

Chapter 13

COST ESTIMATION

Contents

		Page
13.1	Construction Cost	13 - 1
	13.1.1 Basic Policy	13 - 3
•	13.1.2 Reference of Estimate	13 - 1
	13.1.3 Estimate of Construction Cost	13 - 2
	13.1.4 Totals of Construction Costs	13 - 4
		•
13.2	Scheduling of Yearly Disbursement	13 - 3

List of Tables

Table 13-1

Total Construction Cost of Naradaw Project

Table 13-2

Scheduling of Yearly Disbursement

13. COST ESTIMATION

13.1 Construction Cost

13.1.1 Basic Policy

- The construction cost of this project comprises all costs for civil engineering works, electrical works, power transmission line works, cost for compensation, engineering fees, contingency and other costs involved with the construction of this project.
- The estimate of the construction cost has been calculated referring the unit costs recorded in construction of similar small scale hydro power plants of SEB and the unit prices presented by Public Works Department (PWD) of the State. The unit prices have been adjusted in an optimum manner so that they would match the local conditions of this project. Some of the special items of works have been estimated on the basis of unit prices in foreign countries as reference.
- This project is planned for a small-scale hydro power development.

 Therefore, a maximum effort has been made to reduce the overall construction cost by procuring the local materials.
- The numeric values pertaining to the quantity of works that were used for the estimate of the construction cost were calculated in accordance with the preliminary designed drawings.

13.1.2 Reference of Estimate

On the basis of consultations with SEB, the construction cost estimate has been calculated using the following reference:

The referenced timing for the estimate of the cost of construction shall be June 1992. The foreign currency exchange rate is US\$1.00 = M\$2,512 as announced by Malayan Banking Bhd. on June 10, 1992.

- The construction cost has been divided in to two parts: the local currency part and the foreign currency part. The local currency part shall be used primarily for the costs of labor, procurement of domestically available materials, transportation by land and installation of the equipment. The foreign currency part shall be appropriated to the purchase of the imported equipment.
- The interests (IDC) during construction shall not be included in the construction cost proper.
- The engineering fees and the administration cost shall be 10% of the direct cost of construction.
- The contingency has been estimated as follows:
 - 10% with respect to the civil engineering work cost
 - 5% with respect to the electro-mechanical equipment cost
 - 5% with respect to the power transmission line
 - 10% with respect to the purchase/compensation for the land
 - 10% with respect to the engineering/administration costs

13.1.3 Estimate of Construction Cost

(1) Civil Engineering Works

- The cost for the intake facilities comprises the costs required for the intake dams, desalting basins, connecting pipe (Mesilau), headponds and spillways. Also, the cost for the gate and stop valves shall be included in the cost for the civil engineering works. The costs for screens, fences and other appurtenances were listed in a lump sum under miscellaneous costs.
- The cost for pipelines shall comprise the costs for steel pipes, bridges for pipes, anchor blocks and saddles and the like. The costs for appurtenant facilities including drainage

valves and air valves were listed in a lump sum under miscellaneous costs. The cost for the roads along the pipelines were estimated separately as the cost for access roads to the intake facilities.

The construction cost for the penstock comprises the costs for steel penstocks, foundation excavation and backfilling works, and anchor blocks. The appurtenances including protection works for surfaces of penstocks were listed in a lump sum under miscellaneous costs.

than the Lording War to the Artist Sec.

The cost for access roads includes the road to the power station, and the roads to the Liwagu and Mesilau intake facilities (along the pipelines). The estimate includes the cost for repairing part of the existing roads.

(2) Electro-mechanical Equipment

- The electro-mechanical equipment and facilities include hydraulic turbines, power generators, main transformer, switching equipment, control and protection facility, 11-kV HV lines to connect to the existing power transmission system and the communication system to both Ranau and Kundassang Diesel power station.
- While the estimate has been calculated on the assumption that all units of electro-mechanical equipment excluding the 11-kV HV lines should be imported from overseas, the unit prices of these pieces of equipment have been on the basis of the prices of the similar small-scale hydroelectric power plant equipment imported from overseas by SEB up to the present time, as well as the unit prices of electro-mechanical equipment used in similar projects in countries other than Malaysia.
- Ten percent (10%) of the price of the electro-mechanical equipment excluding the 11-kV HV lines have been listed in the estimate as the cost for transportation by sea and land to the

project site including the miscellaneous costs such as custom clearance.

- Twenty percent (20%) of the price of the electric equipment excluding the 11-kV HV lines have been listed in the estimate as the cost for the local installation work at the site. This amount shall include the cost for other miscellaneous materials involved with the installation works that are locally available.
- The communication facility shall utilize the existing public telecommunication network. A telephone line shall be installed from Naradaw small scale hydro electric power plant to Ranau and Kundassang diesel power plants. Also, a radio communication facility shall be installed at all three stations mentioned above for emergency.
- An estimate shall be made for the cost of 11-kV HV lines to be used for the project on the basis of the records of unit prices in the costs of constructions executed by SEB in the past.

13.1.4 Totals of Construction Costs

The total construction costs of the Naradaw project is shown in Table 131.

On the other hand, the breakdown of the construction costs classified by individual facilities is shown in Appendix 7.

13.2 Scheduling of Yearly Disbursement

The scheduling of yearly disbursement for the construction of the project has been formulated on the basis of the construction schedule proposed under Section 12.3 as reference. The result is shown in Table 13-2.

Table 13-1 Summary of Construction Cost

	<u>Description</u>	Local Currency (M\$)	Foreign Currency (M\$)	Amount (M\$)
1.	Civil Engineering Works	6,099,000	0	6,099,000
	1.1 Preliminaries	200,000	0	200,000
	1.2 Liwagu Intake Facilities	509,000	0	509,000
	1.3 Mesilau Intake Facilities	647,000	0	647,000
	1.4 Liwagu Pipeline	2,284,000	O +	2,284,000
	1.5 Mesilau Pipeline	543,000	0	543,000
	1.6 Penstock	813,000	0	813,000
	1.7 Powerhouse	175,000	0	175,000
	1.8 Access Road	928,000	0	928,000
2.	Electrical and Mechanical Works	400,000	2,750,000	3,150,000
		e e e e e e e e e		
3.	Transmission Line	140,000	0	140,000
4.	Project Land Cost and	250,000	0	250,000
	Compensations			
5.	Engineering and Management (10% of above total)	690,000	275,000	965,000
	(10% of above count)			
6.	Contingencies	731,000	165,000	896,000
- •	10% of Civil Engineerings Works		0	610,000
	5% of Electrical and	20,000	138,000	158,000
	Mechanical Works			
	5% of Transmission Lines	7,000	O	7,000
	10% of Project Land Cost and compensations	25,000	. O	25,000
	10% of Engineering, Management and Commissioning	69,000	27,000	96,000
	Grand Total	8,310,000	3,190,000	11,500,000

Table 13-2 Scheduling of Yearly Disbursement

					unit:	1,000M\$
	Item	Total	L Cost	1st yr	2nd yr	3rd yr
22., 3 2		L.C.	6,099	1,867	3,932	300
1.	Civil Engineering Works	F.C.				
		Total	6,099	1,867	3,932	300
		L.C.	400	÷		400
2.	Electrical and Mechanical Works	F.C.	2,750		470	2,280
		Total	3,150		470	2,680
		L.C.	140	140	***	
3.	Transmission Line	F.C.				
		Total	140	140		
		L.C.	250	250		-
	Project land Cost and	F.C.				
4.	Compensations	Total	.250	250		
			<u> </u>			
		L.C.	690	226	393	71
5.	Engineering and Management	F.C.	275		47	228
		Total	965	226	440	299
	<u> </u>	L.C.	731	242	432	57
6.	Contingencies	F.C.	165	·	29	136
		Total	896	242	461	193
		L.C.	8,310	2,725	4,757	828
	Grand Total	F.C.	3,190		546	2,644
		Total	11,500	2,725	5,303	3,472

Chapter 14. ENVIRONMENTAL IMPACT STUDY						
	경기 등 기업으로 함께 되고 1915년 - 1920년 1921년 - 1921년 1					
	use finding after dispersion rise militaries and the					
	Chapter 14	ENVIRO	NMENTAL	IMPACT S	TUDY	
ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ						
人名威克特斯 经工具的证据 医乳腺 化二氯甲二溴基甲基磺胺 医氯化二基甲基 化二基甲基 化二基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲						

Chapter 14

ENVIRONMENTAL IMPACT STUDY

Contents

		<u>Page</u>
14.1	Outline	14 - 1
14.2	Environmental Impact Study	14 - 3

List of Tables

Table 14-1

Summary of Potential Impacts and Mitigation Measures of the Project $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$

14. ENVIRONMENTAL IMPACT STUDY

14.1 Outline

Following the Technical Specifications provided by JICA Team, Environmental Impact Study was conducted by University Kebangsaan Malaysia, and an EIA report was submitted to JICA Team. Potential impacts of the project on environment are not expected to be significant if the recommendations in the EIA report are followed and the appropriate mitigation and abatement measures are taken.

According to the EIA report, no unique floral species of special conservation or scientific interests has been found in the project area. No rare or endangered faunal species were recorded there. The proposed project will acquire about 10 ha. of land for laying the pipe, powerhouse and the pond. Most of these lands are private lands. About five houses have to be relocated and compensated as they are located very close to the pipeline and the powerhouse. A resettlement scheme is not necessary. There is no established intake structure between the intake points and the powerhouse except for occasional/limited use for washing and small scale fishing.

The survey reveals that about 76 percent of respondents in the project area agreed the project to be built in the proposed site, anticipating that they will benefit from the project, and 16 percent disagreed. Those who disagreed feel that the area is not suitable for the hydroelectric project as they have experienced that there is always a shortage of water.

The potential impacts of the site surveying, engineering and geophysical investigations in the investigation stage are expected to be of low magnitude. Nevertheless, the entry of the investigation team should be made known to the village head.

Earth work and excessive use of the existing Kauluan gravel road in the construction and development stage can cause among others, (1) damage to the road, (2) soil erosion and slope failure, (3) increase in suspended sediment in steam waters, (4) increase of airborne particu-

lates during dry periods, (5) noise from the machineries deployed, and (6) inherent risks to human safety both of on-site workers and the surrounding neighborhood. The construction of intake weirs can result in immediate siltation of downstream water if the flow is not properly diverted. Indiscriminate disposal of wastes into the surrounding water bodies can seriously affect the aquatic ecosystem and downstream water use. Appropriate mitigation measures must therefore be taken during the civil works.

Major environmental issues that can be associated with the operation and maintenance of the proposed small scale upper Liwagu hydroelectric project are (1) the power generation activities, particularly with regard to water extraction, and (2) waste disposal.

Water quantity for the Liwagu and Mesilau rivers upstream of the intake points, and also the Liwagu river downstream of the powerhouse will not be affected, as what comes into the hydroelectric power plant system will go out.

However, for the stretch between the intake points and the powerhouse, there will be some reduction in water flow. The reduction in river water quantity between the intake points and the powerhouse may lead to a number of adverse implications, the most critical being possible loss of habitat for aquatic life. Another potential negative impact will be creation of sites for mosquito breeding as low flows will lead to formation of small water pools in the rocky bed.

The ponding of water is not expected to affect the downstream water quality as the retention time in the pond is only about 2 hours.

Solid wastes, particularly the silt/sludge from the headpond and used lubrication oil from the power plant maintenance must be properly managed to avoid pollution of downstream water.

In view of the pressing demand for water resource by the various users within the upper Liwagu catchment area, an accurate water auditing must be worked out to verify the feasibility of the proposed hydroelectric

power project and avoid adverse environmental implications associated with water quantity.

During low flows, priority must be given to allocating sufficient quantity of flow for river maintenance purpose (for the intake powerhouse stretch); the recommended minimum flow is $0.05~\text{m}^3/\text{sec}$ for Sg. Mesilau and $0.10~\text{m}^3/\text{sec}$ for Sg. Liwagu. The minimum flow of $0.05~\text{m}^3/\text{sec}$ for Sg. Liwagu in the original design of the project was increased to $0.10~\text{m}^3/\text{sec}$ to meet this recommendation.

Affected villagers must be appropriately compensated for losses due to displacement or acquisition of land, prior to commencement of construction work. It seems that villagers most often refer matters of importance to the village head. Thus, with regard to village problem such as payment for compensation, the village head should be consulted, and for any information to be more effective at the village level, it should be channelled through the village head.

As the area is still tectonically active, structures must be firmly anchored to the bedrocks; all installations must incorporate adequate safety features to minimize impact in case of foundation failure.

All engineering works must in corporate strict erosion control measures to minimize siltation problem of surface waters during the construction stage.

14.2 Environmental Impact Study

Potential impacts and mitigation measures on the project are summarized in **Table 14-1**. Executive Summary of the Environmental Impact Study Report prepared by Universiti Kebangsaan Malaysia is shown in **Appendix 8**.

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (1/11)

Item	ä	Potential Impacts	Nature S (short-term) L (long-term)	rd M	Proposed Mitigation		Resi	Residual	
.	of Pollutants		P (permanent)	Š	Measures	-			
ď.	INVESTIGATION STAGE								
	Site surveying and engineering/opertechnics	Minimal in terms of traffic related impacts	: ග				٠.,	٠	
	investigation.	e dust,	. * .						
		safety, noise).							
		May cause anxiety among	S	First inform	rm the				
		population.		village head	ad.	-			
٠		Minimal impacts on		Ensure minimal	timal cutting	6 0			
		biological components.		of rentice	of rentices/riparian				
				vegetation.		2			
	Note: No new access road required	ired.							
					-				
வ்	CONSTRUCTION AND DEVELOPMENT								
;	Access Road	Reduction in surface	S	Make use o	of existing				 :
		water quality.		roads rather	ner than	2			
			ř	cutting new roads	w roads.				
	Note: Existing roads are		S	Road surface to be	ice to be		. :		1.4
				improved	improved (gravelled a	nd .			
	hillslopes.			compacted	to				
				appropriate specification)	ce cion).				
		Reduction in air	w	Water to be lightly	oe lightly	- <i>(</i>			
		quality.		sprayed on ac	sprayed on access roads when dust is excessive	ds.			
				מיובוו חרמי	メイクのひょくひ カー	u			

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (2/11)

ltem.	Project Activities and Sources of Pollutants	Potential Impacts	Nature S (short-term) L (long-term) P (permanent)	Proposed Residual Mitigation Impacts
		Increase in noise.	တ	Working hours limited to daytime only.
		Degradation of roads due to overloading.	ω .	Close supervision by Site Engineer.
				Roads to be immediately resurfaced if damaged
				during usage.
		Some loss in agriculture land.	Ωι	Affected land owners to be compensated for new roads stretch that cut
				across vegetable farms.
2. Site Clearing	ring	Increased suspended solids in surface water due to surface erosion.	ν.	Attempt should be made at synchronizing site clearing with dry periods.
Note:	O The area is generally d vegetation (replaced wi O There are no endangered wildlife species in the	r devoid of primary with vegetable farms). red and rare plant and the area.		Minimal cutting of riparian vegetation; replanting cleared strips.

Provision of temporary drain and silt trap around headpond and powerhouse areas.

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (3/11)

ltem.	Project Activities and Sources of Pollutants	Potential Impacts	Nature S (short-term) L (long-term) P (permanent)	Proposed Mitigation Measures	Residual Impacts
				Exposed steep slopes to be protected with plastic sheeting.	
				Use excess earth for road grading and bunds.	
		Increase in noise level.	ω	Working hours near settlement areas to be	
		ease in sust	ഗ	limited to daytime. Water to be sprinkled	
		particulates in the air.		during dry periods.	
				be burnt on-site but properly stacked along	
				the riparian or hill slopes to act as silt screen.	
		Displacement of houses (Note: Land acquisition not extensive).	0.	Affected population should be adequately compensated.	Displacement of about five households.
				Resettlement of affected household to be completed first prior to site clearing.	

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (4/11)

roject Activities and Sources of Poliutants	Potential Impacts	Nature S (short-term) L (long-term) P (permanent)	Proposed Mitigation Measures	Residual Impacts
	Increase in suspended particulates in air prior to stabilization.	ω	Spray water when dust is excessive.	
	Increase in suspended solids due to erosion by runoff.	ω	Construct temporary drains which lead to a silt trap or settling pond.	
			Earthwork is best confined to periods of expected low precipitation.	
			Excess earth to be stockpiled on levelled ground and compacted, or used for road grading or bunding.	
			Earthwork should be phased so as not to allow too much area being exposed to	
			time. Exposed areas to be revegetated/turfed immediately upon completion of earthwork.	

3. Earthworks

ltem

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (5/11)

item	Project Activities and Sources of Pollutants	Potential Impacts	Nature S (short-term) L (long-term) P (permanent)	Proposed Witigation Measures	Residual Impacts
		Siltation of streams during construction of intake weirs.	w	Proper diversion of stream flow.	
		Slope failure.	w	Minimal cutting of slope. Slope to be cut or	
				cleared of vegetation only when the site is ready to be worked on. Work first from higher ground.	
		Increase in noise due to earthwork machinery.	"	Working time near settlement areas to be limited to daytime only.	
		Reduction of aesthetics.		Good landscaping work, particularly around headpond and powerhouse.	
4. Transportation	uo i	Increase in suspended particulates in air.	Ø	Lorry loads must be covered to avoid spillage.	

Sprinkling of roads and tracks when dust is excessive.

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (6/11)

ttem.	Project Activities and Sources of Pollutants	Potential Impacts	Nature S (short-term) L (long-term) P (permanent)	Proposed Mitigation Measures	Residual Impacts
		Decrease in tranquility.	ω	Transportation movement to be restricted to daytime.	
		Safety hazards.	w	Safety regulation and normal construction supervision to be enforced.	
				Minimize number of trips by proper planning.	
5. Material	Material and Equipment	Increase in noise.	ω	Working hours in Kg. Naradaw is limited to daytime only.	
		Safety hazard in storage area.	ω	Machines, pipes etc. to be stored away from the public right of way and guarded.	
		Risk of accident at construction site.	ω	Safety regulation and normal construction supervision to be enforced.	
6. Waste Disposal	Disposal	Deterioration of water quality.	υ V	Proper management of wastes (e.g. use of covered containers/pit).	

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (7/11)

Item	Project Activities and Sources of Pollutants	Potential Impacts	Nature S (short-term) L (long-term) P (permanent)	Proposed Mitigation Measures	Residual Impacts
				Excess earth to be	
				stocked. Other	
				construction wastes to	
			*	be disposed off at	
			• •	approved waste dump	
				site.	
				No open burning on-	
				site.	
				No full scale	
				maintenance work on	•
				machineries/vehicles be	
			•	allowed in the project	
				arcon.	
•		Water contamination by	Ś	Provision of temporary	
		sewage.		septic tank to worker	
				quarters.	
7. Base Camp	Camp	Indiscriminate dumping	ဟ	Proper management of	
		of wastes leading to		wastes	
				(see Waste Disposal).	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	pollutions - potential health hazard.			
8. Labou	Labour Force	Employment	· σ	(Job priority given to	
		opportunities (a positive impact)		locals)	

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (8/11)

Item	Project Activities and Sources of Pollutants	Potential Impacts	Nature S (short-term) L (long-term) P (permanent)	Proposed Mitigation Measures	Residual Impacts
တ	Scenic Modification	Loss of natural scenery particularly at headpond - powerhouse area.	ď	Replace with good landscape, and revegetate.	Man-made structure
		Obstruction to human and animal passage.	ይዛ 	Minimize by bunding the blocking segment.	
10. A	10. Abandonment	Safety: abandoned structures and machineries could be hazardous.	ග	Dangerous machineries to be stored/parked in a guarded premise.	
ပ	C. OPERATION AND MAINTENANCE STAGE	GE			
<u>.</u>	Power Generation	Reduced flow between intake and powerhouse during low flows:	ρ,		
		a. impacting aquatic life (loss of habitat)		Ensure a minimum of 0.05 and 0.10 m³/sec of flow for Mesilau and Liwagu, respectively, for river maintenance (minimum 6" depth).	

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (9/11)

Item

Residual						
Proposed Mitigation Measures	Possibly compensated by distributing a fraction of ponded water to nearby population.	Alternate day flushing during dry periods.	Headpond storage must not exceed 2,000 m ³ .	Proper installation of pipeline and genset to minimize vibration.	Installation of fail- safe system (including control valves and bundwalls at strategic noints: consider alarm	system. Structures (including pipeline support) must be anchored firmly on bedrocks.
Nature S (short-term) L (long-term) P (permanent)				Δι		
Potential Impacts	b. affecting direct water use	c. possible mosquito breeding	d. temporal reduction in water quantity for downstream users due to flow regulation.	Noise.	Risk of headpond and pipeline collapse/rupture.	
Project Activities and Sources of Pollutants						

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (10/11)

Project Activities and Sources of Pollutants	Potential Impacts	Nature S (short-term) L (long-term) P (permanent)	Proposed Mitigation Measures	Residual	• .
	Deterioration of water quality on impact.				
12. Infrastructure and Utility			counterbalanced by the SS removal in the headpond).		
a) Road	Anticipated improved road pavement upon completion of project (a positive impact).	IJ			
b) Water Supply			See Item 11(b).		
c) Power Supply	Improved power supply along the Kundasang - Ranau grid (a positive impact).	H			
t3. Waste Disposal	Headpond sludge - potential contamination of river water by nutrients and pesticides.		Silt/sludge to be stockpiled on the level ground adjacent to the headpond. Encourage reuse for agricultural soil conditioning.		

Table 14.1 Summary of Potential Impacts and Mitigation Measures of the Project (11/11)

Residual Impacts	
Proposed Mitigation Measures	Collected (oil sump, drums), carefully stored and returned to
Nature S (short-term) L (long-term) P (permanent)	Oil wastes from genset maintenance - water contamination.
Project Activities and Sources of Pollutants	

II. Barrella (1904). Barrella (1905).						
일본 4월 12일 전경 전 일본 2017년 1일						
· C	Chapter 15	ECONO	MIC AND	FINANC	IAL ANAL	YSES
	이 하는 게이 그를 모임다. 루티어 그들도 하이라고					
						transportunitation Historiaani
	스스로 마시다의 기술하다요 수 인생일과 최고하다 기억하다					

Chapter 15

ECONOMIC AND FINANCIAL ANALYSES

Contents

•			Page
15,1	Economic	Evaluation	15 - 1
			•
	15.1.1	Outline	15 - 1
	15.1.2	Method of Economic Analysis	
	•	and Basic Assumptions	15 - 1
	15.1.3	Cost	15 - 7
	15.1.4	Benefit	15 - 8
	15.1.5	Economic Evaluation	15 - 11
·	15.1.6	Sensitivity Analysis	15 - 14
15.2	Financial	Analysis	15 - 15
	15.2.1	Outline	15 - 15
	15.2.2	Methods of Financial Analysis	15 - 16
	15.2.3	Basic Conditions of Financial Analysis	15 - 17
•	15.2.4	Results of Financial Analysis	15 - 24
	15.2.5	Average Generating Cost over Whole	
		Operating Years	15 - 35

List of Tables

Table 15-1-1	Technical Parameters for Calculations for Economic
	Evaluation
Table 15-1-2	Required Quantity of Energy to be Generated at Diesel
	Power Plant
Table 15-1-3	Economic Evaluation
Table 15-2-1	Average Sale Rate at Ranau/Kundasang System
Table 15-2-2	Share of Generation, Transmission and Distribution
	Occupied in Supply Cost of SEB During the Recent Five
	(5) Years
Table 15-2-3	Financial Analysis of Benefit and Cost
Table 15-2-4	Amortization Schedule (Case I)
Table 15-2-5	Profit and Loss Statement (Case I)
Table 15-2-6	Cash Flow Sheet (Case I)
Table 15-2-7	Debt Service Ratio (Case I)
Table 15-2-8	Profit and Loss Statement (Case II)
Table 15-2-9	Cash Flow Sheet

15. ECONOMIC AND FINANCIAL ANALYSES

15.1 Economic Evaluation

15.1.1 Outline

Economic evaluation was made on the Naradaw Scheme (hereinafter called the "Project") which was selected as the optimal one described in Chapter 9 "Selection of Optimum Plan".

Necessary studies were made on the total costs (comprising investment cost and OM cost) of the Project over its depreciation period of twenty-five (25) years and the total costs (comprising investment cost. OM cost and fuel cost) of an alternative high-speed diesel engine driven power plant which has the same installed capacity comparable to the firm peak capacity of the Project and fuel costs of the alternative diesel power plant as well as existing diesel power plants which can be saved by realization of the Project.

Then the respective total costs were converted into their present values at the beginning of the first year of investment in the Project. As a result, the surplus benefit (B-C) is M625 \times 10^3$, the Benefit/Cost (B/C) ratio is 1.06, and the economic equalizing discount rate obtained is 10.71%. Therefore, the economic feasibility of this Project has been confirmed.

15.1.2 Method of Economic Analysis and Basic Assumptions

The Project envisages to supply electricity to the Ranau area including Ranau, Kundasang and Bundu Tuhan as an isolated system for the meantime. In the economic evaluation, it is assumed that a diesel power plant having the same installed capacity comparable to the firm peak capacity of the Project with its planned installed capacity of 1,600 kW and firm peak capacity of 460 kW is to be installed at load centers of the Ranau area.

Based on the above-mentioned assumptions, the following Cost and Benefit were converted to present values at the beginning of the first year of investment in the Project. Thus, the surplus Benefit (B-C) and Benefit/Cost (B/C) ratio were obtained. At the same time, an economic equalizing discount rate (EEDR) which gives an equalized present value of "benefit" and "cost" has been calculated to evaluate the economic viability of the Project.

- Cost : (a) Total Investment Cost for the Project
 - (b) Operation and Maintenance Cost to be incurred after completion of the Project
- Benefit: (a) It is assumed that diesel power plants having the same installed capacity comparable to the firm peak capacity of the Project are to be installed at load centers of the Ranau area. The total investment cost for these diesel power plants is estimated.
 - (b) Operation and maintenance cost of diesel power plants
 - (c) Fuel cost for generating energy corresponding to the firm peak capacity of the Project
 - (d) Fuel cost for generating non-firm energy at diesel power plants other than those mentioned in (c) above equal to the non-firm energy generation of the Project. (The amount of such fuel cost to be incurred at the said diesel power plants which will be saved upon completion of the Project.)

(1) Basic Conditions for Economic Analysis

(a) Price Level and Escalation

All prices are as of June 1992. No escalation has been considered according to general practice of economic evaluation.

TO COME STATE OF THE STATE OF THE STATE OF

(b) Composite Service Life

It is said that a composite service life of a small scale hydroelectric power project is generally 25 to 30 years. The composite service life of the Project is to be 25 years in accordance with the internal regulation of SEB. Likewise, the service life of the high speed diesel-engine power plant is to be 15 years.

(c) Discount Rate

A social discount rate of 10% is applied to this Project.

(d) Conditions for Calculations for Economic Analysis

Table 15-1-1 gives technical parameters of the mini hydro project (Project) and the alternative diesel power plant.

Table 15-1-1 Technical Parameters for Calculations for Economic Evaluation

No.	Description	Mini Hydro	Diesel
(1)	Installed Capacity (kW)	1,600	514
(2)	Firm Peak Capacity (kW)	460	
	Actual Capacity of Diesel (kW)		550
(3)	Station Service Rate; kW Service Rate kWh Service Rate	1.0%	4.0% 4.0%
(4)	Transmission Loss Rate (%)	3.0%	0
(5)	Scheduled Outage Rage (%)	1.02	10.0%
(6)	Forced Outage Rate	5.0%	5.0%
(7)	Annual Output Declining Rate	0.4%	2.07
(8)	kW Adjustment Factor	1	1.12 1/
(9)	Per kW Investment Cost of Diesel (10 ³ M\$)		1.56
(10)	Service Life (Year)	25	15
(11)	Kind of Fuel	-	Diesel Oil
(12)	Thermal Efficiency (%)	-	28.0%
(13)	Calorific Value (Kcal/kg)		10,000
(14)	Specific Gravity (kg/liter)	<u></u>	0.81
(15)	Fuel Consumption (Liter/kWh)	-	0.379
(16)	Fuel Unit Price (M\$/liter)	-	0.50
(17)	Fuel Cost per kWh (M\$ kWh)		0.190
(18)	OM Cost Rate to Total Construction Cost	1.12 <u>2</u> /	5.0%

Note)

1/ kW Adjustment Factor:

Mini Hydro Disel
$$\frac{(1-0.01)\times(1-0.01)\times(1-0.05)\times(1-0.004)\times(1-0.03)}{(1-0.04)\times(1-0.10)\times(1-0.05)\times(1-0.02)\times(1-0)}$$

$$= \frac{0.899549501}{0.804384}$$

$$= 1.1183$$

$460 \text{ kW} \times 1.12 = 514 \text{ kW}$

However, 550 kW has been selected as the installed capacity of the alternative diesel power plant in consideration of standard sizes of diesel-engine sets available widely on the market.

2/ Annual OM Cost Rate (Composite) of Mini Hydro:

	Total Construction Cost of Mini Hydro (10 ³ M\$)		OM Rate	ОМ
٠.	$(A_{i,j},A_{i,j},A_{i,j}) = A_{i,j} + A_{i,j$			Cost
(a)	Civil Works	7682	0.5%	38
(b)	Electro/Mechanical	3655	2.5%	91
(c)	Transmission	163	1.5%	2
	Total	11,500	A.	132
Annua	al OM Rate		1.1498% (Average))

Table 15-1-2 shows annual energy generation, annual saleable energy, etc. of the Project as well as the quantity of energy to be generated at the diesel power plants that correspond to the quantity of saleable energy of the Project.

Table 15-1-2 Required Quantity of Energy to Be Generated At Diesel Power Plant

Year	Annual Energy Generation	Firm Usable Energy	Non-firm Usable Energy	Firm Saleable Energy (Mh)	Non-firm Saleable Energy (MMh)	Energy Generated at D/G for (a)	Energy Generated at D/G for (b)
	(MWh)	(Mith)	(Mfh)	(a)	(b)	(HVh)	
1997	4500	2314	2186	2245	2120	2338	2209
1998	5365	2314	3051	2245	2959	2338	3083
1999	6233	2314	3919	2245	3801	2338	3960
2000	7177	2314	4863	2245	4717	2338	4914
2001	7813	2314	5499	2245	5334	2338	5556
2002	8276	2314	5962	2245	5783	2338	6024
2003	8595	2314	6281	2245	6093	2338	6346
2004	8839	2314	6525	2245	6329	2338	6593
2005	9047	2314	6733	2245	6531	2338	6803
2006	9195	2314	6881	2245	6675	2338	6953
2007	9317	2314	7003	2245	6793	2338	7076
2008	9472	2314	7158	2245	6943	2338	7233
2009	9472	2314	7158	2245	6943	2338	7233
2010	9472	2314	7158	2245	6943	2338	7233
2011	9472	2314	7158	2245	6943	2338	7233
2012	9472	2314	7158	2245	6943	2338	7233
2013	9472	2314	7158	2245	6943	2338	7233
2014	9472	2314	7158	2245	6943	2338	7233
2015	9472	2314	7158	2245	6943	2338	7233
2016	9472	2314	7158	2245	6943	2338	7233
2017	9472	2314	7158	2245	6943	2338	7233
2018	9472	2314	7158	2245	6943	2338	7233
2019	9472	2314	7158	2245	6943	2338	7233
2020	9472	2314	7158	2245	6943	2338	7233
2021	9472	2314	7158	2245	6943	2338	7233
Total	216965	57850	159115	56114	154342	58453	160772

15.1.3 Cost (Total Costs of the Project)

(1) Investment Cost for the Project

The investment cost will amount to $M\$2,725 \times 10^3$ in the first year, $M\$5,303 \times 10^3$ in the second year and $M\$5,472 \times 10^3$ in the third year, totalling $M\$11,500 \times 10^3$.

(2) Operation and Maintenance Cost

The annual operation and maintenance cost of completed facilities and equipment as a result of implementing the Project will include mainly personnel expenses of staff to be engaged in operation and maintenance of the hydropower plant and related transmission line facilities and their repair costs. Generally, the annual operation and maintenance cost ratio of a small scale hydroelectric development project ranges from 1 to 1.5% of its total investment cost. The Project is to be composed of the following major components; civil structures, power plant equipment and transmission line facilities. The OM cost rates to their respective total amount of investments are as follows in general.

Civil structures : 0.5%

Power plant equipment : 2.5%

Transmission line facilities : 1.5%

The total construction cost of the Project amounting to M\$11,500 x 10^3 consists of M\$7,682 x 10^3 for civil structures, M\$3,655 x 10^3 for power plant equipment and M\$163 x 10^3 for transmission line facilities. Consequently, the weighted average of the total OM cost of the respective items is 1.1% applying the OM cost ratios of the above-mentioned three items and the construction cost of each project component.

The OM cost equivalent to 1.1% of the total construction cost will be incurred annually. The annual OM cost is calculated to be M\$11,500 \times 10³ \times 0.11498 = M\$132 \times 10³.

15.1.4 Benefit (Total Cost of Alternative Diesel Power Plant and Others)

(1) Amount of Investment in Alternative Diesel Power Plant

The Project envisages construction of a hydroelectric power plant with an installed capacity of 1,600 kW and a firm peak capacity of 460 kW. It is a general practice in an economic evaluation to compare a diesel power plant which has an installed capacity comparable to the firm peak capacity throughout a year of the hydro plant.

The installed capacity of the alternative diesel power plant which is comparable to the firm peak capacity of the Project is to be 550 kW, already described in **Table 15-1-1**.

The experience of SEB in recent years in the installation of diesel power plants equipped with high speed engines shows that the cost per kW of such plants is M\$1,350. However, the construction per kW is assumed to be 1,560 M\$/kW, taking into account construction costs of powerhouse and associated equipment and facilities. The total investment cost for the alternative diesel power plant will be $1.56 \times 10^3 \, \text{M}\$/\text{kW} \times 550 \, \text{kW} = \text{M}\858×10^3 .

(2) Operation and Maintenance Cost

The operation and maintenance cost of the alternative diesel power plant includes personnel expenses of those who are to be engaged in operation and maintenance of the power plant and its repair costs. The annual operation and maintenance cost of a diesel power plant is 3% to 5% in general. The alternative diesel power plant is assumed to be equipped with a high speed engine. Accordingly, the operation and maintenance the will become rather costly. Therefore, 5% is used as the annual OM cost ratio to the total investment cost. Consequently, the

operation and maintenance cost will be M\$858 x 10^3 x 0.05 = M\$43 x 10^3 annually.

(3) Fuel Cost

(a) Fuel Cost per kWh

- The unit fuel cost for the diesel power with an installed capacity of 550 kW is 0.19 M\$/kWh as shown in Table 15-1-1.
- The fuel cost per kWh of existing diesel power plants in the Ranau/Kundasang area is assumed to be M\$0.18, based on records available in the said area during the last five (5) years.

Oil Consumption (Kiloliter)

	Ranau	Kundasang	Bundu Tuhan	Total
1987	1825	395	36	2256
1988	1858	419	36	2313
1989	1471	419	38	1928
1990	1590	450	46	2086
1991	859	489	50	1398
Total	7603	2172	206	9981

Oil Purchase Cost (10³ M\$)

	End We	1	Ranau		Kundasang	Bundu	Tuhan	Total
. *	1987	11 21	837	10.5	181		16	1034
	1988		837		185		16	1038
	1989	•	611		173		16	800
•	1990		786		220		22	1028
	1991		493		281		28	802
	Total		3564		1040	· · · · · · · · · · · · · · · · · · ·	98	4702

Generation (MWh)

A contract of the contract of			the state of the s	
	Ranau	Kundasang	Bundu Tuhan	Total
1987	3862	1078	81	5021
1988	4289	1687	81	6057
1989	4462	1163	89	5714
1990	4842	1233	114	6189
1191	5387	1388	120	6895
Tota1	22842	6549	485	29876
	1988 1989 1990 1191	1987 3862 1988 4289 1989 4462 1990 4842 1191 5387	1987 3862 1078 1988 4289 1687 1989 4462 1163 1990 4842 1233 1191 5387 1388	1987 3862 1078 81 1988 4289 1687 81 1989 4462 1163 89 1990 4842 1233 114 1191 5387 1388 120

Source: SEB Department of Finance/Accounts

Average Fuel Cost (M\$)/kWh

	Ranau	Kundasang	Bundu Tuhan	Average
1987	0.22	0.17	0.20	0.19
1988	0.20	0.11	0.20	0.17
1989	0.14	0.15	0.18	0.16
1990	0.16	0.18	0.19	0.18
1991	0.09	0.20	0.23	0.18

(b) Energy Generation

Energy to be generated by the proposed the hydroelectric project can be divided into two categories of "firm" energy and "non-firm" energy. Annual saleable energy for each year has been calculated by subtracting station service loss, losses due to outages, transmission line losses, etc. from the firm energy and non-firm energy, respectively.

The annual saleable firm energy which should be generated at the alternative diesel power plant having an installed capacity of 550 kW should correspond to the firm-peak capacity of the hydroelectric power plant.

The "non-firm" energy of the hydroelectric power plant is equivalent to that of energy generated at existing diesel power plants (which could be saved if the Project is realized).

In this study, the diesel power plants are assumed to generate the same quantity of energy as that of the saleable energy. For this purpose, the energy which will be generated at the diesel power plants has been obtained by multiplying the saleable energy by 1/(1-0.04).

(c) Fuel Cost

The fuel costs were calculated according to Items (a) and (b). The fuel costs of the alternative diesel power plant and other existing diesel power plant(s) which could be saved by realization of the Project have been obtained.

15.1.5 Economic Evaluation

The streams of "Benefit" and "Cost" are given in Table 15-1-3. The surplus benefit (B-C) and Benefit/Cost (B/C) ratio at a social discount rate of 10% and economic equalizing discount rate are as shown below.

B-C : M\$625 x 10³

B/C : 1.06

EEDR : 10.71%

It is verified that construction and operation of the hydroelectric power plant and associated facilities through the implementation of the Project are more economical than those of alternative diesel power plants. The economic equalizing discount rate of the Project slightly exceeds 10%. In view of the fact that the economic equalizing discount rate of the Project is slightly larger than 10% which is generally used for project evaluation in the power sector in Sabah State, the Project is economically feasible.

EEDR- 10.712

15.1.6 Sensitivity Analysis

The following is the results of sensitivity analysis of fluctuations in construction cost of the Project and in the fuel cost of alternative diesel power plant.

(1) Fluctuation in Construction Cost of the Project (discount rate 10%)

Construction Cost	up 3%	up 42	<u>up 52</u>	up 6%	up 72	up 102
$B-C (10^3 M\$)$	+314	+210	+107	+3	-101	-412
B/C	1.029	1.020	1.018	1.000	0.991	0.964
EEDR (Z)	10.35	10.29	10.12	10.00	9.89	9.56

(2) Fluctuation in Fuel Cost of Diesel Power Plant (discount rate 10%)

Fuel Cost	<u>up 3%</u>	up 57	up 7%	up 97	up 10%
$B-C (10^3 M\$)$	+922	+1,120	+1,318	+1,515	+1,614
B/C	1.089	1.108	1.127	1.146	1.156
EEDR (2)	11.04	11.26	11.47	11.69	11.79

15.2 Financial Analysis

15.2.1 Outline

In the financial analysis of total investment in the Project, the present values of a stream of operating revenues (energy sales revenue) and a stream of costs (comprising investments and OM cost) of the Project were calculated. As a result, surplus benefit (B-C) is M\$811 x 10³, benefit/cost (B/C) ratio 1.078 and financial equalizing discount rate (FEDR) 10.86%. The financial equalizing discount rate obtained exceeds the social discount rate of 10% which is used by SEB for project evaluation. Hence, it is concluded that investment in this Project is financially sound.

Regarding financial analysis made from the point of view of power utility, necessary studies were made for 2 cases bearing in mind the Government's policy in recent years of giving subsidies to the respective states of Malaysia in implementing their small scale hydroelectric power development projects. Case I - construction costs of the Project are to be financed by a loan from the Federal Government and Case II in which the total construction costs of the Project are to be funded by grants from the Federal Government.

Profit and loss statement and cash flow sheet have been prepared for Case I. As a result, net profit, which is the difference between revenue and cost (including interest), shows a deficit from the 3rd to 5th operating years but immediately thereafter the net profit turns into the black and this favorable situation continues until the last operating year, resulting in generating an aggregate net profit amounting to M\$18,760 x 10³ over 25 operating years. With regard to the cash flow, as borrowed funds are repaid from the net profit plus depreciation reserve, the yearly balance becomes red during the period from the 3rd to the 7th operating years. Nonetheless, the yearly balance turns into the black in the 8th operating year and subsequent years, however the cumulative balance shows a plus balance for the respective years.

The debt-service ratio is 1.76 in the 1st repayment year. The cumulative average debt-service ratio is 1.07 over 10 years from the commencement of repayment. The cumulative average debt-service ratio over the entire 15 year repayment period is 1.08. Consequently, stable operation of the power utility could be anticipated as far as this Project is concerned, even at the present unit sale rate. If Case II is taken into account, the operating expense will be only OM cost besides depreciation cost which is a non-cash item and is an internal reserve. The total net profit will amount to M\$30,501 x 10³ over the 25 operating years.

On the other hand, average generating costs are calculated at 0.122 M\$/kWh in Case I and 0.068 M\$/kWh in Case II respectively, over the depreciation period of twenty-five (25) years after completion of the Project.

15.2.2 Methods of Financial Analysis

Financial analysis of this Project was made by the two methods stated hereunder:

(1) Financial Analysis of Total Invested Capital Cost

A financial equalizing discount rate (FEDR) which equalizes the present value of a stream of operating revenue (energy sales revenue) to be generated by the materialization of the Project and that of a stream of costs (investments and operation and maintenance cost) was calculated.

A comparison is made between the FEDR thus obtained and the social discount rate of 10% to check if the former exceeds the latter. Then, judgement is to be made as to whether the Project is financially feasible or not.

(2) Financial Analysis from the Standpoint of Power Utility

SEB is the implementing agency of this Project and will operate and maintain the completed equipment and facilities upon completion of the Project. Therefore, it is believed that there will be the necessity of preparing guidelines for the management. In this context, amortization schedule, profit and loss statement and cash flow sheet are prepared in order to calculate debt-service ratios.

In recent years, the policy of the Federal Government of Malaysia through its Economic Planning Unit (EPU) has been to bear all costs of constructing small scale hydroelectric power development projects undertaken by its States in light of the important role to be played by such projects in rural electrification and regional electricity supply.

Therefore, studies in the "Financial Analysis from the Standpoint of Power Utility" were made on Case I where conventional government loan is provided for all construction costs and Case II in which all required construction costs are to be funded by grants provided by the Federal Government.

15.2.3 Basic Conditions of Financial Analysis

(1) Conditions of Financial Analysis of Total Invested Capital Cost

(a) Construction Cost

	(10 ³ MS)
Project Year 1st	2,725
Project Year 2nd	5,303
Project Year 3rd	3,472
Total	11,500

(b) Operation and Maintenance Cost

As already described in 15.1 "Economic Evaluation", the composite ratio of annual OM cost is equivalent to 1.1% of the total construction cost. Accordingly, the OM cost is calculated to be M\$132 \times 10^3 .

(c) Energy Sales Revenue

The energy sales revenue was studied as follows on the basis of data furnished by the Department of Finance/Accounts of SEB.

1) Average Sale Rate

The unit average sale rate obtained through the energy sold and energy sales revenue for 7 years from 1985 to 1991 in the Ranau, Kundasang and Bundu Tuhan districts are different from one district to another in the respective years. The said sale rate roughly ranges form M\$0.23 to M\$0.29 per kWh. The overall average of the sale rates in each district in the respective years is calculated to be 0.26 M\$/kWh. This sale rate has been used as the average sale rate per kWh in the financial analysis.

Table 15-2-1 Average Sale Rate at Ranau/Kundasang System

Ener	cgy Sold (MWh)	Ranau	Kundasang	Bundu Tuhan	<u>Total</u>
	1985	2,150	622	64	2,836
	1986	2,348	677	78	3,103
	1987	2,914	878	72	3,863
÷	1988	3,777	1,025	73	4,875
	1989	3,821	1,076	74	4,971
	1990	4,272	1,110	102	5,484
	1991	4,497	1,360	108	5,965
	Total	23,779	6,748	570	31,097

ross Energy Sales	Ranau	Kundasang	Bundu Tuhan	<u>Total</u>
(10 ³ M\$)				
1985	587	127	15	729
1986	766	221	15	1,002
1987	851	265	19	1,135
1988	960	273	19	1,252
1989	969	283	20	1,272
1990	1,078	273	26	1,377
1991	1,142	254	27	1,423
Total	6,353	1,696	141	8,190

Average Sale Rate	Ranau	Kundasang	Bundu Tuhan	Average
(M\$ per kWh)				
1985	0.27	0.20	0.23	0.24
1986 a. e. 2004	0.33	0.33	0.19	0.28
1987	0.29	0.30	0.27	0.29
1988	0.25	0.27	0.26	0.26
1989	0.25	0.26	0.27	0.26
1990	0.25	0.25	0.25	0.25
1991	0.25	0.19	0.25	0.23
Average	0.27	0.26	0.25	0.26

2) Average Sale Rate to be allocated to the Project

Based on the data provided by SEB's Department of Finance/Accounts on the "total supply cost" of energy in the components of generation and transmission/distribution as shown in Table 15-2-2, the following composition ratios have been obtained.

Composition Ratios of Generation and Transmission/Distribution.

	Year	<u>1987</u>	1988	<u> 1989</u>	1990	<u>1991</u>
Generation (%)		80.2	78.7	80.1	76.8	77.0
Transmission/Distribution (Z)	19.8	21.3	19.9	23.2	23.0

However, the Department of Finance/Accounts has treated the supply costs of "transmission" and "distribution" components in the same accounting category, which makes it quite difficult to separate both items.

According to SEB, the transmission component occupies roughly 60% and the distribution accounts for approximately 40% of the supply cost of both components.

If their estimation is correct, the composition ratios of Generation, Transmission and Distribution occupied in the total supply cost can be estimated as follows:

Year <u>l</u>	987	1988	1989	1990	1991
Generation (%) 8	0 	79 – 	80 	77 — - 191	77 —
Transmission (2) 1		1	12	14	14
Distribution (%) 8		8 .	8	9	9

As can be easily seen from the above, the composition ratio of "distribution" component in the total supply cost is 8 to 9%. Applying 8% of the total supply cost for distribution purposes, and taking into account the situation of the Ranau area, 92% which is the estimated composition ratio of "Generatio" and "Transmission" is allocated to this Project.

Consequently, since the average sale rate per kWh is M\$0.26, the average unit sale rate of this Project at the receiving end is M0.26 \times 0.92 = M0.239 .

Table 15-2-2 Share of Generation, Transmission and Distribution Occupied In Supply Costs of SEB during the Recent Five (5) Years

		(In tho	usand Ma	laysian	dollars
Items			Amount		
rcens	1987	1988	1989	1990	1991
(1) Operating revenue (10 ³ M\$)	193,805	208,507	226,998	256,273	267,193
			٠,		
(2) Energy gold (MWh)	660,420	705,235	770,041	877,464	928,183
grandada in the control of the first					
(3) Supply (Prime) costs (10^3 M \$)		* 4.			r dr
Secure 40 and the end of the end of					•
(a) Operation and maintenance cost					
Generation	80,188	79,153	91,358	115,298	138,323
Transmission & Distribution	9,566	10,441	20,680	11,296	16,25
<u>Sub-total</u>	89,754	89,594	102,038	126,594	154,57
(b) Depreciation cost					4.
Generation	15,885	16,123	16,130	15,883	17,191
Transmission & Distribution	17,591	18,962	19,939	34,717	36,000
Sub-total	33,476	35,085	36,069	50,600	53,19
(c) Administration cost					
Generation	26,886	26,149	29,102	30,953	32,78
Transmission & Distribution	3,207	3,449	3,402	3,032	3,853
Sub-total	30,093	29,598	32,504	33,985	36,63
(d) Total supply costs	•				
Generation	122,959	121,425	136,590	162,134	188,29
Transmission & Distribution	30,364	32,852	34,021	49,045	56,11
Total	153,323	154,277	170,611	211,179	244,41

3) Energy Sales to Ultimate Consumers

Energy to be sold to ultimate consumers has been obtained by subtracting distribution losses equivalent to 10% from Saleable Energy (the energy obtained by subtracting 3% as transmission losses from Usable Energy) shown in Table 15-1-2.

4) Energy Sales Revenue

Energy sales revenue from the 1st to 25th operating years has been summed up, based on Items 1) through 3) above.

(2) Financial Analysis from the Standpoint of Power Utility

(a) Fund Raising Conditions

Funding conditions were worked out in consultation with SEB by making reference to previous funding conditions of SEB-owned projects. As stated before, Case I is the case in which all construction costs will be financed by Federal Government loan and Case II in which all construction costs will be funded by grants from the said Government.

1) Case I

All construction costs are to be financed by loan from the Federal Government.

Annual Interest Rate: 8%

Grace Period

: 5 years (counted from L/A

date)

Repayment Period : 15 years (counted from the

maturity of the grace peri-

od)

Repayment Mode : Equal annual installments

with interest. No payment

during the grace period and accrued interest due during the said period will be capitalized.

2) Case II

All construction costs are to be funded by grants from the Federal Government.

(b) Depreciation

The depreciation period is to be 25 years with a salvage value of zero according to the internal regulation of SEB.

The amount to be depreciated is the total sum of the principal and capitalized interest at the end of the last Project year, namely: borrowing year.

(c) Energy Sales Revenue

Refer to 15.2.3(1)(C).

15.2.4 Results of Financial Analysis

(1) Financial Analysis of Total Invested Capital Cost

As shown in Table 15-2-3, FEDR of the Project is 10.86%. This value exceeds the social discount rate of 10% which is used by SEB in project evaluation. Therefore, this Project is found to be financially sound and feasible.

(a) Change in FEDR due to Fluctuations in Construction Cost and Unit Sale

■ Fluctuation in Construction Cost

Construction Cost	up 3%	up 5%	up 7%	սթ 82	ир 10%
FEDR (%)	10.52	10.30	10.09	9.98	9.78

Fluctuation in Unit Sale Rate

Sale Rate (kWh)	0.20	0.25	0.30	0.35
FEDR (Z)	7.97	10.41	12.58	14.55

(2) Financial Analysis from the Standpoint of Power Utility

Case I

(a) Amortization Schedule

As shown in Table 15-2-4, M\$11,500 x 10^3 is to be borrowed at the outset, but the total sum of the principal plus capitalized interest amounts to M\$12,378 x 10^3 at the end of the last borrowing year. No payment of accrued interest is made during the grace period from the 1st to 5th borrowing years.

Equal installments of principal and interest amounting to M1,687 \times 10^3$ will be made each year for fifteen (15) years from the 6th year counted from the first borrowing year until the end of the 20th borrowing year.

(b) Profit and Loss Statement

As shown in Table 15-2-5, the profit is red consecutively for three (3) years from the maturity of the grace period but turns into black in the 4th year. The total sum of net profit is calculated to be M18,760 \times 10^3$.

(c) Cash Flow Sheet

The Cash Flow Sheet is given in **Table 15-2-6** in which the yearly balance shows a deficit consecutively for five (5) years counted form the commencement of repayment. However, the cumulative balance is black every year, which shows no shortage of funds at SEB in the respective years and its financial situation is in a favorable situation.

(d) Debt-Service Ratio

As shown in Table 15-2-7, ratios were calculated between the cumulative total of net profit and depreciation reserve and that of the accrued interest plus principal to be repaid for 15 years from the commencement year of repayment until the last repayment year. The debt-service ratio is 1.76 at the commencement year of repayment. The average debt-service ratio between the cumulative internal fund generated and the cumulative debt is 1.08. The average cumulative debt-service ratios during the entire period of repayment exceeds 1 which is the standard in assessing repayment capability.

As a result, it is judged that there will be no problem of repayment by SEB of the loan mentioned in 15.2.3 above as far as this Project is concerned.

Case II

(a) Profit and Loss Statement

As given in Table 15-2-8, M $$30,501 \times 10^3$ is the aggregate net profit for 25 service (operating) years.

(b) Cash Flow Sheet

The cash flow sheet covering 25 operating years is as shown in Table 15-2-9.

Table 15-2-3 Financial Analysis of Benefit and Cost

ale Hate : M\$0.26/kWh
•

	Discount Rate	late : 10%							TI)	n Thousand	Malaysian	dollars)
	Year	r Serial	Invest- ment	OM Cost	Sub- Total	Energy (MWb)	Sales Revenue	D-8	PV Factor	NPV Cost	NPV Benefit	NP4 B-C
	66	7 J	2725		2725			-2725	606.0	2477	0	-2477
	199	5	5303		5303			-5303	0.826	4383	0	-4383
	9	9	47		3472			-3472	0.751	2609	0	-2609
	•	1 4		132	132	4365	940	807	0.683	06	642	552
		2 5		132	132	5204	1120	988	0.621	82	969	614
٠		3		132	132	6046	1302	1169	0.564	7.5	735	660
	7	7		132	132	6962	1499	1366	0.513	68	769	701
		8		132	132	7579	1632	1499	0.467	62	761	669
		6		132	132	8028	1728	1596	0.424	56	733	677
		7 10		132	132	8337	1795	1663	0.386	51	692	641
		д		132	132	8574	1846	1714	0.350	46	647	601
1.		9. 12		132	132	8776	1889	1757	0.319	74	602	260
5 •	i,	0 13		132	132	8918	1920	1788	0.290	38	556	518
- 2	F	14		132	132	9037	1946	1813	0.263	35	512	478
28	Ä	2 15		132	132	9188	1978	1846	0.239	32	474	442
	H	3 16		132	132	9188	1978	1846	0.218	53	430	402
	Ä	4 17		132	132	9188	1978	1846	0.198	26	391	365
	ਜ	5 18		132	132	9188	1978	1846	0.180	24	356	332
	Ä	61 9		132	132	9188	1978	1846	0.164	22	323	302
	H	7 20		132	132	9188	1978	1846	0.149	20	294	274
	ਜੋ	8 21		132	132	9188	1978	1846	0.135	18	267	249
				132	132	9188	1978	1846	0.123	H 6	243	227
	Ñ	0 23		132	132	9188	1978	1846	0.112	15	221	206
		1 24		132	132	9188	1978	1846	0.102	13	201	187
	23	2 2		132	132	9188	1978	1846	0.092	12	183	170
		3 26		132	132	9188	1978	1846	0.084	11	166	155
•		7		132	132	9188	1978	1846	0.076	10	151	141
	23	5 2		132	132	9188	1978	1846	0.069	თ	137	128
	Tota		11500	3306	14806	210456	45307	30501		10370	11182	811
							W					

Table 15-2-4 Amortization Schedule

Case I Interest Rate: 8.0% per annum

Serial No.	Amount of Loan	Principal & Interest at 3rd Year	IDC	Accrued Interest	Repayment of Principal	Total Interest & Principal	Outstanding Balance
1	2725	3178					2725
2	5303	5727					8246
3	3472	3472					12378
Total	11500	12378					
4 5							13368 1443
6				1155	532	1687	1390
. 7				1112	574	1687	: 1333
8				1067	620	1687	1271
. 19				1017	670	1687	1204
10				963	723	1687	1131
11		•		905	781	1687	1053
12				843	844	1687	969
13				775	911	1687	878
14	.*			703	984	1687	779
15			•	624	1063	1687	673
16				539	1148	1687	558
17				447	1240	1687	434
18	•			348	1339	1687	300
19		•		241	1446	1687	156
20				125	1562	1687	
Total				10863	14437	25301	· .

Table 15-2-5 Profit and Loss Statement

18760	10863	0	29624	15683	3306	12378	45307		Total
1351			1351	627	ന	495	97	25	58
1321			ന	2	132	495	1978	24	27
1351			1351		3	495	97	23	26
1351			35	627	ന	495	97	22	25
1351			ന	627	ന	495	97	21	24
1351			35	627	ന	495	97	20	23
1351			35	2	'n	495	6	19	22
1351			35		ന	495	97	18	21
1226	125	*	3	627	ന	495	6	17	20
1110	241		35	627	3	495	6	16	13
1003	348		35	627	m	495	9	15	18
904	177		35	627	m	495	6	14	17
812	539		35	627	ന	495	97	13	16
727	624		35	627	ന	495	97	12	15
919	703		31	627	ര	495	94	11	14
517	775		29	627	ന	495	92	10	13
419	843		2	627	'n	495	88	σ	12
313	905	.*	21	627	ന	495	84	α	11
204	963		16	627	ന	495	1795	7	10
8.4	Ö		н	627	ന	495	72	Ø	o,
-62	1067		00	627	m	495	1632	'n	ω
-241	Ħ	:	871	627	ന	495	1499	7	7
-481	15		~	627	3	495	30	m	Q
493	0		493	2	3	495	1120	2	'n
312	0	-	H	627	132	495	056	H	4
O.						:			ო
0		-							7
0									-
3 7 7 7	Interest	IDC						**************************************	eta i
Net	Expense	Financial	Profit	Total	¥6	Deprecia-	Operating	Depreciat-	Serial

											•	(In	Thousan	Thousand Malaysian	dollars)
Sorial			ပ	Cash In	flow					Cash Outflow	tflow		'	Balance	ace.
No. of Year	Deprecia- tion Year	Investment	ment	Pro	Net fit	Deprecia- tion	ia- ion	Total	Construct io Cos	יום	Repayment of Prinicpal	ment of cpal	Total	Yearly	Cumula- tive
П			2725		0			72		2725			2725	0	0
2			5303		0			5303	₹.	5303			5303	0	0
m			3472		0			47		3472		.*	3472	0	0
4	Н				312	7	495	807				•	0	807	807
Ŋ	2			٠.	493		495				: '		0	886	1796
φ	m			1	481	•	495					532	532	-517	1278
!	4				241	Ta Ta	495					574	574	-320	958
ω	in			.*.	-62		567	433				620	620	-187	771
on.	9		٠		84		495	579				670	670	16-	680
10	7				204	4	495	669				723	723	-24	656
H	ω				313	~	495	808				781	781	27	683
12	თ			1	419		495	914		-		844	844	. 70	753
13					517	•	Q	1012				911	911	101	854
14				æ	919		σ	덛				984	∞	127	981
15		٠.			727	•	g	22				0	90	159	1140
16					812	•	495	30			٠	-	Н	159	1299
17					904	•	Φ	39				\sim	24	159	1458
18	15			1	.003	~	495	1498				1339	1339	159	1617
61				Н	110	~	495	1605				- 3	44	159	1776
20				Н	226	~	495	1721				1562	1562	159	1935
21				7	351	•	495	1846					:	1846	3781
22	19			1	351	•	O	84						1846	5626
23	20			Т	351	•	495	1846						1846	47
24	21			Н	351	•	495	1846						1846	9318
25	. 22	÷		Н	351		495	1846				2		1846	116
26	23			-	351	:	495	1846						1846	13009
27				Н	ćŋ	•	495	84						84	4
28	25			H	351	•		1846						1846	16701
										٠					
Total		1	11500	18	760	12:	2378	42638		11500	ਜ	14437	25937	16701	

No. of Operat. Depreci- Total	Denreci-		Tota		CarmerTa	Thterest	Principal	(In Thou	(In Thousand Malaysian Total Cumulative	in dollars)
or operate representation at ion not profit	ation	· . · . · · ·	1		tive	262727	1941	d 0 0		Service Ratio
Year				- 11	(A)				(B)	(A)/(B)
					1.					
					• .			.,		
					٠.					
1 1480 1485 296	1485 29	5 29	296	Ŋ	2965	1155	532	1687	1687	1.76
2 871 495 1366	1 567	26	136	φ	4331	1112	574	1687	3373	1.28
1004 495 1	495	95 1	149	66	5831	1067	620	1687	2060	1.15
4 1101 495 1596	101 495 1	95 1	159	9	7427	1017	670	1687	6747	1.10
S 1167 495 1663	7 495 16	95 16	166	М	6806	963	723	1687	8434	1.08
-1	495 17	95 17	~	4	10803	905	781	1687	10120	1.07
7 1262 495 175	262 495 17	95 17	175	57	12560	843	844	1687	11807	1.06
1293 4	293 495	95	178	88	14348	775	116	1687	13494	1.06
1318 495 1	318 495 1	95 3	82	13	19191	703	786	1687	15180	1.06
13	351 495 1	95 1	184	φ	18007	624	1063	1687	16867	1.07
1351 495 1	351 495 1	56	18	46	19852	539	1148	1687	18554	1.07
12 1351 495 1846	351 495 1	95	184	œ.	21698	7447	1240	1687	20240	1.07
13 1351 495 1846	351 495 1	95	184	9	23544	348	1339	1687	21927	1.07
4 13	351 495	95	184	و	25390	241	1446	1687	23614	1.08
15 1351 495 1846	351 495 1	95 1	187	9	27235	125	1562	1687	25301	1.08
18819 8417 27235	9 8417	7	272	35	219241	10863	14437	25301		

Table 15-2-8 Profit and Loss Statement

Case II (Case where all funds are to be raised from Grants)

1	rsi

Serial	Donus - i -	Onomo +	Denva=!-	Oper	ating Expen	se
No. of Year	Deprecia- tion Year	Operating Revenue	Deprecia tion	ОМ	Tota1	Profit (Net)
1			 			
2						
3						
4		940	460	132	592	347
5		1120	460	132	592	528
. 6		1302	460	132	592	709
7	4	1499	460	132	592	906
· 8	5	1632	460	132	592	1039
9	6	1728	460	132	592	1130
10	7	1795	460	132	592	120
11	8	1846	460	132	592	125
12	9	1889	460	132	592	129
13	10	1920	460	132	592	132
14	11	1946	460	132	592	135
15	12	1978	460	132	592	138
16	13	1978		132	592	138
17	14	1978	460	132	592	138
18	15	1978	460	132	592	138
19	16	1978	460	132	592	138
20	17	1978	460	132	592	138
21	18	1978	460	132	592	138
22	19	1978	460	132	592	138
23	20	1978	460	132	592	138
24	21	1978	460	132	592	138
25	22	1978	460	132	592	138
26	23	1978	460	132	592	138
27	24	1978	460	132	592	138
28	25	1978	460	132	592	138
Total		45307	11500	3306	14806	3050

Table 15-2-9 Cash Flow Sheet

Case II (Case where All Funds are to be Raised from Grants)

(In Thousand Malaysian dollars)

Baland	Cash Out- flow	Total _		Cash Inflow		recia- tion	Рерг	Serial No. of
Year	Construc- tion Cost		Deprecia- tion	Net Profit	Investment	Year ~		Year
	2725	2725	. <u></u>		2725			1
	5303	5303			5303			2
	3472	3472	•	•	3472			3
80	÷	807	460	347		1		4
98		988	460	528		2		5
116	3	1169	460	7.09		3		6
136		1366	460	906		4		7
149		1499	.460	1039	•	- 5		8
159		1596	460	1136		6		9
166		1663	460	1203		7		10
171		1714	460	1254		8		11
175		1757	460	1297		9		12
178		1788	460	1328		10		13
181		1813	460	1353		11		14
184		1846	460	1386		12		15
184		1846	460	1386		13		16
184		1846	460	1386		14		1.7
184		1846	460	1386	٠.	15		18
184		1846	460	1386		16		19
184		1846	460	1386		17		20
184		1846	460	1386		18		21
184		1846	460	1386		19		22
184	*	1846	460	1386		20		23
184	in in its	1846	460	1386		21	- **	24
184		1846	460	1386	·	22		25
184	* ***	1846	460	1386		23		26
184	**	1846	460	1386		24		27
184		1846	460	1386	1	25		28
4200	11500	53501	11500	30501	11500			Total

15.2.5 Average Generating Cost over Whole Operating Years

(1) Case I where all Construction Costs are to be Financed by Loan

Unit generating cost depends upon funding conditions of construction costs. Based on the total of energy generated and total costs of depreciation, accrued interest and OM cost over 25 operating years, the average generating cost per kWh has been obtained to be M\$0.122 as shown below. The amount of depreciation and accrued interest has been calculated according to the loan conditions stated in 15.2.3.

	$(10^3 \text{ M}\$)$
Depreciation :	12,378
Accrued Interest :	10,863
OM Cost :	3,306
Total	26,547

Total Energy Generated

Over 25 years : 216,965 MWh (See Table 15-1-2)

Average Unit Generating

Cost for 25 years: 0.122 M\$/kWh

(2) Case II where all Construction Costs are to be Funded by Grants from the Federal Government

Different from Case I, payment of interest is not necessary, and the average unit generating cost will be M\$0.068 as shown below.

 $(10^3 \text{ M}\$)$

Depreciation

11,500

OM Cost

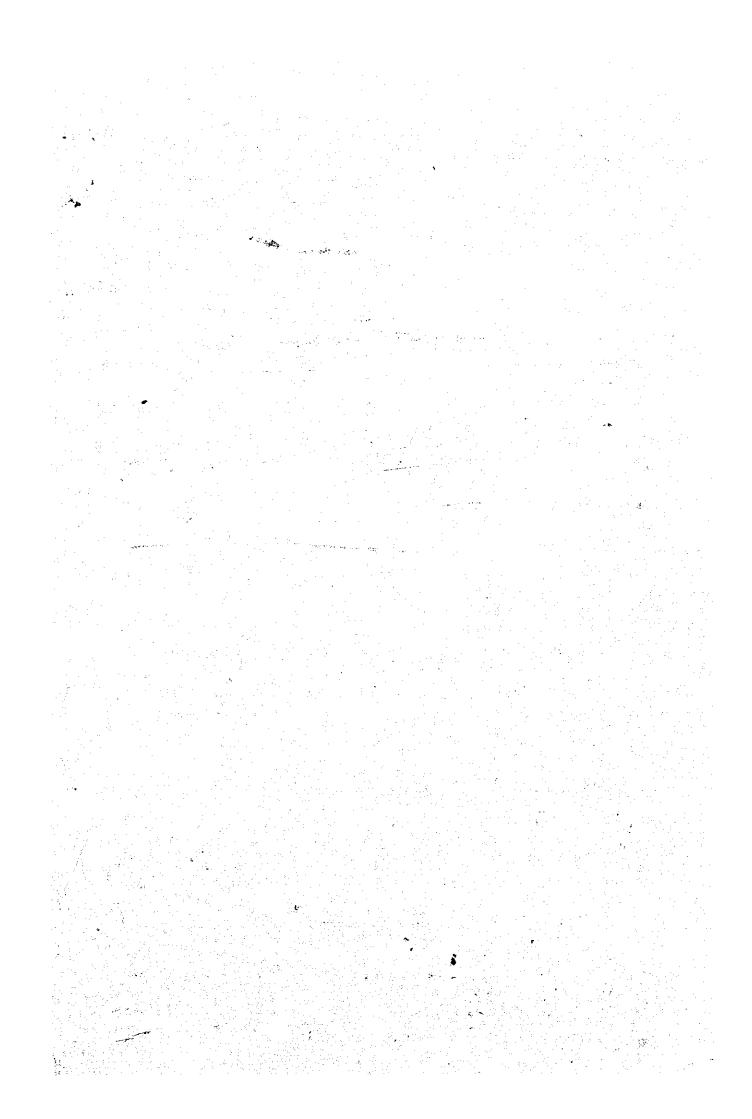
3,306

Total

14,806

Total Energy Generated

Over 25 years : 216,965 MWh (See Table 15-1-2)


Average Unit Generating

Cost for 25 years: 0.068 M\$/kWh

Average Generating Cost by Change in Annual Interest Rate for Case I (3)

The following are the average unit generating costs in case annual interest rate only of the loan conditions given in 15.2.3 above is changed.

Annual Interest Rate (%)	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
Generating Cost (M\$/kWh)	0.098	0.102	0.106	0.110	0.114	0.118	0.122	0.127	0.132

