Most of the areas along the east coast of Kab. Deli Serdang and part of Kab. Asahan which were covered with mangrove and nipah/palm forest, were converted into shrimp ponds, cacao plantation and palm oil plantation due to the big demand and higher price for these crops in the world market.

The lowland area which consist of swamps and scrubs were changed into plantation, paddy field, settlement and small scale industry especially along the national road.

In the middle reaches of Ular, Percut and Padang rivers there are old rubber plantations converted into oil palm, cacao and coconut plantations.

The industrial area along the roads in Medan has expanded to the north and east (Medan-Belawan), to the south (Medan-Lubuk Pakam), to the west (Medan-Binjai and Medan-Deli Tua). Therefore, the paddy fields and part of plantations may soon be occupied by industrial area.

Based on the current tendency of land use, the recommended land development is delineated by MPW as shown Fig. 4-2.

4.2 Regional Development

Economic Development Plans

The Fifth Five-Year Development Plan (Repelita V) was prepared aiming as a "take off" era before entering into the Second Long Term Development Plan.

(1) Policy Directions of Repelita V

The objective of Repelita V is twofold; namely,

- (a) To increase the living standard of the entire population; and
- (b) To build a strong foundation for the next development stage.

In conformity with the broad pattern of the First Long Term Developmen Plan, Repelita V continues to give special emphasis on economic development. The aims of economic development are to achieve a balanced economic structure, which consists of the agricultural sector for consolidating food self-sufficiency and promoting product diversity, and the industrial sector for promoting industries that increase exports, absorb substantial manpower, process agricultural products and produce industrial machinery.

Repelita V is also dealing with the urgent problem of providing adequate productive employment opportunities for the rapidly growing labor force. About 11.9 million new job seekers, many of whom are young and educated, will enter the labor market over the next five years.

The management of natural resources should be extended over the principles of ecological balance. Natural resources and environment must be managed so as to make the greatest possible contribution to current development and prosperity of the population as well as to be continuously provided for future generations.

To attain a harmonious implementation, the development trilogy, namely adequate economic growth, more equitable income distribution and greater national stability should be taken into consideration.

(2) Economic Growth and Structural Change

Within Repelita V, economic growth rate is estimated to reach an average of 5.0% per annum. Population growth rate is also expected to reach an average of 1.9% per annum, and the real income per capita will increase by about 3.1% per annum.

The 5.0% growth rate of the overall GDP is associated with an anticipated 6% growth in the sectors other than oil and natural gas. Anticipated growth rates of the main sectors in the next five years are as follows:

Anticipated Growth Rates

Sec	etor	Growth Rate (%)		
1.	Agriculture	3.6		
2.	Mining and Quarrying	0.4		
3.	Manufacturing	8.5		
4.	Construction	6.0		
5.	Trade	6.0		
6.	Transportation and Communication	6.4		
7.	Other Sectors	6.1		

Source: Fifth Five-YearDevelopmentPlau, 1989/90-1993/94, BAPPENAS.

The agriculture sector's growth rate is supported by a 3.2% increase in rice production, which is required to consolidate food self-sufficiency. The industrial sector is expected to increase through acceleration of non-oil and natural gas exports.

The economic structure in the next five years is also expected to become more balanced. The share of the agricultural sector will decline from 23.2% to 21.6%, while the share of the industrial sector is expected to increase from 14.4% to 16.9%.

(3) Basic Strategy of North Sumatra Province in Sectors

In achieving the annual regional economic growth of 6.0% including oil and natural gas or 6.2% excluding oil and natural gas, the development shall be well-balanced either sectorally or regionally. The policy of economic development will be emphasized on:

(a) Industry

Industries which produce export commodity and absorb more manpower, especially agro-industry and capital goods industry are highlighted. The industrial sector's rate of growth is projected at 10.98% per annum and its share is 19.72% at the end of Repelita V.

(b) Agriculture

To attain food self-sufficiency and increase other agriculture products, the growth rate of the agricultural sector is targeted at 4.73% per annum on average, and its share is 31.57% at the end of Repelita V.

(c) Tourism

To develop the regional tourism resources and tourism potential as one of the regional economic activities, it is expected to achieve the target of 854,714 tourists within Repelita V, and they will stay for about 12 days with average expenditures of US\$120 per day.

Water Resources Development Plans

(1) Water Resources Development Within Repelita V

Water resources development under Repelita V is still concentrated on the irrigation sector. The development policies on irrigation are specifically aimed at the enhancement of operation and maintenance activities and the increase of irrigation networks.

The expansion of irrigation networks will be carried out in areas outside of Java in order to maintain self-sufficiency and compensate for the decrease of paddies in Java. The following table shows the selected targets in the irrigation sector.

Targets of Irrigation Sector Expansion

(Unit: 1,000 ha)

Ac	tivity	Repelita IV	Repelita V
1.	Improvement and Maintenance of Irrigation Networks		e e e e e e e e e e e e e e e e e e e
	- O&M	5,400.0	5,800.0
	- Rehabilitation	561.0	334.3
2	Construction of New		5 · · · ·
	Irrigation Networks	344.8	500.0
3.	Swamp Area Development		
	- Reclamation	225.5	444.2
	- Pond Improvement	9.0	60.0
	- Pond Development	3.0	10.0
4.	Flood Control	359.0	450.0

Source: BAPPENAS, Fifth Five-Year Development Plan, 1989/90-1993/94.

(2) Water Resources Development in North Sumatra

The technical irrigation area was increased from 51,362 ha to 53,854 ha or 1.05% per annum from 1983 to 1987. The semi-technical irrigation area was decreased from 63,744 ha to 59,549 ha or 1.68% per annum, but the simple irrigation area was increased and upgraded to semi-technical from 53,049 ha in 1983 to 76,845 ha in 1987 or an increase of 8.84% per annum.

In Kab. Deli Serdang, only swamp development was planned especially in the lower reaches of Percut River. About 900 ha are to be reclaimed with financial assistance from the World Bank, and another 1,000 ha will be developed with financing by APBN (Anggaran Pendapatan dan Belanja; National Budget).

In Kab. Simalungun, the main development sector is also irrigation, with emphasis on rehabilitation and maintenance as financed by:

- (a) APBN for about 8,206 ha in 47 irrigation schemes.
- (b) OECF loan for one scheme (total area is not fixed)
- (c) ADB loan for about 22,928 ha covering 52 irrigation schemes.

Medan Urban Development Project

The study on Medan Urban Development, Housing, Water Supply and Sanitation Project was commenced in 1978 and completed in October 1980, under the supervision of the Directorate General of Housing Building Planning and Urban Development (DGCK), Ministry of Public Works. It was financed partly by ADB.

The study covered the whole area of Kodya. Medan and its scope are as follows:

- (a) Preparation of a long term urban development plan.
- (b) Preparation of a feasibility study for housing development projects including a Kampung Improvement Programme and a Sites and Services and Low Cost Housing Scheme.
- (c) Development of a long-range Master Plan for water supply, wastewater drainage and solid wastes systems in Medan and its vicinity through the year 2000.
- (d) Preparation of First Stage Feasibility Studies for water supply, wastewater, drainage and solid wastes systems to meet needs through the year 1990.
- (e) Detailed engineering for the First Stage Sites and Services Scheme and the Low Housing Scheme.

Based on the study, the first stage program was implemented starting in 1982. Technical assistance from ADB was also requested in 1988 by the GOI for the second stage of MUDP, namely the Second Medan Urban Development Project (MUDP II).

In MUDP II, the project was rather expanded consisting of 11 components. The scopes of work are as follows.

(1) Part A: Water Supply

Development of the final phase extension of the Deli Tua Water Treatment Plant; provision of two reservoirs, pumping stations, transmission mains and expansion of the distribution system including house connections within Kotamadya Medan.

(2) Part B: Sewerage

Augmentation of the Kera Sewerage Pumping Station and construction of two smaller pumping stations; laying of sewers and laterals, and house connections within Kotamadya Medan.

(3) Part C: Drainage

Improvement of Lower Kera River Main, provision of secondary drains to divert stormwater from the Kera Basin to other higher capacity channels as well as Sei Sulang Saling and associated secondary open drains, secondary open and covered box and pipe drains, Kampung Improvement Program drains and drainage improvement works at the University of North Sumatra and Martubung, plus procurement of maintenance equipment.

(4) Part D: Solid Waste Management

Extension of the Solid Waste Management System to six additional city precincts (Kecamatan) in the portion of Kotamadya Medan not served through the MUDP and the development of transfer depots requiring a new landfill site, transfer locations, transfer depots, a workshop in East Medan and equipment including solid waste containers, hand carts, dust bins, bulldozers, wheel loaders, landfill, compactors, vehicles, motorcycles and tipper truck.

(5) Part E: Kampung Improvement Program and Market Infrastructure Improvement Program

Provision in the Kampung Improvement Program of basic infrastructure including water supply, solid waste management, local drainage, footpaths, culverts, shallow wells and sanitation facilities, and promotion of community participation activities in 14 kampung areas within Kotamadya Medan consisting of about 570 hectares. The Market Infrastructure Improvement Program will include provision of roads, footpaths, parking facilities, drains, sanitation, water supply, solid waste management and other infrastructure rehabilitation works in 13 market areas.

(6) Part F: Urban Road and Traffic Management

Construction of the southern section of the outer ring road within Kotamadya Medan, and improvement of Jl. Katamso, Jl. Monginsidi, Jl. Iskandar Muda and Jl. Gatot Subroto; provision of traffic management schemes and two corridor improvement schemes involving bridge widening and traffic engineering along Jl. Raden Saleh and Jl. Zainul Arifin; improvement of road access in the Martubung area.

(7) Part G: Small Towns Infrastructure Improvement

Extension of basic infrastructure facilities including water supply, drainage, flood control, roads, sanitation, solid waste management, Kampung Improvement Program and market infrastructure improvement in the towns of Pancur Batu, Deli Tua, Tanjung Morawa, Tembung, Lubuk Pakam and Binjai.

(8) Part H: Flood Control

Provision of sub-regional drainage and flood control measures to reduce the frequency of flooding in and around Kotamadya Medan; Improvement of the channel for the Deli River, Sikambing River, Putih River, and Kera River. Civil works include normalization and excavation

of channel lining, construction of levees, river bank improvement, and bridge improvement installation.

(9) Part I: Institutional Development and Training

Provision of incremental administrative services and initial operation and maintenance, consulting services for engineering design, construction supervision, project implementation, institution building, training, public information and studies on water resources, flood protection and pollution control, base mapping, sanitation and KIP strategy, cost recovering and income generation measures and a strategy plan for the Metropolitan Medan Region.

The implementation schedule of each component is presented in Fig. 4-5. Other than the above, the MUDP II includes some overall studies for flood control and water supply covering a wide area from Belawan River to Serdang River which occupies about a half of the area of this Study.

Other Development on Infrastructure

(1) Transportation

(a) Road

The development plan was made with emphasis on the expansion of the road networks in growth centers and production centers. By the end of Repelita V, national and provincial road networks are expected to cover 43,000 km, while the length of asphalt paved roads is expected to increase to 93,900 km. In addition, artery/collector roads of 1,600 km, municipality roads of 344 km, and bridges totaling 4,200 m will be constructed.

(b) Railway

The development plan for railways will focus on increasing their load capacity, service quality and management efficiency. For this purpose 1,835 km of tracks will be rehabilitated and 175 underpass and overpass bridges will be constructed to sustain a total load capacity of 2,500 tons.

The route which are now not operated due to bad condition is estimated at about 68.76 km. Furthermore, in the long term program there are plans to build and develop a new modern commuter train service in MEBIWANTI (Medan, Binjai, Belawan, and Tebing Tinggi) area, which will be tentatively scheduled in the year 2000 to 2025 (MEBIWANTI Railway Project).

(c) Sea Port

Development of sea communication/transportation is also expected to facilitate expansion of inter-regional trade and to increase competitiveness of domestic products in domestic and foreign markets.

During Repelita V, the national fleet capacity will be increased by 178,500 DWT, the load sailing fleet by 22,000 DWT; the small holders sailing fleet by 50,000 DWT; the special sailing fleet by 119,800 DWT; and passenger ships by 40,000 DWT.

(d) Airport

Air transport service will be extended to a greater number of regional areas. In Repelita V, the growth rate of demand for domestic air transport, international air transport and pioneering air transport is expected to reach 8.6%, 9.1% and 11.2% per annum, respectively.

In North Sumatra, there are air transport facilities managed by:

- The Polonia Airport administered by Perum Angkasa Pura I Cabang Polonia Medan under the Directorate General of Air Transport, i.e., Class I Medan Polonia Airport.
- The North Sumatra Regional Office of Transport for Class IV pioneer airport such as Binaka-Gunung Sitoli; Sibolga; Sibisa-Parapat, Aek Godang-Padang Sidempuan
- The plantations such as Aek Nabara, Gunug Pamela, Pabatu, Torgamba, Kota Pinang, Bah Jambi, Helvetia, Berangin, Teluk Dalam, Ajamu, Perlabian, etc.

Medan Polonia Airport is the biggest airport in North Sumatra. It has good facilities for either domestic or international use and expected to be still in good condition until the year 2005. After that year it should be moved to another area in Kab. Deli Serdang.

(2) Electricity and Energy

Domestic energy demands are to be met as much as possible through the utilization of existing non-oil energy resources such as natural gas, geothermal energy, hydropower and coal.

In Repelita V, the overall installed capacity of electric generating power for the whole country is planned to increase by 3,697 MW, comprising:

Hydropower : 369 MW

Diesel power plant : 323 MW

Natural gas power plant : 120 MW

Geothermal plant : 290 MW

Steam power plant : 1,495 MW

Gas and steam power plant : 1,100 MW

In North Sumatra Province, the target of installed capacity is 265.5 MW, and at the end of Repelita IV, only 164.3 MW or 69.9% was accomplished. The remaining will be reached within Repelita V. The energy sources in the province are potentially oil, natural gas and hydropower.

The potential energy sources in North Sumatra Province are not yet fully utilized. The hydropower potential from the seven rivers are not developed, especially in the study area, although the demand with a growth of about 13.6% per annum cannot still be fully provided. Hydropower potential in the province was estimated at 1,900 MW and only about 603 MW was utilized.

TABLES

:			
•			
• •- •-			
` {			
:			
· ·			

Table 2-1 GOVERNMENT LEGISLATION

Sector	Legislation
1. Environmental Impact Assessment (EIA)	Government Regulation No. U29/1986
2. Land Use	Act 5 of 1960 covering fundamentals of agrarian law
	Ordinance 148 of 1968 covering town building
	Act 5 of 1974 : Basic Principle of administration in the Region
and the second second	Act 5 of 1979 : Administration in the Village
3. Water Quality	Act 11 of 1974 addressing water resources development
	Act 4 of 1960 : the Indonesian waters
	Act 1 of 1973 : the Indonesian Continental Shelf
	Act 5 of 1983 : the Indonesian Economic Exclusion Zone
4. Air Quality	(no specific legislation)
5. Solid Wastes	(entrusted to the provinces and local administrations and no national legislation)
6. Nature Conservation	Act 5 of 1967 : Basic Law on Forestry, the Nature Protection Ordinance

Table 2-2 ENVIRONMENTAL EFFECTS CONSIDERED IN SCREENING

Environmental Effects

PHYSICAL/CHEMICAL:

ECOLOGICAL EFFECTS:

- (1) Water
 - Groundwater
 - Suface Water
- (2) Land
 - Soil Erosion
 - Flood Plain Usage
 - Buffer Zones
 - Soil Suitability for Use
 - Compatibility of Land Use
 - Unique Physical Features
 - Compaction and Setting
 - Stability
 - Earthquakes
- (3) Atmosphere
 - Air Characteristics
 - Wind

- Vegetation
- Wildlife
- Fish
- Terrestrial Habitats and Communities

SOCIO-ECONOMIC EFFECTS:

- Demography
- Economy and Manpower
- Regional Transportation
- Housing and Community
 Infrastructure
- Health Education and Social Services
- Local Government
- Lifestyle and Qality of Life

- (4) Noise
 - Intensity
 - Duration

Source: A Manual for the Implementation of ANDAL Studies in the Ministry of Public Works, 1987

Table 2-3 MAJOR VEGETATION TYPES IN SUMATRA

Soll/Water	Location	Soil	Elevation	Vagatation Type
Dry Land	Inland	Zonal soils	Lowland, up to 1,200 m Mountains 1,200 - 2,100 m Mountains 1,200 - 3,000 m Mountains 3,000 m +	Lowland forest Lower montane forest Upper montane forest Subalpine forest
		Podzolized sands Limestone	Mostly lowland Mostly lowland	Heath Forest Forest over limestone Beach vegetation
Water Table high (at least periodically)	Coastal Saltwater Brackish water			Mangrove Brackish water forest Peatswamp forest
	Freshwater	Oligotrophic peats Eutrophic (muck and mineral soils)		Fresh water/Seasonal swamp forest

Source: The Ecology of Sumatra 1987

Table 2-4 POPULATION CLASSIFIED BY RELIGION IN THE STUDY AREA, 1988

					(Unit :	thousands)
Area	Islam	Catholic	Christian	Hindu	Buddhism	Others
Kab. Deli Serdang	1,208	39	235	2	42	_
	(79.2)	(2.6)	(15.4)	(0.1)	(2.8)	
Tebing Tinggi City	73	1	13	-	13	
	(73.0)	(1.0)	(13.0)		(13.0)	
Medan City	1,222	33	309	15	228	-
	(67.6)	(1.8)	(17.0)	(1.0)	(12.6)	
Study Area	2,503	73	557	17	283	-
	(72.9)	(2.1)	(16.2)	(0.5)	(8.2)	
North Sumatra	6,400	431	2,830	23	415	_
	(63.4)	(4.3)	(28.0)	(0.2)	(4.1)	
Indonesia	(86.9)	(3.1)	(6.5)	(1.9)	(1.0)	(0.6)

Note : Figures in parentheses indicate percentage (%).

Source: North Sumatra In Figures 1988, Statistic Indonesia 1988

Table 2-5 POPULATION CLASSIFIED BY ETHNIC GROUPS IN THE STUDY AREA, 1988

No.	Ethnic Group	Popolation Percent (%)
1.	Java	38.63
2.	Batak (Karo, Toba, Simalungun, etc)	24.85
3.	Melayu	14.51
4.	Chinese	12.00
5.	Others	9.21
	Total	100.00

Source: Karl Pelzer (1978) in Mubyarto (1990) (projection)
Reid (1979) in Silalahi, B (1982)
Population Statistic of North Sumatra (1988)

Table 2-6 HISTORICAL AND CULTURAL ASSETS IN THE STUDY AREA

No.	Name	Area/Size (ha/m2)	Year of Construction	Location
-	MEDAN CITY			
1.	Mosque of Sunggal	17 x 17 m2	1979	Medan Sunggal
2.	Great Mosque of Medan	40 x 50 m2	-	Medan
3.	Old Mosque of Labuhan	20 x 30 m2	-	Labuhan Deli
4.	Place of Maimun	50 x 60 m2	-	Medan
5.	Old town Cina	. 5 ha	1988	Labuhan Deli
6.	Vihara Budha	30 x 40 m2	1985	Medan
7.	Klenteng Cina	20 x 30 m2	-	Labuhan Deli
8.	Building of Avros	30 x 50 m2	-	Medan Johor
	KAB. DELI SERDANG			
9.	Castle of Putri Hijau	30 x 40 m2	,	Delitua
10.	01d Cannon	1 m	-	Sei Rampah
11.	Old Cannon	1 m	-	Firdaus
12.	Old Cannon	2.25 m	-	Sei Rampah
13,	Cemetery at Tengku Naji Besar	4 x 5 m2	-	Pantai Cermin
14.	Holy Place of Datuk Jabat	2 x 3 m2	_	Pantai Cermin
15.	Cemetery of Datuk Rencah	4 x 5 m2	-	Pantai Cermin
16.	Cemetery of Datuk Rebai	4 x 5 m2	-	Pantai Cermin
17.	Ancient Cannon of Lele	1 m	-	Rantau Panjang
18.	Mosque of Rantau Panjang	20 x 20 m2	-	Rantau Panjang
19.	Mosque of Serdang	30 x 50 m2	-	Rantau Panjang
20.	Doll of Pangulu Balang	- .	_	Lubuk Pakam
21.	Cemetery of Sultan Serdang	-	-	Gunung Rintih
22.	Cemetery of Thab Simar Basyarsyah	2 m	-	Perbaungan
23.	Cemetery of King	2	-	Sipispis
24.	Stone of Ingotan	<u>.</u>	-	Sipispis
25.	Cave of Kemang	-	-	Sibolangit
26.	Old Klenteng of Pantai Cermin	-	-	Pantai Cermin
	TEBING TINGGI CITY			
27.	Old Town of Tebing Tinggi	4 ha	-	Tebing Tinggi

Source : Kantor Wilayah Departemen Pendidikan dan Kebudayaan Sumatera Utara (1988/1989). Data Status Bangunan Sejarah Purbakala, Medan.

Table 2-7 NUMBER OF HOSPITAL, BEDS AND HEALTH CENTERS
IN THE STUDY AREA, 1988

Area	General	Bed	Health Center	Per thousand Populations			
	Hospital			Hospital	Bed	Health Ctr	
Kab. Deli Serdar	ı 2	153	43	0.0013	0.10	0.028	
T. Tinggi City	2	136	4	0.02	1.36	0.040	
Medan City	. 19	2,181	31	0.011	1.21	0.017	
Study Area	23	2,470	78	0.007	0.72	0.023	
North Sumatra	53	6,316	302	0.005	0.62	0.030	

Source: North Sumatra in Figures 1988

Table 2-8 NUMBER OF SUFFERERS BY KINDS OF DISEASES, 1988

No.		Number of Sufferers					
	Kind of Diseases	Kotamadya Medan	/'000	Kotamadya T. Tinggi	/'000	Kabupaten Deli Serdang	/'000
1.	Diarhea/Cholera	30,487	16.9	1,713	16.6	15,384	10.7
2.	Inf luenza	137,246	76.0	31	0.3	4,076	2.8
3.	Lung Tuberculosis	8,728	4.8	788	7.7	5,304	3.7
4.	Bronchitis	***	-	270	2.6	6,612	4.6
5.	Ricketzia	-		_	-	4,356	3.0
6.	Ascaris	3,681	2.0	•	· - ·	5,308	3.7
7.	Scabies	3,978	2.2	-	-	5,568	3.9
8.	Pulmonary Diseases	19,924	11.0	13,271	128.8	75,360	52.4
9.	Small Fox	2,915	1.6	26	0.3	1,692	1.2
10.	Cough	_	-	5	0.0	456	0.3
11.	Gastric Diseases	-	-	754	7.3	19,584	13.6
12.	Skin Diseases	2,710	1.5	3,749	36.4	17,320	12.0
13.	Caries	22,002	12.2	163	1.6	5,640	3.9
14.	Conjunctivities	7,492	4.1	-	-	2,940	2.0
15.	Bacillary	4,923	2.7	-	-	-	_
16.	Mostoid	7,542	4.2	-	-	=0	÷
17.	Hepatitis	231	0.1	.	- ·	27 4 9 9 9 9	-
18.	Other Diseases						
	(rabies, deficiency, etc.)	1,393	0.8	772	7.5	12,432	8.6

Source : Suamtera Utara Dalam Angka 1988

Table 2-9(1/10) RESULTS OF LABORATORY TEST

Location : Belawan River (Sampanan)

	·			(1)	(2)	(3)
No.	Parameters	Unit	Methods/Description	Level	Level	Leve1
				(Av.Value)	(Av.Value)	(Av.Value)
1.	Cyanide Ions	mg/1	ASTN-D.2036-75/Colorimetry	Not detected	Not detected	Not detected
2.	Mercury	mg/1	ASTM-D.3223-73/Cold Vapor AAS	- 1b1d -	- 1b1d -	- ibid -
3.	Organic Mercury	mg/1	1 b 1 d	< 0.001	< 0.001	< 0.001
4.	Organophosphorus	mg/1	Std.Methods (*) - 424F/Colorimetry	< 0.300	< 0.300	< 0.300
5.	Cadmium	mg/1	ASTH-D. 3557-78/AAS	Not detected	Not detected	Not detected
6.	Lead	mg/1	ASTM-0.3559-78/AAS	- 161d -	- 1b1d -	- ibid -
7.	Chromium	mg/1	ASTH-D.1687-77/AAS	- ibid -	- 1bid -	- 1b1d -
8.	Arsenic	ng/1	ASTM-D.2972-78/AAS	- ibid -	- ibid -	- ibid -
9.	Fluoride	ing/1	ASTM-D.1179-72/Colorimetry	- ibid -	- ibid -	- ibid -
10.	Coliform Group			•		
	Bacteria	MPN/100 m7	Std.Methods (*) - 908/MPN Test	> 39.000	36.000	27.000
11.	Nitrate Nitrogen	mg/1	ASTM-d.992-71/Colorimetry	0.133	0.450	0.500
12.	Turbidity	NTU	Std.Methods (*)-214A/Kephelometric			
			Method	10.000	12.000	6.000
13.	Color	Color Units	1bid - 204A/Visual Comparison	50.000	60.000	30.000
14.	0dor	•	ibid - 207	Like mud	Like mud	Norma 1
15.	Taste	····-	ibid - 211	Norsal	Norma 1	Normal
16.	pH Value	- .	Direct measurement with pH-meter	7.45	7.20	7.70
17.	800	risg/1	Std. Methods (*) - 507	16.173	228.770	13.100
18.	COD	ing 02/1	ibid - 508A/Titrimetry	25.200	39.270	21.600
19.	Dissolved Haterial	ag/1	ibid - 2098/Gravimetry	45.300	67.900	93.700
20.	Ammonium Nitrogen	mg/1	ASTM-D.1426-79/Colorimetry	Not detected	Not detected	Not detected
21.	Chlorine Ions	mg/1	ASTM-D.512-67/Titrimetry	10.600	21.200	10.600
22.	Hardness	mg/1	ASTH-0.1126-67/Titrimetry - EDTA	49.200	36.600	40.930
23.	Iron	mg/l	ASTN-D.1068-78/AAS	0.073	0.275	0.240
24.	Manganese	mg/1	ASTM-D.858-77/AAS	0.020	0.050	Not detected
25.	Copper	mg/l	ASTH-D.1688-77/AAS	Not detected	Not detected	- ibid -
26.	Zinc	mg/1	ASTM-D. 1691-77/AAS	- 161d -	- ibid -	- ibid -
27.	Phenols	mg/l	Std.Method (*)-510.D/GLC	< 0.005	< 0.010	< 0.005
28.	Anion Active Agent			•		
	(as MBAS)	mg/1	1b1d - 512B/Colorimetry	< 0.050	0.100	< 0.050
29.	Sulphate Ions	mg/1	ASYM-D.515-78/Colorimetry	1.500	1.330	1.500
30.	Temperature	C	Direct measurement with thermometer	30.000	28.500	29.500
31.	Magnesium	mg/1	ASTH-D.511-77/Titrimetry-EOTA	6.510	5.270	4.820
32.	Calcium	mg/1	ASTM-D.511-77/Titrimetry-EOTA	10.660	7.310	9.870
33.	Nitrite Nitrogen	mg/1	ASTM-D.154-67/Colorimetry	Not detected	Not detected	Not detected
34.	Salinity	g/kg	Std.Hethods (*)-205	0.000	0.000	0.000
35.	Evaporation Residue		ibid - 209A/Gravimetry	91.333	114.000	131,000
36.	Conductivity	umhos/cm	ibid - 205/Electrical Conductivity	85.000	120.000	100,000

^{(*):} Standard Hethods for the Examination of Water and Wastewater, 16th ed., 1985.

Table 2-9(2/10) RESULTS OF LABORATORY TEST

Location : Deli River (Kuala)

No.	Parameters	Unit	Hethods/Description	(1) Level (Av.Value)	(2) Level (Av.Value)	(3) Level (Av.Value)
1.	Cyanide Ions	18g/1	ASTM-D.2036-75/Colorimetry	Not detected	Not detected	Not detected
2.	Mercury	mg/1	ASTH-D.3223-73/Cold Vapor AAS	, - 1b1d -	- ibid -	- ibid -
3.	Organic Mercury	mg/l	1 b 1 d	< 0.001	0.003	< 0.001
4.	Organophosphorus	mg/1	Std.Methods (*) - 424F/Colorimetry	< 0.300	< 0.300	< 0.300
5.	Cadmium	mg/1	ASTH-D.3557-78/AAS	Not detected	Not detected	Not detected
6.	Lead	mg/l	ASTM-D.3559-78/AAS	1b1d -	- 1bid -	- ibid -
7.	Chromium	mg/1	ASTH-D.1687-77/AAS	- ibid -	- 1b1d -	- ibid -
8.	Arsenic	mg/1	ASTM-D.2972-78/AAS	- ibid -	- ibid -	- ibid -
9.	Fluoride	mg/1	ASTM-D.1179-72/Colorimetry	- 1b1d -	- ibid -	- 1b1d -
10.	Coliform Group				:	
	Bacteria	MPN/100 m1	Std.Methods (*) - 908/MPN Test	> 39.000	38.000	34.000
11.	Nitrate Nitrogen	mg/l	ASTM-d.992-71/Colorimetry	0.500	0.570	0.500
12.	Turbidity	NTU	Std.Hethods (*)-214A/Hephelometric			
			Hethod	1.000	1.000	1.000
13.	Color	Color Units	ibid - 204A/Visual Comparison	20.000	20.000	20.000
14.	0dor	-	1b1d - 207	Norma 1	Normal	Mormal
15.	Taste	-	1b1d - 211	Normal	Norma 1	Horma 1
16.	pH Value	-	Direct measurement with pH-meter	7.65	7.65	8.20
17.	BOD	mg/1	Std. Hethods (*) - 507	11.880	8.530	12.800
18.	COD	mg 02/1	ibid - 508A/Titrimetry	19.013	14.270	21.600
19.	Dissolved Material	mg/1	ibid - 2098/Gravimetry	84.733	75,400	103.700
20.	Ammonium Nitrogen	mg/1	ASTH-D.1426-79/Colorimetry	Not detected	Not detected	Not detected
21.	Chlorine Ions	mg/1	ASTM-D.512-67/Titrimetry	13.270	26.500	25.400
22.	Hardness	mg/1	ASTM-D.1126-67/Titrimetry - EDTA	74.200	66.170	60.500
23.	Iron	ing/1	ASTM-D.1068-78/AAS	0.020	0.155	0.160
24.	Manganese	πg/1	ASTM-D.858-77/AAS	Not detected	Not detected	Not detected
25.	Copper	-aig/1	ASTM-D.1688-77/AAS	- 1b1d -	- ibid -	- 1b1d -
26.	Zinc	mg/l	ASTM-D.1691-77/AAS	- ibid -	- ibid -	- ibid -
27.	Phenols	mg/1	Std.Hethod (*)-510.D/GLC	< 0.005	< 0.005	< 0.005
28.	Anion Active Agent					
	(as HBAS)	eg/1	ibid - 512B/Colorimetry	< 0.050	< 0.050	< 0.050
29.	Sulphate Ions	mg/l	ASTM-D.515-78/Colorimetry	9.670	9.830	8.500
30.	Temperature	C	Direct measurement with thermometer	27.50	26.50	27.50
31.	Magnes 1um	mg/l	ASTM-D.511-77/Titrimetry-EDTA	8.610	8.140	6.260
32.	Calcium	mg/1	ASTM-D.511-77/Titrimetry-EDTA	17.767	14.870	15.500
33.	Nitrite Nitrogen	·mg/1	ASTM-D.154-67/Colorimetry	Not detected	Not detected	Not detected
34.	Salinity	g/kg	Std.Methods (*)-205	0.000	0.000	0.000
35.	Evaporation Residue	mg/1	ibid - 209A/Gravimetry	136.000	123.000	131.000
36.	Conductivity	umhos/cm	ibid - 205/Electrical Conductivity	140,000	130.000	150.000

^{(*):} Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.

Table 2-9(3/10) RESULTS OF LABORATORY TEST

Location : Percut River (Sibiru-Biru)

No.	Parameters	Unit	Methods/Description	(1) Level (Av.Value)	(2) Level (Av. Value)	(3) Level (Av.Value)
1.	Cyanide Ions	mg/l	ASTM-D.2036-75/Colorimetry	Not detected	Not detected	Not detected
2.	Hercury	mg/l	ASTM-D.3223-73/Cold Vapor AAS	- 1b1d -	- 1b1d -	- 1b1d -
3.	Organic Mercury	mg/1	1 b 1 d	0.002	0.001	< 0.001
4.	Organophosphorus	-mg/1	Std.Methods (*) - 424F/Colorimetry	< 0.300	< 0.300	< 0.300
5.	Cadmium	mg/1	ASTH-D.3557-78/AAS	Not detected	Not detected	Not detected
6.	Lead	mg/1	ASTM-D.3559-78/AAS	- 1b1d -	- ibid -	- 161d -
7.	Chromium	mg/1	ASTM-0.1687-77/AAS	- ibid -	- ib1d -	- ibid -
8.	Arsenic	ing/1	ASTM-D.2972-78/AAS	- ibid -	- 1bid -	- 1b1d -
9.	Fluoride	mg/1	ASTM-D.1179-72/Colorimetry	- 161d -	- ibid -	- ibid -
10.	Coliform Group					
	Bacteria	MPN/100 ml	Std.Methods (*) - 908/MPN Test	> 39.000	> 39.000	36.000
11.	Nitrate Nitrogen	ing/1	ASTM-d.992-71/Colorimetry	0.167	0.150	0.200
12.	Turbidity	NTU	Std.Methods (*)-214A/Nephelometric			
			Nethod	2.000	2.000	2.000
13.	Color	Color Units	ibid - 204A/Visual Comparison	40.000	40.000	30.000
14.	Odor .	12	1b1d - 207	Normal	Normal	Normal
15.	Taste	-	1bid - 211	Rorma 1	Normal	Normal
16.	pH Value	-	Direct measurement with pH-meter	8.05	8.10	8.25
17.	800	ng/1	Std. Methods (*) - 507	8.150	8.470	11.700
18.	COD .	tng 02/1	ibid - 508A/Titrimetry	15.230	13.500	18.350
19.	Dissolved Material	mg/1	ibid - 2098/Gravimetry	102.630	107.780	116.000
20.	Ammonium Hitrogen	mg/1	ASTM-D.1426-79/Colorimetry	Not detected	Not detected	Not detected
21.	Chlorine Ions	mg/1	ASTM-0.512-67/Titrimetry	35.760	31.800	21.200
22.	Hardness	mg/1	ASTM-0.1126-67/Titrimetry-EOTA	83.650	88.780	79.900
23.	Iron	mg/1	ASTM-D.1068-78/AAS	0.123	0.132	0.140
24.	Nanganese	mg/1	ASTH-D.858-77/AAS	Not detected	Not detected	Not detected
25.	Copper	mg/l	ASTH-D.1688-77/AAS	- ibid -	- ibid -	- 1bid -
26.	Zinc	ing/1	ASTH-D.1691-77/AAS	- ib1d -	- 1b1d -	- ibid -
27.	Pheno1s	mg/1	Std.Method (*)-510.D/GLC	< 0.005	< 0.005	< 0.005
28.	Anion Active Agent					•
	(as MBAS)	-reg/1	1bid - 512B/Colorimetry	< 0.050	< 0.050	0.090
29.	Sulphate Ions	ng/1	ASTM-D.515-78/Colorimetry	1.933	1.870	2.000
30.	Temperature	E	Direct measurement with thermometer	27.00	27.50	28.00
31.	Magnesium	mg/1	ASTM-D.511-77/Titrimetry-EDTA	10.780	11.560	7.140
32.	Calcium	mg/1	ASTM-D.511-77/Titrimetry-EOTA	18.973	21,300	22.300
33.	Hitrite Hitrogen	mg/1	ASTH-D.154-67/Colorimetry	Not detected	Not detected	Not detected
34.	Salinity	g/kg	Std.Hethods (*)-205	0.000	0.000	0.000
35.	Evaporation Residue	-mg/1	ibid - 209A/Gravimetry	131.500	139.000	122.000
36.	Conductivity	unhos/cm	1bid - 205/Electrical Conductivity	185.000	190,000	210.000

^{(*):} Standard Hethods for the Examination of Water and Wastewater, 16th ed., 1985.

Table 2-9(4/10) RESULTS OF LABORATORY TEST

Location : Ular River (Paku)

No.	Parameters	Unit	Nethods/Description	(1) Level (Av.Value)	(2) Level (Av.Value)	(3) Level (Av.Value)
1.	Cyanide Ions	ag/1	ASTM-D.2036-75/Colorimetry	Not detected	Not detected	Not detected
2.	Mercury	mg/l	ASTH-D.3223-73/Cold Vapor AAS	- 1b1d -	- ibid -	- ibid -
3.	Organic Mercury	ng/}	1 b 1 d	< 0.001	< 0.001	< 0.001
4.	Organophosphorus	mg/l	Std.Hethods (*) - 424F/Colorimetry	< 0.300	< 0.300	< 0.300
5.	Cadmium	mg/1	ASTH-D. 3557-78/AAS	Not detected	Not detected	Not detected
6.	Lead	mg/l	ASTH-D. 3559-78/AAS	- ibid -	- ibid -	- 161d -
7.	Chromium	mg/1	ASTH-D.1687-77/AAS	- 1b1d -	ibid -	- 161d -
8.	Arsen1c	mg/l	ASTM-D.2972-78/AAS	- 1b1d -	- ibid -	- 161d -
9.	Fluoride	ng/1	ASTH-D.1179-72/Colorimetry	- ibid -	- ibid -	- ibid -
10.	Coliform Group					
	Bacteria	MPN/100 m1	Std.Methods (*) - 908/MPN Test	> 39,000	> 39.000	38.000
11.	Nitrate Nitrogen	mg/1	ASTM-d.992-71/Colorimetry	0.567	0.513	0.500
12.	Turbidity	NTU	Std.Kethods (*)-214A/Nephelometric			
			Hethod	10.000	16.000	9.000
13.	Color ·	Color Units	ibid - 204A/Yisual Comparison	40.000	60.000	40.000
14.	Odor	-	1b1d - 207	Like mud	Like mud	Like mud
15.	Taste		ibid - 211	Rormal	Norma1	Kormal
16.	pH Value	-	Direct measurement with pH-meter	7.70	7.15	7.60
17.	800	mg/1	Std. Hethods (*) - 507	12.120	21.087	17.200
18.	COD	ag 02/1	ibid - 508A/Titrimetry	21,547	32.033	27.800
19.	Dissolved Material	mg/1	ibid - 2098/Gravimetry	100.033	82.500	91.300
20.	Ammonium Mitrogen	Eg/1	ASTM-D.1426-79/Colorimetry	Not detected	Hot detected	Not detected
21.	Chlorine Ions	18g/1	ASTM-D.512-67/Titrimetry	8.840	15.333	10.660
22.	Hardness	mg/1	ASTH-D.1126-67/Titrimetry - EOTA	52.433	37.567	48.560
23.	Iron	mg/1	ASTM-D.1068-78/AAS	0.153	0.113	0.130
24.	Manganese	mg/1	ASTM-D.858-77/AAS	0.066	Not detected	Not detected
25.	Copper	mg/1	ASTM-D.1688-77/AAS	Not detected	- ibid -	- ibid -
26.	Zinc	mg/1	ASTH-D.1691-77/AAS	- ibid -	- ibid -	- 161d -
27.	Phenols	mg/l	Std.Hethod (*)-510.D/GLC	< 0.005	< 0.005	< 0.005
28.	Anion Active Agent					
	(as MBAS)	mg/1	ibid - 512B/Colorimetry	< 0.050	< 0.050	0.120
29.	Sulphate Ions	mg/1	ASTM-D.515-78/Colorimetry	1.000	1.367	1.500
30.	Temperature	C	Direct measurement with thermometer	26.50	25,50	25,50
	Magnesium	mg/l	ASTM-D.511-77/Titrimetry-EDTA	8.073	5.560	6.230
	Calcium	mg/1	ASTM-D.511-77/Titrimetry-EDTA	11.625	7.293	10.700
	Nitrite Nitrogen	mg/1	ASTM-D.154-67/Colorimetry	Not detected	Not detected	Not detected
34.	Salinity	g/kg	Std.Methods (*)-205	0.000	0.000	0.000
35.	Evaporation Residue	mg/l		112,000	105.333	103.000
36.	Conductivity	umhos/cm	ibid - 205/Electrical Conductivity	165.000	150.000	170.000

^(*) : Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.

Table 2-9(5/10) RESULTS OF LABORATORY TEST

Location : Padang River (Sampanan)

No.	Parameters	Unit	Methods/Description	(1) Level (Av.Value)	(2) Level (Av.Value)	(3) Level (Av.Value)
1.	Cyanide Ions	mg/1	ASTM-D.2036-75/Colorimetry	Not detected	Not detected	Not detected
2.	Mercury	mg/l	ASTM-D.3223-73/Cold Vapor AAS	- Ibid -	- ibid -	- ibid -
3.	Organic Mercury	mg/1	i b i d	0.002	< 0.001	< 0.001
4.	Organophosphorus	mg/l	Std.Hethods (*) - 424F/Colorimetry	< 0.300	< 0.300	< 0.300
5.	Cadmium	ing/1	ASTM-D. 3557-78/AAS	Not detected	Not detected	Not detected
6.	Lead	mg/1	ASTM-D.3559-78/AAS	- 151d -	- 1bid -	- ibid -
7.	Chromium	mg/1	ASTM-D.1687-77/AAS	- ibid -	- 161d -	- ibid -
8.	Arsenic	mg/1	ASTH-D.2972-78/AAS	- 1b1d -	- 1bid -	- ibid -
9.	Fluoride	mg/l	ASTM-D.1179-72/Colorimetry	- 1b1d -	- 1b1d -	- ib1d -
0.	Coliform Group					
	Bacteria	KPN/100 m1	Std.Methods (*) - 908/MPN Test	> 39.000	39,000	> 39.000
1.	Nitrate Nitrogen	mg/l	ASTM-d.992-71/Colorimetry	0.133	0.156	0.160
2.	Turbidity	NTU	Std.Methods (*)-214A/Nephelometric			
			Method	6.000	5.000	6.000
3.	Color	Color Units	ibid - 204A/Visual Comparison	50.000	40.000	40.000
4.	Odor	-	161d - 207	Normal .	Normal	Norma1
5,	Taste	-	tbid - 211	Normal	Rormal	Hormal
6.	pH Value		Direct measurement with pH-meter	7.20	7.10	7.05
7.	BOD	mg/l	Std. Methods (*) - 507	12.320	17,733	14.330
8.	COD	mg 02/1	ibid - 508A/Titrimetry	18.773	28.767	24.650
9.	Dissolved Material	mg/1	1b1d - 209B/Gravimetry	62.566	40.300	71.900
0.	Ammonium Hitrogen	mg/1	ASTM-D.1426-79/Colorimetry	Not detected	Not detected	Not detected
1.	Chlorine Ions	mg/1	ASTH-D.512-67/Titrimetry	6.187	9.730	5.300
2.	Hardness	mg/l	ASTM-D.1126-67/Titrimetry-EDTA	24.200	30.600	17,230
3.	Iron	mg/l	ASTH-D.1068-78/AAS	0.033	0.053	0.060
4.	Manganese	mg/1	ASTH-D.858-77/AAS	Not detected	Not detected	Not detected
5.	Copper	mg/1	ASTM-D.1688-77/AAS	- 161d -	- 1bid -	- ibid -
6.	Zinc	mg/l	ASTH-D.1691-77/AAS	- ibid -	- ibid -	- ibid -
27.	Phenois	mg/1	Std.Method (*)-510.0/GLC	< 0.005	< 0.005	< 0.005
8.	Anion Active Agent					
	(as MBAS)	mg/l	ibid - 512B/Colorimetry	< 0.050	< 0.050	< 0.050
9.	Sulphate Ions	mg/1	ASTM-D.515-78/Colorimetry	1.333	1.050	1.100
30.	Temperature	C	Direct measurement with thermometer	29.00	27.50	28.00
31.	Magnes ium	mg/1	ASTH-D.511-77/Titrimetry-EDTA	3.950	4.663	2.110
32.	Calcium	mg/1	ASTM-D.511-77/Titrimetry-EDTA	4.193	5.270	3.970
33.	Nitrite Nitrogen	ing/1	ASTH-D.154-67/Colorimetry	Not detected	Not detected	Not detecte
34.	Salinity	g/kg	Std.Methods (*)-205	0,000	0.000	0.000
35.	Evaporation Residue	- ·	1bid - 209A/Gravimetry	132.667	74.000	86.000
36.	Conductivity	umhos/cm	ibid - 205/Electrical Conductivity	62.000	55.000	55.000

^{(*):} Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.

Table 2-9(6/10) RESULTS OF LABORATORY TEST

Location : Medan/Deep Well-Tirtanadi/Jln. Langkat-Belawan

No.	Parameters	Unit	Methods/Description	(1) Level (Av.Value)	(2) Level (Av.Value)	(3) Level (Av.Value)
					· · · · · · · · · · · · · · · · · · ·	
1.	Cyanide Ions	mg/1	ASTM-D.2036-75/Colorimetry	Not detected	Not detected	Not detected
2.	Mercury	mg/1 .	ASTH-D.3223-73/Cold Vapor AAS	- ibld -	- 1b1d -	- 1bid -
3.	Organic Hercury	mg/1	1 b 1 d	0.002	< 0.001	< 0.001
4.	Organophosphorus	mg/1	Std.Methods (*) - 424F/Colorimetry	< 0.300	< 0.300	< 0.300
5.	Cadmium	mg/1	ASTN-D. 3557-78/AAS	Kot detected	Not detected	Not detected
6.	Lead	mg/1	ASTM-D. 3559-78/AAS	- ibid -	- 1b1d -	- Ibid -
7.	Chrowium	ing/1	ASTM-D.1687-77/AAS	+, ibid -	- 1b1d -	- 1b1d -
8.	Arsenic	mg/1	ASTM-D.2972-78/AAS	- 1bid -	- 1bid -	- 1b1d -
9.	Fluoride	mg/1	ASTH-D.1179-72/Colorimetry	- ibid -	- 1b1d -	- 1b1d -
10.	Collform Group					
	Bacteria	MPN/100 m)	Std.Hethods (*) - 908/HPN Test	Hot detected	Not detected	Not detected
11.	Hitrate Hitrogen	mg/1	ASTM-d.992-71/Colorimetry	0.530	0.567	0.600
12.	Turbidity	KTU	Std.Methods (*)-214A/Rephelometric Method	4.000	4.000	4.000
13.	Color	Color Units	ibid - 204A/Visual Comparison	30.000	30.000	35.000
14.	Odor	•	151d - 207	Like mud	Like mud	Like mud
15.	Taste	•	ibid - 211	Norma)	Normal	Horma 1
16.	pH Value		Direct measurement with pH-meter	6.95	7.15	7.25
17.	800	ing/1	Std. Hethods (*) - 507	15.230	17.170	12.300
18.	000	mg 02/1	ibid - 508A/Titrimetry	26.720	25.267	21.600
19.	Dissolved Material	mg/1	1bid - 209B/Gravimetry	121.967	120.173	112.000
20.	Ammonium Hitrogen	mg/1	ASTH-D.1426-79/Colorimetry	Not detected	Not detected	Not detected
21.	Chlorine Ions	कg/1	ASTM-D.512-67/Titrimetry	6.890	15.900	10.600
22.	Hardness	mg/1	ASTH-D.1126-67/Titrimetry - EDTA	48.400	37.600	36.300
23.	Iron	100/1	ASTH-D.1068-78/AAS	0.103	0.126	0.160
24.	Manganese	₽g/1	ASTM-0.858-77/AAS	0.020	Not detected	Not detected
25.	Copper	mg/1	ASTM-D.1688-77/AAS	Not detected	- 161d -	- ibid -
26.	Zinc	mg/1	ASTH-D.1691-77/AAS	- ibid -	- ibid -	- ibid -
27.	Phenols	mg/1	Std.Hethod (*)-510.D/GLC	0.009	0.030	< 0.005
28.	Anion Active Agent	4 -	••			:
	(as MBAS)	mg/1	ibid - 512B/Colorimetry	< 0.050	< 0.050	0.050
29.	Sulphate Ions	ng/1	ASTM-0.515-78/Colorimatry	1.067	1.133	1.200
30.	Temperature	C	Direct measurement with thermometer	32.00	31.00	32.50
31.	Magnesium	mg/1	ASTM-D.511-77/Titrimetry-EDTA	7.890	6.970	6.280
32.	Calcium	mg/1	ASTH-D.511-77/Titrimetry-EDTA	8.393	4.580	5.790
33.	Nitrite Kitrogen	mg/1	ASTM-D.154-67/Colorimetry	Kot detected	Not detected	Not detected
34.	Salinity	g/kg	Std.Methods (*)-205	0.200	0.200	0.200
35.	Evaporation Residue	mg/1	1bld - 209A/Gravimetry	200.333	136.333	119.000
36.	Conductivity	umhos/cm	ibid - 205/Electrical Conductivity	640.000	610.000	630.000
JU.	contract () is	GONIOS! EW	Loop Licete (ear contact (4) (4)	-144400		

^{(*) :} Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.

Table 2-9(7/10) RESULTS OF LABORATORY TEST

Location : Medan/Shallow Well (1)/Kecamatan Medan Labuhan

No.	Parameters	Unit	Hethods/Description	(1) Level (Av.Value)	(2) Level (Av.Value)	(3) Level (Av.Value)
1.	Cyantde Ions	mg/l	ASTH-D.2036-75/Colorimetry	Not detected	Not detected	Not detected
2.	Hercury	mg/1	ASTH-D.3223-73/Cold Vapor AAS	- 1bid -	- 1b1d -	- ibid -
3.	Organic Mercury	mg/1	ibid	< 0.001		< 0.001
4.	Organophosphorus	mg/1	Std.Methods (*) - 424F/Colorimetry	< 0.300		< 0.300
5.	Cadmium	mg/1	ASTM-D. 3557-78/AAS	Not detected	Not detected	Not detected
6.	Lead	mg/l	ASTH-D.3559-78/AAS	- 1b1d -	- 1b1d -	- 1b1d -
7.	Chromium	mg/1	ASTH-D.1687-77/AAS	- 1b1d -	- ibid -	- 1bid -
8.	Arsenic	mg/l	ASTH-D.2972-78/AAS	- 1b1d -	- 1b1d -	- ibid -
9.	Fluoride	mg/l	ASTH-D.1179-72/Colorimetry	- 161d -	- ibid -	- 1b1d -
0.	Coliform Group					
	Bacteria	KPN/100 m1	Std.Methods (*) - 908/MPN Test	2.00	4.00	4.000
1.	Nitrate Nitrogen	πg/1	ASTM-d.992-71/Colorimetry	0.500	0.930	0.900
2.	Turbidity	RTU	Std.Methods (*)-214A/Nephelometric			
			Hethod	2.00	5.000	4.000
3.	Color	Color Units	fbfd - 204A/Visual Comparison	30.000	50.000	40.000
4.	Odór		ib1d - 207	Norma)	Like mud	Like mud
5.	Taste	-	ibid - 211	Horma 1	Hormal	Norma1
6.	pH Value		Direct measurement with pH-meter	6.70	7.20	6.55
	80D	mg/1	Std. Methods (*) - 507	10.560	20.433	13.900
8.	COD	mg 02/1	1bid - 508A/Titrimetry	18.453	36.660	24,200
9.	Dissolved Material	mg/1	1bid - 2098/Gravimetry	223.470	371.300	371.000
0.	Ammonium Mitrogen	mg/l	ASTM-0.1426-79/Colorimetry	Not detected	Not detected	Not detected
1.	Chlorine Ions	10g/1	ASTH-D.512-67/Titrimetry	68.933	79.600	67.800
	Hardness	mg/1	ASTM-D.1126-67/Titrimetry-EDTA	216.933	207,330	202.670
3.	Iron	mg/l	ASTM-D.1068-78/AAS	0.153	0.139	0.140
	Manganese	mg/l	ASTH-D.858-77/AAS	Not detected	Not detected	Not detected
	Copper	mg/1	ASTM-D.1688-77/AAS	- 1b1d -	- ibid -	- ibid -
6.	Zinc	mg/1	ASTH-D.1691-77/AAS	- ibid -	- 161d -	- ibid -
7.	Pheno1s	ing/1	Std.Method (*)-510.D/GLC	< 0.005	0.050	< 0.005
8.	Anion Active Agent	nd,	0 to 11 (1 - 51 0 to 1 5 to 1	27000	0.000	
	(as MBAS)	mg/l	ibid - 512B/Colorimetry	< 0.050	0.240	0.130
9.	Sulphate Ions	-	ASTM-D.515-78/Colorimetry	18.667	21.170	20,000
	Temperature	mg/1 ∞C	Direct measurement with thermometer	28.00	27.00	29.00
31.	Hagnes tum	mg/1	ASTM-D,511-77/fitrimetry-EDTA	25.567	23.930	22.710
2.	Calcium	mg/) mg/1	ASTM-D.511-77/Titrimetry-EDTA	51.270	49.760	49,530
				0.117	Not detected	Not detected
33. M	Nitrite Nitrogen	mg/1	ASTM-D.154-67/Colorimetry	0.400	0.400	0.400
¥.	Salinity	g/kg	Std. Hethods (*)-205	260.000	412.333	398,000
35,	Evaporation Residue	mg/l	ibid - 209A/Gravimetry	200.000	4161333	650.000

 $^{(\}star)$: Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.

Table 2-9(8/10) RESULTS OF LABORATORY TEST

Location: Hedan/Shallow Well (2)/Titi Kuning-Kec. Medan Johor

				(1)	(2)	(3)
No.	Parameters	Unit	Hethods/Description	Level	Level	Level
				(Av.Value)	(Av.Value)	(Av.Value)
1.	Cyanide Ions	pg/1	ASTH-D.2036-75/Colorimetry	Not detected	Not detected	Not detected
2.	Mercury	mg/1	ASTM-D.3223-73/Cold Vapor AAS	- 1b1d -	- 1b1d -	- ibid -
3.	Organic Mercury	mg/1	1 b 1 d	< 0.001	< 0.001	< 0.001
4.	Organophosphorus	mg/1	Std.Methods (*) - 424F/Colorimetry	< 0.300	< 0.300	< 0.300
5.	Cadalus	mg/1	ASTH-D.3557-78/AAS	Not detected	Not detected	Not detected
6.	Lead	mg/1	ASTH-D.3559-78/AAS	- 161d -	- 161d -	- ibid -
7.	Chronium	mg/1	ASTH-0.1687-77/AAS	- 101d -	- 1b1d -	- 1b1d -
8.	Arsenic	mg/1	ASTH-D.2972-78/AAS	- ibid -	- ibid -	- 161d
9.	Fluoride	mg/1	ASTM-D.1179-72/Colorimetry	- ibid -	- ibid -	- 1bid -
10.	Coliform Group					11 11 1
	Bacteria	MPN/100 ml	Std.Methods (*) - 908/MPN Test	34.000	>39.000	30.000
11.	Nitrate Nitrogen	mg/1	ASTH-d.992-71/Colorimetry	4.830	3.290	3.850
12.	Turbidity	NTU	Std.Methods (*)-214A/Nephelometric			
			Hethod	1.000	1.000	2.000
13.	Color	Color Units	1b1d - 204A/Visual Comparison	20.000	20.000	30.000
14.	Odor	•	1b1d - 207	Korma l	Korma)	Normal .
15.	Taste:	-	1b1d - 211	Norma l	Norma 1	Normal
16.	pH Value	-	Direct measurement with pH-meter.	6.50	6.85	5.20
17.	B00	mg/1	Std. Methods (*) - 507	12.480	11.670	11.600
18.	COD	æg 02/1	ibid - 508A/Titrimetry	18.400	18.233	18.400
19.	Dissolved Material	mg/1	1b1d - 209B/Gravimetry	358.667	321.200	346.000
20.	Ammonium Mitrogen	mg/1	ASTM-D.1426-79/Colorimetry	Hot detected	Not detected	Not detected
21.	Chlorine Ions	mg/1	ASTM-D.512-67/Titrimetry	76.070	84.900	79,600
22.	Hardness	mg/1	ASTH-D.1126-67/Titrimetry-EDTA	281,670	234.000	256.670
23.	Iron	mg/1	ASTH-D.1068-78/AAS	0.250	0.242	0.240
24.	Hanganese	mg/1	ASTH-D.858-77/AAS	Not detected	Not detected	Not detected
25.	Copper	mg/1	ASTM-D.1688-77/AAS	- ib1d -	- 1b1d -	- ibid -
26.	Zinc	mg/l	ASTM-D.1691-77/AAS	- 1b1d -	- ibid -	- ibid -
27.	Phenols	mg/1	Std.Hethod (*)-510.D/GLC	< 0.005	0.030	< 0.005
28.	Anion Active Agent				:	
	(as MBAS)	mg/1	ibid - 5128/Colorimetry	5.100	< 0.050	0.060
29.	Sulphate Ions	mg/l	ASTM-D.515-78/Colorimetry	9.830	11.167	11.000
30.	Temperature	С	Direct measurement with thermometer	27.50	27.50	28.00
31.	Magnes lum	mg/1	ASTM-0.511-77/Titrimetry-EDTA	35.130	26.010	34.070
32.	Calcium	mg/1	ASTM-0.511-77/Titrimetry-EDTA	63.900	57.500	55.350
33.	Nitrite Nitrogen	mg/1	ASTM-D.154-67/Colorimetry	0.100	Not detected	Not detected
34.	Salinity	g/kg	Std.Hethods (*)-205	0.200	0.200	0.200
35.	Evaporation Residue	mg/1	ibid - 209A/Gravimetry	420.000	368.670	383.000
		-				

^{(*) :} Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.

Table 2-9(9/10) RESULTS OF LABORATORY TEST

Location: Tebing Tinggi/Deep Well-Tirtabulian/Puskesmas Lubuk Baru

			, , , , , , , , , , , , , , , , , , ,			
1. Cyanide Ions				(1)	(2)	(3)
1. Cyanide lons	No. Parameters	Unit	Methods/Description	Leve1	Level	Level
2. Rercury mg/1 ASTH-D.3223-73/Cold Vapor AAS - 1b1d -				(Av.Value)	(Av.Value)	(Av.Value)
2. Rercury mg/1 ASTH-D.3223-73/Cold Vapor AAS - 1b1d -	<u>,</u>					
3. Organic Hercury mg/1 1 b 1 d	1. Cyanide Ions	mg/1	ASTM-D.2036-75/Colorimetry	Not detected	Not detected	Not detected
Organiphosphorus mg/ Std.Mathods (*) - 424F/colorientry	2. Mercury	mg/1	ASTH-D.3223-73/Cold Vapor AAS	- ibid -		- ibid -
5. Cadalum mg/l ASTH-D.3557-78/AAS Not detected Not detec	3. Organic Hercury	mg/1	i b i d	< 0.001	< 0.001	< 0.001
6. Lead mg/1 ASTM-D.3559-78/AAS - 1b1d - 1b1	4. Organophosphorus	mg/1	Std.Nethods (*) - 424F/Colorimetry			< 0.300
7. Chromitum mg/1 ASTM-D.1687-77/ANS - 1b1d - 1b1d	5. Cadmium	mg/1	ASTH-D.3557-78/AAS			
8. Arsentc mg/1 ASTH-D.2972-78/AAS - ibid - 20533 - 4.870 - 5.000 - 2.0000 - 2.0000 - 2.0000 - 2.	6. Lead	mg/1	ASTH-D.3559-78/AAS			- 1b1d -
9. Fluorido eg/1 ASTN-D.11/9-72/Colorimetry - 1btd - 2btd - 2btd 1btd - 2btd - 2btd - 2btd - 2btd 1btd - 2btd - 2btd - 2btd - 2btd 1btd - 2btd - 2b	7. Chromius	mg/l	ASTM-D.1687-77/AAS	- ibid -	- ib1d -	- 1b1d -
Not detected Not	8. Arsenic	18g/1	ASTH-D.2972-78/AAS	- ibid -	- 161d -	- ibid -
Bacteria MPN/100 ml Std. Methods (*) - 908/MPN Test Not detected	9, Fluoride	mg/1	ASTH-D.1179-72/Colorimetry	- 1b1d -	- 161d -	- ib1d -
1. Nitrate Nitrogen mg/1	O. Coliform Group					
2. Turbidity NTU Std.Methods (*)-214A/Nephelometric Hethod 3.000 2.000 2.000 30.0000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.0000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.0000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.0000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.0000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.0000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.0000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.0000 30.000 30.00000 30.0000 30.0000 30.0000 30.0000 30.00000 30.0000 30.0000 30.0000 30.0000 30.	Bacteria -	MPN/100 m1	Std.Methods (*) - 908/MPH Test	Not detected	Not detected	Not detected
Hethod 3,000 2,000 2,000 2,000 30,00	1. Nitrate Nitrogen	avg/1	ASTM-d.992-71/Colorimetry	0.533	4.870	5.000
3. Color Color Units 1bid - 204A/Visual Comparison 30.000 30.000 30.000 4. Odor - 1bid - 207 Like sulphide Like sulphide Like sulph 5. Taste - 1bid - 211 Normal Normal Normal 6. pH Value - Direct measurement with pH-meter 7.90 8.25 8.15 7. BOD mg/1 Std. Methods (*) - 507 14.640 18.950 15.700 8. COD mg 02/1 1bid - 508A/Titrinetry 21.250 31.533 24.650 9. Dissolved Haterial mg/1 1bid - 2098/Gravimetry 91.567 134.000 131.00 0. Ammonium Hitrogen mg/1 ASTH-D.1426-79/Colorimetry Not detected Not detected Not detected 1. Chlorine Ions mg/1 ASTH-D.126-67/Titrimetry 14.667 15.900 10.400 2. Hardness mg/1 ASTH-D.126-67/Titrimetry-EDTA 21.800 60.300 14.500 3. Iron mg/1 ASTH-D.1068-78/AAS 0.283 0.217 0.300 4. Hanganese mg/1 ASTH-D.1688-77/AAS 0.083 0.050 0.060 5. Copper mg/1 ASTH-D.1688-77/AAS 0.083 0.050 0.060 6. Zinc mg/1 ASTH-D.1691-77/AAS Not detected Not detec	2. Turbidity	NTU	Std.Methods (*)-214A/Nephelometric			•
4. Odor - 1bid - 207 Like sulphide Like sulp			Hethod	3.000	2.000	2.000
5. Taste	3. Color	Color Units	1bid - 204A/Visual Comparison	30.000	30.000	30.000
6. pH Value	4. Odor	- "	ibid - 207	Like sulphide	Like sulphide	Like sulphid
7. 800 mg/I Std. Methods (*) - 507 14.640 18.950 15.700 8. COD mg 02/1 1b1d - 508A/Titrimetry 21.250 31.533 24.650 9. Dissolved Haterial mg/I 1b1d - 2098/Gravimetry 91.567 134.000 131.00 0. Ammonium Hitrogen mg/I ASTH-D.1426-79/Colorimetry Not detected Not detected Not detected 1. Chlorine Ions mg/I ASTH-D.512-67/Titrimetry 14.667 15.909 10.400 2. Hardness mg/I ASTH-D.1126-67/Titrimetry-EDTA 21.800 60.300 14.500 3. Iron mg/I ASTH-D.1068-78/AAS 0.283 0.217 0.300 4. Hanganese mg/I ASTH-D.858-77/AAS 0.083 0.050 0.060 5. Copper mg/I ASTH-D.1688-77/AAS 0.083 0.050 0.060 6. Zinc mg/I ASTH-D.1688-77/AAS Not detected	5. Taste	-	1b1d - 211	Norma1	Normal	Normal
8. COD mg 02/1 ibid - 508A/Titrimetry 21.250 31.533 24.650 9. Dissolved Haterial mg/1 ibid - 209B/Gravimetry 91.567 134.000 131.00 0. Ammonium Hitrogen mg/1 ASTH-D.1426-79/Colorimetry Not detected Not detected Not detected 1. Chlorine Ions mg/1 ASTH-D.512-67/Titrimetry 14.667 15.909 10.400 2. Hardness mg/1 ASTH-D.512-67/Titrimetry-EDTA 21.800 60.300 14.500 3. Iron mg/1 ASTH-D.1068-78/AAS 0.283 0.217 0.300 4. Hanganese mg/1 ASTH-D.1688-77/AAS 0.083 0.050 0.060 5. Copper mg/1 ASTH-D.1688-77/AAS 0.083 0.050 0.060 6. Zinc mg/1 ASTH-D.1691-77/AAS Not detected Not	6. pH Value	- ,	Direct measurement with pH-meter	7.90	8.25	8.15
9. Dissolved Material mg/l 1bid - 2098/Gravimetry 91.567 134.000 131.00 0. Ammonium Mitrogen mg/l ASTH-D.1426-79/Colorimetry Not detected Not detected Not detected 1. Chlorine Ions mg/l ASTH-D.512-67/Titrimetry 14.667 15.909 10.400 2. Hardness mg/l ASTH-D.1126-67/Titrimetry-EDTA 21.800 60.300 14.500 3. Iron mg/l ASTH-D.1068-78/AAS 0.283 0.217 0.300 4. Manganese mg/l ASTH-D.1688-77/AAS 0.083 0.050 0.060 5. Copper mg/l ASTH-D.1688-77/AAS 0.043 0.030 0.030 6. Zinc mg/l ASTH-D.1691-77/AAS Not detected Not detec	7, 800	mg/1	Std. Methods (*) - 507	14.640	18.950	15.700
0. Ammonium Nitrogen mg/l ASTH-D.1426-79/Colorimetry Not detected Not	8, COD	mg 02/1	ibid - 508A/Titrimetry	21.250	31.533	24.650
1. Chlorine Ions	9. Dissolved Material	mg/1	1bid - 2098/Gravimetry	91.567	134.000	131.000
2. Hardness mg/1 ASTM-D.1126-67/Titrimetry-EDTA 21.800 60.300 14.500 3. Iron mg/1 ASTM-D.1068-78/AAS 0.283 0.217 0.300 4. Hanganese mg/1 ASTM-D.858-77/AAS 0.083 0.050 0.060 5. Copper mg/1 ASTM-D.1688-77/AAS 0.043 0.030 0.030 6. Zinc mg/1 ASTM-D.1688-77/AAS Not detected Not detected Not detected 7. Phenols mg/1 Std.Method (*)-510.D/GLC 0.007 < 0.005 < 0.00 8. Anion Active Agent (as MBAS) mg/1 ibid - 512B/Colorimetry 0.130 < 0.050 0.100 9. Sulphate Ions mg/1 ASTM-D.515-78/Colorimetry 1.133 1.170 1.500 10. Temperature C Direct measurement with thermometer 35.00 35.50 35.00 11. Magnesium mg/1 ASTM-D.511-77/Titrimetry-EDTA 3.257 14.070 2.100 12. Calcium mg/1 ASTM-D.511-77/Titrimetry-EDTA 4.193 4.597 2.950 13. Nitrite Nitrogen mg/1 ASTM-D.515-67/Colorimetry Not detected Not detect	O. Ammonium Hitrogen	mg/1	ASTH-D.1426-79/Colorimetry	Not detected	Not detected	Not detected
3. Iron mg/1 ASTH-D.1068-78/AAS 0.283 0.217 0.300 4. Hanganese mg/1 ASTH-D.858-77/AAS 0.083 0.050 0.060 5. Copper mg/1 ASTH-D.1688-77/AAS 0.043 0.030 0.030 6. Zinc mg/1 ASTH-D.1691-77/AAS Not detected	1. Chlorine Ions	mg/1	ASTH-D.512-67/Titrimetry	14.667	15.900	10.400
4. Hanganese mg/1 ASTH-D.858-77/AAS 0.083 0.050 0.060 5. Copper mg/1 ASTH-D.1688-77/AAS 0.043 0.030 0.030 6. Zinc mg/1 ASTH-D.1691-77/AAS Not detected Not detect	2. Hardness	mg/1	ASTM-D.1126-67/Titrimetry-EDTA	21.800	60.300	14.500
### 15. Copper mg/1	3. Iron	mg/1	ASTM-D.1068-78/AAS	0.283	0.217	0.300
6. Zinc mg/1 ASTH-D.1691-77/AAS Not detected Not detected Not detected 7. Phenols mg/1 Std.Method (*)-510.D/GLC 0.007 < 0.005 < 0.007	4. Hanganese	mg/l	ASTH-D.858-77/AAS	0.083	0.050	0.060
7. Phenols mg/l Std.Method (*)-510.D/GLC 0.007 < 0.005 < 0.006 8. Anion Active Agent (as MBAS) mg/l ibid - 512B/Colorimetry 0.130 < 0.050 0.100 9. Sulphate Ions mg/l ASTH-D.515-78/Colorimetry 1.133 1.170 1.500 10. Temperature C Direct measurement with thermometer 35.00 35.50 35.00 11. Hagnesium mg/l ASTH-D.511-77/Titrimetry-EDTA 3.257 14.070 2.100 12. Calcium mg/l ASTH-D.511-77/Titrimetry-EDTA 4.193 4.597 2.950 13. Nitrite Nitrogen mg/l ASTH-D.154-67/Colorimetry Not detected Not detected Not detected Salinity g/kg Std.Methods (*)-205 0.200 0.200 0.200 15. Evaporation Residue mg/l ibid - 209A/Gravimetry 298.000 164.000 249.000	5. Copper	mg/1	ASTM-D.1688-77/AAS	0.043	0.030	0.030
8. Anion Active Agent (as MBAS) mg/l ibid - 512B/Colorimetry 0.130 < 0.050 0.100 9. Sulphate Ions mg/l ASTH-D.515-78/Colorimetry 1.133 1.170 1.500 10. Temperature C Direct measurement with thermometer 35.00 35.50 35.00 11. Magnesium mg/l ASTH-D.511-77/Titrimetry-EDTA 3.257 14.070 2.100 12. Calcium mg/l ASTH-D.511-77/Titrimetry-EDTA 4.193 4.597 2.950 13. Nitrite Nitrogen mg/l ASTH-D.154-67/Colorimetry Not detected Not detected Not detected 4. Salinity g/kg Std.Methods (*)-205 0.200 0.200 0.200 15. Evaporation Residue mg/l ibid - 209A/Gravimetry 298.000 164.000 249.00	6. Zinc	mg/l	ASTH-0.1691-77/AAS	Not detected	Not detected	Not detected
(as MBAS) mg/l ibid - 512B/Colorimetry 0.130 < 0.050 0.100 9. Sulphate Ions mg/l ASTH-D.515-78/Colorimetry 1.133 1.170 1.500 10. Temperature C Direct measurement with thermometer 35.00 35.50 35.00 11. Magnesium mg/l ASTH-D.511-77/Titrimetry-EDTA 3.257 14.070 2.100 12. Calcium mg/l ASTH-D.511-77/Titrimetry-EDTA 4.193 4.597 2.950 13. Nitrite Nitrogen mg/l ASTH-D.154-67/Colorimetry Not detected Not detected Not detected 4. Salinity g/kg Std.Methods (*)-205 0.200 0.200 0.200 15. Evaporation Residue mg/l ibid - 209A/Gravimetry 298.000 164.000 249.00	7. Phénols	mg/1	Std.Method (*)-510.D/GLC	0.007	< 0.005	< 0.005
9. Sulphate Ions mg/l ASTM-D.515-78/Colorimetry 1.133 1.170 1.500 10. Temperature C Direct measurement with thermometer 35.00 35.50 35.00 11. Magnesium mg/l ASTM-D.511-77/Titrimetry-EDTA 3.257 14.070 2.100 12. Calcium mg/l ASTM-D.511-77/Titrimetry-EDTA 4.193 4.597 2.950 13. Nitrite Nitrogen mg/l ASTM-D.154-67/Colorimetry Not detected Not detected Not detected 4. Salinity g/kg Std.Methods (*)-205 0.200 0.200 0.200 15. Evaporation Residue mg/l ibid - 209A/Gravimetry 298.000 164.000 249.00	8. Anion Active Agent				-	
0. Temperature C Direct measurement with thermometer 35.00 35.50 35.00 11. Magnesium mg/l ASTH-D.511-77/Titrimetry-EDTA 3.257 14.070 2.100 12. Calcium mg/l ASTH-D.511-77/Titrimetry-EDTA 4.193 4.597 2.950 13. Nitrite Nitrogen mg/l ASTH-D.154-67/Colorimetry Hot detected Not detected Not detected 4. Salinity g/kg Std.Methods (*)-205 0.200 0.200 0.200 15. Evaporation Residue mg/l ibid - 209A/Gravimetry 298.000 164.000 249.00 15. One of the salinity g/kg Std.Methods (*)-205 0.200 0.200 0.200 160.000 0.20	(as MBAS)	mg/1	ibid - 512B/Colorimetry	0.130	< 0.050	0.100
ASTM-D.511-77/Titrimetry-EDTA 3.257 14.070 2.100 2. Calcium mg/l ASTM-D.511-77/Titrimetry-EDTA 4.193 4.597 2.950 3. Nitrite Nitrogen mg/l ASTM-D.154-67/Colorimetry Not detected Not dete	9. Sulphate Ions	mg/1	ASTM-D.515-78/Colorimetry	1.133	1.170	1,500
2. Calcium mg/l ASTH-D.511-77/Titrimetry-EDTA 4.193 4.597 2.950 3. Nitrite Nitrogen mg/l ASTH-D.154-67/Colorimetry Not detected Not detected Not detected 4. Salinity g/kg Std.Methods (*)-205 0.200 0.200 0.200 5. Evaporation Residue mg/l ibid - 209A/Gravimetry 298.000 164.000 249.00	O. Temperature	· c -	Direct measurement with thermometer	35.00	35.50	35.00
13. Nitrite Nitrogen mg/l ASTM-0.154-67/Colorimetry Not detected Not d	1. Magnesium	mg/l	ASTM-D.511-77/Titrimetry-EDTA	3.257	14.070	2.100
4. Salinity g/kg Std.Methods (*)-205 0.200 0.200 0.200 5. Evaporation Residue mg/l ibid - 209A/Gravimetry 298.000 164.000 249.00	2. Calcium	mg/1	ASTM-0.511-77/Titrimetry-EDTA	4.193	4.597	2.950
75. Evaporation Residue mg/l ibid - 209A/Gravimetry 298.000 164.000 249.00	3. Nitrite Nitrogen	mg/l	ASTM-0.154-67/Colorimetry	Not detected	Not detected	Not detected
F10.00	4. Salinity	g/kg	Std.Hethods (*)-205	0.200	0.200	0.200
200 00 00 000 000 000 000 000 000 000 0	5. Evaporation Residue	mg/l	ibid - 209A/Gravimetry	298.000	164.000	249.000
io. Conductivity umnos/cm into - 200/clectrical Conductivity 465.000 360.000 300.00	6. Conductivity	umhos/cm	ibid - 205/Electrical Conductivity	489.000	580.000	500.000

^{(*) :} Standard Hethods for the Examination of Water and Wastewater, 16th ed., 1985.

Table 2-9(10/10) RESULTS OF LABORATORY TEST

Location : Tebing Tinggi (Shallow Well)- Kampung Melayu

No.	Parameters	Unit	Hethods/Description	(1) Level (Av.Value)	(2) Level (Av.Value)	(3) Level (Av.Value)
1.	Cyanide Ions	ng/l	ASTM-D.2036-75/Colorimetry	Not detected	Not detected	Not detected
2.	Mercury	mg/1	ASTH-D.3223-73/Cold Vapor AAS	- 151d -	-101d-	-ibid-
3.	Organic Mercury	mg/1	1 b i d	0.002	< 0.001	< 0.001
4.	Organophosphorus	10g/1	Std.Methods (*) - 424F/Colorimetry	< 0.300	< 0.300	< 0.300
5.	Cadalum	mg/1	ASTM-D.3557-78/AAS	Not detected	Not detected	Not detected
6.	Lead	mg/1	ASTM-D. 3559-78/AAS	- 1b1d -	-1b1d-	-1bid-
7.	Chromium	mg/1	ASTN-D.1687-77/AAS	- 161d -	-ibid-	-15 id
8.	Arsenic	ung/1	ASTM-D.2972-78/AAS	- 1b1d -	-ibid-	-ibid-
9.	Fluoride	mg/1	ASTM-D.1179-72/Colorimetry	- 1b1d -	-fbid-	-ibid-
10.	Coliform Group	•				
	Bacteria	MPN/100 m1	Std.Methods (*) - 908/MPN Test	< 39,000	38.000	38.000
11.	Nitrate Hitrogen	rsg/1	ASTM-d.992-71/Colorimetry	4.670	4.933	5.000
12.	Turbidity	UTK	Std.Hethods (*)-214A/Nephelometric			
		•	Method	5.000	4.000	3.000
13.	Color	Color Units	ibid - 204A/Visual Comparison	40,000	40.000	30.000
14.	0der .	-	1b1d - 207	Morma l	Korma l	Normal .
15.	Taste		1b1d - 211	Norma l	Korma l	Norma l
16.	pH Value	<u></u>	Direct measurement with pH-meter	6.050	6.20	5.95
17.	800	mg/1	Std. Hethods (*) - 507	11.790	17.920	16.700
18.	COD	mg 02/1	1bid - 508A/Titrimetry	19.630	27.700	27.200
19.	Oissolved Material	mg/1	1bid - 209B/Gravimetry	237.000	110.130	168.000
20.	Ammonium Hitrogen	mg/1	ASTM-D.1426-79/Colorimetry	Not detected	Hot detected	Not detected
21.	Chlorine Ions	mg/1	ASTM-D.512-67/Titrimetry	4.950	4.933	5.240
22.	Hardness	mg/1	ASTM-D.1126-67/Titrimetry-EDTA	50.000	55.900	98.000
23.	Iron	mg/1	ASTH-D.1068-78/AAS	0.103	0.217	0.250
24.	Manganese	mg/1	ASTM-D.858-77/AAS	0.023	Not detected	Not detected
25.	Copper	mg/1	ASTM-D.1688-77/AAS	Not detected	- ibid -	- 1b1d -
26.	Zinc	mg/1	ASTH-D.1691-77/AAS	- 161d -	- ibid -	- ibid +
27.	Phenols	10g/1	Std.Method (*)-510.D/GLC	<0.005	< 0.005	< 0.005
28.	Anion Active Agent					100
	(as MBAS)	mg/l	ibid - 5128/Colorimetry	0.870	0.250	0.350
29.	Sulphate Ions	mg/l	ASTM-D.515-78/Colorimetry	2.000	1.500	1.600
30.	Temperature	С	Direct measurement with thermometer	26.00	28.00	27.00
31.	Magnesium	mg/l	ASTM-D.511-77/Titrimetry-EOTA	6.740	10.780	21.520
32.	Calcium	mg/l	ASTM-D.511-77/Titrimetry-EDTA	10.660	8.537	10,700
33.	Nitrite Nitrogen	mg/l	ASTM-D.154-67/Colorimetry	0.170	0.233	0.670
34.	Salinity	g/kg	Std.Methods (*)-205	0.000	0.000	0,000
35.	Evaporation Residue	mg/1	1b1d - 209A/Grav1metry	296.000	186.000	189.000
36.	Conductivity	umhos/cm	ibid - 205/Electrical Conductivity	185,000	199.000	180.000

^{(*) :} Standard Methods for the Examination of Water and Wastewater, 16th ed., 1985.

Table 2-10(1/4) WATER QUALITY STANDARDS IN INDONESIA (DRINKING WATER)

	Parameter	Unit	Maximum Value	Explanation
	PHYSICAL:			
1.	Odour ·	_	· _	No odour
-	Total dissolved solid (TDS)	mg/1	1000	110 02501
3.	Turbidity	NTU Scale	5	
4.	Taste	#	•	No taste
5.	Temperature	С	Air, 3 C	
6.	Colour	TCU Scale	15	
	INORGANICS:			
1.	Mercury	mg/1	0.001	
2.	Aluminium	ng/1	0.2	
3.	Arseric	mg/1	0.05	
4.	Barium	mg/1	1.0	
5.	Iron	mg/1	0.3	
6.	Flouride	mg/1	0,5	
7.	Cadmium	mg/1	0.005	
	Alkalinity (CaCo3)	mg/1	500	
9.		mg/1	250	
	Chromium, Hexavalent	mg/i	0.05	
1.	-	ng/1	.0.1	
2.	-	mg/l	200	
	Nitrogen, as Nitrite	mg/1	10	
4.	Nitrogen, as Nitrate	mg/1	1.0	
5.		mg/1	0.15	
6.	Ph	g/ 1	6.5 - 8.5	As min. and max.
7.	Se}enium	mg/1	0.01	
	Zinc	mg/1	5	
	Cylanide	eg/l	0.1	
	Sulphate	mg/1	400	
1.		mg/1	0.05	•
2.	•	mg/1	1.0	
3.	Lead	mg/1	0.05	
	ORGANICS :			
1.	Aldrin and Dieldrin	ġg/1	0.0007	
2.	Benzene	12g/1	0,01	
	Benzo (n) pyrene	1 0g/1	0.00001	
	Chlordane (Total isomer)	mg/1	0.0003	
5.		mg/1	0.03	
	2,4 - D	EQ/1	0.10	4.00
7.		mg/1	0.03	•
8.	Detergen	mg/1	0.5	
	1,2 - Dichloroethene	mg/1	0.01	
0.	1,1 - Dichlorosthene	mg/1	0.0003	
1.	Heptachlor and Heptachlor- epoxide		0.003	
2.	Hexach lorobenzene	mg/1	0.00001	
	Lindane	mg/1	0.004	
14.		ng/1	0.03	
	Pentachlorophenolic	mg/1	0.01	
	Pesticides Total	ng/1	0.1	•
	2,4,6 - Trichlorophenelic	mg/1	0.01	
8.		mg/1	10	
	MICROBIOLOGY:			
1.		Total/100 ml	0	
2.	Coliform Total	Total/100 ml	3	
	RADIOACTIVITY:			
ı.		Bq/1	0.1	
2.	Gross Beta Activity	Bq/1	1.0	

Table 2-10(2/4)WATER QUALITY STANDARDS IN INDONESIA (DRINKING WATER THROUGH TREATMENT)

No.	Parameter	Unit	Haximum Value		Explanation
••••	PHYSICAL:				
1.	Temperature	С	Normal		No odour
2.	Total dissolved solid (TDS)	mg/1	1000	-	
	INORGANICS:				
1.	Mercury	mg/l	0.001		
2.	Nitrogen, as amonia	mg/l	0.5		
3.	Arseric	mg/l	0.05		
4.	Barium	mg/1	1		
5.	Iron	mg/1	5		
6.	Flouride .	mg/1	1.5		
7.	Cadmium	mg/l	0.01		
8.	Chloride	mg/l	600		
9.	Chromium, Hexavalent	mg/1	0.05		٠.
10.	Hanganese	mg/1	0.5 10		*
11.	Hitrogen, as Mitrite	mg/l mg/l	10		
12. 13.	Nitrogen, as Nitrate Dissolved Oxygen (DO)	#9/1 mg/l	*		Recommended more than 6
13. 14.	Ph	ug/ i	5 - 9		reconstituted and to their o
15.	Selenium	mg/l	0.01	74.4	· ·
16.	Zinc	mg/1	5		
17.	Cylanide	mg/1	0.1		
18.	Sulphate	mg/1	400		e e la companya de la companya della companya della companya de la companya della
19.	Sulphide, as H2S	mg/1	0.1		
20.	Copper	啊/ 1	1		•
21.	Lead	@ g/1	0.1	14.0	
	ORGANICS :				
1.	Aldrin and Dieldrin	mg/l	0.017	٠,	
2.	Chlordane (Total isomer)	mg/1	0.003		· ·
3,	DOT	mg/1	0.042		
4.	Endrin	mg/1	0.001		
5.	Phenolic Phenolic	mg/1	0.002		
6,	Heptachlor and Heptachlor-	mg/l			
	epoxide		0.018		
7.	Carbon Chloroform exstrac	mg/l	0.5		
8.	Lindane	mg/l	0.056		
9.	Methoxychlor	mg/1	0.035		
10.	Oil and Grease	mg/1	Nihii 0.1		
11. 12.	Organo phosphate and Carbamate Methylene Blue Active Substance	mg/l	V-1	-	
14.	(Surfactans)	EQ/1	0.5		
13.	P C B	ng/1	Nihil		and the second second
14.	Toxaphene	mg/l	0.005		
	MICROBIOLOGY :				
1.	Coliforms fecal	Tota1/100 m)	2.000		
2.	Coliform Total	Total/100 ml	10,000		
	RADIOACTIVITY:				er i de la companya d
		0(1	0.1		
1.	Gross Alpha Activity	Bq/1	0.1		

Table 2-10(3/4) WATER QUALITY STANDARDS IN INDONESIA (FISHERY AND LIVESTOCK FARMING)

No.	Parameter	Unit	Maximum Value	Explanation
·····	PHYSICAL:			
1.	Temperature	С	Normal, 3 C	No odour
2.	Total dissolved solid (TDS)	mg/1	1000	
	INORGANICS:			
1.	Hercury	mg/1	0.002	
2.	Nitrogen, as amonta	mg/1	0.02	
3.	Arseric	mg/1	1	
4.	Flouride	ng/1	1.5	
5.	Cadmium	mg/l	0.01	
6.	Chlorine	mg/l	0.003	
7.	Chromium, Hexavalent	mg/l	0.05	
8.	Nitrogen, as Nitrate	mg/l	0.06	
9.	Dissolved Oxygen (DO)	mg/l	*	Recomended more than 3
10.	Ph	-	6 - 9	
11.	Selenium	ag/1	0.05	
12.	Zinc	mg/1	0.02	
13.	Cylanide	mg/l	0.02	
14.	Sulphide, as H2S	mg/1	0.002	
15.	Copper	ng/1	0.02	
16.	Lead	mg/l	0.03	
	ORGANICS :			
1.	внс	mg/l	0,21	
2.	OPT	mg/l	0.002	
3.	Endrin	mg/1	0.004	•
4.	Phenolic	mg/1	0.001	
5.	Oil and Grease	mg/l	1	
6.	Organo phosphate and Carbamate	mg/l	0.1	
7.	Methylene Blue Active Substance	mg/l	0.2	
	(Surfactans)			
	RADIOACTIVITY:		•	
1.	Gross Alpha Activity	Bq/l	0.1	
2.	Gross Beta Activity	Bq/l	1.0	

Table 2-10(4/4) WATER QUALITY STANDARDS IN INDONESIA (AGRICULTURE , URBAN, INDUSTRY AND HYDROELECTRICITY)

No.	Parameter	Unit	Maximum Value	Explanation
	PHYSICAL:			
1.	Electric Conductivity	Umbos/cm (25 C)	2.250	Depending on kind of the plant, the maximum vakue fir the plant which is not sensitive
2.	Temperature	C	Normal, 3 C	According to local condition
3.	Total dissolved solid	mg/l	2.000	Depending on kind of the plant, the maximum vakue fir the plant which is not sensitive
	INORGANICS:	-		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Mercury Arseric Boron Cadmium Cobalt Chromium, Hexavalent Manganese Sodium Nickel Ph Selenium Zinc Sodium Absorption Ratio (SAR)	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.005 1 1 0.01 0.02 1 2 60 0.5 6 - 9 0.05 2 18	Depending on kind of the plant, the maximum vakue fir the plant which is not sensitive
14. 15. 16	Copper Lead Residual Sodium Carbonate (RSC)	mg/1 mg/1 mg/1	1 1.25-2.5	1.25 for the sensitive plant and 2.50 for the unsensitive plant
	RADIOACTIVITY:			
1. 2.	Gross Alpha Activity Gross Beta Activity	Bq/1 Bq/1	0.1 1.0	

RESULTS OF WATER SAMPLING AND TEST Table 3-1

ATERS lour pur																	
	н	~	, tra	4	ស	w	۲	60	6	91	=	22	13	14	15	16	17
	9+Co 150.0	102.0	117.0	75.0	192.0	133.0	184.0	157.0	231.0	85.0	207.0	113.0	95.0	164.0	24.0	23.0	29.0
7. Onon	2	2	Nan	re N	2	Neo.	Ze Z	Neo	Ned	Ned	Ned	Ned	Nen	La N	Ned Ned	0	Neo
HG (*	6.30		5.80	6.80	, r.	800	6.70	6.90	5.70	.08	7.20	7,05	6,95	6.9	7.99	. 60	7
4. Taste	Nor	Nor	Nor	Nor	Nor	Nor	Nor	Nor	Nor	Nor	Nor	Nor	Nor	5 F	Nor	₩.	Kor
ifty			75.00	14.00	31.00	26.00	31.00	29.00	35.00	19.00	51.00	95.00	27.00	36.00	4.8	3.8	3,0
ą.	%C 27.40	٠	29.80	30.90	27.50	28.10	27.70	28.20	28.70	31.00	29.50	29.10	31.50	35.00	28.60	26.30	26.9
(NH4)	mg/1 1.84		0.88	0.26	0.70	0.52	0.95	0.67	0.77	0.48	0.67	0.47	0.48	0.44	0.0	9.0	0
(ca)		18.72	16.64	16.64	29.12	36.68	14.56	24.96	33.28	10,40	10,40	4.16	6.24	6.24	54.96	22.88	20.8
(Ca)		K 3	35.6	0.07	a 0.36 a	E 6	0.29 a	0.21 &	0.22	0.12	0.10	a 0.03 a	0.06 a	9.6 8.5	0.02	6.03 P	0 0
			0.40	0.03	0.80	0.20	0.03	8	0.08	0.18	0.08	0.07	0.08	9.0	90.0	0.14	o o
Manganese (Mn)	mg/1 1.00	0.00 0.00 0.00	. 0.50 	e 1	0.62 0	5 10 10 10 10 10 10 10 10 10 10 10 10 10	2.0 2.10	0.12 2.12	0.20 20 20 20 20 20 20 20 20 20 20 20 20 2	96	80.0	3 5	0.03	0.6	0.07	80.5	9 4
Magnestum (Mg)			9 6	9 5	6.0	60.0	6.0	25.0	8 8	6.0	9:5	7.0	n e	9.5	9 5	χ , c	, c
	mg/1 63.33	33.85	56.88	37.86	656.53 b	56.88	32.47	32.47	35.70	5.71	13.61	20.12	26.83	26.83	3 5	3 2	3 4
Elitoride (E)		90	0.27	0.41	# 0.22 g	0.54	0.21 a	0,56	0.0	0.50	0.56	a 0.72 a	0.37	0.20	0.15 8	0.14 8	0
Nitrate (NO3)	mg/7 1.02	,	1.21	1.75	1,30	1.0	1.30	0.97	1.42	1.25	4.4	1.02	1.13	0.95	9.0	04.0	0.5
Nitrate (NO2)		ส	a 0,004 a	0.005	a 0.002 a	0.006 a	0.008 a	0.004 a	0.005 a	0.004	3 0.005	a 0.003 a	0.004 a	0.005 a	0.02 &	0.02 a	0.0
(PQ4)			0.63	0.15	0.75	0.70	0.62	0.22	96.0	0.53	0.27	0.15	0.62	0,65	0.38	0.16	0.3
Sulphate (SO4)			16.00	15.00	77.50	10.00	10.00	0.00	10.00	8.0	5.00	00.0	0.0	0.00	11.00	9.00	11.0
Barium (Ba)		4 CJ	a 0.08 a	0.02	a 0.04 a	9.0 8	9.0	9 8	8	0.05	3 0.02	a 0.02 a	0.02 a	0.02 a	0.01 a	0.01	0.0
Cadmium (Cd)		₩.	a 0.01 &	0.0	B 0.01	0 G	0.01 0.01	0.01 8	0.01 8	0.01	500	a 0.01 a	1 0.01 a	0.01 E 50	0.01	0.01 9.01	0 0
(S)		م	D 0.02	6.00 6.00	a 0.12 b	0.10	600	0.01 8	8 8 8 8	20.00	2) C	a 0.01 a	0.03 a	rs 5-65 6-67	0.01 8 00.01	0.0 8 00	9 9
Chrom Neaxavalent (Cr4)	50.0 1/6m	0.00	96.00	9.0	8 6	3 5	200	0.00	3 9	3 5	3 5	2000	00.00	3 5	9 5	3 5) -
Monday (CD)	٧	پ د د	200	2000	00.00	20.00	<0.001 c	<0.001	20.001	\$0.00 \$0.00	100.05	00.00	20.00	20.08	2000	100.00	000
referry (ng)	100.07 100.07 10.07	ر اه د	5.00	200.5	5.00 4	5.00 a	5.00	5.00 a	5.00 10.00	5.00	20.5	5.00 a	5.00 8	9.5	5.00	8,6	5.0
vs 20%C	mg/1 20.12	2 a 17.20	3 18.76	5,51	a 22.97 a	12.60 a	17.38 a	26.60 a	36.40 a	15.20	3 21.60	a 10.40 a	13.20 a	11.10 a	8.90 8	8,60 a	80
COD. (by K2C+207)		25	a 22.96 a	13.12	a 42.64 a	26.24	22.96 a	36.08 a	42.60 a	24.88	1 44.16	a 18.93 a	25.95 a	18.93 a	13.39 a	11,90 a	11.9
Organic Matter (Kmm04)	mg/1 27.81		14.03	13.04	27.81	22.17	25.91	24.71	28.44	26.59	37 22	20.96	25.34	21.20	10.90	10.95	10.3
30. Surfactans Anionic me	19/1 0.25	5 0.13	0.12	0.09	0.07	0.05	0.15	0.05	0.05	90	0.05	0.05	0.02	0.05	0.05	0.02	0
as MBAS	,		;	í		2			ć	•	į	ć				:	5
	mg/! 139.0	0 103.0	e. 78	5.6/	D (2.4.2	6.13	7.00 H	7.0	4.5	7.	30.7	4 4 u 6	4.6	3.00	0.011	5 <
Dissolved Uxygen		•	9.00	9.0	7 -	0.00	25.50	2,70	317.00	200	106.0	0/14	200	2,7	78.00	00.4	105
Residue on Evapporation	mg/1 166.U		180.0	190.0	† ¢	0.000	0.777	0.50	220	0.017	153.0			25.0	73.0	2001	6
Suspended Solid		0.551.0	67.5	100.1	0.107	1/3.0	7.05.1	1001	, 60.	600	5000	13.0	100	1 00 1	200	2000	2 0
U11 & Grease		Ω.	200.7	900	2000	2000	9000	300	36	2000	20.2	30.4	2000	200	35	860	3 5
compound		. מ	0000	00.0		3	2000	300	2000	300	300			3 6	2 2 2		5 6
Swiftde	10,0 1,0m	ò	120.0	120.5	176.7	141.3	141.3	153.1	141.3	159.03	182.59	164.92	141.36	129.58	223.82	179.06	188.46
D. D. Allendaries Cocos			200	000	500	9	0	00.0	00.0	00.0	00 0	00.0	0.0	00.0	00.0	0.00	0.0
Total Glealinity Cacoo	105.0 105.0		129.5	120.5	176.7	341.3	141.3	153.1	141.3	159.0	182.6	164.9	141.4	129.6	223.8	179.1	88
Total Hardness Caco3			62,40	62.40	265.20	62.40	57.20	67.60	114.40	36.40	31.20	26.00	31.20	46.80	83.20	88.40	72.8
Total P.	44.0 L/g	4 0.22	0.18	0.03	0.22	0.20	0.17	0.05	0.29	0.15	0.08	0.03	0.20	0.19	0.08	0.03	9.
Note:																	
. 1.	4. Titi Kuning		10.			t Dalam	16. Dam Site	•	40	· above ma	ximum value	advisable					
2. Guru Patimpus	5. Percut	8. Amplas I	Ξ	Brohol I 1	14. Tembangan		 Downstrea 	зат Dam Site		- above ma:	maximum velue	acceptable					

Table 3-2 RESULTS OF AIR QUALITY ANALYSIS

Location/Item	NOX (mg/m3)	NH3 (mg/m3)	502 (mg/m3)	H2S (mg/m3)	Pb (mg/1)	H2S (mg/m3)	Noise Level(c
	·			<u> </u>			
Dam Site Area		•		*	•	2.7	
- Sibiru-biru	0.0018(0.0108)a	Vd	Vd	Ud	Ud	57.76(346.56)b	56.4 - 68.
- Pertumbukan	0.0024(0.0144)a	Ud	Uđ	Vd	Ud	64.10(384.6)b	34.4 - 44.6
Deli River							
- Tit Kuning	0.0024(0.0144)a	Uđ	Ud	· · Ud ·	Ud	66.52(399.1)b	52.0 - 56.
- Labuhan Deli	0.0076(0.456)	Uđ	Ud	Ud	0.37(2.22)b	108.33(649.98)a	62.8 - 77.
Percut River			÷			: .	
- Guru Patimpus	0.0037(0.0222)	Ud	Vd	Ud	Ud	37.75(214.5)a	54.6 - 56.
- Amplas	0.0025(0.015)a	Vd	Ud	Ud	0.71(4.26)b	158.65(951.9)b	50,2 - 66.
Padang River				•			
- Measuring Value	0.0018(0.108)a	0.0002(0.0012)a	0.013(0.78)a	Ud	0.71(4.26)b	158.65 a	50.2 - 66.

(Note) Value in parenthesis is after conversion into 24 hours.

Ud : Undetected

a : Below standard quality

b : Above standard quality

Table 3-3(1/2) NUMBER AND KIND OF PLANKTONS (PHYTOPLANKTONS)

No.	ORGANISM	٠		Dam Sit	e ·		PI	RCUT R	IVER				DELI R	IVER		P	PADANG	RIVER	
1103	Olicerizati	 I	11	III	IA	V	I	II	I	II	17	٧	VI	VII	VIII	ıx	х	XI	Х
1 An	kistrodesma	1					1												
	actophora													1		3			
	atomae	32	6	10	13	15	32	6	10	13	15	6	5	. 4	9	5	10	11	
	ng lena	7	5	5	10	14	7	5	5	10	14			5	2	5	5	2	
	agillaria	3				25	3				25								
	os igma	1			1		- 1			1									
	mphonema	1		•	- 11		1			11									
	lostra		4					4											
	crocystis		2	2				2	2			2	1	1	6				
	osterium	4		ī	δ	3	4	_	ī	6	3	-	•						
	vicula	5			•	-	5		-	•	-	2		2	8				
	dogonium	2	. 1	2	1		2	1	2	- 1		_	1	2	_				
	cillatoria	28	5	10	13	15	28	5	10	13	15	25		5	7	5	4	5	
	hillia	2.	•	••			2	•			•••		•	-	•	•	•	•	
	irogyra	-	10	2	6	3	-	10	2	6	. 3	2	1	2			1	1	
	lvax	5	4	4	· 9	13	5	4	4	9	13	10		4	5	9	Â	5	
	enema	-	2	•	ź	1	-	2	•	2	1	2			3	•	•	~	
	abaena		. **		-	-		-		-	-	3		8	ì	2			
9 Ch												í	·	٠	•		1		
-	elastrum											3	1	2		2	•	2	
	stoc											,	•	_	2	_		3	
	oria											1		1	L			3	
	uthrix											2		•					
	utnrix eurococus											2							
																10	2		
	phanizemenen															10	5	. 4	
	mbella															2	5	12	
/ la	belleria ···															č	9	12	
<u> </u>		 					·····			·									
tal .	Phytoplankton	91	39	- 36	73	64	91	39	36	73	64	65	39	36	44	44	39	49	7

Table 3-3(2/2) NUMBER AND KIND OF PLANKTONS (ZOOPLANKTONS)

No. ORGANISM			am Site	· ·		Pi	RCUT	RIVER				DELI R	IVER		P.	ADANG	RIVER	
	I	11	III	IV	V	I	. []	11	I .	17	٧	VI	114	VIII	IX	X	ıx	XII
1 Auraera								1										
2 Dinoplists							5											
3 Chanthocanytus	1			1						1			1				1	
4 Cyclops	1			1	2				1	1	1		1	2				
5 Dafnia	4									4								
6 Epirtilis		5	13		7		18	21	5		5	13		7	3	1		19
7 Euchlaris						•	2											
8 P11od1na							4	1			5					1	1	
9 Notius	3			2	1					1			2	1			1	
10 Ratipera	3		2			2	δ			3		2						
11 Paramaecium	3				1	2 2	2	3		2				1	5	1	5	2
12 Stentor	-	5			7						5			7				
13 Vorticella	6	15	2	1	2	5	2	3		6	15	2	1	2				1
14 Pterodina	2									3			2					
15 Diurella	_																	1
16 Nauplius																		1
17 Stylonicia																	3	
otal Zooplankton	21	31	17	7	20	9	40	29	6	21	31	17	7	20	8	3	11	24

Table 3-4(1/4) NUMBER OF VEGETATION (LAUSIMEME DAM)

0.	Name of Species						Sa	mp1	İng	Poi	nt				Total	F	D	ĸ	FR	DR .	KR	IV	SDF
		1	2	3	4	5	6	7	8	9	10	11	12	13				:	(%)	(%)	(%)		
1	Artocarpus elasticus Rewin			_		1	1		3		1			2	10	6	0.091	12.50	6.59	3.15	3.14	12.08	4.
	Aleurites Moluccana. Wild	3				•	•		-	2	-	1		_	6	3	0,010	7.50	3.29	1.83	: 1.87	6.99	2.
_	Albizzia Falcata, Back	ž		3				12		4					21	4	0.066	26.25	4,40	6.71	6.60	17.71	5.
	Arenga Pinnata (Hurmb). Herr	_		•	3		1		1		1				6	4	0.018	7.50	4.40	1.83	1.87	8.10	2.
	Artocarpus integra. Herr		2							1					3	2	0.009	3.75	2.20	0.91	0.94	4.05	1.
	Bambusa. Sp		_								30		11		41	2	0.128	51.25	2.20	13.00	12.89	28.09	9.
	Baccaurea montleyana Huell			2				1		1			1		5	4	0.015	6.25	4.40	1.52	1.57	7.49	2.
	Brugmansta candida. Pers									1					1	. 1	0.003	1.25	:1.10	0.30	0.31	1.71	0.
	Coccos nucifera. 1		4		1										5	2	0.015	6.25	2.20	1.52		5.29	1,
10	Coffee arabica				20	50		3			10				83	: 4		103.75	4.40	26.52	26.10	57.02	19.
11	Durio zibathinus. Merr	1		2								1			4	3	0.012	5.00	3,29	1.22	1.26	5.77	. 1.
12	Daemonorops. sp								1		6		12		19	3	0.059		3.29	5.99	5.97	15.25	5.
13	Datua metel. L										2			1	3	2	0.009	3.75	2.22	0.91	0.94	4.05	1.
14	Erithrina subumbrans. Herr				2	1									3	2	0.009	3.75	2.22	0.91	0.94	4.05	1.
15	Eugenia aquea Burm. f				1										1	1	0.003		1.10	0.30	0.31	1.71	0.
16	Garcinia mangostana					3									3	1	0.009	3.25	1.10	0.91	0.94	2.95	0.
17	Aportea stimulans. Heq.				1										1	1	0.003	1.25	1.10	0.30	0.31	1.71	0.
	Havea brasilienssis.Muell.Agr.				1	2						_			9	4	0.028		4.40	2.85	2.83	10.08	3.
	Lansium Domesticum		2	1	1	1						5	-	1	5	4	0.015	6.25	4.40	1.52	1.57		2.
	Jasminum Multiflorum. L			1				1		1					2	2	0.006	2.50	2.20	0.61	1.63	3.44	1.
	Ocinum sanctum. L				1		1								2	2	0.005		2.20	0.61	0.63	3.44	- 1. 0.
	Adina Fogifolia				2										2	1	0.006	2.50	1.10	0.61	0.63	2.34 3.44	1.
	Pasidium guajava. L		1							1					2	2	0.006	2.50 1.25	2.20	0.61 0.30	0.63	1.17	0.
	Hangifera indica				1				_						1	1	0.003		1.10	10.16	10.06	24.62	8.
	Nusa paradisiaca. Linn		15		6				6		5				32	4 2	0.100	2.50	2.20	0.61	0.63	3 44	1.
	Senicio sonchipolius. Moench	1		_			٠.	1							2	_	0.022		6.59	2.24	2.20	11.03	3.
	Pithecellobium jiringa. Jack	1		1	1		1					2		1	7	6	0.022		2.20	1.52	1.57	5.29	1.
	Shorea. sp						1								5 2	2	0.005	2,50	2,20	0.61	0.63	3.44	1.
	Octomeles sumaterana. Miq			1		· 1									4	2	0.006	5.00	2.20	0.61	1.25	4.07	1.
	Pithecellobium dulche. Benth											2		2	4	3	0.000	5.00	3.29	1.22	1.26	5.77	1.
	Delonik regia							1	1				4	Z	11	2	0.012		2.20	0.61	3.46	6.27	2.
	Peper aduncum. L				1						10					_	0.004	2.50	2.20	0.61	0.63	3.44	1.
	Parkia speciosa. Hassk					1									2	2				0.30	0.63	2.03	0.
	Pedadenia javanica. J. Js			S					_						2	. 1	0,005	2.50 5.00	2.20	0.50	1.26	4.07	1.
	Peronema canescens. Jack								3						4	2			1.10	0.30	0.63	2.03	0.
	Splum baccatum						2								? 3	1	0.006	2.50 3.75	3.29	1.22	0.03	5.45	1.
47	Averrhoe belimbi. L	1								1		1		1	3	3	0.003	3.73	3.49	1146	0.34	9,49	1.

Table 3-4(2/4) NUMBER OF VEGETATION (DELI RIVER)

ło.	Name of Species		Sam	11n	j Po	int									
			1	2	3	4	Total	F	e e	K	FR (%)	DR (%)	KR (冬)	IV	SDR
1 Fleu	isina indica		70				70	1	0.140	87.50	7.14	13.86	14.08	35.08	11.69
	hiaria mutica		22				22	1	0.040	27.50	7.14	3.96	4.42	15.52	5.17
	eria Leavis		30				50	1	0.060	37.50	7.14	5.94	6.03	19.11	6.37
	orbia hirta		3				3	1	0.010	3.75	7.14	0.99	0.60	8.73	2.91
	odon dactylon		235				0	ì	0.470	293.75	7.14	46.53	47.28	100.95	33.65
	norbia prunifolia		12				- 3	1	0.030	15.00	7.14	1.98	2.41	11.53	3.84
	llanthus urinaria		8				235	1	0.020	10.00	7.14	1.98	1.60	10.72	3.57
	palum conjugatum			9		21	12	2	0.060	37.50	14.28	5.94	6.03	26.25	8.75
	ria plicata			16			8	1	0.030	20.00	7.14	2.97	3.21	13.32	4,44
	ochaloa nodosa				31		30	1	0.060	38.75	7.14	5.94	6.23	19.31	6.43
11 Mika	nia micrantha				15		16	1	0.030	18.75	7.14	2.97	3.01	13.12	4.37
	melina diffusa				10		31	1	0.020	12.50	7.14	1.98	2.01	11.13	3.71
	ppogonium caeruleum						15	1	0.030	18.75	7.14	2.97	3.01	13.12	4.37
	т	OTAL	380	25	56	36	497	14	1.010	621,25					

Table 3-4(3/4) NUMBER OF VEGETATION (PERCUT RIVER)

lo.	Name of Species	S	amp	ling	Poin	t	Taba3	F	D.	K	FR	DR	KR	Ι¥	SDR
		1	2	3	4	5	Total	· .	υ.	ν.	(%)	(%)	(%)		JUN
1 E	Euphorbia Prunifolia		5				5	1	0.007	6.25	4.17	0.71	0.71	5.59	1.88
	lgeratum conyzoides		12	42			. 54	2	0.077	67.50	8.33	7,76	7.70	23.79	7.93
3 I	Esperata cylindrica		21		29		50	3	0.071	62.50	12.50	7.16	7.13	26.79	8.93
	Cynodon dactylon	27	30	125			182	4	0.259	227.50	16.66	26.10	25.96	68.72	22,91
	ida rhombifolia			4			4	1	0.005	5.00	4.17	0.50	0.57	5.24	1.75
6 E	Emilia sonchifolia			2			2	1	0.002	2.50	4.17	0.20	0.28	4.65	1.55
7 M	iimosa pudica			33	15		48	2	0.068	60.00	8,33	6.85	6.85	22.03	7.3
	iikania Micrantha			31	21		52	2	0.074	65.00	8.33	7.46	7.42	23.21	7.74
9 E	Eleusina indica			70			70	1	0.099	87.50	4.17	9.98	9.99	24.14	8.0
10 0	Cyclosorus aridus	•			7		7	1	0.009	8.75	4.17	0.91	1.00	6.08	2.0
11 0	Colopogonium caeruleum				115		115	1	0.164	143.75	4.17	16.53	16.41	37.11	12.37
	Cyperus rotundus	16				12	28	2	0.039	35.00	8.33	3.93	3.99	16.25	5.42
	Sporobolus diander					70	70	1	0.099	87.50	4.17	9.98	9.99	24.14	8.0
	Setaria Plicata					11	11	1	0.015	13.75	4.17	1.15	1.57	7.25	2.4
15 (Ceratopteris Thalictroides	3					3	1	0.004	3.75	4.17	0.40	0.43	5,00	1.67
	TOTAL	46	68	307	187	93	701	24	0.99	876.25					

Table 3-4(4/4) NUMBER OF VEGETATION (PADANG RIVER)

ło.	Name Species	S	amp1	ing	Poin	t									
		1	2	3	4	5	Total	F	D	K	FR (%)	DR (冬)	KR (%)	IV	SDR
1 Tmpe	erata cylindrica	6			-		6	1	0.009	7,50	4.76	0.90	0.93	6.59	2,20
	noea batatas	9					9	ì	0.014	11.25	4.76	1.40	1.39	7.55	2.5
	nia micrantha H.B.K	57	6		5		68	3	0.105	85,00	14.29	10.50	10.49	35.28	11.70
	flora Foetida. L	5		15			20	2	0.031	25.00	9.52	3.10	3.09	15.71	5.2
	hiaria distachya. L	69		107			176	. 2	0.272	220.00	9.52	27.20	27,16	63.88	31.9
	losorus aridus		15		15		30	2	0.046	37.50	9.52	4.60	4.63	18.75	5.2
• .	osa invisa		2				2	1	0.003	2.50	4.76	0.30	0.31	5.37	1.7
8 Paso	alum conjugatum, Berg		62		96	23	181	- 3	0.279	226.25	14.29	27.90	27.93	70.12	23.3
	lopus compresus					49	49	1.	0.076	61.25	4.76	7.60	7.56	19.92	6.6
	ocasia esculentum		35	35		5	75	3	0.116	93.75	14.29	11.60	11.57	37.46	12.4
	ranthus spinosus		16	16			32	2	0.049	40.00	9,52	4.90	4.94	19.36	6.4
	TOTAL	146	136	173	116	77	648	21	1.000	810.00					

Table 3-5 TYPE OF BIRDS, WILD ANIMALS AND FISHES AROUND LAUSIMEME DAM SITE

No.	Local Name	Scientific Name	Remark
Birds			•
1	Ayam hutan	Arboropilla rubicentris	Protected
ż	Beo	Picus minicensniasensis	11000000
3	Burunghantu	Strigidae sp.	Protected
4	Cawi	Dicrurus longicandatus intermidius	
- 5	Cip - cip	Intermedias	
ŏ	Elang	Heliostus sp	
7	Enggang	Annorhinus galantium	Protected
8	Gagak Hitam	Corvusense	Protected Protected
10	Nggurisa Gelatik	Anarrhinus Galentius Psaltria sp	rrotecteu
11	Jalak	Struus contra	•
	Kakak tua	Cacatua sp	
13	Kalong	Peterocorpus edulis	
14	Kelelawar Ketilang	Chizoptera sp Picnonotus cafer	
16	Kiung Laut	Haleyor chioris	
17	Layang-layang	Hirunando tahitica	•
18	Lisik	Picoides induccencis	
19	Ndekah	Dicaeum trochilcum	
20 21	Ngguak Pelatuk	Treron sp Picoides macci	V
	Pencala Boang	Geopelia striata	
	Perkutut	400001111 001 1224	•
24	Puling	Geopelia staita	
25	Puna i	Treron vernans	
20 27	Pungguk Puyuh	Ninox sentulata malaccensis Arborophilla rubirostis	
28	Ruak - ruak	Amauromis phornicurus	•
29	Tekukur	Steptopela tranque	
Wild .	Animals		
1	Animals Babi hutan	Sus scrova	
1 2	Babi hutan Belua	Petauriste petaurista	
1 2 3	Babi hutan Belua Beruang Medau	Petauriste petaurista Halarotas malayenas	
1 2 3 4	Babi hutan Belua Beruang Medau Biawak	Petauriste petaurista Halarotas malayenas Varanus salvator	
1 2 3 4 5	Babi hutan Belua Beruang Medau Biawak Imbau	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang	Protected
1 2 3 4 5 6 7	Babi hutan Belua Beruang Medau Biawak	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus	Protected Protected
1 2 3 4 5 6 7 8	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia	Protected Protected Protected
1 2 3 4 5 6 7 8 9	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang	Protected Protected Protected
1 2 3 4 5 6 7 8 9	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Karcil Kera Kukang Kulikap(Lutung)	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus	Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12	Babi hutan Belua Beruang Medau Bimbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus	Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13	Babi hutan Belua Beruang Medau Bisawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum	Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus	Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus	Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri	Protected Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Babi hutan Belua Beruang Medau Bisawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus	Protected Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus Tupai	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica	Protected Protected Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Babi hutan Belua Beruang Medau Bisawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus	Protected Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus Tupai	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus	Protected Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus Tupai Sawabatik water Fishes Belut	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus	Protected Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Fresh	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus Tupai Sawabatik water Fishes Belut Cancan	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus Tupaia javanica Hemisilarus heteroryuchus	Protected Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Fresh	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus Tupai Sawabatik water Fishes Belut Cancan Gabus	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus Tupaia javanica Hemisilarus heteroryuchus Ophiocephalu striatus	Protected Protected Protected Protected Protected
1 23 44 55 66 7 89 10 11 12 13 14 15 16 17 18 19 20 Fresh	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus Tupai Sawabatik water Fishes Belut Cancan Gabus Jurung	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus Tupaia javanica Hemisilarus heteroryuchus Ophiocephalu striatus Clupea fimbriata	Protected Protected Protected Protected Protected
1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 Fresh	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus Tupai Sawabatik water Fishes Belut Cancan Gabus	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus Tupaia javanica Hemisilarus heteroryuchus Ophiocephalu striatus Clupea fimbriata Gerres punctatus Clerium melonaderma	Protected Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Fresh	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Karcil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus Tupai Sawabatik water Fishes Belut Cancan Gabus Jurung Kura - kura Lele Mujahir	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus Tupaia javanica Hemisilarus heteroryuchus Ophiocephalu striatus Clupea fimbriata Gerres punctatus Clerium melonaderma Tilapia mozambica petern	Protected Protected Protected Protected Protected
1 23 44 55 67 89 10 11 123 134 15 16 17 18 19 20 Fresh	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Kancil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus Tupai Sawabatik water Fishes Belut Cancan Gabus Jurung Kura - kura Lele Mujahir Paitan	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus Tupaia javanica Hemisilarus heteroryuchus Ophiocephalu striatus Clupea fimbriata Gerres punctatus Clerium melonaderma Tilapia mozambica petern Platycephalus indicas BLKRI	Protected Protected Protected Protected Protected
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Fresh	Babi hutan Belua Beruang Medau Biawak Imbau Kambing hutan Karcil Kera Kukang Kulikap(Lutung) Landak Monyet Musang Pedi Runci - runci Suimih Terenggiling Tikus Tupai Sawabatik water Fishes Belut Cancan Gabus Jurung Kura - kura Lele Mujahir	Petauriste petaurista Halarotas malayenas Varanus salvator Siamang Petaurista petaurista Tragales javanicus Antropodia Nycticebus cancang Phythecus Pyrrahus Alteropus macrorerum Muscacus symnomolygus Mustella hamakeri Manis javanica Rattus tiomanicus Tupaia javanica Hemisilarus heteroryuchus Ophiocephalu striatus Clupea fimbriata Gerres punctatus Clerium melonaderma Tilapia mozambica petern	Protected Protected Protected Protected Protected

Table 3-6 LOCATION AND NUMBER OF SOCIO-ECONOMIC INTERVIEW SURVEY

Project/Subdistrict	Affected Village	No. of respondent
LAUSIMEME DAM		
Sibiru-biru	(1) Penen (2) Partumbukan (3) Kuala Dekkah (4) Sarilaba Kenjahe (5) Tj. Berampu (6) Kerapat	10 10 10 10 10
FLOODWAY		
Medan Johor	(1) Gedung Johor (2) Kedai Durian (3) Titi Kuning (4) Sukamaju	10 10 10 10
Medan Denai	(5) Kampung Baru (6) Marindal I	10 10
DELI RIVER IMPROVEMENT		
Medan Johor	(1) Gedung Johor (2) Kedai Durian	10 10
Medan Denai	(3) Tanjung Mulia	10
Labuhan Deli	(4) Helvetia	10
Medan Labuhan	(5) Pekan Labuhan	10
Medan Belawan	(6) Bagan Deli	10
PERCUT RIVER IMPROVEMEN	स	
Patumbak	(1) Sigara - Gara (2) Lantasan Baru	10 10
Percut sei Tuan	(3) Tembung(4) Bandar Setia(5) Cinta Damai(6) Percut	10 10 10 10
PADANG RIVER IMPROVEMEN	. · · · · · · · · · · · · · · · · · · ·	
Tebing Tinggi	(1) Bah Sumbu (2) Naga Kesiangan (3) Paya Lombang (4) Paya Pasir	10 10 10 10
Bandar Khalifah	(5) Sungai Serimah (6) Pekan Bandar Khalifah	10 10

Table 3-7(1/3) SUMMARIES OF THE RESULT OF INTERVIEW SURVEY ON SOCIO-ECONOMIC AND SOCIO-CULTURAL CONDITION

		3		DAMSITE			FLOODWAY			DELI RIVER IMPROVEMENT	Ţ	PERCUT RIN	PERCUT RIVER IMPROVEMENT	EMT	PADAKS 8	PADANG RIVER IMPROVEMENT	MENT
מירטה בחטוית	tnVironmenta! Component	tru.	TEST	RANGE	SCALE	TEST	RANGE	SCALE	TEST	RANGE	SCALE	TEST	RANGE	SCALE	TEST	RANGE	SCALE
I DEMOGRAPHY	DEMOGRAPHY Number of Population	Nos	529,386	500,001-	4	1744 - 405	>1,500,000	1	526,091	500,001 -	4	526,091	500,001 -	4	195,182	> 500,000	5
2 Populati	Population density	Nos	95	51 - 100	63	300	> 100		195		.	195	v 100	M	203	> 100	
Populatio	Population density	Nos	2100	> 2000		7000	> 2000	Ħ	4052	> 2000	- 4	4052	> 2000	н	2716	> 2000	₩
3 Total	in widen 3 Total growth population	àr	3.91	> 3.50		3.5	3.01 - 3.05	82	3.22	3.01 - 3.5	~	3.22	3.01 - 3.5	2	0.73	< 2.00	45
4 Motal	4 Motality in 1000	Nos	12	× 50	w	16	v 20	ب	14	× 20	чı	14	< 20	'n	11	v 20	١٥.
5 Baby	Boby Mortality	Nos	7	× 50	s	7	× 50	ស	on.	× 50	r.	თ	v 50	'n	ω	v 23	ĸ
6 Ch11d	6 Child Mortality	Nos	2	ιn V		5	× 50	κú	~	ru A	rts	62	vo V	ιΩ	pr4	v v	ហ
7 Perce	7 Percentage of labour	**	52	v 40	ĸ	56	^ 40	ιΩ	25	0 v	'n,	25	o v	ហ	24	A 40	ស
among soci 8 Sex Ratio	among society Sex Ratio	×	0.98	0.7 - 0.99	4	0.96	0.90 - 0.99	4	92.7	92.7 0.90 - 0.99	4 -	92.7	0.90 - 0.99	4	98.8	0.90 - 0.99	4
9 Family Size	y Size	Nos	7.3	7 - 8	m.	Ċ	9 - 9	- 4	9	2 - 6	-4	w		₩.	u)	5 - 6	4
10 Number	10 Number of Ethnic group in society	Nos	m		m "	65	un A	un.	49	10 A	w	ι η	ы) А	ເກ	ю.	un A	ĸ
II ECONOMIC	MIC											-,					
11 Job A	11 Job Availability	grade	12.5	0 10	r	14	۸ 10	€VI	51	07 4	ы	51	01 ^	-1	σ,	5 - 10	2
12 Perce	12 Percentage of Working	×	13.8	< 25		35	31 - 35	m	53	35 - 30	N	59	25 - 30	2	27	25 - 30	~
I3 Income	13 Income average in rural	grade	9300	8001	47	8150	8001 - 1000	4	8,300	0 8001 - 1000	4	8,300	8001 - 1008	4	8,000	8,000 7001 - 8000	e
per u	per month Income average in urban	grade	16500	15000	40	15000	12001-15000	₹	14500	3 12001-15000	4	14500	12001-15000	4	13000	13000 12001-15000	4
per mo 14 Level Price	per month Level of Primary Cost Price	grade	13	01 ^		18	× 10	1	51	7 10	, -	15	> 10	p-4	E1	> 10	e4
III LAND USE	USE		,														
A RESID	RESIDENTIAL											•					
15 Perce	15 Percentage of residential	*	4	เก V	ហ	75			-	4 < 20	2	4	> 20	щ	12	× 20	
Perce area B AGRIC	area in visions Percentage of residential area in town AGRICULTURE and CULTURE	*	n	01 >	. vo	٠.			•	62 A	4	m	ιο V	ហ	m	in V	ıa
16 Perce	16 Percentage of Agriculture	er e	79	> 50	чэ	60	< 10	 4	78	8 × 50	2	78	× 20	un	88	v 50	32
area 17 Perce fish	dred Percentage of Poultry and fishery area	.v.	ю	۷ دی	-	0	υn V	-	· ·	8 5 10	8	m	v v	. ↔	y.	5 - 10	2

Table 3-7(2/3) SUMMARIES OF THE RESULT OF INTERVIEW SURVEY ON SOCIO-ECONOMIC AND SOCIO-CULTURAL CONDITION

Particular Component				S ALLES OF THE SECOND			VALIDOOLT		SULT DEVE	CHONOLOGUE C	Ŀ	ATC THOOSE	TUBBOUT	CNT	TO SANARO	THE THEORY	1000
				DATE			LONGWAI			A LINEROVENCE	_	לבעיפו אד	EN AUTROVER			ADVICE TOLER	
Septembling of Inducativity in \$ 1			L.	RANGE	SCALE	TEST	RANGE	SCALE		RANGE	SCALE	TEST	RANGE	SCALE	TEST	RANGE	SCALE
Figure 1995 of functory It 1	18 Percentage of industry	1	-			•	•		r,	, A	ហ	 1		ç,	0	۸ دی	r.
Second Conservation	Village Percentage of industry	 	64	× 10	'n	5	v 10	Š	14	10 - 15	4	2	< 10	ເກ	2	< 10	เม
Forecasting of constraints Forecasting constraints Forecasting of co	town Percentage of			v 10	្ម	i	•	•	o,	× 10	,-4	**	> 10	₩.	0	× 10	-
EDICATION CLATINGAL CLAT	ion forest in village Percentage of conservat ion forest in town				-	. 	v 10	w		5 - 7	m	prek	2 >	p==4	н	۲۵ ۲	(4)
A EQUATION 1 Substitution of contraction and contraction of contraction in full lage																	
Deprecise of children is a case of children																	
Particul functions State 21 21 20 3 31 4 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 36 31 40 4 31 31 31 31 31 31 31	20 Percentage of children	***	81		₩.	85		4	88		4	82		43	75	71 - 80	**1
21 Type of house building type 56.1 2 2 4 7 7 - 10 4 7 7 - 10 4 7 7 - 10 4 6 2 2 8 busing Averlabitity grade	attend the class Level of education	grade	27	•	m	8		4	36		4	30	21 - 30	m	- 58	31 - 40	•••
21 Type of house building type 56.1						4											
24 Floating Averlability Grade	21 Type of house building		56.1		~			4			4			4			
24 Health condition	22 Housing Availability	grade			m			₹	7	7 - 10	4	7	7 - 10	4	9	2 - 5	•
24 Health condition	23 Time of living	year	φ		5			5	v		ĸı	Ψ.		ហ	9	۷n ۸	•••
State Feath condition State St																	
State Stat	24 Health condition	æ			īυ.	m		v o	2.5		v,	3,5		រភ	es es	vo V	
Condition Village	25 The way to keep health	*	51		ĸn	. 62		หา	67		4n	35		ĸ	B	8	
D CULTURE and CUSTOM 25 Indonestian tanguage	condition in Village The way to keep health condition in town	***	82		4	93	91 - 100		. 76	91 - 100	чo	25		4	92.5	91 - 100	-
Second S																	
2 Papellity 2 People active in 3 85 > 70 5 80 > 70 5 61-70 4 90 > 70 5 60 E F F F F F F F F F F F F F F F F F F		مِد	100	oz ×	เก	100	^	ĸı	100	> 70	ĸ	100	٧ 70	ហ	100	v 70	
2 Number of priest in 1000 nos 8 5 - 10 3 13 > 10 5 14 > 10 5 11 > 10 5 7 2 Number of priest in 1000 nos 8 5 - 10 3 13 > 10 5 14 > 10 5 11 > 10 5 7 A EDUCATION FACILITIES 29 Type of education grade	27 People active in	å.	85	02 <	மு	80	۸	'n	67.5	61 - 70	4	8		νn	8	51 - 60	
A EDUCATION FACILITIES A EDUCATION FACILITIES 29 Type of education grade 2 29 Type of education grade 3 1 Type of education grade 3 5 Solution grade 3 30 Class size 5	religion Number of people		œ	5 - 10	IT)	13		ī.	14	^ 10	LO.	11	v 10	un m	7	5 - 10	
EDUCATION FACILITIES 19 Type of education grade 2 facilities in village Type of education grade 3 facilities in village 5 facilities in village 5 facilities in village 5 facilities in village 5 facilities in village 7 facilities 7 facil														,			
grade 30 30 - 35 4 28 <30 5 26 <30 5 30 - 35 4 35 30																	
grade 30 30 - 35 4 28 <30 5 26 <30 5 30 30 - 35 4 35 30	29 Type of education	grade			~			m			ო			83			
facilities in town grade 30 30 35 4 28 <30 5 26 <30 5 30 30 35 4 35 30	facilities in village Type of education	grade			м			មា			ĸ			m			
	facilities in town 30 Class size	grade	33	ŧ	4	28		ις	56	8	'n	30	4	4	35	30 - 35	

SUMMARIES OF THE RESULT OF INTERVIEW SURVEY ON SOCIO-ECONOMIC AND SOCIO-CULTURAL CONDITION Table 3-7(3/3)

1 2 2

Statement - Teacher print 4	No Envisormental Com	the state		DAMSITE			FLCODWAY		DELI RIVE	DELI RIVER IMPROVEMENT	NT	PERCUT RI	PERCUT RIVER IMPROVEMENT	HENT	PADANG R	PADANG RIVER IMPROVEHENT	SEXT
25 Level of teacher retto 4			TEST		:	TEST	RANGE	SCALE	TEST	RANGE	SCALE	TEST	RANGE	SCALE	TEST	RANGE	SCALE
32 Level of teacher education: 1 Highly school 3 Highly school 4 Highly school 3 Highly school 4 Highly school 5 Highly school 5 Highly school 5 Highly school 6 Highly school 7 Highly school 8 Highly	31 Student - teacher		38		æ	21		rt.	21	۰ 50	ហ	02		5	92	95	5
1 HEALTH SERVICE. 30 Nucher of Medical staff in nos	32 Level of teacher for primary schoo	education 1			ю			r.			m			m			673
30 Nisiber of Medical start from noss of the control start from the component of Medical start from the component of Medical start from the component of the control start from the component of the control start from the control s																	
WATER SUPPLY and ELECTRIL- WATER SUPPLY AND ELECTRIC- WATER OFFI CHARLE SUPPLY AND ELECTRIC- WATER	33 Number of Medical 1000 population	staf in now				62	1 ^	ъ	m		S	· ==		3	8	٨	ıń
39 Number of vaters supply nos 14 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6 < 50 1 + 6	D WATER SUPPLY and CITY	ELECTRI-															
Number of sections Number	34 Number of water s			< 50		40	v 20	H	45	v 20	⊷ŧ	15	v 50	rel	80	51 - 100	8
Marcher of electric supply nos 115 101 - 150 3 100 people and a second of contractic in a second of cont	Number of water s	براه		> 100	-	350	301 - 400	4	350	301 - 400	4	85	< 100	1	312	301 - 400	•
Minimal Interpretation Minimal Interpretat	35 Number of electri			101 - 150	m	135	101 - 150	es	135	101 - 150	: (m)	120	101 - 150	m -	115	101 - 150	
1 CTMINAL 3 Level of criminal in nos 2 <5 4 6 <5 4 6 <5 4 6 <5 4 6 <5 6 30 Level of criminal in nos 2 <5 4 6 <5 6 4 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 <5 6 6 6 6	Customer of electric customer in town	Llddns				875	800	ıa	910	800	16	750	701 - 800	4	835	V 800	so.
CRIMINAL State of criminal in nos 2 <5 4 6 <5 4 6 5 6 4 2 <5 6 6 10 Therefore pole nos 3 <10 4 5 <10 4 6 <10 4 2 <5 6 7 2 <5 10 Therefore pole nos 3 <10 4 5 <10 4 6 <10 4 2 <10 4 2 <10 4 2 <10 0 B Mirder of succession nos 3 <10 4 2 <10 4 4 <10 4 2 <10 4 2 <10 4 1 <10 0 Therefore pole nos 3 <10 4 2 <10 4 4 <10 4 <10 4 2 <10 4 1 <10 0 Therefore pole nos 2 <5 5 5 2 <5 5 5 5 1 <5 5 5 1 <5 5 5 10 School in 1000 people ROUSEHOLD. School in 1000 people School in 1000 pupil																	
S											-						
The first property of the first	36 Level of criminal		2		4	₩		4	4		4	N.	v.	4	2	ν v	4
1000 people 1000 people 1000 mos 3 <10 4 2 <10 4 4 <10 4 4 <10 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 Thief in 1000 pec			× 10	4	ហ	< 10	4	φ	< 10	4	N	> 10	4	2	v 10	4
19 Teachage crime in 1000 nos 3 < 10 4 2 < 10 4 4 < 10 4 6 < 10 4 1 < 10 19 Teachage crime in 1000 nos 3 < 10 4 2 < 10 4 1 100 19 Teachage crime in 1000 nos 2 < 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	38 Murder or sufcide	·				و سي		¥	1	۸ 4	4	.0			Ó		
HOUSEHOLD HOUSEHOLD O Number of divorce in nos 2 <5 5 5 3 <5 5 5 2 <5 1000 people 11 Number of drop-out from nos 8 <10 5 7 <10 5 8 <10 5 6 <10 5 <10 School in 1000 pupil	39 Teenage crime in people			× 30	4	ผ	v 10	寸	4	< 10	44	2	× 10	약	g d	v 10	*
Number of divorce in nos 2 <5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 8 6 8																	
Number of drop-out from nos 8 < 10 5 7 < 10 5 8 < 10 5 6 < 10 5 < 10 School in 1000 pupil	40 Number of divorce			γ γ	ហ	N		И	m		សា		v v	wi	61 ·		ψ
				× 10	Kr)	7	× 10	w	6 0	< 10	KU.	1 0	× 10	เก	ហ	× 10	w ·

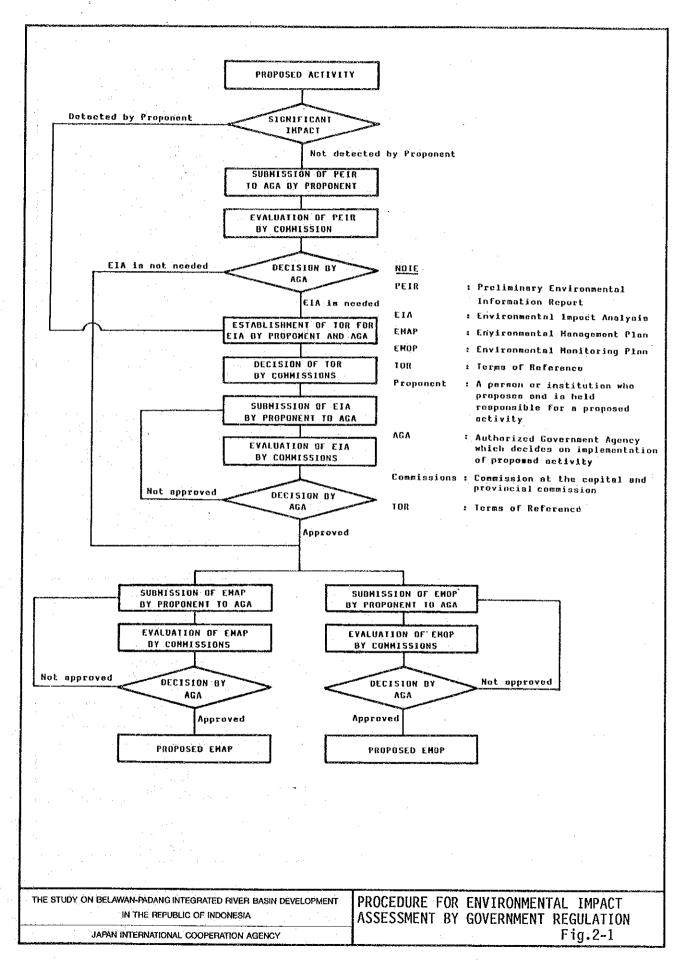
Table 3-8 CRITERIA FOR GIVING SCALE ON ENVIRONMENTAL QUALITY

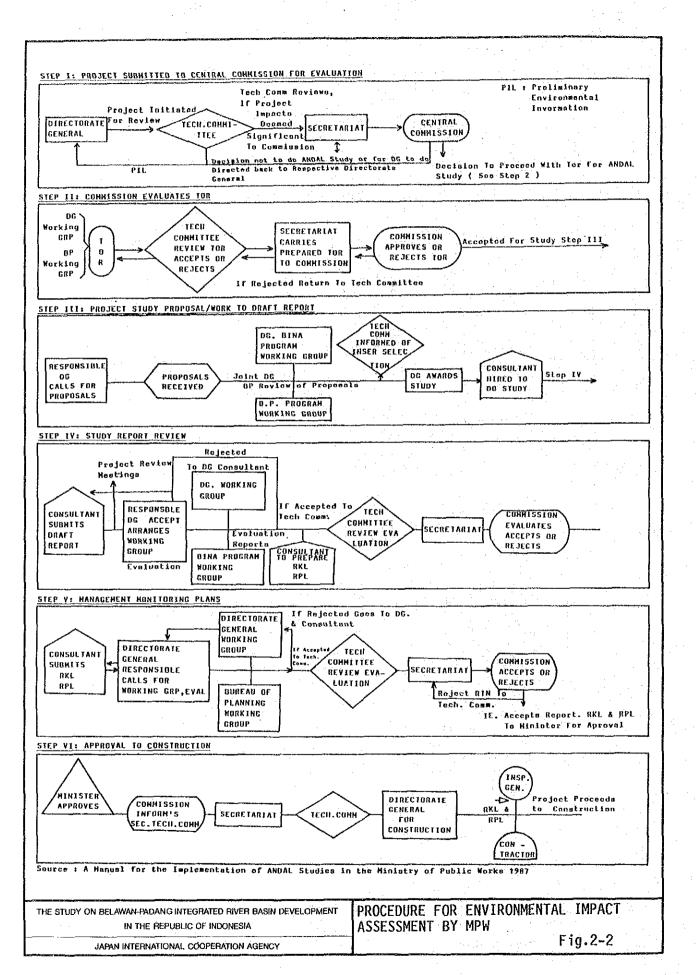
	3					
		aril.	2	m	ਚ	LG.
ATMOSPHERE	نه	V 3 OT 6 10	> 30 - 35 - 10 - 14	20 - 21 - 15 - 18	16 - 18 - 36	21 - 25
1. temperature	2 5	27 20 2	2			9
Z. Noise Level	9 27 13	9 5	71 = 500	2 2	7. 1.	3 9
3. Wind appear	NIN/ HOUT	200	31 - 40	05 - 17	ř	3,
4. Humidity	X*	× 40 : > 100	40 - 50: 50 - 100	51 - 60 ; 60 - 89	6/ - 7/ : 69 - 19	2
FIELD						
5. Type Formation		Change very bad	Change bad	Medium	Change Light	Not Change
6. Thickness of Organic Matter	5	No Organic Matter	F 40	5 - 10 Cm	10 - 20 Cm	> 20 Cm
7. Erosion	ton/ha/year	Very Heavy (> 480)	Heavy	Moderate (60-1,800)	Light (15 - 60)	Wery Light (< 15)
QUANTITY AND QUALITY OF WATER		, .	:			
8. Turbidity		Very Muddy	Turbid	Moderate turbid	Clear with colour	Clear no Colour
9. Colour		Brown Black	Brownish	Yellow	Yellowish	£1ght
10, Odour		Very Bad	bad	Moderate	Light	Normal
11. Taste		Salty	Light salty	Acc1d	Light accid	Normal
12. pH		< 3.5 : > 10.5	3.5-4,5; 9.5-10.5	4.5 - 5.5; 8.5 - 9.5		6.5 - 7.5
13. Temperatue	ž	< 0: > 50	41 - 50 : 0 - 3	31 - 40 ; 3 - 7	21 - 30 ; 7 - 10	11 - 20
	L/bm	× 4.0		5.1 + 6	5.1 - 7	^^
	[/DI	•				٠
	[/du	200	30 - 50	10 - 30	2 - 10	< 2
	[/pu	009 ^	300 - 600	100 - 300	40 - 100	< 40
18. NO2 (Witrite)	[/gu	14T	· ·	0.1 - 1	0.01 - 0.1	< 0.01
19, MO3 (Nitrate)	- Z	^ 100		10 - 50	5 - 10	S V
20. Pb (Leed)	1/01	. 7.5	5 - 7.5	2.5 - 5	0.05 - 2.5	< 0.05
21. Dust Content	e de	> 875	826 - 875	251 - 625	150 - 250	× 50
BIOLOGY					1	;
22. Covered by Vegetation		× 10 ×	10 % - 25 %	26 % - 50 %	* c/ - * Tc	× 75 %
25. Pisces		1 - 2 Types Fauna	3 - 5 Types Fauna	6 - 10 Types Fauna	II - 15 Types Feuna	
26. Aves		1 - 2 Types Fauna	3 - 5 Types Fauna	6 - IO lypes Fauna	II - In Types Fauna	
		1 Type Flora		II - 20 lypes Flora	21 - 30 Types Flora	
28. Fauna Variety		1 - 2 Types Fauna	3 - 5 Types Fauna	6 - 10 Types Fauna	11 - 15 Types Fauna	15 Types Fauna
29. Coliform	MPN/10ml	> 16.000	12.000 - 16.000	8.000 - 12.000	4.000 - 8.000	0 - 4.000
30. Colffecal	MPN/10ml	> 10.000	2.000 - 10.000	1.001 - 2.000	1 - 100	0
SOCIO-ECONOMIC & SOCIO-CULTURAL						
31. Income	Rp. 1000/M	80	80 - 125	125 - 180	161 - 220	> 222
32. Perception and Behaviour	×	Pos. 10	Pos. 20	Pos. 30	Pos. 40	Pos. 50
-	Doc-Nen mera	Nen 50	Neg. 40	Ned. 30	Med. 20	Bed. 10
33 Social Conflict	2	Pos. 10	Pos. 20			Pos. 50
	Pos-Ned resp Ned, 50	Neg, 50		Neg. 30		Neg. 10
34. Security	•		, .			
		earth road	Gravel road	Mix type	Asphalt	Asphalt Hotmix
		0	1 - 2	SD - Poly - Mosque	4 + 6	Available
		Difficult	3	Relative Difficult		any motor car

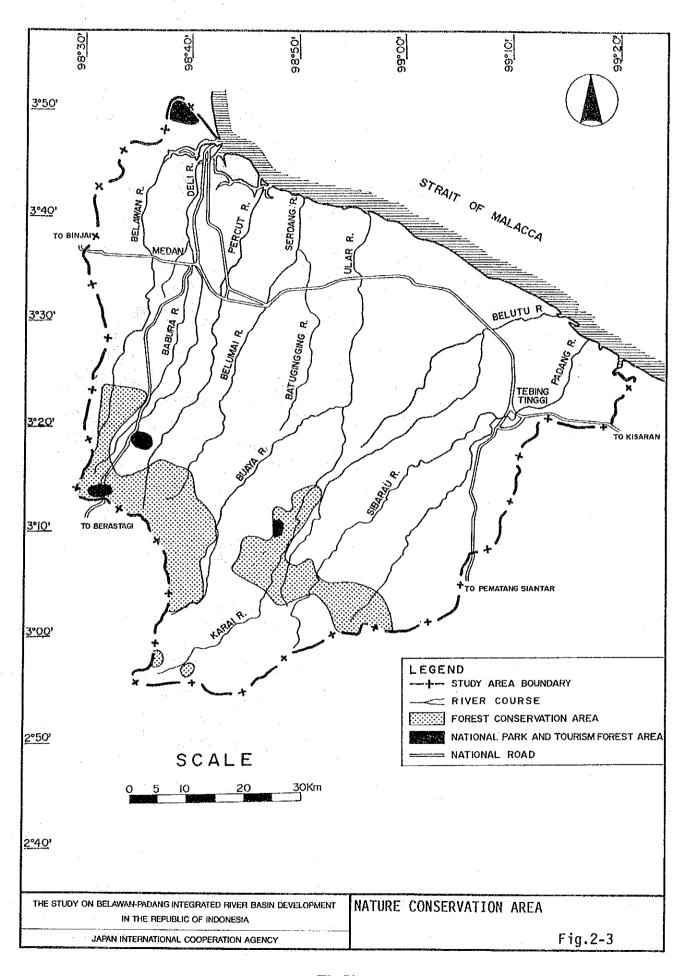
BASIC EVALUATION ON ENVIRONMENTAL COMPONENT Table 3-9

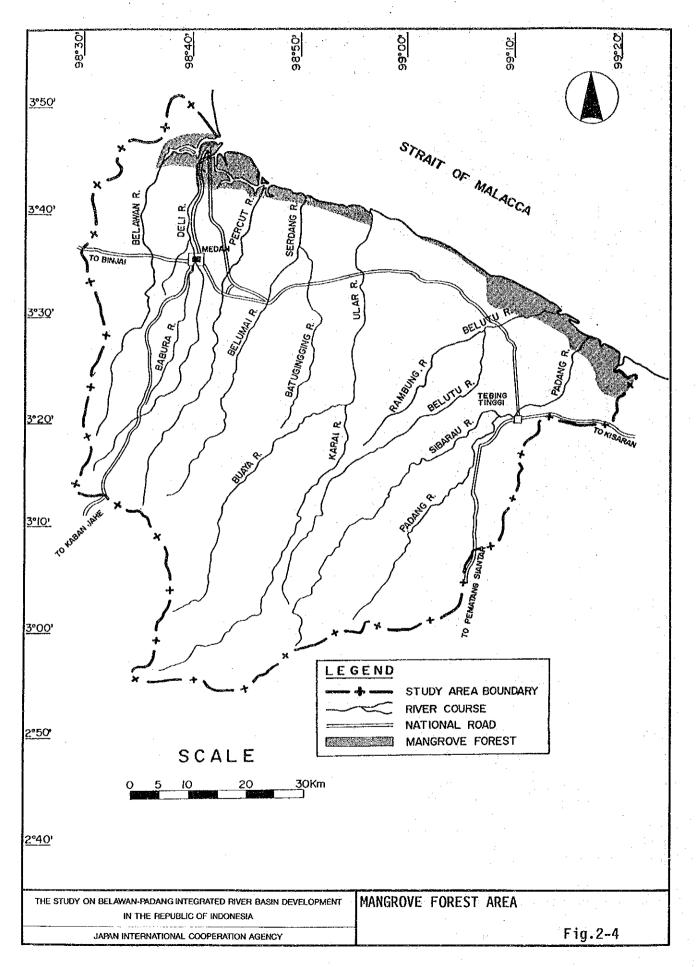
			[ŀ					ľ			-												
ENAI	ENVIRORMENTAL COMPONENT	Ξ		(2)	Usan construction (2)	(3)		(1))	odway construction (2)	(3)		ÎE	Dell Kiver Improvement (2)	er Impr (2)	ovement (3)	3)	£ 3	5 5	Percut Kiver improvement (1) (2) (rovene	ූුලි ,		Padang Kiver improvement (1) (2) (3)	River (2	Improv	ement (3)	
		SCALE	S S	SCALE	S S	SCALE	* SCALE	7. 2.	SCALE	٠,٠	SCALE	ين مد	SCALE	* SCALE	Μ %	SCALE	*	SCALE	* SCALE	4 7	SCALE	.X*	SCALE	æ	SOLE	*	SCALE	26
ATIM	ATMOSPHERE	Let	901	4	æ	~	40		4	ab GB	۰	40			ĺ		07		 e	l					4	å	^	ć.
. 14	2 Noise Level	ന്ന	8		8	m	8	8	·w	8	m	8	'n	8	3 80	. m	9	'n	8	8 B . m	≀ m	8	וח	8	m	8	ım	8
		40.1	8	NO 1	8	m i	9		•	• ;	•	• ;					<u>چ</u>		8:						Ω.	8	M.	8
2 tri 5	t Humidity	o	8		23	N	5	100 100	· · ·	2	~	Ç					D 4		8						m	B	23	\$
-	5 Lend Formation	ĸ	100	4	80	~	40		4	8	2	40	5				40		8		0	8			4	8	m	S
		un L	8	~ ~3	숙	· 04	9	5 100	2	왕	121	3	4	8	2 40	- 2	2	ı m	8	· 62	\$ \$		ייי		~ ~	8 8	~	3 3
	7 Erosion	₹	8	'n	8	7	\$		ī.	100	~	40	5 1		-		4		8		2	07			'n	23	8	5
QUALITY.			6	¥	5	·	ç		r	Ş	·	Ş					ç	-		•	•	•	•	Ś	·	8	c	Ş
- •	8 turbletty	ត ម	3 5	n 4	2 6	n c	2 5	÷ 4	n 4	3 5	, c	3 5	3 H		•	v c	3 5	d . •	2 8	2 u	2 6	3 4	4 4	3 8	77	3 5	N 6	2 5
. C	Colour	n v	3 5	nч	3 5	س د	⊋ €	 35	13 KF	3 5	uc	4 Q	ח יי	3 5	95	٠,	5 Q	, ·	8 2	-	007	3 5		8 5	n u	3 5	N 6	\$ 6
• -		יי כ	3 5	าน	3 5	, c	\$ \$		•	3 '	J 1	} '	ייי		-		\$ 9	s kn	3 5	-			יו ר	•	יו ע	3 5	4 6	} {
		> ₹	2 8	9 4	200	, 0	6.0		•	t		:			-	. ~	9	, un	8	-				•	n vr	2 6	1 6	3
•	3 Temberature	- 4	8	4	8	۱ ۸	: 2	•	٠	٠	٠	ŧ	•			· [2]	4	₩	8						• • •	8	ام د	5 4
	4 Dissolved Oxygen (DO)	un	100	· [7]	9	. ~	9		•	•	٠					2	9		8						· un	8	, ~	3
		**	8	40	100	~	9	4 80	'n	901	7	6	4			~	\$	43	8						ın	8	· 04	9
=		*1	æ	4	8	۰.	9		•	,	•	•	4			~	9		8						~	Ç		Ş
1 1-2	200	-	Ç,	· LCT	19	۰ م	9	,	•	•	•	•	4	,		~	9		8						יגו	8	1 01	70
	NO2 (Nitrite)	4	8	· un	901	m	8		r.	001	2	64	- KI			~	3	4	8						ur	100	۰ ۵	3
• 1-		- =3	8	ינו	8	0	40	2 2 2	·w	001	. ~	0.00	147			. ~	9	4	8				- 4		ın e	8	۱ م	: 4
		- 4	8	4	8	N	9	4	**	8	۰ م	04	-			. ~	ę.	4	8	. 44		2 6			4	8	12	\$
		- =	8	4	8	ı	9	5 100	•	8	۰ ۵	Ş	•47			. ~	오	4	8				-4	8	·	8	ا م	3
រិគ្គី 55	ෂි		;		3		!		•	3	,	:		;		,	!		;					}	•		ı	!
	2 Covered by Vegetation	₹	8	ν'n	8	m	8		2	40	m	G	หา	8	380		9	un.	82		2	3	٠n -	8	w	8	m	ଝ
23		4	8	ın	8	m	8	5 100	m	8	m	8	4	8	4 80		9	₽	8				4	8	m	99	m	8
24		~	8	8	Ş	m	9		2	\$	m	9	4	8	38		9	4	8				4	8	7	4	m	8
7		. ,	'	•	•		•		2	9	m	9	4	8	2 40		9	4	8				4	8	m	9	m	S
2 2		ಶ	80	ß	100	ო	8			100	m	8	4	జ	. 8		ß	4	8	, s	200	8	4	8	w	100	m	8
27		•₫	8	2	8	m	S	4 80	S	8	m	8	4	8			8	4	8				4	8	ហ	100	m	8
28		4	8	٠	901	m	8	4	2	\$	es.	8	₹	8			S	4	8				4		N	40	m	8
~		**	8	чO	8	m	8	æ	·	8	m	8	₹	8			8	<1	8				4	8	4	8	W	8
m		: ***	8	ហ	8	m	8	•	•	٠		•	4	8	5 100		8	4	8				**	8	ŀG	100	m	8
ĸ		₩	S	*	8	m	8			•	•	٠	4	8	•		8	4	8				-	8	ιŋ	8	M	8
SOCIO	IO ECONOMY & SOCIO CULTURE														٠			٠										
m		٤Ω	200	€2	을	m	8	2	2	40	m	8	'n	8	6 8	m	8	SC)	ន្ត	N	 달	3 60	ຜ	200	~	9	ო	8
m	33 Perception and Behaviour	₹	8	4	8	~	40	₹	4	8	ผ	6	4	8			3	4	8		7	-				ġ	6	4
er)	A Social Conflict	*	8	₹)*	8	m	8	4	4	8	ო	ß	4	8			8	4	8							8	m	8
m	5 Security	. ₹	င္လ	❖	8	m	S	4	۵,	8	m	8	4	8			8	4	င္ထ				4			8	mi	B
(4)		4	8	ო	S	m	8	⇒		8	m	9	4	8			B	4	8	1			4	8		8	m	င္ပ
	37 Social Facilities	•	8	m	S	m	8	8		9	m	ŝ	4	8	₹		8	**	8				4	8		99	m	8
- 67		4	80	m	9	2	₽		3	9	m	8	4	8			8	44	8			i	~	8		8	m	g
		₹	8	*	8	m	96	-	4	8	m	8	4	8	2		8		8				4	8		8	m	8
•		•			;	,	; :	. :		}	,* 																	
		-					l				•								١.		ł		1			` .		
	TOTAL WALUE	162 3	162 3,240	159 3,180		95 1,900		132 2,640		2,200	76	1,520	169 3,	330	150 3,000	6	1,940	166 3,	3,320	156 3,120		95 1,900	166	3,320	3	3,080	88	3,960
	MAXIMIM SCALE	81		8		8		150 3,00	25 0	3,000	<u>당</u>	90	ຕົ	္တ ဇ္တ	95 3,90	195	3,900	195 3,				3,900			S 8	8 8	195 3	န္တ ရ
	PERCENTAGE	بى ئى		8		g, 1					Ζ,	ŭ .			'	2 5	3 °	g 4				30 to			<u>,</u>	7	? ?	? ?
	FIRM SCALE	n	ຄ	ត	n,	J.		n		•	n	٠,			· •	•	3	n.				•			†	.	ń	•

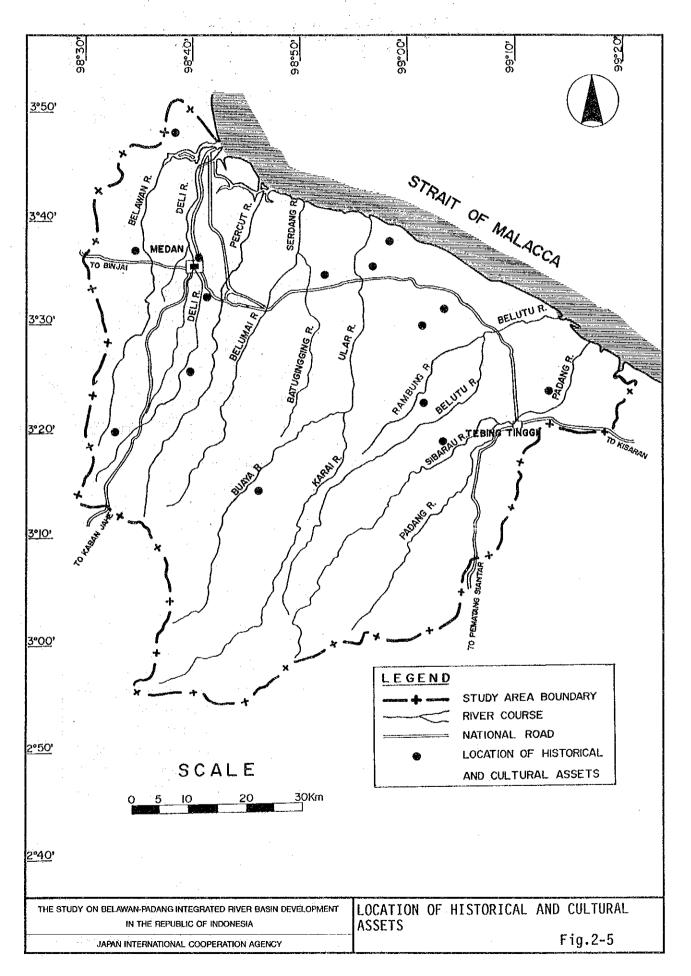
Note (1): Importance of Resources (2): Environment Conditions (3): Sensitivity of Management

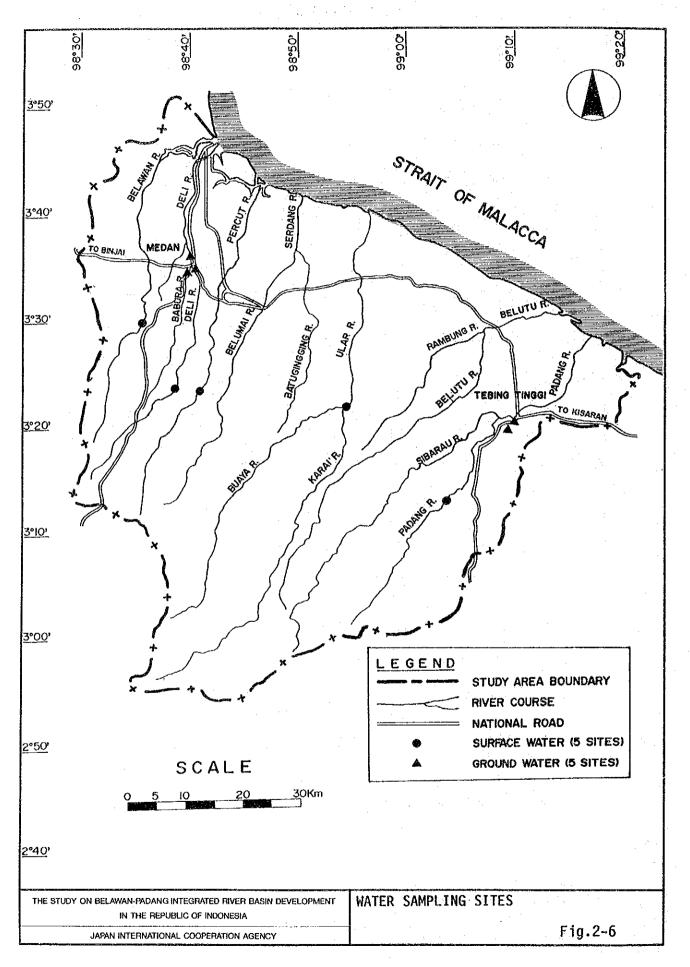

Table 4-1 LAND USE CONDITION IN KABUPATEN DELI SERDANG YEAR 1976 and 1985

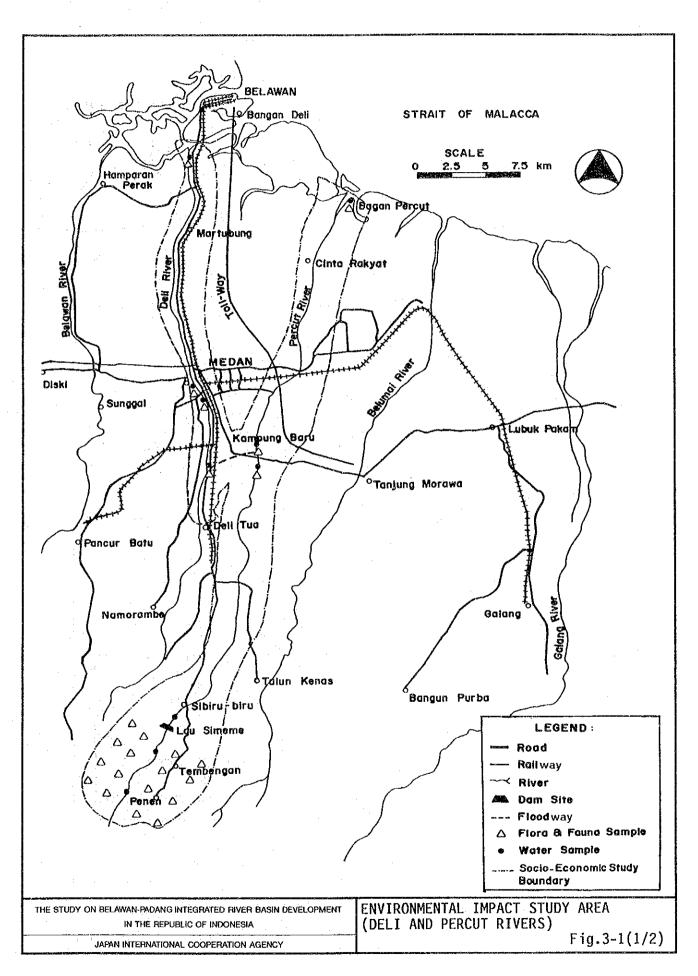

No.	Land Use	197	6	198	5	Changes
	•	(ha)	%	(ha)	%	
1.	Residential Area	17,883	4.02	20,022	4.49	+ 11.96
2.	Paddy Field					
	1 x Paddy /Year	71,000	15.95	47,371	10.63	- 33.31
	2 x Paddy /Year	22,067	4.96	45,419	10.19	+ 105.82
3.	Large Scale Planta-	136,768	30.72	135,461	30.40	- 0.98
4.	Public Plantation	31,397	7.05	33,458	7.51	+ 6.6
5.	Ory Land	81,002	18.19	84,112	18.88	+ 3.84
6.	Forest	76,200	17.12	73,153	16.42	- 3.9
7.	Pond	940	0.21	1,073	0.24	+ 14.1
8.	Swampy Area	3,216	0.72	2,568	0.58	- 30.7
9.	Scrub, Alang-alang Grass	4,742	1.07	2,407	0.54	- 49.2
0.	Special Use	- ,	-	510	0.11	- 100.0
	Total	445,215	100.00	445,554	100.00	

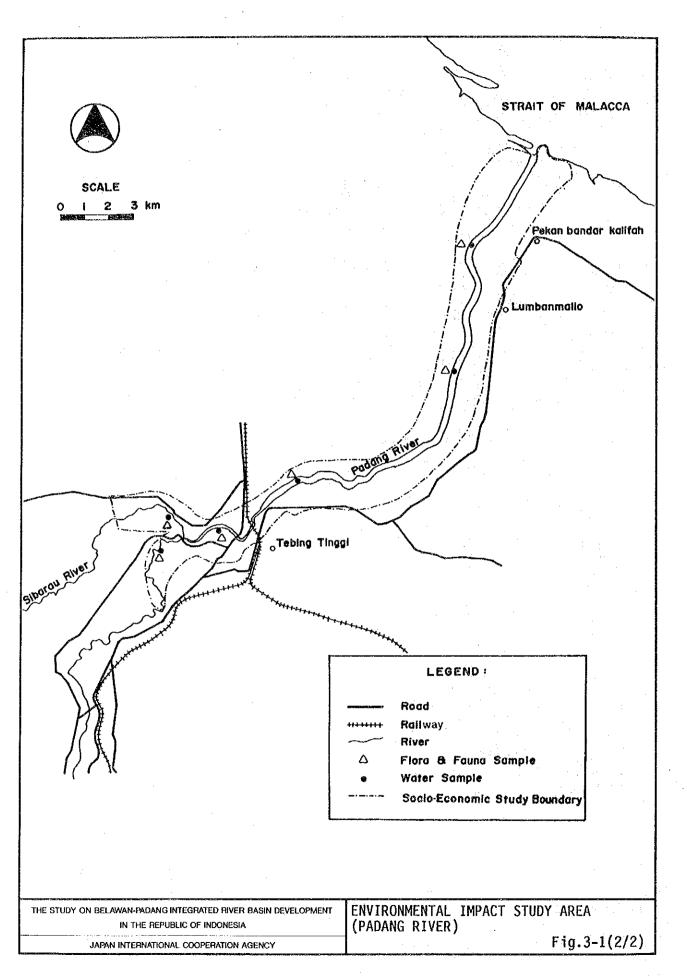

Data Source : Data Pokok Kabupaten DATI II Deli Serdang, 1988

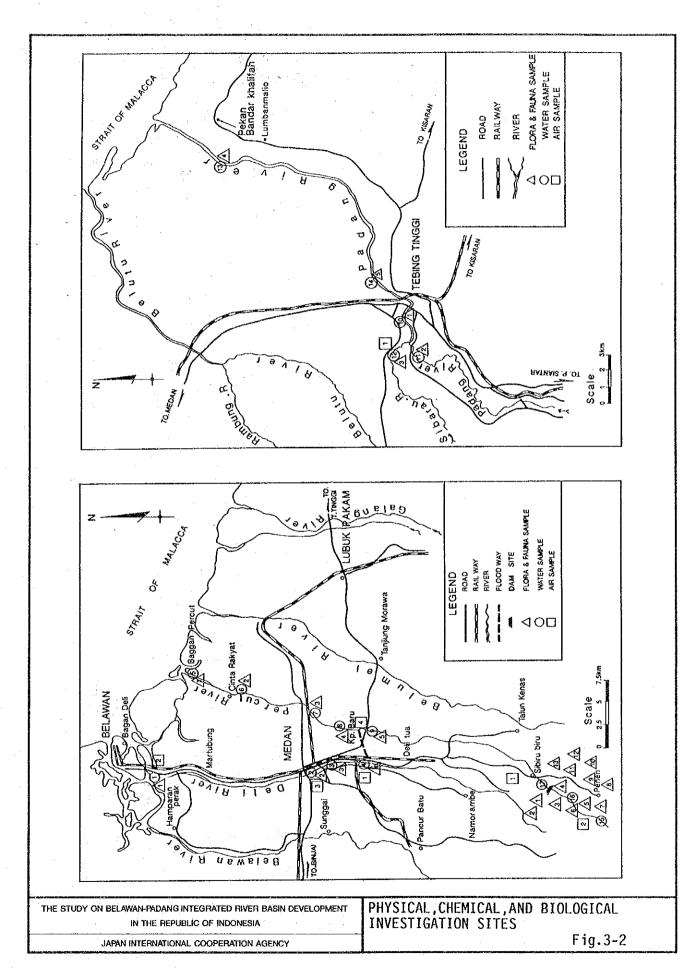

FIGURES

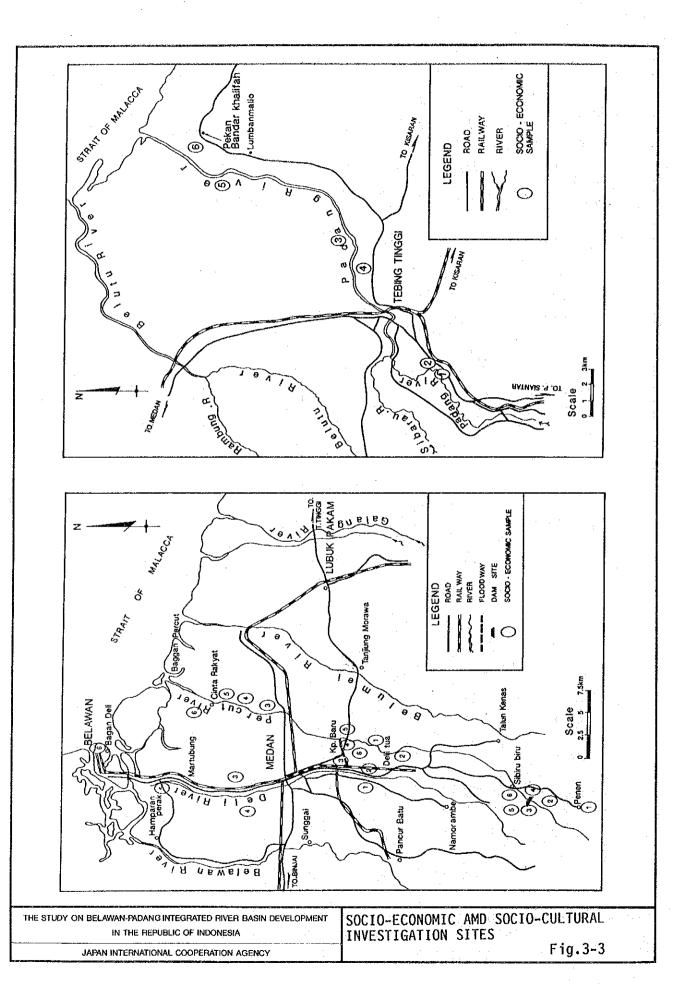

e.			
j.			
:			
T.			
\$			
· ·			
· :			
:			
:			











GB	1.0 1.1 1.2 2.0 2.1 2.2 3.0 3.1 3.2 4.0 4.1 4.2 5.0 6.0 6.1	Activity Description Deli Tua Water Treatment Plant Civil Works M/B Equipment Reservoirs and Booster Pump Stations Civil Works M/B Equipment Transmission Mains Civil Works Pipe Supply Minor Distribution Mains Civil Works Pipe Supply Supply of Water Meters Construction of Sewers Civil Works Supply of Pipes	1988	1989	1990	1991	1992	1993	1994
GE	1.1 1.2 2.0 2.1 2.2 3.0 3.1 3.2 4.0 4.1 4.2 5.0 6.0	Civil Works M/E Equipment Reservoirs and Booster Pump Stations Civil Works M/E Equipment Transmission Mains Civil Works Pipe Supply Minor Distribution Mains Civil Works Pipe Supply Supply G Water Civil Works Civil Works Civil Works Civil Works Civil Works	••••	21 00 00 00 00 00 00 00 00 00 00 00 00 00					
GE	1.2 2.0 2.1 2.2 3.0 3.1 3.2 4.0 4.1 4.2 5.0 6.0	M/E Equipment Reservoirs and Booster Pump Stations Civil Works M/E Equipment Transmission Mains Civil Works Pipe Supply Minor Distribution Mains Civil Works Pipe Supply Supply of Water Meters Construction of Sewers Civil Works	••••		40 40 40 40 40 40 40 40 40 40 40 40 40 4				
GВ	2.0 2.1 2.2 3.0 3.1 3.2 4.0 4.1 4.2 5.0 6.0 6.1	Reservoirs and Booster Pump Stations Civil Works M/E Equipment Transmission Mains Civil Works Pipe Supply Minor Distribution Mains Civil Works Pipe Supply Supply of Water Meters Construction of Sewers Civil Works	••••		52 to 40 pe terror				
GВ	2.1 2.2 3.0 3.1 3.2 4.0 4.1 4.2 5.0 6.0 6.1	Civil Works M/E Equipment Transmission Mains Civil Works Pipe Supply Minor Distribution Mains Civil Works Pipe Supply Supply of Water Meters Construction of Sewers Civil Works	••••	48 1 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	## ## ## ## ## ## ## ## ## ## ## ## ##				
GB	2.2 3.0 3.1 3.2 4.0 4.1 4.2 5.0 6.0 6.1	M/E Equipment Transmission Mains Civil Works Pipe Supply Minor Distribution Mains Civil Works Pipe Supply Supply of Water Meters Construction of Sewers Civil Works	••••		40 to co ad also				
GB	3.0 3.1 3.2 4.0 4.1 4.2 5.0 6.0 6.1	Transmission Mains Civil Works Pipe Supply Minor Distribution Mains Civil Works Pipe Supply Supply of Water Meters Construction of Sewers Civil Works	••••						
GB	3.2 4.0 4.1 4.2 5.0 6.0 6.1	Pipe Supply Minor Distribution Mains Civil Works Pipe Supply Supply of Water Meters Construction of Sewers Civil Works	••••					-	
GB	4.0 4.1 4.2 5.0 6.0 6.1	Minor Distribution Mains Civil Works Pipe Supply Supply of Water Meters Construction of Sewers Civil Works							
GB	4.1 4.2 5.0 6.0 6.1	Civil Works Pipe Supply Supply of Water Meters Construction of Sewers Civil Works							
GB	4.2 5.0 6.0 6.1	Pipe Supply Supply of Water Meters Construction of Sewers Civil Works							
GB	6:0 6:1	Construction of Sewers Civil Works							
	6.1	Civil Works		1					
	١			<u> </u>					
- 1		House Connections Zones I-III		*					
		Zones IV-VIII							
1	7.0	Construction of Pump Stations U/G.							
	7.2	M/E Equipment		44 AB 44					
i	8.0	Kera Pump Station M/E Equipment					-		
GE	9.0	Lower Kera River Improvements							
	1						,		
l 1	0.0		·						
		Civil Works	,				-		
		Supply pipe and box culvert							
] 1	11.0		ļ						
	ł		*****	.,,,,					
1	2.0	Supply of Drains Maintenance Equip.							
		USU Drains/KIP Drains		****	~				
							_		
1	4.3	Operations (PDK)							
				ere +			_		
				CHARLES					
		Civil Works							
		Outer Ring Road							
									_
		Deli Tua		dan se burb dan s					
URE 1		Pancur Batu							
									_
. 1		S. Deli Helir							
		S. Kera	~						
		S. Sikambing				 		_	
					1- 4-		-		
_	0.0	MMR Urban Strategy Review (in house) Urban Sanitation Strategy, M.M.R.							
nrv_		K.I.P. Studies					·		
	0.2	111111 0044100							
NT 6 2 TING 2	0.3	Urban Water Resources Study				}			
NT 6 2 TING 2 ES 2	0.3	Urban Water Resources Study Medan River Basins Study							
NT & 2 TING 2 ES 2	0.3 0.4 0.5	Urban Water Resources Study Mcdan River Basins Study Base Mapping Project						,	
NT 6 2 TING 2 ES 2 2	0.3	Urban Water Resources Study Medan River Basins Study						,	
NT 6 2 TING 2 ES 2 2 2 2	0.3 0.4 0.5 0.6 0.7 0.8	Urban Water Resources Study Mcdan River Basins Study Base Mapping Project Underground Utilities Mapping Training Project for L.G. Staff Advisors for Implementation & Inst. Dev.							
NT 6 2 TING 2 ES 2 2 2 2 2 2 2	0.3 0.4 0.5 0.6 0.7	Urban Water Resources Study Mcdan River Basins Study Base Mapping Project Underground Utilities Mapping Training Project for L.G. Staff							***************************************
	- URE 1	10.0 10.1 10.2 11.0 12.0 13.0 13.1 14.0 14.1 14.2 14.3 15.0 16.0 17.0 17.1 17.2 17.3 18.0 18.1 18.2 18.3 18.4 18.5 19.0 19.1 19.2 19.3 19.4	Lower Kera River Improvements Land Acquisition Civil Works 10.0 10.1 2 Supply pipe and box drains Civil Works 11.0 3 Supply pipe and box culvert Sei Sulang Improvement Land Asquisition Civil Works 12.0 13.0 13.0 13.1 Wartubung Landfill/Drains Martubung Landfill/Drains Martubung Landfill/Drains 14.0 Extention of Collection System Civil Works Equipment Operations (PDK) 15.0 16.0 Market Infrastructure Improvement Market Infrastructure Improvement 17.0 Land Acquisition Civil Works Outer Ring Road Martubung Roads 18.0 18.1 18.2 URE 18.3 18.4 18.5 19.0 Land Acquisition Land Acquisition S. Deli Helir S. Kera 19.3 S. Sikambing 19.4 S. Putih	Lower Kera River Improvements Land Acquisition Civil Works 10.0 10.1 Civil Works 10.2 Supply pipe and box culvert 11.0 Sei Sulang Improvement Land Asquisition Civil Works 12.0 Supply of Drains Maintenance Equip. 13.0 USU Drains/KIP Drains 13.1 Martubung Lendfill/Drains 14.0 Extention of Collection System Civil Works 14.2 Equipment 14.3 Operations (PDK) 15.0 Kampung Improvement 16.0 Market Infrastructure Improvement 17.0 Land Acquisition 17.1 Civil Works 0uter Ring Road Martubung Roads 18.0 Infrastructure - Kodya Binjai Lubuk Pakam Deli Tua Pancur Batu Tembung 18.1 Deli Tua Pancur Batu Tembung 19.0 Land Acquisition Land Acquisition S. Deli Helir S. Kera 19.3 S. Sikambing 19.4 S. Putih	Lower Kera River Improvements Land Acquisition Civil Works 10.0 10.1 Civil Works 10.2 Supply pipe and box culvert 11.0 Sei Sulang Improvement Land Asquisition Civil Works 12.0 Supply of Drains Maintenance Equip. 13.0 USU Drains/KIP Drains 13.1 Martubung Landfill/Drains 14.0 Extention of Collection System 14.1 Civil Works Equipment 14.2 Equipment 16.0 Kampung Improvement 17.0 Land Acquisition 17.1 Civil Works 17.2 Outer Ring Road 18.1 Deli Tua 18.2 Pancur Batu 18.3 Pancur Batu 18.4 Tembung 18.5 Tembung 19.0 Land Acquisition 19.1 S. Deli Helir 19.2 S. Kera 19.3 S. Sikambing 19.4 S. Putih	Lower Kera River Improvements Land Acquisition Civil Works 10.0 10.1 Civil Works 10.2 Supply pipe and box culvert 11.0 Sei Sulang Improvement Land Asquisition Civil Works 12.0 Supply of Drains Maintenance Equip. 13.0 USU Drains/KIP Drains 13.1 Martubung Landfill/Drains 14.0 Extention of Collection System 14.1 Civil Works Equipment 14.2 Equipment 16.0 Kampung Improvement 17.0 Land Acquisition 17.1 Civil Works 17.2 Outer Ring Road 18.1 Lubuk Pakam 18.2 Deli Tua 18.3 Pancur Batu 18.4 Tembung 18.5 Tembung 19.0 Land Acquisition 19.1 S. Deli Helir 19.2 S. Kera 19.3 S. Sikambing 19.4 S. Putih	Lower Kera River Improvements Land Acquisition Civil Works	Lower Kera River Improvements Land Acquisition Civil Works	Description Description

b 2			
:			
•			
:			

Table 3-10 MATRIX OF DECISION MAKING ANALYSIS FOR DAM CONSTRUCTION

	ACTIVITIES		TIAL LI					PREPARATI	ON	1				DAI	1 CONSTRU	CTION	1			FACILITI	ES			POST CON	ISTRUCTIO)N		1				D	IFFERENCE	
		Relative Weight	Percentage	Scale	Land Compensation, Road Dam Site, Facilities	Land Clearing & Stripping	Mobilization Personal and Equipment	Stock Material, Natural & Man-made	Construction of Access Road	Construction of Diversion	Construction of Temporary Dam	Out & F111	Soil Improvement	Foundation	Cast & Scaffolding	Fixing Support Component	Offices / Houses	Water Supply	Mechanical	Telecomunication	Landscape	Filling Dam	Sp1111ng	Desilting	0111ng	Canal Cleaning	Keep Protection Dike	Total Value	Maximum Value	Average Percentage	Scale	Percentage	Scale	Change of Environmental Beauty - Change of Scale & Weight Relative
ENVIRONMENTAL COMPONENT			В	c	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
ATMOSPHERE 1 Air Temperature 2 Noise Level 3 Wind Speed 4 Humidity		2.52 1.89 3.14 3.14	80 60 100 100			3 2 4 4									2	2			2 4		4							7 8 8 8	10 20 10 10	70 40 80 80	4 2 4 4	-10 -20 -20 -20	-1 -1 -1 -1	-2.52 -1.89 -3.14 -3.14
FIELD 5 Land Formation 6 Thinness of Organic Matter 7 Erosion	r	2.52 1.26 3.14	80 40 100	4 2 5		3 1 4			3 1	3		3	3					3			3	3 1	4	3 1				24 9 8	40 35 10	60 26 80	3 2 4	-20 -14 -20	-1 -2 -1	-2.52 -2.52 -3.14
QUALITY AND QUANTITY RIVER FE 8 Furbidity 9 Colour 10 Odour 11 Taste 12 pH 13 Temperature 14 Dissolved Oxygen (DO) 15 Total Dissolved Material 16 80D 17 COD 18 MO2 (Nitrite) 19 NO3 (Nitrate) 20 Pb (Lead) 21 Dust Content	. ·	3.14 3.14 3.14 3.14 2.52 2.52 1.89 3.14 2.52 3.14 3.14 2.52 2.52	100 100 100 100 80 80 60 100 100 100 80 80 80	5 5 5 5 4 4 3 5 5 5 5 4 4		4 4 4 3 3	3	4 4 3 3	.3	4	2	4 4	4 4	4				5						4 3 3 3	4	4 4 4 3 3 3	4	45 24 4 4 3 6 4 10 3 3 8 8	55 30 5 5 5 10 5 15 5 5 10 10 10	82 80 80 60 60 60 60 60 80 60 80	5 4 4 4 3 3 4 4 3 3 4 4 3 3 3	-18 -20 -20 -20 -20 -20 -20 -33 -20 -40 -20 -20 -20 -20	-1 -1 -1 -1 -1 -1 -1 -1 -2 -1 -2 -1 -1 -1	-3.14 -3.14 -3.14 -2.52 -2.52 1.89 -6.29 -2.52 -6.29 -3.14 -3.14 -2.52 -2.52
BIOLOGY 22 Covered by Vegetation 23 Phytoplankton 24 Zooplankton 25 Pisces 26 Aves 27 Flora Variety 28 Fauna Variety 29 Coliform 30 Colifecal		3.14 3.14 1.26 3.14 3.14 3.14 3.14 2.52	100 100 40 100 100 100 100 100 80	5 5 5 5 5 5 5 5		4 4 4			4 4 4			4 4 4						4 1 4			4 4	4 4 1 4 4 4 3		4 1 4 4 3	1	4		16 20 5 12 16 20 20 8 6	20 25 25 15 20 25 25 10	80 80 20 80 80 80 80	4 1 4 4 4 4 4	-20 -20 -20 -20 -20 -20 -20 -20 -20	-1 -1 -1 -1 -1 -1 -1 -1	-3.14 -3.14 -1.26 -3.14 -3.14 -3.14 -3.14 -2.52
SOCIO-ECONOMY & SOCIO-CULTURE 31 Income 32 Perception and Behaviour 33 Social Conflict 34 Security 35 Transportation 36 Social Facilities 37 Transport Facilities 38 Small Holder		1.26 2.52 2.52 2.52 2.52 1.89 1.89 1.89 2.52	40 80 80 80 60 60 60	2 4 4 3 3 3 4	3 3 3 3 3	3	3 3 3 3		5 5 5 4 5							'n	3	4	5	5				•				6 27 6 21 5 12 5	10 35 10 25 5 15 5	60 77 60 84 100 80 100	3 4 3 5 5 4 5	20 -3 -20 4 40 20 40	1 -1 -1 1· 2 1 2	1.26 -2.52 -2.52 2.52 3.77 1.69 3.77 0.00
TOTAL VALUE		100	3180	159	15	69	15	15	52	11	10	28	12	4	2	2	7	21	20	10	19	32	4	34	9	27	4	422		<u> </u>				
MAXIHUM SCALE			3800	190	25	100	25	20	65	15	15	40	20	5	5	5	10	30	25	10	25	50	5	55	15	40	1		610					
PERCENTAGE			84	84	60	69	60	75	80	73	67	70	60	80	40	40	70	70	80	100	76	64	80	62	60	68				69				
FINAL SCALE			5	5	3	4	3	4	4	4	4	4	3	4	2	2	4	4	4	5	4	4	4	4	3	4	4				4			
DIFFERENCE PERCENTAGE]																						ļ						-15	ا ا	
DIFFERENCE RELATIVE WEIGHT										·																	.						-1	
AVERAGE RELATIVE WEIGHT RELATIVE SETTING ENVIRONMEN	NT	2.63									<u> </u>																	. 				[
SCALE & RELATIVE WEIGHT				ľ					: 1																								<u> </u>	-2.63

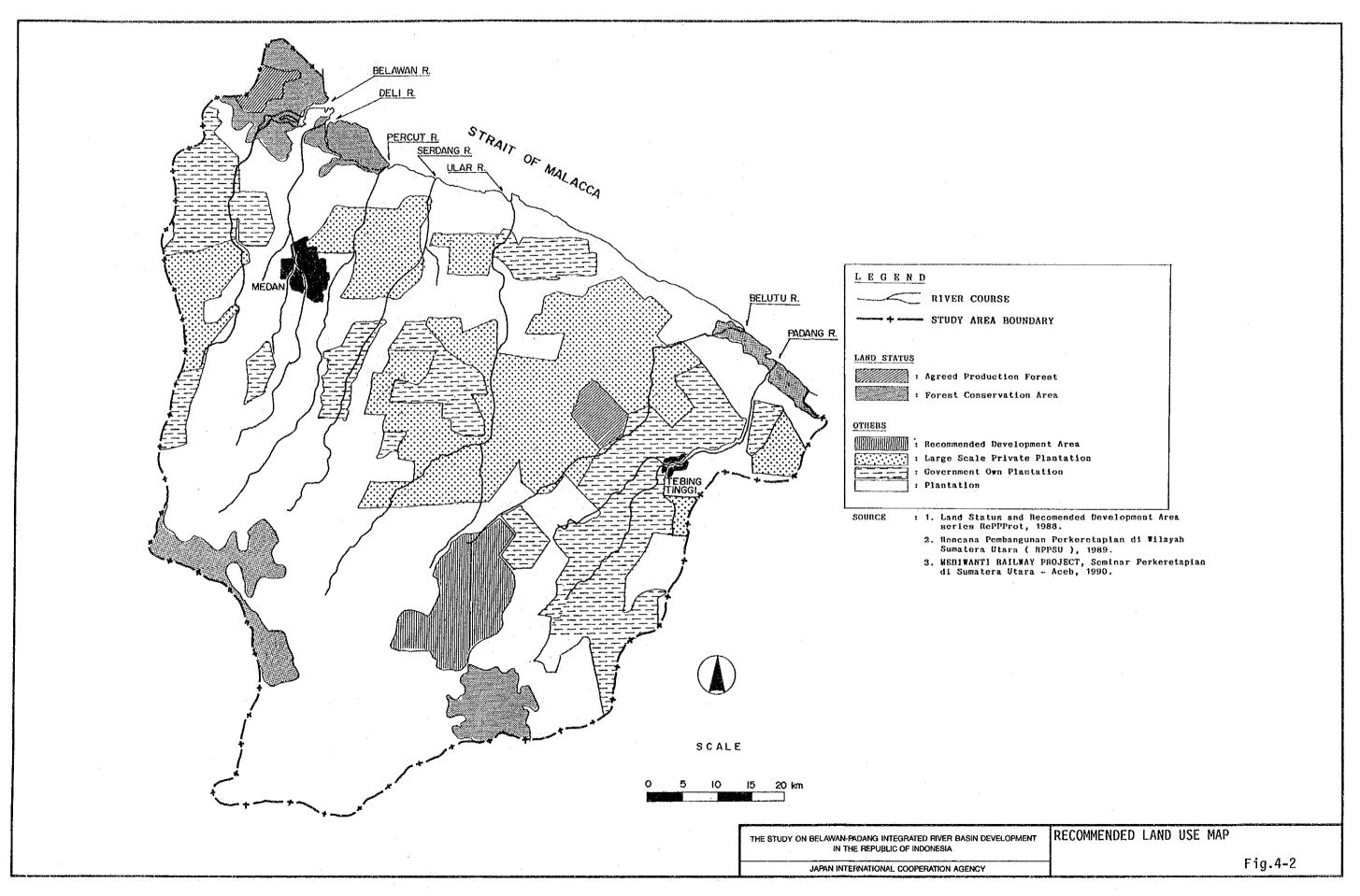
Table 3-11 MATRIX OF DECISION MAKING ANALYSIS FOR FLOODWAY CONSTRUCTION

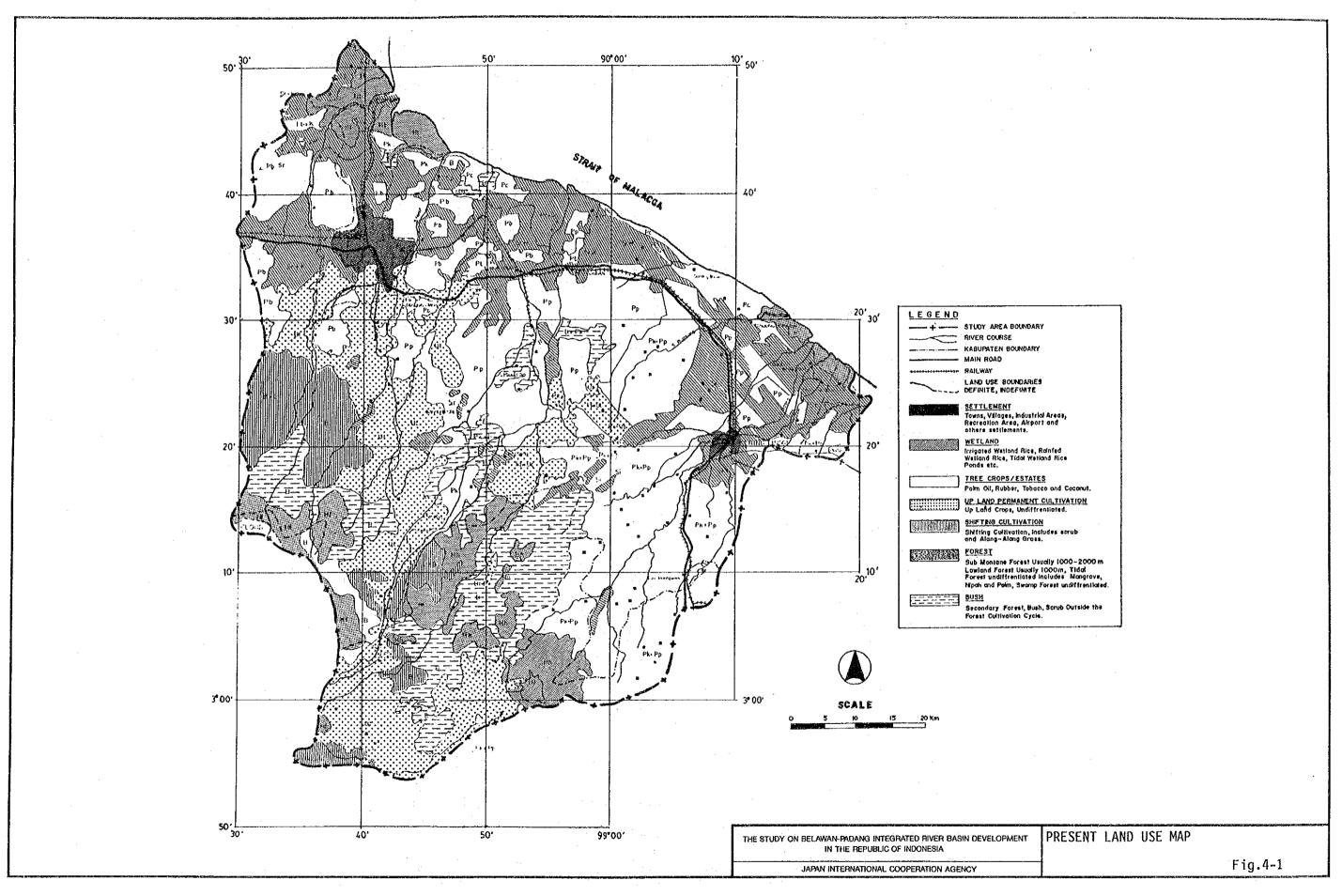
ACTIVITIES	1	TIAL LI		f	PREPARATI	CN		FL	OOD WAY	CONSTRUC	TION		POST	CONSTRU	CTION						DIFFEREN	ŒS
	Relative Weight	Percentage	Scale	Land Compensation	Land Clearing & Stripping	Construction of Access Road	Oreging of River Channel	Fill for Embankment	Compacting & Shaping Leeve Embankment	Construction of Slape Protection	Construction of Inspection Road	Plant Grass and Trees	Grass Cutting	Canal Cleaning	Desilting	Total Value	Maximum Yalue	Average Percentage	Scale	Percentage	Scale	Change of Environmental Beauty - Change of Scale & Weight Relative
ENVIRONMENTAL COMPONENT	Α	В.		1	2	3	4	- 5	6	7	8	9	10	11	12	- 13	14	15	16	17	18	19
ATMOSPHERE 1 Air Temperature 2 Noise Level 3 Humidity	3.64 4.55 2.73	80 100 60	4 5 3	4	3 4 2	4	4	4	4	4	4	5				. 8 32 6	10 40 10	80 80 60	4 4 3	0 -20 0	0 -1 0	0.00 -4.55 0.00
FIELD 4 Land Formation 5 Thinness of Organic Matter 6 Erosion	3.64 1.82 4.55	80 40 100	4 2 5	3	3 1 4	3		3		3	3	3		4	3 1	21 10 8	35 40 10	60 25 80	3 2 4	-20 -15 -20	-1 -2 -1	-3.64 -3.64 -4.55
QUALITY AND QUANTITY RIVER FLOW 7 Turbidity 8 Colour 9 Odour 10 Total Dissvolved Material 11 NO2 (Nitrite) 12 NO3 (Nitrate) 13 Pb (Lead) 14 Dust Content	2.73 4.55 4.55 4.55 4.55 4.55 4.55 3.64 3.64	60 100 100 100 100 100 80 80	3 5 5 5 5 4 4	3	4 4 3	4 4 3 3					3			2 4 4 4	2 4 4 4	4 8 8 8 8 8	10 10 10 10 10 10 10	40 80 80 80 80 80 60	2 4 4 4 4 4 3 3	-20 -20 -20 -20 -20 -20 -20 -20	-1 -1 -1 -1 -1 -1	-2.73 -4.55 -4.55 -4.55 -4.55 -4.55 -3.64
BIOLOGY 15 Covered by Vegetation 16 Phytoplankton 17 Zooplankton 18 Benthos 19 Pisces 20 Aves 21 Flora Variety 22 Fauna Variety	1.82 2.73 1.82 1.82 4.55 4.55 1.82 2.73	40 60 40 40 100 100 40 60	2 3 2 2 5 5 2 3		1 4 1	1 4 1 2					1 4 1 2	3 5 2 4		2 1 1 4	2 1 1 4	6 4 2 2 8 17 5	20 10 10 10 10 20 20 20	30 40 20 20 80 85 25	3 2 1 1 4 5 2	-10 -20 -20 -20 -20 -20 -15 -15	-1 -1 -1 -1 -1 -1 -2 -1	-1.82 -2.73 -1.82 -1.82 -4.55 -4.55 -3.64 -2.73
SOCIO-ECONOMY & SOCIO-CULTURE 23 Income 24 Perception and Behaviour 25 Social Conflict 26 Security 27 Transportation 28 Social Facilities 29 Transport Facilities 30 Small Holder	1.82 3.64 3.64 3.64 2.73 2.73 2.73 3.64	40 80 80 80 60 60 60	2 4 4 4 3 3 3	3 3 3	3 . 3 . 3	3 5 3 5 4 4 4 5 5	:				3 5 3 5 4 4 4					9 16 12 13 8 8 8	15 20 20 15 10 10 10 20	60 80 60 86 80 80	3 4 3 5 4 4 4	20 0 -20 6 20 20 20	1 0 -1 1 1 1	1.82 0.00 -3.64 3.64 2.73 2.73 2.73 0.00
TOTAL VALUE	100	2200	110	23	48	63	4	8	4	8	52	26	0	26	26	288						
MAXIMUM SCALE		3000	150	40	85	95	5	15	5	15	80	35	0	45	50		470					
PERCENTAGE		73	73	58	56	66	80	53	80	53	65	74	0	58	52			61	·····			
FINAL SCALE		4	5	4	4	4	4		4		4	5	0	3	3				4		<u></u>	
DIFFERENCE PERCENTAGE																				-12		
DIFFERENCE RELATIVE WEIGHT																					-1	
AVERAGE RELATIVE WEIGHT	3.33																					
RELATIVE SETTING ENVIRONMENT SCALE & RELATIVE WEIGHT												* 1*					-					-3.33

Table 3-12(1/3) MATRIX OF DECISION MAKING ANALYSIS FOR RIVER IMPROVEMENT (DELI RIVER)

					T (/1)		 				·							 	 	 -		
ACTIVITIES		TIAL LI ONNENT		F	PREPARATI	ON		RIVER	TRAININ	G CONSTR	UCTION		POST	CONSTRU	CTION					D	IFFERENC	ES
	Relative Weight	Percentage	Scale	Land Compensation	Land Clearing & Stripping	Construction of Access Road	Oreging of River Channel	Fill for Embankment	Compacting and Shaping Embankment	Construction of Slope Protection	Construction of Inspection Road	Plant Grass and Trees	Grass Cutting	Canal Cleaning	Desilting	Total Value	Maximin Value	Average Percentage	Scale	Percentage	Scale	Change of Environmental Beauty * Change of Scale & Weight Relative
ENVIRONMENTAL COMPONENT	Α	8	C	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ATMOSPHERE 1 Air Temperature 2 Noise Level 3 Wind Speed 4 Humidity	2.67 2.00 3.33 2.00	80 60 100 60	4 3 5 3		3	2	. 2		2		2	5	2	2		8 12 0 0	10 30 0	80 40 0 0	4 2 0 0	0 -20 0 0	0 -1 0 0	0.00 -2.00 -0.00 0.00
FIELD 5 Land Formation 6 Thinckness of Organic Matter 7 Erosion	2.67 1.33 3.33	80 40 100	4 2 5		3 1 4	3		3		3 1	3	5 3			3 1	23 9 4	35 35 - 5	66 26 80	4 2 4	-14 -14 -20	-1 -1 -1	-2.67 -1.33 -3.33
QUALITY AND QUANTITY RIVER FLOW 8 Turbidity 9 Colour 10 Odour 11 Taste 12 pH 13 Temperature 14 Dissolved Oxygen (DO) 15 Total Dissolved Material 16 80D 17 COD 18 NO2 (Nitrite) 19 NO3 (Nitrate) 20 Pb (Lead) 21 Dust Content	2.00 3.33 3.33 3.33 2.67 2.00 3.33 2.00 3.33 3.33 2.67 2.67	60 100 100 100 100 60 100 100 100 100 80 80	3 5 5 5 5 5 4 4 3 5 3 5 5 5 5 4 4		3 4 4 4 3	4 4 4 3 3	2 4 4 4 2 4		3		4			2 4 4 4 4 2 4	4	6 8 8 4 8 3 8 8 8 8 6 9	15 10 10 5 10 5 10 25 10 10 10 10	40 80 80 80 80 60 80 40 80 80 80 60	2 4 4 4 4 4 4 4 4	-20 -20 -20 -20 -20 -20 -20 -20 -20 -20	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	-2.00 -3.33 -3.33 -3.33 -2.67 2.00 -3.33 -2.00 -3.33 -3.33 -3.33 -2.67 -2.67
BIOLOGY 22 Covered by Vegetation 23 Phytoplankton 24 Zooplankton 25 Zooplankton 26 Pisces 27 Aves 28 Flora Variety 29 Fauna Variety 30 Coliform 31 Colifecal	2.00 2.67 2.00 1.33 2.67 2.67 1.33 2.67 3.33 3.33	60 80 60 40 80 80 40 80 100	3 4 3 2 4 4 2 4 5 5		3 1 3	3 1 3	3 2 1 3	3 1 3	2		3 1 3	5 2 4	2	3 2 1 3	4 4	20 6 4 2 6 17 6 16 4	40 10 10 10 10 25 25 25 25	50 60 40 20 60 68 24 64 80 80	3 4 2 1 4 4 2 4 4	-10 -20 -20 -20 -20 -12 -16 -16 -20 -20	-1 -1 -1 -1 -1 -1 -1	-2.00 -2.67 -2.00 -1.33 -2.67 -2.67 -1.33 -2.67 -3.33 -3.33
SCCIO-ECONOMY & SOCIO-CULTURE 31 Income 32 Perception and Behaviour 33 Social Conflict 34 Security 35 Transportation 36 Social Facilities 37 Transport Facilities 38 Small Holder	2.00 2.67 2.00 2.00 2.67 2.67 2.67 1.33	60 80 60 60 80 80 80	3 4 3 3 4 4 4 4	3 2 3 3 3	3	3 4 4 3 4	1	1	-		3 4 3 2 4 4	4	3	4		6 25 9 5 11 3 11 5	10 35 15 10 15 5 15 20	60 71 60 50 73 60 73 25	4 4 3 4 4 4 2	0 -9 0 -10 -7 -20 -7 -15	1 -1 1 -1 -1 -1 -1	2.00 -2.67 2.00 -2.00 -2.67 -2.67 -2.67 -1.33
TOTAL VALUE MAXIMUM SCALE PERCENTAGE FINAL SCALE	100	3000 3900 77 4	150 195 77 4	25 56 3	43 75 57 3	56 95 59 3	43 75 57	35 40 2	7 15 47 3	4 10 40 2	41 75 55 3	32 40 80 4	7 15 47 3	70 61 4	20 30 67 4	324	560	58	3			
DIFFERENCE PERCENTAGE DIFFERENCE RELATIVE WEIGHT AVERAGE RELATIVE WEIGHT RELATIVE SEITING ENVIRONMENT SCALE & RELATIVE WEIGHT	2.56																	· · · · · · · · · · · · · · · · · · ·		-19	-1	-2,56

Table 3-12(2/3) MATRIX OF DECISION MAKING ANALYSIS FOR RIVER IMPROVEMENT (PERCUT RIVER)


<u> </u>				11 121	(CUI F	121411	<i>'</i>						····					· · · · · · · · · · · · · · · · · · ·	Į	 		
ACTIVITIES		ITIAL L ROMMENT		F	PREPARATI	ON		RIVER	TRAININ	G CONSTR	LUCTION .	I	POST	CONSTRU	CTION			:		0	IFFERENC	ES
	Relative Weight	Percentage	Scale	Land Compensation	Land Clearing & Stripping	Construction of Access Road	Dreging of River Channel	Fill for Embankment	Compacting and Shaping Embankment	Construction of Slope Protection	Construction of Inspection Road	Plant Grass and Trees	Grass Cutting	Canal Cleaning	Destiting	Total Value	Maximum Value	Average Percentage	Scale	Percentage	Scale	Change of Environmental Beauty - Change of Scale & Weight Relative
ENVIRONMENTAL COMPONENT	A	В	C	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ATMOSPHERE 1 Air Temperature 2 Noise Level 3 Wind Speed 4 Humidity	2.56 1.92 3.21 1.92	80 60 100 60	4 3 5 3		3	2	ž		2		2	5	2	2		8 12 0 0	10 30 0	80 40 0	4 2 0 0	0 -20 0 0	0 -1 0 0	0.00 -1.92 0.00 0.00
FIELD 5 Land Formation 6 Thinckness of Organic Matter 7 Erosion	2.56 1.28 3.21	80 40 100	4 2 5		3 1 4	3 1		3		3 1	3	5 3			3 1	23 9 4	35 35 5	66 26 80	4 ? 4	-14 -14 -20	-1 -1 -1	-2.56 -1.28 -3.21
QUALITY AND QUANTITY RIVER FLOW 8 Turbidity 9 Colour 10 Odour 11 Taste 12 pH 13 Temperature 14 Dissolved Oxygen (DO) 15 Total Dissolved Material 16 BOD 17 COD 18 NO2 (Nitrite) 19 NO3 (Nitrate) 20 Pb (Lead) 21 Dust Content	1.92 3.21 3.21 3.21 2.55 1.92 3.21 1.92 3.21 3.21 3.21 2.56 2.56	60 100 100 100 80 60 100 60 100 100 80 80	3555543555544		3 4 4 4 4 3	4 4 3 3 3	4 4 4 2 4 3		3		4			4 4 4 4 2 4	4 4 4	10 8 4 12 3 8 20 4 8 8 8	15 10 5 5 5 15 5 10 25 10 10 10	67 80 80 80 80 60 80 60 80 80 60 60	4 4 4 3 4 4 2 4 4 3 3 3	7 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	1.92 -3.21 -3.21 -3.21 -2.56 1.92 -3.21 -1.92 -3.21 -3.21 -2.56 -2.56
BIOLOGY 22 Covered by Vegetation 23 Phytoplankton 24 Zooplankton 25 Zooplankton 26 Pisces 27 Aves 28 Flora Variety 29 Fauna Variety 30 Coliform 31 Colifecal	3.21 1.92 1.28 1.28 3.21 3.21 1.28 3.21 3.21 3.21 3.21	100 60 40 40 100 100 40 100 100	5 3 2 2 5 5 5 5 5 5		4 1 4	4 1 4	4 1 1 4 4	4 1 4		4	4 1 4	5 2 5	4	4 1 4 4	4 1 4 4	33 8 2 2 12 29 7 25 4	40 10 10 10 15 35 30 30 5	83 80 20 20 80 83 23 83 80 80	5 4 1 4 5 2 5 4 4	-18 20 -20 -20 -20 -17 -17 -17 -20 -20	-1 -1 -1 -1 -1 -1 -1 -1	-3.21 1.92 -1.28 -1.28 -3.21 -3.21 -1.28 -3.21 -3.21 -3.21
SOCIO-ECONOMY & SOCIO-CULTURE 32 Income 33 Perseption and Behaviour 34 Social Conflict 35 Security 36 Transportation 37 Social Facilities 38 Transport Facilities 39 Small Holder	1.28 2.56 2.56 2.56 3.21 1.92 3.21 1.92	40 80 80 80 100 60 100 60	2 4 4 5 3 5 3	3 3 4 3 4	3	2 4 4 5 5	2	2			2 4 4 3 5	4	3	4	4	4 29 11 6 14 3 14 9	10 40 15 10 15 5 15 20	40 73 73 60 93 60 93 45	2 4 3 5 3 5 3	0 -8 -7 -20 -7 0 -7 -15	0 -1 -1 -1 -1 0 -1 -1	0.00 -2.56 -2.56 -2.56 -3.21 0.00 -3.21 -1.92
TOTAL VALUE	100	3120	156	17	50	59	47	19	5	8	49	34	9	46	41	384						
HAXIMIN SCALE PERCENTAGE		3900	195	25	80	90	75	35	10	15	75	40	15	70	60		590					
FINAL SCALE	-	80	80	68	63	66	63	54	50	53	65 4	85 5	60	66	68			65	4			
DIFFERENCE PERCENTAGE	[-				-											——[-		-15		
DIFFERENCE RELATIVE WEIGHT	-			-		-	-			-											-1	
AVERAGE RELATIVE WEIGHT RELATIVE SETTING ENVIRONMENT SCALE & RELATIVE WEIGHT	2.56																					-2.56


Table 3-12(3/3) MATRIX OF DECISION MAKING ANALYSIS FOR RIVER IMPROVEMENT (PADANG RIVER)

				(PAI	JANG	KIATU	· /	·									1			1		
ACTIVITIES		TIAL LI		P	REPARATI	ON		RIVER	TRAININ	G CONSTR	UCTION	ł	POST	CONSTRU	CTION					D	IFFERENC	ES
	Relative Weight	Percentage	Scale	Land Compensation	Land Clearing & Stripping	Construction of Access Road	Dreging of River Channel	Fill for Embankment	Compacting and Shaping Embankment	Construction of Slope Protection	Construction of Inspection Road	Plant Grass and Trees	Grass Cutting	Canal Cleaning	Desilting	Total Value	Maximum Value	Average Percentage	Scale	Percentage	Scale	Change of Environmental Beauty - Change of Scale & Weight Relative
ENVIRONMENTAL COMPONENT	A	В	С	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ATMOSPHERE 1 Air Temperature 2 Noise Level 3 Wind Speed 4 Humidity	2.60 1.95 3.25 1.95	80 50 100 60	4 3 5 3		3	2	5		2		2	4	2	2		7 12 0 0	10 30 0	70 40 0	4 2 0 0	-10 -20 0	-1 -1 0 0	-2.60 -1.95 0.00 0.00
FIELD 5 Land Formation 6 Thinckness of Organic Matter 7 Erosion	2.60 1.30 3.25	80 40 100	4 2 5		3 1 4	3 1	s	3 1		3 1	3 1	3			3 1	22 9 4	35 35 5	63 26 80	4 2 4	-17 -14 -20	-1 -1 -1	-2.60 -1.30 -3.25
QUALITY AND QUANTITY RIVER FLOW 8 Turbidity 9 Colour 10 Odour 11 Taste 12 pH 13 Temperature 14 Dissolved Oxygen (DO) 15 Total Dissolved Material 16 BOD 17 COD 18 NO2 (Nitrite) 19 NO3 (Nitrate) 20 Pb (Lead) 21 Dust Content	1.95 3.25 3.25 3.25 2.60 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	60 100 100 100 100 80 100 100 100 100 80 100	3555455355545	3	4 4 4	4 4 3 4	5 4 2 4 3	4	4		4			2 4 4 4 2 4	4	6 12 4 0 0 7 9 20 4 8 8 8	15 15 5 0 0 10 10 25 10 10 10 10 10	40 80 80 0 0 70 90 80 40 80 80 80	2 4 0 0 4 5 4 2 4 4 3	-20 -20 -20 -20 0 0 -10 -10 -20 -20 -20 -20 -20 -20 -20	-1 -1 0 0 -1 -1 -1 -1 -1 -1 -1	-1.95 -3.25 -3.25 0.00 0.00 -2.60 -3.25 -3.25 -1.95 -3.25 -3.25 -3.25 -3.25 -3.25 -3.25
BIOLOGY 22 Covered by Vegetation 23 Phytoplankton 24 Zooplankton 25 Zooplankton 26 Pisces 27 Aves 28 Flora Variety 29 Fauna Variety 30 Coliform 31 Colifecal	3.25 1.95 1.30 1.95 3.25 3.25 1.30 2.60 3.25 3.25	100 60 40 60 100 100 40 80 100	5 3 2 3 5 5 5 2 4 5		4 1 3	4 1 3	2 1 2 4				4 1 3	5 5 3 5	4	2 1 2 4	1 3 4 4	25 4 2 4 8 17 7 17 4	30 10 10 10 10 20 25 25 5	83 40 20 40 80 85 28 68 80	5 2 1 2 4 5 2 4 4 4	-17 -20 -20 -20 -20 -15 -12 -12 -12 -20 -20	-1 -1 -1 -1 -1 -1 -1	-3.25 -1.95 -1.30 -1.95 -3.25 -3.25 -1.30 -2.60 -3.25 -3.25
SOCIO-ECONOMY & SOCIO-CULTURE 32 Income 33 Perception and Behaviour 34 Social Conflict 35 Security 36 Transportation 37 Social Facilities 38 Transport Facilities 39 Small Holder	1.30 2.60 1.95 1.95 1.95 1.95 1.95 2.60	40 80 60 60 60 60 60 80	2 4 3 3 3 3 3 4	3 3 2 2 2 2 3	3 3 2 4 3	2 4 2 3 2 4 4					2 4 2 3 2 4 4 5	4	3	4	4	7 29 6 9 4 16 14	15 40 15 15 10 25 20	47 73 40 60 40 64 70 73	3 4 2 3 2 4 4 4	7 -8 -20 0 -20 4 10 -7	1 -1 -1 0 -1 1	1.30 -2.60 -1.95 0.00 -1.95 1.95 1.95 -2.60
TOTAL VALUE	100	3080	154	18	56	58	35	8	6	4	48	37	9	39	28	346						
PERCENTAGE		3900 79	195 79	35 51	90 62	95 61	60 58	15 53	10 60	10	80 60	45 82	15 60	65 60	45 62		565	61				
FINAL SCALE	-	4	4	31	4	4	3	3	3	2	3	5	3	3	4		-	01	4		<u> </u>	
DIFFERENCE PERCENTAGE				-		-				-										-18		
DIFFERENCE RELATIVE WEIGHT	-						-						_			-	-		-		-1	
AVERAGE RELATIVE WEIGHT	2.56			[-		-		·	-				·						-			
RELATIVE SETTING ENVIRONMENT SCALE & RELATIVE WEIGHT														·								-2.56

Table 3-13 MATRIX OF COMPATIBILITY OF IMPACT FOR DAM CONSTRUCTION

ACTIVITIES				ACCES	SS ROA	D			-		1		DAM	CONST	800110	**								FACIL	ITIES			· · · · ·				POST	CONSTR	UCTION	i	1				
	Land Clearing	Stripping	Cut & F111	Compaction & Sloping	Treatment	Construction of Orainage	Electrict & Telephon	Bridge & Culvert	Land Clearing	Stripping	Construction of Diversion	Cut & F111	Soil Improvement	Foundation	Cast & Scaffolding	_ _b		g	Fixing Support Component	Finishing	Land Clearing	Stripping	Offices / Houses	Water Supply	Mechanical	Electrical	Telecomunication	Landscape	Filling Dam	Spilling	Release Required Water	Desilting	Olling	Painting	Canal Cleaning	Keep Protection Dike	Total Value	Maximum Value	Average Percentage	Scale
ENVIRONMENTAL COMPONENT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1!	5 1	.6	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
ATMOSPHERE 1 Air Temperature 2 Noise Level 3 Humidity	3 2	1	2	2					3 2	1		2		a				2	2	1	3 2	3			3 2			3									24 20 0	40 50 0	40	3 2 0
FIELD 4 Land Formation 5 Thickness of Organic Matter 6 Erosion	3 1 4		3	3 1 5		3			3 1 4			3	1	1							3							3	3								30 8 13	50 40 15	20	3 1 5
QUALITY AND QUANTITY RIVER FLOW 7 Turbidity 8 Colour 9 Odour 10 Temperature 11 Total Dissolved Material 12 80D 13 COD 14 NO2 (Nitrite) 15 NO3 (Nitrate) 16 Pb (Lead) 17 Coliform 18 Colifecal 19 Dust Content	4 4 4 4 3					4 4			4		4		4 4	4	i			4	3				4		3				5		5	4			4 2 4	4	44 46 4 3 30 2 4 4 4 4 4 15	55 55 5 5 5 5 5 5 5 5 5 5	84 80 60 86 40 80 80 60	4 5 4 3 5 2 4 4 4 3
BIOLOGY 20 Covered by Vegetation 21 Phytoplankton 22 Zooplankton 23 Benthos 24 Pisces 25 Aves 26 Flora Variety 27 Fauna Variety	4 4 4		4 4						4 4 4		:	4 4 4																	5 3 3 5								16 5 3 3 5 16 16	20 5 5 5 5 20 20	60 60 100 80	4 5 3 3 5 4 4
SOCIO-ECONOMY & SOCIO-CULTURE 28 Income 29 Perception and Behaviour 30 Social Conflict 31 Security 32 Transportation 33 Social Facilities 34 Transport Facilities 35 Small Holder	3 4 4			4 4 4			3 5 4 4 4 4 4	3 5 4 4 4 4 4															3 5 3 4 4 4	5		5	5		5								9 38 11 21 20 37 20	15 40 15 25 25 45 25 15		3 5 4 5 4 5
TOTAL VALUE	73	3	22		0	15	32	32	44	3		22	ļ	10	.			-	5	0	9	3	38	9	8	14	14	6	44	ů ——	14	8	0			ļ	510			
MAXIMUM SCALE	105	5	35	35	0	20	40	40	65	5	10	35	20	ļ-—	-	-			10	-	20	5	50	10	15	15	15	10	55 ——	0	15		0		<u> </u>	10		715		
PERCENTAGE	70	60	63	66	0	75	80	80	68	60	80	63	60	67	-	-			50	0	45	60	76	90	53	93	93	60	80	0	93	80	0			80			71	
FINAL SCALE	4	3	4	4	0	4	4	4	4	3	4	4	3	4	0	_ 0	_ _	3	3	0	3	3	4	5	3	5	5	3	4	0	5	4	0	0	4	4				4

WS <u>WATER SUPPLY PLAN</u>

STUDY ON BELAWAN-PADANG INTEGRATED RIVER BASIN DEVELOPMENT

SUPPORTING REPORT

WATER SUPPLY PLAN

Table of Contents

			Page
1.	INT	RODUCTION	WS-1
2.	PRE	SENT CONDITION OF WATER UTILIZATION	WS-2
	2.1	Municipal and Domestic Water	WS-2
•	2.2	Irrigation Water	WS-6
	2.3	Other Water Uses	WS-6
3.	WAT	TER BALANCE	WS-8
	3.1	Present Water Demand	WS-8
•	3.2	Water Supply Potential	WS-11
	3.3	Water Balance	WS-14
4.	WAT	TER SUPPLY PLAN	WS-16
	4.1	Future Water Demand	WS-16
	4.2	Water Resource Structures	WS-18
	4.3	Optimum Water Supply Plan	WS-19

LIST OF TABLES

Table No.	Title		
2-1	Current Water Supply System in North Sumatra		
2-2	Current Water Supply System in the Study Area		
2-3	Present Status of Deep Well in the Study Arca		
2-4	Actual Water Consumption in Kodya. Medan		
2-5	Actual Water Consumption in Kodya. T. Tinggi		
2-6	Water Supply System in Kab. Deli Serdang		
2-7	Actual Water Consumption in Kab. Deli Serdang		
2-8	Domestic and Non-Domestic Water Demand Parameters		
2-9	Number of Industry and Employee in North Sumatra		
2-10	Existing Paddy Field in the Study Area		
2-11	Present Status of Fresh Water Aquaculture		
2-12	Present Status of Brackish Water Aquaculture		
3-1	Present Municipal Water Demand		
3-2	Monthly Consumption Use by Crop and Water Requirement		
3-3	Present Water Demand		
4-1	Municipal Water Demand		
4-2	Municipal Water Demand in Medan Area		

LIST OF FIGURES

Figure No.	Title
2-1	Existing Water Supply System in Medan
2-2	Location of Springs
2-3	Location of Deep Wells in Medan
2-4	Existing Water Supply System in Tebing Tinggi
2-5	Existing Water Suuply System in Deli Serdang
2-6	Location of Deep Wells in the Study Area
2-7	Location of Existing Paddy Field
2-8	Location of Brackish Water Aquaculture
3-1	Water Supply Target Area
3-2	Water Balance Simulation Model
3-3	Results of Water Balance Simulation Based on Actual Water Demand
4-1	Routes of Transbasin Water Aqueduct
4-2	Longitudinal Profile of Transbasin Aqueduct
4-3	Results of Water Balance Simulation based on Future Water Demand of 2010
4-4	Water Supply Program

SUPPORTING REPORT

WATER SUPPLY PLAN

1. INTRODUCTION

This supporting report describes the present condition of water utilization in the study area, especially municipal and domestic water supply, and figures out the future water supply system based on a water balance study.

Presently, water in the study area is utilized for municipal and domestic water supply, irrigation, aquaculture, and river maintenance flow. The demand for more municipal and domestic water supply is felt mainly in Medan City and the surrounding kecamatans, and Tebing Tinggi City. The demand in other kecamatans in the study area is so small that new water supply systems in these areas is not required.

Irrigation water requirement is not sufficiently met, although the irrigation system in the study area is rather developed compared with other areas in North Sumatra. Water demand for aquaculture does not affect the water balance so much because water utilization for this purpose is not so consumptive. River maintenance flow has never been fixed in the study area, so that it is proposed in this study.

The present and future conditions of water supply potential are presented in the supporting reports on Hydrology and Dam and Reservoir.

2. PRESENT CONDITION OF WATER UTILIZATION

2.1 Municipal and Domestic Water

The most recent condition of the municipal water supply system in North Sumatra is as shown in Table 2-1, and the municipalities which are included in the study area are shown in Table 2-2. The existing condition of water source and use of the municipal and domestic water supply is summarized as below.

Medan

(1) Water Source

The existing water supply system of Medan City is as shown in Fig. 2-1. The water sources are the surface flow of Belawan River and Deli River, the springs in the mountain slope and the groundwater by shallow and deep wells.

The springs in the vicinity of Sibolangit, about 40 km south of Medan, are the earliest sources of water supply to Medan. They consist of three (3) groups, the Rumah Sumbul, the Lau Bengkawang and the Lau Kaban (refer to Fig. 2-2). The average flow transmitted to Medan is about 46,300 m³/day (540 l/s).

Intake structures on rivers are located at Sunggal and Deli Tua at the right banks of Belawan River and Deli River, respectively. The intake capacity of Sunggal is about 1,500 l/s, but the actual intake water is 1,050 l/s. As for Deli Tua, the intake capacity is estimated at 1,400 l/s, but the present production capacity of the treatment plant is only 350 l/s.

Groundwater is drawn by pumping from deep wells and shallow wells. Although many wells are used, only 22 deep wells are incorporated into the municipal water supply system of Medan as shown in Table 2-3 and Fig. 2-3 and three (3) of these wells were closed because of maintenance difficulties. The total production capacity is 300 l/s at present. Other than the deep wells of the water supply system, private deep wells and individual shallow wells are also used to draw groundwater, but the data on number of units and their capacities are not available.

In addition to the above, the Belawan Port Authority (BPA) owns an independent water supply system which draws water from 12 deep wells as shown also in Fig. 2-3 and Table 2-3. The water supply system is for potable water supply to ships and offices in the port compound. The total supply capacity is at about 150 l/s.

(2) Water Use

The total number of consumers served by the water supply system under PDAM Tirtanadi Medan is estimated at about 193,000 units as of May 1990 (refer to Table 2-4). Since the present population of Medan is about 1,730,000, the service ratio is estimated at only 30%.

In addition to the above piped water supply system, groundwater by deep wells is also utilized. The detailed data on the number of serviced houses are not available but the total capacity of 300 l/s is mainly for non-domestic water demand.

Other people are still utilizing shallow wells, even stream water. Though there is no available data, the depth of the shallow wells in the different parts of the city varies from one to seven meters and the per capita consumption is considered to be about 30 to 40 l/day, according to the field and interview survey at different sites.

Tebing Tinggi

(1) Water Source

The water source for the municipal water supply in Tebing Tinggi is only the surface flow of Padang River. An intake structure and a water treatment plant were constructed at Bulian in 1981, about 2 km west of the city center (refer to Fig. 2-4), and the intake capacity is about 60 l/s but the production capacity of the water treatment plant is only about 45 l/s.

There exist eight (8) deep wells, as shown also in Fig. 2-4 and Table 2-3, with the total capacity of about 30 l/s. Water from these deep wells is not utilized for domestic purpose because of its high temperature of about 50° C and hardness with high content of manganese and sulphate.

(2) Water Use

Under the PDAM Tebing Tinggi, the total number of consumers is about 2,400 units, corresponding to about 14,400 persons as of February 1990 (refer to Table 2-5). Thus, the present water supply service ratio is about 12% since the population is 117 thousand. The others utilize shallow wells, stream water and rainwater in water tanks.

Deli Serdang

(1) Water Source

Fourteen (14) kecamatans in Kab. Deli Serdang are at present provided with a water supply system with water sources from river flow, groundwater and springs. River surface water is utilized at Tanjung Morawa and Sei Rampah from Belumai River (Serdang River) and Belutu River, respectively, as shown in Fig. 2-5. The intake capacity (free intake) is 10 l/s at Tanjung Morawa and 20 l/s at Sei Rampah.

Other kecamatans such as Lubuk Pakam, Batang Kuis, Perbaungan, Dolok Masihul, Hamparan Perak, Tembung, Bandar Khalipah, Dolok Merawan, Pantai Cermin, Galang and Tiga Juhar are provided with deep wells with the intake capacity of about 60 l/s (refer to Table 2-3 and Fig. 2-6). However, three of them (Tembung, 5.0 l/s; Galang, 5.0 l/s and Dolok Masihul, 2.5 l/s) are not functioning at present due of some maintenance problems. Therefore, the actual total capacity is about 50 l/s.

(2) Water Use

Water supply systems in Kab. Deli Serdang are shown in Table 2-6. In accordance with the PDAM Deli Serdang, a total of about 3,000 households receive the supply service and this is only 1.1% of the total population of about 1.6 million in Kab. Deli Serdang (see details in Table 2-7). Almost all people still use shallow wells, stream water or rainwater in water tanks.

Non-Domestic Water

Based on the water consumption data of PDAM Medan, the use of non-domestic water such as institutional, commercial and industrial water use is estimated, especially for industrial water to grasp the actual water use condition. The record of water tariff collection in May 1990 of PDAM Medan shows the actual water consumption as below:

Actual Water Consumption (As of May 1990)

Item	Number of Units	Consumption (m³/day)	Ratio (%)
Domestic Water	84,616	95,058 (1,100)	75
Non-Domestic Water	11,696	32,836 (380)	25
- Institutional	888	6,710 (78)	* * * * * * * * * * * * * * * * * * * *
- Commercial	10,672	16,769 (194)	
- Industrial	136	1,020 (12)	
- Others	· <u>.</u>	8,337 (96)	·
Total	96,312	127,894 (1,480)	100

Note: Figures in parentheses are expressed in 1/s.

The above table shows that about 25% of the total use is consumed for non-domestic purposes. Guidelines and standards of Cipta Karya and those proposed in the Repelita IV are summarized in Table 2-8.

Unaccounted loss of water is estimated at about 25% since the actual water production in May is 1,940 l/s (540 l/s from Sibolangit, 1,050 l/s from Sunggal and 350 l/s from Deli Tua).

The record also shows the number of consumers and water volume depending on scale of factory on the industrial water consumption, as follows.

Industrial Water Consumption

Item	Number of Units	Consumption (m³/day)	Ratio (%)
Big Industry	102	865 (10)	85
Small Industry	34	155 (2)	15
Total	136	1,020 (12)	100

Note: Figures in parentheses are expressed in 1/s.

On the other hand, the provincial statistics (Sumatra Utara Dalam Angka) show that the number of employees is about 100 for large/medium scale factory and about 10 for small scale factory. The details are shown below. (Refer to Table 2-9.)

Factories in North Sumatra

Scale of	Number of	Number of	Per-Factor
Factory	Factory	Employees	Employee
Large/Medium	400	44,961	112
- Medan City	214	22,129	103
- T. Tinggi City	24	2,287	95
- Kab. D. Serdang	162	20,545	126
			· .
Small	2,165	17,305	8
- Medan City	1,353	10,817	8
- T. Tinggi City	106	960	9
- Kab. D. Serdang	706	5,528	8
Total	2,565	62,266	3

From the above, about a half of the large factories in Medan receive the piped-water supply service, and most of the small factories utilize the groundwater though private deep wells. Unit consumption of the industrial water is estimated at about 90 l/day/employee for a large factory and 470 l/day/employee for a small factory.

In the whole Indonesia, the unit consumption of industrial water is, except large scale industrial estate development, 100 to 150 l/day/employee (130 l/day/employee on average was adopted for Ujung Pandang Water Supply Project in 1985). Thus, 170 l/day/employee for a small factory mentioned above is too big, and this could be reduced to one half or less since this type of small factory is considered as a household industry. Therefore, about 130 l/day/employee can be set as the average unit consumption of industrial water.

2.2 Irrigation Water

Agricultural Practice

Major crops in the study area are wetland rice, followed by upland rice, maize, cassava, soyabean, sweet potato, peanut and other beans. Rice is planted generally from October to November and harvested during February to April. Improved seed varieties of rice such as IR-46, Bah Bolon, Klara, Si-Gerbang, Si-Bogor and PB-56 are planted, but the utilization of fertilizers and agrochemicals is still in a low level.

Water Source and Use

The existing paddy fields in each river basin are shown in Table 2-10 and Fig. 2-7. Based on the inventory of the existing paddy field, the present condition is classified into the following four (4) categories in terms of water use. The water sources for these irrigation areas are only the river flow except the rainfed area.

Classification of Irrigation Area

Category	Area (ha)	Ratio (%)
1. Technical Irrigation Area	18,824	24.0
2. Semi-Tech. Irrigation Area	18,890	24.1
3. Simple Irrigation Area	25,952	33.1
4. Rainfed Area	14,700	18.8
Total	78,366	100.0

In addition to the above, there exist 10,200 ha of swampy area with some portions partially cultivated and the potential for irrigation development is high.

The technical irrigation area is well provided with irrigation facilities and double cropping is practiced, i.e., a crop intensity of 200%. However, the semi-technical and simple irrigation areas can only attain the crop intensity of 120% on average. Most of the irrigation facilities in both areas require rehabilitation or improvement to upgrade the irrigation level.

2.3 Other Water Uses

Aquaculture Water

There exist three (3) types of aquacultural practice in the study area classified by the provincial fishery office (Dinas Perikanan Propinsi), namely (a) Mina Paddy, (b) Kolam and (c) Tambak. Mina Paddy and Kolam are the fresh water aquaculture conducted in paddies or fresh water fishponds to feed fish such as Tawes, Lele, etc. Tambak is the brackish water aquaculture conducted in the lowland area along the seashore, mainly for shrimp and tiger prawn.

In the study area, about 520 ha of Kolam and 280 ha of paddy exist as shown in Table 2-11, but the required water is mostly supplied by unused and/or circulated irrigation water. As for Tambak, out of a total of 2,100 ha, about 830 ha is in operation as shown in Table 2-12 and Fig. 2-8, as fresh water is supplied from rainfall.

Even if fresh water is needed, it will be obtained from the irrigation water. At present, only a few Tambaks utilize the shallow well and almost all Tambaks obtain fresh water from the irrigation and swamp in the vicinity.

Fresh water demand for aquaculture can be met by part of the irrigation water. Hence, it is excluded from the present study.

3. WATER BALANCE

3.1 Present Water Demand

Municipal Water

(1) General

In conformity with the Fifth Five-Year Development Plan (Repelita V), the service ratio of water supply in the urban area is upgraded to 80% from 75%, which had been adopted in the previous plan (Repelita IV). The per capita demand depending on the scale of city/kotamadya is set as follows:

Per Capita Water Demand in Urban Area

Class	Population	Per Capita Demand	
Major Urban City	more than 1,000,000	120 1/c/day	
Big City	500,000 - 1,000,000	100	
Middle City	100,000 - 500,000	90	
Small City	20,000 - 100,000	60	

The above is considered to be a basic need, and a higher consumption of water is often observed in several cities, especially in major urban areas. As for the rural area with a population less than 20,000, some different criteria are employed as below:

Per Capita Water Demand in Rural Area

Class	Population	Per Capita Demand
Kecamatan Capital I	3,000 - 20,000	45 l/c/d
Kecamatan Capital II	less than 3,000	30 l/c/d

(2) Condition for Demand Estimation

Referring to the above criteria and the present water use condition in the study area, conditions for the estimation of water demand arc set as follows:

- (a) The target area for the water supply plan is the Medan Area (Medan City and six kecamatans serviced by PDAM Tirtanadi), Tebing Tinggi City and all kecamatans in Kab. Deli Serdang. (Refer to Fig. 3-1.)
- (b) Per capita demand is the 130 l/s adopted by Repelita V.

- (c) Non-domestic water such as institutional, commercial and industrial water in Medan is estimated at 40% of the domestic water, because:
 - There is no big scale industrial estate development;
 - Actual consumption record shows that non-domestic water is about 35% of the domestic water;
 - Industrial water demand vary depending on its manufacturing system, type of machine and quality of product;
 - Industrial structure in the study area cannot be abruptly changed or expanded in the near future; and
 - The MUDP master plan study in 1980 also shows the ratio of non-domestic water as 32% to 40%.

As for Tebing Tinggi City, the non-domestic water use occupies 145% of the domestic water use according to the actual consumption as of May 1990. This cannot be adopted since the above ratio will be reduced much as the service ratio for the domestic water supply will be upgraded. Thus, the same ratio as that of Medan (40%) is employed for Tebing Tinggi. With regard to the kecamatan in Kab. Deli Serdang, the ratio of 10% is assumed for the non-domestic water use based on the statistics by DGCK.

(3) Estimated Water Demand

The estimated municipal water demands of the respective river basins are summarized as follows (see details in Table 3-1).

Estimated Water Demand

(Unit: m³/day)

		(= === , ===,	
Name of	Domestic	Non-Domestic	
City/River	Water	Water	Total
Medan	168,773	67,509	315,042
T. Tinggi	11,408	4,563	21,294
Belawan	4,645	465	6,813
Deli	969	97	1,421
Percut	3,618	362	5,306
Serdang	4,169	417	6,114
Ular	5,421	542	7,951
Belutu	3,190	319	4,678
Padang	2,337	234	3,427
Total	204,530	74,508	372,046

Note: Water demands of Medan and T. Tinggi cities do not include water from those of Deli River and Padang River, respectively.

Irrigation Water

Irrigation water requirements are estimated based on the cropping pattern shown in Table 3-2, which was applied in the Ular River Project. The crop intensity is set at 200% for the technical irrigation area and 120% for the semi-technical and simple irrigation area in accordance with the current practice.

Aquaculture

Demand for aquaculture is not incorporated into the present Study, since it is met by the water utilized for irrigation purposes and the water of swamps in the vicinity.

River Maintenance Flow

The low flow of the river shall be maintained to avoid any serious change from the present condition. In general, river maintenance flow is determined to maintain the functions of a river on items such as (a) navigation, (b) fishing, (c) picturesque scenery, (d) salt intrusion, (e) clogging of river mouth, (f) riparian structures, (g) groundwater table, (h) flora and fauna, and (i) river water quality.

Among the said functions, only (d) and (i) will have some influence in the study area. The former is mainly for irrigation practice since there are intake structures in the downstream of six rivers except Deli River; the latter is evaluated for Deli River flowing through Medan urban area where many people still use river water for their daily activities. Therefore, river maintenance flow for the six rivers are not precisely determined because return flow of irrigation is expected to be so big to fulfill the requirement. For the purpose of environmental quality requirement, the river maintenance flow is determined to be in a range of 0.005 to 0.01 m³/s/km².

As for the Ular River where improvement works was already completed, the specific discharge of 0.01 m³/s/km² is adopted for the river maintenance flow. Therefore, the same specific discharge is employed for other rivers to estimate the river maintenance flow.

River Maintenance Flow

River	Catchment Area (km²)	Maintenance Flow (m³/s)
Belawan	647	5.2
Deli	358	2.9
Percut	186	1.5
Serdang	671	4.9
Ular	1,081	10.8
Belutu	500	4.9
Padang	919	9.2

3.2 Water Supply Potential

River Surface Flow

River flow fluctuates seasonally depending on the rainfall in the catchment area. The water supply potential from river flow is evaluated according to the water use pattern. In case of municipal water supply, the water use is rather constant.

Generally, water shortage in municipal/domestic water supply is not allowed even in a severe drought; once in 10 years. Irrigation water shall be secured, at least, in the droughtest year for 5 years.

The water supply capacity of each river is evaluated at the possible lowest intake point of the river. The residual area which is composed of the catchment of small rivers, drainage channels and swampy areas has some runoff from rainfall; however, water in the residual area is not evaluated to be the water supply potential in the Study.

Through the low flow analysis (refer to the Supporting Report on Hydrology), water supply potential of the river surface flow is evaluated as below:

Water Supply Potential of River Surface Flow

River		Catchment	Drought Mean Discharge (m³/s)			m³/s)
	Intake Point	Area (km²)	20-yr	10-yr	5-yr	Average
Belawan	Kp. Lalang	254	5.84	7.39	7.54	8.59
Deli	Simeme	158	5.07	5.70	6.12	7.13
Percut	Tembung*	171	6.06	6.81	7.31	8.52
Serdang	Tg. Morawa	250	8.18	9.03	10.70	12.10
Ular	Pulau Tagor	1,031	35.67	43.68	45.67	57.82
Belutu	Sei Rampah**	423	12,43	13.02	13.59	15.15
Padang	T. Tinggi	919	32.60	34.13	35.64	39.72
Total	• •	3,206	105.85	119.76	126.57	149.12

^{*} Specific discharge of Simeme (Deli River) is used with rainfall ratio.

Groundwater

(1) Springs

The present total water production of springs around Medan City is 107,400 m³/day as tabulated below.

Springs and Their Water Production

Spring	River Basin	Estimated Production (m³/day)
Sibolangit	Deli	76,000
Tuntungan	Belawan	8,600
Tanjung Marihan	Serdang	10,800
Kampung Banta	Serdang	13,000
Total		107,400

From the springs, only about 46,000m³/day from the Sibolangit springs has been utilized for the existing municipal water supply to Medan. Although the river basins seem to have some springs, the water from the unused springs passes into the rivers. Therefore, the existing water resources of springs are already involved in the low flow runoff of the river surface flow.

(2) Deep Wells

In the study area, as described in Section 2.1, there are totally 27 deep wells identified to have operation records. They are grouped into three geological areas; Medan, Belawan and T. Tinggi.

^{**} Specific discharge of T. Tinggi (Padang River) is used with rainfall ratio.

Geological Category of Deep Wells and Drawing Potential

Location/Name of Deep Well	Geology (Depth)	Permeability (cm/s)	Drawing Potential*
 Mcdan Group, B. Kuis, Tembang & Hamparan Perak 	Diluvium (30 m)	1 x 10°2	25.0 l/s
 Belawan Group, L. Pakam, P. Cermin, Perbaungan, Bandar, & Khalipah 	Alluvium (30 m)	1 x 10 ⁻²	12.5 l/s
3. Tebing Tinggi Group Dolok Merawan, Dolok Masihol & Galang	Toba Tuff (50 m)	1 x 10 ⁻³	5.0 l/s

^{*} Drawing capacity is estimated assuming that the operation duration is 12 hours per day.

In consideration of the influence radius on the groundwater level depending on the geology, the density of deep well is estimated at one in every 1.7 km², 1.5 km² and 0.8 km² for Diluvium, Alluvium and Toba Tuff, respectively. Furthermore, it is anticipated that the drawing capacity of deep wells will decrease to 85% in 2 to 3 years and 65% in 5 to 7 years.

Therefore, the groundwater potential by means of deep well is estimated for each river basin including the residual area. Although deep wells can be provided over the total area of river basin including the residual area at the aforementioned density, this assumption cannot be technically and economically realized. Hence, the development potential of groundwater, which is theoretically estimated as below, is understood as the maximum limit.

Development Potential of Groundwater

Name of River Basin	Total Area (km²)	Main Geology	Development Potential (MCM/y)
1. Belawan	756	Al + TT	87.020
2. Deli	430	Di + Al	77.973
3. Percut	316	Di + Al	57.301
4. Serdang	886	Al + TT	101.984
5. Ular	1,522	Al + TT	175.191
6. Belutu	778	A1 + TT	89.552
7. Padang	1,119	Al + TT	128.804

Note; Di: Diluvium, Al: Alluvium, TT: Toba Tuff

However, further groundwater development is not practically and technically feasible. Sudden lowering of the water table and some water contamination of wells in the urban area were observed.

Dam and Reservoir

As stated in the Supporting Report on Dam and Reservoir, there are eight (8) dam sites identified to have a storage capacity for supplying municipal and irrigation water. In the vicinity of Medan City, two (2) dams, namely Namobatang Dam on the Deli River and Lausimeme Dam on the Percut River will supply municipal water at 2,000 l/s and 3,700 l/s, respectively.

3.3 Water Balance

Water Balance Analysis

The present water balance between the demand and supply capacity is analyzed in each river basin. The simulation model is given in Fig. 3-2, on the basis of the following premise and conditions:

- (a) Closely located kecamatans and paddies in the respective river basins are grouped together, although actual intake points for municipal water and irrigation water are scattered up or downstream along the river course.
- (b) The present water demand is estimated based on the data in 1990. The municipal and irrigation water demands in the river basin are summarized as shown in Table 3-3. The river maintenance flow is excluded from the water demand, because some return flow from the irrigation area is expected.
- (c) Flow regime with 5-day intervals for 20 years from 1969 to 1988 is adopted from the low flow runoff computation in the hydrological study. (Refer to Supporting Report on Hydrology.)
- (d) From the flow regime, a drought discharge of a 10-year return period is applied commonly for both municipal and irrigation water.
- (e) In the water supply system, priority is presumed in terms of the significance of water uses, i.e., municipal water is given a higher priority than irrigation water.

Present Water Balance

The results of the present water balance analysis for each river basin are summarized as follows, and simulation results for 20 years are presented monthly in Fig. 3-3.

(1) Belawan River Basin

The second droughtest year in 20 years from 1969 to 1988, namely the design drought year, is assessed to be 1985 when the proposed Tembengan Dam released a maximum of 0.837 m³/s to meet the water demand of both municipal and irrigation water. Municipal water of 1.05 m³/s was taken at Sunggal and supplied to Medan, and shortage of irrigation water arose mainly in the irrigation areas named Medan Kris (3,016 ha, semi-technical) and Suka Raya (201 ha, simple). Therefore, the Tembengan dam reservoir shall have a water supply capacity of 1,200,000 m³.

(2) Deli River Basin

The design drought year is 1987, which is evaluated to be a 10-year return period of drought probability. The proposed Namobatang Dam is required to have a water supply capacity of approx. 2,800,000 m³ to be able to discharge a maximum of 1.448 m³/s to meet both the municipal water of 0.35 m³/s and the irrigation requirements of Namo Rambe (3,280 ha, semi-technical) and Lausimeme (220 ha, semi-technical).

(3) Percut River Basin

The design drought year is 1987, when the required water supply capacity is estimated at only 400,000 m³. The maximum dam release flow is 0.470 m³/s to supply the irrigation water of Bandar Sidoras (3,457 ha, semi-technical). In February of the drought year 1987, the river flow at the estuary is estimated at zero.

(4) Serdang River Basin

This river basin has a surplus water after meeting the water demand for irrigation. In the second droughtest year 1976, the river flow at the estuary is estimated at 5.698 m³.

(5) Ular River Basin

The Ular River Basin also has a surplus, although the irrigation system is the most highly developed among those of the river basins in the study area. Through the Ular River Project, paddy fields of 18,500 ha were upgraded to technical irrigation area with a cropping intensity of 200%. The surplus flow at the estuary is estimated at 11.208 m³/s in the design drought year 1983.

(6) Belutu River Basin

This river basin has suffered from water shortage in almost every year. All water demands rise in the semi-technical irrigation areas scattered over the lower reaches such as Sei Belutu (5,100 ha). Pekan Dolok (625 ha), Cinta Kasih (360 ha), Bulian (300 ha), Pertambatan (145 ha) and Siromrawan (260 ha). The required water supply capacity in the design drought year 1979 is estimated at 15,000,000 m³to be able to release the irrigation water of 3.851 m³/s at maximum.

(7) Padang River Basin

The Padang River Basin is also categorized as a water surplus river. The surplus water at the estuary is estimated at 18.040 m³/s in the design drought year 1979.

4. WATER SUPPLY PLAN

4.1 Future Water Demand

Municipal Water

Population projection, one of the most important factors for estimating the future demand of municipal and domestic water, is usually made on the basis of the trend of census population and intercensal population growth rate. Referring to the Supporting Report on Socioeconomy, the projected population at 5-year intervals for 1990 to 2010 are as follows:

Population Projection (1990 to 2010)

	Projected Population ('000)					
Region	1990	1995	2000	2005	2010	
I. Indonesia	179,322	-	-	.7	•	
2. North Sumatra	10,256	-	-	<u>-</u>	•	
3. Study Area	3,629	4,070	4,556	5,092	5,681	
I. D. Serdang + Medan	3,334	3,753	4,218	4,735	5,306	
D. Serdang	1,603	1,818	2,058	2,327	2,626	
. Medan City	1,731	1,935	2,160	2,408	2,680	
. T. Tinggi City	117	130	144	159	173	
. Simalungun*	178	186	193	199	202	
). Six Kecamatans**	453	543	644	737	820	

^{*} Seven kecamatans included in the study area.

Among the kecamatans in Kab. Deli Serdang, there are seven (7) kecamatans currently receiving services under PDAM Tirtanadi Medan. They are Pacur Batu, Namo Rambe, Deli Tua, Sunggal, Labuhan Deli, Percut Sei Tuan and Sibolangit. In this water supply plan, six kecamatans (except Sibolangit) are included in the target area (Medan and six kecamatans are referred to as Medan Area). Therefore, the population projection is also made for the six kecamatans, as presented in the foregoing table.

The future demand for municipal water is computed on the basis of the standards and targets of Cipta Karya in Repelita V as follows:

^{**} Under the service of PDAM Tirtanadi Medan

Parameters for Water Supply Plan

Particulars	1990		2000		2010	······································	2040	
Tarticulats	Urbai	n Rural	Urba	n Rural	Urbai	n Rural	Urbai	n Rural
Service Ratio (%)	75	60	80	70	85	80	. 90	85
Per Capita Consumption (l/d/p)	130	30	140	40	150	50	150	60
Ratio of Non-Domestic Use to Domestic Use (%)	40	10	40	10	40	10	40	10
Unaccounted Water Loss (%)	25	5	22	5	20	5	20	5

The future municipal/domestic water demand in both Medan and Tebing Tinggi cities and in each river basin in 2010 and 2040 are computed as shown in the following table. Details of future demands of all cities and kecamatans in every 5 years are given in Table 4-1.

Municipal/Domestic Water Demand in 2010

City/River Basin	Population (person: thousand)	Water Demand (m³/d)		
Dugiti	(person, thousand)	(4170)		
Medan City	2,679	597,723		
Tebing Tinggi City	173	38,639 24,811		
Belawan River Basin	536			
Deli River Basin	112	5,177		
Percut River Basin	417	19,322		
Serdang River Basin	481	22,264		
Ular River Basin	586	27,117		
Belutu River Basin	360	16,675		
Padang River Basin	261	12,074		
Total	5,605	763,802		

Irrigation Water Demand

The future demand for irrigation water is estimated on the assumption that the technical level of irrigation practice is upgraded in rank, i.e., simple and rainfed irrigation areas will become semi-technical and semi-technical will become technical. The swampy area is also assumed to become a semi-technical irrigation area. These changes in irrigation area and the water demand in each river basin are as follows: