

3. Present Status of Power Plant Facilities

(1) General

The frequency of shutdowns of Units No. 1 to 6 of Mak-Ban Geothermal Power Plant in 5 years from 1986 to 1990 was 239 times and the total shutdown days were 839, which is equivalent to 7.7% of the total operating days as shown in Table 6-2-6. (A plant shutdown of shorter duration than one day is counted as one day.)

The causes of shutdowns are classified in the following: (The ratio is shown in the percentage of shutdown days.)

Cause of the Plant Shutdown	<u>Ratio</u>
Plant overhaul/maintenance	58.8%
Plant electrical system faults	16.3%
Cooling water pipeline troubles	8.3%
Hydrogen gas cooler cleaning	5.5%
Troubles of PGI steam supply system	4.2%
Condenser vacuum low	3.9%
Spark of generator slip ring carbon brushes	1.3%
Governor system troubles	1.32
Power System faults	0.5%

(2) Mechanical Facilities

a. Plant Overhaul and Maintenance

The shutdown days for the plant overhaul accounts for nearly 60% of the total shutdown days. The number of days required for one overhaul is generally a matter of 4 weeks, but more days are needed if the conditions of turbine rotor are serious. The maximum number of days recorded in this power plant is 12 weeks.

b. Cooling Water Pipe Troubles

Cooling water pipeline troubles and condenser vacuum low are caused by the pipe material. Cleaning of hydrogen gas cooler becomes necessary to restore the coefficient of overall heat transmission of the heat exchanger tubes by removing the algae growth and sludge.

c. Troubles of PGI Steam Supply System

Same as in Tiwi Geothermal Power Plant.

d. Governor System Troubles

Same as in Tiwi Geothermal Power Plant.

(3) Electric Facilities

The plant electric facilities are grouped into those within the powerhouse and those in the switchyard. Problems common to both facilities in this power plant are corrosion of conductors, terminals, insulations, supports, overhead ground wires, etc., due to H_2S gas contained in the non-condensable gas (NCG), which cause mis-operation of relays, mal-operation of the equipment, broken cables, insulation breakdown of insulators, etc.

Mak-Ban Power Plant is located in Laguna Province in Luzon Island, and it is connected with the major power demand area of Metropolitan Manila by relatively short transmission lines of about 70 km. Probability of plant trips due to transmission system faults is relatively low as compared with Tiwi Power Plant.

The problems with electric facilities and countermeasures are discussed in Subsection 4.

The frequency and number of days of the plant trips by the causes are shown in Table 6-2-7 "Summary of Plant Shutdowns". Most problems occurred in Plants A and B, and practically no problem was experienced in Plant C.

			-			Mak-B	Mak-Ban Power	wer Plant	nt					
Cause of Shutdown	Year	Unit		Unit	5	Unit	en.	Unit 4	Þ	Unit 5	្រ	Unit 6	Total	L a
	•	Times I	Days T	Times D	Days Ti	Times Da	Days Tir	Times Days	s Times	s Days	Times	s Days	Times	Days
Hydrogen Gas Cooler Cleaning		0	0	ч	4	0		·		0	0	0		
	1987	നറ	4 (.	0,				00	00	0 0		
	1000	N 14	4 r	-	D r	೧ ୯				5 0	. .	5 C		
	606T	ט ר <u>ח</u>	13	10	ተጣ		no	700	00	00	00	0		
		1	ì	,							ľ			
	Sub-	15	26	ŋ	თ	Q	 	2	0	0	0	0	28	46
	total					·	· .						(12.1%)	(5.5%)
Troubles of PGI Steam	1986		Г	0	0	0				0	0	0		
Supply System	1987	Ч	с Ч	ŝ	(")	2				ŝ	Ы	ŝ		
	1988	0	0	2	2	ก					гH			
	1989	0	0	r-i	н	0	õ	0	0	0	0	0		
	1990	0	0	4	-4	ŝ				5	н	5		
	Sub-	2	2	6	7	8	6		3	00	6	ω	24	35
	total												(10.3%)	(4.2%)
Power System Faults														
•	1986	0	0	0	O	0				0	0	0		
	1987	ы	0		н	, . γ−4	Н	000	0	¢	Ö	0		
· · · · · · · · · · · · · · · · · · ·	1988	0	0	0		0				0	0	0		
	1989	0	0	o	0	0				0	0	0		
	1990	0	0	0	0	0	. •			0	0	0		
	40	۴	•				-			c	c	c	6	
	-010	H	4	-1	-1	4				>	>	>	r	t

			Table	6-2-7	Summ	Summary of	Plant	Flant Shutdowns	sumo					(3/4)
						Mak-Ban		Power Pla	Plant					
Cause of Shutdown	Year	Unit	н Ч	Unit	2	Unit		Unit 4		Unit 5		Unit 6	To	Total
		Times	Days Ti	mes	Days Ti	Tímes Da	Days Times	les Days	rs Times	es Days	s Times	s Days	Times	Days
Spark of Generator Slipring Carbon Brushes	1986 1987 1988 1989 1989	000-10	0 10 0 0 0	00440	орнно	00400	00000		00004	00000	00000	00000		
	Sub- total	m	4	5	5	H	eri ret		4		0	0	9 (3.8%)	11 (1.3%)
Condenser Vacuum Low	1986 1987 1988 1989 1990	00000	00000	00400	00000	0 1 0 0 0 0	04000	00004	<i>и</i> и и и и и и и и и и и и и и и и и и	00000	00400	00400		
	Sub- total	H	8	r.	20	ማ	4	н	4	μ	r~1	ы	(Z7.4) LL	33 (3.9%)
Governor System Troubles	1986 1986 1988 1988 1989	оччоч	0-1-0-1	00000	00000	00400	00000	00000	00040	00400	00004	00000		
	Sub- total	ы	ຕ 	0	0	r-t		m	4	Ч	н	0	9 (3.8%)	11 (1.3%)
									· · · ·				 	

		1	ł	1		1
	(4/4)		Total	Days	839 (1002)	
	•		Tot	Times	233 (100%)	
			Unit 6	es Days	129	
			5	ays Times	120 27	
	នដ		Unit	Times Days	26 1:	
	Summary of Plant Shutdowns	r Plant	Unit 4	Days	117	
	Plant	Mak-Ban Power	3 Ú	ys Times	r r o	
	nary of	Mak-B	Unit	Times Days Times Days Times Days	50 149	
	.7 Sum		Unit 2	Days T	44 168	
	Table &-2-7			s Times		
· · ·	Tal		Unit 1	mes Day	53 156	
			'n	ч Н	Ŋ	
			Year			
			Cause of Shutdown		Grand Total	
			Cause of		Gri	
						6 - 169

4. Problems with Power Plant Facilities and Countermeasures

(1) Mechanical Facilities

a. Overhaul

The steam quality at Mak-Ban Geothermal Power Plant has been improved since the commissioning, and further in 1990, the steam scrubbing system was added and good results are obtained. Based on the operation records to date, it is judged that the safety of the plant will be maintained with the overhaul once or twice a year. Actually, however, there occur the sticking of MSV and CV rather frequently, and further improvement of steam quality is needed.

b. Improvement of Steam Quality

In Tiwi and Mak-Ban Power Plants, the tests of the steam scrubbing system as a means of steam quality improvement have been continued. As it is one year since the tests were started, the advisability of the addition of the steam scrubbing system to other units was studied. The past record revealed that there was decline of the output due to scaling even with the steam scrubbing system. The improvement and maintenance of the steam quality should be carried out on the responsibility of PGI, the steam supplier.

Recently, the water washing system was developed, and it became possible to remove the scale deposited on the turbine nozzles and blades without shutting the unit down.

As a means of protection of the plant, the water washing system should be added for extension of the continuous operation time, prevention of decline of the output and prevention of rubbing of the rotor due to scaling.

c. Lining of Main Cooling Water Pipes

The main cooling water pipes and hot water pipes are severely corroded, and in the extreme case, as much as 75% of the tube wall thickness is corroded. These pipes are buried underground. Therefore, if the corrosion progresses at the present rate, it is feared that the pipes may collapse under the earth pressure.

It is necessary to line the pipes with stainless steel (SUS 304) pipes of wall thicknesses corresponding to the lost thicknesses and prevent collapsing and further progress of corrosion.

d. Replacement of Auxiliary Cooling Water Pipes

Epoxy-lined carbon steel pipes are used for the auxiliary cooling water pipes, and the lining has peeled off and the pipes have been corroded.

The Supercoat lined carbon steel pipe has been proved to be very stable against the cooling water in Tiwi Power Plant, and has a high anti-corrosive property. Therefore, it is advisable to replace the cooling water pipes with Supercoat lined pipes, SUS pipes or FRP pipes.

e. Suppression of Algae

Algae growth and mud deposited in the generator hydrogen gas cooler tubes decrease the coefficient of overall heat transmission. To recover this, tube cleaning is carried out with a decreased output or unit shutdown.

The following two methods are considered as the means of preventing this decrease of the coefficient, and the selection should be made in consideration of the economy and reliability.

Plan 1.

The cooling water system to the H_2 gas cooler and lubricating oil cooler will be modified from the existing open cycle to the closed cycle and the growth of algae will be suppressed by shielding from the sun light.

Plan 2.

The H_2 gas cooler will be equipped with cleaning brushes so that the interior of the tubes may be cleaned automatically and continuously.

f. Improvement of Labyrinth Packing Material

The labyrinth packings of the main shaft of the turbine suffered from severe corrosion, but since the packings were replaced with stainless steel packings, the trouble of the labyrinth packings has been remedied.

g. Diffusion of H₂S gas and Addition of After-condenser

With No. 1 Unit through No. 4 Unit, the steam ejectors are in normal use and the gas compressors are kept on standby.

At present, the gas compressors suffer surging and corrosion has progressed extensibly. Thus, it is judged that the gas compressors cannot be used any longer.

For the steam ejectors to be used normally without troubles, it is advisable to add after-condensers to the steam ejectors and protect the surrounding equipment from corrosion due to the discharged steam condensate. And further it is advised that the discharge from the ejectors be led to the outlet of forced draft of the cooling towers to effect better diffusion and decrease the ground concentration of H_2S gas. (Fig. 6-2-8 (1), (2) and (3)) Partial Modification of Cooling Towers

The forced draft fans, hubs and such rotating parts have suffered drain attacks and the fillers have been severely damaged by long use, and they are already in the condition needing drastic repair.

The cooling towers are of wooden structures and the ceiling boards, side boards, louvers, etc. have been corroded severely by the sputtering water and strong acid droplets scattered from the steam ejectors.

Since the power plant is located on the route of typhoons, the side boards, louvers, railings, stairs, etc. have been broken or deformed, and the performance of the cooling towers have been damaged and their safety is in danger.

All the fans, hubs, fillers, side boards, louvers, ceiling boards, railings, stairs, etc. that have been severely damaged should be replaced for recovering the performance of the cooling towers.

Also one third of the upper part of the cooling tower structures and one third of the fan motors should be replaced with new ones.

i. Procurement of Vehicles

At this Mak-Ban Power Plant, there are 271 employees composed of 135 operators, 63 maintenance crew and 73 others. And the power plant has one mobile allocated to Plants A, B and C combined, and the shift operators are reporting to the job getting a lift in the day-shift employees' cars.

The working mode of operators is by the 4 group 3 shift system, but the shift changes are difficult to be made regularly because of difficult transportation.

h.

In some cases, operators cannot help working two shifts continuously. This is a serious problem in the operation of the power plant.

Since the power plant and the residential quarters of the employees are located in the mountains, there is no public transportation available.

And the number of vehicles assigned to the power plants is short, and they are all dilapidated by age and need to be replaced.

For smooth transportation of shift operators and speedy transportation of maintenance crew and security personnel in case of power plant troubles and emergency.

It is advisable to purchase one small bus (capacity: 29 persons) and a jeep (capacity: 7 persons) equipped with a winch.

(2) Electric Facilities

a. Electric Facilities within Powerhouse

(a) Generator equipment

No problem was found with both the stators and the rotors of the generators proper so far. However, as it is more than 10 years already since the commissioning of No. 1 to 4 units, a detailed study on the necessity of the rewedging of stator windings is essential, and rewinding of the rotor and detail inspection of retaining rings are necessary. Slip rings of the excitation circuit were found to have abrasion by sparks and the brush holders were also damaged by corrosion. Repair of the slip rings, and replacement of the brush holders and brushes are necessary. As in Tiwi Power Plant, the H₂ gas consumption was larger than usual. Therefore, H₂ gas

should be thoroughly inspected. Parts of the AVR also have been corroded to the degree needing replacement.

(b) 4.16 kV and 480 V switchgears and 480 V motor control centers

These equipment are installed in the electric room partitioned from the other sections in the powerhouse and kept at a little higher pressure than the atmosphere by the air conditioners to prevent the atmospheric air from However, the centralized air conditioning entering. system gets out of order once in a while, and the doors of the electric room are opened, when the air of the powerhouse containing H2S gas enters and gives adverse affects of corrosion and deterioration to the electric equipment, relays, instruments, etc. Though the damage has not been serious so far by the periodical inspection. cleaning and polishing of contacts, but it is necessary to install the H₂S gas diffusion device and maintain the air conditioners.

The magneblast circuit breakers for the generator are installed outside the electric room and exposed to the air containing H_2S gas in the powerhouse.

The contact surfaces are corroded, and heating due to increased contact resistance once caused the burnt circuit breaker. Thus, the circuit breakers for No.2,3 and 4 Unit have been replaced with gas circuit breakers. It would be necessary to consider the replacement of the circuit breaker for No.1 Unit.

The 480 V motor control center has a problem in its design. When one of the cooling fan motors on the cooling tower is grounded, all the cooling fans are tripped, leading to the plant trip. Therefore, it is necessary to consider the selective tripping at grounding faults of this system.

And as there frequently occur the grounding faults and burns of the cooling fan motors, it is necessary to make a detailed investigation of the causes.

b. Electric Facilities in Switchyard

As mentioned before, the steam and H_2S gas in the ejector exhaust cause corrosion, insulation drop, and malfunctioning of the electric facilities in the switchyard, especially the exposed parts of conductors, insulators, disconnecting switches, overhead ground wires, circuit breakers, control equipment, etc. It is noted especially that soon after the commissioning of the plant, the dielectric strength of insulators dropped because of impurities in steam and steam mist deposited on the surface of insulators, and frequent flash-overs occurred. At present, the problem is solved by H.V.I.C. (High Voltage Insulation Compound) coated on the surface of insulators.

As a fundamental measures, the more effective means of diffusion of the ejector exhaust should be established. Some obsolete type OCB should also be replaced with SF6 type circuit breakers.

(3) Instrumentation and Control Equipment

Unlike Tiwi Power Plant, the air conditioning system for the central control room of Mak-Ban Power Plant are operating normally, and such corrosion and deterioration of the equipment and instruments as experienced in Tiwi Power Plant have not occurred. However, the instrumentation and control equipment installed at locations exposed to the atmosphere have been corroded by H_2S gas.

The detail of major problems with instrumentation and control equipment are described in the following.

a. Hotwell Level Control

The automatic level control sometimes malfunctions due to the poor quality of control air. Detailed inspection of the control air system is necessary.

b. Control Board Recorders

с.

d.

Several sets of recorders have been out of order because of servomotor trouble, etc. These recorders should be replaced.

Control Board Indicators and Transmitters

Several control board indicators are malfunctioning owing to corrosion and deterioration, and need repair or replacement.

Turbine Supervisory Instruments

At present, the turbine supervisory instruments are operating normally, but some of the sensors and pickups have been deteriorated owing to high vibration and high temperature, and should be replaced.

e. Control Air Supply

There are problems with the quality of the control air for No. 5 and No. 6 Units. Detailed inspection of the air supply system, replacement of filters, and check or dryers are necessary.

f. Chemical Dosing System

As the pH sensors and transmitters are installed outdoors, they have been deteriorated severely and should be replaced. Replacement of the automatic pH control should also be considered.

The above problems and their countermeasures are summarized in Tables 6-2-8 and 6-2-9.

Table 6-2-8 Problems and Basic Countermeasures (Mechanical)

Power Plant. Mak-Ran (1/2)

ng (1) Procurement of turbine spare 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 0 0 0 0 0 - 0 - - 0 - - 0 - - 0 - 0 - 0 - 0 - 0 - 0 - - 0 - - 0 - - - -		No.	Problem	Basic Countermeasure		5	Unit No.			Reh	OH Remarks	y Y
 M-i Frequent and long (1) Procurement of turbine spare o					н	2						
Antucuuits (2) Installation of water washing 0<		т-W	Frequent and long overhaul/maintenance	Procurement of rotor, nozzle a	o	t i	ş		•	o	l	
M-2 Corroded cooling (1) Internal lining of main water pipe and vacuum low and water leakage, stainless steel sheets 0	· · · · ·		SLIGCWLS		0	0, 1				ο	I	
 M-2 Corroded cooling (1) Internal lining of main o - 0 0 0 0 vater pipe and vacuum low and water leakage, cooling water pipe with low and water leakage, stainless steel sheets entailing burst pipe in the future (2) Additional installation of 0 - 0 0 0 0 0 electrolytic protection system system M-3 Decreased performance Installation of automatic tube 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		· ·			1	. 0	ľ	• •	I	. o	1	
 entailing burst pipe in the future (2) Additional installation of 0 - 0 0 0 0 electrolytic protection system (3) In Replacement of aux. cooling 0 - 0 0 0 0 M-3 Decreased performance installation of automatic tube 0 0 0 0 0 M-3 Decreased performance installation of automatic tube 0 0 0 0 0 of H₂ gas cooler cleaner or modification of cooling 0 0 0 0 0 due to algae growth closed cycle 	6 -	M- 2	Corroded cooling water pipe and vacuum low and water leakage,	Internal lining of cooling water pipe stainless steel she	0	1				0		
$ \begin{array}{rrrr} \label{eq:constraint} \begin{array}{rrrr} (3) \ \mbox{In Replacement of aux. cooling} & 0 & - & 0 & 0 & 0 & 0 \\ & \mbox{water pipeline including the} & & & & & \\ & \mbox{water pipeline including the} & & & & & & \\ & \mbox{headers} & & & & & & & \\ & \mbox{headers} & & & & & & & \\ & \mbox{becreased performance Installation of automatic tube} & & & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{of \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & & & & & & & & & & & & \\ & \mbox{od \mathbb{H}_2 gas cooler} & & & & & & & & & & & & & & & & & & &$	179		entailing burst pipe in the future		0					o	1	
Decreased performance Installation of automatic tube \circ				In Replacement water pipeline headers	0	ł				0	: I	
		M- 3	Decreased performance of H ₂ gas cooler for turbine generator due to algae growth	Installation of automatic tube cleaner or modification of cooling water system from open cycle to closed cycle	0	0				o		

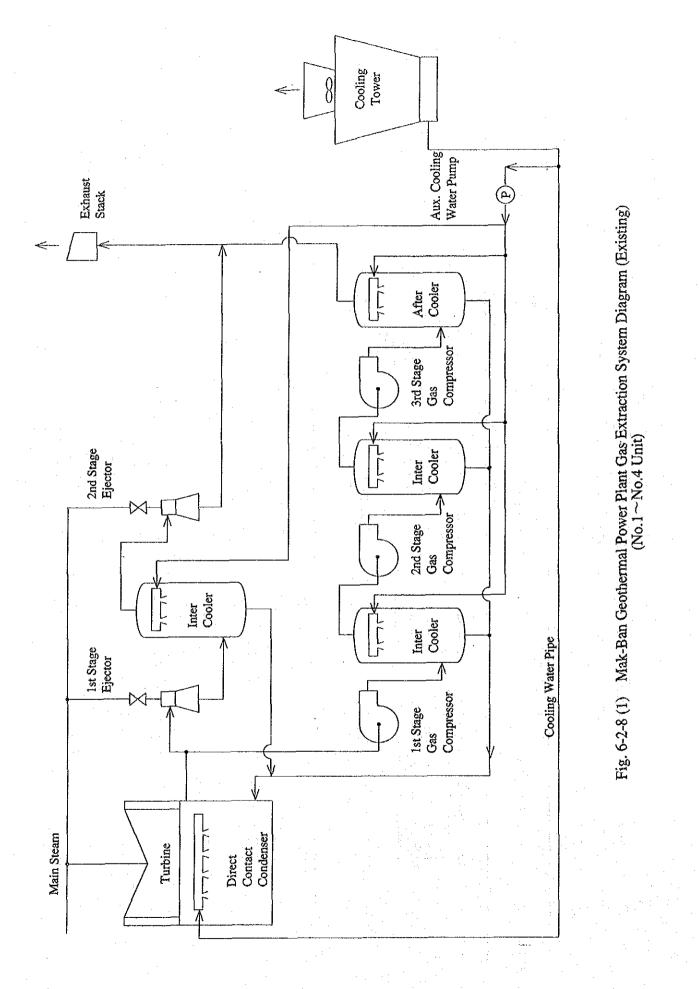

N.C.		Bacio Countormonouro		- H	Unit No.			2 2 2		
.04	TTATOO 13		1		3. 4	t 2	و	WEIT	d 5	2 Yeller KS
M-4	Decreased performance of cooling tower	Replacement of erroded and poor materials	0		0	0	· o	O	•	
 					÷ .		,			
۲ کرانی	orroded survous	Tretsllation of aftercondenser and	c	c		ı c	1	c		
	equipment by steam splutter from steam ejector	xhaust steam disch mstream of forced of cooling tower)		
M-6	Sticking of MSV, CV	(1) Improvement of steam quality								
		(2) Remodeling of MSV, CV and SCV	0	0	0	0	0	0	. I	
M-7	Difficult operator shift change because of car shortage	Procurement of new vehicles	0			4	ł	0	1	• • •
8-W	Steam supplier trouble									
	(1) Low steam quality	Installation of steam scrubber system	0	0		1 / ·	. 1	t	ŧ	
	(2) Steam supply system trouble	Three (3) small size rupture disks to be fitted instead of one (1) large size rupture disk	0	0	0	0	0 2 ³)		

Table 6-2-9 Problems and Basic Countermeasures (Electrical and Problem Unit No. Problem Basic Countermeasure 1 2 3 4 5 Yearly deterioration (1) Rewedging of generator stator 0	rres (Electrical and I & C)	Power Plant: Mak-Ban (1/3)	Unit No. Reh OH Remarks		o o o o o - tion during	0 0 0 0 0 0 0 - UT test should be conducted		0 1 1 1 0 0 0		o o Existing conditions should be		
Table (Table (Froblem Yearly deterioration of generator Senerator rotor Generator rotor Slip ring spark and brush, brush holder corrosion Generator exciter AVR malfunction Defective Generator circuit breaker dvR malfunction befective Generator circuit breaker dv % 480 V witchgears and 480 V M.C.C. corrosion	5-2-9 Problems and Basic Countermeasu			Rewedging of windings	Detail inspection of	Pulling out of retaining	of generator stat t terminal board,	and machining of the and replacement of bruhe holders.	of	ting ker gas		(2) Adoption of selective tripping system for CVF motor contorol
	Table 6			Yearly deterioration of generator			of H ₂	Generator rotor slip ring spark and brush, brush holder corrosion	Generator exciter AVR malfunction	Defective Generator circuit breaker	4.16 kV & 480 V switchgears and 480 V M.C.C. corrosion	

				· .					Powe	Power Plant:	t: Mak-Ban (2/3)	с с
No.	Problem	Basic Countermeasure			Unit No.	No.			Reh	HO	d Remarks	r Xr
,:			Ч	2	ŝ	4	ŝ	v				
E-7	Switchyard equipment corrosion											
 	(1) Corrodeddisconnectingswitches	 Replacement of defective parts of disconnecting switches 	0	0	٥	0	1	I		-	o	
	(2) Circuit breaker malfunction	<pre>(2) Replacement of OCB with SF6 circuit breaker</pre>	0	0	0	0	0	0		1	o 6sets	~
		<pre>(3) Installation of N.C.G. abatement system</pre>	0	0	0	0	0	ο		o		•
IC-1	Malfunction of hotwell level control	<pre>(1) Overhaul of hotwell level control system</pre>	0	0	0	ο .	0	0			0	
		<pre>(2) Servicing and repair of instrument/control air system</pre>	0	0	o	0	o	0	Ē		Q	
TC-2	Malfunction of T.S.I. (Turbine Supervisory Instruments)	Total replacement	0	ο	0	0	t .	8 · ·		0		
н ПСЗ	Deterioration of control board recorders	Replacement of control board recorders	0 0	်ဝင်	0 0	0 0	i c	- в с		0 0	- Obsolete recorders	
		· · · · · · · · · · · · · · · · · · ·))))	b				

				Power Flant:	Mak-Ban (3/3)
No.	Problem	Basic Countermeasure	Unit No. 1 2 3 4 5 6	Reh OH	Remarks
IC-4	Deterioration/corrosion of control board	Replacement/repair of control board indicators/transmitters		0	
IC-5	Malfunction of turbine governor system	Overhaul/servicing of turbine governor system		0	
IC-6	Malfunction of chemical dosing system	Replacement of automatic dosing system	0 0 0 0	0	
· .					
	· · · · · · · · · · · · · · · · · · ·				
	: - 				
. •					
	•		·		
		-			

le 6-2-9 Problems and Basic Countermeasures (Electrical and 1

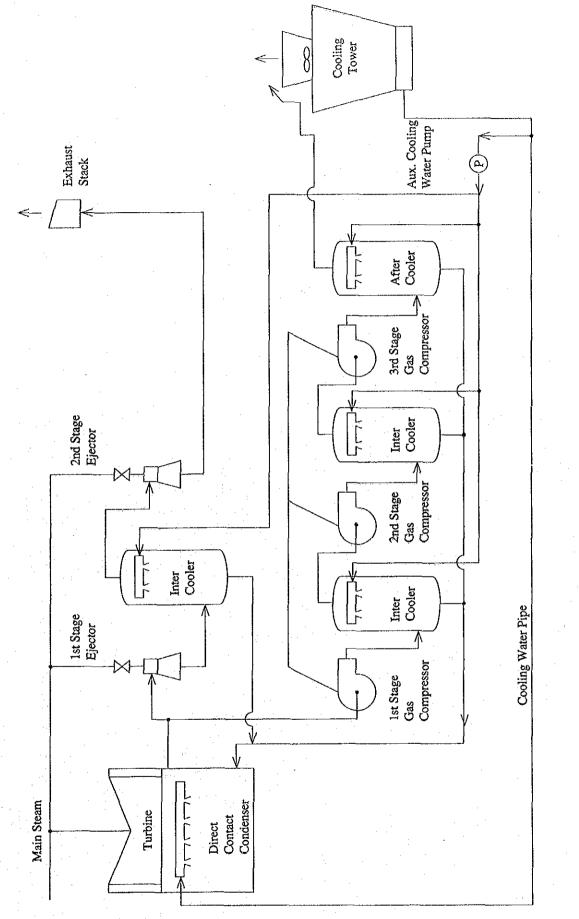
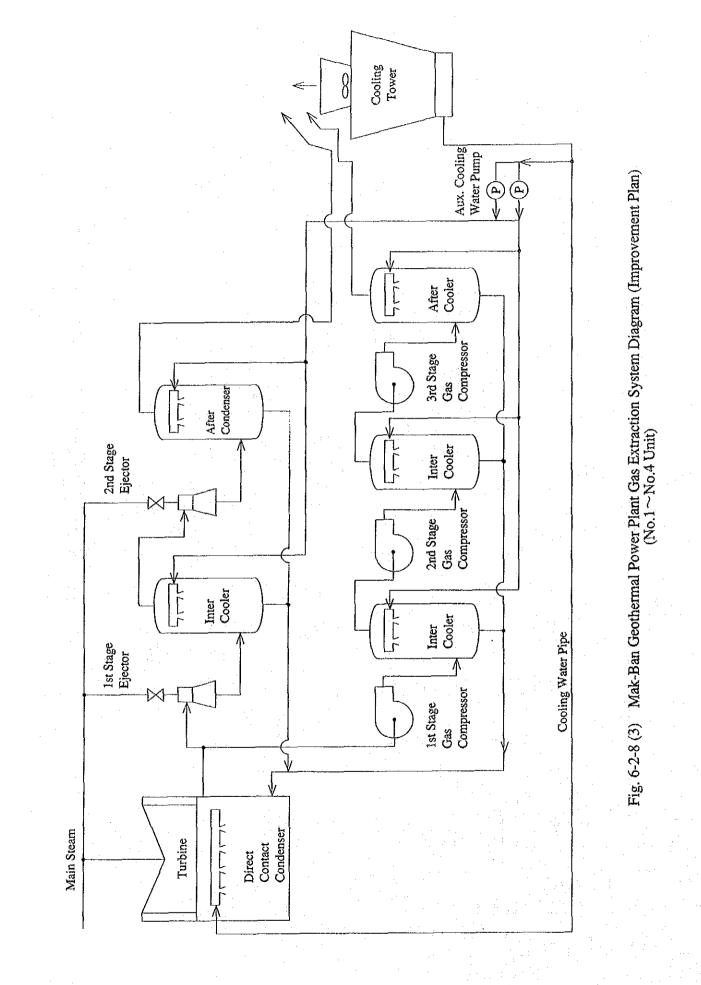



Fig. 6-2-8 (2) Mak-Ban Geothermal Power Plant Gas Extraction System Diagram (Existing) $(No.5 \sim No.6 \text{ Unit})$

100

6.2.3 Formulation of Rehabilitation Plan

1. Criteria for Selection of Rehabilitation Items

The rehabilitation work items and the priority are determined based on the following fundamental concepts for the rehabilitation, the frequency of shutdowns, and the days of the troubles tabulated in Tables 6-2-4 and 6-2-7.

- Improvement and repair items aiming at eliminating the causes of faults which resulted in long forced shutdowns.
- (2) Replacement or improvement items against troubles or failures which may not only lead to serious plant troubles but also need a long time and excessive expenses for restoration.
- (3) Improvement items which are necessary for prevention of pollution or environmental preservation.
- (4) Advance replacement of obsolete equipment which are indispensable for proper operation of the plant and spare parts which are or will become unavailable.
- (5) Items which are, if adopted in the rehabilitation program, economically advantageous for increase of generated energy with less overhaul frequency and shorter overhaul period.
- (6) Improvement items which will economize the operation and maintenance expenses largely.
- (7) Replacement or supply of parts which may need a considerable time and expenses if the maintenance is deferred.

2. Rehabilitation Work Items for Tiwi Geothermal Power Plant

The problems with regard to the reliable operation of Tiwi Power Plant for stable power supply can be classified into two categories, those related to the improvement of the power plant facilities and those related to the steam supply.

 Rehabilitation Items for Power Plant Facilities and Priority

The rehabilitation items for the mechanical, electrical and instrumentation and control facilities of the power plant and their priority are described in Table 6-2-10.

Table 6-2-10 Power Plant Rehabilitation Items and Priority (Mechanical Part)

No. Rehabilitation Item		B	Unit No.	0			н Д	Priority		Remerics	
		5	en l	4	S	9	1st	2nd 3	3rd		
M- 1 Procurement of turbine spare rotor, nozzle and diaphragm	1	•	i	ı	0		c	1			
M- 2 Installation of water washing equipment	, O	¢	0	0	0	0	o	1			
M- 3 Main cooling water pipe inner lining with stainless steel and addition of electrolytic protection system	O	0	Ö	o	0	D	o i	5		:	
M- 4 Replacement of aux. cooling water pipeline including the headers	0	0	0	o .	0 0		o	1			·
M- 5 Installation of hybrid type gas extraction system including removal of ejector steams discharge point to downstream of cooling tower fans	1	1	o	0	е . .1	-	Ö	۰ ۱			
M- 6 Partial replacement of cooling tower materials	° .	0	0	0	о 0.		0	۱			
M- 7 Installation of automatic tube cleaner for generator H ₂ gas cooler	O	, o , ·	0	0	0		0	1	. •		
M- 8 Procurement of vehicles	0	ł		. 1			o	1			
M- 9 Procurement of honing machine	∎ · · .	o	1	ı.	1		0	۱			

Table 6-2-10 Power Plant Rehabilitation Items and Priority (Mechanical Part) Power No. Rehabilitation Items Unit No. Priority No. Rehabilitation Item Unit No. Priority No. Rehabilitation Item Unit No. Priority M-10 Additional seam production wells o o o o o o M-11 Installation of stem scrubber system o o o o M-11 Installation of stem scrubber system M-12 Modification of rupture disk blowout line o	Part) Power Plant: Tiwi (2/4)	Remarks	Scope of PGI, steam supplier ditto	ditto	
No. Table 6-2-10 Power Plant Rehabilitation Items and Pric No. Rehabilitation Item Unit No. M-10 Additional steam production wells 0 0 0 0 0 M-11 Installation of steam scrubber system - - 0 <t< th=""><th>rity (Mechanical P</th><th>riori 2nd</th><th></th><th></th><th></th></t<>	rity (Mechanical P	riori 2nd			
No. Rehabilitation Item M-10 Additional steam production wells M-11 Installation of steam scrubber system M-12 Modification of rupture disk blowout line	bilitation Items and Pric	Unit No. 2 3 4 5	0 1 0 0 0 0	0 0 0	
	· · ·		M-10 Additional steam production wells M-11 Installation of steam scrubber system	M-12 Modification of rupture disk blowout line	

Rehabilitation Item	Unit	Unit No.			Priority		Power Plant: Tiwi (3/4) Remarks
	1	3 4	Ś	9	lst 2nd	3rđ	
Inspection of generator rotor windings	0	0 0	0	0	1 0	I	Detail study is needed.
Inspection of retaining ring of generator rotor	0	0	0	0	1 0	E	
Rewedging of generator stator windings	0	0 0	0	o	r O	I	
AVR replacement	0		0	. 0	r O	ı	· ·
E-5 Adoption of selective tripping for CTF motor control center ground faults	0	0	0	0	1	ŧ	

Power Plant: Tiwi (4/4) Remarks **3sets** Table 6-2-10 Power Plant Rehabilitation Item and Priority (I & C Part) 2nd 3rd Priority 1 ο lst o ο o 0 0 ł 0 0 o 0 ø o Q 0 0 0 ŝ 0 o 0 o o o 0 4 Unit No. 0 0 o ო 0 o 0 2 0 0 o 0 ο H 0 С 0 0 0 o IC-2 Repair or replacement of air conditioning IC-5 Replacement of automatic chemical dosing IC-6 Additional imstallation of control air IC-1 Replacement of control board recorders IC-3 Repair or replacement of control board Rehabilitation Item indicators/transmitters IC-4 Replacement of TSI compressor system system No.

- 192

6

(2) Securing of Steam Supply

ь.

c.

- All units of Tiwi Power Plant use steam ejectors for NCG extraction, and NAPOCOR is now carrying out the replacement works of the steam gas ejectors of Units No.
 1, No. 2, No. 5, and No. 6 with the hybrid type gas extraction system. Upon completion of the works, the necessary steam supply for 330 MW generation will decrease to 2,892 t/hr and 233 t/hr of steam saved will become available for additional generation. As a result, 29 MW of output increase is expected. (Refer to Table 6-2-11)
 - In the conference concerning steam supply held in July 1991 PGI disclosed that it planned to supply 2,700 t/hr of steam to Tiwi Power Plant by the early part of 1992 and 2,900 t/hr by the early part of 1994. (Refer to Fig. 6-2-1.)
 - In order to secure and maintain the steam supply to generate 330 MW, PGI plans to drill the following number of production wells, but no mention was made regarding the financing of the necessary fund for drilling.
 - (a) Steam supply increase from the present 2,360 t/hr to 2,900 t/hr is necessary for 330 MW power generation, and the number of necessary additional production wells is estimated to be 20.
 - (b) As the production of steam decreases year by year, it is estimated that 8 or more additional wells per year will be necessary to maintain 2,900 t/h of steam supply.

(c) Assumptions for the above estimation

- Steam production per well is assumed to be 30 t/hr, based on 77 production wells now producing 2,360 t/hr.
- Annual deterioration rate of production well of Tiwi Power Plant is assumed to be 7.3%.
- . The rate of unsuccessful drilling of production wells is assumed to be 10%.

	ů t V
님-	ŗ
6-2-	10.1
പ	÷
abl	, Li ba

Table 6-2-11 Reduction in Steam Consumption and Plant Output Increase by Adoption of Hybrid Type Gas Compressor for N.C.G. Extraction

•		Steam for Ejector				
Unit No.	Present Consumption (t/hr)	After Replacement (t/hr)	Reduction in Steam Consumption (t/hr)	Output Increase by Reduction in Steam Consumption (MW)	Power Consumption by Gas Compressor (MW)	Remarks
FI.	11	15.1	55.9	6.8	(1.05)	
2	۲L	15.1	55.9	Q. 8	(1.05)	
£	۲۲	11	Q	O		
4	۲ <i>۲</i>	71	0	0		
S	88.8	27.99	60.81	7.7	(1.05)	
Ŷ	88 . 8	27.99	60.81	7.7	(1.05)	
Total	461.6	228,18	233.42	29	(4.2)	

3.

(1) Rehabilitation Items for Power Plant Facilities and Priority

The rehabilitation items for the mechanical, electrical, and instrumentation and control facilities of the power plant and their priority are described in Table 6-2-12.

								Power	: Plant: Mak-Ban (1/3)
No. Rehabilitation Item	д	Unit No.	No.				Priority	Å	Remarks
	1	e e e e e e e e e e e e e e e e e e e	4	S	1 9.	1st	2nd	3rd	
M- 1 Procurement of turbine spare rotor, nozzle and diaphragm	o		1		- F -	0	t		
M- 2 Installation of water washing system	· 0	°.	0	0	0	0	1	ŕ	
 M- 3 Main cooling water pipe inner lining with stainless steel and addition of electrolytic protection system 	0	0	O	o	0	0	. 1		
M- 4 Replacement of aux. cooling water pipeline including the headers	о 0	0	0	0	o	O	ı		
M- 5 Installation of automatic tube cleaner for generator H ₂ gas cooler	0	0	0	0	0	ο	ı	ı	
M- 6 Installation of after-condenser including removal of ejector steam discharge point to downstream of cooling tower fans	о	0	0	1	I	0	I		
M- 7 Partial replacement of cooling tower materials	0	0	0	0	o	o	1		
M- 8 Remodeling of main stop valve	0 : 0	0	0	0	0	0	ı		
M- 9 Procurement of vehicles	י ס	t	i	١	1	ο	ı		
M-10 Procurement of honing machine			. 1	ı	· 1	c			

,

Table 6-2-12 Power Plant Rehabilitation Items and Priority (Electrical Part)

Fower Plant: Mak-Ban (2/3)

No. Rehabilitation Item		THIN	UNIT NO.				Friority	lty.	ਲੱ	Remarks
	H	Ň	r m	4 5	9	1st	2nd	3rd		
M-11 Installation of steam scrubber system		l r	0	О	1	0			ີ້	Scope of PGI, steam
M-12 Modification of rupture disk line	0	o	O	0 0	0	o	i		ō ·	чгүннон ditto
E-1 Inspection of generator rotor windings	0	· 0	0	0 0	0	0				
E-2 Inspection of retaining ring of generator rotor	0	o	0	0 0	0	0	ı	· I		
E-3 Rewedging of generator stator windings	0	0	0	. 0	0	O	ų	Ļ		.
E-4 AVR replacement	a	0	. 0	0 0	0	· o	ι	ι		
E-5 Replacement of generator stator temperature sensor terminal board	· 0	0	0	0 0	0	0	ı	t		
E-6 Replacement of defective disconnecting switches in switchyard	0	o	ò	ı o	1	0	ł.	1 1		
E-7 Replacement of switchyard circuit breakers	S	o	o	o,	0 0	o	1	ł	·	6 sets
E-8 Adoption of selective tripping for CTF motor control center ground faults	Q	0	0	0 : 0	0	0	 ł		· ·	

			· : .						Power Plant: Mak-Ban (3/3)
No. Rehabilitation Item		Unit No.	No				Ρr	Priority	Remarks
	7	8	3 4	4	ون ا		lst ;	lst 2nd 3rd	
IC-1 Replacement TSI sensors/parts	O	0	0	і 0	1	Ű	o	1	
IC-2 Replacement of control board recorders	O	0	0	і 0	E.		0	1	
IC-3 Replacement of control board indicators/ transmitters	0		0	і 0		Ŭ	•	1	
IC-4 Replacement of chemical dosing system	o	o O	0	1 0	i	•	0	1	

Tiwi Geothermal Power Plant

Mak-Ban Geothermal Powre Plant

TIWI GEOTHERMAL POWER PLANT UNIT No. 1

1. RATED 2. DEPENI 3. AVERAC 4. GROSS 5. OPERAT 6. TOTAL SINCE	RATED CAPACITY						
		(MM)	55	55	55	SS	55
3. AVEI 4. GROS 5. OPEI 6. TOTU SIN(DEPENDABLE CAPACITY	(MM)	50.49	52.44	48.21	48.42	47.71
4. GRO 5. OPH 6. TOT	AVERAGE LOAD	(MM)	46.11	44.23	43.44	47.88	46.94
5. OPEI 6. TOT	GROSS GENERATION	(HMM)	353,821,51	273,472.14	311,887.40	380,976.00	327,648.48
6. TOT/ SIN		(Hr)	7,673.83	6,197.12	7,179.63	7,957.60	6,946.72
	AL OPERATING HOURS CE INITIAL SYNCHRO.	(Hr)	54,206.38	60,403.50	67,583.13	75,540.73	82,487.45
7. TOT/	TOTAL OUTAGE HOURS	(Hr)	년 *	2,562.88	1,604.37	802.40	I,8I3.28
(1)	FORCED OUTAGE	(Hr)	⊢ *	83.70	142.21	255.76	28.96
(2)	MAINTENANCE OUTAGE	(Hr)	*	121.37	95.35	386.78	266.61
(3)	PLANNED OUTAGE	(Hr)	다 *	1,339.02	1,324.36	0	1,500.54
(7)	(4) ECONOMIC SHUTDOWN	(Hr.)	त्न *	202.21	0	Ö	0
(2)	OUTSIDE TROUBLE	(Hr)	년 *	816.58	42.45	159.86	17.17
8. STAT	STATION USED POWER RATIO	(%)	ー *	6.06	6.00	5.76	5.94
9. CAPI	CAPACITY FACTOR	(%)	F *	56.76	64.56	79.08	68.01
10. AVAJ	AVAILABILITY FACTOR	(%)	93.25	82.73	81.74	90.84	79.30
11. HEAT	HEAT RATE (GROSS)	(BTU/KWH)	Г*	26,297	26,755	26,145	25,932
12. THE	THERMAL EFFICIENCY (GROSS)	(%)	Г *	12.98	12.76	13.05	13.16
TI3. NUM	NUMBER OF STARTS (YEAR)		15	Τę	20	22	б

	ITEMS		1986	1987	1988	1989	066T
н. Н	RATED CAPACITY	(MM)	55	55	55	55	55
2.	DEPENDABLE CAPACITY	(MM)	50.82	49.88	45.68	91.44	45.76
n	AVERAGE LOAD	(MM)	01.44	40.49	42.08	44.02	44.74
4	GROSS GENERATION	(HWH)	381,268.84	285,497.90	319,679,67	335,757.75	312,621.48
م		(Hr)	8,644.58	7,051.10	7,597.14	7,626.90	6,777.43
• •	TUTAL OPERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	57,314.24	64,365.34	71,962.48	79,589.38	86,366.81
7.	TOTAL OUTAGE HOURS	(Hr)	г-1 *	1,708.90	340.94	1,133.10	1,982.57
	(1) FORCED OUTAGE	(Hr)	ビ *	90.46	231.54	449.17	350.69
	(2) MAINTENANCE OUTAGE	(Hr.)		42.64	19.16	107.01	134.72
	(3) PLANNED OUTAGE	(Hr)	п *	1,001.25	52.38	396.60	1,474.09
	(4) ECONOMIC SHUTDOWN	(Hr)	다 *	0	0	ō	Ö
* . . *	(5) OUTSIDE TROUBLE	(Hr)	ст *	574.55	37.86	180.32	23.07
ω	STATION USED POWER RATIO	(%)	гі *	6.70	6.20	5.92	5.58
• •	CAPACITY FACTOR	(2)	*	59.25	66.17	69.67	65.01
10.	AVAILABILITY FACTOR	(%)	96.05	86.98	86.49	87.06	77.37
.11	HEAT RATE (GROSS)	(BTU/KWH)	년 *	27,153	27,405	25,940	26,348
12.	THERMAL EFFICIENCY (GROSS)	(%)	ľ*	12.53	12.45	13.16	12.95
13.	NUMBER OF STARTS (YEAR)	· ·	12	. 17	13	17	α Γ

	ITEMS		1986	1987	1988	1989	1990
	RATED CAPACITY	(MM)	55	55	55	55	55
5.	DEPENDABLE CAPACITY	(MW)	50.34	53.62	51.60	48.94	41.80
'n	AVERAGE LOAD	(MM)	44.25	39.48	39.90	44.96	40.75
4	GROSS GENERATION	(HWH)	173,871.45	281,864.52	228,412.58	382,304.68	264,944.35
ς.	OPERATING HOURS	(Hr)	3,929.14	7,140.09	5,725.28	8,502.59	6,349.34
9.	TOTAL OPERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	48,856.09	55,996.18	61,721.46	70,224.05	76,573.39
7.	TOTAL OUTAGE HOURS	(Hr)	~− 1 *	1,030.71	1,594.72	257.41	2,410.66
	(1) FORCED OUTAGE	(Hr)	러 *	26.72	73.60	207.36	41.60
	(2) MAINTENANCE OUTAGE	(Hr)	নে * *	32.11	70.29	10.36	0
ч. 1	(3) PLANNED OUTAGE	(Hr)	년 *	20.50	1,326.90	O	2,210.55
	(4) ECONOMIC SHUTDOWN	(Hr)		274.41	σ	σ	o
	(5) OUTSIDE TROUBLE	(Hr)	Т*	676.97	123.93	39.69	158.51
ພູ	STATION USED POWER RATIO	(%)	г *	7.10	6.48	6.03	6.19
6	CAPACITY FACTOR	(%)	רי א	58.50	47.28	79.35	55.08
10.	AVAILABILITY FACTOR	(%)	90.52	92.47	65.18	97.06	72.48
17	HEAT RATE (GROSS)	(BTU/KWH)	! *	29,146	27,451	26,101	26,129
12.	THERMAL EFFICIENCY (GROSS)	(%)	й *	11.71	12.43	. 13.08	13,06

*1: NO DATA AVAILABLE

COMMISSIONING: APR 1980

NN	NNEX 1. PLANT OPERATIONAL	L DATA		È	TIWI GEOTHERMAL POWER PLANT UNIT NG	POWER PLANT	ON LINA
	ITEMS		1986	1987	1988	1989	61
•	RATED CAPACITY	(MW)	55	55	55	55	
	DEPENDABLE CAPACITY	(MM)	53.34	53.77	53.67	54.25	
	AVERAGE LOAD	(MM)	45.37	37,60	67.14	34.06	

			22 1	1061	7200	LYOY	066T
H	RATED CAPACITY	(MW)	55	55	55	55	55
2.	DEPENDABLE CAPACITY	(MM)	53.34	53.77	53.67	54.25	TT-04
Έ	AVERAGE LOAD	(MM)	45.37	37,60	41.49	34.06	39.25
¢.	GROSS GENERATION	(HMM)	281,931.90	130,359.30	259,900.30	73,344.34	304,261.40
20	OPERATING HOURS	(Hr)	6,214.04	3,467.13	6,264.83	2,153.47	7,594.06
è.	TOTAL OPERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	49,578.12	53,045.25	59,310.08	61,463.55	69,057.6I
7.	TOTAL OUTAGE HOURS	(Hr)	년 *	5,292.87	335.17	4,422.53	1,165.94
*.	(1) FORCED OUTAGE	(Hr)	*	12.00	90.48	2.30	752.08
	(2) MAINTENANCE OUTAGE	(Hr)	~~! *	15.55	36.37	0	98.73
	(3) PLANNED OUTAGE	(Hr)	Т*	0	164.92	787.80	C
•	(4) ECONOMIC SHUTDOWN	(Hr)	년 *	5,115.87	0	2,928.00	296.40
	(5) OUTSIDE TROUBLE	(Hr)	Г*	149.45	43.40	704.43	18.73
ŝ	STATION USED POWER RATIO	(%)	۲ *	7.19	6.52	5.07	6.61
5	CAPACITY FACTOR	(%)	*1	27.05	53.80	15.23	63.26
10.	AVAILABILITY FACTOR	(%)	94.08	83.24	71.32	24.58	86.69
11.	HEAT RATE (GROSS)	(HMX/DIG)	П *	24,146	27,064	26,645	26,239
12.	THERMAL EFFICIENCY (GROSS)	(%)	Н*	14.13	12.61	12.81	13.01
Б.	NUMBER OF STARTS (YEAR)		11	Ø	σ	Q	œ

	ITEMS		1986	1987	1988	1989	066T
r-1	. RATED CAPACITY	(MM)	55	55	55	55	55
2	DEPENDABLE CAPACITY	(MM)	49.18	45.36	50.83	52.34	46.72
ന	AVERAGE LOAD	(MM)	43.34	39.84	47.20	51.98	46.38
4	GROSS GENERATION	(HMM)	342,230.93	259,793.46	305,236.40	440,695.39	404,971.89
ŝ	. OPERATING HOURS	(Hr)	7,895.74	6,520.95	6,467.21	8,478.47	8,719.13
6.	. TOTAL OPERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	39,802.18	46,323.13	52,790.34	61,268.81	69,987.94
7	TOTAL OUTAGE HOURS	(Hr)		2,234.66	2,316.79	281.53	40.87
	(1) FORCED OUTAGE	(Hr)	1 *	243.97	146.32	54:31	0
	(2) MAINTENANCE OUTAGE	(Hr)	년 *	172.17	57.32	59.55	40.87
:	(3) PLANNED OUTAGE	(Hr)	년 *	1,385.32	1,083.48	0	0
	(4) ECONOMIC SHUTDOWN	(Hr)		C)	0	o	0
	(5) OUTSIDE TROUBLE	(Hr)	L *	433.20	1,029.67	167.67	0
ω	. STATION USED POWER RATIO	(%)	r-1 *	7.03	5.74	5.39	6.13
σ	9. CAPACITY FACTOR	(%)	H *	53.92	63.18	91.45	84.05
н	10. AVAILABILITY FACTOR	(%)	86.89	79.37	73.62	96.79	66°23
H	11. HEAT RATE (GROSS)	(BTU/KWH)	⊢ *	28,876	27,366	26,728	26,761
н,	12. THERMAL EFFICIENCY (GROSS)	(%)	Ц *	11.82	12.47	12.77	12.75
r-1	13. NUMBER OF STARTS (YEAR)		16		16	Q	г

. Na na shekara ka shikar ka waxaya ka ka ka ka ka ka ka ka na na na ka sa ka k

		ITEMS		1986	1987	1988	1989	066T
-1		RATED CAPACITY	(MM)	55	55	55	55	5.5
	2.	DEPENDABLE CAPACITY	(MM)	49.63	43.35	49.50	51.26	51.98
(7)		AVERAGE LOAD	(MM)	43.11	37.27	46.24	50.53	50.62
-7	4.	GROSS GENERATION	(HWH)	337,568.80	248,670.52	399,686,98	391,270.88	342,258.04
цļ	ы. Г	OPERATING HOURS	(Hr)	7,830.76	6,673.46	8,643.03	7.743.36	6,723.70
	.	TOTAL OPERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	38,880.05	45,553.51	54,196.54	61,939.90	68,663.60
	7.	TOTAL OUTAGE HOURS	(Hr)	Γ*	2,086.54	104.77	1,016.96	2,036.30
		(1) FORCED OUTAGE	(Hr)	*	359.70	4.33	18.95	158.24
. :		(2) MAINTENANCE OUTAGE	(Hr)	Ц *	7.94	53.94	142.07	24.00
		(3) FLANNED OUTAGE	(Hr)	г *:	1,685.33	0	817.75	1,842.26
		(4) ECONOMIC SHUTDOWN	(Hr)	Ц *	Ð	0	o	0
		(5) OUTSIDE TROUBLE	(Hr)	년 *	33.57	46.50	37.79	11.80
	ω	STATION USED POWER RATIO	(%)		7.18	6.16	5.63	5.63
.	0	CAPACITY FACTOR	(%)	Г *	51.61	82.73	81.21	71.04
•	10.	AVAILABILITY FACTOR	(%)	85.13	76.43	98.40	88.40	76.75
	11.	HEAT RATE (GROSS)	(BTU/KWH)	년 *	28,681	27,659	26,735	26,491
	12.	THERMAL EFFICIENCY (GROSS)	(%)	. T *	11.90	12.34	12.77	12.88
	13.	NUMBER OF STARTS (YEAR)	- - - - -	12	12	. <i>L</i>	Ø	CD

ANNE	ANNEX 1. FLANT OFERATIONAL DATA	DATA	- - - -	κ	AK-BAN GEOTHER	MAK-BAN GEOTHERMAL POWER PLANT	UNIT No. 1
	ITEMS		1986	1987	1988	1989	066T
	RATED CAPACITY	(MM)	55	55	55	55	5.5
2	DEPENDABLE CAPACITY	(MM)	50	23	52.45	53.03	54.53
ŝ	AVERAGE LOAD	(MM)	49.57	52.50	50.92	52.46	54.14
4	CROSS GENERATION	(HWH)	394,606.42	444,013.90	340,890.30	392,245.53	457,720.59
S	OPERATING HOURS	(Hr)	7,959.96	8,457.05	6,694.25	7,476.90	8,453.56
9	TOTAL OPERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	58,083.42	66,540.47	73,234.72	80,711.62	89,165.18
7.	TOTAL OUTAGE HOURS	(Hr)	800.04	302.95	2,084.41	1,283.10	300.19
	(1) FORCED OUTAGE	(Hr)	45.01	51.73	191.92	361.35	68.60
	(2) MAINTENANCE OUTAGE	(Hr)	231.80	236.49	804.05	21.73	105.93
	(3) PLANNED OUTAGE	(Hr)	507.38	O	1,085.44	896.89	125.66
	(4) ECONOMIC SHUTDOWN	(Hr)	0	0	0	0	O
	(5) OUTSIDE TROUBLE	(Hr)	15.85	14.73	3.00	3.13	6.25
0	STATION USED POWER RATIO	(%)	6.64	5.31	5.93	5.17	5.06
0	CAPACITY FACTOR	(%)	81.90	92.16	70.56	81.41	95.00
10.	AVAILABILITY FACTOR	(%)	90.87	96.54	76.27	85.39	96.57
11.	HEAT RATE (NET)	(BTU/KWH)	23,728	23,257	23,595	23,513	22,513
12.	THERMAL EFFICIENCY (NET)	(%)	14.38	14.68	14.46	14.52	15.16
, ,	NIMBED OF STARTS (VFAR)		Ċ		C [7 7	*

MAK-BAN GEOTHERMAL POWER PLANT UNIT No. 2

				0004		DAAT
RATED CAPACITY	(MW)	55	55	55	55	55
DEPENDABLE CAPACITY	(MM)	43	53	53.33	53.78	53.53
AVERAGE LOAD	(MM)	42.43	52, 99	52.13	53.39	53.14
GROSS GENERATION	(HMM)	186,307.13	451,773.01	361,640.81	410,725.40	446,156.10
	(Hr)	4,391.41	8,526.36	6,937.03	7,692.76	8,395.95
TOTAL OPERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	50.,433.58	58,959.94	65,896.97	73,589.73	81,985.68
TOTAL OUTAGE HOURS	(Hr)	4,368.59	233.64	1,846.97	1,067.24	361.82
(1) FORCED OUTAGE	(Hr.)	49.50	27.75	772.38	77.67	227.66
(2) MAINTENANCE OUTAGE	(Hr)	163.88	150.73	0	o	ц *
(3) PLANNED OUTAGE	(Hr)	4,126.75	45.78	1,044.78	841.95	г . *
(4) ECONOMIC SHUTDOWN	(Hr)	O	0		0	, t *
(5) OUTSIDE TROUBLE	(Hr)	28.46	9,38	29.81	145.52	г. *
STATION USED POWER RATIO	(%)	4.80	5.28	5.50	5.41	5.42
CAPACITY FACTOR	(%)	38.67	93.77	74.86	85.25	92.60
AVAILABILITY FACTOR	(%)	50.13	97.44	79.31	89.48	95.87
HEAT RATE (NET)	(BTU/KWH)	22,285	23,580	23,048	23,556	22,993
THERMAL EFFICIENCY (NET)	(%)	15.32	14.47	14.81	14.49	14.84
NUMBER OF STARTS (YEAR)	- - - - - - - - - - - - - - - - - - -	01	Q	12	01	r-1 *

MAK-BAN GEOTHERMAL POWER PLANT UNIT No. 3

			086T	1987	1988	1989	0661
નં	RATED CAPACITY	(MM)	55	55	55	55	55
6.	DEPENDABLE CAPACITY	(MM)	49	50	49.47	53.84	51.60
en en	AVERAGE LOAD	(MW)	48.66	50.11	49.41	53.43	52.68
4.	GROSS GENERATION	(HWH)	372,412.0	419,959.52	378,678.76	453,334.95	417,999.80
5	OPERATING HOURS	(Hr)	7,653.95	8,380.68	7,663.63	8,485.37	7,934.51
è.	TOTAL OPERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	52,151.19	60,531.87	68,195.50	76,680.87	84,615.38
.7.	TOTAL OUTAGE HOURS	(Hr)	1,106.05	379.32	1,120.37	274.63	825.49
	(1) FORCED OUTAGE	(Hr)	57.92	22.16	38.28	63.92	12.27
	(2) MAINTENANCE OUTAGE	(Hr)	35.00	5.62	204.27	48.10	85.15
	(3) PLANNED OUTAGE	(Hr)	1,011.32	78.82	873.83	125.75	667.85
	(4) ECONOMIC SHUTDOWN	(Hr)		o	Ö	0	0
	(5) OUTSIDE TROUBLE	(Hr)	1.81	272.72	3.99	36.86	59.52
÷.	STATION USED POWER RATIO	(%)	6.69	5.56	5.60	5.43	5.38
о •	CAPACITY FACTOR	(2)	77.30	87.16	78.38	64.09	86.76
10.	AVAILABILITY FACTOR	(2)	87.37	95.67	87.29	97.39	61.27
11.	HEAT RATE (NET)	(BTU/KWH)	23,405	23,843	23,615	23,425	23,282
12	THERMAL EFFICIENCY (NET)	(%)	14.59	14.31	14.45	14.57	14.66
13.	NUMBER OF STARTS (YEAR)		00	10	.00	14	σ

	ITEMS		1986	1987	1988		1990
1	RATED CAPACITY	(MM)	55	55	55	55	55
5	DEFENDABLE CAPACITY	(MW)	48	50	48.62	49.57	50.32
ຕ	AVERAGE LOAD	(MW)	47.02	50.22	48.43	49.25	49.95
4.	GROSS GENERATION	(HWH)	347,082.68	220,443.37	356,567.05	402,577.35	407,936.38
ς.		(Hr)	7,381.26	4,389.18	7,362.39	8,173.70	8,199.75
¢0	TOTAL OPERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	52,971.43	57,360.61	64,723.0	72,896.70	81,096.45
. 7 .	TOTAL OUTAGE HOURS	(Hr)	1,378.74	4,370.82	1,421.61	575.50	560.25
	(1) FORCED OUTAGE	(Hr)	32.61	0	179.29	490.48	57.60
	(2) MAINTENANCE OUTAGE	(Hr)	242.72	. O	84.36	0	127.28
	(3) PLANNED OUTAGE	(Hr)	1,083.85	975.02	I,155.65	85.02	367.65
• •	(4) ECONOMIC SHUTDOWN	(Hr)	0	0	0	0	0
	(5) OUTSIDE TROUBLE	(Hr)	19.56	3,395.80	2.31	10.80	7.72
ŵ	STATION USED POWER RATIO	(%)	6.58	5.46	5.40	5.43	5.57
o	CAPACITY FACTOR	(%)	72.04	45.75	73.81	83.56	84.67
01	. AVAILABILITY FACTOR	(%)	84.26	49.90	83.84	93.43	93.69
TT T	. HEAT RATE (NET)	(BTU/KWH)	24,494	24,342	24,24 <u>1</u>	24,791	25,025
12.	. THERMAL EFFICIENCY (NET)	(%)	13.93	14.02	14.08	13.77	13.64
с Г	. NUMBER OF STARTS (YEAR)	•	11	2	W	15	13

	ITEMS		1986	1987	1988	1989	1990
r-i	RATED CAPACITY	(MM)	55	55	55	55	55
3.	DEPENDABLE CAPACITY	(MeW)	45.14	50.03	46.68	49.99	52.04
	AVERAGE LOAD	(MM)	44.78	49.61	46.20	49.31	51.43
4.	GROSS GENERATION	(HMM)	354,617.56	371,589.83	369,721.85	405,492.266	416,114.90
. 2	OPERATING HOURS	(Hr)	7,919.54	7,490.62	8,002.71	8,223.49	8,083.64
è.	TOTAL OPERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	18,901.6	26,392.22	34,394.93	42,618.42	50,702.06
7.	TOTAL OUTAGE HOURS	(Hr)	840.46	1,269.38	781.29	536.51	674.94
	(1) FORCED OUTAGE	(Hr)	29.05	0	9.57	96.36	23.99
	(2) MAINTENANCE OUTAGE	(Hr)	0	ω	70.32	73.11	14.92
	(3) PLANNED OUTAGE	(Hr)	802.06	1,170.15	666.88	365.26	614.36
	(4) ECONOMIC SHUTDOWN	(Hr)	0	0	o	0	0
	(5) OUTSIDE TROUBLE	(Hr)	9+35	91.23	34.52	1.58	23.09
ŝ	STATION USED POWER RATIO	(%)	7.31	5.96	6.24	6.47	6.67
о •	CAPACITY FACTOR	(%)	73.60	77.12	76.53	84.16	86.37
10.	AVAILABILITY FACTOR	(%)	01.00	85.51	91.50	93.89	92.54
י ר ר	HEAT RATE (NET)	(BTU/KWH)	22,774	23,502	24,505	23,519	22,308
12.	THERMAL EFFICIENCY (NET)	(%)	14.99	14.52	13.93	14.51	15.30
13.	NUMBER OF STARTS (YEAR)		다 *	۲. *	۲. *	۲- *	.⊣ *

MAK-BAN GEOTHERMAL POWER PLANT UNIT No. 6

						000	1000
н.	RATED CAPACITY	(MM)	5 5 5	55	55	55	5.5
5.	DEPENDABLE CAPACITY	(MM)	48.14	48.35	48.45	51.24	50.56
÷	AVERAGE LOAD	(MM)	47.08	47.64	47.48	50.34	49.77
	CROSS GENERATION	(HMH)	363,069.26	339,287.38	392,191.10	366,796.72	392,310.10
		(Hr)	7,712.08	7,122.55	8,260.08	7,286.47	7,803.90
•	IUIAL UFERATING HOURS SINCE INITIAL SYNCHRO.	(Hr)	17,137.41	24,259.96	32,520.04	39,806.51	47,610.41
•	TOTAL OUTAGE HOURS	(Hr)	1,047.92	1,637.45	523.92	1,473.53	937.35
	(1) FORCED OUTAGE	(Hr)	51.91	552.37	92.00	301.30	78.40
	(2) MAINTENANCE OUTAGE	(Hr)	90.38	47.20	77.90		73.18
	(3) PLANNED OUTAGE	(Hr)	864.75	918.52	351,15	1,169.83	743.18
	(4) ECONOMIC SHUTDOWN	(Hr)	0	O 	0	. 0	0
1.5	(5) OUTSIDE TROUBLE	(Hr)	40.88	119.36	2.87	2.4	42.59
æ	STATION USED POWER RATIO	(%)	6.58	6.84	6.63	6.47	6.27
.	CAPACITY FACTOR	(%)	75.34	70.42	81.18	76.13	81.42
10.	AVAILABILITY FACTOR	(%)	88.04	81.31	64.07	83.20	89.79
11.	HEAT RATE (NET)	(BTU/KWH)	22,707	23,302	21,271	22,597	21,849
12.	THERMAL EFFICIENCY (NET)	(%)	15.03	14.65	16.05	15.10	15.62
13.	NUMBER OF STARTS (YEAR/TOTAL))	r-1 *	⊷i *	r-1 *	년 *	با *

6 - 212

6.3 Hydro Power Plants

6.3.1 Current Status and Problems of Hydro Power Plants

The current status and problems of hydro power plants revealed in the present study are as follows:

1. Outline of Hydro Power Plants in the Luzon Grid

There are 11 hydro power plants with a total capacity of 1,226.16 MW in the Luzon Grid, of which 6 plants (875 MW) are under the control of NLRC (Northern Luzon Regional Center) and 5 plants (351.16 MW) are under the control of SLRC (Southern Luzon Regional Center) (refer to Table 6-3-1). In the grid, the generated energy by hydro power plants reached 2,369 GWh (2,924 GWh including the pumped storage generation of Kalayaan Power Plant) in 1990, and the annual plant capacity factor for the year was 27.32 (see Table 6-3-2). The percentage of hydro power generation to the total generation in the Luzon Grid, was 28.42 in the plant capacity and 12.62 in the generated energy in 1990.

Most hydro power plant dams are owned by NIA (National Irrigation Administration) and used for irrigation. Some of them are also used for water supply, and accordingly the plant capacity factor is low, particularly in the dry season between April and June.

Ambuklao Power Plant (75 MW) is currently undergoing rehabilitation because the silt deposit overreached the level of the intake, and in addition, the civil structures were damaged and the generator room was flooded by the earthquake in July 1990. The rehabilitation is scheduled to be completed in 1995.

All other hydro power plants were in operation, excepting Botocan Power Plant (16.96 MW) in southern Luzon which was out of operation for replacement of circuit breakers.

2. Civil Structures of Hydro Power Plants

(1) Dams

NAPOCOR's large-scale reservoir type power plants consist of main dams and regulating reservoirs downstream of the power plants.

Out of the dams and reservoirs for hydro power generation, Ambuklao, Binga, Caliraya and Botocan Dams are managed by NAPOCOR. The remaining Magat, Pantabangan, Masiway and Angat Dams are managed mainly by NIA, and NAPOCOR is using them for generation and sharing the expenses.

Rehabilitation works have been started for NAPOCOR owned dams which have problems. A particularly prominent problem discovered in the study is the silt deposit in Ambuklao and Binga Dams. The volume of deposits has already exceeded 45% of the reservoir capacity in both dams.

As the intake of Ambuklao Power Plant became unusable in June 1990 because of the silt deposit, the rehabilitation project is currently implemented. The scheduled dredging by the project is 300,000 m³ for the short-term, 4,000,000 m³ for the medium-term, and 1,000,000 m³/year for the long-term. The dredging is scheduled to start shortly. However, the abovementioned volumes of dredging would be insufficient to handle the 3,600,000 m³ of annual deposits inflow into the Ambuklao reservoir. Moreover, it would be very difficult to dredge roughly 1,000,000 m³/year of silt over long years in consideration of the location of the power plant, disposal of dredged silt, road condition, etc. Therefore, the Ambuklao Power Plant intake should be reconstructed so that the intake level may be raised with the rising level of silt deposit.

At the Binga Power Plant, since the silt deposit reached the level of the intake in 1991, rehabilitation is under way. The scheduled dredging volume amounts to 1,500,000 m³ for the first year, and 700,000 m³ for the second year. The apron of the spillway has already been completed. Since the volume of deposits inflow into the Binga reservoir is less than that into the Ambuklao reservoir, it is likely that the dredging work will maintain the intake operation for some time. However, reconstruction of the intake will be needed in the long run.

Water leakage from the service spillway at the Caliraya Dam has drastically increased since August 1991. As the current leakage is 0.5 m³/sec. (1,800 m³/hour, 43,200 m³/day), it is difficult to approach the leaking point from inside. The JICA conducted the study on this spillway leakage in 1986 and rehabilitation was commenced in 1989. The current progress rate of rehabilitation is 88%. However, the above-mentioned drastic increase in leakage has brought the rehabilitation work to a standstill, and countermeasures are being studied by NAPOCOR.

(2)Other Structures

> For the civil structures of NAPOCOR owned hydro power plants, some defects were pointed out in the past studies. The following problems were found with civil structures in the present survey.

•	Magat Power Plant	:	Water leakage around No. 3
			water turbine
•	Pantabangan Power Plant	: 1.	Water leakage around No. 2
			water turbine
•	Masiway Power Plant	:	Water leakage from headrace
	Caliraya Power Plant	:	Repair of the inlet valve
			pit
• '	Kalayaan Power Plant	. :	Improvement of the boom for
			tailrace

Botocan Power Plant

Water leakage from dam gate, improvement of the boom for intake and replacement of trash removers
Repair of trash removers at the intake

. Barit Power Plant

(3) On-Going and Planned Rehabilitation Projects

. Dredging of Ambuklao reservoir

. Dredging of Binga reservoir

. Rehabilitation of Caliraya service spillway

3. Electrical Equipment of Hydro Power Plants

(1) Water Turbines and Generators

a. The frequency of forced outages in 1990 summarized from data collected in the survey was 89, and the duration of outages was 777.46 hours (refer to Table 6-3-3). Since there are some cases of unknown outage hours, the actual outage hours are suspected to exceed this figure. The longest outage was 143.60 hours, caused by the air cooler failure of No. 1 generator (12 MW) at Masiway Power Plant, followed by 138.95 hours which was the result of trouble with the oil lifting system of No. 2 generator (150 MW) at Kalayaan Power Plant.

b. It is noted that the same kind of water turbine and generator faults have occurred repeatedly. Generators at Magat Power Plant (90 MW x 4 units) have had frequent faults of static exciters. A total of 16 times of faults, including burnt thyristors and exciting transformers, occurred in 1990.

At Binga Power Plant (25 MW x 4 units), 21 times of breaking element troubles of water turbine guide vanes occurred in 1990. These were caused by the load fluctuation during operation and are considered to be abnormal.

These repeated occurrences of the same troubles are mostly attributable to defective design, manufacture or installation. When the cause and solution cannot be found, it is necessary to go back to the starting point and investigate whether the affected equipment conforms to the specifications or not. In some cases, it may be advisable to explain the circumstances of faults to the manufacturers of the equipment and ask them for solutions. In any case, it is necessary to thoroughly identify the causes of faults in order to prevent further occurrence of faults. For this purpose, it is essential to record the details of faults and the operating conditions. Based on the detailed records by type of equipment and type of causes, the causes of faults must be fully studied and the results of study should be reflected on the equipment and maintenance improvements.

(2) Switchyard Equipment

The current status, including problems, of switchyard equipment is described in Item 3 "Substation and Hydro Power Plant Switchyard Equipment" of Sub-clause 6.4.1.

(3) Other Equipment

a. Water leakage was observed around water turbine covers at some power plants in operation, but it was not so serious as to hinder their operation immediately. It is impossible to draw a conclusion on the conditions of all the equipment by this short-term survey, but it seemed that power plants were maintained relatively well, without serious vibration and other harmful phenomena.

b. At a small power plant (Barit Power Plant, 1.8 MW) in southern Luzon, the replaced old runner, which had been used for more than 30 years, was observed. Judging from the abrasion on the runner blades, it is believed that the replacement should have been done a little earlier.

(4) On-Going Rehabilitation Project

Rehabilitation of water turbines and generators at Ambuklao Power Plant

6.3.2 Formulation of Rehabilitation Plan

Among the problems described in Sub-clause 6.3.1, the plan has been made to reconstruct the intake of the Ambuklao Power Plant, which is the biggest problem with the civil structures. And with the electrical equipment, replacement of the excitation transformer at the Magat Power plant, which had frequent failures and has technical problems, has been planned. The remaining problems which are not serious can be covered by the preventive maintenance programs.

1. Civil Structures

The annual deposits inflow into the Ambuklao reservoir amounts to $3,600,000m^3$ and fine silt is concentratedly deposited around the intake. The silt level has reached 699 m, 13 m higher than the intake level of 686 m, and the plant has been out of service since 1990.

Although NAPOCOR plans to dredge around the intake, the dredging work entails many problems as stated in Item 2 of Sub-clause 6.3.1, and is not economically advantageous. Therefore, the plan has been made to reconstruct the present submarine type intake so that the intake level may be changed with the rising level of silt deposit.

Regarding the countermeasures against the silt deposit in the Ambuklao reservoir, the JICA conducted the study and prepared the report in March 1988. In this report, the following five alternatives were studied and alternative "e", Vertical Intake Tower, was recommended in consideration of construction costs, duration of plant outages, construction methods, maintenance costs, and other economic factors (refer to Table 6-3-4).

- a. Large Scale Dredging
- b. Raising of Intake Tower
- c. Sediment Discharge Tunnel
- d. Inclined Intake Tower
- e. Vertical Intake Tower

In the present study, the JICA report was reviewed based on the results of the survey, and the same conclusion was reached. The presently progressing Ambuklao Power Plant rehabilitation is scheduled to be completed in 1995 and thus, the earliest commencement of this reconstruction project is recommended.

2. Electrical Equipment

(1) Water Turbines and Generators

As mentioned in Item 3 of Sub-clause 6.3.1, the dry-type transformers for the static exciters of the Magat Power Plant have had frequent failures. As it is suspected that the transformers have problems in the design and structure, replacement with molded transformers has been planned.

Molded excitation transformer 4 units

Rated capacity	<i>:</i>	1,400 kVA	(continuous	rating)
Rated voltage	primary	13,800 V	· · · ·	
with the second second	secondary	940 V	a di a	
Rated frequency		60 Hz		
Phase		3 phase	· · ·	
Connection	primary	Delta		
	secondary	Star		

(2) Switchyard Equipment

Switchyard equipment are described in Item 2 "Substation and Hydro Power Plant Switchyard Equipment" of Sub-clause 6.4.2.

6.3.3 Priority Criteria and Priority

The order of priority is (1) the reconstruction of Ambuklao Power Plant intake, and (2) the replacement of Magat Power Plant excitation transformer.

HYDRO POWER PLANT GENERATOR AND TURBINE TECHNICAL DATA (1)

Table 6-3-1

1/2)		Remarks						n, y y y y di d'analisi kay y fanisi na an
\rightarrow		Wanufac- turer	VOEST-ALP. VOEST-ALP. VOEST-ALP. VOEST-ALP.	NEYRPIC. A. NEYRPIC. A. NEYRPIC. A.	C. M. RIVA C. M. RIVA C. M. RIVA C. M. RIVA C. M. RIVA	MITSUBISHI MITSUBISHI	TOSHIBA	TOSHIBA TOSHIBA TOSHIBA TOSHIBA TOSHIBA
	Turbine	Speed (RPM)	180 180 180 180	360 360 360	327 327 327 327 327	180 180	150	277 277 277 277 277
	Water Tu	Type	VF-1RS VF-1RS VF-1RS VF-1RS VF-1RS	HF-IRS HF-IRS HF-IRS	VF-1RS VF-1RS VF-1RS VF-1RS VF-1RS	VF-1RS VF-1RS	VK-1RS	VF-1RS VF-1RS VF-1RS VF-1RS VF-1RS
		Rated Output	126, 000 HP 126, 000 HP 126, 000 HP 126, 000 HP 126, 000 HP	39, 500 HP 39, 500 HP 39, 500 HP 39, 500 HP	40, 500 HP 40, 500 HP 40, 500 HP 40, 500 HP	70,000 HP 70,000 HP	16, 800 HP	70,000 HP 70,000 HP 70,000 HP 70,000 HP
		Manufac- turer	T. I. B. B. T. I. B. B. T. I. B. B. T. I. B. B. T. I. B. B.	ਸ਼ ਸ਼ੁਰ ਸ਼ੁਰ ਸ਼ੁਰ ਸ਼ੁਰ ਸ਼ੁਰ ਸ਼ੁਰ ਸ਼ੁਰ ਸ਼ੁਰ	OERLIKON OERLIKON OERLIKON OERLIKON	HITSUBISHI HITSUBISHI	MEIDENSHA	ASEA ASEA ASEA ASEA
	ator	Power Factor	0.8 0.8 8.8	6.6 0.6 0.0	0.9 0.9 0.9	0.9 0.9	0.9	0.0.0 0.0 0.0
	Generator	Rat. Volt. (kV)	13. 8 13. 8 13. 8	13. 8 13. 8 13. 8	13. 8 13. 8 13. 8 13. 8	13. 8 13. 8	13.8	13.8 13.8 13.8 13.8
		Rated Cap. (NVA)	112.5 112.5 112.5 112.5 112.5	27.8 27.8 27.8	27.8 27.8 27.8 27.8	55. 555 55. 555	13. 333	55. 555 55. 555 55. 555 55. 555
	Date of	Commis.	1983 1983 1983 1983 1983	1956 1956 1957	1960 1960 1960 1960	1977 1977	1981	1967 1967 1968 1968
	Installed	Capacity (N平)	90 90 90 90 80 NW)	25 25 25 (75MW)	25 25 25 25 (100MT)	50 50 (100MF)	12 (12MF)	800 800 800 800
	Unit	Nos.	1 22 (4)	1 2 3 3)	1 2 3 (4)	1 2 (2)	(1)	07 00 4
		Power Plant	Magat Sub Total	Ambuklao Sub Total	Binga Sub Total	Pantabangan Sub Total	Masiway Sub Total	Angat
L			аноцина («Ве Такир на Собани на Собани на Соб	6 - 222)			

	Unit	Installed	Date of		Generator	cator			Water T	Turbine		
Power Plant	Nos.	Capacity (MW)	Commis.	Rated Cap. (MVA)	Rat. Volt. (kV)	Power Factor	Manufac- turer	Rated Output	Type	Speed (RPN)	Manufac- turer	Remarks
Angat Sub Total	Aux1 Aux2 Aux3 Aux3 Aux4 (8)	6 6 10 (228MW)	1967 1967 1978 1978	6. 667 6. 667 6. 667 11. 111	4.16 4.16 4.16 13.8	තතත ටටටට	TOSHIBA TOSHIBA SHINKO SHINKO SHINKO	8, 500 HP 8, 500 HP 8, 500 HP 8, 500 HP 10, 000 KW	VF-1RS VF-1RS VF-1RS VF-1RS VF-1RS	600 600 600 600	TOSHIBA TOSHIBA A. C. EBARRA A. C. EBARRA A. C. EBARRA	
Kalayaan Sub Total	$\begin{pmatrix}1\\2\\(2)\end{pmatrix}$	150 150 (300MW)	1982 1982	167 167	13. 8 13. 8	0.9 0.9	MARELLI MARELLI	150 MW	VF-1RS VF-1RS	300 300	HYDROART HYDROART	
Caliraya Sub Total	1 22 (4)	8 8 8 (32MF)	1945 1945 1947 1947 1950	10000	13. 8 13. 8 13. 8 13. 8	0.8 0.8 8.8 8.8	ක් ස් ස් ස් ස් ස් ස් ස් ප් ප් ප් ප්	12, 500 HP 12, 500 HP 12, 500 HP 12, 500 HP 12, 500 HP	VF-1RS VF-1RS VF-1RS VF-1RS VF-1RS	720 720 720 720	Pelton T. T. Pelton T. T. Pelton T. T. Pelton T. T.	
Botocan Sub Total	1 2 3 3)	8 8 0.96 (16.96MW)	1948 1948 1946	10 10 1.2	13.8 13.8 13.8	0.8 0.8 0.8	G. E. G. E.	10,950 HP 10,950 HP 1,300 HP	VF-1RS VF-1RS HP-1R1N	720 720 720	S. KORGAN S. KORGAN S. KORGAN	
Barit Sub Total	(1)	1.8 (1.8MF)	1957	2. 0	2.4	0.9	AEG	2,960 HP	VF-1RS	277	J.M. VOITH	
Cawayan Sub Total	(1)	0.4 (0.44W)	1959	0. 5	2.4	0.8	ELECTRO MCKANA	595 HP	HF-1RS	1200	J. M. VOITH	
TOTAL	(33)	1, 226. 16MW										

HYDRO POWER PLANT GENERATOR AND TURBINE TECHNICAL DATA (2)

Table 6-3-1

Table 6-3-2 GENERATION RECORDS OF HYDRO POWER PLANT

1. Gross Generation (GWh)

-														
Plants	1989	1990	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Ambuklao	202.9	91.1	6.5	8.6	11.0	17.5	15.1	16.0	16.4					l
Angat	520.7	478.9	23.3	21.9	20.0	16.7	11.5	12.8	29.3	36.4	105.3	51.3	93.9	56.5
Binga	493.7	431.1	9.1	13.6	16.4	17.2	21.7	30.4	58.8	69.6	77.6	59.9	34.4	20.4
Magat	994.2	980.7	67.2	41.2	19.4	0	0	34.4	89.8	141.8	169.7	150.4	181.5	85.4
Pantabangan	161.0	135.2	31.3	30.6	28.7	21.8	5.9	0.8	3.4	0	0	0	6.7	6.8
Masiway	33.2	37.2	7.7	6.9	7.2	8.0	2.8	0.2	1.3	0	0.	0.7	1.4	1.2
Kalayaan	596.5	713.7	63.6	59.9	66.3	57.5	54.5	53.5	52.6	55.0	60.0	68.1	59.9	62.6
Caliraya	15.1	9.1	1.2	1.0	2.4	0.5	0.3	0.3	0	0	0.1	1.5	1.6	0.2
Botocan	57.9	46.6	2.9	3.0	2.4	1.9	2.0	4.5	3.2	4.0	3.8	5.7	6.4	6.8
Total	3,075.2	2,923.6	212.8	186.7	173.8	141.1	113.8	152.9	254.8	306.8	416.5	337.6	387.0	239.9
									:					
2. Flant Capacity Factor (%)	r (%)													
Plants	1989	1990	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Ambuklao	30.9	13.9	11.7	15.4	21.3	31.3	28.0	28.7	30.4	0	0	0	0	0
Angat	26.1	24.0	13.8	12.9	. 13.1	9.8	7.0	7.5	17.8	21.4	62.1	31.3	55.4	34.4
Binga	56.4	49.2	12.2	18.3	27.4	23.1	30.1	40.8	81.7	93.6	104.3	83.3	46.2	28.3
Magat	31.5	31.1	25.1	15.4	8.0	0	0	12.8	34.6	52.9	63.4	58.0	67.8	32.9
Pantabangan	18.4	15.4	42.0	41.1	39.7	29.3	8.2	1.1	4.7	0	0	0	10.6	9.5
Masiway	31.5	35.4	85.9	76.7	89.1	89.1	32.4	2.6	14.7	0.2	0	J.6	15.2	14.0
Kalayaan	22.7	27.2	28.5	26.8	32.9	25.8	25.2	24.0	24.4	24.7	26.7	31.5	26.8	29.0
Caliraya	5.4	3.2	5.2	4.2	11.0	2.0	1.3	1.2	. 0.	0	0.5	6.5	6.8	0.9
Botocan	39.0	31.4	23.1	23.4	20.7	15.5	16.4	35.7	26.0	31.5	29.9	47.0	50.7	56.0
Total	28.9	27.3	23.4	20.5	21.1	15.5	12.9	16.8 -	28.9	33.7	45.7	38.3	42.5	27.2

Table 6-3-3 FORCED OUTAGE RECORDS OF HYDRO POWER PLANT IN 1990 (1)

Plants	Units	Date	Hours	Causes
	1	7/ 2	3.87	Governor trouble
Ambuklao		12/27		High thrust bearing temperature
· ·	2	3/26		Emulsification of thrust bearing oil
	2	5/20		Generator differential relay
		7/ 1		Leak at thrust bearing cooling oil
	_	3/ 5	3.18	Governor oil pump trouble
	. 3	7/ 8	35.75	Low oil tank pressure
		1/10	2.87	Stator EF indication
Magat		8/15	0.78	Burnt out excitation Tr of unit 2
		8/29		Not available due to Excit. Tr.
		10/ 8	6.07	Trouble at thyristor fan motor
		10/17	12.00	Excitation transformer trouble
	1	10/17	47.32	Excitation transformer trouble
		10/20	8.42	Burnt thyristor
	•	10/20	15.07	Loss of excitation
		11/ 3	9.63	Actuation of rotor EF protection
		11/ 7		Excitation trouble
		11/ 9	2.77	Thyristor trouble
		1/10	2.87	Stator EF indication
		8/15	69.00	Burnt out excitation Tr of unit 2
	2	10/ 8	2.33	Thyristor fan motor
		10/20	1.48	
		8/15	0.70	Burnt out excitation Tr of unit 2
		9/28	1.68	Busted thyristor
		10/ 7	1.35	Trouble at thyristor fan motor
	3	10/ 8	0.48	Thyristor fan motor
		10/20	1.00	
		11/ 7	2.45	Thyristor trouble
	4	8/15	1.00	Burut out excitation Tr of unit 2

Table 6-3-3 FORCED OUTAGE RECORDS OF HYDRO POWER PLANT IN 1990 (2)

Plants	Units	Date	Hours	Causes
		12/27	0.27	Damaged breaking element
Binga		2/ 9		Broken breaking element
		3/ 2	0.83	Broken breaking element
	1	8/30	· .	Tripping of transformer A
		9/1	34.92	Leak on bypass of butterfly valve
		10/ 9	0.18	
		11/19	2.58	Broken breaking element
		5/ 1	0.17	High thrust bearing temperature
		8/16	3.63	Sheared breaking element
		8/30		Tripping of transformer A
	2	10/15	4.73	AVR trouble
		12/4	0.27	Damaged breaking element
	1	12/ 6	0.50	Broken breaking element
		2/28	0.83	Broken breaking element
		4/25	0.17	Generator ground indication
		5/30	1.52	Broken breaking element
		6/28	1.27	Broken breaking element
		7/20	4.17	
		9/23		Broken breaking element
	3	10/25	1.35	Damaged breaking element
		11/14	0.93	Broken breaking element
		11/19	3.67	Breaking element trouble
4		11/25	0.70	Damaged breaking element
		12/ 7	2.23	Broken breaking element
		12/ 9	·····	Damaged breaking element
		12/13	0.83	Broken breaking element
		12/20	1.07	Broken breaking element
		1/16	0.15	Malfunctioning of turbine bearing thermal relay
		7/20	4.08	
	4	10/ 6	5.50	Turbine vibration test
		11/25		Damaged breaking element

Table 6-3-3

FORCED OUTAGE RECORDS OF HYDRO POWER PLANT IN 1990 (3)

Plants	Units	Date	Hours	Causes
A RUILD	Chills	3/ 8		Generator field ground indication
Anget	MI	· 9/27	7.42	High thrust bearing temperature
Angat M1 M2		10/16	10.92	Generator field ground indication
		3/ 8	10.72	Generator field ground indication
		9/21	4.28	Shear pin trouble
	M3	3/ 8	5.55	Erratic control of AVR
	}i		5.55	· · · · · · · · · · · · · · · · · · ·
	A3	3/28		Bus duct phase B flashover
Pantabangan	2	2/23	0.47	Broken shearing pins
		2/ 7	143.60	Leak at generator air cooler
Masiway		2/27	1.00	Leak on air coolers
		11/28	15.35	Leak at generator surface cooler
<u></u>	<u>.</u>			
		10/17	0.08	PLC failure
Kalayaan		11/10	16.50	Leak at servomotor spherical valve
		11/12	5.22	Governor trouble
. * *	1	11/13	14.10	Trouble at air oil accumulator
		11/19	0.20	Overspeed relay
		12/13	8.43	Misaligned guide vane
н		12/18	0.17	Low oil at LBG
		4/17	0.20	High stator temperature
	2	8/13	28.52	Oil leak at hydraulic servomotor
		10/4	138.95	Oil lifting system failure
•		10/11	4.38	AVR trouble
		11/22		Alignment of wicket gates
	1	10/ 3		Trouble on transformer #2
Caliraya		10/ 3		Trouble on transformer #2
Camaya	2	10/ 3		Leak at by-pass valve
· · ·				
	4	10/ 4		Leak at thrust bearing
Botocan	1	10/ 3	31.75	Flashover fuse of Gen. #2PT
	2	10/ 3	31.75	Flashover fuse of Gen. #2PT

SCHEMES	
REHABILI TATION	
SUMMARY OF	The second s
Table 6-3-4	

		,	•		
		-1- 			& Remarks
Large Scale	- Dredging about 62%		Equipment	$22,640 \times 10^{3}$	2 years
Dredging	of annual sediment	ы Х з	Civil work	$1,400 \times 10^{3}$	Manufacture, delivery,
	inflow and discharge		Total	$24,050 \times 10^3$	installation and civil work
	to downstream		Annual OM	$4,500 \times 10^{3}$	
Raising of	- Rainsed by 1.7m high		Metal work	$10,320 \times 10^{3}$	5 years
Intake Tower	Ring in order to		Civil work	$25,550 \times 10^3$	- Fabrication 2 seasons 9 months
	prevent sediment		Total	$35,870 \times 10^3$	Installation 2 seasons 5 months
	inflow to inlet.				· Power Interruption
					5 months X 5 seasons
					• No Intake Gate
:		•			· Reinforcement around intake
					tower by steel pipe pile
					• Much underwater work
(c) Sediment	- Construct new sand	- Tunnel φ 5m×410m×2		32,550×10 ³	5 years
bischarge	discharge tunnel	- Downstream river	Metal WOrk	1/, 15U X 10 ⁻	• Underwater work is necessary
Iunnel		Unannei protection work	Total	43, / VU × 10	at the reservoir side
				• •	· Difficulty in connection work
• * •		- Roller gate 5m×15m×2			of intake portion and tunnel
		- Radial gate 5m×7m×2			
(d) Inclined	Inclined steel intake	- Foudation work	Civil work	$11,870 \times 10^{3}$	4 years
Intake tower	tower to be	- Horizontal steel pipe	Metal work	$14,240 \times 10^{3}$	· Execution of foundation work
· · ·	constructed on the	Ф 7m×70m	Total	$26,110 \times 10^{3}$	· Power interruption
	slope of bedrock and	- Inclined steel pipe			- 5 months X 4 seasons
· · · · ·	to be connected to the	¢7m×78n			· Connection with existing tower
	existing tower				· Much underwater work
(e) Vertical	Vertical intake tower	- Shaft work ¢7m×86.7m	Civil work	$7,650 \times 10^{3}$	4 years
Intake tower	to be constructed		Metal work	$11,700 \times 10^{3}$	· Power interruption
	above the existing		Total	$19,350 \times 10^{3}$	- 5 months X 2 seasons
	headrace and to be				· 80m vertical shaft excavation
	connected thereto				- Blockade work of existing
				· · · · · · · · · · · · · · · · · · ·	waterway

6.4 Transmission Lines and Substations

6.4.1 Current Status and Problems of Transmission and Substation Facilities

The current status and problems of transmission and substation facilities revealed in the present study are as follows:

1. Outline of the Luzon Grid

As shown in Fig. 6-4-1, the Luzon Grid consists mainly of 230 kV system which runs through the island from north to south, with 115 kV system used in some parts of the island. The secondary transmission voltage is 69 kV. Data on the 230 kV transmission lines are shown in Table 6-4-1, and the length of transmission lines and the substation capacity for each area office are shown in Table 6-4-2.

As for the power sources, hydro power plants are located mainly in the north of the island, thermal, geothermal and pumped storage power plants in and around Manila, and a geothermal power plant is located in the south.

The 230 kV system is divided into the following five systems.

- Northern System, which extends from Magat Power Plant to Bauang Substation through Ambuklao and Binga Power Plants
- Central System, which extends from Binga Power Plant to San Jose and Balintawak Substations through Mexico Substation
- Midwest System, which extends from Bauang Substation to San Jose Substation through Hermosa Substation
- Manila Outer Link System, which extends from San Jose Substation to Sucat Power Plant through Kalayaan Power Plant and Binan Substation

. Southern System, which extends from Tiwi Power Plant to Kalayaan Power Plant.

The Midwest System was commissioned in December 1991.

Most of the 230 kV lines are in loop configuration with one or two circuits per route, but some of the lines are in radial configuration with a single circuit per route. All of the lines are supported by steel towers, with single, double and four conductors of ACSR 795 MCM.

For the 115 kV lines, steel towers and wooden poles are used for supports. Steel tower lines have two circuits per route, while wooden pole lines have a single circuit per route, with the conductors of ACSR 795 MCM and 336.4 MCM.

The MERALCO system in and around Manila is formed with 115 kV transmission lines which are supplied from Balintawak, San Jose, Dolores and Binan substations, and Malaya and Sucat power plants.

The 69 kV lines are mostly supported by wooden poles and are in radial configuration with a single circuit per route, with the conductors of ACSR 336.4 MCM and 4/0.

The circuit lengths of transmission lines and the number and capacity of substations in the Luzon Grid as of the end of 1990 are shown below.

	Transmission Line <u>Circuit Length (km)</u>	Su <u>Number</u>	bstation <u>Capacity (MVA)</u>
230 kV	3,232	22	3,485
115 kV	442	6	310
69 kV	2,976	46	467
34.5 kV & below	524	·	
Total	7,174	74	4,262

2. Transmission Facilities

(1) 230 kV System

Ь.

 For the 230 kV system, line faults have occurred frequently, posing problems as described below. However, there is no big problem concerning the system formation.

In the Northern System, separation of the hydro power plants from the grid caused by transmission line faults and voltage drop during the dry season are the problems of the system. In the Southern System, separation of the Tiwi Power Plant from the grid occurred due to broken ground wires.

The problems of the Northern System will be eliminated by completion of the Midwest System. With regard to the Southern System, the overhead ground wires need to be replaced with aluminum-clad steel wires.

The transmission and substation expansion projects are shown in Tables 6-4-8 and 6-4-9, respectively. These projects include the expansion of the 230 kV system to meet the power source developments and increasing power demand, the commissioning of the southern 500 kV system in 1997 in connection with the interconnection to Leyte Island, and the construction of the northern 500 kV system in 2000. The major projects for the 69 kV system are system expansion on the isolated islands and interconnection with the Luzon Grid. These projects also include the following renovation/rehabilitation projects.

. Reinforcement of the San Jose - Balintawak Line

Uprating of the Binan - Sucat Line voltage

- Two-circuit pi connection at the Bayombong Substation
- Voltage improvement in the metropolitan area when the thermal power plants in and around Manila are out of operation

Rehabilitation of the 500 kV Naga-Kalayaan Line

c.

d.

The average frequency of line faults per 100 km was 5.6 in 1990, which is roughly 6 times larger than the frequency in Japan. The maximum frequency was 24.8 for the Binga - San Manuel Line (refer to Table 6-4-7). As described in Clause 7.5, it is imperative to investigate the causes of the faults and to push forward the countermeasures for fault reduction.

Corrosion of Overhead Ground Wires in the Southern System

Galvanized steel wire is used for the overhead ground wire, but in some places, the corrosion has occurred in just a few years, causing broken wires.

Corroded overhead ground wires are being partly replaced. However, scheduled replacement with aluminum-clad steel wire should be carried out.

Zinc coating of a new galvanized steel wire obtained during the survey was a maximum value of 71 g/m² and a minimum value of 44 g/m². As these values are significantly smaller than the specified value of 240 g/m², it is suspected that galvanized steel wires not to the specification were purchased. Therefore, the standardization of specifications and distribution of the specifications to all related organizations and departments, as well as strict testing of purchased materials are necessary.

e. Corrosion of Insulator Pins in the Southern System

As with the overhead ground wires, corrosion of insulator pins is widespread. This is the galvanic corrosion caused by the direct current component of the leakage current.

Replacement of corroded insulators is conducted in accordance with the annual preventive maintenance program. However, composite insulators are partly used, despite the fact that the zinc sleeved insulator isspecified as the standard. As with the overhead ground wires, standardization of the specifications is required.

f. Voltage Drop in the Northern System at the Time of the Shutdown of Hydro Power Plants in the North

In the north, there are three hydro power plants, Magat (360 MW), Ambuklao (75 MW) and Binga (100 MW) Power Plants, with a total capacity of 535 MW. Of these power plants, Magat Dam is an irrigation dam owned by NIA and the plant is shut down for a month in the dry season due to NIA's canal maintenance. Since the generation of the other power plants is small in the dry season, power is supplied from power plants in and around Manila, causing a large voltage drop in the Northern System.

As mentioned before, this problem will be solved upon completion of the Midwest System.

g. Steel Tower Failures by Typhoons

According to meteorological observation records, maximum gust wind velocities of more than 200 km/hour have been recorded many times.

The Naga - Tiwi Line (failed in 1987) and Santiago -Bayombong Line (failed in 1989) have the design wind

velocity of 165 km/hour and, accordingly, lack sufficient strength.

Steel towers of Santiago - Bayombong Line failed by structural failures just above the ground, and evidences of lifted foundations were observed with the Naga - Tiwi Line.

There are two possible countermeasures. One is to reinforce the steel towers with additional members and reinforce the foundations, and the other is to reinforce by the use of guy wires. As the former is not considered technically and economically feasible, the reinforcement with guy wires is deemed advisable.

h. Problems with the Design and Construction of Steel Towers

Misapplication of strain towers and suspension towers was observed. In some cases, suspension towers are used where strain towers should be used. More attention must be paid to the clearance in consideration of the local conditions such as frequent typhoons and high IKL (Isokeraunic Level).

Arcing Horns

Considering the high IKL, arcing horns should be installed.

(2) 115 kV System

i.

- a. 115 kV lines supported by wooden poles have a single circuit per route and have had frequent faults, but cause no major problems as the lengths of the lines are limited.
- In 1990, the average frequency of line faults per 100 km
 was 5.2 with steel tower lines, 20.9 with wooden pole

lines and 14.1 as a total of 115 kV lines. This is roughly 5 times larger than the frequency in Japan.

- c. The San Esteban Bantay Laoag Line, which is the longest of the wooden pole lines, is being converted to two-circuits.
- (3) 69 kV System

b.

c.

- a. Most of the 69 kV lines are supported by wooden poles and in radial configuration with a single circuit per route. There have been numerous faults, causing very long outages. The average frequency of line faults per 100 km in 1990 was 58.5, which is roughly 12 times larger than the frequency in Japan, with the average duration of 7.0 hours per fault. As mentioned in Clause 7.5, the causes of the faults must be investigated, and the measures for fault reduction should be promoted.
 - There are lines interrupted for extremely long durations at the time of typhoons (refer to Tables 6-4-7-(5) and (6)). Among them, there are some sections where the restoration works were delayed due to difficulties in transporting the wooden poles. For these sections, rerouting will be necessary.
 - There is a line interrupted for long duration due to broken conductors caused by drifting logs during floods (refer to Table 6-4-7-(6)). This is attributable to lack of the clearance, and therefore, conversion to steel towers will be necessary.
- d. There were insulators damaged by flash-over. As the arcing horn is not used, insulators are apt to be damaged. Hot-line detection of defective insulators should be adopted.

e. There were a large number of wooden poles felled by

typhoons and other accidents. Preventive maintenance of the wooden poles should be promoted.

- 3. Substation and Hydro Power Plant Switchyard Equipment
 - (1) 230 kV Substations
 - According to the data collected in the survey, the a. frequency of substation faults in 1990 was 21, and the duration of outage was 4.8 hours per fault (refer to Table 6-4-7).

The frequency is not so large as compared with faults of other facilities, in consideration of the fact that there are many aged equipment at the 230 kV substations. However, there are no detailed records of the faults and their causes. It is necessary to identify the causes of these faults based on detailed records classified by the type of equipment and causes, and to reflect them on the equipment and maintenance improvements.

Power Transformers

Data on the transformers of 230 kV substations are shown in Table 6-4-3. Oil leakage from the cooling system and transformer proper was observed at some of the substations, but it was not so serious as to hinder the operation immediately. The distribution transformer (50 MVA, 115/34.5 kV, Osaka, 1978) at San Jose Substation was overloaded even with an additional cooling fan, and the adjacent Angat Power Plant was supplying a part of the load of San Jose Substation.

с.

Circuit Breakers and Disconnecting Switches

The bus system of 230 kV substations employs the 1-1/2breaker system. Therefore, there are more circuit breakers and disconnecting switches per circuit.

Data on the circuit breakers of 230 kV substations are shown in Table 6-4-4. There are 165 units of 230 kV circuit breakers, 32 units of 115 kV circuit breakers and 99 units of 69 kV circuit breakers, or a total of 296 circuit breakers. These circuit breakers classified by the years of manufacture are shown in the tables below. There are many aged OCBs and ACBs. Most of the 69kV circuit breakers are OCBs.

Number of 230 kV Circuit Breakers by Years of Manufacture

Mfg. Years	<u>-1960</u>	<u> 1961-70</u>	<u>1971-80</u>	<u> 1981 -</u>	<u>Total (%)</u>
OCB	1	11	17	0	29 (17.6)
ACB	0	9	7	0	16 (9.7)
GCB	0	:0	59	61	120 (72.7)
Total	1.	20	83	61	165 (100)

Number of 115 kV Circuit Breakers by Years of Manufacture

<u>Mfg. Years</u>	-1960	<u> 1961-70</u>	<u>1971-80</u>	<u> 1981 -</u>	<u>Total (%)</u>
OCB	0	0	11	0	11 (34.4)
ACB	Ó		3	0	3 (9.4)
GCB	0	0	15	3	18 (56.2)
Total	0	0	29	3	32 (100)
gat gat					

Number of 69 kV Circuit Breakers by Years of Manufacture

<u>Mfg. Years</u>	<u>-1960</u>	<u>1961-70</u>	<u>1971-80</u>	<u>1981-</u>	<u>Total</u>	. (%)
OCB	1	13	56	14	84 (84.8)
ACB	° 0	2	7	Ö	9 (9.1)
GCB	0	0	4	2	6 (6.1)
Total	1	15	67	16	99 (1	.00)

Number of Circuit Breakers by Years of Manufacture (Total)

<u>Mfg. Years</u>	-1960	<u>1961-70</u>	<u>1971-80</u>	<u> 1981-</u>	<u>Total (%)</u>
OCB	2	24	84	14	124 (41.9)
ACB	0	11	17	0	28 (9.5)
GCB	0	0	78	66	144 (48.6)
Total	2	35	179	80	296 (100)

There are some circuit breakers with oil or gas leakage. Since there are some circuit breakers which will lack breaking capacity in the near future, replacement of circuit breakers is in progress at some of the substations.

Most disconnecting switches are of the manual operation type, and some are difficult to open and close due to tight operating mechanism, and there are some with pin insulators.

Other Equipment

d.

Bolted type connectors are used for the branch connections of 230 kV bus bars at some substations with which discoloration due to overheating was observed. Since the connections are overheated and cooled repeatedly by the load fluctuation, imperfect contact is accelerated by metal annealing. Compression type connectors should be used because bolted type connectors are difficult to install properly due to nonconformity to the conductor size and insufficient tightening force, often resulting in the falling off of conductors.

e. On-Going and Planned Renovation/Rehabilitation Project

- . Replacement of 230 kV circuit breakers at Mexico Substation
- . Replacement of 230 kV circuit breakers at San Manuel Substation
- . Two-circuit pi connection at Bayombong Substation
- . Uprating of voltage to 230 kV at Sucat Power Plant
- (2) 69 kV Substations

The equipment of NAPOCOR's 69 kV substations could not be inspected during the present survey, but they have small installed capacities of 3 to 10 MVA and are equipped with minimal equipment. Consequently, it seems that they pose no problem.

The NAPOCOR's 69 kV substations have been transferred to cooperatives one by one.

(3) Switchyard Equipment of Hydro Power Plants

a. According to the data collected in the survey, the frequency of switchyard equipment faults of hydro power plants in 1990 was 4, and the average outage duration was 40.6 hours per fault (refer to Table 6-4-7). The faults include those caused by the earthquake in July 1990, and are small in number. But, as with the case of 230 kV substation equipment, there are no detailed records of the faults and their causes. Statistical data on faults classified by the type of equipment and causes should be maintained.

b. Power Transformers (Generator Transformers)

Most of the transformers at the hydro power plants, excepting Magat Power Plant in northern Luzon, were manufactured in the 1950's. Data on the transformers at the hydro power plants are shown in Table 6-4-5.

As with the case of the substation equipment, there is oil leakage from transformer proper, radiators, oil pumps, etc. However, it is not so serious as to hinder the operation immediately. Hydro power plants in the south, except for Kalayaan Power Plant, are equipped with aged small-capacity transformers, but they have no particular problem.

c. Circuit Breakers and Disconnecting Switches

The bus bar system of 230kV switchyards employs the 1-1/2 breaker system, as does the substation.

Data of the circuit breakers of hydro power plants are shown in Table 6-4-6. There are 46 units of 230 kV circuit breakers, 15 units of 115 kV circuit breakers and 4 units of 69 kV circuit breakers, or a total of 65 circuit breakers. These circuit breakers classified by the years of manufacture are shown in the table below.

Number of 230 kV Circuit Breakers by Years of Manufacture

<u>Mfg. Years</u>	-1960	<u> 1961-70</u>	<u> 1971-80</u>	<u> 1981 -</u>	Total (2)
OCB	8	0	0	0	8 (17.0)
ACB	0	.0 .	0	0	0 (-)
GCB	0	0	28	10	38 (83.0)
Total	8	0	28	10	46 (100)

Number of 115 kV Circuit Breakers by Years of Manufacture

Mfg. Years	-1960	<u> 1961-70</u>	<u>1971-80</u>	<u> 1981 -</u>	<u>Total (%)</u>
OCB	1	3	0	0	4 (26.7)
ACB		10	0	0	10 (66.6)
GCB	0	0	0	1	1 (6.7)
Total	1	13	0	1	15 (100)

Number of 69 kV Circuit Breakers by Years of Manufacture

<u>Mfg. Years</u>	-1960	<u> 1961-70</u>	<u>1971-80</u>	<u> 1981 -</u>	<u>Total (2)</u>
OCB	0	1.	1	2	4 (100)
ACB	0	0	0	0	0 (-)
GCB	0	0	0	0	0 (-)
Total	0	1 .	1	2	4 (1.00)

Number of Circuit Breakers by Years of Manufacture (Total)

<u>Mfg. Years</u>	-1960	<u>1961-70</u>	<u>1971-80</u>	<u> 1981 -</u>	<u>Total (%)</u>
OCB	9	4	1	2	16 (24.6)
ACB	0	10	0	0	10 (15.4)
GCB	0	0	28	11	39 (60.0)
Total	9	14	29	13	65 (100)

Hydro power plants in the north, excepting Magat Power Plant, are equipped with 230 kV OCBs manufactured in the 1950's and 115 kV ACBs manufactured in the 1960's. The circuit breakers in the hydro power plants in the south, except for Kalayaan Power Plant, are mostly 115 kV OCBs manufactured in the 1940's and 1950's.

Most disconnecting switches are of the manual operation type, and some are difficult to open and close due to tight operating mechanism, and there are many equipment with pin insulators.

(4) Provision of Spare Parts

The equipment of substations were purchased from various manufacturers in various countries. Consequently, it is difficult to keep the many types of spare parts needed for all the equipment. In many cases, the parts for old equipment are not manufactured any longer.

In the Philippines, procurement of spare parts takes two or three years because of the time-consuming procedures of foreign currency application and purchase formalities, and consequently, it is difficult to expect timely supply of imported spare parts. In addition, a high-level of skill is required in the replacement of the inner parts (such as moving and fixed contacts) of GCB, which is well-known as maintenance free. Since the skill of replacement affects the performance of the equipment after replacement, the guidance of expert engineers will be required even if spare parts are available Therefore, with 230 kV breakers, which are the most at hand. important for system operation, it is recommended that spare equipment of standard specifications be kept in strategic locations and that the whole of the equipment be replaced in case of emergency.

- 242

б

6.4.2 Formulation of Renovation Plan

For the problems described in Sub-clause 6.4.1, the following renovation plans which would be effective for improvement of supply reliability and rationalization of maintenance works have been formulated. With the respective site, the detailed survey should be made during the feasibility study.

- 1. Transmission Facilities
 - (1) Replacement of Overhead Ground Wires

Replacement of 566 km of overhead ground wires of the 230 kV transmission lines with 55 mm^2 aluminum-clad steel wires has been planned as follows.

Kalayaan -	- Gumaca Line	204 km	
Gumaca	- Labo Line (#1-#138)	128 km	
Kalayaan 🗸	– San Jose Line	234 km	
·	fotal	566 km	

(2) Adoption of Steel Towers for River or Road Crossings (69 kV line)

Adoption of steel towers for 20 river crossings and 9 road crossings, which were requested by the area offices, has been planned. Respective sites are as shown in Table 6-4-10. The design conditions are a single circuit of ACSR 336.4 mm^2 for the conductor, and span lengths of 350 m for river crossings and 250 m for road crossings.

(3) Rerouting of the Section of 69 kV line where Restoration Works are Difficult

Rerouting of the section between the structure Nos. #307 and #345, 10 km, of the Tuguegarao - Camalaniugan Line has been planned.

(4) Provision of Defective Insulator Detectors

Provision of defective insulator detectors, one set for each power transmission line maintenance group, totaling 22 sets, has been planned.

2. Substation and Hydro Power Plant Switchyard Equipment

(1) Replacement of Circuit Breakers

The circuit breaker replacement plan for the substations and that for the hydro power plants are given in Tables 6-4-11 and 6-4-12, respectively. The respective circuit breaker replacement plans are as explained below. It has been planned to replace circuit breakers with GCBs (gas circuit breakers) which are the most reliable and effective for rationalization of maintenance works.

a. Replacement Plan of Circuit Breakers which will Lack Breaking Capacity in the Near Future

Out of the 230 kV and 115 kV circuit breakers, the replacement of 11 circuit breakers which will lack breaking capacity by 1995 has been planned. There is no 69 kV circuit breaker which will lack breaking capacity.

San Jose Substation	230 kV GCB	2 sets
Binan Substation	230 kV GCB	4 sets
Dolores Substation	115 kV OCB	5 sets
Total		11 sets

. Replacement Plan of 230 kV OCBs (oil circuit breakers) and ACBs (air circuit breakers)

There are 211 sets of 230 kV circuit breakers, comprising 158 GCBs, 37 OCBs and 16 ACBs. Of these, as the OCBs and ACBs have deteriorated and have maintenance problems, the replacement of 33 circuit breakers has been planned, except for the 20 circuit breakers which are now being replaced.

230 kV ACB 3 sets
230 kV ACB 2 sets
230 kV OCB 12 sets
230 kV ACB 4 sets
230 kV OCB 4 sets
230 kV OCB 8 sets
33 sets

c. Replacement Plan of GCBs (gas circuit breakers) with Structural Problems (gas leakage, etc.)

Gumaca Substation	230 kV GCB	3 sets
		(Merlin, 1975)
Naga Substation	230 kV GCB	1 set
• : · ·		(Merlin, 1975)
Total		4 sets

In addition, the replacement of three 230 kV GCBs at Santiago Substation (made by BBC in 1982) and two 230 kV GCBs at Pantabangan Power Plant (made by NISSIN in 1976) was requested. However, since the reason for the replacements was not clear, and since the same kind of circuit breakers are operating without any problem at other substations and power plants, they were not included in the current replacement plan. These circuit breakers should be examined further during the feasibility study.

b.

d. Replacement Plan of 115 kV and 69 kV Circuit Breakers

There are 150 sets of 115 kV and 69 kV circuit breakers, comprising 25 GCBs, 103 OCBs and 22 ACBs. Of these, replacement of 19 OCBs and 14 ACBs has been planned as requested by the area offices and power plants.

San Esteban Substation	115	kV	ACB	- 2	sets
La Trinidad Substation	69	kV	OCB	2	sets
San Manuel Substation	69	kV	OCB	1	set
San Manuel Substation	69	kV	ACB	2	sets
Olongapo Substation	69	kV	OCB	5	sets
Mexico Substation	69	kV	OCB	9	sets
Gumaca Substation	69	kV	OCB	1	set
Angat Power Plant	115	kV	ACB	10	sets
Caliraya Power Plant	115	kV	OCB	1	set
Total				33	sets

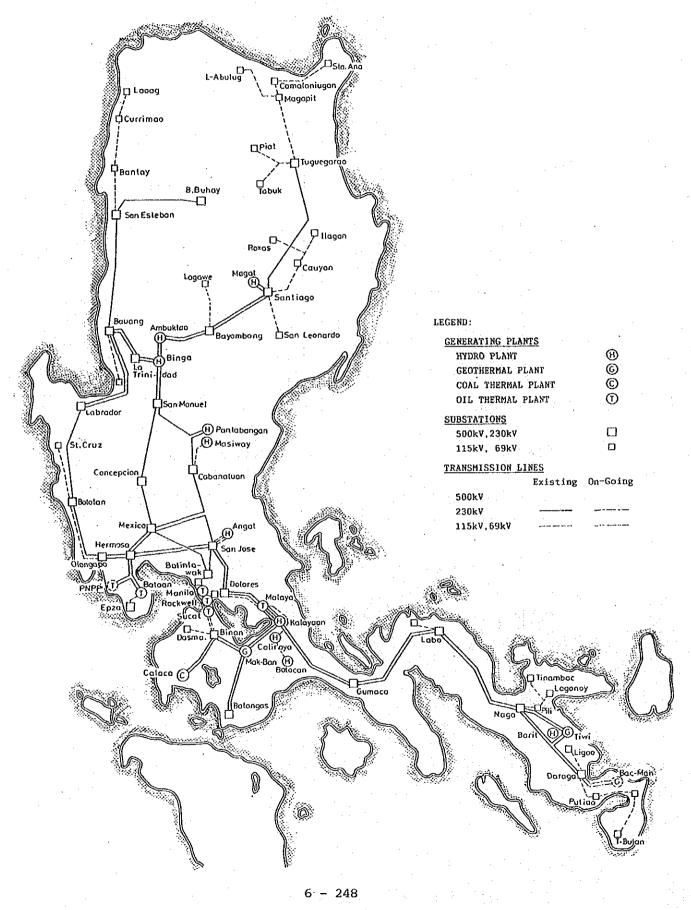
(2) Replacement of Disconnecting Switches

Most of the disconnecting switches connected in series with the foregoing circuit breakers to be replaced are difficult to open and close, use pin insulators, or have structural problems due to extreme deterioration through years of use. Thus, replacement of these disconnecting switches has been planned. The respective replacement plans will be reviewed further during the feasibility study.

230 kV	86 sets
115 kV	36 sets
69 kV	40 sets
Total	162 sets

(3) Provision of Spare Circuit Breakers

As mentioned in Item 3 of Sub-clause 6.4.1, the provision of 230 kV GCBs (gas circuit breakers) of standard specifications as spare circuit breakers has been planned.


230 kV 40 kA GCB 3 sets (two for NLRC, one for SLRC)

6.4.3 Priority Criteria and Priority

In consideration of the influence of faults, safety, and operation and maintenance problems, the priority is set as follows.

- 1. Replacement of overhead ground wires
- 2. Replacement of circuit breakers which will lack breaking capacity in the near future
- 3. Replacement of 230 kV circuit breakers
- 4. Adoption of steel towers for river or road crossings
- 5. Rerouting of transmission line section where restoration works are difficult
- 6. Provision of defective insulator detectors
- 7. Replacement of 115 kV and 69 kV circuit breakers
- 8. Replacement of disconnecting switches
- 9. Provision of spare circuit breakers

.

 Table 6-4-1
 LUZON
 GRID
 TRANSMISSION
 LINE
 DATA
 (1)

 (100MIVA Base)

								•					:
5	Ē	Ckt.			Length	Positive	ive	Zero	2				mmcy
riou)	10	No.	κ<	MVA	(km)	%R	%X	%R	₩X	MVAR	Structure	Conductor	Year
Magat	Santiago		230	300	15.37	0.2551.	1.3920	1.0273	4.3735	2.8020	ST-DC	1-795	1983
Magat	Santiago	7	230	300	15.37	0.2551	1.3920	1.0273	4.3735	2.8020	ST-DC	1-795	*
Santiago	Tuguegarao		230	300	116.29	1.9304	11.2147	8.0709	31.6879	20.1119	ST-SC	1-795	1981
Bayombong	Santiago		230	300	42.68	0.7085	3.8753	2.8516	12.1262	7.7598	ST-DC	1-795	*
Ambuklao	Santiago	1	230	300	105.01	1.7432	9.6000	7.0052	29.7141	18.9623	ST-DC	1-795	*
Ambuklao	Bayombong		230	300	62.34	0.8992	4.9609	3.6125	15.3121	9.7640	ST-DC	1-795	*
Ambuklao	Binga		230	300	8.28	0.1374	0.8147	0.5706	2.2293	1.4066	ST-SC	1-795	1956
Ambuklao	Binga	7	230	300	9.34	0.1549	0.9041	0.6358	2.5514	1.6156	ST-SC	1-795	1981
Bauang	San Esteban		230	300	95.17	1.5798	8.7565	6.3384	26.8254	17.0753	ST-DC	1-795	1983
Baguio	Bauang		230	300	35.88	0.5956	3.2932	2.3913	10.1286	6.4532	ST-DC	1-795	1977
Baguio	Bauang	5	230	300	35.88	0.5956	3.2932	2.3913	10.1286	6.4532	ST-DC	567-I	1989
Baguio	Binga		230	300	11.96	0.1985	1.1104	0.7948	3.3525	2.1261	ST-DC	1-795	1976
Baguio	Binga	7	230	300	11.96	0.1985	1.1104	0.7948	3.3525	2.1261	ST-DC	562-I	*
Binga	San Manuel		230	300	34.30	0.5694	3.1365	2.2975	9.7026	6.1979	ST-DC	267-I	1956
Binga	San Manuel	7	230	300	34.30	0.5694	3.1365	2.2975	9.7026	6.1979	ST-DC	1-795	~
Pantabangan	San Manuel	, 	230	300	66.22	1.0969	6.0714	4.4070	18.8497	12.0793	ST-SC	1-795	1957
Concepcion	San Manuel		230	300	79.66	1.3223	7.6708	5.5262	21.7305	13.7969	ST-SC	1-795	1956
Concepcion	Mexico		230	300	37.42	0.6212	3.5984	2.5984	10.2147	6.4878	ST-SC	1-795	4
Cabanatuan	Pantabangan		230	300	52.47	0.8687	4.7445	3.4565	15.1009	9.7012	ST-SC	1-795	1957
Cabanatuan	Mexico		230	300	67.31	1.1150	6.3239	4.4579	18.8886	12.0338	ST-SC	1-795	*
Mexico	San Jose		230	300	54.04	0.8971	4,9666	3.6735	15.2182	9.7508	ST-SC	1-795	1959
Bauang	Labrador		230	300	114.00	1.8924	10.4766	7.6722	32.1480	20.5200	ST-DC	1-795	1661
Bauang	Labrador	7	230	300	114.00	1.8924	10.4766	7.6722	32.1480	20.5200	ST-DC	1-795	*
Labrador	Botolan		230	300	112.71	1.8710	10.3580	7.5854	31.7842	20.2878	ST-SC	1-795	*
			ľ										

 Table 6-4-1
 LUZON
 GRID
 TRANSMISSION
 LINE
 DATA
 (2)

 (100MVA Base)

L														
	ц. Ц	Ē	Ckt.	1.17	V.LVX	Length	Positive	ve	Zero				7	Comm.
	1 1 0 0 1 1	∧ ₁	No.	××	WA MI AW	(km)	%R	%X	%R	%X	MAR	Siructure	Conductor	Year
	Botolan	Olongapo	- 1	230	300	60.55	1.0051	5.8462	4.2019	16.4856	10.4584	ST-DC	262-1	1985
_ ,,	Hermosa	Mexico	1	230	300	37.65	0.6212	3.1287	2.2967	11.5548	7.5187	ST-DC	1-795	1972
<u> </u>	Hermosa	Mexico	2	230	300	37.65	0.6212	3.1287	2.2967	11.5548	7.5187	ST-DC	S67-1	*
judari -	Hermosa	Olongapo	1	230	300	25.58	0.4221	2.1257	1.5597	7.8505	5.1058	ST-DC	1-795	\$
	Hermosa	Olongapo	2	230	300	25.58	0.4221	2.1257	1.5597	7.8505	5.1058	ST-DC	1-795	*
	Hermosa	PNPP	1	230	600	27.19	0.2257	1.5455	1.4626	7.6134	7.9410	ST-DC	2-795	1983
	Hermosa	San Jose	1	230	600	74.98	0.6223	4.7192	4.4079	19.5507	19.6075	ST-DC	2-795	1984
<u> </u>	Hermosa	San Jose	2	230	600	74.98	0.6223	4.7192	4.4079	19.5507	19.6075	ST-DC	2-795	*
	ВТРР	Hermosa		230	300	37.19	0.6137	3.0916	2.2739	11.4075	7.4223	ST-DC	1-795	1959
<u>,</u>	ВТРР	PNPP	, ,	230	300	40.03	0.6615	3.4275	2.4917	12.0158	7.7656	ST-DC	1-795	1983
	ВТРР	EPZA	1	230	300	14.79	0.2455	1.3628	0.9851	4.1652	2.6489	ST-DC	1-795	1976
	Balintawak	Mexico	-1	230	300	55.03	0.9135	5.2987	3.8206	15.0087	9.5286	ST-SC	1-795	1958
<u> </u>	Balintawak	San Jose	1.5	230	300	30.18	0.4995	2.7052	1.9685	8.7476	5.6259	ST-SC	1-795	1956
	Dolores	San Jose		230	1200	38.34	0.1610	2.2678	2.0758	9.5238	10.7246	ST-DC	4-795	1981
	Dolores	San Jose	2	230	1200	38.34	0.1610	2.2678	2.0758	9.5238	10.7246	ST-DC	4-795	4
	Dolores	Malaya		230	1200	39.00	0.1638	2.2172	2.1274	9.8532	11.3694	ST-DC	4-795	*
1	Dolores	Malaya	6	230	1200	39.00	0.1638	2.2172	2.1274	9.8532	11.3694	ST-DC	4-795	*
]	Binan	Makban		230	300	32.74	0.5435	2.9312	2.1946	9.3795	6.0352	ST-DC	1-795	1979
	Binan	Makban	2	230	300	32.74	0.5435	2.9312	2.1946	9.3795	6.0352	ST-DC	1-795	*
. <u></u>	Binan	Calaca		230	009	61.47	0.5102	3.9778	3.5973	15.8279	15.6434	ST-DC	2-795	1985
	Binan	Calaca	6	230	600	61.47	0.5102	3.9778	3.5973	15.8279	15.6434	ST-DC	-2-795	*
	Makban A	Makban B	1	230	300	1.16	0.0192	0.1021	0.0917	0.3305	0.2202	WP-SC	1-795	*
	Makban B	Makban C	· 	230	300	0.62	0.0103	0.0542	0.0484	0.1779	0.1188	WP-SC	1-795	1986
	Batangas	Makban A	1	230	300	35.17	0.5838	3.1426	2.3585	10.0871	6.4954	ST-DC	1-795	1979
I														

 Table 6-4-1
 LUZON
 GRID
 TRANSMISSION
 LINE
 DATA
 (3)

 (100MVA Base)
 (100MVA Base)

a)
õ
base
-
11
<
-
۰.
5
4
5
=
~
IOUNT
~

Erom.	F	CK.		Y . L.Y .	Length	Positive	tive	Zero	0		Ċ	(Comm.
LIUIII	10	No.	۲۷	MVA	(km)	%R	%X	%R	%X	MVAR	Structure	Conductor	Year
Batangas	Makban B	ľ	230	300	35.07	0.5822	3.1327	2.3520	10.0602	6.4790	ST-DC	1-795	1979
Kalayaan	Malaya	1	230	300	28.93	0.4802	2.6672	1.9263	8.1446	5.1792	-ST-DC	1-795	1977
Kalayaan	Malaya	5	230	300	28.93	0.4802	2.6672	1.9263	8.1446	5.1792	ST-DC	1-795	*
Kalayaan	Malaya	3	230	1200	28.87	0.1213	1.7081	1.5631	7.1709	8.0765	ST-DC	4-795	1984
Kalayaan	Malaya	4	230	1200	28.87	0.1213	1.7081	1.5631	7.1709	8.0765	ST-DC	4-795	*
Kalayaan	Makban A		230	300	41.90	0.6955	3.7795	2.8037	11.9511	7.6678	ST-DC	1-795	1979
Kalayaan	Makban A	7	230	300	41.90	0.6955	3.7795	2.8037	11.9511	7.6678	ST-DC	1-795	*
Gumaca	Kalayaan		230	300	94.11	1.5622	8.5093	6.2945	26.8054	17.1809	ST-DC	1-795	1977
Gumaca	Kalayaan	2	230	300	94.11	1.5622	8.5093	6.2945	26.8054	17.1809	ST-DC	1-795	*
Gumaca	Labo	1	230	300	88.96	1.4767	8.0899	5.9439	25.2526	16.1458	ST-DC	1-795	*
Gumaca	Labo	7	230	300	88.96	1 4767	8.0899	5.9439	25.2526	16.1458	ST-DC	1-795	*
Labo	Naga		230	300	60.66	1.6449	8.8816	6.6412	28.3690	18.2447	ST-DC	1-795	*
Labo	Naga	5	230	300	60.66	1.6449	8.8816	6.6412	28.3690	18.2447	ST-DC	1-795	*
Naga	Tiwi A		230	300	60.54	1.0050	5.4662	4.0508	17.2581	11.0674	ST-DC	562-i	1978
Naga	Tiwí C		230	600	59.30	0.4922	3.8374	3.4703	15.2692	15.0912	ST-DC	2-795	1987
Naga	Tiwi C	7	230	600	59.30	0.4922	3.8374	3.4703	15.2692	15.0912	ST-DC	2-795	*
Tiwi A	Tiwi B	1	230	300	1.50	0.0249	0.1404	0.0995	0.4184	0.2645	ST-SC	1-795	
Tiwi A	Tiwi C	1	230	300	1.35	0.0224	0.1264	0.0895	0.3765	0.2380	ST-SC	1-795	
Tiwi B	Tiwi C	1	230	300	1.29	0.0214	0.1207	0.0855	0.3598	0.2274	ST-SC	1-795	
Naga	Daraga		230	300	71.09	1.1801	6.5332	4.7844	20.0474	12.7962	ST-DC	1-795	1980
Daraga	Tiwi	,	230	300	74.45	1.2359	6.8420	5.0105	20.9950	13.4010	ST-DC	1-795	*

• •

 Table 6-4-1
 LUZON
 GRID
 TRANSMISSION
 LINE
 DATA
 (4)

 (100MVA Base)

l														
	, i	Ē	Ckt.	1-87	Y / Y Y	Length	Positive	ive	Zero	ro		i c		Comm.
	FTOM	10	No.	KV	MVM	(km).	%R	%X	%R	%X	MVAK	Structure	Conductor	Year
	Currimao TP	Laoag	1	115	150	26.82	1.7766	8,9888	7.0367	32.5741	1.3245	WP-SC	1-795	1967
0	Currimao TP	Bantay	1	115	150	55.34	3.6664	18,5592	14.6939	67.0602	2.7325	WP-SC	1-795	1972
0	Currimao	Currimao TP	1	115	150	0.50	0.0332	0.1688	0.1704	0.5771	0.0246	WP-SC	1-795	1981
¥	Angat	San Jose	1	115	150	17.39	1.1530	5.7822	4.2974	21.3243	0.8678	ST-DC	1-795	1967
4	Angat	San Jose	2	. 115	150	17.39	1.1530	5.7822	4.2974	21.3243	0.8678	ST-DC	1-795	4
4	Angat	San Jose	3	115	150	16.00	1.0622	5.7185	5.0419	18.0463	0.7419	WP-SC	1-795	1960
<u> </u>	Balintawak	San Jose	I	115	150	29.82	1.9771	10.4499	8.0258	34.9611	1.4151	ST-DC	1-795	1967
да	Balintawak	San Jose	2	115	150	29.82	1.9771	10.4499	8.0258	34.9611	1.4151	ST-DC	1-795	*
Щ	Binan	Sucat	1	115	300	15.49	0.5146	3.9677	3.6329	16.0290	0.9956	ST-DC	2-795	1985
н Н	Binan	Sucat	7	115	300	15.49	0.5146	3.9677	3.6329	16.0290	0.9956	ST-DC	2-795	*
E	Binan	Dasmarinas	1	115	150	14.46	0.9596	4.8821	4.3529	17.0830	0.7115	ST-DC	1-795	*
щ	Binan	Dasmarinas	.61	115	150	14.46	0.9596	4.8821	4.3529	17.0830	0.7115	ST-DC	1-795	4
ŝ	Sun Esteban	Bantay	1	115	150	38.21	2.5353	12.8985	11.5004	45.1332	1.8798	WP-SC	1-795	1972
									1					

252

Table 6-4-2 TRANSMISSION LINE LENGTH AND SUBSTATION CAPACITY (1)

Regional Center			Tresseries				Chototion	
	Voltada		Iransmission Line	IOU LIDE			UOIIBISONS	
	(1°1)	Route Leng	ength (km)	Circuit Le	Circuit Length (km)	Number	Transformer	Jrmer
		S T	Total	S T	Total	Substation	Unit	КVA
	230	1, 328. 23	1, 328. 23	1, 891. 09	1, 891. 09	-9T	20	2, 095
	115	39.91	239.07	79.82	278.98	ç	~~ #	110
NLRC	69	54.97	1, 928. 52	109.94	1, 985. 09	27	41	328
	Below 69		423. 20		445.20			
	Total	1, 423, 11	3, 919. 02	2, 080. 85	4, 600. 36	46	65	2, 533
	230	670.46	670.46	1, 340. 42	1. 340. 42	Q		1, 390
	115	60.27	133.12	90. 54	163.39	m	~ 1 *	200
SLRC	69	-	978. 43		991.20	19	23	138.5
, i da	Below 69		75.76	-	78.91			
	Total	730.73	1, 857. 77	1, 430. 96	2, 573, 92	28	38	1, 728. 5
	230	1, 998. 69	1, 998. 69	3, 231. 51	3, 231. 51	22	31	3, 485
	115	100.18	372.19	170.36	442.37	ç	60	310
Total	69	54.97	2, 906, 95	107.94	2, 976. 29	46	64	466.5
, p ±4	Below 69		498.96		524.11			
	Total	2, 153. 84	5, 776, 79-	3, 511, 81	7, 174, 28	74	103	4, 261. 5

(Note) S T : Steel Tower

TRANSMISSION LINE LENGTH AND SUBSTATION CAPACITY (2)

Table 6-4-2

E.				Transmission Line	ion Line			Substation	
Keglonal Center	Area Affica	Voltage -	Route Le	Route Length (km)	Circuit Length	ngth (km)	Number	Transformer	ormer
CCII 107	201110		ST	Total	ST	Total	Substation	Unit	AVA
		230	159.56	159, 56	178.36	178.36	2	2	100
		115		125.16		125.16	ŝ	3	60
	Area-1	69		182.57		182.57		L	45
-		Below 69		5.77		5.77			
		Total	159.56	473.06	178.36	491.86	G	12	205
		230	85.80	85.80	158.90	158.90		4	75
		15							
	Area-2	69		354.94		354.94	2	2	50
	· · · ·	Below 69		90.11		90.11			
		Total	85.80	530.85	158.90	603.95	673	ę	125
		230	164.00	164.00	193.00	193.00	ę	7	200
	· · ·	115			6				
	Area-3	69		397.29		397.29	5	10	55
	· . · :	Below 69		234.38		234.38			
		Total	164.00	795.67	193.00	824.67	12	14	255
		230	220.14	220.14	324.35	324.35	3	60 1	120
		115		-			•		
-	Area-4	69		443.54		443.54	ന	9	08
	-	Below 69							
		Total	220.14	663, 68	324.35	767.89	9	6	200

Doriono1									
	a con	Vo1+200		Transmi	Transmission Line		S	Substation	
Tottot	AL CO		Route Length	ngth (km)	Circuit L	Circuit Length (km)	Number	Transformer	ormer
רכון וכז			S T	Total	ST	Total	Substation	Unit	YAR
		230	210.57	210.57	304.49	304, 49		ന	150
	• .	115							
	Area-5	69	25.00	245.50	50.00	272.10	2	6	50
		Below 69		25.34		25.34			
		Total	235.57	481.41	354. 49	601.93	10	12	200
		230	179.36	179.36	263. 53	263.53	2	က	250
	<u>. </u>	115							
	Area-6	69	29.97	239, 68	59, 94	269.65	4	ų L	38
· · ·		Below 69		33.60		33.60			
с <u>с</u> г и		Total	209.33	452.64	323.47	566.78	9	თ	288
ר א ב	2	230	308.80	308, 80	468.46	468.46	2	ধ্বা	1, 200
		115	39.91	113.91	79.82	153.82		F1	50
	Area-7	69		65, 00		65.00		¥4	10
		Below 69		34.00		56.00			
		Total	348. 71	521.71	548.28	743.28	3	g	1,260
·		230	1, 328. 23	1, 328, 23	1, 891, 09	1, 891. 09	16	20	2, 095
		115	39.91	239.07	79.82	278.98	6	4	110
·	Total	63	54.97	1,928.52	109.94	1, 985. 09	27	41	328
		Below 69		423.20		445.20			
		Total	1, 423, 11	3, 919, 02	2, 080, 85	4, 600.36	46	65	2, 533

 Table 6-4-2
 TRANSMISSION LINE LENGTH AND SUBSTATION CAPACITY (4)

Regional	Агея	Voltace		Transmis	Transmission Line		Su	Substation	
Center	ûffire	(14)	Route Length	ngth (km)	Circuit L	Length (km)	Number	Transformer	ormer
	001TTT0	, (AI)	ST	Total	s T	Total	Substation	Unit	KVA
		230	78.00	78.00	156,00	156.00	7-1	, , ,	100
		115	14.47	85.62	28.97	100.09	cr	4	200
	Area-1	69		261.88		261.88	2	8	46.5
		Below 69		31.48		31.48			
		Total	92.47	456.98	184.94	549. 45	6	14	346.5
		230	298.14	298.14	595.78	595.78	5	ю	1,140
		115	45.80	47.50	61.60	63.30			****
	Area-2	69		261.38		261.38	co.	9	45
	·	Below 69		44.28		47.43			
C 4 1 8		Total	343.94	651.30	657.38	967.89	F	12	1, 185
: 2 1 2 2		230	294.32	294.32	588.64	588.64	en 2	က ်	150
		115				*****			
	Area-3	-69		455, 17		467.94	6	6	47
· · · · · ·		Below 69							
· · ·		Total	294.32	749.49	588.64	1, 056. 58	12	12	197
		230	670 46	670.46	1, 340. 42	1, 340, 42	9	11	1, 390
		115	60.27	133. 12	90.54	163. 39	ę	4	200
	Total	69		978. 43		991. 20	19	23	138.5
-		Below 69		75.76		78.91			
		Total	730.73	1,857.77	1, 430. 96	2, 573. 92	28	38	1.728.5

Table 6-4-3 230kV SUBSTATION TRANSFORMER TECHNICAL DATA (1)

NORTHERN LUZON REGIONAL CENTER

(1/3)

Name of Substations	Bank Nos,	Capacity (MVA)	Rated Voltage (kV)	Connec- tions	Wanufac- turer	Mfg. Date	Remarks
<u>AREA 1</u>							
Bauang	T1 T2	50 (5)	220/69-13. 8 67/13. 8	Y-Y-D D-Y	INDUSTRIE ATELIERS	1975 1977	Distri. Tr.
San Esteban	T1 T2 T3	20 50 (5)	110/69-13.8 220/115-13.8 67/13.8	Y-D Y-Y-D D-Y	ITALTRAFO TAKAOKA OSAKA	1977 1980 1972	Distri. Tr.
<u>AREA 2</u>							
La Trinidad	T1 T2	75 75	220/69-13.8 220/69-13.8	Y-Y-D Y-Y-D	OSAKA OSAKA	1982 1978	
AREA 3				· · · · · · · · · · · · · · · · · · ·			P
San Manuel	T1	50	220/69-13.8	Y-Y-D	MITSUBISHI	1968	
Cabanatuan	T1 T2	50 50	220/69-13. 8 220/69-13. 8		INDUSTRIE OSAKA	1973 1975	
Labrador	T1	50	220/69-13.8	Y-Y-D	HYUNDAI	1988	
AREA 4							
Tuguegarao	T1 T2	40 (15)	230/69-13.8 69/13.8	Y-Y-D D-Y	NEIDENSHA AICHI	1979 1979	Distri. Tr.
Santiago	T1 T2	40 (15)	230/69-13. 8 69/13. 8	Y-Y-D D-Y	MEIDENSHA AICHI	1979 1979	Distri, Tr.

Table 6-4-3 230kV SUBSTATION TRANSFORMER TECHNICAL DATA (2)

NORTHERN LUZON REGIONAL CENTER

(2/3)

Name of Substations	Bank Nos.	Capacity (WVA)	Rated Voltage (kV)	Connec- tions	Manufac- turer	Mfg. Date	Remarks
Bayombong	T1 T2	40 (15)	230/69-13.8 69/13.8	Y-Y-D D-Y	MEIDENSHA AICHI	1979 1979	Distri. Tr.
AREA-5	· · · · · · · · · · · · · · · · · · ·						
Hermosa	T1	50	220/69-13.8	Y-Y-D	FUJI	1977	
01ongapo	T1 T2	50 50	220/69-13.8 220/69	Y-Y-D D-Y	INDUSTRIE MEIDENSHA	1 A A	
Botolan	T1	50	220/69-13.8	Y-Y-D	TAKAOKA	1973	
AREA 6	· ·			· ·			
Concepcion	T1	- 50	220/69-13.8	Y-Y-D	FUJI	1980	
Wexico	T1 T2 T3 T4	100 100 100 (5)	220/69-13. 8 220/69-13. 8 220/69-13. 8 69/13. 8		FUJI FUJI TAKAOKA OSAKA	1979 1982 1975 1971	Distri. Tr.
AREA 7							
San Jose	T1 T2	300 (50)	220/115-13. 8 115/34. 5	Y-Y-D Y-Y	FUJI OSAKA	1977 1978	Distri. Tr.
Dolores	T1 T2 T3	300 300 300	220/115-13. 8 220/115-13. 8 220/115-13. 8	Y-Y-D Y-Y-D Y-Y-D	FUJI FUJI FUJI	1983 1983 1985	
	¥.0	500		* * *'			

 Table 6-4-3
 230kV
 SUBSTATION
 TRANSFORMER
 TECHNICAL
 DATA
 (3)

SOUTHERN LUZON REGIONAL CENTER

(3/3)

Name of Substations	Bank Nos.	Capacity (WVA)	-Rated Voltage (kV)	Connec- tions	Manufac- turer	Mfg. Date	Remarks
<u>AREA 1</u>	gangan keri (Kati Pantanan metha Kati Ang			and an			
Batangas	T1	50	220/69-13. 8	Y-Y-D	FUJI	1978	
	T2	50	220/69-13.8	Y-Y-D	FUJI	1978	
AREA 2					: :		
Binan	T1	100	220/115-13.8	Y-Y-D	FUJI	1978	
	T2	300	220/115-13.8	Y-Y-D	FUJI	1982	
	T3	300	220/115-13.8	Y-Y-D	FUJI	1982	
	T4	300	220/115-13.8	Y-Y-D	FUJI	1982	
	<u> </u>	100	220/115-13.8	Y-Y-D	FUJI	1978	Stand-by
Gumaca	T1	40	230/69-13.8	Y-Y-D	MEIDENSHA	1979	
AREA 3					i, t. v.		
Labo	T1	50	220/69-13.8	Y-Y-D	ITALTRAFO	1977	
Naga	T1	50	230/69-13.8	Y-Y-D	ITALTRAFO	1977	
Daragag	T1	50	220/69-13.8	Y-Y-D	FUJI	1977	
·							
	:		:				
1 N							
					·		

230kV SUBSTATION FAULT LEVELS AND TECHNICAL DATA OF CIRCUIT BREAKERS (1) Table 6-4-4

Rated Int. Int. Int. Int. Cy's) Manufacturer Mfg. Date Capacity Cy's) 3 NISSIM Elect. 1975 1975 10.000 (25) 3 NISSIM Elect. 1975 1975 5.000 (12.5) 3 NISSIM Elect. 1975 5.000 (25) 3 NISSIM Elect. 1975 5.000 (25) 3 NISSIM Elect. 1975 5.000 (25) 3 NISSIM Elect. 1975 7.500 (20) 5 NISSIM Elect. 1975 10.000 (25) 3 FUJI Elect. 1975 5.000 (25) 3 FUJI Elect. 1975 5.000 (25) 3 NISSIM Elect. 1976 <	UZON REG.	NORTHERN LUZON REGIONAL CENTER	TER											(1/1)
2. 223 5. 6 82964/124/8 5 CCB 230 2.000 10.000 (25) 3 NISSIN Elect. 403 2. 1 61964/124/8 3 ACB 230 1.200 5.000 (12.5) 3 NISSIN Elect. 403 2.1 61864/124/8 3 ACB 230 1.200 5.000 (25) 3 NISSIN Elect. 403 2.1 61864 1 ACB 120 1.200 5.000 (20) 5 3 NISSIN Elect. 420 3.5 51864. 54864 4 0CB 63 1.200 2.500 20 20 5 3 NISSIN Elect. 420 3.5 51864. 54864 4 0CB 63 1.200 2.500 20 2 3 NISSIN Elect. 4420 3.5 51864. 54864 4 0CB 63 1.200 2.500 20 5 NISSIN Elect. 743 1.9 82584/124/8 5 CCB 230 1.200 2.500 20 5 NUI Elect. <td></td> <td>Fault L in 19 (MVA/k</td> <td>evel 195 (A)</td> <td>Breaker Nos.</td> <td>Units</td> <td>Type</td> <td>Rated Yol tage (kY)</td> <td>Rated Current (A)</td> <td>Rated I Capacit (XVA/)</td> <td>· · ·</td> <td>Int. Time (Cy s)</td> <td>Kanufacturer</td> <td>. </td> <td>Remarks</td>		Fault L in 19 (MVA/k	evel 195 (A)	Breaker Nos.	Units	Type	Rated Yol tage (kY)	Rated Current (A)	Rated I Capacit (XVA/)	· · ·	Int. Time (Cy s)	Kanufacturer	.	Remarks
2. 223 5. 6 82364/124/8 5 CCB 230 1.200 5.000 (25) 3 NISSIN Elect. 409 2.1 61864/124 2 CCB 230 1.200 5.000 (25) 3 NISSIN Elect. 409 2.1 61864 1 ACB 230 1.200 5.000 (25) 3 NISSIN Elect. 409 2.1 61864 1 ACB 10.000 (25) 3 NISSIN Elect. 409 2.5 61864 4 OCB 69 1.200 (250) 5 NISSIN Elect. 743 1.9 55864.56864 4 OCB 69 1.200 (25) 3 FUJI Elect. 743 1.9 2358124/9 5 CCB 230 1.200 (25) 3 FUJI Elect. 743 1.9 23584.6484 1 OCB 230 1.200 (25) 3 FUJI Elect. 743 1.1 6 115 1.200 (250) 20 3 B.UJI Elect.			Ĩ											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2. 223	ນ. ຍ		വ	CCB	230	2, 000	10, 000	(25)	3	MISSIN Elect.	1988	
409 2.1 5.5563/124 2 CGB 230 1.200 (25) 3 FUJI Elect. 409 2.1 61864 1 AGB 115 1.200 5.000 (25) 3 NISSIN Elect. 420 3.5 51864. 56864 4 0CB 69 1.200 2.500 5 NISSIN Elect. 420 3.5 51864. 56864 1 0CB 69 1.200 2.500 20 5 NISSIN Elect. 743 1.9 82564/124/8 5 CCB 230 1.200 (25) 3 FUJI Elect. 743 1.9 82564/124/8 5 CCB 230 1.200 (25) 3 FUJI Elect. 324 1.6 61584 1 1500 (25) 3 B.JI Elect. 200 1.7 51564 52584 3 AGB 69 2.000 (25) 3 NISIN Elect. 200 1.7 515564				83BG4/124/8	ന	ACB	230	1, 200	5.000	(12.5)	~	NISSIN Elect.	1975	
403 2.1 61.BC4 1 ACB 115 1.200 5.000 (25) 3 NISSIN Elect. 420 3.5 518C4.58EG4 4 0CB 69 1.200 2.500 5 NISSIN Elect. 743 1.9 825E4/124/8 5 CCB 230 1.200 (20) 20 5 NIOUE Elect. 743 1.9 825E4/124/8 5 CCB 230 1.200 (26) 3 7UII Elect. 743 1.9 825E4/124/8 5 CCB 230 1.200 7.600 (25) 3 FUII Elect. 743 1.9 825E4/124/8 5 CCB 230 1.200 7.600 (25) 3 FUII Elect. 324 1.6 615E4 2 ACB 115 2.000 5.000 (25) 3 B.G. 200 1.7 515E4.55E4 3 ACB 115 2.000 3.500 (25) 3 B.G. 200 1.7 515E4.55E4 3 ACB 15 2.0				85BG8/124	\$	CCB	230	1.200	10,000	(25)	3	FUJI Elect.	1980	
420 3.5 51BG4, 54BG4 4 0CB 69 1.200 2.500 50 5 NISSIN Elect. 743 1.9 825E4/124/8 5 6CB 230 1.200 (2.5) 3 FUJI Elect. 743 1.9 825E4/124/8 5 6CB 230 1.200 (2.5) 3 FUJI Elect. 324 1.6 615E4 1 CCB 115 1.200 7.500 (26) 3 FUJI Elect. 324 1.6 615E4 1 CCB 115 2.000 5.000 (25) 3 FUJI Elect. 200 1.7 515E4.525E4 3 ACB 65 2.000 3.500 (30) 3 B.C. 200 1.7 515E4.525E4 3 ACB 115 2.000 3.500 (30) 3 B.L. C. 200 1.7 515E4.525E4 3 ACB 2.000 3.500 (30) 3 B.L. C. 2.653 8.1 1.200 1.000 (25)	·	409	2.1	61BC4	r-1	ACB	115	1, 200	5.000	25	ŝ	NISSIN Elect.	1975	
57BG4 1 0CB 69 1.200 (2.500) 20 5 INOUE Elect. 743 1.9 825E4/124/8 5 CCB 230 1.200 10.000 (25) 3 FUJI Elect. 324 1.6 615E4 1 CCB 115 1.200 7.500 (36) 3 FUJI Elect. 200 1.7 515E4.525E4 3 ACB 115 2.000 5.000 (25) 3 B.B.C. 200 1.7 515E4.525E4 3 ACB 500 (25) 3 B.B.C. 200 1.7 515E4.525E4 3 ACB 2.000 5.000 (25) 3 B.C. 200 1.7 515E4.525E4 3 ACB 2.000 10.000 (25) 3 B.C. 201 1.7 515E4.525E4 3 ACB 2.000 (25) 3 NISSIN Elect. 201 1.7 535E4 3 ACB 2.000 10.000 (25) 3 NISSIN Elect. 2.663 6		420	ເ ເຕີ			OCB	69	1.200	2.500	20	വ	NISSIN Elect.	1975	
7431.9825E4/124/85CCB2301.2001.200 (25) 3FUJI Elect.3241.6615E411CCB1151.200 7.500 (25) 3B.B.C.2001.7515E4.525E43ACB1152.0005.000 (25) 3B.B.C.2001.7515E4.525E43ACB692.0005.000 (25) 3B.B.C.2001.7515E4.525E43ACB692.0005.000 (25) 3B.B.C.2001.7515E4.525E43ACB692.0005.000 (25) 3B.B.C.2011.7515E4.525E43ACB692.00010.000 (25) 3NISSIN Elect.2011.7515E4.525E476CB2302.00010.000 (25) 3NISSIN Elect.2.6536.783174/124/876CB2302.00015.000 (20) 5NISSIN Elect.9417.952174.5617440CB691.2002.500 (20) 5NISSIN Elect.9417.952174.5617420CB691.2002.500 (20) 5IAMORA53174.5617420CB691.2002.500 (20) 5IAMORA53174.5517450CB691.2002.500 (20) 5IAMORA53174.551742				57BG4		OCB	69	1.200	(2.500)	20	ۍ	INOUE Elect,	1988	
324 1.6 61SE4 1 CCB 115 1.200 7.500 (36) 3 FUJI Elect. 200 1.7 51SE4. 52SE4. 64SE4 2 ACB 115 2.000 5.000 (25) 3 B.B.C. 200 1.7 51SE4. 52SE4 3 ACB 69 2.000 3.500 (30) 3 B.B.C. 53SE4 53SE4 3 ACB 69 2.000 3.500 (30) 3 B.B.C. 53SE4 7 6CB 230 2.000 10.000 (25) 3 NISSIN Elect. 2.663 6.7 81L74/124/8 7 6CB 230 2.000 10.000 (25) 3 NISSIN Elect. 832L74/124/8 7 6CB 230 2.000 15.000 (37.5) 3 NISSIN Elect. 941 7.9 52L74. 56L74 4 0CB 69 1.200 2.500 60 5 7AMOKA 51L74. 56L74 2 0CB 69 1.200	30	743	1.9		പ	GCB	230	1, 200	10,000		en	FUJI Elect.	1987	
200 1.7 513544, 523E4 2 ACB 115 2,000 5,000 (25) 3 B.B.C. 200 1.7 515544, 523E4 3 ACB 69 2,000 3,500 (30) 3 B.B.C. 0 2.663 6.7 81L74 3 ACB 69 2,000 10,000 (25) 3 B.B.C. 82L74/124/8 7 6CB 230 2,000 10,000 (25) 3 MISSIN Elect. 83L74/124/8 7 6CB 230 2,000 10,000 (25) 3 MISSIN Elect. 941 7.9 52U74.56U74 4 0CB 69 1.200 2.500 (20) 5 MISSIN Elect. 57L74.58U74 2 0CB 69 1.200 2.500 (20) 5 MISSIN Elect. 51L74.55L74 2 0CB 69 1.200 2.500 (20) 5 MISSIN Elect. 51L74.55L74 2 0CB 69 1.200 2.500 (20) 5 TAKAOKA <td>12</td> <td>324</td> <td>1.6</td> <td>.</td> <td>Fred</td> <td>GCB</td> <td>115</td> <td>1.200</td> <td>7.500</td> <td>(36)</td> <td>on</td> <td>FUJI Elect.</td> <td>1975</td> <td></td>	12	324	1.6	. 	Fred	GCB	115	1.200	7.500	(36)	on	FUJI Elect.	1975	
200 1.7 515E4. 52SE4 3 ACB 69 2.000 3.500 (30) 3 B.B.C. 0 2.663 6.7 81L78 7 6CB 230 2.000 10.000 (25) 3 NISSIN Elect. 0 2.663 6.7 81L74/124/8 7 6CB 230 2.000 10.000 (25) 3 NISSIN Elect. 83174/124/8 7 6CB 230 2.000 10.000 (25) 3 NISSIN Elect. 941 7.9 52L74.56L74 4 0CB 69 1.200 2.500 (20) 5 NISSIN Elect. 941 7.9 52L74.56L74 4 0CB 69 1.200 2.500 (20) 5 NISSIN Elect. 57L74.56L74 2 0CB 69 1.200 2.500 (20) 5 TAKA0KA 51L74.55L74 2 0CB 69 1.200 2.500 (20) 5 TAKA0KA		•••••		63SE4, 64SE4		ACB	115	2,000	5,000	(25)	<u>с</u> э	B. B. C.	1976	
2.663 6.7 81LT8 7 6CB 230 2.000 10.000 (25) 3 NISSIN Elect. 82LT4/124/8 82LT4/124/8 7 6CB 230 2.000 10.000 (25) 3 NISSIN Elect. 83LT4/124/8 2 6CB 230 2.000 10.000 (25) 3 NISSIN Elect. 941 7.9 52LT4/124 4 0CB 69 1.200 2.500 (20) 5 NISSIN Elect. 53LT4.54LT4 2 0CB 69 1.200 2.500 (20) 5 NISSIN Elect. 53LT4.54LT4 2 0CB 69 1.200 2.500 (20) 5 TAKAOKA 51LT4.55LT4 2 0CB 69 1.200 2.500 (20) 5 TAKAOKA	<u>ත</u>	200	1.7			ACB	69	2.000	3, 500	(30)	63	m.	1976	
2.663 6.7 81LT8 7 CCB 230 2.000 10.000 (25) 3 NISSIN Elect. 82LT4/124/8 82LT4/124/8 2 000 10.000 (25) 3 NISSIN Elect. 82LT4/124/8 2 CCB 230 2.000 10.000 (25) 3 NISSIN Elect. 941 7.9 52LT4.56LT4 4 0CB 69 1.200 2.500 (20) 5 NISSIN Elect. 57LT4.58LT4 2 0CB 69 1.200 2.500 (20) 5 TAKAOKA 53LT4.55LT4 2 0CB 69 1.200 2.500 (20) 5 INUOUE Elect.														
81LT4/124 2 6CB 230 2,000 15,000 37.5) 3 MISSIM Elect. 941 7.9 52LT4. 56LT4 4 0CB 69 1.200 2.500 (20) 5 NISSIM Elect. 57LT4. 58LT4 2 0CB 69 1.200 2.500 (20) 5 TAKAOKA 53LT4. 58LT4 2 0CB 69 1.200 2.500 (20) 5 TAKAOKA 53LT4. 55LT4 2 0CB 69 1.200 2.500 (20) 5 TAKAOKA	30	2. 663	6.1		2	ece	230	2, 000	10, 000		ся	NISSIN Elect.	1978	
941 7.9 52LT4. 56LT4 4 0CB 69 1.200 2.500 (20) 5 NISSIN Elect. 57LT4. 58LT4 58LT4 2 0CB 69 1.200 2.500 (20) 5 TAKAOKA 53LT4. 55LT4 2 0CB 69 1.200 2.500 (20) 5 TAKAOKA 51LT4. 55LT4 2 0CB 69 1.200 2.500 (20) 5 INOUE Elect.				81LT4/124	8	CCB	<u>.</u>	2, 000	15.000	(37. 5)	ŝ	NISSIN Elect.	1983	
54LT4 2 0CB 69 1,200 2.500 (20) 5 TAKAOKA 55LT4 2 0CB 69 1.200 2.500 (20) 5 INOUE Elect.	69	941	5.2			00	· ·	1.200	2, 500	(20)	ល	NISSIN Elect.	1975	:
55LT4 2 0CB 69 1.200 2.500 (20) 5 INOUE Elect.				53LT4, 54LT4	<u> </u>	0CB		1, 200	2, 500	(20)	ഹ	TAKAOKA	1975	•
					: 	OCB	:	1.200	2, 500	(20)	ഹ	INOUE Elect.	1983	-