5.3 Hydrogeological Provinces and Groundwater Quality

5.3.1 Geology by Drill Holes

The rocks on ground surface in the project area are considered to be well-consolidated enough as far as the current investigations on ground surface concerned, however, discharged cuttings by drill operations up to ground surface are generally argillaceous and clayey. Therefore, the direct estimations of rocks deep underground by cuttings are to be hardly made in general.

Estimations of general geology along drill hole walls and rock consolidation degrees were established by recording the bare facts and characters of cuttings in connection with references to the results of surface geological mapping, surface geophysics and geophysical hole loggings by the current works.

Drill site elevations above sea were determined by readings of contours on topographical maps of one to 50,000 scale.

(1) No.1: El Manantial

Drill hole depth : 152.32 m

Drill site elevation : 160.00 m high above sea level

Drill hole bottom elevation : 7.65 m high above sea level

General characters of cuttings: Argillaceous and slimy, locally

associated with breccia-formed

crushed rock fragments.

General conditions of cuttings:

0.00 - 3.00 m : Brown soil

3.00 - 27.00 m : Brownish gray earthy slime

27.00 - 152.35 m : Gray and very adhesive clay slime

27.00 - 42.00 m : Granule-sized fragments of quartz and

sandstone are associated. Specific resistivity values by geophysical hole loggings are slightly high and are

disorderly represented.

99.00 - 114.00 m : Quantity of granule-sized fragments

increases in. Those are not shown by

geophysical loggings.

132.00 - 135.00 m

Associated with medium-grained (1/4 mm) fragments. Specific resistivity values are slightly high and are disorderly represented.

Geology in drill hole:

Chiefly consists of weakly-consolidated mudstone beds, intercalated by relatively well-consolidated mudstone beds.

(2) No.2: El Guayo

Drill hole depth

: 150.00 m

Drill site elevation

: 148.00 m high above sea level

Drill hole bottom elevation

 $= -2.00 \,\mathrm{m}$ below sea level

General characters of cuttings:

Argillaceous and slimy, locally associated with breccia-formed crushed rock fragments.

General conditions of cuttings:

0.00 - 12.00 m

Brown soil

12.00 - 24.00 m

Brownish gray earthy slime

24.00 - 150.00 m

Gray and very adhesive clay

slimeassociated with crushed angular

slaty fragments

38.00 - 39.00 m

: Quantity of granule-sized fragments of quartz and sandstone increases in. Specific resistivity values by geophysical hole logging are slightly high and are disorderly represented.

Geology in drill hole:

Chiefly consists of weakly-consolidated mudstone beds, intercalated by relatively well-consolidated mudstone beds.

(3) No.3: Las Aguas

Drill hole depth

71.40 m

Drill site elevation

10.00 m high above sea level

Drill hole bottom elevation

-61.40 m below sea level

General characters of cuttings:

Silt and/or clay in upper and sandy cuttings in lower parts.

General conditions of cuttings:

0.00 - 3.00 m

Brown soil

3.00 - 27.4.00 m:

Brown silt to clay, very adhesive, sparsely

associated with fine-grained fragments.

27.40 - 71.40 m:

Grayish to greenish brown silt, very

adhesive, minorly associated with fine-

grained fragments.

57.80 - 89.90 m:

medium- to coarse-grained sand beds. High specific resistivity and negative

spontaneous potential values by hole

logging.

Geology in drill hole

Chiefly consists of silt and clay beds, intercalated by sands tone beds at 57.8 m.

(4) No.4: Jobo Corcobado

Drill hole depth

: 61.00 m

Drill site elevation

: 30.00 m high above sea level

Drill hole bottom elevation

-31.00 m below sea level

General characters of cuttings:

Brownish slimy and sandy cuttings, with basal gravel bed at the depth of 30.5 m, underlain by grayish slimy and sandy cuttings.

General conditions of cuttings:

 $0.00 - 30.50 \,\mathrm{m}$:

Alternations of brown fine sand and silt-

sandy silt beds.

27.50 - 30.50 m:

Quartz, sandstone, slate and shale

fragments of granule to pebble size. Hole loggings were not made because of casing

pipes infixing.

30.50 - 61.00 m:

Chiefly consists of grayish alternation of

mud and silt beds.

Geology in drill hole:

Floodplain sediments to the depth of 30.5 m from ground surface, underlain by basal gravel bed. Alternations of siltstone and sandstone beds of Tertiary age beyond the above.

(5) No.5: La Pinta

Drill hole depth

: 151.00 m

Drill site elevation

48.00 m high above sea level

Drill hole bottom elevation

-103.00 m below sea level

General characters of cuttings:

Brown fragments and slimes of calcareous sandstone by weathering to the depth of 33.00 m, underlain by alternations of calcareous sandstone and greenish gray mudstone beds.

General conditions of cuttings:

0.00 - 6.00 m

Brown soil

6.00 - 33.00 m

: Alternations of mudstone and

calcareous sandstone beds, brown.

33.00 - 151.00 m

: Alternations of mudstone and calcareous sandstone beds, greenish gray. Specific resistivity values by hole logging are higher in this

segment than that in the upper.

42.00 - 48.00 m

Quartz fragments are observed.

48.00 - 68.00 m

consolidated. Specific resistivity values by hole logging are locally

high.

96.00 - 114.00 m

Calcareous sandstone beds, wellconsolidated. Specific resistivity by hole logging represents the highest specific resistivity values by geophysical hole logging in the

current hole.

135.00 - 140.00 m

Fragments of arkose and metamorphic sandstone are observed. Specific resistivity values by geophysical hole logging are relatively high.

Geology in drill hole:

Chiefly consists of alternations of calcareous sandstone and mudstone beds. Mudstone beds are weakly-consolidated. Fragmental breccias of metamorphic rocks of Cretaceous age are observed in the beds at the depth of 135.00 m - 140.00 m segment.

(6) No.6: Ranchadero

Drill hole depth : 80.00 m

Drill site elevation : 37.00 m high above sea level

Drill hole bottom elevation : -43.00 m below sea level

General characters of cuttings:

Almost homogeneous with slight change in lithology.

General conditions of cuttings:

0.00 - 9.10 m : Brown very fine grained sand

9.10 - 18.20 m : Gray very fine grained sand

18.20 - 54.76 m : Gray very fine grained sand to silt

54.76 - 63.80 m : Gray very fine grained sand

63.80 - 80.00 m : Gray very fine grained sand to silt

48.00-51.00 m : Granule sized fragment, partly

silicified

Geology in drill hole :

ground surface - 18.20 m : fine grained sandstone

18.20 - 54.70 m : sandy siltstone

54.70 - 63.80 m : very fine grained sandstone

63.80 - 80.00 m : siltstone

(7) No.7: Guayubincito

Drill hole depth

62.48 m

Drill site elevation

: 45.00 m high above sea level

Drill hole bottom elevation

-17.48 m below sea level

General characters of cuttings:

Characterized by being associated with carrying shell fragments. Chiefly consists of sandstone, fine-grained sand and silt beds in ascending order.

General conditions of cuttings:

 $0.00 - 18.20 \,\mathrm{m}$:

Brown silt and fine-grained sand beds.

6.10 - 15.20 m :

Shell fragments are observed.

18.20 - 48.60 m:

Very fine-grained sandy silt beds,

grayish.

24.30 - 27.40 m:

Abundant quantity of fragmental shells.

39.50 - 42.60 m:

Abundant quantity of fragmental shells.

Specific resistivity values by geophysical

logging are slightly disorderly.

48.60 - 60.80 m:

Calcareous fine-grained sandstone

cuttings and shell fragments. Specific resistivity values by geophysical logging sharply turn to higher ones than those in

upper segments.

61.80 - 62.48 m:

Grayish silt cuttings. Specific resistivity

values by geophysical hole logging

sharply turn to be low.

Geology in drill hole:

Alternations of fine-grained sandstone and silt beds, well-consolidated, and associated with shell fragments to the depth of 48.60 m. Silt beds are associated beyond 60.8 m depth.

(8) No.8: Cabeza de Toro

Drill hole depth : 134.30 m

Drill site elevation : 115.00 m high above sea level

Drill hole bottom elevation : -19.30 m below sea level

General characters of cuttings:

Shown in the following section.

General conditions of cuttings:

0.00 - 18.20 m : Brown silt and fine-grained sand.

6.10 - 16.20 m : Shell fragments are associated.

18.20 - 48.60 m: Very fine-grained sandy silt, grayish.

4.30 - 27.40 m : Abundant quantity of shell fragments are

associated.

39.50 - 42.60 m : Abundant quantity of shell fragments are

associated. Specific resistivity values by geophysical hole logging are slightly

disorderly.

48.60 - 60.80 m: Calcareous fine-grained sandstone,

associated with shell fragments. Specific resistivity values by geophysical logging sharply turn to be higher than those in

upper segments.

60.80 - 62.48 m : Grayish silt. Specific resistivity values

by geophysical logging sharply turn to be

low.

Geology in drill hole:

Alternations of fine-grained sandstone and silt beds to the depth of 48.6m. Associated with shell fragments. Sandstone beds, well-consolidated, associated with shell fragments, are observed beyond 48.6 m-depth, while, silt beds are associated beyond 60.8 m-depth.

(9) No.9: Palo Blanco

Drill hole depth : 150.80 m

Drill site elevation : 80.00 m high above sea level

Drill hole bottom elevation : -70.80 m below sea level

General conditions of cuttings:

Chiefly consists of sedimentary materials, finer in lower part of the hole, meanwhile, silty and fine-grained sandy cuttings from upper part, and silty and slimy cuttings from lower part. Generally associated with shell fragments, however, varies in quantity with the depth.

General conditions of cuttings:

0.00-27.00 m : Alternations of silt and fine- to

medium-grained sands, brownish.

27.00 - 111.00 m : Gray sandstone cuttings, associated

with shell fragments.

36.00 - 42.0 m : Increases in quantity of quartz grains.

42.0-45.0 m : Increases in quantity of shell

fragments.

78.00 - 111.00 m : Extremely high association with shell

fragments and quartz grains. High specific resistivity values by geophysical hole logging are shown in

varied segments.

111.00 - 160.80 m : Gray silt and slime.

Geology in drill hole:

Alternations of siltstone and fine-grained sandstone beds are observed to the depth of 27.00 m from ground surface. Granularity of the above rocks slightly increases in size, while, quartz and shell fragments also increases in quantity beyond that to the 111.00m-depth. Fine-grained siltstone and sandstone beds, with finer quartz grains, and observed beyond 111.00 m-depth.

(10) No.10: La Vigia

Drill hole depth : 72.00 m

Drill site elevation : 35.00 m high above sea level

Drill hole bottom elevation : -37.00 m below sea level

General conditions of cuttings:

Alternations of sandstone and shale beds, intercalated by gravel beds in upper part. Clay bed is observed in basal part of the alternations.

General conditions of cuttings

0.00 - 19.50 m : Gravel bed

17.50 - 19.50 m : Sand and gravel

19.50 - 47.50 m : Sandstone bed

19.50 - 35.00 m : Coarse-grained sandstone bed. High

pecific resistivity values by geophysical logging are shown at the

segment bottom.

35.00 - 39.00 m : Alternations of sandstone and shale

beds.

39.00 - 47.00 m : Fine-grained sandstone beds. High

specific resistivity values by geophysical logging are shown in

upper part of the segment.

47.00 - 70.00 m : Shale bed

47.00 - 56.00 m : Brownish cuttings

56.00 - 70.00 m : Greenish gray cuttings

 $70.00 - 72.00 \,\mathrm{m}$: Very soft clay bed

Geology in drill hole:

Alternations of siltstone and fine-grained sand stone beds to 27.00 m-depth from ground surface. Granularity of the rocks increases in size beyond the above to 111 m-depth, while relatively increases in quantity of quartz grains and shell fragments. Rock faces beyond 111 m-depth turnedly show of siltstone and/or mudstone, while granularity of quart6z grains decreases in.

(11) No.11: Esperon

Drill hole depth

: 151.00 m

Drill site elevation

85.00 m high above sea level

Drill hole bottom elevation

-66.00 m below sea level

General conditions of cuttings:

Cuttings of gravel beds, arkose sand cuttings in upper part and metamorphose rock cuttings in lower part. Largely recovered in quantity.

General conditions of cuttings:

0.00 - 6.00 m

Brown earthy materials

6.00 - 105.00 m

Arkose sandy fragments, associated with fragmental sandy materials - metamorphose sandstone - of small

quantity.

21.00 - 27.00 m

Very coarse fragments

27.00 - 78.00 m

Fragments of granule size.

78.00 - 105.00 m

Slightly increases in quantity of fragmental sandy materials. High specific resistivity values by geophysical hole logging are shown in

basal part of the segment.

105.00 - 151.00 m

Fragmental sandy materials, associated with arkose sandy

fragments of small quantity.

105.00 - 114.00 m

Increases in quantity of brownish gray

slimes.

Geology in drill hole:

Chiefly consists of arkose sand-gravel beds from ground surface to 105 m-depth, while, sand-gravel beds of metamorphose rocks beyond 105 m-depth to the hole bottom.

(12) No.12: Chacuey

Drill hole depth : 151.00 m

Drill site elevation : 90.00 m high above sea level

Drill hole bottom elevation : -61.00 m below sea level

General characters of cuttings:

Ground surface to 24.00 m-depth:

Sand and gravel cuttings rich in quartz grain contents.

24.00 m- to 30.00 m-depth : Slimy cuttings.

Further deep

Chiefly of fragmental cuttings-metamorphosed sandstone cuttings-, associated with quartz grains.

General conditions of cuttings:

0.00 - 9.00 m : Brown earthy cuttings.

9.00-24.00 m : Arkose rock fragments, minorly

associated with fragmental sandy

cuttings - metamorphose sandstone -.

24.00 - 30.00m : Adhesive slime and clay, associated with

thin quartz grains and fragmental

materials.

30.00-151.00 m : Chiefly of fragmental cuttings -

metamorphosed sandstone -, associated

with quartz grains in some locations.

30.00 - 33.00 m : Coarse-grained cuttings

51.00 - 57.00 m : Coarse-to very-coarse-grained cuttings.

66.00 - 69.00 m : Coarse-grained cuttings

84.00 - 99.00 m : Granule-sized cuttings

111.00 - 114.00 m : Coarse- to very-coarse-grained cuttings.

120.00 - 123.00 m : Coarse- to very-coarse-grained cuttings,

very hard.

132.00 - 135.00 m : Coarse-grained cuttings, very hard. High

specific resistivity values by geophysical hole logging are shown in the segments with coarse-grained cuttings. Those are parti-cularly sharply high beyond 120.00

m-depth.

Geology in drill hole:

Ground surface to 24.00 m-depth:

Sand-gravel beds, associated with coarse-grained quartz grain.

24.00 m - 30.00 m-depth

Mudstone beds and clay

30.00 m-depth to bottom

Sandy metamorphic rock. The rock bed is intensely weathered to the depth of 114.00 m, while, unweathered beyond that.

(13) No.13: Los Arroyos

Drill hole depth

: 135.20 m

Drill site elevation

: 59.00 m high above sea level

Drill hole bottom elevation

-76.20 m below sea level

General characters of cuttings:

Ground surface to about 30.00 m-depth:

Chiefly of arkose material cuttings, rich in quartz grain contents.

30.00 m to 120.00 m-depth:

Fragmental cuttings of arkose material and metamorphosed sandstone in equal quantity ratio. Very hard beyond 120.00 m-depth.

General conditions of cuttings:

0.00 - 3.00 m

Brown earthy

3.00 - 30.00 m

Arkose fragments, minorly associated with metamorphosed sandstone fragments. Partly rich in sandstone

fragments contents.

30.00 - 39.00 m

Brown slime, associated with

sandstone fragments.

30.00 - 102.00 m

Arkose and metamorphosed sandstone

fragments in equal quantity ratio.

102.00 - 135.20 m

Increases in size of fragments, hard.

Geology in drill hole:

Ground surface to about 30.00 m-depth:

Arkose sand-gravel beds rich in quartz grain contents.

30.00 m to 39.00 m-depth:

Mudstone beds, underlain by metamorphosed sandstone beds.

Weathered to the depth of 102.00 m, while hard beyond that.

(14) No.14: La Gorra

Drill hole depth

: 76.20 m

Drill site elevation

118.00 m high above sea level

Drill hole bottom elevation

41.80 m high above sea level

General characters of cuttings:

Chiefly of grayish silty cutting to the depth of 36.40 m, while, of metamorphosed sandstone cutting beyond that.

General conditions of cuttings:

 $0.00 - 9.10 \,\mathrm{m}$

: Cuttings of sand and gravel of

metamorphosed sandstone.

9.10 - 36.40 m

: Silty fragmental cuttings, grayish brown,

associated with metamorphosed

sandstone cuttings.

36.40 - 76.20 m

: Cuttings of metamorphosed sandstone/

shaleand siltstone.

60.80 - 76.20 m

: Sparsely associated with siltstone cuttings. Specific resistivity values by geophysical hole logging gare shown to be

very high.

Geology in drill hole

y in diffi note

Ground surface - 9.00 m : Sand-gravel beds

9.00 m - 34.60 m

: Silt beds

Beyond 34.60 m

: Underlain by metamorphosed sandstone

beds. Unweathered beyond 60.80 m-

depth.

(15) No.15: Buen Gust

Drill hole depth

: 44.40 m

Drill site elevation

180.00 m high above sea level

Drill hole bottom elevation

135.60 m high above sea level

General characters of cuttings:

Ground surface - 15.00 m

: Surface soil, and fragments of

granodiorite cuttings.

15.00 m-35.00 m

: Weathered chips and fragments of

granodiorite cuttings.

Beyond 35.00 m

: Unweathred granodiorite fragments.

General conditions of cuttings:

0.00 - 15.00 m

: Earthy and weathered granodiorite

fragments.

15.00 - 35.00 m

: Weathered granodiorite fragments

35.00 - 44.40 m

: Unweathered granodiorite gragments.

Geology in drill hole

Ground surface - 15.00 m: Surface soil and gravels of granodiorite.

15.00 m - 35.00 m : Weathered granodiorite with cracks and

ioints.

Beyond 35.00 m

: Unweathered granodiorite body.

(16) No.16: La Penita Abajo

Drill hole depth

68.40 m

Drill site elevation

130.00 m high above sea level

Drill hole bottom elevation

61.60 m high above sea level

General characters of cuttings:

Ground surface - 15.00 m

Earthy and tonalite cuttings and

fragments.

15.00 m-35.00 m

Weathered fragments of tonalite.

Beyond 35.00 m

Unweathred tonalite fragments.

General conditions of cuttings:

0.00 - 15.00 m

: Earthy, fragments of weathered tonalite.

15.00 - 35.00 m

: Fragmental cuttings of weathered

tonalite.

35.00 - 68.40 m

: Fragmental cuttings of unweathered

tonalite.

Geology in drill hole

Ground surface - 15.00 m: Surface soil and gravels of tonalite

15.00 m - 35.00 m : Weathered tonalite with cracks and

joints

Beyond 35.00 m

: Unweathered tonalite.

(17) No.17: La Penita Arriba

Drill hole depth : 89.00 m

Drill site elevation : 362.00 m high above sea level

Drill hole bottom elevation : 273.00 m high above sea level

General characters of cuttings:

Ground surface - 15.00 m : Earthy, cuttings and fragments of

tonalite.

Beyond 15.00 m : Weathered and unweathered cuttings

and fragments of tonalite

alternatively.

General conditions of cuttings:

0.00 - 15.00 m : Slimy, fragments of weathered tonalite

15.00 - 35.00 m : Fragments of weathered tonalite.

35.00 - 55.00 m : Fragments of unweathered tonalite.

55.00 - 85.00 m : Fragments of weathered tonalite.

85.00 - 89.00 m : Fragments of unweathered tonalite.

Geology in drill hole

Ground surface - 15.00 m : Surface soil and fragments of tonalite.

Beyond 15.00 m : Weathered and unweathered tonalite

with cracks and joints.

(18) No.18: Cruce de Mariano Cestero

Drill hole depth : 53.38 m

Drill site elevation : 680.00 m high above sea level

Drill hole bottom elevation : 626.62 m high above sea level

General characters of cuttings:

Ground surface - 15.25 m : Reddish slimy materials.

15.25 m - 21.35 m : Fragments and cuttings of arkose

sand.

21.35 m - 39.65 m : Fragments of metamorphosed tuff.

39.65 m - 53.38 m : Fragments of metamorphosed

sandstond.

Beyond 39.65 m : Fragments and cuttings of

metamorphosed sandstond.

Geology in drill hole

Ground surface - 15.25 m: Reddish surface soil.

15.25 m - 21.35:

Granitic rock.

21.35 m - 39.65

Altered andesitic tuff bed.

Beyond 39.65 m

: Metamorphosed sandstone bed.

(19) No.19: El Mamoncito

Drill hole depth

: 94.50 m

Drill site elevation

300.00 m high above sea level

Drill hole bottom elevation

205.50 m high above sea level

General characters of cuttings:

Argillaceous and slimy, associated with gravel formed crushed rock fragments.

General conditions of cuttings:

0.00 - 18.00 m

Yellowish brown silt with gravel

(calcareous Sandstone)

18.00 - 21.50 m

Dark grayish fine grained sandy silt

21.50 - 33.00 m

Bluish gray to dark bluish gray fine

sand to silt

33.00 - 46.00 m

Yellowish gray silty mud

(mudstone/Shale)

46.00 - 52.00 m

Gravelly silt to mud

52.00 - 64.00 m

Bluish gray gravelly mudstone/shale

64.00 - 94.00 m

Gray gravelly fine sandy silt

(mudstone/claystone with

Conglomerate)

Geology in drill hole

gy in drift note

ground surface - 33.00 m

Surface soil and sandy silt

33.00 - 52.00 m

Silty mudstone

52.00 - 64.00 m

Gravelly shale

64.00 - 94.00 m

Sandy siltstone

(20) No.20: Las Rosas

Drill hole depth : 150.80 m

Drill site elevation : 350.00 m high above sea level

Drill hole bottom elevation : 199.20 m high above sea level

General characters of cuttings:

Argillaceous and slimy, associated with medium to coarse grain (partly granule sized) formed crashed rock fragments.

General conditions of cuttings:

0.00 - 9.00 m	:	Brownish	soil	with	medium	graind
---------------	---	----------	------	------	--------	--------

fragment of Sandstone white, greenish

gray, brownish

9.00 - 21.00 m : Medium graind fragment of sandstone

with brownish gray soil and Shell

21.00-27.00 m : Coarse graind of fragment of

sandstone with weakly brownish

colourd Shell fragment

27.00 - 33.00 m : Very coarse to granule sized black,

blackish gray or sandstone with a lot

of shell fragment.

33.00 - 63.00 m : Medium to Coarse graind sandstone

63.00 - 66.00 m : Gray silt with sandstone

66.00 - 69.00 m : Very coarse graind granule sized

sandstone

69.00-78.00 m : Gray silt with medium graind

sandstone

78.00-90.00 m : Coarse to very coarse graind

sandstone with shell fragment

90.00-150.8 m : Gray Silt with coarse to very corse

graind sandstone

Geology in drill hole

ground surface - 69.00 m : Surface soil and medium-coarse

sandstone with thin layer of siltstone

69.00 - 78.00 m : Gray sandy siltstone

78.00 - 90.00 m : Coarse graind sandstone with shell

fragment

90.00 - 150.8 m : Sandy siltstone

(21) No.21: Lamesdero

Drill hole depth

 $110.00 \, \mathrm{m}$

Drill site elevation

270.00 m high above sea level

Drill hole bottom elevation

160.00 m high above sea level

General characters of cuttings:

Argillaceous and slimy, associated with coarse grain (partly gravelly) formed crushed rock fragments.

General conditions of cuttings:

 $0.00 - 6.00 \,\mathrm{m}$

Weatherd gravel with coarse sand

6.00 - 12.00 m

Grayish clay with gravel

12.00 - 18.50 m

Bluish gray clay

18.50 - 30.00 m

Bluish gray clayey coarse grained

sand/grarel

30.00 - 41.00 m

Bluish gray fine grained sandy

mudstone with few of shale

41.00 - 47.00 m

Bluish gray fine grained sandstone/

gravelly mudstone

47.00 - 49.00 m

Fine sandy claystone

49.00 - 52.00 m

Gravelly mudstone

52.00 - 60.00 m

Bluish gray fine sandy/silty mudstone

(mudstone/claystone with

conglomerate)

60.00 - 68.00 m

Brown colourd Claystone

68.00 - 110.0 m

Bluish gray fine sandy/silty mudstone

(mudstone/claystone with

conglomerate) is accompanied by gray gravelly fine sand to silt at lower part

Geology in drill hole

ground surface - 6.00 m

Weatherd gravel layer

6.00 - 18.50 m

Blue clay with gravel

18.50 - 30.00 m

Clayey coarse grained sand and gravel

30.00 - 68.00 m

Alternation of siltstone and mudstone

68.00 - 110.0 m

Sandy mudstone

(22) No.22: Los Corvanos

Drill hole depth : 120.00 m

Drill site elevation : 390.00 m high above sea level

Drill hole bottom elevation : 270.00 m high above sea level

General characters of cuttings:

Argillaceous and slimy, partly associated with gravelly formed crushed rock fragments at upper · most.

General conditions of cuttings:

0.00-11.00 m : Yellowish brown calcareous

conglomerate

11.00 - 22.00 m : Dark gray mudstone to siltstone

22.00 - 120.0 m : Gray marine deposit fine sandy to

silty mudstone/shale

Geology in drill hole

ground surface - 11.00 m : Calcareous conglomerate

11.00 - 22.00 m : Mudstone

22.00 - 120.00 m : Shale

(23) No.23: Palo Seco

Drill hole depth : 100.00 m

Drill site elevation : 450.00 m high above sea level

Drill hole bottom elevation : 350.00 m high above sea level

General characters of cuttings:

Argillaceous and slimy, partly associated with gravelly formed crushed rock fragments at lower most.

General conditions of cuttings:

0.00 - 4.50 m : Brown mudstone

4.50-100.0 m : Gray marine deposit fine sandy to

silty mudstone/shale are accompanied by gray gravelly fine sand to silt at

lowest part

Geology in drill hole

ground surface - 100.0 m : Mudstone/shale

(24) No.24: Asiento Miguel

Drill hole depth

 $65.00\,\mathrm{m}$

Drill site elevation

630.00 m high above sea level

Drill hole bottom elevation

565.00 m high above sea level

General characters of cuttings:

Argillaceous and slimy, partly associated with gravelly formed crushed rock fragments at middle to upper part.

General conditions of cuttings:

0.00 - 13.00 m

Brown clay with gravel (marly shale)

13.00 - 24.00 m

Light brown calcareous conglomerate/

gravel

24.00 - 30.50 m

: Grayish clay

30.50 - 45.00 m

Grayish gravelly marly shale/

mudstone

45.00 - 65.00 m

Bluish gray shale/mudstone

Geology in drill hole

ground surface - 13.00 m

Marly shale with gravel

13.00 - 24.00 m

Calcareous conglomerate

24.00 - 30.50 m

Clay

:

30.50 - 65.00 m

Marly shale

(25) No.25: Angostura

Drill hole depth

 $50.00\,\mathrm{m}$

Drill site elevation

30.00 m high above sea level

Drill hole bottom elevation

-20.00 m below sea level

General characters of cuttings: Argillaceous and slimy form

General conditions of cuttings:

0.00 - 2.50 m

Brown silty soil

2.50 - 10.00 m

Yellow clayey silt

10.00 - 21.00 m

Dark gray siltstone

21.00 - 50.00 m

Dark brown siltstone to claystone

Geology in drill hole

ground surface - 10.00 m

10.00 01.00

10.00 - 21.00 m : Siltstone

21.00 - 50.00 m : Siltstone to mudstone

Soil and clavey silt

(26) No.26: Baitoa

Drill hole depth : 50.00 m

Drill site elevation : 0.00 m high above sea level

Drill hole bottom elevation : -50.00 m below sea level

General characters of cuttings:

Argillaceous and slimy, associated with coarse grain to gravelly (at

lower \cdot most part) formed crushed rock fragments.

General conditions of cuttings:

0.00 - 3.00 m : Soil and calcareous mud

3.00 - 6.00 m : Calcareous coarse sand

6.00-27.00 m : Milky white siltstone and milky

yellow white limestone

27.00-30.00 m : Very coarse grained calcareous

sandstone

30.00-39.00 m : Medium sand with limestone gravel

(coaral reaf)

39.00-50.00 m : Limestone gravel and milky white

siltstone

Geology in drill hole

ground surface - 3.00 m : Soil and calcareous mudstone

6.00 - 27.00 m : Alternation of calcareous siltstone and

limestone

27.00 - 50.00 m : Calcarerous sandstone and limestone

gravel (coral reef)

(27) No.27: Mariano Cestero

Drill hole depth

: 61.00 m

Drill site elevation

: 680.00 m high above sea level

Drill hole bottom elevation

619.00 m high above sea level

General characters of cuttings:

Argillaceous and slimy, associated with coarse grain to granule size formed crushed rock fragments at lower · most part.

General conditions of cuttings:

0.00 - 30.00 m : Reddish brown soily clay

30.00-36.00 m : Reddish brown soily clay with

brownish black metamorphosed

tuffaceous sandstone

36.00 - 42.00 m : Angular and granule sized brownish

black fragment of altered tuffaceous

sandstone and brownish silt

42.00 - 45.00 m : Coarse graind fragment

45.00 - 48.00 m : Angular and granule sized fragment

48.00-51.00 m : Granule sized fragment, partly

silicified quartz film

51.00 - 54.00 m : Very coarse graind to granule sized

fragment, angular quartz film

54.00 - 61.00 m : Coarse medium grained

Geology in drill hole

ground surface - 36.00 m : Soil clay and metamorphosed

tuffaceous sandstone

36.00 - 61.00 m : Altered tuffaceous sandstone

5.3.2 Classification of the Project Area

1) Classification based on the lithofacies

The geology of the Project Area consists of the formations from Cretaceous to Quanternary on the geological time as mentioned in the item of the geology. Now, these formations could be regarded as follows on the major lithofacies.

` '	alternation of mudstone, sandstone, and marl with imestone and few of sand and gravel (OMce, Mice)
(L2) i	fine sand, silt, clay, intercalated by sand and gravel (Qal)
(L3) s	siltstone (Mscm)
(L4)	calcareous sandstone and marl (Mmca)
	alternation of sandstone and siltstone, or sandstone and/or silty sandstone
(L6)	sandy siltstone or siltstone (Mice)
	weathered granite, tonalite or granodyorite (Intrusive)
(L8)	slate, andesite, tuff and tuff breccia (Ksvts)
(L9)	limestone (Ec)
(L10)	calcareous conglomerate, calcareous sand and gravel . (Mg)
(L11) 1	mudstone (Pcmg)
(L12)	limestone, calcareous mudstone (Oce, Ec)
(L13)	sand and gravel(Qlac, Qtg)
	conglomerate or alternation of conglomerate and sandstone (Mpg, Mpc)
(L15)	limestone (Oc, Ec)

2) Classification based on the Result of the Test Drilling

On the other hand, it was attempted according to the result of the test drilling to divide the study area into the under-mentioned 13 hydrogeological provinces including the none of the data area and the saltmarsh and/or mangrove area.

- (D1) Super-high productive aquifer (Q=300, partly Q>=500, unit: 1/min/m) existing between 60-120 m in depth
- (D2) High to Super-high productive aquifer (200 > Q > = 100, partly Q > = 3000) existing between 30 60 m in depth
- (D3) High productive aquifer (Q > = 100, partly Q > = 1000) existing between 60 90 m in depth
- (D4) Intermediate to High productive aquifer (Q = 100, partly Q > = 500) existing at shallow part of less than 60 m in depth
- (D5) Intermediately high productive aquifer (Q = 100) existing between 60 90 m in depth
- (D6) Low to Intermediately productive aquifer (60 > Q > = 10) existing between 30 60 m in depth
- (D7) Low productive aquifer (20 > Q > = 5, partly Q > = 300 500) existing between 30 60 m in depth
- (D8) Lack of available aquifer up to the basement situated at 60 m in depth (5 > Q)
- (D9) Lack of available aquifer up to the basement situated at 90 m in depth (5 > Q)
- (D10) Lack of available augifer within 120 m in depth (5 > Q)
- (D11) Lack of available aquifer within 150 m in depth (5 > Q)
- (D12) no data area
- (D13) saltmarsh or mangrove area
- 3) Classification of the Hydrogeological Provinces

The Study Area was classified into the 8 major provinces as I - VIII referring to the aforementioned two kind of classifications and the hydrological data. And the province of III is divided into the 4 subprovinces as III-1, III-2, III-3 and III-4, the province of IV is divided into the 3 sub-provinces as IV-1, IV-2 and IV-3, the province of V is divided into the 2 sub-provinces as V-1 and V-2 and the province of VII is divided into the 2 sub-provinces as VII-1 and VII-2 (Fig.5.3.1, Table 5.3.1).

(1) Hydrogeological province I: Cordillera Septentrional

The geology of this province consists of Oligocene or Miocene and
the topographical features is very mountainous at the northern
part and is hilly at the southern part. The large and small flat
intra-mountain basins are scattered in the mountainous side and

the residential areas are restricted to the places. On the other hand, the hilly area are mainly used for pasture. Almost of the river or stream has no water except just after rain. Therefore, many of ponds for agricultural use are constructed on the eroded depression by stream. And the water of those ponds is used also for livestock and laundry.

a: altitude:

0 - 200 - 500 m

b: annual rainfall potential: 600 - 700 mm, very seasonal

c: surfacewater resources potential:

very low and very seasonal

d: groundwater resources potential:

very low and very salty

e: correlation to the classification:

L1/D11

(2) Hydrogeological province II: Rio Yaque del Norte

This province is mainly represented by the alluvial plain, formed by the sediments transported by Rio Yaque del Norte. Here is largely cultivated to be of paddy field and farms. The recharging place is estimated to be located outside of the study area in upstreams of Rio Yaque del Norte. The major tributaries flow down with rich rainfall figures from Central Mountains located at the southward of this province to the north, namely to Rio Yaque del Norte.

a: altitude:

less than 50 m

b: annual rainfall potential: 700 mm c: surfacewater resources potential:

very high, from the rio Yaque

del Norte

d:groundwater resources potential:

very high, with floating material

e: correlation to the classification:

L2/D4

(3) Hydrogeological province III: Southern Rio Yaque del Norte
The general geology consists mainly of the Tertiary beds of
sandstone-mudstone, calcareous mudstone-limestone, and
mudstone-conglomerate. Flat land and hilly region are extend in
this province located at the southward from the Hydrogeological

province II and have cultivated farms and ranches. The major streams flow down from Central Mountains located at the south part of this province to the north, but the downstream of the streams have seasonally few or no water because the water is storaged on the way in dam for agriculture. On the lithofacies, this province is divided into the 4 sub-provinces as the undermention, and then all of the sub-provinces have comparatively high potential of discharge capacity, therefore, this province would be regarded as major target area for groundwater development, especially on the III-3 sub-province. However, it has been detected high concentration of SO₄2- at limited area.

a: altitude:

50 - 300 m

b: annual rainfall potential: 700 - 1000 mm

c: surfacewater resources potential:

low and very seasonal from the rio Chacuey, Maguaca, Gayubin

d: groundwater resources potential:

very high, partly with floating material and SO₄2-

e: correlation to the classification:

III-1 L3/D5

III-2 L4/D3

III-3 L5/D1

III-4 L6/D7

(4) Hydrogeological province IV: Cordillera Central

The geology consists of the Cretacious beds and volcanic products and the granitic rock (tonalite) that intrudes probably slightly later into the Cretaceous formation. Therefore, the Cretacious is metamolphosed into hornfels, slate and phyllite. This province is classified into 3 sub-province (IV-1, IV-2, IV-3).

The IV-1 sub-province consists of granitic rock and the rock bodies are heavily weathered to form uneven rugged appearance of ground surface occurrence to frequently show a spheroidalweathered features.

The IV-2 sub-provinces are symmetrically situated at the both sides of the north and the south of the granitic rock body. The general geology of the both sides are the Cretaceous beds, but the elevation is 100 - 300 m at the north side and is 500 - 1000 m at the south side.

The IV-3 sub-province is neighboringly situated at the southward of the IV-3 sub-province and the geology consists of massive limestone.

In the IV-1 sub-province, a number of inhabitant's abodes are located, and topographically, the typical dendritic drainage is formed, where is the upstream of the tributaries of Rio Yaque del Norte. Cultivated fields and farms are scattered here except steep land situated at the southern part.

In the north IV-2 sub-province, the primary and roof-pendant Cretaceous beds are situated. The inhabitant's abodes are located on the gently inclined part and the intra-mountainous flat land where are partly cultivated or farm. In the South IV-2 sub-province, high land, the inhabitant's abodes are located on only the small scale intra-mountainous flat land. The drainage is showing deep valley with a comparatively lot of water. Water supply to the inhabitants relies on the surface water sources.

In the IV-3 sub-province, the inhabitant's abodes are located on only west of this sub-province.

a: altitude:

IV-1 300~500 m

IV-2 North: 100~700 m

South: 500~1000 m

IV-3 200~1700 m

b: annual rainfall potential: $1000\sim2200 \text{ mm}$

c: surfacewater resources potential:

IV-1 intermediate to high

IV-2 North: very low to

intermediate

South: low cause of

steep and deep valley

IV-3 high

d: groundwater resources potential: Z

IV-1 intermediate

IV-2 North: low

South: intermediate

IV-3 low

e: correlation to the classification:

IV-1 L7/D6

IV-2 North: L8/D9

South: L8/D8

IV-3 L9/D12

(5) Hydrogeological Province V: Western San Juan Basin

Western San Juan Basin, extended on an approximate altitude of 300 to 400 meters high above sea level, shows a general land lay of gently undulated hills and tablelands. The Province, which is geologically featured by a running of the NNW-SSE-directional anticlinal axis, plunging toward NNW, is, consequently, divided into two sub-provinces, i.e., V-1 sub-province, chiefly geologically covered by upper formation units, and V-2 sub-province, chiefly by lower formation units.V-1 sub-province chiefly consists of mudstone beds, associated with overlying unconsolidated calcareous conglomerate bed, while, V-2 sub-province is with a lack of geological association of the overlying bed, the above.Macasia River, which flows down easterly in central part of the basin, has its riverheads in Central Mountains toward north and in Neiba Mountains toward south, and is remarkably ramified by a large number of tributaries of large-scale with substantial water quantities due to a relatively large annual rain fall.Living-use water for most of inhabitants in V-1 sub-province is available from the water sources in superficial weathered parts of calcareous conglomerate or mudstone beds, however, is of small quantities and relatively highly saline.

a: altitude:

V-1 300 - 500 m high

V-2 300 - 500 m high

b: annual rainfall potential: 1500 - 1750 mm

c: surfacewater resources potential:

V-1 intermediate to high

V-2 very low to intermediate

d: groundwater resources potential:

V-1 intermediate

V-2 low

e: correlation to the classification:

V-1 L10/D7

V-2 L11/D10

(6) Hydrological Province VI: Sierra de Neiba

Sierra de Neiba is located between V-2 sub-province and Lago Enriquillo. The Province is situated along the northern lake coast of Lago Enriquillo and is featured by a showing of mountainous land lay, extended east-westerly with relatively gentle slopes toward north, while, relatively steep ones toward south to form a relative height difference of 1500 meters from the Lago Enriquillo water level. The East-westerly ridges, the above, are generally 2300 meters high above sea level, 4 kilometers wide, and are dissected by east-westerly water systems in central part to form a land lay with paralleled mountainous ridges. Ephemeral streams of small-scale, downstreams of those are generally attenuated, and sinkholes are largely developed on ridge slopes and bottom flat lands. The Province geologically chiefly consists of limestone beds of Tertiary age, associated with occurrences of folding axes of N70o to 80oW directions. Inferred faults of small and large scales and lineaments on air-photographs of N70o to 80oW and NW directions are largely developed in the province to cause a localized geological blocking of the Sierra de Neiba body. The annual rain fall figure in the province reaches to the value of 750 to 2000 mm, which is to be of the largest in Republic of Dominica to provide for a sufficient water supply of living-use for the inhabitants in northern part of the mountainous ridges in the province, inversely, surface water flows are little observed in southern part of those to be caused by a swallowing of surface water into sinkholes of karst topography. However, an abundant number of water springs, which are utilized for living and water baths use of inhabitants in the following Province VII, is scatteredly observed in marginal alluvial fans, abundantly developed at hill feet.

a: altitude: -40 - 1700 m b: annual rainfall potential: 750 - 2000 mm

c: surfacewater resources potential:

north high

south high at marginal fans

d: groundwater resources potential:

no used

e: correlation to the classification: L12/D7

(7) Hydrogeological Province VII: Lago Enriquillo

Lago Enriquillo forms a graben-like lay, Lake Enriquillo is at the center, which is situated between Sierra de Neiba toward north and Sierra de Baoruco toward south. The confluent fans in Sierra de Neiba feet, about minus 40 to 100 meters high above sea level, are located in northern lake coast of Lago Enriquillo (subprovince VII-1), while, fault valleys of NE-SW direction are well-developed in southern like coast of that to generally form an altitude of about minus 20 to 20 meters high above sea level, however, of about 100 to 400 meters high in some location scatteredly due to that had been out of intense erosions (subprovince VII-2).

The Province chiefly geologically consists of limestone, calcareous conglomerate and marl beds.

Surface water flow in northern lake coast of Lago Enriquillo is solely originated from karst springs of large scale in marginals alluvial fans of Sierra de Neiba hill feet. Surface water flow in southern lake coast of that, behind of which Sierra de Baoruco with a large figure of annual rainfall is situated, is not perennial to be caused by significant permeation of rain water into underground of Sierra de Baoruco body.

A large quantity of ground water, which underlies limestone beds, is estimated to be possible in some occasions, however, the selection of water yielding sites of those types are to be uneasily accomplished with required cautious studies. A relatively high content of sulphate ion in a part of karst spring water in the Province, meanwhile, a tendency to turn to a higher salinity of ground water in clastic-rocks-covered area of lower elevation is also known. Drill site locations of water well development are considered to be confinedly selected southern-sided apart from the area, where rock salt beds are being mined in large scale in eastern La Salina.

a: altitude:

VII-1 -40 - 100 m

VII-2 -40 - 400 m

b: annual rainfall potential: 500 - 750 mm

c: surfacewater resources potential:

VII-1 high at marginal fans

VII-2 low

d: groundwater resources potential:

VII-1 high at fan

VII-2 intermediate

e: correlation to the classification:

VII-1 L13/D12

VII-2 L14/D2

(8) Hydrogeological Province VIII: Sierra de Baoruco

Sierra de Baoruco is southernly adjacent to sub-province VII-2, and confines the southern end of Sierra de Baoruco mountainous ridges. The province is located on an altitude of 100 to 2100 meters high above sea level and shows a similar character of geology and land lay to those in Province VI, i.e., welldevelopment of geological blocking by N70o to 80oW-directional faults and of karst topography. Fault valleys in northern foot provide for the significant occurrences of sufficient aquifers in sub-province VII-2.A significant figure of annual rain fall has been recorded in the Province, however, surface water flows are not perennial being caused by a significant permeation of rain water into underground of Sierra de Baoruco body. A large quantity of ground water, which underlies limestone beds, is expected to be possible, however, the selection of water yielding sites of those type are to be uneasily accomplished with required cautious studies.

a: altitude:

VIII 100 - 2100 m

b: annual rainfall potential:

750 - 2000 mm

c: surfacewater resources potential:

VIII low

d: groundwater resources potential:

VIII high at alluvial fans

e: correlation to the classification: Z

VIII L15/D12

5.3.3 Groundwater Quality

Groundwater test samples in polyethylene containers, collected before a completion of continuous pumping tests, refrigerated by a filling with ice chips, were sent to INAPA's chemical laboratory for an establishment of chemical assays of the elements and etc., as shown below.

$$HCO_3^-$$
, Cl^- , SO_4^{2-} , K^+ , Na^+ , Ca^{2+} , Mg^{2+} , NO_3^- , NO_2^- , NH_4^- , F^- , PO_2^{2-} , Cr^{6+} , Fe, Cu, Zn, Mn, Pb and Total Hardness

Chemical assay results are summarizedly shown in Table 5.3.2, while, the assay values, which exceed the allowable limitation values of ground water quality, stipulated by the INAPA, are shown in the following table in references to the related drill hole numbers:

Drill hold No.	Hydro- geologic al province		Total Solid	Na+	Ca2+	Mg ²⁺	SO ₄ 2+	Cl-	Total hardness
		Allowable Limitation value in ppm	1500	:	500	600	400	800	500
1	I	, , , , , , , , , , , , , , , , , , ,	3032	1331			850	1500	
2	I		6731	3213	_	-	4750	2500	771
3	I		1859	-	_	_	883	_	510
4	IV	•	-	-	_	- ,	500	-	-
13	IV 2		. .	1610		· <u>-</u>	1400	, ANDE	_
25	VI 2			49151	3209	3668	18500	67250	6877

Piper's diagram in Figure 5.3.2 and hexadiagram in Figure 5.3.3 are resultantly shown in reference to Table 5.3.2, which specifies and estimates the contents of HCO_3^- , $C\ell^-$, SO_4^{2-} , K^+ , Na^+ , Ca^{2+} and Mg^{2+} based on the results in Table 5.3.1.

Key diagram provides propensities as shown below: the values, which exceed the allowable limitations stipulated by the INAPA, tend to be shown in a close position to $Ca^{2+}+Mg^{2+}$ line in the key diagram. The general value propensity of chemical quality of ground water in the project areas, other than ones in mountainous districts with rich rain fall figures, is estimated to be shown close to the range of sea water. Content

values of cations are estimated to be gatheredly shown in the field, slightly close to Mg^{2+} , being apart from the perpendicular line toward $Ca^{2+}-Mg^{2+}$ line from the apex, Na^++K^+ . Inversely, content values of anions are estimated to be scatteredly shown in a whole of the three-component system. The general propensities of ion content values in respective hydrogeological provinces are shown in Figure 5.3.4 to set up standards of the areal selections of ground water development purposes. The figure of Province VII is not shown because of a dispersed result of value distributions, while, that of Province VII is also not shown due to a lack of assay values. Figure 5.3.4 is to show an estimation of high possibility of water yields of good quality in provinces III, IV and VI.

5.4 Groundwater Potentials

5.4.1 General Potentials of Groundwater

The study area has been divided into eight hydrogeological provinces initially, and parts of the provinces have been further sub-divided into some sub-provinces on the bases, shown in the previous section 5.3.2 - 3). Yield Capacity in the Table 5.3.1 shows the estimated potential quantities of ground water development program in the Project Area.

Estimated potential quantities of ground water development are shown on the results by pumping tests of test well drill operations. Potential quantities were estimated on an assumption, in references to the specific capacity values, obtained by the pumping tests, that the drawdown values of water level after about 24-hour continuous pumping-up operation should allowably be in the range of about 15 to 20 meters in principal. Drill depths values, shown in Table 5.3.1, show the totals of the depths toward aquifers, specified by test water wells, and depths of 20 meters each in considerations of the variations of electrical conductivity values observed in association with pumping tests and of disposals of fine sand materials break into wells through water screens.

The figures of (D1) through (D13) in the previous section 5.3.2 - 2) substantially show that the smaller figure should designate a possible occurrence of more productive aquifer. Consequently, (D1) through (D7) would designate an operative potential of ground water by water pump operations in aquifers, while, (D8) and (D9) would be that by hand-pump operations, while, (D10) and (D11) would be with an unlike possibility of

aquifers of ground water development. (D12) provide a lack of informations, while, (D13) would designate a possibility of a mixing of sea water or of sea water itself. Those characters are shown below in Figure 5.4.1. The figure shows that the aquifers delineated in upper positions would be of more productive, while, in more left-sided positions would be of more shallow-seated.

5.4.2 Groundwater Potentials in Respective Hydrogeological Provinces

1) Groundwater Potentials

Table 5.4.1 is established the interpretations of ground water development potentials, in connections with the classifications of category shown in the previous section 5.4.1 concerning to respective hydrogeological provinces. The figures of the item "Quality" in the Table are specified in compliance with the below categories in accordance with the chemical contents in the Figure 5.3.4, previously shown.

- a: a shows the field, chiefly covered by Hydrogeological Province IV. Ground water of good quality is potential.
- b: b shows the field, chiefly covered by Hydrogeological Province III. Ground water of good quality is potential. Qualitative potentials with close values to the allowable limitation by INAPA are variedly included. Hydrogeological Provinces I and IV are included in this field.
- c: c shows the field, chiefly covered by Hydrogeological Province VI. Characterized by carrying high contents of Na⁺ and Cl⁻, however, less than the allowable upper limitation values by INAPA.
- (1) Hydrogeological Province I: Cordillera Septentrional Available aquifers are estimated to be unlikely potential within the depth of 150 meters in the Province I. Underground geology chiefly consists of the alternations of mudstone, sandstone and marl beds of Tertiary age. Static water level is seated 10 to 20 m deep, a water recharge potential in underground is estimated to be of 10 liters per min. to lead to an estimated drawdown value of 50 to 80 m. Content values of Cl⁻ and SO₄²⁻ reach so high as

more than 1500 ppm and 850 to 5000 ppm, respectively. Ground water development potential is estimated to be likely very low.

Į.

- (2) Hydrological Province II: Llano de Yaque del Norte Aquifers in the Province II, chiefly located in fine-grained sand and clay beds of Quaternary age and in intercalated sand and gravel beds, are estimated to be seated within the depths of 60 m underground. Ground water occurrences in the Province are unconfined, water quality is some around the values of the upper limitation, stipulated by the INAPA, while, an abundant quantity of solid suspension is locally observed. Static water level is seated about 5 m deep, while, water yield potential is expected to be of 100 liters per min. A highly-available aquifer, with a potential water yield of 500 liters per min. and a drawdown value of about 10 m, is locally observed.
- (3) Hydrogeological Province III1: Sur del Yaque del Norte Aquifers in the Province III are estimated to be formed in the alternations of siltstone and fine-grained sandstone beds of Tertiary age and to be seated 60 to 90 m deep underground, while ground water is estimated to be weakly confined. General static water level elevations are still obscure by the current work, while, a water well drill test by the current work has elucidated an occurrence of confined ground water, about several meters thick. The Province III shows a similar character of water quality, water quantity and drawdown value range to those in Province I.
- (4) Hydrogeological Province III2: Sur del Yaque del Norte Aquifers in Providence III2 are estimated to be formed in calcareous sandstone and marl beds of Tertiary age and to be seated 60 to 90 m deep underground. Ground water in the Province is estimated to be of confined type, while, water quality itself generally resembles to that in Province I. However, an abundant quantity of water recharge under a possible geological control, with a high content value of SO₄²⁻, has been observed. Static water level in the Province is generally estimated to be seated 20 m deep underground, while, a potential water yield is estimated to be of more than 100 liters per min. A water yield

under a particular geological structure, as shown in the above, is inferred to be of about 1000 liters per min., while, the drawdown value while pumping operation is estimated to be of about 5 m.

- Aquifers in the Province III3: Sur del Yaque del Norte Aquifers in the Province III3 are estimated to be formed in the alternations of arkose and massive sandstone and siltstone beds of Tertiary age and to be seated 60 to 120 m deep underground. Ground water in the Province is estimated to be of confined type. The Province is evaluated to be with the highest possibility of ground water development in the study area and the highest potential of ground water yield of good quality of the type a, stated above, which is also observed nearby Chacuey and Canderon. General water quality in the Province shows a resemblance to that in Hydrogeological Province I. Static water level is generally estimated to be seated 16 m deep, while, 50 m deep in Palo Blanco. A potential water yield is generally inferred to be of 300 liters per min., while possibly 500 liters per min. locally.
- (6) Hydrogeological Province III4: Sur del Yaque del Norte
 Aquifers in the Province III4 are estimated to be formed in
 calcareous sandstone beds of Tertiary age and to be seated 30 to
 60 m deep underground. Ground water in the Province is of
 confined type. Water quality generally shows a resemblance to
 that in Province I, however, is slightly high in Cl- quantity.
 Static water level is generally estimated to be seated several to
 ten and several meters deep underground, while, a potential
 water yield is inferred to be of about 5 to 20 liters per min.
- (7) Hydrogeological Province IV1: Cordillera Central Aquifers in the Province IV1 are estimated to be formed in weathered granitoid body (tonalite) of Cretaceous age and to be seated 30 to 60 m deep underground. Ground water in the Province is of unconfined type, while, the water quality, of Ca (HCO₃)₂ type, is evaluated to be the best in the Project Area. Potential water yields are evaluated to be variable in connection with the variations of thickness of weathered parts of tonalite body, what lead to an estimation that the water yields from the

wells allocated nearby the ridges of mountainous hills should be small, inversely, should be large from the wells, allocated in less-undulated hilly areas. Static water level is estimated to be seated 5 to 15 m deep underground, a potential water yield is inferred to be of about 10 to 60 liters per min.

(8) Hydrological Province IV2: Cordillera Central
Province IV2 is dividedly situated northerly and southerly,
between where the Province IV1 is located. Aquifers in the
Province, both of in north and in south, are estimated to be
formed in mudstone, calcareous sandstone and sandstone beds of
Cretaceous age, while, a potential water yield of ground water is
estimated to be of 10 liters per min.

Occurrences of available aquifers in the bed rocks within the depth of 80 m deep are estimated to be unlikely potential in nouthern Province IV2. Static water level in the north is estimated to be sharply variable in the range of 8 to 50 m deep underground. A water-qualitative possibility of local high contents of SO_4^{2-} and Cl^- is required to be cautiously examined.

Occurrences of available aquifers in the bed rocks within the depth of 60 m deep are estimated to be unlikely potential in southern Province IV2. Static water level in the south is estimated to be seated about 14 m deep underground, while, water quality is of Ca (HCO₃)₂ types.

- (9) Hydrogeological Province IV3: Cordillera Central General geology in the Province IV3 chiefly consists of limestone beds. Informations of ground water in the Province have not yet been available.
- (10) Hydrogeological Province V1: Valle de San Juan
 Aquifers in the Province VI are estimated to be formed in
 calcareous conglomerate and muddy-calcareous sandstone beds of
 Tertiary age and to be seated about 30 to 60 m deep underground.
 Ground water in the Province is specified to be of unconfined type
 formed in loosely consolidated calcareous conglomerate beds,
 which spatially extend up to ground surface, and to be of confined
 type formed in calcareous sand-gravel beds, which are overlain by

aquiclude siltstone beds. Ground water is relatively qualitatively rich in Cl⁻ content, which does not exceed the allowable upmost limitation value stipulated by the INAPA. Static water level is estimated to be seated within the range of 20 m deep underground, while potential water yield is inferred to be of 5 to 20 liters per min.

- (11) Hydrogeological Province V2: Valle de San Juan
 Occurrences of available aquifers, within the range of 120 m deep
 underground, are hardly observed in the Province V2. General
 geology underground in the Province chiefly consists of
 calcareous mudstone beds of Tertiary age.
- (12) Hydrogeological Province VI: Sierra de Neiba
 Aquifers in the Province VI are estimated to be formed in calcareous sandstone layers, intercalated in calcareous mudstone beds. Ground water quality in the Province shows a resemblance to that in Hydrogeological Provinces I and III. Static water level is estimated to be seated about 20 m deep underground, while, potential water yield is inferred to be of 5 to 20 liters per min.
- (13) Hydrogeological Province VII-1: Cuenca de Enriquillo
 General geology in the Province chiefly consists of sand-gravel
 beds. Informations of ground water in the Province have not yet
 been available.
- (14) Hydrogeological Province VII-2: Cuenca de Enriquillo
 Aquifers in the Province VII-2 are estimated to be formed in
 calcareous conglomerate bed or in alternations of conglomerate
 and sandstone beds of Tertiary age. Rock salt beds are
 distributed in the environs of the Province to cause a carrying of
 very high contents of Cl⁻ and SO₄²⁻ in ground water. The
 selections of water well drill sites are required to be cautiously
 examined to be allocated as far as the southern part of the
 Province, where ground water of Ca (HCO₃)₂ type should be
 possibly supplied under a reasonably certain circumstance.
 Static water level is estimated to be seated about 20 m deep
 underground, while, potential water yield is inferred to be of 100
 to 200 liters, locally of up to 300 liters, per min.

(15) Hydrogeological Province VIII: Sierra de Baoruco
General geology in the Province VIII chiefly consists of limestone
beds. The Province shows a resemblance of hydrogeological
character to that in the Province VI, while, informations of
ground water in the Province have not yet been available.

2) Examinations of Influences by Pump-up Operations

A sphere, where an influence by drawdown of water level by pumping should be taken place, is referred as the "influence sphere". Two wells are substantially required at least for an estimation of a value of the above, one is for pumping and the other is for a determination of water level. An outlined estimation of the above value is made at times out of a requirement of an accuracy by using a single well, where pumping and water level determination should be operated. The value of "r", which is normally designated to be of a distance between two wells, the above, is tentatively used to be of a radius value of the above single well.

The extensions of the "influencial radius", outlinedly estimated by the above approximation in the current study area, on an assumption that yield capacity, shown in Table 5-3-1, should be continuously operated for 24 hours, are inferred to be of less than 100 meters. This would lead to a conclusion that drawdown effects of water level should be impossible when intervals of water wells for ground water development in the current study area should be separately allocated more than 200 meters apart respectively.

Relations between time hours and drawdown effect, concerning to pumping operations, are shown in Figure 5.4.2.

Holes 9 through 12, which have been operated in the III3 sub-province, are specified to be of the category of "D1", while, Hole 13 is of "D9" in the IV2 sub-province and Hole 16 is of "D6" in the IV1 sub-province.

Water balance estimation from a regional standpoint of potential view has been made, however, the accuracy of the estimations is considered to be barely satisfactory enough because that the meteorological observatory stations are currently in operations with an insufficient coverage of the current Project Area, which was demarcated as being crossing to the general topographical configuration to intersect it in oblong mode. Tentative water balance estimation by the Phase-I work has been revised in line with the divisions of water Province-subprovince by the current work. Annual possible recharge of ground water and possible water yield per day per square kilometer in respective hydrogeological provinces are summarized in Table 5-4-2.

5.4.3 Recommendations

Hydrogeological Provinces in the Project Area, to be deserved of the ground water development programming in future are shown below in accordance with the interpretation results of water yield potentials by the current works.

Hydrogeological Province III : Llano de Yaque del Norte
Hydrogeological Province IIII : Sur del Yaque del Norte
Hydrogeological Province IIII : Sur del Yaque del Norte
Hydrogeological Province IIII : Sur del Yaque del Norte
Hydrogeological Province IIII : Sur del Yaque del Norte

Hydrogeological Province IV1 : Cordillera Central
Hydrogeological Province IV2 : Cordillera Central
Hydrogeological Province IV3 : Cordillera Central
Hydrogeological Province V1 : Valle de San Juan
Hydrogeological Province VI : Sierra de Nelba

Hydrogeological Province VII-1: Cuenca de Enriquillo Hydrogeological Province VII-2: Cuenca de Enriquillo Hydrogeological Province VIII: Sierra de Baoruco

1) Hydrogeological Province II: Llano de Yaque del Norte

The Province II is evaluated to be that ground water in the Province should be potentially developed by using submersible pump operations. Water well sites are to be successively re-examined and decided in accordance with the development progress under a cautious remarking of water quality, particularly of SO_4^{2-} and Cl^- contents, since the general characters of ground water quality in the Province by the current work are remarked to be shown in a wide range on Piper's diagram.

2) Hydrogeological Province III1: Sur del Yaque del Norte

Hydrogeological characters in the Province III1 show a resemblance to those in Province II. Ground water in the Province is evaluated to be developed by using submersible pump operations. The SO₄-contents are to be cautiously remarked since that the general characters of water quality on the Piper's diagram in the Province show a resemblance to those in Provinces III2 and III3.

3) Hydrogeological Province III2: Sur del Yaque del Norte

Confined ground water resources with local abundance, under a geological structural control in the Province III2, are evaluated to be potentially developed by using submersible pump operations. Relations between water quality and geological structure are considered to be further studied in more details since that ground water in Tertiary-aged beds in the Province shows a very high content of SO42- at times. Developments of deep-seated ground water are estimated at present to be out of the future programming.

4) Hydrological Province III3: Sur del Yaque del Norte

Ground water development in the Province III3 is evaluated to be with the potentials of water, of Ca(HCO₃)₂ type, of the highest quality among the current project provinces and of large quantity.

5) Hydrological Province III4: Sur del Yaque del Norte

Ground water development in the Province III4 is evaluated to be possibly implemented by using manual pump operations. Pumping tests show an insufficient figures of potential water yield, while, static water level in the Province is shown to be shallow-seated.

6) Hydrogeological Province IV-1: Cordillera Central

Ground water in the Province IV-1 is evaluated to provide a water quality of the highest among the current project provinces. Ground water development by using manual pump operation is estimated to be suitable in the Province, since that static water level is considered to be shallow-seated and potential water yield figure is barely sufficient enough.

7) Hydrogeological Province IV-2: Cordillera Central

The Province IV-2 is divided into two parts, north and south. Ground water development in northern Province IV-2 is evaluated to be possibly implemented by using manual pump operations. Static water level is estimated to be seated in the range of 8 to 50 m deep underground, widely fluctuated with test well locations. Ground water development in southern Province IV-2 is evaluated to be possibly implemented by using manual pump operations, since static water level is shallow-seated. Water quality in the south is estimated to be of Ca(HCO₃)₂ type.

8) Hydrological Province V-1: Valle de San Juan

Ground water quality in the Province VI is estimated to be rich in Cl-content, which does not exceed the allowable upmost limitation value of Cl-, stipulated by the INAPA. Ground water development is evaluated to be possibly implemented by using manual pump operations, since static water level is estimated to be shallow-seated.

9) Hydrogeological Province VI: Sierra de Neiba

Ground water development in the Province VI is evaluated to be possibly implemented by using manual pump operations since static water level is estimated be to located within the range of 20 m deep underground. Water quality in the Province is estimated to be of Ca(HCO₃)₂ type.

10) Hydrogeological Province VII-2: Cuenca de Enriquillo

Water well sites for future ground water development in the Province VII-2 are considered to be selectedly possibly allocated as far as the hillfoot district of Sierra de Baoruco, where ground water of Ca(HCO₃)₂ type is available, because that rock salt layers are distributed in the Province to cause ground water occurrences of high salinity and high SO₄²⁻ contents.

5.5 Conclusions

The current Project Area has initially been divided by hydrogeological and geological structural studies into eight hydrogeological provinces, from I through VIII. Those studies have further been proceeded on the bases of modes of ground water occurrences to subdivide such certain provinces as Province III into sub-provinces from III-1 through III-4, as Province IV into those from IV-1 through IV-3, as Province V into those of V-1 and V-2, and as Province VIII into those of VIII-1 and VIII-2.

Section 5.3.2, 3) shows general lay, land utilization, meteorological characters, water supply source utilization, general geology particularly on lithofacies and ground water potentials in respective Hydrogeological Provinces and sub-provinces. Section 5.4.2 provides ground water potential in details in those provinces, while, section 5.4.3 shows the provinces, for which future ground water development programmings are evaluated to be deserved of.

Sub-province IV-2, which is chiefly occupied by granitoid body, partly subjected by weathering, is evaluated to be stably productive of ground water of high quality, however, is unlikely estimated to be highly potential from the viewpoint of potential yield quantity of water.

Sub-province III-3, in where sand and gravel beds of arkose and metamorphosed rock occur at the Tertiary-base, is evaluated to be highly potential from the viewpoints of quality and quantity of ground water. Sub-province III-3 includes Dajabon area. Stock farms are widely running in flat or hilly lands, which extend within the range of some 15 km from Dajabon. Inhabitant abodes are interspersed at every some several kilometers interval.

Sub-province IV-2 is situated on both of northern and southern sides of granitoid body. Ground water of good quality is estimated to be available in southern part of the Sub-province, however, potential water yield from a single well is estimated to be about 10 liters per min.

Hydrogeological Province VI is evaluated to carry ground water of Ca(HCO₃)₂ type, however, surface water of quantitative abundance is currently utilized for daily living purposes in northern part of the Province, while, ground water development in southern part of the Province is estimated to be hardly implemented under topographical difficulties.

Hydrogeological Province VI is evaluated to be that flow-out or spring water, observed in alluvial fans nearby footlands of Sierra de Neiba and Sierra de Baoruco and ground water of Ca(HCO₃)₂ type are evaluated to be possibly utilized.

General geology in the current Project Area chiefly consists of fine-grained clastic sediments to generally cause an insufficient development of available aquifers underground. The general permeability coefficient value in the study area, based on an assumption of the transmissibility value, obtained in accordance with test water well drill work and an assumed average thickness of aquifer of 20 meters, is estimated to be in the range of 10^{-4} to 10^{-5} cm²/sec. This value is evaluated to be fairly low to be represented for any aquifer of the normal averaged character. Water well development works are currently in progress by INAPA in western parts of the Republic of Dominica for such aquifers with the characters as shown above.

The averaged chemical qualitative character of water for potations must be in the range of Ca(HCO₃)₂ - NaHCO₃ type on Piper's diagram. The allowable upmost limitation range for water of drinking use by INAPA is extended to that of ground water of Ca(HCO₃)₂ - CaSO₄ or CaSO₄ - NaCl types. This is considered to possibly be caused by being that ground water, available in the Republic of Dominica, generally carries a relatively high content of NaCl or CaSO₄.

It has been reaffirmed that the evaluation works of ground water development potentials in the Republic of Dominica should have to be examined with emphases not only on water quantity but equally on water quality. It is likely considered that an extension of certain Cl⁻ content value in ground water shows a distributive feature of areal localization in the Project Area, meanwhile, that of high SO₄²⁻ content value unlikely provides a distributive localization, but shows scattered distributions of extremely high SO₄²⁻ content value. Those are widely observed from north toward south in western Republic of Dominica. Hydrological behaviors of chlorine and highly occurring sulphate ions of localized predomination are to be consecutively studied in more details in relations to geology, geological structure and historical geology in the Project Area.

TABLES

	Covered field	Cover the earth and widely used for both land and water areas.	The same with the above	The same with the above	The same with the above Preparation of geographical maps is possible because of stereo visibility
	Observation period (day)	66	16	16	38
	Orbital height (km)	920	700	700	830
	Observation width (km)	185	180	180	09
	Resolution (m)	80	The same with the above	30 120 30	10 20
Observation	Wavelength range	um 0.5-0.6 0.6-0.7 0.7-0.8 0.8-1.1	The same with the above	0.45 - 0.52 0.52 - 0.60 0.63 - 0.69 1.55 - 1.75 10.40 - 12.50 2.08 - 2.35	0.51 - 0.73 0.50 - 0.59 0.61 - 0.68 0.79 - 0.86
ed for Earth	Wavelength range	MSS	MSS	TM	HVR
satellites us	Country of launching	USA		USA	France
Details of Major Satellites used for Earth Observation	Year of launching	1972.7 (Functional stoppage) 1975.1 (Functional stoppage) 1978.3 (Functional stoppage)	1982.7 (Functional stoppage)	1984.3	1986.2
·	for earth ation	No.1 No.2 No.3	No.4	No.5	No.1
Table 2.4.1	Satellite for earth observation	LANDSAT	LANDSAT		SPOT

Table 2.5.1 Employed Aerial Photographs Scale 1:50,000 Data: 1983 - 1984 Photographs Photographs: US Army

Course No.	Phot	togi No.	aphs s	Number of Photos	Roll No.	Data Photo- graphed
1	594	25	604	11	R7	Feb/16/83
2	1870	~	1884	15	R15	Jan/12/83
3	2207	~	2191	17	R18	Jan/21/84
4	1813	_	1831	19	R14	Jan/11/84
5	1625	-	1642	18	R12	Mar/02/83
6	1754	_	1768	15	R14	Jan/11/84
7	2211	_	2220	10	R18	Jan/21/84
8	2890	_	2898	9	R26	Mar/07/84
9	2443		2435	9	R20	Jan/24/84
10	2410	-	2414	5	R20	Jan/24/84
11	2446	_	2452	7	R20	Jan/24/84
12	2366	_	2354	13	R20	Jan/24/84
13	2377		2389	13	R20	Jan/24/84
14	3422	-	3416	7	R31	Jan/21/84
15	1304		1311	8	R11	Mar/05/83
16	1300	_	1293	8	R11	Mar/05/83
17	154	-	145	10	R4	Feb/04/83
18	2029	-	2039	11	R17	Jan/19/84
19	235	_	227	9	R4	Feb/08/83
20	251	-	258	- 8	R4	Feb/08/83
21	302	-	294	9	R5	Feb/08/83
22	39	-	46	8	R1	Jan/26/83
23	26	•	14	13	R1	Jan/26/83
24	677	-	653	25	R8	Feb/16/83
25	685	_	700	16	R8	Feb/16/83
26	2322	- ' <u>-</u>	2305	18	R20	Jan/24/84
27	3007	-	3012	6	R28	Mar/12/84
28	3003	*	3001	3	R28	Mar/12/84
	2999	-	2995	5	R28	Mar/12/84
				(total 325)		

Table 2.5	.2 Topographic	Maps of the Study Area
No.	Map ID	Name of Map
1	594 - IV	GUAROA
2	5871 - IV	BOCA CACHON
3	58 71 - II	JIMANI
4	5875 - I	MONTE CRISTI
5	5875 - II	PEPILLO SALCEDO
6	5874 - I	DAJABON
7	5874 - II	LOMA DE CABRERA
8	5 873 - I	RESTAURACION
9	5873 - II	BANICA
10	5872 - I	LAS MATAS DE FARFAN
11	5872 - II	EL CERCADO
12	5871 - I	LA DESCUBIERTA
13	5871 - II	DUVERGE
14	5870 - I	PUERTO ESCONDIDO
15	5870 - II	PEDERNALES
16	5975 - IV	CACAO
17	5975 - Ⅲ	VILIA ISABEL
18	5974 - IV	MARTIN GARCIA
19	5974 - III	SANTIAGO RODRIGUEZ
20	5973 - IV	JICOME
21	5973 - II	ARROYO LIMON
22	5972 - IV	PEDRO CORTO
23	5972 - III	DERRUMBADERO
24	5971 - IV	GALVAN
25	5971 - II	NEIBA
26	5970 - IV	LA SALINA
27	5970 - III	POLO
28	5975 - I	BARRANCON
29	5975 - II	EL MAMEY
30	5974 - I	MAO
31	5970 - I	BARAHONA

List of Prospecting Sites (Monte Cristi) Table 5.1.1 (1) Annex

hase					*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	illase	ospec	Line	umber	Remarks
o i	ame			of Site	
I M31	Las Canas	Λ	63		near a pond
 		>	EM6	ວາ	
8 W I	ates Hisuero	VE	ı İ	_	Canal and a river
	Las Aguas	V_{E}		 	ear a Canal
I M27	Sanita		_	 	ear a Hand
I	Santa Maria		ı İ	İ	
(EW	NS) = (48.6, 92.5	N E		 	
I (EW	\overline{NS} = $(48.5, 90.2)$	VE	0	i က]
- W	Botoncillo	VE		က I I	1
I (EW	NS) = (48.2, 87.8)	37		 	
- W - I	Villa Garcia			i 	11
$\vec{E}\vec{\Psi}$	S) = (33.8, 86.5	التأا	1	 က	
_ M	El Copey 1	Z	Ü	4	ear a Windmi
- W	El Copey 2	VE	DD	 	ear a Windmill
I M 1 Ø	Batey Juliana	VE		S	near a Canal
<u>I </u>	Hato Viejo	V_{E}	~		near a River
	Hatillo Palma	\\ 		 ကျ	River
I M24	Jobo Corcobado	<u> </u>	1	4	ear a Hand-pump
I (EW	(37.2, 73.2	$V\bar{E}$	-	-	
×	La $Gata$	VE	1	2	near a River
I (EW	= (50.5, 87.	[±] 	EMS		
		A	19	64	
Sub	Total	EM	63	120	

Table 5.1.1(2), List of Prospecting Sites (Dajabon) Annex

DAJABON	i 1 1					
-2		liase	Prosp	ng Line		Remarks
 	No.	- 1	Method			
	<u>D</u> _2	Cayuco 1		A	 000	r a Winamill and H-
1	(EW,	NS) = (19.0, 6)	VE) 	 	ear a River and Spring
# # # # # # # # # # # # # # # # # # #	· [[L]	EM 1	39	•
	D 2	Cayuco 2			 ၂ 	near a Hand-pump
 		Palo Blanco	VE			ear a Windmill
		NS) = (26.5.7	. 8) VE	任	(m)	ear a River
	(EW	NS) = (48.6.7	VE.			} {
 	Si	Troyos	ZVE			Han
	D 2	Cayuco	VE	W.	2	ar a Well
- 1	2	-Cayuco 4	VE		2	ar a Han
i	 S S	Clavellina	E VE	 	1	ar a Hand-bum
ı	ا ا ا	Esperon	Z E		 	ar a Hand-bum
		Jacuba	l [L]		 	ear a River and Con
í	D	Jacuba 2	(1)		 	ear a River and Ca
 	اً	Donamaria	[1]	! ! !	 	ar a Canal
	D	Campeche	i E		 လ	ear a Rive
	D -	Campe	(L)	Z	1 1 1 1 1	1~4
ŧ	D35 -	Les_Indie	التناا	AA		ar a Windmill and Hou
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ا ما	La Vigia	123	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	ar a Motor-bumb and H b
1 1 1 1 1 1	D18_	El Cajuil	Z	H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1	D552	Las Lagunas		EE	 - 	
1 1 1	(医翼	NS = (30.0.4	$\cdot 2$	五五	 	
	(EW.	NS = $(31.0.4$	2	1 1 1 1	2	
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	<u>D21</u>	La Penita Arri	$a_{-}=VE$	A E	2	ear a Hand-bum
	50	El Aguacate	VE	<u> </u>		a Hand
] 			EM4	50	•
į	D	Sabana Larga	VE^{-}	তে		ear a Hand-bum
]] ! ! !	D 4	La_Cienaga	 	EM2	79	Hand-bump an
	037	Partido		Z	51	ear a Water Service
			VE	25	93	
	Sub_T	otal	. i	4	219	
 	! ! !	 - - -	 	1		

		Annex	Table 5.1.1 (3)		List of	Prospecting	Sites (Elias Pina)
IAS PINA	1						
 W	Λ 		Prospe	cting	 Line	Number	Remarks
1	No.	Name	1			of Site	
	(EW,	NS) = (20.9.	Λ (S	I PL	3L	ear a Canal
	E31	alo Seco	Ā	S	ın,	2	near a Canal and Hand-pum
	[四] [日]	Guanito		S	EPB	 	near a Hand-pump and
 	 ម្សា	Higuerito	A	S	14 14	i [ຕງ 	near a Windmill
ĺ	 	La Rosa		S	iri Ioʻ	ı	
Ĭ	 	Sabana larga		S	9	i	near a Hand-pum
i	 	Los Corvanos	A	S	EP7	i l lက l	near a Hand-pump
1	[円]	La Guna		1 S	1 19 18 18 18 18	 	near
ŧ I	(円)	El Pino	Λ	S	ig S	i	near a Spring
	 [±]	La Meseta	<u> </u>	S	EPIØ		near a River
! ! • • • • • • • • • • • • • • • • • • •	(EW,	NS) = (21.0)	5)V	S	EPI I	m	near a Water
	l :	La Tinajita			<u> </u>		ear a River
1	E 2	El Sobacon	 	×	15		ear a Rive
 	! 	; ; ; ; ; ; ; ; ; ; ; ;	T NE	S	; ; ; ; ; ;	3.0	
	Sub	_	च्य	W	7	26	
			1				

		Annex	Table 5.1.1 (4)	List of P	rospecting	List of Prospecting Sites (Independencia)
INDEPEN	DENCI		:			
0	. 	llage	Prospecting	g Line	 Number	Remarks
 	No.	ø	:		of Site	
		Jimani 1		IDI	 (9) 	ĺ
 	,	Jimani 2	VES	7 D2	! !	
 ((Boca Cachon	VES	<u>I</u> D3	် 	near a Spring
 Peng	 	Guayabal		P	i S	near a Sp
 		Bayahondal	VES	_7 <u>D</u> 5_	2	near a Spring
! ! !~~!	 	Descubier		IDE	9	near a Spring
	 	Los Cache	les	10	! ! ! ! ! !	near a Ca
	! !				25	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	Sub Tota	Total	Mil	6	6	

	5.1.1(5) List of Prospecting Sites (Monte Cristi)	Prospecting Line Number Method of Site	VES	VES	VES M 3 5 5 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	VES M 4 3 mm near a Pond	VES Rear a	VES Mand-pump	85	VES Mig 2 near a Canal	MII 3 near a Hand	VES MI4 5 rear a River	VES	N 19 5 near a River	ES N21 3 near a Win	ES near a Pond	ES	ES 3	ES M31 2 near	ES 3	ES near a Windmill, Pond	ES M36 3 near a Windmill	VES M37 6 near a Pond	VES near a Can	
Table 5.1.1 (5) Table 5.1.1 (5) Table 5.1.1 (5) Table 5.1.1 (5) Table 5.1.1 (6) ist of Prospecting S	ing Line Number of Sit			M 3 5	M 4						٠	I	 (S	N	S	12	33	3	lW	iΩ	(PO			
ব । ৩ । তাতা । । । । । । । । । । । । । । । ।	Annex Table 5.1.1 (5)	Name Method	uro VE	el de Torres VE	$Viejo_{}V$	Aguitas	Clavellinas	inta	y_Higuero	y Juliana	Conncos	Ranchadero	za_de_ToroV	ubincitoV	<u>aya l</u>	Amaceyes	Corcobado	Hombre	Canas	Atravezada	na_CruzVE	orca VE	anant ial	Aguas	uayo VE

	(1)	Annex 7	Table 5.1.1 (6)	List of	Prospecti	ng Sites (Dajabon)
1001	\ T \	\	1	1 1 1	1 1 1 1 1 1 1 1	
) 86 8	No.	age Nam	Prospecting Method	Line	~ ·	Remarks
 	111	lo Blanco	VE	D 1	5	Windmill
 	ا ا	Cayuco abajo			 	ar a Hand Pump
1	11	<u>a j a </u>	ΙΔÌΙ	D 3	2	ar a Hand Pum
1	11	La_Cienaga	E)	D 4	 	r a Hand Pum
!	ا ا ا	lavellin	الناا		 	ar a Hand Pum
-	1 1	El Rodeo	EM		4.0	ar a River We
1	٦	a_Gorra		8 0	5	ar a Hand Pum
1	 	El Llano	Z Z	D11) 	r a River
 	1 1	Tamarindo		D12	40	
i	 	La Penita Abajo	7	<u>D13</u>		r a Hand
 	1 1	a_Penita_Abajo	A N	<u>D13</u>	9	ar a Spring
!	1 1	<u>-La-Penita-Abajo</u>	VE	DI3	ျ	ar a Spring
1	11	ueblo_Nuev	ांच्य	D14	40	ar a River
I I		<u></u>	Σi	D18	40	ar a Hand Pu
i I	1 1	l_Aguacate		D20	2	ar a Hand Pum
1	1 1	a_Penita_	ш	D21	7	ar a Hand Pum
 	.l	1 1 1	шi	D21	5.0	ear a River
I I	11	La_Aabanzada		D23	40	ear a River
-	1	iedra_Blan	ايد	D33	0	ear a Hand Pu
1		Buen Gusto	<u>ا</u> ح	D399		a Hand Pum
Į į	- - - - - - - - - - - - - - - - - - -	minilla	uj:		က	ear a Hand Pum
I I	i i i	Mariano Cestero			20	ar a Hand Pu
1	11	Jimenez-Abajo-	च्चा । ।	D46	5.0	ear a River (W
ı	0	Agua_Blanca	<u>चि</u> ।	-	5.0	ar a River
١	<u>ا</u> ا	Valle Nuevo	шi		8.0	ar a Rive
1	0	Valle Nuevo	\mathbf{z}		80	ar a Rive
¦	D	La_Vigia			4	ar a M.H.Pu
- I	1 1	Los-Arro	VES		5 1 2 1 2 1	ar a Hand Pu
1	ا ا ا	Chacuey_1_	VES		2	
]]	ı	Chacuey 2	VES	<u>D</u>	! ! ! ! ! ! !	near a Hand Pump

Phase	Village	Prospecting	Line	Number	Remarks
	No.	Method		of Site	
] i	D Esperon 1	VES	Q	2	near a Hand Pump
 - - -	D - Esper	VES		5	near a Hand Pump
! ! ! !		VES	21		
	Sub Total	WEI .	10	510	

		 		1		; ! ! !	! ! ! !	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	 	! ! ! !	, 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; !	1 1	 	1 1 1 1 1 1	! ! !		! ! !	; ; ; ;	! !	(1 50	! ! !	! ! ! !	: ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ias Pina)		ıarks	1 5	には	ver	はなって	nd Pum	1001	15	ŧ	1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	nd Pump	nd Pump, (W.S	nd Pump. (W.S)	15	nd Pump	nd Pump	nd Pum		nal	nal, River	nal, H. P	ver	ver	nd Pum	nd bu		
Sites (Eli		Rem	ear a R	ear a H	ear a R	near a Ha	ear a H	ear a R	ear a R	 	Windmill	1 1 1 1 1	ear a H	ear a H	ear a H	ear a	ear a H	ear a H	ear a H	ear a R	ear a C	ear a C	ear a C	ear a R	ear a R	ear a H	1 1 1 1 1	 	
Prospecting		Number of Site	ŀ	 		1 1 1 1 1	 	် 	 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	2	5 1 5		 	 	က	9	 	က	က		 	5.0			100	50
List of		Line	1	I,	l	EIG			-	ا ر		ı	E19	1		E222	E233	0	E25	N	0	N	ന	E32			 	24	1
le 5.1.1 <i>(</i> 7)	!	Pro	VE	>		VES				>	>	>	أحزا	<u> </u>		إحرا	احا			<u> </u>		ΙΔÌ	N E	Λ	E	\	ш	VES	EM
Annex Table 5	A	Village Name	troso-	Macasia	Lamesdero	Lamesdero 2	a Margarit	a Canita	Los Memi	Mata Bonita	Mata Bonita	Higuerito	El Mamonci	Sabana Cruz	Sabana Cruz	Guayabal	Hato Viejo	Pilon	Guaroa	Los Yareyes	Benancio	Bruno	alo_Seco	Juan Cano	Canada del Barrer	os_Corvanos	- Rinconito		ub Total
	IAS PIN	hase				II	_ <u>I_IE</u>	: [편] [편] [편]		· · · · · · · ·			I I I		E	II	<u>I I </u>	<u> </u>	II	H		<u>II</u> E		<u> </u>	F		[1]		St

Annex Table 5.1.1(8) . List of Sites (Independencia)

			401111	(0) 1110 0100		3	2000	The control of the co
INDEPENDENCIA								
'C,	Vill No.	lam.	 	Prospecting Line Method	Line	! i	Number of Site	Remarks
		101ida		VES			5	
 	Sub Total	a l		VES EM	69		275 560	
						i		

Table 5.1.2

Relation between Electrical Resistivity and Lithofacies

8												'	
500							· .	<u> </u>			<i>د.</i>		
8		·		-			:	· .					
(p-m) 50													
	T							T					
Resistivity		T			1			1 1					
P	1					I							
0					•		Ī						
S													
							-						
_		·····				·						,	
	Sond			ร วกย	g Zone	San d	n of luds.	g Zone ffbreccial Zone	_		a)	llite	
٧,	Gravel 8 (Sand	Sandstone	Calcarious Sandstone	Weathering Zone (Tonalite)	Gravel & Sand with clay	Alternation of Sands. B Muds.	Weathering Zone (Slate, Tuffbreccia) Weathering Zone (Andesite)	Silt, clay	mudstone, Shale	Limestone	State, phyllite Tuffbreccia	Tonalite
Geology		ordier nory	Neogen	Tertiory	Intrusive Rock	Quaternary	Neogen Tertiory	Cretaceous	Quaternary	Tertiory		Cretaceous	Intrusive
	•	5 5	l	Ter	Intr	Quat		Cre	Quat	Ter			In I
Condition			Abundant				130 Intermediate			Scarce		in Fractured	Rock

Table 5.2.1 List of Drilling Sites

We	ell No.	Loca	tion	Village
No.	1	No.	M37	El Manantial
No.	2	No.		El Guayo
No.	3	No.	Exah	Las Aguas
No.	4	No.	M24	Jobo Corcobado
No.	5	No.	M 7	La Pinta
No.	6	No.	M14	Ranchadero
No.	7	No.	M19	Guayubincito
No.	8	No.	M18	Cabeza de Toro
No.	9	No.	D 1	Palo Blanco
No.	10	No.	and .	La Vigia
No.	11	No.		Esperon
No.	12	No.	· —	Chacuey (Canderon)
No.	13	No.	-	Los Arroyos
No.	14	No.	D 8	La Gorra
No.	15	No.	D39	Buen Gusto
No.	16	No.	D13	La Penita Abajo
No.	17	No.	D21	La Penita Arriba
No.	18	No.	D45	Cruce de Mariano Cestero
No.	19	No.	E19	El Mamoncito
No.	20	No.	-	Las Rosas
No.	21	No.	E10	Lamedero
No.	22	No.	E49	El Corbano
No.	23	No.	E31	Palo Seco
No.	24	No.	-	Asiento Mguel
No.	25	No.	I 6	Angostura
No.	26	No.	_	Baitoa
No.	27	No.	mod	Mariano Cestero

Table 5.2.2(1) Results of Test Drilling and Pumping Test

1/2		7E 0.	4.4	<i>σ</i> ,	8.1~3.3	7.7~8.8	8.8~3.0	F2	8.7~8.1	7.4~8.7	60	6.	7.7	8.8~8.5	7.8~ B. 4	7.
1 2 2	40611EV	C) # (C)	> 1500	> 2500	110	7.0	70~30	101	8	8	126	R2	107	10	30~	143
	Thiar	Electric Conductivity (# s/cm)	3550-11940	7890-12080	2240- 2460	1480- 1886	1708- 1920	= > 2000	538- 801	1800-1570	-> 2200	# > 16 00	H > 2200	424-450	810-2810	1241
	(#-/#/u)	Bacovory	4.85×10-*	3.78×10 ⁻⁵	6.70×10-2	2.70×10-2	2.50×10°°	4.48×10->	7.98×10**	2.76×10-4	1.30×10-7	1.16×10-1	2.68×10-2	4.49×10-2	8.08×10"	2.15×10-4
	Translation Inty (B	Jacob	1.00×10-3	2.33×10 ⁻³	1.11×10-1	8.35×10°	3.08×10°°	2.12×10.5	r-01×21'1	1.82×10**	1.33×10-2	1.26×10-1	2.20×10-2	3.27×10-2	8.83×10"	2.23 × 10-4
	Transal	T ed T	9.28×10.*	5.77×10°3	1.14×18-1	5.84×10"3	1	2.80×10"²	8.78×10-4	1.86×10*	1.45×10 ⁻²	I	3.27×10-2	3.69×10-7	8.71×10 ⁻⁵	2.08×10-4
	Tont	Specific Capacity (2/min/a)	0.08	0.20	50.50	8.22	210.88	15.08	0.73	0.77	18.14	67.34	ಖ ಕು ಬ ಬ	37.44	0.25	0.57
	of Pumping	Grandoun (S)	77.80	56.82	5.28	19.19	1.80	7.22	47.03	30.82	10.84	3.58	3.62	6.80	71.43	33.63
	Keguit	P/Dischared (Q) & /win	3.86	11.02	285.83	178.94	337.1	108.89	34.11 **	23.64	192.97	204.12	204.20	321. 58	17.90	19.25
		Lthotacles of Aquifer	fine grained Sand in Mudatone	fine grained Sand In Mudatone	sedium coarse grained	fine Sand to pebble	calcareous Sandstone	fine grained Sand	fine grained sandy Silt/	catcare Sandatione	Kudatono/Siltatone	alternation of tine grained Sandstone/Shale	eranule to pebble sized arkosic/libic Sand	Sandatone	Forthered soturolphosed Sandstone arkosic /lithiosand	Feathered setanolphosed
	Ing leat	Sereon Position (GLm)	98.0-115.0 131.0-135.0	100.0-118.0	48.0-84.0	14.0-18.0	81.0- 77.0 128.0-141.0	50.0- 54.0 58.0- 88.0	30.0- 34.0	59.0- 87.0 71.0- 87.0 107.0-111.0	79.8- 63.6 51.8- 55.6 103.6-107.6 123.6-127.6 135.8-139.6	34-48	40,0- 48.0 84.0- 88.0 80.0-100.0 116.0-128\$0	32.0- 44.0 52.0- 80.0 88.0- 72.0 138.0-140.0	25.3- 41.3 53.3- 61.3 86.3- 83.3	33.4- 81.4
	of Urilling lest	S.W.E.	21.00	13.38	2.20	4.10	17.33	2.05	1.54	63.75	63.80	13.24	63 63	14.95	8.77	8.03
	KcGulls	Orilled Deoth(m)	152.35	150.00	71.40	61.00	151.00	80.00	82.48	134.30	150.60	72.00	151.00	151.00	136.20	78.20
		Started	18/01/71	18/8/1/L	18/10/181	18/ 3/31	11/11/91	18/ 8/81	25/ 9/91	18/12/91 29/12/91	31/8/91	15/ 8/91	15/ 9/81	\$/12/91 18/12/91	19/10/81	4/10/31
		Orilling 25g	TAND XT-300%T	1800-18.0881	Speed Star	Space Star	ELMO KT-300FT	Speed Star	Speed Star	KANG LT-300FT	3008T	KAND ET-300ST	EARO ET-3009T	1# 0000 - 1H 0 XTH	THOSE-IN ONYT	Speed Star
	!	N Location	El Kanantial	El Guaro	Les Aguas	Jobo Corcebado	La Plate	Ranchadero	Gusyabiscito	Cabesa de Toro	0 0 0 0 0	1	87 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chacuer	Los Arroyos	La Corra
		<u>.</u>	-	27	*	-	107	20	~	49	φ.	2	=	ŭ	5	=

Table 5.2.2(2) Results of Test Drilling and Pumping Test

2/2	70	3.8~8.0 0.0	S.2-E.0	8.47 3.9	7.5~5.3	7.6	7.5-8.0	3.4	ı			8	19	7.5~5.3
Qual 5 t.y	03 / Fig.	02	. 20	01	ä	1.25	08	3150	l	ŀ	150	> \$500	850	Ir
79.69	Sleatrio Conductivity (#8/6#)	273-308	478-585	310-330	160-200	1200	779-800	28.00	1 .	I	800	70040	1650	169-204
(92/3/1)	Racovary	1.38×10**	4.08×10-3	8.04×10-3	9.17×10°4	1.02×10-4	4.45×10-7	8.17×10"	1	1	5.81×10-4	Į+	>5.74 × 10 ⁻¹	F.85×10:4
Transmissibility (a	t	8.81X 10-7	3.38×10-3	3.64×10 ⁻⁵	7.14×16**	8.12×10.5	4.78×10"?	1.12×10-°	1	ı	7.05×10"	I	>1.24 ×10-1	8.20×10**
Transsi	F 60 F 60 F 60 F 60 F 60 F 60 F 60 F 60	8.76×10-4	2.78×10-3	2,48×10-3	7.88×10-4	7.19×10"	4.38×10 ⁻²	8.82×16-4	1	1	8.69×10-3	-	71.77 x 10-1	8.05×10-4
Test	Specific Capsoity (2/min/m)	1.49	8.77	0.18	1.11	1.82	35.82	0.29	1	1		1	290.07	1.34
Reault of Pumping Test	Drawdown (S)	12.93	3.97	55,48	9.10	14. 03	8.41	28.38	1	ı	12. 82	ı	0.81	B. 21
Seault o	P/Discharge (Q) & /ain	19.25	28.88	10.08	10.08	27.00	387.10	3.23	ı	1	27.00	ŀ	178.94	11.02
	Lthofacies of Aquifer.	Teathered Granodyorite	Weathered Granite	Testhored Granite	Feathered/altered Luffaceous Sandatona	Calcareous Congloserate gravelly fine sand-milt	alternation of Gravel and Sit	Clayly Coarse sand/ gravel fine sand or gravelly Mud	Dry hole	Dry hole	Calcareous Conglowerste or gravel-marly gravel	Siit/Claystons	Siltatone/Coral Reef	Resthered/s] erod tuffaccoum Sandmione
îng	Sereen Position (GL.m.)	8.82 -8.8	7.8-19.8	27.7- 36.7 88.7- 43.7 71.7- 75.7 79.7- 83.7	14.7- 48.7	15.87- 23.77 88.67- 82.27	27.6-35.5 43.6-51.6 71.5-75.5 87.5-31.6	24.0- 32.0	1	ì	12,28- 23.98 31,78- 43,48	1	19.8- 47.1	34.5- 54.0
of Drilling	S.W.t. (GL.m.)	5.83	7.75	14.71	14.04	14.11	18.07	12.35	1		19.22	16.00	13.53	14.41
Resulta	Drilled Deoth(#)	44.40	88.40	89.0¢	53.38	84.50	160.30	110.00	120.00	100.00	85.00	50.00	50.00	81.00
	Started	25/11/91 29/11/91	1/12/91	20/11/81	19/10/91 2/11/81	16/11/81 6/12/31	11/ 1/82	18/11/91	16/11/81	10/12/91 17/12/91	18/12/91 22/12/91	26/12/31 7/ 1/32	8/ 1/92 18/ 1/92	3/ 1/32 6/ 1/92
	Drilling Big	KARO KI-300EI	SANG KI-3GOFT	TANG AT-3009T	Speed Star	Speed Ster	EAMO KI-3009I	Speed Star	Speed Star	Speed Star	Speed Star	Speed Star	Speed Star	KANO KT-300NI
	Wall Mr & Location	Buen Sunto	La Pesita Abajo	La Ponita Arriba	Curca de Mariano Cestero	El Magonelto	Las Monas	Lagrendero	El Corbeso	falo Seco	Asiento Afgel	Angustoria	Lk Salton	Karians Cestaro
	10	12	e)		9 ?	ss.	ล -133	2,1	22	23	ž	25	28	2.7

A-133

Table 5.3.1(1) Classification of the Hydrogeological Provinces and Yield Capacity

Continue Continue	2	Hydrogeological Province					Hydrogeologicsi	cal Condition						Recommend-	
Continue L. C. Carrello L. C. Carrello C. C. C. C. C. C. C. C. C. C. C. C. C.	3		Test Drilling No.	Aquifor	Th lck-	Type of	Fater 1	evel		Specific			Yield Capacity	Depth. with part for	
Colored Colo	į		Yillage Name	titnoincies	(#)	Groundwater	S. W. L. (GL-m)	a		Capacity (2/mis/m)	ECTANCE, SO47";		(2/#10)	Deposit (m)	
100 100	H	Condillers Septentrio	1.EL Manatial		7	Unconfined	21.0	77.90	3.65	0.05	1 11 11 11	Chiefly Composed of sediments of Certiary sec. Generally consists of suddatone beds with jow perseability. Tangias in flutes of 10° to 10.5 parly associated with sandy facies.		.1	
1,000 dec 1,144 Arous 1,			2. EL Guayo	ayang bondar bonda bonda bondar bonda bondar bondar bonda bonda bonda bonda bonda bonda bonda bonda	2	Unconfined	1	55.82	11.02	0.20	SC = 7,899~12.0 SO.* = 4,750 PH = 7.8	Licette conductivity and cons of fround mater are moren in icit column. Will the correspond to the chlorine lon concentration values of 1600 to 2500 ppm.		1	ſ
State Stat	ER	Llano de Rio Yaque del Norte		Fine sand	20-30	Uncontined	2.20	5,28	265.83	50.60	1 2 2 4 0 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	S S		80~30	ſ
Secretary Secr			4. Jabo Corcobado		20~30	Uncontined	4.10	19. 13	178.94	3.22	B H H	Anone sade de morte atter bank. 70-frow of the sand erains into ocrete acades and organic soil ouspendions in ground water in pase places are to be carefully examined.		60~70	i
Street S	9		S. Banchadero	Very fine-grained sand		Meakly confined	2.05	7.22	108.83	15.08	L ANK	Ground rater is observed in alterna- tions of the sand and slit beds of fertiery age. In-flow of slit grains into screen scahes is to be carefully examined.	001	70~80	i
State del S. Palo Blanco Siliv sandatone 50-60 Confined 50.60 10.64 192.37 18.14 EC = 72.200 Confined 10.64 192.37 18.14 EC = 72.200 Confined 13.24 2.55 204.12 57.34 50.7 = 1.500 Confined 13.24 2.55 204.12 57.34 50.7 = 1.500 Confined 13.24 2.55 204.12 57.34 50.7 = 1.500 Confined 13.24 2.55 204.12 27.34 50.7 = 1.500 Confined 13.24 2.55 204.12 27.34 20.7 = 1.500 Confined 13.24 2.55 204.12 27.34 20.7 = 1.500 Confined 20.20 Confined 20	e e	Sur de! Yaue de! Norte	5.La Pinta	C.icercous sandstane	20~30	Confined	17.33	1.80	337.10	210.69		Ground mater is observed in calcarcous and stone beds of Icritary age. Water both borever, a very high content of suitable in concentration is carried, water well drill depth is to be made some 80 meters depth is to be made some 80 meters depth is to be made with transitisability occupied.		70-80	
Adulters about the disliar character to another a silar character to standstone as Silar inches and the door inches and the do	E		S. Palo Blanco	511ty sandstone	50~60	Confined	50.80	10,84	192.37	18.14	EC => 2,200 50,2 = 115 PH = 8.2	Aulfers are comprised of several calestrous anatherne beds inter- calated in thick sillation beds. Highly perceble sith transisability [0] [0] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1		140~150	l
Sandstone 20~30 Confined 9.53 8.62 204.20 23.69 EC => 2.200 martic sandstone bade of Ireriary accordance bade of I			10.Le Vigin	Alternations of sandstone as Silt- stone	10~15	Confined	13.24	3,58	204.12	57.34	EC == 1.500 SO ₄ 2-= 205 PH = 7.9	Aquifers show the dislist character to the above, 1113-9. Highly permeable with transmissibility coefficient values in range of 10.	^	98	i
Sandstone 28 Confined 14.95 8.80 321.99 37.44 50 ± 424 4.50 were and altone before and a sone before and a sone before and a sone before a sone before a sone before a sone before a sone before a sone before a sone before a sone before a sone before a sone before a sone before a sone sone sone sone sone sone sone sone			11.Esperon	Sandstone		Confined	8 50 53	8.62	204.20	23.69	EC. => 2,200 SO.2 = 88 PH = 7.7	Adulters are comprised of constoners are the sandstone bed of lertlary are. Occur about to lightly are. Occur about to lightly perseable with transferoud. Highly perseable with transferoud. Coefficient values in range of 10-11	200~30	123	
			12. Chaquey	Sandstone	52	Confined	14.95	8.80	321.98	37.44	£24~ 8,8~9.8		300~600	120~140	1

S.W. I. Static Enter Level

N.W. L. Static Mater Level

Ä	Hydrogeological Province					Kydrogeologica]	cal Condition							Recognend-
<u>.</u>		Test Drilling No.	Aquifer	Thick-	Type of Groundwater	Fater Leve	[eve]	¥.0.14	Specific Capacity	Tater	Water Quality	Characteristic	Yleid	Depth with Depth with Part for Deposit
	Province Name	Village Name		3	-	S. W. L. (GL-M)	0.0. (#)	~	(2/mis/m)	ΕC: μ Β/οπ.	SO.2-;ppm		(2/min)	(m)
i	Sur del Yaque del Norte	2	Sendy#31d	5~10					:	н	838~ 901	Confining layers of Tertiary age.		÷
		011241477	Calcarcous Sandstone	10~20	Confidence	,	50.				8.7~9.1	Aquifers are comprised of sandy sediment paris, internalisted in alternation of calculus shate and sandstone beds of Plocene - Teriary and Transsizzibility coefficient values show about 10.4. * ** ******************************	31 }	2 1
ž	Condillera	15. Buen Guato	Weathered Granodyorite	20	Unconfined	5.83	12.93	19.25	1.48	- 500 M	273~ 308 5 8.8~9.0	Texthered zones of granitoid of Resozoic age form aquifer beds. Aquifeca are, consequently. located close to the ground surface to for evitably cause, a sepsonal fluctuation	10~15	93
		18. La Penita Abalo	Wenthered Tonalite	Ö,	Uncontined	7.75	3.97	26.88	8.77	500 2,24 3 11 11 11 11 11 11 11 11 11 11 11 11 11	478~ 585 13 8.2~8.0	of water failer is elected. I change assisting the confidence of t	60~80	98
		17.1m Penita. Arriba	Weathered Tonalite	9	Unconfined	14.71	56.49	10.08	0.18	50,2 - s 50,4 2 - s 1,4 4	310~ 330 10 8.4~8.9	ridge, dut to that larering of maker level has been large in cogangigon with water yield quantity in the above offe, where ground water recharge had been hardly made. Superior quality of ground eater.	2~3	98
%	Cordillera	B.Cabess de Toro	Calcareous Sandstone		Confined	63.75	30.62	23.64	0,77	EC # 1.5042 # 1.7 # 2.4 P.H	1,900~ 1,970 2,400 7,4~8.7	Aquifers are comprised of meathered phillity categorous acc sith transinability coefficient values of about 10 tess primeble. A possible high content value of sulphte ion content to a not of sulphte in content to a not of sulphte in content tion should be coutlough exemined.	5~10	140~150
Ž,	Condillera		Grave 11 y Sandatone	12~15	Unconfined					ម ដូ	810~ 2,810	Congloweratic sandatone beds of Terliary acc. witho overlie actasor- bhic rocks of Criteceous acc. accessing the extra overliaried to possibly form aquifice with possibly low sater yield quantity.	w	08~02
· · · · · · · · · · · · · · · · · · ·		13. Los Arroyos	Coarse grained Sandstone	8~15	Weakly Confined	≳ xo		3,	87.50 	H H	H 1.400	Aulfeis are comprised of weathered zones of areascula referenced betraccous are. Less water yield quentity with transisatibility confificient values in range of 1072 to 107	l	1
		14.1s Gorra	Meathered Sandatone	30~40	Unconfined	8,03	33.88	19.25	0.57	S0,2 - 1,	1,241 63 7,7	Aquifers in Curce de Mariano Costero and Mariano Centero are observed in argiliaceouly vilered parts by granite rock intrusion. Superior quality of ground water.	01~9	08~09
		18. Curce de Mariano Costero	Veathered Sandstone	32	Unconfined	14.04	9.10	10.08	1.11	30,2 20,2 20,4	150~ 200 13 7.5~8.9		10~15	70~80
	:	27. Mariano Cestero	Weathered Sandstone	02	Unconflact	14.41	6.21	11.02	1.34	50.2 × × Hq	153~ 204 T.5~8.9		10~15	70~80
ž	Cordillera		Lincatone	4nx1100	Contlacd	1	1	1	l .			Ground water mobilises through slak- holes in lisestone beds. Mater is bundantly yielded when sinknoles are open to ground surface. Ground water quality is good.	·	
												4 H		

2/3

Table 5.3.1 (2) Classification of the Hydrogeological Provinces and Yield Capacity

S.S.L. : Statig Fater Level

Paging P	Prov	Mydrageological Province					Hydrogeologic	Hydrogeological Condition	_		÷ .			Recognend-	
Province State		o- eological		Aquiter	Thick-	Type of	Fater L	.eve1		Specific			Yield Capacity	Orilling Septh with part for	
Sign Juan 19. El Amonetto Calenteus 25 Unconfined		and ince Kane		Lithotheries	9 (1) (1)	Groundwater	S.W.L. (GL-M)	0.0. (4)	(2/mis)	Capacity (2/mls/m)	Fater Quality EC; 448/cm, SO42 - ; ppu	Characteristic	(2/410)	Bepoult (m)	
Signification Continued Continued Continued Continued Continued Continued Continued Sand-struct Columnia Continued C		le de la Juan	19.EL Mamoncito	Conglomerate	25	Unconfined	14.11	14.03	27.00	1.92	50,2. = 1,200 50,2. = ** 51 = 7.8	Lover part of the alternations of colormous configurate, wadatone and considerate bade of Tertiary, which are observed on ground surface, fores	15~20	50~70	
Signa jusa 22.El Corbano Chicarcous — Dry San jusa 22.El Corbano Chicarcous — Dry Sin jusa 22.El Corbano Chicarcous — Dry Sierra de Sand-gravel — Dry Sierra de Sand-gravel — Dry Sierra de Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Dry Sand-gravel — Sand-gravel — Dry Sand-gravel — Sand-gravel — Dry Sand-gravel — San		:	20.Las Rosas	Calcareous Congloserate	2 ~ 30	Confined	19.07	9.43	337.10	35.82	SG, 2 - # 770 - 800 SG, 2 - # 7, 5 - 8, 0	Adulters are Cheeral depths toward aquifers are challow in dissected valley are seed. Inversely are relatifiely deep in hilly areas. Ground water level in hilly areas shows a geosomal remarkable.	300~500	50~70	
Signa Juna 22. EL Corbano Calcarcous — Dry Signa Juna 23. Palo Seco Calcarcous — Dry Signa de Baruco Calcarcous — Dry Sand-gravel Calcarcous 20~30 Unconfined Calcarcous 20~30 Unconfined Calcarcous 20~30 Unconfined Calcarcous 20~30 Unconfined Calcarcous 25. Angustors Carel Sand-gravel Carel Carel Carel Sand-gravel Carel Sand-gravel Carel Sand-gravel			21. Lamesdero	Calcarcous auddy sandstone		Uncontined	12.35	28.38	8.28	0.29	EC = 2,800 SO ₄ 7 = 48 PK = 7.7	'intclution, General, translassibility coefficient, values show in range of 10° to 10° white, about 10° in Lea Booss. Salinity walues of ground water are step walues of ground		50~70	
Signarde Signarde Signarde Calcarcous Sand-gravel Candined Limestone Candined Limestone Sand-gravel Candined Unconfined Unconfined Sand-gravel Sand-gravel Sand-gravel Candined Sand-gravel Candined Antily limestone Sources de Antily limestone Sources de Sand-gravel Candined Sources de Antily limestone Sources de Sources de Antily limestone Sources de Antily limestone Sources de Sources de Antily limestone Sources de Antily limestone Sources de Sources de Sources de Sources de Antily limestone Sources de Sources de Sources de Antily limestone Sources de Sources de Antily limestone Sources de Sources de Sources de Antily limestone Sources de Sources de Antily limestone Antily limestone Sources de Sources de Sources de Antily limestone Sources de Sources de Antily limestone Sources de S	γ. Sa.	4 de de de de de de de de de de de de de	22.EL Corbeno	Calcarecus sand-aravel	1	l i	Dry	Dry	ı	I	I	The areas are geologically located in anticlinal part of the beds. Chiefly consists of silvatene beds. after are correlated to the above layers about in Thick-bedded and squicide.	ı	1	,
Signra de Galareous 20~30 Unconfined sandatone 24. Asiento Misaii Lisestone > 50 Confined Lisestone > 50 Confined Caral sand Caral sand Caral sand Unconfined Sand-gravel Solaristillo Caral sand Sand-gravel Solaristillo Caral sand Sand-gravel Solaristillo Caral sand Sand-gravel Solaristillo Caral sand Solaristillo So			23.Pela Seco	Calcareous sand-gravel	ı	017	Dr.y	£ 0		1 \$	1	Uccurrences or ground sactor in shalloss dopth in the Frowince are evaluated to be unlikely potential. Utilization of spring sater from scattered zones, spring sater from scattered zones, casamined.	ı	1	
Limestone Sand-gravel Duenca de Enciquillo Sand-gravel Unconflace Enciquillo Sand-gravel Unconflace Enciquillo Sand-gravel Unconflace Enciquillo Sand-gravel Unconflace Enciquillo Sand-gravel Octal sand Enciquillo Sand-gravel 30 Unconflace Conflace and saccase Sand-gravel 750 Confined in gravel sandstone Conflace Confla	Sier Ke	The de	24 Luinning Minnis	Calcareous sandstone		Unconfined	10 23	60	e e		000	Unconfined ground water of quantitative instance is observed in calcurous gandatone beds. Interalated in shale beds of saine sedimentation in Tertiary age.	g	50~70	
Cuenca de Enfquillo Coral and Coral and Coral and Coral and Coral and Marly limeatone 30 Unconfined Enfquillo 25. Angustora Alternations of 750 and and and and and and and and and and				Limeatone		Confined	77	78.71	00.72	1; ;;	9 & O	Confined water of good quality in observed associated with lawstone beds of Sigocene-Territary age. The ground water optimalisty flows into streams in low ground. Selections of studied.	l	ı	
Luenca de Sariquillo 25. Angustora Alternations of 750 and 25. Angustora Alternations of 750 and 25. LA Baitoa Coral reaf, of 750 fissure confidence and 25. LA Baitoa Coral reaf, of 750 fissure confidence and 25. LA Baitoa Liacatone Anxi00 — Liacatone Anxi00 —		ca de riquillo		Sand-grave! Core! sand		Uncontined	i.	ı	I	ı		Occurrences of ground water are evaluated to be unifactly obtained in the Province, geologically covered by nuch sediments as calcarcoun clay, sand, graval and etc. on x-mee-floor and with less vegetation.			
Signature Signature	Cuenc	ca de riquillo	t o	Marly limestone		Unconflaed	15.00	ı	t	ı	EG - 70, 400	Marly limestone beds are of aquiclude, therefore, are evaluated to unlikely form aquifers.	ı	ŀ	•
Sierra Sierra Ge Sacroco Limentone Limen				Alternations of congloaceate- amodatone	750		1	ì	1	ļ	7.8 Hq	Ground sater is remarkably saline due to local extensions of rock salt beds of Terlary sec. Dun-off and sering mater from Seporuco Mountains are to be reasonably collectively utilized.	100~200	28	
Signra Cde Bactuco Limentone >nx100				Cormi real; Alternations of conglomerate- mandatone		Confined in flagure aystem cavities	19.53	0.81	178.94	290.07	EC. = 1.300 50.2- = 1.30 pH = 7.8	Spring rater from Bactuco Mountains are to be abundantly collected as shown by the current drill operation.	>3.806	8	ì
	Sier.	Beoruco		Limestone	*nx100	· I	1	I	ı	1		Sinkholes in limestone beds are well- developed to course a dospared mobili- zation of rain water. A part of ground water is observed in northern hillfoot.			1

Table 5.3.1 (3) Classification of the Hydrogeological Provinces and Yield Capacity

%0.27 Recision Cestero 78.0 , S 20 O Y 2.7 ¢ 0.5 < 0.5 2 57 ñ ä 2 ä 11.0 28.0 207 × 0.5 × 0.02 × 0.5 88 23 ä ä E ઠ 8 181 2.0 201 6877.0 No.25 Angel toris \$ 0.5 , 0.5 2.5 × 0.02 < 0.5 3203 388 2BZ. 0 < 0.5 × 0.02 e e 83 ä 5 0 8 2 88 Ļ 5 2 50.0 78.23 78.10 Seco No. 22 Los Cor-• 8 6 3 8 6 3 8 6 4 184.0 2 9 4 0.5 器 138 ä 2 ä 8 2.0 85.28 808.8 ۸ 0.02 ν Ο ν 155 2 < D.5 2 ĕ Ž, 24.0 35 12.0 Mo.19 El Mamon-cito < 0.5 **4** 0.5 < 0.02 Ľ ₹ 0.5 ä 8 8 0.20 C 208.0 5.3 0 No. 18 Curce de Marjano Cestero 4 0.5 < 0.5 23 ĸ R 20.0 × < 0.02 < 0.5 27 0 80.0 10,0 No. 17 Le Penite Arriba 20°0 ¥ 134.0 v 0.5 0.5 2 9 8 Z. 쫎 2,23 × 0.02 ÷ in. ä 213.0 × 0.02 ۰ 0.5 A 0.5 4 0.5 , 0.02 3 S Ξ 83 £ Ä 9.5 2 13.0 134.0 , 0.83 ₹ 0.5 A 0.02 × 0.5 옄 22 13 Ë A 0 2 Ë 35.0 Test Drill Hole 287.0 . 2. 18 2. 18 c 0.5 ₹ 0.02 6.5 **≥ 0.05** £ ¥ 13 ä £ ä 6.0.5 2 ä ន្ត 33 5 2.0 No.13 Log Arreyos 411.0 A D.5 33 ₹ 0.02 **6.5 ≥** 0.05 × 0.5 H L 3.0 9,5 ä 9 25 812 1810 8 25.0 No. 12 Checurery 181.0 ₹ 0.02 0.5 50 63 윉 * £. < 0.05 < 0.06 < 0.06 186 31 0.5 187.0 Groundwater Quality of **₹** 0.5 5.0 No.11 Esperios ۸ 0.5 88 22 8 Z 10.0 < 0.05 < 0.02 £ 17 9 5 v 0.2 **♦** 0.5 4 9.5 .0 £ ¢ 0.5 No. 18 La Y (g (a 13.0 317 58 ន្ទ 딿 5 2 0 5 97.0 A 0.83 , 0.08 1.0 H Mc.3 Palo Blanco £ 13.0 7. Ŀ 8 줎 28 28 116 8 ¢ 0,05 No. 6 Cabera de Toro ۸ 0.5 871.0 ۸ 0.5 A 0.5 , 6 8.0 0.7 <u>:</u> Ë S œ. 338 ŝ 3 22 8 No.7 Curyu-bincito ÷ 0.08 4 0.5 6 0 0 · 0.02 88.0 0.7 < 0.5 Ŀ E Ξ # 25 Þ ដ 23 393.0 × 0.5 A 0.5 0.02 .. No.8 Ranch-adero Ë , O. S ċ 12.0 £ 8 E 훓 8 ន្ត v 0.05 4 0.5 **Table 5.3.2** < 0.5 178.0 4 0.5 2. 76.5 2.5 2.6 2.6 2 0 13.0 S. Ë Į. 227 8 110 33 1712 8 303.0 No. 4 Jobe Corco-bado A 0.5 × 0.05 8. 13. **₹** 0.5 Ŀ 5.5 8 83 .: ä. 엻 S 15.0 No.3 Les Aguse 510.0 A 0.5 < 0.05 < 0.05 0.02 2 8 3.0 0.5 8 22 器 * 6.3 71.0 0.5 2 0.5 #0.2 El Guezo ä ä 270 2 Š 55 88 258 Mo. 1 El: Manen-tiel 193.0 **◆ 0.02** 4 G.05 2.0 , O 2.5 g 5 .. 8 HCO3. 504 P023 Na +X ر د د Mg3+ NH. . : , o v ő ů į, 2 2 ž 4 ä ķ ö

Table 5.4.1 Groundwater Development Potential and it's Magnitude

Hydr	Hydrogeological Province	Type	Hydrogeological Condition		Target
No.	Hydrogeological and Province Name	or Aquifer	Yield Capacity (1/min)	Drilling Depth (m)	of Aquifer
⊢	Cordillera Septentrio	Confined	DII Lack of available aquifer within 150 m in depth		×
¤	Llano de Rio Yaque del Norte	Unconfined	D 4 Q = 100 , partly Q W 500	09 >	unconfined
Ħ	Sur del Yaque del Norte	weakly Confined	D 5 Q = 100	06 ~ 09	confined
1	s Sur del Yaque del Norte	Confined	D 3 Q 配 100, partly Q 函 1000	06 ~ 09	confined
E	s Sur del Yaque del Norte	Confined	D 1 Q = 300, partly Q 至 500	60 ~ 120	confined
4	4 Sur del Yaque del Norte	weakly Confined	D 7 20 > Q M 5 , partly Q M 300 ~ 500	30 ~ 60	confined
Δ,	, Cordillers Central	Unconfined	D 6 60 > Q W 10	30 ~ 60	unconfined
Ν²	c Cordillera Central (north)	Unconfined and weakly Confined	D 9 Lack of high available aquifer up to the basement situated at 90 m in depth	0.7	unconfined
Ν²	c Cordillera Central (south)	Unconfined	D 8 Lack of high available aquifer up to the basement situated at 60 m in depth	70	ii. Jonfined
IV ₃	Cordillera Central	Confined	D12 no datum		(surface water)
^	Valle de San Juan	Unconfined and Confined	07 20 > Q 译 5, Partly Q 译 300 ~ 500	50 ~ 70	confined
V	z Valle de San Juan	dry	D10 Lack of available aquifer whithin 120 m in depth		×
5	Sierra de Neiba	Unconfined and Confined	D 7 20 > Q 译 5, partly Q 龄 300 ~ 500	50 ~ 70	(surface water)
MI	Cuenca de Enriquillo	Unconfined	D12 no datum	1	(spring)
MI ₂	s Cuenca de Enriquillo	Unconfined and Confined	D 2 200 > Q ≥100 , partly Q ≥ 3000	80	unconfined
E.	Sierra de Baoruco	Unconfined	012 no datum		unconfined

Table 5.4.2 Water Balance

Hydrogeo.	Bydrogeologic Province	area	annual mean	annual Evapo-	annoal	annual	Yield
			rainfall	traspiration	Run-off	Recharge	Capacity
current	former	(Km^2)	(x18^9 m^3)((x1879 m^3)	(x10^9 m^3)	(x18^9 m^3)	(m^3/d/Km^2)
ļ	(1-1)+	305		-			
	(1-2)	462		32.75	17.488	14.182	58558
	(2)	422	35,93	21.6	8.118	7.212	46822
1 11	(3-1.1)+	120					
	(3-1.2)+	120					÷
	(3-1.3)	98		20.16	7.182	5.388	45281
II 2	(3-2.2)	124	16.92	11.22	2.981	2.739	61843
3	(3-3)	138		11.7	5 157	2.923	61602
# # #		· · · · · · · · · · · · · · · · · · ·					
[V1	(4-1)	346	68.55	34.86	15.134	11.356	83658
Z A]	(3-2.1)+	124					
	(4-2).	44					
	(5)	782	•	101.83	54.213	31.837	89588
IV 3	(9)	115	22.88	11.55	6.687	3.843	91554
V 1	(7-1)+	D 80					
Λ 2	(7-2)+	461					
W	(8-1).	327					
	(8-5)	419		•	47.206	35,824	73538
VII 1	(6)	779			17.66	2.2	7737
W 2	(10-1)	429		•	28.586	1.964	12543
5	(18-2)	523	181.99	52.98	35.675	13.335	63855
	Total	6216	860.27	491.88	238.887	131.263	788853

FIGURES

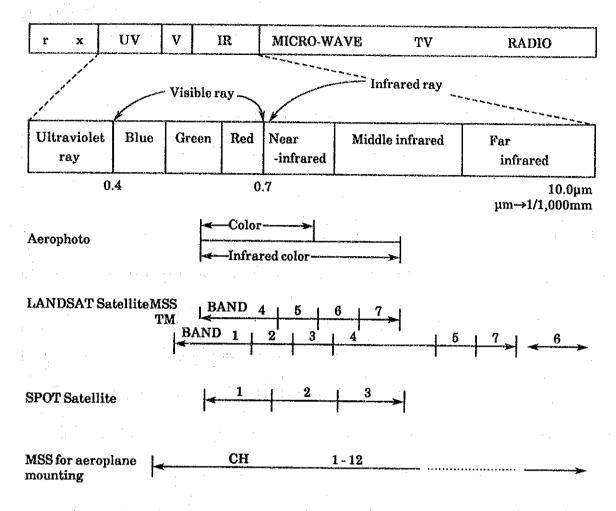
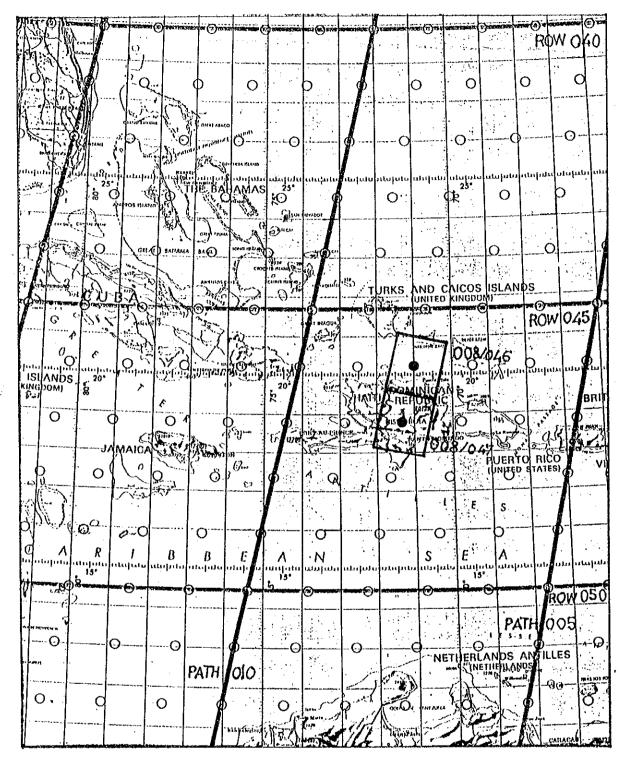



Fig. 2.4.1 Sensors and Ranges of Electromagnetic Waves

SCALE 1:10 000 000 1 centimeter on the map represents 100 kilometers on the ground

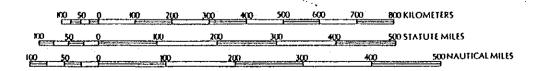
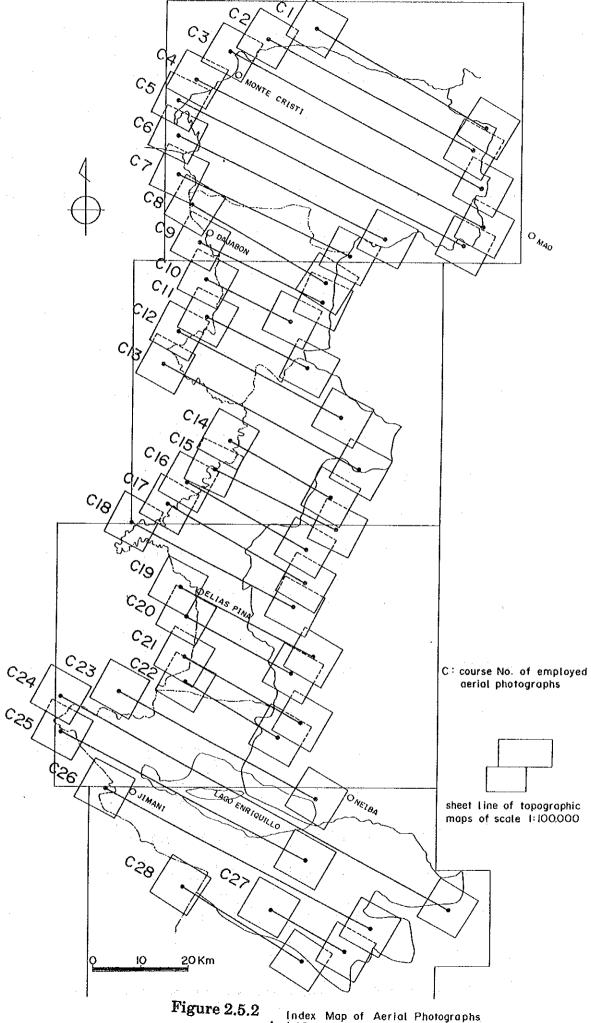
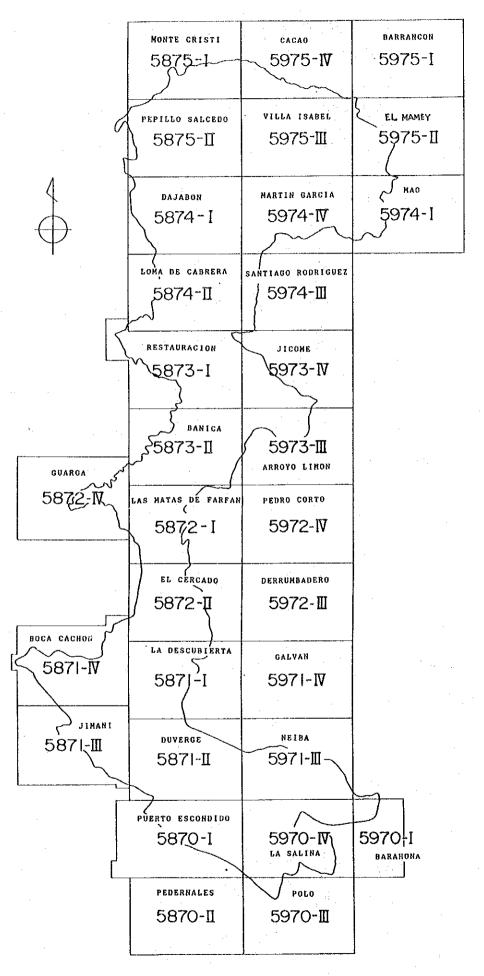




Figure 2.5.1 Index Map of LANDSAT Images

Index Map of Aerial Photographs A-142

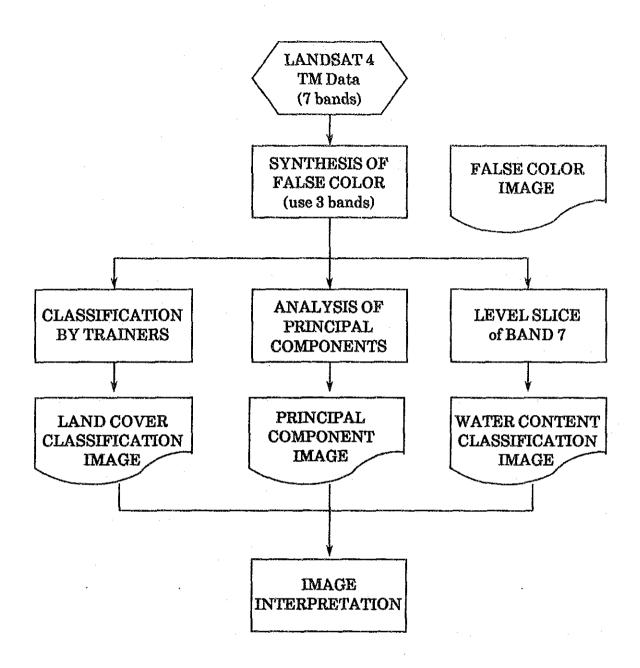


Fig. 2.6.1 Flow Chart of LANDSAT TM Data Processing

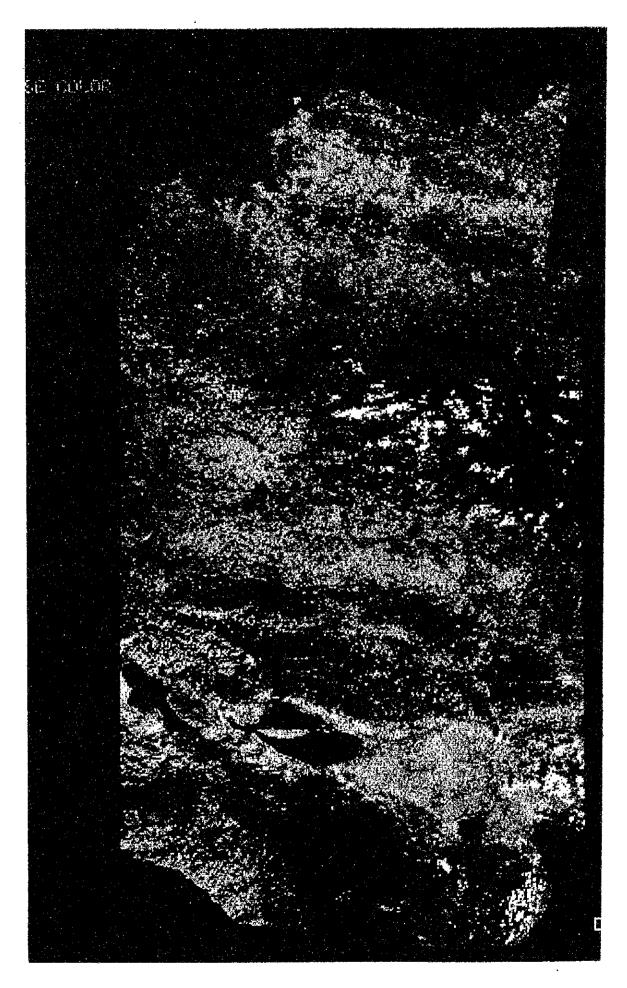


Fig. 2.6.2 Landsat False Color Image

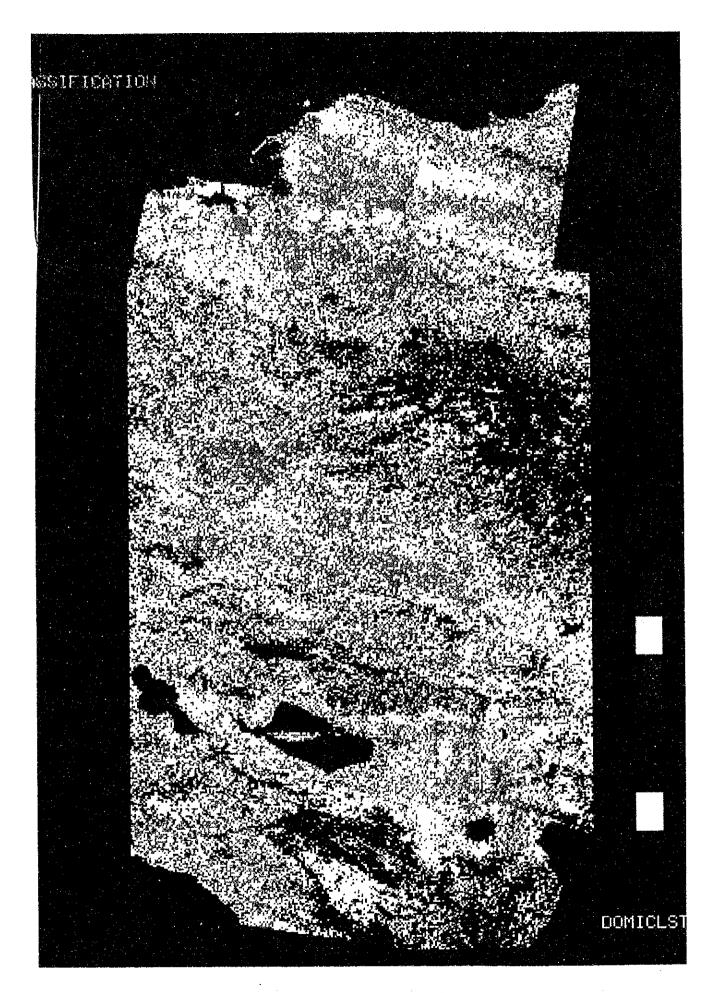


Fig. 2.6.3 Landcover Classification Image

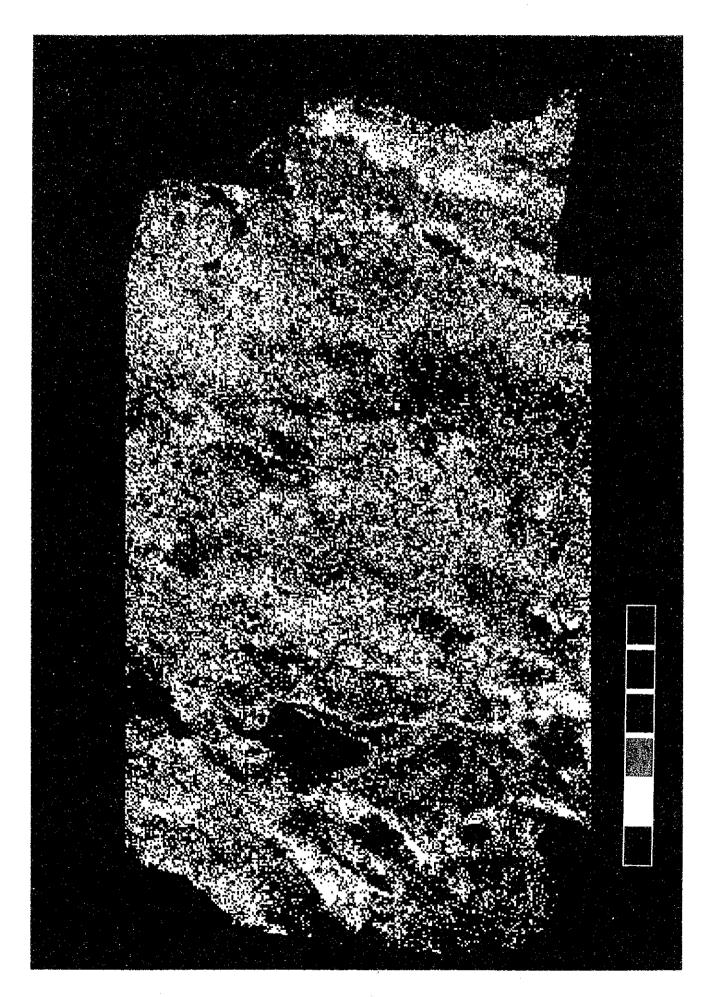


Fig. 2.6.4 Water Content Classification Image A-147

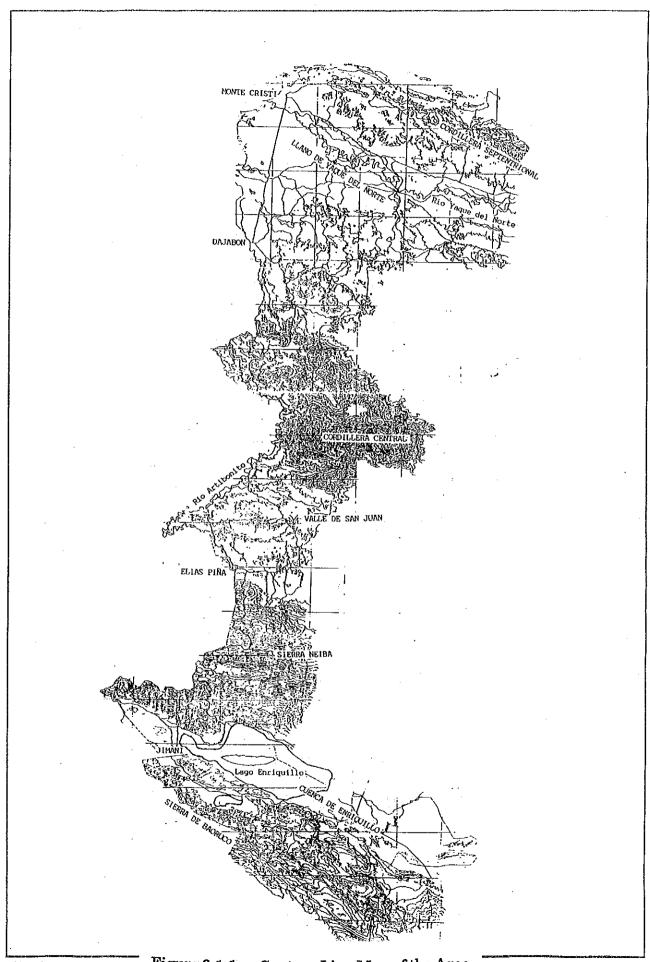
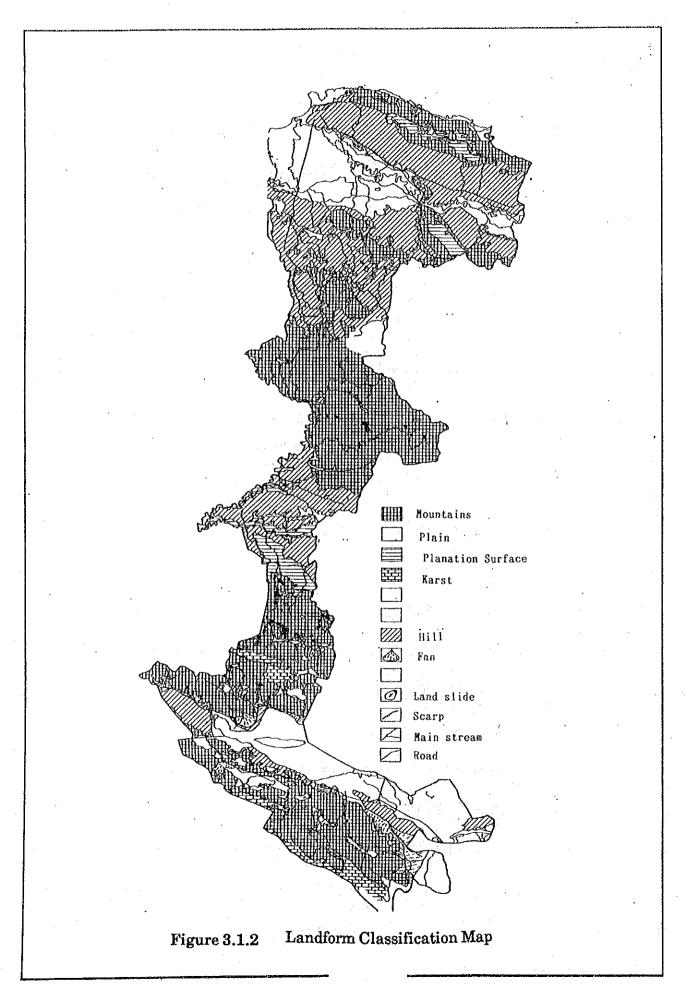
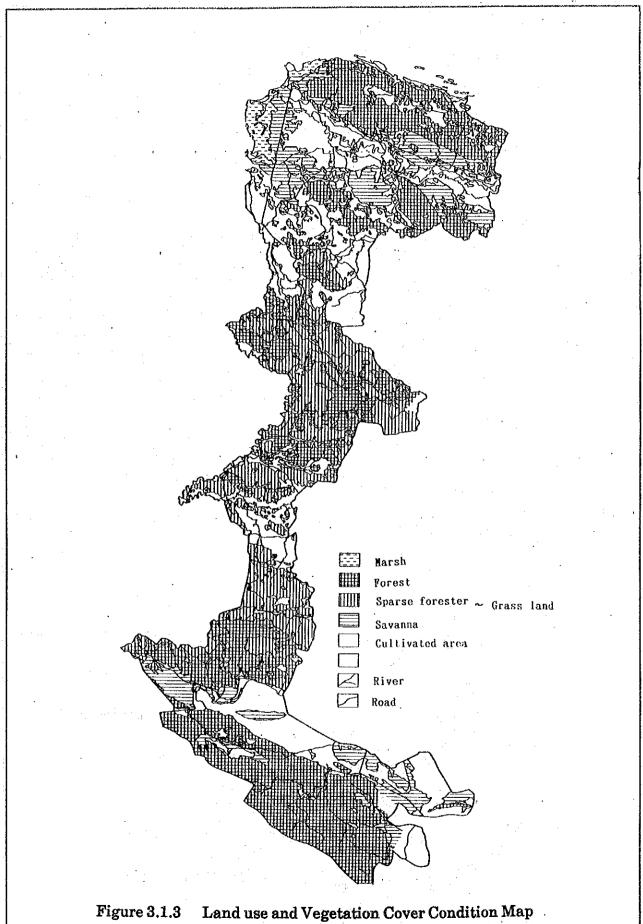
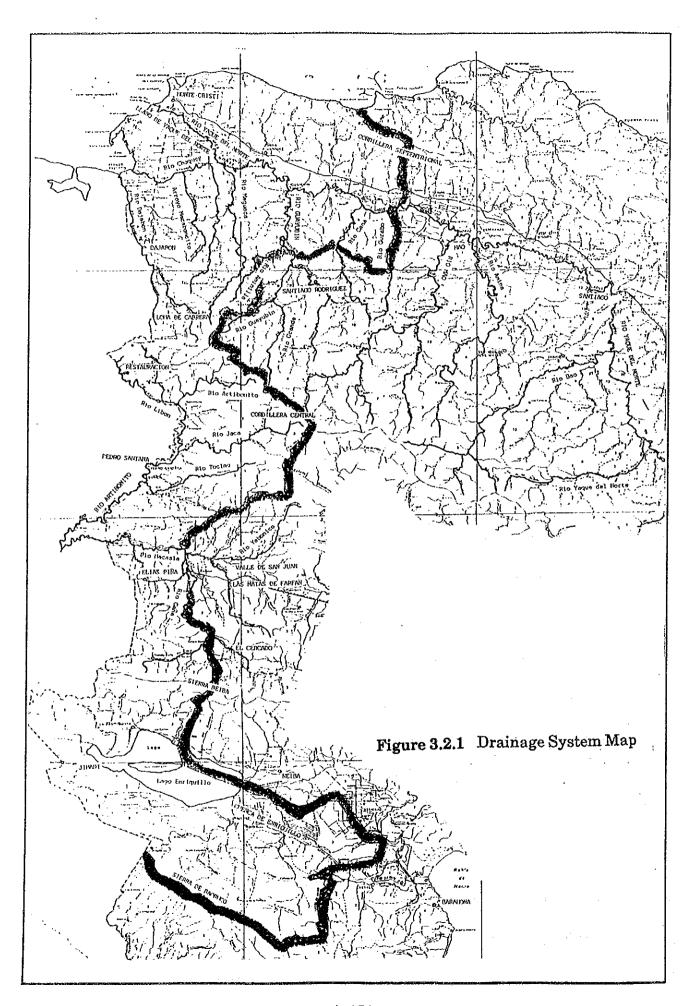





Figure 3.1.1 Contour Line Map of the Area

A-149

