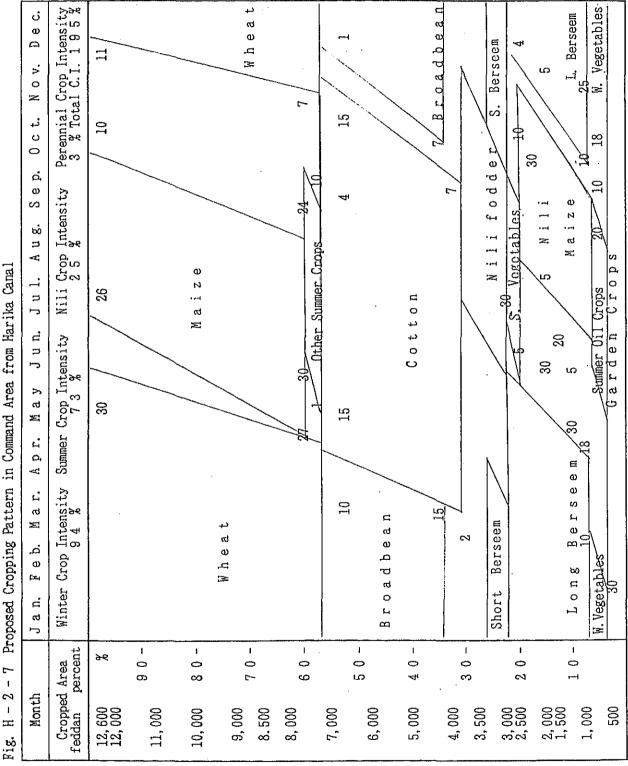
derived from the foregoing table. * from the foregoing table, ** in case of no acreage under berseem, # as compared with Table H-1-29 (current feed balance).


Proposed Cropping Pattern in Command Area in Minia Governorate



Proposed Cropping Pattern in Command Area in Faiyum Governorate

H-38


Proposed Cropcing Pattern in New Land Command (Minia and Beni Suef) Fig. H-2-5

F1g. H-Z-5		Froposed Cropping Fattern in New Land Command (Minia and Beni Suei)
Mcnth		Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Cropped Area feddan percent	Area ercent	Winter Crop Intensity Summer Crop Intensity Nili Crop I. Ferennial Crop Intensity Total Crop 75% Intensity 145%
37, 250	ж	30 / 30 15 / 11
35,000		Lot Summer Fodder
33,000	ו כ ת	MILEAL 25 20 20 WILEAU
000 08	ι C α	
28,000	>	
26,000	- 0 2	5 5 5
24,000		1
22,000	1 0 9	Sesame 24 Sesame 20 W.C.n.i.o.
19,000		25/ 30/ 15 /16
17,000	। २० २१	7 G a
15,000	4 0 -	(pasturing
·		hort Berseem 14 30 practice) 18 S
12,000	3 0 - 3	nd Alfalfa 30
10,000		Other Winter Crops 1 Other Winter C.
8,000	- 0 6	Other Summer 1 Crore
6, 000	,	24
4,000	- 0 -	27 Maize/Sorghum 17
2,000		Garden Crops (Orchard)

Fig. H-2-6	Proposed Cropping Pattern in the Expansion Land in	Three Governorates
Month	h Jan. Feb. Mar. Apr. May Jun. Ju	l. Aug. Sep. Oct. Nov. Dec.
Cropped Area feddan percent	d Area Winter Crop Intensity Summer Crop Intensity Nili Crop Percent 7 0 %	p I. Perennial Crop Intensity Total Crop % 1 0 % Intensity 1 3 7 %
47,000 45,000	30	15 11
43,000 9 0	0 - 0	Napiergrass 20 10 Wheat
40,000	(((((((((((((((((((15 26 -1-2
38,000 8 0	- 0	e l o n L. Berseem
36,000		4 4 4
33,000 7 0		
27,000	Jeer Jeer	Fallow) Sugarbeet
30,000 6 0	60- Alfalfa 30 Sunflowe	r 15 11 falfalfa
27,000		
ഹ	50- Winter Tomato/ 15 20 24	W.Tomato
22,000		
19,000 4 0	0 - Garlic	25
	c	C. 1 25 0ther
3 0 00 3 0	25	
10,000 2 0	20- (Winter 20- Fallow) 30	vorgnum (Nily/ Winter
000		20 30 Fallow)
-	10- IO Tomato 15	
(Garden Cro	ps (Orchard)

H-41

.

H - 2 - 7 Proposed Cropping Pattern in Command Area from Harika Canal

APPENDIX J

ORGANIZATION

- J-1 Governmental Organization
- J-2 Farmer's Organization

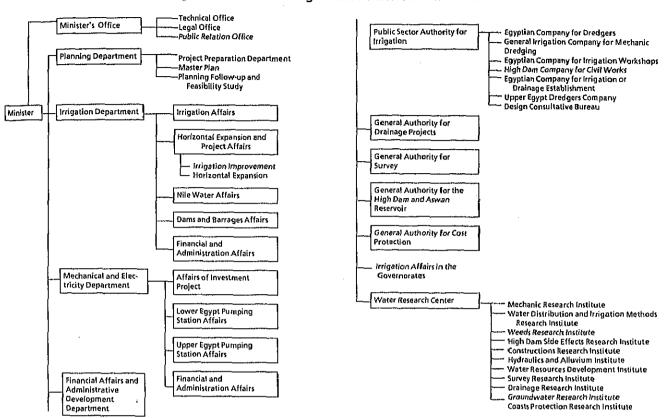
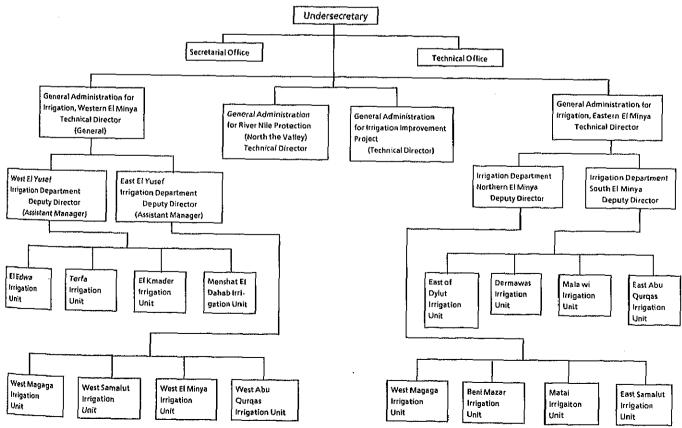



Figure J-1-1

Figure J-1-2

Organization Chart of Minia Directorate, MPWWR

J-1

Figure J-1-3 Organization Chart of Ministry of Agriculture and _{in}

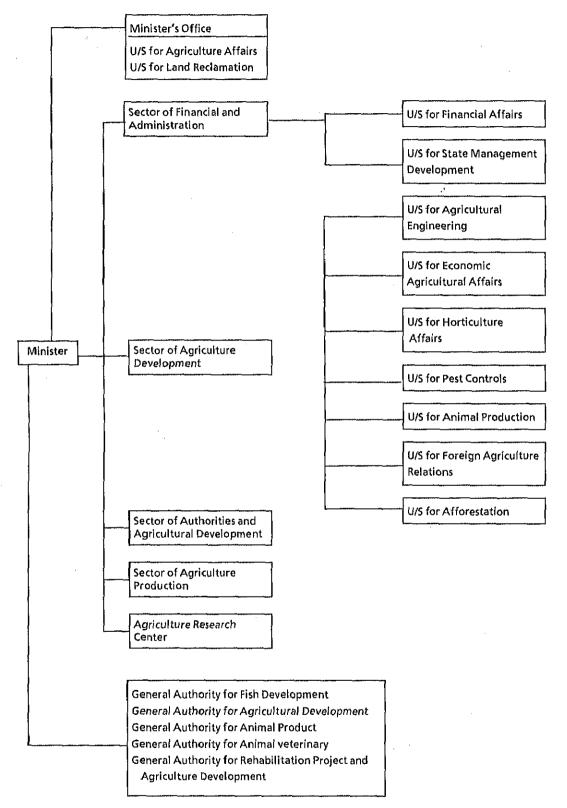


Figure J-1-4

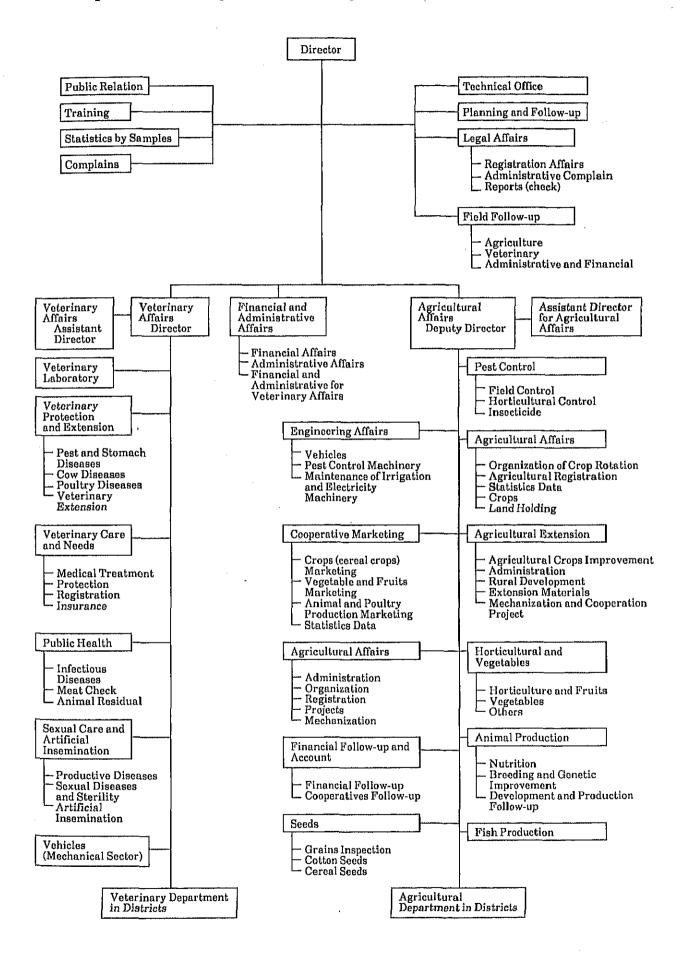
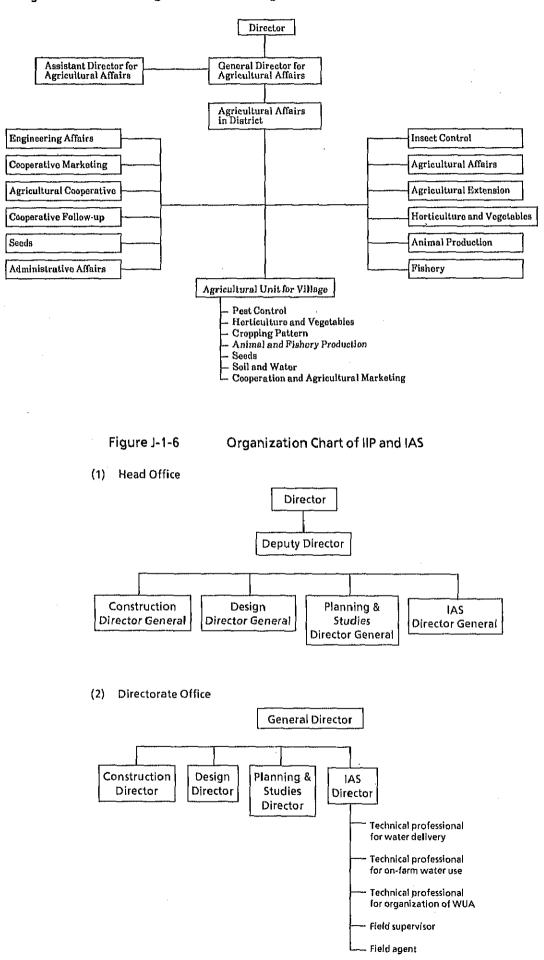



Figure J-1-5

Organization of the Agricultural Office at District Level

J-2 FARMER'S ORGANIZATION

Table J-2-1 IAS Staff Position and Assignment (as of April 1991)

Position	Minia	Faiyum	Esna	Zagazig	Tanta	Damanhur	Main
Directors	1	1	1	1	1	1	-
Water Delivery	1	1	1	1	1	1	(1)
specialist	(1)	• • •	(1)			• • • •	
On-farm Spec.	1	1	1	1	1	-	(1)
	(1)		(1)			(1)	
WUA Spec.	3	2	1	1	1	2	(1)
	(1)	•				•	
Field Sup.	5	9	2	2	2	2	-
	(3)			(3)	(2)	(2)	
Field Agents	42	46	12	20	14	17	-
	(27)		(5)	(12)	(6)	(6)	
Main Office							
General Direc.	-	-	-	-	-	-	1
Oper. Dir.	-	-	-	-	-	-	1
Formation Dir.	-	-	-	-	-		1
Water Resource						•	
Farm Manag. Econo.	-	-	-	-	-	-	(1)
Soil-Plant		*					
Water Spec.	-		-	-	-	-	(1)
Trans. Cordi. & Exp.	-	-	-	-	-	-	(1)
Compu. Spec. & Trainer	-	-	-	-	-	-	1
Video/Infor. Spec.	-	-	-	-	-	-	(1)
Graphic Spec.	-	-	-	-	-		(1)
Total	53	60	18	26	20	23	4
τυστ	(33)	•	(7)	(15)	(8)	(9)	(8)

Note: Total assigned 204

(not assigned) 80

J-5 .

Table J-2-2 Major Activities of IIP

Major Activities of IIP

- 1. To develop the institutional capacity of the MPWWR for sustained irrigation improvement activities.
- 2. To develop a rational interdisciplinary team approach for identifying, testing and implementing solutions to priority system constraints for sustained efforts in irrigation system rehabilitation and betterment.
- 3. To establish and build-up an irrigation advisory services to provide water delivery and water use services, technologies and information to water users during and beyond the IIP.
- 4. To establish and strengthen formal water user associations for playing an active role in planning, designing, operating, maintaining and regular monitoring of their micro-systems during and after the IIP.
- 5. To assist in identifying policy alternatives and procedures for implementing a program of cost sharing for specified improvement cost from water users to be utilized for improving system operations and maintenance performance.

Existing Locations of IIP (Irrigation Improvement Project)

Esna. Minia, Faiyum, Zagazig, Tanta, Damanhur

Role of IAS (Irrigation Advisory Services)

- 1. Improvement of water delivery
- 2. Improvement of on-farm water use
- 3. Building sustainable private organizations around the hydrologic units (meska branch and canal)

Goal of Water User Association

The goal of WUAs is to support and work with National efforts to improve and sustain the efficient delivery and use of water at micro system level for increased agricultural production.

Roles of WUAs

- 1. Improving micro-system by planning, designing, implementing, operating, maintaining, monitoring their development.
- 2. Developing and implementing operational plans with irrigation scheduling, purchasing, operating and maintaining WUA pumps.
- 3. Improving of water delivery and water removal on field drains.
- 4. Improving of water use through improved scheduling and irrigation practices.
- 5. Developing roles and responsibilities of WUA leaders, and developing rules and resolving conflicts.
- 6. Developing close coordination with other organizations for essential inputs such as bank loans, equipment and land leveling.
- 7. Developing improved communication with each other, other organization and especially with water suppliers.
- 8. Mobilizing resources for pumps, equipment and system improvements.

Seven Phases for Organizing WUAs

Phase I-Entry Phase

- 1. Introduction and assistance from local leaders
- 2. Initial information collection
- 3. Preliminary meska profile
- 4. Building trust and friendship
- 5. Identifying initial meska problems and needs

Phase II-Organizational Phase

- 1. Introduction of IIP/IAS concepts and WUA benefits
- 2. WUA requirements and willingness to organize
- 3. Visit to demonstration sites

- 4. Election or selection of meska leaders
- 5. Deciding WUA roles and responsibilities
- 6. Reviewing alternative meska improvement
- 7. Conducting detailed meska and marwa improvement
- 8. Specific training for meska and marwa leaders
- 9. Establish meska improvement committee
- 10. Develop initia meska improement strategy
- 11. Developing the WUA charter or rules
- 12. Formalizing the WUA organization

Phase III-Preparation for Improvements

- 1. Developing WUA work plan for meska improvement
- 2. Rapid appraisal implementation
- 3. Meska measurement and evaluation
- 4. Fefining WUA work plan based on new data
- 5. Decision on alternative improvement
- 6. Participation in planning and design of meska

Phase IV-Paticipation in Improvements

- 1. Planning the role of WUAs in implementation
- 2. Understanding the contractor's work plan
- 3. Facilitating the work of the contractor
- 4. Plan for obtaining credit for WUA pump
- 5. Finalize roles and responsibilities of all WUA leaders and pump operators

- 6. Training of WUA leaders in meska and pump operations
- 7. Decision on type and size of pump required
- 8. Developing and improved meska operation plan
- 9. Developing an improved meska maintenance plan
- 10. Working with IIP engineer to assure quality control
- 11. Inspection of completed works with walk through

Phase V-Regular WUA Operation

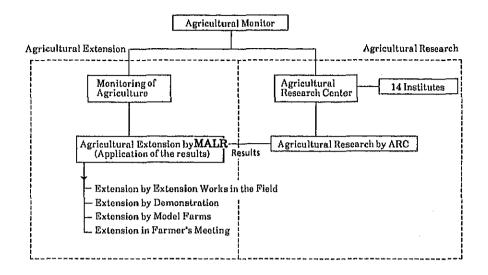
- 1. Selection of committee or individuals for specific activities
- 2. Special training as required by committee
- 3. Water delivery: finalize and implement operational plan
- 4. Water delivery: monitoring operational plan
- 5. Water delivery: finalize and implement maintenance plan
- 6. Water delivery: maintenance plan monitoring
- 7. Water use improvement: training and demonstration
- 8. Water use improvement: development of a work plan
- 9. Return flow: maintenance/improvement plan
- 10. Return flow: implementing field drain maintenance
- 11. WUA conflict resolution plan
- 12. WUA communication plan
- 13. WUA external linkage plan
- 14. WUA annual or bi-annual meeting for all members
- 15. WUA special training

J-9

Phase VI-WUA Federation along Branch Canal

- 1. Determine need, purpose and role of federation
- 2. Developing roles and responsibilities and draft charter
- 3. Election of Branch WUA Council leaders
- 4. Meeting of Branch Canal Council leaders
- 5. Develop a branch canal communication plan
- 6. Branch Canal Council training needs

Phase VII-Monitoring and Evaluation Phase


- 1. Identify monitoring and evaluation needs
- 2. Review monitoring activities of each phase
- 3. Develop an internal evaluation plan
- 4. Conduct periodic external evaluations
- 5. Reporting results of monitoring and evaluation
- 6. Feedback of findings to program for improvement
- 7. Regular IAS monitoring field trips and reporting
- 8. Regular on-farm water management monitoring

Length Necessary for Establishing WUA

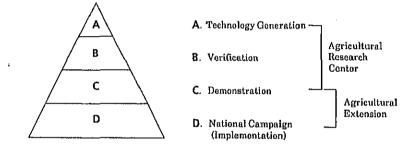
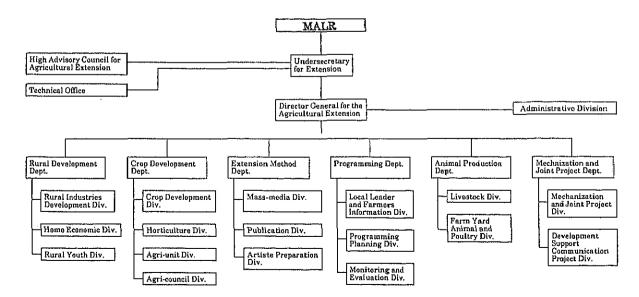
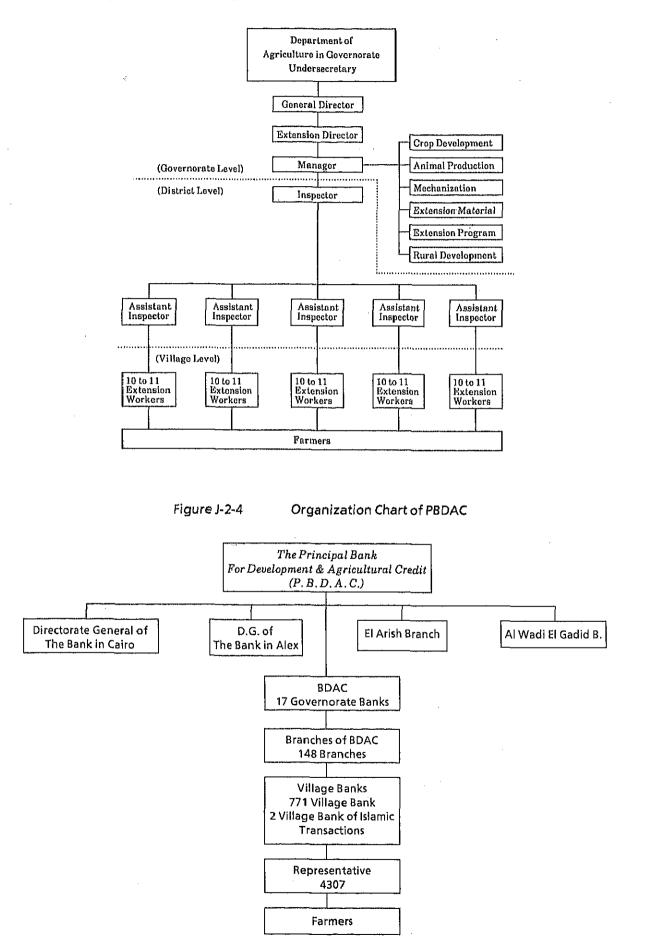

Minimum: 18 to 24 months for the effective completion of seven phases

Figure J-2-1




Demarcation of Extension Works and research

Organization of Agricultural Extension at National Level

Structure of Cooperative Society (1989)

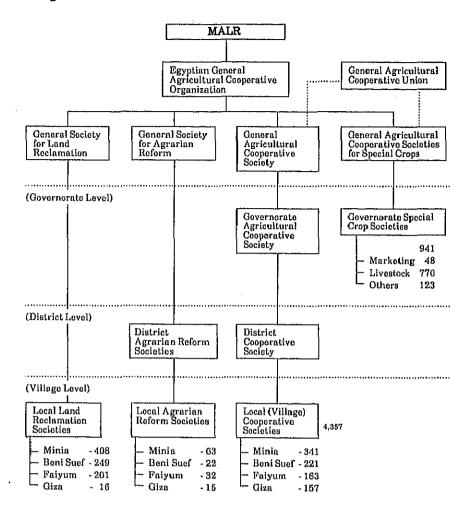
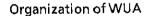
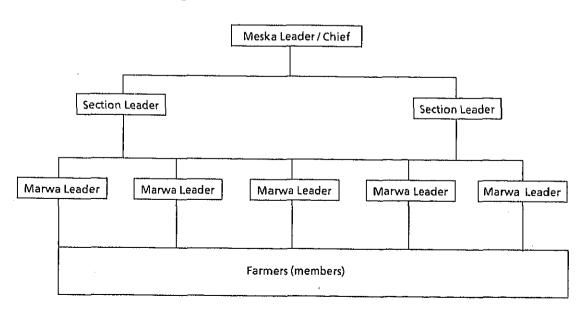
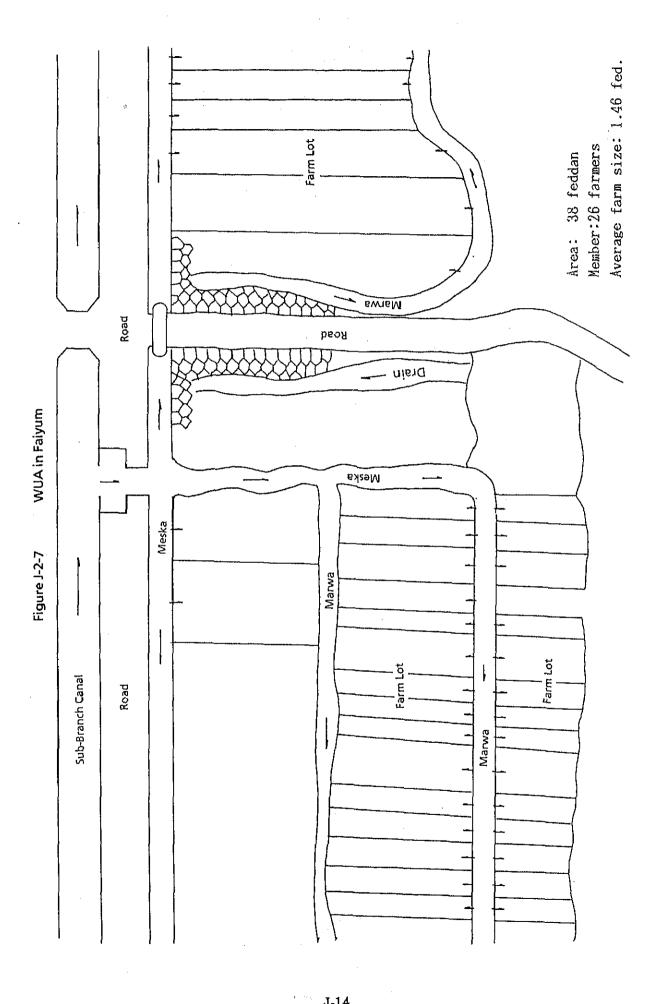





Figure J-2-6

J-14

APPENDIX K

COST ESTIMATE

- K-1 Unit Price of Construction Works
- K-2 Construction Cost of Alternatives on Regulator
- K-3 Project Cost
- K-4 Operation and Maintenance Cost

K-1 Unit Price of Construction Works

.

Description	<u>Unit</u>	Price(L.E.)	<u>FC(%)</u>	LC(%)
Common labour Skilled labour Operator Carpentor(common) Mason Steel fixer Surveyor	day day day day day day month	10 20 30 25 30 25 1,500	0 0 0 0 0 0	100 100 100 100 100 100 100
Portland cement	tonne	120	50	50
Seawater cement	tonne	150	50	50
Steel bar(round)	tonne	1,000	90	10
Sand Graded gravel Graded filter Stone Timber	m ³ m ³ m ³ m ³ m ³	10 40 50 60 1,000	10 10 10 10 10	90 90 90 90 90 90
Cement brick (25X12X6)	1,000pcs	s 200	20	80
Bitumen	tonne	190	20	80
Gasoline	liter	0.80	10	90
Diesel oil	liter	0.50	10	90

Table K-1-1 Unit Price of Labourers and Construction Materials

Table K-1-2 Foreign Currency Component

•

Items of Works	Foreign Currency Component (%)
Delivery System Canal structures (Barrage and Regulator) Other canal structures Drain structures Canal earth works including channel remodelling Drain earth works	50 40 40 30 30
Pump Stations Equipment Civil works	80 35
Land Acquisition	0
On-farm (Meska level) Improvement General Communication facilities	40 85
Engineering and Administration	20
Technical Assistance	80

n

Works	<u>Unut</u>	<u>Rate(L.E.</u>)	<u>FC Po</u> <u>%</u>	<u>rtion</u> L.E	<u>LC</u> <u>%</u>	Portion L.E.
Base (poor) concrete Plain concrete Reinforced concrete	m ³ m ³ m ³	400 450 730	48 48 48	190 220 350	52 52 52	210 230 380
Stone pitching with mortar	m ³	150	40	60	60	90
Concrete block protection thickness 0.70 m Reinforced concrete canal	m 2	210	45	. 100	55	110
lining thickness 0.20 m Unreinfoeced concrete canal	m ²	160	45	70	55	90
lining thickness 0.10 m	m²	80	40	30	60	50
Concrete pipe Diameter 1.0 m - do - 0.9 m - do - 0.7 m - do - 0.6 m - do - 0.4 m - do - 0.3 m - do - 0.2 m	m m m m m m	240 200 120 90 45 30 20	45 45 45 45 45 45 45	$110 \\ 90 \\ 60 \\ 40 \\ 20 \\ 15 \\ 10$	55 55 55 55 55 55 55	130 110 60 25 15 15
Demolition of structures (plain concrete or masonry)	m ³	60	40	25	60	35
Excavation for structure Excavation for new channel Excavation	m ³ m ³ m ³	13 10 7	60 60 60	8 6 4	40 40 40	5 4 3
Embankment Backfilling Channel remodelling Bank rising with imported fill	m ³ m ³ m ³ m ³	6 6 8 16	45 45 40 45	3 3 3 7	55 55 60 55	3 3 5 9
Regrade access road Light Heavy	Km Km	3,000 6,000	40 40	1,200 2,400	60 60	1,800 3,600
Construction of access road with imported fill	Km	14,000	45	6,300	55	7,700
Steel gate Small size gate(locally mfd) Large size gate(foreign mfd)	tonne tonne		70 90	18,000 68,000	30 10	7,000 7,000
Pump equipment	LS		90		10	
Building (pump station,etc.)	m ²	3,000	40	1,200	60	1,800
Land acquisition	m²	12,000	0	0	100	12,000

A - 3 Amount (1,000 L.E.)	14 300 30	585 585 1, 278 285	$\begin{array}{c} 1,071\\ 342\\ 26\\ 422\\ 462\\ 5,100\end{array}$	40 20444 207	15,000 1,500 16,500	21.650
Q' ty	2,000 50,000 5,000	1,300 390 1,750 390	5,100 5,700 420	200 2	3X3.1X2 15 sets	
A = 4 Amount (1,000L.E.)	14 300 30	585 285 1,205 234	1,071 342 26 409 399 4,900	00 8 8 4 80	15.000 1,500 16,500	21,500
Q'ty	, 50,000 5,000	1,300 390 1,650 320	5,100 5,700 420	400 4	3X3.1X2 15 sets	
<u>A - 1</u> Amount (1,000 L.E.)	300 300 30	558 241 066 88	1,071 342 26 374 390	100 11 14 130	15,000 1,500 16,500	21,130
0' tv	2,000 50,000 5,000	1,240 330 1,460 120	5,100 5,700 420	200	3X3.1X2 15 sets	
Unit	m ³ m ³	ы в ы з з з з з з з з з	на Варала Варала	m m		
<u>llnit Cos</u> (L.E.)	004	450 730 730	210 60 60	1,000		
<u>Description</u> 1. Civil Works	1.1 Earth Works Excavation Embankment Filling Canal	1.2 CONCRETE WORKS Apron concrete Wall concrete Pier concrete Pier Supers conc	1.5 Alprap & reveu Block Riprap Revetment 1.4 Demolition of Str 1.5 Miscellaneous 10% 1.6 Other & Mobil 10% Total of 1.	 Stregnthen Old Str. Boring Grouting Siscellaneous 10% Other & Mobil 10% Total of 2. 	3. Gates 3.1 Gate Leaves 3.2 Other & Mobil 10% Total of 3.	Grand Total (1+2+3)

Table K-2-1 Construction Cost of Alternative-A of Regulator

K-2 Construction Cost of Alternatives on Regulator

	Q'ty											,									
	B - 2 Amount (1,000L.E.)	с	300	30	1,008 336	1,577 286	007	1,071	342 25	200	501	0,000	40	~ ~	ব' ব	50		3,000	13 200	1,620	23,870
	Q'ty	001	50,000	5,000	2,240 460	2,160	020	5,100	5,700 420	07F			200	2			3X3, 1X2	3 sets	V.JAJ.I X7 6 cetc	3	
CONSULTCOLOU OSC OF ALCELIAUTAGE OF REGULACOL	B - 1 Amount (1,000 L.E.)	Ę	300	30	882 336	1,256	407	1,071	242	450	453	o,400	80	<* 0	000	100		3,000	13 200	1,620 17,820	23,320
o a_antrellia	Q' ty		50,000	5,000	1,960 460	1,720	720	5,100	5,700 420				400	4			3X3, 1X2	3 sets	V. Repte		
OT ALCE	<u>linit</u>	61 1	e e '	ŗ	е Е	Б. Г.	111	_m2	3 F	145			E	m³							
nson uotna	<u>Unit Cos</u> (L.E.)	Ľ	~ (0)	œ	450 730	730	001	210					200	Ĥ							
DUNSION 7-7-V ATORI	ĺ	1. Civil Works 1.1 Earth Works	Embankment	Filling Canal 1.2 Concrete Works	Apron concrete Wall concrete	Pier concrete	1.3 Riprap & Revet	Block Riprap	Kevetment 14 Namulition of Str	1.5 Miscellaneous 10%	1.6 Other & Mobil 10%	2. Streenthen Old Str	2.1 Boring	2.2 Grouting	2.4 Other & Mobil 10%	Total of 2.	o, vales 3.1 Gate Leaves			3.2 Other & Mobil 10% Total of 3.	Grand Total (1+2+3)

. ,

Table K-2-2 Construction Cost of Alternative-B of Regulator

.

Amount (1,000 L.E.)

K-4

	C - 3	(1,000 L.E.)	1,400	30	2,097	935 139	483 199	580 586 6,960				15,300 1,530 16,830	23,790
		A CV	200,000	5,000	4,660 700	1,280	2,300 3,320				13.4X3.1X2	3 sets	
	C - 2	(1,000L.E.)	1,400	30	2,165 511	1,037 205	483 199	603 607 7,240			5 5 7	1,500 16,500	23,740
	5	4 EV	- 200,000	5,000	4,810 700	1,420 280	2,300 3,320				8. 0X3. 1X2	o sets	·
1	1	(1,000 L.E.)	1,400	30	2,142 409	1,497	483 199	636 637 7,630				1,560 17,160	24,790
	υ + 		200,000	5,000	4,760 560	2,050 270	2,300 3,320				6.6X6.0	0 Secs	
	+;-11	TUN	m ³	ля Н Ц	т ш		m ² 132	Ē	้ม	, E			
		Unit vos (L.E.)	(~ C	ററ	450 730	730	210 60 60	00	200	1,000			
	Decession	1. Civil Works	1.1 Earth Works Excavation	Embankment Filling Canal	1.2 Which ever weirs Apron concrete Wall concrete	£-	1.3 Alprap & Neveu Block Riprap Revetment	1.4 Demolition of Sur 1.5 Miscellaneous 10% 1.6 Other & Mobil 10% Total of 1.	2. Stregnthen Old Str. 2.1 Boring	2.2 brouting 2.3 Miscellaneous 10% 2.4 Other & Mobil 10% Total of 2.	3. Gates 3.1 Gate Leaves	3.2 Other & Mobil 10% Total of 3.	Grand Total (1+2+3)

Table K-2-3 Construction Cost of Alternative-C of Regulator

K-5

Table K-3 Project Cost

Table K-3-1 (1) Summary of Project Cost (Sheet 1 of 2)

Total 36,000 9.200 101,200 56,000 3,600 1 1 1 1 1 1 1 1 29,000 36,000 1 1 1 143,600 143,600 Phase-JII 44,700 17,000 11,300 11,300 66,400 5,40066,400 28,000 1,2002,4001 1 1 1 1 1 1 1 (Unit : 1,000 L.E.) 12,00016,00024,700 24,700 3,800 1 2 1 56,500 28,000 ł 2,400 800 800 77,200 77,200 F.C. Total 48,000 64,000 29,000 48,000 35,000 18,900 7,200 2,000 9000 2,400 2,400 2,000 106,400 106,400 1 1 1 1 1 1 30,900 L 49,200 49,200 Phase-[] 51,200 16,100 9,200 6,100 29,000 29,000 6,900 1,500 1,880 880 1 1 1 1 1 1 88 1 1 79,700 19,000 25,800 22,100 12,800 5,700 4, 200 600 600 600 600 600 600 57,200 57,200 1111 1 1 1 19,000 47,900 U G 106,400 $^{11}_{4,000}$ 18,000 69,000 18,000 38,600 800 800 125, 800 18,000 20,000 31,000 106,400 1 1 1 1 1.1.4 To ta] 2 Phase I 00000 880888 mm 37,200 11,000 11,000 15,100 1,000 8,000 6,100 11,100 2,100 49,200 49,200 1 1 1 1 1 1 57,200 11 1 1 1 88,400 7,000 7,000 53,900 19,000 23,000 11,900 27,500 2,400 2,400 3,200 3,200 35 57,200 I. с Ч 357,700 122,000 95,000 27,000 20,000 23,000 23,000 28,000 18,000 18,000 18,000 66,700 356,400 356,400 69,000 (1,2,20)(10,000)(1,100)200000 200000 200000 200000 200000 200000 200000 [ota] 4,620) 650) (1, 150)(1, 150)(1, 150)42,500 164,000 133, 100 68,000 57,000 6,90000 1,30 22,600 164,800 Total 5,380) 450) 191,600 224,600 38,000 126,500 224,200 225,800 223,800 223,000 11,900 44,100 2, 2000 10, 191,600 54,000 <u>_</u>_____ 1.3.1 Intake of Manshat El Dahab C. 1.3.2 Intake of Harika C. 1.3.3 Intake of Saab C. 1.3.4 Intake of Giza Branch C. 1.3.5 Intake of Giza Branch C. 1.3.6 Reconstruction of I.S.(2, 5mX3) 1.3.7 Reconstruction of I.S.(2, 5mX3) 1.3.9 Rehabilitation of I.S.(1, 5mX8) 1.3.10 Rehabilitation of I.S.(1, 5mX8) 1.3.10 Rehabilitation of I.S.(1, 5mX8) Improvement of Intake St.Sub.C. (14 Remodelling & Trimming, Sub.C. Improvement of Subbranch Canal Ċ .1.1 Improvement of Canal Sections .1.2 Improvement of Course byShortcut 2.1 Preparatory Works for Constn.
 2.2 Dairout Barrage
 2.3 Manshat El Dahab Regulator
 2.4 Sakoula Regulator
 2.5 Mazoura Regulator
 2.6 Lahoun Regulator Improvement of Harika Canalfor Base Improvement of Canal Structures 1 Improvement of Regulator No.1 2 Construction of New Regulators 3 Improvement of Regulators No.4 4 Construction of Tail Wasteways Improvement of Barrage/Regulator Improvement of Canal Structures Remodelling & Trimming of Canal I.l Remodelling & Trimming of Canal Bahr Yusef Canl Improvement of Branch Canals Branch Canals in 670,000 fed Description 벙 Improvement 22222 22222 222222 1.2 2.1 2020 en e

\mathbf{n}
*
0
N
مب
Ф
٩,
2
(Sheet 2 of 2)
Cost (
Cost
0
U.
مد
S.
<u>.e</u>
0
Project
y of P
4
0
>
ummary
<u>و</u>
- E
_
-
.2
V 1
le K-3-1 (2)
_
5
- m
- U
a di seconda di s
le K-3-1 (

K-7

Description	Unit	Q'ty	Unit Cost(L.E.)	F.C.		E.) Total	<u>Remar</u> F.C.	tks L.C.
1. Improvement of Bahr Yusef Caral	<u> </u>						-	
I.I. Remodelling & Trimming of Caral		 		54,000	68,000	122,000		
1.1.1 Improvement of Canal Sections			·	38,000	57,000	\$5,000		<u></u>
Cairout Barrage to Manshat El Dahab Reg.	m	77,000	300	8, 240	13,880	23,100	120	180
Hanshat El Dahab Reg, to Sakoula Reg,	m	100,000	300	12,000	18,000	30,000	120	180
Sakoula Reg. to Mazoura Reg.	m	52,000	280	5, 720	8,840	14,560	110	170
Mazoura Reg. to Lahoun Reg.	m	58,000	280	6, 380	9,860	16,240	110	170
Lahoun Reg. to End of Canal	m	24,000	100	960	1,440	2,400	40	60
Hiscellaneous Works		١S		3,700	5,000	8,700		<u> </u>
1.1.2 Improvement of Course by Shortcut]]		16,000	11,000	27,000		
Daircut Barrage to Manshat El Dahab Reg, (2)	m	2,000	5,200	8,000	4,400	10,400	3,000	2,200
Hanshat El Dahab Reg. to Sakoula Reg (1 place)	m	800	5, 200	2,400	1, 760	4,180	3,000	2,200
Sakoula Reg. to Mazoura Reg. (1 place)	m	2,000	5,100	5,800	4,400	10,200	2,900	2,200
Miscellamous Works		រេទ		1,800	410	2,240	- <u> </u>	
1.2 Improvement of Barrage/Regulators				128, 500	42, 500	169,000		
1.2.1 Preparatory Works for Construction	1			19,000	1,000	20,000	+	
1) Procurement of Construction Equipment				13,300	700	14,000	-	
Bulldozer, 23 ton class	unit	2	945,000	1,800	90	1,890	900,000	45,000
Backhos Excavator, Gravler 1.2 m ³	unit	2	651,000	1, 240	67	1,302	620,000	31,000
Dragline, v/ Bucket 1,5 "3, 55 ton class	unit	2	1,470,000	2,800	140	2,940	1,400,000	0 70,000
Crawler Crano , 45 ton class	unit	2	1,050,000	2,000	100	2,100	1,000,000	0 50,000
Truck Crane , 18 ton class	unit	2	798,000	1, 520	76	1,596	760.00	0 38,000

Table K-3-2 (1) Breakdown of Project Cost

•

Table K~3-2 (2) Breakdown of Project Cost

•

Sheet 2 of 29

.

Description	lhit	Q'ty	Unit Cost(L.E.)	F.C.	Anaint (1.000 L.	E.) lotal	Renar	ks L.C.
Vibrohumer, 60 KW	unit	2	347,000	660	34	694	330,000	
Water Jet Cutter, 45 KM	unit	2	242,000	460	24	484	230,000	
Diesel Generator, 200 KVA	unit	2	242,000	480	24	484	230,000	
Voldor	unit	2	46,000	88	4	92	44,000	2,000
Gas Cuttor	unit	2	13,000	24	2	26	12,000	1,000
Spare Parts & Others		LS		2, 248	14.4	2,392		
2) Procurement of Construction Materials	1			5,700	30.0	6,000	†	
Steel Sheet pile III-Type 12 m	pcs	500	2,880	1, 370	70	1,440	2,740	140
Steel Shoot Pile IV-Type 12 m	pcs	200	4,560	868	44	912	4,340	220
H-Shapo Stoel H-300 X 300 X 10 X,15, 12 m	pes	80	3,100	236	12	248	2,950	150
il-Shape Steel H-350 X 350 X 12 X 19, 12 m	PC5	150	4,620	680	33	693	4,400	220
H-Shapo Steel H-400 X 400 X 12 X 21, 12 m	PC 5	30	\$,700	165	9	174	5,510	280
Chamel Stoel [-200 X 90 X 8 X 13.5, 12 m	pes	20	1,090	21	1	22	1,040	50
L Stoel L-100 X 100 X 10, 12 m	PCS	50	560	26	2	28	530	30
Steel Foot Plate 2.00 m X 1.00 m	pc5	100	2,140	204	10	214	2,010	100
Steel Foot Plate 3.00 m X 1.00 m	PCS	100	3,180	303	15	318	3,030	150
Steel Sheet File Driving Cap	pos	20	10,500	200	10	210	10,000	500
Steel Stagings	8 3	500	1,050	500	25	525	1,000	50
Tie-red # 55 X 10 m	pes	200	2,100	400	20	420	2,000	100
0tha s	<u> </u>			74.7	48	796		
- The state of the		<u> </u>	<u> </u>	l	<u>L</u>	<u> </u>	L	

Description	Unit	Q'ty	Unit Cost(L.E.)	F.C.	<u>Anount (1.000 L.</u>	E,) Jotal	Rena F.C.	
1,2,2 Dairout Barrage		·		24,700		10001		L.C
1) Civil Vorks		·		6,400	6,900	13,300		
Excavation	۳۶	60,000	7	240	630	1,470	4	
Excavation for Structure	m ³	8,000	13	48	30	78	8	
Filling Canal	m³	1,000	6	3	3	6	3	
Apron & pier concrete	m,	8,800	730	3,080	3, 344	8,424	350	38
Vall concrete	m a	2,000	730	700	760	1,460	350	38
Pier superstructure concrete	m³	220	730	77	84	161	350	38
Concrete block riprap w/ stone	m²	4,800	210	480	528	1,008	100	11
Revetment of stone w/mortar	m²	3,800	150	228	312	570	03	9
Demolition of structure	m3	500	60	12	18	30	25	3
Access Reads	Кm	1	6,000	2	4	6	2,400	3,60
Hiscellaneous Works				730	500	1,530		
Other Works & Mobilization				800	807	1,607		
2) Gates			<u> </u>	11,400	1,300	12,700		
Gate Leaves:Rack Wheel Type 7.0 X 3.3 m X 2	sets	4	2,900,000	10,440	1,160	11,600	90%	10
Appurtemant Works & Mobilization				960	140	1,100		
3) Other Costs				6,900	3, 100	10,000	1	
Engineering & Administration				2,700	1,200	3,900		
Technical Assistance				2, 300	1,100	3,400		
Physical Contingency				1,900	800	2,700		
		<u></u>						

Table K-3-2 (3) Breakdown of Project Cost

Table K-3-2 (4) Breakdown of Project Cost

Described.			Unit		Anount (1.000 L.E		Rea	arks
Description	Unit	Q'ty	Cost (L.E.)	F.C.	ı L.C. ı	Total	F.C.	1.0
1.2.3 Manshat El Dahab Regulator			·	25,800	9,200	35,000		
1) Civil Korks				4, 700	5,100	9,800		
Excavation	· m³	110,000	7	440	330	770	4	3
Excavation for Structure	m,	7,400	13	59	37	96	8	5
Filling canal	m³	1,000	6	3	3		3	3
Apron & pier concrete	۳,	6,500	730	2, 275	2,470	4,745	350	380
Vall concrete	m³	740	730	259	281	540	350	380
Pier superstructures concrete	m,	400	730	140	1 52	292	350	380
Concrete block riprap v/ stone	m²	2,700	210	270	297	567	100	110
Revetment of stone v/ mortar	m²	3,100	150	186	279	465	60	90
Demolition of Structures	w,	500	60	12	18	30	25	33
Access Roads	Km	2	8,000	5	7	12	2,400	3,600
Hiscellancous Vorks				550	580	1,130		
Other Works & Nobilization				501	646	1,147		
2) Gates				13,700	1,500	15, 200		
Gate Leaves: Wire Rope Wheel Type 7.0X3.25mX 2	sets	5	2,800,000	12,600	1,400	14,000	90%	10%
Appurtement Vorks & Hobilization				1,100	100	1,200	-	
3) Others				7,400	2,600	10,000		
Engineering & Administration				3,000	1,000	4,000		
Technical Assistance				2,600	900	3,500		<u>.</u>
Physical Contingency		T		1,800	700	2,500		
	[1	•
· · · · · · · · · · · · · · · · · · ·	· · · · · ·	1	<u> </u>		······································	······································		

Description	Unit	Q'ty	Unit Cost(L.E.)	F.C.	<u>Ascent (1.000 LE</u>	<u>)</u> Total	F.C.	arks
1.2.4 Sakoula Regulator	<u> </u>			23,000	8,000	31,000		L.C
1) Civil Vorks		ļ		3,900	4,000	7,900		
Excavation	m,	110,000	7	410	330	770	4	3
Excavation for Structure	m³	11,000	13	53	33	88	8	
Filling canal	m,	1,000	6	3	3	6	3	3
Apron & pler concrete	m	4,200	730	1,470	1,596	3,066	350	380
Vall concrete	m³	740	730	259	281	540	350	380
Pler superstructures concrete	m,	250	730	88	85	183	350	380
Concrete block riprap w/ stone	m²	2,500	210	250	275	525	100	110
Revetment of stone w/ mortar	m'	2,900	150	174	261	435	60	80
Demolition of Structures	m,,	500	60	12	18 .	30	25	35
Access Roads	Χm	2	6,000	5	7	12	2,400	3,600
Hiscellaneous Works				520	540	1,060	1	
Other Works & Hobilization	1			591	539	1,130	1	
2) Gates				12,700	1,400	14,100		
Gate leaves: Wire Rope Wheel Type 8.0X3,2mX 2	sets	4	3,200,000	11,500	1,300	12,800		
Appurtement Works & Mobilization	1			1, 200	100	1,300	-	
3) Others				6,400	2,600	9,000	- <u> </u>	
Engineering & Administration				. 2,600	1,000	3,600	1	
Technical Assistance				2, 200	800	3,100	1	
Physical Centingency				1, 500	700	2,300		<u> </u>
			····		†		1	
	1	1			<u> </u>		+	

Table K-3-2 (5) Breakdown of Project Cost

•

Table K-3-2 (6) Breakdown of Project Cost

Sheet 6 of 29

Description	11.1.	Q'ty	Unit		Ancunt (1.000 L.	E)	Rea	arks
	Unit	4 (9	Cost(L.E.)	F.C.	L.C.	Total	F.C.	L.C.
1.2.5 Nazoura egulator		ļ	·····	22, 100	8,900	29,000		
1) Civil Vorks				3,600	3, 700	7,300		
Excavation	m,	120,000	7	480	360	840		
Excavation for structures	m ¹	11,000	13	88	55	143		
Filling canal	m³	1,000	8	3	3	6	1	
Apron & pier concrete	m³.	3,900	730	1, 385	1,482	2,847		
Wall concrete	m,	720	730	25 2	774	526		
Pier superstructures concrete	m3	250	730	88	95	183	350	380
Concrete block riptep v/ stone	m²	2,200	210	220	24 2	462	100	110
Revetment of stone W montar	m,	2,900	150	174	261	435	60	90
Demolition of Structures	m³	1,600	60	40	56	96	25	35
Access Roads	Хm	2	6,000	5	7	12	2,400	3,600
Miscellanous Vorks				44.0	410	880		
Other Yorks & Hobilization		(445	425	870	1	
2) Gates			, ,	1 2, 400	1,300	13,700		
Gato Leaves: Wire Rope Wheel Type 8.0X3.05 X 2	sets	4	3,100,000	11,200	1, 200	12,400	-	
Appurtement Works & Hobilization				1,200	100	1,300		
3) Others				6, 100	1,900	8,000	-	
Engineering & Administration				2, 500	70.0	3,200	-	
Technical Assistance				2, 100	70.0	2,800	-	
Physical Contingency				1,500	50.0	2,000		
					1		1	<u> </u>

I		Unit		Amount (1,000 L.E	.)	Rema	rks
Unit	Q'ty	Cost(L,E,)	F.C.	L.C. 1	Total	F.C.	L.C.
			11,900	6, 100	18,000		
1			3,800	4,200	8,000	1	· · · · · ·
m,	48,000	7	192	144	338	4	3
m³	3,200	13	26	16	42	8	5
m,	2,000	8	6	6	12	3	3
m³	2,800	730	980	1,064	2,044	350	380
m,	3,000	730	1,050	1,140	2,190	350	380
m³	200	730	70	76	146	350	380
m²	2,000	210	200	220	420	100	110
m ¹	3,000	150	180	270	450	60	90
m ³	800	60	20	28	48	25	35
Χm	2	6,000	5	7	12	2,400	3,600
			540	600	1,140	-[
			531	629	1,160	i	
			4,500	500	5,000	1	
sets	2	2,200,000	3,960	440	4,400	80%	10%
			540	60	800		
			3,600	1,400	5,000	1	
1			1,500	600	2,100	1	
1			1,200	500	1,700	1	
1			\$00	300	1,200	1	
1							
	m ³ m ³ m ³ m ³ m ² m ² m ³ Xm	m ³ 48,000 m ³ 3,200 m ³ 2,800 m ³ 2,800 m ³ 3,000 m ³ 200 m ³ 2,000 m ³ 2,000 m ³ 800 Km 2	Unit Q'ty Cost(L,E.) m³ 48,000 7 m³ 48,000 7 m³ 3,200 13 m³ 2,000 8 m³ 2,800 730 m³ 2,800 730 m³ 2,000 210 m³ 3,000 150 m³ 800 60 Km 2 6,000	Unit Q' ty Cost(L,E,) F.C. 11,800 3,800 m³ 48,000 7 192 m³ 3,200 13 26 m³ 2,000 8 6 m³ 2,800 730 980 m³ 2,800 730 1,050 m³ 2,000 210 200 m³ 200 730 70 m³ 2,000 210 200 m³ 3,000 150 180 m³ 3,000 150 180 m³ 2,000 210 200 m³ 3,000 150 180 m³ 3,000 150 180 m³ 800 60 20 Km 2 6,000 5 531 1,500 3,600 3,600 3,600 1,500 1,500 1,200	Unit Q' ty Cost(L,E,) F,C. L,C. 11,900 6,100 3,800 4,200 m³ 48,000 7 192 144 m³ 3,200 13 26 16 m³ 2,000 8 6 6 m³ 2,800 730 980 1,064 m³ 2,800 730 1050 1,140 m³ 3,000 730 1,050 1,140 m³ 2,000 210 200 220 m³ 2,000 210 200 220 m³ 3,000 150 180 270 m³ 3,000 150 180 270 m³ 800 60 20 28 Km 2 $6,000$ 5 7 540 600 500 500 sets 2 2,200,000 3,980 440 540	Unit Q' ty Cost(L,E,) F.C. L.C. Iotal 11,800 6,100 18,000 m^3 48,000 7 192 144 338 m^3 3,200 13 26 16 42 m^3 2,000 8 6 6 12 m^3 2,800 730 980 1,064 2,044 m^3 3,000 730 1,050 1,140 2,190 m^3 200 730 70 76 145 m^3 2,000 210 200 220 420 m^3 3,000 150 180 270 450 m^4 3,000 150 180 270 450 m^4 3,000 150 180 270 450 m^4 800 60 20 28 43 Km 2 6,000 5 7 12 540 <td>Unit Q' ty Cost(L,E,) F.C. L.C. Total F.C. 11,600 6,100 18,000 3,800 4,200 8,000 1 m³ 48,000 7 192 144 336 4 m³ 3,200 13 26 16 42 8 m³ 2,000 8 6 6 12 3 m³ 2,800 730 980 1,084 2,044 350 m³ 2,800 730 1,050 1,140 2,190 350 m³ 2,000 210 200 720 420 100 m³ 2,000 210 200 220 420 100 m³ 3,000 150 180 270 450 60 m³ 3,000 150 180 270 450 60 m³ 3,000 50 7 12 2,400 m³ 500</td>	Unit Q' ty Cost(L,E,) F.C. L.C. Total F.C. 11,600 6,100 18,000 3,800 4,200 8,000 1 m³ 48,000 7 192 144 336 4 m³ 3,200 13 26 16 42 8 m³ 2,000 8 6 6 12 3 m³ 2,800 730 980 1,084 2,044 350 m³ 2,800 730 1,050 1,140 2,190 350 m³ 2,000 210 200 720 420 100 m³ 2,000 210 200 220 420 100 m³ 3,000 150 180 270 450 60 m³ 3,000 150 180 270 450 60 m³ 3,000 50 7 12 2,400 m³ 500

Table K-3-2 (7) Breakdown of Project Cost

Table K-3-2 (8) Breakdown of Project Cost

Description		<u> </u>	Unit Cost(L.E.)		Amount (1,000 L.E	<u></u>	Remai	rks
·····	Unit	Q' ty	Cost(L.E.)	F.C.	L.C.	Iotal	F.C.	L.C.
.3 Improvement of Canal Structure	ļ			44, 100	22,600	66,700		
1.3.1 Intake of Manshat El Dahab				5,700	1,500	7,200		
1) Civil Works				70.0	700	1,400		
Excavation	កា ³	700	7	3	2	5	4	3
Excavation for structure	ر w	200	13	2	1	3	8	5
Apron & pier concrete	m,	1,000	730	350	380	730	350	380
Vall concrete	ر w	100	730	35	38	73	350	380
Pier superstructure concrete	m ³	100	730	35	38	73	350	380
Concrete block riprap v/ stone	m²	400	210	40	44	84	100	110
Revetment of stone w/ mortar	m³	400	150	24	36	50	60	90
Demolition of structure	m 3	900	60	23	31	54	25	35
Access roads	Кл	1	8,000	3	3	6	2,400	3,800
Niscellancous works				75	87	162		
Other works & mobilization				110	40	150	- <u> </u>	······
2) Gates				3,400	400	3,800		
Gate Leaves:Rack Wheel Type,5.0 X 2.45 X2	sot	2	1,700,000	3,060	310	3,400	90%	10%
Appurtemant works & mobilization				310	60	400		<u></u>
3) Others				1,600	400	2,000		
Engineering & Administration				60 0	200	800	1	
Technical Assistance				60.0	100	700	1	
Physical Contingency				40.0	100	500		

Description	Unit	Q' ty	Unit Cost(L.E.)	F.C.	<u>Ancunt (1.000 L.</u>	E.) Total	Remar	ks.
.3.2 Intake of Karika				2,400	800	3,200		
1) Civil Varks				400	400	800	+	
Excevation	m³	1,000	7	4	3	7	4	3
Excavation for structure	m,	100	13	1	1	2	. 8	
Apron & pier concrete	m,	500	730	175	190	365	350	380
Vall concrete	m³	100	730	35	38	73	350	380
Pier superstructure concrete	m²	60	730	21	23	44	350	380
Concrete block riprop v/ stone	m²	200	210	20	22	42	100	110
Revetzent of stone w/ mortar	m²	300	150	18	27	45	60	90
Demolition of structure	m³	100	60	3	3	6	25	3
Access roads	Kan	1	6,000	3	3	6	2,400	3,600
Miscell aneous works				60	.50	110	1	
Other works & mobil ization				60	40	100	·	
2) Gates				1,300	200	1,500		
Gate Loaves Rack Wheel Type, 5.0 X 1.9m X	2 set	1	1,300,000	1,170	130	1,300	90%	10
Appurtemant works & mobilization				130	70	200		
3) Others				700	200	900		
Engineering & Administration				310	90	400		
Technical Assistance				220	80	300		
Physical Contingency				170	30	200		
							1	

Table K-3-2 (9) Breakdown of Project Cost

Table K-3-2 (10) Breakdown of Project Cost

.

Sheet 10 of 29

	Description	Unit	Q'ty	Unit		Amount (1.000 L.	Ε.)	Retar	ks
		LUUIC	Vity	Cost(L.E.)	F.C.	L.C.	lotal	F.C.	L.C.
1.3.3		ļ			2,400	800	3,200		
1)	Civil Vorks				400	400	800		
	Excavation	m3	1,000	7	4	3	7	4	3
_	Excavation for structure	m,	100	13	1	1	2	8	5
	Apron & pler concrete	m³	500	730	175	190	365	350	380
	Wall concrete	m³	100	730	35	38	73	350	380
	Pier superstructure concrete	m ³	60	730	21	23	44	350	380
	Concrete block riprep w/ stone	mª	200	210	20	22	42	100	110
	Revetment of stone w/ mortar	m*	300	150	18	27	45	60	90
_	Demolition of structure	m³.	100	60	3	3	6	25	35
	Access roads	Km	1	6,000	3	3	8	2,400	3,600
	Miscellancous verks	1			60	50	110	· · ·	
	Other works & mobilization	1			60	40	100		
2)	Gates				1,300	200	1,500		
	Gate Leaves:Rack Wieel Type, 5.0 X 1.9 X2	sot	1	1,300,000	1, 170	130	1,300	90%	10%
	Appurtement works & mobilization				130	70	200	1	
3)	Others				700	200	900		<u> </u>
	Engineering & Administration		······		31.0	90	400		
	Technical Assistance	1			220	80	300		
	Physical Contingency				170	30	200	1	
		1			······		<u> </u>	Í	
		1							

Bernull Mar			Unit Cost(L.E.)	,	Amount (1.000 L.E	.)	F.C.	narks
Description	Unit	Q'ty	Cost(L.E.)	F.C.	L.C.	lota l	F.C.	L.C
1.3.4 Intake of Hassan Wasof Branch Canal				8,000	3,000	11,000		
1) Civil Works				1,200	1,400	2,600		
Excavation	m ³	10,000	7	40	30	70	4	3
Excavation for structure	۳۶	500	13	4	3	7	8	5
Apron & pler concretwo	m°	1,500	730	525	570	1,095	350	380
Wall concrete	m3	400	730	140	152	292	350	360
Pier superstructure concrete	m3	150	730	53	57	110	350	380
Concrete block riprap v/ stone	m²	300	210	30	33	63	100	110
Revetment of stone w/ mortar	m²	800	150	48	72	120	60	90
Demolition of structures	m,	1,300	60	32	46	78	25	35
Access Roads	Km	1	6,000	3	3	6	2,400	3,600
Miscellaneous Works				160	220	360	1	
Other Works & Mobilization				185	214	379		
2) Gates				4,800	600 -	5,400		
Gate Leaves:Rack Wheel Type, 4.0 X 2.65m X 2	sets	3	1,600,000	4,320	480	4,800	90%	10%
Appurtemant Works & Mobilization				480	120	600	-	
3) Others				2,000	1,000	3,000		
Engineering & Administration				700	500	1,200		
Technical Assistance				700	400	1,100		
Physical Contingency				600	100	700		. <u></u>
ende type yn de							1	
							-	
								<u> </u>

Table K-3-2 (11) Breakdown of Project Cost

Table K-3-2 (12) Breakdown of Project Cost

Sheet 12 of 29 Unit Cost(L.E.) Amount (1.000 L.E.) Remarks F.C. L.C. Description Uhit Q' ty F.C. **Total** 1.3.5 Intake of Giza Branch Canal 10,700 3.300 14,000 1) Civil Vorks 1,700 1,500 3,200 Excavation 10,000 7 m³ 40 30 70 4 3 Excavation for structure m3 500 13 4 3 7 8 5 Apron & pier concrete 2,000 730 m³ 700 760 1,460 350 380 Vall concrete m³ 400 730 140 152 292 350 380 Pier superstructure concrete m, 160 730 58 61 117 350 380 Concrete block riprap w/ stone 350 210 m² 35 39 74 100 110 Revetment of stone w/ mortar m³ 900 150 54 81 135 60 90 Demolition of structure 1,400 60 m³ 35 49 84 25 35 Access Roads Кm 1 6,000 3 3 6 2,400 3,600 Miscellaneous Vorks 220 260 480 Other Vorks & Mobilization 213 262 475 2) Gates 8,100 700 6,800 5,400 Gate leaves:Rack Wheel Type 4.0 X 2.4m X 2 4 1,500,000 600 6,000 seta 90% 10% Appurtemant Works & Mobilization 700 100 800 3) Others 3,100 900 4,000 Engineering & Administration 1,200 400 1,800 Technical Assistance 1,000 300 1,300 Physical Contingency 900 200 1,100

Description	L'nit	Q'ty	Unit Cost(L.E.)	F,C,		lotal	F.C.	K5
.3.6 Reconstruction of Intake Structure	place	3		4,800	1,200	6,000	1 1.01	L,(
Reconstruction Cost per place (Span 3.0 m)	-			1,600	400	2,000		·
1) Civil Varks			i	200	200	400		·
Excavation	,	2,700	7	11	8	19	4	- <u></u>
Excavation for structure	TIN ³	300	13	3	2	5	8	
Plain concrete	m,	80	450	18	18	36	350	
Reinforced concrete	m³	250	730		85	183	350	38
Concrete block riprap w/ stone	m²	40	210	4	3	9	100	
Revetment of stone w/ mortar	m,	110	150	7	10	17	60	
Demolition of structure	m	160	60	4	6	10	25	
Access toads	Km	1	6,000	2	4		2,400	3.60
Miscellancous works				50	30		1 1,	
Other works & mobilization				13	22	35	- <u> </u>	
2) Gates				900	100	1,000		
Gate Leaves: Rack Wheel Type, 5.0 X 2.4m X	l set	1	900,000	810	80	500	90%	10
Appurtemant works & mobilization	-			90	10	100		
3) Others				500	100	600	1	·
Engineering & Administration				150	50	200		
Technical Assistance				160	40	200	·	
Physical Contingency	_			190	10	200	1	
	_							

Table K-3-2 (13) Breakdown of Project Cost

Table K-3-2 (14) Breakdown of Project Cost

ς.

Deacription	Unit	Q' ty	Unit Cost(L,E,)	F.C.	Amount_(_1.000L	.E.) ITotal		rks L.C
1.3.7 Reconstruction of Intake Structures	place	3	1	4,200	1,800	8,000	1	
Reconstruction Cost per place (Span 2.50m)	1		<u> </u>	1,400	<u>600</u>	2,000	1	
1) Civil Works	1		+	300	300	600		
Excavation	m3	5,400	7	22	16	33	4	
Excavation for structure	m³	600	13	5	3	8	8	
Plain concrete	m3	270	450	60	62	172	220	23
Reinforced concrete	mi	390	730	137	148	285	350	
Concrete block riprap w/ stone	m²	40	210	4	5	9	100	11
Revetment of stone w/ mortar	m³	110	150	7	10	17	60	9
Demolition of structure	m,	310	60	8	11	19	25	3
Access roads	Xm	1	6,000	2	4	ß	2,400	3,60
Miscellaneous works				30	20	50		
Other works & mobilization	<u> </u>			25	21	46		······
2) Gates	1		1	700	100	800		
Gate Leaves:Rack Wheel Type, 3.8 X 2.8 m	set	1	700,000	630	. 70	700	90%	10
Appurtemant works & mobilization				70	30	100		·
3) Others	1	1	1	400	200	600	1	
Engineering & Administration	<u> </u>			200	100	300		
Technical Assistance				200	•	200	1	
Physical Contingency]]			100	100	1	
								<u> </u>
						1		

Description	Unit	Qʻty	Unit Cost(L.E.)	F.C.	Amount (1.000 L.E	[_] Iotal	Rea	Narks L.C.
1.3.8 Reconstrution of Intake Structures	place	5		3,000	1,500	4,500	+	
Reconstruction Cost per place (span 2,00m)	1	i <u>e</u> .		600	300	900		
1) Civil Works				100	100	200	-	
Excavation	m³	900	7	4	3	7	4	3
Excavation for structure	m³	100	13	1	1	2	8	5
Plain concrete	m³	40	450	9	9	18	220	230
Reinforced concrete	m³	120	730	42	48	88	350	380
Concrete block riprap w/ stone	m³	20	210	2	2	4	100	110
Revetment of stone w/ mortar	m²	100	150	6	9	15	60	90
Demolition of structure	m,	70	60	2	4	6	25	35
Access roads	Km	1	6,000	2	4	8	2,400	3,600
Mescellaneous works				30	10	40		
Other works & mobilization				2	14	16		
2) Gates				300	100	400		<u> </u>
Gate Leaves: wheel type 2.0m X 2.5m	set	1	300,000	270	30	300	90%	10%
Appurtenant Works & Mobilization				30	70	100		
3) Others				200	100	300		
Engineering & Administration				60	40	100		
Technical Assistance				70	30	100		
Physical Contingency		·		70	30	100		
<u></u>								
					· · · · · · · · · · · · · · · · · · ·		-	

Table K-3-2 (15) Breakdown of Project Cost

Table K-3-2 (16) Breakdown of Project Cost

Sheet 16 of 29 Unit Cost(L.E.) Amount (1.000 L.E.) Remarks F.C. L.C. Q' ty Description Ünit F.C. Iotal 1.3.9 Reconstruction of Intake Structure place 8 800 2,400 3,200 Reconstruction Cost per place (span 1.50m) 100 300 400 1) Civil Vorks 10 10 20 Demolition of structure m³. 5 60 1 1 2 25 35 Reinforced concrete 10 m, 730 4 4 8 350 380 Miscellancous works 3 2 5 Other works & mobilization 2 3 5 2) Tmprovement of Gates 90 190 280 Improvement of gate leaves 1 4 5 Supporting flame to gate lift 70 150 220 Other works & mobilization 19 38 55 3) Engineering, Administration & Others -100 100 1.3.10 Rehabilitation of Intake Structure place 21 2,100 6,300 8,400 Rehabilitation Cost per place(span 1.2n below) 100 300 400 Rehabilitation of civil works & Gates 60 160 240 Miscellaneous works & Other works 20 40 60 Engineering, Administration & Others -100 100

$\frac{1able - 3 - 2}{17} $ Break	aowi	1 01 -	Project	LUSI		Shee	t 17 of	29
Des ar ip tion	Ünit	Q' ty	Unit Cost(L.E.)		Arcunt (1.000 L.	E.) Total	Rema	rks L.C.
2. Improvement of Branch Canals in Bahr Yusef	1,000	670	532,000	191,600	164,800	356,400	286,000	246,000
Total of 2.1 to 2.5 for Harika Canal in 18,800fed	fed			5,400	4,600	10,000		
2.1 Remodelling & Trimming: of Canal				400	700	1,100	-{	
Remodelling; The Intake to Aklia Regulator	m	11,700	40	187	281	488	40%	50%
Aklia Reg. to Shenri Reg.	m	12,400	30	149	223	372	40%	60%
Shenri Reg. to Salalba Reg.	m	4,400	20	35	53	88	40%	60%
Salaiba Reg. to the end	m	4,300	10	17	26	43	40%	60%
Miscellaneous Works			LS	12	117	129	<u> </u>	
2.2 Improvement of Canal Structures				2,700	1,100	3,800		
2.2.1 Improvement of Regulator No.1				1,100	400	1,500		
Excevation	m³	100	7	1	1	2	4	3
Excavation for structure	m ³	200	13	2	1	3	8	5
Pier concrete	m³	355	730	1 24	135	259	350	380
Reinforced concrete	m,	270	730	\$ 5	103	198	350	380
Revetment of stone w/ mortar	m²	20	150	i	2	3	60	90
Demolition of structure	m,	300	60	8	11	19	25	35
Hiscellaneous Vorks				40	30	70		
Other Vorks & Mobilization				19	27	46		
Gate Leaves ;Rack Wheel type 2.5 X 2.3	sets	2	400,000	7 20	80	800	90%	10%
Appurtenant & Mobilization				90	10	100		
2.2.2 Construction of New Regulator				840	360	1,300	1	
Excavation	m³	100	7	1	1	2	4	3
Escavation for structure	m	200	13	2	ł	3	8	5
Pier concrete	m³ (360	730	128	137	263	350	380

Table K-3-2 (17) Breakdown of Project Cost

Table K-3-2 (18) Breakdown of Project Cost

,

Sheet 18 of 29

			Unit		Amount (1,000 L.	E,)	Rem	arks
Description	Unit	Q'ty	Cost(L.E.)	F.C.	1 L.C.	lotal	F.C.	L.C.
Reinforced concrete	۴m ا	285	730	100	108	208	350	380
Revetment of stone v/ mortar	m²	40	150	3	3 .	6	03	90
Niscellaneous Works				40	30	70	1	
Other Works & Mobilization				38	10	48		
Gate Leaves;Rack Wheel type 2.0 X 1.85 m	sets	2	300,000	540	60	600	90%	105
Appurtemant & Hobilization				90	10	100		
2.2.3 Improvement of Regulators No.4				560	240	800	1	
Excavation	r, m	100	7	1	1	2	4	3
Excavation for structure	m³	100	13	1	1	2	8	5
Pier concrete	ru,	200	730	70	76	146	350	350
Reinforced concrete	r, m	170	730	60	65	125	350	380
Revenment of stone v/ mortar	m ¹	20	150	1	2	3	60	90
Demolition of structure	m,	200	60	5	7	12	25	35
Miscellaneous & Hobilization				22	18	40		
Other works & mobilization				10	20	30		
Gate Leaves: Rack Wheel Type 2.5 X 2.1 m	set	1	350,000	315	35	350	90%	10%
Appurtement & mobilization				75	15	90	1	
2.2.4 Construction of Tail Vasteways			· · · ·	100	100	200	1	<u></u>
Excavation	τ ^η	50	7	1	1	2	4	3
Reinforced concrete	m,	50	730	18	19	37	350	380
Revetment of stone w/ mortar	m	20	150	1	2	3	60	90
Miscellaneous Vorks				29	31	60		
Other Vorks & Mobilization				23	35	58	1	
Gate: Spindle Slide Gate 1.0 X 1.3 m	set	1	40,000	28	12	40	70%	30%

Description	12-24	01.5	Unit .	·	Amount (1.000 L.)	E.)	_ Rem	arks.
	Unit	Q'ty	Cost(L.E.)	F,C.	L.C.	Total	F.C.	L.C,
2.3 Improvement of Intake Structure to Subbranch C	place		200	1,400	1,400	1,400		
Improvement Cost per place				100	100	200		
Excavation	m³	450	7	2	2	4	4	3
Excavation for structure	m,	50	13	1	1	2	8	5
Plain concrete	m³	20	450	5	5	10	2 20	230
Reinforced concrete	m³.	100	730	35	38	73	350	380
Revenment of stone w/ mortar	m²	80	150	5	7	12	60	90
Demolition of structure	m,	\$0	60	1	2	3	25	35
Miscellaneous vorks				17	19	36	<u> </u>	
Other works & Mobilization				18	19	37		
Gate Leaves: Slide gate 1.0 m X 1.0 m	set	1	20,000	14	6	20	70%	30%
Appurtenant Works				2	1	3		
······································					<u> </u>	<u></u>		
2.4 Remodelling & Trimming of Subbranch Canal				700	1,100	1,800		
Improvement of Subbranch Canal (14 lines)	m	45,000	30	450	900	1,350	20	30
Improvement of Sub-Subbranch Canal(3 lines)	m	12,000	20	120	120	240	20	20
Miscellaneous Vorks				110	50	160		
Other Works & Mobilization				20	30	50		

Table K-3-2 (19) Breakdown of Project Cost

Table K-3-2 (20) Breakdown of Project Cost

.

Description		.	Unit		Amount (1,000 L.E		Ren	arks
	linit	Q'ty	Cost(L.E.)	F.C.	L.C.	Total	F.C.	L.C.
5 Improvement of Subbranch Canal			L	200	300	500		
Construction of Subbranch Canal (2 lines)	m	4,000	100	160	240	400		
Construction of Intake for 2 places	place	2	200	1	1	2		
Niscellaneous Works & Mobilization			[39	59	98		
						<u> </u>		
Construction Cost of Subbranch Canal per m				40	60	100	1	,
Excavation	m3	10	8	30	50	80	3	5
Miscellaneous Works & Mobilization				10	10	20		
Construction Cost of Intakr per place				100	100	200		
Excavation	m,	360	7	2	1	3	4	3
Excavation for structure	m٩	40	13	1	1	2	8	5
Plain concrete	m ³	30	450	7	7	14	220	230
Reinforced concrete	m,	100	730	35	38	73	350	380
Revetment of stone v/ mortar	m¹	100	150	6	9	15	60	90
Miscellaneous Works & Mobilization				33	37	70		
Gate: Slide gate 1.0 m X 1.0 m	set	1	20,000	14	8	20	70%	30%
Appurtenant				2	1	3		
otal of 2.1 to 2.5 Harika Canal in 18,800 fed				5,400	4,600	10,000	- <u> </u>	
mprovement of Branch Canals per 1,000 fed of Comma	nd Area		1	286	246	532	5.400 &	4,600/18

Description		N 1.	Unit		<u>Anount (1.000 L.)</u>	E.)	Remar	ks –
······································	Unit	Q' ty	Cost(L.E.)	F.C.	L.C.	Total	F.C.	L.C
3. Improvement of Pump Stations				81,000	14 ,0 00	95,000	1	
3.1 Drainago Pump Stations				17,000	3,000	20,000		
3.1.1 El Badraman Drainage Pump Station				12,000	2,000	14,000		
Horizontal Mixed Flow Pump D=1,000 mm X 137 Xw Q= 2.5 m³/sec H= 2.4 m	sats	4		8,100	900	9,000	90%	10%
Civil Works: Reinforced concrete	۳۶	100	730	35		73	350	380
Demolition of structure	m,	50	60	1	2	3	25	35
Improvement & Repair		នេ		4	4	8	50%	50%
Miscellaneous works		រេ		4	4	8	50%	50%
Improvement of station building		រេ		20	20	40	50%	50%
Miscellaneous Works				336	532	868	1	,
Engineering, Administration, Tech Assist, Conti.			[]	3,500	500	4,000		
3.1.2 Other 8 Drainage pump Stations				5,000	1,000	6,000	<u> </u> 	
Isprovement of Pusp Equipment for 8 Stations	sets	31	100,000	2,790	310	3,100	90%	10%
Moscellaneous parts	[]	<u> </u>	LS	210	50	300		100
Civil Works: Reinforced concrete for 8 Sta	ru,	100	730	- 35	38	73	350	380
Demolition of structure	m,	50	60	- 1	2	3	†	
laprovement à Repair		នេ		4	4		†	
Xi seel laneous works		LS		4	4		1	
Improvement of station building		LS		20	20	40	1	
Miscellaneous Works				236	232	468	1	
Engineering, Administration, Tech Assist, Conti.			[1,700	300	2,000	†	

Table K-3-2 (21) Breakdown of Project Cost

Table K-3-2 (22) Breakdown of Project Cost

Sheet 22 of 29 Unit Cost(L.E.) Asount (1.000 L.E.) Renarks F.C. L.C. Description Unit Q' ty F.C. Total 3.2 Irrigation Pump Station 64,000 11,000 75,000 3.2.1 Arab Beni Khalid Irrigation Pump Station 5,000 1,000 6,000 Horizontal Mixed Flow Pump D= 600 mm P= 78 Kw Q= 0.8 m³ /sec H= 3.0 a 2 3,600 sats 400 4,000 90% 10% Civil Vorks: Reinforced concrete 730 ma 50 18 19 37 350 380 Damolition of structure m³ 25 60 1 1 2 25 35 Improvement & Repair ١s 2 2 4 Miscellaneous works ۱s 4 4 8 Improvement of station building LS 10 10 20 Miacellaneous Works 165 764 429 Engineering, Administration, Tech Assist, Conti. 1,200 300 1,500 3.2.2 Beni Khalid Irrigation Pump Station 5,000 1,000 6,000 Norizontal Mixed Flow Pump D= 800 mm P= 78 Kw Q= 0.8 m³ /sec H= 3.0 m 2 3,600 sots 400 4,000 90% 10% Civil Vorks: Reinforced concrete m³ 50 730 18 19 37 350 380 Demolition of structure m, 25 60 1 1 2 25 35 Isprovesont & Repair LS 2 2 4 Miscellaneous vorks ۱S 1 8 4 improvement of station building នេ 10 10 20 Miscellancous Works 265 264 529 Engineering, Administration, Tech Assist, Conti. 1,100 300 1,400

Description	Unit	Q'ty	Unit Cost(L.E.)	F.C.	Ancunt (1.000 L.E.) Total	Rema	rks L.C.
3.2.3 Kagadir Irrigation Pump Station				12,000	2,000	14,000	1.0,	
Horizontal Mixed Flow Pump D= 800 mm P= 70 Kw Q= 1.34 m ³ /sec H= 1.6 m	sets	4		7,920	880	8,800	90%	10%
Civil Vorks: Reinforced concrete	m³	100	730	35	38	73	350	380
Demolition of structure	m3	50	80	1	2	3	25	35
Improvement & Repair		LS		4	4	8		
Niscellaneous vorks		LS		8	8	16		
improvement of station building		LS		20	20	40		<u> </u>
Hiacellaneous Vorks	·····			41 2	648	1,060		
Engineering, Administration, Tech Assist, Conti.				3,600	400	4,000		
3.2.4 Terfa Irrigation Pump Station				18,000	3,000	21,000		
Horizontal Mixed Flow Pump D= 900 mm P= 73.5 Kw Q= 1.472 m ³ /sec H= 2.2 m	sets	6		12,420	1, 380	13,800	90%	10%
Civil Vorks: Reinforced concrete	m³	180	730	63	69	132	350	380
Demolition of structure	m³	90	60	2	4	6	25	35
Improvement & Repair		LS		6	8	12		
Miscellaneous vorks		LS		12	12	24	1	
Improvement of station building		LS		30	30	60		
Miscellanœus Works				687	799	1,466		
Engineering, Administration, Tech Assist, Conti.				4,800	700	5, 500		
· · · · · · · · · · · · · · · · · · ·								

Table K-3-2 (23) Breakdown of Project Cost

Table K-3-2 (24) Breakdown of Project Cost

•

Sheet 24 of 29

D.u. — I M	1		Unit		Angunt (1.000 L.E.)	Bena	rks
Description	Unit	Q'ty	Cost(L.E.)	F.C.	L.C,	Total	F.C.	L.C.
3.2.5 Sakoula Irrigation Pump Station				12,000	2,000	14,000	İ	
Horizontal Nixed Flow Pump D= 800 mm P= 66 Kw Q= 1,225 m ³ /sec H=2.75 m	sets	4		7,920	880	8,800	90%	10%
Civil Vorks: Reinforced concrete	m³	100	730	35	38	73	350	380
Demolition of structure	۳٦	50	50	1	2	3	25	35
Improvement & Rapair		١s		4	4	8	[
Hiscellaneous works		LS		8	8	16		
Isprovement of station building		LS		20	20	40	[
Niacellaneous Works				412	648	1,060		·
Engineering, Administration, Tech Assist, Conti.				3,600	400	4,000		
ана — така стана и стан				······			 	
3.2.6 Mazoura Irrigation Pump Station			+	12,000	2,000	14,000		
Horizontal Hixed Flow Pump D= 900 mm P= 81 Kw Q= 1.47 m ³ /sec H= 1.99 m	sets	4		8, 280	920	9, 200	90%	101
Civil Vorks: Reinforced concrete	m,	120	730	42	46	88 .	350	380
Demolition of structure	m,	60	60	2	2	4	25	35
Improvement & Repair		LS		5	5	10	1	
Kiscellancous vorks		LS		10	10	20	1	
Isprovement of station building		LS		10	10	20	1	
Hiscellaneous Verks				451	607	1,058	1	
Engineering, Administration, Tech Assist, Conti.				3, 200	400	3,600		
				<u>.</u>	<u> </u>			
	1					<u></u>		

Description	- Linit	0' ty	Unit Cost(L,E,)		Ancunt (1,000 L.E		Rena	
		<u> </u>	COSL(L,E,)	F.C.	L.C.	lotal	F.C.	<u>۱.۲</u>
. Operation & Maintenance of Bahr Yusef System				18,200	23,800	42,000		
.1 0/ & Facilities				10,000	8,000	18,000		
4.1.1 Hydraulic Observation Facilities				5,000	4,000	9,000		
Water level Gauge for Bahr Yusef Canal	set	5	40,000	140	60	200	70%	30%
= do - for Intake of Branch Canals	set	45	40,000	1,260	\$40	1,800	70%	30%
- do - for Major Branch Canals	set,	18	40,000	504	216	720	70%	30%
Discharge Calibration for Hain Canal	place	5	470,000	1,100	1,250	2,350	220,000	250,000
- do - for Branch Canal	place	18	140,000	1,280	1,260	2,520	70,000	70,000
Other works				736	674	1,410	1	
4.1.2 Comunication & Data Processing				5,000	4,000	9,000	-	
Operation Conter: Center Building	m²	200	3,000	240	360 .	600	40%	60%
Processing Equipment & Facilities		LS		400	100	500	80%	20%
Other Vorks		LS		360	540	900	1	
Sub-center : Station Building 50 m ⁴	place	4	150,000	240	360	600	40%	60%
Communication Facilities	LS	4		480	1 20	600	80%	20%
Processing Equipment & Facilities	រេ	4		960	240	1,200	80%	20%
Other Works				3 20	280	400		
Regulator Station: Building 40 m ²	place	5	120,000	240	360	600	40%	60%
Communication Facilities	۱s	5		260	140	400	80%	20%
Remote Station: Building 30 m ²	place	18	90,000	648	972	1,620	40%	60%
Communication Facilities	LS	33	20,000	528	132	660	80%	20%
Other Vorks				3 24	396	720		

Table K-3-2 (25) Breakdown of Project Cost

Table K-3-2 (26) Breakdown of Project Cost

>

.

Sheet 28 of 29

Unit				Asount (1,000 L.			arks 🛛
	Q'ty	Cost(L.E.)	F.C.	L.C.	Tota	F.C.	L.C
			1,700	300	2,000		
		1					
sets	10	70,000	560	140	700	80%	20%
sets	20	4,000	64	16	80	80%	20%
sots	40	1,000	32	8	40	80%	20%
					· <u> </u>	-i	
. set	10	13,000	117	13	130	90%	10%
set	10	5,000	45	5	50	90%	10%
set	8	24,000	108	12	120	90%	10%
			774	106	880		
				12,000	12,000	<u> </u>	
				4,000	4,000		
			-	4,000	4,000	1	
			·	4,000	4,000	<u>†</u>	
			6,500	3, 500	10,000	+	<u> </u>
			1,600	2,400	4,000	40%	60%
			3,200	800	4,000	80%	20%
			900	100	1,000	90%	10%
			800	200	1,000	1	
	sets sots . set sot	sets 20 sets 40 .set 10 set 8	sets 20 4,000 sots 40 1,000 . set 10 13,000 sot 8 24,000	sets 10 70,000 560 sets 20 4,000 64 sots 40 1,000 32 . set 10 13,000 117 sot 10 5,000 45 set 8 24,000 108	sets 10 70,000 560 140 sets 20 4,000 64 16 sets 20 4,000 32 8 .sets 40 1,000 32 8 .set 10 13,000 117 13 set 10 5,000 45 5 set 8 24,000 108 12	sets 10 70,000 560 140 700 sets 20 4,000 64 16 80 sets 40 1,000 32 8 40 set 10 13,000 117 13 130 set 10 5,000 45 5 50 set 10 5,000 45 5 50 set 10 5,000 45 5 50 set 8 24,000 108 12 120 <t< td=""><td>sets 10 70,000 560 140 700 80% sets 20 4,000 64 16 80 80% sets 40 1,000 32 8 40 80% set 10 13,000 117 13 130 90% set 10 5,000 45 5 50 60% set 8 24,000 108 12 120 90% set 8 24,000 108 12 120 90% </td></t<>	sets 10 70,000 560 140 700 80% sets 20 4,000 64 16 80 80% sets 40 1,000 32 8 40 80% set 10 13,000 117 13 130 90% set 10 5,000 45 5 50 60% set 8 24,000 108 12 120 90% set 8 24,000 108 12 120 90%

			Unit		Amount (L.E.)		Rer	arks
Description	Unit	Q'ty	Cost(L.E.)	F.C.	L.C.	Total	F.C.,	L.C.
5. Improvement of On farm Irrigation Facilities	1,000 fed	670	414	119,000	158,000	277,000	178	236
5.1 Kom El Hasel Subbranch (CA= 550, IAn=421fed)				75	163	240		
5.1.1 Improvement of Meska (Teal L= 5,825m)			<u> </u>	15	15	- 30		
Excavation	m³	850	7	3	3	6	4	3
Embankment / Backfill	m ³	1,410	12	8	9	17	6	6
Trimming & Miscellaneous Works				4	3	7		
5.1.2 Construction of Meska (Total L= 800m)	1			5	10	15		
Excavation	m,	160	7	1	1	2	4	3
Embanlment / Backfill	m³	340	12	2	2	4	6	6
Trimming & Miscellaneous	1			2	2	4		
5.1.3 Construction of Keska Intake (15 places)				35	55	90		
Excavation	m³	560	7	2	2	4	4	3
Backfill	m³	450	12	3	3	6	6	6
Reinforced Concrete	m³	40	730	15	15	30	350	380
Brick Vall	m²	750	50	10	28	38	13	37
Miscellaneous Vorks				5	7	12		
5.1.4 Other Works				20	85	105		
Access Roads	m	2,300	3	3	4	77	4.0%	60%
Land Lovelling	fed	85	1,000	51	34	85	600	400
Hiscellancous Verks & Hobilization				6	2			
								······

Table K = 3 - 2 (27) Dunal dama of Project Cost

Table K-3-2 (28) Breakdown of Project Cost

Sheet 25 of 29

0			Unit,		Amount (L.E.)		Rena	
Description	l'nit	Q' ty	Cost(L.E.)	F.C.	L.C.	Total	F.C.	L.C.
5.2 Nazlet Ramadan Subbranch (CA=780, IAn=645fed)				168	167	335		
5.2.1 Improvement of Meska (Total L= 6,000m)				15	15	30		
Excavation	۳٦	900	7	3	3	6	4	3
Embankment / Backfill	m ³	1,500	12	9	9	18	6	6
Triaming & Miscellaneous Works				3	3	6	İ	
5.2.2 Construction of Meska (Total L= 3,120 m)				13	15	30		
Excavation	m ³	830	7	3	2	5	4	3
Embanlment / Backfill	m,	1,310	12	8	8	16	6	6
Triming & Hiscellanecus				2	2	4		· •
5.2.3 Construction of Meska Intake (21 places)				45	75	120		
Excavation	m,	780	7	3	3	6	4	3
Backfill	m3	620	12	4	4	8	6	6
Reinforced Concrete	^د m	55	730	20	20	40	350	380
Brick Vall	m²	1,050	50	14	39	53	13	37
Miscellaneous Vorks				4	9	13		
5.2.4 Other Works		· · · · ·		<u>85</u>	65	160		
Access Roads	m	5,500	3	7	10	17	40%	60%
Land Levelling	fed	130	1,000	78	52	130	600	400
Miscellancous Vorks & Hebilization				15	8	23		
	<u> </u>							

Description	Unit	Q'ty	Unit Cost(L.E.)	F.C.		Total	<u>Ren</u> z	arks
5.3 El Baghour Subbranch (CA=1,800, IAn=1,388fed)				315	405	720	F.4.	L.C.
5.3.1 Improvement of Meska (Toal L= 18,600 m)	<u> </u>	<u> </u>	<u>├</u> {	50	50	100		
Excavation	m ³	2,800	7	11	9	20	4	3
Exbankment / Backfill	m ³	4,650	12	28	28		6	. 6
Triaming & Miscellaneous Works	i —	- 		11	13	24		
5.3.2 Construction of Meska (Total L= 3,910 m)				20	20	40		
Excavation	m³	790	7	. 3	3	6	4	3
Embanlment / Backfill	m³	3,650	12	10	10	20	5	8
Trimming & Miscellaneous				7	7	14	1	
5.3.3 Construction of Meska Intake (41 places)				50	140	230	1	
Excavation	m ³	1,510	7	6	5	11	4	3
₿ækfill	۳,	1,210	12	8	7 .'	15	6	6
Reinforced Concrete	m³ .	110	730	39	42	81	350	380
Brick Vall	m²	2,050	50	27	78	103	13	37
Miscellaneous Vorks				10	10	20	-	
5.3.4 Other Works				155	195	350	<u> </u>	
Access Roads	m	1,900	3	2	. 4	6	40%	60%
- Land Levelling	fed	280	1,000	138	112	250	1	·····
Niscellaneous Works & Hobilization				15	79	94		
Grand Total Cost of 4. for 3,130 fed				558	737	1,295		
Average Cost of Ca-farm Improvement por 1,000 fed				178	236	414		
On-farm Improvement Cost for Bahr Yusef Canal in 570,000 fed				119,000	158,000	277,000	1	

...

Table K-3-2 (29) Breakdown of Project Cost

•

,

Table	K-3-3	(1)
-------	-------	-----

Breakdown of Unit Construction Cost

	······					50.66	et 1 of 5
Description	Unit	Q'ty	Unit Cost(L.E.)	F.C.		lotal	Remarks F.C., L.C.
Remodelling & Trimming of Bahr Yusef Canal per m				<u> </u>			
(1) Dairout Barrage to Manshat El Dahab Reg.per m				120	180	300	CB= 46a
Remodel Ling	m,	16	8	48	80	128	H = 4.9m
Triming	m³	32	2	32	32	64	L = 65m
Niscellanious & Others				10	18	28	
Engineering & Administration				13	20	33	
Technical Assistance				12	17	29	-
Physical Contingency				5	13	18	
(2) Manshat El Dahab Reg, to Sakoula Reg, per m				120	180	300	CB= 45n
Renodel ling	m³	16	8	48	80	128	H = 4.85m
Triming	m'	32	2	32	32	64	L = 64a
Niscellancous & Others				10	18	28	
Engineering & Administration				13	20	33	
Techical Assistance				12	17	29	
Physical Contingency				5	13	18	······································
(3) Sakoula Reg. to Mazoura Reg. por m				110	170	280	CB≠ 44a
Remodel ling	m3	15	8	45	75	120	H = 4,55m.
Ĩriming	m	30	2	30	30	60	L = 60m
Miscellancous & Others				S	15	20	
Engineering & Administration				12 .	18	30	
Technical Assistance				10	16	28	
Physical Contingency				8	16	24	-

Table K-3-3 (2)

•

Breakdown of Unit Construction Cost

ost Sheet 2 of 5

(4) Mazoura Reg. to Lahoun Reg. per a (1) </th <th>Description</th> <th>Unit</th> <th>Q'ty</th> <th>Unit Cost(L.E.)</th> <th colspan="3">F.C. I.C. Total</th> <th colspan="2">F.C. L.C.</th>	Description	Unit	Q'ty	Unit Cost(L.E.)	F.C. I.C. Total			F.C. L.C.	
Remodel ling m³ 15 8 45 75 120 H = 4.82n Triming m² 30 2 30 30 60 L = 82n Miscell ancous & Others 5 15 20 1 15 20 1 Engineering & Administration 12 18 30 30 60 L = 82n Triming 12 18 30 12 18 30 1 Tochnical Assistance 10 16 26 1 1 16 26 1 Physical Contingency 8 16 24 1 1 10	······································					<u> </u>			
Triming m² 30 2 30 30 60 L = 82a Miscellaneous & Others 5 15 20 12 18 30 12 18 30 12 18 30 10 16 26 10 16 26 10 16 26 10 16 26 10 16 26 10 16 26 10 16 26 10 16 26 10 10 16 26 10 10 16 26 10 <td>······································</td> <td></td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td>	······································		15						
Miscellaneous & Others 5 15 20 Erg incering & Administration 12 18 30 Technical Assistance 10 16 26 Physical Contingency 8 16 24 (5) Lahoun Regulator to The End per m 40 60 100 Rendelling m ³ 5 8 15 23 Triming m ² 10 2 10 10 20 Miscellances 5 5 10 100 100 100 Rendelling m ³ 5 8 15 23 40 Miscellances & Others 5 5 10 10 20 10 Miscellances & Others 3 7 10 10 10 10									
Engineering & Administration 1 12 18 30 Technical Assistance 10 16 26 Physical Contingency 8 16 24 (5) Labour Regulator to The End per m 40 60 100 Renedel ling m ³ 5 8 15 25 40 Triming m ² 10 2 10 10 20 10 Miscellanceus & Others 5 5 10 2 8 10 10 Technical Assistance 3 7 10 10 20 10 10 20 10								L = 82m	
Technical Assistance 10 16 26 Physical Contingency 8 16 24 (5) Lahoun Regulator to The End per m 40 60 100 Renedel ling m ³ 5 8 15 25 40 Triming m ² 10 2 10 10 20 Miscellanceus & Others 5 5 10 20 Eng Incoring & Administration 2 8 10 10	······································								
(5) Lahoun Regulator to The End per m 40 60 100 Renedelling m^3 5 8 15 23 40 Iriming m^3 5 8 15 23 40 Miscellancous & Others m^2 10 2 10 20 Miscellancous & Others 5 5 10 Engineering & Administration 2 8 10 Technical Assistance 3 7 10									
Renedal ling m³ 5 8 15 25 40 Triming m² 10 2 10 10 20 Miscellances & Others 5 5 10 10 20 Engineering & Administration 2 8 10 10 10 Technical Assistance 3 7 10 10 10 10	Physical Contingency				8	16	24		
Iriming m² 10 2 10 10 20 Miscellaneous & Others 5 5 10 20 Engineering & Administration 2 8 10 20 Tochnical Assistance 3 7 10 20	5) Lahoun Regulator to The End perm		<u></u>		40	60	100		
Niscellanous & Others 5 5 10 Enginearing & Administration 2 8 10 Tochnical Assistance 3 7 10	Remodel ling	m³	5	8	15	25	40		
Engineering & Administration 2 8 10 Technical Assistance 3 7 10	Triming	m²	10	2	10	10	20		
Tochnical Assistance 3 7 10	Miscellancous & Others				5	5	10		
	Engineering & Administration				2	8	10		
Physical Contingency 5 5 10	Tochnical Assistance				3	7	10		
	Physical Contingency				5	5	10		

Description	lhit	Q'ty	Unit Cost(L.E.)		Anount (1,000 L.	E.)	Remarks
	UN LT	V ty	Lost (L.E.)	F.C.	L.C.	Total	F.C. L.C.
Improvement of Bahr Yusef Canal by Shortcut per m	<u> </u>						
(1) Dairout Barrage to Manshat El Dahab Reg.per m	ļ			3,000	2,200	5,200	
Excavation	m,	330	10	1,980	1,320	3,300	1
Triming	m²	65	2	65	65	130	
Other Vorks				155	215	370	· · · · · · ·
Engineering & Administration				330	240	570	
Technical Assistance				290	200	490	
Physical Contingency				180	160	340	
(2) Manshat Si Dahab Reg. to Sakoula reg. per m			╀	3,000	2,200	5,200	
Excavation	m,	330	10	1,980	1,320	3,300	
Friming	m³	64	2	64	61	128	
Other Vorks				156	216	372	
Engineering & Administration			++	330	240	570	
Technical Assistance			- -	290	200	490	
Physical Contingency				180	160	340	
(3) Sakoula Reg. to Nazoura Reg. per m		· ····	╏╼╼╼┦	2,900	2,200	5,100	
Excavation	m³	320	10	1,920	1,280	3,200	
Trimming	m²	60	2	60		120	
Other Vorks	1	<u> </u>	╬┈──┝	120	260	380	+
Engineering & Administration	<u> </u>		+	310		550	
Technical Assistance				280	200	480	
Physical Contingency			╬┯┯┯┯┼	210	160	370	+

Table K-3-3 (4)

.

Breakdown of Unit Construction Cost

Sheet 4 of 5

Description			Unit	Amount (1,000 L.E.) Remar				
	Unit	Q'ty	Cost (L.E.)	F.C.	L.C.	Total	F.C. L.C.	
Construction of Q/H Facilities								
(1) Discharge Calibration for Bahr Yusef per place				220,000	250,000	470,000		
Concrete lining 8m ³ X 50m	m3	400	730	140,000	152,000	292,000		
Hi scel lanecus				10,000	18,000	28,000		
Other Works				10,000	10,000	20,000		
Engineering & Adainistration	[24,000	27,000	51,000		
Tachnical Assistance				21,000	23,000	41,000		
Physical Contingency				15,000	20,000	35,000		
(2)Discharge Calibration for Branch Canal per m				70,000	70,000	140,000		
Concrete lining 2m ³ X 50 a	m ³	100	730	35,000	38,000	73,000		
Al scellanecus				5,000	2,000	7,000		
Other Works				10,000	10,000	20,000		
Engineering & Administration				7,000	8,000	15,000		
Technical Assistance				6,000	7,000	13,000		
Physical Assistance				7,000	5,000	12,000		
	ļ		<u> </u>					
	L		·					
	<u> </u>		1		[Ĩ		

.

Table K-3-3 (5)

.

Breakdown of Unit Construction Cost

	T	<u>_</u>			struction		Sheet 5	
Description	Unit	Q'ty	Unit Cost(L.E.)	F.C.	Amount (_L.E)	Total	F,C,	rks L.C.
Remodelling & Trimming of Subbranch Canal per m				· · · · · · · · · · · · · · · · · · ·	:			
(1) Improvement of Subbranch Canal per m			1	20	30	50		
Remodelling		3	8	9	15	24	3	5
Trioming	m³	5	2	5	5	10		
Other Works				6	10	16		
(2) Improvement of Sub-Subbranch Canal per m				20	20	40		
Remodelling		2	8	6	10	16	3	5
Triming	m³	4	2	4	4	8		
Other Vorks .				10	8	16		
Brick Vall per m ^a				13	37	50		<u></u>
Concrete block 25 X 12 X 6	pes	33	200/1,000	2	5	7	20%	80%
Mortar		0.04		9	11	20	45%	55%
Mason	head	0.5		0	15	15		
Others				2	6	8		<u> </u>
Land Levelling per fed				600	400	1,000	••••	<u></u>
Land levelling per fed	m³	70	13	560	350	910	8	5
Miscellaneous & Other Vorks			1	40	50	90		· · · ·
				· · · · · ·				
				· · · · · · · · · · · · · · · · · · ·				·