transfer payments such as tax, subsidies, and interests are deducted from all prices. The ratio of transfer payment to financial cost is assumed to be 10% of financial cost.

The benefits of water supply for domestic, municipal, livestock and industrial demand are estimated applying the maximum affordable water value. A water deficit in a specific area is calculated as a difference of water demand such as domestic needs and industrial needs of municipal, livestock and manufacturing production and a present water supply capacity. A construction schedule of water resources development schemes is basically settled to meet the deficit. The costs of the schemes such as reservoirs and the recommended intake, conveyance, treatment, and distribution system are estimated in the previous Section.

For irrigation projects, economic farm gate price of major crops during the evaluation period were estimated (see Section 6.8.3 (2)). Unit yield, gross value, production cost and net value were estimated by with- and without-conditions. Then the irrigation benefit is obtained as the incremental net production value.

Hydropower benefit is estimated as a product of electric power output and the long-run marginal cost (LRMC). The LRMC was estimated at US\$ 0.055/KWh, following the value used in the latest KPLC study.

In the flood mitigation schemes, the annual benefit is estimated as a difference in net damage reduction value under with- and without conditions. Property value in flood prone areas is counted under the present conditions in 1990 and under the future conditions in the target year 2010.

For economic evaluation, Internal Rates of Return (IRR) of respective projects are calculated to verify economic viability in the national economy. In calculation of other economic indices such as Net Present Value (NPV) and Benefit-Cost Ratio (B/C), costs and benefits are discounted at the rate of 10% for the respective project lives.

6.8.2 Parameters and preconditions for economic evaluation

In estimating the economic cost and benefit, the economic values are estimated applying the following conditions and assumptions for every sector related to water,

(1) Price level

For economic evaluation activities, the basic price level for cost and benefit estimates was set at the end of February, 1991. Foreign exchange rate was set at KShs.25.2 to US\$1.00 in obedience to the official exchange rate at the same time.

(2) Opportunity cost of capital

Opportunity cost of capital represents the permissible economic rate of return for development projects. In Kenya, 10% of this opportunity cost of capital is applied

as a discount rate for assessing economic viability of proposed projects, which is also used by IBRD.

(3) Economic value

In economic analysis, all goods and services applied in the project costs and benefits are estimated on the basis of real economic value. In terms of non-tradable goods and services in local market, the following points have to be considered in the case of converting their financial values to economic ones: (a) internal transfer payment and (b) shadow wage of unskilled labour in particular because of taking unemployment and underemployment conditions into account. On the other hand, the tradable goods and services are estimated based on the international market prices, so their values reflect real economic ones. In this current report, however, economic values are estimated to be 90% of total financial values of both local portions and foreign portions.

(4) Economic life

The economic life of the projects is taken as follows for respective schemes: 35 years for water supply facilities; 50 years for irrigation, hydropower and flood mitigation facilities. However, a part of mechanical facilities is considered as 20 years, so it would be replaced within the above main economic life. The economic life begins just after completion of the construction works.

6.8.3 Economic benefit and efficiency

The structure and distribution of benefits is induced through the parameters and preconditions mentioned in the previous sections. Economic values of benefit at present and even in the future are mainly estimated under the social and economic conditions in February, 1991 for economic evaluation. Future socioeconomic changes were discussed in Chapter 4 and the their details should be referred to in Sectoral Report A.

(1) Water supply scheme

Basic idea of economic benefit for domestic water supply schemes is based on the maximum affordable value. It is generally adopted for water supply project as the traditional rule, i.e., commonly 3 to 5 per cent of household income. In this master plan study, the benefit for water supply system are estimated to be 5% of income for all water supply schemes. Applying this rule, the total annual benefit in the country could be estimated at US\$461 million in the year 2000, distributed as US\$289 million in urban areas and US\$172 million in rural areas, as shown in Table 6.8.1.

For industrial use, economic benefit is also based on the maximum affordable payment for water consumption, which is basically estimated through water cost in industrial final products. In this study, a percentage of water cost to value added of all manufacturing products is adopted for benefit estimation, from the point of view

of data availability. The rate of maximum affordable value for water is assumed to be 1.5% referring to the data of input-output table for Kenya in 1986, as estimated in Table 6.8.1. As a result, the annual economic benefit for industrial water in the country is estimated at US\$27.5 million in total in 2000. In the same manner, the annual benefit for municipal water is expected to be US\$16.5 million, and the one for livestock breeding is US\$12.3 million, as shown in the table.

The financial construction costs of the proposed projects in urban and rural areas are shown in Section 6.7. The costs are converted to economic costs by making adjustments based on the aforesaid conversion method. For economic evaluation activities, the construction schedule is assumed to be divided into two phases. The construction works of the first phase are assumed to start in 1994 and to end in 1997, of which the capacity fully covers the 2000 water demand. Those of the second phase are between 2001 and 2004, covering the 2010 water demand. This is a tentative assumption to be limitedly applied to this economic evaluation.

The O&M costs are annually required during the economic life of the projects just after completion of the construction works. The costs are assumed to be 5% of the total construction costs.

While the economic life is assumed to be 35 years, some mechanical facilities such as pumps have shorter life than the civil and plumbing works. It is assumed to be 20 years for such mechanical equipment for water supply system. The replacement costs are assumed to be 5% of the total construction costs.

The entire urban schemes of 158 systems are examined in economic efficiency through factors of NPV, B/C and IRR, as mentioned in Section 6.8.1. Table 6.8.2 shows the results of the examination. Of 158 schemes, only 4 schemes exceeded 10%, the opportunity cost of capital mentioned above. They are Embu, Thika, Mariakani and Nairobi, in order of economic efficiency. In addition to these four schemes, 36 schemes were worked out to have positive IRR, as shown in Table 6.8.3. The other 118 schemes resulted in negative efficiency.

The economic efficiency of rural water supply is examined as a district form covering all Locations in the District. No Districts, excluding Nairobi and Mombasa, have a positive IRR, as shown in Table 6.8.4. Incidentally, the total costs for the entire schemes in the country aggregated to US\$5,520 million. On the other hand, the benefits of the rural water were estimated at US\$172 million in 2000. Thus, the benefits accounted for only 3% of the total costs.

(2) Agricultural development

The annual benefit of agricultural development schemes is estimated as a difference of net production values under with- and without-project conditions. The net production values for major crops are estimated as a difference of products' value and production cost at 1991 economic prices. The products' values are estimated by

a product of unit yield and unit price under with- and without-project conditions. The production costs under without-project condition are derived from the production costs through the present cropping pattern. The production costs under with-project condition are estimated on the basis of projected cropping patterns.

The total benefit of 18 irrigation schemes proposed in the agricultural development plan is expected to aggregate US\$177.8 million per annum at the time whole schemes will be matured. It is broken down as shown in Table 6.8.5.

Project costs of the 18 irrigation schemes are estimated at US\$1,015.5 million in total. Their respective initial costs are shown in the table.

The entire irrigation schemes of 18 systems are examined for economic efficiency. Table 6.8.6 shows the results of the examination. Of 18 schemes, the IRRs of 10 schemes exceeded 10%, the opportunity cost of capital. In addition the other 8 schemes excluding Yala swamp scheme were worked out to have positive IRR, as shown in the table. Incidentally, the combined IRR of all 18 schemes is expected to be 9.6% as shown in the table.

(3) Hydropower development

The annual benefit of hydropower development schemes is estimated as a product of the average annual power output (GWh) and LRMC. LRMC is quoted from the latest KPLC report, i.e., "1990 Interim Update of National Power Development Plan (NPDP) 1991 to 2010, draft Final Report, April 1991, Acres". According to the report, the LRMC is estimated at US\$0.055/KWh, as illustrated in Table 6.8.6. The average annual energy production will gradually increase according to development of the proposed schemes and reach 3,156 GWh per annum as the total output of the new five schemes excluding Gitaru #3 extension scheme. Then, the annual benefit is estimated at US\$156 million per annum.

Project costs of the five hydropower schemes are estimated at US\$969 million in total (according to the estimate in NPDP). The respective costs are shown in the table. To examine their economic efficiency in the same conditions, they are assumed to be disbursed as follows: (a) two years for engineering and administrative arrangement and (b) succeeding three years for construction works of the proposed facilities.

Table 6.8.7 shows the results of the examination. Of five schemes, the IRRs of four schemes exceeded 10%, the opportunity cost of capital. Although IRR of Magwagwa scheme was worked out to 9.1% under the preconditions mentioned in Sectoral Report "L", the recent feasibility report of Magwagwa scheme evaluated the project to have 13.5% of IRR under new design criteria proposed in the report. Incidentally, the combined IRR of the five schemes is expected to be 14.1% as shown in the table.

(4) Flood mitigation

The annual benefit of the flood mitigation project is estimated as the difference in net damage reduction value under with- and without-project conditions. The damage value is estimated as the product of the following three figures: (a) inventory of damageable properties in flood prone areas; (b) unit value of respective properties; and (c) damage rates for respective properties in proportion to inundation depth and duration. Damageable properties in flood prone areas consist of the following four categories: (a) agricultural products, represented by maize; (b) housing units, represented by permanent houses in urban areas and thatched houses in rural areas; (c) infrastructures such as roads, railways, irrigation channels, utilities, and public buildings; and (d) indirect losses, such as losses of business opportunity and costs for rescue and relief activities.

Inventory of damageable properties is enumerated through sight inspection and information given through topographical maps in flood prone areas. Their unit values and preconditions are tabulated in Table 6.8.8. In addition to the conditions in the year 1990, the table includes the future conditions in the target year 2010. For the future conditions, it is assumed that the damageable value in the flood prone areas will increase at an annual growth rate of 2.5%.

Project costs of the proposed five flood control schemes are estimated at US\$ 62.5 million in total at 1991 prices, as shown in Table 6.8.9. The respective costs are shown in the table. To examine their economic efficiency in the same condition, they are assumed to be disbursed as follows: (a) one year for engineering and administrative arrangement and (b) succeeding four years for construction works of the proposed facilities.

The economic efficiency of the proposed flood control schemes of five systems were examined. The table shows the results of the following two cases of benefit estimation: (a) the benefits are constant under 1990 conditions and (b) the benefits between 1990 and 2010 are assumed to increase in proportion to the increment of damageable properties in the flood prone areas. Under the former conditions, the two schemes of Kano Plain and Nairobi city had the highest priority among the five schemes. Under the latter conditions, the IRRs of three schemes exceeded 10%, the opportunity cost of capital. Other two schemes could also have high economic efficiency, considering a social welfare project of flood mitigation. Incidentally, the combined IRR of all the five schemes is expected to be 10.1% as shown in the table.

The Study presumes that, in evaluating the economic efficiency of the project, a reduced IRR criterion may be applied to the flood control sector (similar to the water supply sector), in view of social well-being improvement object and other unaccountable secondary benefits accrued from undertaking flood control. In this context, three schemes having an IRR value of less than 10% are also worthy of future implementation.

6.8.4 Socioeconomic impacts

(1) Changes of social well-being

Increase of income and employment opportunity, induced effect of investment by proposed projects, health improvement, life saving and reduced risk in water supply and flood mitigation, etc. are counted as the indirect beneficial effects from the viewpoint of social well-being. The adverse effects are relocation of people and properties because of submergence by proposed projects such as reservoir and river reservation.

(2) Indirect linkage effects of capital investment

As discussed in Section 2.5.2, once one unit is invested in the national market in the construction sector, 2.18 units of investment effects would be induced in the national economy, as shown in Table 2.5.5. For instance, if the 158 urban water supply schemes were constructed in the country, of which the total cost aggregates to US\$5,644 million, the final demand of US\$12,304 million would be induced in the national market. Of this total, US\$5,644 million accrues for the construction sector as direct effects and US\$6,660 million would be procured through the other economic sectors as indirect effects.

Furthermore, based on the input-output tables, of the total investment, approximately 56.2% of intermediate goods and services would be procured from the domestic market. Of this total domestic procurement, 17.7% is from the manufacturing sector of chemical and petroleum products, and 13.7% is from the manufacturing sector of basic metal and machinery. The rest, 43.8%, constitutes the procurement (8.4%) from imports and value added (35.4%).

Thus, these components show direct and indirect positive economic effects on respective production sectors. In order that this investment is implemented soundly, it is essential to cultivate and to promote industries related to the main industry. On the contrary, if the relative sectors do not reserve production power to support the new investment, it would be feared as inflation that the investment simply raises prices of construction materials.

(3) Inequality of water distribution and cost-sharing policy

Water supply coverage does not seem to be equal regionally in the country, although it is quite difficult to obtain definite coverage. In addition, household income in rural areas is low compared with that in urban areas. Thus, it would be economically difficult to cover the entire rural people by the proposed rural water supply projects. In fact, as seen in Section 6.8.3 (1), the benefits from rural water supply projects does not seem to cover even O&M costs. Because they account for only about 3% of the project costs in spite of the assumption that O&M costs are estimated at 5% of the total costs.

Yet, from the viewpoint of basic human needs and public hygiene, the rural water systems should be introduced as the national target. Despite this basic policy, however, it would be difficult to attain the project targets, i.e., to cover all people by safe and sustainable water by the year 2010, without the promotion of cost-sharing policy from the financial point of view. Thus, it is quite important for people to bring about a better understanding regarding the difficulty and importance of water supply systems.

(4) Effects of rural community development

In accordance with the implementation of the projects, the supporting social systems for improving the living conditions of the local societies will be enhanced in rural areas in the future. For instance, water supply systems will cover all the people in the country by the target year in spite of the poor coverage situation of less than 40% in rural areas in the country in 1990. Conditions of natural disaster will be improved by 2010 despite the present unfavourable conditions in some areas because of the lack of flood control facilities. In addition, medical and educational conditions will be improved in rural areas in particular. Thus, these supporting infrastructure systems will considerably be improved by the end of the target year.

The improvement of these systems makes people identify with a community and to change their consciousness from a tribe to a local society. In general, the tribe problem poses big difficulties to resolve and impedes the promotion of economic development activities. Accordingly, establishment of a well served community might function as an incentive to rectify tribal problems. Furthermore, it might work to ameriorate the plight of the cultural minorities by introducing them into communities.

(5) Consideration for "Women in Development"

In rural areas, in particular, women as well as men are essential participants in and beneficiaries of economic and social development. Besides, women are affected in various ways by development projects. Thus, taking women's social positions and roles in societies into consideration, the following issues should be examined to harmonize the proposed projects with the role of women in the project areas at the stage of implementation.

- (a) Women generally play a major role in securing safe potable water. Thus, water supply facilities such as hand pumps should be installed for women to operate with ease. Measures being adopted should ensure that they are able to obtain water without any impediments.
- (b) In most rural areas, women are engaged in the operation and maintenance of on-farm irrigation facilities. Thus, they should be able to get an opportunity to receive technical guidance for new women's works and roles. In addition,

- measures should be taken for women to account for possible changes in the nature and quality of women's work such as extension services and training.
- (c) Rivers are often used for washing and bathing in areas where water supply systems are not adequately provided. In the implementation of irrigation projects, adequate and safe water for washing, cooking and bathing should be ensured in project and/or downstream areas.

CHAPTER 7 FUTURE DEVELOPMENT POTENTIAL

7.1 Large Scale Water Transfer Plan

7.1.1 Water transfer scheme for domestic water supply

Groundwater exploitation and various water harvesting measures will remain to be the main sources for supplying domestic water to urban centers in semi-arid and arid areas. With the increase of demand in the future, however, additional water sources may be required in some areas. The following describes a tentative plan of alternative water sources for four selected towns, which would be worthy of future consideration:

(1) Marsabit water supply

In the Study, the development cost was tentatively estimated for the case of borehole development as the first approach. Maximum development of small dams within Marsabit hill area and subsurface dams at the foothill area should be surveyed for the second approach. The last alternative solution may be water transfer from a subsurface dam on the Malgis River or potential well field near Laisamis.

(2) Wajir water supply

The development cost was tentatively estimated for the case of borehole development meeting the whole demand for the first approach. If the exploitable groundwater source is limited, the solution may be water transfer from the Ewaso N'giro River. The development cost for water supply was roughly estimated at US\$46 million. The feasibility study should be initiated to examine this plan. Potential groundwater sources in Griftu and Habasweni areas (identified in earlier preliminary studies) should also be examined.

(3) Kapenguria water supply

Construction of a small dam on the Kapenguria River was proposed for augmentation of the supply capacity, though the water yield should be assessed in a detailed hydrological study. Alternatively water transfer from the Kapolet River appears to be prospective.

(4) Isiolo water supply

Groundwater will be exploited to a maximum extent and the construction of a small dam on the Isiolo River or two major springs which are located 14 km north from Isiolo town will supply the remainder. As an alternative to the latter, water conveyance from the Meru water supply system may be considered.

7.1.2 Multipurpose water transfer plan

In the country, more than two-thirds of the total land area is arid and semi-arid where effective and efficient agricultural irrigation is at present not possible in view of unavailability of local water. If some inter-basin water transfer is planned between basins where adequate water is available and where insufficiency is experienced, some possibilities of development of irrigation as well as domestic and livestock water supply and hydropower generation will be realised.

In this Section, several damsites for inter-basin water transfer scheme are introduced based on plans proposed in previous studies.

(1) Greater Rift Water Transfer Plans

This is a plan envisaged by NWCPC. The plan has examined three (3) damsites identified on a map of 1:50,000 scale, but no detailed information and study reports are available except for Nyando dam scheme.

- (a) Hemsted Bridge Dam Scheme: water transfer from Nzoia River to Kerio Valley.
- (b) Kimondi Dam Scheme: water transfer from Kimondi River to Kerio Valley.
- (c) Nyando Dam Scheme: water transfer from Nyando River to Greater Nakuru through Timboroa.

(2) Nzoia-Suam and Nzoia-Kerio Water Transfers (Ref.25)

This is a double water transfer plan; (i) from the Nzoia River to the Suam river basin and (ii) from the Nzoia River to the Kerio River for multipurpose development. The proposed damsite is Moi's Bridge Dam which is located on the Nzoia River just downstream of the confluence of the Koitobos River with the Nzoia River. According to a preliminary report on this double water transfer project, the following are concluded:

- (a) Through a tunnel 17 km long to the Suam river basin and another tunnel 42.5 km long to the Kerio River, total power generation of 500-760 MW and more than 140,000 ha of irrigation development will be expected both in the Suam and Kerio basins.
- (b) The project consists of four stages adopting their construction to the growth of electric power demand.

- (c) Before adopting a decision on this project, the following are recommended:
 - to study this project at a preliminary design level with hydrological and geological investigation.
 - to complete the energy and irrigation development studies at the feasibility level for this multipurpose project.
 - to clarify the amount of water that can be transferred to both the Suam and Kerio rivers without any future detriment to the Nzoia basin, the origin of the water.

In this Study, approximately 15 cms of water was estimated to be transferrable to the basins at a maximum development scale of the dam. Therefore, the scheme is regarded to be technically viable (hydrological aspect). The economic viability is to be examined in future studies.

(3) Water transfer from Amala River to Ewaso N'giro North River

This plan is still at a preliminary stage. The plan envisages building a dam on the Amala River (Amala dam) for supplying water to Oldorko dam reservoir through Ewaso N'giro River. No detailed information is available.

The scheme will cause reduction in the Mara river waters and hence have a great impact on the ecology of wildlife in two world-wide famous parks (Masai Mara and Serengeti) situated in the downstream part of the Mara river basin. The planning should take this into account.

(4) Water transfer from Tana River to Ewaso N'giro North River Basin

This is an idea of inter-basin water transfer from an intake weir on the Tana River at Mbalambala to the lower basin of the Ewaso N'giro North River through a tunnel of about 50 to 70 km for the development in the lower Ewaso N'giro North river basin. This water transfer will reduce future development potential in the lower basin of the Tana River. This aspect should be examined further.

Besides the above mentioned inter-basin water transfer plans, there are also some plans identified in previous studies which transfer water from Lake Victoria basin to Rift Valley basin. They are summarized in Appendix H.10 of Sectoral Report H.

All the plans listed above are huge projects requiring extensive investment. In the present Study, these were not included in the list of implementation project towards year 2010. The first approach to these plans would be to look into more detail of technical and economic viabilities. The Study presumes that, among the plans, the Nzoia-Suam/Kerio Double Water Transfer Plan may be accorded a priority of further study in the future.

7.2 Dam Development Plans

28 dam schemes were selected as candidate schemes to be implemented towards the year 2010. On top of those, there are a number of schemes worthy of further consideration as alternatives to the selected schemes and/or schemes to be added in the development programme when new demands arise or if the economic viability is justified in further studies. Table 7.2.1 lists those potential schemes.

7.2.1 Multipurpose dams

Some of the dam schemes listed in Table 7.2.1 have the potential of multipurpose development, out of which eight major dams, i.e., Nyando and Nandi Forest dams in the Lake Victoria drainage area, Kimwarer and Sererwa dams in the Rift Valley drainage area, Munyu dam in the Athi river basin, High Grand Falls, Adamson's Falls and Kora dams in the Tana river basin are briefly discussed hereunder.

(1) Nyando Dam

This site is located on the Nyando River about 5 km upstream of Muhoroni. The dam scheme was proposed in previous studies (Refs.26 and 27) for domestic and industrial water supply, irrigation and flood control, and also as well as a dam for Greater Rift Water Transfer Plan by NWCPC.

An investigation of the "Scheme of Muhoroni Reservoir on the Nyando River and Water Supply to Timboroa" was carried out in 1990 and the report was completed in July 1991 by NWCPC (Ref.28). This scheme was studied primarily for water supply purpose for the Greater Nakuru through Timboroa. According to the report, it was concluded as follows:

- (a) The suitable scale of development is to build a 85 m high dam (3.6 million m3 of dam embankment volume) which creates a reservoir having a gross storage capacity of 250 MCM.
- (b) The water transfer pipeline is to be 63 km long, with a gross lift of 1,537 m. To pump up 5 m3/s, about 114 MW of power is necessary.
- (c) The construction of water transfer system appears to be very difficult because of mountainous topography in the area, a large quantity of water to be pumped and a high head.
- (d) More investigation is required in further study, particularly to determine an optimum water quantity to be pumped up.

As concluded in the report, a further detailed study on the Nyando multipurpose dam scheme is required, focussing on:

- (a) determination of the adequate quantity of water to be pumped,
- (b) provision of cheap power source and reduction of power capacity required for pumping water. The presently designed 144 MW is nearly equal to the output capacity of Magwagwa hydropower scheme(120 MW). A great investment is required for the provision of power source,
- (c) study on the other development potentials such as irrigation and flood control purpose.

(2) Nandi Forest Dam

This potential site is located within the Nandi Forest area just downstream of the confluence of two major tributaries of the Yala River; Kimondi and Sirua rivers. The dam is planned for multi-objectives; hydropower generation of 45 MW utilizing about 500 m head via a 15 km tunnel from the reservoir (183 mcm in storage capacity) to the Nyando river basin, irrigation of 15,000 ha of mainly sugarcane in the Kano Plain and water supply to Kisumu (Ref.26).

For further study on this dam scheme, the following are conceived:

- (a) In principal, the priority of water use should be given to meeting the water demand in the downstream areas. Preliminary water balance calculation in this Study presumed that maximum transferrable water may be 11 m³/s in terms of average reservoir yield.
- (b) This dam will cause loss of valuable and irreplaceable indigenous forest (refer to Sectoral Report N). This aspect should be assessed in more detail.

(3) Kimwarer Dam

The site is located on the Kimwarer River which is a tributary of the Kerio River and situated in the upper part of the Kerio Valley. The preliminary design of the dam was made for the purposes of hydropower generation, rural water supply and small scale irrigation schemes near the damsite by KVDA (Ref.29).

A rockfill dam 40 m high with 21.3 mcm of gross storage capacity was proposed for the above purposes. KVDA intends to proceed with a further study on this dam for multipurpose development.

(4) Sererwa Dam

The site is located on the Arror River. Feasibility study of the dam for hydropower generation, Arror irrigation scheme and rural water supply was completed in 1990 (Ref.30). A 97 m high dam with 58 mcm of live storage capacity is planned for 70 MW of power generation and 1,340 ha of irrigable area through pipelines from tailwaters of the power station.

This dam scheme was not selected in the Updated National Power Development Plan for 1991 to 2010, but it seems to be the most promising project forthcoming next to the selected five schemes (Section 6.5) in the future hydropower development programme.

(5) Munyu Dam

This site is located on the main stream of the Athi River about 2 km downstream of the confluence of Athi and Ndarugu rivers. The site has a catchment area of 5,590 km² which covers all the upper drainage area of the Athi river basin including Nairobi city area.

This dam has been formulated for multipurpose development comprising water supply to Nairobi and environs, hydropower generation and Kanzalu irrigation scheme (Ref.31). Munyu dam and Ndarugu dam on the Ndarugu River are mutually exclusive and the selection between them is one of the most important decisions to be taken in the development of the Athi river basin.

In this Study, Ndarugu dam was selected for the above development purposes, and Munyu dam was considered as an alternative to Ndarugu dam, because of some advantages of Ndarugu dam as follows:

- (a) higher water quality of the Ndarugu River; i.e., lower water purification requirement, while Munyu dam receives effluents from Nairobi area,
- (b) larger number of resettlement and land acquisition due to submergence by the reservoir of Munyu dam, and
- (c) lower construction cost of Ndarugu dam: it was assessed that the construction cost of Munyu dam would be more expensive by about 35 % than that of Ndarugu dam to store an active storage of 190 mcm for water supply to Nairobi areas and to Kanzalu irrigation scheme,

(6) High Grand Falls Dam

This scheme is mutually exclusive with the developments of Low Grand Falls and Mutonga dam. The dam is proposed chiefly for hydropower generation of 177 MW by a 117 m high dam with 22 mcm of dam embankment volume and 5,325 mcm of gross reservoir storage capacity (Ref.32).

As this dam scheme was excluded from the Updated National Power Development Plan towards year 2010, it was not selected as a prospective hydropower scheme in this Study. It is, however, recommended that a further detailed study on High Grand Falls dam scheme be taken up to examine the merit of multipurpose development aiming at irrigation schemes, flood control, augmentation of river flow, stability of river course and so on in the downstream area of the Tana river basin.

(7) Adamson's Falls and Kora Dams

These damsites are located on the main stream of the Tana River, downstream of Low/Grand Falls damsite. Adamson's Falls dam is planned as a dam 50 m high having 1,009 mcm of gross storage capacity for installed generation capacity of 80 MW, while Kora dam is of 55 m high with 1,172 mcm of gross storage capacity for power generation of 92 MW (Ref.32). These dams are also potential multipurpose schemes to be noted in a long-term development in the lower basin of the Tana River.

7.2.2 Water supply damsites

There are a number of damsites for water supply purpose still needing further investigation and study. They will be alternatives to or addition to the schemes selected in Chapter 6. The list of damsites and their purposes are enumerated in Table 7.2.2.

In the Kitui district, there are plans for three (3) potential damsites around Kitui town for water supply to Kitui town and environs (proposed by MOWD). These are Mutui, Kitimui and Umaa sites. Mutui and Kitimui were planned at a master plan level, while Umaa scheme is under investigation of prefeasibility study level but no detailed information is available. In this Study these are considered to belong to a group of small dams for water supply development in the area (Ref.33).

In the Ewaso N'giro North River drainage area, some potential damsites including small damsites and pans which are proposed by MOWD are conceived for water supply to towns and environs situated near the sites.

7.2.3 Flow augmentation by dam

Water use in upstream areas tends to reduce the water yields in the downstream areas. A primary measure for avoiding this adverse effect is to exercise water use management in the upstream area. Nevertheless, there will still be great concern for water shortage arising in the downstream area. More positively, the development in the downstream area could be achieved with augmentation of river flows in the area. This is particularly important in rivers in relatively dry area, where, however, the development need and/or potential are foreseen.

The following dam schemes are envisaged for future development of flow augmentation by dams in view of its large undeveloped downstream areas for irrigation and water supply.

- (a) Kerio River: Kamukuny dam for the downstream development potential of the Kerio river basin. The site is located on the main stream of the Kerio River, the river is seasonal during the dry season. The site is also conceived as a subsurface damsite.
- (b) Athi River: Yatta dam for the downstream development potential of irrigation in the middle and lower basin of the Athi River and water supply to the coast area.
- (c) Ewaso N'giro North River: Kihoto dam and Achers Post dam for downstream development potential of irrigation, water supply and hydropower in the middle (including Isiolo) and lower basin of the Ewaso N'giro North River.

7.3 Hydropower Development

At Present, hydroelectric generation plays a key role in the supply of electric power to the country. The importance of the role played by hydropower will remain unchanged in the future.

In the Study, evaluating results of the least cost generation expansion sequence were adopted in the National Water Master Plan towards the year 2010.

Other than the projects proposed in this Study, additional potentially economic hydroelectric projects exist in the country. However, on the basis of power benefit alone, these projects are less economical than other generation candidates such as thermal combustion and coal-fired steam power plants. These projects are;

- Nandi Forest Project as a part of the Nandi Forest-Kano Plain Transfer multipurpose project
- Sererwa Project in the Kerio Valley

In order to these projects attractive, a further study should be done to evaluate more exactly these hydroelectric potential sites.

7.4 Flood Control Plan

Some of the flood protection projects accorded Priority-C in the Study (Section 6.6), which have relatively low economic return and low social requirement, may come to require more attention depending on the rise of social development needs in the area. They include;

- Sondu Rivermouth,
- Middle Turkwel, and
- Downmost Athi River

CHAPTER 8 ENVIRONMENTAL ASPECTS

The Study looked into environmental issues relevant to the proposed water development plans. The findings are presented in detail in Sectoral Report N. The Sectoral Report N examined the issues in two ways; (i) overview of the state of the Kenya environment (Part 1 of the Report) and (ii) initial environmental examinations of the proposed dam schemes and irrigation schemes. In addition, preliminary notes on environmental issues involved in the proposed flood control schemes and water transfer schemes are included in Sectoral Reports G and M, respectively. In general, the depth of the studies remains at a preliminary level just to meet the requirement of this master plan study.

The descriptions in this Chapter are limited to only the outline of major findings, leaving further details in respective Sectoral Reports.

8.1 Overview of Environmental Issues

Through overview on the general state of Kenya environment, the Study noted various issues to be incorporated in future environmental conservation programmes. The main items, which are supposed to require future action, are described below.

(1) Kenya population

Since rapid population growth is the crux of the problems of economic growth and social development in Kenya today, it is recommended that increased financial and manpower support be provided to the existing family planning and birth control programmes.

(2) Environmental consequences of irrigated agriculture

There are potentially very many physical and social environmental impacts which may attend further irrigation development in Kenya and the following recommendations are designed to mitigate the adverse impacts as much as possible. It is recommended that:

- (a) agricultural development be prioritized as follows -
 - improvement of yield and economics of existing rain fed agriculture,
 - reduction of post harvest losses through improved storage conditions and facilities,
 - · rehabilitation and modernization of the existing irrigation schemes,
 - development of new irrigation schemes.
- (b) several restrictions be placed on the conversion of medium and high potential areas in ASAL regions from dry season refuge pastures to permanent irrigation (see also (8) below).

- (c) monitoring of return water quality be undertaken in all existing schemes to assess the impact on the receiving water course.
- (d) where applicable, eg. Kano and Nyando Plains, the return water from proposed schemes be passed through existing Papyrus swamps to reduce the pollution impact on the receiving water.
- (e) the procedures for compensation provision to people adversely affected by the development of irrigation schemes be improved to provide, among other things, the option for land-for-land compensation, relocation, and resettlement costs.
- (f) further investigations be carried out to assess the present feasibility of integrated pest control and management rather than the current sole reliance on chemical control.
- (g) greater consideration be given to the tenants, especially on rice paddy irrigation schemes, for the provision of land for food crop production to avoid problems of malnutrition in monoculture agriculture systems.

(3) Environmental impacts of dams and reservoirs

- (a) The procedures for compensation for people displaced or adversely affected by the construction of dams and reservoirs be streamlined and improved especially with regards to the provision of the option for land-for-land compensation.
- (b) Where power bores will be produced by intermittent power generation, the public be fully protected and made aware of the hazard involved.
- (c) Adequate compensation flow be returned to the river to maintain its utility to downstream users and its ecology; this is especially important in rivers likely to be used as receiving waters for effluent discharges where dilution is required.

(4) Environmental impacts of deforestation

- (a) The rate of reforestation must be increased to exceed the rate of forest removal if a fuelwood and charcoal crisis is to be avoided; new fuelwood plantations in the vicinity of urban centres must be given high priority, as must private-orfarm free management.
- (b) The conservation and maintenance of sensitive forested water catchments must be given high priority to protect vital water resources.

(5) Soil erosion and conservation

- (a) The implementation of existing soil conservation policies should be speeded up through the provision of greater support for existing government institutions and NGO's.
- (b) Funding for agroforestry research and implementation should be increased.

(6) Water quality and water pollution

- (a) Monitoring of principal surface and groundwater resources needs to be improved and decisions made on the location and frequency of sample collection to ensure the resulting data suitable for long term management of these resources.
- (b) Similarly, monitoring of effluent discharges must be improved to avoid pollution of the national water resources.
- (c) The ongoing improvements to the Water Act must be supplemented with active enforcement of legislation; legislation alone does not prevent pollution.
- (e) With regard to effluent quality guidelines or standards, it is recommended that the relevance of the existing well-prepared standards (eg. British Royal Commission 20:30 standards) is re-evaluated and alternative, and more relevant, guidelines proposed for adoption in Kenya.

(7) Closed basin lakes

- (a) Regular environmental monitoring, including water and effluent quality monitoring, should be implemented as a matter of urgency in those closed basins identified as being under threat from development; these lakes include Naivasha, Nakuru, Winam Gulf and Lake Turkana. Lakes Baringo and Bogoria should also be paid attention.
- (b) The threat from the Malewa-Nakuru water transfer scheme Phase 2 appears to be a major threat to Lake Nakuru especially. It is recommended that to mitigate the probable impacts of Phase 2 all present and additional effluent generated in the lake catchment is fully and properly treated to a high standard and that the final effluent is discharged outside the lake catchment.

(8) Arid and semi-arid lands

- (a) Two major assumptions concerning ASAL must NOT be made namely:-
 - that the ASAL constitute a major reserve of productive land available to accommodate overspill population from the high potential areas of Kenya,

- that water is the main constraint on production in ASAL areas, it is not, vegetation is the primary limiting factor.
- (b) ASAL development should concentrate on livestock production and wildlifetourism as the main production bases; these areas cannot compete economically with the high production areas in arable farming.
- (c) Great care must be taken when developing water resources in upland (and usually productive) areas which denies water to the lowland ASAL areas down river. This may be best achieved by straightening the existing river basin authorities to ensure planning on a whole catchment basis.
- (d) The expansion of water harvesting techniques in appropriate areas is to be recommended.
- (e) Key production areas used by pastoralists livestock and wildlife must be protected from further conversion to arable agriculture and settlement. Without these dry season refuges, wildlife and pastoral populations will suffer and decline. If migrant populations are denied access to these vital dry season areas of refuge, the wet season grazing potential of the rangelands will be wasted, and the range degraded through over-exploitation in the dry season.

In addition, the following are also noteworthy:

- (i) physical access corridors to key production areas must be open to both migrant livestock and wildlife.
- (ii) access to wet season dispersal areas must also be kept open and these areas not adjudicated.

8.2 Environmental Aspects of the Proposed Development Schemes

8.2.1 Dam schemes

The construction works of dams and reservoirs bring various social and environmental problems in general, but 28 dams proposed in Subsection 6.4.1 might not involve such serious influence on social and environmental conditions as affecting the dam schemes. At the time of implementation, however, it is important to minimize the adverse effects of the schemes as much as possible. The potential issues needing due attentions may be;

- (a) Compensation for submerged lands and resettlement of people: Magwagwa and Ndarugu dams
- (b) Submergence and deforestation in forest areas: Itare, Mukulusi and Upper Narok dams
- (c) Water quality and sanitation problems: Oldorko, Mwachi, Pemba, and Rare dams
- (d) Consideration for water utilization in downstream: Oldorko, and Malewa dams

8.2.2 Irrigation schemes

In irrigation schemes, there prevail common environmental problems prevail in most schemes rather than problems peculiar to a specific individual scheme. Nevertheless, specific issues needing attention in respective schemes will be;

- (a) Problems of public health:
 Kano, Kanzalu, Kimira, Ewaso N'giro, Mwea and Tana Delta schemes, in particular
- (b) Problems of water utilization in downstream areas: Ewaso N'giro and Turkwel schemes, in particular
- (c) Water quality problems in downstream areas:
 Kano, Kimira, Kuja and Tana Delta schemes, in particular
- (d) Influence to vegetation in ASAL areas: Ewaso N'giro and Turkwel schemes

Of the 18 irrigation schemes, Ewaso N'giro and Turkwel schemes are noticeable for having peculiar problems such as the above (b) and (d). Therefore, careful consideration should be given to these two schemes before implementation, although these problems are not so serious as to leave the schemes out.

8.2.3 Flood control schemes

Social and environmental problems brought about by the five flood control schemes proposed in Subsection 6.6.1 would be considered to be relatively small. Because, the construction works of the schemes are built in the existing river courses or the construction itself is a repair work of the existing river dikes. Even in the case of new dikes, the problems would not influence the surrounding areas because there are few inhabitants along the rivers.

8.2.4 Water transfer schemes

(1) General problems

Environmental problems by water transfer schemes are classified into the following two aspects.

- (i) Decrease of river flow downstream of source rivers
- (ii) Change of water environment (quality and quantity) in receiving rivers and lakes by transferred water

These problems occur within a closed basin remarkably. In this Study, therefore, the following points were taken into consideration.

- (i) The source rivers for water transfer were restricted to rivers which have affluent water flow and little difficulty of water shortage in downstream areas such as Nzoia, Yala, Nyando, Sondu and Tana rivers.
- (ii) Water must not be transferred from closed basins in principle, although water from Malewa River is transferred as an exception (discussed later). This point is quite important for rivers which function as water resources for key production areas in ASAL regions, such as Turkwel, Kerio, Ewaso N'giro North, and Ewaso N'giro South rivers. Also, Mara River is added as the same characteristic river, though its basin is not closed.
- (iii) Water transfer into closed basins is, in some instances, necessary from the point of view of satisfying the basic human needs in water deficit areas. The potential problem is that the transferred water makes the water catchment areas, i.e., lakes and marshes, contaminated as the secondary water pollution problem. However, this problem does not always deny the introduction of water transfer plan. On condition that the maximum volume of transferred water is taken into consideration from the point of ecological balance, water transfer plans should carefully be introduced in water shortage areas.
- (2) Water transfer schemes to closed basin (Example of Nakuru water transfer scheme)

Nakuru water transfer plan is under planning as an urgent scheme to solve the water shortage problem in Nakuru town. The Phase I scheme (already completed) is foreseen to involve no serious environmental issues, while however the Phase II schemes will encounter different conditions. In the Phase II schemes, the water is supplied from Malewa dam and Itare dam in bulk, which may bring about significant environmental problems; particularly deterioration of water quality of the Lake Nakuru. It is imperative to promote the countermeasures. The following countermeasures are proposed for environmental conservation of the lake:

- (i) Total amount regulation of water utilization (Non-structural measure)
 - Regulation of regional development within Nakuru basin by a local act. At the same time, provision of regional plans in outlying areas of Nakuru basin for diversification of development activities
 - Introduction of special water tariff in Nakuru basin primarily to encourage the saving of water use and secondarily to procure the funds for the structural countermeasures proposed below.

(ii) Structural measures

- To furnish urban sewerage system to prevent water pollution (Improvement of the existing sewage plant is an urgent work to be undertaken),
- To transfer water after treatment of sewerage water to outlying area of Nakuru basin by pumping, though this is a relatively costly attempt. The water so pumped may then be used for irrigation in outlying areas.
- To divert or retain the runoff during rainy season and transfer it to outside
 of Nakuru basin. For this purpose, it will be necessary to provide diversion
 drainage facilities and flood retention dams. The water will be used for
 irrigation in outlying areas.

To establish these programmes, a regional water use study should be carried out on an urgent basis. An important element in the proposed study is to formulate an integrated regional development plan aiming at diversification of development activities to outlying areas of Nakuru basin. The study area shall cover three lake basins; i.e. Nakuru, Elementaita and Naivasha.

Provision set forth in the Ramsar Rules (convention on wetlands of international importance especially as waterfowl habitats) is another aspect to be taken into account in the formulation of the Lake Nakuru conservation plan.

REFERENCES

Ref.No.

Title

- 1 Kenya Meteorological Department, Climatological Statistics for Kenya 1984
- 2 MOWD Irrigation Section, Evapotranspiration in Kenya, 1988
- F.F.Ojany and R.B.Ogendo, KENYA A Study in Physical and Human Geography, 1988
- 4 TAMS, National Master Water Plan (Stage I), Vol. V Report Appendix, 1980
- 5 MOWD, Extension of Water Resources Data Gathering Networks in Kenya, 1979
- 6 V.T.Chow, Applied Hydrology, McGraw-Hill International Edition, 1988
- 7 G.O.P.Obasi and P.M.R.Kiangi, Monthly distribution of Water Balance Components in Kenya, KMD Technical Memorandum No.24, 1977
- Fiddes, The TTRL East African Flood Model, TTRL Supplementary Report 259
- Obasi and Nimira, Statistical Estimation of the Maximum Probably Daily Rainfall in Kenya Using the Maximum Likelihood, TRRL Supplementary Report 259, 1977
- 10 A.C.Hamilton, Environmental History of East Africa, Academic Press, 1982
- GOK, Sessional Paper No.1 of 1986 on Economic Management for Renewed Growth, 1986
- 12 CBS, Employment and Earnings in the Modern Sector 1985, December 1989
- 13 CBS, Input/Output Tables for Kenya 1976, October 1979
- S. Damus and D. Johnson, Input-Output Tables for Kenya, 1986, Technical Paper 89-07, July 1989
- 15 GOK, Development Plan for the Period 1974 to 1978, Part I, 1974
- 16 MOPND, District Development Plan 1989-1993, 40 Districts except Nairobi District
- 17 MOLH, Human Settlements in Kenya, A Strategy for Urban and Rural Development, 1978 Edition, 1978

Ref.No. Title

- 18 Ministry of Home Affairs and National Heritage, Kenya Demographic and Health Survey, October 1989
- 19 MOWD, Water Requirement for Irrigation in Kenya, 1985
- 20 CBS and UNICEF, Population Projection for Kenya 1980-2000, March 1983
- 21 GOK, Development Plan 1989-1993, 1988
- 22 CBS, 1979 Population Census Report Volume 3, Urban Population, May 1988
- 23 FAO, Food Balance Sheets, 1979-1981 Average, 1984
- 24 CBS, Statistical Abstract 1990, May 1991
- 25 Centro de Estudios Hidrografios, New Proposal for Nzoia Water Development Double Transfer Nzoia-Suam and Nzoia-Kerio, Preliminary Report, July 1990
- 26 LBDA, Integrated Regional Development Master Plan for The Lake Basin Development Area, Final Report, Volume 5 Sector Report, Water Resource/ Transportation/Energy October 1987, JICA
- 27 MOWD, Pre-investment Study for Water Management and Development of the Nyando and Nzoia River, 1983, Italconsult
- 28 NWCPC, The Investigation Report of Nyando River Muhoroni Reservoir & Water Supply Project to Timboroa, Chania 1991
- 29 KVDA, Additional Geotechnical Investigations and Engineering Works Required for the Completion of the Kimwarer Project Re-design of the Dam and Ancillary Works (relocated site), Preliminary Design Report and Drawings, March 1990
- 30 KVDA, Feasibility Study on the Integrated Development of the Arror River Basin, Vols 1 to 6, 1990, B&B Consulting Engineers
- 31 TRDA, Athi River Basin Pre-investment Study, Main Report, Annexes 1-11, February 1981, WLPU
- 32 MOE&RD, National Power Development Plan (1986-2006), main Report, Appendix Volume 2, June 1987, Acres
- 33 MOWD, Kitui Urban & Rural Water Supply Project, Kitui Water Supply Appraisal of Future Development Options, Volume 1 1979, EAEC

TABLES

Table 2.2.1 Mean Annual Rainfall Depth for Successive 5-year Period

										:				(Unit:	(mm :
Station	1911 -	1916 - 1920	1921 - 1925	1926 - 1930	1931 - 1935	1936 -	1941 -	1946 -	1951 -	1956 - 1960	1961 - 1965	1966 - 1970	1971 - 1975	1976 -	1981 -
Kakamega	1,765	1,891	1,944	1,908	1,890	1,921	1,702	1,881	1,682	1.815	2,246	2,019	2,170	2,027	2,116
)	(3)	(2)	(10)	(8)	(9)	6)	(2)	(5)	(3)	(4)	(15)	(11)	(14)	(12)	(13)
Kapsabet	1,656	1,715	1,406	1,413	1,411	1,543	1,465	1,497	1,596	1,377	1,596	1,755	1,364	1,696	1,345
	(12)	(14)	(4)	(9)	(5)	(6)	6	(8)	(10)	ල ු	(11)	(15)	(5)	(13)	(1)
Kisumu	1,125	1,135	1,148	1,059	1,111	1,184	1,076	1,021	1,130	806	1,267	1,102	1,151	1,274	1,058
	8)	(10)	(11)	(4)	6	(13)	(5)	(2)	6)	E	(14)	9)	(12)	(15)	3
Londiani	666	962	1,055	1,114	. 1,069	1,187	1,162	1,130	1,167	1,187	1,323	1,197	1,209	1,074	1,054
V	(7)	(I)	(4)	1 83 8	() ()	(17)	(4)	(8)	(10)	(11)	(13)	(51)	(14)	(e) 1 027	(5)
Nericao	1,011 (6)	(5)	1, / / 8 (4)	1,858 (9)	1,744	(11)	(1)	1,940	1,034	1,820 (7)	2,129 (15)	2,006 (14)	(6)	1,827	(13)
Naivasha	610	626	576	651	535	641	552	575	089	694	736	677	621	710	616
	(5)	(8)	(4)	(10)	Ξ	(6)	(5)	(3)	(12)	(13)	(15)	(11)	6	(14)	(9)
Narok	733	801	683	707	550	723	651	639	646	893	953	803	744	824	641
	6)	(11)	(9)	(2)	(1)	(8)	(5)	(2)	(4)	(14)	(15)	(12)	(10)	(13)	(3)
Kiambu	1,047	1,084	1,027	1,101	937	1,001	996	910	946	1,130	1,176	1,144	916	1,158	927
	(6)	(10)	(8)	(11)	(4)	6	(9)	(3)	(5)	(12)	(15)	(13)	(2)	(14)	(3)
Limm	1,328	1,403	1,223	1,350	1,152	1,353	1,123	1,077	1,226	1,351	1,637	1,428	1,160	1,432	1,170
	(8)	(12)	(9)	6)	(3)	(11)	(5)	(1)	(-)	(10)	(15)	(13)	(4)	(14)	(5)
Thika	834	887	807	902	784	926	897	704	805	738	677	877	776	920	683
	(8)	(10)	<u>()</u>	(12)	(5)	(14)	(11)	(5)	(9)	ල	(15)	6	(4)	(13)	E
Machakos	1,074	1,002	862	096	924	871	775	827	666	815	1,044	994	815	1,011	611
	(15)	(12)	(5)	(8)	6	(9)	(1)	(4)	(11)	(5)	(14)	(10)	(3)	(13)	6)
Makindu	535	914	1,034	588	397	540	507	522	521	498	734	700	433	640	611
	6	(14)	(15)	6)	(1)	(8)	(4)	9)	(5)	(9)	(13)	(12)	(2)	(11)	(10)
Voi	565	200	540	588	443	657	459	440	483	556	574	704	461	633	547
	(10)	(9)	0	(12)	(5)	(14)	(3)	(I)	(5)	6)	(11)	(15)	(4)	(13)	(8)
Kwale	666	813	904	1,066	1,084	1,235	1,029	1,271	1,129	1,126	1,097	1,112	687	1,116	1,073
	(4)	(1)	(2)	9	(8)	(14)	(5)	(15)	(13)	(12)	ව	(10)	ල	(11)	6
Mombasa	1,087	1,083	1,201	1,105	1,311	1,403	1,168	1,201	1,096	1,142	1,032	1,376	1,060	1,138	1,316
	£ ;		(11)	(a)	(21)	(CT)	(6)	(01)		(o)	(E)	(14)	(7)	S	(61)
Total Point	110	124	104	1.24	69	160	7.7	90	113	711	193	8/.1	86	177	86
Total Ranking	7	10	9	11	1	12	2	3	6	οo	15	14	4	13	5

Note: Parenthesized figure indicates ranking in ascending order.

Table 2.3.1 Rating Equation of Suspended Load and Its Volume

No. Code		le River Name	Catchment	Annual Mean	Rating E	quation	Suspe	nded Load
			Area (sq. km)	Discharge (cms)	a	b	Mean (ppm)	Annuai (ton/year)
1	1DA02	Nzoia	8,417	56.6	18.531	0.446	112	212,298
2	1ED01	Lusumu	1,207	27.9	22.686	0.552	142	128,239
3	1GB05	Ainamotua	606	5.2	44.653	0.675	136	28,954
4	1GB07	Kapchure	129	1.1	68,831	0.328	71	2,555
5	1GD01	Nyando	2,598	17.6	136.508	0.623	815	566,362
6	1HA10	Luando	234	3.0	227.405	0.255	301	26,561
7	1JG01	Sondu	3,287	50.0	13.314	0.409	66	107,160
8	2ED02	Lelgel	108	0.5	79.223	1.115	37	799
9	2EE04	Perkerra	1,334	2.8	1197.201	1.010	3,387	390,033
10	2GB01	Malewa	1,430	3.3	19.302	0.736	46	5,637
11	3AA04	Mbagathi	272	1.6	139.713	0.685	193	4,456
12	3BA09	Karyra	44	8.0	368,177	0.737	312	9,124
13	3BA10	Ruaraka	65	1.1	31.142	0.225	32	989
14	3BA22	Nairobi	75	1.3	51.216	0.392	57	2,231
15	3BB10	Riara	41	0.4	144.554	0.219	118	1,474
16	3CB05	Ndarugu	312	4.4	95.369	0.505	202	29,356
17	3DA02	Athi	5,724	23,6	8.220	0.924	153	131,089
18	3F 02	Athi	10,272	33.6	39.338	0.750	549	753,627
19	3HA12	Athi (L. Falls)	25,203	33.2	48.079	0.823	859	2,057,487
20	3 J 06	Lumi	451	1,2	210.044	1.663	284	9,020
21	4AA01	Sagana	96	1.1	40.572	0.739	44	1,659
22	4AA05	Sagana	505	5,6	31.183	0.676	100	18,845
23	4AC03	Sagana	282	4.1	21.177	0.763	62	8,405
24	4BC02	Tana-Sagana	2,365	21,0	2.084	1.924	729	999,721
25	4BD01	Mathioya	500	6,6	1.833	1.875	63	20,107
26	4BE01	Maragua	414	11.3	13.671	1.128	211	70,797
27	4CA02	Chania	518	8.2	8.591	0.967	66	22,132
28	4CB04	Thika	316	6.9	23.957	1.020	172	53,063
29	4DD01	Thiba	2,616	33,4	5.181	0.736	69	75,167
30	4F 01	Tana (G. Falls)	16,972	184.4	2.358	1.134	875	6,098,075
31	4F 19	Kazita	1,702	17.9	4.918	1.117	123	82,057
32	4G 01	Tana (Garissa)	32,892	166.0	134.316	0.447	1,320	6,907,451
33	5BC02	Naromoru	83	0.8	21.242	0.422	1,520	486
34	5BC06	Burgret	98	1.0	36.569	0.588	37	1,130
35	5BE20	Nanyuki	860	1.8	16.823	0.936	29	2,072
36	5E 03	Ewaso N'giro	15,300	21.6	230.284	0.618	1,538	1,045,035

Note: Annual suspended volume was calculated on daily basis by using dimensionless flow duration curve.

 Table 2.4.1
 Present Abstraction Rate and Utilization Ratio (1/9)

B/H no.	District	Location	Initial yield		Observed	Utilization
			(l/min)	(m3/day)	(m3/day)	ratio
C0955	11	Muthaiga	124	178.6	70.0	0.39
C1245	11	Karen	136	195.8	40.0	0.20
C2373	11	Dagoretti Corner	114	164.2	45.0	0.27
C2781	11	Dandora	227	326.9	70.0	0.21
C3001	11	Nairobi Natl. Park	181	260.6	50.0	0.19
C4190	11	Karen	100		20.0	
C4549	11	Kabete	100	144.0	115,0	0.80
C4663	11	Kitui Rd,Ind. Area	59.7	86.0	86.0	1.00
C4862	11 11	Embakasi Ruai	151	217.4	07.0	0.40
C6228	. 11	South C	100	144.0	87.0	0.40
C6310	11	Parliament Bldgs.	100	144.0	13.0	0.09
C6689 C3710	21	Sigona	271	390.2	25.0	0.06
C4802	21	Kikuyu	211	390.2	192.0	0.00
C5787	21	Limuru	122	175.7	264.0	1.50
C6259	21	Tigoni	14.4	173.7	120.0	1.30
C6635	21	Ruiru	757	1090.1	21.0	0.02
	21	Kiambaa				
C7295	21		424	610.6	240.0	0.39
C9746	21	Kasarani			192.0	
C3584		Sagana	121	0177	Z0.0	A 44
C4318	22 22	Inoi	151	217.4	60.0	0.28
C4960	22 22	Kithage				
C5998		Murinduko				
C6900	22	Kagio			40.5	
C7458	22	Mutira	141	225.0	40.5	
C0724	23	Mitubiri	164	236.2	60.0	0.25
C3876	23	Murang'a T.				
C4571	23	Maragua Mrkt.				
C5326	23	Mitubiri-Makuyu			11.0	
C6264	23	Galchanjiru	38	54.7	40.0	0.73
C9172	23	Makuyu School			21.0	
C1299	24	Ndaragwa	18	25.9	19. 2	0.74
C1830	24	Kinangop				
C2264	24	Magumu	68	97.9	2.9	0.03
C3779	24	Ol Kalou	228	328.3	220.0	0.67
C6810	24	Gathimu				
C7842	24	Nyakambi Sec. Sch.				4
C4629	25	kingongo				
C6800	25	Nanyuki			4,8	
C9170	25	Munyu				
Giat.	25	Giathogu				
Kabaru	25	Kabaru			12.0	
Karem	25	Karemeno			15.0	
Baric	31	Bungale			29.0	
C0575	31	Mazeras				
C0848	31	Ganda				
C0996	31	Mangea I				
C0997	31	Mangea II	9	13.0	12.0	0.93
C1010	31	Jila Ndigiria				
C1024	31	Gede	2	2.9	2.0	0.69
C1035	31	Kaloleni	178	256.3		
C1041	31	Marafa	45	64.8	82.0	1.27
C1047	31	Kaloleni				
C1048	31	Kaloleni				
C1866	31	Bararini				
C2501	31	Jariburi				
C3174	31 ·	Vipingo				
C3186	31	Tezo				
C3264	31	Tezo				
C3303	31	Mnarani				
C3332	31	Tezo				
C4300	31	Vitengeni				
C4358	31	Mnarani				
C4422	31	Ganze				
C4596	31	Jilore			3.3	

 Table 2.4.1
 Present Abstraction Rate and Utilization Ratio (2/9)

B/H no.	District	Location	Initial yield (l/min)	(m3/day)	Observed (m3/day)	Utilization ratio
C4908	31	Handu-(Magarini)				
C4937	31	Marikabuni-(Magarini)	200	288.0	80.0	0.28
C5231	31	Marafa-(Magarini)			96.0	
C6072	31	Kikambala				
C6315	31	Ganda				
C6337	31	Ganda				
C6646	31	Tezoroka	•			
29400	31	Malindi Prison				
P0091	31	Bamba				
C4166	32	LungaLunga				
C4240	32	Diani	800	1152.0	310.0	0.27
24570	32	Tiwi			744.0	
24977	32	Milewa			10.5	
25770	32	Kinondo	(1)	06.4	19.0	
26042	32	kinondo	60	86.4	21.6	0.25
C6498	32	Mwereni			***	
C6505	32	Mwakijembe			18.0	
C6507	32	Kasagani			17.3	
26530	32	Mwangoni Sch.			17.3	
26597	32	Bomani			17.3	
C6604.	32	Mwereni "B"			15.8	
C6671	32	Kikoneni			17.3	
C6716	32	Pongwe			15.8	
C6723	32	Urima Mrkt.			17.3	
C7264	32	Pongwe	96	138.2	29.0	0.21
C7354	32	Kikoneni			21.6	
C7356	32	Kikoneni		•	15.0	
C7362	32	Msambweni			17.3	
C7371	32	Kikoneni			. 14.4	
C7587	32	Lunga Lunga			17.3	
C7602	32	Msambweni			19,4	
C7615	32	Diani			9.6	
C8187	32	Diani	48	69.1	17.3	0.25
C8193	32	Lukore	57	82.1	17.3	0.21
C8206	32	Diani	30	43.2	19.4	0.45
C8646	32	Tiwi	38	54.7	17.3	0.32
C8669	32	Tiwi 3 No4			500.0	
C8670	32	Tiwi 3 No5	46	66.2	480,0	7.25
C8684	32	Lukore			17.3	
C9034	32	Ngombeni				
C9041	32	Manganani				
C3463A	33	Witu				
C3463B	33	Witu				
23593	33	Munimbi				
23594	33	Bargoni				
27345	33	Mpeketoni	368	529.9	9.0	0.02
27346	33	Mpeketoni				<i>*</i>
Mombasa	34					
C0535	35	Taveta	315	453.6	150.0	0.33
20561	35	Taveta	226	325.4	230.0	0.71
C0568	35	Taveta	315	453.6	150.0	0,33
C0936	35	Bura Maktao				
C0938	35	Ghazi				
C3146	35	Tsavo West P				
C3151	35	Tsavo North Park	•			
C3168	35	Tsavo West P	38	54,7	18.7	0.34
C3197	35	Taveta	**	~ .,.	****	0.54
C3220	35	Voi Sisal				
C3357	35	Lualenyi Ranch				
C3360	35	Lualenyi Ranch	182	262.1	49.0	0.19
C3381	35	Tsavo Rhino	205	295,2	12.0	0.04
C3783	35	Bura-Maktau	200	273,2	12.0	0.04
C4103	35	Lualenyi Ranch				
C4130	35	Taveta	397	571.7		
	35	Mwatate	113	162.7	30.2	0.19
C4 20 3				IUZ. J	1U. /	

 Table 2.4.1
 Present Abstraction Rate and Utilization Ratio (3/9)

B/H no.	District	Location	Initial	yield (I/min)	(m3/day)	Observed (m3/day)	Utilization ratio
C4219	35	Mwatale		453	652.3		
C4602	35	Mwatate					
24649	35	Salt Lick					
24651	35	Mwatate					
C4654	35	Mbololo					
26630	35	Chawia					
26631	35	Chawia					
C6633	35	Chawla					
C7182B	35	Kasigau					
Aruba	35	Tsavo East P					
Eldoro	35	Eldoro				43.0	
Mkanj	35	Mkanjoni					
Ndara	35	Ndara					
P0032	35	Voi Roadway Station					
P0154	35	Taveta					
Riata	35	Taveta				0.40	
C6768	36	Madogo				96.0	
Gorfi	36	Gorfisa				•	
Sawal	36	Sawale				1.0	
Titila1	36 36	Titila 1				1.8	
Fitila2	36 36	Titila 2					
Wema	36	Wema 2					
C4606	41	Kyeni					
C5336	41	Rianjeu				1.5	
C8079	41	Gwakariguo				4.5	
C9450	41	Siakago Catholic Miss					
lgum.	41	Igumory					
C2324	42	Kulamawe		91	131.0	48.0	0.37
C3665	42	Garba Tula		186	267.8	112.0	0.42
C4402	42	Merti		36	51.8	83.0	1.60
C4423	42	Garba Tula		118	169.9	15.0	0.09
C4543	42	Merti		43	61.9	10.0	0.16
C6656	42	Kinna		100	144.0	2.9	0.02
C6951	42	Bulessa				04.0	
C7329	42	Sericho		17.6	1050	96.0	
C7631	42	Isiolo Township		136	195.8	250.0	1.28
C7712	42	Sericho				7.2	
C7734	42	Central					
C8976	42	Ngare Mara					
C9380	42 .	Merti				•	
Is.As	42	Isiolo					
C0135	43	Mutonguni					
C0538	43	Mutha					
C0696	43	Kanziku					
C0919	43	Ngomeni					
C1452	43	Kangondi					
C1452	43	Mui					
C1508	43	Yatta					-
C1595	43	Yatta		182	262.1	8.0	0.03
C3198	43	Mutomo		98	141.1	162.0	1.15
C3712	43	Mwingi					
C3760	43	Yatta		_			
C3795	43	Ithokwe		76	109.4	616.0	5.63
C3883	43	Ikanga					
C4136	43	Changwithya		342	492.5	488.0	0.99
C4729	43	Ikanga		209	301.0	45.0	0.13
C4887	43	Migwani					
C4930	43	Migwani					
C4936	43	Migwani					
C5243	43	Mutomo					
C5527	43	Nguni		44	63.4	28.0	0.44
C5673	43	Mutuangombe					
C6628	43	Mutonguni Sec. Sch.		75	108.0	20.9	0.19
C7313	43	'Mutha Mission		97	139.7	30.9	0.23
C7762	43	Matinyani				9.6	
C7764	43	Kalundu					

Table 2.4.1 Present Abstraction Rate and Utilization Ratio (4/9)

B/H no.	District	Location	Initial yield (I/min)	(m3/day)	Observed (m3/day)	Utilization ratio
C7950	43	Changwithya				
C8027	43	Matinyani				
C8307	43	Nzambani			29.0	
C9375	43 43	Mathima				
C9470 C9471	43 43	Changwithya Mwingi				
Malik	43 43	Mulango			158.0	
Ngila	43	Changwithya			136.0	
C0078	44	Konza-Machakos				
C0224	44	Konza	61.0	87.8	70.0	0.80
C0461	44	Makueni	273	393,1	210,0	0.53
C0740	44	Athi River	110	158.4	60.0	0.38
C1693	44	Athi River	87	125.3	30.0	0,24
C1769	44	Kyanzavi	19	27.4	9.0	0.33
C2004	44	Kiu	75	108.0	40.0	0.37
C2232	44	Mbitine	121	174.2	58.0	0.33
C2976	44	Konza	36	51.8	13.0	0.25
C3121	44	Mtito Andei	19	27.4	27.0	0.99
C3977	44	Kathozweni	••		3	2,55
C4742	44	Muthetheni	164	236.2	35.0	0.15
C4885	44	Masii	218	313.9	65.0	0.21
C4973	44	Kithimani	97	139.7	47.0	0.34
C5043	44	Katangi	23	33.1	30.0	0.91
C5054	44	Msongolani				
C5272	44	Madakos Township	38	54.7	15.0	0.27
C6328	44	Athi River				
C6349	44	Koma Rock				
C6536	44	Sengani			•	
C6588	44	Nzani				
C8028	44	Kithyoko				
Kambo	44	Mtito Andei				
C1758	45	Logologo	134	193.0	64.0	0,33
C3039	45	Jaldessa				•
C3133	45	Gurgabo				
C3602	45	Laisamis				
C3681	45	Logologo				
C3723	45	Bubisa				
C3819	45	Gudas	135	194.4	64.0	0.33
C3890	45	Uran	76	109.4	68.0	0.62
C3896	45	Walda	455	655.2	273.0	0.42
C3966	45	Galole	167	240.5	70.0	0.29
C3983	45	Godoma				
C3984	45	Godoma				
C4084	45	Кот	240	345.6	24.0	0.07
C4181	45	Bori	75	108.0	22.0	0.20
C4825	45	Kalacha				
C5001	45	Sabarei				
C5047	45 .	Ileret Godone		-	40.5	
C5901	45 45	Godoma			29.0	
C6063		Sololo				
C6357 C7201	45 45	Dukana			10.0	
C7201 C7202	45 45	Godoma			10.0	
C7202 C7207	45 45	Godoma			300.0	
C7618	45 45	Soloto Soloto			8.0	
C4233	45 46	Kariokomo			11.0	
C4233	46 46	Kariokomo Marima			5.4	
C4272 C4348	46 46				21.8	
C5543	40 46	Kinyakine Mutawi			3.6	
		Mutunyi Maua			~^	
C6967 C7136	46 46	Maua			5.0	
		Marimanti Mkondi Dr. School			10,8	
C7142	46 46	Nkondi Pr. School			160.0	
C7750	46 46	Ndoleni Mary Shari Ground				
C9085	46 46	Meru Show Ground				
C9436		Marimanti			4.5	
C9512	46	Chiakariga				

Table 2.4.1 Present Abstraction Rate and Utilization Ratio (5/9)

В/Н по.	District	Location	Initial yield (l/min)	(m3/day)	Observed (m3/day)	Utilization ratio
C2485	51	Daadab	76	(1115/Gay) 109.4	76.5	0.70
C3085	51	Welmarer	70	1037		00
C3240	51	Danken				•
C3635	51	Madogashi				
C3667	51	Liboi	169	243.4	38,0	0.16
C3684	51	Kulan	159	229.0	229.0	1,00
C3695	51	Ifo	150	216.0	25.5	0.12
C3697	51	Goriale				
C3751	51	Shaniabak				
C3753	51	Bila				
C3781	51	Gurufa				
C3831	51	Alinjugul	72	103.7	· 72.0	0,69
C3852	51	Hagadera				
C3877	51	Kumahumato			200.0	
C3902	51	Liboi				
C4313	51	Yumbis				
C4341	51	Rhowa				
C4342	51	Sedefi Goshe				
C4447	51	Mbanani				
C4453	51	Damajale			270.0	
C6330	51	Garissa				
C6763	51	Garissa				
C2570	52	Mandera Town				
C3297	52	Mandera Town				
C3567	52	Babasiti				
C3568	52	BH 11				
C3696	52	Asahaba				
C3861	52	Wargadud				
C3865	52	Golobia				
C4388	52	Wargadud	83	119.5	54.0	0.45
C4389	52	Danissa				
C4394	52	Walderi				
C4730B	52	El Kotulo				
C6084	52	Elwak				
C7184	52	Shimbir Fatuma				
C8094	52	Fincharo				
C8769	52	Kotulo				
C3218	53	Adamasajida				
C3515	53	Gurar				
C3539	53	Tarbaj				
C3541	53	Eldas	49	70.6	23.0	0.33
C3658	53	Bute	21	30.2		
C3685	53	Dilmanyale			68.0	
C3715	53	Meri				
C3726	53	Khot Khot				
C3727	53	Abakorey			22.0	
C3736	53	Giriftu				
C3769	53	Hara Khot Khot				
C3788	53	Meri	· ·			
C3792	53	Kalalut				
C3820A	53	Sebule	135	194.4	38.0	0.20
C3891	53	Bute				
C3899	53	Dambas	152	218.9	180.0	0.82
C4124	53	Wajir Township				
C4176	53	Arbajahan			50.0	
C4234	53	Daryole				
C4257	53	Shimbirbul				
C4261	53	Selif	120	172.8	21.0	0.12
C4524	53	Biyamadhow	20	28.8	14.0	0.49
C4730	53	Kotulo	70	100.8	84.0	0.83
C4872	53	Huthiwal	128	184.3	23.0	0.12
C5267	53	Wajir Bor	21	30.2	25.0	0.83
C5795	53	Habaswein	140	201.6	50.0	0.25
C5796	53	Khorof Harar	100	144.0	120.0	0.83
C6712	53	Wajir Town	,			~~~
C6902	53	Lefale				

 Table 2.4.1
 Present Abstraction Rate and Utilization Ratio (6/9)

Ca091	B/H no.	District	Location	Initial yield (I/min)	(m3/day)	Observed (m3/day)	Utilization ratio
Case			•				
No.1 53 Wajir Town CA490 61 Nyabrair CS911 61 Ogenbo C7845 61 Genba C8038 61 Kituu Chach 8 11.5 9.6 10.0 C8039 61 Nyamira 8 11.5 5.3 3 C8039 62 N. Nyakach 24 34.6 7.2 0.0 C8056 62 M. Univorni 200 288.0 C8057 62 W. Kaboto 12 17.3 26.4 C81176 62 Awai 200 288.0 3.6 0.8 0.0 C8057 62 W. Kaboto 12 17.3 26.4 C8118 62 Bast Kolwa 240 345.6 10.8 0.0 C8118 62 Bast Kolwa 240 345.6 10.8 0.0 C8118 62 Bast Kolwa 240 345.6 10.8 0.0 C8121 62 N. Kano 300 432.0 5.4 0.0 C8121 63 N. Ugenya 5.8 C5708 63 N. Ugenya 5.8 C5708 63 S. Ugenya 10.9 C5741 63 Signore 13.0 Masa 63 Centra Uyona 7.2 C3125 64 W. Kanethwory 10.9 C5215 64 Angenga 11.3 C6008 64 S. Kabwech 50 72.0 10.8 C6009 64 G. Souh Sakwa 50 72.0 10.8 C6009 64 S. Kabwoch 11.2 C6076 64 Raymana 12.2 C6076 64 Raymana 12.2 C6076 64 Raymana 12.2 C6076 64 Raymana 12.2 C6077 65 CH East 9.6 C6079 64 C. Soun 12.2 C777 71 Tanguibel 151 217.4 3.6 3.6 C7772 71 Tanguibel 151 217.4 3.6 3.6 C7772 71 Kabarnet 28.6 11.8 370.0 C7777 71 Kabarnet 38.6 11.8 370.0 C7777 71 Kabarnet 370.0 C7777 71			•				
CAMPO							
CSO11			•				
CR845			•				
Caopa							
Cappi				8	11.5	9.6	0.83
CRI23							0.03
CROSS G2			-				
CROST 62		62	•	24	34.6	7.2	0.21
C8117B 62	C8055	62	Muhoroni	200	288.0		
C3118 62 Bast Kolwa 240 345.6 10.8 C8121 62 N. Kano 300 432.0 5.4 10.9 C8456 63 N. Ugenya 5.8 C8768 63 E. Ugenya 10.9 C8741 63 Sigomore 13.0 Masa. 63 Centra Lyoma 7.2 C3395 64 W. Karachwony 7.2 C3215 64 Angenga 11.3 C6008 64 South Sakwa 50 72.0 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10	C8057	62	W. Kabotto	` 12	17.3	26.4	1.53
CS121	C8117B	62	Awasi	200	288.0	3.6	0.01
C3379 63 W. Alego C5746 63 N. Ugenya C5741 63 Sigomore 313.0 Masa. 63 Centra Uyorna 7.2 C3395 64 W. Karachwony C3215 64 Angenga W. Karachwony C5216 64 Angenga 11.3 C6008 64 South Sakwa 50 72.0 10.8 C6029 64 S. Kabwoch 13.2 C6087 64 Magunga 300 432.0 3.6 C6942 64 Rusinga C6942 64 Rusinga C6950 65 Rusinga C6950 65 Rusinga C7778 64 N. Karachwony Rakw C7778 64 N. Karachwony Rakw C7778 64 W. Karangambo C3437 71 Tangulbei 151 217.4 36.3 C3868 71 Nginyang 164 230.2 40.5 C4722 71 Kabarnet 286 411.8 370.0 C4722 71 Kabarnet 286 411.8 370.0 C4727 71 Kisanan 197 233.7 42.0 C5910 71 Kiblono C5883 71 Mogotio C5863 71 Ngambo C5863 71 Ngambo C5863 71 Kabarnet C6364 71 Kabarnet C6365 71 Kabarnet C6365 71 Kabarnet C6366 71 Kabarnet C6367 71 Kiblono C5883 71 Mogotio C5870 71 Kiblono C5883 71 Mogotio C5870 71 Kiblono C5883 71 Kabarnet C6366 71 Kabarnet C6367 71 Kiblono C5883 71 Kolono C58970 71 Kiblono C5883 71 Mogotio C58970 71 Kiblono C5883 71 Mogotio C58970 71 Kiblono C5883 71 Chemeron C5970 71 Kiblono C5883 71 Solket C6366 71 Ngambo C6552 71 Loboi C6567 71 Kiblono C6677 72 Kibloro C5873 71 Chemeron C722B 71 Chemeron C72B 71 Chemeron C	C8118	62	East Kolwa	240	345.6	10.8	0.03
S.			N. Kano	300	432.0	5.4	0.01
CS708 G3	C3379	63	W. Alego				
CS744 63 Sigomore 13.0 Mass 63 Centra Uyoma 7.2	C5456	63	N. Ugenya			5.8	
Masa. 63 Centra Uyoma 7,2 C3395 64 W.Karachwony C5215 64 M.Karachwony C6008 64 South Sakwa 50 72.0 10.8 C6029 64 S. Kabwoch 13.2 12.2 C6876 64 Magunga 300 432.0 3.6 6 C6942 64 Rusinga Isl. 11.0<							
C3215			_				
CS215			•			7.2	
C6008			The state of the s				
C6029							
C6263 64				50	72.0		0.15
C6876 64 Magunga 300 432.0 3.6 (C6942) 64 Rusinga Isl. 11.0 11.0 (C6942) 64 Rusinga 11.0 (C6950) 64 Rusinga 12.0 (C7152) 64 Kanyanda 14.4 (C7172) 64 K.Karachwony 80 115.2 8.6 (C8970) 64 C. Suna 12.0 (C3437) 71 Tangulbei 151 217.4 36.3 37.3 36.3 36.3 37.3 36.3 37.3 37.4 36.3 36.3 37.3 37.4 37.0 36.3 37.3 37.4 37.0 36.3 37.3 37.0 37.3 37.0 37.							
C6942 64 Rusinga Isl. 11.0 C6943 64 Rusinga 11.0 C6943 64 Rusinga 9,6 C7152 64 Kanyanda 14.4 C7778 64 N.Karachwony 80 115.2 8.6 C8970 64 C. Suna 12.0 12.0 C3437 71 Tanguibei 151 217.4 36.3 40.5 C3868 71 Nginyang 164 236.2 40.5 6 C4722 71 Kabarnet 286 411.8 370.0 6 C4772 71 Kabarnet 286 41.8 370.0 6 C4772 71 Kabarnet 286 41.8 370.0 6 C4772 71 Kibolino 23.7 42.0 2 C5170 71 Kibolino 24.0 2 60.5 30.0 6 C5362 71 Mostitei 26.5			•	200	105.0		
C6943 64 Rusinga 9,6 C6950 64 Gem East 9,6 C7172 64 Kanyanda 14,4 C7778 64 N.Karachwony 80 115,2 8.6 C8970 64 C. Suna 12,0 12,0 Rakw. 64 W.Kamagambo 12,0 12,0 C3437 71 Tangulbei 151 217,4 36,3 40,5 C3483 71 Nginyang 164 236,2 40,5 40,5 C4722 71 Kabarnet 286 411,8 370,0 42,0 C4777 71 Kibarnet 286 411,8 370,0 42,0 C5072 71 Chemeron 21,0 21,0 21,0 C5170 71 Kiboine 283,7 42,0 42,0 42,0 42,0 42,0 42,0 42,0 42,0 42,0 42,0 42,0 42,0 42,0 42,0 42,0				300	432.0		0.01
C6950 64 Gem East 9,6 C7152 64 Kanyanda 14,4 C7178 64 N.Karachwony 80 115.2 8,6 C8970 64 C. Suna 12,0						11.0	
C7152 64 Kanyanda 14.4 C7778 64 N.Karachwony 80 115.2 8.6 C8970 64 C. Suna Rakw. 64 W.Kamagambo 12.0 C3437 71 Tangulbei 151 217.4 36.3 C3868 71 Nginyang 164 236.2 40.5 6 C4722 71 Kabarnet 286 411.8 370.0 6 C4777 71 Kisanana 197 283.7 42.0 6 C4777 71 Kiboino 21.0 C5072 71 Chemeron 21.0 C5072 71 Kiboino C5883 71 Mogotio C6363 71 Kositei C6364 71 Cheserimion 42 60.5 30.0 6 C6365 71 Ngambo C6365 71 Ngambo C65652 71 Loboi 24.0 C6570 71 Kabunet C722B 71 Eldama Ravin C7456 71 Kabuk 50.4 C7476 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5159 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C6323 73 Konza 60 86.4 9.9 C1231 73 Eldangatus C1391 73 Eldangatus C1539 73 Dalalakotok C2500 73 Ngong C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2647 73 Matapato C2677 73 Sultan Hamud 152 218.9 10.0			•			,	
C7778 64 N.Karachwony 80 115.2 8.6 C8970 64 C. Suna Rakw. 64 W.Kamagambo 12.0 C3437 71 Tangulbei 151 217.4 36.3 6 C3468 71 Nginyang 164 236.2 40.5 6 C4722 71 Kabarnet 286 411.8 370.0 6 C4727 71 Kisanana 197 283.7 42.0 6 C5170 71 Kiboino 21.0 C5170 71 Kiboino 21.0 C5170 71 Kositei 21.0 C5363 71 Mogotio 23633 71 Kositei 21.0 C6364 71 Cheserimion 42 60.5 30.0 6 C6365 71 Ngambo 24.0 C6970 71 Kabarnet 24.0 C722B 71 Eldama Ravin 274.5 11 Kabuk 50.4 C722B 71 Kabuka 50.4 C7074 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chepsirei C5346 72 Tot C6232 72 Iten town 100.0 C6323 72 Iten town 100.0 C6323 73 Elangataus C1533 73 Elangataus C1534 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0							
C8970 64 C. Suna Rakw. 64 W.Kamagambo 12.0 C34377 71 Tangulbei 151 217.4 36.3 6 C3868 71 Nginyang 164 236.2 40.5 6 C4722 71 Kabarnet 286 411.8 370.0 6 C4777 71 Kisanana 197 283.7 42.0 6 C5972 71 Chemeron 21.0 21.0 21.0 21.0 21.0 21.0 25.7 21.0 25.7 22.0 <td></td> <td></td> <td></td> <td>9n</td> <td>1150</td> <td></td> <td></td>				9n	1150		
Rakw. 64 W.Kamagambo 12.0 C3437 71 Tangulbel 151 217.4 36.3 6 C3868 71 Nginyang 164 236.2 40.5 6 C4722 71 Kabarnet 286 411.8 370.0 6 C4777 71 Kisanana 197 283.7 42.0 6 C5072 71 Chemeron 21.0 7 20.0 6 C5170 71 Kiboino 7 283.7 42.0 6 6 650.1 6 6 6 6 6 6 6 6 6 6 6 6 6 30.0 6 6 6 6 30.0 6 6 66362 71 Ngambo 7			•	au	113.2	8,0	
C3437 71 Tangulbei 151 217.4 36.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.						12.0	
C3868 71 Nginyang 164 236.2 40.5 6 C4722 71 Kabarnet 286 411.8 370.0 6 C4777 71 Kisanana 197 283.7 42.0 6 C5072 71 Chemeron 21.0 21.0 21.0 C5170 71 Kiboino 21.0 21.0 21.0 21.0 21.0 25.0 21.0 25.0 21.0 25.0 21.0 25.0<			-	151	217 4		0.17
C4722 71 Kabarnet 286 411.8 370.0 0 C4777 71 Kisanana 197 283.7 42.0 0 C5072 71 Chemeron 21.0 0 C5170 71 Kiboino 21.0 0 C5883 71 Mogotio 8 0 0 C6362 71 Salabani 2 60.5 30.0 0 C6363 71 Kostici 30.0 0 0 C6364 71 Cheserimion 42 60.5 30.0 0 C6365 71 Ngambo 24.0 0 0 24.0 0 C6970 71 Kabarnet 50.4 0			-				0.17
C4777 71 Kisanana 197 283.7 42.0 (C5072 71 Chemeron 21.0 21.0 C5170 71 Kiboino 21.0 C5170 71 Kiboino 21.0 C5183 71 Mogotio C6362 71 Salabani C6363 71 kositei C6364 71 Cheserimion 42 60.5 30.0 (C6365 71 Ngambo C6652 71 Loboi 24.0 C6970 71 Kabunet C722B 71 Eldama Ravin C7456 71 Kabluk 50.4 C6074 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5112 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C6607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Eldangataus C1539 73 Blangataus C1539 73 Dalalakotok C1539 73 Dalalakotok C2500 73 Ngong C2500 73 Mgong C2507 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0							0.90
C5072 71 Chemeron 21.0 C5170 71 Kiboino C5883 71 Mogotio C6362 71 Salabani C6363 71 Kositei C6364 71 Cheserimion 42 60.5 30.0 C6365 71 Ngambo C66970 71 Kabrnet C722B 71 Eldama Ravin C7456 71 Kabluk 50.4 P0094 71 Olkokwe C1074 72 Bukar 72.0 C1127 72 Kibtoro C5112 72 Chebloch C5112 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C60607 73 Konza 60 86.4 9.9 C1231 73 Endonet C1391 73 Elangataus C1394 73 Matapato C1539 73 Ngong C2647 73 Matapato C2657 73 Matapato C2667 73 Matapato							0.15
C5170 71 Kiboino C5883 71 Mogotio C5383 71 Kosltei C6362 71 Salabani C6363 71 Kosltei C6364 71 Chescrimion 42 60.5 30.0 (C6365 71 Ngambo C6652 71 Loboi 24.0 C6970 71 Kabarnet C722B 71 Eldama Ravin C7456 71 Kabluk 50.4 P0094 71 Olkokwe C1074 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5112 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C6667 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Eldangataus C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0			Chemeron				2.10
C5883 71 Mogotio C6362 71 Salabani C6363 71 kositei C6364 71 Cheserimion 42 60.5 30.0 (C6365 71 Ngarnbo C6365 71 Ngarnbo C6525 71 Loboi 24.0 C6970 71 Kabarnet C722B 71 Eldama Ravin C7456 71 Kabluk 50.4 P0094 71 Olkokwe C1074 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5159 72 Chepsirei C5336 72 Tot C6323 72 Iten town 100.0 C6323 72 Iten town 60 86.4 9.9 C1231 73 Eldangatus C1391 73 Elangatus C1391 73 Elangatus C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0	C5170	71	Kiboino				
C6362 71 Kositei C6363 71 Cheserimion 42 60.5 30.0 6 C6365 71 Ngambo 24.0 6652 71 Loboi 24.0 C6652 71 Kabarnet 24.0 60.5 24.0 6 C6970 71 Kabarnet 24.0 60.5 24.0 6 <td></td> <td>71</td> <td>Mogotio</td> <td></td> <td></td> <td></td> <td></td>		71	Mogotio				
C6363 71 kositei C6364 71 Cheserimion 42 60.5 30.0 60.5 C6365 71 Ngambo 24.0 24.0 C6670 71 Kabarnet 24.0 24.0 C722B 71 Eldama Ravin 50.4 50.4 C7456 71 Kabluk 50.4 50.4 P0094 71 Olkokwe 72.0 3.6 C1074 72 Bukar 72.0 3.6 C5112 72 Chebloch 72.0 72.0 C5112 72 Chepsirei 72.0 72.0 72.0 C5112 72 Chepsirei 72.0							
C6365 71 Ngambo C6652 71 Loboi 24.0 C6970 71 Kabarnet C722B 71 Eldama Ravin C7456 71 Kabluk 50.4 P0094 71 Olkokwe 50.4 C1074 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5112 72 Chepsirei C5146 72 Tot C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Elangataus C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0			kositei				
C6365 71 Ngambo C6652 71 Loboi 24.0 C6970 71 Kabarnet C722B 71 Eldama Ravin C7456 71 Kabluk 50.4 P0094 71 Olkokwe 72.0 C1074 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5159 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Elangataus C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0		71		42	60.5	30.0	0.50
C6970 71 Kabarnet C722B 71 Eldama Ravin C7456 71 Kabluk 50.4 P0094 71 Olkokwe 72.0 C1074 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5159 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet C1391 73 Elangataus C1534 73 Matapato C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0	C6365	71	Ngarnbo				
C6970 71 Kabarnet C722B 71 Eldama Ravin C7456 71 Kabluk 50.4 P0094 71 Olkokwe 72.0 C1074 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5159 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet C1391 73 Elangataus C1534 73 Matapato C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0		71	=			24.0	
C7456 71 Kabluk 50.4 P0094 71 Olkokwe 72.0 C1074 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5159 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet 100.0	C6970	71	Kabarnet				
P0094 71 Olkokwe C1074 72 Bukar 72.0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5159 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet C1391 73 Elangataus C1534 73 Matapato C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0							
P0094 71 Olkokwe C1074 72 Bukar 72,0 C1127 72 Kibtoro 3.6 C5112 72 Chebloch	C7456	71	Kabluk			50.4	
C1127 72 Kibtoro 3.6 C5112 72 Chebloch C5159 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet C1391 73 Elangataus C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0	P0094	71	Olkokwe				
C5112 72 Chebloch C5159 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet 100.0<						72,0	
C5159 72 Chepsirei C5346 72 Tot C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet C1391 73 Elangataus C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0						3.6	
C5346 72 Tot C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet 73 Elangataus C1391 73 Matapato 73 Matapato C1539 73 Dalalakotok 73 Ngong C2500 73 Ngong 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0			Chebloch				
C6323 72 Iten town 100.0 C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet 73 Elangataus C1391 73 Matapato 73 Dalalakotok C1539 73 Dalalakotok 73 Ngong C2500 73 Ngong 74 74 74 74 75 74 75 74 75							
C0607 73 Konza 2.4 C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet C1391 73 Elangataus C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0				•			
C1183 73 Kinyewa 60 86.4 9.9 C1231 73 Endonet C1391 73 Elangataus C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0							
C1231 73 Endonet C1391 73 Elangataus C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0							·
C1391 73 Elangataus C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0			·	60	86.4	9.9	0.11
C1534 73 Matapato C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0							
C1539 73 Dalalakotok C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0			_				
C2500 73 Ngong C2647 73 Matapato C2975 73 Sultan Hamud 152 218.9 10.0			•				
C2647 73 Matapato							
C2975 73 Sultan Hamud 152 218.9 10.0							
C3392 73 Bissel				152	218.9	10,0	0.05

Table 2.4.1 Present Abstraction Rate and Utilization Ratio (7/9)

B/H no.	District	Location	Initial yield (l/min)	(m3/day)	Observed (m3/day)	Utilization ratio
C3436	73	Lodokilani		· · · · · · · · · · · · · · · · · · ·		
C3481	73	Kaputei	227	326.9	14.0	0,04
C3519	73	Imaroro				
23649	73	Odomogi				
C3746	73	Engorika				
C3836	73	Loitokitok				
C4182	73	Elangataus				
C4199	73	Kiserian	545	784.8	198.0	0,25
C4258	73	Emarti	155	223.2	24.0	0.11
C4498	73	Oloyiangalani				
C4532	73	Tursei				
C4612	73	Mashuru				
C4641	73	Olkiloriti				
C4934	73	Lorngoswa				
C6269	73	Ongatarongai	215	309.6	20.0	0.06
C6739	73	Isenya	150	216.0	72.0	0.33
C7447	73	Namanga				
Doiny	73	Matapato				
Iltil	73	Odomogi			19.8	
P0016	73	Kekonyoke			9.0	
P0059	73	Kinyewa			36.0	
C1134	74	Chepsir				
C3341	74	Sotik				
C4655	74	Kimulot				
C4868	74	Soin				
C0037	75	Aiyam				
C0150	75	Oldonyo Farm				
C0372	75	Twala			4.0	
C0523	75	Nturkana				
C0884	75	Muhonia				•
C1646	75	Tinga Mara	288	414.7	96.0	0.23
C1767	75	Mutara	167	240.5	42.0	0.17
C1785	75	Luoniek				
C1813	75	Dol Dol	55	79.2	24.0	0.30
C1977	75	Tandare				
C2349	75	Ngobit				
C2561	75	Ol Pajeja	151	217.4	19.2	0.09
C3420	75	Mukogodo	72	103.7	28.8	0,28
C3670	75	Narumoru	11	15.8	2.4	0.15
C4180	75	Ngumo				
C5019	75	Nanyuki				
C5069	75	Kinamba			12.3	
C5139	75	Anandaguru				
C5140	75	Aljijo				
C5197	75	Ol Kinyei				
C6366	75	Sweet Waters				
Oldon	75	Oldonyo Farm				
BHNo1	76	Naivasha			700.0	
C0422	76	molo Town				
C0736	76	Kabazi				
C2704	76	Elmenteita	155	223.2	14.4	0.06
C5819	76	Mbaruk	·			
C6056	76	mau Narok				
C7381	76	Lomolo				
C7729	76	Nakuru town			2.0	
C8297	76	Njoro			249.0	
NdibF	76	Dabibi				
Barat	77	Chemundu				
C6306	77	Mosoroit	158	227.5	24.0	0.11
C6331	77	Chemundu	45	64.8	59.0	0.9
C3525	78	Masiro				
C4695	78	Talex				
C4831	78	Mulot				
C6017	78	Olololunga				
C6082	78	Kilgoris			3,6	
C6806	78	Naikara			1.02	

 Table 2.4.1
 Present Abstraction Rate and Utilization Ratio (8/9)

В/Н по.	District	Location	Initial yield (l/min)	(m3/day)	Observed (m3/day)	Utilization ratio
C8315	78	Siria North				
C1639	79	Marti				
C1776	79	Barsalinga				
C2750	79 70	Kirimun				
C3505	79 70	Lerata				
C3566	79 70	Lerata	ጎረ	504.0	10.1	0.00
C3599 C3651	79 79	Sorolepi Lesirkan	364	524.2	10.1	0.02
C3808	79 79	Wamba Hosp.			0.6	
C3832	79 79	Londungokwe	68	97.9	30.0	0.31
C3833	79 79	Sirata Oirobi	44	63.4	9.6	0.15
C3855	79	Baragoi	44	03.4	9.0	0.15
C3869	79	Baragoi				
C4315	79	Wamba	80	115.2	37.0	0.32
C4316	79	Bawa	75	110.2	57.0	0.52
C4417	79	Baragoi				
C4513	79	Wamba Town				
C7190	79	Sorelepi				
C7191	79	Lodo Kejek			6.0	
C7908	79	Lodero			9.0	
C7911	79 79	Wamba			. 3.0	
C7914	79	Lengusaka				
C7915	79	Lengei				
C7917	79	Kawop			29.0	
C7918	79	Basarloi			27,0	
C7919	79	Masekita				
C7921	79	Losuk				
C7922	79	Maralal				
C8989	79	Kirimunu	33	47.5	. 15.0	0.32
C9068	79	Maralal	22	-1712		0.32
C9119	79	Opiroi				
Lorok	79	Naibo Keju			16,2	
Wamba	79	Wamba			0.9	•
C7312	81	Kiminini			2,0	
C7827	81	Klminini			_,-	
C8140	81	Chepsiro				
C8509	81	Gidea				
C8826	81	Chepchoina				
C9299	81	Sitatunga				
C3789	82	Lokichar	76	109.4	68.0	0.62
C5076	82	Kalobeyei				
C5079	82	Naweton				
C5080	82	Natira				
C5082	82	Kangakiporo			•	
C5088	82	Ngisiger				
C5100	82	Lokichogio				
C5621	82	Nakwzuro				
C5625	82	Yapakuno				
C5636	82	Kwatela	•			
C5644	82	Kaikor				
C5653	82	Ngisiger				
C5773	82	Kawalathe				
C5840	82	Kanamkemer	•			
C5843	82	Loperot				
C5859	82	Lotongot				
C5861	82	Kalemonyorok				
C5867	82	Lorengipi				
C5872	82	Lokori	200	288.0	36.0	0.13
C6087	82	Kalokol	200	200,0	30.0	0.13
C6521	82	Lopur				
C6538	82	Lorgum				
C6540	82	Lorgum				
C6541	82 82	Lorgum				
C6548	82 82	Lomelo				
C6553	82	Napeltom				
C6554	82	Lokwamosing				

 Table 2.4.1
 Present Abstraction Rate and Utilization Ratio (9/9)

B/H no.	District	Location	Initial	*		Observed	Utilization
51515		Verin		(l/min)	(m3/day)	(m3/day)	ratio
C6563	82	Kerio					
C6564	82	Kerio					
C6568	82	Lorengipi					
C6568	82	Kinabur					
C6569	82	Lorengipi					
C6570	82	Lokore					
C6583	82	Kibish					
C6585	82	Kwatela		•			
C7634	82	Ngisiger					
C7637	82	Kwatela					
C7654	82	Lokitaung					
C7659	82	Aterika					
C7663	82	Nariokotome					
C7668	82	Monti					
C7674	82	Lopur					
C7678	82	Kakuma					
C7810	82	Lokichogio					
C8443	82	Lodwar					
TW274	82	Yapakuno					
C0617	83	Sergoit Ranch Farm					
C2689	83	Kabitm		27	38.88	6.0	0.15
C2762	83	Matunda		121	174.2	27.5	0,16
C3153	83	Laigusc					
C3712	83	Sergoit Ranch Farm	•				
C4333	83	Soy ·					
C6098	83	Lessos		67	96,48	59.0	0.61
C7763	83	Sergoit				12.0	
C9415	83	E Anabkoi					
Ngeri	83	Ngeria	•				
C4557	84	Marich Pass				54.0	
C5414	84	Morobus				5.8	
C5430	84	Chesera				3.6	
C5431	84	Screwa					
D0914	84	Nakitimer					
D1503	84	Kunyao				6.0	
C5284	91	S. Namwera				10.2	
C5288	91	Cheptais					
C7506	91	E. Bukusu				8.0	
C7999	91	Naitiri					
C8389	91	Bokoli					
C8771	91	Bumula					
C5123	92	S. Teso					
C5189	92	W.Bukhaya				17.8	
C5944	92	East Bukhayo				12.6	
C5975	92	Samia South					
C6129	92	N. Teso				7.2	
C7891	92	Samia North				12.6	
C5246	93	Municipality				• • • • • • • • • • • • • • • • • • • •	
C7024	93	E. Wanga					
C7068	93	C. Kabras					
C7559	93	N. Wanga				13.0	
C8534	93	C. Marama				13.0	
C8556	93	Lumakanda		67	96.5	16.0	0.17
					70.0	10,0	,
Count				139	139	174	131
Ave				144.6	208.2	77.0	0.48
Min				2.0	2.9	0.9	0.01
Max				800.0	1152.0	744.0	7.25
St. dev.				129.93	187.10	122.29	0.826

Table 2.4.2 Estimated Groundwater Abstraction Rates (1/5)

Basin	Agricultural	Domestic	Exploratory	Imgation	Livestock	Observation	Other	Public w/s	Unknown	Total
code	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)
IAA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	107.9	27.0	134.9
IAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	77.8	77.8
IAC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	816.1	136.0	952.1
IAD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.0	41.0	82.0
IAE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	269.2	38.5	307.7
1AF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1AG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IAH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	882.0	348.7	1230.7
1BA	25.8	0.0	0.0	51.6	0.0	0.0	0.0	51.6	206.3	335.2
188	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	264.0	264.0
IBC	38.1	38.1	0.0	0.0	0.0	0.0	0.0	0.0	152.3	228.4
18D	24.2	0.0	0.0	24.2	0.0	0.0	48.4	24.2	6.96	218.0
1BE	29.5	44.3	0.0	29.5	0.0	0.0	14.8	0.0	59.1	177.2
1BG	42.4	0.0	0.0	0.0	0.0	0.0	21.2	0.0	9.69	127.3
1BH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ICA	45.0	0.0	0.0	22.5	0.0	0.0	45.0	22.5	404.9	539.9
1CB	138.7	0.0	0.0	0.0	27.7	0.0	1.12	27.7	277.4	499.4
55	35.7	0.0	0.0	0.0	0.0	0.0	0.0	17.9	142.9	196.5
100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	226.3	226.3
55	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	92.4	92.4
1DA	0.0	0.0	0.0	19.1	0.0	0.0	19.1	325.5	153.2	517.0
108	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	244.3	244.3
1DC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27.9	44.7	72.6
100	49.4	0.0	0.0	0.0	0.0	0.0	0.0	716.1	148.1	913.6
1EA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	224.2	124.6	348.8
1EB	0.0	35.3	0.0	0.0	0.0	0.0	0.0	424.1	565.5	1025.0
IEC	0.0	0.0	0.0	0.0	0.0	0.0	21.1	400.1	7.52.7	673.9
1ED	20.6	0.0	0.0	0.0	0.0	0.0	0.0	205.6	370.0	596.2
距	0.0	0.0	0.0	0.0	0.0	0.0	0.0	276.1	717.9	994.0
由	0.0	0.0	0'0	0.0	0.0	0.0	76.4	2.789	38.2	802.3
1EG	0.0	0.0	0.0	0.0	0.0	0.0	56.3	262.8	112.6	731.6
1FA	0.0	0.0	0.0	0.0	0.0	0.0	74.6	74.6	0.0	149.3
1 <u>7</u> 8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1FC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	106.6	106.6
뎚	84.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	84.9
田田	0.0	0.0	0.0	0.0	0.0	0.0	9.79	97.29	9.19	202.8
且	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1FG	0:0	0.0	0.0	0.0	0.0	0.0	42.6	42.6	0.0	85.2
1GA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1GB	230.1	0.0	0.0	7.97	0.0	0.0	230.1	0.0	7.97	613.7

Table 2.4.2 Estimated Groundwater Abstraction Rates (2/5)

Basin code	Agricultural (m3/day)	Domestic (m3/day)	Exploratory (m3/day)	Irrigation (m3/day)	Livestock (m3/day)	Observation (m3/day)	Other (m3/day)	Public w/s (m3/day)	Unknown (m3/day)	Total (m3/day)
190	207.4	0.0	0.0	0.0	0.0	0.0	207.4	0.0	345.6	760.4
199	324.4	108.1	0.0	0.0	0.0	0.0	540.7	162.2	162.2	1297.7
1GE	0.0	91.6	0.0	0.0	0.0	0.0	274.7	122.1	122.1	610.5
197	0.0	0.0	0.0	0.0	0.0	0.0	162.7	20.3	0.0	183.0
166	54.0	54.0	0.0	0.0	0.0	0.0	0.0	0.0	54.0	162.0
1HA	1253.1	0.0	0.0	167.1	0.0	0:0	1169.5	0.0	417.7	3007.4
1HB	0.0	0.0	0.0	0.0	0.0	0.0	39.4	0.0	39.4	78.8
IHC	0.0	135.5	0.0	0.0	0.0	0.0	45.2	45.2	0.0	225.8
1HD	0.0	280.7	0.0	0.0	0.0	0.0	28.1	84.2	0.0	393.0
1HE	0.0	214.0	0.0	0.0	0.0	0.0	53.5	0.0	0.0	267.5
111	0.0	730.8	0.0	0.0	0.0	0.0	203.0	162.4	0.0	1096.2
1HG	0.0	81.6	0.0	0.0	0.0	0.0	81.6	0.0	0.0	163.3
1JA	208.9	208.9	0.0	0.0	0.0	0.0	0.0	0.0	278.5	696.3
1133	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
UC	124.4	0.0	0.0	0.0	0.0	0.0	62.2	0.0	62.2	248.8
JJD	0.0	0:0	0.0	0.0	0.0	0.0	101.7	0.0	0.0	101.7
1.E	0:0	131.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	131.2
1.1F	32.9	0.0	0:0	329	0.0	0.0	0.0	9.86	65.7	230.1
11G	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	868	868
IKA	57.9	57.9	0.0	0.0	0.0	0.0	67.5	115.7	67.5	347.2
1KB	0.0	0.0	0.0	0.0	0.0	0.0	151.6	50.5	50.5	252.6
IKC	0.0	25.5	0.0	0.0	0.0	0.0	50.9	127.4	0.0	203.8
ILA	126.2	0.0	0.0	42.1	0.0	0.0	84.1	84.1	0.0	336.5
ILB	202.1	161.7	0.0	0.0	40.4	0.0	80.8	40.4	323.3	848.8
2AA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2AB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	402.0	0.0	402.0
2BA	0.0	0.0	0.0	0.0	40.9	0.0	0.0	122.7	163.6	327.1
2BB	0.0	0.0	0:0	0.0	191.6	0.0	0.0	82.1	0.0	273.7
2BC	0.0	116.6	0.0	0.0	116.6	0.0	16.7	816.5	100.0	1166.4
2BD	0.0	- 480.0	0.0	0.0	36.9	0.0	0.0	886.2	73.8	1476.9
2CA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	201.6	201.6
2CB	0.0	0.0	0.0	78.4	0.0	0.0	78.4	78.4	78.4	313.6
2CC	0.0	0.0	0.0	0.0	0.0	0.0	30.8	6.912	61.5	369.2
2D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	572.6	0.0	572.6
2EA	599.2	59.9	0.0	0.0	0.0	0.0	119.8	299.6	659.1	1737.6
2EB	371.6	0.0	0.0	0.0	0.0	0.0	92.9	0.0	0.0	464.4
2EC	680.2	0.0	0.0	42.5	0.0	0.0	127.5	170.0	850.2	1870.5
2ED	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	180.8	180.8
2EE	0.0	0.0	0:0	0.0	0.0	0:0	0.0	0.0	0.0	0.0
2EF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	117.1	117.1	234.2

Table 2.4.2 Estimated Groundwater Abstraction Rates (3/5)

code 2EG)					Coservation	555			120
2EG	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)
	499.0	0.0	41.6	83.2	0.0	0.0	457.4	124.8	1081.2	2287.2
2EH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2EJ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	112.3	112.3	224.5
2EK	58.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	234.6	293.2
2FA	506.1	56.2	0.0	0.0	56.2	0.0	168.7	56.2	224.9	1068.3
2FB	73.6	0.0	0.0	73.6	0.0	0.0	220.9	0.0	368.2	736.4
2FC	1413.0	97.4	0.0	292.3	146.2	0.0	730.8	438.5	1754.0	4872.2
2GA	0.0	0.0	0.0	0.0	110.8	0.0	166.1	0.0	498.4	775.3
2GB	459.1	57.4	57.4	114.8	0.0	0.0	172.2	229.5	1090.3	2180.6
2GC	124.6	62.3	0.0	0.0	0.0	0.0	0.0	0.0	124.6	311.4
2GD	1899.0	263.7	0.0	105.5	52.7	52.7	527.5	105.5	2743.0	5749.7
2H	341.2	255.9	42.7	85.3	128.0	0.0	170.6	298.6	810,4	2132.6
7	0.0	26.7	0.0	0.0	0.0	0.0	0.0	935.1	26.7	988.5
2K	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2KA	147.5	0.0	0.0	0.0	0.0	0.0	49.2	0.0	196.7	393.3
2KB	128.6	0.0	0.0	0.0	0.0	0.0	0.0	64.3	192.9	385.8
2KC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3AA	1672.8	97.68	0.0	489.6	122.4	0.0	1387.2	9.269	4691.9	9954.9
3AB	382.5	0.0	0.0	31.9	63.7	0.0	63.7	127.5	924.4	1593.7
3AC	344.5	98.4	0.0	49.2	0.0	.00	492.2	147.7	885.9	2017.9
3BA	4435.4	0.0	82.1	1067.8	82.1	0.0	3244.4	1314.2	9404.7	19630.7
3BB	2184.7	115.0	0.0	345.0	575	0.0	747.4	977.4	3679.6	8106.5
3BC	1087.1	483.2	0.0	181.2	0.0	0.0	483.2	60.4	422.8	7.717.7
3BD	572.2	0.0	0.0	286.1	0.0	57.2	114.4	171.7	743.8	1945.4
3CA	1061.0	1185.8	0.0	748.9	62.4	0.0	374.5	624.1	436.9	4493.4
3CB	776.6	0.0	0.0	0.0	59.7	0.0	477.9	59.7	597.4	1971.4
3DA	173.5	0.0	0.0	0.0	0.0	0.0	86.7	86.7	303.6	650.5
3DB	27.5	0.0	0.0	0.0	. 0.0	0.0	97.2	0.0	97.2	291.7
3EA	419.3	125.8	0.0	41.9	0.0	0.0	209.6	377.4	838.6	2012.5
3EB	0.0	0.0	0.0	0.0	0.0	0.0	88.0	132.0	220.1	440.1
3EC	116.3	0.0	0.0	0.0	0.0	0.0	58.2	290.8	116.3	581.6
3ED	0.0	0.0	0.0	0.0	0.0	0.0	62.1	186.4	124.2	372.7
3FA	333.3	8.666	0.0	0.0	333.3	0.0	8.666	333.3	0.0	2999.3
3FB	2734.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2734.7
3G	0.0	0.0	0.0	0.0	0.0	0.0	410.1	58.6	0.0	468.6
3HA	0.0	0.0	0.0	0.0	107.9	0.0	0.0	107.9	107.9	323.6
3HB	0.0	0.0	0.0	0.0	107.9	0.0	0.0	107.9	107.9	323.6
3HC	86.2	86.2	0.0	0.0	86.2	0.0	86.2	86.2	0.0	431.1
3HD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	323.6	0.0	323.6

Table 2.4.2 Estimated Groundwater Abstraction Rates (4/5)

Basin	Agricultural	Domestic	Exploratory	Irrigation	Livestock	Observation	Other	Public w/s	Unknown	Total
code	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)
31	0.0	0.0	0.0	0.0	0.0	0:0	0.0	140.0	559.9	8.669
3K	76.3	0.0	0.0	25.4	0.0	0.0	0.0	1678.4	152.6	1932.7
3L	99.1	49.6	0.0	0.0	24.8	0.0	223.0	1412.3	396.4	2205.2
3M	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0
3MA	175.0	0.0	0.0	58.3	58.3	58.3	175.0	408.3	408.3	1341.4
3MB	191.4	0.0	0.0	63.8	0:0	63.8	191.4	382.8	446.6	1339.8
3MC	191.4	0.0	0.0	63.8	0.0	0.0	191.4	382.8	510.4	1339.8
3MD	128.8	322.0	0.0	64.4	64.4	0.0	193.2	386.4	515.2	1674.4
33.	197.9	0.0	0.0	0.0	0.0	0.0	346.3	346.3	247.4	1137.9
4AA	127.8	127.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	255.6
4AB	234.9	0.0	0.0	93.9	0.0	0.0	93.9	0.0	140.9	563.6
4AC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4AD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.7	201.4	302.0
4BA	159.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.67	239.1
4BB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4BC	0.0	162.9	0.0	0.0	0.0	.0.0	0.0	0.0	81.4	244.3
4BD	127.3	169.8	0.0	0.0	0.0	0.0	0.0	0.0	42.4	339.5
4BE	0.0	0.0	0.0	0.0	0.0	0.0	81.0	162.0	162.0	404.9
4BF	<i>L</i> '69	0.0	0.0	0.0	0.0	0.0	104.5	104.5	348.4	627.1
4BG	0.0	0.0	45.1	45.1	45.1	0.0	135.2	45.1	225.4	540.8
4CA	314.7	0.0	0.0	0.0	0.0	0.0	157.4	0.0	681.9	1154.0
4CB	284.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	142.1	426.2
4CC	684.3	45.6	0.0	136.9	0.0	0.0	547.5	136.9	547.5	2098.6
4DA	153.9	153.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	307.8
4DB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4DC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
400	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4DE	64.6	129.2	0.0	0.0	0.0	0.0	64.6	0.0	64.6	323.0
4EA	0.0	0.0	0.0	0.0	0.0	0.0	173.7	0.0	0.0	173.7
4EB	0.0	0.0	0.0	0.0	0.0	0.0	221.6	55.4	0.0	277.0
4EC	828	0.0	0.0	82.8	0.0	0.0	82.8	0.0	8.7.8	331.1
4ED	0.0	0.0	0.0	0.0	0.0	0.0	119.8	0.0	179.7	299.4
4FA	0.0	0.0	0.0	0.0	0.0	0.0	175.7	0.0	0.0	175.7
4FB	38.3	0.0	0.0	0.0	38.3	0.0	0.0	574.4	38.3	689.2
4GA	0.0	0.0	0.0	0.0	29.5	0.0	29.5	206.5	59.0	324.5
4GB	0.0	0.0	0.0	0.0	38.1	0.0	38.1	76.2	38.1	190.4
4GC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	190.4	0.0	190.4
4GD	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0
4GE	0.0	229.0	0.0	0.0	0.0	0.0	0.0	343.5	0.0	572.5
4GF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

le 2.4.2 Estimated Groundwater Abstraction Rates (5/5)

Basin	Agricultural	Domestic	Exploratory	Irrigation	Livestock	Observation	Other	Public w/s	Unknown	Total
code	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)	(m3/day)
4GG	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0
4HA	0.0	0.0	0.0	0.0	45.4	0.0	45.4	227.1	6:06	408.8
4HB	0.0	0.0	0.0	0.0	40.9	0.0	81.8	204.4	81.8	408.8
4JA	0.0	0.0	0.0	105.3	0.0	0.0	0.0	52.6	105.3	263.2
4JB	0.0	0.0	0.0	105.3	0.0	0.0	0.0	52.6	105.3	263.2
4KA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4KB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	485.4	242.7	728.1
SAA	167.3	0.0	0.0	0.0	0.0	0.0	55.8	27.9	529.8	780.7
5AB	68.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	238.3	306.3
SAC	259.9	0.0	0.0	0.0	37.1	0.0	148.5	0.0	222.8	668.3
5AD	111.5	0.0	0.0	0.0	55.8	0.0	55.8	0.0	0.0	223.0
5BA	114.2	0.0	0.0	0.0	0.0	0.0	57.1	0.0	171.3	342.5
5BB	47.1	0.0	0.0	0.0	0.0	0.0	47.1	0.0	188.2	282.3
5BC	158.3	0.0	0.0	22.6	0.0	0.0	45.2	22.6	384.5	633.3
5BD	246.0	0.0	0:0	0.0	0.0	0.0	82.0	0.0	287.0	614.9
SBE	46.8	0.0	0.0	0.0	0.0	0.0	46.8	0.0	327.9	421.5
SCA	86.5	0.0	0.0	28.8	57.7	0.0	28.8	115.3	115.3	432.4
5CB	35.7	0.0	0.0	0.0	0.0	0.0	35.7	142.8	142.8	356.9
500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5DA	181.5	18.2	0.0	0.0	18.2	0.0	54.5	127.1	308.6	707.9
5DB	134.0	0.0	0.0	0.0	26.8	0.0	53.6	107.2	267.9	589.4
500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SDD	0.0	213.4	0.0	213.4	000	0.0	213.4	0.0	0.0	640.3
SEA	0.0	0.0	0.0	0.0	41.6	0.0	41.6	145.6	83.2	312.0
SEB	0.0	0.0	0.0	0.0	30.2	0.0	150.9	271.6	120.7	573.4
SEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.2	0.0	125.2
5FA	0.0	0.0	0.0	0.0	130.7	0.0	32.7	555.3	32.7	751.3
STB	0.0	0.0	0.0	0.0	. 128.0	0.0	42.7	469.3	42.7	682.6
56	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ж	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
53	0.0	0.0	0.0	0.0	0.0	0.0	202.5	354.3	0.0	556.7
		0000	0	0	0 000	,		20100		
(m3/day)	32192.9	9488.5	268.8	2692.8	29420	232.1	21619.9	30483.7	53836.1	136/36.9
(m3/year)	11/50415	3463319	98123.5	2077863	10/3829	84/14	C/Z168/.	00000111	19650189	5/2162/9

Table 2.4.3 Availability of Safe-yielding Boreholes by Distrit

Code	Distrit	Boreholes Analysed (no.)	Safe-yielding Borcholes (no.)
110	Nairobi	-	-
210	Kiambu	61	3
220	Kirinyaga	3	
230	Murang'a	11	2
240	Nyandarua	6	
250	Nyeri	13	1
310	Kilifi	1	
320	Kwale	11	2
330	Lamu	3	1
340	Mombasa		
350	Taita Taveta	2	
360	Tana River	17	2
410	Embu	9	1
420	Isiolo	5	1
430	Kitui	16	
440	Machakos/Makueni	31	1
450	Marsabit	8	1
460	Meru	7	
510	Garissa	17	
520	Mandera	2	1
530	Wajir	11	1
610	Kisii/Nyamira	7	2
620	Kisumu	· 5	
630	Siaya	13	3
640	South Nyanza	28	6
710	Kajiado	9	
720	Kericho	21	1
730	Laikipia	12	
740	Nakuru	18	
750	Narok	9	
760	Trans Nzoia	8	2
770	Uasin Gishu	2	1
810	Baringo	14	2
820	Elgeyo Marakwet	8	2
830	Nandi	5	1
840	Samburu	3	
850	Turkana	79	6
860	West Pokot	14	2
910	Bungoma	10	
920	Busia	17	2
930	Kakamega/Vihiga	40	2
	Unknown	371	22
Total		927	71

Note: Boreholes Analyzed:

Boreholes for which the aquifer test data are avilable and the

drawdown analysis was made.

Safe-yielding Boreholes:

Borcholes which were assumed by drawdown analysis to provide

the water at the rate of their initial yields for 20 years with

drawdown depth of less than 10 m.

Ratio of availability of safe-yielding boreholes: 0.076 (71/927)

Table 2.4.4 Potential and Safe Groundwater Abstraction by District

Code	Distrit	Boreholes Potential Yield	Borehole Safe Abstraction	Shallow Well Safe Abstraction	Unit:MCM/ye Total
		(1)	(2)	(3)	(4)
110	Nairobi		_	0.02	0.02
210	Kiambu	12.10	0.91	0.04	0.95
220	Kirinyaga	6.90	0.53	0.03	0.56
230	Murang'a	8.04	1.03	0.34	1.37
240	Nyandarua	12.04	0.92	0.09	1.01
250	Nyeri	11.82	1.09	0.07	1.16
310	Kilifi	69.88	5.35	11.79	17.14
320	Kwale	42.10	5.36	7.48	12.84
330	Lamu	62.85	3,61	5.72	9.33
340	Mombasa	1.84	0.14	0.06	0.20
350	Taita Taveta	105.65	8.09	15:23	23.32
360	Tana River	258,03	19.82	40.29	60.11
410	Embu	10.61	0.83	1.74	2.57
420	Isiolo	114.36	11.50	23.59	35.09
430	Kitui	126.09	9.66	27.89	37.55
440	Machakos/Makueni	71.96	5.51	10.78	16.29
450	Marsabit	263.98	20.22	27.05	47.27
460	Meru	44.23	3.39	2,24	5.63
510	Garissa	185.28	14.19	42.80	56.99
520	Mandera	60.07	5,26	23.30	28.56
530	Wajir	163.85	13.62	56,76	70.38
610	Kisii/Nyamira	9.32	0.77	1,99	2.76
620	Kisumu	11.06	0.85	2.63	3.48
630	Siaya	8.10	0.64	2.23	2.87
640	South Nyanza	21.36	2.10	4,43	6.53
710	Kajiado	86.78	6.65	12.27	18.92
720	Kericho	17.54	1.46	1.01	2.47
730	Laikipia	44.56	3.41	2.76	6.17
740	Nakuru	26.01	1.99	1.35	3.34
750	Narok	23.89	4.13	8.55	12.68
760	Trans Nzoia	4.83	0.60	1.72	2.32
770	Uasin Gishu	13.65	1.10	0.54	1.64
810	Baringo	51.54	3.97	3.48	7.45
820	Elgeyo Marakwet	5.94	0.46	2.46	2.92
830	Nandi	5.82	0.47	1.66	2.13
840	Samburu	68.97	5.28	15.00	20.28
850	Turkana	216.23	23.33	51.65	74.98
860	West Pokot	22.12	1,99	8.46	10.45
910	Bungoma	15.05	1.15	1.86	3.01
920	Busia	4.74	0.50	1,66	2.16
930	Kakamega/Vihiga	11.57	1.15	3.12	4.27
Total		2300.76	193.03	426.12	619.15

Note:

⁽¹⁾ Based on groundwater yield shown in Figure 2.4.1.

^{(2) (1)} x Ratio of safe-yielding boreholes to all boreholes by location. An average of the rations is 0.076.

Table 2.5.1 Intercensal Comparison of 1979 Census with 1989 Census Provisional Results

Code	District	1979 Cen	sus ('000))	1989 Cc	nsus ('000	0)	Intercensal	Growth R	ate(%)	Pop. Density
		Total	Urban	Rural	Total	Urban*	1 Rural	Total	Urban	Rural	in 1989*2
110	Nairobi	828	828	0	1,346	1,346	0	4.98	4.98	-	2,285
210	Kiambu	686	51	635	914	99	815	2.91	6.79	2.53	454
220	Kirinyaga	291	8	284	388	18	370	2.90	8.74	2.69	372
230	Murang'a	648	17	631	846	59	787	2,70	12.94	2.24	405
240	Nyandarua	222	0	222	349	11	339	4,63	-	4.31	148
250	Nyeri	486	41	446	613	98	515	2.34	9.16	1.45	409
310	Kilifi	431	34	397	611	59	552	3.55	5.62	3.36	63
320	Kwale	288	8	280	384	14	370	2.91	5.50	2.82	53
330	Lamu	42.	11	32	57	12	45	3.03	1.25	3.57	16
340	Mombasa	341	341	0	467	465	2	3.19	3.15	-	2,359
350	Taita Taveta	148	7	140	202	24	178	3.19	12.58	2.40	38
360	Tana River	92	5	87	129	11	118	3.39	7.47	3.09	5
410	Embu	263	16	247	358	20	338	3.13	2.37	3.17	153
420	Isiolo	43	14	29	70	22	48	4.88	4.69	4.96	3
430	Kitui	464	7	458	640	15	625	3,26	8.60	3.16	33
440	Machakos/Makueni	1,023	102	921	1,393	157	1,236	3.14	4.41	2.99	115
450	Marsabit	- 96	22	74	125	33	92	2.65	4.15	2.17	2
460	Meru	830	73	757	1,138	90	1,048	3.20	2.13	3.30	170
510	Garissa	129	20	109	124	31	94	-0.38	4.26	-1.50	3
520	Mandera	106	25	81	123	7	116	1.54	-11.91	3.65	5
530	Wajir	139	19	120	125	22	103	-1.08	1.41	-1.52	2
610	Kisii/Nyamira	870	30	840	1,146	57	1,089	2.80	6.81	2.63	522
620	Kisumu	482	158	324	674	205	470	3,40	2.61	3.77	357
630	Siaya	475	4	470	643	23	62 0	3.09	19.26	2.79	270
640	South Nyanza	818	16	802	1,095	47	1,048	2.96	11.32	2.72	210
710	Kajiado	149	14	135	262	32	230	5.81	8.48	5.49	15
720	Kericho	633	38	596	859	51	808	3.09	3.02	3.10	227
730	Laikipia	146	30	116	213	41	172	3.86	3.01	4.08	26
740	Nakuru	523	133	389	862	242	620	5,13	6.15	4.76	195
750	Narok	210	16	195	402	16	386	6.69	0.44	7.08	29
760	Trans Nzoia	260	28	231	394	53	341	4.26	6.47	3.96	209
770	Uasin Gishu	301	51	250	440	115	325	3.88	8.58	2.65	149
810	Baringo	204	14	190	286	25	261	3.45	6.07	3.23	33
820	Elgeyo Marakwet	149	0	149	212	5	207	3.60	•	3.34	168
830	Nandi	299	3	296	440	13	427	3.93	15.83	3.72	200
840	Samburu	77	15	62	114	24	91	4.01	4.54	3.88	7
850	Turkana	143	6	136	179	0	179	2.29	•	2.77	3
860	West Pokot	159	. 5	154	231	12	219	3.83	9.52	3.59	28
910	Bungoma	504	45	459	731	68	664	3.79	4.08	3.76	293
920	Busia	298	25	273	423	14	409	3,57	-5.45	4.12	295
930	Kakamega/Vihiga	1,031	36	995	1,389	81	1,308	3.03	8.58	2.77	445
100	Nairobi	828	828	0	1,346	1,346	0	4.98	4.98	-	2,285
200	Central	2,335	118	2,217	3,110	285	2,825	2.91	9.25	2.45	346
300	Coast	1,343	407	936	1,850	585	1,265	3.26	3.70	3.06	34
400	Eastern	2,720	233	2,487	3,724	337	3,387	3.19	3.75	3.14	30
500	North-Eastern	374	63	310	372	59	313	-0.05	-0.71	0.08	3
600	Nyanza	2,644	208	2,436	3,558	332	3,226	3.01	4.80	2.85	305
700	Rift Valley	3,252	353	2,899	4,894	628	4,266	4.17	5.94	3.94	32
900	Western	1,833	106	1,727	2,543	163	2,380	3,33	4.41	3.26	361
	Kenya	15,327	2,316	13,011	21,397	3,736	17,661	3.39	4.90	3.10	45
	Kenya(Revised)	16,141			(>	22,000)	3.15			46

Source: A.04, A.08, A.13, A.14 and A.26

Remark: *1 Estimated by District based on Table A9.2.

*2 Unit:Persons/sq.km.

Table 2.5.2 Urban Population of Major Urban Centres: 1979 and 1989

	Major	Loca-	Census Popu		Change of Urban Po between Two Co	-		tage of Urb pulation (%	
No	Urban Centre*1	tion Code	1979	1989	Increment Ans	n.Growth(%)	1979	1989	Incremen
1	Nairobi	110	827,775	1,346,000	518,225	5.0	35.7	36.0	36,5
	Mombasa	340	341,148	465,000	123,852	3.1	14.7	12.4	8.3
	Kisumu	622.1	152,643	185,100	32,457	1.9	6,6	5.0	2.3
	Nakuru	749.0	92,851	162,800	69,949	5,8	4.0	4.4	4.9
5	Machakos	441.1	84,320	116,100	31,780	3.3	3.6	3.1	2.2
	Eldoret	772.5	50,503	104,900	54,397	7.6	2.2	2.8	3.8
7	Nyeri	257.0	35,753	88,600	52,847	9.5	1.5	2.4	3.1
	Meru	461.4	70,439	78,100	7,661	1.0	3,0	2.1	0.5
	Thika	214.4	41.324	57,100	15,776	3.3	1.8	1.5	1.1
	Kitale	762.3	28,327	53,000	24,673	6.5	1.2	1.4	1.3
11	Kakamega	935.4	32,025	47,300	15,275	4.0	1.4	1,3	1.1
	Kisii	615.0	29,661	44,000	14,339	4.0	1.3	1.2	1.0
	Kericho	725.5	29,603	40,000	10,397	3.1	1.3	1.1	0.1
14	Malindi	314.4	23,275	35,200	11,925	4.2	1,0	0.9	0,8
15	Naivasha	744.1	11,491	34,500	23,009	11.6	0.5	0.9	1.0
16	Maragwa	232.7	6,980	30,600	23,620	15.9	0.3	0.8	1.1
17	Bungoma	912.4	25,161	29,100	3,939	1.5	1.1	0.8	0.3
	Garissa	519.1	14,076	27,200	13,124	6.8	0.6	0.7	0.9
	Webuye	914.2	17,963	25,700	7,737	3.6	0.8	0.7	0.5
20	Nanyuki	731.5	18,986	24,500	5,514	2.6	0.8	0.7	0.4
21	Mumias	93A.4	10,700	23,900	3,314	2.0	-	0.6	· ·
	Athi River	442,3	9,760	23,000	13,240	9.0	0.4	0.6	0.9
23	Muranga	234.3	15,290	21,000	5,710	3.2	0.7	0.6	0.4
24	Homa Bay	641.1	7,489	20,800	13,311	10.8	0.3	0.6	0.9
25	Wajir	532.4	6,384	19,200	12,816	11.6	0.3	0.5	0.9
	Embu	413.7	15,986	18,200	2,214	1.3	0.7	0.5	0.3
	Maralal	841.4	10,230	16,900	6,670	5.1	0.4	0.5	0.5
28	Siaya	634.1	4,022	16,800	12,778	15.4	0.2	0.3	0.9
	Isiolo	421.1	11,331	15,400	4,069	3.1	0.5	0.4	0.3
	Karuri	211.1	,55.	14,800	41005	J.1	-	0.4	
		743.2	9,103	14,000	4,897	4.4	0.4	0.4	0.3
	Nyahururu	733.9	11,277	13,900	2,623	2.1	0.4	0.4	0.2
33	Elburgon	747.3	8,701	12,000	3,299	3.3			
	Ruiru	214.1	1,718	11,800	10,082	21.3	0.4	0.3	0.3
	Kilifi	313.2	5,866	11,700	5,834		0.1	0.3	0.3
	Narok	753,7				7.1	0.3	0.3	0.4
	Marsabit	454.1	5,690 8,739	11,200 10,900	5,510 2,161	7.0	0.2	0.3	0.4
	Kangundo	445.1			2,161 4,791	2.2	0.4	0.3	0.3
	Molo	747.5	5,709 5,350	10,500		6.3	0.2	0.3	0.3
	Taveta			10,200	4,850	6.7	0.2	0,3	0.3
	Nyamira	351.1 612.2	1,812 8,003	10,200	8,388	18.9	0.1	0.3	0.0
	Mandera	521.1		10,100	2,097	2.4	0.3	0.3	0.1
	Nairangi Enkare	752.5	13,126 10,000	6,900 -	-6,226 -	-6.2 -	0.6 0.4	0.2	-0.4
	Total of 43 Centre	es	2,109,890	3,318,200	1,208,310	4.6	91.1	88.8	85.
	Total of Urban Population		2,315,696	3,735,900	1,420,204	4,9	100.0	100.0	100.0

Source : A.08 and A.14

Remark: Service centres which have an urban population of more than 10,000 at both two censuses.

Table 2.5.3 GDP by Industrial Origin at Current Prices : 1979 - 1989

									TOITE	: K.Pound	Minn
Item	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	19
3DP at Current Prices							'				
A. Non-Monetary Economy							00.00			40.40	•
Forestry	15.21	16.66	19.22	21.71	25.14	28.39	33.58	37.26	43.68	52.60	59
Fishing	0.46	0.55	0.82	1.03	1.11	1.25	1.46	1.80	1.85	2.11	2
Building & Construction	37.19	41.57	46.20	48.96	60.02	62.06	76.34	71,77	77.07	84.17	90
Water Collection	14.04	15.10	17.12	19.29	22.07	24.79	28.09	31.57	35.78	40.73	4
Ownership of Dwelling	52,06	57.79	67.41	73.59	91.21	98.64	107.46	121.41	139,00	162.29	18
Sub-Total	118.96	131,67	150.77	164.58	199.55	215.13	246,93	263,81	297,38	341.90	38
B. Monetary Economy											
1. Enterprises & Non-profit Institutions:											
Agriculture	648.78	688,13	791.74			-		1,598.05			
Forestry	12.88	15,66	18,59	32.81	26.75	29.18	32.93	37.91	34,65	61.60	9
Fishing	3.70	4,37	6,56	8.33	9.02	10,34	12.09	15.09	17.50	20.09	2
Mining & Quarring	5.04	5.73	5.91	6.61	7.37	8.15	9.97	11.45	13.27	13.69	1
Manufacturing	249.84	295.14	328.16	372.32	408.26	460.96	518.40	608.23	652.47	752.96	85
Building & Construction	82.26	105,17	121.00	135.82	137.58	132.55	161.49	175.12	210,81	284.13	38
Electricity & Water	30.23	32.63	41.18	23.72	24.65	43.22	49.54	52,14	55.24	57.63	6
Trade, Restaurants & Hotels	214.07	244,66	274.03	306,67	371.04	439,67	520.64	561.01	628,25	712.03	82
Transport, Strage & Communication	114.65	127.81	143.39	195.87	215.89	250.32	296.40	341,08	393,35	433,74	48
Finance, Real Estate & Business Services	117,63	135.68	168.82	209.74	248.65	269.00	314.85	365,22	418,65	501.83	57
•							214.53				
Ownership of Dwellings	87,20	103,41	127.42	187.78	196.73	214.53		262,96	303.89	355.93	35
Other Services	39.59	49.41	56.15	82.45	92.21	107.27	129.58	153,72	181.66	197.92	22
Less; Imputed Bank Services	-56.10	-62,86	-71.21		-114.51					-195.79	
Total	•		-	2,438.89		•	-	-	•	•	
2. Private Households (Domestic Services)	19.16	23.34	28.62	32.75	35,63	44,87	51.78	62.96	71.78	83.94	9
3. Producers of Government Services :											
Public Administration	61,44	71,30	87.22	90.87	95.34	103.01	117.96	143.79	165.78	169.20	17
Defence	14.19	14.90	14.35	17.75	18.28	17.42	16.35	18.17	26.11	15.64	3
Education	129.57	154.18	178.19	200.04	212.55	240.12	292.78	373.26	399.17	478,48	58
Health	31,24	36.16	41.64	48,22	52.31	56.56	65.85	77.51	86.45	101.67	11
Agricultural Services	20,69	22,24	27.67	31.72	34.62	37.29	42.03	43,21	40.68	40.68	6
Other Services	32.13	33.68	41.85	52.75	62.15	67.82	81.37	100.51	104.53		10
Total	289.26	332,46	390,92		475.25	522,22	616.34	756,45			
Total Monetary Economy				2,912,99							•
								-	-		-
Total ODP at Factor Cost				3,077.57							
GDP per Capita (KPounds) GDP per Capita (US\$)	122.49 334.31	133.94 353.97	149.13 289.97	171.10 268.93		199.46 252,78	218.30 268.12				31 28
Percentage Distribution (%)											
A. Non-Monetary Economy											
Forestry	0.8	0.7	0.7	0.7	0.7	0.7	0.8	0.7	0.8	0.8	
Fishing	0.0	0.0	0.0		0.0			0.0	0.0		
Building & Construction	1.9	1.9	1.8		1.7	1.6	1.7	1.4	1.4	1.3	
Water Collection	0.7	0.7			0.6		0.6				
Ownership of Dwelling	2.6	2.6			2.6		2.4	2.4	2.5		
Sub-Total	6.0	5.9	5.8	5.3	5.8	5.6	5.6	5.2	5.3	5.3	
B. Monetary Economy											
1. Enterprises & Non-profit Institutions											
Agriculture	32.8	30.8	30.7	31.3	32.6	32.1	30.8	31.2	29.8	29.6	
Forestry	0.7	0.7	0.7	1.1	0.8	0.8	0.7	0.7	0.6	1.0	
Fishing	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
Mining & Quarring	0.3	0.3									
Manufacturing	12.6				11.8						
Building & Construction	4.2	4.7									
Electricity & Water	1.5	1.5									
Trade, Restaurants & Hotels	10.8	11.0					11.8				
•											
Transport, Strage & Communication	5.8	5.7			6.2		6.7				
Finance, Real Estate & Rusiness Services	5.9	6.1	6.5		7.2		7.2				
Ownership of Dwellings	4.4	4.6			5.7						
Other Services	2.0	2.2			2.7		2.9				
Less: Imputed Bank Services	-2.8	-2,8	-2.8	2.8	-3.3	-3.1	-3.0	-2.9	-3.1	-3.0	
Total	78.4	78.2	77.9	79.2	79.5	79.8	79.2	78.8	78.7	79.2	
Private Households (Domestic Services) Producers of Government Services:	1.0	1.0			1.0						
Public Administration	3.1	3,2	3.4	3.0	2.8	2.7	2.7	2.8	3.0	2.6	
Defence	0.7	0.7					0.4				
Education	6.6										
		6.9									
Health	1.6	1.6					1.5				
Agricultural Services	1.0	1.0									
Other Services	1.6	1.5									
Total	14.6	14.9									
Total Monetary Economy	94,0	94.1			94.2						
Total GDP at Factor Cost	100,0	100.0	100.0	100.0	100.0	100,0	100.0	100.0	100.0	100.0	- 1

Source: A.07, A.19-24 and A.38 (Sectoral Report A)

Table 2.5.4 Estimated Value Added and GRDP by District: 1989

(Unit: K.P.Million)

					 .								
		Agricul.	Mining	Manu-	Electri-	Whol			-	Social &		Non-	
Code	District	and	and	fac-	city and		Retail &	•	Insuran.		Total	Monetary	Total
		Forestry	Quarry	turing	Water	ruction	Catering	Commur	R.Estate	Services		Sector	
110	Najrobi	52.0	3.0	405.4	24.0	237.2	457.1	248.0	219.7	548.4	2,194.9	29.4	2,224.3
210	Kiambu	233.4	0.0	37.6	1.2	5.2	18.1	5.9	5.2	82.3	388.9	45.0	433.9
220	Kirinyaga	23.1	0.1	3.9	0.4	1,6	3.1	0.8	0,5	22.5	56.1	6.2	62.2
230	Murang'a	208.3	0.0	4.1	1.1	4.1	5.9	0.8	0.9	54.2	279.4	25.5	304.9
240	Nyandarua	116.4	0.0	3.7	0.5	1.2	4.8	0.7	0.4	22.7	150.5	3.5	153.9
250	Nyeri	31.7	0.0	19.4	2.8	12.3	17.5	2.2	3.2	59.4	148.5	7.6	156.1
310	Kilifi	49.5	0.0	9.9	0.6	2.2	19.9	2.0	1.3	22.0	107,5	4.9	112.5
320	Kwale	4.8	0.4	1,6	0.1	0.6	21.1	0.3	0.1	14.9	44.0	3.2	47.2
330	Lamu	5.7	0.0	3.0	0.2	0.6	1.1	0.2	0.1	6.4	17.4	1.1	18,5
340	Mombasa	71.1	1.7	92.0	6.3	22.6	121.1	164.4	27.3	103.5	610.0	3,3	613.3
350	Taita Taveta	13.2	0.3	6.3	0.6	1.8	4.8	1.9	8,0	15.1	44.9	6,0	50.9
360	Tana River	0.3	0.0	0.7	0.3	0.7	0.2	0.1	0.0	8.1	10.5	0.8	11.2
410	Embu	0.7	0.0	4.1	1.8	7.6	0,6	4.5	1.1	29.4	49.7	3.7	53.4
420	Isiolo	5.4	0.0	1.6	0.6	2.1	0.6	0.2	0.0	9.1	19.5	1.4	20.9
430	Kitui	2.7	1.0	1.5	0.8	5.5	1.6	0.6	0.2	24.7	38.5	1.5	40.0
440	Machakos/Makueni	69.0	0.1	21.1	1.3	7.2	10.8	6.8	1.1	69.6	187.0	14,2	201.3
450	Marsabit	1.9	0.0	4.6	0.3	1.5	1.1	0.0	0.0	9.3	18.8	1.0	19.7
460	Meru	4.0	0.0	13.6	0.7	4.9	7.3	1.4	1.8	50.1	83.8	7.7	91.5
510	Garissa	0.3	0.0	0.9	0.8	3.2	0.3	0.5	0.2	14.0	20.1	1.3	21.5
520	Mandera	0.0	0.0	1.5	0.2	0.6	0.1	0.0	0.0	8.7	11.1	0.5	11.5
530	Wajir	6.3	0.0	0.0	0.7	0.3	0.1	0.0	0.0	6.0	13.4	0.6	14.0
610	Kisii/Nyamira	24.8	0.0	12.6	1.2	3.3	5.5	0.9	1.3	57.4	106.8	9.8	116.6
620	Kisumu	12.3	0.5	34.6	4.5	13.8	21.1	10,6	6.5	72.2	176.1	10.5	186.6
630	Siaya	228.5	0.0	9.9	0.0	0.5	1.5	1.0	1.1	18.5	261.0	0.0	261.0
640	South Nyanza	564.6	0.0	17.9	0.8	3.5	4.2	0.6	1.7	50.7	644.1	5.4	649.5
710	Kajiado	0.8	9,9	0.4	0.5	0.5	6.4	0.5	0.3	10.5	29,6	1.9	31.5
720	Kericho	51.0	0,1	21.5	0.6	2,1	4.8	1.4	1.4	38.7	121.5	51.7	173.2
730	Laikipia	3.4	0.4	10.4	0.4	1,3	7.1	0.9	0.9	16.6	41.3	8.2	49.5
740	Nakuru	90.4	0.7	41.1	5.1	9.7	35.3	12.9	5.9	79.6	280.7	41.2	321.9
750	Narok	9.7	0.0	2.0	0.3	0.8	3.9	0.1	0.2	10.3	27.4	2.0	29.4
760	Trans Nzoia	48.9	0.2	9.0	0.2	1.3	7.8	4.0	0.9	23.7	95.9	15.0	110.9
770	Uasin Gishu	46.4	0.1	18.5	0.8	5.4	12.8	4.4	5.0	33.4	126,7	10.6	137.3
810	Baringo	7.0	0.0	1.7	0.4	0.9	2.2	0.7	0.0	17.6	30.5	4.1	34.6
820	Elgeyo Marakwet	0.1	0.0	0.8	0.1	0.2	0.2	0.0	0.2	11.9	13.6	1.5	15.1
830	Nandi	21.3	0.0	7.7	0.3	0.5	3.3	0.6	0.4	16.3	50.2	29.5	79.7
840	Samburu	25.0	0.0	2.0	0.5	1.1	1.4	0.2	0.0	5.4	35.6	1.0	36.6
850	Turkana	0.9	0.0	3.1	0.2	0.5	0.8	0.3	0.0	7.0	12.7	0.6	13,4
860	West Pokot	17.5	0.0	0.5	0.2	2.7	0.2	0.2	0.0	8.8	30.2	2.0	32.2
910	Bungoma	23.2	0.0	8.5	0.4	4.8	6.8	1.6	1.7	43.7	90.7	8.9	99.6
	Busia	22.9	0.0	2.1	0.4	1.1	1.1	0.6	0.2	19.3	47.7	1.6	49.3
930	Kakamega/Vihiga	110.7	0.0	14.3	1.8	10.2	5.7	2.8	3.6	75.4	224.6	15.1	239.7
100	Nairobi	52.0	3.0	405.4	24.0	237.2	457.1	248.0	219.7	548.4	2,194.9	29.4	2,224.3
200	Central	612.9	0.1	68.8	6.0	24.3	49.4	10.4	10.2	241.2	1,023.3	87.8	1,111.1
	Coast	144.6	2.4	113.7	8.0	28.6	168.3	169.0	29.6	170.0	834.4	19.3	853.6
	Eastern	83.7	1.1	46.4	5.4	28.8	22.0	13.5	4.2	192.2	397.3	29.5	426.8
	North-Eastern	6.6	0.0	2.5	1.7	4.0	0,5	0.5	0.2	28.6	44.6	2.4	47.0
600	Nyanza	830.2	0.5	75.0	6.5	21.1	32.2	13.1	10.7	198.8	1,187.9	25.7	1,213.7
700	Rift Valley	322.4	11.5	118.6	9.7	26,8	86.1	26.2	15.1	279.6	896.0	169.4	1,065.4
900	Western	156.8	0.0	24.9	2.7	16.1	13.5	5.1	5.6	138.4	363.0	25.6	388.7
	Kenya	2,209.2	18.6	855.4	64.0	386.9	829.1	485.8	295.3	1,797.2	6,941.5	389.0	7,330.5

Table 2.5.5 Leontief Inverse Matrix of Domestic Intermediate Sectors: 1986

							Receiving Sector	Sector					ĺ		
No. Delivering Sector		72	m .	4	8	9	,	∞	6	2	=	12	13	14	5:
1 Traditional Economy	1.1200 0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2 Agriculture	0.0249	1.0425	0.0117	0.2790	0.0673	0.0226	0.0259	0.0153	0.0103	0.0082	0.0112	0.0519	0.0109	0.0270	0.0037
3 Mining & Quarrying	0.0005	0.0006	1.0067	0.0026	0.0023	0.0031	0.0254	0.0104	0.0030	0.0052	0.0063	0.0020	0.0055	0.0020	0.0011
4 M. of Food, Beverages & Tobacco	0.0075	0.0286	0.0369	1.4787	0.0836	0.0387	0.0736	0.0508	0.0400	0.0288	0.0401	0.2593	0.0413	0.1296	0.0156
5 M. of Textile, Apparel & Leather	0.0013	0.0131	0.0352	0.0124	1.2938	0.0231	0.0065	0.0064	0.0093	0.0027	0.0050	0.0084	0.0063	0.0053	0.0011
6 M. of Wood, Paper Products & Printing	0.0343	0.0028	0.0350	0.0565	0.0343	1.3562	0.0236	0.0442	0.0261	0.0202	0.0400	0.0247	0.0208	0.0282	0.0164
7 M. of Chemicals & Petroleum Products	0.0241	0.0308	0.3134	0.1253	0.1135	0.1481	1.2300	0.4964	0.1444	0.2523	0.3008	0.0975	0.2685	0.0988	0.0545
8 M. of Non-metalic Mineral Products	0.0346	0.0006	0.0465	0.0069	0.0034	0.0047	0.0126	1.0891	0.0172	0.0078	0.0895	0.0035	0.0060	0.0042	0.0038
9 M. of Metal, Machinery & Others	0.0480	0.0177	0.1905	0.1253	0.0980	0.1598	0.1532	0.2422	1.6534	0.1441	0.2952	0.0720	0.2549	0.0774	0.0526
10 Electricity & Water Supply	0.0029	0.0055	0.0314	0.0220	0.0244	0.0163	0.0482	0.0597	0.0178	1.0858	0.0221	0.0131	0.0222	0.0147	0.0074
11 Building & Construction	0.0019	0.0020	0.0282	0.0113	0.0115	0.0148	0.0608	0.0338	0.0129	0.0161	1.0521	0.0111	0.0176	0.0276	0.0361
12 Wholesale, Retail Trade & Catering	0.0236	0.0420	0.0778	0.1373	0.1054	0.1212	0.0741	0.1080	0.1053	0.0658	0.1015	1.0543	0.0694	0.0474	0.0229
13 Transport & Communication	0.0059	0.0082	0.1243	0.0460	0.0272	0.0449	0.0336	0.0906	0.0324	0.0420	0.0473	0.0851	1.2336	0.0700	0.0378
14 Government Services	0.0004	0.0011	0.0053	0.0033	0.0020	0.0025	0.0207	0.0084	0.0025	0.0043	0.0051	0.0019	0.0047	1.0023	0.0010
15 Other Services	0.0190	0.0205	0.2638	0.1328	0.1929	0.1941	0.1996	0.2314	0.1677	0.1815	0.1640	0.2325	0.2001	0.1216	1.3722
Total	1.3489 1.2160	1.2160	2.2068	2.4395	2.0598	2.1501	1.9876	2.4867	2.2423	1.8647	2.1802	1.9173	2.1620	1.6561	1.6262
													ĺ		

Table 2.5.6 Inventory of Service Centres by District

	District	Grow	th Centre	Urbar	i Centre	Rural	Centre	Mark	et Centre	Local	Centre	T 1
Code	Name	No.	Source	No.	Source	No.	Source	No.	Source	No.	Source	Total
110	Nairobi	1	В	0		0		0	_	0	-	1
210	Kiambu	1	В	7	С	11	С	21	C	38	C	78
220	Kirinyaga	0	-	3	Α	. 3	• A	9	Α	28	C	43
230	Murang'a	0	-	5	Α	6	Α	22	Α	50	С	83
240	Nyandarua	0	-	1	Α	4	В	9	Α	22	C	36
250	Nyeri	1	В	2	Α	4	Α	19	C	40	В	66
310	Kilifi	1	В	2	Α	4	Α	20	Α	19	A & B	46
	Kwale	0	-	2	Α	2	Α	8	C	22	В	34
330	Lamu	0	•	1	В	1	В	6	С	9	C	17
340	Mombasa	1	В	0	-	. 0	· -	0	-	0	-	1
350	Taita Taveta	0	-	2	A & B	1	В	9	С	19	C	31-
360	Tana River	0	-	4	Α	2	Α	4	Α	7	С	17
410	Embu	· 1	В	2	A & B	3	Α	9	В	19	C	34
420	Isiolo	0	•	1	Α	2	A	- 3	A	2	С	8
430	Kitui	0	•	3	Α	7	Α	18	. C	28	В	56
440	Machakos/Makueni	1	В	5	Α	10	Α	37	С	68	В	121
450	Marsabit	0	-	1	В	1	В	3	В	7	В	12
460	Meru	1	В	4	Α	8	- A	25	Α	40	С	78
510	Garissa	0	-	1	Α	12	Α	16	Α	9	Α	38
520	Mandera	0	•	1	Α	3	Α	4	Α	14	С	22
530	Wajir	0	-	1	В	2	В	4	C	13	С	20
610	Kisii/Nyamira	1	В	3	В	6	В	26	C	59	С	95
620	Kisumu	1	В	2	Α	6	В	14	A & B	38	C	61
630	Siaya	0	-	4	Α	4	В	12	В	34	C	54
640	South Nyanza	0	-	4	Α	11	A & B	37	С	68	c c	120
710	Kajiado	0	-	2	В	3	В	3	С	17	С	25
720	Kericho	1	В	2	Α	7	В	14	В	31	С	55
730	Laikipia	0	-	2	В	1	В	5	A & B	8	В	16
740	Nakuru	1	, B	3	Α	3	Α	8	Α	26	A	41
750	Narok	0	-	1	В	1	В	4	В	22	В	28
	Trans Nzoia	1	В	0	Α	2	Α	4	Α	13	Α	20
770	Uasin Gishu	1	В	0	A	4	Α	13	С	20	С	38
810	Baringo	0	_	2	Α	5	Α	14	A	25	Α	46
820	Elgeyo Marakwet	0	-	1	Α	3	Α	10	A & B	23	С	37
	Nandi	0	-	2	Α	6	Α	10	Α	15	Α	33
840	Samburu	0	-	1	В	2	Α	2	С	11	В	16
850	Turkana	0	-	1	В	3	В	3	В	15	В	22
	West Pokot	0	-	1	В	2	В	6	В	23	В	32
	Bungoma	0	-	3	Α	5	Α	17	Α	37	Α	62
	Busia	0	-	1	Α	7	D	10	D	23	D	` 41
930	Kakamega/Vihiga	1	В	6	В	9	В .	17	C	41	В	74
	Total	15		89		176		475		1,003		1,758

Source: A03, A04 and A26

Remark: *1 Sources are the following references:

A: "District Development Plans 1989-1993"

B: "National Development Plan 1974-1978" & "Human Settlement in Kenya"

C: Socio-economic Survey, January-March 1991, JICA Study Team

D: Comments by Technical Sub-Committee (held on 26 Sept., 1991)

^{*2} Including Growth Centres (Principal Towns)

Table 2.5.7 Urban Household Income and Expenditure in Major Towns: 1983

Item	Nairobi	Mombasa	Thika	Nakuru	Eldoret	Kisumu	Other Towns	Ali Towns
I. Average Income by Income Class			 -					
A) Average Income (KShs./Mont	•							
Below 2,000	908	928	838	836	845	915	941	912
2,000 - 7,999	3,504	3,983	3,920	3,627	3,296	3,500	3,297	3,604
More than 8,000	14,020	16,395	9,067	12,965	12,625	14,078	13,311	13,822
Average of								
all Classes	1,822	2,232	1,320	1,754	1,381	2,182	1,953	1,931
B) Distribution of Sample Freque	псу							
Below 2,000	9,480	4,756	817	1,472	1,012	1,355	7,214	26,106
2,000 - 7,999	2,883	2,694	95	371	154	310	2,240	8,747
More than 8,000	313	105	19	59	22	110	378	1,006
Average of								
all Classes	12,676	7,555	931	1,902	1,188	1,775	9,832	35,859
II. Average Expenditure by Major Ex		em *1						
A) Income Class: Below Kshs.2,								
Food & Beverages	429	440	415	316	378	437	377	408
Household Good *2	211	209	184	168	221	230	206	207
Major Goods *3	245	194	254	254	251	361	293	249
Regular Expenditure *4	184	150	125	219	113	150	174	170
Total	1,069	993	978	957	963	1,178	1,050	1,034
B) Income Class: KShs.2,000 - 7								
Food & Beverages	857	1,228	817	651	756	907	12	922
Household Good *2	969	1,002	2,206	870	847	894	791	938
Major Goods *3	1,076	1,170	2,558	1,684	1,441	1,497	851	1,098
Regular Expenditure *4	776	705	130	885	381	479	755	729
Total	3,678	4,105	5,711	4,090	3,425	3,777	2,409	3,687
C) Income Class: More Than KS	hs.8,000/Mc	onth						
Food & Beverages	1,183	2,956	230	1,830	1,222	3,062	1,060	1,548
Household Good *2	2,722	6,040	156	2,849	5,318	4,920	4,220	3,887
Major Goods *3	342	2,447	-	2,181	750		946	1,185
Regular Expenditure *4	2,371	2,569	38	3,593	795	5,950	1,220	2,344
Total	6,618	14,012	424	10,453	8,085	13,932	7,446	8,964
D) All Income Classes								
Food & Beverages	545	756	452	428	444	682	478	566
'Household Good *2	446	573	391	388	396	637	493	489
Major Goods *3	574	697	510	946	560	898	582	645
Regular Expenditure *4	372	381	124	453	160	367	346	368
Total	1,937	2,407	1,477	2,215	1,560	2,584	1,899	2,068
III. Relation between Income and	Water Expe	enditure (usin	g efficient	sample onl	y)			
No. of Efficient Samples	243	225	31	26	9	78	345	957
Average Income	1,806	2,058	1,170	3,692	1,787	1,999	2,007	1,984
Average Expenditure for Potable Water	25	36	21	54	41	15	21	26
% of Water Exp. to Income	1.4%	1.7%	1.8%	1.5%	2.3%	0.8%	1.0%	1.3%

Source: Urban Household Budget Survey, 1983, CBS (Unpublished)

Remark: *1 Some unjustifiable figures are perceived in the table, because some probles occured in the survey.

^{*2} Clothing, Footwear, Fuel, Furnishing, Utensils, Transport, Communication & Recreation

^{*3} Furniture, Electric Appliances and Transport Equipment

^{*4} Education, Insurance, Water, Electricity, Telephone, House Rent and Taxes

Table 2.5.8 Price Indices: 1979 - 1990

Item	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
1 Consumer Drice Indices in December for Nairohi (Base Ian Ilme 1075)		Rage lar			1		! 			 		
Upper Income Index *1	163.8	185.0	220.3	259.0	285.7	307.0	333.3	346.6	382.4	428.7	475.0	537.7
Middle Income Index*2	155.7	173.3	216.3	155.9	281.7	312.6	348.4	368.6	405.5	452.7	505.8	571.0
Lower Income Index *3	177.1	200.3	239.0	270.8	297.9	330.4	364.6	379.2	400.5	440.5	483.1	540.1
2. Consumer Price Indices in Annual Average for Major Towns (Base: 1	ual Average fo	or Major Town	15 (Base: 1976	Average)								
Mombasa	151.3	167.7	208.8	236.1	256.4	268.6	283.8	291.9	316.5	352.2	393.2	454.6
Kisumu	131.7	156.4	192.2	212.8	242.3	261.2	286.3	295.5	327.2	356.1	378.2	429.2
Nakuru	146.2	158.1	187.2	2 210.6	242.8	257.0	276.0	282.9	301.6	331.6	361.9	411.9
3. Cost Indices in December (Base: 1972)	:: 1972)											
Residential Building		303.2	346.8	395.6	423.0	452.1	514.4	546.1	610.2	0.789	760.6	ı
Non-residential Bldg	ı	320.1	352.0	400.1	416.4	453.0	502.0	540.6	614.4	683.9	753.9	1
Building	ı	311.1	349.2	397.7	419.9	452.5	508.6	543.5	612.2	686.0	759.1	•
Civil Enginerring	•	282.7	305.6	362.6	379.5	460.0	500.1	533.8	591.9	636.0	690.3	•
Overall Construction	, (332.1	384.0	404.1	404.1	455.5	505.3	539.7	604.3	666.4	732.2	
- Materials	ı	400.8	459.3	490.5	490.5	511.3	567.6	9.009	659.0	742.4	811.1	1
Sand	1	250.0	326.9	384.6	384.6	384.6	384.6	576.9	576.9	653.8	653.8	1
Cement	1	361.0	481.8	481.8	481.8	481.8	6163	616.3	616.3	678.0	745.8	•
Steel product	•	393.6	440.1	512.1	550.4	605.0	603.7	620.1	6.799	708.6	7.997	1
Fuel & lubricants	•	620.5	665.8	6.77.9	6.77.9	733.2	733.2	699.2	767.2	775.6	937.2	r
- Labour	,	201.4	246.4	246.4	246.4	353.5	391.5	428.7	504.3	527.7	588.2	1
Unskilled	•	236.4	300.0	300.0	300.0	458.2	520.0	555.5	630.0	0.099	747.3	٠
Semi-skilled	i	215.8	270.5	270.5	270.5	408.9	434.9	495.2	598.6	628.1	697.3	ı
Skilled	1	170.0	196.7	196.7	196.7	250.3	283.0	304.0	359.7	374.7	412.7	
1		1										

Source: A.07-10, A.23 and A.24

Remark: *1 The upper income gourp comprises households with monthly earnings of Kshs.2,500 and above.

^{*2} The middle income group comprises households with monthly earnings, between Kshs.700- 2,499. *3 The lower income group compirses households with montyly earnings below Kshs.699.

Table 2.5.9 Foreign Exchange Mean Rates (End of Period): 1979 - 1991

ltem	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991 Jan.	1991 Feb.
 National Currency Units per SDR (Special Drawing Rights: IMF) U.S. Dollar 1.31733 1.27541 1.1639 Kenya Shilling Japanese Yen 	(Special Drav 1.31733	ecial Drawing Rights : IMF) 1.31733 1.27541 1.16396	: IMF) 1.16396	1.10311 14.060	1.04695 14.417	0.98021 15.187 246.13	1.09842 17.738 220.23	1.22319 19.135 194.61	1.41866 23.429 175.20	1.34570 25.029 169.36	1.31416 28.387 188.52	1.42266 34.263 191.21	1.43476 35.468 188.24	1.42053 35.805 187.51
2. National Currency Units per U.S. Dollar Kenya Shilling Japanese Yen	Dollar 7.328 240.58	7.568	10.286 219.55	12.725 233.92	13.796 231.55	15.781 251.10	16.284	16.042 159.10	16.515 123.50	18.599 125.85	21.601	24.084	24.721 131.20	25.205 132.00
3. National Currency Unit per 100 Japanese Yen U.S. Dollar Kenya Shilling 3.046	panese Ycn 0.416 3.046	0.494	0.455	0.428 5.440	0.432 5.958	0.398	0.499 8.120	0.629	0.810	0.795	0.697	0.744	0.762	0.758 19.095
4. National Currency Units per Kenya Shilling U.S. Dollar Japanese Yen 32.83	a Shilling 0.136 32.830	0.132	0.097	0.079	0.072	0.063	0.061	0.062	0.061	0.054 6.757	0.046	0.042	0.040	0.040
A. National Currency Unit per Kenya Pound U.S. Dollar Japanese Yen 65	1 Pound 2.729 656.6	2.643	1.944	1 <i>5</i> 72 367.6	1.450	1.267	1.228 246.3	1.247	1.211	1.075	0.926	0.830	0.809	0.793

Source: A.10 and A.38

Table 2.5.10 GDP and Approved Public Expenditure of Central Government

(Unit: K.Pound million)

Item	1980 1980/	1981 31 1981/82	1982 1982/83	1983 1983/84	1984 1984/85	1985 1985/86	1986 1986/87	1987 1987/88	1988 1988/89	1989 1989/90
1. GDP	2,232	4 2,582.5	2,913.0	3,473.6	3,873.0	4,418.7	5,115.0	5,612.5	6,391.1	7,330.5
2. Public Expenditure										
1) Budgetary Itemizat	ion									
A) Recurrent Expe	nditure 649.	0 798.1	955.1	1,030.1	1,125.6	1,221.4	1,581.6	1,882.6	2,347.1	2,516.2
a) Appropriati	ons-in-Aid 32.	6 77.9	86.9	76.3	58.7	49.7	72.0	156.4	108.7	163.6
b) Net Expend	iture 616.	4 720.2	868.2	953.9	1,067.0	1,171.7	1,509.6	1,726.3	2,238.5	2,352.7
B) Development E	xpenditure 303.	7 324.5	356.7	300.3	436.5	409.8	537.5	623.8	806.1	1,006,5
 a) Appropriati 	ons-in-Aid 60.	0 38.4	86.6	97.8	235.2	114.5	202.0	288.6	413.8	548.9
b) Net Expend	iture 243.	8 286.1	270.1	202.5	201.3	295.3	335,4	335.2	392,4	457.7
C) Total Expendite	ire 952.	7 1,122.6	1,311.8	1,330.5	1,562.1	1,631.2	2,119.1	2,506.4	3,153.3	3,522.7
2) Analytical Itemizat	ion									
A) Total Current E		6 834.9	861.4	972.3	1,092.5	1,242.0	1,491.8	1,702.4	2,104.4	2,338.9
B) Capital Expend		8 143.2	142.0	133.2	204.6	165.1	324.6	281.9	372.0	665.9
a) (Gross Fixed	Cap. Form. 166.	9 123.5	134.9	118.9	194.7	150.0	283.7	242.0	327.8	603,4
b) Capital Trans	nsfers 21.	8 19.6	7.0	14.4	9.9	15.2	40.9	39.9	44.2	62.5
C) Net Lending	67.	5 74.0	30.9	25.4	36.0	43.9	48.0	29.3	62.7	74,8
D) Public Debt Re		8 66.3	150.2	105,7	184.6	169.9	192.4	180.2	502.8	416.4
E) Total Expendit	ure 968	7 1,118.3	1,184.4	1,236.7	1,517.8	1,621.0	2,056.7	2,193.8	3,041.9	3,496.1
3. Expenditure for Pro	ojects Related to Water	Developme	nt			-				
A) Expenditure by	MOWD	- 32.9	32.1	28,4	29.6	35.6	41.1	38.1	57.7	75,2
B) E. by Agencies	Concerned	- 27.3	13.9	17.0	52.2	36.7	98.6	74.4	88.3	150,1
C) Total Expendit	ıre	- 60.3	46.0	45.4	81.9	72.3	139.8	112.5	146.1	225,4
4. Percentage (%)										
A) (2.1.C)/(1)	42	.7 43.5	45.0	38.3	40.3	36.9	41.4	44.7	49.3	48.1
B) (2.1.B)/(2.1.C)	31	.9 28.9	27.2	22.6	27.9	25.1	25.4	24.9	25.6	28.6
C) (2.1.B.a)/(2.1.B) 19	.7 11.8		32.6	53.9	27.9	37.6	46.3	51.3	54.5
D) (2.1.B.b)/(2.1.E	80	.3 88.2	75.7	67.4	46.1	72.1	62.4	53.7	48.7	45.5
E) (2.2.B)/(2.1.B)	62	.2 44.1	39.8	44.4	46.9	40.3	60.4	45.2	46.1	66.2
F) (2.2.B.a)/(2.1.B	55	.0 38.1	37.8	39.6	44.6	36.6	52.8	38.8	40.7	59.9
G) (3.C)/(2.1.C)		- 5.4	3.5	3.4	5.2	4.4	6.6	4.5	4.6	6.4
H) (3.C)/(2.1.B)		- 18.6	12.9	15.1	18.8	17.6	26.0	18.0	18.1	22.4
I) (3.A)/(2.1.B)		- 10.1	9.0	9.4	6.8	8.7	7.6	6.1	7.2	7.5
K) (3.A)/(3.C)		- 54.6	69.7	62.5	36.2	49.2	29.4	33.9	39.5	33.4

Source: A.19, A.20, A.23 and A.24

Estimates of Recurrent & Development Expenditures

Table 3.1.1 Percent Distribution of All Women to Access to Water Source, 1989

				Sou	rce of wat	er					
	< P	rotected v	ater sour	ces>		Unprotect	ed water s	ources	>		
Residence/ province	Piped into house	Public Tap	Well with pump	Well without pump	Lake	River	Pond	Rain- Water	Other	Total	No. of women
Residence											
Urban	56.1	34.7	2.1	2.3	0.2	3.0	1.0	0.2	0.4	100.0	1236
Rural	11.6	6.6	5.9	12.5	1.9	43.9	7.4	1.6	8.6	100.0	. 5914
Province	To make the second						, <u></u>		· ·		
Nairobi	57.7	38.1	0.8	1.3	0.0	1.7	0.0	0.2	0.1	100.0	554
Central	34.0	3.9	6.3	7.6	0.0	38.8	2.7	4.9	1.8	100.0	1120
Coast	24.4	32,7	4.0	6.1	0.1	15.7	15.7	0.0	1.2	100.0	498
Eastern	15.6	8.8	3.9	22.5	0.1	38.0	3.6	1.0	6.5	100.0	1269
Nyanza	7.6	9.2	6.5	12.1	8.8	27.1	3.4	0.4	25.0	100.0	1218
Rift Valley	9.0	5.9	7.0	10.2	0.2	51.9	9.2	1.1	5.6	100.0	1519
Western	13.7	8.8	4.9	5.8	0.2	52.5	11.5	1.0	1.5	100.0	971
Total	19.3	11,4	5.3	10.7	1.6	36.8	6.3	1.4	7.2	100.0	7150

Source: Demographic and Health Survey, 1989

Table 3.1.2 Existing Water Supply Works

Dis.		E	& F Analy: 1985/86	sis	Operation	mal Water : 1989/90	Schemes		Chan
No.	District	Urban	Rural	Total	G.U.	G.R.	N.G.	Total	Change
100	NAIROBI PROVINCE				5		4	9	
210	Kiambu	6	5	11	6	6		12]
220	Kirinyaga	4	4	8	4 .	4		8	0
230	Murang'a	6	8	14	6	8	1	15	1
240	Nyandarua	1	1	2	1	2	11	14	12
250	Nyeri	3	6	9	3	6.		9	0
	CENTRAL PROVINCE	20	24	44	20	26	12	58	14
310	Kilifi	6	3	9	8	1		9	0
320	Kwale	4	1	5	4	1		5	0
330	Lamu	2.		2	2			2	0
340	Mombasa	4		4	6			6	2
350	Taita Taveta	3	3	6	3	4		7	1
360	Tana River	1	2	3	1	2		3	0
	COAST PROVINCE	20	9	29	24	8	0	32	3
410	Embu	1	6	7	1	6		7	0
420	Isiolo	1	3	4	1	4	3	8	4
430	Kitui	2	4	6	2	10	1	13	7
440	Machakos	1	7	8	2	8	2	12	4
450	Marsabit	2	2	4	2	2	17	21	17
460	Meru	4	6	11	4	6	1	11	0
	EASTERN PROVINCE	11	28	40	12	36	24	72	32
510	Carissa	1	12	13	1	8	2	11	-2
520	Mandera	1	8	9	1	. 2	7	10	1
530	Wajir	1	16	17		1	8	9	-8
	NORTH-EASTERN PROVINCE	3	36	39	2	11	17	30	-9
610	Kisii	3	l	4	2	5	4	11	7
620	Kisumu	2	6	8	2	5	3	10	2
630	Siaya	3	5	8	4	5	7	16	8
640	South Nyanza	3	10	13	3	9	2	14	1
	NYAZA PROVINCE	11	22	33	11	24	16	51	18
710	Kajiado	4	4	8	4	3	9	16	8
720	Kericho	5	2	7	6	4	2	12	5
730	Laikipia		1	1		2		2	1
740	Nakuru	2	6	8	7	9	2	18	10
750	Narok	2	3	5	1	5	2	8	3
760	Trans Nzoia		2	2		2		2	0
770	Uasin Gishu	1	4	5	1	6	4	11	6
810	Baringo	2	14	16	2	10	9	21	5
820	Elgeyo-Marakwet	2	5	- 7	2	5		7	0
830	Nandi	2	4	6	2	5	1	8	2
840	Samburu			0	1	3	3	7	7
850	Turukana	2	9	11	1	10	4	15	4
860	West Pokot	2	4	6	3	3	4	10	4
	RIFT VALLEY PROVINCE	24	58	82	30	67	40	137	55
910	Bungoma	3	5	8	3	б		9	1
920	Busia	1	8	9	2	8		10	1
930	Kakamega	3	11	14	7	8		15	1
	WESTERN PROVINCE	7	24	31	12	22	0	34	3
	TOTAL excluding Nairobi	96	201	298	111	194	109	414	116

Remarks;

E& F Analysis represents Ref D.03 G.U. is Gazetted Urban W/S G.R. is Gazetted Rural W/S N.G. is Non-Gazetted W/S

Table 3.1.3 Inventory of Water Supply Systems in Service Centres: 1990

<u> </u>	District	Urban	Centre	8	ι	Jrban	Centr	e	M	larket	Centr	e	L	ocal	Centre	3
Code	District	PS CWP	os	NA	PS C	WP	os	NA	PS C	WP	os	NA	PS C	WP	os	NA
110	Nairobi	1														
210	Kiambu	8			11		2		17		4		36		2	
220	Kirinyaga	3			3				9				23		5	
230	Murang'a	5			7				21			1	50			
240	Nyandarua	1			4				3	1	5		5	4	13	
250	Nyeri	3			4				19				36	2	2	
310	Kilifi	3			4				18		2		16		3	
320	Kwale	2			1	l			1	5	2		8		14	
330	Lamu	1			1				1	1	3	1			7	2
340	Mombasa	3			1				9				10			1
350	Taita Taveta	2			1				9				18		1	
360	Tana River	3	1		2				3		1				7	
410	Embu	2			3				9				10	6		3
420	Isiolo	1			1		1		1	1	1		1	1		
430	Kitui	3			6		1		10		8		8		20	
440	Machakos	6			10				37		_		68	_		
450	Marsabit	1			1			•	2	•	1	•	1	2	4	
460	Meru	4			2	1	4	2	6	3	8	8	6	1	7	26
510	Garissa	1.				3	9			4	12			3	6	
520	Mandera	1			1		2				4		3	_	11	
530	Wajir	1			1		1				4			6	7	_
610	Kisii	2	1	1	3	_	2	1	9		12	5	4		47	8
620	Kisumu	3			3	2			7		7		24		9	5
630	Siaya	4			4			2	12	2		00	34			50
640	South Nyanza	4			7			3	5	3		29	8	1		59
710	Kajiado	2			3		^		3		_		11	6	1.5	
720	Kericho	3			4		2		12		2		16		15	
730	Laikipia	3			1				2	2	3		2	_	6	_
740 750	Nakuru	4			2 2		1		4	2	2		3 3	5 10	16 9	2
760	Narok Trans Nzoia	1			2				2 2		2 2			10	12	
770	Uasin Gishu	1 1			3		1		5		8		1 3		17	
810	Baringo	2			5				9		5		11	2	7	5
820	Elgeyo Marakwet	1			4				4	4	2		7	3	13	5
830	Nandi	2			5		1		3	-+	5	2	3	J	12	
840	Samburu	1			3		•		1		1	4	3		8	
850	Turkana	1			3				2		1		5	1	9	
860	West Pokot	2			2				5		1		9	•	14	
910	Bungoma	3			5				10		7		21		16	
920	Busia	1			9		6				1		4	1	17	
930	Kakamega	7			6	1	3		8	1	8		7	1	33	
100	Nairobi	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	Central	20 0	0	0	29	0	2	0	69	1	9	1	150	6	22	0
300	Coast	14 0	1	0	10	1	0	0	41	6	8	1	52	0	32	3
400	Eastern	17 0	0	0	23	0	6	2	65	4	18	8	94	10	31	29
500	North-Eastern	3 0	0	0	2	3	12	0	0	4	20	0	3	9	24	0
600	Nyanza	13 0	1	1	17	2	2	4	33	3	19	34	70	1	56	72
700	Rift Valley	24 0	0	0	39	0	5	0	54	6	34	2	77	27	138	7
900	Western	11 0	0	0	20	1	9	0	18	1	16	0	32	2	66	0
	Kenya	103 0	2	1	140	7	36	6	280	25	124	46	478	55	369	111
	System Total in Ke	enya:			1,001	87	531	164	===(Gran	d Tota	l)===>	1,783	•		

Source: Socio-Economic Survey, January-March 1991, JICA Study Team

Remark: PS:Piped System, CWP:Communal Water Points, OS:OtherSources, NA:No Answer

Table 3.2.1 Area and Number of Exisiting Irrigation Schemes by District

	-	Small Holde Managed S		Individual Farms	Private
Code	District	Number	Area	·	11114410
Code		(nos.)	(ha)	(ha)	(ha)
110	Nairobi		•		1,564
210	Kiambu			330	10,68
220	Kirinyaga	9	6,149	88	['] 6
230	Murang'a	2	38	99	6,10
240	Nyandarua	6	32	50	6
250	Nyeri	20	988	95	52
310	Kilifi	1	80	35	24
320	Kwale	6	64	71	4
330	Lamu	1	0	, -	
340	Mombasa	1	O ,		
350	Taita Taveta	7	1,228	12	
360	Tana River	18	3,921	12,	
410	Embu	3	412	43	19
420		5 17			19
	Isiolo	17	1,106	2	
430	Kitui	20	2.061	26	1.00
440	Machakos	32	3,261	36	1,38
450	Marsabit	4.0			
460	Meru	10	2,312	35	4
510	Garissa	36	631	4	
520	Mandera	7	640		
530	Wajir				
610	Kisii				
620	Kisumu	51	6,147		
630	Siaya	57	177		
640	South Nyanza	11	415		
710	Kajiado	19	2,136		1
720	Kericho				
730	Laikipia	6	472	126	
740	Nakuru	1	32	117	3,46
750	Narok	7	165	4	5,10
760	Trans Nzoia	•	100	117	12
770	Uasin Gishu			117	12
810	Baringo	33	1,336	3	
820	Elg. Marakwet	80	4,446	J	
830	Nandi	00	4 ,440	2	
840	Samburu	1	20	Z	
850	Turkana	11	912		
860				2	
	West Pokot	38	1,469	2	
910	Bungoma	3	324		
920	Busia	7	350	4	
930	Kakamega	2	5		
	Total	502	39,267	1,275	24,53

Source: Ref.E.23, E.37

Table 3.2.2 Present Irrigation Water Demand (1/5)
Drainage Area 1

Unit: m3/sec MAY Basin JAN FEB MAR APR JUN JUL ΑUG SEP OCT NOV DEC 0.000 0.000 0.000 1AA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1AB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1AC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1AD 0.0010.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1AF 0.000 0.000 0.000 1AG 0.000 0.009 0.043 0.048 0.000 0.000 0.000 0.000 0.000 0.006 0.038 0.051 0.000 0.002 0.037 0.083 0.016 0.000 0.005 0.007 0.002 0.001 0.002 0.002 1AH 0.002 0.003 0.006 0.006 0.037 0.037 0.037 0.037 0.037 1BA 0.037 0.037 0.037 0.037 0.037 0.037 0.083 0.000 0.000 0.083 0.083 1BB 0.083 0.083 0.083 0.083 0.083 0.083 0.016 1BC 0.001 0.001 0.001 0.016 0.016 0.016 0.016 0.016 0.016 0.001 0.075 0.075 0.501 0.071 1BD 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.501 0.501 0.002 0.501 0.071 0.001 1BE 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 1BG 1BH 0.071 0.002 0.002 0.071 0.071 0.0710.002 0.002 0.001 0,330 1.185 0.088 0.2880.285 0.023 0.001 0.001 0.079 0.044 0.001 1CA 1CB 0.220 0.684 0.293 0.011 0.245 0.003 0.194 0.450 0.011 0.011 0.017 1.133 0.982 0.011 0.245 0.011 0.011 0.011 0.011 0.011 0.245 0,011 0.011 0.011 1CC 1CD 0.030 0.081 0.129 0.244 0.050 0.066 0.003 0.032 0.109 0.094 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.010 0.010 0.010 0.010 1CE 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.018 0.000 0.000 0.000 0.018 0.018 1DA 0.018 0.018 0.018 0.018 0.018 0.018 1DB 0.001 0.001 0.001 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 1DC 0.001 100,0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1DD 0.004 0.005 0.003 0.003 0.005 0.004 0.003 0.003 0.005 0.007 0.006 0.005 1EA 0.000 0.000 0.000 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.000 1EB 0.001 0.001 0.001 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.001 1EC 0,000 0000,0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0.000 1ED 0.000 0.000 0.000 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 1EE 0.000 0.000 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 1EF 0.230 0.015 0.044 0.029 0.250 0.463 0.650 0,650 0.691 0.717 0.711 0.4961EG 0.000 0,000 0.000 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 1FA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 100.0 0.001 1FB 0.000 0.000 0.000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 1FC 0.000 0.000 0.000 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 1FD 0.001 0.001 1.389 1.389 1.389 1.389 1.389 1.389 1.389 1.389 1.389 1.389 1FE 0.000 0.000 0.006 0.006 0.006 0.006 0.006 0,006 0.006 0.006 0.006 0.006 1147 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1FG 0.000 0.004 2.856 2.852 2.849 2.845 2.844 2.844 2.855 2.863 2.861 2.854 1GA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 100.0 0.001 0.001 0.001 0.001 1GB 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0.378 0,000 0.000 0.000 0.128 0.128 1GC 0.128 0.128 0.128 0.128 0.1280.000 0.000 1GD 0.000 0.000 0.000 1.628 1.628 1.628 1.628 1.628 1,628 1.628 1.628 1.628 1GD1 0.064 0.030 0.046 0.014 0.044 0.083 0.124 0.170 0.227 0.235 0.125 0.083 1GD2 0.485 0.227 0.328 1.719 0.348 0.102 0.626 0.941 1.285 1.774 0.950 0.626 1GD3 0.451 0.211 0.323 0.095 0.305 0.582 0.875 1.195 1.599 1.650 0.884 0.582 1GE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1GF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 1GG 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1HA 0.000 0.110 0.172 0.197 0.163 0.145 0.143 0.149 0.348 0.391 0.180 0.162 1HB 0.004 0.006 0.034 0.034 0.034 0.035 0.043 0,000 0.036 0.044 0.034 0.034 1HC 0.003 0.010 0.034 0.023 0.017 0.005 0.003 0.003 0.032 0.050 0.046 0.028 1HD 0.000 0,007 0.011 0.171 0.168 0.168 0.168 0.169 0.000 0.183 0.185 0.168 1HE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001HF 0.000 0.023 0.091 0.059 0.062 0.021 0.000 0.001 0.108 0.158 0.135 0.086 1HG 0.000 0.001 0.006 0.004 0.004 0.001 0.000 0.000 0.007 0.005 0.010 0.008 0.000 0.001 IJA 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.005 0.001 0.001 0.005 0.001 0.001 1JR 0.001 0.001 0.001 0.001 0.001 0.001 UC 0.018 0.018 0.002 0.002 0.018 0.018 810.0 0.002 0.002 IJD 0.000 0.000 0.000 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.000 0.000 1JE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.010 0.010 IJF 0.001 0.001 0.010 0.010 0.010 0.010 0.000 IJG 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 IKA IKB 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 1KB1 0.000 0.001 0.000 0.000 0.000 0.0000.0000.000 1KB2 0.000 0.002 0.003 0.0000.000 0,000 0.000 0.000 0.000 0.000 0.0000.0001KB3 0.000 0.004 800.0 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0,000 1KB4 0.000 0.001 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0,000 IKB5 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 1KC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1LA1 0.000 0.000 0.000 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.000 1LA2 0,020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 1LA3 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 ILB1 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1LB2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.474 9.384 10.030 10.328 11.063 11.782 13.094 13.248 12.253 Sub Total 2.825 8.439

Table 3.2.2 Present Irrigation Water Demand (2/5)
Drainage Area 2

											mu: mɔ/s	ec
Basin	JAN	FEB	MAR	APR	MÂY	JUN	JUL	ΛUG	SEP	OCT	NOV	DEC
244	0.000	0.052	0.030	0.086	0.113	0.081	0.020	0.000	0.085	0.114	0.106	0.039
2AB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2BA	0.008	0.100	0.173	0.093	0.116	0.032	0.008	0.008	0.050	0.081	0.165	0.135
2BB	0.000	0.345	0.616	0.320	0.405	0.089	0.000	0.000	0.158	0.273	0.588	0.476
2BC	0.000	0.111	0.198	0.127	0.154	0.053	0.024	0.024	0.075	0.088	0.213	0.153
2BD	0.000	0.169	0.162	0.346	0.464	0.356	0.109	0.000	0.293	0.513	0.525	0.214
2CA	0.000	0.017	0.010	0.028	0.037	0.027	0.007	0.000	0.028	0.037	0.035	0.013
2CB	0.000	0.000	0.001	0.001	0.001	0.000	0.001	0.001	0.000	0.000	0,000	0.000
2CB1	0.000	0.003	0.004	0.004	0.003	0.001	0.001	0.000	0.003	0.004	0.004	0.003
2CB2	0.000	0.008	0.011	0.010	0.009	0.002	0.002	0.000	0.006	0.011	0.011	0.008
2CB3	0.000	0.114	0.153	0.143	0.115	0.025	0.025	0,000	0.092	0.154	0.155	0.105
2CC	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2CC1	0.000	0.047	0.080	0.048	0.061	0.019	0.002	0.000	0.027	0.045	0.085	0.064
2CC2	0.000	0.004	0.007	0.005	0.006	0.002	0.000	0.000	0.003	0.004	0.008	0.006
2CC3	0,000	0.020	0.034	0.021	0.026	0.009	0.001	0.000	0.011	0.020	0.036	0.028
2CC4	0.000	0.415	0.706	0.422	0.540	0.171	0.022	0.000	0.236	0.404	0.750	0.564
2CC5	0.000	1.043	1.776	1.059	1.356	0.428	0.054	0,000	0.593	1.014	1.884	1.415
2D	0.008	0.012	0.020	0.006	0.015	0.017	0.007	0.004	0.019	0.017	0.018	0.019
2EA	0.000	0.000	0.000	0.113	0.113	0.113	0.113	0.113	0.113	0.000	0.000	0.000
2EB	0.000	0.000	0.000	0.075	0.075	0.075	0.075	0.075	0.075	0.000	0.000	0.000
2EB1	0.080	0.027	0.050	0.005	0.037	0.059	0.052	0.028	0.000	0.034	0.053	0.080
2EB2	0.030	0.010	0.019	0.002	0.014	0,022	0.020	0.010	0.000	0.013	0.021	0.030
2EB3	0.023	0,008	0.015	0.002	0.011	0.017	0.015	0.008	0.000	0.010	0.015	0.024
2EC	0.001	0.001	0,001	0.001	0.044	0.001	0.044	0.044	0.001	0.001	0.001	0.001
2ED	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000
2EE	0.000	0,000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000
2EE1	0.693	0.335	0.336	0.254	0.340	0.455	0.515	0.432	0.338	0.453	0.517	0.562
2EE3	0.944	0,457	0.457	0,346	0.463	0.620	0.703	0.589	0.461	0.618	0.705	0.765
2EF	0.001	0.001	0.001	0.001	0.001	0,001	0.001	0.001	0.001	0.001	0.001	0.001
2EG1	0.000	0,000	0,000	0.000	0.039	0.000	0.039	0.039	0.000	0.000	0.000	0.000
2EG2	0.000	0.000	0.000	0.124	0.124	0.124	0.124	0.124	0.124	0.000	0.000	0.000
2EG21	0,135	0.041	0.062	0.000	0.064	0.100	0.088	0.047	0.000	0.057	0.089	0.132
2EG22	0.249	0.075	0.114	0.000	0.118	0.185	0.163	0.087	0.000	0.106	0.165	0.245
2EH	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2EH1	0.014	0.004	0,006	0.000	0.006	0,010	0.009	0.005	0.000	0.006	0.009	0.013
2EH2	0.268	0.081	0.123	0.000	0.127	0.199	0.176	0.093	0.000	0.114	0.177	0.263
2EJ	0.065	0.020	0.030	0.000	0.031	0.049	0.043	0.023	0.000	0.028	0.043	0.064
2EK	0.061	0.018	0.028	0.005	0.034	0.050	0.045	0.026	0.005	0.026	0.040	0.060
2FA	0.000	0.000	0.000	0.000	0.057	0.000	0.057	0.057	0.000	0.000	0.000	0.000
2FB	0.000	0.000	0.000	0.007	0.007	0.000	0.007	0.007	0.000	0.000	0.000	0.000
2FC	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2GA	0.000	0.000	0.000	0.000	0.056	0.000	0.056	0.056	0.000	0.000	0.000	0.000
2GB	0.000	0.000	0.000	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222
2GC	0.000	0.000	0,000	0.000	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.000
2GD	0.000	0.000	0.000	0.000	0.687	0.687	0.687	0.687	0.687	0.000	0.000	0.000
2H	0.005	0.002	0.219	0.219	0.219	0.005	0.002	0.002	0.003	0.007	0.221	0.222
2J	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2K	0.000	0.013	0.046	0.022	0.067	0.053	0.049	0.009	0.038	0.132	0.141	0.050
2KA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2KB	0.000	0.000	0.000	0.000	0.000	0.000	000,0	0.000	0.000	0.000	0.000	0.000
2KC	0.030	0.000	0.092	0.103	0.109	0.039	0.000	0.056	0.039	0.131	0.137	0.108
Sub Total	2.615	3.553	5.581	4.222	6.530	4.440	3,631	2.920	3.829	4.779	7.182	6.085
						7,770	ו ביווים	4.740	5.027	4.779	7.102	0.003

Table 3.2.2 Present Irrigation Water Demand (3/5)
Drainage Area 3

Basin	JAN	FEB	MAR	APR	MAY	JUN	JUL	ΛUG	SEP	OCT	NOV	DEC
3AA	0.201	0.201	0.201	0.201	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.201
3AA11	0.000	0.004	0,005	0.001	0.004	0.003	0.003	0.000	0.003	0.009	0.007	0.004
3AA12	0.000	0.027	0.037	0.011		0.020	0.019	0.002	0,023	0.063	0.055	0.027
3AA13	0.000	0.008	0.011	0.003	0.008	0.006	0.006	0.001	0.007	0.018	0.016	0.008
3AA2	0.000	0.015	0.021	0.006	0.015	0.011	0.011	0.001	0.013	0.035	0.031	0.015
3AB	0.011	0.011	0.011	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.011
3AC	0.060	0.060	0.060	0.060	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.060
3BA	0.008	0.008	0.008	3.756	3.756	3.756	3.756	0.008	0.008	0.008	3.756	3,756
3BA1	0.001	0.058	0.079	0.023	0.058	0.043	0.041	0.004	0.050	0.135	0.118	0.059
3BA2	0.011	0.535	0.727	0.211	0.535	0.401	0.380	0.039	0.458	1.245	1.089	0.544
3BB	0.000	0.001	0.001	0.000	2.409	2.409	0.001	0.000	0.001	0.003	0.002	0.000
3BC	0.000	0.001	0.002	0.873	0.873	0.873	0.874	0.000	0.001	0.003	0.002	0.873
3BD	0.540	0.540	0.540	0.540	0.540	0.540	0.540	0.540	0.540	0.540	0.540	0.540
3CB	0.070	0.160	0.135	0.593	0.540	0.573	0,570	0.064	0.119	0.158		
3DA	0.000	0.000	0.000	0.325	0.325	0.375	0.000	0.000	0.000	0.000	0.645	0.012
	0.000	0.000	0.000	0.323	0.323	0.048	0.000	0.000	0.000		0.325	0.000
3DB	0.000	0.000	0.000	0.359	0.048	0.359	0.000	0.000	0.000	0.000	0.048	0.000
3EA											0.359	0.359
3EB	0.000 0.129	0.000 0.209	0.000 0.349	0.342 0.305	0.342	0.342	0.000 0.070	0.000 0.053	0.000	0.000	0.342	0.342
3EC					0.372	0.307			0.433	0.489	0.317	0.581
3ED	0.000	0.000	0.000	0.007	0.007	0.007	0.000	0.000	0.000	0.000	0.007	0.007
3FA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3FA1	0.024	0.046	0.000	0.030	0.055	0.061	0.036	0.000	0.042	0.074	0.051	0.043
3FA2	0.010	0.019	0.000	0.012	0.022	0.025	0.015	0.000	0.017	0.030	0.021	0.017
3FA3	0.003	0.005	0.000	0.003	0.006	0.006	0.004	0.000	0.004	0.008	0.005	0.005
3FB	0.179	0.345	0.000	0.228	0.414	0.459	0.271	0.000	0.316	0.562	0.384	0.323
3G	0.736	0.736	0.736	0.736	0.736	0.736	0.736	0.736	0.736	0.736	0.736	0.736
3G1	0.531	0.207	0.000	0.000	0.000	0.629	0.213	0.078	0.324	0.874	0.315	0.487
3G2	0.043	0.017	0.000	0.000	0.000	0.051	0.017	0.006	0.026	0.071	0.026	0.040
3G3	0.278	0.108	0.000	0.000	0,000	0.329	0.112	0.041	0.169	0.458	0.165	0.255
3G4	0.027	0.011	0.000	0.000	0.000	0.032	0.011	0.004	0.017	0.045	0.016	0.025
3HA	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053
3HB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3HC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3HD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3HD2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000
3J	0.000	0.000	1,264	1.264	1.264	0.000	0.000	0.000	0.000	0.000	1.264	1.264
3K	0.001	0.015	0.011	0.162	0.159	0.013	0.005	0.001	0.154	0.174	0.180	0.157
3LA	0.000	0.000	1.507	1.507	1.507	0.000	0.000	0.000	0.000	0.000	1.507	1.507
3LB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3MA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3MB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000
3MC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3MD1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000,0	0.000	0.000	0.000
3MD2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3N	0.000	0.004	0.000	0.000	0.000	0.011	0.004	0.001	0.006	0.015	0.005	0.008
Sub Total	2.927	3.406	5.760	11.671	14.499	12.429	7.750	1.634	3.522	5.809	13.261	12.320

Table 3.2.2 Present Irrigation Water Demand (4/5)
Drainage Area 4

											Unit : m3/	sec
Basin	JAN	FEB	MAR	ΛPR	MAY	JUN	JUL	ΛUG	SEP	OCT	NOV	DEC
4AA	0.649	0.062	0.109	0.689	0.699	0.770	0.675	0.651	0.682	0.762	0.726	0.683
4AB	0.010	0.010	0,010	0.207	0.207	0.207	0.207	0.207	0.207	0.207	0.207	0.207
4AC	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095
4AD	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.000	0.019	0.019	0.019	0.019
4BA	0.099	0.099	0.099	0.099	0.099	0.099	0.099	0.099	0.099	0.099	0.099	0.099
4BB	0.872	0.918	0.954	0.901	0.895	0.906	0.880	0.876	0,904	0.970	0.932	0.891
4BC	0.724	0.724	0.724	0.724	0.724	0.724	0.724	0.724	0.724	0.724	0.724	0.724
4BD	0.580	0.771	0.811	0.727	0.701	0.596	0.580	0.616	0.818	0.838	0.717	0.696
4BE	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
4BF	0.175	0.334	0.367	0.297	0.276	0.189	0.175	0.205	0.373	0.389	0.289	0.271
4BG	1.215	1.215	1.215	1.215	1.215	1.215	1.215	1.215	1.215	1.215	1.215	1.215
4CA	0.866	0.866	0.003	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866
4CB	0.888	0.888	0.000	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888
4CC	2.644	2,644	0.002	2.644	2.644	2,644	2.644	2.644	2.644	2.644	2.644	2.644
4DA	0.163	0.163	0.163	0.163	0.163	0.163	0.163	0.163	0.163	0.163	0.163	0.163
4DA1	0.242	0.600	1.748	1.345	0.625	0.720	0.559	1,389	2.316	1.545	0.633	1.108
4DA2	0.758	1,879	5.472	4.213	1.957	2.254	1.751	4,350	7.256	4.841	1.983	3.472
4DB	0,062	0.062	0.000	0,062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062
4DC	0.082	0.061	0.074	0.129	0.121	0.087	0.082	0.094	0.158	0.164	0.126	0.119
4DD	1.790	1.790	1.790	1.790	1.790	1,790	1.790	1.790	1,790	1,790	1.790	1.790
4DE	0,009	0.009	0.000	0.009	0.009	0,009	0.009	0.009	0.009	0.009	0.009	0.009
4EA	0,294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294	0.294
4EA1	0.000	0.093	0.428	0.000	0.209	0.329	0.071	0.077	0.772	0.463	0.000	0.026
4EA2	0.000	0.015	0.070	0.000	0.034	0.053	0.011	0.013	0.125	0.075	0.000	0,004
4EB	0.231	0.246	0.254	0.245	0.254	0.237	0.239	0.234	0.260	0.259	0.243	0.243
4EC	0.050	0.050	0,050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
4ED	0.001	0.000	0.000	0.001	0.001	0.001	0.001	0.000	0.000	0,000	0.001	0.001
4FA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4FA1	0.000	0.093	0.186	0.094	0.176	0.120	0.051	0.073	0.295	0.221	0.069	0.066
4FA2	0.000	0.184	0.369	0.186	0.349	0.238	0.100	0.144	0.586	0.437	0.136	0.129
4FB	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000
4GA	0.031	0.419	0.672	0.481	0.744	0.411	0.230	0.331	0.986	0.809	0.361	0.331
4GB	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0:000	0.000	0.000
4GC	0.112	0.001	0.427	0.520	0.562	0.146	0.001	0.278	0.148	0.550	0.468	0,357
4GD	0.197	0.000	3.555	3.092	3.142	0.504	0.000	2.185	1.405	3.170	2.975	2,542
4GE	0.068	0.000	1.235	1.074	1.092	0.175	0.000	0.759	0.488	1.102	1.034	0.883
4GF	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4GG	0.225	0.000	0.912	0.923	0.811	0.111	0.000	0.530	0.285	0.982	0.834	0.904
4HA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0,000
4HB	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000
4HC	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4JA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4JB	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4KA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4KB	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sub Total	13.351	14.804	22.307	24.242	21.973	17.172	14,731	22.112	27.182	26.902	20.852	22.051
										**		

Table 3.2.2 Present Irrigation Water Demand (5/5)
Drainage Area 5

											,	
Basin	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
5AA	0.006	0.006	0,006	0.006	0.006	0.006	0.006	0.006	0.074	0.006	0.006	0.006
5AB	0.003	0.060	0.102	0.080	0.114	0.071	0.047	0.000	0.029	0.103	0.104	0.067
5AC	0.009	0.223	0.381	0.299	0.424	0.266	0.174	0.000	0.110	0,385	0.390	0.250
5AD	0.000	0.001	0.002	0.002	0.003	0.002	0.001	0.000	0.001	0.002	0.002	0.002
5BA	0.627	0.627	0.627	0.627	0.627	0.627	0.627	0.627	0.627	0.627	0.627	0.627
5BB	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0,161	0.161	0.161	0.161
5BC	1.126	1.286	1,425	1.268	1.387	1.906	1.296	1.123	1.192	1.366	1.337	1.279
5BD	0.000	0.000	0.000	0.016	0.016	0.000	0.000	0.000	0.000	0.000	0.016	0.016
5BE	0.010	0.053	0.089	0.591	0.625	0.224	0.055	0,006	0.023	0.071	0.611	0.595
5CA	0.000	0.000	0.000	0.001	0.001	0.000	0.001	0.001	0.000	0.000	0.001	0.000
5CB	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5CC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5DA	0.015	0.015	0.015	0.000	0.000	0.015	0.015	0.015	0.015	0.000	0.000	0.000
5DB	0.009	0.009	0.009	0.000	0.000	0.009	0.009	0.009	0.009	0.000	0.000	0.009
5DC	0.009	0.009	0.009	0.000	0.000	0.009	0.009	0.009	0.009	0.009	0.000	0.000
5DD	0.013	0.013	0.013	0.000	0.000	0.013	0.013	0.013	0.013	0.013	0.000	000,0
5EA	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000
5EB	0.000	0.000	0.003	0.003	0.003	0.000	0.000	0.000	0.000	0.003	0.003	0.000
5EC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0,000	0.000	0.000	0.000
5ED	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5FA	0.000	0.230	0.296	0.510	0.762	0.536	0.143	0.012	0.550	0.651	0.501	0.207
5FB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5GA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5GB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5H	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5J	0.000	0.007	0.014	0.012	0.017	0.007	0.003	0.000	0.000	0.013	0.017	0.007
Sub Total	1,988	2.700	3.152	3,576	4.146	3.852	2.560	1.982	2,813	3.410	3.776	3.226
Total	23.705	26.937	45.239	53.096	57.178	48.220	39.735	40.430	. 50.440	54.148	57.324	54.453

Table 3.3.1 Present Livestock Population

	Estimated				×	9	0.1				03	6.4	7 03	0.00	78.0		18.3	3.7	, t.) v	;				,,,	7.71	~	3.	1003			3.7	5.9		8.1	¥.	1.2	•	0.1		320.2
9740	9				×	2					0.3	10.5	0	0 5	49.4	4 60	73.7	4.5	ر د د	9 6	ì								159.0			4.5									359.6
Denkan	DRSRS						0.1					2.3	Ċ	77		c	9.0	77	i ÷	5 6	5				,	7.71	7.0	Š	13.3			2.9			5.8	54.1	1.2				110.9
	DDP												6	89.7 7.7 11.7	ò	ç	4.07	4.0	9 V	3							0	3	128.6				5.9		10.4				0.1		272.7
	Estimated											33.1	0.2	7.7.7			186.1	\$ C.	Σ Σ	150 %	0.77						¢	9				3.0	3.7		14.0	102.1	0.5				695.7
	DRSRS MOLD Estimated											13.9	0.7	7.7		t	7.85.7	7 0	120.0	20400	2.007											5.5	3.7		15.3						678.8
3	DRSRS	-										52.4		52.9		6	77.7	7 07	74.0	153.4	1.001						o	9.7				0.5			13.2	102.1	0.5				586.5
	DDP	-											i.	00		i d	277.3	0 17	118.2	1.00.1	0.071														13.6						565.6
	Estimated	7.7	136.5	86.6	230.5	118.3	128.4	222.4	15.9	9.5	302.5	528.8	133.6	360.5	600.7	433.7	907.0	100	27.5	507.3	107.0	191.9	7.707	400 5	408.7	961.4	77.7	3103	1675.8	59.0	127.2	97.199	314.2	2,0	451.1	1805.4	266.7	102.9	74.4	55.6	15066.7
	MOLD	7.7	161.7	109.5	727	161.7	211.5	199.1	21.0	8.6	400.0	654.8	136.9	321.8	688.1	0.40.0	961.2	0.0.0	200.0	2000	107.0	797.9 C 190	2707	7000	400.5	1245.2	1.162	316.1	2315.3	59.0	129.5	897.2	299.6	599	478.0	2169.8	370.0	97.4	67.1	13.4	17862.4
J.	DRSRS MOI						45.4		0.8			402.8	6	473.8		4	923.9	1 27.0	2000	700.7	17/64				0	639.0	0.000	7:47	437.2		•	311.7			460.0	1446.3	133.5				6547.4
	DDP		111.2	63.7	27.0	74.8		245.8	26.0	10.5	205.0		130.3	306.0	513.2	516.7	855.8	7.00	474.4	100	400.0		1 130	201.1	0000	1000.0	150.4	305.4	2274.9		125.0	776.0	328.9	61.5	415.3	1800.0	296.5	108.4	81.8	97.8	13659.7
	DDP*1 DRSRS*2 MOLD*3 Estimated	9.9	174.2	4.66	181.8	142.5	102.6	239.7	37.1	4.0	149.0	413.1	7.66	172.6	303.0	408.2	261.9	470.4	7000	714.0	4.4.7	0.080	255.7	4.404.4	250.7	602.7	5172	280.4 280.4	853.1	189.3	272.5	179.9	152.4	363.8	155.5	235.3	169.7	294.5	156.6	443.6	11255.0
	MOLD*3	9.9	166.5	0.88	196.0	149.7	219.9	205.1	49.0	5.0	149.4	521.1	101.2	246.2	3345	4.C.4	346.0	0.00	151	2643	704°C	0.080	2 3 3 4	C.124	330.7	670.1	2450	40.5	1180.1	189.3	272.9	192.9	158.6	386.2	165.4	298.6	205.0	302.0	157.3	445.6	12800.0
	ORSRS*2						77.2		8.6			305.2	(122.5		1	125.4	0.536	5 4	2.02.	120.4				į	475.8	7 671	102.4	565.9			141.8			146.4	197.3	124.2				2902.1
	DDP*1		181.9	110.0	16/.6	135.4	10.6	274.2	53.8	3.0	148.5	8	98.1	149.2	271.6	5,0.5	3145	1.067	105.0	250.0	582.0	365.0	201.9	201.0	,	662.3	700.0	153.3	813.4		272.0	205.0	146.3	3413	154.7	210.0	180.0	287.0	156.0	441.7	9817.9
	Code District	110 Nairobi	210 Kiambu	220 Kirinyaga	250 Murang a	250 Nveri	310 Kilifi	320 Kwale	330 Lamu	340 Mombasa	350 Taita Taveta	360 Tana River	410 Embu	420 Isiolo	430 Kitui	440 Machakos	450 Marsabit	510 Contact	500 Mandan	520 Weils	250 wajii	010 KISH	ozo Kisumu	650 Staya	640 South Nyanza	710 Kajiado	720 Kencho	740 Natoria	750 Narok	760 Trans Nzoia	770 Uasin Gishu	810 Baringo	820 Elg. Marakwet	830 Nandi	840 Samburu	850 Turkana	860 West Pokot	910 Bungoma	920 Busia	930 Kakamega	Total

Source: *1=Ref.F3,*2=Ref.F.11,*3=Ref.F.19

Table 3.3.2. Average Live-weight

	Grad Catt		Loca Cattl		Sheep Goat	Camel
Herd Composition	Proportion (%)	Live- weight (kg)	Proportion (%)	Live- weight (kg)	Live- weight (kg)	Live weight (kg)
Bull		400	2	280		
Cow	45	320	28	220		
Heifer	17	240	25	160		
Heifer Calves	14	140	10	100		
Bull Calves	11	140	10	100		
Steer	11	240	25	160		
Average Live-			·			
weight		254		167	30	300
LU/head		0.56		0.37	0.07	0.67

Source:

Ref.F.19

Table 3.3.3. Present Livestock Water Demand

Subbas	in Demand	Subbasin	Demand								
1AA	7.40	1FD	17.34	2AA	28.64	3AA	5.14	4AA	8.05	5AA	21,24
1AB	5.69	1FE	22.22	2AB	25.33	3AB	15.11	4AB	10.47	5AB	9.32
1AC	3.05	1FF	8.47	2BA	9.40	3AC	7.31	4AC	6.94	5AC	9.02
1AD	7.80	1FG	35.84	2BB	11,29	3BA	11.22	4AD	7.53	5AD	4.73
1AE	1.76	1GA	15.60	2BC	26.75	3BB	5.74	4BA	5.68	5BA	2.97
1AF	10.14	1GB	19.70	2BD	40.33	3BC	11.54	4BB	4.57	5BB	6.67
1AG	9.03	1GC	32.86	2CA	9.59	3BD	7.49	4BC	5.44	5BC	18.89
1AH	12.45	1GD	26.59	2CB	32.40	3CB	9.74	4BD	13.31	5BD	7.72
1BA	13.65	1GE	13,84	2CC	53.29	3DA	7.80	4BE	13.05	5BE	14.40
1BB	16.74	1GF	8.56	2D	49.84	3DB	5.74	4BF	9.20	5CA	12.96
1BC	14.26	1GG	14,80	2EA	6.40	3EA	7.01	4BG	6,64	5CB	6.90
IBD	18.56	1HA	28,12	2EB	9.15	3EB	6.34	4CA	12.66	5CC	6.64
1BE	26.89	1HB	25,08	2EC	13.86	3EC	5.46	4CB	7.67	5DA	29.66
1BG	22.32	1HC	22.10	2ED	5.62	3ED	4.49	4CC	17.09	5DB	9.70
1BH	14.66	1HD	23.80	2EE	4.60	3FA	81.87	4DA	14.94	5DC	9.94
1CA	17.62	1HE	23,15	2EF	2.94	3FB	28.17	4DB	9.72	5DD	5.38
1CB	17.83	1HF	10.92	2EG	6.66	3G	33.54	4DC	4.19	5EA	67.17
1CC	17.90	1HG	3.77	2EG	11.84	3HA	2.52	4DD	5.21	5EB	84.86
1CD	18.34	1JA	23.31	2EH	4.77	3HB	6.78	4DE	6.29	5EC	84.26
1CE	7.02	1JB	10.00	2EJ	11.45	3HC	7.78	4EA	11.39	5FA	83.64
1DA	14.80	1JC	12.37	2EK	4.45	3HD1	1.65	4EB	17.47	5FB	37.08
1DB	18.28	1JD	8.46	2FA	10.30	3HD2	1.04	4EC	7.07	5G	63.98
1DC	10.96	1JE	28.94	2FB	2.56	3HD3	1.11	4ED	19.19	5H	33.48
1DD	9.60	1JF	39.76	2FC	26.91	3 J	7.83	4FA	30.32	5 J	77.63
1EA	13.15	1JG	13.00	2GA	6.67	3K	34.22	4FB	40.78		
1EB	11.27	1KA	20.59	2GB	22.42	3L	20.71	4GA	13.93		
1EC	6.82		105.80	2GC	18.16	3MA	21.55	4GB	16.78		
1ED	4.38	1KC	50.18	2GD	20.61	3MB	10.62	4GC	5.13		
1EE	15.77	1LA	25.22	2H	88.29	3MC	7.89	4GD	33,66		
1EF	12.08	1LA	17.32	2 J	72.92	3MD	8.04	4GE	42.62		
1EG	21.64	1LA	43.97	2KA	83.78	3N	27.04	4GF	17.04		
1FA	6.17	1LB	28.85	2KB	24.70			4GG	38.02		
1FB	14.58	1LB	43.75	2KC	24.05			4HA	18.47		
1FC	10.60							4HB	20.45		
								4JA	41.44		
								4JB	12.04		
								4KA	28.04		
		<u> </u>						4KB	33.02		
Total		1	257.47		769.95		412.46		615.51		708.25

Table 3.6.1 Chronology of Flood Events

Year		I	ake Vic	toria Ba	sin		Rift	Valley	Basin	<u>Athi</u>	River	Basin		Ewaso	Remarks
ı car	Nzoia River	Yala River	Nyando River	Sondu River	Kuja River	Mara River	Turkwel River	Kerio River	Ewaso Ngiro South River	Athi River	Lumi River	Nairobi River	KIYEI	Ngiro North River	Acmarks
1961	0	•	0	0	•	-	-	-	•	0	Ö	0	•	0	Uhuru Rains
1962	•	-	-	0	-	-	-	-	-	-	0	-	-	-	
1963	0	0	0	0	0	-	-	-	•	-	-	-	0	-	
1964	0	0	0	0	0	-	-	<u>.</u> .	-	-	-	- '	0	-	
1965	-	-	•	-	-	-	•	-	-	-	-	-	-	-	
1966	-	-		-	-	-	-	-	-	-	_	-	0	•	
1967	-	-	-	-	-	-	-	-		-	0	-	0	•	
1968	0	0	0	0	0	-	-	-	-	-	0	-	·	0	
1969	-	-	-	٠.	-	•	-	-	-	-	-		•	-	
1970	0	• -	0	-	-	•	-	-	-	-	0	-	-	-	
1971	-	0	-	-	-		-	•	-	•	0	•	0	-	
1972	0	-	0	-		-	-	-	-	-	-	-	-	-	
1973	-	-	-	-	•	-	-	-	-	•	-	-	-	-	
1974	-	•	0	-	0	-	*	-	-	-	-	• -	-	-	
1975	0	-	-	•	-	-	-	-	•	-	-	-	-	-	
1976	-	-	-	-	•	-	-	-	-	•	0	-	-	-	
1977	0	0	0	0	0	-	-	-	•	0	-	0	0	-	
1978	0	0	0	-	0	-	-	-	-	0	0	-	0	-	
1979	-	0	0	-	•	-	-	-	-	-	-	-	0	-	
1980	-	-	-	•	•	-	-	-	-	-	0	-	-	-	
19 81	0	0	-	0	-	-	-	-	-	-	0	-	-	-	
1982	0	0	0	0	0	-	-	-	-	-	0	-	-	0	
1983	0	0	-	-	-		-	-	-	-		-	-	-	
1984	-	-	-	-	-	-	-	-	• ,	-		-	0	-	
1985	-	0	0	-	0	-	•		-	-	0	-	-		
1986	-	-	-	-	•		-	-	-	0	-	0	-	-	
1987	-	-	-	0	•	-	-	•	•	-	0	0		-	
1988	0	0	0	0	0	•	0	-	÷	-	-	0	0	0	
1989	-	-	-		-	•	-	•		-	0	•	0	0	
1990 Notes	-	0	0	0	0	-		-		-	-	-	0	-	

: Most serious flood between 1961 and 1990
: Serious floods
: Floods causing a certain damage

Table 3.6.2 Flood Condition and Damage by District (1/10)

Area	Flood Condition	iltion			Flood Damage	паде		Existing Counter-	Cate-
	Flooding	Bank Erosion	Sedimentation	Housing	Farmland / Grazing	Intake Facilities	Road / Bridge	measures	
WESTERN PROVINCE									
1. Bungoma District:	Upper Reaches of Nzoia, Sio and Malakisi	Malakisi			. •				
a. Mountain Area of Mt. Elgon	Less	Less; rocky	Less	None	None	None	Less	None	Z Z
	- Riverine areas of small rivers, e.g., Bokoli & Mayanga - Almost every year (e.g., 1986) - Some 100m wide (some km2) - Less than 0.5m deep - Lasts a few hours	Slight	Slight	None; no human sculements existing in the riverine areas	Less, less cultivation and only seasonal grazing practiced in the riverine areas	Less; some intakes existing, but barely damaged	Less; A minor bridge washed away in 1986	None	Z N
 Kakamega District: 	Middle Reaches of Nzoia and Yala	23							
a. Whole District; Hilly Land	- Valley bottoms of Nzoia, Yala & thier tributaries (e.g., Edzawa) - Some years (e.g., 1988) - Less than 100m wide (some km2) - Less than 0.5m deep - Lasts a few hours	& Slight 2)	Less	None; no human seulements existing in the valley bottoms	Less; less cultivation and only seasonal grazing practiced in the valley bottoms	Less; many intakes existing, but barely damaged	Less; A minor bridge washed away in 1988	None	X X
3. Busia District:	Lower Reaches of Malakisi and Sio, plus Downmost Reaches of Nzoia and Yala	io, plus Downmos	t Reaches of Nzo	ia and Yala					
a. Lower Reaches of Malakisi River	Riverine areas of Malaba & its ributaries (e.g., Malakisi) - Almost every year (e.g., 1987 & 89) - Some 100m wide (some km2) - Less than 0.5m deep - Lasts a day or more	Slight	Slight	Less; few human seulements existing in the riverine areas	Slight, limited farmlands damaged and gazing affected by floods in the riverine areas	Less; some intakes existing, but barely damaged	Less; A minor bridge washed away in 1987	None	LS
b. Lower Reaches of Sio River	- Riverine areas of Sio & its tributaries - Almost every year - Max. 3km wide (some km2) - Less than 0.5m deep - Lasts a day or more	Slight	Sometimes heavy causing Busia water supply intake	Less; few human settlements existing in the riverine areas	Slight, limited farmlands damaged and gazing affected by floods in the riverine areas	Less; some intakes existing, e.g., pump station for Busia Water Supply, but barely damaged	Less; minor bridges sometimes submerged during high flood	None	S
c. Downnost Reaches of Nzoia & Yala rivers	- Yala swamp area affected by combination of floods from Nzoia & Yala rivers - Almost every year (e.g., 1982) - About 110km2 (incl. 4.a) - 0.5m to im deep	Slight, esp., along Nzoia	Slight; esp., at rivermouth of Nzoia & Yala Swamp	Serious; villages along both banks of Nzoia inundated/damaged by floods, causing human transfer to higher places, and sometimes life lost	Slight; farmlands along both banks of Nzoia damaged by floods (main crops damaged are rice and maize), and some livestocks lost	None; no intakes existing	Serious; many roads & bridges submerged and sometimes damaged, causing isolation of human seulements	16km dikes on both banks of Nzoia R. downstream of Luambwa Br.	ML
* Refer to Table 3.5.3									

Table 3.6.2 Flood Condition and Damage by District (2/10)

	Area	Flood Condition	tion			Flood Damage	nage		Existing Counter-	Cate-
		Flooding	Bank Erosion	Sedimentation	Housing	Farmland / Grazing	Intake Facilities	Road / Bridge	measures	ì
]	NYANZA PROVINCE									
4,	Siaya District: a. Lower Reaches of Nzoia & Yala rivers	Lower Reaches of Nzoia and Yala, plus Small rivers in the South - Yala swamp area affected by Slight; esp., Slight; esp., combination of floods from along Nzoia at Nzoia & Yala rivers - Amost every year (e.g., 1982) - About 110km2 (incl. 3.c) - 5.5m to lim deep.	pius Small river Slight; esp., along Nzoia	s in the South Slight; esp., at Yala Swamp	Slight, villages on left bank of Nzoia sometimes inundated by floods	Serious; farmlands in/ around Yala Swamp, esp., Yala Swamp Farm-Area 1, damaged by floods, and livestocks lost	Less; there are intakes of Bunyala Irr. Scheme on Nzoia and of Yala Swamp Farm on Yala, but barely damaged	Slight; farm roads submerged and sometimes damaged	A 9km dike on right bank of Yala Rivet, a part of which was breached in 1988	ML
	b. Hilly Land	- Lasts about a filorium - Valley bottoms of Nzoia, Yala & thier tributaries - Almost every year - Some 10m wide (less than km2) - Less than 0.5m deep - Lasts a few hours	Slight; esp., along Nzoia	Ssor	None: no human settlements existing in the valley bottoms	Less; limited farmlands in the valley bottoms sometimes damaged by floods	Less; intakes sometimes submerged	Less; minor bridges submerged and sometimes damaged	None	Z Z
λ. X	Kisumu District:	Middle / Lower Reaches of Nyando and Sondu, plus small rivers in the Northeast	and Sondu, plu	s small rivers in th	ne Northeast					
	a. Lower Reaches of Nyando River	- Kano Plain affected by the floods from Nyando as well as other small rivers: Kibos, Luanda, Ombeyi, Miriu, Nyaidho and Awach Kano - Almost every year (e.g., 1961, 82 & 88) - About 200km2 - 0.5m to 1m deep - Lasts about a week	Slight	Slight	Serious: towns/villages in Kano Plain, esp., Ahero Town, inundated/ damaged by floods, causing human transfer to higher places, and sometimes life lost	Serious; farmlands damaged and grazing affected by floods in Kano Plain (main crops damaged are rice, sugarcane, maize & cotton)	Slight: intakes on Nyando submerged, but barely damaged (there are intakes of Ahero Pilot Sch. & S.W. Kano Irr. Project)	Serious; minor roads/bridges submerged and sometimes damaged (however truck roads are rarely affected)	2km dikes on both banks along Nyando downstream of Ahero Bridge	Пн
	b. Lower Reaches of Sondu River	- Rivermouth of Sondu on right bank (Lower Kadianga area) - Almost every year (esp.,1990) - About 10km2 (incl. 6.a) - 0.5m to 1m deep - Lasts about a week	Slight	Slight	Scrious; villages/human settlements in Lower Kadianga area inundated/damaged by floods, causing human transfer to higher places	Slight, limited farmlands in Lower Kadianga area darnaged by floods, and livestocks lost	None; no intakes existing	Slight, community roads/bridges submerged and conclimes damaged (however the truck road to Kundu Bay is not affected)	None	N
	c. Mountain Slope Zone	Less	Serious	Slight	None	Less	Less	Less	None	Z Z
e v	South Nyanza District: a. Lower Reaches of Sondu River	Middle / Lower Keaches of Sondu, Awach i ende and Kuja, plus Lambwe Kiver - Rivermouth of Sondu on left Slight Serious; v bank (Kobala area) - Almost every year (esp., 1990) - About 10km2 (incl. 5.b) - 0.5m to Im deep - Lasts about a week	Awach l'ende an	nd Kupa, plus Larm Slight	blowe Kiver Serious; villages/human settlements in Kabola area inundate/d/damaged by floods, causing human transfer to higher places	Slight; limited farmlands in Kabola area damaged by floods, and livestocks lost	None; no intakes existing	Slight; community roads/bridges submerged and sometimes darnaged (however the track road to Kundu Bay is not affected)	None	M
*	* Refer to Table 3.5.3									

Table 3.6.2 Flood Condition and Damage by District (3/10)

Area	Flood Condition	lition			Flood Damage	nage	÷	Existing Counter-	Cate gory ,
:	Flooding	Bank Erosion	Sedimentation	Housing	Farmland / Grazing	Intake Facilities	Road / Bridge	measures	
b. Lower Reaches of Awach Tende	- Rivermouth of Awach Tender - Almost every year (e.g., 1987 & 88) - Less than km2 - Less than 0.5m deep - Lasts about a week	Slight	Slight	Less; few human seulements existing in the rivermouth	Less, limited famlands in the rivermouth sometimes darnaged by floods	None; no intakes existing	Slight; the truck road to Homa Bay submerged/damaged	None	L.S
c. Lower Reaches of Lambwe River	- Riverine area of Lambwe River - Aimost every year - About some km2 - Less than 0.5m deep - Lasts about a week	Slight	Slight	None; no human sentlements existing in the riverine area	Less, less cultivation and only seasonal grazing practiced in the riverine area	Less; few intakes existing	Slight, the truck road to Mbita submerged/damaged	None	LS
d. Lower Reaches of Kuja	- Rivermouth of Kuja (Central & South Kaden area) - Almost every year (esp., 1990) - About 25km2 - Less than 0.5m deep - Lasts about a month	Slight	Slight	Serious; human seutlements in Central Kaden area inundated/damaged by floods, causing human transfer to higher places and sometimes life lost	Slight; farmlands damaged and grazing affected by floods in Central Kaden area	Less, few intakes existing	Slight; main roads submerged and sometimes damaged	None	M
e. Hilly Land	Less	Slight	Less	None	Less	Less	Less	None	Z Z
7. Kisii District:	Upper Reaches of Kuja and Awach Tende, plus small tributaries of Sondu	h Tende, plus sma	Il tributaries of S	npuo					
a. Whole District. Hilly Land	 Valley bottoms of small rivers Almost every year Some 10m wide (less than km2) Less than 0.5m deep Lasts a few hours 	Slight	Less	None; no human seulements existing in the valley bottoms	Less, limited farmlands in the valley bottoms sometimes damaged by floods	Less; intakes Less; minor bric sometimes submerged, submerged and but barely damaged sometimes dam:	Less, minor bridges , submerged and sometimes damaged	None	S Z
RIFT VALLEY PROVINCE	Upper Reaches of Nzoia								
a. Mountain Areas of Mt. Elgon & Cherangan Hill	Less	Less	Less	None	Less	None	Less	None	Z Z
b. Highland Area in between	- Riverine areas of small rivers, e.g., Nzoia & Koitobos rivers Almost every year - Max. Ikm wide (some km2) - Less than 0.5m deep - Lasts a few days	Slight	Slight	Less; few human settlements existing in the riverine areas	Less, limited farmlands in the riverine areas damaged by floods	Less, many intakes existing and Kitale Town Water Supply sometimes stopped by floods	Less, minor bridges submerged and sometimes damaged	None	S Z
* Refer to Table 3.5.3			,						

Table 3.6.2 Flood Condition and Damage by District (4/10)

Area	Flood Condition	tion			Flood Damage	mage		Counter-	20 S
	Flooding	Bank Erosion	Sedimentation Housing	Housing	Farmland / Grazing	Intake Facilities	Road / Bridge	measures	i
9. Uasin Gishu District:	Upper Reaches of Nzoia, and Upmost Reaches of Yala and Nyando	ost Reaches of Ya	ala and Nyando						
a. Mountain Area of Mt. Londiani	Less	Less	Less	None	Less	None	Less	None	Z Z
b. Highland Area	- Riverine areas of small rivers, e.g., Sosiani River - Almost every year - Some 100m wide (some km2) - Less than 0.5m deep - Lasts a few days	Less	Less	None; no human seulements existing in the riverine areas	Less; less cultivation and only seasonal grazing practiced in the riverine areas	Less; many intakes existing, but barely damaged	Less; minor bridges sometimes submerged, but barely damaged	None	S.
Nandi District:	Upper Reaches of Nzoia, Yala and Nyando	Nyando							
 Whole District; Highland Area 	Riverine areas of small rivers, e.g., Kimondi River Some years Some 100m wide (some km2) Less than 0.5m deep Lasts a few days	Slight	Slight	None; no human seulements existing in the riverine areas	Less; less cultivation and only seasonal grazing practiced in the riverine areas	Less; many intakes existing and Nandi Hills & Leternoko water supplies affected by floods	Less; minor bridges sometimes submerged, but barely damaged	None	S Z
11. Kericho District:	Upper Reaches of Nyando, Sondu and Mara	md Mara							
a. Whole District: Mountain Area	- Valley bottoms of small rivers, e.g., Nyando & Kipsonoi - Some years (e.g., 1988 & 90) - Some 10m wide (less than km2) - Less than 0.5m deep - Lasts a few hours	Less	Less; basin well covered with vegitation	None; no human seutements existing in the valley bottoms	Less, limited famlands in the valley bottoms sometimes damaged by floods	Less; many intakes existing, but barely damaged	Less; minor bridges submerged and sometimes damaged (A minor bridge washed away in either 1988 or 90)	None	S Z
12. Nakuru District:	Upper Reaches of Molo, and Lake Basins of Nakuru, Elmentaita and Naivasha, plus Upmost Reaches of Sondu	Basins of Nakuru	, Elmentaita and	l Naivasha, plus Upmost F	caches of Sondu				
a. Escarpment Zones on Both Sides of Rift Valley	Less	Slight	Less	None .	Less	None	Less	None	Z Z
b. Bouom Plains of Rift Valley	- Rivernouth of Malewa flowing into Lake Naivasha - Some years (e.g., 1961) - About 5km2 - Less than 0.5m deep	Slight	Slight	None; no human seulements existing in the rivermouth	Slight; limited farmlands damaged and grazing affected by floods in the rivermouth	Less; some intakes existing, but barely damaged	Less; minor bridges sometimes submerged and drifts unpassable	None	LS

Table 3.6.2 Flood Condition and Damage by District (5/10)

Area	Flood Condition	dition			Flood Damage	mage		Existing Counter-	Cate-
	Flooding	Bank Erosion	Sedimentation	Housing	Farmland / Grazing	Intake Facilities	Road / Bridge	measures	
13. Baringo District:	Lower Reaches of Molo and Small Tributaries of Kerio, plus Lagas	Il Tributaries of Ke	erio, plus Lagas						
a. Whole District Bottom Plains of Rift Valley	Rivermouth of Molo flowing into Lake Baringo Almost every year Some km2 Less than 0.5m deep Lasts a few days	Slight	Slight; making tarbid the Baringo lake water	None; no human seulements existing in the rivermouth	Slight; limited farmlands in the rivermouth damaged by floods	Less; many intakes existing and Seretimini W.S. intake on Ndau R. swept away in 1988	Less; drifis unpassable	None	N S
14. Elgeyo-Marakwet District:	Small Tributaries of Kerio								
a. Whole District; Elgeyo Escarp, zone	Less	Slight	Serious	None	Less	Less	Less; drifts unpassable	None	Z Z
15. West Pokot District:	Upper Reaches of Turkwel and Small Tributaries of Kerio	nall Tributaries of	Келіо						
a. Whole District; Mountain Area	- Parts of riverine areas of Suam & Weiwei Suam & Weiwei Some years (e.g., 1984, 85 & 87) Some 10m wide (Less than km2) - Less than 0.5m deep - Lasts a few hours	Slight 7) 2)	Less	Less; few human settlements existing in the riverine areas	Less, limited farmlands in the riverine areas sometimes damaged by floods	Less; few intakes existing	Less; drifts unpassable and a bridge washed away in 1985	None	Z O
16. Turkana District:	Lower Reaches of Turkwel and Kerio, plus Some Lagas	erio, plus Some La	1825						
a. Midle/Lower Reaches of Turkwel River	Riverine areas of Turkwel, csp. upstream of Katilo Some years (e.g., 1988) Some 100m wide on either bank (about 15km2) Less than 0.5m deep Lasts a few days	Slight	Slight	None; no human seulements existing in the riverine areas	Slight, limited farmlands in the riverine areas sometimes damaged by floods (there are irr. schemes at Katilo, Juluk & Nakwamoru)	Less; some intakes existing, but barely damaged	Less; drifts unpassable	None	LM
b. Lower Reaches of Kerio River	- Riverine areas of Kerio - Some years - Some 10m wide on either bank (some 10km2) - Less than 0.5m dcep - Lasts about a week	Slight	Slight	None; no human settlements existing in the riverine areas	Less, less cultivation and only nomadic grazing practiced in the riverine areas	Less few intakes existing	Less; drifts unpassable	None	Z
c. Other ASAL Area	Less	Less	Less	None	Less	None	Less; drifts unpassable	None	Z, Z,
* Refer to Table 3.5.3									

Table 3.6.2 Flood Condition and Damage by District (6/10)

		HODION POOL T			T TOWN IN SHIRE BE	allakir.		Counter	* 7703
	Flooding	Bank Erosion	Sedimentation	on Housing	Farmland / Grazing	Intake Facilities	Road / Bridge	measures	
17. Laikipia District:	Upper Reaches of Ewaso Ngiro North	Æ				i			
a. Whole District; Highland Area	Less	Slight	Slight	None	Less	Less	Less; drifts unpassable	None	Z Z
18. Samburu District:	Middle Reaches of Ewaso Ngiro North, and Lagas	orth, and Lagas							
a. Whole District; Hilly Land	Less	Slight	Slight	None	Less	Less; some intakes damaged	Less; drifts unpassable	None	Z Z
19. Narok District:	Ewaso Ngiro South, Middle / Lower Reaches of Mara, and Upper Reaches of Kuja (Migori)	r Reaches of M	ara, and Upper	Reaches of Kuja (Migori)					
a. Whole District; ASAL Area	Less	Slight	Slight	None	Less	Less	Less; drifts unpassable	None	Z Z
20. Kajiado District:	Lower Reaches of Ewaso Ngiro South, Lake Basins of Magadi and Amboseli, plus Upper Reached of Athi, Kiboko and Tsavo	uth, Lake Basin	s of Magadi anı	d Amboseli, plus Upper Rea	ched of Athi, Kiboko and Ts.	avo			
a. Whole District; ASAL Area	Less	Slight	Slight	None	Less	Less	Less; drifts unpassable	Nonc	Z Z
CENTRAL PROVINCE									
21. Kiambu District:	Upper Reaches of Athi								
a. Mountain Area of Nyandarua Mountains	Less	Less; rocky	Less	None	Less	Less	Less	None	Z
b. Foot Area of Nyandarua Mountains	- Valley Bottoms of small rivers, e.g., Ruiru - Almost every year - Some 10m wide (Less than km2) - Less than 0.5m deep - Lasts a few hours	Slight	Slight	None; no human seutlements existing in the valley bottoms	Less, limited farmlands in the valley bottoms sometimes damaged by floods	Less; many intakes existing, but barely damaged	Less; minor bridges sometimes submerged, but barely dameged	None	X X
22. Muranga District:	Upper Reaches of Tana								
a. Mountain Area of Nyandarua Mountains	Less	Less; rocky	Less	None	Less	Less	Less	None	Z Z
b. Foot Area of Nyandarua Mountains	- Valley Bottoms of small rivers, e.g., Saba Saba & Muragua - Almost every year (e.g., 1987 & 88) - Some 10m wide (less than km2) - Less than 0.5m deep	Slight	Slight	None; no human seulements existing in the valley bottoms	Less, limited farmlands in the valley bottoms damaged by floods	Slight, intake weirs damaged in 1988 & 90	Slight; minor bridges damaged in 1987 & 88	None	LS

Table 3.6.2 Flood Condition and Damage by District (7/10)

Area	Flood Condition	tion			Flood Damage	nage		Existing Counter-	Cate-
	Flooding	Bank Erosion	Sedimentation	Housing	Farmland / Grazing	Intake Facilities	Road / Bridge	measures	
23. Kirinyaga District:	Upper Reaches of Tana						·		
a. Mountain Area of Mt. Kenya	Less	Less; rocky	Less	None	Less	Less	Less	None	Z Z
b. Foot Area of Mt. Kenya	- Riverine areas of small rivers, e.g., Thiba & Ragati - Almost every year (e.g., 1987 & 88) - Some 10m wide (less than km2) - Less than 0.5m deep - Lasts about a day	Slight	Slight	None; no human seulements existing in the riverine areas	Less, limited farmlands in the riverine areas damaged by floods (there are Mwea Irr. Scheme)	Less; some intakes existing, but barely damaged (Sediment- ation takes place)	Less; minor bridges sometimes submerged, but barely dameged	None	o Z
24. Nyeri District:	Upper Reaches of Tana			•					
a. Whole District; Mountain Area	Less	Slight	Less	. None	Less	Less; many intakes existing, but barely damaged	Less	None	Z Z
25. Nyandarua District:	Upper Reaches of Malewa and Upmost Reaches of Ewaso Ngiro North	most Reaches of	Ewaso Ngiro Nori	æ					
a. Whole District, Highland Area	- Swampy area of Lake OI Bolossat Less; rocky Some years (e.g., 1961 & 85) - Less than 10km2 - 0.5m to Im deep - Lasts a few weeks	at Less; rocky	Less	Slight; some human settlements forced to be relocated	Less; less cultivation and only seasonal grazing practiced in the swampy area	less; few intakes existing	Less; minor bridges sometimes submerged, but barely dameged	None	LS
26. NAIROBI:	Upper Reaches of Athi								
a. Whole Province; Highland Area	- Valley bottoms of small rivers: Nairobi & Ngong, due to narrow sections of bridges/culverts - Some years (esp., 1977, 86 & 88) - Some Jow wide (less than km2) - 0.5m to Im deep - Lasts a few hours	Less	Less	Serious; some houses in the valley bottoms inundated/damaged, and sometimes life lost	Less; less cultivation practiced in the valley bottoms	less; few intakes existing	Serious; floodwaters restricted by bridges/cuiverts overflowing main roads, causing traffic interruption	Revetment in Nairobi & Ngong rivers, damaged in places by 1988-flood	MS
EASTERN PROVINCE									
27. Embu District:	Upper Reaches of Tana								
a. Mountain Area of Mt. Kenya	Less	Less; rocky	Less	None	Less	Less	Less	None	Z Z
b. Highland Area	- Riverine areas of small rivers, e.g., Thiba & Ena - Some years (e.g., 1988) - Some Um wide (less than km2) - Less than 0.5m deep - Lasts a few hours	Slight	Slight	None; no human settlement existing in the riverine areas	Less; less cultivation and only seasonal grazing practiced in the riverine areas	Less; A part of intake weir for Ena Water Supply washed away	Slight; minor bridges washed away, and many submerged in 1988	None	J .
* Refer to Table 3.5.3									

Table 3.6.2 Flood Condition and Damage by District (8/10)

Menu District a. Mountain Area of Less b. Highland Area a. Mountain Area of Less Mt. Kenya b. Highland Area c. Riverine areas of small rivers, Slight into the spanning ring of and repertation of an and every year (e.g., 1984, 88 & 89) c. Some 10m wide (less than km2) c. Less than 0.5m deep Less than 0.5m deep Lasts a few hours ASAL Area a. Whole District c. Riverine area of Ewaso Ngiro North, and Upper Reserved to Ewaso Ngiro Nort	Sedimentation Housing Less None Less; Mt None; residents in Kenya well lgarie sometimes forced covered with to transfer to higher	Farmland / Grazing	Intake Facilities	Road / Bridge	measures	c c
a a fi						
a. Mountain Area of Mt. Kenya b. Highland Area Jaiolo District: a. Whole District: A. A. Area M. Whole District: A. Whole District:						
b. Highland Area lsiolo District: a. Whole District: ASAL Area Machakos District: ASAL Area Machakos District: ASAL Area Whole District: ASAL Area Whole District: ASAL Area Whole District: ASAL Area Kitui District: ASAL Area Machakos Asal Area		Less	Less	Less	None	z z
1siolo District: a. Whole District; ASAL Area a. Whole District; ASAL Area Machakos District; a. Whole District; ASAL Area Kitui District: a. Whole District; ASAL Area		Less: limited farmlands, e.g., Kajuwa Irr. Scheme, sometimes danaged by floods	Less; an intake (under construction) damaged in 1989	Less; A minor bridge washed away in 1984	None	o z
a. Whole District; ASAL Area ASAL Area **R & 89 **About 10km wide - Less than 0.5m deep - Lasts about a month **Marsabit District: **A. Area **A. Area **A. Whole District: **A. Whole District:	of Tana					
Marsabit District: Some Lagas a. Whole District: Less ASAL Area Middle Reaches of Athi a. Whole District: Less ASAL Area Middle Reaches of Tana a. Whole District: Less ASAL Area Middle Reaches of Tana ASAL Area	Less; fow human scuttement existing in the riverine area	Less, limited farmlands, e.g., Makadaka Irr. Scheme, sometimes damaged by floods	Loss; few intakes existing	Less, bridges & culverts sometimes damaged	None	z
a. Whole District; Less ASAL Area Machakos District: Middle Reaches of Athi a. Whole District: Less Kitui District: Middle Reaches of Tana a. Whole District: Less ASAL Area MACHARA ASAL Area MACHARA ASAL Area MACHARA Slight						
Machakos District. a. Whole District; Less ASAL Area Kitut District:	None	Less .	Less	Less; Marsabit road unpassable at Sololo, Laisamis & Logo Logo	None	Z Z
A. Whole District; Less Slight ASAL Area Kiui District: Middle Reaches of Tana a. Whole District; Less ASAL Area NORTH EASTERN DROWINGE						
Kitui District: Middle Reaches of Tana a. Whole District; Less ASAL Area	is; at None ke R.	Less	Less	Less; drifts unpassable	None	Z Z
Less						
NOD'THE EACTED N DECOUNCE	csp., None	Less	Less	Less; drifts unpassable	None	Z Z
NONIA EASIEM FROTIALE						
33. Mandera District: River Daua and Some Lagas						
a. Whole District, Parts of riverine area of Slight Slight ASAL Area Daua on right bank - Some years - Less than km2 - Less than 15m2 - Less than 0.5m deep - Lasts about a week	Less, few human seulements existing in the riverine areas	Slight; limited farmlands in the riverine areas damaged by floods	Less; some intakes existing, but barely damaged	Less; drifts unpassable	Small/short dikes around three irr. schemes	LS

Table 3.6.2 Flood Condition and Damage by District (9/10)

Area	Flood Condition	lition			Flood Damage	mage		Existing Counter-	Cate or *
	Flooding	Bank Erosion	Sedimentation Housing	Housing	Farmland / Grazing	Intake Facilities	Road / Bridge	measures	5.9
34. Wajir District:	Lower Reaches of Ewaso Ngiro North, and Some Lagas	forth, and Some La	gas						
a. Whole District; ASAL Area	- Riverine area of Ewaso Ngiro North on left bank - Almost every year - About 5km wide on left bank - Less than 0.5m deep - Lasts about a month	Less	Slight	None; no human seutlement existing in the riverine area	Less, less cultivation and only nomadic grazing practiced in the riverine area	Less; few intakes existing	Less; drifts unpassable	None	N L
35. Garissa District.	Lower Reaches of Ewaso Ngiro North and Tana, plus I	forth and Tana, plu	s Lagas flowing	Lagas flowing into Indian Ocean				•	
a. Lower Reaches of Ewaso N'giro North and Small River Basins	- Riverine area of Ewaso Ngiro North on right bank - Almost every year - About 5km wide on right bank - Less than 0.5m deep - Lasts about a month	Less	Slight	None; no human seutlement existing in the riverine area	Less, less cultivation and only nomadic grazing practiced in the riverine area	Less; few intakes existing	Less; drifts unpassable	None	Z L
b. Middle Reaches of Tana River	- Riverine area of Tana River on left bank - Some years - About 100m wide on left bank (About 2,000km2 incl. 36.a) - Less than 0.5m deep - Lasts about a month	Serious; banks at concaved portions eroded annually 5m on average, leaving oxbow	Serious; local deposition	Less; human seulements, generally located on natural dikes, barely inundated by floods	Slight; farmlands, e.g., in ADC Farm, eroded by floods	Slight, high cost maintenance due to bank erosion and sedimentation (turbidity of river water is also problem)	Slight, drifts un- passable, sometimes damaged, in lagas joining to Tana	Riprap works at Garissa	1.1
COAST PROVINCE ====================================	Lower Reaches of Tana								
a. Whole District; ASAL Area	- Riverine areas of Tana - Some years (c.g., 1961, 88, 89 & 90) - About 5km wide on either bank (About 2,000km2 incl. 35.b) - Less than 0.5m deep - Lasts about a month	Serious; banks at concaved portions eroded annually 5m on average, leaving oxbow	Serious; local deposition	Less; human settlements, generally located on natural dikes, barely inundated by floods (Garsen Village and other human settlements inundated only by 1961-flood)	Slight, limited farmlands inundated and eroded by floods	Slight; costly maintenance due to bank erosion, sedimentation and change of river course as observed at Hola and Bura irr, schemes	Slight, traffic interruption due to overflowing of lagas, and Bura new bridge threatened by change of river course	Dike around Lower Tana Irr. Scheme, and ripraps at Hola & Garissa	17
37. Lamu District:	Lagas flowing into Indian Ocean								
a. Whole Disnict, ASAL Area	Less; brackish water intrusion, however, observed in rivers	Less	Less	None	Less	Less	Less; difts unpassable	None	Z Z
* Refer to Table 3.5.3									

Table 3.6.2 Flood Condition and Damage by District (10/10)

Area	Flood Condition	dition			Flood Damage	mage .		Existing Counter-	Cate.
	Flooding	Bank Erosion	Sedimentation Housing	Housing	Farmland / Grazing	Intake Facilities	Road / Bridge	measures	
38. Taita-Taveta Dist.:	Middle Reaches of Athi, Upper Reaches of Voi, and Lower Reaches of Lumi	Reaches of Voi, and	Lower Reaches	of Lumi					
a. Whole District; ASAL Area	Rivermouth of Lumi near L. Jipe Slight - Almost every year (e.g., 1987 & 89) - About 30km2 - 0.5m to 1m deep - Lasts about a week	pe Slight	Slight	Slight; some human settlements in the rivermouth damaged by floods	Serious; farmlands in the rivermouth, esp., at Kimorigo Irr. Scheme, damaged by floods	Slight; some intakes damaged by floods	Slight; minor roads/bridges damaged	Dikes on right bank of Lumi with short distances, damaged in places	M M s. s.
39. Kilifi District:	Lower Reaches of Athi, Voi (Rare) and Tana, plus Small Rivers, all flowing into Indían Ocean	re) and Tana, plus S	mall Rivers, all 1	lowing into Indían Ocean					
a. ASAL Area	Less	Less	Less	None	Less	Less	Less	None	Z
b. Coastal Area	Riverine areas of Athi Some years (e.g., 1961) Some 100m wide (About 15km2) Less than 0.5m deep Lasts about a month	Slight 12)	Serious; Athi riverbed gradually rising	Less; few human scutlements existing in the riverine areas	Less, less cultivation and only seasonal grazing practiced in the riverine area	Slight; Baricho intake silted (turbidity of river water also problem)	Less; B-8 road br., however, washed away by 1961-flood	None	LM
40. Kwale District:	Small Rivers flowing into Indian Ocean	Ocean							
a. ASAL Area	Less	Less	Less	None	Less	Less	Less	None	Z Z
b. Coastal Area	Less	Less	Slight; many dams filled with sand	None	Less	Less; intakes sometimes damaged	Less	None	Z Z
41. Mombasa Municipality:	No Particular Rivers								
a. Whole Municipality; Coastal Area	Less; Inundation, however, takes place due to poor drainage systems	Less	Less	None	Less	Less	Less	None	Z Z
* Refer to Table 3.5.3									:

Table 3.6.3 Categorization of Flood Areas

jr.	Flood Large	Medium	Small	Nil
A Damage Pi	Area per (more than 50km2) Place	(10km2 to 50km2)	(less than 10km2)	
High	HL: 1 place	HM : None	HS: None	HN: None
	- Kano Plain in Kisumu District			
Mid	ML : 1 place	MM : 3 places	MS: 1 place	MN: None
	- Yala Swamp in Busia & Siaya districts	- Sondu Rivermouth in Kisumu & South Nyanza districts - Kuja Rivermouth in South Nyanza District - Lumi Rivermouth in Taita- Taveta District	lu Rivermouth in Kisumu - Nairobi City in Nairobi outh Nyanza districts Province Rivermouth in South iza District i Rivermouth in Taita- ta District	•
Low	$\mathrm{LL}:1$ place	LM: 2 places	LS: 10 places	LN: None
	- Lower Tana in Tana River & Garissa districts	- Middle/Lower Turkwel in Turukana District * - Downmost Athi in Kilifi District	- Lower reaches of Malakisi, Sio, Awach Tende, Lambwe, Malewa, Molo & Daua rivers - Parts of Muranga, Nyandarua & Embu districts	
Negligible	NL: 1 place	NM: 1 place	NS: 12 places	NN: 26 places
	- Middle/Lower Ewaso Ngiro - Lower Kerio in Turukana North in Garissa, Wajir District & Isiolo districts	- Lower Kerio in Turukana District	- Riverine areas/valley bottoms in upper reaches	- Small streams in mountain areas - Lagas in the ASAL area

* Damage only recorded at the katilo, Juluk and Nakwamoru irrigation schemes in the Middle Turkwel.

Note: HL, etc. are the abbreviations for categorizing flooded areas, which are also filled in the column "Category" of Table 3.5.2 Note:

Table 3.6.4 Features of Taget Areas, Basic Methods and Protection Levels (1/2)

																_
Specific Discharge	(m3/s/km2)	0.090	E1)	0.129	G2)	0.225	(D3)	0.201 rmouth)	0.148	rmouth)	ı	•	0.216	nce with	0.165	ce with
	•	11,849	(Control point : 1EE1)	2,864	(Control point : 1FG2)	2,625	(Control point : 1GD3)	274 int : Rive	440	int:Rive	1	•	255	of confluer no River)	364	f confluer
Design Cz Discharge		1,070	(Control	370	(Control	290	(Control	55 274 0.20 (Control point : Rivermouth)	\$9	(Control point : Rivernouth)	•	,	55 255 0.2	control point. Ininicatary upstream of confluence with Awach Kano River)	60	upstream of confluence with
Protection Design Carchmeni Level Discharge Area	(year) (25		25		25		25	25	<u> </u>	•		25	, , ,	22	
Basic Method of Structural Measure		- Rihabilitation of existing dikes with	construction of a drainage sluice (16km) - Construction of new dikes (2km)	- Heightening of existing dike (9km)	bank with a drainage sluice (14km) Construction of a bridge	- Rihabilitation/heightering of existing	Construction of new dikes (18km) - Re-construction of Ahero Bridge	- Construction of new dikes (10km) - Re-construction of two bridges	- Construction of new dikes with two closing	Re-construction of four bridges	- No measure. Only for usual drainage.	- No measure. Only for usual drainage.	- Construction of new dikes (12km)	- Ne-construction of a bringe	- Construction of new dikes (5km)	- Ne-construction of a grage
_	(km)	18		14		20		10	24		,	1	12		Ŋ	
Target River/Stretch	Stretch(km) /Gradient	0- 18	(1/3,400)	2- 16	(1/2,700)	10 - 30	(1/700)	0 - 10 (1/450)	0 - 24	(1/700)	ı	4	0 - 12	(1/600)	0 - 5	(1/400)
Target F	River Name	Nzoia		Yala		Nyando	·	Kibos	Luando		Ombeyi	Miriu	Nyaidho		Awach Kano	
Problem Identified		Flooding from	Nzoia & Yala rivers			Flooding from	together with Kibos, Luando,	Onocyt, vantu, Nyaidho & Awach Kano rivers								
Human Activities/Land Use in Flooded Arca	(Agricultural Potential)	Rather intensive agriculture with	livestock farming & fishery. There are Bunyala Pilot Irr. Scheme & Yala Susum Farm. Arms I	Considerable number of human settlements along Navia River	(High)	Intensive agriculture with Hivestock farming. There are A hern	Pilot and West Kano irrigation together with schemes. A lot of human settlements. Kibos, Luando,	(11811)								
Relevant Districts	:	- Busia	- Siaya	•		- Kisumu										
Target Area		Yala	Swamp			Kano Pisin										

Table 3.6.4 Features of Taget Areas, Basic Methods and Protection Levels (2/2)

Target Area	Relevant Districts	Human Activities/Land Use in Flooded Area	Problem Identified	Target	Target River/Stretch		Basic Method of Structural Measure	Protection Level D	Design Care Discharge	Catchment Sp.	Specific Discharge
		(Agricultural Potential)		River Name	Stretch(km) /Gradient	Length (km)		(year)			(m3/s/km2)
Sondu	- Kisumu	Subsistence agriculture, grazing &	Flooding from	Sondu	1 - 8	7	- Construction of new dikes (7km)	25	200	3,287	0.152
Rivermouth - South Nyanz	1-South Nyanza	fishery. Some human settlements. (Mid)	Sondu River		(1/500)				(Control p	(Control point: 1JG1)	
Kuja - South Rivermouth Nyanza	- South 1 Nyanza	Subsistence agriculture, grazing & fishery. Considerable number of human settlements. (Mid)	Flooding from Kuja River	Kuja	1 - 11 (1/900)	. 01	- Construction of new dikes (10km)	\$3	850 (Control p	850 6,600 (Control point : 1KB5)	0.129
Middle Tukwel	- Turkana	Grazing and limited farming at Katilo, Juluk & Nakwamoru irr. schemes. Few human settlements. (Low)	Flooding from Turkwel River in parts	Turkwel	177 - 209	32	- Construction of three polders each with a intake sluice (11km for Katilo, 5km for Juluk and 7km for Nakwamoru irrigation schemes)	10	32 7,014 0.046 (Control point: Immediately downstream of confluence with Malmalte River)	7,014 nt:Immedia ofconfluer ver)	0.046 tely ce with
Downmost - Kilifi Athi	- Kuiń	Grazing and limited farming. Few human settlememts. (Mid)	Flooding from Athi River	Athi	9 - 29 (1/1,400)	8	- Construction of new dikes (20km)	10	1,590 36,903 0.0s (Control point : Rivermouth)	36,903 oint : Riverno	0.043 outh)
Lumi - Taita- Rivermouth Taveta	- Taita- 1 Taveta	Rather intensive agriculture with livestock farming. There is Kimorigo Irr. Scheme. Considerable number of human seutements. (High)	Flooding from Lumi River	Lumi	10 - 21 (1/400)	11	- Construction of new dikes with two intake sluices (11km) - Re-construction of a bridge	25	160 (Control p	160 448 (Control point : 3115C)	0.357
Nairobi City *	- Nairobi Province	A lot of housings with roads, bridges, culverts & service pipes. Less agriculture (urban area).	Flooding due to narrow sections of bridges/culverts	obi River, Ngong River nd their tributanes)	g River ies)		- Enlargement of existing bridges/culverts (13 sites) - Channel works immediately up/down-strean (without dike, of bridges/culverts (11 sites)	50 (without dik for bridge)		(Variable by location.)	7
Lower	- Tana River	· Tana River Grazing and limited farming.	Bank erosion	Tana	0 - 650	650	- Bank protection with groynes/riprap at	10	(Variable	(Variable by location.)	$\hat{}$
Тапа	- Garissa	There are Tana Delta Irr. Scheme, at concave Hola/Bura irr. projects & ADC Farm. portions near A few human settlements located on villages, natural dikes barely inundated intakes & (Mid to Low)	at concave . portions near villages, intakes & bridges		(1/6,000 to 1/1,500)		Ngao, Garsen, Mnazini, Wenje, Hola, Hola Intake, Bura Bridge, Bura Intake, Garissa, ADC Farm Intake, Saka & Mbalambala (35km in total)	bala			

* See Ref.2. ::

Table 3.7.1 (a) Water Quality of the Nyando River

1		Upper	zone	Middl	e zone	Lowe	rzone
Parameter	Units	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum
pН		8.7	7.1	8.3	6.6	8.6	7,1
Turbidity	NTU	900	5	320	53	2700	10
Colour	mg Pt/l	1000	5	660	15	1000	5
Conductivity	uS/cm	3900	100	1180	140	315	140
Iron	mg/l	6.0	0.1	16.0	0.1	8.0	0.1
Manganese	mg/l	11.0	0.0	5.0	0.2	1.1	0.1
Calcium	mg/l	32.0	6.8	35.0	7.6	36.8	12.6
Magnesium	mg/l	18.0	3.0	50.0	4.0	49.0	3.0
Sodium	mg/l	25.0	16.0	30.0	15.0	27.0	11.8
Total Hardness	mg/l	436	38	242	20	234	4
Tot. alkalinity	mg/l	202	26	164	30	136	66
Chloride	mg/l	60.0	2.0	12.0	1.0	25.0	3.0
Fluoride	mg/l	0.0	4.0	1.5	0.3	0.0	1.0
Nitrate	mg/l	2.7	0.1	2.8	0.1	1,7	0.0
Sulphate	mg/l	119.0	0.3	18,7	0.2	24.0	1,3
Phosphate	mg/l	0.7	0.2	2,0	0.1	0.4	0.1
TDS	mg/l	280	145	270	19	320	84

Source: MOWD data; various dates from 1974-1988.

Table 3.7.1 (b) Water Quality of the Nyando River

Parameter	Unit	Upper zone	Middle zone	Lower zone
pН		7.8	7.8	7.7
Colour	mg Pt/l	360	45	25
Turbidity	NTU	46	25	15
Oxygen absorbed	mg/l	40	27	18
Conductivity	uS/cm	297	215	255
Iron	mg/l	0.87	2.10	2.10
Manganese	mg/l	0.02	0.10	0.02
Total hardness	mg/l CaCO3	103	178	88
Total alkalinity	mg/l CaCO3	132	93	114
Chloride	mg/l	6.4	5.3	7.9
Fluoride	mg/l	0.46	0.32	0.52
Sulphate	mg/l	3.0	2,3	0.9
Orthophosphate	mg/l	0.56	0.13	0.14
TDS	mg/l	172	129	120

Source:

Ministry of Water Development, NES 1987. Values given are mean values (1983 - 1984)

Table 3.7.2 Water Quality of the Nzoia River

Parameter	Unit	Upper zone (Kipkareen)	Middle zone (Siranga))	Lower zone (L.Victoria)
pH		7.4	7.0	7.7
Colour	mg Pt/l	50	150	30
Turbidity	NTU	12	65	10
Oxygen absorbed	mg/l	28.0	30.0	23.0
Conductivity	uS/cm	125	83	162
Iron	mg/l			2,5
Manganese	mg/l	0.20	0.10	0.03
Calcium	mg/l	9.4	3.7	12.0
Magnesium	mg/l	4.4	1.8	4.2
Sodium	mg/l			40 Min to-
Potassium	mg/l		Are and 100	
Total hardness	mg/l CaCO3	37	27	48
Total alkalinity	mg/l CaCO3	56	36	77
Chloride	mg/l	4.0	3.0	12.0
Fluoride	mg/l	0.20	0.17	0.15
Sulphate	mg/l	gr #= 4m		2.2
Orthophosphate	mg/l	0.02	0.03	0.03
TDS	mg/l	73	48	97

Ministry of Water Development Values given are mean values (1983 - 1984)

Water Quality of the Sondu-Miriu River **Table 3.7.3**

Parameter	Unit	Upper zone	Middle zone
pH		7.0	7.1
Colour	mg Pt/l	20	10
Turbidity	NTU	. 8	7
Oxygen absorbed	mg/l	15	12
Conductivity	uS/cm	58	69
Iron	mg/l	0.9	1.2
Manganese	mg/l	0.01	0.01
Calcium	mg/l	3.2	4.0
Magnesium	mg/l	1.0	1.3
Sodium	mg/l		
Potassium	mg/l		
Total hardness	mg/l CaCO3	12	15
Total alkalinity	mg/l CaCO3	21	32
Chloride	mg/l	6,3	7.0
Fluoride	mg/l	0.58	0.45
Sulphate	mg/l	0.8	6.0
Orthophosphate	mg/l	0.03	0.02
TDS	mg/l	35	42

Source:

Ministry of Water Development Values given are mean values (1983 - 1984)

Table 3.7.4 Water Quality of the Yala River

		DAMST	re		KIMON	DI		MOKON	ĮG	
Parameter	Unit	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN
Temperature	οС	18.7	20.1	17.2	18.0	20.0	17.5	18.4	20.1	16.5
Conductivity	uS/cm	107	130	90	79	99	55	144	160	130
pН		7.8	8.8	7.0	7.4	8.3	6.8	7.4	8.5	6.7
Colour	mg Pt/l	79	110	40	40	78	10	59	112	10
Turbidity	NIU	49	88	22	17	24	12	54	90	28
Dissolved oxygen	mg/l	8.9	10.8	7.3	8.3	9.9	7.1	7.6	8.9	7.1
DO % saturation	%	119	140	100	113	130	96	102	115	96
Carbon dioxide	mg/l	2.8	2.9	ND	3.5	4.0	ND	6.9	9.0	4.5
Alkalinity-total	mg/l	47.3	52.0	35.0	38.1	52.0	21.0	72.3	89.0	66.0
Harness-total	mg/l	41.4	58.0	34.0	24.2	34.0	14.3	57.5	103.6	36.0
Chloride	mg/l	3.4	7.2	<1.0	3.3	8.3	ND	3,4	7.7	1.0
Fluoride	mg/l	0.34	0.62	ND	0.27	0.53	ND	0.43	0.67	0.15
Manganese	mg/l	0.047	0.090	0.020	0.055	0.120	0.020	0.064	0.135	0.030
Iron	mg/l	1.430	2.500	0.700	1.320	2.200	0.680	1.020	2.360	0.560
Ammonia-N	mg/l	0.096	0.280	0.001	0.099	0.220	ND	0.108	0.230	0.022
T.S.S.	mg/l	41.0	76.0	11.0	13.3	31.2	6.1	62.8	149.0	14.2

Source: Ministry of Water Development, Data: 1985-1986

Table 3.7.5 Water Quality Data for the Arror River (RGS 2C5)

Parameter	Units	Mean	Max	Min
pН		7.4	7.9	6.9
Colour	mg Pt/l	17.5	70.0	5.0
Turbidity	NTU	14.2	29.0	1.5
Conductivity	uS/cm	238	420	132
Iron	mg/l	2.1	8.5	0.2
Manganese	mg/l	0.2	0.4	0.1
Calcium	mg/l	17.6	38.0	6.6
Magnesium	mg/l	6.6	11.0	0.4
Sodium	mg/l	8.7	17.0	4.0
Total Hardness	mg/l	79.5	158.0	2.4
Tot. alkalinity	mg/l	88.3	150.0	52.0
Chloride	mg/l	10.8	80.0	2.0
Fluoride	mg/l	0.4	4.0	0.1
Sulphate	mg/l	1.9	6.5	0.1
Phosphate	mg/l	0.02	0.10	0.01
TDS	mg/l	142	252	79

Source: Feasibility Study on the Integrated Development of the Arror River Basin (1990)

Table 3.7.6 Water Quality of the Kerio River

		Upper	Middle
Parameter	Unit	zone	zone
pН	14 M 44	7.6	8.0
Colour	mg Pt/l		
Turbidity	ŇTU	104	76
Oxygen absorbed	mg/l	27	28
Conductivity	uS/cm	145	230
Iron	mg/l		
Manganese	mg/l		0.06
Calcium	mg/l	13.0	23.0
Magnesium	mg/l	15.0	5.9
Sodium	mg/l		
Potassium	mg/l		
Total hardness	mg/l CaCO3	81	86
Total alkalinity	mg/l CaCO3	114	102
Chloride	mg/l	3.0	6.0
Fluoride	mg/l	0.50	0.50
Sulphate	mg/l	2.5	
Orthophosphate	mg/l	0.13	0.23
TDS	mg/l	100	120

Source:

Ministry of Water Development

Values given are mean values (1983 - 1984)

Table 3.7.7 (a) Water Quality Data: Malewa River Basin

The state of the s		R.Malew aries abo			ilewa	va	
Parameter	Units	River Kimuru	River Olkalou	15 km above damsite	Malewa damsite	13 km below damsite	28 km below damsite
Temperature pH	oC	14.3 8.01	18.0 7.78	16.5 7.95	15.7 8.24	17.0 8.09	18.5 8.08
Colour	mg Pt/l	16	16	16	17	18	18
Turbidity	NTU	14	4()	24	25	70	28
Suspended solids	mg/l	13	39	35	25	27	35
Conductivity	uS/cm	110	160	130	130	240	200
Dissolved oxygen	mg/l	8.4	6.8	6.8	7.4	7.2	7.2
COD	mg/l	8	15	4	8	7	10
Total nitrogen	mg/l	2,260	3.391	3,166	2.700	_	3.577
Kjeldhal-N	mg/l	1.05	2.25	2.25	2.70	***	2.55
Ammonia-N	mg/l	***				_	
Nitrate-N	mg/l	1.20	1.10	0.90	< 0.01	0.90	1.00
Nitrite-N	mg/l	0.010	0.041	0.016	< 0.001	0.018	0.027
Phosphate-P	mg/l	0.13	0.09	0.04	0.12	0.09	0.10

ND = not detectable Source: JICA 1990.

Table 3.7.7 (b) Water Quality Data: Malawa Damsite

		June	July	July	July	July	
Parameter	Units	15	5	11	17	25	MEAN
Temperature	oC	15.7		_			15.7
pH		8.24	_	8.27	7.88	8.08	8.08
Colour	mg Pt/l	17	16		19	19	18
Turbidity	NTU	25		***	_		25
Conductivity	uS/cm	130	104	65	71	74	89
Dissolved oxygen	mg/l	7.4		_	-		7.4
COD	mg/l	8	16	18	65	13	24
Total nitrogen	mg/l	2.700					2.7
Kjeldhal-N	mg/l	2.70			_		2.7
Ammonia-N	mg/l	-	0.04	0.05	0.26	0.06	0.10
Nitrate-N	mg/l	< 0.01	1.00	0.60	2.00	0.50	0.84
Nitrite-N	mg/l	< 0.001	0.017	0.026	0.154	0.005	0.041
Total phosphorus	mg/l		0.49	ND	1.54	0.63	0.89
Phosphate-P	mg/l	0.12	0.12	0.21	0.16	0.17	0.16
Suspended solids	mg/l	25	23	36	323	62	94

ND = not detectable Source: JICA 1990.

Table 3.7.8 Water Quality of the Turkwel River

		Upper	Middle	Lower
		zone	zone	zone
pН	25. 24. 24.	7.4	7.7	7.7
Colour	mg Pt/l	13	250	500
Turbidity	NTU	4	22	600
Oxygen absorbed	mg/l	4.0	5.5	0.4
Conductivity	uS/cm	78	100	208
Iron	mg/l	0.4	0.9	0.0
Manganese	mg/l	0.10	0.06	0.01
Calcium	mg/l	9.4	14.5	23.0
Magnesium	mg/l	4.4	4.3	0.5
Sodium	mg/l	4.8	5.4	7.5
Potassium	mg/l	2.4	2,7	3.5
Total hardness	mg/l CaCO3	42	53	60
Total alkalinity	mg/l CaCO3	53	76	96
Chloride	mg/l	1.0	1.0	2.0
Fluoride	mg/l	0.21	0.19	2.00
Sulphate	mg/l	4.1	1,0	2.5
Orthophosphate	mg/l	0.53	0.63	0.05
Nitrate	mg/l	0.67	0.75	0.44
TDS	mg/l	40	68	120

Ministry of Water Development Values given are mean values (1983 - 1984)

Table 3.7.9 Water Quality of the Athi River

Parameter	Unit	Upper zone (14 Falls)	Middle zone (Kibwezi)	Lower zone (Coast)
pH	40 M to	6.8	7.8	8.0
Colour	mg Pt/l	70		90
Turbidity	NTU	20	90	65
Oxygen absorbed	mg/l	35	47	42
Conductivity	uS/cm	- 245	305	594
Iron	mg/l	2.0		***
Manganese	mg/l	0.60		
Calcium	mg/l	8.2	16.0	26.0
Magnesium	mg/l	3.5	8.5	19.0
Sodium	mg/l	58.0		
Potassium	mg/l	9.0		
Total hardness	mg/l CaCO3	45	76	161
Total alkalinity	mg/l CaCO3	64	123	193
Chloride	mg/l	22.0	14.0	63.0
Fluoride	mg/l	0.72	0.53	1.10
Sulphate	mg/l	7.3	6.8	42.0
Orthophosphate	mg/l	0.36	0.23	0.06
TDS	mg/l	147	183	371

Ministry of Water Development Values given are mean values (1983 - 1984)

Water Quality of the Tsavo River and Mzima Springs Table 3.7.10

		7	rsavo River	***************************************	Mzima Springs		
Parameter	Unit	Upper	Middle	Lower	Upper	Lower	
рH		8.7	8.8	8.2	8.6	8.4	
Turbidity	NTU	250	64	2000	0.5	1.6	
PV (*)	mg/l	235	391	94	Nil	Nil	
Conductivity	uS/cm	820	610	600	600	550	
Manganese	mg/l	0.6	0.6	1.6	0.1	0.1	
Total hardness	mg/l	174	162	360	105	100	
Total alkalinity	mg/l	281	238	259	202	216	
Chloride	mg/l	95.9	32.0	22.5	8.5	12.9	

(*) = permanganate value Source: Ref:C36.

Data: April 1980

Table 3.7.11 (a) Water Quality of the Tana River

Parameter	Unit	Upper zone (Masinga dam)	Middle zone (Garsen)	Lower zone (Coast)
pH	~ ~ ~	7.1	8.0	7.7
Colour	mg Pt/l	55		
Turbidity	NTU	28		80
Oxygen absorbed	mg/l	25	0	42
Conductivity	uS/cm	77	170	151
Iron	mg/l	2.2		
Manganese	mg/l	0.13	neth from mich	0.07
Calcium	mg/l	5.0	20.0	18.0
Magnesium	mg/l	2.5	9.6	10.0
Sodium	mg/l	7.0		
Potassium	mg/l		15.0	
Total hardness	mg/l CaCO3	33.0	90.0	87.0
Total alkalinity	mg/l CaCO3	20.0	216.0	90
Chloride	mg/l	6.6	14.0	6.9
Fluoride	mg/l	0.25	0.25	0.50
Sulphate	mg/l	5.8	5.0	***
Orthophosphate	mg/l	0.04		0.07
TDS	mg/l	44	285	91

Ministry of Water Development

Values given are mean values (1983 - 1984)

Table 3.7.11 (b) Water Quality of Tana Tributary Rivers; 1990.

Parameter	Unit	River Mutonga (4EA6)	Mutonga River (4EA7)	Thanantu River (4F20)	Kazita River (4F18)	Kithenu River	Thingithu River at Mitungu	Thanantu River at Mukothima
pН		6.9	6.7	7.8	7.5	8.2	7.7	7.9
Colour	mg Pt/I	brown	brown	brownish	brownish	<5	10	<5
Turbidity	NIU	25	140	50	45	0	10	<5
Conductivity	uS/cm	95	82	180	150	100	100	240
Iron	mg/l	2.6	2.0	1.6	2.0	0.8	0.3	trace
Manganese	mg/l	0.10	0.10	0.20	0.3	0.0	0.0	0.0
Calcium	mg/l	2.2	2.2	11.0	14.0	10.0	6.4	2.4
Ammonia-N	mg/l	0.01	0.00	0.80	0.00	0.00	0.04	0.00
Nitrate-N	mg/l	< 0.01	trace	0.0	< 0.01	0.0	0.0	0.0
Nitrite-N	mg/l	< 0.01	trace	0.0	< 0.01	0.0		0.0
Total hardness	mg/l CaCO3	40	19	35	46	28	20	112
Total alkalinity	mg/l CaCO3	34	28	80	65	50	44	156
Chloride	mg/l	5.0	6.0	7.0	6.0	30.0	15.0	2.0
Fluoride	mg/l	0.25	0.25	0.50	0.35	0.00	0.20	0.40
Sulphate	mg/l	< 0.3	< 0.3	51.0	4.0	0.0	4.0	0.0
Total phosphorus	mg/l	0.01	< 0.03	0.05	0.05			
TDS	mg/l	57	49	108	90	70	80	170
Suspended solids	mg/l	20	512	30	510			

Source: MOWD/SIDA; Greater Tharaka Water & Sanitation Project, June 1990.

Data: 1990

Table 3.7.12 Water Quality of the Ewaso Ngiro (North)

Parameter	Unit	Upper zone	Middle zone
pH	===	7.5	8.0
Colour	mg Pt/l	245	40
Turbidity	NTU	30	28
Oxygen absorbed	mg/l	24	53
Conductivity	uS/cm	198	313
Iron	mg/l	·	2.2
Manganese	mg/l		0.20
Calcium	mg/l	13.0	21.0
Magnesium	mg/l	8.8	13.0
Sodium	mg/l	led AT Ou	
Potassium	mg/l	₩ ₩ ₩	
Total hardness	mg/l ČaCO3	67	96
Total alkalinity	mg/l CaCO3	79	57
Chloride	mg/l	9.0	14.0
Fluoride	mg/l	0.30	0.40
Sulphate	mg/l	1.7	1.2
Orthophosphate	mg/l	0.08	0.27
TDS	mg/l	119	188

Ministry of Water Development

Values given are mean values (1983 - 1984)

Table 3.7.13 Water Quality of Kenyan Saline Lakes

Parameter	Unit	Lake Elmenteita	Lake Nakuru	Lake Magadi	Lake Bogoria
pН		10.2	9.5	9.7	9.7
Turbidity	NTU	6	21		253
Oxygen absorbed	mg/l	172	197	200	115
Conductivity	uS/cm	21,000	9,158	58,500	41,380
Iron	mg/l		1.2	·	0.6
Manganese	mg/l	**	0.7		0.2
Calcium	mg/l	1.5	5.7	13.0	1.1
Magnesium	mg/l	2.0	2.4	16.0	0.3
Sodium	mg/l				15,400
Total hardness	mg/l CaCO3	4	16	88	130
Total alkalinity	mg/l CaCO3	7,384	5,747	23,500	38,920
Chloride	mg/l	2,432	1,049	6,325	2,818
Fluoride	mg/l	598	167	112	899
Sulphate	mg/l	369	55	140	142
Orthophosphate	mg/l		0.30		- ,-
TDS	mg/l	12,900	5,494	32,100	24,830

Note:

closed basin saline lakes fluctuate substantially in water level

and chemical concentration; the data shown here are mean values.

Source: Ministry of Water Development; NES 1987.

Data: 1983-1984

Table 3.7.14 Water Quality of Kenyan Freshwater Lakes

Parameter	Unit	Lake Naivasha	Lake Victoria	Lake Baringo	Lake Turkana
pH	in to the	8.3	8.0	8.6	9.3
Turbidity	NTU	25	4	70	21
Oxygen absorbed	mg/l	38	20	21	35
Conductivity	uS/cm	429	140	838	2730
Iron	mg/l	16.0		10.0	
Manganese	mg/l	0.60		0.15	
Calcium	mg/l	16.0	5.7	8.1	4.3
Magnesium	mg/l	8.4	5.5	4.5	2.6
Sodium	mg/l	32.7			189.3
Total hardness	mg/l CaCO3	96	37	50	22
Total alkalinity	mg/l CaCO3	125	53	360	914
Chloride	mg/l	20.0	9.3	48.0	400.0
Fluoride	mg/l	1.80	0.35	55.00	8.80
Sulphate	mg/l	1.3	2.6	7.1	28.0
Orthophosphate	mg/l	0.88	0.01	0.35	1.30
TDS	mg/l	259	86	510	2138

Ministry of Water Development

Table 3.7.15 Summary of Water Quality in Kisumu Bay: 1985-1986.

Parameter	Unit	Study mean	SD as % of mean	WHO guide- line value
Temperature	oС	26.2	3,1	ngs
Conductivity	uS/cm	160	21	ngs
pН	***	7.9	2.5	6.5-8.5
Secchi depth	cm	50	20	ngs
Turbidity	NTU	15	40	5
Dissolved oxygen	mg/l	6	14	ngs
DO % saturation	%	89.5	14.7	ngs
Total hardness	mg/l CaCO3	24	26	500
Total alkalinity	mg/l CaCO3	71	16	ngs
Chloride	mg/l	7.5	42.7	250
Chlorophyll a	um/l	16.7	33.5	ngs
Phytoplankton	no/ml	1238	36	ngs
Zoolplankton	no/l	822	84	ngs

ngs = no guideline set

Source: Ministry of Water Development.

Data : 1985-1986

Values given are mean values.

^{*} Lake Turkana is virtually semi-saline; brackish and undrinkable.

Herein included in this table in view of low salinity compared with the lakes listed in Table 3.7.13.

Table 3.7.16 Groundwater Quality in Kenya

					PROVINCE	NCE			
Paramater	Unit	Nairobi	Central	Coast	Еѕтет	North- Eastern	Nyanza	Rift Valley	Western
Hd	ļ	7.9	7.5	7.5	7.4		7.8	7.9	6.7
Turbidity	UTN	28.9	42.9	36.2	26.2	32.8	39.3	25.6	27.6
Oxygen absorbed	mg/l	3.05	2.66	1.12	1.86		4.83	11.3	0.16
Conductivity	uS/cm	859	464	3291	1109		719	1074	354
Iron	mg/l	1.48	2.00	1.26	2.3		1.25	1.57	0.89
Manganese	mg/l	0.70	0.42	27.9	2.9		2.90	0.79	1.52
Calcium	mg/l	43.3	17.3	135.1	63.4		57.6	52.2	18.6
Magnesium	mg/l	8.16	7.13	117.3	41.3		34.6	31.9	13.5
Sodium	mg/l	164.0	77.2	746.7	143.3		106.0	209.0	13.7
Potassium	mg/l	19.3	12.3	16.5	23.8		15.1	15.4	4.0
Hardness	mg/l CaCO3	48.4	68.4	369.8	348.7		238.7	161.9	78.4
Chloride	mg/l	72.4	35.4	1063	142.5		117.8	153.8	15.6
Fluoride	mg/l	6.59	1.78	1.16	1.9		2.38	3.33	2.04
Sulphate	mg/l	32.3	11.1	160.2	151.0		107.2	102.0	20.6
TDS	mg/l	521	314	2122	750		585	916	181

Source: MOWD groundwater database newly established by this Study Data coverage: covering since 1940's but mostly 1980's

Table 4.1.1 Population Projected by District: 1990 - 2010

(Unit: Thousand)

	This was a second		1990			1995			2000		··· · · · · · · · · · · · · · · · ·	2005	· · · · · · · · · · · · · · · · · · ·		2010	
Code	District	Total	Urban	Rural	Total	Urban	Rural	Total	Urban	Rural	Total	Urban	Rural	Total	Urban	Rural
110	Nairobi	1,413	1,413	0	1,780	1,780	0	2,260	2,260	0	2,785	2,785	0	3,465	3,465	0
210	Kiambu	972	106	866	1,093	156	937	1,249	242	1,007	1,405	302	1,103	1,583	376	1,207
220	Kirinyaga	413	19	393	464	30	434	519	45	474	574	58	516	633	74	559
230	Murang'a	899	65	834	983	90	893	1,087	129	959	1,195	156	1,039	1,316	189	1,126
240	Nyandarua	378	12	366	449	19	431	518	32	486	576	39	536	632	48	585
250	Nyeri	647	107	540	706	162	544	804	243	561	929	318	611	1,084	412	673
310	Kilifi	654	62	592	773	103	670	897	159	738	1,025	209	816	1,166	270	897
320	Kwalc	409	15	394	461	22	439	523	43	480	576	53	523	632	65	567
330	Lamu	61	12	48	73	19	54	86	28	59	102	36	66	120	46	74
340	Mombasa	480	480	0	570	570	0	673	673	0	784	784	0	904	904	0
350	Taita Taveta	215	27	188	238	37	202	266	49	216	296	60	237	331	73	259
360	Tana River	138	12	126	158	18	140	186	33	153	210	41	168	235	51	184
410	Embu	382	20	361	440	32	408	501	51	450	558	65	494	619	82	537
420	Isiolo	75	28	47	100	50	50	129	79	50	167	106	61	211	136	. 74
430	Kitui	684	17	667	784	27	757	885	46	838	976	60	916	1,069	77	993
440	Machakos	1,486	166	1,320	1,721	260	1,461	1,985	395	1,591	2,264	510	1,754	2,577	652	1,925
450	Marsabit	138	34	104	168	57	111	196	79	117	230	99	131	270	123	147
460	Meru	1,213	92	1,122	1,416	145	1,271 97	1,633	229	1,403	1,841	295	1,546	2,067	376	1,691
510	Garissa	127	33	95 106	144	47	111	194 155	96 37	99	229 173	118	112	272	145	127
520	Mandera	127 126	22 30	106 96	138	27 44	98	165	63	117 102	173	44 80	129	196	54	142 128
530	Wajir Kisii	1,202	60	1,142	142 1,279	80	1,199	1,401	126	1,275	1,522	154	114	229	101 189	1,473
610	Kisumu	708	210	498	817	301	516	971	434	537	-	547	1,369 609	1,662		692
620 630	Siaya	677	27	650	726	36	690	789	50	738	1,156 855	62	794	1,382 930	689 76	854
640	South Nyanza	1,155	50	1,105	1,242	72	1,170	1,357	106	1,251	1,473	128	1,345	1,604	156	1,448
710	Kajiado	286	34	252	373	58	315	461	98	363	554	138	416	652	183	469
720	Kericho	916	53	863	1,043	72	971	1,188	118	1,069	1,323	151	1,172	1,467	190	1,277
730	Laikipia	228	42	186	289	65	224	358	105	253	434	143	291	518	188	330
740	Nakuru	933	258	675	1,197	421	776	1,544	705	840	1,970	981	989	2,464	1,305	1,159
750	Narok	425	18	407	574	33	541	702	58	644	830	84	746	953	113	841
760	Trans Nzoia	424	56	368	507	85	422	616	150	466	723	200	523	842	260	582
770	Uasin Gishu	470	124	347	544	185	360	666	297	369	822	401	421	1,010	525	484
810	Baringo	306	26	280	353	37	316	405	57	348	458	74	384	516	95	421
820	Elg. Marakwet	227	6	221	265	8	256	301	14	287	332	17	315	363	20	343
830	Nandi	473	15	459	556	21	534	638	38	599	711	50	661	784	64	720
840	Samburu	122	25	98	148	37	111	180	59	122	218	79	138	260	104	157
850	Turkana	189	9	180	209	12	197	239	25	214	263	31	232	290	39	251
860	West Pokot	248	13	235	288	19	269	330	31	299	370	41	329	412	53	359
910	Bungoma	789	70	719	959	123	836	1,130	197	933	1,297	259	1,038	1,476	334	1,142
920	Busia	454	15	438	546	27	519	639	52	587	718	68	650	797	86	710
930	Kakamega	1,479	85	1,394	1,672	128	1,544	1,886	200	1,687	2,091	249	1,841	2,310	309	2,001
	Nairobi	1,413	1,413	0	1,780	1,780	0	2,260	2,260	0	2,785	2,785	0	3,465	3,465	0
	Central	3,309	309	3,000	3,695	457	3,238	4,176	690	3,486	4,680	874	3,806	5,248	1,098	4,150
	Coast	1,956	607	1,349	2,273	769	1,504	2,631	985	1,646	2,993	1,183	1,810	3,390	1,410	1,980
	Eastern	3,978	356	3,622	4,628	571	4,058	5,329	879	4,450	6,035	1,134	4,902	6,813	1,446	5,368
	North Eastern	381	85	296	425	119	306	514	196	318	596	242	355	696	299	397
	Nyanza	3,742	347	3,395	4,064	489	3,575	4,518	717	3,801	5,006	890	4,116	5,577	1,111	4,466
	Rift Valley	5,248	677	4,571	6,348	1,054	5,294	7,627	1,755	5,872	9,008	2,390	6,617	10,532	3,139	7,392
900	Western	2,722	171	2,551	3,177	278	2,899	3,656	449	3,207	4,106	577	3,530	4,583	729	3,854
	Kenya	22,749	3,965	18,784	26,389	5,515	20,874	30,712	7,933	22,779	35,209	10,074	25,135	40,305	12,698	27,607

Source: A.04, A.08, A.13 and A.14