#000003* JICST COPYRIGHT

90A0269406, K90060800 CN

Literature 29

- 廃業した廃油再生設備の地下での地下水汚染の除去 TΙ
- Removal of the groundwater pollution below an abandoned waste oil refinery.
 RIPPER P, FRUECHTENICHT H (Dr Trischler
- AU and Partner, Darmstadt, DEU) A0070A (WSTED) (0273-1223) Water Sci Technol
- VOL. 21, NO. 12 PAGE. 1841-1844 1989
- (A) (a1) (EN) (GBR) (写図5) CI
- HanauのPintsch地点では1984年まで廃油の再生が行なわれていた 。同地の地下水の油汚染が発覚したので、地下水処理プラントを建設した。地下水の汲上げ、油水分離、エアストリッピング、凝集沈殿、活性炭ろ過を組合わせた。 脂肪族塩素化合物、芳香族炭化水素はエアストリッピングで除去される。処理水は 河川放流が地下へ再注入している
- YE01030Y (662:628.2/.3) CC
- 地下水汚濁; 廃油; 下水処理施設; 復旧; 油水分離; 凝集処理; 活性炭処理; 脂肪 族塩素化合物;ストリッピング;芳香族炭化水素;地下水;化学工場

JICST COPYRIGHT #000026*

90A0138768, A90162002, K90080427

Literature 30

北海における1987年Forties原油試験結果

Results of the 1987 forties crude oilSea.

trial in the North HURFORD N, BUCHANAN I (Warren Spring La Hertfordshire, GBR)

JN

T05734 Proc Oil Spill Conf VOL. 1989 PAGE. 525-532 1989

CI

(C) (a1) (EN) (USA) (写図9, 表8, 参12) 流出した原油の挙動を知るため、1987年7月、52°10′、02°23E地点から20tのForties原油を流し、その後40日間にわたり、油層の移動、拡散状態を追跡した。また一定時間間隔で油層試料を採取し、油の物性変化を調べた。風速5~10m下にもかかわらず72時間後、かなりの量が海上面を浮遊した。最初の24時間で75%の原油が分散された。蒸散と浮化により物性が変化した。これら結果を各種モデル予測と比べた

SB02040B (614.777(26)) 海洋汚濁;油汚染;原油;油湯れ;拡散;移流;空中探查;気象条件;流跡線;分 散度; 北海

13) Literature 31

#000002* JICST COPYRIGHT

86A0069651, A86042249, C86052079, K86020409 パーレーン, RA'S Abu Jarjurの46,000m3/day逆浸透 プラントの建設と運転

Construction and operation of 46,000

m3/day reverse osmosis desalination plant, Ra's Abu Jarjur, Bahrain.
AL-ARRAYEDH M (Water Supply Directorate Ministry of Works Power and Water, Bahrain); ERICSSON B (SWECO, Stockholm); OHTANI M (Sasakura Engineering Co. Ltd Osaka)

B0934A (DSLNA) (0011-9164) Desalination

VOL. 55 PAGE, 319-342 1985

(A) (d3) (EN) (NLD) (写图5, 表5) CI このプラントはパーレーン政府が水需要に対応するために建設したものでささ倉機 被 (株) と住友商事 (株) との協力によって 84年10月に完成した。このプラントは原水として高塩濃度の地下水を用いているが海水脱塩用の膜を用いているプ ラントとしては世界最大規模である。30日間の信頼性テストの結果と最適運転方法の検討結果を示した

SC02030T, XD02120Z (628.161, 66.06/.07:532.71) パーレーン; 逆浸透; 脱塩装置; 工場建設; 運転試験; 地下水; 半透膜; ブライン CC

<DIALOG File 8: >

00451920 E.I. Monthly No: E17505035098 E.I. Yearly No: E175082713

Title: CRUDE OIL SPILLS: DISAPPEARANCE OF AROMATIC AND ALIPHATIC COMPONENTS FROM SMALL SEA-SURFACE SLICKS.

Author: Harrison, Wyman; Winnik, Mitchell A.; Kwong, Paul T. Y.; Mackay, Donald

Corporate Source: Argonne Nati Lab, [1]

Source: Environmental Science and Technology v 9 n 3 Mar 1975 p 231-234

Publication Year: 1975

CODEN: ESTHAG ISSN: 0013-936X

Language: ENGLISH

Journal Announcement: 7505

Abstract: Experimental data are presented for the weathering of five small (1.04 m**3) ocean spills of South Louisiana crude oil. The oil was spiked with cumene and the concentrations of cumene and several alkanes were measured for up to 5 hr after the spill. An approximate model of the evaporation-dissolution process is derived which suggests that cumene is lost principally by evaporation. The effects of whitecapping and the existence of different weathering rates in the same spill are described. 13 refs.

Descriptors: *WATER POLLUTION--*Oil Spills; SEAWATER--Analysis; PARAFINS Identifiers: CUMENE

Classification Codes: 453 (Water Pollution); 471 (Marine Science & Oceanography); 803 (Chemical Agents & Basic Industrial Chemicals); 804 (Chemical Products)

45 . (POLLUTION & SANITARY ENGINEERING); 47 . (OCEAN TECHNOLOGY); 80 . (CHEMICAL ENGINEERING)

<DIALOG File 6: (COPR. 1992 NTIS)> 1087240 NTIS Accession Number: PB84-238328

Developing Methods for Analyzing Oil Dispersants in Seawater

(Final rept. Apr 80-Apr 82)

Haynes, D. L.; Kelly, D. G.; Smith, J. H.; Fernandez, E. L.

SRI International, Menlo Park, CA.

Corp. Source Codes: 055876000

Sponsor: Municipal Environmental Research Lab., Cincinnati, OH.

Report No.: EPA/600/2-84/144

Aug 84 36p

Languages: English

Journal Announcement: GRA18425

NTIS Prices: PC A03/MF A01

Country of Publication: United States

Contract No.: EPA-R-807059

An analytical method was sought for determining the concentrations of dispersants in seawater contaminated with oil in both field and laboratory situations. Methods of analysis for surfactants found in the literature included spectrophotometry, gas chromatography (GC), thin-layer chromatography (TLC), and high performance liquid chromatography (HPLC). References to collection, concentration, and cleanup methods included liquid/liquid extractions, gas stripping, and solid sorbents. Of seven

dispersants tested, one contained solely anionic surfactants, three contained only nonionic, and three contained both anionic and nonionic surfactants. HPLC normal phase, reverse phase, and ion exchange column techniques were tried. Detection methods included (1) direct measurement of the surfactants by tensammetry and ultraviolet (UV) spectrometry, and (2) derivation of the surfactant with phenyl isocyanate with subsequent measurement by UV spectrometry. The most promising method of those tested was analysis of the phenyl isocyanate derivative of POE nonylphenol by normal phase HPLC using UV spectrometric detection. A method of collection, concentration, and cleanup of seawater solutions of dispersants containing oil was developed using the solid sorbent SEP-PAK C18 cartridge. This sorbent successfully removed compounds that interfered with colorimetric tests.

*Water analysis; *Dispersants; *Sea water; *Surfactants; Gas Descriptors: chromatography; Thin layer chromatography; Ultraviolet spectroscopy; Ion exchanging ; Water pollution; Chemical analysis

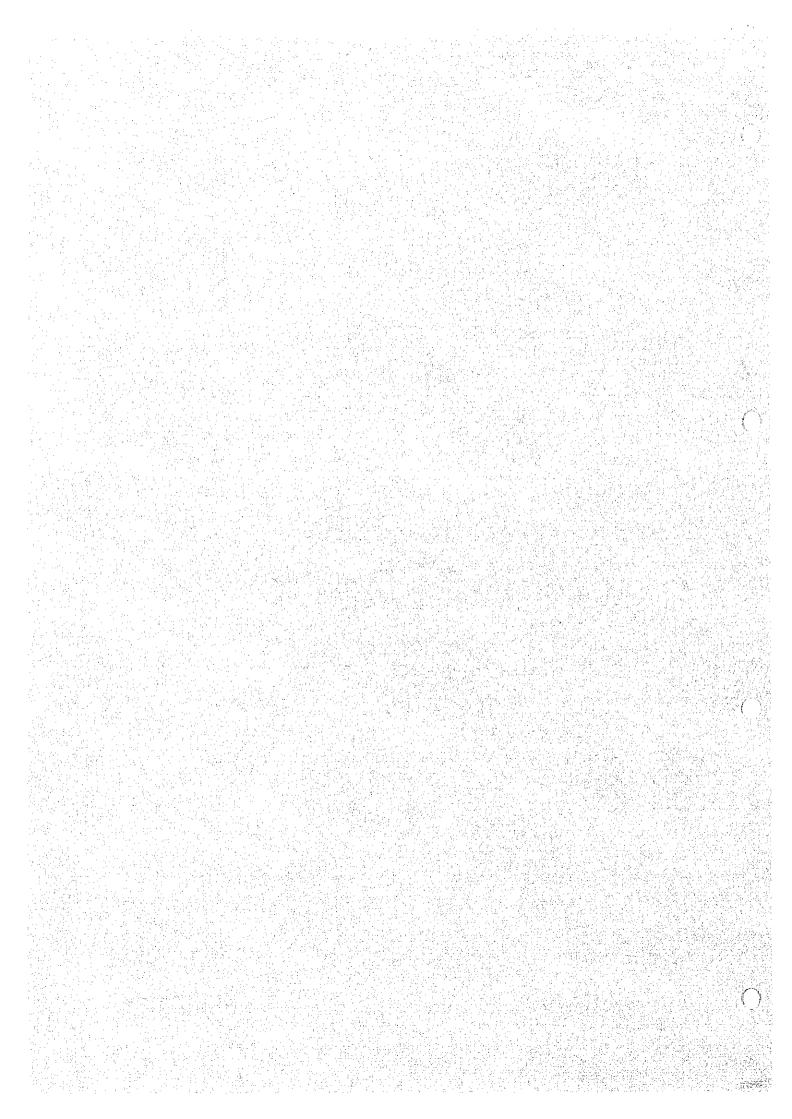
detection; *Water pollution detection; High *0i1 pollution ' Identifiers:

performance liquid chromatography: NTISEPAORD

Section Headings: 7D (Chemistry--Physical Chemistry); 68D* (Environmental Pollution and Control--Water Pollution and Control); 99A* (Chemistry--Analytical Chemistry)

JICST COPYRIGHT #000012*

- 86A0007893, C86012477, G86012000 CN
- TI 海上での油水分離
- Separating oil from water offshore.
 DELAINE J (John Delaine & Co., UK)
 D0791A (CMERA) (0302-0797) Chem Eng (London)
 NO. 419 PAGE. 31-34 1985
 (A) (b2) (EN) (GBR) (写図8, 表1) AU
- JN
- CI
- 海上採油の際の排水の油水分離技術を展望。40mg/1の油の含有が許容されているが、より低水準であることが望まれる。場所の制約があるため、コンパクトな 機械が必要。板状分離装置,粒状ろ材を用いたろ過,気ほうによる浮上分離,金網や多孔性セラミックおよびプラスチックを用いた凝集装置などの特性と応用を概観 XE03000E, UA10010K (66:541.18/.2,622.276.01)
- 海上採油;廃水処理;油水分離;砂ろ過;浮上法;凝集処理;邪魔板;コアレッセ ンス;油水分醛装置


K90110315

- Cabo Pilar号座礁および油流出
- The Cabo Pilar grounding a n d spill.
- PIZARRO F
- JN
- CI
- T0573A Proc Oil Spill Conf VOL. 1989 PAGE. 61-64 1989 (C) (a1) (EN) (USA) (写図3, 参3) 1987年10月にマゼラン海峡で座礁したタンカーからの油流出について解説し た。特に、油によって影響を受けた地域、分散剤の散布の模様、回収浄化作業など た。特に、油によって影響を受けた地域、分散剤の散布の模様、回収浄化作業など たついて述べ、さらに、それらの問題点、効果、そのコストについて解説した。装 置のレンタル代、人件費、分散剤、船、浄化および環境調査に使われた全コストは 400、000米ドルであった。
- SB02040B, RA02040X (614.777(26), 614.8 OTHERS) 海洋汚濁; 油汚染; 原油タンカ; 海難; 流出油; チリ; 災害対策; 汚染防止; 分散 剤; 油濁処理剤; 浄化; 環境インパクト; 環境被害; 経済計算; 座礁

```
ANSWER 4 OF 5 COPYRIGHT 1991 ACS
Ll
     CA80(18):99923q
AN
     Oil separation by air bubbling method using high polymer coagulants.
ŤΙ
     Kondo, Goro; Asakura, Mitsuaki; Tanaka, Minoru
AU
CS
     Kobe Univ. Merc. Mar.
1.0
     Kobe, Japan
     Mizu Shori Gijutsu, 14(11), 1161-9
$0
     60-2 (Sewage and Wastes)
SC
SX
     51, 37, 46
DT
     MSYGA0
CO
PY
     1973
LA
     Japan
AN
     CA80(18):99923q
```

AB Oil sepn. by aeration is markedly accelerated by the addn. of inorg. salts. This method is suitable for treating tanker waste water, e.g. sea water ballast, but aggregation is slow in fresh water, e.g. industrial wastes. The aggregation of fine oil droplets is accelerated by the addn. of trace amts. of high polyner coagulants at 1-2 ppm and pH 3-4. The tested coagulants are primarily acrylamide.

APPENDIX R2-6

APPENDIX R2-6

Supplementary Experiments of Coagulation-Filtration

October, 1991

Water Re-use Promotion Center,

Japan

1. Forward

This paper summarizes fundamental research grasping the properties of oil in seawater to develop an oil removal technique. This is so that a desalination plant can be operated trouble-free when assuming that oil mixed with seawater is introduced to an RO desalination plant.

2. Experimental Procedure

The condition under which oil intruded in seawater disperses but does not float or settle, (that is, becomes stabilized), is experimentally determined. Then the following items are measured: oil concentration, oil solubility (oil amount which passes through a filter under a certain condition), distribution of particle diameters and oil removal by some kinds of flocculant under the above condition.

3. Experimental Method

3.1 Test on the Intrusion of Oil into Seawater
This test is carried out to determine a stable condition where
oil intruded into seawater is observed without any
floatation or settlement, and to determine the concentration
change of oil intruding into seawater with time by changing
the mixing ratio of oil with seawater and the agitating conditions
as shown in Table 1.

Table 1 Conditions for test on the intrusion of oil into seawater

				The state of the s	:	
Test No.	Seawater (l)	Oil *2 (m ℓ)	Agitating condition	Seawater $mixed(\ell)$	Agitation (Hr)	Settling time(Hr)
(A)	1.5	10	M.S *3 1Hr	1,5	0.5	1,5,10 24
(B)	1.5	10	M.S 24Hr	1.5	0.5	1,2,4,6
(C)	1.0	20	M.X *4 15min	9	0.5	1,2,4,8 24,48, 70

Note: *1; Seawater is collected from the Inland Sea of Japan and used after filteration with GFF (TOYO GA-200, pore diameter of 1 // m).

^{*2;}Oil is a diesel oil (as for the composition, see attached sheet).

^{*3;}M.S; magnetic stirrer.

^{*4;}M.X; mixer.

3.2 Measurement of Oil Dissolved in Seawater

It is difficult to make clear whether oil dissolves in seawater or not, what the definition of the dissolution is and what the verifying method is. In this experiment seawater intruded by oil is filtered under certain conditions and oil in the filtered seawater is regarded as the dissolved oil. Figure 3 shows the flow chart.

Note: Water for the test was planned to be used at stabilized oil concentration levels which were verified by the test on the intrusion of oil into seawater in subgparagraph 3.1, but the preparation of oil contaminated seawater which has stabilized oil concentration was found to be difficult because some fluctuation occurs depending on the agitating condition and the settling time. Determination for oil concentration was to be made each time measurement was carried out.

- 3.3 Test on Removal of Oil by Addition of Flocculants
 The test is carried out to verify whether or not oil dispersed
 in seawater can be coagulated and removed by some flocculants
 which are used for pretreatment in desalination plants.
 Figure 4 shows the flow chart.
- 3.4 Measurement of Particle Diameters of stabilized Oil Dispersed in Seawater

The test water which was prepared by the conditions of (C) shown in Table 1 and settled for 2 hours and 70 hours is used to determine the distribution of particle diameters by taking photographs of 3 fields of view (magnification: 200) with an optical microscope and then by reading the particle diameters and numbers.

Figure 5 shows the flow chart.

- 4. Experimental Results
- 4.1 Test on the Intrusion of Oil into Seawater

 The experimental results after oil intrusion into seawater is

shown in Table 2.

Table 2 Oil mixing test with seawater

Test No.	(A)	(B)	(C)
Settling time (Hr)	(mg/ℓ)	(mg/ℓ)	(mg∕ ℓ)
1	2.0	19.3	69.5
2		14.9	68.1
4		11.4	66.7
5	1.0		
6		8.3	
8	:		42.4
10	1.8		
24	1.2		14.9
48			8.0
70			6.1

4.2 Measurement of Concentration of Oil in Seawater
The test water similar to the test No.(A), and the test water of
No.(C) prepared in the test on the intrusion of oil into seawater
were used for the experiment and the results are shown in
Table 3.

Table 3 Measurement of concentration of oil dissolved in seawater

Test	Test water	Settling time (Hr)	Oil in Test water (mg/l)	Oil in Filtered water (mg/l)
1)	Test No.(A)	After 1	7.5	0.4
2	Test No.(B)	After 2	7.4	0.3
3	Test No.(C)	After 70	6.1	0.2

4.3 Test on Removal of Oil by Addition of Flocculants The test results on oil removal by addition of 4 kinds of flocculants are shown in Table 4.

Table 4 oil removal by addition of flocculants

	· · · · · · · · · · · · · · · · · · ·	J		
Name of flocculant	conc. (ppm)	рH	Oil conc. in Test water conc. (mg/ℓ)	Oil conc, after treatment (mg/l)
Ferric	5	·	Test No.(A); 1 Hr	0.5
chloride	10		11~13	0.2
FeCl 3	50	7.0		0.5
	10		Test No.(C); 4 Hr 67	0.3
Aluminum sulfate	5		Test No.(A); 1 Hr	0.6
	10	6.0	11~13	0.5
Al 2 (SO,)3	50			0.5
Poly- aluminum	5		Test No.(A); 1 Hr	0.4
chloride	10	Not	11~13	0.5
PAC	50	adjust (7.5)		0.5
Hydroxye-	2	(7.3)	Test No.(A); 1 Hr	0.7
thyl cellulose	5 5		11~13	0.5
	10			0.8

4.4 Measurement of Particle Diameters of Stabilized Oil Dispersed in Seawater

Photographed results with an optical microscope are shown in Photograph 1 and 2 for the test water prepared under the condition in test (C) after the test water had settled for 2 hours and 70 hours and the measured results of distribution of particle diameters of oil, based on these photos, are shown in Table 5.

Table 5 Distribution of Particle Diameters of Oil

Range of particle diameter	After 2 H	r Settling	After 70 H	r Settling
diameter (μ)	Number	Distri. rate (%)	Number	Distri. rate (%)
1 ~ 2	303	39.6	112	59.6
2~ 3	212	27.7	.38	20.1
3 ~ 4	108	14.1	24	12.8
4~ 5	55	7.2	3	1.6
5 ~ 6	31	4.1	7	3,7
6~ 7	.18	2.3	3	1.6
7~ 8	12	1.6	1	0.6
8~ 9	5	0.6		
9~10	5	0.6		
1 0 ~ 1 1	6	0.8		
1 1 ~ 1 2	2	0.3		
1 2 ~ 1 3	1	0.1		
1 3 ~ 1 4	4	0.5		
1 4 ~ 1 5	0	0		
15~16	0	0		
16~17	2	0,3		
1 7 ~ 1 8	1	0.1		
18~19	1.	0.1		

Remarks: The distribution of particle diameters is shown by the mean value of the three attached photographs (3 fields of view).

- 5. Summary of Experimental Results and Discussion The following is a summary of the experimental results:
- 5.1 Test on the Intrusion of Oil into Seawater
 When oil intruded into seawater, it was verified that the
 intruded oil concentration varies depending on the mixing ratio
 of oil with seawater and the agitating condition, and furthermore,
 that the concentration of oil dispersed in seawater changes with
 settling time.
- 5.2 Measurement of Concentration of Oil Dissolved in Seawater Test water samples were filtrated by TOYO Filter No.5C and a membrane filter having pores of 0.45 μ m in this test. The test was carried out assuming that oil in filtered sea water is dissolved oil. As a result, it was found that oil of about 0.2 to 0.4 mg/ ℓ dissolves (passes through the filter).
- 5.3 Test on Removal of Oil by Addition of Flocculants It was found that iron (I I I) chloride or ferric chloride, aluminum sulfate, and PAC have considerable flocculating effects and that the test water containing oil of 10-odd mg/ ℓ could be lowered to that of 0.5 mg/ ℓ or less by the addition of each flocculant.

The removal rate relates to oil concentration to be treated and it could be confirmed that residual oil concentration could be altered to 0.5 mg/ ℓ or less when ferric chloride of 10 ppm was added to the test water containing oil of about 70 mg/ ℓ .

As for the hydroxyethyl cellulose, the removal rate was a little lower than that of the above mentioned three flocculants although there were some problems as to the applied method.

5.4 Measurement of Particle Diameters of Oil Stably Dispersed in Seawater

Oil containing water which was prepared by mixing was diluted and dispersed in seawater, and then settled for a certain time (2 hours and 70 hours) to measure the particle diameters of oil dispersed in seawater with a microscope. As a result, it could be verified that almost all of the particle diameters were 5μ m or less.

The following conclusions were obtained:

The concentration of stabilized oil dispersed in seawater may depend on the kind of oil, the physical properties (specific gravity, viscosity), and water temperature.

Moreover, the following conditions are required to aquire stabilized conditions where oil mixed with and dispersed in seawater does not float or settle:

- 1) sufficient emulsification of oil, and
- 2) entended settling time

For these reasons, it is difficult to carry out many kinds of tests under fixed conditions (oil concentration) and it is thought better to carry out the test by using test water preparation of the C method, that is, by diluting highly concentrated oil emulsion with seawater in a large container by keeping it for a time, and taking out the test water from the lower part of the container and finally, by verifying oil concentration in each sample of water.

6. Summary

The preparation of test water containing oil, the measuring method for oil concentration, and the flocculation effect by addition of flocculants and filtration effects were verified by fundamental investigation in relation to the properties of oil in seawater carried out in this experiment.

It is thought necessary to further carry out practical model tests with sand filtration equipment and flocculants (which showed the effect in the fundamental experiments) to confirm changes of filtration performance when oil intrudes into the sand filtration equipment based on this fundamental experiments.

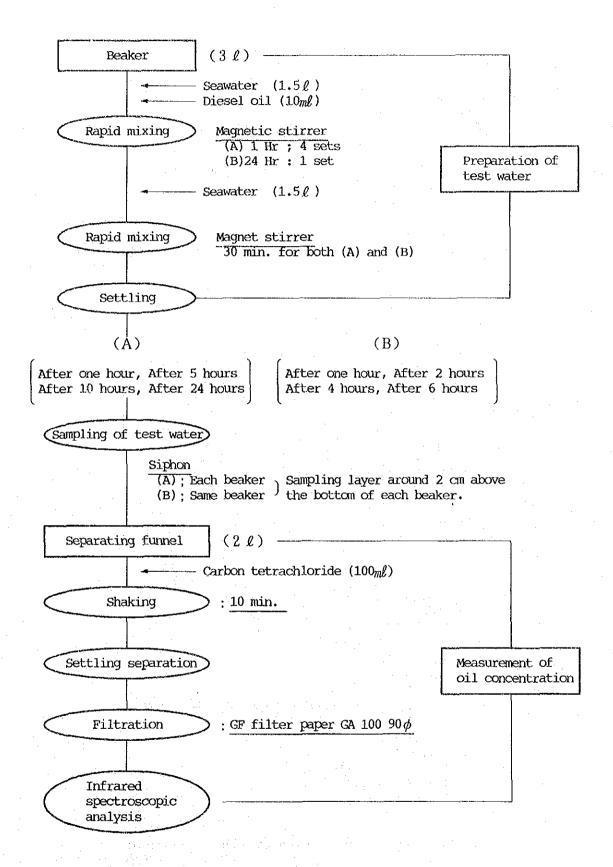


Fig.1 Flow chart for test on the intrusion of oil into seawater [Test Nos.(A) And (B)]

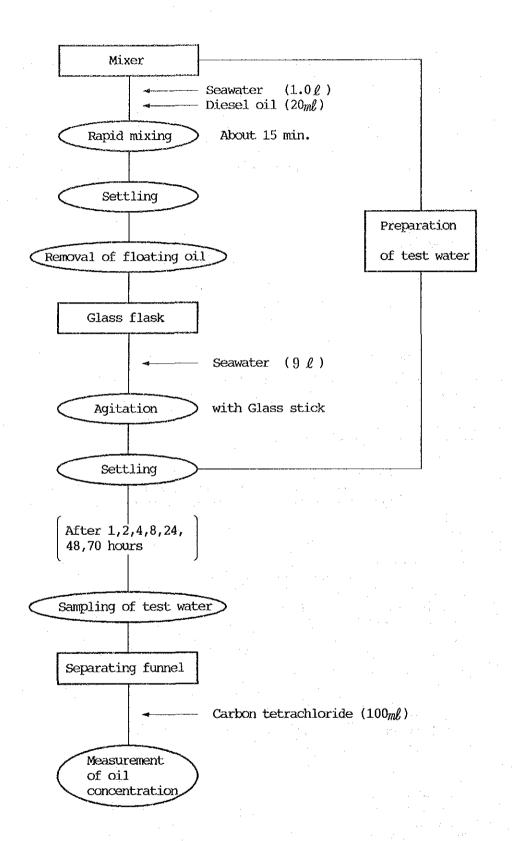


Fig.2 Flow chart for test on the intrusion of oil into seawater [Test No.(C)]

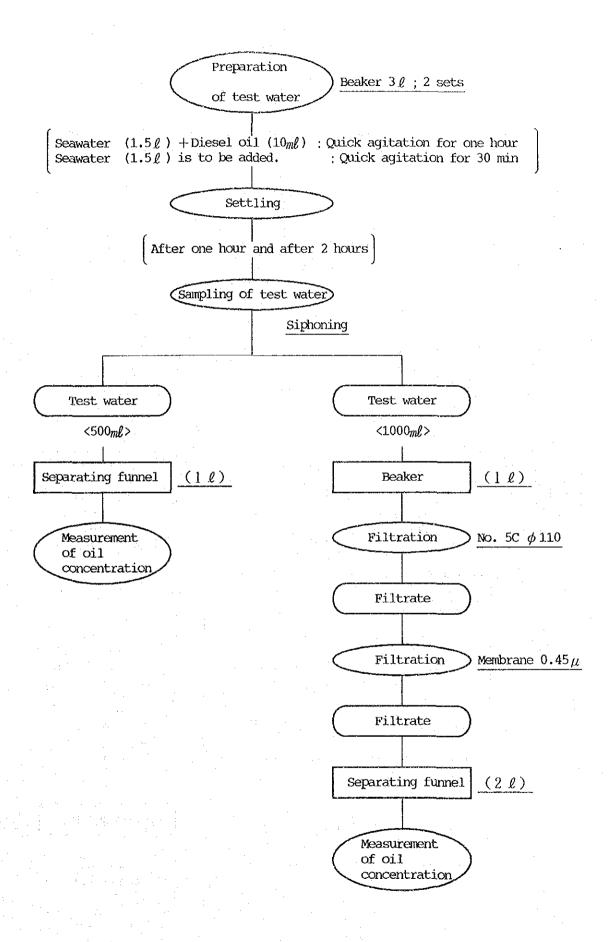


Fig.3 Flow chart for the measurement of oil in seawater

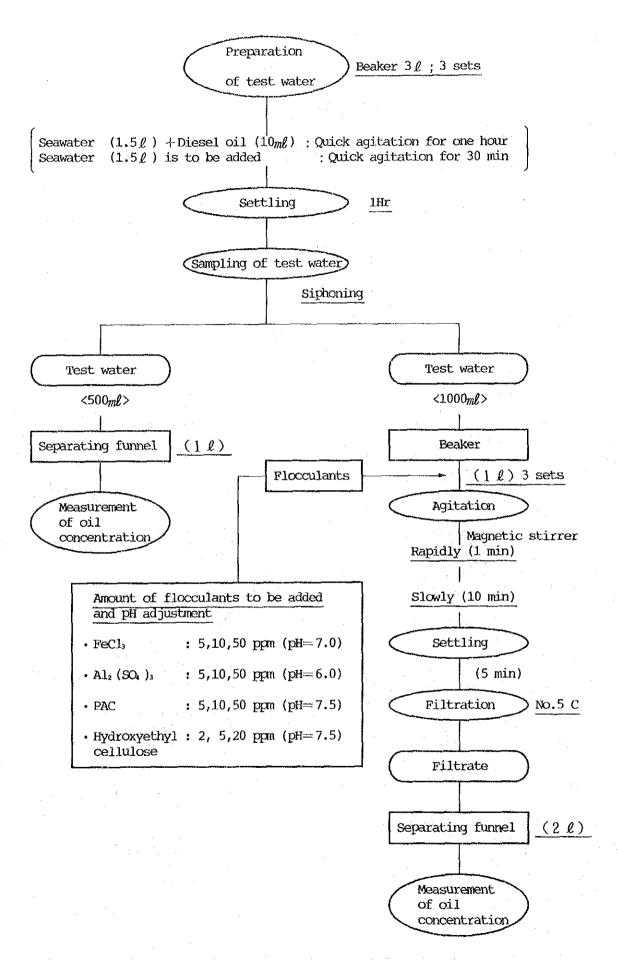


Fig.4 Flow chart for test on the removal of oil by the addition of flocculants 4-128

Preparation of test water

Test on the intrusion of oil into seawater

Fig. 5 Flow chart for the measurement of particle diameters of stabilized oil dispersing in seawater

Measurement of the Composition Ratio of each Carbon Number of Diesel Oil Used in This Experiment

1. Method

A sample was dissolved in carbon disulfide to prepare a 10% (v/v) solution of which 1μ ℓ was injected into a gas chromatograph-mass spectrometer. The obtained chromatograph was classified into respective compounds having same carbon number on the assumption that n-alkane of hydrocarbons having a same carbon number elutes latest, to get the percentage of total peak area of each carbon number to the total peak area of chromatograph (except peak of carbon disulfide)

2. Equipment

GC analytical condition

Instrument

:Shimazu GC-14APF

Column

:Fused silica capillary columnn CBP-1,

 $50\text{mm} \times 0.2\text{mm}$ i.d., 0.25μ m film thickness,

Temperature

:Column; 35° C (1.5min.) \rightarrow 310°C, 5°C/min.

Injector; 280°C, Detector; 310°C

Carrier gas

:Inlet press.; 2.0kg/cm².

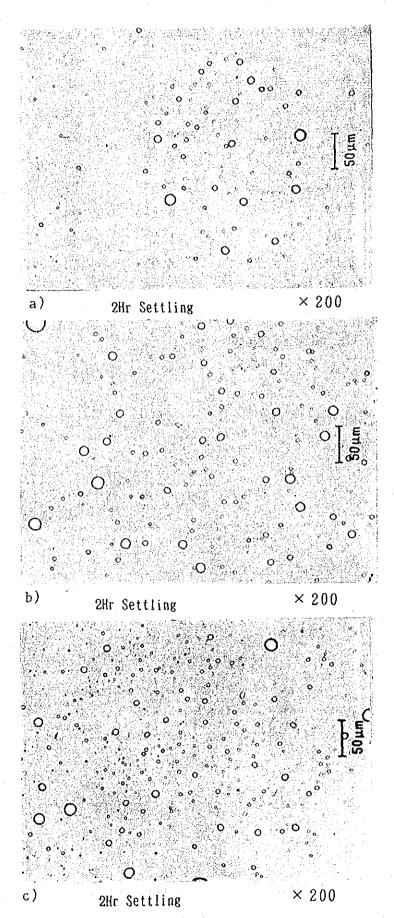
Split

:1/50

Detector

:FID; Range 10²

;Air 0.5kg/cm², 400ml/min.


 $;H_2 = 0.5 \text{kg/cm}^2$, 40 ml / min.

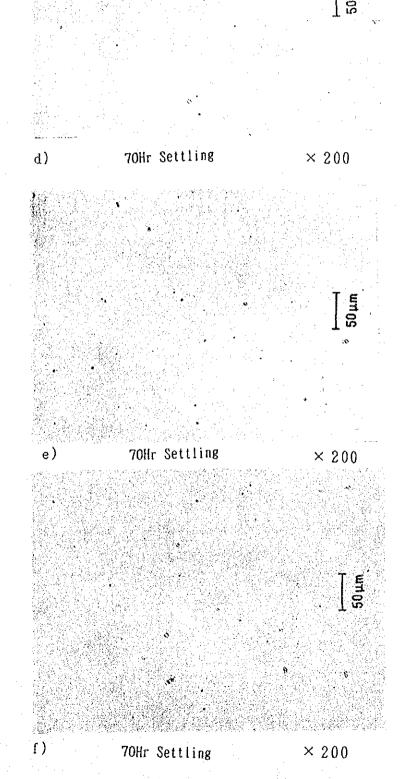
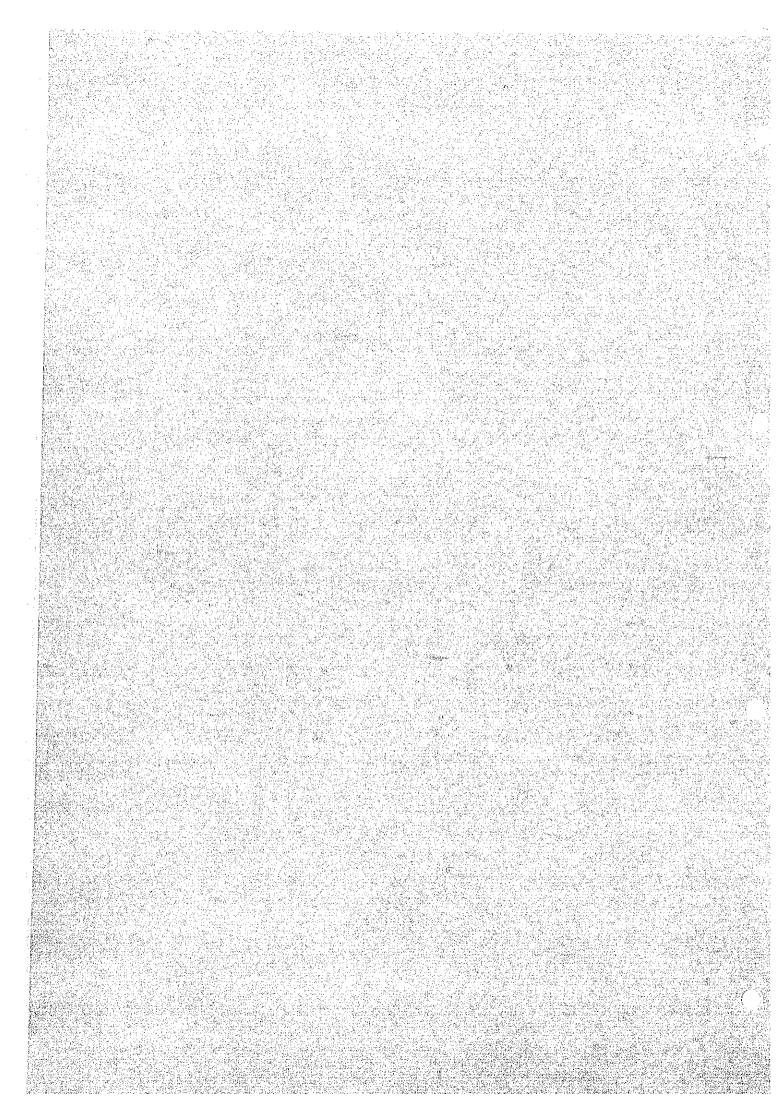
3. Results

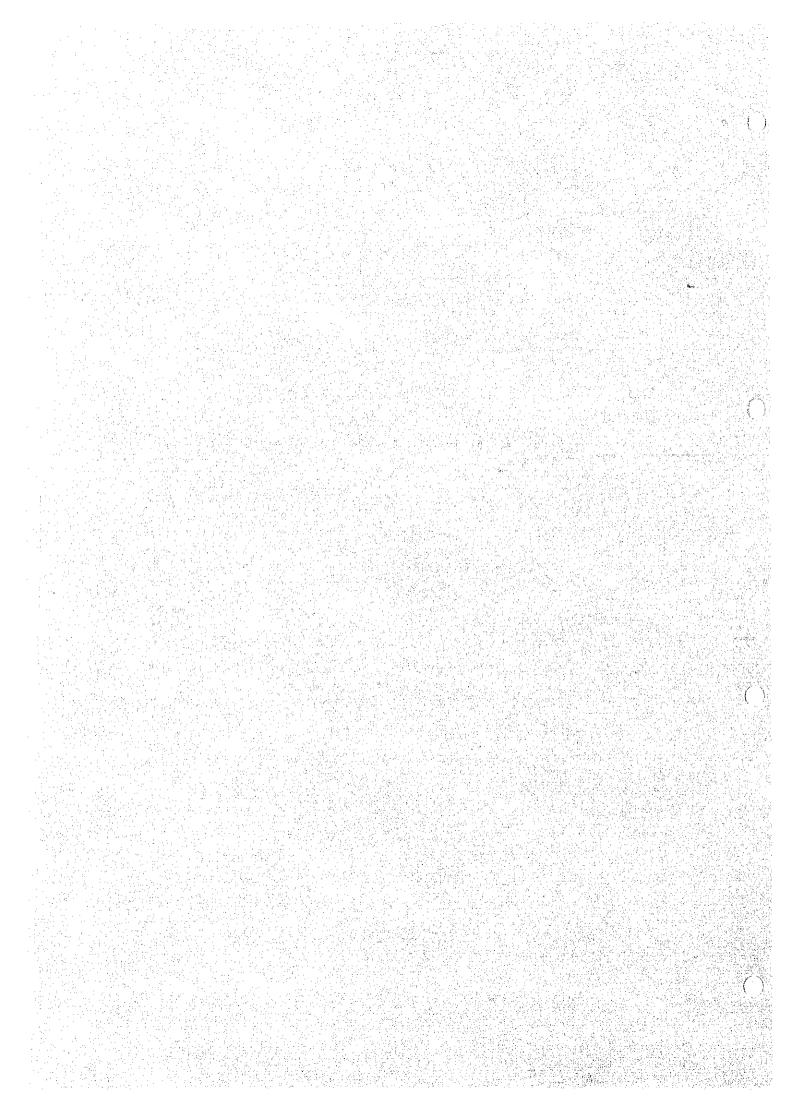
The composition ratio of each carbon number was shown in the following table. The unit is %.

Carbon number	Compisition	Carbon number	Composition	Carbon number	Composition
8 or less	0.22	16	10.66	24	2.42
9	1.90	17	9.06	25	1.59
10	3.48	18	8.42	26	1.09
11	4.28	19	7.68	27	0.65
12	4.88	20	6.14	28	0.31
13	5.86	21	5.07	29	0.18
14	8.19	22	4.07	30	0.08
15	10.69	23	3.05	31 or more	0.02

Refer to the chromatograph.

Microscope Photo. for Measurement of Oil Particles in Seawater Photo. 1 4-132


Photo. 2 Microscope Photo. for Measurement of Oil Particles in Seawater

5. APPENDIX for R3 (Pollution Effect of Membrane Cleaning Discharge)

APPENDIX	R3-1	Literature Retrieval	· 5 –1
APPENDIX	R3-2	Sclected Paper by Analysis of the Original	5-7
APPENDIX	R3-3	Summary of Main Papers	5-13
APPENDIX	R3-4	Report of Treating Waste Water Contained Formalin	5–17
APPENDIX	R3-5	Results of Chemical Analysis for RO Plant in Haql	5-21
APPENDIX	R3-6	Environmental Protection Standard (General Standard Document No.1409-01, Saudi Arabia)	5-23
APPENDIX	R3-7	Public Nuisance Countermeasures Basic Law (Law No.132, Aug.3, 1967, Japan)	··5–41
APPENDIX	R3-8	Water Quality Pollution Prevention Law (Law No.138, Dec.25, 1970, Japan)	··5–55
APPENDIX	R3-9	Law Concerning Prevention of Marine Pollution and Marine Disasters (Law No.136, Dec.25, 1970, Japan)	··5–91

APPENDIX R3-1

APPENDIX R3-1 Literature Retrieval

1) DIALOG retrieving system

Retrieving process	Set number	Remarks
? B411		· Connect to DIALINDEX
		Surveying numbers of papers
		in each file
? S ((RO+REVERSE?()OSMO?)*(SEA()WATER+BRIN?)		• Extracting papers about
*(DE()SALT?+DESALT?+PURIF?+RINS?+DRAIN?+		desalination of seawater
RBLEAS?)*PY = 1976:1991		after 1976
? SAVB TEMP		• Record the former retrieving
Temp Search Save "TB014"stored		expression
? B245, 117, 399, 28, 44, 8, 41, 6, 144, 96		• Connect to 10 files that
		have many papers
? EXS TB014	\$1 915	•Operate the retrieving
		expression → 915 papers
? S S1 AND PY = 1981:1991	\$2 579	· Change surveying term to
? PR \$2/5/ALL	·	after 1981 → 579 papers
		• Request offline print of
		579 papers
? B350, 351		• Connect to (WP1, WP1L)
		• Operate the retrieving
? EXS TB014	\$3 213	expression → 213 papers
A DAG TOOLY		• Select files by Internatio-
2 C C2 AMD IC - DOID-012	S4 147	nal Patent Classification
? S S3 AND IC = BOID-013	ודו ניט	Hat racent of assisted ton

Retrieving process	Set number	Remarks
? S S4 NOT (PC = SU AND NP = 001)	\$5 146	• Eliminate patents those applied for only in U.S.S.R.
? PR \$5/7/ALL		• Request offline print of 146
? LOGOFF		papers

2) JOIS retrieving system

[1] S: 136, 393 タンスイカ&

U: ギャクシントウマク& OR ハントウマク&

(2) S: 2, 970 ギャクシントウマク&+ハントウマク&

U:センジョウ

(3) S: 32, 281 センジョウ

U:KW:ハイスイ (ハイシュツ)

[4] S: 8, 401 KW:ハイスイ (ハイシュツ)

U:DESALINAT&

(5) S: 723 DESALINAT&

U: SEMIPERMEABLE (1W) MEMBRANE?

(6) S: 34 SEMIPERMEABLE (1W) MEMBRANE?

U: CLEANING OR LINS

(7) S: 3, 268 CLEANING&LINS

U:RINSE?

(8) S: 119 RINSE?

U:DRAINAGE OR DRAINING

(9) S: 2, 766 DRAINAGE OR DRAINING

U:1+5 タンスイカ

(10) S: 136, 608 1+5 タンスイカ

U:2+6 ギャクシントウ

(11) S: 2, 976 2+6 ギャクシントウ

U:3+7+8 センジョウ

(12) S: 34, 072 3+7+8 センジョウ

U: 4+9 FERE

(13) S: 10, 099 4+9 FERE

U:11*13*12*10

(14) S: 0 11*13*12*10

U:10*11

(15) S: 52110*11

U: 15 * (12 + 13)

(16) S: 22 15 * (12+13)

U:\PA

<省略>

S: 出力終りました (SSNo [16] から22件)

U:REVERSE (1W) OSMOSIS

(17) S: 803 REVERSE (1W) OSMOSIS

U:RO

(18) S: 2, 703 RO

U: 1.7 * 1

(19) S: 208 17*1

U:19*(12+13)

(20) S: 5 19 * (12+13)

U: 18 * 1

(21) S: 146 18*1

U:21*(12+13)

(22) S: 5 21*(12+13)

U: (20+22) #16

(23) S: 3 (20+22) #16

U:¥P A

<省略>

S:出力終りました (SSNo〔23〕から3件)

U:ハイスイ

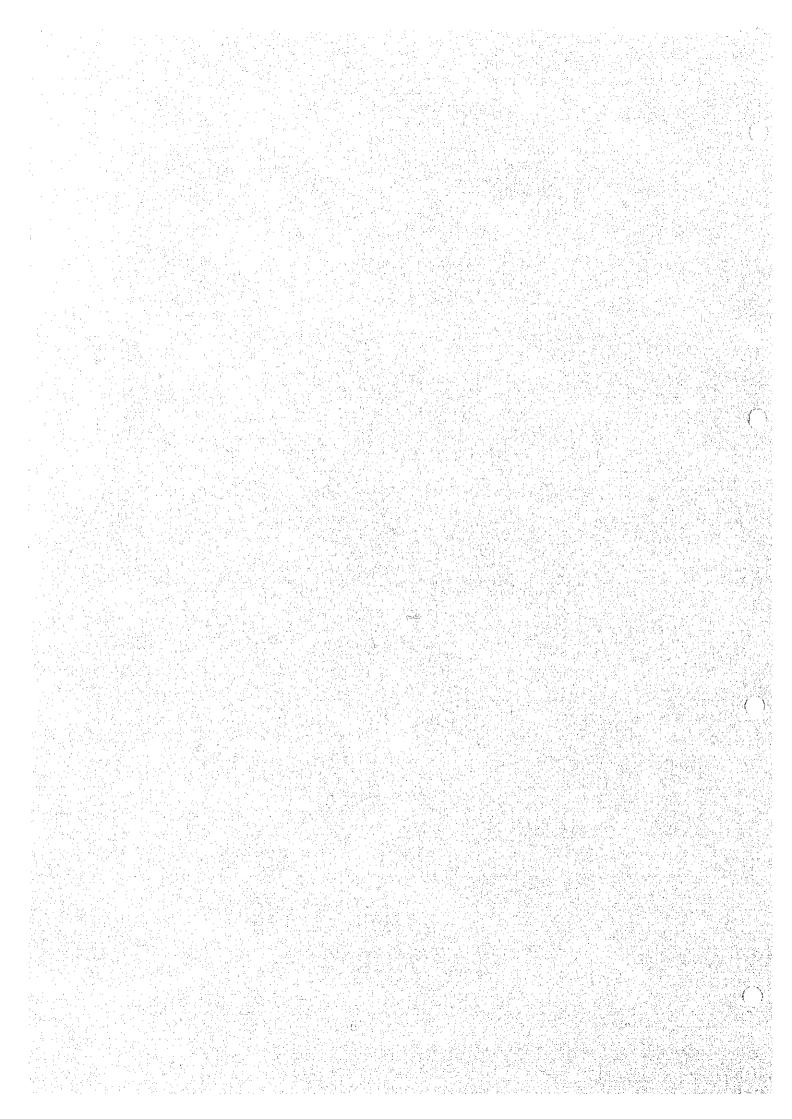
(24) S: 18,062 ハイスイ

U: 19+21+15

(25) S: 97 19+21+15

U: 25 * (12+13+24)

(26) S:


 $9 \quad 2.5 * (1.2 + 1.3 + 2.4)$

U:\YP A

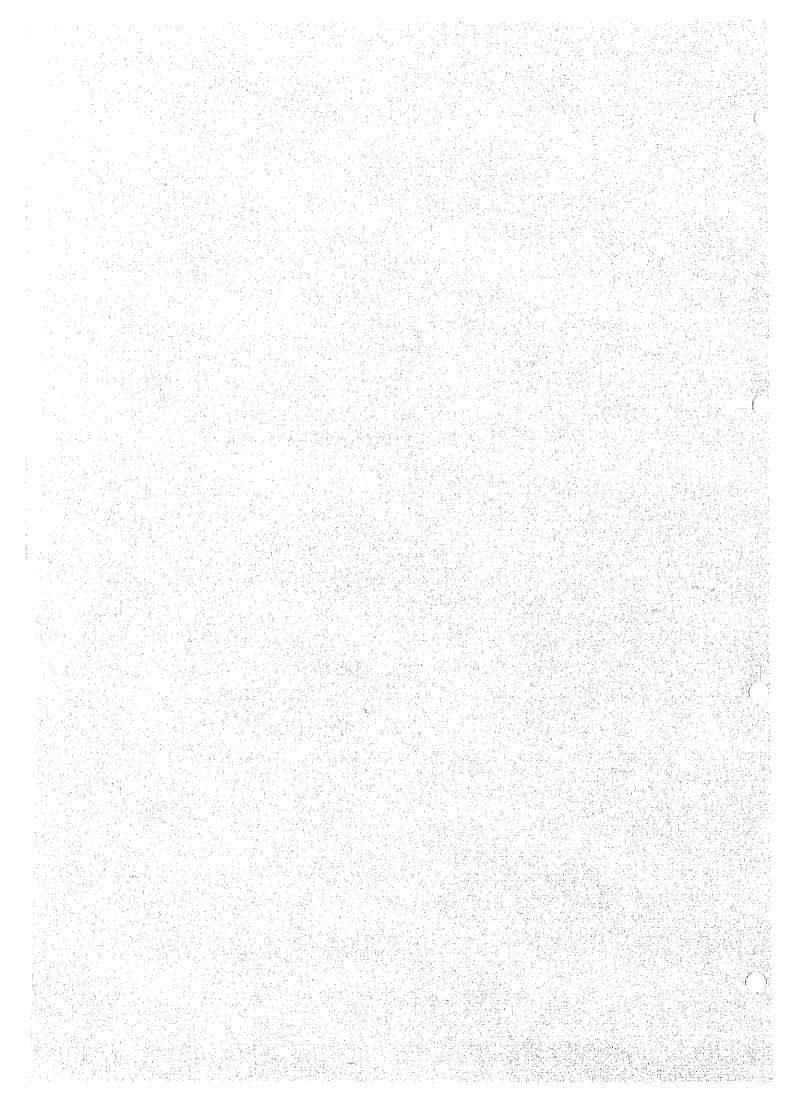
<省略>

S:出力終りました(SSNo (26)から9件)

APPENDIX R3-2

APPENDIX R3-2 Selected Paper by Analysis of the Original

			
File	Re.	Title	Source
No.	No.	(Author)	
1 1 7	1	Operating Experiences on a Reverse Osmosis Plant which Converts Sea Water into Boiled	
(010,		Feed Water	
011)	:	(Vera I.)	
1 1 7	2	Development of New Cleaning Techniques for Reverse Osmosis Membranes	Available from the National Technical Service
		(Jolaine A. Jonson and Thomas M. Leahy)	as PB83-146746 Append.OWRT C-80152-S(8519)(1)
(NTIS 6)			14-34-0001-8519
			30, Mar., 1982 183pp.
117	3	Solution of Contradictionary Problem of	Desalination
		Simultaneous Desalination and Concent- ration in Revese Osmosis	Vol. 46, 1983, p171-177
(96)		(C. A. Yagodin, et al.)	
1 1 7	4	Development of an Improved Cleaning	Available from the National
	.) ei	Solution for RO WPU Units	Technical Service as AD-A1196
		(Clyde E. Milstead and Rovert L. Riley)	Report No. SST-88-01
			Department of the Army Con-
			tract
(96)			DAA K-87-006
			11, Apr. 1988 245pp.


	T	1	
File	Re.	Title	Source
Νo.	No.	(Author)	
117	5	High Recovery Reverse Osmosis	Desalination
(28, 44)		(Bruce M. Watson)	Vol. 78, No. 1, 1990, p91-97
1 1 7	6	Reclaiming Reverse Osmosis Blowdown with	Desalination
		Electrodialysis Reversal	Vol. 78, No. 1, 1990, p77-90
(44)		(Eugene R. Reahl)	
2 8	7	Pre-and Post-Treatment at the RO Plant	Desalination
	 	at RA's Abu Jarjur, Bahrain	Vol. 63, 1987, p81-94
(44)		(M. Al Arrayedhy)	
2 8	8	Trace Metal Fouling and Cleaning of Sea-	Desalination
		Water R.O. Membranes	Vol. 66, 1987, p271-284
(44)		(G. Peplow, F. Vernon)	
2 8	9	Preface	Desalination
(117, 44)		(O. K. Buros)	Vol. 78, 1990, p1-2
4 4	1 0	Energy recovery from the reject brine of	PBNo. 83-209031
		Reverse Osmosis System	Report No. W83-03113
•		(S. C. May et al.)	Selected Water Resources
			Abstracts
			Mar. 1981, pp. 71
		<u> </u>	

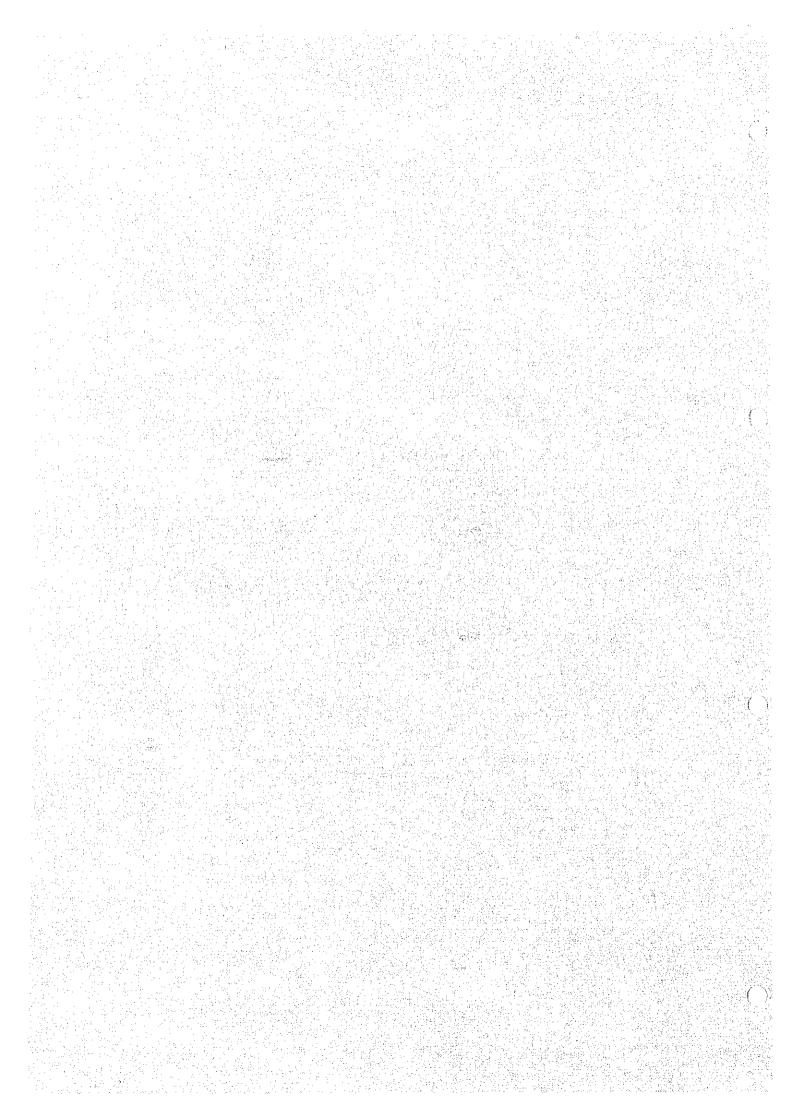
Fi	l	l	е	Re.	Title	Source
Νo				No.	(Author)	
	Ļ	ļ	4	1 1	Drinking Water from the Sea:Reverse	Trans. Inst. Mar. Eng.(TM)
					Reverse Osmosis, the Modern Alternatine	Vol. 95. No. 38, 1983 . pp. 13
					(J. T. Allanson and R. Charnley)	
	4	1 4	4	1 2	Future for Desalination by Reverse Osmosis	Desalination
				-	(M. A. Jaward)	Vol. 72, 1989, p23-28
0			0	1 3	Wastewater Treatment by ion-exchange-	PPM
0	1	ŀ	1		membren method	Vol. 7. No. 3, 1976 p41-52
		-		-	(Y. Tanaka, S. Itoi)	
0))	14	Macromolecular Membrane Separation	Chemical Equipment
0	1	1	1		(K. Tanaka)	Vol. 32, No. 11, 1990 p88-99
0]] ()	1 5	Drinking Water from the Sea:	Ebara Infirco, Report
0	1	l ·	ı		Reverse Osmosis, in Ehime	No. 83, 1981 p44-49
					(f.Kawamata)	
0	ì	i	0	1 6	Report of Desalination system in Nagasaki	Water-Making Technology
0	·	l	1		(J. Kijima. M. Kunitomo)	Vol. 8, No. 1, 1982 p39-43
		•				
0	1]	0	1.7	High Frequency Excitation and Vibration	Desalination
()		l	[.		: Studies on Hyperfiltration Membranes	Vol. 42, 1982, p329-338
					(Cal. C. Hermann)	

File	Re.	Title	Source
No.	No.	(Author)	
0 1 0	1 8	Development of Improved Cleaning and	PB Rep.
0 1 1		Surface Regeneration Methods and Economic	PB-81-170607, 1981 114pp
		Analysis of These Methods for Seawatwer	
		(Buros and Roe Industrial Surv. Corp.,	
		New Jersey)	
		Tien vorocy,	:
0 1 0	19	Recovery of Chemicals by Membrane Process	Tutorial Lectures In Electro
0 1 1		(Patric K. NG)	Chemical Eng. And Tech II
UII		trattic a. nov	Vol. 79, No. 229, 1983 p187-196
İ			
0 1 0	2 0	Design of Wastewater Treatment System (19)	Water
	. 20	(N. Mizorogi)	Vol. 25, No. 3, 1983 p36-40
0 1 1		(M. WISOIOSI)	
0 1 0	2 1	Electrodialysis Reversal (EDR) for Surface	Technische Mitteilungen
0 1 0	- 1		Vol. 78, No. 12. 1985 p255-269
011		(J. W. Van Wely)	
		(J. II. Vali Hely)	
0 1 0	2 2	Desalination And Reuse of Power Plant	Desalination
	"	Effluents: From Pilot Plant to Full Scale	Vol. 67, No. 1/2/3, 1987, p255-269
0 1 1			
		Application	
010	23	Pilot Experiences on the Recovery of	Desalination
	2.0	Polluted Reverse Osmosis Membranes	Vol. 66, 1987, p385-402
0 1 1			
		(M. Farinas, et al.)	

File No.	Re.	Title (Author)	Source
0 1 0	2 4	Graphic Evolution of the 24,000 Hours(3 Years) Operating Data of a Desalination Plant, in Las Palmas, Canary Islands, Spain (Enrique Ruiz Saavedra)	Desalination Vol. 76, NO. 1/3, 1989, p15-26
010	2 5	Improving Reverse Osmosis Performance Through Perioic Cleaning (S. 1. Graham, et al.)	Desalination Vol. 74, NO. 1/3, 1989, p113-124

APPENDIX R3-3

APPENDIX R3-3 Summary of Main Papers


No.	Title , Author	- Source	Contents	
1	Wastewater Treat-	PPM	Electrodialysis system with ion-exchange-membrane	
(File	ment :ion-exchange	Vol. 7, No. 3,	is reported. This system is adopted in Benghazi-	
No. 010	membrene method	1976 p41-52	city Waterworks, Zilten-city Waterworks and Beer-	
011)	(J. Tanaka, S. Itoi)		Brewage Water.	
			Treatment scale ;	
			Benghazi-city Waterworks : 19,000 m³/Day	
			Zilten-city Waterworks : 330 m³/ Day	
			Beer-Brewage Water : 670 m³/Day	
2	Macromolecular	Chemical	General matters of macromolecular membrane separa-	
(File	Membrane Separa-	Equipment	tion system is reported in this paper.	
No. 010	tion	Vol. 32, 1990	As the general consideration, some washing methods	
011)		p88-99	of membrene module is reported.	
			Type of foulings and shape of membrene must be	
			considered at sellecing the method of washing.	
			Setting of washing period is a matter of impor-	
		·	tance.	
			This paper shows kinds of washing methods, too.	
* .				

Νo.	Title , Author	Source	Contents
3	Drinking Water	Ebara	Reverse Osmosis Desalination System is reported.
(File	from the Sea:	infirco,	1)Equipment
No. 010	Reverse Osmosis,	 Report	Method : 1-stage Desalination by Reverse Oamosis
011)	in Ehime	No. 83, 1981	Pre-Treatment : Plural Separator, Sand Separator
	(F. Kawamata)		Precision Separator
			Post-Treatment: Deacids tower, Lime Column
			Chemicals : Sterilization NaClO
			($2 \sim 3 \text{ mg/l as Cl}_2$)
			: Flocculation FeCl ₂
ż	·		$(1.5 \sim 3 \text{ mg/l as Fe})$
			: pH regulation H₂SO₁
			: Scal prevention (NaPO ₃).
			Membrane: TOYOBO HR-8350
			Recovery rate: 30 %
			2)Separator of pre-treatment
			lst stage: Fl > 4
			2nd stage: F1 2 \sim 3
			After 2nd-separation: 0.02 mg/l (Conc. of Fe)
			Washing frequency: 1st stage 1 Time/Day
			2nd stage 1 Time/2 ~ 3 Day
	:		
			Flocculation: 1.5 mg/l as Pe
		į	3)Treatment for Wastewater
			Not Reported
		7	

No.	Title , Author	Source	Contents
4	Report of a Desali	Water-Making	1)Equipment (30 m³/Day)
(File	nation System in	Technology	Method : 2-stage Desalination by Reverse Damosis
No. 010	Nagasaki	Vol. 8, No. 1	Pre-Treatment : Pressure Filter, Safety Filter
011)	(J. Kijima,	1982 P39-43	Chemicals : Sterilization NaClO
	M. Kunitomo)		: Flocculation FeCl ₃
			: pH regulation H₂SO₁
			Membrane : TO-RAY SC-5200
			Recovery Rate : 1st stage RO 40 %
			2nd stage RO 83.3 %
			Product-water Quality : < TDS 500 p.p.m.
		·	
			2)Chemical Washing
			Chemical: Citric acid
			Period : After 15 months driving
			Iron tips was recognized on the membrane.
			3)Treatment for Wastewater
			Wastewater from Pressure Filter: No Treatment
			Concentrated sea water : No Treatment
			Wastewater from Chemical Washing: Not Reported
	·		

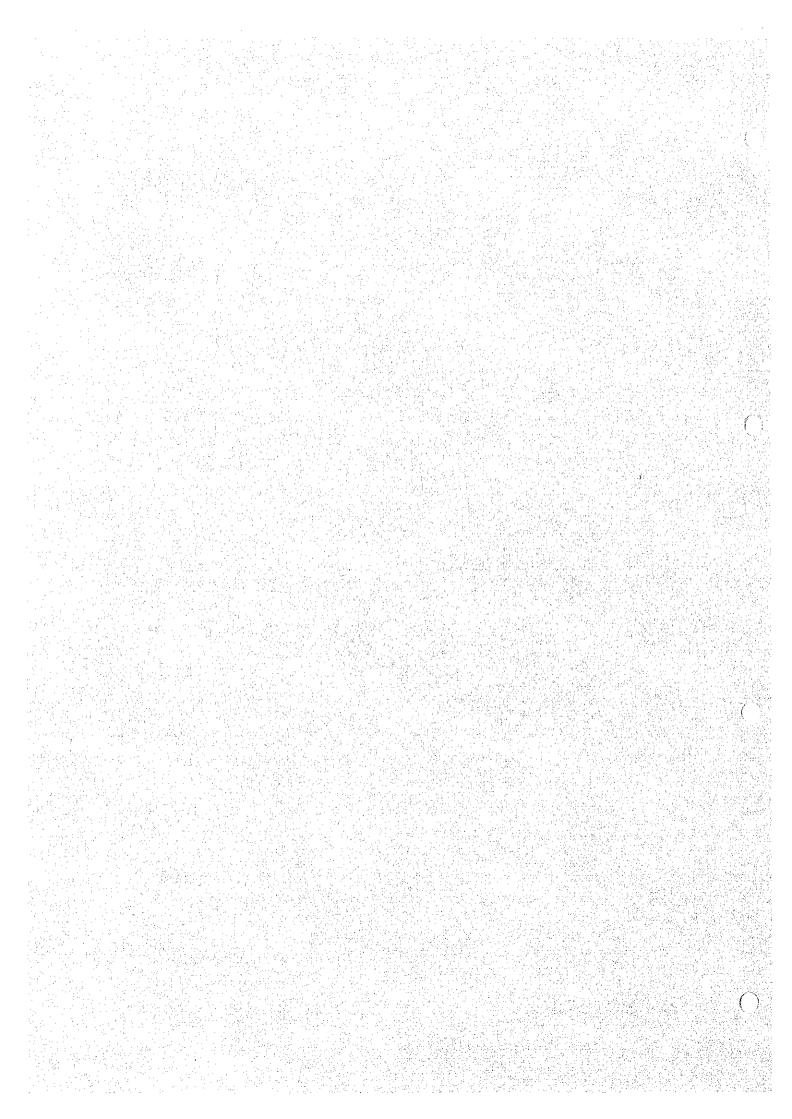
,			
**			

No.	Title , Author	Source	Contents
8	Design of Waste-	Water	This paper is a serial story of wastewater treat-
(File	water Treatment	Vol. 25, No. 3	ment. R.O. system is reported in this paper.
No. 010	System	1983, p36-40	Two methods (Flushing, Chemicals) is reported
011)	(N. Mizorogi)		in this paper.
			Chemicals : Citric acid
	H.L.		Ammonium Citrate
-			Enzyme

APPENĎIX R3-4

APPENDIX R3-4 Report of Treating Waste Water contained Formalin

No.	Title , Author	Source	Contents
2 6	Wastewater Treatment with Bio-Membrane	Chemical Engineering	Aerobic and anaerobic decomposition rate and the study sample of bio-membrane treatment.
	(T. Hano)	Vol. 35, No. 10 1990, p816-821	This study report mentions to decomposition rate of wastewater contained not only phenol but also formaldehyde.
27	Elimination of methanol, formalde-	Industrial Water	Study of method that oxidation decompasotion of Cl-compound from wastewater contained Cl-
	hyde and formic scid		compound as formalin or formaric acid. On condition that electroytic solution pH is
a di Se	electrolytes using a air-local cell system (T. Furuya)		less than 3, independent of electlytic solution's kind and concentration. C1-compound reacts axygen in the atmosphere and can be decomposed CO2 and H2O on gas electrode.
2 8	methanol, formalde- hyde and formic scid contained in various	Industrial Water No. 385, 1990, p55-60	Detail study of decompasition behavor of formaldehyde. On consideration that pH<7, it is oxidized completely in the atmomosphere and is decompased CO2 and H2O. In the case
	electrolytes using a air-local cell system (T. Furuya)		of pH<7, formic acid is pruduced. in the case of pH>12, formic acid is pruduced perfectly.


No.	Title , Author	Source	Contents
2 9	Removal of mixed	Water	Batch and continuous expreriment that treat
	substrates, phenol	Treatment	phenol and formaldehyde composite matrix by
	and formaldehyde, in	Technology	activated sludge.
	activated sludge.	Vol. 31, No. 4	Formaldehyde is removed in 1st stage withou
	(K. Hosaka)	1990, p205-212	acclimatization of sludge.
3 0	Biological Treatment	Chemical	Result of the experiment that the biologica
	for Wastewater con-	Engineering	treatment for the wastewater contained phe-
	ained phenol.	Dep.	nol,m-creosol formaldehyde; two kind of
	m-creosol formalde-	Vol. 55, 1990	method as follows; and filter bed that used
	hyde (K. Hosaka)	p426	a ringrace. Sludge is acclimatized.
3 1	Biological degrada-	Quality of	Results of two kinds of experiment for the
	tion of phenol and	Water Dep.	composite wastewater contained phenol, m-
. "	formaldehyde mixture	Vol. 23, 1989	creosol formaldehyde
	(K. Hosaka)	p85-86	
3 2	Stoerungen der	Vom Wasser	Experimental mesurement results that a kind
	Funktion bio-	Vol. 72, 1989	rance degree of mixing leven chemical mate
-	logischer Klaeran-	p165-173	rials within formaldehyde giving effect to
	lagen durch Chemi-		biological treatment of wastewater.
	kalien:Vergleich der		
	Grenzkonzentration		
	mit Ergenbnissen im		
	Sauerstoffzehrungs-		
	test. (W. Guhl, GODE)		

No.	Title , Author	Source	Contents
3 3	Versuche zum Ver-	GWF Wasser Ab-	Mesurement of formaldehyde's toxicity givin
i	halten microbizider	wasser	to activated sludge, adsorption of formal-
,	Verbindungen in	Vol. 130, No. 8	dehyde to activated sludge, and decomposi-
	Klaeranlagen.	1989, p392-397	tion behavior of activated sludge to formal
	3. Mitteilung:Form-		ehyde.
	aldehyd J. Raff		
ļ ,	L. Weil	·	
	W. Hegemann		
3 4	A Fenton-like re-	Environ. Sci.	Study of method that is similar to Fenton
	action to neutralize	Technol.	reaction, in order to treat with industrial
·	formaldehyde waste	Vol. 23, No. 2,	wastewater contained formaldehyde; oxidia-
	solutions.	1989, p166-169	tion of formaldehyde by H ₂ O ₂ with catalyst
	A. P. Murphy		of Fe ²⁺ .
	W. J. Boegli		
	M. K. Price		
	C. D. Moody		
3 5	The Process Utility	Biotechnology	Thermotolerant methylotropic bacteria in
	of Thermotolerant	and Bioengi-	chemostat steady continuous culture showed
	Methylotrophic	neering	high tolerance.
	Bacteria:1.An Evalu-	Vol. 36, 1990	In case of applying to industrial wastewate
	ation in Chemostat	p816-820	on condition that more than 0.2/Hr dilution
	Culture		rate, methanol was complete consumed and
			biomass generation is little.

 $\langle \cdot \rangle$

APPENDIX R3-5

APPENDIX R3-5 Results of Chemical Analysis for R0 Plant in Haql

Description	Feed	Brine
рН	6.14	6.17
Conductivity us/Cm	53800	76400
TDS mg/L	37600	54200
Temperature °C	22.5	21.2
Turbidity NTU	0.37	0.38
SDI	0.80	- .
TH as CaCo3 mg/L	6700	10300
Ca as CaCO3 mg/L	1050	1500
Mg as CaCO3 mg/L	5650	9800
Chloride as Cl mg/L	20330	30167
Carbonate as CO3 mg/L	Nil	NiI
Bicarbonate as HCO3	50	74
Total Alkalinity as CaCO3 mg/L	50	74
Carbon dioxide as CO2 mg/L	38.72	56.32
Res. Chlorine as Cl2 mg/L	0.25	0.25