# 

refusic of Kenva

and the second second

# DAM DEVELOPMENT H. AN

ABICY MEDICE

## JAPAN INTERNATIONAL COOPERATION AGENCY

SSSS JR 92-069-12/27



•

国際協力事業団 24185



# REPUBLIC OF KENYA

## MINISTRY OF WATER DEVELOPMENT

## THE STUDY

## ON

## THE NATIONAL WATER MASTER PLAN

# SECTORAL REPORT (H)

# DAM DEVELOPMENT PLAN

JULY 1992

JAPAN INTERNATIONAL COOPERATION AGENCY

## LIST OF REPORTS

#### EXECUTIVE SUMMARY

#### MAIN REPORT

| 1. | Vol.1 | Water Resources | Development and | Use Plan | towards 2010 |
|----|-------|-----------------|-----------------|----------|--------------|
|----|-------|-----------------|-----------------|----------|--------------|

- 2. Vol.2 Master Action Plan towards 2000
  - Part 1 : National Water Master Action Plan
- 3. Vol.3 Master Action Plan towards 2000 Part 2 : Action Plan by Province/District

## SECTORAL REPORT

- 1. A Socio-economy
- 2. B Hydrology
- 3. C Groundwater Resources
- 4. D Domestic and Industrial Water Supply
- 5. E Agriculture and Irrigation
- 6. F Livestock, Wildlife and Fishery
- 7. G Flood Control Plan
- 8. H Dam Development Plan
- 9. J Dam Geology
- 10. K Topographic Survey of 11 Damsites
- 11. L Power Development Plan
- 12. M Integrated Water Resources Development Planning
- 13. N Environmental Conservation
- 14. P Laws and Institutions
- 15. Q Database
- 16. R Remote Sensing Analysis
- 17. S GIS-based Analysis

#### DATABOOK

- 1. DB.1 Hydrological Data (Study Supporting Data)
- 2. DB.2 Groundwater Data (Aquifer Test and Well Survey)
- 3. DB.3 Groundwater Data (Study Supporting Data)
- 4. DB.4 Topographic Survey Data
- 5. DB.5 Inventory of Irrigation/Drainage Schemes
- 6. DB.6 Project Sheet for Urban Water Supply

#### PREFACE

#### **Interpretation of Report**

The original objective of this NWMP Study is to propose a nationwide framework for orderly planning and development of water resources in the country. The Study also deals with the formulation of individual development schemes. However, it should be noted that the plans formulated in this Study remain at a national level and do not provide complete details at local level. Further details should be examined in subsequent studies on each river basin, district, and project basis which are separately recommended in this Study.

#### Administrative Division of Districts

In this Study, the original 41 districts were considered and various statistical data, particularly socio-economic information, were collected for these districts. During the progress of the Study, six districts were detached from the original ones and established as new districts. In the report, the data on these new districts are grouped together with the corresponding original districts as shown below.

|    | Original Districts | New Districts | Data included in:   |
|----|--------------------|---------------|---------------------|
| 1. | Machakos           | Makueni       | Machakos/Makueni    |
| 2. | Kisii              | Nyamira       | Kisii/Nyamira       |
| 3. | Kakamega           | Vihiga        | Kakamega/Vihiga     |
| 4. | Meru               | Tharaka-Nithi | Meru/Tharaka-Nithi  |
| 5. | Kericho            | Bomet         | Kericho/Bomet       |
| 6. | South Nyanza       | Migori        | South Nyanza/Migori |

(Note: The last three Districts were established very recently. The report refers only to the names of the original 41 districts.)

The administrative boundary map used in this Study is the latest complete map set covering the whole country (41 Districts, 233 Divisions and 976 Locations), prepared in 1986 by the Survey of Kenya, Ministry of Land, Housing and Physical Planning.

#### Data and Information

The data and information contained in the report represent those collected in the 1990-1991 period from various documents and reports made available mostly from central government offices in Nairobi and/or those analyzed in this Study based on the collected data. Some of them may be different from those kept in files at some agencies and regional offices. Such discrepancies if any should be collated and adjusted as required in further detailed studies of the relevant development projects.

#### **Development** Cost

The cost and benefit estimate was based on the 1991 price level, and expressed in US\$ equivalent according to the exchange rate of US = KShs25.2 prevailing at that time. The same exchange rate was used in calculating the development cost in K£/KShs currency.

### THE STUDY ON THE NATIONAL WATER MASTER PLAN

#### SECTORAL REPORT (H) DAM DEVELOPMENT PLAN

#### TABLE OF CONTENTS

.

| H1. | INTR  | ODUCT     | ION                                              | H-1  |
|-----|-------|-----------|--------------------------------------------------|------|
| Н2. | EXIST | LING D    | AM SCHEMES                                       | H-2  |
|     | 2.1   | General   | •••••••••••••••••••••••••••••••••••••••          | H-2  |
|     | 2.2   | Large Da  | am Schemes                                       | H-2  |
|     |       | 2.2.1     | Existing and ongoing dam schemes                 | H-3  |
|     |       | 2.2.2     | Dam schemes under planning stage                 | H-3  |
|     |       | 2.2.3     | Number of large dams                             | H-3  |
|     | 2.3   | Small D   | am Schemes and Subsurface Flow Dams              | H-4  |
|     | 2.4   | Inter-Ba  | sin Water Transfer Plan                          | H-6  |
| Н3. | SELE  | CTION     | OF PROSPECTIVE DAM SCHEMES FOR                   |      |
|     | THE   | MASTE     | R PLAN AND THE MASTER ACTION PLAN                | H-7  |
|     | 3.1   | Method    | ology and Procedures                             | H-7  |
|     | 3.2   | Identific | ation of New Potential Damsites                  | H-8  |
|     | 3.3   | Screenin  | g Criteria for Selection of Prospective Damsites | H-8  |
|     |       | 3.3.1     | Criteria for first screening                     | H-8  |
|     |       | 3.3.2     | Criteria for second screening                    | H-10 |
|     |       | 3.3.3     | Criteria for third screening                     | H-10 |
|     |       | 3.3.4     | Criteria for fourth screening                    | H-11 |
|     | 3.4   | Results   | of Screening Evaluation                          | H-11 |
|     |       | 3.4.1     | Results of preliminary evaluation                | H-11 |
|     |       | 3.4.2     | Potential damsites for multipurpose planning     | H-11 |
|     |       | 3.4.3     | Selected prospective damsites                    | H-15 |
| Н4. | PREL  | IMINA     | RY LAYOUT DESIGN AND ROUGH                       |      |
|     | ESTI  | MATES     | OF CONSTRUCTION COSTS OF                         |      |
|     | PROS  | PECTIV    | YE DAM SCHEMES                                   | H-16 |
|     | 4.1   | Prelimin  | ary Layout Design of Prospective Dam             | H-16 |
|     |       | 4.1.1     | Lake Victoria drainage area                      | H-16 |
|     |       | 4.1.2     | Rift Valley drainage area                        | H-18 |
|     |       | 4.1.3     | Athi River drainage area                         | H-20 |
|     |       | 4.1.4     | Tana River drainage area                         | H-22 |
|     |       | 4.1.5     | Ewaso N'giro North River drainage area           | H-23 |
|     | 4.2   | Cost Es   | timates of Prospective Dam Schemes               | H-23 |

| H5. | FUTI | JRE DAM DEVELOPMENT POTENTIAL            | H-25 |
|-----|------|------------------------------------------|------|
|     | 5.1  | Multipurpose Dams                        | H-25 |
|     | 5.2  | Water Supply Damsites                    | H-28 |
|     | 5.3  | Flow Augmentation by Dam                 | H-31 |
|     | 5.4  | Large Scale Water Transfer Plan With Dam | H-31 |
| H6. | RECO | OMMENDATION                              | H-34 |

| REFERENCES | H-35 |
|------------|------|
|            |      |

## ATTACHED DRAWING : LOCATION OF DAMS IN KENYA (Scale 1 : 1,000,000)

.

,

## LIST OF TABLES

| Table        | N | D. Title                                                                                                          | Page  |
|--------------|---|-------------------------------------------------------------------------------------------------------------------|-------|
| <b>H2.</b> 1 |   | Principal Features of Existing and On-going Dams<br>by Drainage Area                                              | HT-1  |
| H2.2         |   | Number of Existing Small Dams by Basin                                                                            | НТ-2  |
| H2.3         |   | Inter-Basin Water Transfer Plan with Dam Proposed by<br>Previous Study                                            | HT-3  |
| H3.1         |   | Summary of Preliminary Screenings (1/5) to (5/5)                                                                  | HT-4  |
| H3.2         |   | Results of Case Study on Flood Control with Dam and River<br>Improvement Works in Representative Flood Prone Area | HT-10 |
| H3.3         |   | Selected Prospective Dams                                                                                         | HT-11 |
| H4,1         |   | Prospective and Dam Schemes                                                                                       | HT-12 |
| H4.2         |   | Estimated Construction Cost of Prospective Dams                                                                   | HT-13 |
| H5.1         |   | Future Development Potential Dams (1/2) to (2/2)                                                                  | HT-14 |

## LIST OF FIGURES

| Figure        | No. Title                                                                                               | Page |
|---------------|---------------------------------------------------------------------------------------------------------|------|
| H1.1          | Flow Chart of Dam Planning                                                                              | HF-  |
| H2.1          | Location of Existing and Ongoing Dams                                                                   | HF-2 |
| H2.2          | Location of Water Resource Schemes (Lake Victoria Drainage Area)                                        | HF-: |
| H2.3          | Location of Water Resource Schemes (Rift Valley Drainage Area)                                          | HF-4 |
| H2.4          | Location of Water Resource Schemes (Athi River Drainage Area)                                           | HF-  |
| H2.5          | Location of Water Resource Schemes (Tana River Drainage Area)                                           | HF-( |
| H2.6          | Location of Water Resource Schemes<br>(Ewaso Ngiro North River Drainage Area)                           | HF-  |
| H2.7          | Location of Water Resource Schemes<br>(Ewaso Ngiro South, Nakuru, Upper Kerio)                          | HF-  |
| H2.8          | Location of Water Resource Schemes (Upper Athi Basin)                                                   | HF-  |
| H2.9          | Location of Water Resource Schemes (Lower Athi Basin, Coast Area).                                      | HF-  |
| H2.10         | Location of Water Resource Schemes (Upper Tana River Basin)                                             | HF-  |
| <b>H2.</b> 11 | Location of Water Resource Schemes<br>(Upper Ewaso Ngiro North River Basin)                             | HF-  |
| H2.12         | Location of Existing Small Dam/Pan                                                                      | HF-  |
| H2.13         | Soil Texture Map                                                                                        | HF-  |
| H3.1          | Typical Cross Section of Dam Embankment                                                                 | HF-  |
| H3.2          | Reservoir Storage Capacity and Surface Area by Elevation of Prospective/Potential Dam (1/18) to (18/18) | HF-  |
| H4.1          | Location of Prospective Dams                                                                            | HF-  |
| H4.2          | Preliminary Layout of Prospective Dam (Moiben Dam)                                                      | HF-  |
| H4.3          | Preliminary Layout of Prospective Dam (Mukulusi Dam)                                                    | HF-  |
| H4.4          | Preliminary Layout of Prospective Dam (Londiani Dam)                                                    | HF-: |
| H4.5          | Preliminary Layout of Prospective Dam (Kibos Dam)                                                       | HF-: |
| H4.6          | Preliminary Layout of Prospective Dam (Itare Dam)                                                       | HF-: |
| H4.7          | Preliminary Layout of Prospective Dam (Magwagwa Dam)                                                    | HF-  |

| Figure | No. Title                                                   | Page    |
|--------|-------------------------------------------------------------|---------|
| H4.8   | Preliminary Layout of Prospective Dam (Bunyunyu Dam)        | HF-41   |
| H4.9   | Preliminary Layout of Prospective Dam (Malewa Dam)          | HF-42   |
| H4.10  | Preliminary Layout of Prospective Dam (Upper Narok Dam)     | . HF-43 |
| H4.11  | Preliminary Layout of Prospective Dam (Oldorko Dam)         | HF-44   |
| H4.12  | Preliminary Layout of Prospective Dam (Upper Athi Dam)      | HF-45   |
| H4.13  | Preliminary Layout of Prospective Dam (Ruiru-A Dam)         | HF-46   |
| H4.14  | Preliminary Layout of Prospective Dam (Kikuyu Dam)          | HF-47   |
| H4.15  | Preliminary Layout of Prospective Dam (Ndarugu Dam)         | HF-48   |
| H4.16  | Preliminary Layout of Prospective Dam (Yatta Dam)           | HF-49   |
| H4.17  | Preliminary Layout of Prospective Dam (Rare Dam)            | HF-50   |
| H4.18  | Preliminary Layout of Prospective Dam (Mwachi Dam)          | HF-51   |
| H4.19  | Preliminary Layout of Prospective Dam (Chaina-B Dam)        | HF-52   |
| H4.20  | Preliminary Layout of Prospective Dam (Thiba Dam)           | HF-53   |
| H4.21  | Preliminary Layout of Prospective Dam (Mutonga Dam)         | HF-54   |
| H4.22  | Preliminary Layout of Prospective Dam (Low Grand Falls Dam) | HF-55   |
| H4.23  | Preliminary Layout of Prospective Dam (Rumuruti Dam)        | HF-56   |
| H4.24  | Preliminary Layout of Prospective Dam (Nyahururu Dam)       | HF-57   |
| H4.25  | Estimated Dam Construction Cost Curve                       | HF-58   |

## LIST OF APPENDIXES

| Append | lix No. Title                                                                                                                                                                                                                                                                 | Page   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| H.1    | Dam Schemes Identified by Previous Studies (1/5) to (5/5)                                                                                                                                                                                                                     | H.1-1  |
| H.2    | Principal Features of Small Dam/Water Pan Schemes (1/25) to (25/25)                                                                                                                                                                                                           | H.2-1  |
| Н.3    | Existing and Proposed Small Dams in Kitui District (1/2) to (2/2)                                                                                                                                                                                                             | H.3-1  |
| H.4    | Existing Sub-surface Flow Dams in Kitui District                                                                                                                                                                                                                              | H.4-1  |
| H.5    | Coordinates of Identified Damsites                                                                                                                                                                                                                                            | H.5-1  |
| H.6    | Results of First Screening for Prospective Damsites (1/5) to (5/5)                                                                                                                                                                                                            | H.6-1  |
| H.7    | Results of Second Screening for Prospective Damsites (1/5) to (5/5)                                                                                                                                                                                                           | H.7-1  |
| H.8    | Catchment Area of Damsite and River Improvement Site<br>(For Evaluation of Dam Flood Control Function)<br>(Lake Victoria Drainage Area)<br>(Rift Valley Drainage Area)<br>(Athi River Drainage Area)<br>(Tana River Drainage Area)<br>(Ewaso Ngiro North River Drainage Area) | H.8-1  |
| H.9    | Conceptual Diagrams for Flood Control by Dam and                                                                                                                                                                                                                              |        |
|        | by River Improvement Works                                                                                                                                                                                                                                                    | H.9-1  |
| H.10   | Transfer of Water from Lake Victoria Basin to Rift Valley Basin                                                                                                                                                                                                               | H.10-1 |

vi

.

#### H1. INTRODUCTION

This sectoral report deals with the dam development plan for the National Water Master Plan and the National Water Master Action Plan (hereinafter referred to as "the Study") toward the years 2010 and 2000, respectively.

The dam development plan for the Study aims at selecting the potential surface water sources in the country, namely, prospective dam schemes for the Study and alternative potential dam schemes for future development.

Besides large dams, this study included a planning of other water sources such as small dams and sub-surface flow dams. The results of study on development plans of these sources are described in the Sectoral Report (M), Integrated Water Resources Development Planning, for rural water supply.

Chapter H2 describes the present situation of large, small and sub-surface flow dams throughout the country which are under operation, construction and planning stages. Inventories of these dam schemes prepared and inter-basin water transfer plans with dam identified in previous studies are compiled in this chapter.

Chapter H3 presents the inventories of dam schemes together with information of the proposed characteristics such as storage-area curve and dam embankment volume, the methodology and procedures of screening for the selection of prospective damsites. The selected prospective dam schemes were incorporated in the Integrated Water Resources Development Planning in Sectoral Report (M).

Chapter H4 presents the preliminary layout design and rough estimates of construction costs of the prospective dam schemes.

Besides the prospective damsites, other potential damsites for future development were also selected for purposes of water supply, irrigation, hydropower, flow augmentation in downstream and so on. These schemes are defined here as dams which were not selected for prospective dams foreseen towards year 2010 but might have potential for future development on the basis of the further detailed study in future before or after the year 2010. These potential schemes are discussed in Chapter H5.

A flow chart showing overall procedure of this dam development study is shown in Figure H1.1. Location of all the damsites examined in the Study, including existing (under operation) and ongoing (under-construction and in detailed design stage) damsites as well as alternative potential sites are shown in the Location Map attached to this report.

#### H2. EXISTING DAM SCHEMES

#### 2.1 General

All data and information available on dam schemes in the country were collected from the relevant ministries and agencies through questionnaires distributed during the study period and also from previous study reports. An inventory of dam schemes, including both large and small dams, was prepared based on the data and information collected.

The government ministries and agencies related to dam schemes are as follows:

- (a) Ministry of Water Development (MOWD) including Dam Construction Units (DCU, Unit No. 1 to Unit No. 5)
- (b) Ministry of Energy (MOE)
- (c) Ministry of Agriculture (MOA)
- (d) Ministry of Regional Development (MORD)
- (e) Ministry of Reclamation and Development of Arid, Semi-Arid and Wasteland (MORDASAW)
- (f) National Water Conservation and Pipeline Corporation (NWCPC)
- (g) Tana and Athi River Development Authority (TARDA)
- (h) Lake Basin Development Authority (LBDA)
- (i) Kerio Valley Development Authority (KVDA)
- (j) Nairobi City Commission (NCC)
- (k) National Irrigation Board (NIB)
- (l) Kenya Power Company Ltd. (KPC)
- (m) Kenya Power and Lighting Company Ltd.(KPLC)

#### 2.2 Large Dam Schemes

Based on the available data and information on dam schemes throughout the country, an inventory of large scale dam was prepared. In this study, a large dam is defined to be a dam of 15 m high or more.

#### 2.2.1 Existing and ongoing dam schemes

A list of existing large dams (under operation) and committed schemes (dams under construction and in detailed design stage) is shown in Table H2.1.

As shown in the table, there are 17 existing dams, 5 under construction and 5 under detailed design. Of the completed projects, representative large dams in terms of dam height and reservoir scale are Turkwel Dam (arch type, 1,650 mcm gross storage, 155 m high) on the Turkwel River, and Masinga Dam (rockfill type, 1,560 mcm gross storage, 70 m high) and Kiambere Dam (rockfill type, 585 mcm gross storage, 112 m high) on the Tana River.

They are mainly for hydropower generation, while the other existing dams are for domestic/industrial water supply and irrigation development purposes. The location of existing (under operation) and ongoing (under-construction and in detailed design stage) dams is presented in Figure H2.1.

The ministries and agencies related to the existing large dam schemes so far are MOWD, MOE, MCWPC, KVDA, TARDA, LBDA, NCC and KPC.

#### 2.2.2 Dam schemes under planning stage

There are some 100 dam schemes identified in previous studies (in the stages of feasibility, pre-feasibility and master plan studies). Most of the schemes are for domestic and industrial water supply and hydropower generation. An inventory of these schemes is compiled in Appendix H.1, together with the principal features such as catchment area, purpose, related agencies, and storage capacity.

#### 2.2.3 Number of large dams

The total number of large dam schemes is summarized by major drainage area as follows:

| Drainage Area      | U/O | U/C | D/D | F/S | Pre-F/S | M/P | Total |
|--------------------|-----|-----|-----|-----|---------|-----|-------|
| Lake Victoria      | 3   | 2   | 2   | 3   | 8       | 28  | 46    |
| Rift Valley        | 2   | 1   | 2   | 3   | 4       | 12  | 24    |
| Athi River         | 6   | 1   | 1   | 3   | 2       | 12  | 25    |
| Tana River         | 6   | 1   | 0   | 1   | 3       | 12  | 23    |
| Ewaso N'giro North | 00  | 0   | 0   | 1   | 0       | 7   |       |
| Total              | 17  | 5   | 5   | 11  | 17      | 71  | 126   |

Number of Large Dams

U/O=Under Operation, U/C=Under Construction, D/D=Detailed Design, F/S=Feasibility Study, Pre-F/S=Pre-feasibility Study, M/P=Master Plan

#### 2.3 Small Dam Schemes and Subsurface Flow Dams

In this Study, a small dam is defined as a dam having a height of less than 15 m. A water pan which is smaller in scale than the concept of small dam used here is included in the category of small dam. Its pond can be constructed in a depression where rainwater flow can be pooled.

There are quite a number of small dam schemes mainly for domestic water supply and livestock use in the rural areas. The planning, designing and implementation of the schemes are carried out by MOWD, NWCPC, MOA and other agencies.

Subsurface flow dams are classified into two: subsurface dam and sand dam. Typical designs of these dams are presented in Sectoral Report (M).

(1) Number of small dams and subsurface flow dams

The exact number of existing small dams and subsurface flow dams is hardly known, but the following figures by drainage area were estimated based on the data made available from MOWD and numbers counted on 1:50,000 topographic maps. The number of existing small dams by drainage area is summarized in Table H2.2.

| Drainage Area      | Small Dam | Subsurface Flow Dam |  |
|--------------------|-----------|---------------------|--|
| Lake Victoria      | 769       |                     |  |
| Rift Valley        | 392       |                     |  |
| Athi River         | 703       | 14                  |  |
| Tana River         | 286       | 24                  |  |
| Ewaso N'giro North | 510       | 3                   |  |
| Total              | 2,660     | 41                  |  |

Estimated Number of Small Dam and Subsurface Flow Dam

Source: MOWD, 1/50,000 topographic map

Note : The above is based on limited data and information made available during the study. The actual number of dams may be more than the above.

(2) Location of small dams

The location of existing small dams (including water pans) and subsurface flow dams in the above table are as shown in Figures H2.2 to H2.11, while Figure H2.12 shows country-wide distribution of small dams, and figure H2.13 shows a soil texture map indicating the distribution of heavy and medium texture areas (impermeable soil areas). From the figures the following were found:

(a) Many small dams and subsurface flow dams are concentrated in semi-humid and semi-arid areas such as the districts of Machakos, Kitui, Samburu, Trans Nzoia, Uasin Gishu, and so on. On the other hand, some exist at scattered locations in arid area such as lands in lower Tana River, North Kitui, and a part of Rift Valley. It is read on the map that the existing small dams and pans are within the areas receiving more than 400 mm of annual rainfall (see Figure H2.12).

- (b) Most of the existing small dams are located in heavy soil texture (fine texture) distributed areas. It means that the suitable construction area for small dams and pans are heavy soil texture distributed areas because of the availability of embankment materials and reservoir retainity of storage water. This index(heavy soil texture distributed area) will be an useful indicator to assess the development potential of small dam water sources in the country. This will be discussed in detail in Sectoral Report (M).
- (c) General reading of Figures H2.2 to H2.11 indicates that most of the small dams including water pans are located in the upstream area of tributaries, which is supposedly to obtain uncontaminated water. The catchment areas are generally small, ranging from a few km<sup>2</sup> to a few tens. of km<sup>2</sup>.
- (3) Inventory of small dams/pans

An inventory of small dams based on data from MOWD was compiled as shown in Appendix H.2. For the Kitui district, an inventory of existing small dams (though most of them are water pans) and subsurface flow dams constructed in the period between 1975 and 1986 in the Kitui District was prepared based on the data obtained from MOWD and shown in Appendixes H.3 and H.4. The inventories are indicative to show examples of averaged figures of the small dams/water pans and subsurface flow dams in terms of catchment area, dam height, storage capacity and construction materials, which are summarized as follows:

| <b>Typical Characteristics</b> | of Small Dams | /Subsurface | Flow Dams |
|--------------------------------|---------------|-------------|-----------|
|                                | 0.000         |             |           |

| Small dams/<br>water pans<br>(91 dams/pans) | catchment area<br>dam height<br>dam type<br>reservoir area<br>storage volume |   | about 1 km <sup>2</sup><br>about 2 m<br>concrete or earthfill<br>less than 1 ha<br>2,200 m <sup>3</sup>               |
|---------------------------------------------|------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------|
| Subsurface<br>flow dams<br>(23 dams)        | catchment area<br>dam height<br>dam type<br>reservoir area<br>storage volume | - | about 2 to 3 km <sup>2</sup><br>about 2 m<br>concrete<br>less than 100 m <sup>2</sup><br>less than 800 m <sup>3</sup> |

#### 2.4 Inter-Basin Water Transfer Plan

Various inter-basin water transfer plans with dam schemes have been planned for the supply of domestic/industrial and irrigation water and for hydropower generation of which some have been implemented. The total number of inter-basin water transfer plans with and without dam schemes so far identified was 23 projects as shown in Table H2.3. The locations are shown in Figures H2.2 to H2.11.

Out of all the plans above, 18 plans are with dam schemes of which two (2) are now under construction and expected to be completed in 1992; i.e., the Thika dam scheme being implemented by NCC for water supply to Nairobi city and the Turasha dam scheme by NWCPC for supplying water to Nakuru and Gilgil areas. Others are either in the design or feasibility study stage; Chemususu dam and Malewa dam schemes for Nakuru area water supply by NWCPC, Sondu/Miriu dam scheme for hydropower generation by KPLC and irrigation by LBDA.

In some cases, inter-basin water transfer schemes with a dam will result in the disturbance of ecological balance at both water-abstracted basin area and water-receiving basin area, especially in case where inter-basin water transfer scheme is planned from closed basin to closed basin. Therefore, it is very important that inter-basin water transfer scheme with dam be carefully planned taking this aspect into consideration.

For the Study, inter-basin water transfer scheme with dam is discussed in more detail in Sectoral Report (M)-Integrated Water Resources Development Planning and Sectoral Report (N)-Environmental Conservation.

#### H3. SELECTION OF PROSPECTIVE DAM SCHEMES FOR THE MASTER PLAN AND THE MASTER ACTION PLAN

#### 3.1 Methodology and Procedures

The selection of prospective dam schemes for the Study was examined through four steps of screening procedures (refer to the screening criteria, Subsections 3.3.1 to 3.3.4 hereinafter). Methodology and procedure adopted for the selection of prospective damsites are as follows:

- (1) Listing of all dam schemes studied and named in previous studies.
- (2) Identification of new potential damsites through map study.
- (3) Ranking of dam schemes in screening evaluation.
  - (a) Schemes already committed (defined herein as the schemes under construction and in detailed design stage) were excluded from the evaluation since they are already on the line of development programme.
  - (b) Schemes accorded a high viability in the previous studies (feasibility study, pre-feasibility) were retained irrespective of indices evaluated in the screenings.
- (4) Preparation of basic planning data for newly identified schemes, i.e., catchment area, reservoir surface area storage curve, dam embankment volume and so on.
- (5) Screenings of identified/potential dam schemes
  - (a) Preliminary Evaluation
    - first screening
    - second screening
    - third screening
  - (b) Final Evaluation
    - fourth screening
- (6) Selection of prospective damsites for the Study

#### 3.2 Identification of New Potential Damsites

Prior to the screenings, efforts were made to identify additional potential damsites in the whole country through a study on 1/50,000 contour maps. The map study was carried out paying attention to the following:

- (a) Damsites having favorable topographical features (e.g., narrow damsite valley, large catchment)
- (b) Damsites located near high water demand areas of urban centres such as major cities and towns in relation to domestic and industrial water supply schemes.
- (c) Damsites having a development viability of water supply for irrigation and hydropower generation.

About 130 additional damsites were newly identified through the map study. Location and coordinates of the identified damsites as well as damsites named in previous studies are compiled together in Appendix H.5.

#### 3.3 Screening Criteria for Selection of Prospective Damsites

#### 3.3.1 Criteria for first screening

The criteria for the first screening were as follows:

- (a) Damsites having storage efficiency (SE) index of more than 15 are selected through the first screening and passed to the second screening.
- (b) SE index does not take into account a factor of water head which is an important factor for hydropower generation. Therefore, no exclusion of hydropower schemes were made.

Storage efficiency is defined as below:

SE =  $(active storage capacity in m^3) / (dam embankment volume in m^3)$ 

A larger value of SE presents a higher storage efficiency of dam scheme. The marginal point of SE was assumed to be 15 in consideration that the SE values for the dam schemes taken up in previous feasibility studies distribute in a range of over 15.

Definition of terms used here are as follows:

- (1) Dam Height
  - (a) In case of dams for which the planning features are defined at feasibility studies or pre-feasibility studies:

Dam height = proposed FSL + freeboard

where, FSL : Full Supply Level freeboard: tentatively set out as follows (including the spillway overflow depth at a dam design flood);

> dam height > 30 m : freeboard = 5 mdam height < 30 m : freeboard = 3 m

(b) In case of other dams:

Whichever is the lower, comparing the following two:

- topographically maximum possible height, or

- maximum dam height assumed at 150 m.

Where the FSL is defined as follows:

FSL = (dam crest elevation) freeboard (5 m or 3 m as above)

- (2) Active Storage Capacity: Gross Storage Capacity minus Dead Storage Capacity.
- (3) Dead Storage Capacity: Annual sediment yield (m3/km2/year) is based on the results of sediment study estimated for each basin area (see Sectoral Report (B)-Hydrology). Reservoir life was assumed to be 50 years.
- (4) Dam Type: Rockfill type with centre core was assumed for all schemes for comparison on a uniform basis. In fact, previously identified dams (including existing, ongoing, under-planning dams) were planned mainly as rockfill type dam. The typical cross section of rockfill dam is shown in Figure H3.1.
- (5) Dam Embankment Volume: Dam embankment volume is calculated by a formula given below which is based principally on the damsite valley profile data extracted from the maps.

Embankment Volume = 1/2 BH (L1 + L2) + 1/6 (m + n) \* H^2 (L1 + 2L2)

where, B = dam crest width (10 m)
m = upstream slope of dam embankment (3.0)
n = downstream slope of dam embankment (2.5)
H = dam height (m)
L1 = dam length at crest (m)

- L2 = dam length at bottom (m)
- Note 1: Foundation excavation is assumed to be 5 m below the ground line.
- Note 2: Dam embankment volume obtained by the above formula was verified with the volume calculation derived from profile data surveyed at 11 damsites in this Study. The difference was found to be within an acceptable range (+/-95%).
- Note 3: Dam embankment slopes, upstream and downstream, are assumed to be 1:3 and 1:2.5, respectively, as typical design referring to the designs proposed in previous studies and Design Manual (Ref.H.3).

#### 3.3.2 Criteria for second screening

The following were the criteria for the second screening:

- (a) Firstly, reservoir yield was estimated on a reservoir storage draft curve (refer to Sectoral Report (B)- Hydrology) predetermined for each river basin/dam scheme. In determining the dam development scale, an assumption used was that the most likely optimum scale would appear at a point where the curve turns upward. Reservoir yield and corresponding active storage requirement were read out at the point on the curve.
- (b) The above storage requirement was compared with maximum active storage volume available at the damsite. If the latter is smaller than the former, the scheme is discarded in view of the fact that the site would not be suitable for the development of a large dam.
- (c) A further comparison was made to assess the relative attractiveness among damsites within the same basin, based on a reservoir yield (RY) index (= reservoir yield/dam embankment volume). Schemes showing higher figures were passed to the third screening.

#### 3.3.3 Criteria for third screening

The following exclusion criteria was applied:

- (a) Exclusion of dam schemes remote from demand centers/areas or subbasins where water deficit was foreseen on the basis of the results of the first preliminary water balance study.
- (b) Exclusion of dam schemes having a relatively low reservoir yield (RY) index among alternative schemes envisaged for the same demand.

#### 3.3.4 Criteria for fourth screening

The following was the fourth screening criteria:

- (a) Potential damsites selected by the preliminary evaluation (first/second/third screenings) and some sites previously discarded through the preliminary screening were re-evaluated to select prospective damsites based on the final water balance study (Refer to Sectoral Report (M)).
- (b) Prospective dam schemes having multiple purposes were selected on the basis of the study results of water balance and study results of each sector, i.e., Agriculture and Irrigation (Sectoral Report (E)), Power Development Plan (Sectoral Report (L)), and Flood Control Plan (Sectoral Report (G)).
- (c) Schemes accorded a high viability in the previous studies and schemes remaining at the third screening but not finally selected as prospective sites were to be left as alternative potential sites for subsequent detailed studies for each region.

#### 3.4 Results of Screening Evaluation

#### 3.4.1 Results of preliminary evaluation

The results of the preliminary evaluation (first/second/third screenings) are shown in Table H3.1 and summarized below.

| Drainage area      | No. of damsites | Remaining after<br>1st Screening | Remaining after<br>2nd Screening | Remaining after<br>3rd Screening * |
|--------------------|-----------------|----------------------------------|----------------------------------|------------------------------------|
| Lake Victoria      | 94              | 55                               | 31                               | 13 (2 hydro)                       |
| Rift Valley        | 48              | 27                               | 18                               | 10 (3 hydro)                       |
| Athi River         | 27              | 18                               | 15                               | 13                                 |
| Tana River         | 40              | 18                               | 10                               | 7 (5 hydro)                        |
| Ewaso N'giro North | 18              | 11                               | 5                                | 2                                  |
| Total              | 227             | 129                              | 79                               | 45                                 |

#### Number of Damsites that Passed Screening

\* Preliminarily selected potential schemes

Through the above preliminary evaluation, 45 schemes were selected for further examination in the forth screening.

#### 3.4.2 Potential damsites for multipurpose planning

Potential damsites having purposes of irrigation, hydropower and flood control proposed by each sector are discussed hereunder.

#### (1) Irrigation Purpose

Out of 18 large scale irrigation schemes proposed by the irrigation development plan (Sectoral Report (E)), the following 8 potential dam/reservoirs were proposed as schemes for irrigation. These potential damsites were to be put into the final water balance study.

| Irrigation Scheme     | Dam/Reservoir  |
|-----------------------|----------------|
| Upper Nzoia           | Hemsted Bridge |
| Yala Swamp/Kano Plain | Nandi Forest   |
| Kano Plain            | Magwagwa       |
| Arror                 | Sererwa        |
| Lower Ewaso N'giro    | Oldorko        |
| Kanzalu               | Munyu          |
| Kibwezi Extension     | Yatta          |
| Mwea Extension        | Thiba          |
|                       |                |

(2) Hydropower Purpose

The study result of power development plan has four recommended hydropower dam schemes towards the year 2010, i.e., Sondu/Miriu, Low Grand Falls, Oldorko, Mutonga and Magwagwa. Sondu/Miriu scheme is an ongoing scheme in detailed design stage. Hence, the other three were selected as prospective dam schemes for hydropower generation purpose.

The other hydropower damsites already proposed by previous studies were alternatives for hydropower potential as described in Sectoral Report (L).

(3) Flood Control Purpose

A cost comparison study was carried out to examine the relative merit of flood control dam plans through comparison of (i) river improvement only and (ii) river improvement and flood control dam. The study was made for basins where flood mitigation schemes are planned as reported in Sectoral Report (G)-Flood Control Plan.

The process of the comparative study was as follows:

(a) Selection of Basins for the Comparative Study

The study results of the Flood Control Plan (Sectoral Report (G)) indicate the following five (5) flood prone areas for the implementation of flood mitigation schemes up to the year 2010.

- Kano Plain
- Yala Swamp

- Nairobi City
- Kuja River Mouth

- Lumi River Mouth

Out of the above flood prone areas, three (3) areas were selected for the comparative study between flood control with dam and flood control with river improvement works, considering the availability of identified damsites which were studied in Chapters H2 and H3 and compiled in Appendixes H.6 and H.7. The flood prone areas and the related river basins selected for the comparative study are as follows:

| Flood Prone Area | Related River Basins |
|------------------|----------------------|
| Kano Plain       | Nyando/Sondu Rivers  |
| Yala Swamp       | Yala/Nzoia Rivers    |
| Kuja River Mouth | Kuja River           |

(b) Selection of Representative Damsite for the Comparative Study

Of the dam schemes identified in each river basin, the schemes having comparatively large catchment areas were selected taking an advantage of their large share against the catchment area of the flood prone area in view of their large effect to flood discharge (refer to Appendix H.8) and also considering the results of preliminary screening evaluation which showed the larger reservoir storage efficiency and economical advantages.

The representative damsites selected for the comparative study are as follows:

| River  | <u>Damsite</u> |
|--------|----------------|
| Nzoia  | Rambula        |
| Yala   | Mushagumbo     |
| Nyando | Nyando         |
| Sondu  | Magwagwa       |
| Kuja   | Katieno        |

(c) Evaluation Criteria

In the comparative study on flood control with dams or with river improvement works, the following evaluation criteria was applied (refer to Table H3.2):

(i) Flood protection level/regulating flood flow level

The flood protection level for river improvement works was 25-year which was taken from the study on Flood Control Plan. (Ref. Sectoral

Report (G)). The flood in flow at the reservoir was assumed to be of the same return period.

(ii) Flow cut ratio

Flow cut ratio at damsite was assumed to be 0.5, except for Rambula Reservoir for which 0.3 was assumed in consideration of its large inflow discharge.

(iii) Inflow design discharge

Inflow design discharge at damsites was estimated based on a design discharge at downstream point for river improvement works.

(iv) Flood control storage

Duration of flood runoff was assumed to be 10 days. Then flood control storage was assumed with inflow design discharge.

(v) Design discharge at downstream point after controlling by reservoir

 $Q = Q_1 \{ [1 - (1 - r)^2] a/A \}^{0.5}$ 

where,

- Q: Design discharge at downstream point for river improvement works after controlling reservoir routing,
- Q1: Inflow design discharge at downstream point without dam,
- r : Cut ratio at dam site,
- a : Catchment area of dam, and
- A : Catchment area of downstream point
- (vi) Dam embankment volume

Dam embankment volume was calculated based on the same criteria shown in Subsection 3.3 of this report.

- In case of multipurpose dams, incremental dam embankment volume associated with flood control storage capacity was estimated.
- In case of flood control by single purpose dams, the dam embankment volume was estimated independently based on the sediment volume, flood storage capacity, and storage capacity - area curves.
- (d) Comparison Method

For comparison between flood control by dam and river improvement works, the construction cost required for each structural measure was compared in consideration of the following:

#### Cost of Flood Control by Dam

Increment of dam construction cost was estimated as the difference between the cost of dam with- and without-flood control function.

#### Cost of Flood Control by River Improvement Works

Decrease in construction cost of river improvement works was estimated as the difference between the cost with- and without-flood control dam.

Conceptual diagrams of flood control by dam and by river improvement works are shown in Appendix H.9.

The results of the comparative study are shown in Table H3.2. As shown in the table, flood control with dam is expensive by about 6 to 25 times that with river improvement works.

Therefore, none of the dam schemes was proposed for flood control single purpose or as multi-purpose schemes. The flood control by river improvement works was recommended under this study. However, further comparative study on flood control with dam and with river improvement works should be done in more detail for each basin when the final features of flood mitigation plan is to be determined.

#### **3.4.3** Selected prospective damsites

Based on the fourth screening criteria and the results of the final water balance study, 28 damsites were selected as schemes envisaged towards year 2010. They are listed in Table H3.3. The table includes five committed projects presently under design stage; namely, Moiben, Sondu/Miriu, Chemususu, Kirandich, and Ruaka (Kiambaa) dams. The selection process of these 28 damsites in the final water balance study is described in detail in Sectoral Report (M).

Out of the 28 dams, 19 dams are for domestic, industrial and livestock water supply, 2 dams for hydroelectric power generation, and 2 dams are for irrigation. Then, 5 dam schemes (Sondu/Miriu, Magwagwa, Oldorko, Ndarugu and Chania-B) are for multiple purposes of hydropower, irrigation and/or water supply.

Figures H3.2 (Serial Nos.(1/18) to (18/18)) shows the reservoir storage capacity and surface area by elevation of the prospective damsites together with other damsites examined in the Study.

#### H4. PRELIMINARY LAYOUT DESIGN AND ROUGH ESTIMATES OF CONSTRUCTION COSTS OF PROSPECTIVE DAM SCHEMES

#### 4.1 Preliminary Layout Design of Prospective Dams

The location of 28 prospective damsites selected as well as existing and ongoing damsites is shown in Figure H4.1. Preliminary design of 28 dams (excluding 4 dams for which definite design is already prepared; i.e. Sondu/Miriu, Chemususu, Kirandich and Ruaka [Kiambaa] dams) was made on the basis of the topo-maps of 1:50,000 scale and preliminary design criteria described in Section 3.3. In case the design is already delineated in previous studies, the same design was adopted in the Study. The plan, profile dam axis and typical cross section of each prospective dam are shown in Figures H4.2 to H4.24. The principal features of the prospective dams are shown in Table H4.1.

Brief descriptions by drainage area of the prospective damsites are given below.

#### 4.1.1 Lake Victoria drainage area

In this drainage area, Moiben dam has already been committed for supplying water to Eldoret Municipality by NWCPC. The detailed design of the dam was completed in 1992, but the final features of dam and reservoir was still under examination as of December 1991. In the Study, therefore, this dam was included in a group of prospective dams.

(1) Moiben Dam

This damsite is located on the Moiben River near Chebara Village at elevation of 2,325 m. The scheme proposed in a previous study (Ref.H.10) has an advantage of enabling gravity water supply for domestic and industrial purposes to Eldoret municipality and surrounding areas.

The catchment area of this site is around 188 km2. The yield at the damsite is proposed to be 58,700 cmd (0.68 cms). In this Study the water of 51,000 cmd (0.59 cms) for supplying domestic and industrial water demands to Eldoret area and domestic water of 3,500 cmd (0.04 cms) to Iten town are planned for meeting the demand toward the year 2010, and the remaining yield for the downstream flow. A dam about 42 m high above riverbed and gross storage capacity of 19.6 mcm is conceived.

(2) Mukulusi Dam

This dam is located on the Isiukhu River about 6 km east of Kakamega town. The river originates from Kakamega Forest and the runoff yield at damsite is 95,000 cmd (1.1 cms). The scheme envisages to supply 49,300 cmd (0.57 cms) of water to Kakamega town to meet the water demand in 2010, and the remainder for the downstream maintenance flow. The dam is less than 15 m in height but its

gross storage capacity may be about 17 mcm. This dam is a newly proposed scheme for supplying water to Kakamega town and environs.

#### (3) Londiani Dam

This damsite proposed in a previous study (Ref.H.18), is located on the Kipchorian River at 2,286 a.m.s.l., about 5 km north of Londiani town. In this Study the scheme is planned for water supply to Londiani town meeting demand of 20,800 cmd (0.24 cms) towards the year 2010. The scheme was previously planned for water supply to the Greater Nakuru areas by inter-basin water transfer, however it was found in this Study that reservoir yield would not be large enough to meet the water demend in the year 2010 at Nakuru. The reservoir will have a gross storage capacity of about 50 mcm with a dam 50 m high above the riverbed.

#### (4) Kibos Dam

This dam is located on the Kibos River at about 1,450 m.a.s.l., some 20 km northeast of Kisumu town and immediately north of Nyando Escarpment. It was proposed by previous studies (Refs. H.9 and H.14) for supplying water to Kisumu town area. This Study envisages water supply of 70,000 cmd (0.81 cms) to Kisumu and Maseno towns for meeting the demand towards the year 2010. A 40 m high dam will create a reservoir having 7 mcm of gross storage.

#### (5) Itare Dam

The site is located on the Itare River just downstream of the confluence of Ndoinet and Songol rivers, about 3 km inside the boundary of South Western Mau Nature Reserve area. This scheme is being investigated and studied at a prefeasibility study level by NWCPC for water supply to Greater Nakuru areas through Molo.

The Study conceived, out of total yield of 149,500 cmd (1.73 cms) at the damsite, 123,500 cmd (1.43 cms) of water will be supplied for meeting the demand towards the year 2010 in several urban centers such as Molo, Elburgon, Njoro, Mogotio, Rongai and part of Nakuru, and the remaining yield for downstream maintenance flow. For this purpose the plan envisages to build a dam of about 36 m high above riverbed and a reservoir of 14.6 mcm of gross storage capacity.

#### (6) Sondu/Miriu Dam

This dam is proposed at a gorge in the downstream pat of the Sondu River. The dam, 18 m in height, is to provide a pondage for daily flow regulation primarily for power generation and to divert the water to Kano plain irrigation area. Installed capacity of the proposed Sondu/Miriu powerhouse is 60 MW. The detailed design was completed by KPC in 1991. The plan envisages to provide an additional powerhouse (19 MW) in the future.

#### (7) Magwagwa Dam

This site is located on the Sondu River about 5 km downstream from the confluence of two major tributaries; Yurith and Kipsonoi rivers. Feasibility study of this scheme for hydropower generation was just completed in 1991. The proposed Magwagwa hydroelectric power project has an optimal installed capacity of 120 MW for commissioning in year 2003. The dam is of a concrete facing rockfill type, 100 m high and about 4.4 million m3 of embankment volume. The gross storage capacity is about 808 mcm and active storage capacity 701 mcm.

The water released from Magwagwa power station will further be used at the Sondu/Miriu power station located downstream and finally conveyed to the Kano Plain irrigation area.

The optimal development project scale was derived by maximizing the net benefit gained from Magwagwa and Sondu/Miriu hydropower schemes and Kano Plain irrigation scheme (Ref.H.11). The features of the scheme assumed in this Study are identical to those proposed in the feasibility study.

(8) Bunyunyu Dam

This damsite is located on the Kuja River about 11 km westward from the town of Kisii. The reservoir is planned for regulation of river flows and the water is taken at an existing water intake located downstream of the dam for supplying 8,700 cmd (0.1 cms) to Kisii and environs for meeting demand towards the year 2010. A 17 m high dam with 4.8 mcm of gross storage reservoir is conceived.

#### 4.1.2 Rift Valley drainage area

In this drainage area there are two committed dam schemes at the detailed design stage, Chemususu dam and Kirandich dam. These dam schemes were proposed by NWCPC.

(1) Chemususu Dam and Kirandich Dam

The detailed design of Chemususu dam was completed in 1989. The site is situated within the Lembus Forest and has about 63 km2 of catchment area. The dam will supply 35,000 cmd (0.4 cms) to the Greater Nakuru water supply project. A rockfill dam 45 m high above the riverbed with 0.76 mcm embankment volume and 10.9 mcm of gross storage capacity is planned (Ref.H.17).

(2) Kirandich Dam

The design of Kirandich dam was completed in 1989. The site is located on the Kirandich River. The dam is planned for supplying 11,000 cmd (0.127 cms) to Kabarnet town. A rockfill dam, 50 m high and 0.4 mcm of embankment volume, will provide a 4.52 mcm of gross storage capacity (Ref.H.28).

#### (3) Malewa Dam

The dam is located on the Malewa River about 8 km upstream from the confluence of Malewa and Turasha rivers. This scheme is proposed in combination with Turasha intake dam for water supply to Gilgil, Naivasha, and Nakuru areas. The feasibility study of Malewa dam was completed in 1990, while Turasha dam is under construction for completion in 1992. A rockfill dam 80 m high and 68.9 mcm of gross storage is designed for supplying water of 115,800 cmd (1.34 cms) for meeting water demand towards the year 2010 (Ref.H.24).

As the results of inter-basin water transfer from subbasin 2GB to subbasin 2FC, there will be lowering of water level at Lake Naivasha, vice versa there will be rise of water level at Lake Nakuru which will give some impacts on the ecosystem in both subbasins. Further detail is given in Sectoral Report N.

#### (4) Upper Narok Dam

The site is located about 300 m downstream from the confluence of two rivers, Engare Narok and Olokurto. The scheme was proposed in a MOWD's study (Ref.H.27) for supplying water to Narok town by gravity. In this Study water demand in Narok town towards year 2010 was estimated to be 53,600 cmd (0.62 cms). A dam of 29 m high with 10 mcm of gross storage capacity is planned to meet this water supply requirement.

#### (5) Oldorko Dam

This site is located on the main stream of Ewaso N'giro South River near Nguruman Escarpment. The scheme was proposed primarily for hydropower generation together with Leshota dam which is located upstream of the Oldorko damsite (Ref.H.2). Based on the updated national power development plan up to year 2010, Oldorko dam was favored as a prospective scheme having a generating capacity of 72 MW.

This Study adopted the same features of the dam and reservoir plans as designed in the previous study. Water flowing out from the power station will be utilized for irrigation (Lower Ewaso N'giro South Irrigation scheme) and as a future water source for domestic supply to Magadi town. The irrigation water supply is conceived at 13.4 cms and the supply of domestic water for Magadi town is 10,400 cmd (0.12 cms) towards the year 2010.

The irrigation scheme involves a major abstraction of water, reducing the river flow in the downstream reaches. The inclusion of irrigation scheme will be subject to further study of environmental aspects in the downstream reaches as well as the Lake Natron.

#### 4.1.3 Athi River drainage area

In this drainage area, the Kiserian dam is under construction by NWCPC for water supply to Kajiado town. The dam is 21 m high and will supply 6,000 cmd (0.07 cms) of water. A potential environmental problem is that the reservoir water may be subject to pollution due to effluents from Kiserian township.

There is Ruaka (Kiambaa) dam scheme on the Ruaka River. The detailed design of the dam was completed in 1980 for water supply to environs of the site. Recently the scheme was raised and will be re-evaluated by NWCPC for water supply to the environs.

(1) Upper Athi Dam

The site is located on the Athi River about 10 km northwest from Athi River town. The dam and reservoir are situated in the boundary of Nairobi National Park. The scheme was proposed for supplying domestic and industrial water to the Athi River town (Ref.H.36).

In this Study, a dam 27 m high above riverbed with 10 mcm of gross storage reservoir was planned for supplying 28,500 cmd (0.33 cms) of water for meeting demand towards the year 2010.

(2) Ruiru A Dam

The damsite is located on the Ruiru River about 2 km downstream of the existing Ruiru dam which is one of the present water sources for Nairobi through pipeline supply. The site was proposed in a MOWD's study (Ref.H.30) as one of the water development sources in the Chania and Thika river basins.

The scheme is tentatively proposed in this Study for supplying 2,600 cmd of water (0.03 cms) to Nairobi towards the year 2010. The dam height is 69 m and the gross storage capacity will be 19 mcm.

(3) Kikuyu Dam

The site is located on the upstream reach of the Nairobi River near Kikuyu town. The dam will yield about 20,000 cmd (0.23 cms) of water for domestic and industrial uses in Kikuyu town and environs towards the year 2010. A 25 m high dam with 11 mcm of gross storage capacity is tentatively proposed in the Study. However, it is noted that the further investigations are required to clarify the impact on the flow of the Nairobi River.

(4) Ndarugu Dam

This site is located on the Ndarugu River just downstream the confluence of two rivers; Komu and Ndarugu. The dam was proposed for supplying water to Nairobi and environs (Ref.H.29).

In this Study a multipurpose dam scheme is considered; domestic and industrial purposes for meeting the water demand towards the year 2010 in Nairobi, Ruiru and Kiambu, and also for Kanzalu irrigation scheme. The water yield is 407,000 cmd (4.71 cms) for domestic and industrial water supply and 102,000 cmd (1.18 cms) for irrigation.

Munyu dam which is located on the Athi River about 1.5 km downstream from Ndarugu damsite is an alternative site for the same development objectives. Munyu dam will be discussed in the Chapter H5.

(5) Yatta Dam

The site is located on the middle reach of Athi River about 1 km downstream of the confluence of two rivers; Kikuu/Kiboko and Athi. The site was proposed for a source reservoir of Kibwezi Extension irrigation scheme (Ref.H.29).

Regulated flow of about 12 cms from the reservoir can only be sufficient to irrigate 13,200 ha of crop fields, out of the total irrigation area of 30,000 ha in the Kibwezi Extension irrigation scheme. The reservoir has 380 mcm of gross storage capacity at a maximum development scale (52 m high dam).

(6) Rare Dam

The site is located on Rare River which is a seasonal river with a catchment area of 6,246 km2. The dam is planned as an off-stream reservoir to store water taken from the Galana-Sabaki River by an intake weir to be built downstream Sala village and conveyed through an open canal during the rainy season. The reservoir also collect water drained from its upstream area (Ref.H.33).

This off-stream reservoir is planned for supplying water of 32,800 cmd (0.38 cms) to Malindi towards the year 2010. About 37 mcm of gross storage reservoir and a dam of 21 m high are planned.

(7) Mwachi Dam

The site is located on the Mwachi River. The dam was proposed for water supply to Mombasa (Ref.H.33). According to the previous study the scheme was recommended as a potential source subject to further investigation of hydrological features at the site to estimate the reservoir yield. At present, however, no additional data have been available. In this Study the dam was planned based on the limited data. A 77 m high dam with 113 mcm of gross storage capacity is planned for supplying 205,000 m3 (2.37 cms) of water to Mombasa towards the year 2010.

#### (8) Pemba Dam (Intake weir)

The site is located on the Pemba River at a gorge near Maluganji Forest. A run-ofriver type intake weir is considered for supplying water of 19,900 cmd (0.23 cms) to Mombasa and south coastal area towards the year 2010. The intake weir is to be provided with a sediment wash-out gate near intake channel, considering the huge amount of sediment production from the drainage area. Actually, an existing intake weir located about 8 km upstream of the proposed Pemba dam suffers from heavy sedimentation in the pond.

#### 4.1.4 Tana River drainage area

#### (1) Chania B Dam

The site is located on the mid-stretch of Chania River. The site was identified as one of potential sites in the Chania and Thika river basins (Ref.H.30).

The reservoir is tentatively proposed in the Study as the water source for domestic/industrial water supply to Nairobi and small scale irrigation schemes. Water of 65,700 mcm (0.76 cms) is for domestic and industrial purpose and 15,600 cmd (0.18 cms) for irrigation towards the year 2010. A 100 m high dam with 51 mcm of gross storage reservoir is required for the purposes. It is noted that the scheme is subjected to further examination in subsequent detail studies on project basis.

#### (2) Thiba Dam

The dam is located on the Thiba River about 1 km upstream of the waterlevel gaging station 4DA11. The dam and reservoir are planned for water source of Mwea Extension irrigation scheme (Ref.H.35). Feasibility study of the dam was completed in 1988. The dam features proposed in the feasibility study are adopted for the Study, wherein a 33 m high dam and 17.4 mcm of gross storage reservoir are designed for the irrigation development purpose.

#### (3) Mutonga Dam

The damsite is located on the main stream of the Tana River about 1 km downstream of the confluence of Mutonga and Tana rivers. The dam is proposed for hydropower generation together with Low Grand Falls dam scheme in the updated national power development plan. A 42 m high dam and 286 mcm of gross storage capacity are planned for generating 60 MW of power (Ref.H.2).

#### (4) Low Grand Falls Dam

The dam is situated on the Tana River about 3 km downstream of the confluence of Tana and Kathita rivers. This scheme is proposed for hydropower generation of 120 MW installed capacity. A 79 m high dam with 742 mcm of gross storage capacity is planned.

An alternative plan is High Grand Falls dam, which would be mutually exclusive with the development of Low Grand Falls and Mutonga dams. The High Grand Falls dam will be discussed in Chapter H5.

# 4.1.5 Ewaso N'giro North River drainage area

Two damsites, Rumuruti and Nyahururu, were identified in the upstream reaches in the Ewaso Narok river basin for water supply to urban centres in the neighbouring area. According to the results of water balance study, it was found that the inflows into these reservoirs might not be sufficient to attain their effective developments. However, in a context that hydrological features used in the water balance study were based on limited data, the Study presumed that the findings in the previous studies represent the attractiveness of schemes more accurately and hence retained these schemes for further study. Another reason is that there are no other competitive schemes in this region.

# (1) Rumuruti Dam

The dam was proposed in a previous study (Ref.H.41). The site is located on the Ewaso Narok North River about 10 km downstream of Nyahururu town and about 25 km upstream of Rumuruti town. In this Study, the scheme was planned for supplying 2,600 cmd (0.03 cms) of water to Rumuruti town to meet the demand towards year 2010. A 16 m high dam with a 3 mcm of gross storage capacity is planned.

(2) Nyahururu Dam

The site is situated on the Nyahururu River, which is a tributary of the Ewaso Narok North River, about 5 km upstream of Nyahururu town. The scheme was tentatively proposed in the Study for supplying 22,500 cmd (0.26 cms) of water to the Nyahururu town for meeting the demand towards year 2010. A 20 m high dam with 10 mcm of gross storage capacity was planned.

# 4.2 Cost Estimates for Prospective Dam Schemes

Construction cost of the prospective dams was estimated based on the estimated dam construction cost curve prepared in this Study as shown in Figure H4.25. The cost curve was based on cost information made available from various studies and designs of major dam projects (about 40 dam schemes). The cost was adjusted to the price level of February 1992 after incorporating the price escalation.

The cost consists of direct construction costs (dam embankment, spillway, intake facilities, diversion works and preparatory works), indirect construction costs (land acquisition/ compensation, administration and engineering service) and physical contingency.

The estimated construction cost of each dam as well as water cost are tabulated in the Table H4.2. In the table, the estimated construction cost of Magwagwa, Malewa, Oldorko, Thiba, Mutonga and Low Grand Falls dams are based on the cost estimated in the previous design studies (Refs. H.5, H.11, H.24 and H.35). The prices were adjusted to 1992 price.

.

# H5 FUTURE DAM DEVELOPMENT POTENTIAL

Chapter H4 selected 28 dam schemes as candidate schemes to be implemented towards year 2010. On top of those, there are a number of schemes worthy of further consideration as alternatives to the selected schemes and/or schemes to be added in development programme when new demands arise or if the economic viability is justified in further studies. This Chapter describes the schemes requiring further investigations in this regard. Table H5.1 lists those potential schemes.

# 5.1 Multipurpose Dams

Some of dam schemes listed in Table H5.1 have the potential of multipurpose development, out of which eight major dams, i.e., Nyando and Nandi Forest dams in the Lake Victoria drainage area, Kimwarer and Sererwa dams in the Rift Valley drainage area, Munyu dam in the Athi river basin, High Grand Falls, Adamson's Falls and Kora dams in the Tana river basin are briefly discussed hereunder.

(1) Nyando Dam

This site is located on the Nyando River about 5 km upstream of Muhoroni. The dam scheme was proposed in the previous studies (Refs. H.5 and H.9) for the purposes of domestic and industrial water supply, irrigation and flood control, and also as a dam for Greater Rift Water Transfer Plan by NWCPC.

An investigation of the scheme of Muhoroni Reservoir on the Nyando River and Water Supply to Timboroa was carried out in 1990 and the report was completed in July 1991 by NWCPC (Ref. H.12). This scheme was studied primarily for water supply purpose for the Greater Nakuru through Timboroa. According to the report, it was concluded as follows:

- (a) The suitable scale of development is to build a 85 m high dam (3.6 million m3 of dam embankment volume) which creates a reservoir having a gross storage capacity of 250 mcm.
- (b) The water transfer pipeline is of 63 km long, with a gross lift of 1,537 m. To pump up 5 m3/s, about 114 MW of power is necessary.
- (c) The construction of water transfer system appears to be very difficult because of mountainous topography in the area, a large quantity of pumping water and a high head.
- (d) More investigation is required in further study, particularly to determine an optimum water quantity to be pumped up.

As concluded in the report, a further detailed study on the Nyando multipurpose dam scheme is required, focussing on:

- (a) determination of the adequite quantity of water to be pumped,
- (b) provision of cheap power source and reduction of power capacity required for water pumping, presently designed 144 MW is nearly equal to the output capacity of Magwagwa hydropower scheme (120 MW). A great investment is required for the provision of power source,
- (c) study on the other development potentials such as irrigation and flood control purpose.

In case the water transfer scheme (above items (a) and (b)) is not feasible, the dam should be evaluated as multipurpose reservoir for flood control, irrigation and water supply to downstream areas.

(2) Nandi Forest Dam

This potential site is located within the Nandi Forest just downstream of the confluence of two major tributaries of the Yala River; Kimondi and Sirua rivers. The dam is planned for multi-objectives; hydropower generation of 45 MW utilizing about 500 m head via a 15 km tunnel from the reservoir (183 mcm in storage capacity) to the Nyando river basin, irrigation of 15,000 ha of mainly sugarcane in the Kano Plain and water supply to Kisumu (Ref.H.5).

For further study on this dam scheme, the following are noted:

- (a) In principal, the priority of water use should be given to meeting the water demand in the downstream areas. Preliminary water balance calculation in this Study presumed that maximum transferrable water may be 11 m<sup>3</sup>/s in terms of average reservoir yield.
- (b) This dam will cause loss of valuable and irreplaceable indigenous forest (refer to Sectoral Report N). This aspect should be assessed in more detail.
- (3) Kimwarer Dam

The site is located on the Kimwarer River which is a tributary of the Kerio River and situated in the upper part of the Kerio Valley. The preliminary design of the dam was made for the purposes of hydropower generation, rural water supply and small scale irrigation schemes near the damsite by KVDA (Ref.H.23).

A rockfill dam of 40 m high with 21.3 mcm of gross storage capacity was proposed for the above purposes. KVDA intends to proceed with a further study on this dam for multipurpose development.

### (4) Sererwa Dam

The site is located on the Arror River. Feasibility study of the dam for hydropower generation, Arror irrigation scheme and rural water supply was completed in 1990 (Ref.H.25). A 97 m high dam with 58 mcm of live storage capacity is planned for 70 MW of power generation and 1,340 ha of irrigable area through pipelines from tailwaters of the power station.

This dam scheme was not selected in the updated national power development plan for 1991 to 2010, but it seems to be the most promising project forthcoming next to the selected four schemes (see (2) of sub-section 3.4.2) in the future hydropower development programme.

### (5) Munyu Dam

This site is located on the main stream of the Athi River about 2 km downstream of the confluence of Athi and Ndarugu rivers. The site has 5,590 km2 of catchment area which covers all the upper drainage area of the Athi river basin including Nairobi city area.

This dam has been formulated for multipurpose development comprising water supply to Nairobi and environs, hydropower generation and Kanzalu irrigation scheme (Ref.H.29). Munyu dam and Ndarugu dam on the Ndarugu River are mutually exclusive and the selection between them is one of the most important decisions to be taken in the development of the Athi river basin.

In this Study, Ndarugu dam was selected for the above development purposes, and Munyu dam was considered as an alternative to Ndarugu dam, because of some advantages of Ndarugu dam as follows:

- (a) higher water quality of the Ndarugu River; i.e., lower water purification requirement, while Munyu dam receives effluents from Nairobi area,
- (b) larger number of resettlement and land acquisition due to submergence by the reservoir of Munyu dam, and
- (c) lower construction cost of Ndarugu dam: it was assessed that the construction cost of Munyu dam would be more expensive by about 35 % than that of Ndarugu dam to store an active storage of 190 mcm for water supply to Nairobi areas and to Kanzalu irrigation scheme.
- (6) High Grand Falls Dam

As mentioned in the subsection 4.1.4, this site is mutually exclusive with the developments of Low Grand Falls and Mutonga dam. The dam was proposed

chiefly for hydropower generation of 177 MW by a 117 m high dam with 22 mcm of dam embankment volume and 5,325 mcm of gross reservoir storage capacity (Ref.H.2).

As this dam scheme was excluded by the updated national power development plan towards year 2010, it was not selected as a prospective hydropower dam for the Study. It is, however, recommended that a further detailed study on High Grand Falls dam scheme be taken up to examine the merit of multipurpose development aiming irrigation schemes, flood control, augmentation of river flow, stability of river course and so on in the downstream area of the Tana river basin.

(7) Adamson's Falls and Kora Dams

These damsites are located on the main stream of the Tana River, downstream of Low/Grand Falls damsite. Adamson's Falls dam is planned as a dam of 50 m high having 1,009 mcm of gross storage capacity for installed generation capacity of 80 MW, while Kora dam is of 55 m high with 1,172 mcm of gross storage capacity for power generation of 92 MW (Ref.H.2). These dams are also potential schemes to be noted in a long-term development in the lower basin of the Tana River.

# 5.2 Water Supply Damsites

There are a number of damsites for water supply purpose still needing further investigation and study. They will be alternatives to or additional to the schemes selected in Chapter H4.

#### Kibolo Damsite

| Objective:    | Alternative to Moiben dam |
|---------------|---------------------------|
| Service area: | Eldoret town and environs |
| Location:     | on the Sosiani River      |

#### **Timbilil Damsite**

| Objective:    | Alternative to intake weir on the Timbilil River |
|---------------|--------------------------------------------------|
| Service area: | Kericho town and environs                        |
| Location:     | Timbilil River                                   |

#### Sisei Damsite

| Objective:    | Alternative to intake weir on the Sisei River |
|---------------|-----------------------------------------------|
| Service area: | Sotik town and environs                       |
| Location:     | Sisei River                                   |

#### Katieno Damsite

| Objective:    | Alternative to Bunyunyu damsite |
|---------------|---------------------------------|
| Service area: | Kisii town and environs         |
| Location:     | Kuja River                      |

# Amala Damsite

| Objective:    | Water supply to Sigor-Longisa area (also examined in this Study as       |  |
|---------------|--------------------------------------------------------------------------|--|
|               | a tentative alternative to Itare damsite)                                |  |
| Service area: | Sigor-Longisa area (or alternatively Nakuru, urban centers and environs) |  |
| Location:     | Amala River                                                              |  |

# Kipsang Damsite

| Objective:    | Domestic water supply in subbasin 2CB area as alternative to water |
|---------------|--------------------------------------------------------------------|
|               | sources proposed in the Study (grandwater etc.)                    |
| Service area: | Rural demand centres in the neighbouring area                      |
| Location:     | Kipsang River                                                      |

# Arror Damsite

| Objective:    | Domestic water supply in subbasin 2CC area, either as a part of     |
|---------------|---------------------------------------------------------------------|
|               | multipurpose development or a single purpose scheme, as alternative |
|               | to water sources proposed in the Study (grandwater, etc.)           |
| Service area: | Rural demand centres                                                |
| Location:     | Sererwa River                                                       |

# Waseges Damsite

| Objective:    | Domestic water supply in subbasin 2EB area, as alternative to water |
|---------------|---------------------------------------------------------------------|
| source        | proposed in the Study (grandwater etc.)                             |
| Service area: | Rural demand centers in the neighbouring area                       |
| Location:     | Waseges River                                                       |

# Kamukuny Damsite

| Objective:    | Domestic water supply in subbasin 2CC area as alternative to water |
|---------------|--------------------------------------------------------------------|
|               | sources proposed by the Study (grandwater etc.). Subsurface dam at |
|               | the site is also conceived.                                        |
| Service area: | Rural demand centres in the neighbouring area                      |
| Location:     | Kerio River                                                        |

# Aram Damsite

| Objective:    | Alternative to Chemususu/Chemeron damsites |
|---------------|--------------------------------------------|
| Service area: | Marigat town and environs                  |
| Location:     | Perkerra River                             |

### Ratat Damsite

| Objective:    | Alternative to Chemususu/Chemeron damsites |
|---------------|--------------------------------------------|
| Service area: | Marigat town and environs                  |
| Location:     | Perkerra River                             |

# Mbuuni Damsite

Objective: Alternative to intake weir on the Athi River proposed in the Study. Also subsurface dam at the site is conceivable. (NB: Another

.

alternative site is on the Ikiwe River near Machakos town. However, this site was discarded since the river water is highly contaminated by sewerage and industrial waste from the town area. Machakos town and environs Service area: Thwake River

# Kiteta Damsite

Location:

| Objective:    | Domestic water supply in subbasin 3EB area as alternative to water |
|---------------|--------------------------------------------------------------------|
| sources       | proposed in the Study (grandwater etc.)                            |
| Service area: | Rural demand centres in the area                                   |
| Location:     | Ngaa River, a tributary of Thwake River                            |

### Thwake Damsite

| Objective:    | Alternative to Yatta damsite                                         |
|---------------|----------------------------------------------------------------------|
| Service area: | Yatta irrigation scheme area and rural demand centres around damsite |
| Location:     | Thwake River                                                         |

#### Tsavo Damsite

| Objective:    | Flow augmentation in the downstream reaches dependent on the |
|---------------|--------------------------------------------------------------|
|               | abstraction of Mzima spring water                            |
| Service area: | Supply of water to Baricho intake                            |
| Location:     | Tsavo River                                                  |

#### **Baricho Damsite**

| Objective:    | Alternative to Sabaki intake weir/Rare dam |
|---------------|--------------------------------------------|
| Service area: | Malindi, Mombasa and environs              |
| Location:     | Sabaki River                               |

#### Maragua 8 Damsite

| Objective:    | Alternative to water sources proposed in the Study (surface water etc.) |
|---------------|-------------------------------------------------------------------------|
| Service area: | Maragua /other towns and environs                                       |
| Location:     | Maragua River                                                           |

# Ndiara Damsite

| Objective:    | Alternative to water sources proposed in the Study (surface water etc.) |
|---------------|-------------------------------------------------------------------------|
| Service area: | Rural demand centres around damsite                                     |
| Location:     | Ndiara River                                                            |

# Nundoto Damsite

| Objective:    | Addition to existing intake weir | (increase of proposed storage |
|---------------|----------------------------------|-------------------------------|
|               | capacity)                        |                               |
| Service area: | Mararal and environs             |                               |
| Location:     | Nundoto River                    |                               |

In Kitui district, there are plans for three (3) potential damsites around Kitui town for water supply to Kitui town and environs (proposed by MOWD). These are

Mutui, Kitimui and Umaa sites. Mutui and Kitimui were planned at a master plan level, while Umaa scheme is under investigation at prefeasibility study level but no detailed information available. In this Study these are considered to belong to a group of small dams for water supply development in the area (Ref.H.40).

In the Ewaso N'giro North River drainage area, some potential damsites including small damsites and pans which are proposed by MOWD are conceived for water supply to towns and environs situated near the sites as listed in the Table H5.1.

# 5.3 Flow Augmentation by Dam

Water use in upstream areas tends to reduce the water yields in the downstream area. A primary measure to avoid this adverse effect is to exercise water use management in the upstream area. Nevertheless, there will still be a great concern arising from water shortage in the downstream area. More positively, the development in the downstream area could be achieved with augmentation of river flows in the area. This is particularly important with rivers in relatively dry area, where, however, the development need and/or potential are foreseen.

The following damsites are envisaged for future development of flow augmentation by dams in view of their large undeveloped downstream areas for irrigation and water supply.

- (a) Kerio River: Kamukuny damsite for the downstream development potential of the Kerio river basin. The site is located on the main stream of the Kerio River, the river turns to seasonal river during dry season. The site is also conceived as a subsurface damsite.
- (b) Athi River: Yatta damsite for the downstream development potential of irrigation in the middle and lower basin of the Athi River and water supply to the coast area.
- (c) Ewaso N'giro North River: Kihoto damsite and Achers Post damsite for downstream development potential of irrigation, water supply and hydropower in the middle (including Isiolo) and lower basin of the Ewaso N'giro North River.

# 5.4 Large Scale Water Transfer Plan with Dam

In the country, more than two-thirds of the total land area is arid and semi-arid where effective and efficient agricultural irrigation is at present not possible in view of unavailability of local water. If some inter-basin water transfer is planned between basins where adequate water is available and where insufficient is experienced, some possibilities of development of irrigation as well as domestic and livestock water supply and hydropower generation will come out.

In this Section, several damsites for inter-basin water transfer scheme are introduced based on plans proposed in the previous studies.

#### (1) Greater Rift Water Transfer Plans

This is a plan envisaged by NWCPC. The plan has examined three (3) damsites identified on the map of 1:50,000 scale, but no detailed information and study reports are available except for Nyando dam scheme.

- (a) Hemsted Bridge Dam Scheme: water transfer from Nzoia River to Kerio Valley.
- (b) Kimondi Dam Scheme: water transfer from Kimondi River to Kerio Valley.
- (c) Nyando Dam Scheme: water transfer from Nyando River to Greater Nakuru through Timboroa.
- (2) Nzoia-Suam and Nzoia-Kerio Water Transfers (Ref.H.26)

This is a double water transfer plan; (i) from the Nzoia River to the Suam river basin and (ii) from the Nzoia River to the Kerio River for multipurpose development. The proposed damsite is Moi's Bridge Dam which is located on the Nzoia River just downstream of the confluence of the Koitobos River with the Nzoia River. According to a preliminary report on this double water transfer project, the following are concluded:

- (a) Through a tunnel of 17 km long to the Suam river basin and a tunnel of 42.5 km long to the Kerio River, total power of 500-760 MW will be generated and more than 140,000 ha of irrigation development will be expected both in the Suam and Kerio basins.
- (b) The project consists of four stages adopting their construction to the growth of electric demand.
- (c) Before adopting a decision on this project the following are recommended:
  - to study the project at a preliminary design level with hydrological and geological investigation.
  - to complete the energy and irrigation development studies at the feasibility level for this multipurpose project.
  - to clarify the amount of water that can be transferred to both the Suam and Kerio rivers without any future detriment of the Nzoia basin, the source of the water.

In this Study, approximately 15 cms of water was estimated to be transferrable to the basins at a maximum development scale of the dam.

Therefore, the scheme is regarded as technically viable (hydrological aspect). The economic viability is to be examined in future studies.

(3) Water transfer from Amala River to Ewaso N'giro North River

This plan is still at a preliminary idea stage. The plan envisages to build a dam on the Amala River (Amala dam) for supplying water to Oldorko dam reservoir through Ewaso N'giro River. No detailed information is available.

The scheme will cause reduction in Mara River and hence give a great impact on the ecology of wildlife in the two world-wide famous parks (Masai Mara and Serengeti) situated in the downstream part of the Mara river basin. The planning should take this into account.

(4) Water transfer from Tana River to Ewaso N'giro North River Basin

This is an idea of inter-basin water transfer from an intake weir on the Tana River at Mbalambala to the lower basin of the Ewaso N'giro North River through a tunnel of about 50 to 70 km for the development in the lower Ewaso N'giro North river basin. This water transfer will reduce future development potential in the lower basin of the Tana River. This aspect should be examined further.

Besides the above mentioned inter-basin water transfer plans, there are also some plans, identified in previous studies which involve transfer of water from Lake Victoria basin to Rift Valley basin. They are summarized in Appendix H.10.

All the plans listed above are huge projects requiring extensive investment. In the present Study, these were not included in the list of implementation project towards year 2010. The first approach to these plans would be to look into more detail the technical and economic viabilities. The Study presumes that, among the plans, the Nzoia-Suam/Kerio Double Water Transfer Plan may be accorded a priority for further study.

# **H6. RECOMMENDATION**

This Study dealt with the dam development plans to clarify, the following aspects:

- Preparation of an inventory list of dams in the country, both large and small dams, covering existing dams (under operation), ongoing dams (under construction and in detailed design stage) and dams under planning (feasibility, prefeasibility and master plan stages).
- Identification of newly potential damsites through studies on the maps of 1:50,000 scale.
- Screening and evaluation of prospective dam schemes for development by the year 2010.
- Listing of alternative potential damsites for future development.

For further study of dam development, the following are recommended:

- (a) Updating of dam inventory list
  - The Study had to collect information separately from several agencies for preparation of an inventory list of dams. It is recommended to accumulate the information at a central agency. MOWD would be in a position since its in charge of the administration of rivers and the associated facilities including dams. The inventory information shall cover all existing and committed dams and weirs.
  - Inventory of schemes under planning and design should also be kept on a file and updated periodically by each development agency. This will facilitate in exchanging information among the agencies.
- (b) Concept of multi-purpose dam development
  - For future dam development, there will arise an increasing need for formulating the multiple purpose dam development schemes to effectively use the country's water resources. Inter-agencies coordination becomes more important.
- (c) Further studies
  - This report listed a number of schemes for future undertaking (Chapter H4) and consideration (Chapter H5). Positive investigation and study should be made for these schemes to determine the definite development programmes.

#### REFERENCES

#### Ref.No.

#### <u>Title</u>

- H.1 MOWD, National Master Water Plan, Stage I (NMWP-I), TAMS, Vol. 1, 1980
- H.2 MOE&RD, National Power Development Plan (1986-2006) Main Report, Appendix Volume 2, Jun. 1987, Acres
- H.3 MOWD, Design Manual for Water Supply in Kenya
- H.4 UNDP, Republic of Kenya Arid and Semi-Arid Lands (ASAL) Development Programme Summary of Technical Reports on the Strategy, Policy and ASAL Development Programme 1989-1993, Nov. 1988
- H.5 LBDA, Integrated Regional Development Master Plan for The Lake Basin Development Area, Final Report, Volume 5 Sector Report, Water Resource/ Transportation/Energy Oct. 1987, JICA
- H.6 LBDA, Lake Basin River Catchment Development, River Profile Studies, 1985, C. Lotti
- H.7 MOWD, Ellegirini Dam, Design Report, Sept.1988
- H.8 MOWD, Sigor Longisa Water Supply Scheme, Amala Dam, Preliminary Design Report, Vol.1 Report, April 1979
- H.9 MOWD, Pre-Investment Study for Water Management and Development of the Nyando and Nzoia River, 1983 Italconsult
- H.10 Munucipal Council of Eldoret, Eldoret Water Supply Phase II, Summary Report, The Proposed Gravity Water Supply from Moiben River, Dec.1986, Mangat, I.B. Patel & Partners
- H.11 KPC, Feasibility Study on Magwagwa Hydroelectric Power Development Project, Interim Report, 1991 JICA
- H.12 NWCPC, The Investigation Report of Nyando River Muhoroni Reservoir & Water Supply Project to Timboroa, Chaina 1991
- H.13 MOWD, Kericho Water Supply Scheme, Nov. 1980 H.P.Gauff
- H.14 MOWD, Kisumu Water and Sanitation Study, Sept. 1985 H.P.Gauff

#### Ref.No.

Title

- H.15 MOWD, Greater Nakuru Water Supply Project, Preliminary Design Report, Vol.2 Water Resouces, Vol.4 Dams, May 1985, Sir Alexander Gibb & Partners
- H.16 KVDA, Regional Development Plan for the Kerio Valley Basin, Water Resources Study, Text, Feb.1982 SOGREAH
- H.17 MOWD, Greater Nakuru Water Supply Project, Phase 1 Chemususu Dam, Final Design Report, 1990 SEURECA
- H.18 MOWD, Greater Nakuru Water Supply Project, Preliminary Design Report, Vol.
   2 Water Resources, May 1985
- H.19 MOWD, Central Baringo Water Development Plan 1983-2003 Preliminary Design Report, Vol.1 to 6, April 1985, pencol.
- H.20 MOWD, Rongai Water Supply Project, 1985
- H.21 KVDA, Water Resources Study for the Kerio Valley Basin, 1981
- H.22 MOWD, Turkwel Gorge Multipurpose Project Dam-Hydropower Plant-Transmission Line, Preliminary Design Phase, Engineering Report, Vol.1 Main Report, Feb. 1983 SOGREAH
- H.23 KVDA, Additional Geotechnical Investigations and Engineering Works Required for the Completion of the Kimwarer Project Re-design of the Dam and Ancillary Works (relocated site), Preliminary Design Report and Drawings, March. 1990, G&G
- H.24 MOWD, NWCPC, Study for Construction of the Dam in Malewa River System, Greater Nakuru Water Supply Project, Eastern Division Draft Final Report, Vol. II Main Report, Vol. V Supporting Report, Sept. 1990 JICA
- H.25 KVDA, Feasibility Study on the Integrated Development of the Arror River Basin, Vols.1 to 6, 1990, b & b Consulting Engineers
- H.26 New Proposal for Nzoia Water Development Double Transfer Nzoia-Suam and Nzoia-Kerio, Preliminary Report July 1990, Centro de Estudios Hidrografios, Spain
- H.27 MOWD, Narok Water Supply Project, Additional Study for a Gravity Scheme, April 1986 Kigoni & Partners Consult.

#### Ref.No.

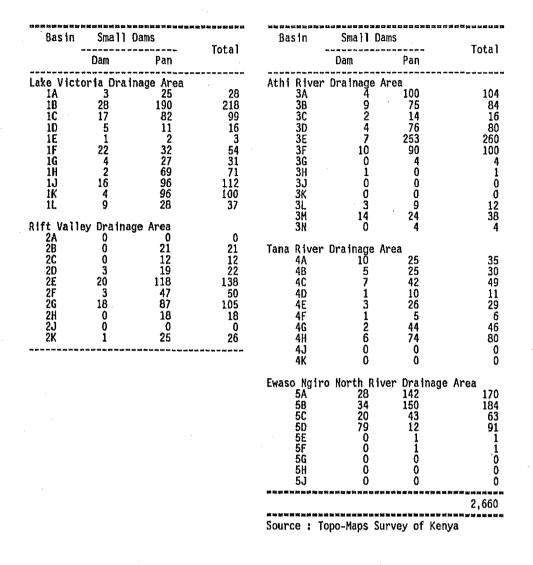
#### Title

- H.28 NWCPC, Emergency Water Supply Programme Kirandich River Dam Project for Kabarnet Water Supply Engineering and Design Services, Final Design Report 1989 G&G
- H.29 TRDA, Athi River Basin Pre-Investment Study, Main Report, Annexes 1-11, Feb.1981, WLPU
- H.30 MOWD, Chania-Thika Study 1980, Howard Humphreys
- H.31 MOWD, Thwake Basin Masterplan Study, Vol.1 Main Report, Vol.2 Drawings, 1982 RKL
- H.32 MOWD, Kiteta Water Supply Project, Kiteta Dam, Jan. 1983 Final Design, Vol. 1 Report, Vol.2 Drawings RKL31. MOWD,
- H.33 Feasibility Study on Water Supply Augmentation Project of Mombasa-Coastal-Area-Hinterland, Final Report Sept. 1981 JICA
- H.34 MOWD, Athi Town Water Supply, Preliminary Design Report 1985 RKL
- H.35 MOE&RD, NIB, Feasibility Study on the Mwea Irrigation Development Project, ANNEX, JICA, 1988
- H.36 NCC, Third Nairobi Water Supply Project, 1988
- H.37 TRDA, Upper Reservoir Scheme, Appraisal Report, Vol.1, Project Proposal, Vol.3, Engineering Drawings, Sept. 1976
- H.38 TARDA, Kiambere Hydro-Electric Project,
- H.39 Pre-F/S on the Potential Development of the Tana River, E.K.Bank, 1974
- H.40 MOWD, Kitui Urban & Rural Water Supply Project, Kitui Water Supply Appraisal of Future Development Options, Report Volume 1, 1979, EAEC
- H.41 MOWD, Rumuruti Water Supply Project, Preliminary Design Report, Vol. 1, 2 April 1985, pencol
- H.42 MOWD, Isiolo Township Water Supply, Phase I, Final Design Report, 1979, Howard Humphreys & Sons(E.A)

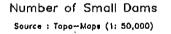
# TABLES

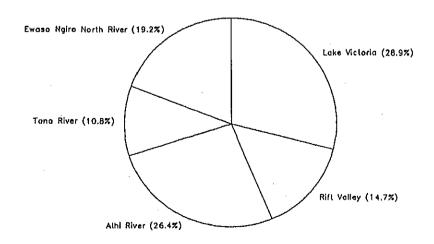
.

.


.1

| o1<br>Dam<br>a Drainage                  |               |                | Catchment Purpose | Purpose   | Related          | Stage/         | Dam           | Gross            | Dam                    |                                      |
|------------------------------------------|---------------|----------------|-------------------|-----------|------------------|----------------|---------------|------------------|------------------------|--------------------------------------|
| Lake Victoria Drainage Are               | in -basin     | (damsite)      | Агөа<br>(km2)     |           | Agency/<br>Owner | Const.<br>Year | Туре          | Storage<br>(mcm) | Height<br>( <u>m</u> ) | Remarks                              |
|                                          | - 70          |                |                   |           | -                |                |               |                  |                        |                                      |
| 1 Moiben Molt                            | Motbern 1BA   | Molban         | 188               | M         | NWCPC            | 0/0            | Bockfill      | •                | •                      | W/S to Eldoret town/environs         |
| vers                                     | Kipkarren 1CB | Sosiani        | 305               | 3         | QWQM             | 1962           | Gravity       | •                | •                      | W/S to Eldoret town/environs         |
|                                          |               | Ellegirini     | 63                | 8         | MOMD             | 1989           | Earth         | 2                | 24                     | W/S to Eldoret town/environs         |
|                                          | Kipkarren 1CC | Olare Onvonkie | 0<br>0            | 3         | NMCPC            | n/c            | Earth         | ( C)             | 22                     | to be completed in 1991              |
|                                          |               | Cheolelach     | ¢,                | 3         | 0WDW             | 11/0           | Earth         | -                | 50                     | to be completed in 1993              |
| alls                                     |               | Kuia           | 3.022             | . ם       | KPC              | 1958           | Gravity       |                  | 52                     | Station power 2 MW                   |
| <b>.</b>                                 |               | Sondu          | 3,360             | Р.,       | KPC/LBDA         | 0/0            | Gravity       | ,                | Weir                   | Installation capacity 106 MW         |
| 11. Ritt Valley Drainage Area            |               |                |                   |           |                  |                |               |                  |                        |                                      |
| 8 Turkwei Turk                           | Turkwei 2BC   | Turkwel        | 5.900             | <u> </u>  | MOE/KVDA         | 1991           | Arch          | 1.650            | 155                    | Installation capacity 105 MW         |
| su.                                      | Perkerra 2ED  | Perkerra       | 81                | M         | NWCPC            | 0/0            | Rockfill      | F                | un<br>₽                | W/S to Nakuru town                   |
|                                          |               | Nasagun        | 63                | I'M       | MOMO             | 1984           | Earth         | ۍ<br>۱           | 5                      | W/S to Central Baringo/Marigat town  |
|                                          |               | Kırandich      | 28                | N.I.      | NWCPC            | D/D            | Rockfill      | ю                | 49                     | W/S to Kabarnet town                 |
| 12 Turasha+ Malewa                       |               | Turasha        | 711               | M         | NMCPC            | D/C            | Gravity       | ۰                | 17                     | W/S to Nakuru town                   |
|                                          |               | Kicarian       | 07                | M         | NMCPC            | 071            | Borkfiel      | ¢                | 5                      | 5                                    |
| 13 Kiseran≁ Athi                         |               | Kiserian       | 49                | A         | NWCPC            | o/n            | Rockfill      | e                | 21                     | W/S to Kajiado town/environs         |
| 14 Ruaka(Kiambaa)* Ruaka                 |               | Ruaka          | 100               | 3         | MOWID/MWCPC      | 0/0            | Earth         | •                | 16                     | W/S to Kiambu town/environs          |
| 15 Ruiru Huiru                           |               | Buiru          | 131               | 3         | 82               | 1950           | Gravity       | n                | 1<br>8                 |                                      |
| 16 Bathi Rurru                           |               | Bathı          | 1<br>5            | M         | MOMO             | 1980           | Rockfilt      | -                | 22                     | W/S to adjacent communities          |
| 17 Mulima Thwake                         | ake 3EA       | Mulima         | •                 | N         | 0WOW             | 1982           | Earth         | -                | 17                     |                                      |
| j,                                       |               | Manooni        | •                 | N         | WOW0             | 1987           | Earth         | -                | 17                     | 2                                    |
|                                          |               | Muoni          | 20                | M         | 0WOW             | 1987           | Earth         | -                | 22                     |                                      |
| 20 Kikoneni Ramisi                       | lisi 3K       | Mkanda         | 72                | ×         | GWOW             | 1981           | Earth         | *                | 17                     | W/S to adjacent communities          |
| IV. Tana River Drainage Area             |               |                |                   |           |                  |                |               |                  |                        |                                      |
| 21 Sasumua Tana                          | a 4CA         | Chanìa         | 65                | M         | 82               | 1956           | Earth         | 15               | 4<br>₹                 | W/S to Nairobi city                  |
| 22 Thika+ Tana                           | a 4CB         | Thika          | 71                | 3         | 82               | 0/0            | Earth w/core  | 70               | 65                     | Construction started in Sept. 1990   |
| 23 Masinga Tana                          |               | Tana           | 7,335             | <b>c.</b> | TARDA            | 1981           | Rockfill      | 1,560            | 70                     | Station power 40 MW                  |
| 24 Kamburu Tana                          |               | Tana           | 9,520             | a.        | THDC             | 1975           | Rockfill ("1) | 150              | 56                     | Station power 94.4 MW                |
| 25 Gitaru Tana                           |               | Tana           | 9,525             | a         | THDC             | 1978           | Rockfill      | 20               | 30                     | Station power 147 MW                 |
| 26 Kindaruma Tana                        | a<br>4EC      | Tana           | 9,807             | ۵.        | TRDC             | 1968           | Rockfill (*1) | 16               | 24                     | Station power 44 MW                  |
| 27 Kiambere Tana                         |               | Tana           | 11,975            | <b>D.</b> | TARDA            | 1988           | Rockfill      | 585              | 1;2                    | Station power 144 MW                 |
| V. Ewaso Ngiro North River Drainage Area | ainage Area   |                |                   |           |                  |                |               |                  |                        |                                      |
| Nane                                     |               |                |                   |           |                  |                |               |                  |                        | No existing and on-going dam schemes |


4 by Brains  $^{2}$ Dam 2000 ć al Existine Table H? 1 Principal Fe


HT-1

TARDA is a related agency for all dam schemes proposed in or within the Athi and Tana River drainage areas. (\*1) Rockfill dam with asphalt facing. On-going dam : Committed project either under construction(+) or at detailed design stage (\*).



#### Table H2.2 Number of Existing Small Dams by Basin





FILE NAME : 2INTERBS

Table H2.3 Inter-Basin Water Transfer Plan with Dam Proposed by Previous Study

| aße                                                                                                   |                                                                        |                      | Inter-Basi    | Inter-Basin Water Transfer                                                                                                                                                                                                     |                        |                             | 04-40    | Damanda                                   |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|----------|-------------------------------------------|
| Area No.                                                                                              | . Iransrer Flam                                                        | from                 | (Sub-Basin)   | to (                                                                                                                                                                                                                           | (Sub-Basin)            | rurpuse                     | afipic   | Kellarks                                  |
| I. Lake Victoria 1                                                                                    | Hemsted's Bridge dam scheme Nzoia river                                | se Nzoia river       | 180           | Kerio Valley                                                                                                                                                                                                                   | 2CB                    | Power/Irri.                 | d/H      | water conveyance tunnel applox.60 km      |
| 2                                                                                                     | Mushagumbo dam scheme                                                  | Yala river           | 벌             | Kano Plain                                                                                                                                                                                                                     | THA                    | Irrigation                  | H/P      | ;                                         |
| m                                                                                                     | Nandi Forest dam scheme                                                | Yala river           | 1FD           | Kano Plain                                                                                                                                                                                                                     | IHA                    | Irrigation                  | H/P      | headrace tunnel 15.2 km, dia.2.5 m        |
| 4                                                                                                     | Londiani dam scheme                                                    | Nyando river         | 160           | Nakuru То <del>м</del> п                                                                                                                                                                                                       | 2FC                    | Water supply                | H/P      |                                           |
| ų                                                                                                     | Sondu/Magwagwa dam scheme                                              | Sondu river          | 1.06          | Kano Plain                                                                                                                                                                                                                     | lGF                    | Irrigation                  | F/S      | headrace tunnels 7.2 km/4.4 km            |
| 9                                                                                                     | Namba Kodero dam scheme                                                | Kuja river           | 1KB           | Namba Kodero                                                                                                                                                                                                                   | IKC                    | Power                       | d/₩      | open channel 15 km, 4 m wide,             |
|                                                                                                       |                                                                        | (Gogo Falls dam)     |               | reservoir                                                                                                                                                                                                                      |                        |                             |          | headrace tunnel 1.6 km                    |
| 7                                                                                                     | Moi's Bridge dam scheme                                                | Nzoia river          | IBE           | Suam/Turkwel                                                                                                                                                                                                                   | 200                    | Power, Irri.                | M/P      | tunnel 17 km                              |
|                                                                                                       |                                                                        | Nzoia river          | 185           | Kerlo Valley                                                                                                                                                                                                                   | 2CB                    | Water transfer              |          | tunnel 42.5 km                            |
| 8                                                                                                     | Motben dam scheme /1                                                   | Moiben river         | IBA           | Eldoret town                                                                                                                                                                                                                   | 1CB                    | Water supply                | 0/0      | pipeline applox. 40 km                    |
| 6                                                                                                     | Molben dam scheme /2                                                   | Nzoia river          | 188           | Eldoret town/Kerio Valley                                                                                                                                                                                                      | 2CB                    | W/S, Power, Irri.           | M/P      | tunnel 18 km, penstock 4 km               |
| 10                                                                                                    | Nyando dam scheme                                                      | Nyando river         | 160           | Timboroa town/Nakuru town                                                                                                                                                                                                      | 1GC/2FC                | Water supply                | Pre-F/S  |                                           |
| 11                                                                                                    | Itare dam scheme                                                       | Itare river          | ILA           | Nakuru town/Marigat town                                                                                                                                                                                                       | 2FC/2EE                | Water supply                |          | ptpelines 175 km                          |
| 12                                                                                                    | Amala-Narok diversion                                                  | Amala river          | 11,61         | Ewaso Ngiro North river                                                                                                                                                                                                        | ZKA                    | Water transfer              | H/P      | for Oldarko dam/reservoir                 |
| II. Rift Valley 13                                                                                    | Malewa/Trasha dam scheme                                               | Malewa river         | 268/26C       | Turasha dam reservoir                                                                                                                                                                                                          | 260                    | Water supply                | F/S      | pipelines 13.6 кm(D1000),5.2 кm(D900)     |
|                                                                                                       | Timicha dim ceñama                                                     | Tunchs afree         | 365           | Kakuru/Gilgi]/Nalvasha towns 2FC/2FA/2GD<br>Wabiyov/Cilaii towns                                                                                                                                                               | 2FC/2FA/2GD<br>2EC/2EA | Water supply<br>Mater cumly | 11/1     | ntnaltnar 10 0 tm to Watnut town          |
| 14                                                                                                    | ותרמאומ עמוא ארגובאוב                                                  | Incastia Liver       | 757           | שפעתנה להווה המאנוצ                                                                                                                                                                                                            |                        | Andre 12104                 | s la     | DINCITIES 40.0 KII LU NEKUTU CUMI         |
| 15                                                                                                    | Chemususu dam scheme                                                   | Chemasusu river      | Q             | Nakuru town/environs                                                                                                                                                                                                           | 2FC                    | Water supply                | 0/0      | pipelines (300 km long) already installed |
| III. Athi River 16                                                                                    | Baricho dam scheme                                                     | Sabaki river         | 3HB/3HD-1     | Mombasa/environs                                                                                                                                                                                                               | 3HC/3HD                | Water supply                | A/P      |                                           |
| 71                                                                                                    |                                                                        | novin idede?         | 200-1         | Montaca (anvirone                                                                                                                                                                                                              | UNE/JHE                | Water currly                | 0/11     | nthelines 256 km                          |
| 11                                                                                                    | מחמע ני אבוו ל נובא ו אמתפר                                            |                      | 1-000         |                                                                                                                                                                                                                                |                        | Lindine unit                |          |                                           |
| 18                                                                                                    | 18 * Mzima pipeline                                                    | Mzima spring         | 36            | Mombasa/environs                                                                                                                                                                                                               | 3MC/3MD                | Water supply                | 0/n      | pipelines 219 km                          |
| 19                                                                                                    | 19 * 2nd Mzima pipeline                                                | Mzima spring         | ä             | Mombasa/environs                                                                                                                                                                                                               | anc/and                | Water supply                | F/S      | pipelines 219 km                          |
| 20                                                                                                    | 20 * Nol Turesh pipelines                                              | Olottokitok springs  | 36            | Machakos.Athi River & Kaliado                                                                                                                                                                                                  | 3EA/3EC                | Water supply                | 0/0      | pipelines 250 km in total                 |
|                                                                                                       | -                                                                      | -                    |               | towns/environs                                                                                                                                                                                                                 |                        | 5                           |          |                                           |
| 21                                                                                                    | 21 * Marere pipeline                                                   | Marere spring        | 340           | Hombasa/Changame                                                                                                                                                                                                               | 1048                   | Water supply                | 0/0      | pipelines 41 km (D300-D250)               |
| IV. Tana River 22                                                                                     | 22 * Yatta furrow                                                      | Thika river          | 400           | Mwita Syano/Tiva rivers                                                                                                                                                                                                        | 400                    | Water transfer              | 0/0      | open channel 55 km                        |
|                                                                                                       | Thika dam scheme                                                       | Thika river          | 4CB           | Natrob1/environs                                                                                                                                                                                                               | 3BA                    | Water supply                | n/c      | transmission tunnel 5km, pipelines 20 km  |
| 24                                                                                                    | Mdarugu dam scheme<br>(Chania - Komu transfer)                         | Chania river         | 4CA/4CC       | Ndarugu reservoir                                                                                                                                                                                                              | 3CB                    | Water transfer              | A/M      | tunnel 1.7 km                             |
| i<br>i<br>L                                                                                           |                                                                        |                      |               |                                                                                                                                                                                                                                |                        |                             |          |                                           |
| v. Ewaso Ngiro<br>North River                                                                         | -                                                                      | •                    | ł             | 1                                                                                                                                                                                                                              | L                      | •                           | •        | no plan                                   |
| Source: NWCPC, MOWD, LBDA, KVDA, MOE<br>Notes: Plans with asterisk have no di<br>/1 - Scheme by MMCPC | ), LBDA, KVDA, MOE<br>isterisk have no dam schemes.<br>• MUCP Def U 15 | M/P-Master Plan, F/. | S-Feastbilit; | Source: NWCPC, MOWD, LBDA, KVDA, MCE<br>Motes: Plans with asterisk have no dam schemes. M/P-Master Plan, F/S-Feasibility Study, D/D (Detailed Design), U/C (Under Construction), U/O (Under Operation)<br>/1 - Scheme by MWCPC | U/C (Under C           | onstruction), U/            | 0 (Under | Operatian)                                |

I. Lake Victoria Drainage Area

|          |                        |                                 |                 |                                                         |                                              | First                              | Screen   | ing          |                                                            | ond Scre       |             | Third Screening      |                             |         |
|----------|------------------------|---------------------------------|-----------------|---------------------------------------------------------|----------------------------------------------|------------------------------------|----------|--------------|------------------------------------------------------------|----------------|-------------|----------------------|-----------------------------|---------|
| 10.      | Damsite .              | Sub-<br>Basin<br>(Dam-<br>site) | Scheme<br>Stage | Catch-<br>ment<br>Area<br>(Dam-<br>site)<br>Al<br>(km2) | Dam<br>Embank-<br>ment<br>Volume<br>(1000m3) | Storage<br>Eff1-<br>ciency<br>(SE) | Resu     | lts          | (Yield)/<br>(Dam Embank-<br>ment Volume)<br>x 1000<br>(RY) |                |             | Water Supply<br>Area | Results<br>of<br>Screenings | Remarks |
| <br>1    | * Kipnai               | <br>18A                         |                 | 76                                                      | 5,588                                        |                                    |          |              |                                                            |                |             | *                    |                             |         |
|          | * Chebara              | 1BA                             | -               | 190                                                     | 568                                          |                                    | to 2nd   | Screening    |                                                            | to 3rd         | Screening   |                      | _                           |         |
| 3        | Molben                 | 1BA                             | (D/D)           | 188                                                     | 501                                          |                                    |          | Screening    | •                                                          |                | Screening   |                      | selected                    |         |
|          | * Cheblemit            | 18A                             | -               | 229                                                     | 2,975                                        |                                    |          |              |                                                            |                |             | -                    | -                           |         |
|          | * Makutano             | 18A                             | -               | 48                                                      | 1,188                                        |                                    |          |              | -                                                          |                |             | -                    | -                           |         |
|          | * Chebororwa           | 188                             | -               | 814                                                     | 1,010                                        |                                    |          |              | -                                                          |                |             | -                    | -                           |         |
| 7        | Lower Moiben           | 188                             | M/P             | 544                                                     | 1,658                                        |                                    | to 2nd   | Screening    | 250                                                        | to 3rd         | Screening   | -                    | -                           |         |
| 8        | * Losorua              | 188                             | -               | 89                                                      | 1,027                                        |                                    |          | •            | -                                                          |                |             | -                    | -                           |         |
| 9        | * Kiptaberr            | 188                             | -               | 60                                                      | 300                                          | 62                                 | to 2nd   | Screening    | 292                                                        | to 3rd         | Screening   | -                    | •                           |         |
| 10       | * Kapcherop            | 1BB                             | -               | 75                                                      | 32 5                                         | 39                                 | to 2nd   | Screening    | 219                                                        |                | -           | -                    |                             |         |
| 11       | * Maji Hazuri          | 188                             | -               | 1,343                                                   | 547                                          | 5                                  |          |              | -                                                          |                |             | -                    | -                           |         |
|          | * Noigameget           | 18C                             | -               | 546                                                     | 129                                          |                                    |          | Screening    |                                                            |                |             | -                    | -                           |         |
|          | * Longleat             | 1BC                             | -               | 191                                                     | 339                                          |                                    |          | Screening    |                                                            | to 3rd         | Screening   | -                    | -                           |         |
| 14       | Hemsted's Brg          |                                 | Pre-F/S         | -                                                       | 5,853                                        |                                    |          | Screening    |                                                            |                |             | -                    | -                           |         |
| 15       | Moi's Brg.             | 18E                             | Pre-F/S         | 858                                                     | 4,700                                        |                                    |          | Screening    | 343                                                        |                | Screening   |                      | -                           |         |
|          | * Naisabu              | 18E                             | -               | 739                                                     | 207                                          |                                    |          | Screening    | 2,696                                                      | to 3rd         | Screening   | -                    | -                           |         |
| 17       | Rongai                 | 18G                             | M/P             | 4,916                                                   | 5,791                                        |                                    | to 2nd   | Screening    | -                                                          |                |             | -                    | -                           |         |
| 18       | * Kaptama              | 18H                             | *               | 99                                                      | 1,227                                        | 4                                  |          |              | -                                                          |                |             | -                    | -                           |         |
| 19       | Sergoit (No.1          | \ 10A                           | M/P             | 659                                                     | *****                                        | 11                                 |          |              |                                                            |                |             | *************        | ********                    |         |
| 20       | Sergoit (No.2          |                                 | M/P             | 390                                                     | 3,557<br>82                                  |                                    |          |              | -                                                          |                |             | -                    | -                           |         |
| 21       | Endoroto               | 108                             | M/P             | 58                                                      | 30                                           |                                    |          |              | -                                                          |                |             | -                    | •                           |         |
|          | * Kibolo               | 1CB                             | -               | 609                                                     | 1,151                                        |                                    | to 2nd   | Screening    | 250                                                        | to 3rd         | Screening   | -<br>1CB             | selected                    |         |
| 23       | Kisongi (No,7          |                                 | H/P             | 119                                                     | 172                                          |                                    | 00 2110  | 201 6611 113 | 200                                                        | <b>CO 31</b> 0 | act centing | -                    | -                           |         |
| 24       | Kerita (No.8)          | ,                               | M/P             | 104                                                     | 27                                           |                                    |          |              |                                                            |                |             | -                    | -                           |         |
|          | * Nurer1               | 100                             | -               | 493                                                     | 653                                          |                                    |          |              | -                                                          |                |             | -                    |                             |         |
| 26       | * Kormaet              | 100                             | -               | 807                                                     | 105                                          |                                    | to 2nd   | Screening    | -                                                          |                |             | -                    | -                           |         |
|          |                        | 104                             |                 | 0 200                                                   |                                              |                                    | *** 0-4  |              |                                                            |                |             |                      |                             |         |
| 27<br>28 | Lugari<br>Nobuwa Eslle | 1DA                             |                 | 8,300                                                   | 9,382                                        |                                    |          | Screening    |                                                            |                |             | -                    | -                           |         |
| 29       | Webuye Falls<br>Teremi | 10A<br>10B                      | H/P<br>F/S      | 8,420<br>138                                            | 302<br>530                                   | • •                                | /1<br>/2 |              | *                                                          |                |             | -                    | -                           |         |
|          | 161.611                | 100                             | 1/3             | 150                                                     | 530                                          | U                                  | 12       |              |                                                            |                |             | -                    |                             |         |
| 30       | * Muku]us1             | 1EA                             | -               | 341                                                     | 80                                           | 354                                | to 2nd   | Screening    |                                                            |                |             | _                    | -                           |         |
|          | * Shibei               | 1EB                             | -               | 142                                                     | 235                                          |                                    |          | Screening    |                                                            |                |             | -                    | -                           |         |
| 32       | * Indangalasia         | 1ED                             | -               |                                                         | 77                                           |                                    |          |              |                                                            |                |             | -                    | -                           |         |
| 33       | Rambula                | 1EE                             |                 | 11,849                                                  | 2,507                                        |                                    | to 2nd   | Screening    | •                                                          |                |             | -                    | -                           |         |
| •        |                        |                                 |                 |                                                         |                                              |                                    |          |              |                                                            |                |             |                      |                             |         |
| 34       | Uktru                  | 1FA                             | M/P             | 45                                                      | 1,761                                        | 9                                  |          |              | •                                                          |                |             | -                    | *                           |         |
|          | * Kosirai              | 1 <b>F</b> B                    | -               | 346                                                     | 455                                          | 398                                | to 2nd   | Screening    | 2,168                                                      | to 3rd         | Screening   | -                    | -                           |         |
|          | * Kabongwa             | 1FC                             | -               | 63                                                      | 79                                           |                                    |          | Screening    |                                                            |                |             | -                    | -                           |         |
| 37       | Kimondi                | 1FC                             | -               | 692                                                     | 4,406                                        |                                    |          | Screening    | 2,220                                                      |                | Screening   |                      | -                           |         |
| 38       | Nandi Forest           | 1FD                             |                 | 1,339                                                   | 6,279                                        |                                    |          | Screening    | 431                                                        | to 3rd         | Screening   | 1HA                  | selected                    |         |
|          | * Shikondi             | 1FE                             |                 | 1,693                                                   | 1,025                                        |                                    |          | Screening    |                                                            |                |             | -                    | -                           |         |
| 40<br>41 | Mushangumbo<br>Conse   | 1FE                             |                 | 1,987                                                   | 1,852                                        |                                    |          | Screening    |                                                            | to 3rd         | Screening   | -                    | -                           |         |
| 41<br>42 | Gongo<br>* Uranga      | 1FG<br>1FG                      |                 | 2,351                                                   | 6,631                                        |                                    |          | Screening    |                                                            | ha 7-1         | Causa-1     | -                    | -                           |         |
|          | uranga                 | 1FU<br>                         | -               | 2,385                                                   | 9,087                                        | 24                                 | to sind  | Screening    | 2,574                                                      | to Jrd         | Screening   | -                    | -                           |         |
| 43       | * Songhor              | 1GA                             |                 | 50                                                      | 2,537                                        | 14                                 |          |              |                                                            |                |             |                      |                             |         |
|          | * Old Sikh             | 1GA                             | -               | 141                                                     | 772                                          |                                    |          |              | -                                                          |                |             | -                    | -                           |         |
| 45       | Tinderet F.            | 164                             | M/P             | 30                                                      | 1,505                                        |                                    |          |              | -                                                          |                |             |                      | -                           |         |
| 46       | Twin Brg.              | 1GB                             | M/P             | 584                                                     | 20,623                                       |                                    | to 2nd   | Screening    | 133                                                        | to 3rd         | Screening   | -                    | <b></b>                     |         |
|          | * Tugunon              | IGC                             | -               | 606                                                     | 3,424                                        |                                    |          | Screening    |                                                            |                | ,,          | -                    | -                           |         |
|          | * Kimasian             | 1GC                             | -               | 186                                                     | 1,154                                        |                                    |          | Screening    |                                                            | to 3rd         | Screening   | -                    | -                           |         |
| 49       | * Kipkoyo              | 16C                             | -               | 58                                                      | 9,324                                        |                                    |          | Ũ            | -                                                          |                |             | -                    | -                           |         |
| 50       | Londiani               | 1GC                             | Pre-F/S         | 71                                                      | 434                                          |                                    | to 2nd   | Screening    | 119                                                        | to 3rd         | Screening   | 2FC/2EG1             | selected                    |         |
| 51       | Koru                   | 16C                             | M/P             | 784                                                     | 4,412                                        | 9                                  |          |              | -                                                          |                |             |                      | *                           |         |

I, Lake Victoria Drainage Area

|           |                       |                                 |          |                                                |                                  | First                              | Screening                      |                                                            | ond Screening   | Third Screenin       | 9                           |         |
|-----------|-----------------------|---------------------------------|----------|------------------------------------------------|----------------------------------|------------------------------------|--------------------------------|------------------------------------------------------------|-----------------|----------------------|-----------------------------|---------|
|           | Damsite               | Sub-<br>Basin<br>(Dam-<br>site) |          | Catch-<br>ment<br>Area<br>(Dam-<br>site)<br>Al | Dam<br>Embank-<br>ment<br>Volume | Storage<br>Eff1-<br>clency<br>(SE) | Results                        | (Yield)/<br>(Dam Embank-<br>ment Volume)<br>x 1000<br>(RY) | Results         | Water Supply<br>Area | Results<br>of<br>Screenings | Remarks |
|           |                       |                                 |          | (km2)                                          | (1000m3)                         |                                    |                                |                                                            |                 |                      |                             |         |
|           | Nyando                | 1GD                             | E/S      | 1,322                                          | 14,272                           | <br>20                             | to 2nd Screen                  | ng 96                                                      | to 3rd Screenin | g 1GD/2ED            | selected                    |         |
| 52<br>53  | Awasi                 | 16D                             | M/P      |                                                | 8,956                            |                                    | to 2nd Screen                  | -                                                          |                 | -                    | -                           |         |
| 54        | * Fort Ternan         | 166                             |          | 341                                            | 536                              | (4)                                |                                |                                                            |                 | -                    |                             |         |
| 55        | * Hamilton            | 1GG                             | -        | 99                                             | 1,671                            | n                                  |                                | -                                                          |                 | •                    | -                           |         |
| 56        | * Kasibun             | 16G                             | -        | 92                                             | 531                              | 3                                  |                                | -                                                          |                 | •                    | · -                         |         |
| 57        | * Siret               | 1GG                             | -        | 113                                            | 3,152                            | 6                                  |                                | -                                                          |                 | •                    | -                           |         |
| 58        | Kibos                 | 1HA                             | Pre-F/S  | 179                                            | 415                              | 64                                 | to 2nd Screen                  | -                                                          | to 3rd Screenin | 0 -                  | -                           |         |
| 59        | Itare/Chemos          | it 1JA                          | Pre-F/S  | 553                                            | 9,700                            | 28                                 | to 2nd Screen                  | ing 53                                                     | to 3rd Screenin |                      |                             |         |
| 60        | * Kolwa               | 1JA                             | -        | 522                                            | 302                              |                                    | to 2nd Screen                  | ing -                                                      |                 | -                    | -                           |         |
| 61        | * Chemelet            | 1JB                             | -        | 767                                            | 1,128                            | 10                                 |                                | -                                                          |                 | -                    | -                           |         |
| 62        | * Chemosit            | 1 <b>J</b> B                    | -        | 19                                             | 3,762                            | 11                                 |                                | -                                                          |                 | •                    | -                           |         |
| 63        | Nau Forest            | 1JC                             | M/P      | 45                                             | 1,345                            | 15                                 | to 2nd Screen                  | ing 151                                                    |                 | 1JC                  | selected                    |         |
| 64        | Timbilil              | 1JC                             | Pre-F/S  | 33                                             | 1,100                            | 13                                 | to 2nd Screen                  | ing 209                                                    | to 3rd Screenin | ġ.                   |                             |         |
| 65        | * Sambret             | · 1JC                           | -        | 50                                             | 953                              |                                    |                                | -                                                          |                 |                      | -                           |         |
| 66        | * Cheymen             | IJC                             | -        | 71                                             | 831                              | 7                                  |                                | -                                                          |                 | •                    | -                           |         |
| 67        | * Masabet             | 1.JC                            | -        |                                                | 1,242                            |                                    |                                | -                                                          |                 | -                    | -                           |         |
| 68        |                       | 1JC                             | -        |                                                | 2,472                            |                                    |                                | •                                                          |                 | -                    | -                           |         |
| 69<br>7.0 | Sisei                 | 1JE                             | Pre-F/S  |                                                | 322                              |                                    | to 2nd Screen                  | ing -                                                      | to 3rd Screenin | g 1JF                | selected                    |         |
| 70        | Yurith                | 1JD                             | M/P      |                                                | 1,036                            |                                    | to And Cancor                  | -                                                          |                 | -                    | -                           |         |
| 71        | Orokiet<br>* Kapkoros | 1JF<br>IJF                      | M/P<br>- |                                                | 922<br>1,797                     | 80<br>34                           | to 2nd Screen<br>to 2nd Screen |                                                            | to 3rd Screenin | •                    | -                           |         |
|           | * Satiet              | 1JF                             | _        | 234                                            | 3,909                            |                                    | to zilu sereen                 | ing 214                                                    | to sin screenin | y -                  | -                           |         |
|           | * Sotik               | 1JF                             | -        | 1,131                                          | 270                              |                                    |                                |                                                            |                 | -                    | -                           |         |
| 75        | Magwagwa              | 1JG                             |          | 3,160                                          | 9,395                            |                                    | to 2nd Screen                  | ing 667                                                    | to 3rd Screenin | g 1GF                | selected                    |         |
| 76        | * Bunyunyu            | <br>1KB                         |          | 120                                            | 221                              | 59                                 | to 2nd Screen                  | lng 423                                                    | to 3rd Screenin | g 1KA/1KB            | selected                    |         |
|           | * Macalder            | 1KB                             | -        | 3,080                                          | 541                              |                                    |                                |                                                            |                 |                      | -                           |         |
|           | * Nyakorere           | 1KB                             | -        | 906                                            | 1,086                            |                                    |                                | -                                                          |                 | м                    | -                           |         |
| 79        | * Mochengo            | 1KB                             | -        | 1,042                                          | 3,776                            |                                    | to 2nd Screen                  | ing -                                                      |                 | -                    | -                           |         |
| 80        | * Katieno             | 1KB                             | -        | 3,002                                          | 3,287                            |                                    | to 2nd Screen                  | ing 1,721                                                  | to 3rd Screenin | g 1K8                | selected                    |         |
| 81        | * Nyamagwa            | 1KB                             | -        | 457                                            | 1,615                            | ٥                                  |                                | -                                                          |                 | -                    | -                           |         |
| 82        | ≰ Karapolo            | 1KB                             | -        | 6,032                                          | 3,890                            | 34                                 | to 2nd Screen                  | Ing                                                        |                 |                      |                             |         |
| 83        | Namba Kodero          |                                 |          | 2,769                                          | 1,578                            |                                    | to 2nd Screen                  |                                                            | to 3rd Screenin | -                    | selected                    |         |
| 64        | Ol Ngobor             | 1KC                             | M/P      | 1,240                                          | 6,129                            | 102                                | to 2nd Screen                  | ing 238                                                    |                 | IKC                  | selected                    | -       |
| 85        | Nyangores             | 1LA1                            | M/P      | 681                                            | 11                               | (262)                              |                                |                                                            |                 |                      | -                           |         |
| 86        | Bomet                 | 1LA1                            | M/P      | 678                                            | 90                               | 16                                 | to 2nd Screen                  | ing -                                                      |                 | -                    | -                           |         |
| 87        | Tenwek                | 1LA1                            | M/P      | 635                                            | 5,543                            | 53                                 | to 2nd Screen                  | ing 325                                                    | to 3rd Screenin | g -                  | -                           |         |
| 88        | * Merigit             | 1LA1                            | -        | 83                                             | 3,617                            | 80                                 | to 2nd Screen                  |                                                            | to 3rd Screenin | g -                  | -                           |         |
| 89        | Mara Bridge           | 1LA2                            | M/P      |                                                | 4,319                            |                                    | to 2nd Screen                  |                                                            |                 | -                    | -                           |         |
| 90        | -                     | 1LA3                            | -        | 731                                            | 4,291                            |                                    | to 2nd Screen                  |                                                            | to 3rd Screenia | g -                  | -                           |         |
| 91        | * Kapkimolwa          | 1LB1                            | -        | 655                                            | 149                              |                                    | to 2nd Screen                  |                                                            |                 | -                    | -                           |         |
| 92        | * Sitotwet            | 1L81                            | · -      | 473                                            | 2,402                            |                                    | to 2nd Screen                  |                                                            | A. 2. J         | -                    | -                           |         |
| 93<br>04  | Amala<br>t Deceme     | 1LB1                            | Pre-F/S  |                                                | 1,853                            |                                    | to 2nd Screen                  |                                                            | to 3rd Screenin | -                    | selected                    |         |
| 94        | * Regero              | 1LB2                            | -        | - 5                                            | 1,558                            | 46                                 | to 2nd Screen                  | ing 19                                                     | to 3rd Screenin | g <del>-</del>       | -                           |         |

Source: MOWD, NWCPC, LBDA, KVDA, MOE

Notes : \* Damsites newly identified in the Study.

/1 The damsite was recommended as a run-of-river type hydropower scheme in the previous study (Ref.H.5).

/2 The damsite was recommended as a run-of-river type hydropower scheme in the previous study (Ref.H.5).

SE index in the parenthesis above shows negative, i.e., active storage capacity is evaluated to be negative.

For water supply purposes, D-Domestic, I-Irrigation, P-Hydropower, F-Flood control

\*\*\*\*\*\*\*

#### II. Rift Valley Drainage Area 金属碱化酶医法水素 医动脉液的 医球球球 医草油 不能 非不能 化口油 医非非常多 医甲基苯基苯基

|            |                            |                                          |                 |                                      |                                              | First    | Sci | reen        | 1ng<br>                |                                                          |      | Screening    | Third Screenin       | 9                           |                          |
|------------|----------------------------|------------------------------------------|-----------------|--------------------------------------|----------------------------------------------|----------|-----|-------------|------------------------|----------------------------------------------------------|------|--------------|----------------------|-----------------------------|--------------------------|
| ło.        | Damsite _                  | River<br>Basin<br>Code<br>(Dam-<br>site) | Scheme<br>Stage | ment<br>Area<br>(Dam-<br>site)<br>Al | Dam<br>Embank-<br>ment<br>¥olume<br>(1000m3) | ctency.  | f   | tesu        | lts                    | (Yield)/<br>(Dam Embank<br>ment Voluma<br>x 1000<br>(RY) |      | Results      | Water Supply<br>Area | Results<br>of<br>Screenings | Remark                   |
| 1 *        | Abanga                     | 2BA                                      |                 | 109                                  | 4,741                                        | 26       | to  | 2nd         | Screening              | 81                                                       | -    |              |                      |                             |                          |
| 2          | Moruny                     | 2BA                                      | M/P             | 388                                  | 3,593                                        |          |     |             | Screening              | 107                                                      | -    |              | -                    | -                           |                          |
|            | Marun                      | 2BA                                      | -               | 564                                  | 17,087                                       |          | -   |             |                        | -                                                        |      |              | · •                  | -                           |                          |
|            | Kablchich<br>Ortum         | 2BA<br>2BA                               | -               | 133<br>615                           | 1,842<br><i>89</i> 4                         |          |     |             | Screening<br>Screening | 143                                                      | to 3 | rd Screenin  | g –                  | -                           |                          |
| 6          | Wei Wei                    | 288                                      | M/P             | 200                                  | 845                                          |          |     |             | Screening              |                                                          | to 3 | rd Screenin  | , <u>-</u>           | -                           |                          |
| 7 *        | Kipsang                    | 2CB                                      | -               | 68                                   | 900                                          |          | to  | 2nd         | Screening              | 57                                                       | to 3 | rd Screenin  | ]                    |                             |                          |
|            | Tuyobet                    | 208                                      | -               | 674                                  | 1,016                                        |          |     |             | Screening              |                                                          | -    |              | -                    | -                           |                          |
|            | Kiptunol 1                 | 208                                      | -               | 64                                   | 2,883                                        |          | to  | 2nd         | Screening              | 30                                                       | -    |              | -                    | *                           |                          |
| 1          | Kiptunol 2<br>Kimwarer     | 2CB<br>2CB                               | F/S             | 59<br>160                            | 1,469<br>4,425                               | 12<br>29 | to  | 2nd         | Screening              | 31                                                       | to 3 | rd Screenin  | -                    | -                           |                          |
|            | Kapkalelwa                 | 2CB                                      | F/3<br>-        | 21                                   | 4,425                                        |          |     | 40 <u>4</u> | and not till.          | -                                                        | *0.3 |              | y <del>-</del>       | -                           |                          |
|            | Kerlo A                    | 2CB/2CC                                  | M/P             | 2,442                                | 1,328                                        | 222      | 12  | 2           |                        | -                                                        | -    |              | -                    | -                           |                          |
| 4 *        | Arror                      | 200                                      | -               | 35                                   | 263                                          | 30       | to  | 2nd         | Screening              | 181                                                      | to 3 | rd Screenin  | J 2CC                | selected                    |                          |
|            | Kapsowar                   | 200                                      | -               | 256                                  | 2,648                                        | 7        |     |             |                        |                                                          |      |              | -                    | •                           |                          |
| 6<br>7 *   | Sererwa                    | 200                                      | F/S             | 185                                  | 8,952                                        |          |     |             | Screening              | 29                                                       | to 3 | rd Screenin  | ) 2CC                | selected                    |                          |
|            | Lokori<br>Embobut          | 2CC<br>2CC                               | -               | 6,507<br>18                          | 576<br>3,131                                 | 31<br>11 | 10  | 2110        | Screening              | -                                                        |      |              | -                    | -                           |                          |
|            | Kamukuny                   | 200                                      | -               | 6,024                                | 1,923                                        |          | to  | 2nd         | Screening              | 1,001                                                    | to 3 | rd Screenin  | ) 2CC                | selected                    |                          |
| 0 *        | Tirioko                    | 20                                       | -               | 53                                   | 2,996                                        | 23       | to  | 2nd         | Screening              | 31                                                       | to 3 | rd Screenin  | ] -                  | -                           | 44 46 47 64 68 M R, ay a |
| 21         | Waseges 3                  | 2EB                                      | H/P             | 321                                  | 1,403                                        | 45       | to  | 2nd         | Screening              | 51                                                       | -    |              | -                    |                             |                          |
| 2          | Waseges                    | 2EB                                      | H/P             | 433                                  | 846                                          |          |     |             | Screening              | 61                                                       | to 3 | rd Screenin  | ) 2ED/2EB            | selected                    |                          |
|            | Siracho                    | 2EB                                      | -               | 473                                  | 3,207                                        |          |     |             |                        | -                                                        | •    |              | -                    | -                           |                          |
| 4          | Waseges 4                  | 2EB                                      | M/P             | 361                                  | 7,485                                        |          |     |             |                        | -                                                        | -    |              | -                    | -                           |                          |
|            | Chepkungul -<br>Sigoro     | 2ED<br>2ED                               | -               | 148<br>419                           | 2,033<br>5,965                               | 12<br>6  |     |             |                        | -                                                        |      |              | -                    | -                           |                          |
|            | Sabor                      | 2EE                                      | •               | 81                                   | 3,220                                        | 10       |     |             |                        | -                                                        | -    |              | -                    | -                           |                          |
| 8          | Aram                       | 2EE                                      | M/P             | 501                                  | 7,480                                        |          | to  | 2nd         | Screening              | 72                                                       | to 3 | rd Screenin  | ) 2EE                | selected                    |                          |
|            | Kib las                    | 2EE                                      | -               | 496                                  | 363                                          | (8)      |     |             |                        | -                                                        | •    |              | -                    | -                           |                          |
|            | Harigat                    | 2EE                                      | -               | 1,352                                | 85                                           |          |     |             |                        | •                                                        | -    |              | -                    | -                           |                          |
| 1          | Ratat 2                    | 2EE                                      | M/P             | 1,001                                | 878                                          |          |     | <b>.</b>    | Canaanina              |                                                          |      | ud Constants | - 055                | •<br>• • • • • • • • •      |                          |
| 2          | Ratat 1<br>Holo            | 2EE<br>2EG1                              | M/P<br>M/P      | 1,068<br>395                         | 1,697<br>2,442                               |          | 10  | 2110        | Screening              | 151<br>18                                                |      | rd Screenin  | 0 2EE                | selected                    |                          |
| 4          | Hau Stream                 | 2EG1                                     | Pre-F/S         |                                      | 1,303                                        |          |     |             |                        | 19                                                       | to 3 | rd Screenin  | a –                  | -                           |                          |
|            | Lelen                      | 2EG2                                     | -               | 1,407                                | 1,242                                        |          |     |             |                        |                                                          | -    |              |                      | -                           |                          |
|            | Kapsonget                  | 2EG2                                     | -               | 1,444                                | 567                                          | (56)     |     |             |                        | -                                                        | -    |              | -                    | -                           |                          |
| 7          | Sitet                      | 2EG2                                     | H/P             | 1,365                                | 223                                          | • •      |     |             | C                      | -                                                        |      |              | -                    | -                           |                          |
| 18<br>19 * | Mutaran<br>Marmanet F.     | 2EK<br>2EK                               | M/P<br>-        | 403<br>121                           | 622<br>2,130                                 |          | ţo  | 200         | Screening              | 88<br>-                                                  | to 3 | rd Screenin  | g -<br>-             | -                           |                          |
| 0 *        | Enderit 1                  | 2FC                                      |                 | 135                                  | 2,078                                        | 12       |     |             |                        |                                                          |      |              |                      |                             | ****                     |
| 1 *        | Enderit 2                  | 2FC                                      | -               | 50                                   | 1,142                                        |          | to  | 2nd         | Screening              | 69                                                       | to 3 | rd Screenin  | <b>.</b> - (         | -                           |                          |
| 2*         | Gitanguin                  | 2FC                                      | -               | 30                                   | 7,821                                        | 15       |     |             | Screening              | -                                                        | -    | ****         | -                    | *                           |                          |
| 3          | Malewa                     | 2GB                                      | F/S             | 635                                  | 1,092                                        | 56       | to  | 2nd         | Screening              | 174                                                      | to 3 | rd Screenin  | ] 2FA/2FB/2FC        | selected                    |                          |
| 4          | Upper Narok<br>Lower Narok | 2KA                                      | Pre-F/S         |                                      | 4,305                                        |          |     |             | Screening              | 87                                                       | to 3 | rd Screenin  | g 2KA                | selected                    |                          |
|            | Olosoisho                  | 2KA<br>2KA                               | -               | 633<br>329                           | 1,456<br>585                                 |          |     |             | Screening<br>Screening | -                                                        | -    |              | -                    | -                           |                          |
| 17         | Leshota                    | 2KB                                      | Pre-F/S         |                                      | 14,190                                       |          |     |             | Screening              | 140                                                      | to 3 | rd Screenin  | -<br>1 -             | selected                    |                          |
| 18         | Oldorko                    | 2KB                                      | Pre-F/S         |                                      | 5,885                                        |          |     |             | Screening              | 368                                                      |      | rd Screenin  |                      | selected                    |                          |

Source:WOWD,NWCPC,LBDA,KVDA,MOE Notes : \* Damsites newly identified in the Study. SE index in the parenthesis above shows negative, i.e., active storage capacity is evaluated to be negative. /1 Limestone dam foundation (refer to Sectoral Report (J)). /2 Fault problem at the damsite (refer to Sectoral Report (J)). M/P-Master Plan, Pre-F/S-Prefeasibility Study, F/S-feasibility Study

|      |            |     |         |                                      |       |                                    | Screeni | 1g         | S                                                       |          |         | •         | Third Screening      |                             |         |
|------|------------|-----|---------|--------------------------------------|-------|------------------------------------|---------|------------|---------------------------------------------------------|----------|---------|-----------|----------------------|-----------------------------|---------|
| 0.   | Damsite    |     | -       | ment<br>Area<br>(Dam-<br>site)<br>Al |       | Storage<br>Effi-<br>ciency<br>(SE) | Resu 1  |            | (Yield)/<br>(Dam Embani<br>ment Volum<br>x 1000<br>(RY) | k-<br>e) | Resul   |           | Water Supply<br>Area | Results<br>of<br>Screenings | Remarks |
|      | Upper Athi | 344 | Pre-F/S |                                      | 171   | 140                                | to 2nd  | Screen1na  | 927                                                     | to       | <br>3rd | Screening | <br>3AA              | selected                    | ~~,     |
| 2 4  | Kikuyu     |     | -       | 81                                   | 250   | 80                                 |         | Screening  | -                                                       |          |         | Screening |                      | selected                    |         |
| 3    | Rutru A    |     | M/P     | 202                                  | 1,528 | 12                                 |         |            |                                                         |          |         | B         |                      |                             |         |
| 4 *  | Klarle     | 3BD | -       | 55                                   | 443   | 23                                 |         | Screening  | -                                                       |          |         |           | •                    | -                           |         |
| 5    | Nyamangara | 3CB |         | 198                                  | 345   |                                    |         | Screening  |                                                         |          |         | # a       | ~~~~~                |                             |         |
| 6    | Ndarugu 1  | 3CB | M/P     | 360                                  | 1,635 | 166                                | to 2nd  | Screening  | 579                                                     | to       | 3rd     | Screening | 3BA                  | selected                    |         |
|      | Ndarugu 2  | 3CB |         | 84                                   | 808   |                                    |         | Screening  |                                                         |          |         |           | *                    | -                           |         |
|      | Munyu      |     | Pre-F/S |                                      |       | 192                                |         | Screening  | 795                                                     | to       | 3rd     | Screening | 3DA                  | selected                    |         |
| 9*   | Thwake 1   | 3DB | *       | 7,230                                | 2,738 | (7)                                |         |            | -                                                       | ***      |         |           | ~                    | -                           | -       |
|      | Ik two     | 3EA | -       | 373                                  | 1,207 | 26                                 | to 2nd  | Screening  | 44                                                      | to       | 3rd     | Screening | 3EA                  | selected                    |         |
|      | Haluva     |     | -       | 883                                  | 781   | (28)                               |         |            | -                                                       |          |         |           | -                    | -                           |         |
|      | Hbuuni     | 3EA |         | 398                                  | 235   |                                    |         |            | -                                                       |          |         |           |                      |                             |         |
|      | Kiteta     | 3EB | •       | 72                                   | 438   |                                    | to 2nd  | Screening  | 51                                                      | to       | 3rd     | Screening | 3EB                  | selected                    | ·       |
|      | ' Ngwani   | 3EB |         | 1,178                                | 296   | <b>4</b>                           |         |            | -                                                       |          |         |           |                      | -                           |         |
| 15   | Thwake     | 3FA | M/P     | 10,276                               | 8,765 | 57                                 |         | Screen ing | 168                                                     |          |         | Screening |                      | selected                    |         |
| 16   | Yatta      | 3FB | M/P     | 20,000                               | 7,016 | 57                                 | to 2nd  | Screen ing | 253                                                     | to       | 3rd     | Screening | 3FA/3F8              | selected                    |         |
| 17 * | Yatta 1    | 3FA | -       | 10,918                               | 2,006 |                                    |         |            | -                                                       |          |         |           | •                    |                             | ******* |
| 18   | Tsavo      | 36  | F/S     | 4,050                                | 274   | 113                                | to 2nd  | Screen ing | 915                                                     | to       | 3rd     | Screening | 3HA                  | selected                    |         |
| 19   | Tsavo I    | 3G  | M/P     | 5,514                                | 1,023 | (36)                               |         |            | -                                                       |          |         |           | ~<br>~~~~~           | -                           |         |
| 20   | 8ar1cho    | 3HD | ,       | 34,240                               | 3,333 | 245                                | to 2nd  | Screen ing | 848                                                     | to       | 3rd     | Screening | 3HD/3H8/3LB          | selected                    |         |
| 21   | Konjora    | 3LA | M/P     | 6,574                                | 367   | (833)                              |         |            |                                                         |          |         |           | -                    | -                           |         |
| 22   | Hagonon i  | 3LA | M/P     | 6,554                                |       |                                    |         |            | -                                                       |          |         |           | -                    | -                           |         |
|      | Ndzobuni   |     | -       | 604                                  |       |                                    |         | Screening  | 24                                                      |          |         | Screening |                      | -                           |         |
| 24   | Rare       | 3LA |         | 1,500                                |       |                                    |         | Screen ing | 103                                                     |          |         | Screening |                      | selected                    |         |
| 25   | Mwach1     | 348 | M/P     | 7,141                                | 3,060 | 27                                 | to 2nd  | Screen ing | 111                                                     | to       | 3rd     | Screening | 3MB/3MD              | selected                    |         |
|      | Kadingo    | 3MC | -       | 825                                  |       |                                    |         | Screening  | 8                                                       |          |         | Screening |                      | •                           |         |
| 27   | Pemba      | 3MC | M/P     | 866                                  | 2,368 | 52                                 | to 2nd  | Screen ing | 8                                                       | to       | 3rd     | Screening | 3MC                  | selected                    |         |

Source: MOWD, NWCPC, TARDA

Source: Monu, NMUPC, TANUA Notes : \* Damsites newly identified in the Study. SE index in the parenthesis above shows negative, i.e., active storage capacity is evaluated to be negative. M/P=Master Plan, Pre-F/S=Prefeasibility Study, F/S=Feasibility Study

|                                           |                    |                                 |                 |                                          |                                  | First                      | t Sc | ree      | ning                   |                                              | Seco |       | reening                | Third !         | Screenfi | ŋg                         |        |
|-------------------------------------------|--------------------|---------------------------------|-----------------|------------------------------------------|----------------------------------|----------------------------|------|----------|------------------------|----------------------------------------------|------|-------|------------------------|-----------------|----------|----------------------------|--------|
| 0.                                        | Damsite            | Sub-<br>Basin<br>(Dam-<br>site) | Scheme<br>Stage | Catch-<br>ment<br>Area<br>(Dam-<br>site) | Dam<br>Embank-<br>ment<br>Volume | Storage<br>Effi-<br>ciency |      | esu      | lts                    | (Yield)/<br>(Dam Emba<br>ment Volu<br>x 1000 | ınk≓ |       |                        | Water :<br>Area | Supply   | Results<br>of<br>Screening | Remark |
|                                           |                    |                                 |                 | A1<br>(km2)                              | (1000m3)                         | (SE)                       |      |          |                        | (RY)                                         |      |       |                        |                 |          |                            |        |
|                                           | Gitumbi            | 4AB                             | -               | 666                                      | 2,980                            | 42                         |      |          | Screening              | 131                                          | t    | o 3rd | Screening              |                 |          |                            |        |
|                                           | Nderitu            | 4AB                             | -               | 374                                      | 2,606                            | 34                         | to   | 2nd      | Screening              | 101                                          |      | -     |                        | -               |          | -                          |        |
|                                           | Rutura             | 4AC                             | -               | 195                                      | 2,772                            | . 5                        |      |          |                        | -                                            |      | •     |                        | -               |          | -                          |        |
|                                           | Kirurumi           | 4AC<br>4AC                      | -               | 177<br>231                               | 954                              | 6                          |      | <b>0</b> | e                      | -                                            |      | -<br> | •                      | •               |          | -                          |        |
|                                           | Gatitu<br>Kigoini  | 4AC<br>4AD                      | -<br>H/P        | 231                                      | 1,875<br>225                     |                            |      |          | Screening<br>Screening | 49<br>212                                    |      |       | Screening<br>Screening | -               |          | -                          |        |
| 6<br>7*                                   | Gikira             | 4AD                             | 141 ·           | 114                                      | 2,501                            | 14                         | LU I | 2414     | act cell titla         | 212                                          |      |       | arı cen mi             | -               |          | -                          |        |
| ۲<br>ــــــــــــــــــــــــــــــــــــ | win in G           |                                 | -               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,   |                                  |                            |      |          |                        | _                                            |      | -     |                        | _               |          | -                          |        |
| <u>8</u> *                                | S.Mathioya         | 4BD                             | -               | 55                                       | 818                              | 10                         |      |          |                        | -                                            |      | -     |                        | -               |          |                            |        |
|                                           | Muhitu             | 4BD                             | •               | 65                                       | 2,650                            | 8                          |      |          |                        | -                                            |      | -     |                        | -               |          | -                          |        |
| ) *                                       | Ko1mb1             | 48D                             | -               | 23                                       | 4,131                            | 5                          |      |          |                        | -                                            |      | -     |                        | -               |          | -                          |        |
| l *                                       | Muringaint         | 480                             | -               | 141                                      | 5,828                            | 7                          |      |          |                        | -                                            |      |       |                        | -               |          | -                          |        |
| * ?                                       | Kamukab i          | 4BE                             | -               | 77                                       | 10,568                           | 10                         |      |          |                        | -                                            |      | -     |                        | -               |          | -                          |        |
|                                           | Kiringa            | 48E                             | -               | 50                                       | 3,211                            | 4                          |      |          |                        | ~                                            | •    | -     |                        | -               |          | -                          |        |
|                                           | Maragua 8          | 4BE                             | M/P             | 210                                      | 7,668                            |                            | to   | 2nd      | Screening              | 52                                           | t    | o 3rd | Screening              | -               |          | -                          |        |
| •                                         | Maragua 4          | 4BE                             | M/P             | 76                                       | 3,595                            | 7                          |      |          |                        | -                                            |      | -     |                        | -               |          | -                          |        |
|                                           | Kiirlangoro        | 4BE                             | -               | 96                                       | 3,947                            | 9                          |      |          |                        | -                                            |      | •     |                        | -               |          | -                          |        |
|                                           | Saba Saba          | 48F                             | -               | 180                                      | 2,130                            | 24                         | to   | 2nd      | Screening              | -                                            |      | •     |                        | -               |          | -                          |        |
| 5 -                                       | Githima            | 4BF                             | -               | 5                                        | 1,406                            | 13                         |      |          |                        | -                                            |      | -     |                        | -               |          | •                          |        |
| 9                                         | Chania B           | 4CA                             | M/P             | 338                                      | 4,193                            | 13                         |      |          |                        |                                              |      | -     |                        | _               |          |                            |        |
| ) *                                       | Sasumua A          | 4CA                             | -               | 130                                      | 1,113                            | 9                          |      |          |                        | -                                            |      | ~     |                        | -               |          | -                          |        |
| L                                         | Chania A           | 4CA                             | M/P             | 233                                      | 2,764                            | 5                          |      |          |                        | -                                            |      | -     |                        | -               |          | -                          |        |
| 2                                         | Kimakia            | 4CA                             | M/P             | 28                                       | 3,040                            | 8                          |      |          |                        | -                                            |      | -     |                        | -               |          | -                          |        |
| 3                                         | Ndiara             | 4CA                             | M/P             | 43                                       | 1,500                            | 8                          |      |          |                        | -                                            |      | -     |                        | 4CA             |          | selected                   |        |
| * ا                                       | Kigoro             | 4CB                             | -               | 119                                      | 8,036                            | 6                          |      |          |                        | -                                            |      | -     |                        | -               |          | -                          |        |
| i                                         | Thika 3A           | 4CB                             | M/P             | 296                                      | 842                              |                            | to   | 2nd      | Screening              | -                                            |      | -     |                        | -               |          | -                          |        |
|                                           | Ndakaini           | 4CB                             | -               | 27                                       | 1,605                            | 9                          |      |          |                        | -                                            |      | -     |                        | -               |          | -                          |        |
|                                           | Mukurue            | 4C8                             | -               | 134                                      | 909                              | 11                         |      |          |                        | -                                            |      | -     |                        | -               |          | -                          |        |
| ; *<br>-                                  | Kiketani           | 400                             | -<br>           | 1,430                                    | 4,153                            | 2/                         | to   | 2nd      | Screening              | -                                            |      | -     |                        | -               |          | -                          |        |
| )<br>_                                    | Thiba              | 4DA                             | F/S             | 173                                      | 1,350                            | 12                         | to   | 2nd      | Screening              | 115                                          | t    | o 3rd | Screening              | 4DA             |          | selected                   |        |
| ) *                                       | Siakago            | 4EC                             | -               | 408                                      | 10,262                           | 108                        | to   | 2nd      | Screening              | 215                                          | t    | o 3rd | Screening              | -               |          | -                          |        |
| l                                         | Karura             | 4ED                             | N/P             | 11,802                                   | 1,050                            | (100)                      |      |          | •                      | -                                            |      |       |                        | -               |          | -                          |        |
|                                           | Kamogo             | 4ED                             | -               | 250                                      | 1,866                            | 26                         | to   | 2nd      | Screening              | -                                            |      |       |                        | -               |          | -                          |        |
| 3*                                        | Karambar1          | 4ED                             | •               | 130                                      | 2,295                            | 31                         | to   | 2nd      | Screening              | 83                                           |      |       | Screening              | -               |          | -                          |        |
| •                                         | Mutonga            | 4FA                             | Pre-F/S         | 15,329                                   | 700                              | 90                         | to   | 2nd      | Screening              |                                              |      |       | Screening              |                 |          | selected                   | ****** |
| 5                                         | Grand Falls (High) |                                 | Pre-F/S         |                                          | 30,000                           | 170                        |      |          | Screening              | 823                                          | t    | o 3rd | Screening              | *               |          | selected                   |        |
| 5                                         | Grand Falls (Low)  |                                 | Pre-F/S         |                                          | 8,000                            |                            |      |          | Screening              | -                                            | t    | o 3rd | Screening              | -               |          | selected                   |        |
| 6<br>-                                    | Usuent             | 4FB                             | M/P             | 18,690                                   | 10,000                           | 52                         | to   | 2nd      | Screening              | -                                            |      |       |                        | -               |          | -                          |        |
| . "                                       | Adamson Falls      | 4GA                             | M/P             | 21,462                                   | 2,910                            | 209                        | to   | 2nd      | Screening              |                                              |      |       |                        |                 |          | selected                   |        |
| 8                                         | Kora               | 4GB                             | M/P             | 24,874                                   | 3,600                            |                            |      |          | Screening              | -                                            |      |       |                        | -               |          | selected                   |        |
| -                                         |                    |                                 |                 |                                          |                                  |                            |      |          |                        |                                              |      |       |                        |                 |          |                            |        |

Source : MOWD, NWCPC, MOE, TARDA, NIB, NCC Notes : \* Damsites newly identified in the Study. SE index in the parenthesis above shows negative, i.e., active storage capacity is evaluated to be negative. M/P-Master Plan, Pre-F/S-Prefeasibility Study, F/S-Feasibility Study

V, Ewaso Ngiro North River Basin Drainage Area

|          |                |                                          |                 |                                      |                                              | First                              | Screen | ing       | Seco                                                       | nd Screening     | Third Screening      |                             |                    |
|----------|----------------|------------------------------------------|-----------------|--------------------------------------|----------------------------------------------|------------------------------------|--------|-----------|------------------------------------------------------------|------------------|----------------------|-----------------------------|--------------------|
| 0.       |                | River<br>Basin<br>Code<br>(Dam-<br>site) | Scheme<br>Stage | ment<br>Area<br>(Dam-<br>site)<br>Al | Dam<br>Embank-<br>ment<br>Volume<br>(1000m3) | Storage<br>Effi-<br>ciency<br>(SE) | Resu   | lts       | (Yield)/<br>(Dam Embank-<br>ment Volume)<br>x 1000<br>(RY) | Results          | Water Supply<br>Area | Results<br>of<br>Screenings | Remarks            |
| <br>1 *  | 01 Bolossat    | 5AA                                      |                 |                                      | 410                                          |                                    |        |           | **********                                                 |                  |                      |                             |                    |
| 2        | Rumuruti       | 5AA                                      | F/S             | 680                                  | 873                                          | 20                                 | to 2nd | Screening | 319                                                        | to 3rd Screening | 5AA                  | selected                    |                    |
| 3        | Nyahururu      | 5AA                                      | M/P             | 29                                   | 67                                           | 146                                | to 2nd | Screening | 215                                                        | to 3rd Screening | 5AA                  | selected                    |                    |
| 4 *      | Oraimutia      | 5AA                                      | -               | 35                                   | 636                                          | 33                                 | to 2nd | Screening | 33                                                         | -                | -                    | -                           |                    |
| 5        | Gage           | 5AC                                      | M/P             | 3,290                                | 654                                          | (21)                               | -      |           | -                                                          | -                | -                    | •                           |                    |
| 6        | Kihoto         | 5BC                                      | M/P             | 2,842                                | 6,756                                        | 100                                | to 2nd | Screening | 212                                                        | to 3rd Screening | _                    | -                           | =# <b>=</b> 10=~1p |
| -<br>7 * | Swar1          | 5CB                                      |                 | 3,983                                | 3,466                                        | 29                                 | to 2nd | Screening |                                                            | -                | -                    | -                           |                    |
| 3 *      | Trilo          | 5CB                                      | -               | 209                                  | 1,196                                        | . 27                               | to 2nd | Screening | 605                                                        | to 3rd Screening | -                    | -                           |                    |
| 9 *      | Barsaloi       | 5CC                                      | -               | 2,059                                | 4,640                                        | 45                                 | to 2nd | Screening | 113                                                        | -                | -                    | -                           |                    |
| 0 *      | Milgis         | 5CC                                      | -               | 7,878                                | 4,209                                        | 86                                 | to 2nd | Screening | 247                                                        | to 3rd Screening | -                    | -                           |                    |
| 1        | Archers Post   | 5DA                                      | M/P             | 15,300                               | 10,620                                       | 20                                 | to 2nd | Screening | · -                                                        | -                | -                    | -                           |                    |
| 2 *      | Sinyat         | 5DB                                      | -               | 557                                  | 6,390                                        | 15                                 | -      |           | -                                                          | -                | -                    | •                           |                    |
| 3        | Crocodile Jaws | 5DC                                      | M/P             | 8,583                                | 4,104                                        | 5                                  | -      |           | -                                                          | -                | -                    | -                           |                    |
| 4        | Kirimun        | 5DC                                      | M/P             | 8,825                                | 19,629                                       | (3)                                | -      |           | •                                                          | -                | -                    | -                           |                    |
| 5        | Ngadurumuto    | 5DC/59C<br>5BE                           | M/P             | 4,230                                | 2,384                                        | 31                                 | to 2nd | Screening | -                                                          | -                | -                    | -                           |                    |
| 6 *      | Tulolong       | 5DD                                      | -               | 9,052                                | 4,340                                        | 20                                 | to 2nd | Screening | -                                                          | -                | -                    | -                           |                    |
| 7 *      | Longopito      | 5DD                                      | -               | 8,917                                |                                              |                                    | -      | -         |                                                            | -                | -                    | · _                         |                    |
|          | Lokomon        | 50D                                      | -               | 9,511                                |                                              |                                    | -      |           |                                                            | _                | -                    | _                           |                    |

Source : MOWD, NWCPC, MOE

Notes : \* Damsites newly identified in the Study.

SE index in the parenthesis above shows negative, i.e., active storage capacity is evaluated to be negative. H/P=Master Plan, Pre-F/S= Prefeasibility Study, F/S= Feasibility Study

# Table H3.2 Results of Case Study on Flood Control with Dam and River Improvement Works in Representative Flood Prone Areas

|     | Description                       |             | Unit           | Rambu la<br>dam | Mushagumbo<br>dam | Nyando<br>dam | Magwagwa<br>dam | dam<br>dam | Remarks                                    |
|-----|-----------------------------------|-------------|----------------|-----------------|-------------------|---------------|-----------------|------------|--------------------------------------------|
| . R | liver Name                        |             | *****          | Nzoia           | Yala              | Nyando        | Sondu           | Kuja       |                                            |
| . F | 100d Protection Level             |             | year           | 25              | 25                | 25            | 25              | 25         | refer to Sectoral Rep. G                   |
| , ( | Jam Plan                          |             |                |                 |                   |               |                 |            |                                            |
| (   | 1) Catchment Area                 | :a          | K¤2            | 11,849          | 1,987             | 1,322         | 3,160           | 3,002      |                                            |
| (   | 2) Topo-max Height                | \$Hm        | m              | 50              | <b>5</b> 0        | 70            | 120             | 20         |                                            |
| (   | 3) Topo-max Storage               | \$Sm        | тсп            | 300             | 250               | 325           | 975             | 1,460      |                                            |
| (   | 4) Dead Storage                   | ≴Sd         | mcm            | 136             | 40                | 34            | 101             | 77         |                                            |
| (   | 5) Features w/o Flood Control     |             |                |                 |                   |               |                 |            |                                            |
|     | - Active Storage                  | :Sa         | mcm            | -               | -                 | 110           | 452             | •          |                                            |
|     | - Gross Storage                   | :51         | mcm            | ,<br>           | •                 | 144           | 553             | -          | = Sa+Sd                                    |
|     | - Dam Height                      | <b>:</b> H1 | m              | ~               | -                 | 58            | 101             | -          |                                            |
|     | - Embankment Volume               | :¥1         | ПСП            | ₩               | -                 | 7,3           | 5,8             | -          |                                            |
| (   | 6) Features w/ Flood Control      |             |                |                 |                   |               |                 |            |                                            |
|     | - Design Discharge                | ;Q          | m3/s           | 1,070           | 290               | 300           | 480             | 440        |                                            |
|     | - Cut Rate                        | (r          |                | 0.3             | 0,5               | 0,5           | 0.5             | 0,5        |                                            |
|     | - Flood Control Storage           | :Sf         | m¢m            | 139             | 63                | 65            | 104             | 95         | = Q*r*10 days/2                            |
|     | - Gross Storage                   | t\$2        | mcm            | 275             | 103               | 209           | 657             | 172        | <ul> <li>Sd+Sa+Sf, less than Sm</li> </ul> |
|     | - Dam Height                      | :H2         | m              | 39              | 30                | 65            | 106             | 28         |                                            |
|     | - Embankment Volume               | :V2         | m¢m            | 2.2             | 0.9               | 9,8           | 6,7             | 0,6        |                                            |
| (   | 7) Increased Cost                 |             |                |                 |                   |               |                 |            |                                            |
|     | Case (6) - Case (5)               | :10         | m11 <b>.\$</b> | 67.2            | 26.4              | 75.0          | 27.0            | 18.0       | = 30 \$/m3 * (V2-V1)                       |
| R   | liver Improvement Plan            |             |                |                 |                   |               |                 |            |                                            |
| (   | 1) Target Stretch                 |             | Ка             | 0 - 1B          | 2 - 16            | 10 - 30       | 1 - 8           | 1 - 11     | refer to Sectoral Rep. G                   |
| (   | 2) Catchment Area                 | :A          | Km2            | 11,849          | 2,864             | 2,625         | 3,287           | 6,600      | refer to Sectoral Rep. G                   |
| (   | 3) Features w/o Dam Flood Control |             |                |                 |                   |               |                 |            |                                            |
|     | - Design Discharge                | :Q1         | m3/s           | 1,070           | 370               | 590           | 500             | 850        | refer to Sectoral Rep. G                   |
|     | - Construction Cost               | :Cl         | mil.\$         | 6.6             | 11.1              | 11.8          | 4.9             | 5,0        | refer to Sectoral Rep. G                   |
| (   | 4) Features w/ Dam Flood Control  |             |                |                 |                   |               |                 |            |                                            |
|     | ~ Design Discharge                | :02         | m3/s           | 750             | 260               | 470           | 265             | 690        | = Q1*(1-(1-(1-r)^2)*a/A)^0.                |
|     | - Construction Cost               | :C2         | mi1,\$         | 3.9             | 6.8               | 8.2           | 0.9             | 3.2        |                                            |
| (   | 5) Decreased Cost                 |             |                |                 |                   |               |                 |            |                                            |
|     | Case (3) - Case (4)               | :DC         | mf7.\$         | 2.7             | 4,3               | 3.6           | 4.0             | 1.8        | DC = C1-C2                                 |
|     | IC/DC                             |             |                | 24.9            | 6,1               | 20,8          | 6.8             | 10.0       |                                            |

# Table H3.3 Selected Prospective Dams

| tem                                           |     | Prospective Site<br>proposed in the S                                                    |                                        |                         |                                                    | Irrigation                   | Hydropower                             | Remarks                                        |
|-----------------------------------------------|-----|------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|----------------------------------------------------|------------------------------|----------------------------------------|------------------------------------------------|
| lo .                                          |     | Damsite                                                                                  | Sub-<br>basin                          | -                       | Service<br>Urban Centre                            | Large Irri.<br>Scheme        | Hydropower<br>Scheme                   |                                                |
| .Vio                                          | cto | ria Drainage Area                                                                        |                                        |                         |                                                    |                              |                                        |                                                |
| 1                                             | **  | (Moiben)                                                                                 | 1BA                                    | W                       | Eldoret/Iten                                       | -                            | <b></b>                                | detailed design stage                          |
| 2                                             |     | Mukulusi                                                                                 | 1EA                                    | W                       | Kakamega                                           | -                            | -                                      | small dam                                      |
| 3                                             |     | Londiani                                                                                 | 1GC                                    | W                       | Londiani                                           | -                            | -                                      |                                                |
| 4                                             |     | Kibos                                                                                    | 1HA                                    | W                       | Kisumu/Maseno                                      | -                            | -                                      |                                                |
| 5                                             |     | Itare                                                                                    | 1JA                                    | W                       | Nakuru/Molo/Njoro<br>/Elburugon/Rongai<br>/Mogotio | **                           | -                                      |                                                |
| 6                                             | **  | (Sondu/Miriu)                                                                            | 1JG                                    | Ρ,Ι                     | _                                                  | (Kano Plain)                 | Sondu/Miriu                            | run-of-river type wei<br>detailed design stage |
| 7                                             |     | Magwagwa                                                                                 | 1JG                                    | Ρ,Ι                     | -                                                  | Kano Plain                   | Magwagwa                               | multipurpose                                   |
| 8                                             |     | Bunyunyu                                                                                 | 1KB                                    | Ŵ                       | Kisii                                              | <b></b>                      | -                                      |                                                |
| lift                                          | Va  | lley Drainage Area                                                                       | ******                                 |                         |                                                    |                              |                                        |                                                |
| 9                                             | **  | (Chemususu)                                                                              | 2ED                                    | W                       | Eldama Ravine                                      | **                           |                                        | detailed design stage                          |
|                                               |     | (Kirandich)                                                                              | 2EH                                    | W                       | Kabarnet                                           | -                            | -                                      | detailed design stage                          |
| 11                                            |     | Malewa                                                                                   | 2GB                                    | W                       | Nakuru/Gilgil/<br>Naivasha                         | -                            | <del>-</del> .                         |                                                |
| 12                                            |     | Upper Narok                                                                              | 2KA                                    | W                       | Narok                                              | -                            | -                                      |                                                |
| 13                                            |     | 01dorko                                                                                  | 2KB                                    | P.I.W                   | Magad 1                                            | Lower E.Ngiro                | Oldorko                                | multipurpose                                   |
|                                               |     | ver Drainage Area                                                                        | *****                                  |                         |                                                    |                              |                                        |                                                |
| 14                                            |     | Upper Athi                                                                               | 3AA                                    | W                       | Athi River                                         | -                            | -                                      |                                                |
| 15                                            |     | (Ruaka (Kiambaa))                                                                        |                                        | W                       | rural centres                                      | -                            |                                        | centres near damsite                           |
| 16                                            |     | Ruiru- A                                                                                 | 3BC                                    | W                       | Nairobi                                            | -                            | -                                      |                                                |
| 17                                            |     | Kikuyu                                                                                   | 3BA                                    | W                       | Kikuyu                                             | -                            | -                                      |                                                |
| 18                                            |     | Ndarugu                                                                                  | 3CB                                    | W,I                     | Nairobi,Ruiru<br>, Kiambu                          | Kanzalu                      | -                                      | multipurpose                                   |
|                                               |     | Yatta                                                                                    | 3FB                                    | I                       |                                                    | Kibwezi Ext.                 | <del>~</del>                           |                                                |
| 19                                            |     |                                                                                          |                                        |                         |                                                    |                              |                                        | off-stream reservoir                           |
| 20                                            |     | Rare                                                                                     | 3LA                                    | W                       | Malindi                                            | -                            | -                                      |                                                |
| 20<br>21                                      |     | Mwachi                                                                                   | 3MB                                    | W<br>W                  | Mombasa                                            | -                            | -                                      |                                                |
| 20                                            |     |                                                                                          |                                        |                         |                                                    |                              | -                                      | run-of-river type wei                          |
| 20<br>21<br>22                                |     | Mwachi                                                                                   | 3MB                                    | W                       | Mombasa                                            | -                            | -                                      |                                                |
| 20<br>21<br>22                                | Riv | Mwachi<br>Pemba                                                                          | 3MB                                    | W                       | Mombasa                                            | -<br>-<br>-<br>(small irr1.) | -                                      |                                                |
| 20<br>21<br>22<br>`ana                        | Riv | Mwachi<br>Pemba<br>ver Drainage Area                                                     | ЗМВ<br>ЗНС                             | W<br>W                  | Mombasa<br>Mombasa                                 | (small irri.)<br>Mwea Ext.   | -                                      | run-of-river type wei                          |
| 20<br>21<br>22<br>`ana<br>23                  | Riv | Mwachi<br>Pemba<br>ver Drainage Area<br>Chania- B<br>Thiba<br>Mutonga                    | 3MB<br>3HC<br>4CA                      | W<br>W<br>W, I          | Mombasa<br>Mombasa                                 |                              | -<br>-<br>-<br>-<br>Mutonga            | run-of-river type wei<br>multipurpose          |
| 20<br>21<br>22<br>ana<br>23<br>24             | Riv | Mwachi<br>Pemba<br>ver Drainage Area<br>Chania- B<br>Thiba                               | 3MB<br>3HC<br>4CA<br>4DA               | W<br>W<br>W, I<br>I     | Mombasa<br>Mombasa                                 |                              | -<br>-<br>-<br>Mutonga<br>L. Grand Fal | run-of-river type wein<br>multipurpose         |
| 20<br>21<br>22<br>ana<br>23<br>24<br>25<br>26 | Riv | Mwachi<br>Pemba<br>ver Drainage Area<br>Chania- B<br>Thiba<br>Mutonga                    | 3MB<br>3HC<br>4CA<br>4DA<br>4FA<br>4FB | W<br>W.I<br>I<br>P<br>P | Mombasa<br>Mombasa                                 |                              |                                        | run-of-river type wei<br>multipurpose          |
| 20<br>21<br>22<br>ana<br>23<br>24<br>25<br>26 | Riv | Mwachi<br>Pemba<br>ver Drainage Area<br>Chania- B<br>Thiba<br>Mutonga<br>Low Grand Falls | 3MB<br>3HC<br>4CA<br>4DA<br>4FA<br>4FB | W<br>W.I<br>I<br>P<br>P | Mombasa<br>Mombasa                                 |                              |                                        | run-of-river type wei<br>multipurpose          |

Note: "\*\*" shows a dam scheme in detailed design stage.

FILE NAME : 3-SM-DM

Table H4.1 Prospective and Dam Schemes

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bems basim<br>Moriben basim<br>Mukulusi Lendiani Led<br>Londiani LEA<br>Londiani Led<br>Magwagwa Lud<br>Bunyunyu Lud<br>Watewa 26B<br>Upper Narok 288<br>Upper Athi 3AA<br>Oldorko 288<br>Upper Athi 3AA<br>Nalewa 368<br>Natra 368<br>Yatta 368<br>Yatta 368<br>Pemba 368<br>Pemba 368<br>Pemba 40A<br>Mutonga 451<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - *.                                  |                       | •           | 2 0                   |                                                |                   |                                                         |                                                                                                                   | • <u>6665388</u> 888 289 8888                                                                                                          | rrface<br>reafFSL)-<br>((ha) ()<br>((ha) ()<br>137<br>237<br>5,349<br>2,349<br>2,349<br>2,349<br>2,343<br>5,115<br>5,115<br>112<br>112<br>112<br>106<br>6 | Y1<br>m3/s) (<br>1.10<br>0.47<br>0.47<br>1.73<br>1.73<br>1.73<br>1.73<br>1.73<br>1.20   |          |         | Dem E<br>Height V<br>(m) /2 ( | mbankment<br>1 ume<br>(000 m3) |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|-------------|-----------------------|------------------------------------------------|-------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------|---------|-------------------------------|--------------------------------|----------------------|
| (E1.a)         Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Motben 16A<br>* Mukulusi 11EA<br>Londiani 11EA<br>Londiani 116<br>Kibos 11A<br>Magwagwa 1.06<br>* Bunyunyu 1KB<br>Malewa 26B<br>Upper Narok 2KA<br>Oldorko 2KB<br>Upper Athi 3AA<br>Upper Athi 3AA<br>Ndarugu 36B<br>Yarta 36B<br>Machi 34B<br>Rare 36B<br>Pemba 34<br>Machi 34B<br>Pemba 40A<br>Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s s s s s s s s s s s s s s s s s s s |                       |             | <i>•</i>              |                                                |                   | Turnage Studies (10) (10) (11) (11) (11) (11) (11) (11) |                                                                                                                   | • <u>6667687</u> 687<br>8887                                                                                                           | eaa(FSL)-<br>(faa) ((<br>faa) ((<br>faa) (<br>227<br>97<br>97<br>97<br>28<br>243<br>243<br>243<br>5,115<br>112<br>112<br>112<br>112<br>112<br>112         | m3/s) (<br>0.68<br>0.47<br>0.47<br>1.73<br>1.73<br>1.73<br>1.73<br>1.73<br>1.73<br>1.20 | 1        |         | Height V<br>(m) /2 (          | o ) ume<br>(000 m3)            |                      |
| 0D         W $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,391.6$ $2,390.1$ $1,290.7$ $1,210.1$ $1,394.71$ $2,392.7$ $1,394.72$ $2,405.1$ $39$ $1,720$ MP         W $1,394.31$ $1,394.31$ $1,394.32$ $1,394.72$ $2,405.1$ $39$ $1,720$ MP         W $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,394.31$ $1,3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mothen 18A<br>* Mukulusi 1EA<br>Londiani 15C<br>Kibos 114A<br>Ttare 116<br>* Magwagwa 116<br>* Magwagwa 116<br>Walewa 26B<br>Upper Narck 2KA<br>Oldorko 2KA<br>Oldorko 2KA<br>Oldorko 2KB<br>Marugu 38A<br>* Kikuyu 38A<br>Marugu 36B<br>Rare 3.6<br>Rare 3.6<br>Rare 3.6<br>Machi 34A<br>Machi 34A<br>Machi 34A<br>Machi 34A<br>Muconga 4,0<br>Pemba 4,0<br>Pemba 4,0<br>Pemba 4,0<br>Mutonga 4,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s. 2                                  |                       |             |                       |                                                |                   |                                                         | 18.38<br>5.39<br>49.30<br>4.93<br>11.248<br>1.34<br>1.34<br>1.34<br>1.34<br>1.34<br>1.34<br>1.36<br>10.50         | 19.60<br>16.99<br>50.90<br>7.13<br>4.74<br>4.74<br>4.74<br>10.09<br>956.42<br>956.42<br>10.30<br>110.09<br>956.42<br>10.30<br>110.09   | · · · · · · · · · · · · · · · · · · ·                                                                                                                     |                                                                                         |          | 2 366 6 | Ş                             |                                |                      |
| WP         W         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1         1,510.1 </th <th>* Mukulusi IEA<br/>Londiani IEC<br/>Kibos IHA<br/>Itare 1JA<br/>Magwagwa LuG<br/># Bunyunyu IKB<br/>Malewa 26B<br/>Upper Karok 2KA<br/>Oldorko 2KA<br/>Oldorko 2KA<br/>Oldorko 2KB<br/>Warugu 38B<br/>Marugu 38B<br/>Marugu 38B<br/>Marugu 38B<br/>Marugu 38B<br/>Pemba 34<br/>Marugu 36B<br/>Marugu 36B<br/>Marugu</th> <th>s. 22</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>5.39<br/>49.30<br/>4.93<br/>12.48<br/>1.34<br/>1.34<br/>55.82<br/>6.99<br/>85.22<br/>85.22<br/>85.22<br/>17.83<br/>17.83</th> <th>16.99<br/>50.90<br/>7.13<br/>13.59<br/>808.00<br/>4.74<br/>4.74<br/>71.70<br/>10.09<br/>956.42<br/>956.42<br/>19.03<br/>110.93<br/>110.95<br/>224.22</th> <th></th> <th></th> <th></th> <th></th> <th>24</th> <th>414</th> <th>under D/D</th> | * Mukulusi IEA<br>Londiani IEC<br>Kibos IHA<br>Itare 1JA<br>Magwagwa LuG<br># Bunyunyu IKB<br>Malewa 26B<br>Upper Karok 2KA<br>Oldorko 2KA<br>Oldorko 2KA<br>Oldorko 2KB<br>Warugu 38B<br>Marugu 38B<br>Marugu 38B<br>Marugu 38B<br>Marugu 38B<br>Pemba 34<br>Marugu 36B<br>Marugu    | s. 22                                 |                       |             |                       |                                                |                   |                                                         | 5.39<br>49.30<br>4.93<br>12.48<br>1.34<br>1.34<br>55.82<br>6.99<br>85.22<br>85.22<br>85.22<br>17.83<br>17.83      | 16.99<br>50.90<br>7.13<br>13.59<br>808.00<br>4.74<br>4.74<br>71.70<br>10.09<br>956.42<br>956.42<br>19.03<br>110.93<br>110.95<br>224.22 |                                                                                                                                                           |                                                                                         |          |         | 24                            | 414                            | under D/D            |
| WP         W         2,325.6         2,230.1         1,00         4,37         1,30         7,20           WP         W         1,245.1         1,377.1         1,30         7,31         36         0,508         2,330.6         50         1,273         13,473.3         157         139         770           WP         W         1,365.0         1,665.0         1,665.0         1,665.0         1,667.0         1,10         4,38         730           F/S         P.I         1,384.3         1,387.3         1,347.3         1,367.0         710         4,38           F/S         P.I.         1,366.5         1,503.0         10.00         10.00         17.2         10.43         2,430         2,38         25.82         71.70         332         1,3         11.70         4,38         730         4,38         730         4,38         730         4,38         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730         730 <td>Londiani 15C<br/>Kibos 11A<br/>Itare 1JA<br/>Magwagwa 1JG<br/>Malewa 26B<br/>Upper Narck 2KA<br/>Oldorko 2KA<br/>Upper Athi 3AA<br/>Varta 38A<br/>Marugu 38A<br/>Marugu 38B<br/>Marugu 38B<br/>Parta 34A<br/>Marugu 38B<br/>Parta 34A<br/>Marugu 36B<br/>Marugu 36B<br/>Ma</td> <td>ian<br/>S.<br/>2</td> <td></td> <td></td> <td></td> <td></td> <td><b>H</b></td> <td></td> <td>49.30<br/>4.93<br/>12.48<br/>12.48<br/>1.34<br/>1.34<br/>55.82<br/>6.99<br/>855.22<br/>855.22<br/>855.22<br/>17.83<br/>17.83</td> <td>50.90<br/>7.13<br/>13.59<br/>608.00<br/>4.74<br/>4.74<br/>71.70<br/>10.09<br/>956.42<br/>956.42<br/>19.03<br/>110.99<br/>110.92<br/>110.92</td> <td></td> <td></td> <td></td> <td>1.515.1</td> <td>i 🗢</td> <td>21</td> <td>small dam</td>                                                                                                                   | Londiani 15C<br>Kibos 11A<br>Itare 1JA<br>Magwagwa 1JG<br>Malewa 26B<br>Upper Narck 2KA<br>Oldorko 2KA<br>Upper Athi 3AA<br>Varta 38A<br>Marugu 38A<br>Marugu 38B<br>Marugu 38B<br>Parta 34A<br>Marugu 38B<br>Parta 34A<br>Marugu 36B<br>Marugu 36B<br>Ma | ian<br>S.<br>2                        |                       |             |                       |                                                | <b>H</b>          |                                                         | 49.30<br>4.93<br>12.48<br>12.48<br>1.34<br>1.34<br>55.82<br>6.99<br>855.22<br>855.22<br>855.22<br>17.83<br>17.83  | 50.90<br>7.13<br>13.59<br>608.00<br>4.74<br>4.74<br>71.70<br>10.09<br>956.42<br>956.42<br>19.03<br>110.99<br>110.92<br>110.92          |                                                                                                                                                           |                                                                                         |          | 1.515.1 | i 🗢                           | 21                             | small dam            |
| W/F         W $1,482.1$ $1,471.5$ $2.20$ $4.33$ $68$ $0.95$ $87,000$ $1,487.1$ $31$ $32.30$ $37$ $1.31$ $1.2.48$ $13.33$ $165.01$ $2.395.7$ $1.11$ $1.2.48$ $13.33$ $165.01$ $2.392.7$ $1.11$ $1.2.48$ $133.27$ $3.40$ $1.34$ $2.33$ $1.665.01$ $2.392.7$ $1.10$ $3.32$ $1.31$ $1.396.5$ $1.366.61$ $1.398.5$ $1.366.61$ $1.398.5$ $2.346.61$ $2.366.61$ $1.366.61$ $1.398.5$ $2.366.61$ $1.396.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.661$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.61$ $2.366.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kibos IHA<br>Itare 1JA<br>Magwagwa LuG<br>Malewa 26B<br>Upper Narok 2KA<br>Oldorko 2KA<br>Upper Athi 3AA<br>Varta 3BA<br>Marugu 3BA<br>Marugu 3BA<br>Marugu 3BA<br>Marugu 3BA<br>Marugu 3BA<br>Marugu 3BA<br>Marugu 3AA<br>Machi 3AA<br>Autonga 4FA<br>Muconga 4FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۶.<br>۲.                              |                       |             |                       |                                                |                   |                                                         | 4.93<br>12.48<br>11.46<br>1.34<br>1.34<br>55.82<br>55.82<br>55.82<br>865.22<br>385.22<br>385.22<br>17.83<br>17.83 | 7.13<br>13.59<br>808.09<br>4.74<br>71.70<br>71.70<br>956.42<br>956.42<br>956.42<br>10.09<br>10.30<br>10.30<br>10.30<br>224.22          | ······································                                                                                                                    |                                                                                         |          | 2,330.6 | 50                            | 1,720                          |                      |
| W/P         W $2,400.5$ $2,399.7$ $1.11$ $12.48$ $13.59$ $97$ $1.73$ $149.472$ $2465.5$ $35$ $823$ K/P         W $1,884.3$ $1,882.7$ $3.40$ $1.248$ $15.82$ $71.70$ $70.61$ $1.887.3$ $1682.7$ $3.40$ $1.34$ $4.74$ $2.39$ $6.19$ $0.1170$ $8.128$ $51.82$ $71.70$ $8.128$ $51.82$ $71.70$ $8.128$ $52.82$ $71.70$ $8.96$ $1.170$ $80$ $1.170$ $80$ $1.170$ $80$ $1.170$ $80$ $1.285.6$ $3.210$ $0.230$ $2.920$ $1.965.1$ $2.920$ $1.965.5$ $2.920$ $1.965.5$ $2.920$ $1.965.5$ $2.920$ $1.965.5$ $2.920$ $1.926.5$ $1.710$ W/P         W.1 $1.761.3$ $1.645.3$ $3.201$ $1.90.6$ $1.926.5$ $1.710$ W/P         W.1 $1.7451.3$ $1.645.3$ $3.201$ 1.90.6 $1.700.6$ 1.725.6 </td <td>Itare 1JA<br/>Magwagwa 1JG<br/>Malewa 26B<br/>Upper Narok 2KA<br/>Oldorko 2KB<br/>Upper Athi 3AA<br/>Varta 386<br/>Ndarugu 388<br/>Ndarugu 388<br/>Narugu 388<br/>Parta 346<br/>Machi 346<br/>Pemba 346<br/>Pemba 346<br/>Pemba 40A<br/>Mutonga 4FA</td> <td>s.<br/>2</td> <td></td> <td></td> <td></td> <td></td> <td><b>H</b></td> <td></td> <td>12.48<br/>701.00<br/>1.34<br/>55.82<br/>6.99<br/>385.22<br/>385.22<br/>385.22<br/>17.83<br/>17.83<br/>17.83</td> <td>13.59<br/>608.00<br/>4.74<br/>71.70<br/>10.09<br/>956.42<br/>10.30<br/>19.04<br/>10.30<br/>224.22</td> <td></td> <td></td> <td></td> <td>1,487.1</td> <td>39</td> <td>700</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Itare 1JA<br>Magwagwa 1JG<br>Malewa 26B<br>Upper Narok 2KA<br>Oldorko 2KB<br>Upper Athi 3AA<br>Varta 386<br>Ndarugu 388<br>Ndarugu 388<br>Narugu 388<br>Parta 346<br>Machi 346<br>Pemba 346<br>Pemba 346<br>Pemba 40A<br>Mutonga 4FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s.<br>2                               |                       |             |                       |                                                | <b>H</b>          |                                                         | 12.48<br>701.00<br>1.34<br>55.82<br>6.99<br>385.22<br>385.22<br>385.22<br>17.83<br>17.83<br>17.83                 | 13.59<br>608.00<br>4.74<br>71.70<br>10.09<br>956.42<br>10.30<br>19.04<br>10.30<br>224.22                                               |                                                                                                                                                           |                                                                                         |          | 1,487.1 | 39                            | 700                            |                      |
| $F/S$ $P_{11}$ La65.0 $(0,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ $(7,0)$ <th< td=""><td><pre>* Bunyunyu IJG<br/>#alewa 26B<br/>Malewa 26B<br/>Upper Narok 2KA<br/>Oldorko 2KB<br/>2KA<br/>0ldorko 2KB<br/>* Kikuyu 38A<br/>#darugu 38A<br/>Marugu 38B<br/>Yarta 34A<br/>* Kikuyu 38B<br/>Parta 34A<br/>Machi 34B<br/>Pemba 34C<br/>Pemba 34C<br/>Pemba 34C<br/>Pemba 4CA<br/>Mutonga 4FA<br/>Low Grand Falls 4FB</pre></td><td>S. S.</td><td></td><td></td><td></td><td></td><td>⊷4</td><td></td><td>701.00<br/>1.34<br/>55.82<br/>6.99<br/>385.22<br/>385.22<br/>7.30<br/>17.83<br/>17.83<br/>17.83</td><td>608.00<br/>4.74<br/>71.70<br/>10.09<br/>956.42<br/>10.30<br/>19.04<br/>10.39<br/>224.22</td><td></td><td></td><td></td><td>2,405.5</td><td>35</td><td>623</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>* Bunyunyu IJG<br/>#alewa 26B<br/>Malewa 26B<br/>Upper Narok 2KA<br/>Oldorko 2KB<br/>2KA<br/>0ldorko 2KB<br/>* Kikuyu 38A<br/>#darugu 38A<br/>Marugu 38B<br/>Yarta 34A<br/>* Kikuyu 38B<br/>Parta 34A<br/>Machi 34B<br/>Pemba 34C<br/>Pemba 34C<br/>Pemba 34C<br/>Pemba 4CA<br/>Mutonga 4FA<br/>Low Grand Falls 4FB</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S. S.                                 |                       |             |                       |                                                | ⊷4                |                                                         | 701.00<br>1.34<br>55.82<br>6.99<br>385.22<br>385.22<br>7.30<br>17.83<br>17.83<br>17.83                            | 608.00<br>4.74<br>71.70<br>10.09<br>956.42<br>10.30<br>19.04<br>10.39<br>224.22                                                        |                                                                                                                                                           |                                                                                         |          | 2,405.5 | 35                            | 623                            |                      |
| MP         W         1,334.3         1,832.7         3.40         1.34         4.74         243         0.61         52.704         1,837.3         16         108 $F/5$ W         2,149.0         2,123.5         15.88         55.82         71.70         332         1.3         118.71         2,135.6         3.10         6.99         10.09         79         1.20         103.660         1,988.5         2.5         4.40 $e+7/5$ V         1,986.5         1,575.7         1,542.9         3.00         7.30         10.30         112         0.35         30,200         1,938.5         5.4         4.40 $e+7/5$ W         1,551.7         1,542.9         3.00         7.30         10.30         112         0.35         30,200         1,938.5         5.2         2.1 $MP$ W         1         7,621.3         1,622.0         1,023         1,023         1,025         0.1         1,355.1         2.5         4,440 $MP$ W         1         1,561.3         1,620.00         1,320.5         1,525.0         1,227         2.5         4,440 $MP$ W         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * Bunyunyu 1KB<br>Malewa 26B<br>Upper Narok 2KA<br>Oldorko 2KB<br>2KA 2KA<br>Upper Athi 3AA<br>* Kuiru-A 3BC<br>* Kikuyu 38A<br>Ndarugu 38A<br>Narta 34A<br>Machi 34B<br>Pemba 34C<br>Pemba 34C<br>Chania- B 4CA<br>Mutonga 4FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s. 2                                  |                       |             |                       |                                                |                   |                                                         | 1.34<br>55.82<br>6.99<br>385.22<br>385.22<br>17.83<br>17.83<br>17.83                                              | 4.74<br>71.70<br>10.09<br>956.42<br>10.30<br>19.04<br>10.99<br>224.22                                                                  |                                                                                                                                                           |                                                                                         |          | 1,670.0 | ** 110                        | 4,388                          |                      |
| F/S W 2,149-0 2,123.5 15.88 55.8 71.70 332 1.37 114,71 2,154.0 80 1,170<br>w/P W 1,985.5 1,975.5 3.10 6.99 10.09 79 1.20 103.680 1,986.5 29 366<br>e-F/S P,11,4 1,300.0 1,272.0 71.20 885.22 956.42 5,115 - 1,305.0 **55 4,440<br>e-F/S W 1,561.7 1,542.9 3.00 7.30 10.30 112 0.30 25,20 1,554.7 26 1,71<br>W/P W 1 1,451.3 1,542.9 3.00 7.30 10.30 112 0.33 25,20 1,554.7 26 1,72<br>M/P W 1 1,451.3 1,542.9 3.00 7.30 10.30 112 0.33 25,20 1,554.7 26 1,72<br>M/P W 1 1,451.3 1,429.8 0.43 10.50 10.99 106 0.23 2,561 13.50 1,166,400 787.1 22 4,988<br>F/S W 91.1 82.5 6.00 31.27 37.27 551 0.50 43,200 94.1 21 52 7,500<br>M/P W 85.6 39.5 8.00 105.00 113.00 250.2 3,561 13.50 1,166,400 787.1 22 4,988<br>F/S W 91.1 1,790.6 1,720.6 2.03 48.99 51.02 113 112,32 1,19,672 - weith -<br>M/P W 1 1,790.6 1,720.6 2.03 48.99 51.02 1,99 72 - 1,365.0 **5 1,200<br>e-F/S P 510.0 330.9 0.13 16.73 18.03 122 - 1,365.0 **5 1,200 2,966 101 3,816<br>F/S I 1,380.0 1,559.0 13.30 16.573 18.03 122 - 1,365.0 **5 1,200<br>e-F/S P 510.0 2,300.0 13.697 1,090 - 5,544 2,403.0 20 5 107 3,916<br>F/S P 512.0 500.0 742.01 857.78 1,569.79 6,770 - 5,544 2,403.0 20 79 5,820<br>F/S P 512.0 2,000 1,559.7 1,090 - 5 5,644 2,403.0 20 79 5,820<br>F/S P 512.0 2,000 2,320.9 0,17 10.23 10.40 116 0.26 22,464 2,403.0 20 79 5,820<br>F/S P 512.0 2,300.9 0,17 10.23 10.40 116 0.26 22,464 2,403.0 20 79 5,820<br>F/S P 512.0 2,300.9 0,17 10.23 10.40 116 0.26 22,464 2,403.0 20 79 5,820<br>F/S P 512.0 2,300.9 0,17 10.23 10.40 116 0.26 22,464 2,403.0 20 79 5,820<br>F/S P 512.0 2,300.9 0,17 10.23 10.40 116 0.26 22,464 2,403.0 20 79 5,820<br>F/S P 1,774.4 1,756.5 0.73 3.25 4,52 28 0.13 11,000 1,760.0 50 445 757 757 757 757 757 750 758 754 757 757 759 759 757 757 759 759 759 759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Malewa 268<br>Upper Narck 2KA<br>Oldorko 2KA<br>Upper Athi 3AA<br><i>kuivu</i> 3BA<br>Mdarugu 3BA<br>Yatta 3BB<br>Yatta 3BB<br>Rare 3LA<br>Machi 3AB<br>Pemba 3KC<br>Pemba 3KC<br>Pemba 4CA<br>Muconga 4FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s. 2                                  |                       |             |                       |                                                |                   |                                                         | 55.82<br>6.99<br>7.30<br>17.83<br>10.50                                                                           | 71.70<br>10.09<br>956.42<br>19.04<br>19.04<br>10.99<br>224.22                                                                          |                                                                                                                                                           |                                                                                         |          | 1,837.3 | 16                            | 108                            |                      |
| W/P         W         1,985.5         1,975.5         3.10         6.99         10.03         79         1.20         1,305.0         1,272.0         71.20         1,305.0         4.480           e=F/s         W         1,561.7         1,542.9         3.00         7.30         10.30         112         0.33         25,220         1.541.7         26         1,71           M/P         W         1         1,561.7         1,542.9         3.00         7.30         10.30         112         0.33         25,320         1.541.7         26         1,73           M/P         W         1         1,451.3         1,479.8         9.27         214.35         23.02         1,564.0         266.2         23.17           M/P         W         1         1,451.3         1,479.8         9.27         214.35         26.16         31.2         37.7         32.1         30.240         1,965.3         35.1         32.1           M/P         W         1         1,451.3         1,479.6         10.50         13.01.50         12.3         32.1         32.1           M/P         W         1         1,272.1         1,273.1         1,273.1         1,270         1,270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ubper Narck 2KA<br>Oldorko 2KB<br>Upper Athi 3AA<br>* Rujru-A 38C<br>Mdarugu 38A<br>Mdarugu 38B<br>Rare 3LA<br>Rare 3LA<br>Mmachi 34B<br>Pemba 34C<br>Pemba 4CA<br>Thiba 4DA<br>Mutonga 4FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s. S.                                 |                       |             |                       |                                                |                   |                                                         | 6.99<br>385.22<br>7.30<br>17.83<br>10.50                                                                          | 10.09<br>956.42<br>10.30<br>19.04<br>10.99<br>224.22                                                                                   |                                                                                                                                                           |                                                                                         | 118,714  | 2,154.0 | 8                             | 1,170                          |                      |
| $e-F/S$ $P_1$ 1,300.0       1,272.0       71.20       865.22       966.42       5,115       -       -       1,305.0       ** 55       4,480 $e+F/S$ W       1,996.9       1,455.3       12.0       7.30       10.30       112       0.33       30.260       1,554.7       26       1,732 $MP$ W1       1,455.3       1,202.0       0.43       10.50       10.50       10.905.5       25       22       21,302       25       1,302 $MP$ W1       1,451.3       1,420.8       9.77       214.95       224.22       1,856.30       1,547.3       36       1,302 $MP$ W1       1,451.3       1,420.8       9.77       214.95       224.22       1,856.30       1,546.40       77       3,217 $MP$ W1       1,740.6       1,720.6       2.003       130.0       113.00       25       237,600       90.6       77       3,215 $MP$ W1       1,790.6       1,770.6       2.03       48.99       51.02       0.23       10,875       4.200       900       906       77       3,215       907       906       77       3,215       908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oldorko 2XB<br>Upper Athi 3AA<br>* Rujru-A 38C<br>* Kikuyu 38A<br>Marugu 36B<br>Adarugu 36B<br>Adarugu 36B<br>Adarugu 36B<br>Rare 3LA<br>Mwachi 34B<br>Pemba 34C<br>Pemba 4CA<br>Thiba 4DA<br>Mutonga 4FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v.                                    |                       |             |                       |                                                |                   |                                                         | 385.22<br>7.30<br>17.83<br>10.50                                                                                  | 956.42<br>10.30<br>19.04<br>10.99<br>224.22                                                                                            |                                                                                                                                                           |                                                                                         |          | I,988.5 | 53                            | 368                            |                      |
| e-F/s         W         1,551.7         1,542.9         3.00         7.30         10.30         112         0.35         30,240         1,903.5         25         25         17           WP         W         1,998.9         1,555.8         1.21         17.83         19.04         8         0.35         30,240         1,903.5         25         12           MP         W,I         1,451.3         1,450.3         1.22         10.50         10.50         10.50         10.57         51         27         240         55         21         50         23         23         1,303         51         35         30,240         1303         25         21         260         27         214.95         224.12         186         6.10         27         21         20         21         22         22         22         22         22         22         22         22         23         130         23         130         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Upper Athi 3AA<br>* Ruiru-A 38C<br>* Kikuyu 38C<br>Ndarugu 36B<br>Yatta 37B<br>Amachi 37B<br>Amachi 34B<br>Pemba 34C<br>Chania- B 4CA<br>Thiba 41A<br>Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                       |             |                       |                                                |                   |                                                         | 7.30<br>17.83<br>10.50                                                                                            | 10.30<br>19.04<br>10.99<br>224.22                                                                                                      |                                                                                                                                                           | 8.0                                                                                     |          | 1,305.0 | ** 55                         | 4,480                          |                      |
| W/P         W         1,989.0         1,855.3         1.21         17.83         19.04         87         0.25         30,240         1,903.5         65         1,528           W/P         W,I         1,451.3         1,420.8         0.25         10.50         10.55         10.50         10.55         10.55         10.55         10.55         10.55         10.55         10.55         10.55         2001.5         25         2001.5         25         2001.5         25         2001.5         25         2001.5         25         2001.5         25         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         2001.5         200.5         2001.5         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * <i>Ruiru-A</i> 38C<br>* Kikuyu 38A<br>Ndarugu 3CB<br>Yarta 3FB<br>Rare 3LA<br>Mmachi 34B<br>Pemba 34C<br>Pemba 4CA<br>Thiba 4DA<br>Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                       |             |                       |                                                |                   |                                                         | 17.83<br>10.50                                                                                                    | 19,04<br>10.99<br>224.22                                                                                                               |                                                                                                                                                           |                                                                                         |          | 1,554.7 | 26                            | 171                            |                      |
| WP         W         2,006.6         1,980.9         0.49         10.50         10.95         10.50         10.95         10.50         10.95         10.50         1302         227         231         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         1,302         36         37         37         35         36         1,302         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36 <td>* Kikuyu 38A<br/>#darugu 36B<br/>Yarta 318<br/>Pare 31A<br/>Mmachi 34B<br/>Pemba 34C<br/>Pemba 34C<br/>Amia 40A<br/>Mutonga 45A<br/>Low Grand Falls 47B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10.50</td> <td>10.99<br/>224.22</td> <td></td> <td>0.35</td> <td></td> <td>1,903.9</td> <td>69</td> <td>1,528</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * Kikuyu 38A<br>#darugu 36B<br>Yarta 318<br>Pare 31A<br>Mmachi 34B<br>Pemba 34C<br>Pemba 34C<br>Amia 40A<br>Mutonga 45A<br>Low Grand Falls 47B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                       |             |                       |                                                |                   |                                                         | 10.50                                                                                                             | 10.99<br>224.22                                                                                                                        |                                                                                                                                                           | 0.35                                                                                    |          | 1,903.9 | 69                            | 1,528                          |                      |
| WP         W.I $1,451.3$ $1,425.3$ $1,425.3$ $1,456.3$ $36$ $1,302$ MP         I $782.1$ $764.2$ $100.00$ $280.20$ $300.20$ $2,561$ $13.50$ $1,456.3$ $36$ $1,302$ MP         I $81.6$ $39.5$ $8.00$ $105.00$ $13.20$ $257,600$ $94.1$ $21$ $321$ MP         W $85.6$ $39.5$ $8.00$ $105.00$ $11.300$ $522$ $219,872$ $-1$ $-1$ $-1$ $-1$ $-1$ $-1$ $-1$ $-1$ $-1$ $321$ $321$ $321$ MP         W         I $1,790.6$ $1,720.6$ $2.03$ $48.99$ $51.00$ $522.6$ $101$ $3.816$ MP         W.I         I $1,730.6$ $1,350.0$ $1,350.0$ $1,350.0$ $1,356.0$ $2010$ $209$ $5,202$ MP         W.I         I $1,736.0$ $1,20.6$ $10.2$ $10.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rdarugu 3CB<br>Yatta 3FB<br>Rare 3FA<br>Mmachi 3MB<br>Pemba 3MC<br>Pemba 3MC<br>Chania- B 4CA<br>Thiba 4DA<br>Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                       |             |                       |                                                |                   |                                                         | -                                                                                                                 | 224.22                                                                                                                                 |                                                                                                                                                           |                                                                                         |          | 2,009.6 | 55                            | 221                            |                      |
| MP         I         782.1         764.2         100.00         280.20         356         15.5         15.6         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         15.5         17         32.17         37.27         551         0.5.5         15.7         17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17         32.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yatta 3FB<br>Rare 3LA<br>Mwachi 3MB<br>Pemba 3MC<br>Chania 84CA<br>Chania 4CA<br>Thiba 4DA<br>Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                       |             |                       |                                                |                   |                                                         | 214.95                                                                                                            |                                                                                                                                        | 1,876 (                                                                                                                                                   |                                                                                         |          | 1,456.3 | 36                            | 1,302                          |                      |
| F/S W 91.1 82.5 6.00 31.27 37.27 551 0.59 43,200 94.1 21 502<br>MP W 85.6 39.5 8.00 105.00 113.00 256 2.75 237,600 90.6 77 3,217<br>MP W,I 1,790.6 1,720.6 2.03 48.99 51.02 150 1.3 112,320 1,795.6 101 3,815<br>F/S I 1,380.0 1,339.0 1.30 16.73 18.03 122 - 1,385.0 ** 35 1,200<br>e-F/S P 550.0 542.0 268.26 87.81 356.07 1,090 - 554.0 42 870<br>e-F/S P 2,012.8 2,010.4 2.00 0.95 2.95 63 0.03 2,592 2,015.8 16 109<br>MP W 2,203.6 2,380.9 0.17 10.23 10.40 116 0.26 22,464 2,403.0 20 72<br>MP W 2,400.0 2,380.9 0.17 10.23 10.40 116 0.26 22,464 2,403.0 20 72<br>MP W 1,774.4 1,755.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 2.07 2.07 2.07 2.67 29 0.12 10,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 2.25 2.8 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 2.67 2.9 0.12 10,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.7 1,747.7 0.60 2.07 2.67 2.9 0.12 10,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 2.67 2.9 0.12 10,000 1,780.0 50 420<br>D/D W 1,778.7 18 120<br>D/D W 1,755.7 1,747.7 0.60 2.07 2.67 2.9 0.12 10,000 1,780.0 50 420<br>D/D W 1,755.4 1,747.7 0.60 2.07 2.67 2.9 0.12 10,000 1,780.0 50 420<br>D/D W 1,755.4 1,747.7 0.60 2.07 2.67 2.9 0.12 10,000 1,780.0 50 420<br>D/D W 1,755.4 1,747.7 0.66 2.07 2.67 2.9 0.12 10,000 1,780.0 50 420<br>D/D W 1,755.4 1,747.7 0.66 2.07 2.67 2.9 0.12 10,000 1,758.7 18 120<br>D/D W 1,755.4 1,747.7 0.66 2.07 2.67 2.9 0.12 10,000 1,758.7 18 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rare 3LA<br>Mwachi 34B<br>Pemba 34C<br>Chania-B 4CA<br>Thiba 4DA<br>Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                       |             |                       |                                                |                   | ••                                                      | 280.20                                                                                                            | 380.20                                                                                                                                 | 2,561 1                                                                                                                                                   | ÷                                                                                       | 166,400  | 787.1   | 23                            | 4,988                          |                      |
| WP         W         85-16         39-5         8.00         103-00         113.00         226         2./5         231,600         90.5         7/7         3,21/           MP         W,I         1,790.6         1,720.6         2.03         48.99         51.02         150         13.100         3.816         -         -         -         0.23         19,872         -         weir         -         -         52.1         236.0         90.5         7/7         3,21/           MP         W,I         1,790.6         1,720.6         2.03         48.99         51.02         122         -         -         1386.0         90.5         12.20         *         35.10         77         35.20           e=F/S         P         550.0         542.0         857.78         1599.79         6,720         -         5         5         2         370         36.07         10.99         -         5         36.00         79.50         5         320           e=F/S         W         2,010.4         2.00         0.350.9         0.17         10.23         10.40         116         0.26         24.403.0         26.30         26.305         26.325         26.315.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mmacni SMB<br>Pemba SMC<br>Chania-B 4CA<br>Thiba 4DA<br>Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |                       |             |                       | 91.1                                           |                   |                                                         | 31.27                                                                                                             | 37.27                                                                                                                                  |                                                                                                                                                           |                                                                                         | 43,200   | 94.1    | ដ                             | 202                            | Off-stream reservo   |
| MP         W         -         -         -         -         -         -         -         weir         -           MP         W,I         1,790.6         1,720.6         2.03         48.99         51.02         150         1.3         312,320         1,795.6         101         3,816           F/S         I         1,380.0         1,359.0         1.30         16.73         18.03         122         -         -         1385.0         ** 35         1,200           e=F/S         P         550.0         542.0         587.0         1356.0         1387.18         1,599.79         6,720         -         -         554.0         42         207           e=F/S         P         512.0         500.0         742.01         557.78         1,599.79         6,720         -         -         516.0         79         5,820           e=F/S         W         2,012.8         2,010.4         2.00         0.95         2.95         5,820         77         79           MP         W         2,400.0         2,380.9         0.17         10.23         10.40         116         0.26         2.464         2,403.0         70         75 <t< td=""><td>Pemba 3%C<br/>Chania- B 4CA<br/>Thiba 4DA<br/>Mutonga 4FA<br/>Low Grand Falls 4FB</td><td></td><td></td><td></td><td></td><td>0.C2</td><td></td><td></td><td>00.50</td><td>113.00</td><td></td><td></td><td>009, 152</td><td>4.U2</td><td></td><td>5,211</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pemba 3%C<br>Chania- B 4CA<br>Thiba 4DA<br>Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                       |             |                       | 0.C2                                           |                   |                                                         | 00.50                                                                                                             | 113.00                                                                                                                                 |                                                                                                                                                           |                                                                                         | 009, 152 | 4.U2    |                               | 5,211                          |                      |
| M/P         W,I         1,790.6         1,720.5         2.03         48.99         51.02         150         1.3         112,320         1.795.6         101         3,815           F/S         I         1,380.0         1,389.0         1.300.0         1,385.0         1.385.0         ***         35         1,200           e-F/S         P         550.0         542.0         268.26         87.81         356.07         1,090         -         -         554.0         42         870           e-F/S         P         512.0         500.0         742.01         837.78         1,999.79         6,720         -         515.0         795.6         101         3,815           e-F/S         W         2,010.4         2.00         0.95         2.995         6,720         -         515.0         795.6         109         55.820           MP         W         2,010.4         2.00         0.95         2.995         6,720         -         516.0         79         5,820           MP         W         2,010.4         2.00         0.17         10.23         10.40         116         0.26         22,464         2,403.0         79         757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chania- B 4CA<br>Thiba 4DA<br>Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | -                     |             | 3                     | 1                                              | ı                 |                                                         | •                                                                                                                 | ŧ                                                                                                                                      | 1                                                                                                                                                         | 0.23                                                                                    | 19,8/2   | 1       | Weir                          | • •                            | run-of-river type    |
| F/S I 1,380.0 1,359.0 1.30 16.73 18.03 122 - 1,385.0 ** 35 1,200<br>e-F/S P 550.0 542.0 268.26 87.B1 356.07 1,090 - 554.0 42 870<br>e-F/S P 512.0 500.0 742.01 857.78 1,599.79 6,720 - 515.0 79 5,820<br>e-F/S W 2,012.8 2,010.4 2.00 0.95 2.95 63 0.03 2,592 2,015.8 16 109<br>M/P W 2,400.0 2,380.9 0.17 10.23 10.40 116 0.26 22,464 2,403.0 20 72<br>D/D W 1,774.4 1,755.5 1.51 9.44 10.95 82 0.41 35,000 2,340.0 45 757<br>D/D W 1,774.4 1,755.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 2.25 28 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420<br>D/D W 1,774.4 1,755.5 0.75 2.67 2.9 0.12 10,000 1,780.0 50 420<br>D/D W 1,754.7 1,747.7 0.60 2.07 2.67 2.9 0.12 10,000 1,780.0 50 420<br>D/D W 1,755.4 1,747.7 0.66 2.07 2.67 2.9 0.12 10,000 1,758.7 18 120<br>in this Study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Thiba 4DA<br>Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | -                     |             |                       |                                                |                   | 2.03                                                    | 48.99                                                                                                             | 51.02                                                                                                                                  | 150                                                                                                                                                       |                                                                                         |          | 1,795.6 | 101                           | 3,816                          |                      |
| e-F/S       P       550.0       542.0       268.26       87.81       356.07       1,090       -       -       554.0       42       870         e-F/S       P       512.0       500.0       742.01       857.78       1,599.79       6,720       -       516.0       79       5,820         e-F/S       W       2,012.8       2,010.4       2.00       0.95       2.955       63       0.03       2,592       2,015.8       16       109         MP       W       2,010.4       2.00       0.95       2.955       63       0.03       2,592       2,015.8       16       109         MP       W       2,400.0       2,380.9       0.17       10.23       10.40       116       0.26       22,464       2,403.0       20       757         MP       W       2,400.0       2,380.9       0.17       10.23       10.40       116       0.26       22,464       2,403.0       20       757         MP       W       2,444       10.95       82       0.41       35,000       2,340.0       45       757         MP       W       1,774.4       1,775.5       0.15       10.9       1,780.0       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mutonga 4FA<br>Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                       |             |                       |                                                |                   | 1.30                                                    | 16.73                                                                                                             | 18.03                                                                                                                                  | 122                                                                                                                                                       |                                                                                         |          | 1,385.0 | ** 35                         | 1,200                          |                      |
| e-F/S       P       512.0       500.0       742.01       857.78       1,599.79       6,720       -       516.0       79       5,820         e-F/S       W       2,012.8       2,010.4       2.00       0.95       2.95       63       0.03       2,592       2,015.8       16       109         M/P       W       2,400.0       2,380.9       0.17       10.23       10.40       116       0.26       22,464       2,403.0       20       72         M/P       W       2,400.0       2,380.9       0.17       10.23       10.40       116       0.26       22,464       2,403.0       20       72         M/P       W       2,400.0       2,380.9       0.17       10.23       10.40       116       0.26       22,464       2,403.0       20       72         M       W       2,380.5       0.17       10.23       10.40       116       0.26       22,464       2,403.0       73         M       W       2,380.5       0.17       10.23       10.40       116       0.26       22,464       2,403.0       45       757         M       W       1,747.4       1,756.5       0.75       3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Low Grand Falls 4FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                       |             |                       |                                                | ę,                | 8.26                                                    | 87.81                                                                                                             | 356.07                                                                                                                                 | 1,090                                                                                                                                                     | ,                                                                                       | ı        | 554.0   | 42                            | 870                            |                      |
| e-F/S       W       2,012.8       2,010.4       2.00       0.95       2.95       63       0.03       2,592       2,015.8       16       109         M/P       W       Z,400.0       2,380.9       0.17       10.23       10.40       116       0.26       22,464       2,403.0       20       72         D/D       W       Z,400.0       2,380.9       0.17       10.23       10.40       116       0.26       22,464       2,403.0       20       72         D/D       P,I       -       -       -       -       -       -       weir       -       -       4617       757         D/D       W       2,336.5       2,315.5       1.51       9.44       10.95       82       0.41       35,000       2,340.0       45       757         D/D       W       1,756.7       1,747.7       0.60       2.07       2.67       29       0.12       10,000       1,758.7       18       120         D/D       W       1,755.7       1,747.7       0.60       2.07       2.9       0.12       10,000       1,758.7       18       120         in this Study.       Inthis Study.FIS       Feastibility study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                       |             |                       |                                                |                   | 2.01 8                                                  | 127.78                                                                                                            | 599.79                                                                                                                                 | 6,720                                                                                                                                                     | '                                                                                       | •        | 516.0   | 6/                            | 5,820                          |                      |
| <pre>M/P W 2,400.0 2,380.9 0.17 10.23 10.40 116 0.26 22,464 2,403.0 20 72 D/D P,I weir weir weir weir</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rumuruti 5AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                       |             |                       |                                                |                   | 2.00                                                    | 0.95                                                                                                              | 2.95                                                                                                                                   |                                                                                                                                                           | 0.03                                                                                    |          | 2,015.8 | 16                            | 109                            |                      |
| <pre>D/D P,I weir - weir -<br/>D/D W 2,336.5 2,315.5 1.51 9.44 10.95 82 0.41 35,000 2,340.0 45 757 D/D W 1,774.4 1,756.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420 D/D W 1,755.7 1,747.7 0.60 2.07 2.67 29 0.12 10,000 1,758.7 18 120 in this Study.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nyahururu 5AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                       |             |                       |                                                |                   | 0.17                                                    | 10.23                                                                                                             | 10.40                                                                                                                                  |                                                                                                                                                           | 0.26                                                                                    |          | 2,403.0 | 20                            | 22                             |                      |
| <pre>D/D P,I weir weir weir</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                       |             |                       |                                                |                   |                                                         |                                                                                                                   |                                                                                                                                        |                                                                                                                                                           |                                                                                         |          |         |                               |                                |                      |
| <pre>//D W Z,336.5 2,315.5 1.51 9.44 10.95 82 0.41 35,000 Z,340.0 45 75/<br/>D/D W 1,774.4 1,756.5 0.75 3.25 4.52 28 0.13 11,000 1,780.0 50 420<br/>D/D W 1,755.7 1,747.7 0.60 2.07 2.67 29 0.12 10,000 1,758.7 18 120<br/>in this Study.<br/>? = hydroelectric power.<br/>sfeasibility study. F/S = feasibility study</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sondu/Miriu 13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                       |             |                       |                                                |                   | • ;                                                     | • :                                                                                                               | • ;                                                                                                                                    |                                                                                                                                                           | • :                                                                                     |          | •       | weir                          | • ;                            | run-of-river type    |
| JU W 1,744 1,750.5 U.2 3.2 4.52 20 0.12 11,000 1,760.0 50 4.0<br>J/D W 1,755.7 1,747.7 0.60 2.07 2.67 29 0.12 10,000 1,758.7 18 120<br>in this Study.<br>P = hydroelectric power.<br>sfeasibility study. F/S = feasibility study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chemususu 2ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                       |             |                       |                                                |                   | 1.51                                                    | 4.6                                                                                                               | 10.95                                                                                                                                  |                                                                                                                                                           | .41                                                                                     |          | 2,340.0 | Ψ.                            | /5/                            | <u>در</u>            |
| in this Study.<br>P = hydroelectric power.<br>sfeesfbility study, F/S = feesibility study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kirandicn ZEH<br>Ruaka (Kiamhaa) 38A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uou                                   |                       |             |                       |                                                |                   | 6/.0<br>9 60                                            | 2.5<br>10                                                                                                         | 4.52<br>7.57<br>7.57                                                                                                                   |                                                                                                                                                           | 1 1                                                                                     |          | 1,758.7 | 0<br>2<br>2                   | 420<br>120                     | /3                   |
| otes: Marked "*" shows a damsite newly identified in this Study.<br>Purpose, W = water supply, I - irrigation, P = hydroelectric power.<br>Study stage, M/P = mater plan, Pre-F/S = prefeasibility study, F/S = feasibility study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                       |             |                       |                                                |                   |                                                         |                                                                                                                   |                                                                                                                                        |                                                                                                                                                           | [                                                                                       |          |         | :                             | i                              |                      |
| rurpose, w = water supply. I = irrigation, Y = hydroelectric power.<br>Study stage, M/P = mater plan, Pre-F/S = prefeasibility study, F/S = feasibility study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es: Marked "*" shows a damsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a newly iden                          |                       |             | Study.                | A<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U | K K K H H H H H H |                                                         | #<br>#<br>#<br>#                                                                                                  |                                                                                                                                        |                                                                                                                                                           |                                                                                         | 8        |         |                               |                                | "后此后口间用则和利用用户和利用用户。" |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rurpose, w = water supply.<br>Study stage, M/P = mater p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , I = TITTIGG<br>31an, Pre-F/         | 1. 101. r<br>'S = pre | teas (b 1 ] | electric<br>ity study | ромег.<br>, F/S = 1                            | feas ib i l f     | ty study                                                |                                                                                                                   |                                                                                                                                        |                                                                                                                                                           |                                                                                         |          |         |                               |                                |                      |

Table H4.2 Estimated Construction Cost of Prospective Dams

| Them        | Duranastiva            | Cub           | E a t turn to d          | Annua 1        |           | Water Cos |           |         |
|-------------|------------------------|---------------|--------------------------|----------------|-----------|-----------|-----------|---------|
| Item<br>No. | Prospective<br>Dams    | Sub-<br>basin | Estimated<br>Const. Cost | Water<br>Yield | Const.    | 0/M       | total     | Remarks |
|             |                        |               | (1000 US\$)              | (1000 m3)      | (US\$/m3) | (US\$/m3) | (US\$/m3) |         |
| 1           | Moiben                 | 1BA           | 14,724                   | 21,413         | 0.069     | 0.0003    | 0.070     | •       |
| 2           | * Mukulusi             | 1EA           | 964                      | 34,690         |           |           |           |         |
| 3           | Londianj               | 1GC           | 54,550                   | 14,822         |           |           |           |         |
| 4           | Kibos                  | 1HA           | 23,836                   | 29,959         |           |           |           |         |
| 5           | Itare                  | 1JA           | 21,425                   | 54,557         |           | 0.0002    |           |         |
| 6           | Magwagwa               | 1JG           | 169,702                  | _              | -         |           | -         |         |
| 7           | * Bunyunyu             | 1KB           | 4,284                    | 19,237         | 0.022     | 0.0001    | 0.023     |         |
| 8           | Malewa                 | 2GB           | 47,628                   | 43,330         | 0.111     | 0.0006    | 0.111     |         |
| 9           | Upper Narok            | 2KA           | 13,192                   | 37,843         | 0.035     | 0.0002    | 0.035     |         |
| 10          | 01dorko                | 2KB           | 121,620                  | . –            |           | -         | -         |         |
| 11          | Upper Athi             | 3AA           | 6,519                    | 9,461          | 0.069     | 0.0003    | 0.070     |         |
| 12          | * Ruiru-A              | 3BC           | 48,920                   | 11,038         | 0.447     | 0.0022    | 0.449     |         |
| 13          | * Kikuyu               | 3BA           | 8,250                    | 7,884          | 0.106     | 0.0005    | 0.106     |         |
| 14          | Ndarugu                | 3CB           | 42,227                   | 192,370        | 0.022     | 0.0001    | 0.022     |         |
| 15          | Yatta                  | 3FB           | 145,235                  | 425,736        | 0.034     | 0.0002    | 0.035     |         |
| 16          | Rare                   | 3LA           | 35,117                   | 15,768         | 0.225     | 0.0011    | 0.226     | /1      |
| 17          | Mwachi                 | 3MB           | 97,013                   | 86,724         | 0.113     | 0.0006    | 0.113     |         |
| 18          | Pemba                  | 3MC           | 1,100                    | 7,253          | 0.015     | 0.0001    | 0.015     |         |
| 19          | Chania- B              | 4CA           | 113,527                  | 40,997         | 0.279     | 0.0014    | 0.281     |         |
| 20          | Thiba                  | 4DA           | 22,208                   | ***            | -         | -         | ~         |         |
| 21          | Mutonga                | 4FA           | 117,944                  | ~              | -         | -         | -         |         |
| 22          | Low Grand Falls        | 4FB           | 242,260                  | -              | -         | -         | -         |         |
| 23          | Rumuruti               | 5AA           | 4,310                    | 946            |           |           |           |         |
| 24          | Nyahururu<br>sub-total | 5AA           | 2,943<br>1,359,497       | 8,199          | 0.036     | 0.0002    | 0.036     |         |
| Commi       | tted Dam Schemes       |               | 110001101                |                |           |           |           |         |
| 25          | Sondu/Miriu            | 1JA           | 5,200                    | _              | -         | _         | _         | /2      |
| 26          | Chemususu              | 2ED           | 20,197                   | 12,775         | 0.159     | 0.0008    | 0.160     | /3      |
| 27          | Kirandich              | 2EH           | 20,000                   | 4,015          |           |           |           | /3      |
| 28          | Ruaka (Kiambaa)        | 3BA           | 4,708                    | 3,650          |           |           |           | , •     |
|             | sub-tota]              |               | 50,105                   |                |           |           |           |         |
|             | Total                  |               | 1,409,602                |                |           |           |           |         |

Notes: Marked "\*" shows a damsite newly identified in this Study.

Unit water cost = (annual cost)/(total yield)

for water supply purpose dams

0/M cost is assumed at 0.5 % of Const. cost.

/1 The cost of Rare dam includes the cost of intake weir and diversion channel.

/2 The above cost of Sondu/Miriu dam shows the cost of intake weir only.

/3 The costs above for Chemususu and Kirandich dams exclude the cost of water supply system

51

Pemba

3HC

#### -----------Alternative Site for Prosnective Site Water Supply Irrigation Hydropower proposed in the Study Future Dev't Potentials \_ Purpose Item ----- Remarks -------Damsite Sub- Damsite No. Sub-Service Large Irri. Hydronower basin hasin Urban Centre Scheme Scheme ----------....... ...... L.Victoria Drainage Area \*\* Molben 1RA W Eldoret/Iten 1 . Moj's Bridge Moi's Bridge inter-basin w/transfer 2 1BF P. L.W \_ Hemsted Brg. Upper Nzoia 3 1BD Great Rift W/S Hemsted Brg. W.I.P inter-basin w/transfer 4 K ibo lo 1CE W 5 Webuye Falls P 10A Webuye Falls . ... 6 Teremi 108 p rural hydro-electricit Terent . 7 Mukulusi 1EA W Kakamega small dam --Great Rift W/S 8 K imond i 1FC W.I. Inter-basin w/transfer 9 Nandi Forest Yala Swamo/ Nandi Forest 1FD I,P,W multipurpose Kano Plain 10 Mushangumbo 1FE P Mushangumbo -11 Londiani 1GC u Londiani Great Rift W/S 12 Nvando 1601 W.I.F Kapo Plain . inter-basin w/transfer 13 Kibos 1KA K1sumu/Maseno -W 14 W Nakuru/Molo/Njoro 1JA Itare --/Elburugon/Rongal /Mogotio 15 Timbilii 1.10 W Ker icho --Ŵ 16 1.35 Sisei \*\* (Sondu/Miriu) P.I 17 1.1G (Kano Plain) Sondu/Miriu run-of-river type weir detailed design stage 18 1.JG 9.I Kano Plain multipurpose Magwagwa Magwagwa 19 1KB Kisii **Sunyunyu** W Ŵ 20 1%B Katieno -21 Namba Kodero 1KC W.P -Namba Kodero 22 W Ama la 1181 Nakuru ----and the s -----------Rift Valley Drainage Area 23 Kimwarer 208 W.P.I Kinwarer Kinwarer multipurpose 24 Kipsano 2CB W W --25 Arror 200 26 Sererwa P,I,₩ 200 multipurpose Arror Arror 27 Waseges 200 W 28 Kamukunv 200 ₩. I flow augment. \_ \*\* (Chemususu) 29 2ED Eldama Ravine detailed design stage W -30 2EE Aram W run-of-river type weir --31 Ratat 2EE ы 32 \*\* (Kirandich) 2EH W Kabarnet detailed design stage .... 33 Malewa 2GB W Nakuru/Gilgil/ \_ Naivasha 34 Upper Narok 2KA ω Narok 35 01dorko 2KB P.I.W 01dorko Magadi Lower E.Nairo multipurpose 36 Leshota 2KB P.W Leshota ...... ----Athi River Brainage Area 37 Upper Athi JAA W Athi River -\*\* 38 (Ruaka (Kiambaa)) 3BA W rural centres detailed design stage . 39 Ruiru- A 38C W Nairobi --40 Kikuya K ikuyu 3BA W ... 41 Ndarugu 3CB W,I Natrobi/Ruiru Kanza lu multipurpose /Kiambu 42 W, I, P Munyu 3DA Nairobi Munyu multipurpose -43 Mbuun1 3EA W Machakos -44 W Kiteta 3EB rural . 45 Thwake 3FA I,₩ -46 3FB Yatta . Kibwezi Ext. Ι .... 47 Tsavo 3G М Tsavo 48 Bar icho 3HD W 49 Rare 3LA W Malindi off-stream reservoir 50 Mwachi 3MB W Mombasa

#### Table H5.1 Future Development Potential Dams (1/2)

..... continued

run-of-river type weir

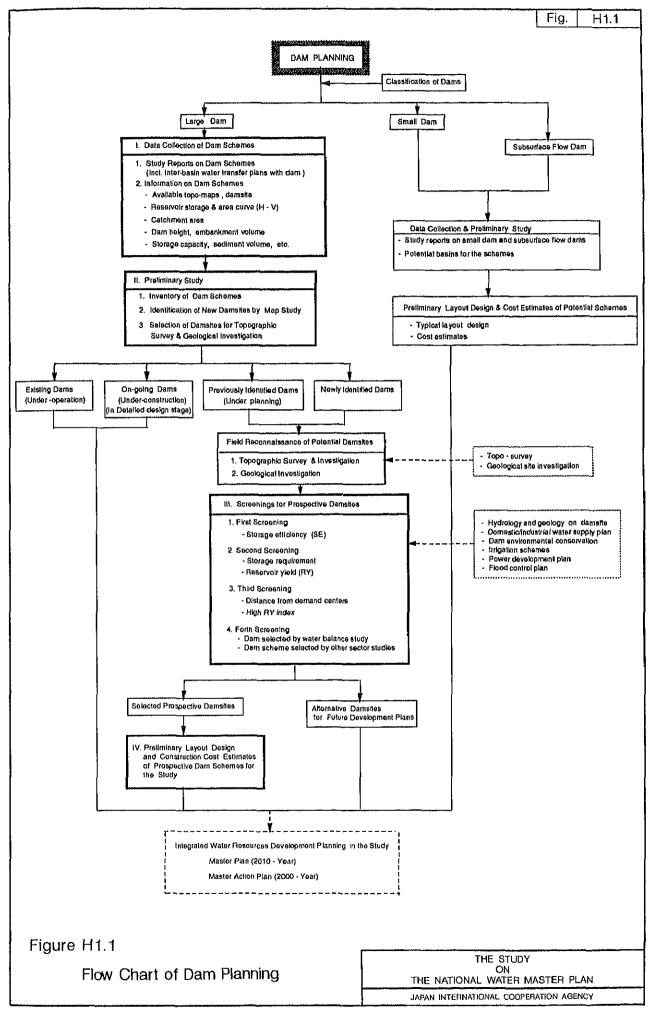
ω

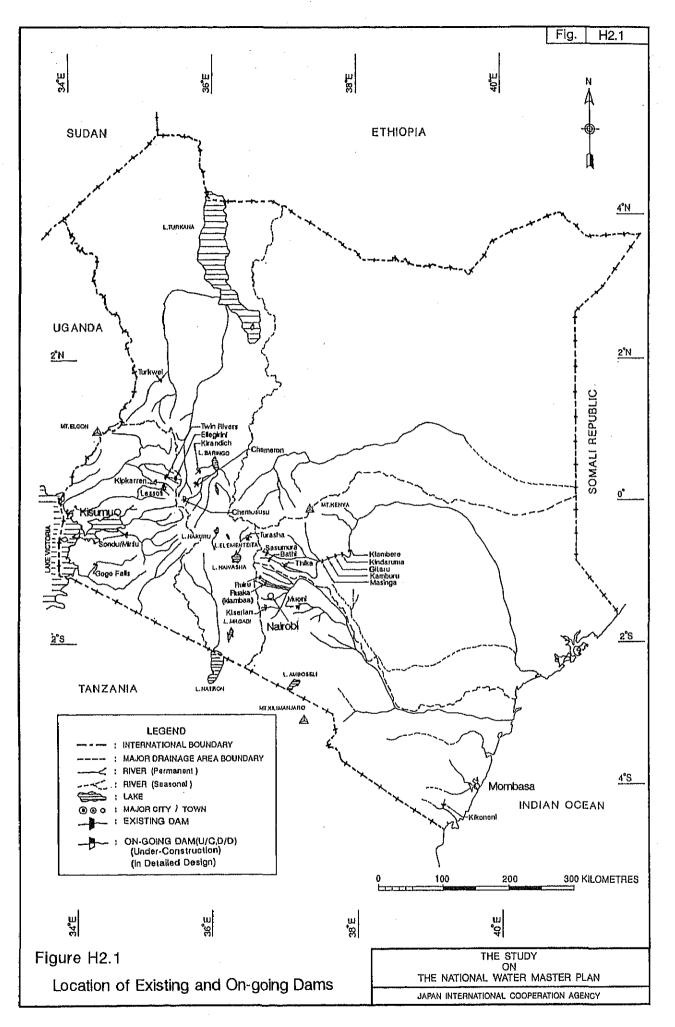
Monbasa

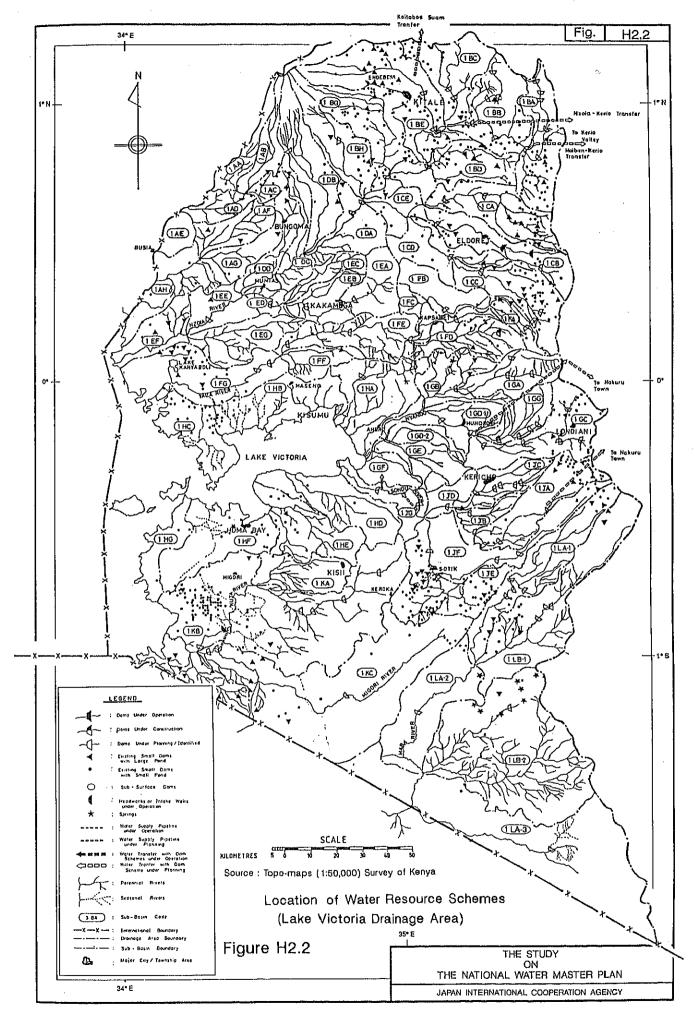
| Table | H5.1 | Future | Develo | pment | Potential | Dams | (2/2) |
|-------|------|--------|--------|-------|-----------|------|-------|
|-------|------|--------|--------|-------|-----------|------|-------|

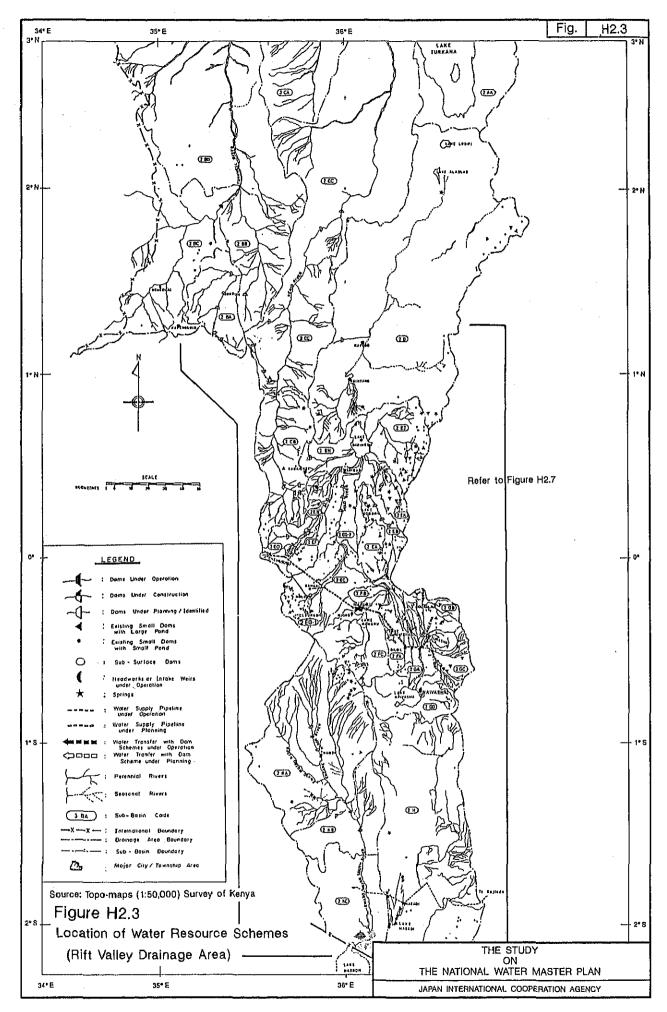
.

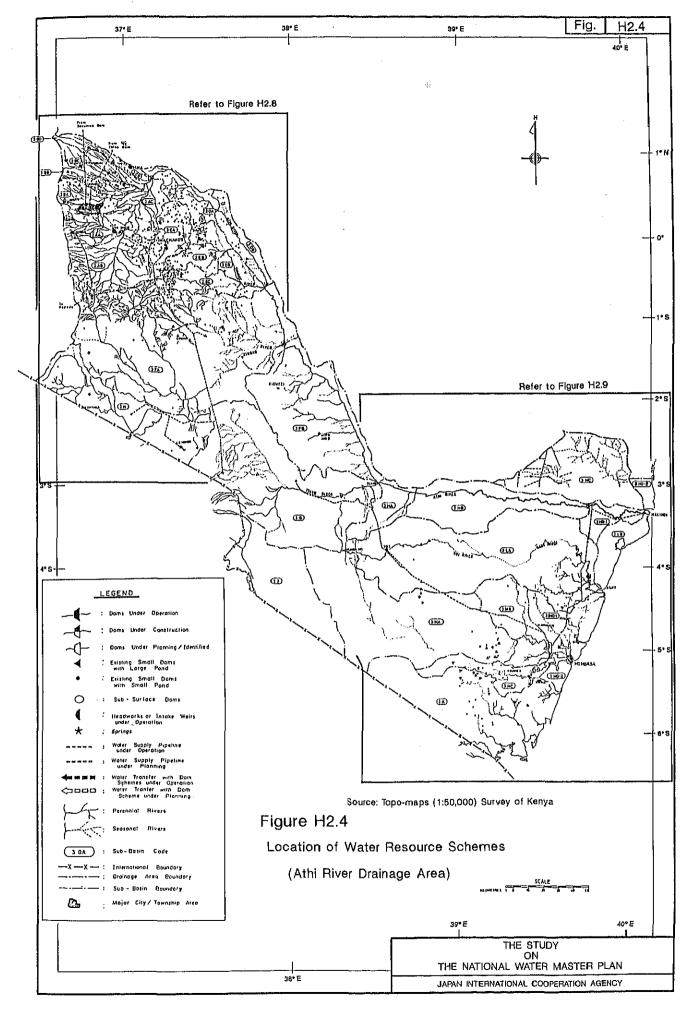
| tem                      | Prospective Sit<br>proposed in the S          |                   | Alternative Site<br>Future Dev't Pote |               |                 | Water Supply               | Irrigation                     | Hydropower           | Remarks                    |
|--------------------------|-----------------------------------------------|-------------------|---------------------------------------|---------------|-----------------|----------------------------|--------------------------------|----------------------|----------------------------|
| D.                       | Damsite                                       | Sub-<br>bastn     | Dams ite                              | Sub-<br>basin | Purpose         |                            | Large Irri.<br>Scheme with Dam | Kydropower<br>Scheme |                            |
| ina Ri                   | ver Drainage Area                             |                   |                                       |               |                 |                            |                                |                      | ****************           |
| 52                       |                                               |                   | Maragua 8                             | 48E           | W               | -                          |                                |                      |                            |
| 53                       | Chania- B                                     | 4CA               |                                       |               | W,I             | Na trob t                  | (small irri,)                  | -                    | multipurpose               |
| 54                       |                                               |                   | Ndiara                                | 4CA           | Ŵ               | -                          | -                              | · -                  |                            |
| 55                       | Thiba                                         | 4DA               |                                       |               | I,W             | -                          | Mwea Ext.                      | -                    |                            |
| 56                       | Mutonga                                       | 4FA               |                                       |               | P               | -                          | -                              | Mutonga              |                            |
| 57                       | Low Grand Falls                               | 4FB               |                                       |               | Р.              | -                          | -                              | L.Grand Falls        |                            |
| 58                       |                                               |                   | High Grand Falls                      | 4FB           | P,W,I           | -                          | -                              | H.Grand Falls        | multipurpose               |
| 59                       |                                               |                   | Adamson Falls                         | 4GA           | P, W, I         | -                          |                                | Adamson Falls        |                            |
| 60                       |                                               |                   | Kora                                  | 4GB           | P.W.I           | -                          | -                              |                      | multipurpose               |
| 61                       |                                               |                   | Umaa                                  | 4HA           | ัพ่             | -                          | -                              | -                    |                            |
| 62                       |                                               |                   | Mutuni                                | 4HA           | Ŵ               | -                          | -                              | -                    |                            |
| 63                       |                                               |                   | Kitimui                               | 4HA           | Ŵ               | -                          | -                              | -                    |                            |
| waso N<br>64<br>65<br>66 | igro North River Dra<br>Rumuruti<br>Nyuhururu | 5AA<br>5AA<br>5AA | Area<br>Archers Post                  | 50A           | W<br>W<br>W,I,P | Rumuruti<br>Nyuhururu<br>- | -                              | -                    | small dam<br>flow augment. |
| 67                       |                                               |                   | Crocodile Jaw                         | 5DC           | P,₩,I           |                            | -                              | Crocodile Jaw        | flow augment.              |
| 68                       |                                               |                   | Kirium                                | 5DC           | Р               | -                          | -                              | Kirium               |                            |
| 69                       |                                               |                   | Kihoto                                | 5BC           | W,I             | -                          | -                              | -                    | flow augment.              |
| 70                       |                                               |                   | Nundoto                               | 5CA           | Ŵ               | Maralal                    | -                              | -                    | small dam                  |
| 71                       |                                               |                   | Lag-Bor                               | 5EA           | W               | -                          | -                              |                      | /1                         |
| 72                       |                                               |                   | Buna                                  | 5EA           | W               | Buna                       | -                              | -                    | /1                         |
| 73                       |                                               |                   | Habaswe in                            | 5EC           | W               | Habaswein                  | -                              | -                    | /1                         |
| 74                       |                                               |                   | Meri                                  | 5EC           | W               | Meri                       | -                              | -                    | /1                         |
| 75                       |                                               |                   | Modogashe                             | 5FA           | W               | -                          | *                              | -                    | /1                         |
| 76                       |                                               |                   | Dadab                                 | 5FA           | W               | *                          | -                              | -                    | /1                         |
| 77                       |                                               |                   | Kutulo-Elwak                          | 5GA           | W               | -                          | •                              | -                    | /1                         |
| 78                       |                                               |                   | Takaba                                | 5GA           | W               |                            | -                              | -                    | /1                         |
| 79                       |                                               |                   | Mandera                               | 5GB           | W               | Mandera                    |                                | -                    | /1                         |
| 80                       |                                               |                   | Neboi-Mandera                         | 568           | W               | -                          | -                              | -                    | /1                         |
| 81                       |                                               |                   | Rham Mandera                          | 5GB           | W               | -                          | -                              | -                    | /1                         |
| 82                       |                                               |                   | Arab ic                               | 5GB           | W               | -                          | -                              | -                    | /1                         |
| 83                       |                                               |                   | Fino                                  | 5GB           | W               | -                          | -                              | -                    | /1                         |
| 84                       |                                               |                   | Kalatiyo                              | 5H            | W               | -                          | -                              | -                    | /1                         |
| 85                       |                                               |                   | Markamari                             | 5H            | W               | •                          |                                | -                    | /1                         |

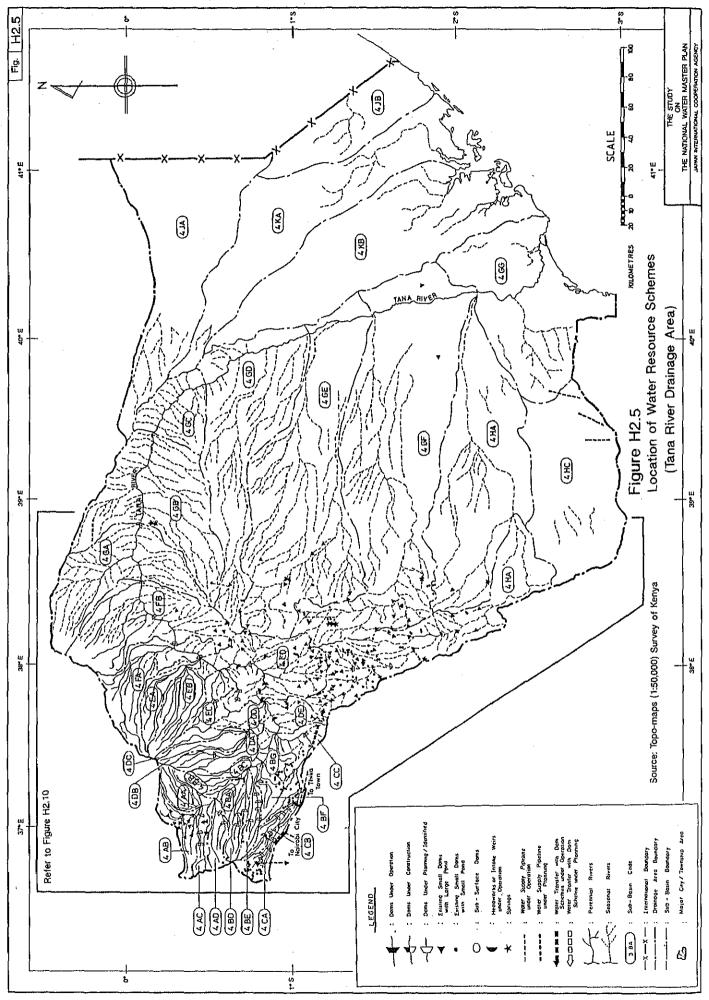

Note: "\*\*" shows a dam scheme in detailed design stage. /1 potential sites proposed by MOWD. No detailed information available.


# **FIGURES**

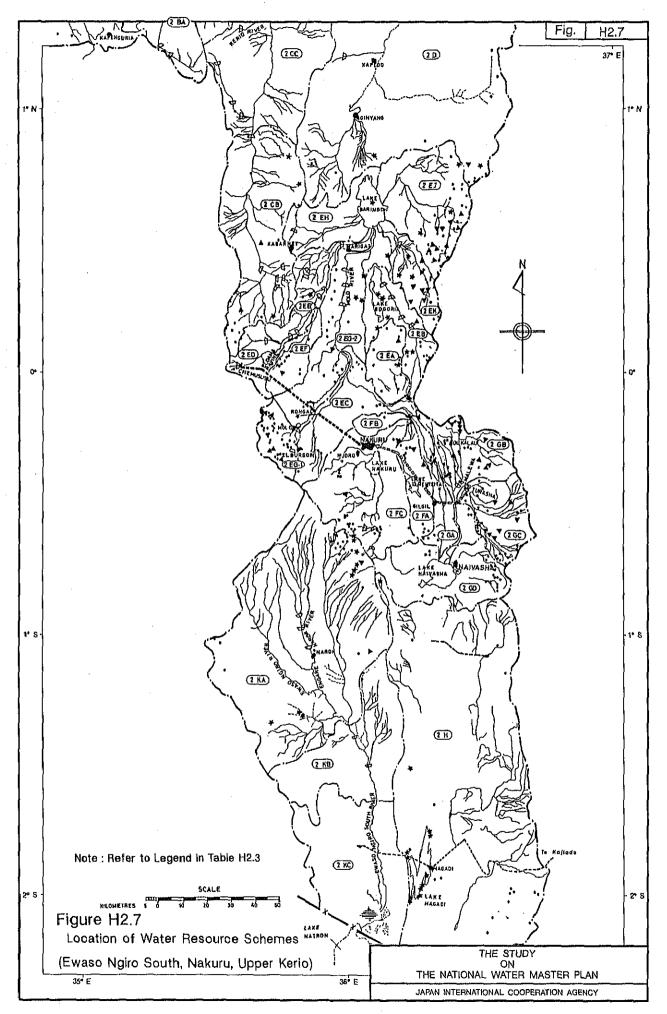

.

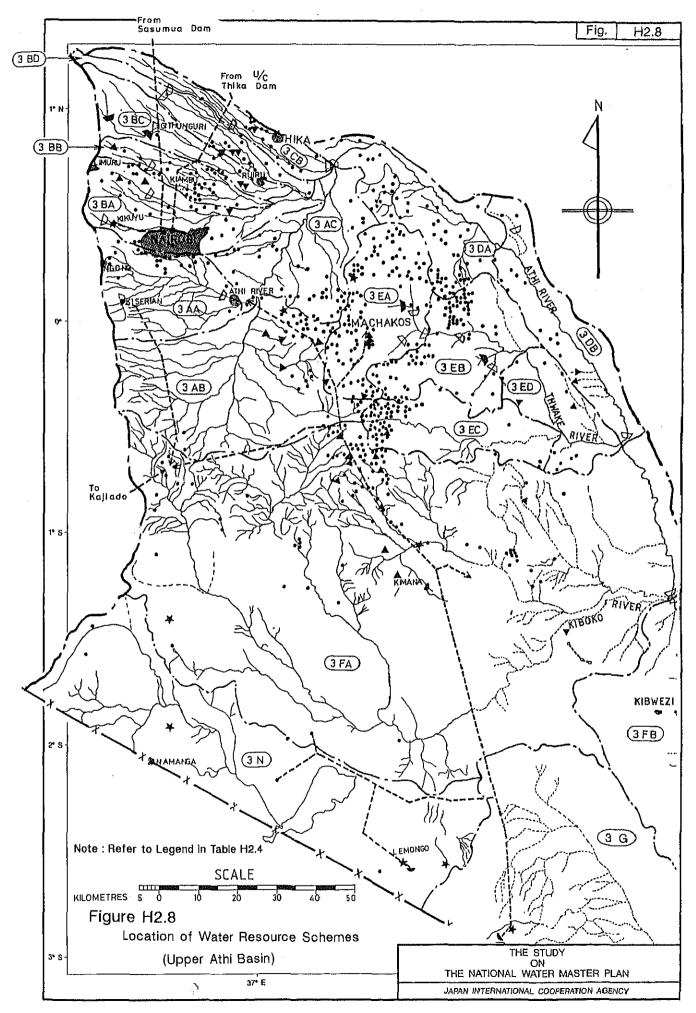

. .

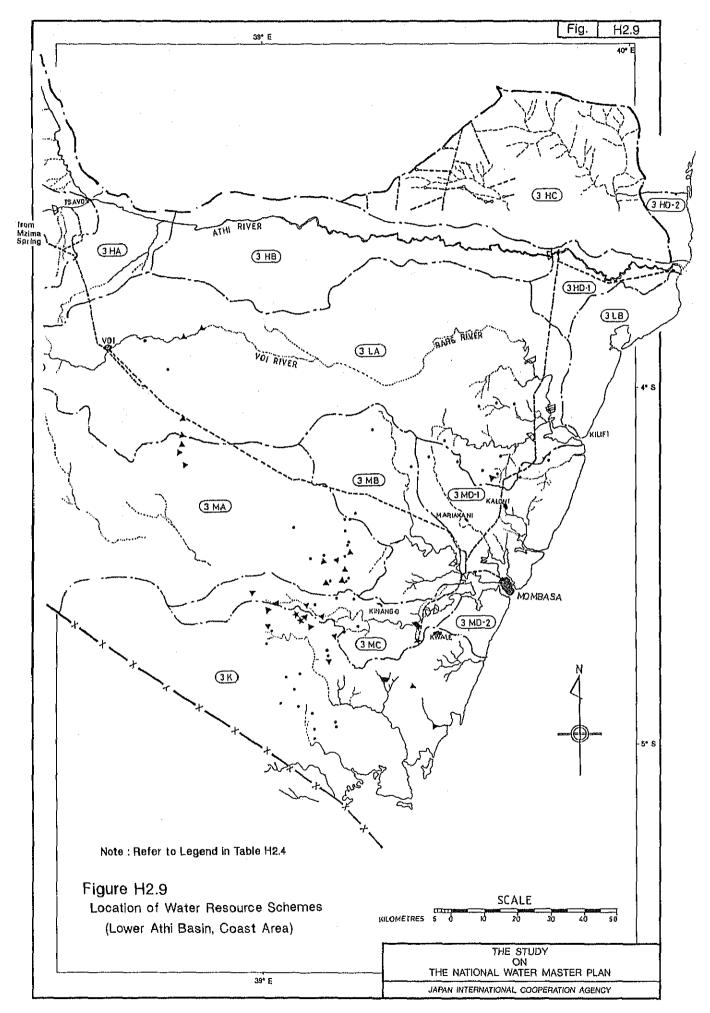

. .

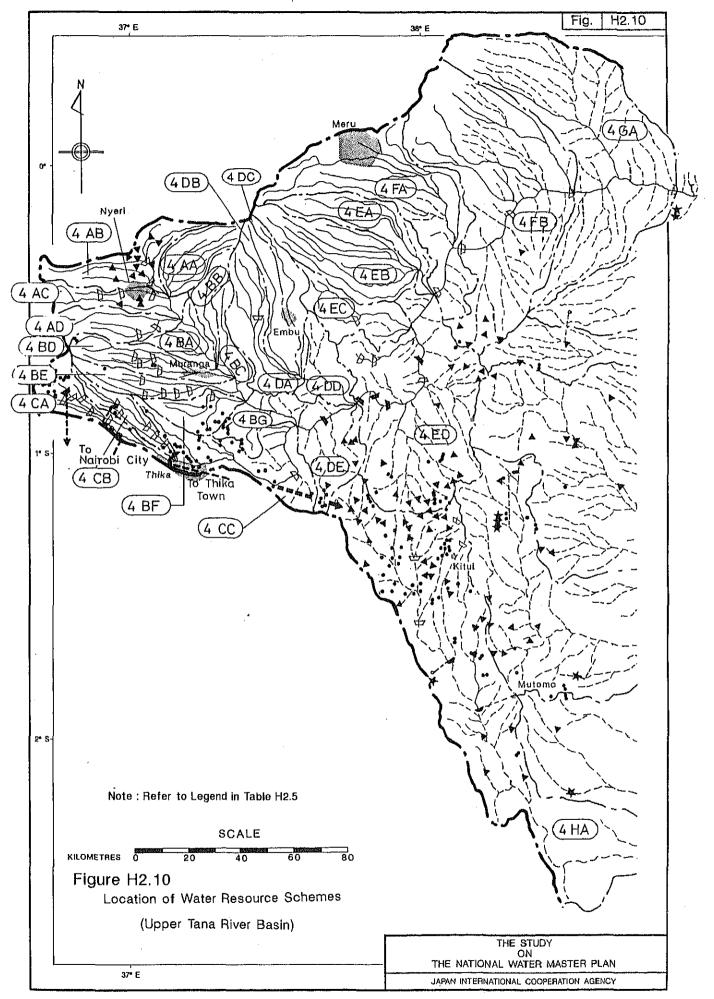




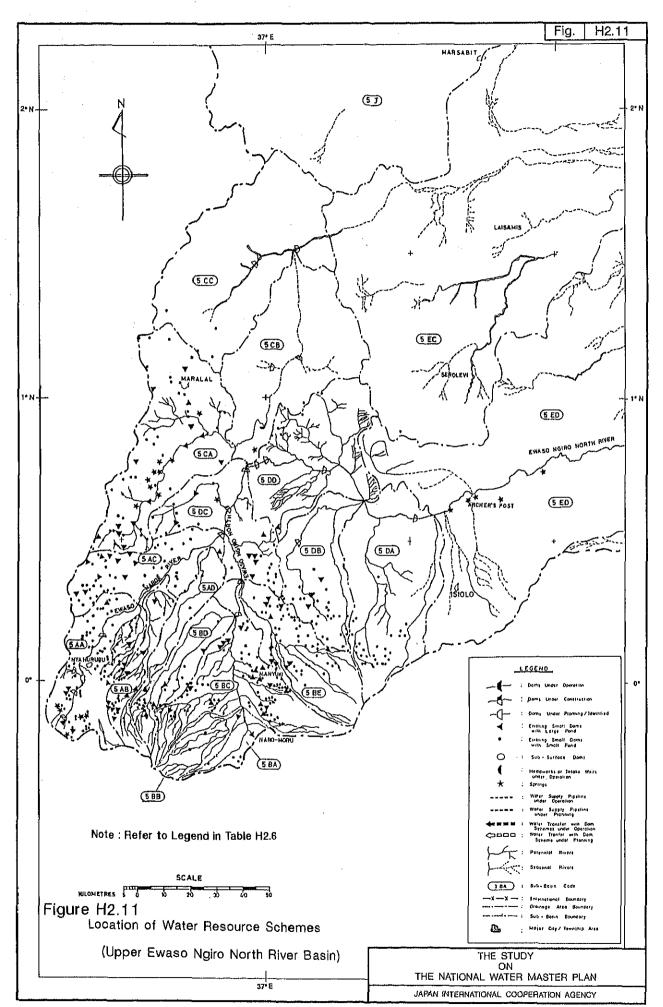



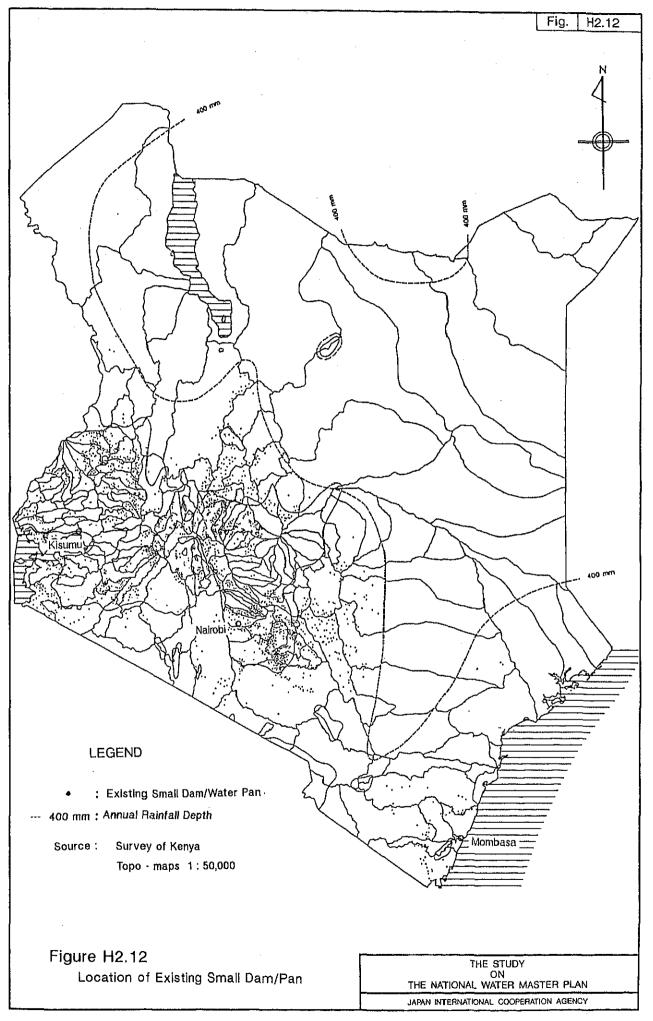



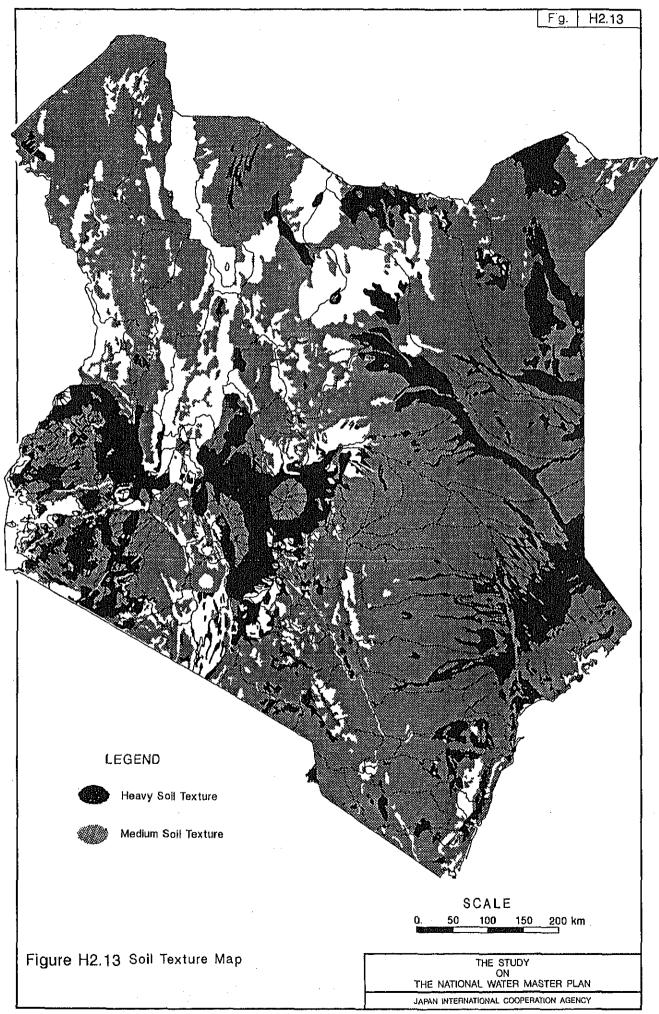



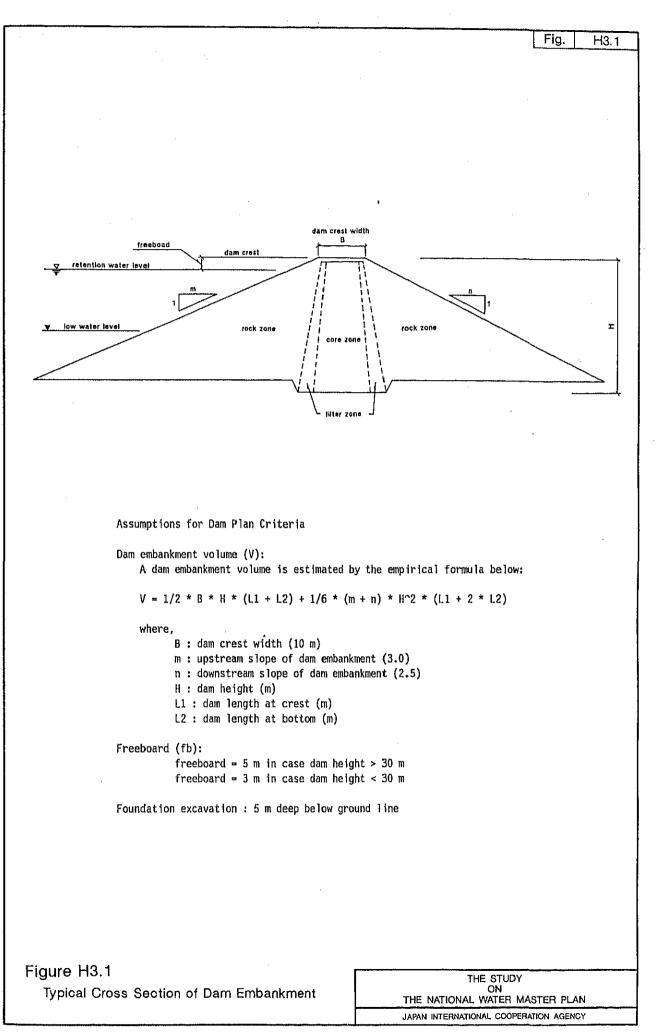



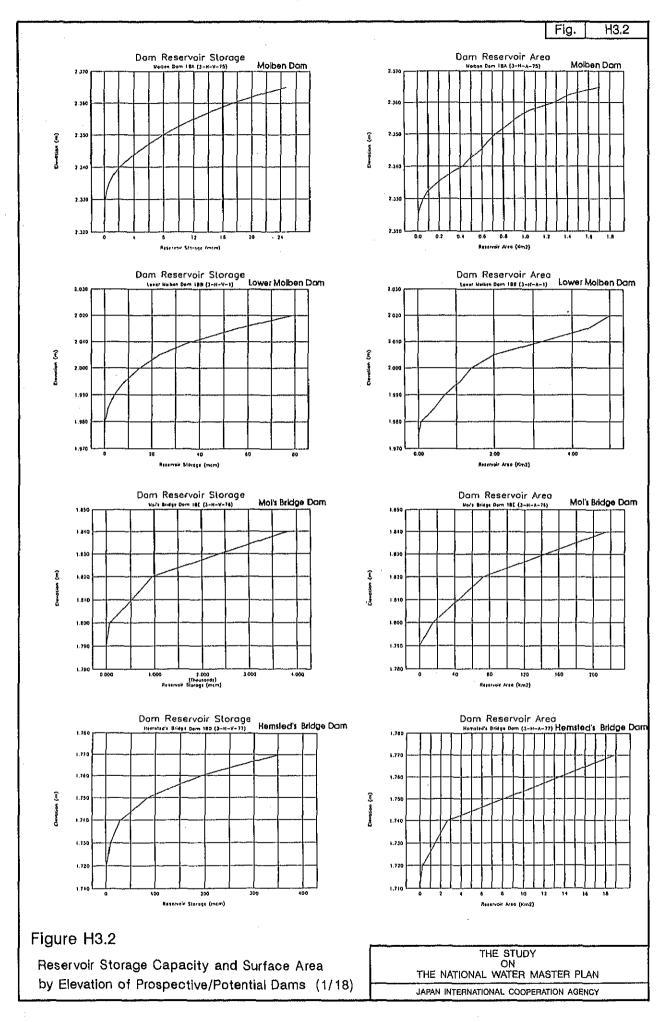


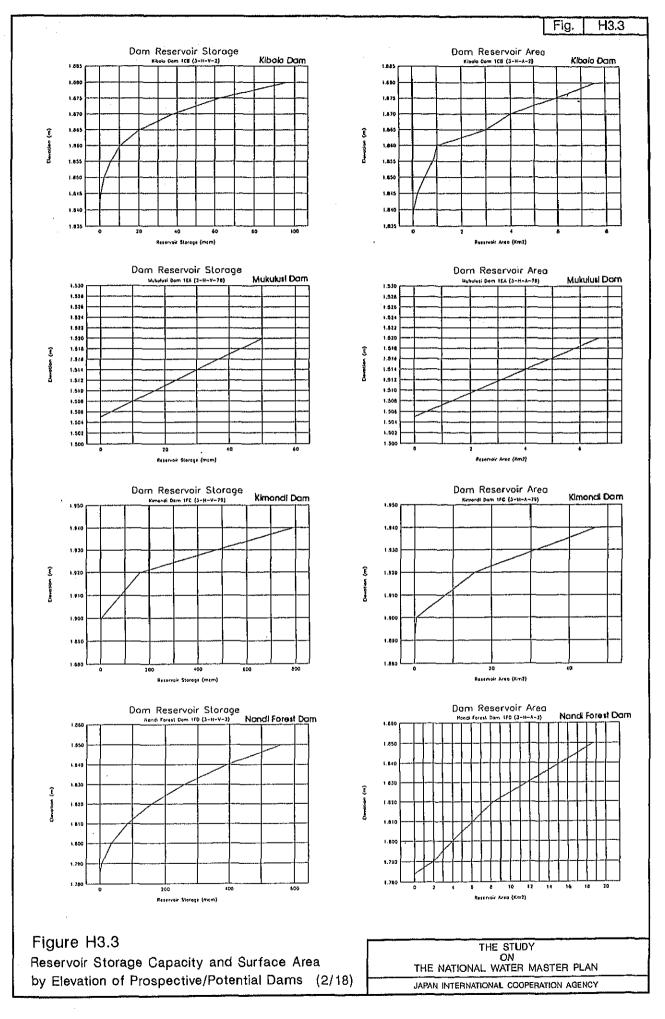



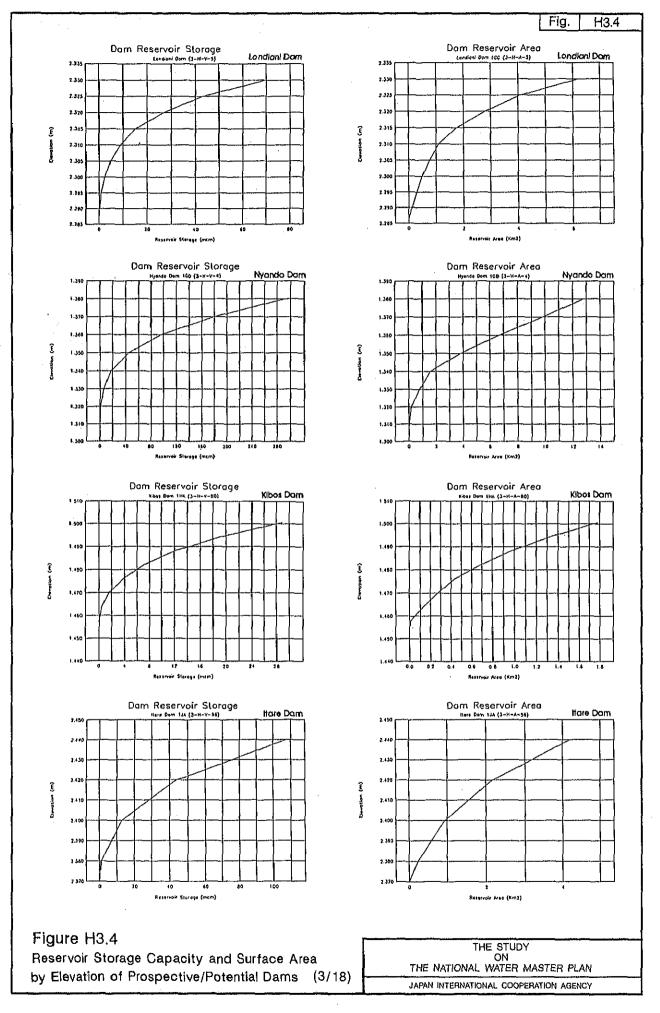



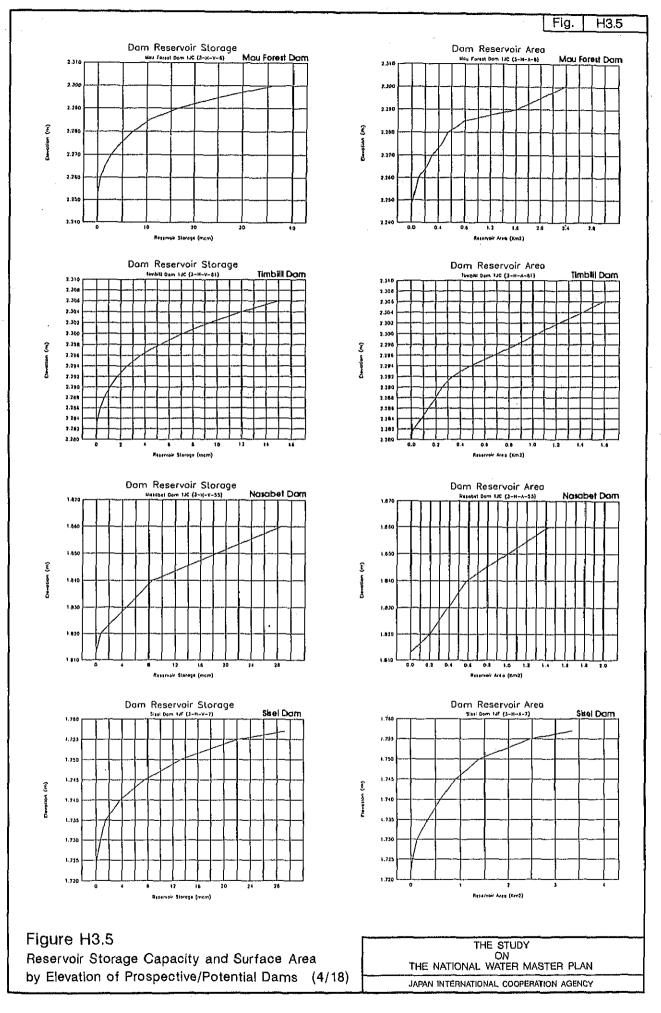



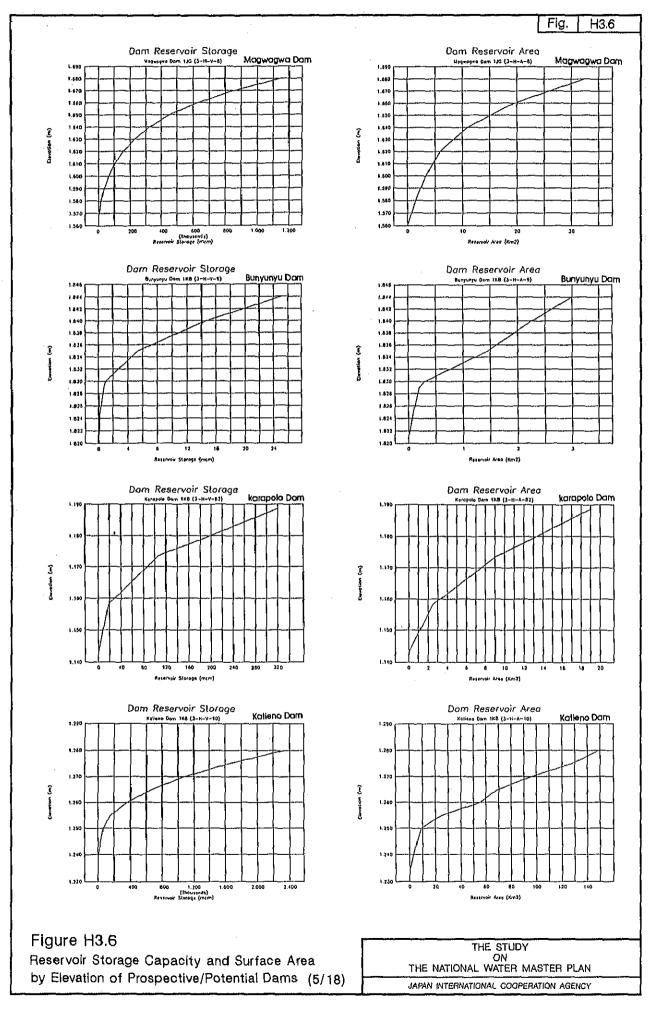



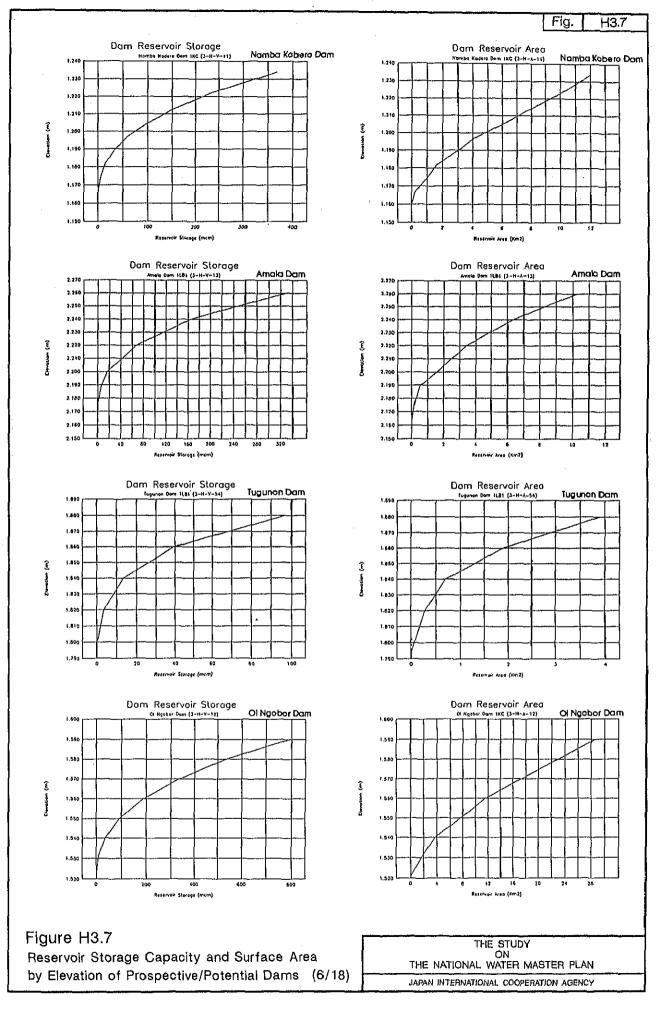


HF-11



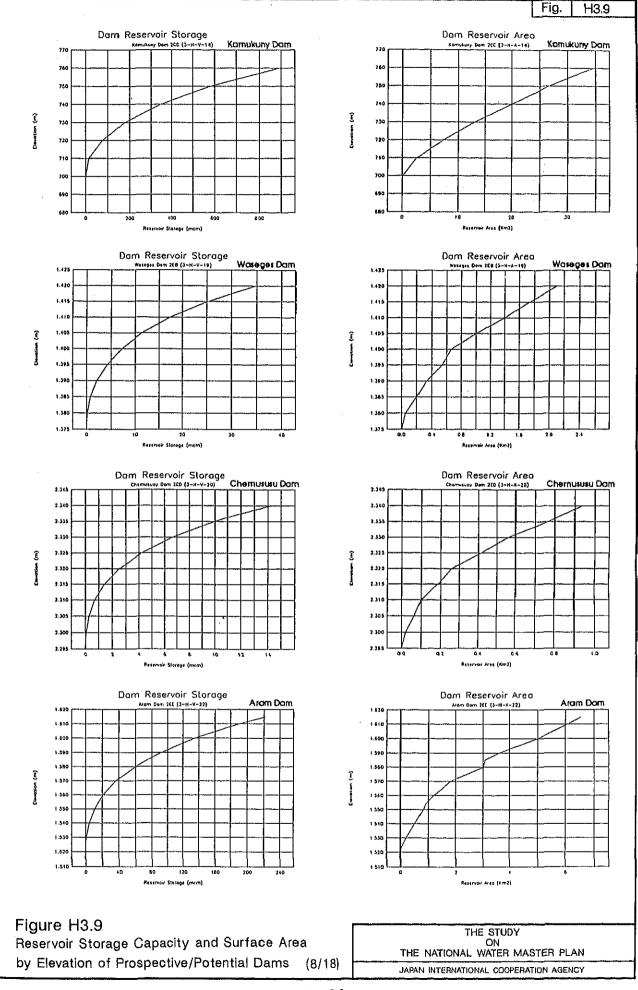



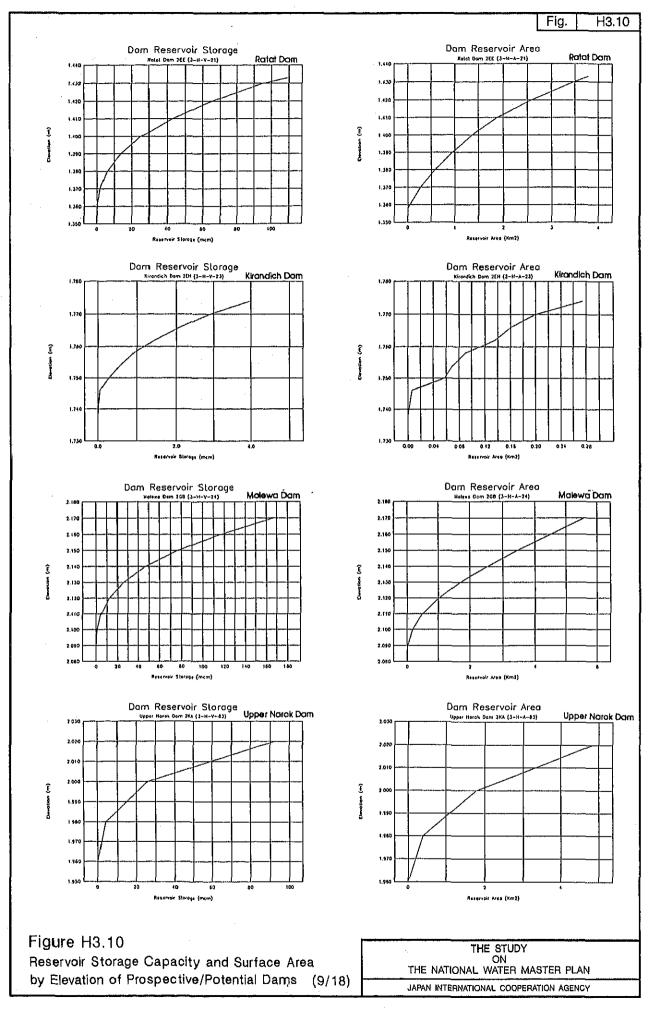



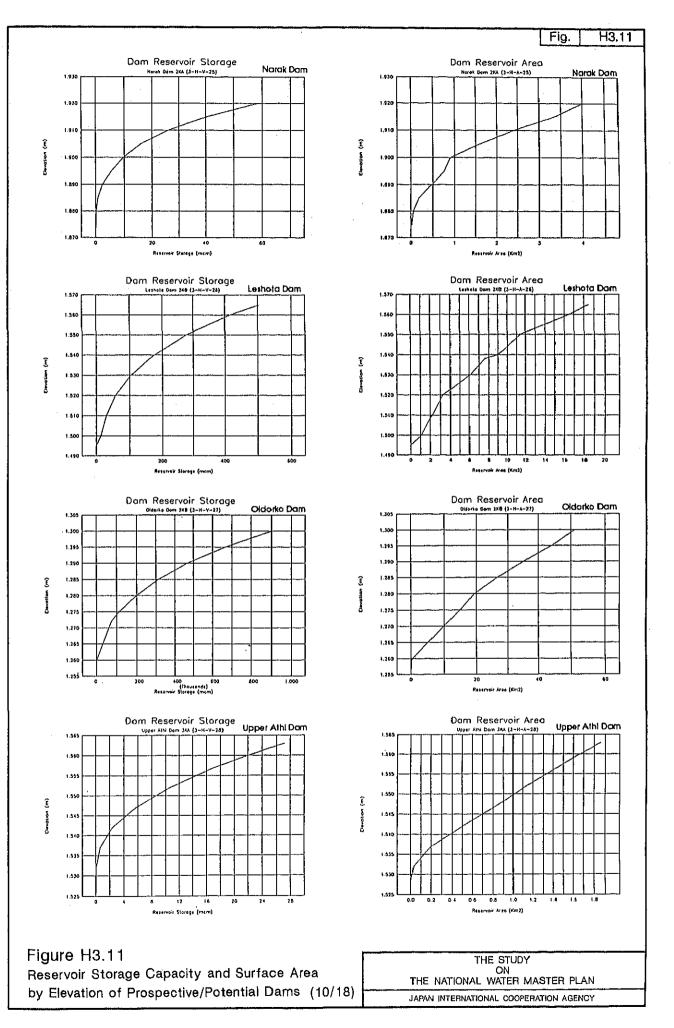



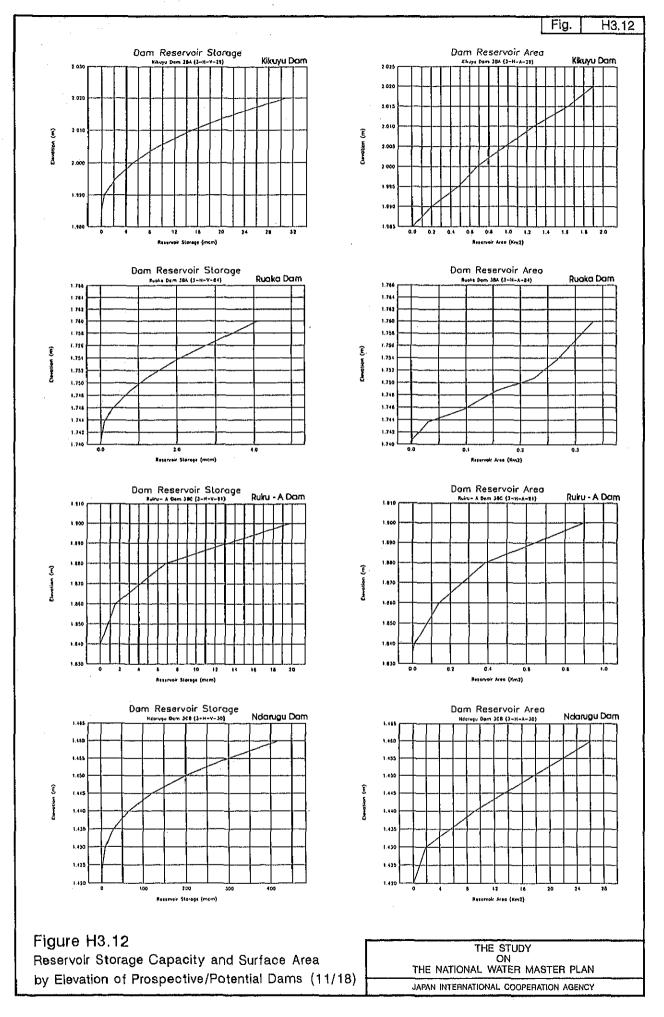


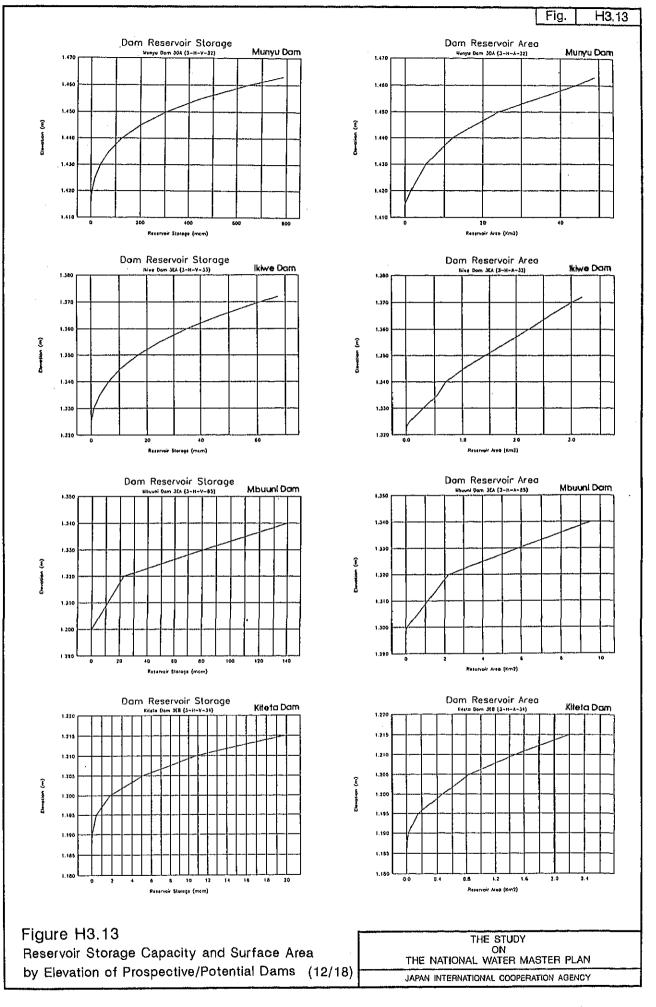


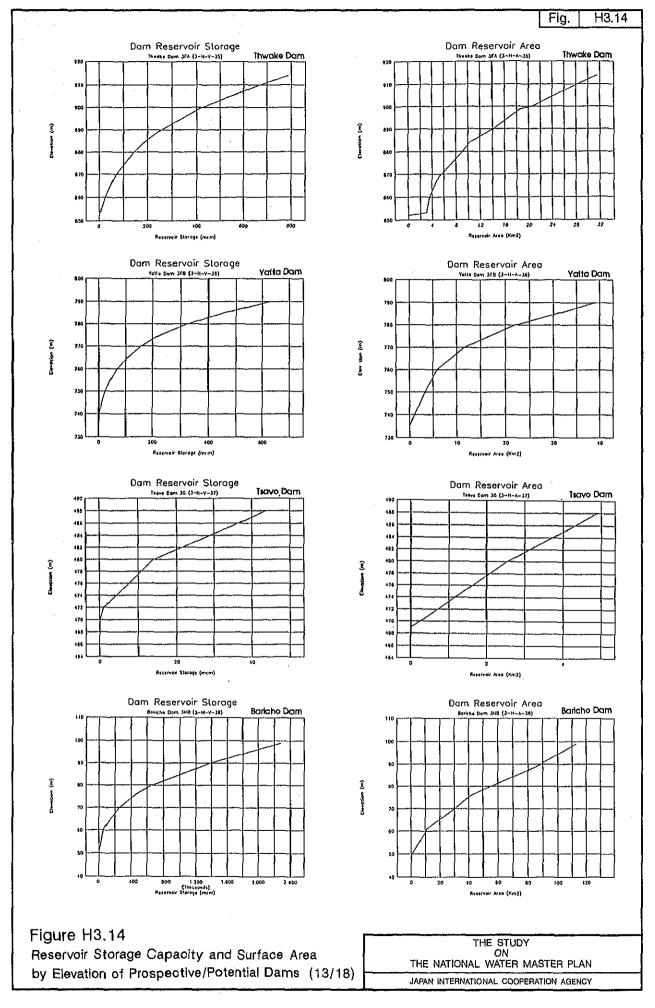


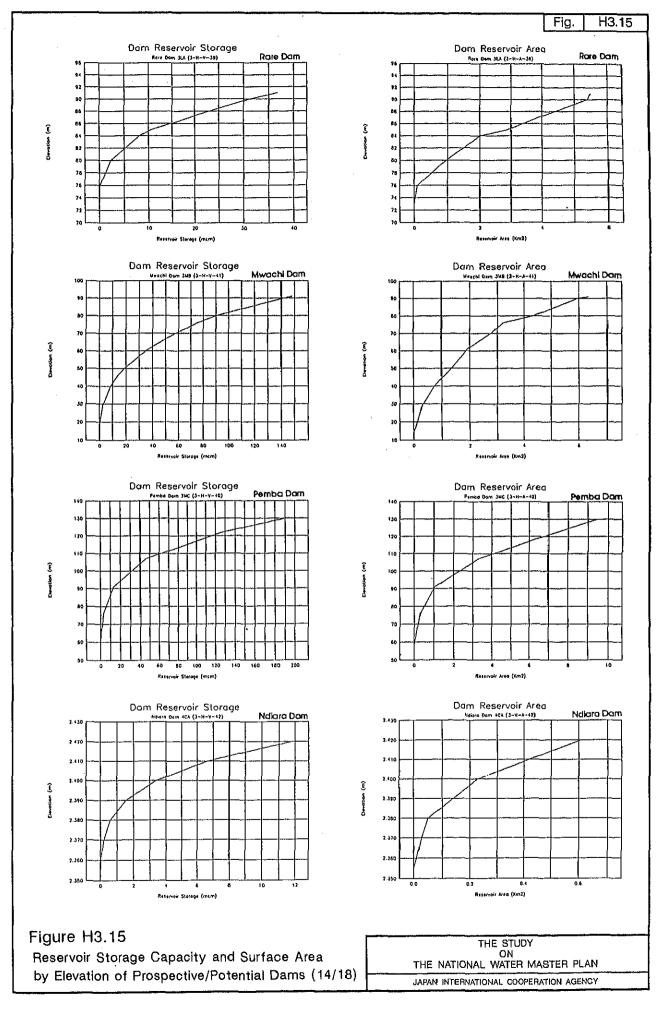



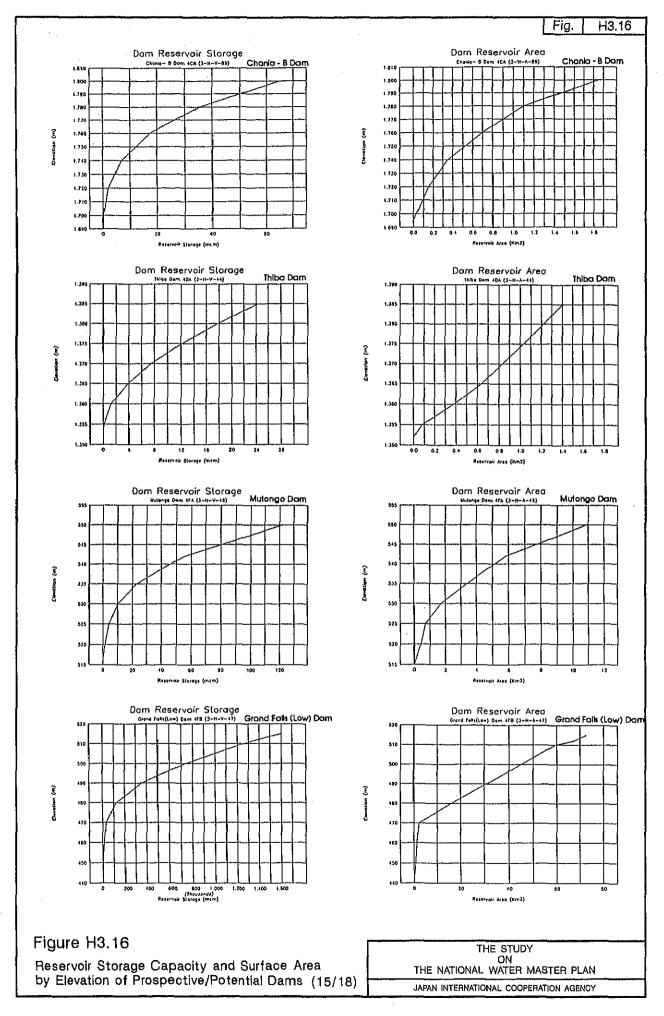



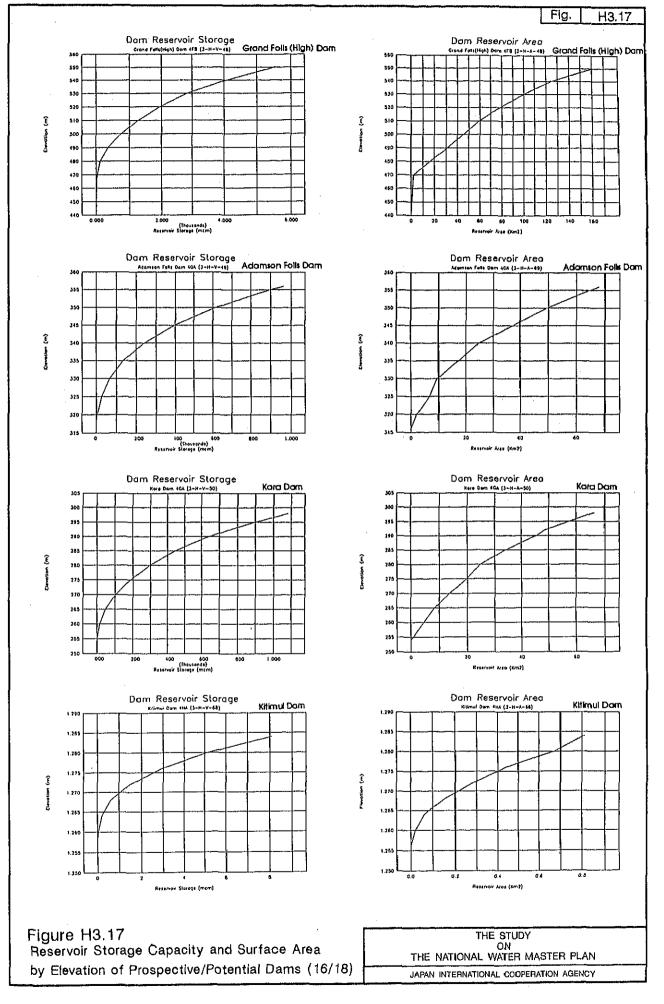



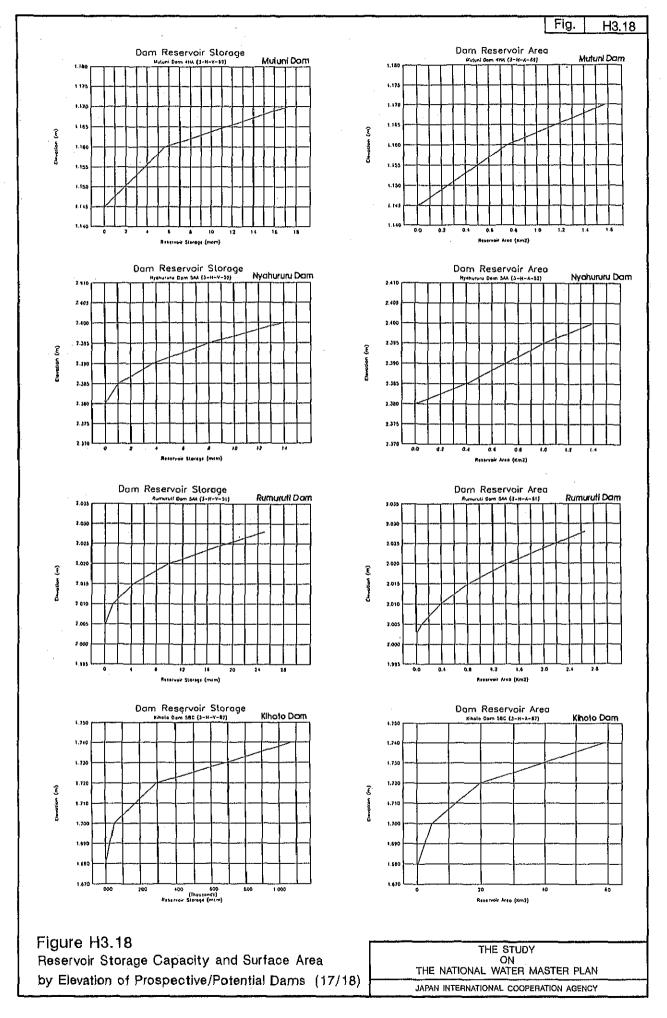



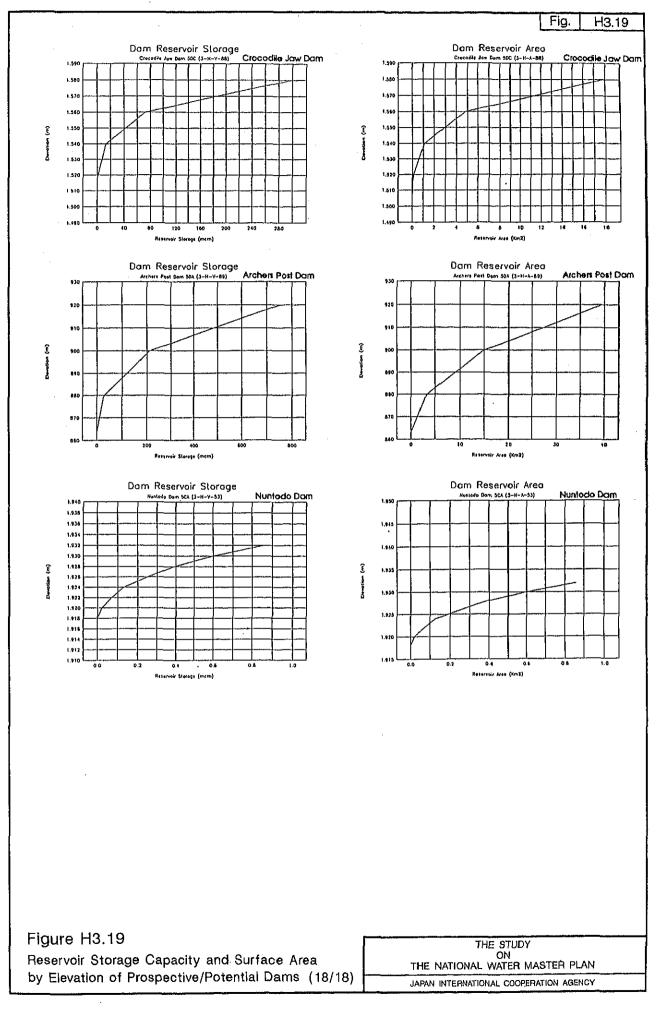



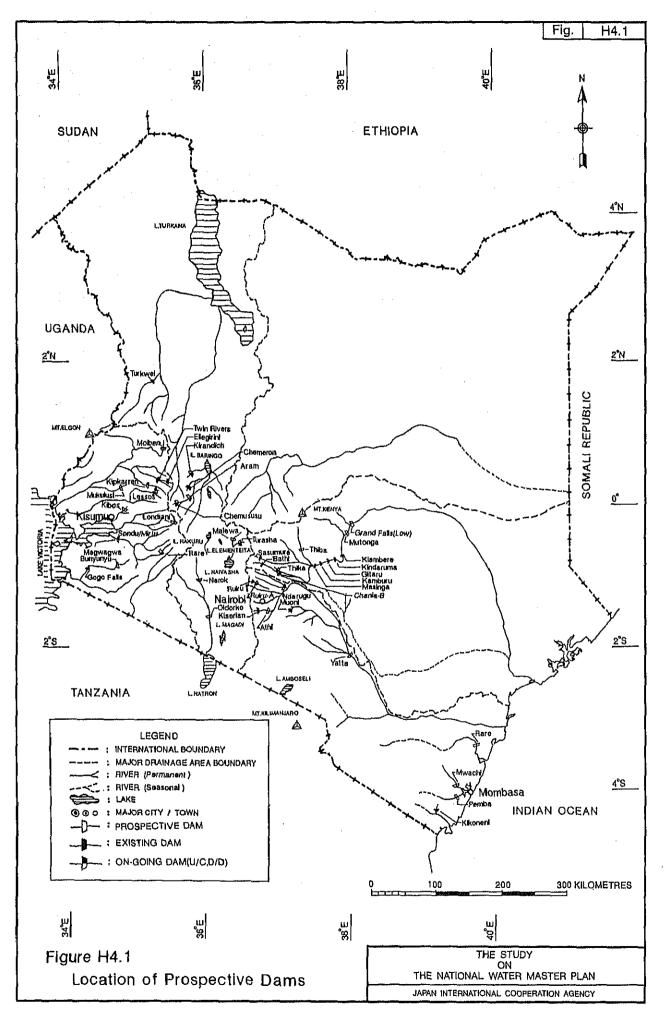



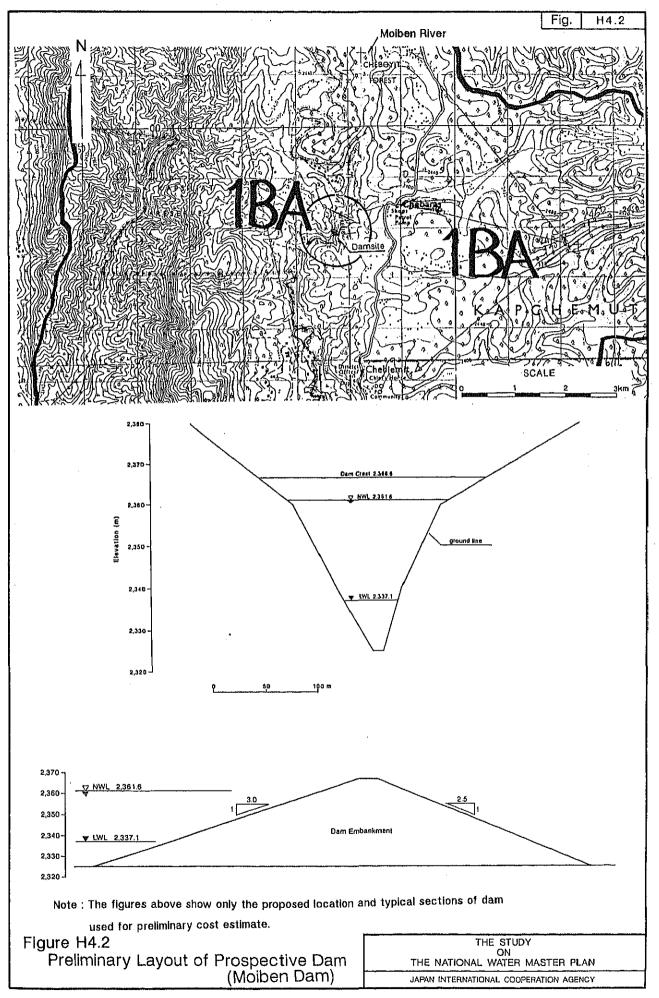



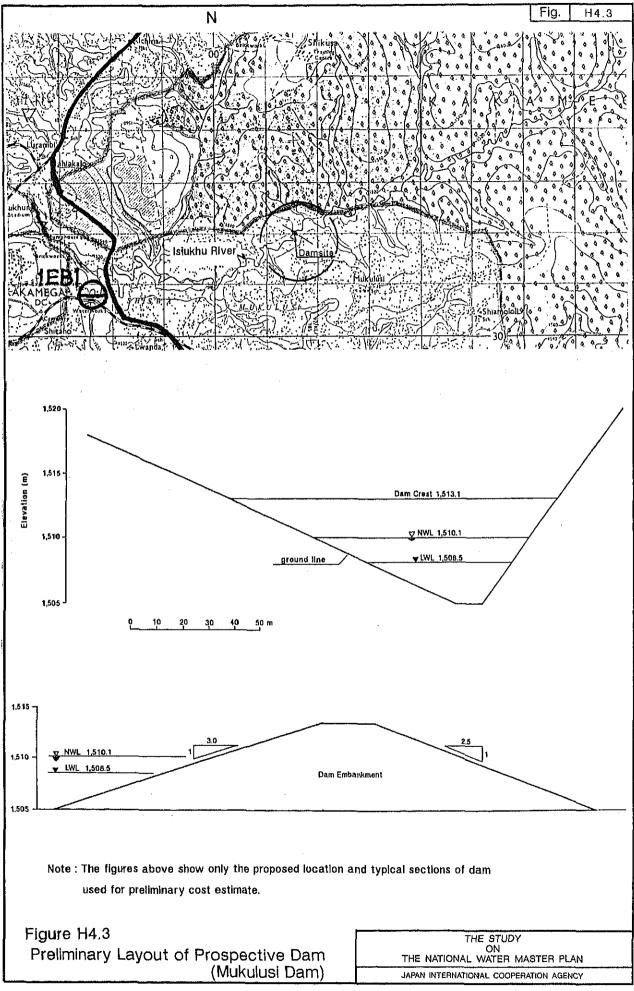



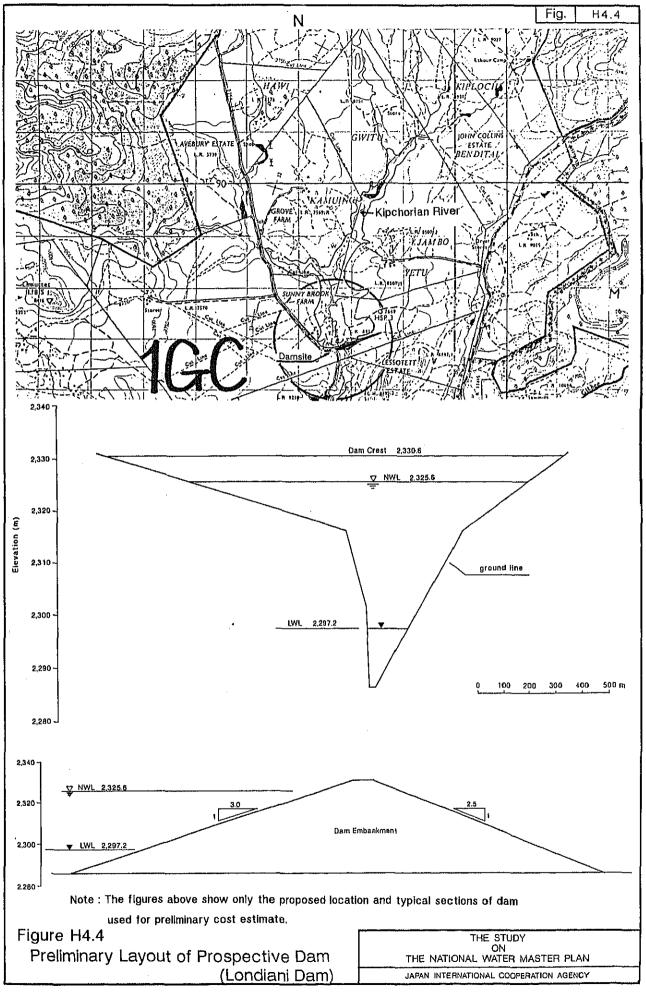



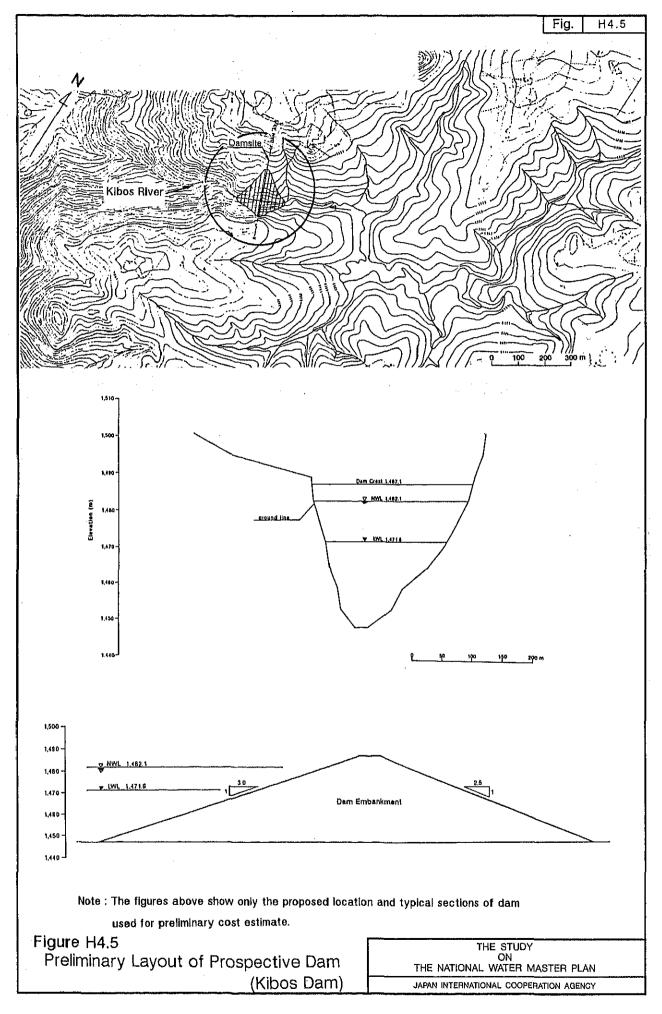



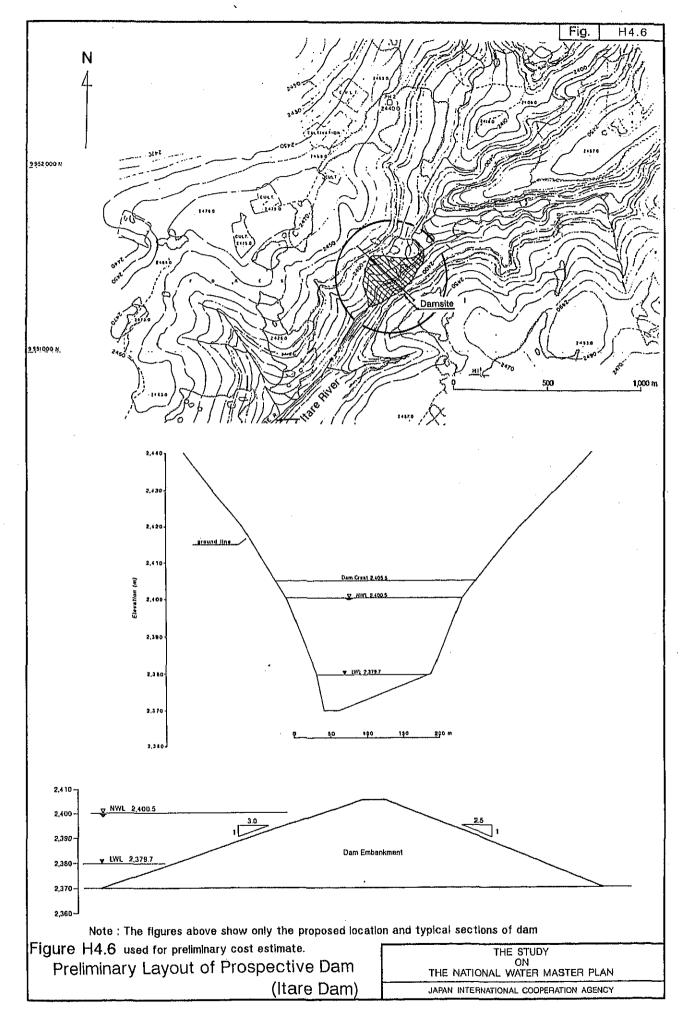



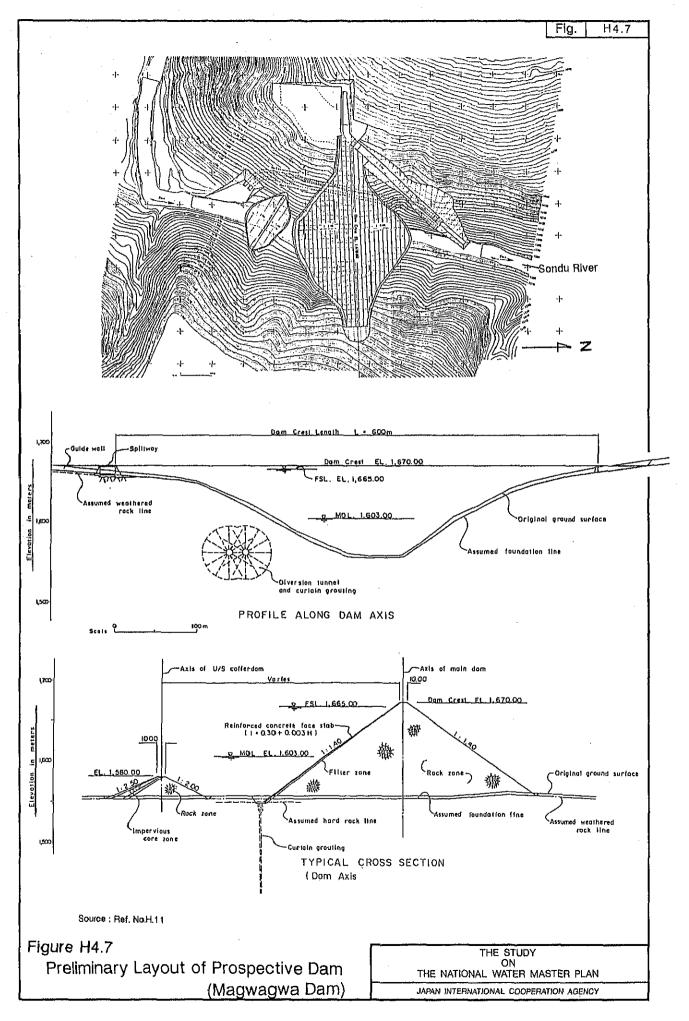



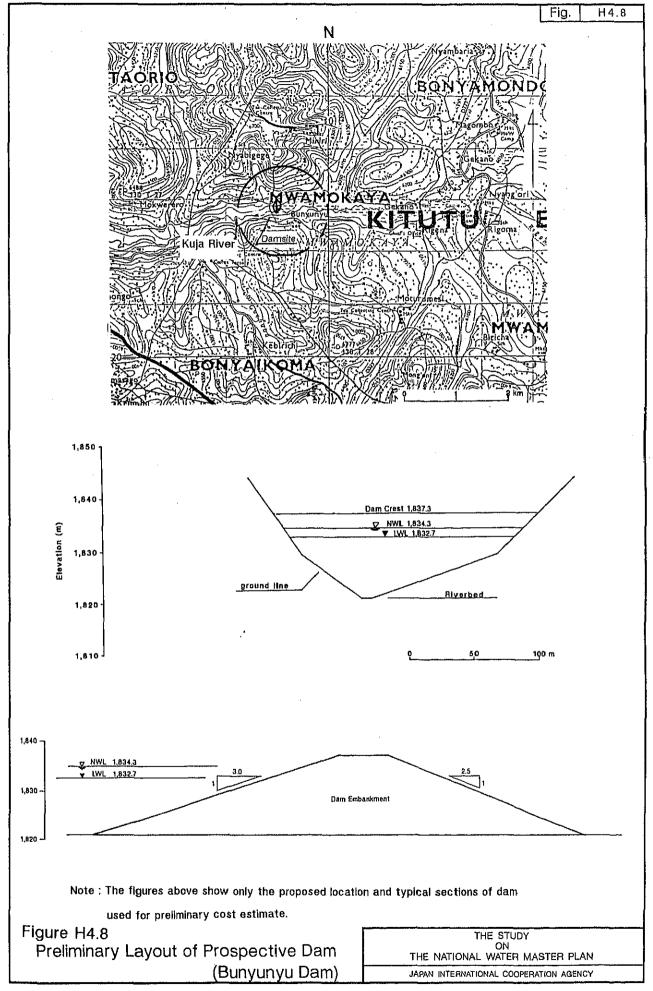



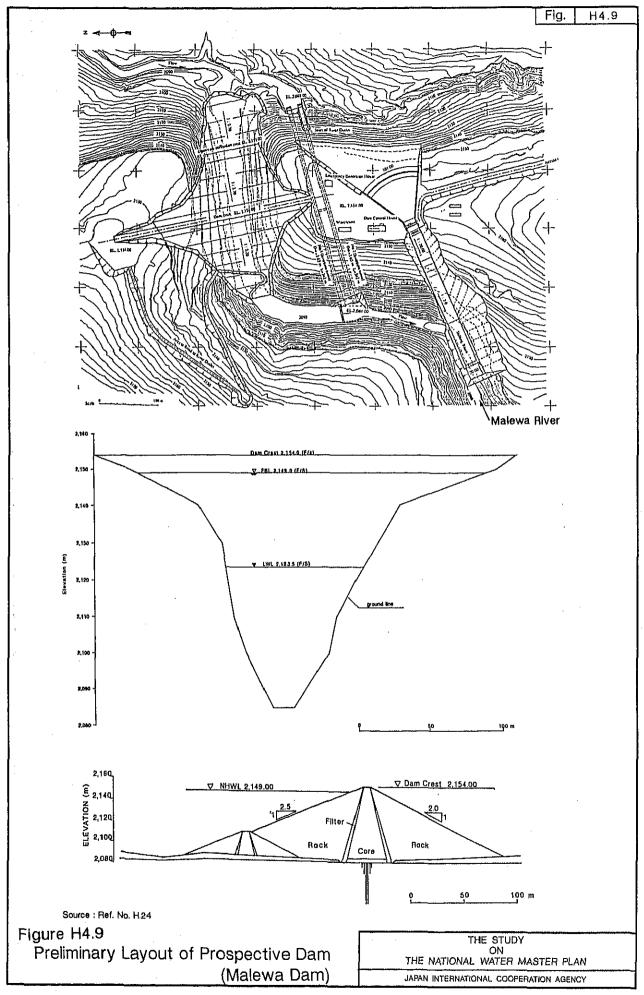



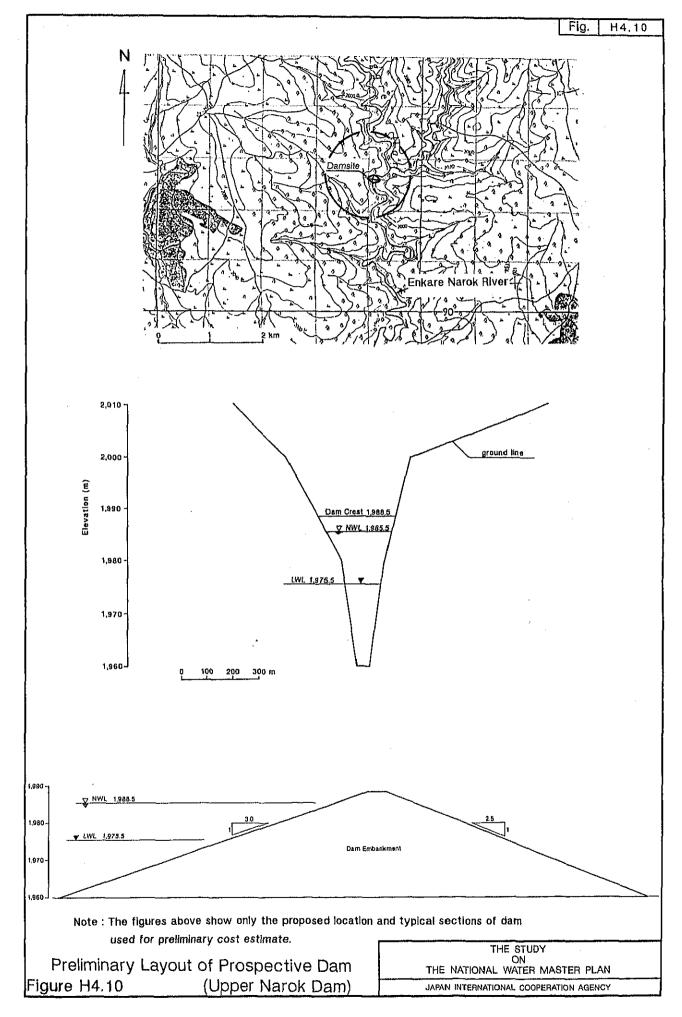



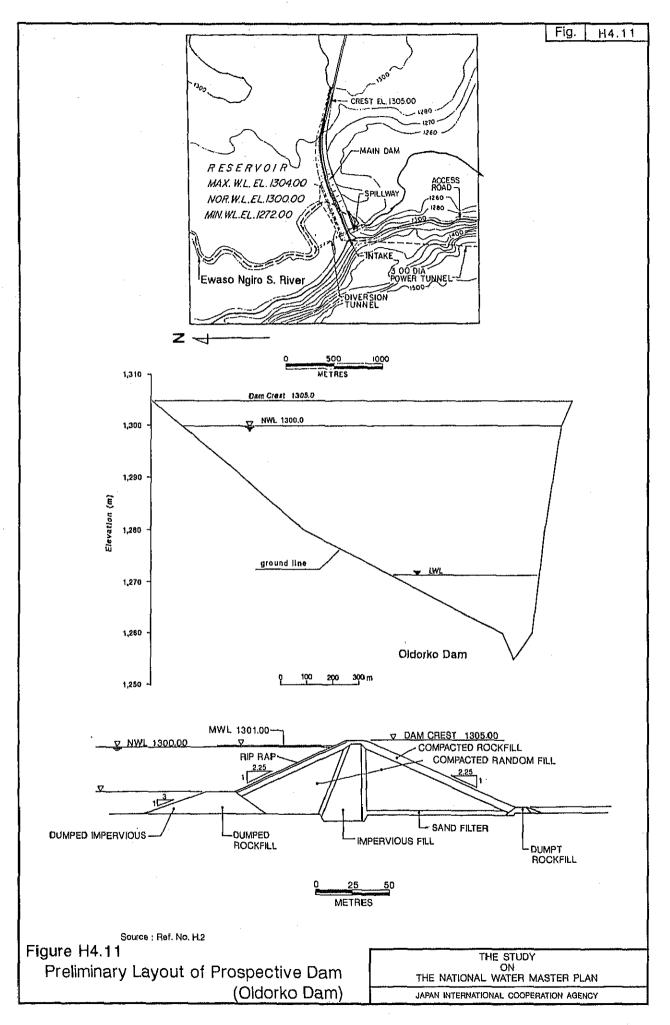



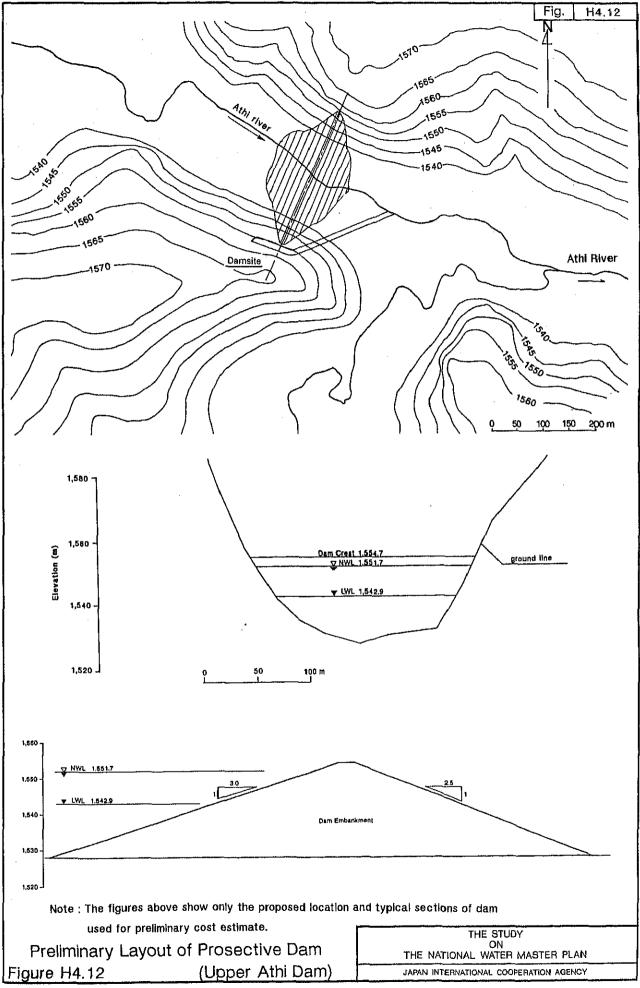



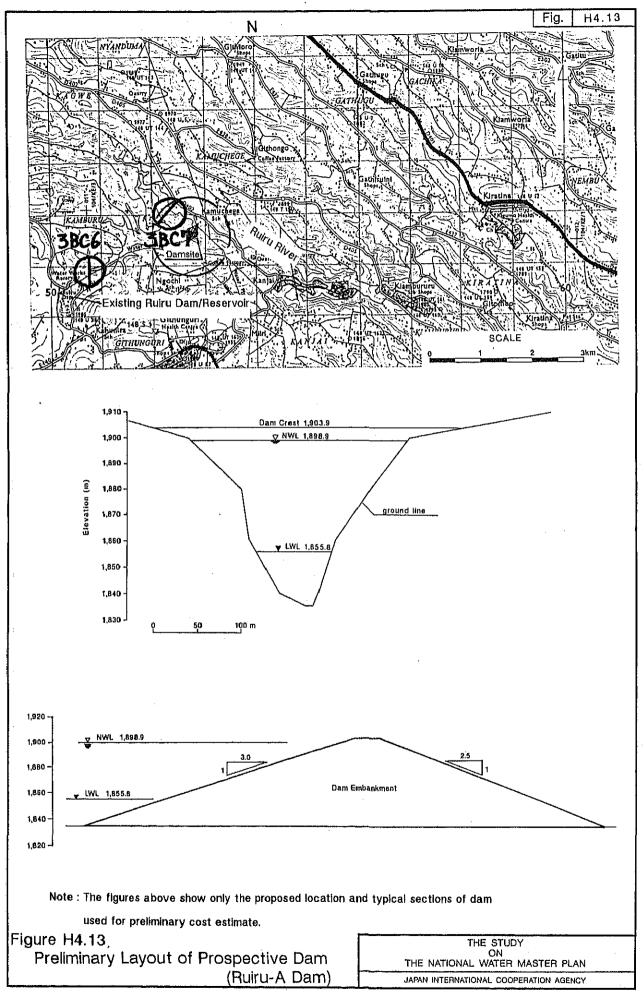



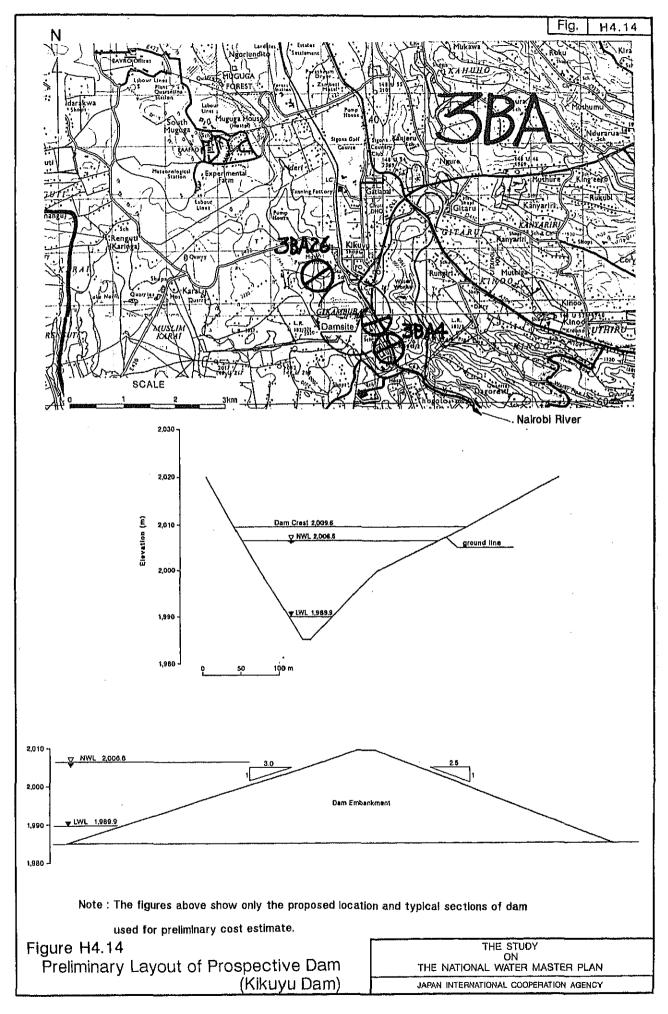



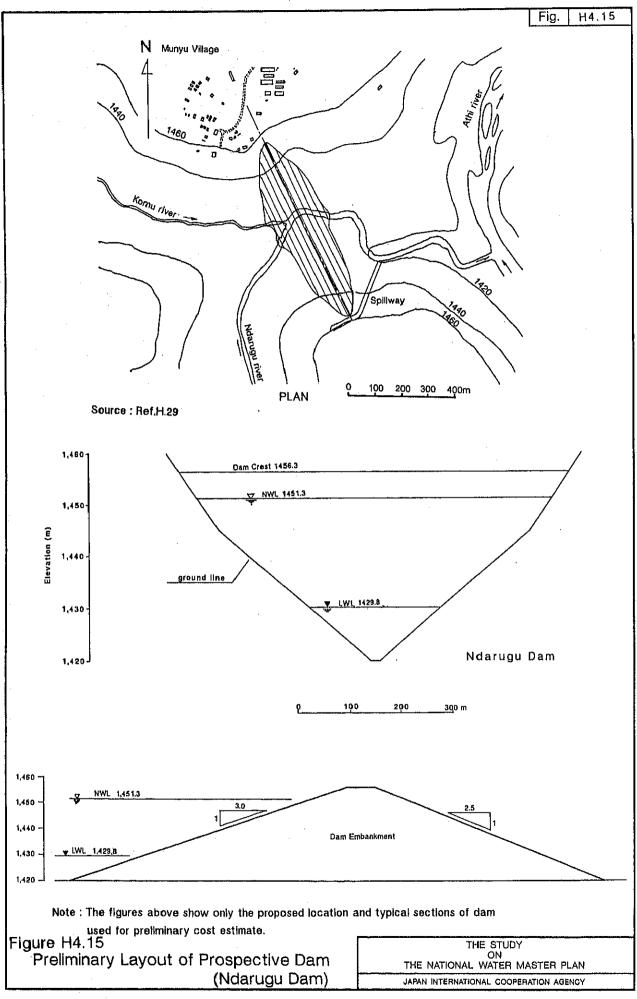



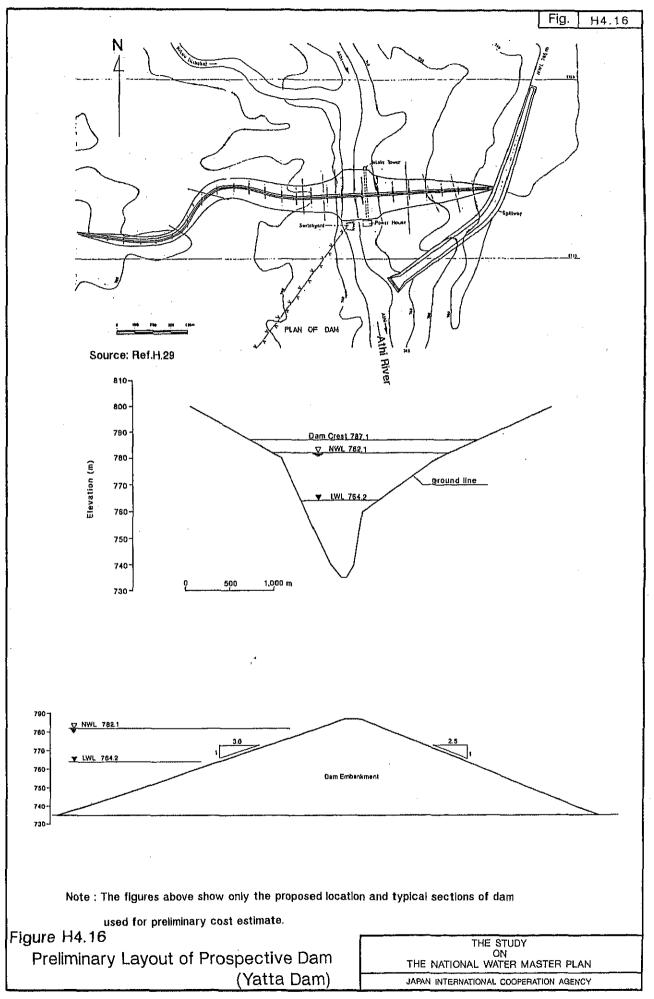


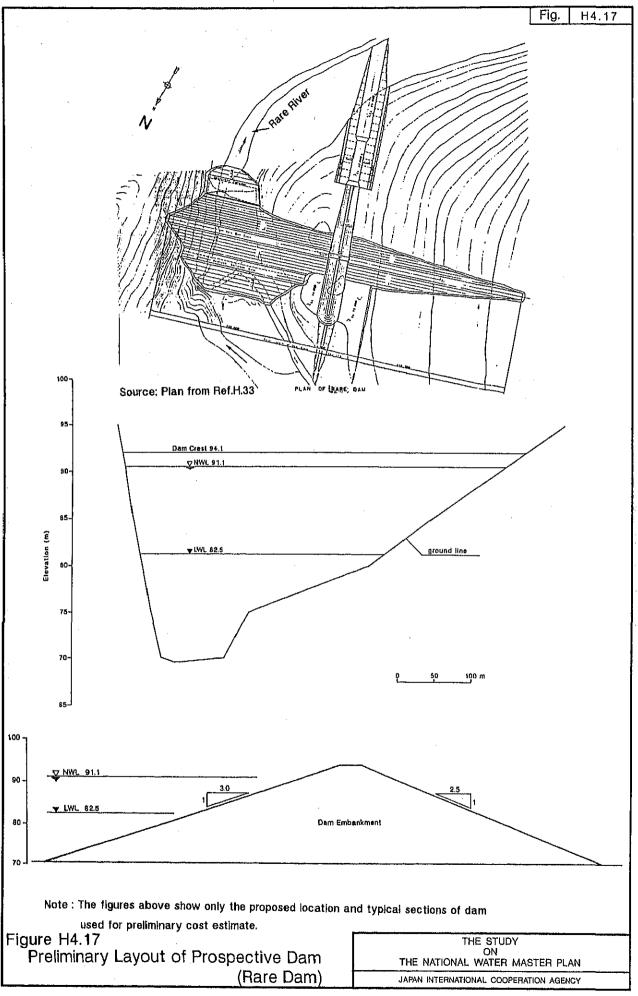



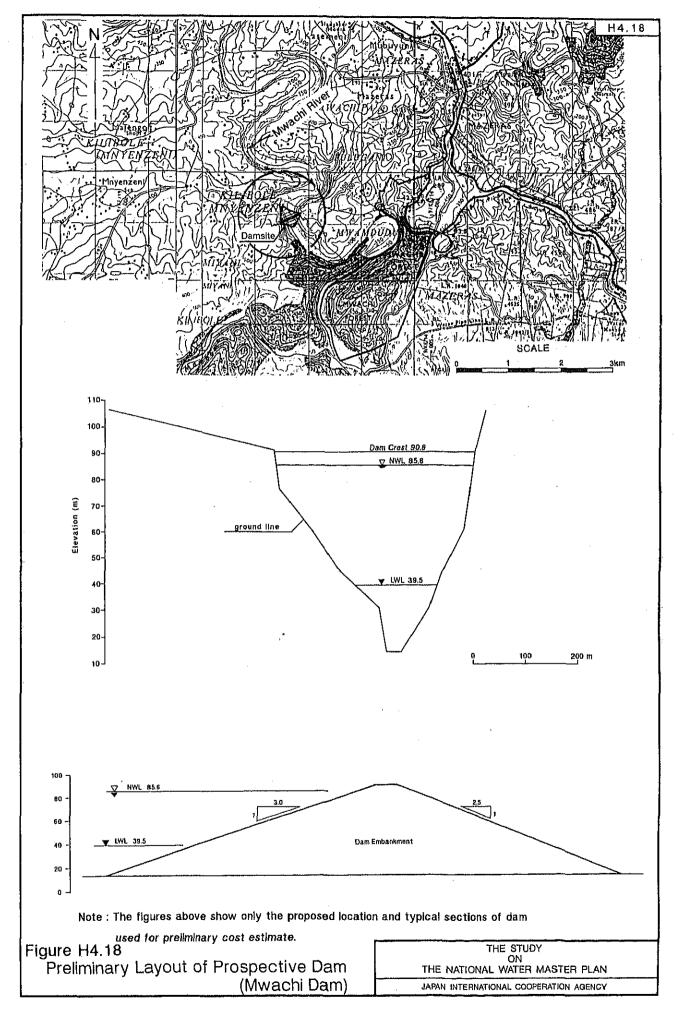



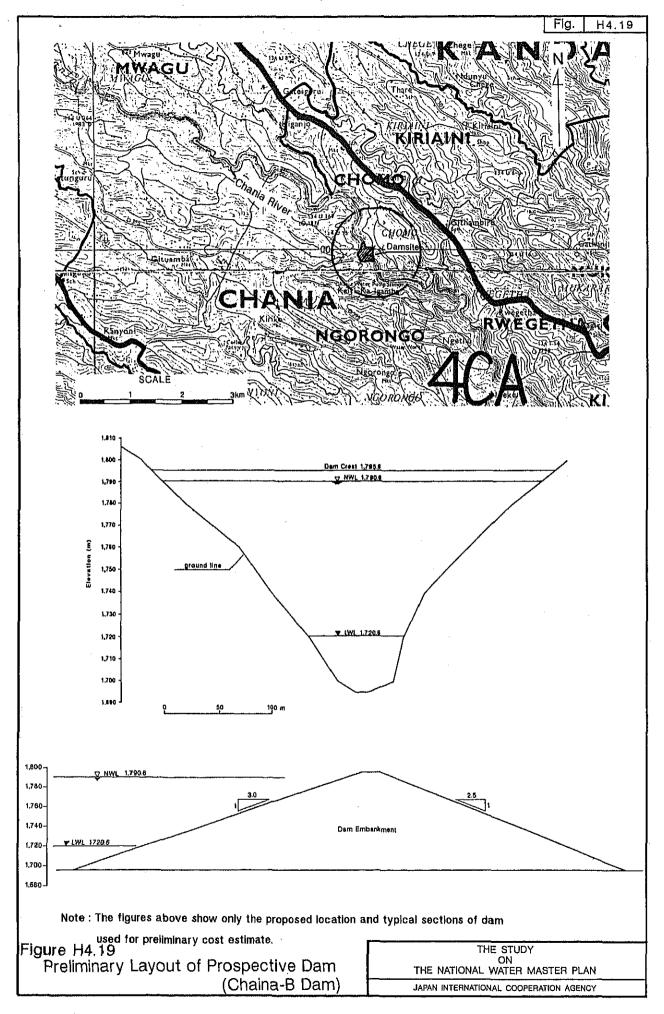


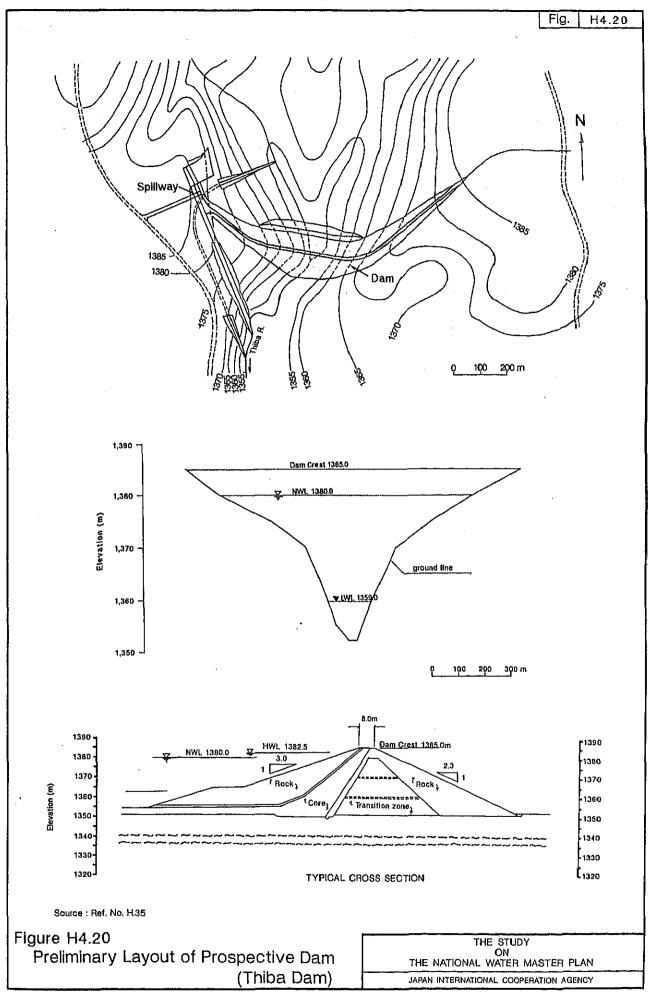





HF-45

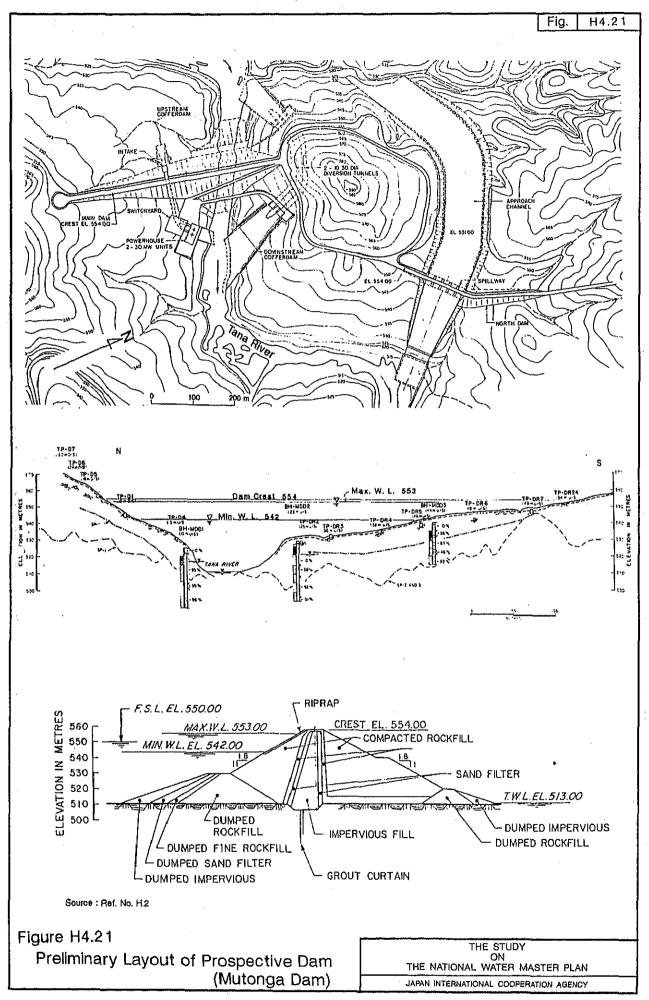


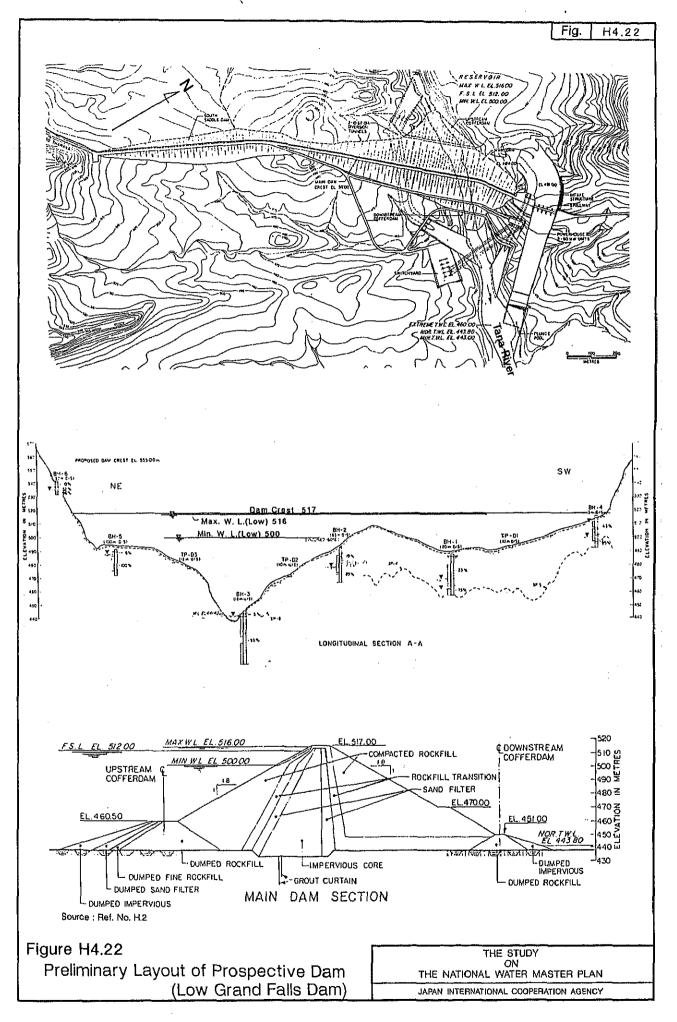



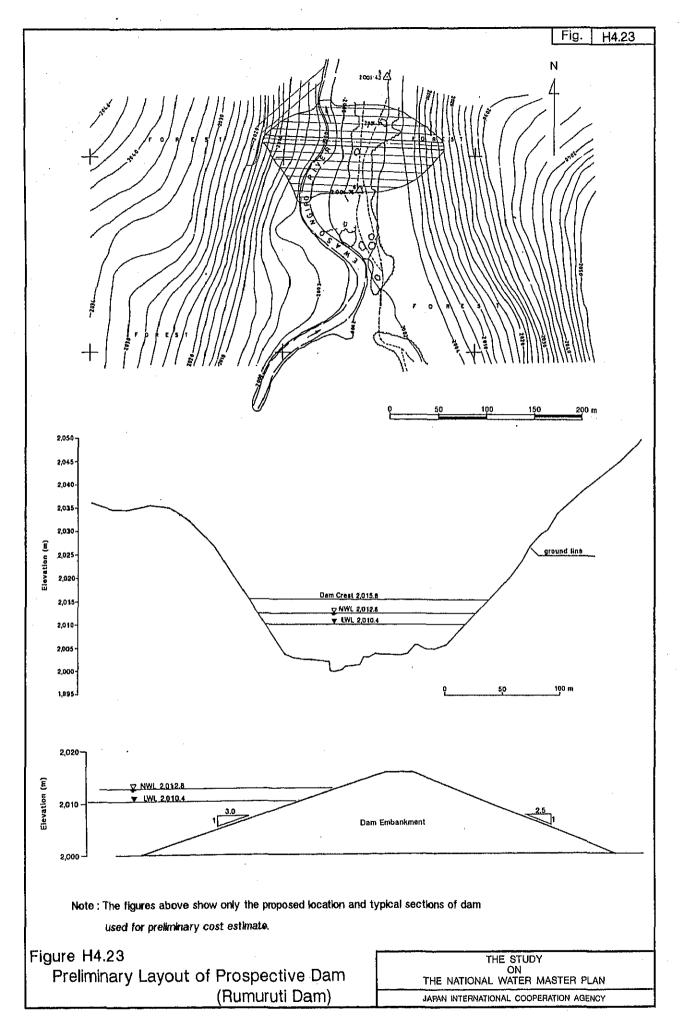



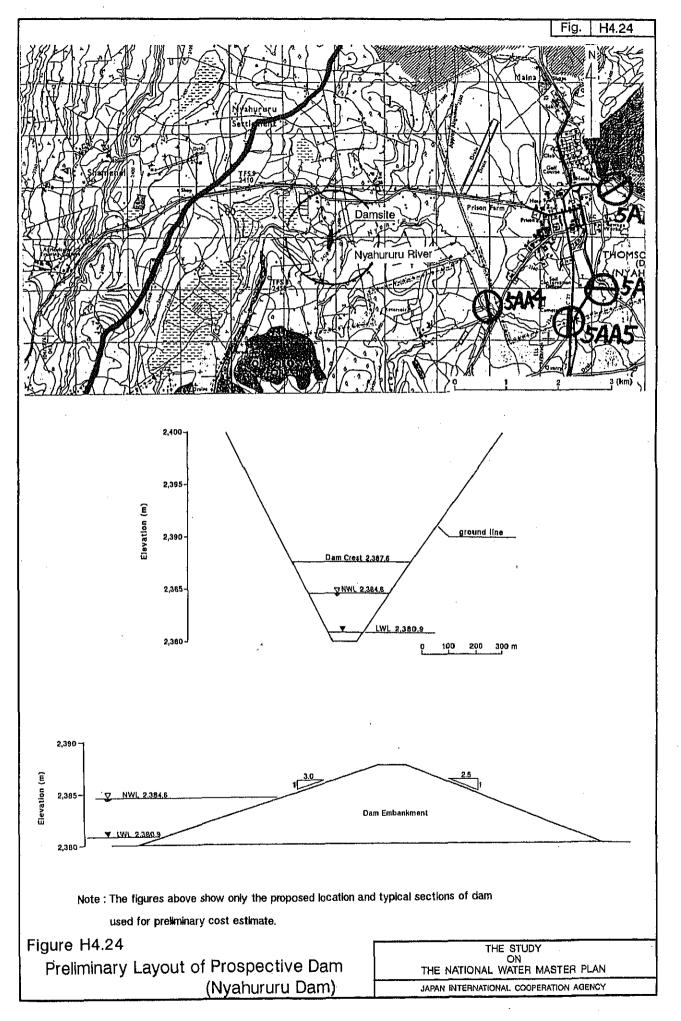



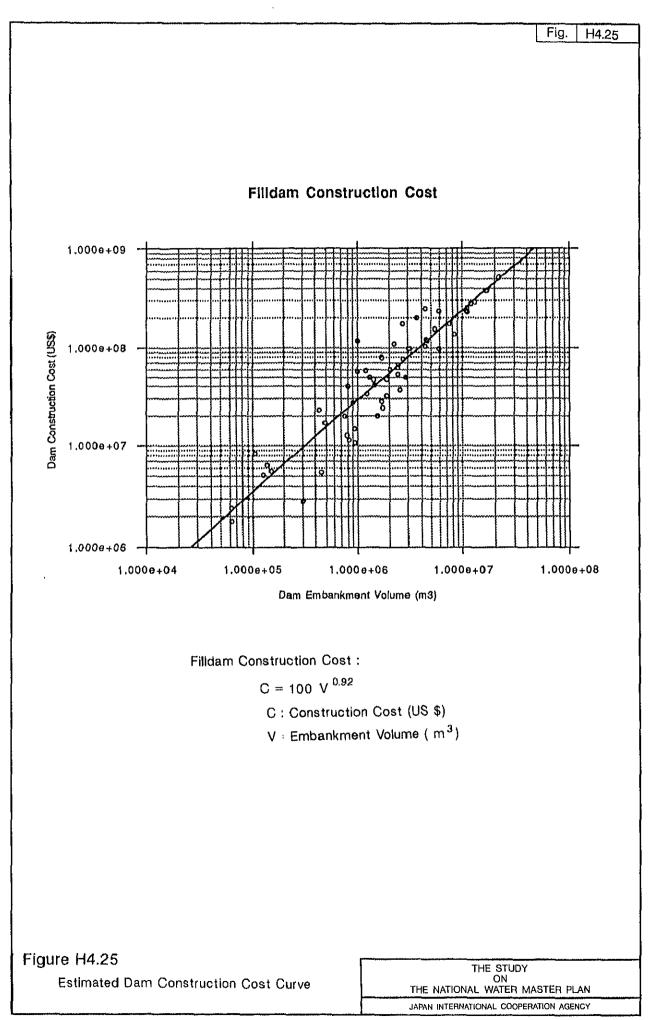




HF-53









