1.5 Reservoir Plan in Lam Dom Yai (Middle and Lower) Sub-Basin

The sub-basin at the middle and lower-basin of the Lam Dom Yai is located in the lowest basin of the Lam Dom Yai basin, and is the flat and rainfed agricultural area. Presently, there are only three smaller medium-scale reservoir sites and one weir site in this area.

The water to be developed in these sites will not enough to irrigate an agricultural land of 13,000 ha (81.3 thousand rai) in this sub-basin. Therefore the agricultural land in the sub-basin must be arranged for irrigation which will use water from the reservoir of D-28.

CHAPTER II. WATER BALANCE STUDY AT POTENTIAL DAM SITE AND THE PROJECT FEATURES FOR POTENTIAL PROJECTS

2.1 Water Balance Study at Potential Dam Site

The water balance study at 39 potential damsite including the projects under construction and to be constructed by RID is made, and the dimensins estimated for water resources development are sammarized in Table E-1.

2.2 Project Features for Potential Projects

Based on the 1/50,000 topographic maps, the dam axis profiles actually surved by RID during the study period, and 1/10,000 reservoir area plane figures, the dimensions of dam and pump facility of the respective project areas are determinded as shown in Table E-2.

TABLE E-1 (1) WATER BALANCES AT POTENTIAL DAM SITES

		Direct	Annual			Reservoir D	imension			[1			Ratio to 1	Annual Rung	of f	
Proi	ect Site	Catchment		Reservoir	River Bed	Reservoir	NWL	LWL	Water	Røservoir	Spill	Irrigatio	n Reservoir	Water	Reservoir	Spill	Irrigatio
1	55: 51(0	Area	(RP=1/5)	Sur, Area		Effe.Cap.			Demand	Loss	Water	Area	Effe.Cap.	Demand	Loss	Water	
		(sq.km)	(MCM)	(sq.km)	(m in EL)	(MCM)	(m in El)	(m in EL)		(ncn)	(MCM)	(ha)	(%)	1	1	1 · · ·	Area
1 1 0 1	Day Washington		<u> </u>			2			()		6	6	20	(x) Ø/①	(%)	(%)	(ha/MCM)
I. Lam	Dom Yai Upper Basin							<u> </u>	<u> </u>		<u>↓</u>	<u> </u>	<u>870</u>		@/①	5/1	6/0
	D Cmolil Marks								1								
	D Small-Medium																
D-5	Huai Bon(U)	25.0	10.0	0.5		5.9	209.5	190.0	4.6	8 9		050	5.0	10			
	Huai Wang Yai	35.4	14.1	1.8		9.2	178.6	168.4	6.6	Ø.9 2.9	4.4	850		46	9.	44	85
D-19	Huai Yang	20.0	8.0	1.0		5.2	178.2	168.1			4.7	1,200		46		33	
D-58	Huai Chanla	54.0	21.5	3.2		16.9	170.0	160.5	3.6	1.6	2.8	659 2,300	65	44	28	35	
D-8	Huai Phalan Sua	114.7	45.7	9.5	*************	32.4			12.6	5.1	3.9			58	24	18	
D-13	Huai Luang	65.0	25.9				170.0	163.5	6.0	14.6	25.1	1,100	71	13	32	55	24
	Sub-total	314.1	125.2	2.5 18.5		16.5	185.B	174.5	11.5	4.1	10.4	2,100	64	44	16	48	
				10.5		86.1			44.8	29.0	51.3	8,200	69	36	23	41	65
1.2 Pro	oposed Small-Medium																_[
	Huai Bon(L)	116.3	61 0							_]]		
D-15	Huai Chaluai		51.2	2.7	162	3.7	165.4	163.0	10.8	4.0	36.0	1,978	7	21	8	70	38
D-16	Huai Chaluai Noi	15.0	6.0	0.9	193	2.4	200.0	194.0	4.6	1.3	9.9	850		77	22	6	142
D-17	Huai Om	10.2 10.2	4.0	0.2 0.3	200	1.5	220.0	201.0	3.2	0.7	0.1	590	38	81	18	3	148
D-22	Huai Nin Lat		4.1	0.3	207 155	1.6	550.0	208.0	3.6	8.5	0.0	650	38 38	87	12	1	159
		44.8	17.9	3.8	155	7.5	160.0	156.0	12.2	5.6	9.1	2,240	42	68	31	8	125
J-4	Huai Thiam Yai	21.0	8.4	3.8 1.8	155	3.6	160.0	156.0	4.4	2.7	1.3	1,130	42	52	32	16	
	Sub-total	217.5	91.6	9.7	_	20.2			38.8	14.7	37.6	7,430	55	42	16	41	81
<u>-</u>								[1	T			1 ^{**} -		-} <u>×</u>
Small	I-Medium Total	531.6	216.8	28.2		106.3		-	83.6	43.8	88.9	15,630	49	39	90	A1	70
															<u>-</u>		· · · · · · · · · · · · · · · · · · ·
	oposed Large														{		
D-7	Lam Dom Yai (U)	261.7	184.3	5.3	158	100.8	197.B	164.2	93 5	19.6	8.2	24,200	07		1		+
D-23	Lam Dom Yai (M)	395.9	207.2	21.9		88.0	159.0	150.3	93.5 114.3	10.6 34.0	57.9	29,600	97	90	10	10	232
D-28(A)	Lam Dom Yai (L)	767.6	485.6	39.1			139.5	134.5	213.1	59.1	4		42	55	16	28	
D-28(B)	Lam Dom Yai (L)	633.4	462.2	39.1		104.6 104.6	139.5	134.5	213.1	59.1	213.5	30,970	55	44	12	44	64
*********						104.0	133.5	134.5	213.1	58.1	213.5	25.570	23	46	13	46	55
	Total (A)	1,560.9	622.1	72.6		211 7											·
*********	Total (B)	1,560.9	622.1	89.2		311.7 299.0		·····	213.1	113.4	213.5	70,800 79,800	50	34	18	34	114
2. 1am S	Som Basin		022.1	03.2		299.0		· -	213.1	136.8	213.5	79,800	48	34	22	34	114

2 1 810) Small-Medium		• • • • • • • • • • • • • • • • • • • •			••••-•		·····			<u> </u>	• • • • • • • • • • • • • • • • • • •					
	Huai Kha Noon	31.9	12.7	2.3		7.3	208.0	193.5	3.0	3.5	6.2	550	57	24	28	49	43
	Huai Phalan	6.8	2.4 15.1	Ø.8 3.1		1.6	188.3	184.5	1.1	1.2	0.1 6.5	210	57 67	48	50	2	88
	Sub-total	37.9	15.1	3.1		8.9	 		4.2	4.7	6.5	760	59	27	31	43	50
															1		
	posed Small-Medium					· · · · · · · · · · · · · · · · · · ·											
	Huai Tanot	52.2	28.8	1.4	158	1.1	160.0	159.0	2.1	2.8	16.7	3819	5	10	10	80	18
D-1-A	Huai Tung(U)	33.7	13.4	1.4	181	5.0	190.0	182.0	10.9	2.1	0.4	2.000	37	81	16	3	149
D-5	Huai Hin Dan	10.0	4.8	0.3	118	1.6	190.0	179.0	3.4	0.5	0.0	630	630	86	13	1	158
9-1-B	Huai Tung(M)	28.3	12.0	1.3 0.9	168 173	1.0	170.0	169.0	1.1	1.9	8.7	210	9	10	16	72	
D-3-B	Huai Dan	19.5	14.3	0.9	173	2.5	180.0	174.0	5.2	1.4	7.7	950	18	36	18	54	67
D-4-A	Huai Chong	16.0	6.4	0.1	280	2.2	320.0	281.0	5.7	0.3	0.4	1,050	35	90	4	6	· · · · · · · · · · · · · · · · · · ·
D-33	Huai Salao	18.5	7.4	1.6	156	2.6	160.0	157.0	4.0	2.4	1.0	740	35	55	32	13	
D-35-A	Huai Fang Deang(U)	30.3	12.1	1.6	165	3.2	170.0	166.0	6.0	2.4	3.7	1,100	26	50	20	30	
	Huai Manao	26.4	10.5	1.1	163	3.1	170.0	164.0	6.6	1.7	2.3	1,200	59	62	16	22	
D-35-C	Huai Fang Deang(M)	16.7	11.8	1. <u>1</u> 1.2	149.7	3.1 5.0	160.0	150.7	8.1	1.9	1.8	1,490	42	69	16	15	
	Sub-total	251.8	100.3	10.9		27.3			53.3	16.5	30.5	9,750	27	53	16	30	~
	1 ·							•		1				······································	1		· • • • • • • • • • • • • • • • • • • •
l l e m 2	-Medium Total	289.5	115.4	. 14.0		36.2			57.4	21.2	27 0	10,510			10		+
	HOUTER FOLD	····-			••••••					<u></u>	37.0		31	50	18	32	91
2 2 0	acead Langa Madium	· • • • • • • • • • • • • • • • • • • •									<u> </u>	h				+	
	posed Large-Medium		070 n			7 0	1 4 1 0	120.0	+0 +						<u>-</u> -		• • • • • • • • • • • • • • • • • • • •
U-24	Lam Son(M)	605.9	276.0	6.5		7.0	141.0	139.8	18.4	9.5	248.4	4,770	<u>3</u>	? <u>-</u>	<u>3</u> -	98	
					•										 -		
	Total	895.4	356.8	28.5		43.2		-	75.8	30.7	248.4	15,280	12	21	1 9	70	43

		Direct	Annual			Reservoir I	Dimension		T T]	Ratio to i	Annual Rund	h f i	
Proio	ect Site	Catchment		Reservoir	River Bed		NWL	LWL	Water	Reservoir	Spill	Irrigation	Reservoir	Water	Reservoir	Spill	Irrigatio
FIOJE			(RP≐1/5)	Sur Area		Effe.Cap.			Demand	Loss	Water	Area	Effe.Cap.	Demand	Loss	Water	Area
		(sq.km)	(MCM)	(sq.km)	(minEL)		(m in EL)	(m in EL)	(MCM)	(MCM)	(MCM)	(ha)	(%)	(%)	(%)	(%)	(ha/MCM)
3. Huai	Ari Basin					0	· · · · · · · · · · · · · · · · · · ·		0		6	6	Ø/1	3/1	@ / ①	\$/1	6/1
**********			· • · · · - • · ·														
3.1 Pro	posed Large-Medium		**********														
D-25	Huai Ari	223 4	89.0	8.5	129.5												
					129.5	18.8	140.8	136.1	27.7	12.7	48.6	7,160	21	31	14	55	80
	Total	223.4	89.0	8.5	129.5	18.8	148.8	136.1	27.7	12.7	48.6	7 100					
4. Huai	Khao San Basin			<u>````</u>	120.0	10.0	140.0	130.1	21.1	12.1	40.0	7,160	21	31	14	55	80
					*-*********		+		<u> ;</u>	• • • • • • • • • • • • • • • • • • • •				<u> </u>		 	
	posed Small-Medium					• • • • • • • • • • • • • • • • • • • •	• •••••	• • • • • • • • • • • • • • • • • • •	<u> </u>					<u> </u>	+	 `	
	Huai Khao San(U)	29.5	11.8	4.2	146	6.7	150.0	147.0	4.8	5.3	1.7	1,240	57	41	45	14	105
	Huai Khao San(M)	48.6	19.9	2.3	138	1.8	140.0	139.0	1.5		15.0	382	9	7	17	76	19
	Huai Duan	32.1	12.8	1.8	138	1.4	140.0	139.0	8.9	2.6	9.3	240	11	7	20	72	19
	Rong Saeng	17.7	7.1	0.9	125	1.8	130.0	126.0	2.4	1.4	3.2	630	26	34	20	46	89
D-50	Huai San	26.5	10.6	1.3	116	2.1	120.0	117.0	2.5		6.2	650	28	24	18	58	62
• • • • • • • • • • • •]]		
E Loo Do	Total m Yai Middle and L	154.4	62.0	10.5		13.9	-		12.1	14.5	35.4	3,140	22	20	23	57	-51
5.030 00	m for middle and L	ower Basi	<u>n</u>														
5 1 Pro	posed Small-Medium				********												
	Huai Hin Siu	13.7	5.5	1.4			+50.0										
	Huai Chong	43.5	17.3	1.0	147	1.1	150.0	148.0	1.4	2.1	2.0	370 498	31	26	38	36	67
	Huai Saen Phran	22.4	8.9	1.2	127 113	3.4	128.0	128.0	1.9		14.0 2.9	1 000	38	47	8	81	122
W-1	Lam Dom Yai Weir	1,252.0	499.0				115.0	114.0 112.3	4.2	1.8	489.3	1,090 2,500		41		32	5
							1					2,000		······			
	Total	1331.6	538.7	3.6	-	6.2			17.2	5.4	508.1	4,450	1	3	1	96	8
						· · · ·	1					1 ·····					
	Grand Total(A)	4.165.7	1,660.7	115.7	-	393.9		_	345.9	176.8	1054.0	100,830	24	21	11	63	61
	Grand Total(B)	4,165.7	1,660.7	132.3		381.1			345.9	200.1	1054.0	100,830	23	21	12	63	61
		·····					ļ					[
*********	Grand Total(A) %	84.9				· ~	<u> </u>		16.6			43.4				.	
	Grand Total(B) %	84.9					· · · · · · · · · · · · · · · · · · ·		16.6			43.4	.	<u> </u>	·····	·····	
· · · · · · · · · · · · · · · · · · ·	D												 				
	Basin Total	4,905.0	2,080.0									232,200	.			1	

TABLE E-1 (2) WATER BALANCES AT POTENTIAL DAM SITES

E-8

TABLE E-2 (1) PROJECT FEATURES FOR POTENTIAL PROJECTS

						N.M. ¹ .B.	*****	T		post to be	and to the A		teres					-	S.O.A.	gra	tice						_	<i>d</i> .												
0-22	Huai Hin Lat			noon	Det Udom		, , , , , , , , , , , , , , , , , , , ,	Lam Dom Yai(U)	44.8	1,503	6.71			9.5			161.00	160.00	156.00		163.00	6.0	006	155.00	13.00	10 10	55.0		110	63	11111111111111111111111111111111111111			1	1			3		2,240
D-17	a D B		- • • 	noon	Nachaluai	Nachaluai	Takoa	Lam Dow Yai(U)	10.2	1,503			с С	5.3	0.1	5.2	221.00	220.00	208.00		223.00	6.0	800	207.00	21.00	190	10.2	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	30:	24		1		1				1		650 ;
<u>]-16</u>	Huai Chaluai	Noi		noon	Nachaluai	Nachaluai	Takoa	ai (U)	10.2	1,503	4.0		0.2	14.5	1.0	14.4	221.00	220.00	201.00		223.00	8.0:	800	200.00	28.00	149	10.2		30	26	L L L L L L L L L L L L L L L L L L L	1		1		1				590 :
<u>D-15 :</u>	luai			UDON	Nachaluai	Nachaluai	Takoa	1	15.0	1, 503	6.0		; 6 0	3.8	0.2	3.6	201.00	200.00	134.00		203.00	6.0			15.00 [42	15 (25 :			1	1	1					850 :
1-1 1-1	Huai Bon(L)			noon	Nam Yun	Sri Wichien	Sun Wal	Lam Dom Yai(U)	116.3	1,356	51.			5.1				165.40			168.40	co.	590	157.20	16.20	~~~	141.3		240	235		1								1,970
Project			Location	The first second se	- Amphoe	- Tambon	Nuban	River Basin	- Catchment Area (sq.km)	al Rainfall (mm)		Reservoir	- Res. Surface Area(sq.km)	[- Total Storage Capa. (MCM)	- Dead Storage Capa. (MCM)	- Effec. Storage Capa. (MCM)	- High Rater Level (m)	- Normal Water Level (m)	5	Dan	- Crest Elevation (m)	- Width of Dam (m)	- Length of Dam (m)	- E.L. of River Bed (m)	- Hight of Dam (m)	- Embankment Volume (1000cu.m)	<pre>I - C. Area for Flood (sq.km)</pre>	I - Design Discharge(cu.m/s)	Desigh Flood Discharge	Spillway Design Capacity	Pump Facility	I - No. of Pumping Station (pls)	- Location of Pumping Station		- No. of Pump	Jung	- Total Head (m)	- Moter Power(kw) / Unit	1 :	- Irrigable Area (ha)

E-9

TABLE E-2 (2) PROJECT FEATURES FOR POTENTIAL PROJECTS

Project	V	<u>1-7</u>	<u>n-93</u> :	<u>n-98(A) :</u>	n-98(B)
	Huai Thiam Yai	Lam Dom Yai (U)	Lam Dom Yai (Middle)		100 100 100 10 10 10 10
Location					
- Changwat	Ubon	Ubon	Ubon	Ubon	Ubon
- Amphoe	Nachaluai	Nam Yun	Nam Yun	Det Udom	Det Udom
- Tambon	Sonsaeng	Dom Pradit	Dom Pradit	Top Hu	Top Hu
- Muban	Phon Aeo Khan	Phu Ang	بسر د	Kham Tao	Kham Tao
River Basin	om Yai(Lam Dom Yai(U)	\simeq	Ya i	200
- Catchment Area (sq.km)			395	767.	633.
infall (1,503	1.356	1.356	1.416	1.416
- Annual Inflow (R.P.=1/5) (MCM)	8.4	104.3	чĊ	487.9	464.5
Reservoir					
	1.8	5.3	21.9	29.5	တ
- Total Storage Capa. (MCM)	7.0	103.4	92.0	77.5	2.77.5
- Dead Storage Capa. (MCM)	0.2	2.6	4.0		;co
- Effec. Storage Capa. (MCM)	8 9	100.8	88.0	69.8	71.2
- High Water Level (m)	161.00	198.00	160.00	140.30	140.30
- Normal Water Level (m)	160.00	197.00	159.00	139.30	139.30
- Low Water Level (m)	156.00	159.00	150.30	135.17	134.99
Daw					
- Crest Elevation (m)	163.00	200.00	162.00	142.30	142.30
- Width of Dam (m)		10.0		8.0	C.S
- Length of Dam (m)		300		086	980
- E.L. of River Bed (m)	155.00	158.00	141.60	125.70	125.70
		47.00	ŝ	21.60	21.60
- Embankment Volume (1000cu.m)	49	656	946	405	405
	21.0	261.7	646.6	1,560.9	I, 560.9
- Design Discharge(cu.m/s)					
Desigh Flood Dis	53	393	776	1,087	1,087
Spillway Design Capacity	25	342	590	64	3
Pump Facility					
- No. of Pumping Station (pls)	1	2			2
- Location of Pumping Station		and D-24	0-28 and D	D-28 Res.	D-28 Res.
- Design Discharge (cu.m/sec)	ł	24	29.600	7.970 23.	6
f Pump		10	8	- -	4
- Pump Bore (mm)		900	1,000 1,000	300	300 900
Head (m)	1			16.5 2	
- Moter Power(kw) / Unit		370	370 500	400	400 700
sten					
- Irrigable Area (ha)	1,130	24,200	29,600 ;	30,970	25.570

TABLE E-2 (3) PROJECT FEATURES FOR POTENTIAL PROJECTS

Froject	D-30-8 Huai Tanot	D-1-A Huai Tung(V)	D- 2 Huai Hin Dan	D-1-B Huai Tung(M)	D-3-B Huai Dan
Location - Chenewat	Gri So Khat	Sri Sa Vhot	Cri Ca Vhat	Sri Sa Vhat	Cni Ca Vhat
			8		
	- + - I	Aantaraluk	818	Aantaraluk	ASDLEI 8
- 18mbon	Khanon	bung Mulu	ne Se	Non Samran	Sao Tong Chai
- Muban			Koo Khan Pon		Dan Nua
River Basin	Lan Son	Lam Som	Lan Som	Lam Som	Lam Som
- Catchment Area (sq.km)	52	ဗ္ဂ			
nîe	1,356	1,356	1.356	1.356	I.356
- Annual Inflow (R.P.=1/5) (MCM)	20.8	13.4	4.0	12.0	
Reservoir					
- Res. Surface Area(sq.km)	1.4	1.4	0.3	1.3	0
Storage Capa.	1.6	6.4	9.7	1.3	1
- Dead Storage Capa. (MCM)	0.5	0.3	1.4	0.3	
- Effec. Storage Capa. (MCM)		6.1	5.3	1.0	
5	161.00	191.00	191.00	171.00	4 5 1 9 5 2 4 1 1 2 4 9 4 4 1 1
- Normal Water Level (m)	160.00	190.00	190.00	170.00	• • • • • • • • • • • •
0	159.00	182.00	179.00	169.00	
Dam					
- Crest Elevation (m)	163.00	193.00	193.00	173.00	183.00
- Width of Dam (m)			8.0	ശ	
- Length of Dam (m)		•	600	500	450
- E.L. of River Bed (m)	158.00	181.00	178.00	168.00	173.00
- Hight of Dam (m)	10.00	17.00	20.00	10.00	15.00
- Embankment Volume (1000cu.m)	10	50	142	ŝ	~t
d (sq.km)	52.2	33.7	10.0	72.0	57.4
- Design Discharge					
Desigh Flood Discharge	110	78	29	140	118
Spillway Design Capacity	83	56	23	123 :	ာ၊
Pump Facility					
- No. of Pumping Station (pls)	1	,	I	1	1
 Location of Pumping Station 		ł	1		
- Design Discharge (cu.m/sec)			1	1	1
		j	1		
(- Pump Bore (ma)]			1	1
	1	J	1	1	1
- Moter Power(kw) / Unit				1	E
Irrigation System	380	2.000	630	210	950
3) 7		. 1			

E-11

TABLE E-2 (4) PROJECT FEATURES FOR POTENTIAL PROJECTS

Project	D-4-A	D-33	ŝ	D-35-B {	D-35-C
	Huai Chong	Huai Salao	Huai Fang Deang(U)	Huai Manao	Huai Fang Deang (M)
Location			111		
•	npon	5	noon	nodu	noon
- Amphoe	Nam Yun	23	Nam Yun :	uny man	
- Tambon	Chong	Ta Kao	Chong	Chong	Ta Kao
- Muban					
River Basin	Lan Son	Lan Som	Lan Son	Lan Son	
- Catchment Area (sq.km)	1	18.		0	L grind } 1 1 1 1 1
	1.356	1,356	1,356	I, 356	32
- Annual Inflow (R.P.=1/5) (MCM)	6.4	<u>+</u>	12.1	10.5	1.8
Reservoir					
- Res. Surface Area(sq.km)	0.1	1.6	1.6	 	1.2
- Total Storage Capa. (MCM)	17.8	2.8	3.5	3.4	0.8
- Dead Storage Capa. (MCM)	0.2	0.2	0.3	0.3	0.2
- Effec. Storage Capa. (MCM)		: CA.4	3.2	3.1	7.8
:		5	171.00	171.00	161.00
- Normal Water Level (m)	320.00	160.00	170.00	170.00	160.00
- Low Water Level (m)		57.	166.00	164.00	150.70
- Crest Elevation (m)	323.00	163.00	173.00	173.00	163.00
- Width of Dam (m)	10.0	6.0	9.0	6.0	•
- Length of Dam (m)	500	550 :	750	500	1740
	280.00 :	156.00	165.00	163.00	149.70
- Hight of Dam (m)	48.00	12.00	13.00	15.00	18.30
- Embankment Volume (1000cu.m)	1,088	21	38	27	224
- C. Area for Flood (sq. km)	16.0	18.5	30.3	26.4	73.4
- Design Discharge(cu.m/s)					
Desigh Flood Discharge	43	48		63	143
Spillway Design Capacity	42	23	47 :	45 ;	127
Pump Facility					
- No. of Pumping Station (pls)	1				1
ŝ					
- Design Discharge (cu.m/sec)	1	1	1		······································
	ł				
- Pump Bore (mm)					
	1)	/+ u ~ 11 11 11 11 11 11 11 11 11 11 11 11 11	
- Moter Power(kw) / Unit	1	ſ			1 = C = = = = = = = = = = = = = = = = =
			-		
- Irrigable Area (ha)	1.050	740	1,100	1,200	I,490

TABLE E-2 (5) PROJECT FEATURES FOR POTENTIAL PROJECTS

location		Uno i Ani		U Vhee	
Vocation		T AL	San(U)	San(M)	
					Ē
- Changwat	Upon				
- Amphoe	Det Udom	Det Udom	-4	÷	In Charr
- Tambon	Kaeng	Na K	Khok Sawang	Khok Sawang	
- Muban	Fuai-tak	Nong Bua Luang			
River Basin	Lam Son	Huai Ari	Huai Khao San	Huai Khao San	Huai Khao San
- Catchment Area (Sq. km)	ω	223	29	48	32.
	1,331	ιn	ιQ	ഹ	in
- Annual Inflow (R.P.=1/5) (MCM)	276.0	89.0		တိ	12.8
Reservoir					
- Res. Surface Area(sq.km)	6.5	8.5	4.2	2.3	8.
- Total Storage Capa. (MCM)	[3,]	21.01	7.0	2.3	į.,
, e.,	6, 1	2.2	0.3	0.5	0.3
- Effec. Storage Capa. (MCM)	7.0	18.8	6.7	8.1	
	÷ •	141.00	5	141.00	141.00
- Norwal Water Level (m)	141.00	140.00	150.00	140.00	140.00
്ല	ത	136.05	5	139.00	139.00
- Crest Elevation (m)	144.00	143.00	153.00	143.00	143.00
of Dam (m)	ഗ	6.0	6.0	6.0	ω
- Length of Dam (m)	1,090	2,050	650	200	350
- E.L. of River Bed (m)	133.30	129.50	6	138.00	138.00
- Hight of Dam (m)	15.70	18.50	12.00	10.00	10.00
- Embankment Volume (1000cu.m)	137	310	24	0	ŝ
- C. Area for Flood (sq.km)	895.4	223.4	29.5	7.0.1	32.1
- Design Discharge(cu.m/s)					1
Desigh Flood Discharge	985	346	69	148	72
Spillway Design Capacity	916	in	17	117 :	46
Pump Facility					
- No. of Pumping Station (pls)			1	1	1
- Location of Pumping Station	D-24 Res.	D-25 Res.		1	
- Design Discharge (cu.m/sec)	4.800		I		ł
- No. of Pump	5	ا م			
- Pump Bore (mu)	006	: 006	i	1	
- Total Head (m)	17.6	14.0			
- Moter Power(kw) / Unit	450	300	1	1	1
Irrigation System	V 770	7 160	1 240	380	240

TABLE E-2 (6) PROJECT FEATURES FOR POTENTIAL PROJECTS

Project	D-49 Rong Saeng	D-50 Huai San	D-48 Huai Hin Siu	D-27 Huai Chong	B-51 Huai Saen Phran
Location - Changwat	Ubon	Ubon	Ubon	Ubon	Ubon
- Amphoe	Warin Chamrap	Warin Chaman :	Det Udom	Det Udom	Warin Chamran
- Tanbon	Kwang	The Chang	Bua Ngam	Kudbratai	Sawane
- Muban				Sansuk	
River Basin	Huai Khao San	Huai Khao San 1	Lam Dom Yai(M&L)	Lam Dom Yai(M&L)	Lam Dom Yai(M&L)
- Catchment Area (sq.km)		26	13		
nfall (1,730	1.730	1.597	1.597	1.730
- Annual Inflow (R.P.=1/5) (MCM)	- [-]	10.6	ူဟ	1.3	
Reservoir					
- Res. Surface Area(sq.km)	0.9	1.3	1.4	1.0	
- Total Storage Capa. (MCM)	2.0	2.4	1.8	1.6	3.6
- Dead Storage Capa. (MCM)	0.2	0.3	0.1	0.4	
- Effec. Storage Capa. (MCM)	1.8	2.1:		1.2	
- High Water Level (m)	131.00	121.00	151.00		121
- Normal Water Level (m)	130.00	120.00	150.00	130.00	120.
- Low Water Level (m)	126.00	117.00	148.00	·~~	
Daik				1	
- Crest Elevation (m)	133,00	123.00	153.00	133.00	123.0
- Width of Dam (m)	6.0	ω :	6.0	0.9	9
- Length of Dam (m)			500		
- E.L. of River Bed (m)	125.00	116.00	147.00	127.00	,
- Hight of Dam (m)	13.00	104	11.00		
- Embankment Volume (1000cu.m)	22		13	01	
- C. Area for Flood (sq.km)	7.71	26.5	13.7	43.5	22.4
- Design Discharge(cu.m/s)					
Desigh Flood Discharge	48	64	38	96	20 20
Spillway Design Capacity	32	44	15	82	
Pump Facility					
- No. of Pumping Station (pls)		1	1		
- Location of Pumping Station	1	1			1
- Design Discharge (cu.m/sec)	1	1			
- No. of Pump		3	١	١	
- Pump Bore (Bm)			1	1	
		1	1	1	1
- Moter Power(kw) / Unit	ŧ		1		· · · · · · · · · · · · · · · · · · ·
rigation System	ç	C LL C	C	007	
- Irrigable Area (ha)	63U :	: neg	3/0	430	:

TABLE E-2. (7) PROJECT FEATURES FOR POTENTIAL PROJECTS

roject	- -				
	Lam Dom Yai Weir				
Location - Changwat	Ubon				
- Amphoe	·			8 8 8 9 3 7 7 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	***************************************
*	-				
- Muban	1 - J				
River Basin	Lam Dom Yai(M&L):				
- Catchment Area (sq.km)	,	• • • • • • • • • • • • • • • • • • • •		9 5 8 9 9 4 8 5 7 7 7 7 8 8 8 8 7 4 4 4 4 4 4 7 4 4 4 4	
Mean Annual Rainfall (mm)	1,598		r 6 6 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	3 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	
<pre>[- Annual Inflow (R.P.=1/5) (MCM)</pre>	525.21		z		
Reservoir					
- Res. Surface Area(sq.km)	1	-			
- Total Storage Capa. (MCM)					
- Dead Storage Capa. (MCM)					
- Effec. Storage Capa. (MCM)					
- High Water Level (2)	115.60				
- Normal Fater Level (m)	115.00				
- Low Water Level (m)	112.30				
Dam - Crest Elevation (m)	115.00				
- Width of Dam (m)	, , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·		
- Length of Dam (M)	50				
- E.L. of River Bed (m)	112.00 :				
- Hight of Dam (m)	3.00		• • •		
- Embankment Volume (1000cu.m)					
<pre>- C. Area for Flood (sq.km)</pre>					
- Design Discharge(cu.m/s)					
Desigh Flood Discharge		1			
Spillway Design Capacity	1				
Pump Facility		* • • • • • • • • • • • • • • • • • • •			
- No. of Pumping Station (pls)					
- Location of Pumping Station	¥-1 Weir		, , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·
- Design Discharge (cu.m/sec)	2. 2				
- No. of Pump	~				
- Pump Bore (mm)	N				
	23.0				, , , , , , , , , , , , , , , , , , ,
– Moter Power(kw) / Unit	110:				
83					
I - Irrigable Area (Da)	1 nnc · 7				

ANNEX F. IRRIGATION AND DRAINAGE

and the second second

ANNEX F. IRRIGATION AND DRAINAGE

PART-I (OVERALL BASIN STUDY)

1.	4	Existing Irrightion Project	 r -	e
1.	ŧ	EXISTING any	 r-	L

Page

PART-II (FEASIBILITY STUDY)

CHAPTER	١.	IRRIGATION PLAN	-15
	1, 1	Irrigation for Paddy F	-15
		1.1.1 Irrigation Water Requirement F	-15
		1.1.2 Designed Water Requirement for Main and Latera Canals F	-20
	1.2	Irrigation for Upland Crops F	-53
	-	1.2.1 Measurement of Intake Rate P	-53
		1.2.2 Depth and Interval of Irrigation Application F	-53
• :	1.3	Pump Operation Hours F	-64
CHAPTER	11.	DRAINAGE PLAN F	-67
	2.1	Estimation of Drainage Modulus for Paddy Field Area	-67

LIST OF TABLES

		<u>Page</u>
Table F-1	Outline of Completed Small-Scale Irrigation Project (Ubon Ratchathani)	F-2
Table F-2	Outline of Completed Small-Scale Irrigation Project (Si Sa Ket)	F-6
Table F-3	List of Tank and Weir Constructed by Department of Land Development	F-3
Table F-4	List of Tank and Weir Constructed by Accelerated Rural Development Department	F-4
Table F-5	Existing Electric Pump Irrigation by NEA	F-11
Table F-6	List of Tank and Weir Constructed by Department of Local Administration	F-12
Table F-7	Crop Coefficient (Kc)	F-23
Table F-8	Consumptive Use of Crop (ETa)	F-23
Table F-9	Irrigation Water Requirement for Land Soaking and Land Preparation	F-24
Table F-10	Crop Water Requirement for Cropping Pattern of Type-I	F-25
Table F-11	Crop Water Requirement for Cropping Pattern of Type-II	F-26
Table F-12	Monthly Diversion Water Requirement of Type-I	F-27
Table F-13	Monthly Diversion Water Requirement of Type-II	F-28
Table F-14	Maximum Irrigation Water Requirement During Land Preparation	F-29
Table F-15	Crop Water Requirement of Paddy in Section Area	F-30
Table F-16	Calculation of Weighted Crop Water Requirement for Paddy (HYV)	F-31
Table F-17	Calculation of Weighted Crop Water Requirement for Paddy (LV)	F-32
Table F-18	Crop Water Requirement of Paddy in Zone Area	F-33
Table F-19	Calculation of Weighted Crop Water Requirement for Paddy (HYV), Zone Area	F-34
Table F-20	Calculation of Weighted Crop Water Requirement for Paddy (LV), Zone Area	F-35
Table F-21	Crop Water Requirement of Paddy in Block Area	F-36
Table F-22	Calculation of Weighted Crop Water Requirement for Paddy (HYV), Block Area	F-37
Table F-23	Calculation of Weighted Crop Water Requirement for Paddy (LV), Block Area	F-38
Table F-24	Crop Water Requirement of Upland crops	F-39

.

.

Table F-25	Calculation of Weighted Crop Water Requirement for Upland and Perennial Crops	F-40
Table F-26	Physical Features of Soil for Upland Irrigation	F-54
Table F-27	Net Amount of Water to be Replaced for Crops	F-55
Table F-28	Net Amount of Water to be Replaced for Crops	F-55
Table F-29	Estimation of Pump Operation Hours for Plan A-1 and Plan B-1 (Type-I)	F-65
Table F-30	Estimation of Pump Operation Hours for Plan A-1 and Plan B-1 (Type-II)	F-66
Table F-31	Result of Flood Run-off Analysis in Paddy Field	F-70

LIST OF FIGURES

Figure F-1	Coefficient of Kc Values for Crops	F-41
Figure F-2	Schedule of Land Preparation Works and Water Supply	F-48
Figure F-3	Estimation of 10-Day Crop Water Requirement for Paddy Rice, Section Area	F-49
Figure F-4	Estimation of 10-Day Crop Water Requirement for Paddy Rice, Zone Area	F-50
Figure F-5	Estimation of 10-Day Crop Water Requirement for Paddy Rice, Block Area	F-51
Figure F-6	Estiamtion of 10-Day Crop Water Requirement for Upland Crop	F-52
Figure F-7	Location of Intake Rate Measurement	F-56
Figure F-8	Result of Cylinder Intake Rate Test	F-57
Figure F-9	Results of Run-off Analysis in Paddy Field	F-71

. .

PART-I. (OVERALL BASIN STUDY)

1.1 Existing Irrigation Projects

According to the field works and collected data on the Lam Dom Yai Irrigation Project, the total cultivation area in the basin is estimated at about 254,530 ha, which is equivalent to 51.9 percent of the total basin area of 490,500 ha.

The agricultural farming in most of land is rainfed conditions relying upon rainfall mainly concentrating in the rainy season from May to October, and irrigated farming land is estimated at only about 10,600 ha, of which executing agencies are RID, ARD, NEA, DOLA and ALRO as shown below;

		t Irrigation P		0
la contra de la co	No. of	<u>Irrigati</u>		<u>Canal</u>
Projects	Schemes	<u>Wet Season</u>	Dry Season	Length
		(ha)	(ha)	(km)
RID Project	· .			- ,
Medium-Scale	3	3,930	930	54
Small-Scale	52	4,220	· <u>-</u>	
Sub-total	55	8,150	930	54
DLD Project	7	500	100	
ARD Project	30	350	. –	. –
NEA Project	4	1,050	200	12
DOLA Project 1,	/ 34	(380)	(170)	
ALRO Project 2,	/	200	70	
Total	130	10,630	1,470	66

Note; 1/ Area in parenthesis shows a part of 35 projects 2/ ALRO Projects include groundwater projects.

The detailed descriptions of the above projects are tabulated in Table F-1 to Table F-6.

OUTLINE OF COMPLETED SMALL IRRIGATION PROJECT (UBON RATCHATHANI) (1) TABLE F-1

Annual 0/M Cost (mil.B ŝ ı. ī ł ı ı I 1 E : 1 ı ຜູ້ຄ Т i 1 ī ı ÷ ı ł ı. 1 Length Max. (km) (m³/ Irrigation Facilities ı t 1 ı. 1 ŧ ī ı. 1 ı Dam Capacity (MCM) 0.380.14 0, 35 0.20 0.80 0.11 ī I ı Project Features **Planted Crop** Dry S. (ha) Vegetable, Peanuts, Watermelon, Cassava Corn, and Kenaf Wet S. (ha) Rice Dry S. (ha) Area ۱ ١ ۱ 1 1) ۱ ۱ 2 1 Irrigat. Wet S. (ha) ന 122 160 ⊗ ∜ 3257 32 24 80 16 80 No. of Beneficiary (household) 170 2,400 240 200 100 0 7 850 280 220 534 150 Const. Cost (mill.B.) Tank (Dam) 1.69 2.39 1.98 2.06 2.00 3.13 3.82 0.83 1.44 0.63 2.41 •• Comple-ted Yeaar 1983 . E--1 1982 1982 1979 1980 1980 1981 1981 1981 1981 1981 Dam Warin Chamr. Sra Saming Warin Chamr. Sawang Phibun Mang. Rai Tai Det Udom Kut Prathai Det Udom Kut Prathai : Rubber Locatopn Amphoe Tumbon Chaluai Chaluai Na Chaluai Na Chaluai Chaluai Chaluai Det Udom Som Sa-at Det Udom Na Suang Nam Yun Chong d d N N D a s Na 2 (RH) E E E Sew Weir Ê E € E E A-Rong A-Rong Ð Huai Khaen Name of Projects Duan San Hin Bon Lok Pai Kua •• ő æ Huai Huai Huai Huai Huai Ниаі Huai Huai Huai (RW) Huai Note; No -் 201 吕 e, 4 ភ <u>ۍ</u> 8 N

TABLE F-1 OUTLINE OF COMPLETED SMALL IRRIGATION PROJECT (UBON RATCHATHANI) (2)

		Annual 1 / w	Cost Cost (mil.B	1	1		I	1	1	1	J	ł	1	I	1
		ties	t] Мах. Q (m³ /s)	1	1		,	3	,	Ł	1	1	1	I	E .
	:	on Faciliti	Canal Length Ma (km)	1	1		1	5	l	 I	1	1		1	ł
-	res	Irrigati	Dam Capacity (MCM)	I	I.	0.15	, I	1.10	0.53	1.35	1.59	0.20	1.35	1.46	
	ct Features	ed Crop	Dry S. (ha)			Veg Wat	etable ermelc	e, Pear on, Ca	nuts, ssava	Corn, and Ke	лаf				
	Project	Planted	Wet S. (ha)				Ri	ce							
		. Area	Dry S. (ha)	1	9	I	1	1 ·	1	ŀ	1	I	1	1	1
		Irrigat	Wet S. (ha)	16	18	48	32	192	72	32	48	4 0.	32	40	32
		No. of	benericiary (household)	664	300	250	250	400	130	300	200	83	100		400
	-	Const.	cost (mill.B.)	1.97	2.11	1.05	2.65	3, 38	3.04	3.42	2.40	3.89	3. 42	3.65	3.57
		Comple-	Year	1983	1983	1983	1983	1983	1983	1983	1984	1984	1984	1984	1984
		Locatopn	Tumbon	Det Udom Na Suang	Det Udom Klang	Nam Yun Chong	Det Udom Muang Det	Na Chaluai Na Chaluai	Na Chaluai Na Chaluai	Na Chaluai Ban Tum	Nam Yun Ta kao	Na Chaluai Na Chaluai	Na Chaluai Na Chaluai	Nam Yun khi Lek	Det Udom Kaeng
		Name of	rojects	Huai Khaen (RW)	Huai Bua (RW)	Huai Song (T)	Huai Hin Sew (RW)	Huai Cha Luai(T)	Huai Sunnuen (T)	Huai Pun (T)	Huai Yang (T)	Huai Rong Tan (T)	Huai Pun (T)	Huai Dam Rong(T)	Huai Som (W)
	<u> </u>	;	0 N	12	13	5 1	15	16	17	80 F1	18	20	21	22	23

OUTLINE OF COMPLETED SMALL IRRIGATION PROJECT (UBON RATCHATHANI) (3) TABLE F-1

	Inual	D/M Cost (mil.B	t.	1	ł	1	1	1	1	1	1	1	1	1
	An											· · · · ·		
	ities	Canal sth Max. Q		1	l		1	1	1	1	1	- 1 		l
	- F	82	1	1	1	1 · · · · ·	ı		E	P	F	1	1	ł
res	Irrigation	Dam Capacity (MCM)	0.68	1.58	1		0.41	0.85	0.42	0.42	1	1.04	0.50	
t Features	1	Dry S. (ha)			Ve Wat	termel:	e, Pea on, Ca	nuts, ssava	Corn. and Ke	enaf				
Project	Planted	Wet S. (ha)				Ri	.ce							
	Area	Dry S. (ha)		1	1	F	j j	1	1.	l I		t .	1	1
	Irrigat.	Wet S. (ha)	00	40	6	∞	32	160	32	160	640	80	32	320
	No. of	Beneficiary (household)	200	79	126	110	200		100	200		200	500	310
	, .1 .+	Cost (mill.B.)	2.28	3.31	3.99	1.86	2.48	7.02	2.84	4,41	8.63	3.87	3. 98 3	6. 81
	Comple-	ted Year	1984	1984	1985	1985	1985	1985	1986	1987	1987	1988	1988	1989
		Amphoe Tumbon	Det Udom Muang Det	Det Udom Na Yia	Det Udom Klang	Det Udcm Nong Om	Det Udom Na Rueng	Na Chaluai Na Chaluai	Nam Yun Bu Pluai	Nam Yun Ta Kao	Det Udom Muang Det	Na Chaluai Non Sombun	Ne Chaluai Ban Tum	Det Udom Kut Rua
	Name of	Projects	Huai kut Ng-ong (T)	Huai Sa Dao (T)	Huai Bua (RW)	Huai A-Ree (W)	Huai kaeng Kom (T)	Huai Om (T)	Huai Rad (T)	Huai Som (T)	Huai Dom Yai (RW)	Husi Pun (T)	Huæi Cha Luai(T)	Huai Som (W)
	:	° N	24	25	26	27	28	23	30	31	32	33	34	35

F-4

.

OUTLINE OF COMPLETED SMALL IRRIGATION PROJECT (UBON RATCHATHANI) (4) TABLE F-1

Annual 0/M Cost (mil.B i j. ī Ι. ţ ŧ ŧ a s ŧ 1 ī ī ı 1 1 Canal Length Max. (km) (m^a/ Irrigation Facilities 5 - F ī ı ı ī 4 ł Dam Capacity (MCM) 0.53 0.15 0.85 0.91 ι 0.27 20 പ് Project Features Planted Crop Dry S. (ha) Vegetable, Peanuts, Corn, Watermelon, Cassava and Kenaf Wet S. (ha) Rice Dry S. (ha) Irrigat. Area ì ī ŧ 1 1 1 Wet S. (ha) 3,200 128 72 45 40 160 No. of Beneficiary (household) 130 ŧ 200 ī 80 Const. Cost (mill.B.) 3.00 7.02 3.50 3.04 1.05 3.89 137.97 90 ÷. Comple-ted Year 1989 1990 1990 1661 1991 1991 1991 Na Chaluaí Non Sombun Na Chaluai Na Chaluai Chaluai Chaluai Locatopn Amphoe Tumbon Chaluai Chaluai Det Udom Na Rueng Nam Yun Song Nam Yun Song Na Na Na Na Sannua (T) Pong Thren E E £ E \mathfrak{E} Thiam Name of Projects Huai Takoy Song Chan e O Total Huai Huai Huai Huai Huai (T) Huai ი ი ი 40 No 36 31 38 41 27 7

F 5

TABLE F-2 OUTLINE OF COMPLETED SMALL IRRIGATION PROJECT (SI SA KET)

	Annua l	U/A Cost (mil.B												
	ties	t1 Мах. Q (m ³ /s)												
	on Faciliti	Canal Length Ma (km) (m												
es.	Irrigation	Dam Capacity (MCM)	0.10	0.35	0.13	0.19	ł	0.25	1	0.11	. 1	0.15		
ct Features	ed Crop	Dry S. (ha)			Veg Wat	etable ermelo	e, Pear on, Car	nuts, ssava	Corn, and Ke	naf				
Project	Planted	Wet S. (ha)				R	ice							
	t. Area	Dry S. (ha) -	1	F		1	1	1	1	1	F	1		
	Irrigat	Wet S. (hæ)	96	160	160	80	80	80	192	64	80	24	1,016	· · · · ·
	No. of	(household)	68	260	68	199	86	368	172	140	470	96	1, 939	
	Const.		1.91	3. 47	1.19	66 -	2.19	3.97	3.88	2, 21	3.11	3.20	27.12	
	Comple-	rear rear	1981	1982	1983	1983	1987	1987	1987	1988	1989	1989		
	Locatopn	Tumbon	Kantaralak Kud Salao	Kantaralak Sao Thong C.	kantaralak Sao Thong C.	Kantaralak Sac Thong C.	Kantaralak Sao Thong C.	Kantaralak Bung Malu	Kantaralak Khanun	Kantaralak Non Samran	Kantaralak Kud Salao	kantaralak Suan Kuai		
	Name of		Huai Sam Yaek(T)	Huai Sao Tong Chai (T)	Huai Sok kam Pom (T)	Huei Nong Wa (T)	Huai Sim (W)	Huai Sa Tong (T)	Huai Non Sam Bun (T)	Huai Non Sam Ran (W)	Huai Kud Salao (T)	Huai Non Rua (T)	Total	
	K,	2	+ i	~	က်	4	<u>ن</u>	ŵ		8 S	்	10		:

F-6

.

LIST OF TANK AND WEIR CONSTRUCTED BY DEPARTMENT OF LAND DEVELOPMENT

TABLE F-3

Capacity 9,800 107,000 160,000 (cu. m) 48,000 I Domestic, Livestock Domestic, Livestock Dry Sea. (ha) 24 97 24 24 ò 신 တ္တ Irrigation Area \$ Livestock Wet Sea. (ina) 70 320 495 495 $^{28}_{28}$ 32 3280 0 Const. 2,000 2,000 2,000 (1, 000)2,603 1,229 496 579 511 474 770 Baht) 360 Cost ۍ ف ted Year Comple-1984 1986 1992 1992 1992 1992 1992 1992 983 1983 1987 1977 1987 1991 1991 1661 Na Chaluai Amphoe Na Chaluai Na Chaluai Det Udom Det Udom Det Udom Det Udom Det Udom Det Udom Udom Det Udom Det Udom Det Udom Det Udom Nam Yun Nam Yun Det Bua Ngam Weir Na Kra Saeng Noen Sawan Na Chaluai Tung Tueng Tha Pho Si Tung Tueng Noensambun Tung Tueng Som Sa-ad Tambon Na Rueng Yang Yai Non Don Khlang Ta kao Na Yia Name of Project Nong Yao Swamp (W) Existing Tank and Weir Koeng Sawang Weir Huay Sin Tai Weir Na Kra Saeng Tank Pho Sa-nga Weir Nong Sanom Weir Noen Yang Weir kam Sa-ad Weir Tung Tueng (T) Huay Bua Weir Proposed Tank and , Na Rueng Weir Coke Tian (W) (Muban) Nong Yao (W) Nong Pan (W) Total 1. | Non Do (T) Na Du (W) 2. No . ന 4 10 00 1-

LIST OF TANK AND WEIR CONSTRUCTED BY ACCELERATED RURAL DEVELOPMENT DEPARTMENT (1) TABLE F-4

	والمواقع والمحاوية والمحاوية والمحاولة						
No	Name of Project (Muban)	Tambon	Amphoe	Comple- ted Year	Project Area (ha)	Const. Cost (1,000 Baht)	Capacity (1,000 cu.m)
,1	Huai Aree (P)	Tung Tueng	Det Udom	1161	1	20	တ
62	Na Ta Tae (P)	Chong	Nam Yun	1972		20	m
60	Huai San (T)	Na Chaluai	Na Chaluai	1977	8	625	33
4	Huai Po (T)	Chong	Nam Yun	11977	9 7	306	10
വ	Non Yang (P)	Ta Kao	Nam Yun	1980	ŝ	93	S
G	Nong Krok (P)	Dom Pradit	Nam Yun	1980	I 	93	က
5	Kud Chiong Noan-1 (P)	Dom Pradit	Nam Yun	1980	S	63	က
8	Kut Chiong Noan-2 (P)	Dom Pradit	Nam Yun	1980	3	83	က
භ	Wat Pa Sina Lang(P)	Tung Tueng	Det Udom	1980	8	335	30 30
10	Kaeng Ruang-1 (P)	Na Chaluai	Na Chaluai	1980	3	93	3
11	kaeng Ruang-2 (P)	Na Chaluai	Na Chaluai	0861	ŝ	83	ო

W : Weir

T . Tank

Note : P : Pond

LIST OF TANK AND WEIR CONSTRUCTED BY ACCELERATED RURAL DEVELOPMENT DEPARTMENT (2) TABLE F-4

Capacity (1,000 cu.m) က က က က ന 8 <2 ⊡1 in H 1 20 i Const. Cost (1,000 Baht) 107 116 1,784T., 882 107 107 107 107 260 80 260 Project ഹ က ന ∞ ဖ 9T 240 က က က 10 (ha) Area Comple-ted Year 1985 1984 1984 19841987 1981 1981 1981 1981 1982 1981 Na Chaluai Kantaralak Na Chaluai Amphoe Det Udom Det Udom Yun Nam Yun Nam Yun Nam Yun Nam Yun Nam Yun Nam Dom Pradit Non Samran Dom Pradit Na Chaluai Dom Pradit Dom Pradit Dom-Pradit Sok Saeng Tambon Nong Om Щ Yang Top Name of Project (Muban) Huai Chan Hom (W) (M)Nong Kaeng (P) Nong Sanom (P) Fang Pae (d. **a** Non Sueng (P) Kae Don-2 (P) (d. <u>a</u> Nong Wang Kae Don-1 Kao Khor (P) Jan La Huai Pla 22 12 16 18 20 റ 21 No 13 1 <u>1</u>.4 വ പ

LIST OF TANK AND WEIR CONSTRUCTED BY ACCELERATED RURAL DEVELOPMENT DEPARTMENT (3) TABLE F-4

(1,000 cu.m) Capacity រ ល ရ က 28 ₩ 8 <u>د،</u> \$ ī 녑 Cost (1,000 Baht) Const. 6, 918 I, 512 2, 339 1,102 1,442 858 858 1,198 1,191 29,347 Project i 347 ŧ ı ŧ ŧ ł l 1 (ha) Area ted Year Comple-1990 1990 1990 1990 1990 1990 066T 066T Amphoe Kantaralak Det Udom Det Udom Det Udom Det Udom Det Udom Det Udom Nam Yun Tung Tueng Na Charoen Na Charoen Suan Kluai Phon Ngam Som Sa-At Muang Det Tambon khilek Name of Project (Muban) Nong Suan Kluai (P) Nong Bua Luang (P) £ Nong Bua Dang (P) Na Cha Roen (P) Nong Ta Ong (P) Nong Sean Eam Huai Aree (W) Nong Yai (P) Total ന റ 30 25 28 23 54 77 26 No 5

TABLE F-5 EXISTING ELECTRIC PUMP IRRIGATION BY NEA

Charge (Baht/ ha) Water 513 181 ŧ t ł Project Facility Canal Length (km) ഹ တ 1 1 ī ł ø. ം ന Pump Capacity (cu.m/s) 0.057 x 2 units 0.057 x 1 unit ŧ 5 ı ł 112(ha) 88 200 လ Irrigation Area Dry Proposed ruction ruction Wet S. 235 573 338constconst-(ha) under under 1,051 Project 640 (235)576 (338) 240 240 I (ha) Area Comple -ted Year 1980 1984 1990 1990 1991 Phibun Mungsahan Pho Sai Sang Kaew Warin Chamrap Sa Wang kang Dom Det Udom Tha Pho Si Tha Pho Si Location Det Udom Na Rueng Na Rueng Det Udom Na Yia Na Yai Ampho Tambol Muban Name of Project 21 Ban Sang Kaew Ruang Ban Kang Dom Ban Tha Pho Yia Total Ban Na Ban Na Note No . . 4 . ما . .-i 3

50 to 50 percent The figures in parenthesis of project area show an actual areas developed. Water charge (electric charge), which will be burdened at the rate of about by farmer and NEA shows the cost in case of dry season cropping in 1991. 20 ۰.

LIST OF TANK AND WEIR CONSTRUCTED BY DEPARTMENT OF LOCAL ADMINISTRATION (1) TABLE F-6

f	bxecuting Agency	DOLA	DOLA	DOLA	DOLA	DOLA	DOLA	DOLA	DOLA	DOLA	New Zealand	Khor Sor Chor	Khor Sor Chor
ies	Canal Length (km)						: 	1	1				
Facilities	Tank Capacity ('000cu.m)							108					
Planted Crop	Dry S. (ha)												
Plante	Wet S. (ha)												
Area	Dry S. (ha)							48					
Irrigat.	Wet S. (ha)							80					
No. of	benericiary (household)							160					
	Lost (1,000 Bhat)	ł	8	144	124	144	119	156	130	61	149	233	237
Comple-	Yeaar	1986	1986	1986	1987	1987	1387	1988	1988	1988	1988	1988	1988
	Ampnoe Tumbon	Warin Chamrap Tha Chang	Warin Chamrap	Det Udom Bua Ngam	Warin Chamrap Sra Saming	Det Udom Na Rueng	Phuibun Mang. Na Pho	Warin Chamrap Sra Saming	Warin Chamrap Sra Saming	Phibun Mang. Pho Sai	Det Udom Na kasaeng	Det Udom Na Rueng	Det Udom Kham khrang
Name of	10 10 10 10 10 10 10	Ban Suk Som Bun (W)	Ban Pa Ka (W)	Ban Nong Sanom	Pra Cha Arsa (W)	Pre Cha Arsa (W)	Pra Cha Arsa (W)	Na Pi Man (W)	Pra Cha Arsa (W)	Pra Cha Arsa	Pra Cha Arsa (¥)	Huai Hin Lat (W)	Hin Kor (W)
;	0 2	1	~	8	4	<u>م</u>	9	-	∞	σ	10	I	12

LIST OF TANK AND WEIR CONSTRUCTED BY DEPARTMENT OF LOCAL ADMINISTRATION (2) TABLE F-6

c	Name of	Locatopn	Comple-	Constion	No. of	Irrigat.	. Area	Planted	ed Crop	Facilities	ies	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5		Tumbon	Yeaar	Cost (1,000 Bhat)	(household)	Wet S. (ha)	Dry S. (ha)	Wet S. (ha)	Dry S. (ha)	Tank Capacity ('000cu.m)	Canal Length (km)	Agency .
13	Huai Yai (W)	Det Udom Muang Det	1988	286								Khor Sor Chor
14	Huai Dam Ngoa (W)	Det Udom Na Charoen	1988	. 288								Khor Sor Chor
្រុ	Na Suang (W)	Det Dom Na Suang	1988	110								DOLA
16	Pra Cha Arsa (W)	Det Udom Na Kasaeng	1988	158								New Zealand
11	Pra Cha Arsa (W)	King A Samrong Khok Sawang	1988									New Zealand
18	Pra Cha Arsa (W)	King A Samrong Khok Sawang	1988.									New Zeeland
в 	Pra Cha Arsa (4)	King A Samrong Khok Sawang	1988									New Zealand
20	Huai Kamen (W)	Nam Yun Dom Pradit	1988	397								Khor Sor Chor
21	Huai Hin Dum (W)	Nam Yun Yang	1988	18£								khor Sor Chor
23	Huai Sa Lao(W)	Nam Yun Khi Lek	1988	296								Khor Sor Chor
24	Huai Kra Ton (W)	Na Chaluai Porn Sawam	1988	361						-		Khor Sor Chor
25	Na Huai Kan(W)	Det Udom Na Suang	1989	190	115	24	16			116	l	DOLA
Į												

LIST OF TANK AND WEIR CONSTRUCTED BY DEPARTMENT OF LOCAL ADMINISTRATION (3) TABLE F-6

	Name of	Locatopn	Comple-	Constion	No. of	Irrigat.	Area.	Planted	ed Crop	Facilities	ies	fa
0 4 ·	rrojectr Sectro	Tumbon	Yeaar	Cost (1,000 Bhat)	(household)	Wet S. (ha)	Dry S. (ha)	Wet S. (ha)	Dry S. (ha)	Tank Capacity ('000cu.m)	Canal Length (km)	Agency
26	Nong Hai (W)	Det Udom Na kra Sang	1989	222	06	32	16			70	l .	DOLA
27	Nong Bua (W)	Warin Chamrap Sra Saming	1989	142	061	24	16			120	1	DOLA
28	Sra Saming (W)	Warin Chamrap Sra Saming	1989	130	120	32	24			72	I	DOLA
28	Nong Ta Pu (W)	Warin Chamrap Sra Saming	1989	238	300	48	32			135	1	DOLA
30	Wang Kog (W)	King A Samrong Kok Sawang	1989	206	160	19	œ			30	1	DOLA
31	Obmung (W)	king A Samrong Kok Sawang	1989	190	140	18	ω			36	1	DOLA
32	Kum (W)	King A Samrong Kok Sawang	1989	238	277	24	ø			20	1	DOLA
33	Kra-aq (¥)	King A Samrong Kok Sawang	1989	234	325	32	11			75	1	DOLA
34	Sra Dog Ged(W)	King A Samrong Kok Sawang	1989	192	120	21	11			46	1	DOLA

PART-II (FEASIBILITY STUDY)

CHAPTER I. IRRIGATION PLAN

1.1 Irrigation for Paddy

1.1.1 Irrigation Water Requirement

1) Reference Crop Evapotranspiration (ETo)

The reference crop evaporation (ETo). generally recognized as fairly reliable index in calculating consumptive use, can be determined by a number of methods like the evaporation measurement with evaporation pan and the application of empirical formula based on the climatological data. In the project, the ETo values are estimated by the modified Penman Method on the monthly basis, using the climatological data observed at Ubon Ratchathani observation station for the period of 30 years(1961-1990).

The estimated monthly ETo is as follows;

		Ave.	5.0
June	4.5	Dec.	4.1
May	5.4	Nov.	4.5
Apr.	6.1	Oct.	4.3
Mar.	5.8	Sept:	4.0
Feb.	5.2	Aug.	4.3
Jan.	4.3	July	à.5 [°]
	(mm)		(mn)
Month	ETO	Month	ЕТО

Reference Crop Evapotranspiration (ETo)

2) Consumptive Use of Crop

Consumptive use of crop (actual crop evaporation, ETa) can be calculated by multiplying the Eto value by crop coefficient (Kc) corresponding to growth of crops.

The crop coefficients adopted for the project study are shown

in Table F-7, which is obtained from the Water Requirement Research, Irrigated Agricultural Section, O/M Division, 1990.

For the presentation of the crop coefficient, the crop growing season can be divided into four stages; initial growth, crop development, mid-season growth and late-season growth. The typical generalized crop coefficient curves are illustrated in Figure F-1, together with planting dates, length of growing season and duration of each stage.

The four principal stages of crop development are defined as follows;

Initial Growth Stage

This stage covers the initial planting, transplanting shock and early growth period when the crop only partially covers the soil. The consumptive use is low and fairly constant during this period.

Crop Development Stage

This stage covers the period from the end of the initial growth stage to attainment of full ground cover, or the period of rapid leaf development. The consumptive use increases rapidly during this stage.

Mid-Season Stage

This stage covers the period from attainment of effective ground cover, or full leaf development, to the start of maturing. The Kc value remains fairly constant during this period.

Late-Season Stage

This stage covers the maturing period of the crop and finishes with full maturity or harvest.

Estimated consumptive use of crop is given in Table F-8.

3) Crop Water Requirement

a) Percolation Rate

Since there exist no available data on percolation rate in paddy field, 2.0 mm/day of percolation rate is assumed in the project.

- b) Additional Water Supply for Land Preparation for Paddy Field
- (1) Land Soaking and Preparation
 - Paddy field requires well-puddled and well prepared soil to; - provide a soil surface that is weed free, soft and level to make transplanting easier,
 - mix organic matter (rice straw, stubble and weeds) with soil and encourage decomposition,
 - level the filed for uniform distribution of irrigation water, fertilizers and pesticides,
 - prevent or minimize water seepage from the field.

If those organic matter is not well decomposed by the time of transplanting, the seedling are likely to suffer from toxic substances given off during the decomposition. From these reasons, land preparation should be started at least two weeks before planting.

Plowing

- Flood the field two to seven days before plowing depending on the hardness of the soil. Keep the surface of the soil just covered with water; this will help keep the soil from sticking to the plow.
- Keep the soil flooded with about 1.0 cm of water until harrowing, a duration of about seven days if possible. This provided time to soften the soil clods further and allows weeds to sprout, while plowed fresh organic materials undergo decomposition.

Harrowing

Keep enough water in the field to prevent the soil from drying and hardening. If possible, wait for seven to ten days before harrowing to allow more weed seeds to germinate before they are finally turned under the soil and to give more time to plow fresh organic matter to decompose.

Provision and Repair of Levee

Before preparing the land, levees should be repaired to help reduce seepage from the paddy field. Paddy fields that are properly repaired and plastered with mud are unfavorable to rats and make it difficult for weeds and host plants of insect to get established.

The best time to fix levees is after the first plowing because the upturned soil near the levees can be used in the work. Levees should be repaired before harrowing so the weeds cut from the levees can be incorporated in the soil well before the rice is planted. - Clean the Levee

- . On the top and both sides of the levee cut the weeds close to the roots. This will also trim off thick portions of the levee.
- Repair the Levee
 - . Destroy all rats by placing cyanide dust in their holes, or break up and rebuild the portion of the levee containing rat holes.
 - . Use soil that has been broken up by the first plowing for patching up soft spots and cracks.
- Plaster the Levee

Use additional mud and water, if necessary, to smooth levee with hands. Give special attention to the sides to make sure that all cracks are sealed properly, otherwise water in the plot may seep the other plots.

Irrigation Schedule during Land Preparation

In accordance with above mentioned procedures as well as current practices of land soaking and land preparation around the Study Area, following irrigation schedule is planned in the project (refer to Figure F-2).

- lst irrigation which is to be supplied with two times will be made at the beginning of land soaking and land preparation eight to three days before plowing. Amount of water should be enough for saturation of top soil and supply for evaporation and percolation for 11 days until 2nd irrigation.

 2nd irrigation will be made just before cleaning and repairing the levee.

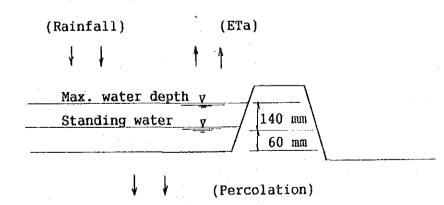
- 3rd irrigation will be made just after harrowing.
- (2) Water Requirement for Land Soaking and Land Preparation

Total water supply for land soaking and land preparation periods was computed as shown in Table F-9 in accordance with the irrigation schedules, and the results are summarized as shown below;

lst	Irrigation	:	150mm
2nđ	Irrigation	:	39
3rd	Irrigation	:	61
	Total	:	250

Table F-10 and Table F-11 shows the crop water requirement on the basis of the proposed cropping pattern of Type-I and Type-II.

4) Diversion Water Requirement


The diversion water requirement can be calculated by adding effective rainfall and irrigation efficiency to the crop water requirement, which was estimated on the basis of proposed cropping pattern. The criteria for calculation of the effective rainfall and irrigation efficiency are as follows;

Effective Rainfall

Effective rainfall for paddy field is estimated by analyzing daily water balance study between the rainfall and crop water requirement based on the following conditions;

- The minimum standing water in the field is 60 cm.
- The rainfall in the water depth more than 200 mm (a notch of levee is placed at the height of 200 mm) in the field will be drained as waste water.
- Irrigation water will be supplied to the depth of 80 mm in the field. If water depth become lower than the minimum standing water depth of 60 cm.

Illustration of Water Balance in Paddy Field

For the effective rainfall for upland crops, TRAM (total readily available moisture) value of 25 mm is applied as the maximum

depth of effective rainfall, based on the soil physical test conducted during field works.

Irrigation Efficiency

The irrigation efficiency would be determined on the basis of the prevailing topography, irrigation method and so forth. In the project, the following irrigation efficiency are adopted;

Irrigation Efficiency

	Paddy Field	Upland Field
	(%)	(%)
Application efficiency	80	70
Operation efficiency	80	80
Conveyance efficiency	85	90
Overall efficiency	55	.50
		· · · · · · · · · · · · · · · · · · ·

In accordance with the above mentioned procedures, 10 day basis of diversion water requirement are estimated for 30 years(1961-1990). as shown in Table F-12(Type-I) and Table F-13(Type-II).

1.1.2 Designed Water Requirement for Main and Lateral Canals

Unit water requirement (duty of water) for designing irrigation facilities can be largely classified into following two types of water requirement;

- i) Water requirement for main canal, and
- ii) Water requirement for lateral, sub-lateral canals and related structures.
- 1) Designed Water Requirement for Main Canal

The unit water requirement for designing the main canal is decided based on the following basic consideration;

i) To add the effective rainfall in fields for the estimation of the unit water requirement, because the maximum irrigation water requirement will occur for land soaking and land preparation period from the beginning of June to the middle of August, in which so much rainfall can usually be expected in the area.

ii) To provide canal capacity to meet the water requirement in the drought year of return period 1/10-year basically.

According to these considerations, 10-days basis of peak irrigation water requirement at the land soaking and preparation stage was estimated by water balance study for the period 30 years, 1991 to 1990. And its results is given in Table F-14. From the estimation, it was revealed that the peak irrigation water requirement was estimated at 0.93 lit./sec/ha in the return period of 1/10-year. Consequently, the designed irrigation water requirement for main canal, which will cover the Section Area of about 5,000 to 6,500 ha, was decided at 1.00 lit./sec/ha, considering the domestic use water requirement.

2) Deigned Water Requirement for Lateral /Sub-Lateral Canals

According to the proposed irrigation systems, irrigation areas covered by one lateral canal has wide ranges in size, such as from about 6,500 ha to 200 ha. Under the conditions, the basic concept for designing canal capacity of lateral canal is planned as follows;

i) Irrigation area can be typically classified as shown below;

Section Area	:	more than 1,000 ha
Zone Area	:	1,000 ha
Irrigation Block	:	
Irrigation Unit	:	
Rotation Unit	;	20 ha (40 ha x 1/2)

ii) Land preparation period from the start to the end of the land soaking and preparation works will depend on the size of the irrigation area covered by each lateral canal. In the calculation of unit water requirement, the following land preparation period are planned (see Figure F-2);

more than 2,000 ha	•	60 days
1,000 - 200	:	38
200 - 40	:	34

iii) Factors of effective rainfall are not taken into consideration in planning of canal capacity For planning the lateral and sub-lateral canal capacity to meet paddy cultivation, the weighted average crop water on the 10-days basis is calculated, based on the proposed cropping pattern (Type-I), irrigation schedule and water requirement for land soaking and preparation. Table F-15 to Table F-25 show the weighted crop water requirement of paddy in the section, zone and block areas, respectively.

The following indicates the summary of these calculations;

Section Area (more than 1,000 ha)	:	1.50	lit./sec/ha
Zone Area (1,000 - 200 ha)		2.10	
Block Area (200 - 40 ha)	· •	2.90	

TABLE F-7 CROP COEFFICIENT (KC)

• •	Perennia	Crop		8.98	9.98	ទ ខ ខ	0.85			8.85 8	8.85	88.8	8 8 8	g. 85	
		String-	bean	1.19	1.20	0.83	8 9 9		1	١	1	1	ł	1	B. 67
	Crop	Chills		86.99	1.05	8.71	0.46	1.	1	1	1	1	ł	1	8 95 1
	Dry Season	Water-	melon	96'0	1.96	0.79	0.65	1	I	1	1	1	1	1	9 9 9
		Soybean		1.16	1.20	Ø. 83	0.65			i	••••• 1•	1	1	1	6.67
		Groundnut		8.99		2 6	0.46		1	1	1	1	1	1	 9 8
	Crop	Vegetable								1.18	1.18	0.8.0	0.65 0	I	
	Wet Season C	Paddy	L U						١	ୟ . ସତ	1.24	1.33	1.61	G.76	
· .	Wet	С В	Н.Ү. U							6,88	1.20	1.31	B 76	•	
· .		Month		Jan.	Feb.	Mar.	а . га	Мву	Jun.		Aug.	Sep.	Oct.		Dec.

TABLE F-8 CONSUMPTIVE USE OF CROP (ETA)

	-	Wet	Wet Seeson C	Crop		.	Dry Season	n Crop		Perennia
Month	E T O	Å	Pady	Vegetable	Groundnut	Soybean	Water-	Chitli	String-	Crop
	L	н.Ү. U	۲. ט				melon		besn	
Jan.						ດ, ອ ເ	4.1	4.3	5.1	3.9
Feb.	5.2					ດ ຜ	ດ ມ	ດ ເມ	6.2	4.7
Mar.	00. 13	Mar. 5.8		A	4.1	4.8	9 7	4.1	4.8	6.1
ADT.	:			2.3	5,8	4.0	4.0		4.B	сл
	5.4	5.4		1	1	1	1		t	
Jun.	Jun. 4.5			2.9	<u> </u>	ι	*		L	
<u></u> , μ.	Jul. 4.5	<pre>< 4 . 8 . 4 . 5</pre>	ь. д	с, с С				1	1	
Aug.	Aug. 4.3	5.2 (3.8)	5.3			1			1	
Seo.	4.0	5.2 (4.8)	ന ഗ	~		1	1	1	1	
	0ct. 2.3	e e	4.4	8 N	1		1			
Nov	Nov. 4.5	1	3.4	1	1		1	1	l	
700	1.0				2.2	2.7	r N	2.7	2.7	

Note ; Figures in parenthesis shows the consumptive use for time-iagged crop planting

TABLE F-9 IRRIGATION WATER REQUIREMENT FOR LAND SOAKING AND LAND PREPARATION

1st Irrigation (P₂)

1. Saturation of Top Soil : 150 mm x 0.35 x	(1-0.07) = 49 mm	
Saturation Depth x Porosity x (1-Soil Moistur	re)	
2. Evaporation for 11 days : 4.5 mm x 11 days	= 49	
	:	
3. Percolation for 11 days : 2.0 mm x 11 days	= 22	

		1.1	
4.	Standing Water	 . =	30
	Sub-Total		150

Total 1st irrigation water of 150 mm will be supplied with two times at 75 mm each time on the date of eight to three days before plowing.

2nd Irrigation (P_1)

1.	Evaporation	for	six	days	:	4.5 mm x 6 days		#	27 mm
2.	Percolation	for	six	days		2.0 mm x 6 days		۲	12
	Sub-Total						1.1		39

3rd Irrigation (P)

1. Evaporation for seven days	: 4.5 mm x 7 days	= 31 mm
2. Percolation for seven days	: 2.0 mm x 7 days	= 14
3. Supplemental Irrigation Sub-total	: (4.5 + 2.0) x 2.5 days	= 16 <u>61</u>
Total		<u>250</u>

Yonth			. :	Paddy R	ice (96.	3%)				- <u> </u>		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		U	pland Cr	ops (15%)					· · · · · · · · · · · · · · · · · · ·			Perennial Crop(3.7%)
	lligh	Yield Y				ocal Yar	iety(10.)%))	Grou	ndnut (67	. 0%)	So	ybean (22	.0%)	Wat	ermelon(7 0%)	Ch	1111(1.0)	%)	Strin	gbean (3.	0%)		(Mango)
	L. P	ETa	Pe	Total	1., P	ETa	Pe	Total	Average	P. 1	ETa	Total	P.I	ETa	Total	P.1	ETa	Total	<u>P. I</u>		Total	P.1		Total	Average	EIa
Dec. 1		· · · · · · · · · · · · · · · · · · ·				1				26.7	4.5	31.2	26.7	4.5	31.2	26.7	4.5	31.2	26.7	4.5	31.2	26.7	4.5	************	31.2	35.0
2	1									26.7	13.5	40.2	26.7	13.5	40.2	26.7	13.5	40.2	26.7	13.5	40.2	26.7	13.5	40.2	40.2	35.0
3										26.7		49.2	26.7	22.5	49.2	26.7	22 5	49.2	26.7	22.5	49.2	26.7	22.5	49.2	49.2	35.0
Jan. I											43.0	43.0		50.0	50.0		41.0	41.0		43.0	43.0		51.0	51.0	44.6	39.0
2											43.0	43.0		50.0	50.0		41 0	41.0		43.0	43.0	·····	51.0	51.0	44.6	39.0
3			;								43.0	43.0		50.0	50.0		41.0	41.0		43.0	43.0		51.0	51.0	44.6	<u>39.0</u> 47.0
Feb. 1											55.0	55.0		62.0	62.0		52.0	52.0		55.0	55.0		62.0	62.0	56.5	47.0
2	{		<u>.</u>								55.0	65.0		62.0	62.0		52.0	52.0		55.0	55.0		62.0	62.0	56.5	47.0
3	1										55.0	55.0		62.0	62.0		52.0	52.0		55.0	55.0		62.0 48.0	62.0 48.0	<u>56.5</u> 43.1	49.0
Har 1											41.0	41.0		48.0	48.0		46.0	46.0	·····	41.0		······	98.U 48.0	48.0	43.1	49.0
							•				41.0	41.0		48 0	48.0		46.0	46.0		41.0	41.0	·····	40.0	40.0	35.9	49.0
3 .			,								34.2	34.2		40.0	40.0		38.3	38.3		34.2 14.0	34.2		20.0	20.0	15.9	52.0
Apr. 1											14.0	14.0		20.0	20.0		***************	6.7		4.7			6.7		5.3	52.0
2											4.7	4.7		6.7	6.7		6.7				4.7			6.7		52.0
3	l											i.						·····				•••••••		••••••		46.0
May I						•	••••••••••••••••••					••••••														46.0
									• • • • • • • • • • • • • • • • • • • •		•••••		•••••		•••••			·····	· · · · · · · · · · · · · · · · · · ·			····				46.0
																	•••••	•••••••	·····					•••••		38.0
June 1			·······		35.0			135.0	3.5					••••••	•••••••••••••••••••••••••••••••••••••••	•••••	•••••					·····]	38.0
	12.5			12.5	53.9			53.9	16.6		·····		· · · · · · · · · · · · · · · · · · ·			•••••			••••••		·					38.0
3	60.0			60.0	77,2		· · · · · · · · · · · · · · · · · · ·	77.2	<u>61.7</u> 52.7			<u> </u>						·····					•••••		{	38.0
July 1	52.0			52.0	48.3			58.8		·		· · · · · · · · · · · · · · · · · · ·			•••••••			••••••			····					38.0
	70.8	1.7		73.3	29.4			60.9	72.1			••••			•••••							·····•••		· • • • • • • • • • • • • • • • • • •		38.0
	35.8	13.3	6.7	55.8	6.1			58.6 73.0	56.1 65.4						••••••			••••••								37.0
Aug. 1	18.9	32.3	13.3	64.5		53.0			63.5						······································		• • • • • • • • • • • • • • • • • • • •	•••••••			••••		•••••			37.0
		43.4	19.2	62.5		53.0		73.0	65.8			•••••							•••••		•• ••				1	37.0
		45.0	20.0	65.0		53.0		73.0																		34.0
Sept.1		50.0	20.0	70.0		53.0		73.0	$\frac{70.3}{70.3}$				••••••	••••••••••											1	34.0
2		50.0	20.0	70.0		53.0		73.0	70.3				••••••		••••••							••••••			1	34.0
3		50.0	20.0	70.0		53.0		73.0	70.3 56.5			••••								<u>.</u>			••••••			37.0
Oct. 1		39.0	16.7	55.7		44.0	20.0	64.0	39.5					······	••••••		•••••		•••••						1	37.0
2		27.0	10.0	37.0		42.2		61.3 42.7	15.7						·····{	••••••									1	37.0
3		9.4	3.3	12 7		29.3																•••••			1	38.0
Nov. 1						11.3	6.7	18.0	<u>1.8</u> 0.2															••••••••••••••••••	1	38.0
2]					1.4	0.9	6.3		······								•••••					••••••	••••••••••	1	38.0
3						610 2	910 0	070 0	782.2	80 1	469.3	549 4	80.1	539.2	619.3	80.1	476.5	556.6	80.1	469.3	549.4	80.1	542.2	622.3	567.5	1.470.0
Total	250.0	361.1	150.0	761.1	250.0	510.7	614.0	3(0.0					·····									;			1	

TABLE F-10 CROP WATER REQUIREMENT FOR CROPPING PATTERN OF TYPE-1

Note : L.P. : Land Preparation tla : Consumptive Use of Paddy Pe : Percolation P.I : Pre-Irrigation

		٤.	
τ.	11 12 1	τ.	mini
٩.	uni	L.	mm)

				listi. S		1.12									•										(. • nan)	
Nonth		Net Season					·	Net Sea						· · ·				Upland Cr		· .			· · ·	<u>.</u>		· · · · ·	Perennia Crop(3.75
	High	A Yield Variety(89.7%) Ela Pe Tot		ocal Yari ETa				Yeg	etable(3			indnut (69			ybean (20			termelon(111 (0.9			ngbean (2.8%			(Mango)
	<u></u>				Pe	Total	Average	P.1	ETa	Total	P. I 26. 7	<u>ETa</u>	<u>Total</u> 31.2		<u>ETa</u> 4.5	Total 31.2	P.I 26.7		<u>Total</u> 31.2	P. I 26.7	<u>ETa</u> 4.5	Total 31.2	P.I 26.7	ETa 45	<u>Total</u> 31.2	Average 31.0	ETa 35.1
Dec. 1	. 1				· · · · · · · · · · · · · · · · · · ·		•••••			••••••	26.7	13.5			13.5		26.7	13.5	40.2	26.7	13.5		26.7	4.5 13.5	40.2	40.0	35.
3							••••••				26.7			26.7	22.5		26.7	22.5	49.2	26.7	22.5		26.7	22.5	49.2	49.0	35.0
Jan. I												43.0	43.0		50.0			41.0	41.0		43.0	43.0		51.0	51.0	44.5	39.0
2	· · · · · ·									·····		43.0	43.0		50.0	***************		41.0	41.0		43.0			51.0	51.0	44.5	39.
1							·····				·	43.0 55.0	43.0 55.0		50.0 62.0	62.0		41.0 52.0	41.0		43.0	43.0	• • • • • • • • • • • • • • • • • • • •	51.0 62.0	51.0 62.0	44.5	39.0
feb. 1 2											······	55.0	55.0		62.0	62.0		52.0	52.0		55.0			62.0	62.0	56.4	47 1
3												55.0	55.0		62.0			52.0			55.0			62.0	62.0	56.4	47.0
Mar. 1										·		41.0	41.0		48.0			46.0	46.0		41.0	41.0		48.0	48.0	43.0	49.0
2			•••••			•••••••••	·····			·····	·····	41.0 34.2	41.0		48.0	48.0	ļ	46.0 38.3	46.0		41.0	41.0		48.0 40.0	48.0 40.0	43.0	49.1
Apr 1				••••••••	· • · · · · · · · · · · · · · · · · · ·		••••	······		•••••••	·····	14.0			20.0		····	20.0	20.0		14.0			20.0	20.0	15.8	52.
APE 1	1												4.7			6.7		6.7	6.7		4.7	4.7		6.7	6.7	5.3	52.
3													.													•••••	52.
May 1			·							•••••	[·····	· [······							•••••		46.
		·····												•••••••	······										••••••		45
June 1	-		35.0		-	35.0	3.6	26 7	4.8	31.5																	38.
2	12.5	- 12	. 5 53.9		-	53.9	16.8	26.7	14.5	41.2]										38.
3	60.0	60			-	77.2	61.8	26.7	24.2		ļ				:											•••••	38. 38.
inta i	52.0	52 1.7 0.8 73				58.8	52.7 72.1		53.0 53.0		[······	<u>.</u>			·····								•••••		· · · · · · · · · · · · · · · · · · ·		38.
	70.8	1.7 0.8 73 13.3 6.7 55			16.7	58.6	56.1		53.0					· · · · · · · · · · · · · · · · · · ·	•••••												38.
Aug. i	18.9	32.3 13.3 64		53.0	20.0	73.0	65.4		51.0																		37.
2		43.4 19.2 62		53.0	20.0	73.0	63.7			51.0											i.			· · · · · · · · · · · · · · · · · · ·			37.1
3		45.0 20.0 65		53.0		73.0	65.8		51.0		[•			·····						34.
Sept.1		50.0 20.0 70		53.0		73.0	70.3	·	32.0			ļ						•									34.
		50.0 20.0 70 50.0 20.0 70		53.0 53.0		73.0	70.3		26.7				1	1													34.
Oct. I		39.0 16.7 55		44.0			56.5			14.0	[37.
2	1	27.0 10.0 37	******	42.2	19.2	61.3	39.5		4.7	4.7							l									·····	37.
3		9.4 3.3 12	. 7	29.3			15.8				[• • • • • • • • • • • • • • • • • • • •						••••••							38.
Nov. 1				11.3			1.9 0.2		•••••	•••••						······			·····							• • • • • • • • • • • • • • • • • • • •	38.
2		ş		4	0.9		····· Ý ··. <i>Ý</i>			••••••						[·····			· · · · · · · · · · · · · · · · · · ·								38.
Total	250.0	361.1 159.0 761	.1 250.0	510.7	210.1	970.8	782 8	80.1	464.8	544.9	80.1	469.3	549.4	80.1	539.2	619.3	80.1	476.5	556.6	80.1	469.3	549.4	80.1	542.2	622.3	565.6	1,470.
· · · · · · · · · · · · · · · · · · ·	1			1	1	<u> </u>]			I		<u> </u>			:	L	<u> </u>								L	1

TABLE F-11 CROP WATER REQUIREMENT FOR CROPPING PATTERN OF TYPE-II

Note: L.P. : Land Preparation Ela : Consumptive Use of Paddy Pe : Percolation P.i : Pre-Trrigation

(unit : mm)

F-26

. .

.

TABLE F-12 MONTHLY DIVERSION WATER REQUIREMENT OF TYPE-I

	TAC	908 F~	12 M	UNTHL	X DIA	BRST	JN WA	TER R	EQUIR	EMENT	OF 1	YPE-1	
	:			DRY SE	ason u	PLAND	CROP	5100	ha				
	· · ·			WET SE				32750	ha				
				PERENN	IAL CR	0P		1250	ha				
												UNIT : MCM	
	· ·	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0CT	NOV DEC	TOTAL
	1961	19.69	18.93	14.85	6.25	1.72	30.23	5.70	0.56	0.00	1.67	2.84 15.10	6 117,60
	1962	17.24	18.81	12.68	3.12	2.36	26.30	6.28	0.00	0.00	1.67	2.84 17.7	7 109.06
		17.24						0.00	0.00	0.00	1.67	1.71 17.14	1 81.41
i	1964	17.24	18.81	14.86			28.39	9.72	0.00	0.60	1.67	2.28 17.14	
۰.	1965	17.24			2.58	2.33	1.88	1.14	0.55		54.93	2.29 17.7	
	1966	17.24			5.14		25.26	0.57	0.00		32.83		
•	1967	17.24			3.21	1.73	3.14	0.58	0.56		1.65	2.83 17.2	
	1968	17.24					1.20	0.00	0.00	0.00	2.30	2.85 17.2	
	1969	17.24	18.81			2.24	3.68	1.14	0.56		1.14	2.82 17.1	
	1970		18.81		3.25	2.25	0.42	0.57	0.00		48.24	2.84 17.1	
:		17.24			3.21	1.15	0.63	0.57	0.57		5.73	2.84 17.7	
•	1972			17.71			0.99	0.57	0.54		1.11	2.32 17.1	
:		17.24			3.15		27.23	6.85	0.00	0.00	2.29	2.89 17.7	
		17.24				1.15	0.99	1.76	0.00		1.73	1.69 17.7	
	1975	16.77					0.63	1.71	0.56	0.54		1.70 15.4	
		17.33				1.15	12.12	0.56		0.00		2.29 14.5	
	1977			14.26								2.72 17.7	
• .	1978			11.73			42.47	49.72	0.56		42.10		
		17.24							12.82				
	1980	17.24					7.64			0.00			
	1981		18.81				4.00			0.61			
	1982			15.06			1.79			0.00		2.27 17.1	
	1983		18.81		3.73	2.33	1.63		0.57				
	1984	17.24	18.81	14.66	5.00				21.13				
	1985			15.06					0.00		27.52		
•	1986			15.06		1.72	3.65			0.60			
	1987			15.10		2.32	7.18		0.56	0.00			
						1.15			13.39				
	1989			12.79		2.22	9.67				17.24		
	1990	17.24	18.81	9.38	3.25	1.17	6.61	0.00	1.11	0.00	1.71	2.32 17.1	4 78.74
•	AVG.	17.31	18.68	15.39	3.95	1.69	10.99	7.03	3.22	5.30	9.79	2.48 17.1	7 113.01

F-27

.

TABLE F-13 MONTHLY DIVERSION WATER REQUIREMENT OF TYPE-11

								1 .			÷		1 L L	1 A. A.	
				DRY	SEASON	UPLAND	CROP	5440	ha	1 - X		na na s			
				WET	SEASON	UPLAND	CROP	1050	ha		· . ·				
				WET (SEASON	PADDY		31700	ha				1		
				PERE	NNIAL C	ROP		1250	ha.		•				
						· ·				с. Д		UNIT :	MCM		
		JAN	FEB	MAR	APR	MAY	JUN		AUG	SEP	OCT	NOV	DEC	TOTAL	
	1961	20.77	20.00	15.60	0 6.42	1.72	31.26	6.87	1.53	0.48	1.67	2.84	15.97	125.11	
	1962	18.15	19.87	13.2			27.78	6.50	0.91	0.00	1.67	2.84	18.76	115.23	. •
	1963	18.15	19.87	15,60			2.91	0.89			1.67	1.71	18.12	87.54	÷
	1964	18.15	19.87	15.6	1 5.37	0.00	29.08	11.25	0.43	1.11	1.67	2.28	18.12	122.94	;
	1965	18.15	17.16	18.0	1 2.58	2.33	2.34	2.92	1.93	3.96	53.25	2.29	18.76	143.66	e. L
	1966 -	18.15	19.87	12.7	1 5.31	0.00	26.48	1.49	0.50	1.08	31.85	2.84	18.76	139.04	
	1967	18.15	19.87	18.1	3 3.21	1.73	4.51	1.49	0.99	0.00	1.65	2.83	18.20	90.80	
	1968	18.15	19.87	17.79	3.22	1.64	2.63	0.89	0.44	0.00	2.30	2.85	18.20	87.99	
	1969	18.15	19.87	18.10	3 3.73	2.24	4.11	2.49	1.85	0.00	1.14	2.82	18.12	92.69	
	1970	18.15	19.87	18.10	3 3.25	2.25	0.40	1.87	0.42	1.11	46.75	2.84	18.13	133.22	•
	1971	18.15	19.87	18.10	3 3.21	1.15	0.61	1.89	1.00	0.60	5.61	2.84	18.76	91.83	
	1972	18.15	19.87	18.60	2.77	2.85	2.40	2.37		1.09	1.11	2.32	18.13	91.13	÷
	1973	18.15	19.87	18.1			28.34	7.54	0.43	0.00	2.27	2.89	18.75	120.06	
	1974	18.15	19.87	12.9	5.27	1.15	2.45	3.98	0.86	1.15	1.73	1.69	18.76	87,95	
	1975	17.69	17.98	18.0	1 3.65	1.71	0.61	4.39	1.41	0.54	1.16	1.70	16.30	85.16	
	1976	18.25	20.23	15.4	4 3.19	1.15	13.22	2.32	0.85	0.00	1.13	2.29	15.33	93.39	
	1977	18.15	19.87	15.0	1 5.90	2.35	17.29	28.67	27.68	0.00	17.26	2.70	18.76	173.64	
	1978	18.15	19.87	12.3	1 4.82	1.15	42.14	49.94	1.47	3.08	40.82	1.73	18.13	213.63	
	1979	18.15	19.87	18.10	6 3.20	1.77	4.08	19.39	14.23	26.71	2.50	4.00	18.13	150.19	÷
	1980	18.15	19.87	18.6	3.11	2.35	7.94	1.53	15.31	0.00	1.18	2.31	18.12	108.48	7
	1981	18.15	19.87	18.1	5 2.80	2.32	4.83	2.10	0.86	1.12	2.20	2.28	18.76	93.44	
	1982	18.15	19.87	15.8	2 3.17	2.88	2.71	1.99	0.43	0.00	1.66	2.27	18.12	87.07	
	1983	18.15	19.87	18.10	5 3.73	2.33	3.11	4.37	1.42	65.90	0.60	2.85	18.12	158.61	
	1984	18.15	19.87	15.40	5.16	1.22	50.35	27.08	21.32	0.00	1.11	2.32	18.12	180.09	
	1985		19.87					18.84	0.43		26.71	2.42	18.75	137.62	:
	1986	18.15	19.87	15.8	2 5.79	1.72	4.07	1.45	1.87	1.07	1.15	2.37	18.76	92.09	•
	1987	18.15	19.87	15.8	7 6.44	2.32	7.88	1.50	1.88	0.00	1.67	1.14	18:13	94.83	:
	1988	18.15	19,87	18.6	0 2.07	1.15	1.64	29.83	14.27	42.80	14.14	2.85	18.20	183.57	
	1989		19.87					3.49				2.84		120.20	:
	1990	18.15	19.87	9.8	5 3.25	1.17	6.94	1.31	1.97	0.00	1.71	2.32	18.13	84.67	
ł	VG.	18.23	19.73	16.1	3 4.01	1.69	11.77	8.35	4.05	5.36	9.53	2.47	18.14	119.53	

TABLE F-14 MAXIMUM IRRIGATION WATER REQUIREMENT DURING LAND PREPARATION

(unit:mm/10-day)

		· ·		· .					Max. Irrig	ation	· · · · · · · · · · · · · · · · · · ·
Year	: n	June			July		Aug.		Water Requ	irement	Remarks
1000	1	2	3	- 1	2	3	1	2	(mm/10-day)	(1/sec/ha)	
				· .							
1961	0.00	1.69	1.69	0.00	1.69	0.00	1.67	0.00	1.69	0.02	
1962	0.00	11.63	57.93	18.45	0.00	0.00	0.00	0.00	57.93	0.67	
1963	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00	·
1964	0.00	32.44	43.21	0.00	1.69	26.89	0.00	0.00	43.21	0.50	
1965	0.00	0.00	0.00	1.69	1.69	0.00	0.00	0.00	1.69	0.02	
1966	0.00	32.44	32.41	1.69	0.00	0.00	0.00	0.00	32.44	0.38	
1967	0.00	1.69	1.69	1.73	0.00	0.00	1.65	0.00	1.73	0.02	
1968	0.00	0.00	1.69	0.00	0.00	0.00	0.00	0.00	1.69	0.02	
1969	0.00	2.91	0.00	1.69	1.69	0.00	0.00	0.00	2.91	0.03	
1970	0.00	0.00	0.00	0.00	0.00	1.69	0.00	0.00	1.69	0.02	
1971	0.00	0.00	0.00	0.00	0.00	1.69	1.68	0.00	1.69	0.02	
1972	0.00	0.00	1.69	0.00	0.00	1.69	0.00	1.61	1.69	0.02	
1973	0.00	7.50	64.90	18.45	0.00	1.69	0.00	0.00	64.9	0.75	
1974	0.00	0.00	1.69	1.69	1.69	1.83	0.00	0.00	1.69	0.02	
1975	0.00	0.00	0.00	1.69	0.00	3.37	0.00	0.00	3.37	0.04	
1976	0.00	27.85	0.00	1.65	0.00	0.00	0.00	0.00	27.85	0.32	
1977	0.00	17.44	23.01	38.76	32.61	10.28	47.49	30.74	47.49	0.55	
1978	0.00	30.72	86.42	45.74	100.49	0.00	0.00	0.00	100.49	1.16	
1979	0.00	2.91	0,00	0.00	3.37	47.19	36.04	0.00	47.19	0.55	
1980	0.00	14.53	0.00	0.00	1.81	0.00	3.45	35.10	35.1	0.41	
1981	0.00	5.64	0.00	0.00	1.69	1.69	0.00	0.00	5.64	0.07	
1982	0.00	0.00	0.00	0.00	1.69	0.00	0.00	0.00	1.69	0.02	
1983	0.00	1.75	0.00	1.69	1.61	1.69	1.69	0.00	1.75	0.02	
1984	0.00	30.75	109.75	27.68	1.69	44.70	62.12	0.00	109.75	1.27	
1985	0.00	17.44	0.00	0.00	0.00	53.12	0.00	0.00	53.12	0.61	
1986	0.00	2.91	0.00	1.69	0.00	0.00	1.66	0.00	2.91	0.03	
1987	0.00	11.63	1.69	0.00	1.81	0.00	1.64	0.00	11.63	0.13	
1988	0.00	0.00	1,58	1.72	1.69	80.27	0.00	0.00	80.27	0.93	1/10-return period 1/
1989	0.00	22.31	0.00	1.69	3.37	0.00	1.64	1.64	22.31	0.26	
1990		11.63	0.00	0.00	0.00	0.00	0.00	1.64	11.63	0.13	
						1]	[
Ave.	0.00	9.59	14.31	5.59	5.34	9.26	5.36	2.36	25.90	0.30	
				[;					1	

1/ : Probable Max. Water Requirement

Return Period	Water	Requirement
1/2-year	7.4	mm/10-day
1/5	34.4	
1/10	80.2	
1/20	162.5	

q = 80.27 x 10.000/(10 days x 86.400) = 0.929 1/sec/ha

TABLE F-15 CROP WATER REQUIREMENT OF PADDY IN SECTION AREA

	· .	· ·						(unit : mm	<u>/10_day)</u>
	Paddy	(High Yie	ld Variety	: 90 %)	Paddy	(Local Va	riety :10	%)	
Month	L.P	ETa	Pe	Total	L.P	ETa	Pe	Total	Average
June 1	-	-	-	0.0	35.0	_	-	35.0	3.5
2	12.5			12.5	53.9		-	53.9	16.6
3	60.0			60.0	77.2			77.2	61.7
July 1	52.0	-	-	52.0	48.3	7.2	3.3	58.8	52.7
22	70.8	1.7	0.8	73.3	29.4	21.5	10.0	60.9	72.1
- 3	35, 8	13.3	6.7	55.8	6.2	35.8	16.7	58.7	56.1
Aug. 1	18.9	32.3	13.3	64.5		53.0	20.0	73.0	65.4
2		43.4	19.2	62.6		53.0	20.0	73.0	63.6
3		45.0	20.0	65.0		53.0	20.0	73.0	65.8
Sep. 1		50.0	20.0	70.0		53.0	20.0	73.0	70.3
2		50.0	20.0	70.0		53.0	20.0	73.0	70.3
3		50.0	20.0	70.0		53.0	20.0	73.0	70.3
0ct. 1		39.0	16.7	55.7		44.0	20.0	64.0	56.5
2		27.0	10.0	37.0		42.2	19.1	61.3	39.4
3		9.4	3.3	12.7		29.3	_13.4	42.7	15.7
Nov. 1		-	-	-		11.3	6.7	18.0	1.8
:				: :		1.4	0.9	2.3	0.2
									0.0
Total	250,0	361.1	150.0	761.1	250.0	510.7	210.1	970.8	782.1

Note: L.P : Land Preparation (mm/10-day)

Eta : Consumptive Use of Paddy (mm/10-day)

Pe : Percolation (mm/10-day)

Max. crop water requirement ; 72.1 mm/10-day = 1.515 lit/sec/ha TABLE F-16 CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (CWR) FOR PADDY (HYV)

No.	Month	Equation for Calculation of Weighted 10-day CWR	Weighted 10-day CWR		Irrigation Water Requirement
			(mm / 10-day)		(lit/sec/ha)
•	June 2	$WR = P_2 \times 5/30$	75 × 5/30	= 12.5	0.263
2	m	$WR = P_2 \times 24/30$	75×24/30	= 60.0	1.263
n	July 1	$WR = P_2 \times 15/30 + P_1 \times 8/30 + P \times 2/30$	75 × 15/30 + 39 × 8/30 + 61 × 2/30	= 52.0	1.094
ব	2	WR = P ₂ × 15/30 + P ₁ × 10/30 + P × 10/30 + W ₁ × 1.25/30	75 × 15/30 + 39 × 10/30 + 61 × 10/30 + 60 × 1.25/30	= 73.3	1.542 (max.) ^{1/}
្រភ	m	$WR = P_2 \times 1/30 + P_1 \times 10/30 + P \times 10/30 + W_1 \times 10/30$	$75 \times 1/30 + 39 \times 10/30 + 61 \times 10/30 + 60 \times 10/30$	= 55.8	1.174
9	Aua. 1	$WR = P_1 \times 2/30 + P \times 8/30 + W_2 \times 15/30 + Y_1 \times 5/30$	39 × 2/30 + 61 × 8/30 + 72.0 × 15/30 + 58 × 5/30	= 64.5	1.357
2	~ ,	$WR = W_2 \times 15/30 + Y_1 \times 13.75/30$	72 × 15/30 + 58 × 13.75/30	= 62.6	1.317
œ	m	$WR = W_2 \times 15/30 + Y_1 \times 15/30$	72 × 15/30 + 58 × 15/30	= 65.0	1.368
o	Sept. 1	$WR = W_2 \times 15/30 + Y_2 \times 15/30$	72 × 15/30 + 68 × 15/30	= 70.0	1.473 (max.) ^{2/}
0		WR = $W_3 \times 15/30 + Y_2 \times 15/30$	72 × 15/30 + 68 × 15/30	= 70.0	1.473
4	Υ Γ	$WR = W_3 \times 15/30 + Y_2 \times 15/30$	72 × 15/30 + 68 × 15/30	= 70.0	1.473
12	Oct. 1	WR = $W_A \times 10/30 + Y_2 \times 15/30$	53 × 10/30 + 76 × 15/30	= 55.7	1,172
ŝ	2	WR = W₄ x 1.25/30 + Y₃ x 13.75/30	53 × 1.25/30 + 76 × 13.75/30	= 37.0	0.779
4	m	$WR = Y_3 \times 5/30$	76 × 5/30	= 12.7	0.267
	Total			761.1	
	Land S	akir	rop Water Requirement;		•
	P2	n	= 60.0 mm Y ₁ =		
	p ₂	11	= 72.0 Y2 =	÷	
	α. 1	ii 61.0 2000	W2 = 72.0 T3 = 70.0 .W4 = 53.0 Y4 = 54.0		
. :	2				
	: /1	Maximum Irrigation Water Requirement ; q = 73.3 (Land Preparation Stage)	73.3 × 10 ⁻³ × 1.0 ha × 10 ⁴ × 10 ³ = 1.542 lit/sec/ha 10 days × 86,400 × 0.55		
	2/:	Maximum Irrigation Water Requirement ; 70.0 (Crop Growing Water Requirement) q =	$\frac{70.0 \times 10^{-3} \times 1.0 \text{ ha} \times 10^{-4} \times 10^{-3}}{10 \text{ days} \times 86,400 \times 0.55} = 1,473 \text{ lit/sec/ha}$		

WR = P ₂ × 14/30 WR = P ₂ × 20/30 + P ₁ × 3/30	(mm / 10-dav)				
4/30 (0/30 + P ₁ × 3/30				A11)	(lit/sec/ha)
$0.30 + P_1 \times 3/30$	75 × 14/30		35.0	0.737	
	75 × 20/30 + 39 × 3/30	H	53.9	1.134	
$P_2 \times 20/30 + P_1 \times 10/30 + P \times 7/30$	75 × 20/30 + 39 × 10/30 + 61 × 7/30	11	77.2	1.625	(max.) 1/
$P_2 \times 6/30 + P_1 \times 10/30 + P \times 10/30 + W_1 \times 5/30$	5/30 75 × 6/30 + 39 × 10/30 + 61 × 10/30 + 63 × 5/30	× 5/30 =	58.8	1.016	
P1 × 7/30 + P × 10/30 + W1 × 15/30	39 × 7/30 + 61 × 10/30 + 63 × 15/30	11	60.9	1.282	
P × 3/30 + W ₁ × 25/30	61 × 3/30 + 63 × 25/30	ti	58.6	1.233	
$WR = W_2 \times 30/30$	73 × 30/30	-11	73.0	1.536	
$WR = W_2 \times 30/30$	73 × 30/30	11	73.0	1.536	(max.) 2/
$W_2 \times 30/30$	$73 \times 30/30$	D	73.0	1.536	
W ₃ × 30/30	73 × 30/30	11	73.0	1.536	
W ₃ × 30/30	$73 \times 30/30$	11	73.0	1.536	
30/30	73 × 30/30	11	73.0	1.536	
30/30	$64 \times 30/30$	łt	64.0	1.347	
W ₄ × 28.75/30	64 × 28.75/30	Đ	61.3	1.290	
W4 × 20/30	. 64 × 20/30	I	42.7	0.899	
W ₅ × 10/30	54 × 10/30	11	18.0	0.379	
$WR = W_{5} \times 1.25/30$	54 × 1.25/30	11	2.3	0.048	
			970.8		
-			- - -		
Land Soaking and Land Preparation Water ; P ₂ = 150 mm/2 = 75.0 mm P ₂ = 39.0 mm P = 61.0 Total 250.0	10-day Crop Water Requirement; $W_1 = 63.0 \text{ mm}$ $W_2 = 73.0 \text{ mm}$ $W_3 = 73.0 \text{ mm}$ $W_4 = 64.0 \text{ mm}$ $W_5 = 54.0 \text{ mm}$				
Maximum Irrigation Water Requirement ; (Land Preparation Stage)	$= \frac{77.2 \times 10^{-3} \times 1.0 \text{ ha} \times 10^{4} \times 10^{3}}{10 \text{ days} \times 86,400 \times 0.55} = 1.625$	i lit/sec/ha	·· .		
Maximum Irrigation Water Requirement ; (Crop Growing Water Requirement) q	$= \frac{73.0 \times 10^{-3} \times 1.0$ ha × 10 ⁴ × 10 ³ }{10 days × 86,400 × 0.55} = 1,536	i lit/sec/ha			
	ement ; ement ;	Tr :: $54 \times 10/30$ $54 \times 1.25/30$ $54 \times 1.25/30$ $54 \times 1.25/30$ $W_1 = 63.0 \text{ mm}$ $W_2 = 73.0$ $W_2 = 73.0$ $W_3 = 64.0$ $W_4 = 64.0$ $W_5 = 54.0$ $W_5 = 10 \text{ days} \times 86,400 \times 0.55$ Tr : $10 \text{ days} \times 86,400 \times 0.55$	Tr :: $54 \times 10/30$ $54 \times 1.25/30$ $54 \times 1.25/30$ $54 \times 1.25/30$ $W_1 = 63.0 \text{ mm}$ $W_2 = 73.0$ $W_2 = 73.0$ $W_3 = 73.0$ $W_4 = 64.0$ $W_5 = 54.0$ $W_5 = 54$	Tr :: $54 \times 10/30$ $54 \times 1.25/30$ $54 \times 1.25/30$ $54 \times 1.25/30$ $W_1 = 63.0 \text{ mm}$ $W_2 = 73.0$ $W_2 = 73.0$ $W_2 = 73.0$ $W_3 = 64.0$ $W_4 = 64.0$ $W_5 = 54.0$ $W_5 = 54.0$ $W_5 = 54.0$ $W_5 = 54.0$ $W_5 = 54.0$ $W_5 = 1.625 \text{ fit/sec/ha}$ Tr : Tr :	Tr : 54×10.30 $54 \times 1.25/30$ $54 \times 1.25/30$ $54 \times 1.25/30$ $54 \times 1.25/30$ $= 2.3$ 970.8 970.8 $W_1 = 63.0 \text{ mm}$ $W_2 = 53.0 \text{ mm}$ $W_2 = 73.0$ $W_2 = 73.0$ $W_3 = 64.0$ $W_2 = 54.0$ $W_3 = 54.0$ W_3

TABLE F-17 CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (CWR) FOR PADDY (LV)

	. * *	:					· .	(unit : mm	/10 day)
	Paddy	(High Yie)	ld Variety	: 90 %)	Paddy	(Local Va	riety :10	¥)	
Month	L.P	ETa	Pe	Total	<u> </u>	ETa	Pe	Total	Average
June 1	_		~		110.6	-		110.6	11.1
2	47.8		<u> </u>	47.8	54.0		<u></u>	54.0	48.4
3	102.2		-	102.2	80.0	-	-	80.0	100.0
July 1	53.5		. 	53.5	5.4	24.0	12.0	41.4	52.3
2	46.5	6.5	3.3	56.3		40.0	20.0	60.0	56.7
3		33.5	16.8	50.3		40.0	20.0	60.0	51.3
Aug. 1		52.0	20.0	72.0		52.0	20.0	72.0	72.0
2		52.0	20.0	72.0		52.0	20.0	72.0	72.0
3		52.0	20.0	72.0		52.0	20.0	72.0	72.0
Sep. 1		52.0	20.0	72.0		52.0	20.0	72.0	72.0
2	·	52.0	20.0	72.0		52.0	20.0	72.0	72.0
3		52.0	20.0	72.0		52.0	20.0	72.0	72.0
0ct. 1		13.2	8.0	21.2		33.0	20.0	53.0	24.4
2			_	. –		27.6	16.8	44.4	4.4
3						5.4	3.2	8.6	0.9
Nov. 1					·				
2	1				· · ·			<u> </u>	
3									
Total	250.0	365.2	148.1	763.3	250.0	482.0	212.0	944.0	781.4

TABLE F-18 CROP WATER REQUIREMENT OF PADDY IN ZONE AREA

Note: L.P : Land Preparation (mm/10-day)

•

Eta : Consumptive Use of Paddy (mm/10-day)

Pe : Percolation (mm/10-day)

Max. crop water requirement : 100.0 mm/10-day = 2,104 lit/sec/ha TABLE F-19 CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (CWR) FOR PADDY (HYV) ZONE AREA

(max.) 1/ (max.) 2/ Irrigation Water Requirement (lit/sec/ha) 2.151 1.515 1.006 1.515 1.515 1.515 1.515 1.185 1.059 1.515 1.126 0.446 763.3 72.0 47.8 102.2 53.5 56.3 50.3 72.0 72.0 72.0 72.0 72.0 21.2 1,515 lit/sec/ha 2,151 lit/sec/ha Weighted 10-day CWR (mm / 10-day) 10-day Crop Water Requirement; 39 × 8.0/8 + 61.0 × 1.9/8 102.2 × 10⁻³ × 1.0 ha × 10⁴ × 10³ $72.0 \times 10^{-3} \times 1.0$ ha $\times 10^{4} \times 10^{3}$ 61 × 6.1/8. + 60 × 1.3/5 10 days × 86,400 × 0.55 10 days × 86,400 × 0.55 $W_1 = 60.0 \,\text{mm}$ $W_3 = 72.0$ $W_4 = 53.0$ W2"= 72.0. $75 \times 10.9/8$ 53.0 × 3.2/8 $75 \times 5.1/8$ 60 x 6.7/8 72.0 72.0 72.0 72.0 72.0 72.0 Equation for Calculation of Weighted 10-day CWR Ħ R σ σ Maximum Irrigation Water Requirement ; (Land Preparation Stage) Maximum Irrigation Water Requirement ; Land Soaking and Land Preparation Water; (Crop Growing Water Requirement) $WR = P \times 6.1/8 + W_1 \times 1.3/8$ $WR = P_3 \times 8/8 + P \times 1.9/8$ 150 mm/2 = 75.0 mm $WR = P_2 \times 10.9/8$ $WR = W_1 \times 6.7/8$ WR = W₄ × 3.2/8 $WR = P_2 \times 5.1/8$ 39.0 mm $WR = W_2$ $WR = W_2$ $WR = W_3$ $WR = W_3$ $WR = W_3$ $WR = W_2$ 250.0 61.0 8 H [ota] Total à à ລັ 17 21 Month 2 June Sept. Aug. ti O γn Š Ć 2 Ξ 2

TABLE F-20 CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (CWR) FOR PADDY (LV) ZONE AREA

No. Month Equation for Calculation of Weighted 10day CWR Weighted 10day CWR 1 June 1 WR = $P_2 \times 113.8$ 75.0 × 11.8.8 110 2 WR = $P_2 \times 12.8 + P_1 \times 3.08$ 75.0 × 11.8.8 10 24 3 3 WR = $P_2 \times 42.8 + P_1 \times 3.08$ 75.0 × 4.26 + 39 × 3.0.8 56.0 57.0	-						
June 1 WR Px 1.10.6 1 WR Px 1.10.6 1 Mm/ 10-day) = 2 WR $P_2 \times 4.28$ $P_1 \times 3.08$ 75.0×11.80 75.0×11.80 75.0×11.80 75.0×11.80 $=$	No	Month	Equation for Calculation of Weighted	10-day CWR	Weighted 10-day O	WR	Irrigation Water Requirement
June 1 WR = P_X 11.8/8 75.0 × 11.8/8 75.0 × 11.8/8 75.0 × 12.8/8 72.0 72.					(mm/10-day)		(lit/sec/ha)
2 WR = P ₂ × 4.2/8 + P ₁ × 3.0/8 750 × 4.2/8 + 39 × 3.0/8 = 3 WR = P ₁ × 5.0/8 + W ₁ × 4.8/8 500 × 0.7/8 + 60 × 4.3/8 = July WR = W ₁ WR = W ₁ 500 × 0.7/8 + 60 × 4.3/8 = 2 WR = W ₁ 500 500 × 0.7/8 + 60 × 4.3/8 = 2 WR = W ₁ 500 500 = = 2 WR = W ₁ 500 500 = = 2 WR = W ₂ 72.0 500 = = 3 WR = W ₂ 72.0 72.0 = = 3 WR = W ₂ 72.0 72.0 = = 3 WR = W ₂ 72.0 72.0 53.0 53.0 = = 4 WR = W ₄ 53.0 53.0 53.0 53.0 = = 5 WR = W ₄ 1.3/8 53.0 1.3/8 = = 2.2/1 6 WR = W ₄ 1.3/8 53.0 1.3/8 = = 2.2/1 7 WR = W ₄ 1.3/8 53.0	⊷	June 1	$WR = P_2 \times 11.8/8$		75.0 × 11.8/8	= 110.6	2.327 (max.) ^{1/}
3 WR = P, x 5.08 + P, x 7.36 39.0 x 5.08 + 61 x 7.88 = July 1 WR = W1 60.0 $60.0 \times 0.78 + 60 \times 4.388$ = 3 WR = W1 60.0 $60.0 \times 0.78 + 60 \times 4.388$ = 3 WR = W1 60.0 $60.0 \times 0.78 + 60 \times 4.388$ = 3 WR = W1 50.0 $60.0 \times 0.78 + 60 \times 4.388$ = 2 WR = W2 72.0 $60.0 \times 0.78 + 60 \times 4.388$ = 3 WR = W2 72.0 $72.0 \times 0.78 + 60 \times 4.388$ = 3 WR = W2 72.0 $72.0 \times 0.78 + 60 \times 4.388$ = 3 WR = W2 72.0 72.0 = $72.0 \times 0.78 \times 6.78$ = 3 WR = W4 53.0×6.78 53.0 \times 6.78 53.0 \times 6.78 = = 4 WR = W4 \times 6.78 53.0 \times 1.368 = = = = 0ct. 1 WR = W4 × 6.78 53.0 \times 1.368 = = = = = = = 0ct. 1 WR = W4 × 1.378 53.0 \times 1.368 = = = = = = =	2	5	т. Т. Х		75.0 × 4.2/8 + 39 × 3.0/8	= 54.0	1.136
July 1 WR = P × 0.7/8 + W ₁ × 4.8/8 60.0 60.0 × 0.7/8 + 60 × 4.8/8 = 2 WR = W ₁ 8 60.0 60.0 60.0 = Aug. 1 WR = W ₂ 72.0 = 60.0 = 2 WR = W ₂ 72.0 72.0 = = 3 WR = W ₂ 72.0 72.0 = = 3 WR = W ₂ 72.0 72.0 = = 3 WR = W ₂ 53.0 6.7/8 53.0 = = 0ct. 1 WR = W ₄ 53.0 1.3/8 = = = 3 WR = W ₄ × 1.3/8 53.0 6.7/8 53.0 1.3/8 = = 1 total Total Total 53.0 1.3/8 = = = 1 total Total Total 53.0 1.3/8 = = 2.2.0 1 total Total 25.0 53.0 1.3/8 = = 2.2.0 1 total Total 25.0	m	e	$VVR = P_1 \times 5.0/8 + P \times 7.3/8$		39.0 × 5.0/8 + 61 × 7.8/8	= 80.0	1.684
2 WR = W ₁ 60.0 = 3 WR = W ₂ 72.0 = 2 WR = W ₂ 72.0 = 2 WR = W ₂ 72.0 = 3 WR = W ₂ 72.0 = 5ept. 1 WR = W ₂ 72.0 = 3 WR = W ₂ 72.0 = = 0ct. 1 WR = W ₂ 72.0 = = 3 WR = W ₄ 53.0 72.0 = = 0tal = 53.0 × 1.3/8 = = = 10tal Total 50.0m = = 9 10tal Total 25.0 m W ₂ = 53.0 W ₂ = 53.0 = 237 litteet 11 Maximum irrigation Water Requirement ; M ₂ = 61.0 W ₂ = 53.0 W ₂ = 53.0 = 237 litteet =	ধ	July 1	= P × 0.7/8 + W ₁ ×		$60.0 \times 0.7/8 + 60 \times 4.8/8$	= 41.3	0.869
3 WR = W1 6.0 = Aug. 1 WR = W2 72.0 = 2 WR = W2 72.0 = 3 WR = W3 72.0 = 5ept. 1 WR = W3 72.0 = 2 WR = W3 72.0 = 3 WR = W4 53.0 72.0 = 3 WR = W4 53.0 53.0 5.72.0 = 2 WR = W4 53.0 53.0 5.78 = = 0ct. 1 WR = W4 53.0 1.3/8 =	ŝ	3	$WR = W_1$		60.0	= 60.0	1.263
Aug. 1 WR = W2 72.0 = 2 WR = W2 72.0 = 3 WR = W3 72.0 = 5ept. 1 WR = W3 72.0 = 3 WR = W3 72.0 = 5ept. 1 WR = W3 72.0 = 3 WR = W4 5.708 53.0 × 6.708 = 3 WR = W4 × 6.708 53.0 × 6.708 = = 0ct. 1 WR = W4 × 6.708 53.0 × 6.708 = = 3 WR = W4 × 1.368 53.0 × 1.368 = = 9 Itald Solving and Land Preparation Water W1 = 60.0mm W1 = 60.0mm = = 70tal 250.0m W3 = 72.0 W3 = 72.0 W1 = 60.0mm W1 = 60.0mm P2 = 39.0mm W1 = 60.0mm W2 = 52.0 W3 = 72.0 W1 = 60.0mm W2 = 72.0 W1 = 2.327 lit/secd P2 = 150 mm/2 = 75.0 mm W2 = 52.0 W2 = 52.0 W2 = 72.0 W2 = 72.0 W2 = 52.0 W1 = 53.0 E Z/1 = 2.327 lit/secd = 2.327 lit/secd Z/1 = 2.327 lit/secd Z/1 = 2.320 mm W2 = 5.3	9	m	$WR = W_1$	•	60.0	= 60.0	1.263
2 WR = W2 72.0 = 3 WR = W2 72.0 = 5ept. 1 WR = W3 72.0 = 2 WR = W3 72.0 = = 3 WR = W4 53.0 53.0 = = 0ct. 1 WR = W4 53.0 53.0 6.7/8 = = 2 WR = W4 × 6.7/8 53.0 × 1.3/8 = = 9 0ct. 1 WR = W4 × 6.7/8 53.0 × 1.3/8 = = 9 10ct. 1 WR = W4 × 0.7/8 53.0 × 1.3/8 = = 9 10ctal 2 WR = W4 × 1.3/8 53.0 × 1.3/8 = = 10ctal 2 WR = W4 × 0.7/8 = = 9 10ctal 2 30 mm2 = 75.0 mm W1 = 60.0 mm W1 = 60.0 mm W1 = 60.0 mm W1 = 60.0 mm = 2.21 lit/sec P = = 130 mm2 = 75.0 mm W2 = 72.0 W2 = 70.0 W2 = 70.0 W2 = 70.0 W2 = 70.0 W2 =	~	Aug. 1	$WR = W_2$		72.0	= 72.0	1.515 (max.) 2/
3 WR = W2 72.0 = 2 WR = W3 72.0 = 3 WR = W3 72.0 = 3 WR = W3 53.0 53.0 = 3 WR = W3 53.0 53.0 = = 0ct. 1 WR = W4 53.0 53.0 = = 0ct. 1 WR = W4 53.0 53.0 = = 0ct. 1 WR = W4 53.0 53.0 = = 3 WR = W4 53.0 53.0 = = 3 WR = W4 1.3/8 53.0 = = 10tal 2 WR = W4 1.3/8 = = 9 Ital 2 WR = W4 1.3/8 = 2.321 lit/sed = P2 190 mm/2 = 75.0 mm W2 = 72.0 W2 W2 = 72.0 W2 W2 = 72.0 W2 W2 = 72.0 W2 = 2.327 lit/sed P2 = 50.0 mm W2 = 72.0 W2 = 2.327 lit/sed 10.1 Sto	ω	2	11		72.0	= 72.0	1.515
Sept. 1 WR = W3 72.0 = 2 WR = W3 72.0 = 3 WR = W4 53.0 53.0 = 3 WR = W4 53.0 53.0 = = 0ct. 1 WR = W4 × 6.7/8 53.0 53.0 = = 0ct. 1 WR = W4 × 6.7/8 53.0 53.0 53.0 = = 0xt. 1 WR = W4 × 1.3/8 53.0 × 1.3/8 = = 9 Iand Soaking and Land Preparation Water i W. W1 = 60.0 mm W1 = 60.0 mm = 9 Iand Soaking and Land Preparation Water i W. W1 = 60.0 mm W2 = 72.0 W1 = 50.0 mm = 2,327 lit/sec P2 = 61.0 Wm W2 = 72.0 W4 = 53.0 W1 = 53.0 = 2,327 lit/sec P2 = 61.0 Waximum Irrigation Water Requirement ; W1 = 53.0 W2 = 72.0 W2 = 2,327 lit/sec 10 days × 86,400 × 0.55 = 2,327 lit/sec 1/ Maximum Irrigation Water Requirement ; Q1 days × 86,400 × 0.55 = 2,327 lit/sec 1,0449 × 10.4 × 10.3 1,0149 × 10.4 × 10.3 1,014	თ	m	li		72.0	= 72.0	1.515
2 $WR = W_3$ 72.0 = 3 $WR = W_4$ 53.0 57.0 = 2 $WR = W_4 \times 6.7/8$ 53.0 × 6.7/8 = = 3 $WR = W_4 \times 1.3/8$ 53.0 × 1.3/8 = = 3 $WR = W_4 \times 1.3/8$ 53.0 × 1.3/8 = = 1 Total Total 53.0 × 1.3/8 = = 2 $WR = W_4 \times 1.3/8$ 53.0 × 1.3/8 = = 9 1 Total Ioday Crop Water Requirement; $W_1 = 60.0 \text{ mm}$ 9 1 $P_2 = 150 \text{ mm}$ $W_2 = 72.0 \text{ mm}$ 10 10	0	Sept. 1	11		72.0	= 72.0	1.515
3 $W_R = W_4$ 53.0 72.0 = 53.0 × 6.7/8 53.0 × 6.7/8 = = = = = = 53.0 × 6.7/8 =		2	H		72.0	. = 72.0	1.515
Oct. 1 WR = W4 53.0 $53.0 \times 6.7/8$ $53.0 \times 6.7/8$ $53.0 \times 6.7/8$ $= 4$ 2 WR = W4 × 0.7/8 $53.0 \times 6.7/8$ $53.0 \times 6.7/8$ $= 4$ 3 WR = W4 × 1.3/8 $53.0 \times 6.7/8$ $= 4$ a Wa $53.0 \times 6.7/8$ $= 4$ a WR = W4 × 1.3/8 $53.0 \times 1.3/8$ $= 4$ a Itand Soaking and Land Preparation Water requirement; 94 P_2 150 mm/2 75.0 mm P_2 150 mm/2 72.0 mm P_2 $= 39.0 \text{ mm}$ W_2 $= 72.0$ P_2 $= 25.0.0$ W_2 $= 72.0$ P_2 $= 25.0.0$ W_2 $= 2.327$ lit/se	N	£			72.0	= 72.0	1.515
2 WR = W_4 × 6.7/8 53.0 × 6.7/8 = 4 3 WR = W_4 × 1.3/8 53.0 × 1.3/8 = 4 Fotal Total 53.0 × 1.3/8 = 4 Total Total 53.0 × 1.3/8 = 4 P2 = 150 mm/2 = 75.0 mm $W_1 = 60.0 mm$ 94 P2 = 39.0 mm $W_2 = 72.0$ $W_1 = 60.0 mm$ P2 = 39.0 mm $W_2 = 72.0$ $W_2 = 72.0$ P2 = 39.0 mm $W_2 = 72.0$ $W_2 = 72.0$ P2 = 39.0 mm $W_2 = 72.0$ $W_2 = 53.0$ P3 = 0.0 mm/2 = 75.0 mm $W_2 = 53.0$ $W_1 = 60.0 mm$ P2 = 39.0 mm $W_2 = 72.0$ $W_2 = 53.0$ P3 = 0.0 mm $W_2 = 53.0$ $W_2 = 53.0$ P4 10 days × 86,400 × 0.55 = 2,327 lit/sec/1 P3 10 days × 86,400 × 0.55 = 2,327 lit/sec/1 P4 10 days × 86,400 × 0.55 = 1,515 lit/sec/1 P3 10 days × 86,400 × 0.55 = 1,515 lit/sec/1	m	Oct.	$WR = W_4$		53.0	= 53.0	1.115
3 WR = W ₄ × 1.3/8 53.0 × 1.3/8 = 94 Total Total 53.0 × 1.3/8 = 94 Total S0 mm/2 = 75.0 mm W ₁ = 60.0 mm 94 P ₂ = 150 mm/2 = 75.0 mm W ₂ = 72.0 W ₄ = 53.0 94 P ₂ = 39.0 mm W ₂ = 72.0 W ₄ = 53.0 94 P ₂ = 150 mm/2 = 75.0 mm W ₂ = 72.0 W ₄ = 53.0 94 P ₂ = 10.0 W ₄ = 53.0 W ₄ = 53.0 94 P = 61.0 W ₄ = 53.0 M ₄ = 53.0 95 95 1/<	4	3	$WR = W_4 \times 6.7/8$		53.0 × 6.7/8	= 44.4	0.934
Soaking and Land Preparation Water ; $\begin{array}{l} 10-day Crop Water Requirement; \\ W_1 = 60.0 mm \\ W_2 = 72.0 \\ W_3 = 72.0 \\ W_4 = 53.0 \\ W_5 = 72.0 $	ស	с С	$WR = W_4 \times 1.3/8$		53.0 × 1.3/8	= 8.6	0.181
Soaking and Land Preparation Water ;10-day Crop Water Requirement; $z = 150 \text{ mm/2} = 75.0 \text{ mm}$ $W_1 = 60.0 \text{ mm}$ $z = 39.0 \text{ mm}$ $W_2 = 72.0 \text{ mm}$ $z = 61.0 \text{ mm}$ $W_2 = 72.0 \text{ mm}$ $z = 61.0 \text{ mm}$ $W_2 = 53.0 \text{ mm}$ $z = 20.0 \text{ mm}$ $W_2 = 53.0 \text{ mm}$ $z = 20.0 \text{ mm}$ $W_2 = 53.0 \text{ mm}$ $z = 72.0 \text{ mm}$ $W_2 = 53.0 \text{ mm}$ $z = 72.0 \text{ mm}$ $W_2 = 53.0 \text{ mm}$ $z = 72.0 \text{ mm}$ $W_2 = 53.0 \text{ mm}$ $z = 72.0 \text{ mm}$ $W_2 $		Tota				944.0	
$z = 39.0 \text{ mm}$ $z = 39.0 \text{ mm}$ $w_{3} = 72.0$ $w_{3} = 72.0$ $w_{4} = 53.0$ $w_{4} = 53.0$ $w_{4} = 53.0$ $w_{5} = 72.0 \text{ mm}$ $w_{6} = 53.0$ $w_{7} $		Land: P2	<pre>coaking and Land Preparation Water ; = 150 mm/2 = 75.0 mm</pre>		10-day Crop Water Requirement ; W1 = 60.0 mm		
al 250.0 Maximum Irrigation Water Requirement ; $q = \frac{110.6 \times 10^{-3} \times 1.0 \text{ ha} \times 10^{4} \times 10^{3}}{10 \text{ days} \times 86,400 \times 0.55} = \frac{120.6 \times 10^{-3} \times 1.0 \text{ ha} \times 10^{4} \times 10^{3}}{10 \text{ days} \times 86,400 \times 0.55} = 1000000000000000000000000000000000000$		a a	11 1		ររ		
Maximum Irrigation Water Requirement ; (Land Preparation Stage) $q = \frac{110.6 \times 10^{-3} \times 1.0 \text{ ha} \times 10^{-4} \times 10^{-3}}{10 \text{ days} \times 86,400 \times 0.55} = Maximum Irrigation Water Requirement ; (Crop Growing Water Requirement) q = \frac{72.0 \times 10^{-3} \times 1.0 \text{ ha} \times 10^{-4} \times 10^{-3}}{10 \text{ days} \times 86,400 \times 0.55} = $		Tot	Ι.		11	:	
(Land Preparation Stage) $1 = 10$ days x 86,400 x 0.55 Maximum Irrigation Water Requirement ; $72.0 \times 10^{-3} \times 1.0$ ha x $10^{-4} \times 10^{-3}$ = (Crop Growing Water Requirement) $q = 72.0 \times 10^{-3} \times 1.0$ ha x $10^{-4} \times 10^{-3}$ =		1/ :	Maximum Irrigation Water Requirement ;	1	· u	2 327 lit/sec/ha	
Maximum Irrigation Water Requirement ; $72.0 \times 10^{-3} \times 1.0$ hz x $10^{4} \times 10^{3}$ = (Crop Growing Water Requirement) $q = 10$ days x 86,400 x 0.55			(Land Preparation Stage)		l		
q = 10 days x 86,400 x 0.55		2/ :	Maximum Irrigation Water Requirement ;	72.0		1	
			(Crop Growing water kequirement)	1	1	1,515 littsecha	

TABLE F-21 CROP WATER REQUIREMENT OF PADDY IN BLOCK AREA

				· · · · · · · · · · · · · · · · · · ·				(unit : mm	/10_day)
	Paddy	(High Yie	ld Variety	: 90 %)	Paddy	(Local Va	riety :10	%)	
Month	L. P	ETa	Pe	Total	L.P	ETa	Pe	Total	Average
								· · · · · · · · · · · · · · · · · · ·	
June 1					139.5		<u> </u>	139.5	14.0
2	75.0			75.0	33.9	-		33,9	70.9
3	75.0		-	75.0	76.6			76,6	75.2
July 1	63.4			63.4		29.6	14.8	44.4	61.5
2	36.6	10.4	5.2	52.2	·	40.0	20.0	60.0	53.0
3		40.0	20.0	60.0		40.0	20.0	60.0	60.0
Aug. 1		52.0	20.0	72.0		52.0	20.0	72.0	72.0
22		52.0	20.0	72.0		52.0	20.0	72.0	72.0
3		52.0	20.0	72.0		52.0	20.0	72.0	72.0
Sep. 1		52.0	20.0	72.0		52.0	20.0	72.0	72.0
2		<u> </u>	20.0	72.0		52.0	20.0	72.0	72.0
. 3		52.0	20.0	72.0		52.0	20.0	72.0	72.0
<u>Oct. 1</u>		8.6	5.2	13.8	-	33.0	20.0	53.0	17.7
2						24.4	14.8	39.2	3.9
3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	
Nov. 1	·	· · · · · · · · · · · · · · · · · · ·						a	
2							 		
3							· · · · · · · · · · · · · · · · · · ·		
Total	250.0	371.0	150.4	771.4	250.0	479.0	209,6	938.6	788.1

L.P : Land Preparation (mm/10-day) Note;

Eta : Consumptive Use of Paddy (mm/10-day)

Pe : Percolation (mm/10-day)

Pe : Percolation (mm/10-day)

Max. crop water requirement (average) ; 75.2 mm/10-day

= 1.582 lit./sec/ha = 2.935 lit./sec/ha

Max. crop water requirement (by crop) ; 139.5 mm/10-day

TABLE F-22 CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (CWR) FOR PADDY (HYV) BLOCK AREA

No.	Month	Equation for Calculation of Weighted 10-day CWR	10-day CWR	Weighted 10-day CWR	CWR	:	Requ	Requirement
				(mm / 10-day)			(lity	(lit/sec/ha)
4	June 2	$WR = P_2 \times 5/5$	75.0 × 5/5	× 5/5	= 3	75.0	1.578	
N	m	$WR = P_2 \times 5/5$	75.0 × 5/5	× 5/5	1	75.0	1.578	(max.) 1/
m	July 1	$WR = P_1 \times 5/5 + P \times 2/5$	39.0 >	39.0 × 5/5 + 65 × 2/5	11	63.4	1.334	
4	2	$WR = P \times 3/5 + W_1 \times 1.3/5$	61.0 >	$61.0 \times 3/5 + 60 \times 1.3/5$	נא וו	52.2	1.149	
ы	m	$WR = W_1$	60.0		ц П	60.0	1.263	
Q	Aug. 1	$WR = W_2$	72.0		1	72.0	1.515	(max.) 2/
2	2	$WR = W_2$	72.0			72.0	1.515	
00	m	$WR = W_2$	72.0		"	72.0	1.515	
с, С	Sept. 1	$WR = W_3$	72.0	· · ·	=	72.0	1.515	
10	3	WR = W ₃	72.0			72.0	1.515	
11	m	WR = W ₃	72.0			72.0	1.515	
12	Oct.	$WR = W_4 \times 1.3/5$	53.0 >	53.0 × 1.3/5	••	13.8	0.290	
	Total				77	771.4		
	Land So P2 P2 P2 Total	Land Soaking and Land Preparation Water ; $P_2 = 150 \text{ mm/2} = 75.0 \text{ mm}$ $p_2 = 39.0 \text{ mm}$ p = 61.0 Total 250.0	10-day W1 W2 W3 W3	10-day Crop Water Requirement; $W_1 = 60.0 \text{ mm}$ $W_2 = 72.0 \text{ W}_3 = 72.0 \text{ W}_3 = 72.0 \text{ W}_4 = 53.0 \text{ W}_4$				
	11 :	Maximum irrigation Water Requirement ; (Land Preparation Stage)	$q = \frac{75.0 \times 10^{-3} \times 1$	75.0 × 10 ⁻³ × 1.0 ha × 10 ⁴ × 10 ³ = 10 days × 86,400 × 0.55	1,578 lit/sec/ha	ę		
	2/:	Maximum Irrigation Water Requirement ; (Crop Growing Water Requirement)	$q = \frac{72.0 \times 10^{-3} \times 1}{10 \text{ days } \times 10^{-3} \times 1}$	72.0 × 10 ⁻³ × 1.0 ha × 10 ⁴ × 10 ³ 10 days × 86,400 × 0.55	1,515 lit/sec/ha	e		

CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (CWR) FOR PADDY (LV) BLOCK AREA
R PADDY
(CWR) FO
 REQUIREMENT
WATER
CROP
N OF WEIGHTED CROP W
CALCULATION (
TABLE F-23

.

No	Month	Equation for Calculation of Weighted 10-day CWR	10-day CWR	Weighted 10-day CWR	OWR	Irrigation Water Requirement
				(mm / 10-day)		(lit/sec/ha)
-	June 1	$WR = P_2 \times 9.3/5$	·	75.0 × 9.3/5	= 139.5	2.936 (max.) 1/
7	4	$WR = P_2 \times 0.7/5 + P \times 3.0/5$:	75.0 × 0.7/5 + 39 × 3/5	= 33,9	0.713
m	ι Γ	$WR = P_1 \times 2.0/5 + P \times 5.0/5$	I	$39.0 \times 2.0/5 + 61 \times 5/5$	= 76.6	1 612
4	July 1	$WR = W_1 \times 3.7/5$		60.0 × 3.7/5	= 44,4	0.934
ŝ	7	$WR = W_1$		60.0	= 60.0	1.263
່	• m •	WR = W1		60.0	= 60.0	1.263
~	Aug. 1	WR = W ₂		72.0	= 72.0	1.515 (max.) 2/
ω	3	$WR = W_2$		72.0	= 72.0	1.515
σ	m	$WR = W_2$		72.0	= 72.0	1.515
10	Sept. 1	$WR = W_3$		72.0	= 72.0	1.515
13	2	$WR = W_3$		72.0	= 72.0	1.515
12	m	$WR = W_3$		72.0	= 72.0	1.515
τ Ω	oct. O	WR = W4		53.0	= 53.0	1.115
14	2	$WR = W_4 \times 3.7/5$		$53.0 \times 3.7/5$	= 39,2	0.825
	•					
	Total				938,6	
-	Land 5	<u> </u>		10-day Crop Water Requirement ;		
	. 6	1		1 11		
	. 0.	11			•	·
				11		
	: /1	Maximum Irrigation Water Requirement ;	139.5 :	139.5 × 10 ⁻³ × 1.0 ha × 10 ⁴ × 10 ³		
		(Land Preparation Stage)	р П	10 days × 86,400 × 0.55	2,936 lit/sec/na	
	· .					
	2/ :	Maximum Irrigation Water Requirement ; (Crop Growing Water Requirement)	$q = 72.0 \times 10^{-1}$	72.0 × 10 ⁻³ × 1.0 ha × 10 ⁴ × 10 ³	1,515 lit/sec/ha	
			-			

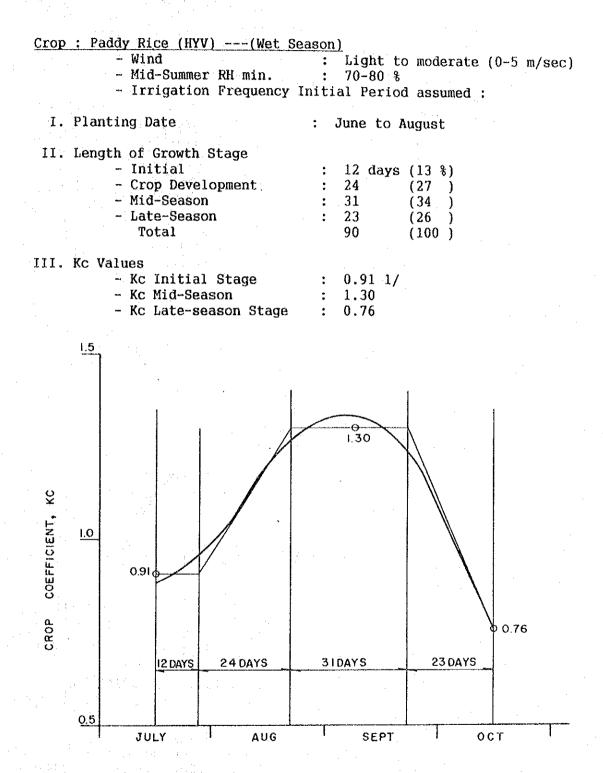
		· · ·			······································		(unit : mm/10-day)				
	Grou	undnut (67	<u>%)</u>		<u>ybean (22)</u>		Wat	ermelon (7	%)		
Month	<u>P.I</u>	ETa	Total	<u>P.I</u>	ETa	Total	P. I	ETa	Total		
Dec. 1	26.7	4.5	31.2	26.7	4.5	31.2	26.7	4.5	31.2		
2	26.7	13.5	40.2	26.7	13.5	40.2	26.7	13.5	40.2		
3	26.7	22.5	<u>49.2</u>	26.7	22.5	49.2	26.7	22.5	<u>49, 2</u>		
Jan. 1		43.0	43.0		<u>50.0</u>	50.0		41.0	41.0		
2		43.0	43.0		50.0	50.0		41.0	41.0		
3		43.0	43.0		50.0	50.0		41.0	41.0		
Feb. 1		55.0	55,0		62,0	62.0		52.0	52.0		
2		55.0	55.0		62.0	62.0	-	52.0	<u>52.0</u>		
3		55.0	55.0		62.0	62.0		52.0	52.0		
Mar. 1		41.0	41.0		48.0	48.0		46.0	<u>46.0</u>		
2		41.0	41.0		48.0	48.0		46.0	46.0		
3		34.2	34.2		40.0	40.0		38.3	38.3		
Apr. 1		14.0	14.0		20.0	20.0		20.0	<u>20.0</u>		
2		4.7	4.7		6.7	6.7		6.7	6.7		
3						-					
Total	80.1	469.4	549.5	80.1	539.2	619.3	80.1	476.5	556.6		

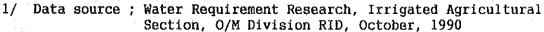
TABLE F-24 CROP WATER REQUIREMENT OF UPLAND CROPS

	Chilli (1 %)			Str	ingbean (3	%)		Average	
Month	P. I	ETa	Total	P.I	ETa	Total	P. I	ETa	Total
Dec. 1	26.7	4.5	31,2	26.7	4.5	31.2	26.7	4.5	31.2
2	26.7	13.5	40.2	26.7	13.5	40.2	26.7	13.5	40.2
3	26.7	22.5	49.2	26.7	22.5	49.2	26.7	22.5	49.2
Jan, 1		43.0	43.0		51.0	51.0		44.6	44.6
2		43.0	43.0		51.0	51.0		44.6	44.6
3		43.0	43.0	-	51.0	51.0		44.6	44.6
Feb. 1		55.0	55.0		62.0	62.0		56.5	56.5
2		55.0	55.0		62.0	62.0		56.5	56.5
3		55.0	55.0		62.0	62.0		56.5	<u>56.5</u>
Mar, 1		41.0	41.0		48.0	48.0		43.1	43.1
2		41.0	41.0		48.0	48.0	-	43.1	43.1
3		34.2	34.2		40.0	40.0		35.9	35.9
Apr. 1		14.0	14.0		20.0	20.0		15.9	15.9
2		4.7	4.7		6.7	6.7		5.3	5,3
3									
Total	80.1	469.4	549.5	80.1	542.2	622.3	80.1	487.4	567.5

Note : P.I : Pre-Irrigation

ETa : Consumptive Use of Upland Crop


Max. crop water requirement (average) : 56.5 mm/10-day = 1.308 lit./sec/ha


F-25 CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (CWR) FOR UPLAND AND PERENNIAL CROPS

						Crop Water Re	quirement for f	bry Season Uplar	nd Crops					;	Crop Water Re	equirement for DryS	eason Upland	Crops		CWR for Per	remial Crop
NC	NOUTH	Equation	Gre	oundnut	S	oybean	Wate	rmelon		Chilli	Sti	ingbean	A1 (mm/10-day)	Verage (iit/sec/ha)	Equation	Groundnu	it	(mm/10day)	(Lit/seo/ha)	(rnm/10day)	(Lit/sec/ha)
1	Dec 1	$WR = P \times 10/30 + W_1 \times 5/30$	80 × 10/30 +	27 × 5/30 = 31.2	80 × 10/30 +	27 × 5/30 = 31.2	80 × 10/30 + 2	×5/30 = 31.2	80 × 10/30 +	27 x 5/30 = 31.2	80 x 10/30 +	27×5/30 = 31.2	31,2	0.722	······································					35.0	0.810
2	2	$WR = P \times 10/30 + W_1 \times 15/30$	80 × 10/30 +	27 x 15/30 = 40.2		27 × 15/30 = 40.2	80 x 10/30 + 2	× 15/30 = 40.2	80 × 10/30 +	27 x 15/30 = 40.2	80 × 10/30 +	27 × 15/30 = 40.2	40.2	0.931						35.0	0.810
3	3	WR = P x 10/30 + W ₁ x 25/30	80 × 10/30 +	27 × 25/30 = 49.2	80 × 10/30 +	27 x 25/30 = 49.2	80 × 10/30 + 2	/ x 25/30 = 49.2	80×10/30+	27 x 25/30 = 49.2	80 x 10/30 +	27 × 25/30 = 49.2	49.2	1.139					, . ,	35.0	0.810
4	Jan 1	$WR = W_2 \times 30/30$	43 × 30/30	= 43.0	50 x 30/30	<i>≈</i> 50.0	41 × 30/30	= 41.0	43×30/30	= 43.0	51 x 30/30	⇒ 51.0	44.6	1.032						39.0	0.903
5	2	$WR = W_2 \times 30/30$	43 × 30/30	= 43.0	50 x 30/30	= 50.0	41 × 30/30	= 41.0	43 × 30/30	= 43.0	51 × 30/30	= 51.0	44.6	1.032						39.0	0.903
6	3	WR = W ₂ × 30/30	43 x 30/30	= 43.0	50 x 30/30	= 50.0	41 × 30/30	≈ 41.0	43 × 30/30	= 43.0	51×30/30	= 51.0	44.6	1.032	· · · · · · · · · · · · · · · · · · ·					39.0	0.903
7	Feb 1	$WR = W_3 \times 30/30$	55 x 30/30	= \$5.0	62 x 30/30	= 62.0	52×30/30	= 52.0	55 x 30/30	= 55.0	62 × 30/30	≈ 62,0	56.5	1.308 (max	x.)					47.0	1.088
8	2	$WR = W_3 \times 30/30$	55 x 30/30	= 55.0	62 x 30/30	= 62.0	52 × 30/30	≈ 52.0	55 × 30/30	= 55.0	62 x 30/30	= 62.0	56.5	1.308						47.0	1.088
9	3	WR = W ₁ × 30/30	55 × 30/30	= 55.0	62 x 30/30	= 62.0	52 × 30/30	= 52.0	55 x 30/30	≈ 55.0 .	62 × 30/30	<i>==</i> 62.0	56.5	1.308						47.0	1.088
10	Mar 1	WR = W4 × 30/30	41 × 30/30	= 41.0	48 × 30/30	= 48.0	46 × 30/30	= 46.0	41 × 30/30	= 41.0	48 × 30/30	= 48.0	43.1	0.998	•••••					49.0	1.134
11	2	WR = W4 × 30/30	41×30/30	= 41.0	48 x 30/30	= 48.0	46×30/30	= 46.0	41 x 30/30	= 41.0	48×30/30	= 48.0	43.1	0.998						49.0	1.134 1.134
12	3	$WR = W_4 \times 25/30$	41 x 25/30	≈ 34.2	48 × 25/30	= 40.0	46 x 25/30	= 38.3	41 x 25/30	= 41.0	48 × 25/30	= 40.0	35,9	0.831						49.0	
13	Apr 1	$WR = W_5 \times 15/30$	28 x 15/30	= 14.0	40 x 15/30	= 20.0	40 × 15/30	≈ 20.0	28 x 15/30	≈ 14.0	40×15/30	∞ 20.0	15.9	0.368						52.0	1.204 (max.) 1.204
14	2	$WR = W_5 \times 5/30$	28 x. 5730	= 4.7	40 x 5/30	≈ 6.7	40 × 5/30	≈ 6.7	28 x 5730	≕ 4.7	40 x 5/30	= 6.7	5.3	0.123						52.0 52.0	1.204
15	3																• • • • • • • • • • • • • • • • • • • •			46.0	1.065
16	May 1																			46.0	1.065
17	2							· · ·							· *					46.0	1.065
18	3																		0.729	38.0	0.880
19	June 1														$WR = P \times 10/30 + W_1 \times 5/30$	80 × 10/30 + 29 × 5		31.5	0.954	38.0	0.880
20	2					· · · ·									$WR = P \times 10/30 + W_1 \times 15/30$	80 × 10/30 + 29 × 1		50.8	1,176	38.0	0.880
21												• • • • • • • • • • • • • • • • • • • •		•••••••••••••••••••	$WR = P \times 10/30 + W_1 \times 25/30$	80 × 10/30 + 29 × 2	= 53.0	53.0	1,227 (ma:		0.880
22	July 1									· .					$WR = W_2 \times 30/30$	53 x 30/30	= 53.0 = 53.0	53.0	1.227	38.0	0.880
23	2										1.1				$WR = W_2 \times 30/30$	53 x 30/30	= \$3.0 = \$3.0	53.0	1.227	38.0	0.880
24	3		· · · · · · · · · · · · · · · · · · ·						<i></i>					••••••	WR = W ₂ x 30/30	53 x 30/30	= 51.0	51.0	1.181	37.0	0.856
25	Aug. 1			1		· · · ·									$WR = W_3 \times 30/30$	51 x 30/30 51 x 30/30	= 51.0 = 51.0	51.0	1.181	37.0	0.856
26	2		•			1997 - 19									$WR = W_3 \times 30/30$ $WR = W_3 \times 30/30$	51 × 30/30	= 51.0	51.0	1,181	37.0	0.856
		·····								·····	•••••	•••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		$WR = W_{4} \times 30/30$	31×30/30	= 32.0	32.0	0.741	34.0	0.787
28	Sept. 1			·											$WR = W_4 \times 30/30$ WR = W_4 × 30/30	32 x 30/30	= 32.0	32.0	0.741	34.0	0.787
29	2														$WR = W_{4} \times 25/30$	32 x 25/30	= 26,7	26.7	0.618	34.0	0.787
50								· · · <i>·</i> · · · · · · · · · · · · · · ·		·····	•••••	••••••••••••	••••••	····	$WR = W_{c} \times 15/30$	28 × 15/30	= 14.0	14.0	0.324	37.0	0.856
31	Oct 1							e			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	· · · ·		· .	$WR = W_{5} \times 5/30$ $WR = W_{5} \times 5/30$	28 x 5/30	= 4.7	6.7	0.109	.37.0	0.856
32	2.															10X 3199				37.0	0.856
					·····		•••••	·····		·····	· · · · · · · · · · · · · · · · · · ·									38.0	0.880
34	Nov. 1											and the second s					:			38.0	0.880
35 70	2											1								38.0	0.880
	3		·····				· · · · · · · · · · · · · · · · · · ·		<u></u>			622.3	567.2				544.9	544.9	· .	1.470.0	
	Total		·····	549.5		619,3		556.6		549.5	· · · · · · · · · · · · · · · · · · ·		JG7.2								

1/ :		water require Dry	Season Upland Cr	ops	(ur	nit : mm/10-day) Wet Season Upland Crops		2 / : Cropping ratio of dry season upland crops (Type-1) ; Groundnut : 67 % Soybean : 22 % Watermelon : 7 %
W	Groundaut	Soybean	Watermelon	Chilli	Stringbean	Vegetable	· .	Chilli : 1%
<u></u> Р	80	80	80	80	80	80		Stringbean : 3%
W ₁	27	27	27	27	27	29		
W2	43	50	41	43	51	53		
w,	55	62	52	: 55	62	51		
W4	41	48	46	41	48	32		
w,	28	40	40	28	40	28	· · · ·	

FIGURE F-1 COEFFICIENT OF KC VALUES FOR CROPS (1)

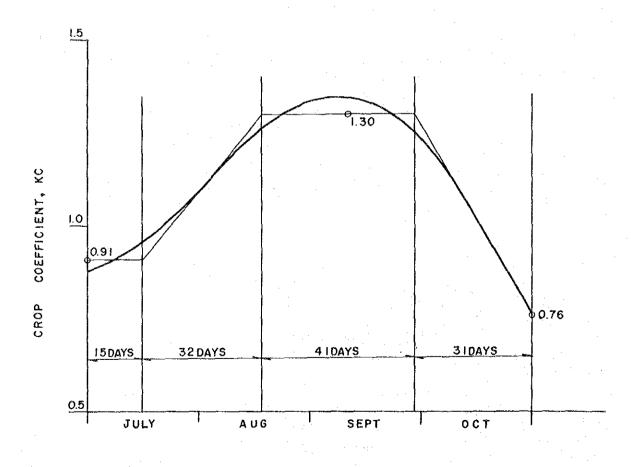
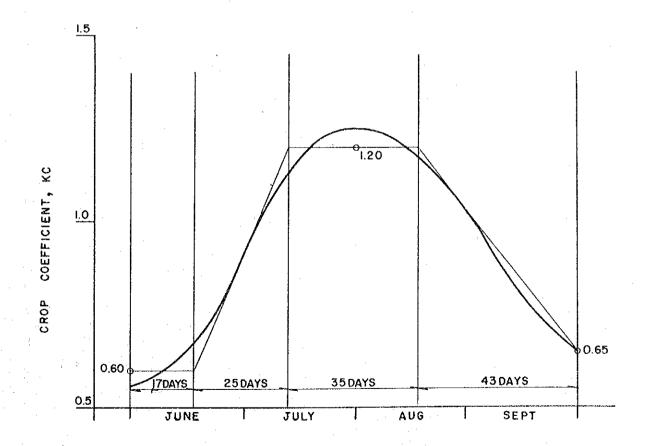


FIGURE F-1 COEFFICIENT OF KC VALUES FOR CROPS (2)


Crop : Paddy Rice (LV) (Wet Sea	ason)
- Wind	: Light to moderate (0-5 m/sec)
- Mid-Summer RH min.	: 70-80 %
	Initial Period assumed :
I. Planting Date	A Tampa An Talla
1. I tanting bate	: June to July
II. Length of Growth Stage	
- Initial	: 15 days (13 %)
- Crop Development	: 32 (27)
- Mid-Season	: 41 (34)
- Late-Season	: 31 (26)
Total	120 (100)
III. Kc Values	
- Kc Initial Stage	: 0.90
- Kc Mid-Season	: 1.30

- Kc Late-season Stage : 0.76

FIGURE F-1 COEFFICIENT OF KC VALUES FOR CROPS (3)

Crop	; Vegetable(Wet Season)	-			· . : .	
1.11	- Wind			o moderate	(0-5	m/sec)
	- Mid-Summer RH min.		70-80 %			
	- Irrigation Frequency	Initi	lal Period	assumed :		
Ϊ.	Planting Date	:	June			
II.	Length of Growth Stage					
	- Initial	:	17 days	(14 %)		
	- Crop Development	:	25	(21)		
	- Mid-Season		35	(29)		
	- Late-Season	:	43	(36)		
	Total		120	(100)		
III.	Kc Values		tin di di second			
·	- Kc Initial Stage	:	0.60			
	- Kc Mid-Season	:	1.20			
	- Kc Late-season Stage	:	0.65			

FIGURE F-1 COEFFICIENT OF KC VALUES FOR CROPS (4)

Crop : Groundnut, Chilli (Dry	y Sea	son)
- Wind	:	Right to moerate (0-5 m/sec)
- Mid-Summer RH min.	:	60-75 %
- Irrigation Frequency	Initi	al Period assumed :
I. Planting Date	:	December
II. Length of Growth Stage		
- Initial	:	16 days (13 %)
- Crop Development	1	24 (20)
- Mid-Season	:	48 (40)
- Late-Season	:	32 (27)
Total		120 (100)
III. Kc Values		
- Kc Initial Stage	:	0.58
- Kc Mid-Season	· :	1.00
- Kc Late-season Stage	:	0.48

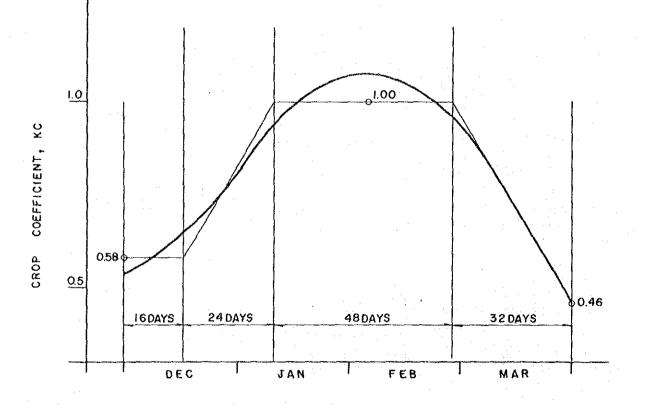
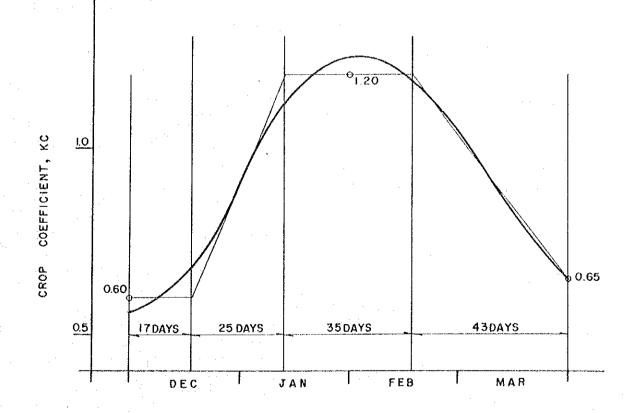



FIGURE F-1 COEFFICIENT OF KC VALUES FOR CROPS (5)

.

<u>Crop : Soybean (Dry Season)</u> - Wind - Mid-Summer RH min. - Irrigation Frequency	: Light to moderate (0-5 m/sec) : 60-75 % Initial Period assumed :
I. Planting Date	: December
II. Length of Growth Stage	
- Initial	: 17 days (14 %)
- Crop Development	: 25 (21)
- Mid-Season	: 35 (29)
- Late-Season	: 43 (36)
Total	120 (100)
III. Kc Values	
- Kc Initial Stage	: 0.60
- Kc Mid-Season	: 1.20
- Kc Late-season Stage	: 0.65

FIGURE F-1 COEFFICIENT OF KC VALUES FOR CROPS (6)

Crop : watermelon (Dry Season	<u>m)</u>
- Wind	: Light to moderate (0-5 m/sec)
- Mid-Summer RH min.	: 60-75%
- Irrigation Frequency	Initial Period assumed :
I. Planting Date	: December
II. Length of Growth Stage	
- Initial	: 16 days (13 %)
- Crop Development	: 24 (20)
- Mid-Season	: 48 (40)
- Late-Season	: 32 (27)
Total	120 (100)
III. Kc Values	
- Kc Initial Stage	: 0.60
- Kc Mid-Season	: 0.95
- Kc Late-season Stage	: 0.65

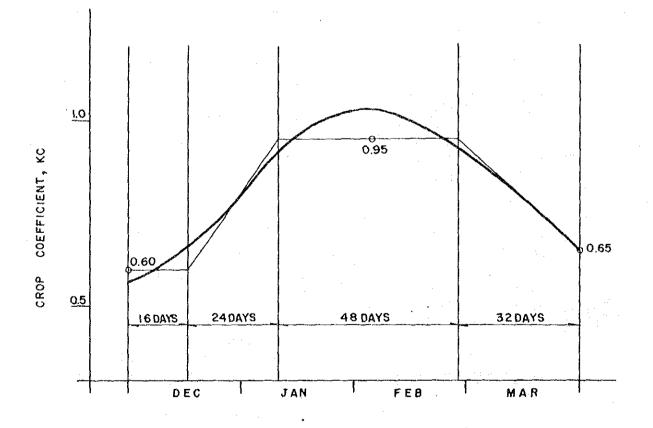
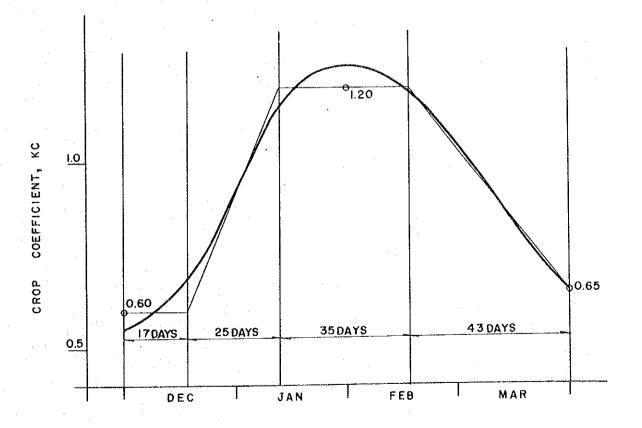



FIGURE F-1 COEFFICIENT OF KC VALUES FOR CROPS (7)

Crop : Stringbean (Dry Season)) ·	
- Wind	:	Light to moderate (0-5 m/sec)
- Mid-Summer RH min.		60-75 %
- Irrigation Frequency	Initi	ial Period assumed :
I. Planting Date	:	December
II. Length of Growth Stage		
- Initial	:	17 days (14 %)
- Crop Development	. :	25 (21)
- Mid-Season	•	35 (29)
- Late-Season	:	43 (36)
Total		120 (100)
III. Kc Values		
- Kc Initial Stage	:	0.60
- Kc Mid-Season		1.20
- Kc Late-season Stage	:	0.65
	 Wind Mid-Summer RH min. Irrigation Frequency I. Planting Date II. Length of Growth Stage Initial Crop Development Mid-Season Late-Season Total 111. Kc Values Kc Initial Stage Kc Mid-Season 	- Mid-Summer RH min. : - Irrigation Frequency Init: I. Planting Date : II. Length of Growth Stage - Initial : - Crop Development : - Mid-Season : - Late-Season : Total III. Kc Values - Kc Initial Stage : - Kc Mid-Season :

Block	Irrigation Unit		2 3	4	\$	e.	7	8	9 10	E	12	13	4	15 16	21 9	18	19	202	212	2 23	5 24	55	26	272	8 2	9 30	131	32	33	34	35 3	36 3	7 3	8 39	40	4
[]	A Unit	P2				24		<u>a.</u>	님님						ā.	มี	Ľ.		T	<u>a</u> .				â		τP	-									
L	B Unit	<u>u</u> .	22				24		ЪГ	ة ا						Ā	ц Ч			I	۵.				Po		15									
	c Unit		P2				а. —	54		7	Ъ.						ā	яĽ	<u>۔</u>		I	۵.			<u> </u>	Po-		ТР								
	ten D			P2	· · · · · ·			<u>a.</u>	N Q.	ļ	<u> </u>	٦						a.	RL L			н	٩			<i>v</i>			<u>م</u> ۲							
<u> </u>	E Coit			ļ	24					P2		ē.	d.						R Id	ר. ר.			τ	٩			ď.			ЧЪ						
 .	A Unit		P2			-	23 23			ЪГ БГ				<u> </u>		ā	ŭ			T	۵.				° a		4									
L	B Unit		54				<u>u</u>	24		õ	ā			 			ā	ЪГ			I	a			۵.	Ро		۲ ۲								
1- 2 1-	c Unit			P2				<u>a</u>	54		ہے اے	Ъ		 				a.	H H H H			r	۵.			<u>а</u>	. 0		а. Н							
 _	D Unit				24				2	4		Ъ	ಕ	<u> </u>				<u> </u>	a a				Τ	۵.			đ.			۹ ۲						
I	m Unit			ļ		54				å	<u> </u>		2						<u>a</u>	3		ļ		r				å			d L					
	A Unit		54				<u>"</u>	. 2d		<u>a</u>	<u>a</u>			<u> </u>		-	ā	ЪГ			x 	a				Po G		۹. ۲	<u> </u>							ļ
L	B Unit			20					P 2		ā	ā.						ā.	ר גר	<u> </u>		x	۵_		·	ď	.0		<u>а</u> . /							
м н	c unit				P2				54	1		ō.'	1					[<u> </u>	n a	L R L			x	0.			å			А Н					ļ	
L	D Unit					с) 4				202	-		ы Г	7					<u> </u>	РІ РІ				æ	۵.			å			ЧЪ				ļ	ļ
	E Cat						Nd		┣—		C1 0.		<u> </u>	2	-			<u> </u>	<u> </u>	ā.	1	L			x	<u>a</u> .			d,	[a.			 	
	A Unit			Ρ2					52	<u> </u>	ئ <u>ہ</u>	d d						ā	L R L			I	a			4			47							
	B Unit		-		Zd				P2	~~~	· .	Ъ,	٦						PI RL	L L			r	۵.			ď	-		e. F		. <u>.</u>				
H - 4	c Unit					P2				P2			ц Ц	7					<u> </u>	PI RL				I	a	· ·		ď			4					
	14N 0						P2				PZ			2	-					ā	3				u x	<u>م</u> ـ			å		-	4				
	E Unit					~	0.	2				Р2		0	PL PL						ā	RL	L		H	۵. ۲				Po		1	ЧÞ			
	A Unit			-	P2			÷	P2			4	ŗ,					<u>u</u>	ףן אר				x	٩.			Ъ 0			۵. ۲-						
	B Unit					۶2				54			ũ. ã	۲ ۳					ā	ו גר	<u>н</u>			Τ	۵.			å	-		<u>م</u> ۲					
۲∼ъ	c Unit	3 					ЪZ				P2		-	PL PL						ã	ц Ц	ر. ا			a. X	٥.			å			ß				
I	D Unit	-		-			<u>ы</u> .	24				P2		<u>a</u>	14						ā.	ц Ц	<u>ب</u>			a T				Po		<u>⊶</u>	ъ ЦЪ			
	E Unit							<u>a</u>	P2				P2		ld	Ч						ā	ษี	يہ		I	Δ.			-	å		<u>م</u> ۲	٩		
NOTE :	•																																			
	P2:1 ⁵¹ P1:2 ^{7d}	: 1 st irrigation : 2 nd trrigation	ion Ion										ר. היי	Plowing Clean ar	puo -	۲ ۳	Piowing Cleon and Repair of levee	jeve.	40																	
		: 3 rd Irrigation : Supplemental Irrigation	ion al Irric	aation	-					·				Plas	Plaster of Harrowing	f jevre	e.											. '								
													4	Tron	splan	ting																				
														10			•••																			

FIGURE F-2 SCHEDULE OF LAND PREPARATION WORKS AND WATER SUPPLY

e di se se se

F-48

.

FIGURE F-3 ESTIMATION OF 10 - DAY CROP WATER REQUIREMENT (ETa) FOR PADDY RICE

MONTH		JUNE	Ī		JULY	•		AUG.			SEPT.			OCT.			NOV			DEC.	
10-DAY CROP WATER				1	N 1 (·	-)	N	/ 2 (Y)	Ŵ	/ 3 (Y	2)	- v	/ 4 (Y	2)			Y ₄)			
REQUIREMENT		NOIL ON ON ON	o pate with	t		1					;	<u> </u>		;							~~~~~~
		. 0, °	lasw.	No.	U.S.	THERING ST	COIP STACE		CPR SPROU	15g	WILL FILED	ON LIPE SI	l				-				
	MIX405 ON	P2	р _р	\$\\$} ₽1\	P	No.5	12		3	HENDING	WILL FILE										
	0, \ 0, \	Ń		11		Lea,		A A	Has sy	NG	1. T.J.	10	E SA	X							
		>\▼ \\	*		/ ? //	<u>} </u>		<u> </u>	1 3		12										
			Υ		÷	Ķ.			i i			i	Ň,	i \	X						
IRRIGATION SCHEDULE			N		i.	į٨						<u>المجارعة</u>		Ň.	\mathbb{N}						
IRRIGATION SCHEDOLE				K		į	Κ.	i WE		ASON (HYV		DY		\mathbb{N}							
- -				$ \rangle$		1	$ \setminus$								Â,	$ \lambda $					
					\sum	į		(ŀλ		Å				
· · · ·				٩.		٩	~	2000 1000	<u></u>		:	:		ية: 2			<u>}</u>				
CALCULATION OF				+ 08	/30.4	10/30 + P 10/30	50 + W2	3.75	5/30	5/30	5/30	5/30	5/30	13					:		
WEIGHTED CROP WATER				P1 × 8/30 +	XX	× 10/	8/30	= W ₂ x 15/30 + Y ₁ x 13.75/30	$= W_2 \times 15/30 + Y_1 \times 15/30$	= W ₃ × 15/30 + Y ₂ × 15/30	$= W_3 \times 15/30 + Y_2 \times 15/30$	$= W_3 \times 15/30 + Y_2 \times 15/30$	= W ₄ × 10/30 + Y ₃ × 15/30	1.25/30 + Y ₃ × 13.75/					1		
REQUIREMENT (WR) (mm/10-day)		_	0	1.1	a,≩	άŞ	۲× ××	· · · · · · · · · · · · · · · · · · ·	λ + 0	} + 0	≻ + 0	· ≻ + o	→ + 0	+ 0E/]		
(mm/10-day)		5/30	24/30	2 × 15/30 +	15/30	те е́е́е́е́е́е́е́е́е́е́е́е́е́е́е́е́е́е́е	30,4	15/3	15/3	15/3	15/3	15/3	10/3	1.25	5/30						
		P2 X	P2 ×	XXX	27 7 7 7 7	₽ 2× 10×	P. X.2	V2 X	V2×	V ₃ ×	× ≈>	×₅۷	V4X	× № 8	Y₃×5				ĺ		
		WR=	WR=	WR = P		WR = F	WR= H	WR=V	WR = \	WR=	WR = \	WR= /	WR= \	WR =	WR=)						
· · · · · · · · · · · · · · · · · · ·		<u>}</u> (1)		<u> </u>	<u>≥</u> (4)	÷		<u>₹</u> (7)					·	<u> </u> ≶ (13)							
Note ;	P ₂ :	Fi	rst Irr	igati	on Su	pply	<u> </u>						,			<u> </u>	<u>.</u>	<u>:</u>	i		
	P1 :				ation																
	P :	Tł	nird II	rrigat	tion S	upply	1														
· · · · · · · · · · · · · · · · · · ·	Р: Т	Tł	nird lı	rrigat	tion S	upply	/			_			.						 ~		
MONTH	r	Tł JUNE		rrigat	JULY			AUG.			SEPT.			OCT.			NOV	· · · · · ·		DEC,	
10-DAY CROP WATER	r			rrigat				AUG. W 2			SEPT. W 3			ОСТ. ₩4			NOV W 5			DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF	r			rriga	JULY															DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF	r			rriga	JULY															DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY	P ₂ P ₂	JUN6 -		rriga	JULY															DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY	P ₂ P ₂	JUNE		rrigat	JULY															DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY	P ₂ P ₂	JUN6 -		rriga	JULY															DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY	P ₂ P ₂	JUN6 -		rriga	JULY															DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY	P ₂ P ₂	JUN6 -		rriga	JULY			W ₂		ASON	W ₃									DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY	P ₂ P ₂	JUN6 -		rriga	JULY			W ₂			W ₃									DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY	P ₂ P ₂	JUN6 -		rrigal	JULY			W ₂		ASON	W ₃									DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY	P ₂ P ₂	JUN6 -		rriga1	JULY			W ₂		ASON	W ₃									DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY	P ₂ P ₂		P		W1			W ₂		ASON	W ₃									DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY IRRIGATION SCHEDULE	P ₂ P ₂		P		W1			W ₂		ASON	W ₃									DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY IRRIGATION SCHEDULE CALCULATION OF WEIGHTED CROP WATER	P ₂ P ₂		P		W1			W ₂		ASON	W ₃			W 4			W 5			DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY IRRIGATION SCHEDULE CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (WR)			P	P1×10/30+P	W1			W ₂	ET SE	ASON (LV)	W ₃	DDY	030	W 4			W 5			DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY IRRIGATION SCHEDULE CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (WR)			P	P1×10/30+P	W1		× 30/30	W ₂	ET SE	ASON (LV)	W ₃	DDY OEVOS	× 30/30	W 4			\$ 0E251			DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY	P2 × 14/30	P2 × 20/30 + P1 × 3/30	P2 × 20/30 + P1 × 10/30 +	P ₂ × 6/30 + P ₁ × 10/30 + P × 10/30 + W ₁ × 5/30	P1 × 7/30 + P × 10/30 + W1	P × 3/30 + W ₁ × 25/30	W2 × 30/30	W ₂	ET SE	ASON (LV)	W ₃	W ₃ × 30/30	: W4 × 30/30	M₄ × 28.75/30 ►			\$ 0E251			DEC.	
10-DAY CROP WATER REQUIREMENT GROWING STAGE OF PADDY IRRIGATION SCHEDULE CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (WR)	P2 → 0€/71 ×		P ₂ × 20/30 + P ₁ × 10/30 + P ₁ × 10/30 + P ₁ × 7/30	P ₂ × 6/30 + P ₁ × 10/30 + P × 10/30 + W ₁ × 5/30	W1	× 3/30 + W ₁ × 25/30	× 30/30	W ₂		ASON	W ₃	= W3 × 30/30	WR= W4 × 30/30	W 4	WR= W4 × 20/30	WR= W5 × 10/30	W 5			DEC.	

FIGURE F-4 ESTIMATION OF 10 - DAY CROP WATER REQUIREMENT (ETa) FOR PADDY RICE

MONTH	JUNE	JULY	AUG.	SEPT.	ОСТ.	NOV.	DEC.
10-DAY CROP WATER REQUIREMENT	-	W 1	W 2	W ₃	W ₄	-	-
GROWING STAGE OF PADDY	$\begin{array}{c} P_2 \\ \downarrow \\ $	P₁ ₽ ↓↓				ZONE A (HYV	<u>REA</u>)
IRRIGATION SCHEDULE			WET SEASON P (HYV)	ADDY			
CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (WR) (mm/10-day)	WR = P ₂ × 5.1/8 WR = P ₂ × 10.9/8	$WR = P_1 \times 8/8 + P \times 1.9/8$ $WR = P \times 6.1/8 + W_1 \times 1.3/8$ $WR = W_1 \times 6.7/8$	WR = W2 WR = W2 WR = W2	WR = W ₃ WR = W ₃ WR = W ₃	WR = W4 × 3.2/8		
	(1) (2)	(3) (4) (5)	(6) (7) (8)	(9) (10) (11)	(12) (13) (14)		

P₁ : Second Irrigation Supply P : Third Irrigation Supply

10-DAY CROP WATER REQUIREMENT . W1 W2 W3 W4 GROWING STAGE OF PADDY .	DEC.
PADDY $P_2 P_2 P_1 P$ $\downarrow \downarrow \downarrow \downarrow$ IRRIGATION SCHEDULE WET SEASON PADDY IRRIGATION SCHEDULE	*
	Δ
CATCUTATION OF MEIGHTED CLOD MATEL WMR = W_1 (mm/10-qax) WMR = W_2 WMR = W_2 WMR = W_2 WMR = W_1 WMR = W_1 WMR = W_1 WMR = W_1 WMR = W_2 WMR = W_1 WMR = W_2 WMR =	

FIGURE F-5 ESTIMATION OF 10 - DAY CROP WATER REQUIREMENT (ETa) FOR PADDY RICE

MONTH	JUNE		, , ,	JULY		/	AUG.		?	SEPT.			ост.		NOV.		{	DEC.	
10-DAY CROP WATER REQUIREMENT	-			W ₁			W 2			W ₃			W 4		-	_		-	
GROWING STAGE OF PADDY	1	P₂ ↓	₽₁ (↓↓	,											<u>BLO</u> (<u>ск а</u> нүv 			
IRRIGATION SCHEDULE					M	/ET S	EASO (HY)		DDY										
CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (WR) (mm/10-day)	WR = P ₂ × 5/5	$WR = P_2 \times 5/5$	WR = $P_1 \times 5/5 + P \times 2/5$		н	$WR = W_2$	WR = W ₂	- #1	WR = W ₃	11	WR = W ₃	WR = W4 × 1.3/5							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13) (1	1)					

Note ; P2 : First Irrigation Supply P1 : Second Irrigation Supply P : Third Irrigation Supply

	P :	Th	ird Ir	rigat	ion S	upply	,												 	
MONTH	L I	UNE			JULY			AUG.			SEPT.			ост.		1	NOV.		DEC.	
10-DAY CROP WATER REQUIREMENT		-			W 1			W ₂			W ₃			W ₄			-		 -	
GROWING STAGE OF PADDY	P ₂ P ₂	P1	P 		-	-						• • • • • • • • • • • • • • • • • • •					<u>BL(</u>	<u>) (LV)</u>		
IRRIGATION SCHEDULE		+	+			W	T SE	ASON (LV)	i PAD	DY										
CALCULATION OF WEIGHTED CROP WATER REQUIREMENT (WR) (mm/10-day)	$WR = P_2 \times 9.3/5$	$WR = P_2 \times 0.7/5 + P_1 \times 3.0/5$	$WR = P_1 \times 2.0/5 + P \times 5.0/5$	WR = W ₁ × 3.7/5	11	WR = W1	WR = W2	WR = W2	WR =	WR =		WR =	WR =	WR = W4 × 3.7/5						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)					

FIGURE F-6 ESTIMATION OF 10 - DAY CROP WATER REQUIREMENT (ETa) FOR UPLAND CROP

		مادمین به مطالب بر با به در مان بر با از مین	· · ·	·			1997 - 19
MONTH	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY
0-DAY CROP WATER EQUIREMENT	-	W 1	W 2	W 3	W 4	W 5	
ROWING STAGE OF ADDY	NOUXSINUSTERS	P			Statistics and Statis		
RIGATION SCHEDULE			DRY SEA	SON UPLAND			
ALCULATION OF VEIGHTED CROP WATER EQUIREMENT (WR) nm/10-day)		$WR = P \times 10/30 + W_1 \times 5/30$ WR = P × 10/30 + W_1 × 15/30 WR = P × 10/30 + W_1 × 25/30	WR = W ₂ × 30/30 WR = W ₂ × 30/30 WR = W ₂ × 30/30	WR = W ₃ × 30/30 WR = W ₃ × 30/30 WR = W ₃ × 30/30	WR = W4 × 30/30 WR = W4 × 30/30 WR = W6 × 25/30	WR = W ₅ × 15/30 WR = W ₅ × 5/30	
	(1) (2)	(3) (4) (5)	(6) (7) (8)	(9) (10) (11)	(12) (13) (14)		
Note ;	P1 : Second	rigation Supply I Irrigation Supp rrigation Supply	bly			· ·	· .

	T																NOV.
		Wi			W 2			W ₃			W ₄			W 5			-
MOLLOW PARTICIPALION	p				*****					IN TER SUPPLY	Smith active	HARVES					
· · · ·	$\overline{\mathbf{X}}$				WET	r se/	150N	UPL					~				
	WR = P.x 10/30 + W1 × 5/30	= P × 10/30 + W ₁ ×	= P x 10/30 + W ₁ x	WR = W ₂ × 30/30	WR = W ₂ × 30/30	$WR = W_2 \times 30/30$	WR = W ₃ × 30/30	WR = W ₃ × 30/30	$WR = W_3 \times 30/30$	WR = W ₄ × 30/30	$WR = W_4 \times 30/30$	$WR = W_4 \times 25/30$	WR = W ₅ × 15/30	WR = W ₅ × 5/30			
1) (2) (3)	(4)	(5) ((6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)					
		WR = P× 10/30 + W ₁ ×	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 15/30	$WR = P \times 10/30 + W_1 \times 5/30$ $WR = P \times 10/30 + W_1 \times 15/30$ $WR = P \times 10/30 + W_1 \times 25/30$	$WR = P \times 10/30 + W_1 \times 5/30$ $WR = P \times 10/30 + W_1 \times 15/30$ $WR = P \times 10/30 + W_1 \times 25/30$ $WR = W_2 \times 30/30$	$WR = P \times 10/30 + W_1 \times 5/30$ $WR = P \times 10/30 + W_1 \times 15/30$ $WR = P \times 10/30 + W_1 \times 25/30$ $WR = W_2 \times 30/30$ $WR = W_2 \times 30/30$	$WR = P \times 10/30 + W_1 \times 5/30$ $WR = P \times 10/30 + W_1 \times 15/30$ $WR = P \times 10/30 + W_1 \times 25/30$ $WR = W_2 \times 30/30$ $WR = W_2 \times 30/30$ $WR = W_2 \times 30/30$	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 15/30 WR = P × 10/30 + W ₁ × 25/30 WR = V ₂ × 30/30 WR = W ₂ × 30/30	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 25/30 WR = V ₂ × 30/30 WR = W ₂ × 30/30 WR = W ₂ × 30/30 WR = W ₃ × 30/30 WR = W ₃ × 30/30	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 25/30 WR = W ₂ × 30/30 WR = W ₂ × 30/30 WR = W ₂ × 30/30 WR = W ₃ × 30/30 WR = W ₃ × 30/30 WR = W ₃ × 30/30	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 25/30 WR = V ₂ × 30/30 WR = W ₂ × 30/30	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 15/30 WR = P × 10/30 + W ₁ × 25/30 WR = W ₂ × 30/30 WR = W ₂ × 30/30	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 15/30 WR = P × 10/30 + W ₁ × 25/30 WR = W ₂ × 30/30 WR = W ₄ × 25/30	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 25/30 WR = V × 30/30 WR = W ₂ × 30/30 WR = W ₃ × 30/30 WR = W ₄ × 25/30 WR = W ₅ × 15/30	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 15/30 WR = P × 10/30 + W ₁ × 25/30 WR = W ₂ × 30/30 WR = W ₄ × 55/30 WR = W ₅ × 15/30	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 15/30 WR = P × 10/30 + W ₁ × 25/30 WR = V ₂ × 30/30 WR = W ₂ × 50/30 WR = W ₂ × 50/30 WR = W ₂ × 50/30 WR = W ₂ × 5/30	WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 5/30 WR = P × 10/30 + W ₁ × 5/30 WR = V × 30/30 WR = W ₂ × 50/30 WR = W ₄ × 25/30 WR = W ₅ × 5/30 WR = W ₅ × 5/30

1.2 Irrigation for Upland Crops

1.2.1 Measurement of Intake Rate

The intake rates of upland crop were measured at seven sites in and around the Study Area, in order to make a plan of an adequate irrigation method and amount of water to be supplied to the crop.

The following table gives the obtained basic intake rates, based on the observed rate.

Obtained Basic Intake Rate (Ib)

τъ

-		٠	
	ar	1	nn
\mathbf{Loc}	αι	*	UI4

Location	10
 Ban Rai Tai Ban Nachan Ban Kaon Charoon Ban Mai Pattana Ban Wari Udom Ban Non Ban Nong Khu Average 	(mm/hr) 14.7 4.8 33.1 15.1 15.6 54.1 16.4 25.6

Location of measuring sites and detailed calculation of basic intake rate (Ib) are shown in Figure F-7.

1.2.2 Depth and Interval of Irrigation Application

In parallel with the intake rate measurements mentioned above, soil samples in the depth of 70 cm with an interval of 20 cm depth were taken at even sites to analyze the physical properties of the soil like particle size, soil texture, specific gravity, porosity, field capacity and wilting point. Table F-26 shows the results of soil tests.

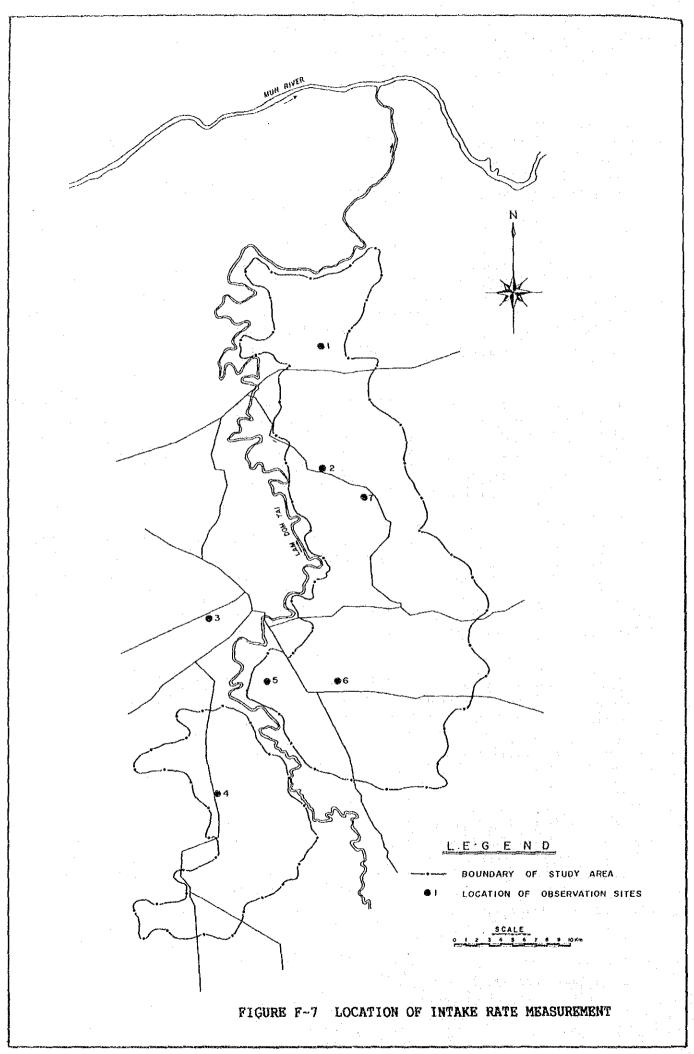
Based on the obtained soil analysis data, i) available moisture of each soil layer within effective root zone, ii) total readily available moisture (TRAM) and iii) depth and interval of irrigation application were calculated as shown in Table F-27 and Table F-28. TABLE F-26 PHYSICAL FEATURES OF SOIL FOR UPLAND IRRIGATION

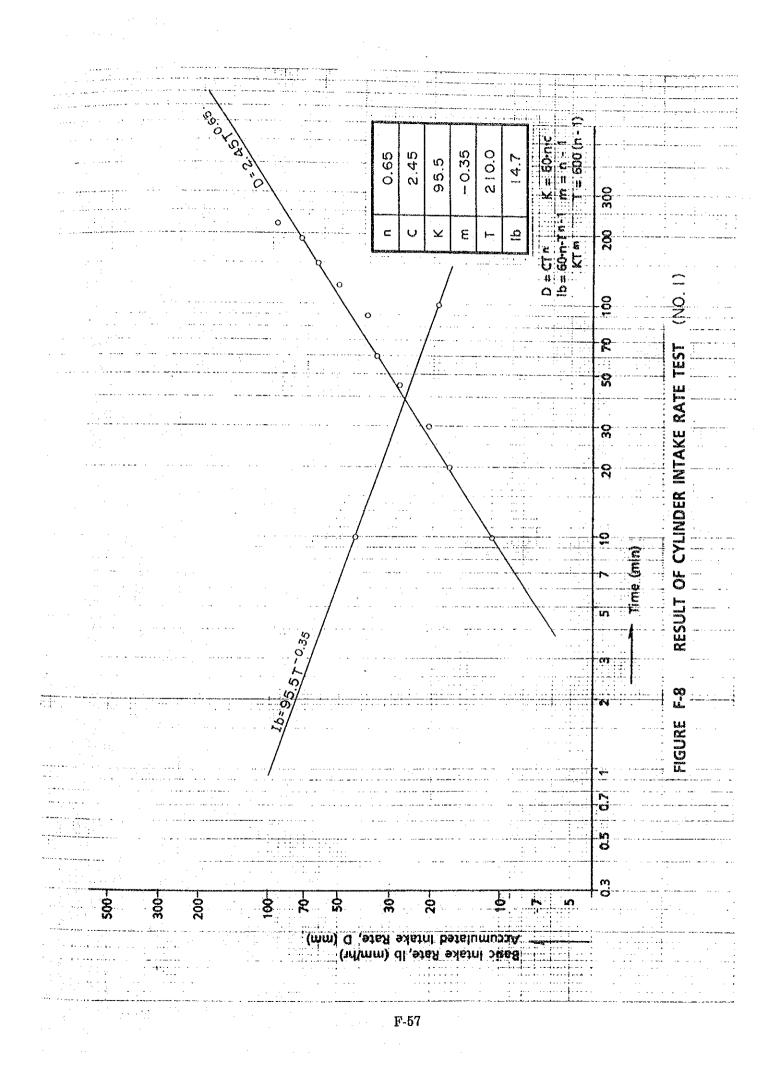
·	•	Soil	Particl	icle Size		10	171 44	Specific			11 t 1 n	vailab
ocation	Conditions	Depth	Sand	ilt	Clay	Texture	Fea	ravity	2	0	Capacity	e de la com
		. (cm)	(%)	(%)	5) (g/.cm3	(Sa) (g/cm3	(b) (%)	(Fc)	(%) (dM)	(%) (%)
Ban Rai	Dry Con.	10	72.0			SL	e.	1.7	31.		دی	
Tai		30	65.0	23.0	~	SL	e.	1.8	28.		מי	ۍ ن
		50	63.0	17.4	თ	SL	ŝ	1.9	31.		10.	÷
		0.2	18.0	22.4		J	~	6.1	26.		20.	- 0 F
Ban Nachan	Dry Con.	10		•	6	SL	1	6 T	27.		4	0
		30	49.0	13.4		sc	·	1.9	31.		14.	10.
		5.0	16.0	19 4	4	ى	۴.	1.9	26.		21.	14.
		02	19.0	20.4	0	J	5	8 -1	28.		21.	18.
Ban Kaon	Dry Con.	10	49.0		9.6		2.62		24.1			
Charoon		30	თ		÷.	ы	۴.	I.9	29.		ה	.6
		50	51.0	31.4	•	ц	<u>ن</u>	1.9	27.		7.	10.
		02	0		8		~	6 · 1	29.		. 7	11.
Ban Mai	Dry Con.	10	47.4	•	4	SL	<u>-</u>	1.7	37.		.9	ιΩ
Pattana		30	66.4	•	~	SL	٢.	1.6	40.		7.	י. מו
	•	50	65,4	16.0	ŝ	SL	<u>م</u> ن	1.6	35.			ى.
		70	65.4		8	SL	9	1.6	37.			4
Ban Wari	Dry Con.	10	71.4	4	-	SL	5	1.7	38.		2.	4
Udom		30	68.4	4		SL	G.	1.6	. 37.		e. S	
		50	,,			SL	٢.	1.6	42			റ
		70	0			SL	~	1.8	32.		Ю	4
Ban Non	Dry Con.	10		22 4		LS L	٢.	1.8	31.		, 144	ŝ
		30	'n	· ·		LS	۴.	1.8			Ч	б.
		50	81.0	ŕ	•	LS L	۲.	1.8	32.		1941	ы. С
		70	وم	24.0	, , ,	c. cL	5	6 °T	29.		151	11.
Ban Nong	Dry Con.	10		5	3	5	ص	۲. 6 ۲	38			. 0
Khu		30.	.	3	~	SL	φ,	1.8	31.		ີ ເຄ	.00
•	•	50	62.0	25.0	•	SL	θ.	1.7	32.		י נוס י	0
		20	1	•	1		•	1	.1			1
		10	65.0	ເຕ	8°3	5	2.68	1.8	32.7		6	9
		30	•		7		٢.	1.8	3	13.	9	
	Average	50		21.2			·~-1	-	32.	16	 	œ
-		202		~	J		۳.	~	08		¢ •	C F

TABLE F-27 NET AMOUNT OF WATER TO BE REPLACED FOR CROPS (Design Moisture Extraction Depth : 40 cm)

(1)	(2)	(3)	(4)	(5)	(9)	(2)
	Available	Ratio		Restricting		Net Amount of
	Moisture	Moisture		Layer of		water to be
Depth	(AM) 1/	Extraction	(2) / (3)	Moisture	TRAM 2/	Replaced
(cm)					(mm).	(mm)
0 - 10.C		63 4	25.3		25.3	÷ .
10.0 - 20.0	11.8	ନ ସ	39.3			1
20.0 - 30.0		8.2 8	67.0			
30.0 - 40.0		S	141 9			

•


Note;


1 : Aff = 1/108 x (FC-Wp) x Sa x D Fc : Field Capacity (%) Wp : Wilting Point (%) Sa : Apparent Specific Capacity (g/cu.cm) D : Depth (mm)

2/ : Total Readily Available Moisture

TABLE F-28 NET AMOUNT OF WATER TO BE REPLACED FOR CROPS (Design Moisture Extraction Depth : 60 cm)

(1)	(2)	(3)	(7)	(2)	(9)	(2)
	Available	Ratio		Restricting		Net Amount of
	Moisture	Moisture		Layer of		water to be
Depth	(AM)	Extraction	(2) 2 (3)	Moisture	TRAM	Replaced
(cm)	(cm)		(mm)		(mm)	(mm)
0 1 15.6		2°.4	40.8	Ŧ	40.8	40.8
15.0 - 30.0		0.3	64.3			
30.0 - 45.0	22.1	6.2	110.5			
45.0 - 62.6		Ø.1	248.0			•

