3.2 Test Results

Detailed test results for earth material and concrete aggregate are shown in Table D-1 (1) to D-6.

4. Conclusions and Recommendation

4.1 Fill Material

(a) Earth material

Adequate earth material will be obtainable qualitatively on quantitatively at the earth borrow areas.

Natural moisture content is about 11-25% and the dry side of optimum moisture content, 17-27%.

(b) Filter material

The sand and gravel materials tested in the laboratory can be used for filter material and concrete aggregate. However, the quantity at the borrow areas is judged to be insufficient. Consequently, it is recommended that all filter material and concrete aggregate be obtained by quarrying and crushing.

(c) Riprap material

As mentioned above, the riprap material be obtained by quarrying.

4.2 Concrete Aggregate

All concrete aggregate will be obtainable from quarried rock.

4.3 Design Value of Fill Materials

Design values of fill materials are assumed based on the construction material investigation. These are shown in Table D-7.

TABLES

TableD-1 (1) Summary of Soil Test for Core Material I

W(%) 42.8	Sample number No.		TPCB-1	TP CB-1	TP CB-2	TP CB-2	TP CB-3	TP CB-3	TP CB-4	TP CB-4	TP CB-5	TP CB-5
ex content W (%) 42.89 38.46 47.83 48.26 49.59 44.94 50.26 evity of soil Tr (g/cm²) 2.561 2.599 2.616 2.640 2.614 2.625 2.645 anturation s (%) 2.3 16 4 5 3 15 3 t (%) 2.3 16 4 5 3 15 3 t (%) 2.5 2.0 36 2.1 38 29 2.3 t (%) 3.2 6.4 60 74 59 56 74 ter D fo (mm) 0.0135 0.0018 0.0052 . 0.0559 0.0089 . 2.0 2.0 ter D fo (mm) 0.0135 0.0018 0.0052 . 0.0559 0.0089 0.0089 tion (%) 38.288 68.59 96.59 92.64 102.35 72.23 106.28 tin (%	Borrow pit and depth (m)		-2.5 m	-5.0 m	-2.5 m	-5.0 m	-2.5 m	-5.0 m	-2.5 т	-5.0 m	-2.5 m	-5.0 m
refree content W(%) 42.89 38.46 47.83 48.26 49.59 44.94 50.26 avity of soil Gs 2.661 2.599 2.616 2.640 2.614 2.626 2.645 y 1 (1 (2/cm²) 2 2.661 2.599 2.616 2.640 2.614 2.626 2.645 saturation s(%) 1 (%) 2 23 16 4 5 3 3 15 3 14 (%) 2 20 36 74 59 56 74 cerr (mm) 2 0.0135 0.0018 0.0052 - 0.0059 0.0080 cer D 60 (mm) 0 0.0135 0.0018 0.0018 0.0059 0.0090 cer D 60 (mm) 0 0.0135 0.0018 0.0052 0.0052 0.0050 cer D 60 (mm) 0 0.0135 0.0018 0.0052 0.0052 0.0052 0.0052 cer D 60 (mm) 0 0.0135 0.0018 0.0018 0.0052 cer D 60 (mm) 0 0.0135 0.0018 0.0018 0.0052 cer D 60 (mm) 0 0.0135 0.0018 0.0018 0.0052 cer D 60 (mm) 0 0.0135 0.0018 0.0018	PROPERTIES					i						
y 71 (g/cm ²) saturation s(%) (%) 72 (g/cm ²) 11 (%) 23 16 4 5 3 15 3 23 12 (%) 25 20 36 74 59 2.0 13 2 20 2.0 14 (%) 25 20 36 21 38 29 23 15 20 2.0 16 4 60 74 59 26 17 (200) 18 2.0 19 2.0 10 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Natural water content	W (%)	42.89	38.46	47.83	48.26	49.59	44.94	50.26	53.97	45.69	31.89
y 11(g/cm ²) saturation s(%) (%) (%) (%) 23 16 4 5 3 15 3 15 3 17 18 (%) 23 16 4 5 20 36 21 38 29 23 17 18 18 18 18 18 18 18 18 18	Specific gravity of soil	Gs	2.661	2.599	2.616	2.640	2.614	2.626	2.645	2,640	2.572	2.644
samration s (%) (%) (%) (%) (%) (%) 23 16 4 5 3 15 3 16 4 5 20 36 21 38 29 23 16 4 59 56 74 59 56 74 59 50 20 20 20 20 20 20 20 20 20	Wet density	$\gamma t (g/cm^3)$										
sammation s(%) (%) (%) (%) 23 16 4 5 3 15 3 15 3 17 4 5 3 15 3 15 3 16 4 5 23 16 4 5 23 16 4 5 24 29 23 24 20 20 20 20 20 20 20 20 20	Void ratio	Ð										
(%)	Degree of saturation	s (%)										
(%) (%) 23 16 4 5 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 3 15 3 15 3 15 3 15 3 15 3 15 3 15 3 15 3 15 10 10 10 10 10 10 10 10 10 10 10 10 10	GRAIN-SIZE											
(%) (%) 23 16 4 5 3 15 3 3 6 23 6 6 6 6 74 5 9 5 6 74 5 9 7 9 7 9 9 9 7 9 9 9 9 7 9 9 9 9 7 9 9 9 9 9 7 9	Proportion			٠								
(%) 23 16 4 5 3 15 38 29 23 6 6 6 6 6 74 59 56 74 59 23 64 60 74 59 56 74 59 23 74 60 6 74 59 56 74 59 56 74 50 60 6 74 59 56 74 50 60 6 74 59 56 74 50 60 6 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70	Gravel	(%)										
(%) 25 20 36 21 38 29 23 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 59 66 74 50 60 60 60 60 60 60 60 60 60 60 60 60 60	Sand part	(%)	23	16	4	S	ო	15	e	6	6	61
(%) 32 64 60 74 59 56 74 r (mm) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 r D 60 (mm) 0.0135 0.0018 0.0052 . 0.0059 0.0080 . r D 10 r D 60 (mm) 0.0135 0.0018 0.0052 . 0.0059 0.0080 . r D 10 r D 60 (mm) 0.0135 0.0018 0.0052 . 0.0059 0.0080 . r C lay Clay Clay Clay Clay Clay Clay Cla	Silt part	(%)	25	20	36	21	38	29	23	20	23	20
rD 60 (mm) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Clay part	(%)	32.	64	09	74	59	56	74	99	89	19
(7) (mm) 0.0135 0.0018 0.0052 - 0.0059 0.0080 - 0.0010 0.0010 0.0051 0.0059 0.0080 - 0.0010 0	Max, diameter	(mm)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Clay Clay Clay Clay Clay Clay Clay Clay	60% diameter D 60	(mm)	0.0135	0.0018	0.0052	1	0.0059	0.0000	ı	0.0030	0.0029	0.24
Clay Clay Clay Clay Clay Clay Clay Clay	10% diameter D 10											
(%) 82.88 68.59 96.59 92.64 102.35 72.23 106.28 23.71 32.59 52.50 51.34 54.25 33.74 62.17 47.09 13.97 49.52 37.85 23.29 17.26 21.15	Uniformity coefficient											
(%) 82.88 68.59 96.59 92.64 102.35 72.23 106.28 35.79 36.00 44.09 41.10 47.40 38.44 44.11 dex 47.09 13.11 32.59 52.50 51.34 54.25 33.74 62.17 47.09 13.97 49.52 37.85 23.29 17.26 21.15 mit classification K (cm/sec) 2.27x10 ⁻⁶ 1.78x10 ⁻⁷ 3.50x10 ⁻⁷ 2.81x10 ⁻⁷ 1.54x10 ⁻⁷ 5.51x10 ⁻⁷ 1.74x10 ⁻⁷ 46.00 48.20 45.80 38.00 46.50	Classification		Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
mit (%) 82.88 68.59 96.59 92.64 102.35 72.23 106.28 imit (%) 35.79 36.00 44.09 41.10 47.40 38.44 44.11 23.59 52.50 51.34 54.25 33.74 62.17 49.52 37.85 23.29 17.26 21.15 ge limit soil classification **R (cm/sec) 2.27x10 ⁻⁶ 1.78x10 ⁻⁷ 2.81x10 ⁻⁷ 1.54x10 ⁻⁷ 5.51x10 ⁻⁷ 1.74x10 ⁻⁷ 1.54x10 ⁻⁷ 5.51x10 ⁻⁷ 1.74x10 ⁻⁷ 1.54x10 ⁻⁷ 37.40 46.00 48.20 45.80 38.00 46.50	CONSISTENCY											
imit (%) 35.79 36.00 44.09 41.10 47.40 38.44 44.11 23.11 32.59 52.50 51.34 54.25 33.74 62.17 tex 47.09 13.97 49.52 37.85 23.29 17.26 21.15 ge limit soil classification 2.27x10 ⁻⁶ 1.78x10 ⁻⁷ 3.50x10 ⁻⁷ 2.81x10 ⁻⁷ 1.54x10 ⁻⁷ 5.51x10 ⁻⁷ 1.74x10 ⁻⁷ (%) 37.40 37.40 46.00 48.20 45.80 38.00 46.50	Liquid limit	(%)	82.88	68.39	96.59	92.64	102.35	72.23	106.28	93.56	83.92	57.80
y index 23.11 32.59 52.50 51.34 54.25 33.74 62.17 lex 47.09 13.97 49.52 37.85 23.29 17.26 21.15 ge limit soil classification Lex Solic Lassification Record Confect Solic Lassification Solic L	Plastic limit	(%)	35.79	36.00	44.09	41.10	47.40	38.44	44.11	40.26	35.15	36.44
ge limit soil classification (%) 37.40 13.97 49.52 37.85 23.29 17.26 21.15 21.15 soil classification (%) 37.40 37.40 46.00 48.20 45.80 38.00 46.50 1.74 1.50 1.74 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	Plasticity index		23.11	32,59	52.50	51.34	54.25	33.74	62.17	46.66	48.17	21.36
soil classification soil classification ** K (cm/sec) 2.27x10 ⁻⁶ 1.78x10 ⁻⁷ 3.50x10 ⁻⁷ 2.81x10 ⁻⁷ 1.54x10 ⁻⁷ 5.51x10 ⁻⁷ 1.74x10 ⁻⁷ ** Sility K (cm/sec) 37.40 46.00 48.20 45.80 38.00 46.50 (%)	Flow index		47.09	13.97	49.52	37.85	23.29	17.26	21.15	46.66	21.57	4.58
soil classification 2.27x10 ⁻⁶ 1.78x10 ⁻⁷ 3.50x10 ⁻⁷ 2.81x10 ⁻⁷ 1.54x10 ⁻⁷ 5.51x10 ⁻⁷ 1.74x10 ⁻⁷ sility K (cm/sec) 2.27x10 ⁻⁶ 1.78x10 ⁻⁷ 3.50x10 ⁻⁷ 46.00 48.20 45.80 38.00 46.50	Shrinkage limit											
sility K (cm/sec) 2.27x10 ⁻⁶ 1.78x10 ⁻⁷ 3.50x10 ⁻⁷ 2.81x10 ⁻⁷ 1.54x10 ⁻⁷ 5.51x10 ⁻⁷ 1.74x10 ⁻⁷ thon (%) 37.40 37.40 46.00 48.20 45.80 38.00 46.50	Unified soil classification											
solity K (cm/sec) 2.27x10 ⁻⁶ 1.78x10 ⁻⁷ 3.50x10 ⁻⁷ 2.81x10 ⁻⁷ 1.54x10 ⁻⁷ 5.51x10 ⁻⁷ 1.74x10 ⁻⁷ 1.50x10 ⁻⁷ 1.54x10 ⁻⁷ 1.74x10 ⁻⁷	Fine				-							
ility K (cm/sec) 2.27x10 ⁻⁶ 1.78x10 ⁻⁷ 3.50x10 ⁻⁷ 2.81x10 ⁻⁷ 1.54x10 ⁻⁷ 1.74x10 ⁻⁷ 1.74x10 ⁻⁷ 1.74x10 ⁻⁷ 1.00x10 ⁻⁷ 1.74x10 ⁻⁷ 1	course		-			-						
thom (%) 37.40 37.40 46.00 48.20 45.80 38.00 46.50	Permeability	K (cm/sec)	2.27×10 ⁻⁶	1.78×10^{-7}	3.50×10^{-7}	$2.81x10^{-7}$	1.54×10-7	5.51x10-7	1.74×10^{-7}	3.19×10^{-7}	2.51x10 ⁻⁷	6.09×10-7
(%) 37.40 46.00 48.20 45.80 38.00 46.50	Compaction							;	;			,
	O.M.C.	(%)	37.40	37,40	46.00	48.20	45.80	38.00	46.50	47.00	41.40	32.10
1.287 1.294 1.158 1.141 1.162 1.258 1.157	Max. density yd max.	(g/cm³)	1.287	1.294	1.158	1,141	1.162	1.258	1.157	1.139	1.215	1.333

Table D-1 (2) Summary of Soil Test for Core Material I

		TP CB-1	TP CB-1	TP CB-2	TP CB-2	TP CB-3	TP CB-3	TP CB 4	TP CB 4	2 K C PL	T0 CP 5
Borrow pit and depth (m)		-2.5 m	-5.0 m	-2.5 m	-5.0 m	-2.5 m	-5.0 m	.25 m	.5.0 m	2.5 m	20.4
SHEARING STRENGTH									THE COL	III C.2-	E 0.0
Triaxial compression											
	C (kg/cm ²)	0.41	0.95	0.85	0.63	0.58	0.57	0.35	0.26	0.42	270
Internal friction angle CU total of stress		09°19′	10°12'	10°31'	06°23'	.80.80	.85.80	12°46'	10°47	10°52	14°49'
	C (kg/cm ²)	0.23	0.63	0.92	0.52	0.50	0.55	0.26	0.21	0 30	9
Internal friction angle Effective stress		12°55'	12°54'	12°28'	08°59'	12°24'	11°52'	14017	14°32'	13°43'	14°56
	C (kg/cm ²)		-	0.90	0.48	0.55	0.54	6.23	0.20	0.37	0.20
Internal friction angle				12028	10010	1000	130501	77091	04:5	7.00	YC.0
Unconfined compression					71 01	04 71	06-71	13-40	77.CI	14°34	15°51
	(kg/cm²)										
Direct shear											
Cohesion C C	C (kg/cm ²)										
Internal angle	S										
CONSOLIDATION											
Initial void ratio Co		1.125			1.37		1137	1 345		,000	
Preconsolidation load P	Po (kg/cm ²)	1.46			1.70		1 70	1.50		1.67t	
Compression index Cc		0.51			0.65		0.48	20.0		27.7	
r)	Cv (cm ² /sec)	1.65×10^{-2}			1.53×10-2		1.44×10-2	1.80×10-2		1.00-10-2	
	mv (cm ² /g)	1.78x10 ⁻⁵			3.81x10-5		2.17x10-5	2.20z10 ⁻⁵		2.70x10 ⁻⁵	
Coet. of Permeability K (c	(cm/sec)										

Table D-2 (1) Summary of Soil Test for Core Material II

Sample number No.		TPCD-1	TP CD-1	TP CD-2	TP CD-2	TP CD-3	TP CD-3	TPCD4	TP CD 4	TPCD-5	TPCD-5
Borrow pit and depth (m)		-1.5 m	-3.0 m	-1.5 m	-3.0 m	-1.5 m	-3.0 m	-1.5 m	-3.0 m	-1.5 m	-3.0 m
PROPERTIES											
Natural water content	W (%)	55.73	55.06	56.63	51.98	53.23	50.60	56.10	56.50	51.89	51.50
Specific gravity of soil	Gs	2.697	2.702	2.698	2.67	2.703	2.691	2.715	2.713	2.728	2.622
Wet density	$\gamma t (g/cm^3)$										
Void ratio	ů.										
Degree of saturation	s (%)										
GRAIN-SIZE											
D. C.											
Proportion	į										
Gravei	(%)										
Sand part	(%)	3	7	64	7	7	7	2	2	2	7
Silt part	(%)	32	17	29	13	28	29	24	26	33	33
Clay part	(%)	65	31	69	85	70	69	74	72	65	63
Max. diameter	(mm)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
60% diameter D 60	(mm)	1	•	0.0019		0.0015	•			0.0012	0.0019
10% diameter D 10											
Uniformity coefficient											
Classification		Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
CONSISTENCY											
Liquid limit	(%)	83.14	87.94	83.20	96.06	95.54	94.80	95.94	92.83	88.01	81.41
Plastic limit	(%)	45.83	48.35	50.50	49.58	47.77	48.92	55.67	57.97	45.48	47.27
Plasticity index		37.31	39.59	32.70	41.38	47.77	45.88	40.27	34.86	42.53	34.14
Flow index		10.28	35.04	12.33	9 95	16/01	21.21	24.41	13.63	13.37	31.87
Shrinkage limit											
Unified soil classification					•						
Fine											
course					ř						
Permeability	K (cm/sec)	1.83×10^{-7}	$8.26x10^{-7}$	$1.41x10^{-7}$	1.45×10^{-7}	$2.16x10^{-7}$	1.70×10^{-7}	1.58x10-7	1.54×10^{-7}	1.58×10-7	1.82x10 ⁻⁷
Compaction											
O.M.C.	(%)	43.00	43.60	45.80	46.70	45.20	45.90	46.70	46.60	47.20	44.00
Max. density yd max.	(g/cm ³)	1.165	1.161	1.160	1.156	1.180	1.164	1.154	1.154	1.161	1.179

Table D-2 (2) Summary of Soil Test for Core Material II

							, , , , , , , , , , , , , , , , , , , ,				
Sample number No.		TPCD-1	TP CD-1	TP CD-2	TP CD-2	TP CD-3	TP CD-3	TPCD-4	TP CD4	TP CD-5	TPCD-5
Волоw pit and depth (m)		-1.5 m	-3.0 m	-1.5 m	-3.0 m	-1.5 m	-3.0 m	-1.5 m	-3.0 m	-1.5 m	-3.0 m
SHEARING STRENGTH											
Triaxial compression											
Cohesion	C (kg/cm ²)	0.62	0.63	0,65	0.62	0.50	0.47	0.58	0.75	0.19	0.86
Internal friction angle		10°29'	.95.80	08°49	08°45	09°51	10°55'	13,06	11°48'	15°19'	14°54
CU total of stress			ı								•
Cohesion	C (kg/cm ²)	0.57	0.55	0.50	0.47	0.85	0.40	0.49	0.64	0.26	0.64
Internal friction angle		14°21'	10°58'	10°45'	11°24	10°45	13°13.	16°23	13°43'	19°21'	18°33'
Effective stress											
Cohesion	$C (kg/cm^2)$	0.52		0.47		08.0			0.57	0.26	
Internal friction angle		15°45'		11°52'		11°51'			15°54'	20°03'	
Unconfined compression											
ë,	(kg/cm^2)										
Sensitivity S1											
Direct shear											
Cohesion C	$C (kg/cm^2)$										
Internal angle						-					
CONSOLIDATION											
Initial void ratio Co			1.355	1.348			1.402	1.392			1.273
Preconsolidation load	Po (kg/cm^2)		2.50	2.10			2.90	2.50			2.60
Compression index Cc			0.64	0.63			0.19	0.67	٠		0.58
Coef. of consolidation	Cv (cm ² /sec)		$2.10x10^{-2}$	1.70×10^{-2}			$2.16x10^{-2}$	9.20×10^{-3}			1.96×10^{-2}
Coef. of volume comp.	mv (cm ² /g)		2.55×10 ⁻⁵	3.20x10 ⁻⁴			1.53×10^{-5}	2.95×10 ⁻⁵			2.25×10 ⁻⁵
Coef. of Permeability	K (cm/Sdc)		5.30x10-7								

Table D-3 (1) Summary of Soil Test for Core Material III

Sample number 140.		TPK-3.2	TPK-1:2	TPK-1	TPK-2	TPK-2	TPK-3
Borrow pit and depth (m)		(90:10)%	%(5:56)	(-3.00)	(-1.5)	(-3.00)	(-3.00)
PROPERTIES Natural water content Specific gravity of soil	W (%)	14.36 2.496	17.00	18.40	10.95	25.01	19.64
Wet density Void ratio	γι (g/cm ³) e e						
Degree of Saturation GRAIN-SIZE	s (%)	•			·		
Proportion					٠		
Gravel part	(%)	0.6	8.0	29.0	8.0	37.0	22.0
Sand part	(%)	51.0	40.0	35.0	39.0	25.0	47.0
Silt part	(%) (%)	19.0	20.0 27.0	22.0	21.0	24.0	16.0
May dismosta	(%)	21.0	0.27 6.3	76.0 30 -	22.0	14.0	13,0
60% diameter D 60	(mm)	0.5	0.38	1.90	12.1	1.50	0.55
10% diameter D 10	(mm)	'	,	'	; ; ;) I	, '
Uniformity coefficient			,	•	•	•	•
Classification		Sandy clay loam Sandy clay loam	Sandy clay loam	Loam	Clay	Clay loam	Sandy loam
CONSISTENCY							
Liquid limit	L.L. (%)	A.N	ď. Ž	a.N	33.78	N.P	ď, X
Plastic limit	P.L. (%)	ď. Ζ	A.N	A.N.	16.37	α. Z	A, Z
Plasticity index	P.I.				17.41		
Flow index	F.Ľ				4.48		
Shrinkage limit					,		
Unified soil classification					CF		
Permeability	K (cm/sec)	5.786x10 ⁻⁸	4.295x10-8	1.286x10 ⁻⁷	3.281x10-8	8.268×10 ⁻⁸	1.441×10-7
Compaction		•			. 1	1	;
Optimum water content Max. density wd max.	(%) (g/cm³)	21.00	24.08 1.476	24.50 1.416	17.00	27.32 1.409	22.60 1.520
may county to may:	(800)	275.4	À			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ì

Table D-3 (2) Summary of Soil Test for Core Material III

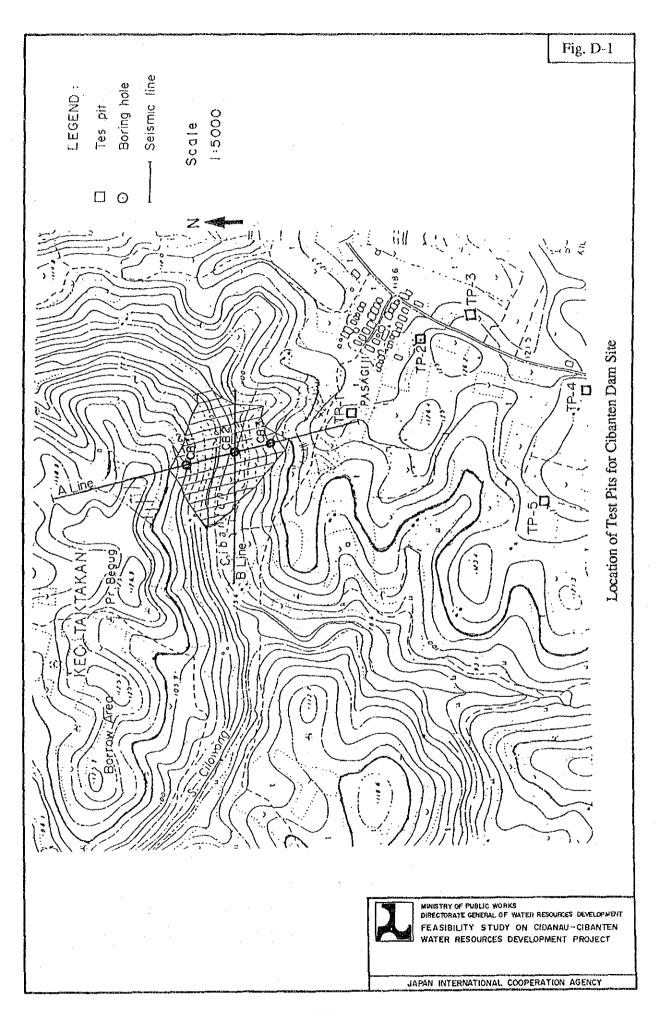
Sample number No.		TPK-3:2	TPK-1:2	TPK-1	TPK-2	TPK-2	TPK-3
Borrow pit and depth (m)		(90:10)%	(95:5)%	(-3.00)	(-1.5)	(-3.00)	(-3.00)
SHEARING STRENGTH Triaxial compression							
Uncontirmed compression Compression Strength Sensitivity	qu (kg/cm²) St						-
Triaxial compression (UU)							
Cohesion C	(kg/cm^2)	0.40	0.62	0.30	0.48	0.74	0.53
Internal friction angle	1	35°45'	38°58′	33°25	25°55'	28°22'	34°24'
Triaxial compression (CU)							
Cohesion C	(kg/cm^2)	0.42	0.12	0.40	0.40	0.65	0.42
Internal friction angle		34°48′	20°33'	28°22'	11°19′	26°34′	35°18'
CONSOLIDATION						-	
Initial void ratio Co		0.729	0.779				0.712
Preconsolidation load Po	(kg/cm^2)	2.6	4.8				3.2
Compression index Cc		0.128	0.119		٠		0.112
Coef. of consolidation Cv	(cm^2/sec)	7.4×10^{-3}	1.0×10^{-2}				1.05×10^{-2}
Coef. of volume comp. mv	(cm^2/g)	7.4x10-6	2.9×10-6				3.00×10-6
Coef. of Permeability K	(cm/sec)	5.6×10^{-8}	3.4×10-8				3.40×10^{-8}

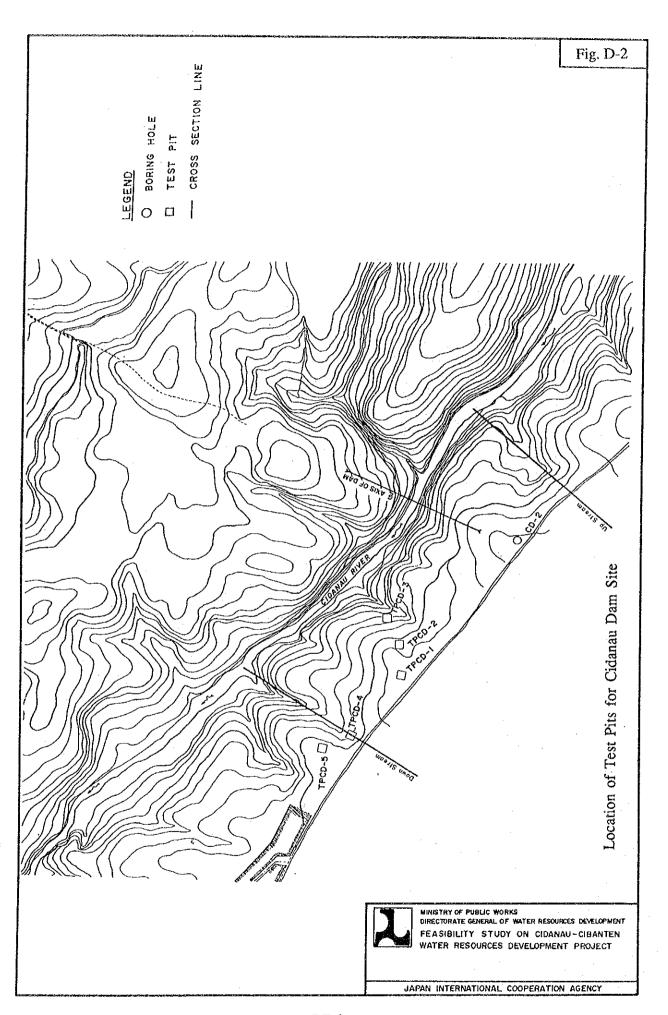
Table D-4 Summary of the Laboratory Test for Filter Material & F.C. Aggregate

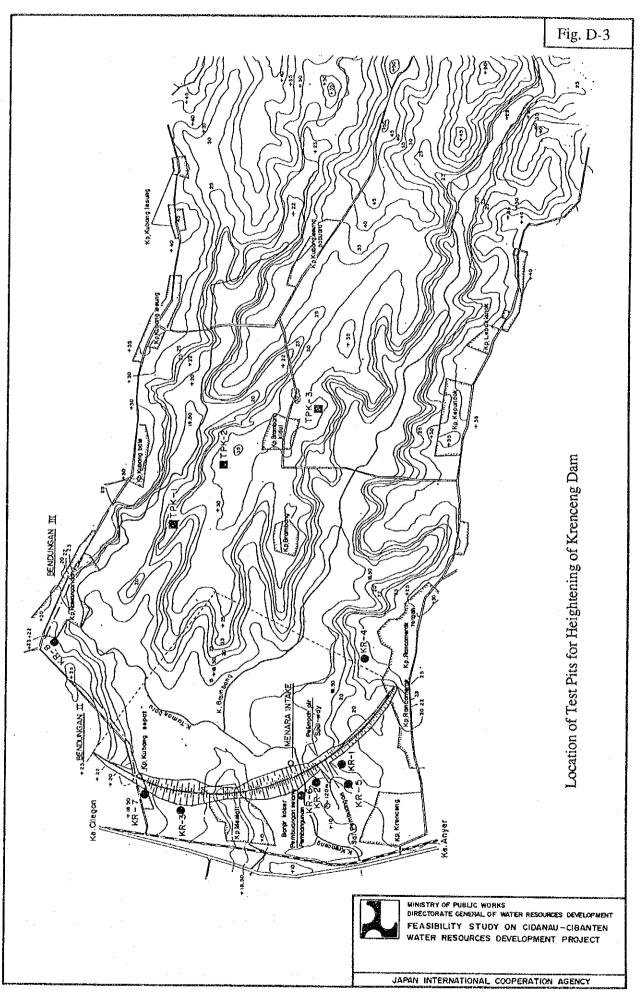
	Test item	Specific	Water absorption	Soundness	Unconfined compression	Abrasion	Alkali aggregate				Sie	ve An	Sieve Analysis (Pass. %)	Pass. 9	(9)		
		Gravity	test		test	test	reaction	100	99	4	30	25	20	15	10	5	Classifi-
	Location		%	%	kg/cm ² -	%	•	(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)	mm)) (mm)	mm) (mm)	(mm)	(mm)	(mm)	(mm)	cation
- -i	Padarincang									;		!			. 1	•	
	Padarincang	2.848	10.80	25.8	•	•	,		68	88	,	47	42	•	23	<u>1</u> %	Sand
	Padarincang 1	2.805	12.13	26.7	1	•	,	•	8	8	ı	26	45	•	23	11	Sand
	Padarincang 2	2.798	27.67	6.6	•	1	,	ı	ı	•		93	91	1	80	72	Sandy clay loam
5.	Anyer																
	Anyer	2.778	7.36	16.8		•	,	•	95	73		26	20		34	26	Sand
	Anyer 1	2.762	7.31	16.0	•		•	•	95	7,	ı	જ	51		37	33	Sand
	Anyer 2	2.766	7.21	16.70	3	r		•	93	72	1	26	46	ι	36	33	Sand
m	Labuan																
	Labuan	2.665	10.55	23.7	ī	•	ı	ı	96	74	ı	29	49	•	25	13	Sand
	Labuan 1	2.664	12.58	23.5			•	ı	86	92		8	51	,	53	17	Sandy loam
	Labuan 2	2.657	18.16	25.3	ı	ı	•	•	26	75	ı	28	49	•	25	14	Sand
4.	Pamarayan	2.834	10.44	12.5	,	•			r	ı	1	100	100	•	66	96	Sand
δ.	Ciomas	2.615	20.08	7.2	,	•	•	1	•	,	•	1	1		95	76	Sandy loam

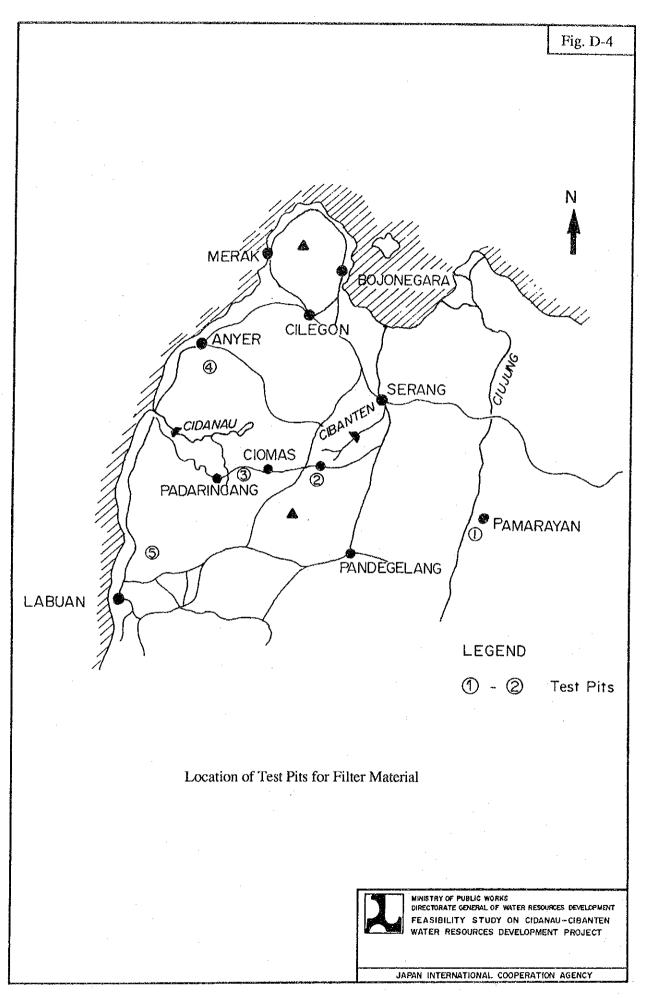
Table D-5 Summary of the Laboratory Test for C.C. Aggregate

į	Test Item	Specific	Water absorp-			Abrasi	Abrasion test		Alkali aggregate				Sieve	Analy	Sieve Analysis (Pass. %)	.s. %)			
	Location	Gravity	tion test (%)	ness (%)	A (%)	B %	∪®	Q (%)	•	100 (mm)	08 (mm)	40 (mm)	60 40 30 25 20 15 10 (mm) (mm) (mm) (mm) (mm) (mm)	25 mm) (20 (mm) (15 mm) (10 mm) (5 (mm)	F.M.
ri.	Cidanau Quarry Peusar	2.695	2.52	22.0	21.6	23.2	36.4	16.2	Not Injurious	,	92	31	21	∞	8	ব	2	pine.	8.70
5	Citanten Quarry Bojong	2.349	6.40	14.1	57.7	49.7	47.9	42.9	Not Injurious	ŧ	89	25	17	10	'n	m	grad.	p==4	8.80
ઌ૽	Padarincang Padarincang Padarincang 1	2.330	5.24	11.2	28.0 32.0	40.0	40.0 35.9	24.0	Not Injurious		8 8	25 70	17	10	2 5	3	30	1 25	7.27
4	Anyer Anyer 1 Anyer 2 Anyer 3	2.580 2.586 2.599	3.28 3.27 3.31	5.2 7.8 7.8	51.7 47.7 49.7	43.6 41.9 41.2	50.0 49.5 49.2	27.5 26.7 26.5	Not Injurious "	4 F 1	94 95	73 47 11	67 68 65	59 60 56	50 51 45	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	34 37 33	26 29 29	7.21
v i	Labuan Labuan 1 Labuan 2 Labuan 3	2.530 2.532 2.561	4.67 4.64 3.96	8.1 9.7 9.2	41.7 39.7 43.2	46.6 41.3 48.8	41.8 39.7 42.2	29.0 28.0 29.4	Not Injurious	, , ,	95	27 27 27	67 71 70	59 63 68	49 51 47	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25 88 25	13	7.40


Table D-6 Summary of the Laboratory Test for Rock Material


	Test Item	Specific	Water	Water absorption Soundness	Unconfined compression	Abrasion	Alkali aggregate			_	Sieve Analysis (Pass. %)	nalysis	(Pass. %			!
	,	Gravity	test		test	test	reaction	8	8	40 30) 25	82	15	10 5	124	F.M.
	Location	1	%	%	kg/cm ²	%		(mm)	mm) (m	ım) (mı	n) (mm	(mm)	(mm)	(mm) (mm) (mm) (mm) (mm) (mm) (mm)	- 1	(mm)
į.	Bojong (QB-1)					-										
	18.07 - 18.63	2,420	6.41	,	38.28	ı	i	1	,)	1	1	•	,		
	20.16 - 20.48	2.266	11.23	•	58.43		٠.	,	,	1	ì	*	•	1		
	24.63 - 25.00	2.380	8.13	•	188.74		1	t	,	,	,	1	•	,		
5	Bejong (QB-II)															
	24.40 - 24.90	2.146	5.38		280.52	1	ì	,	,	,	ì	1	1	,		
	24.40 - 24.90	2.124	6.67	ı	316.11	1	i	,	,	,		1	1	,		ı
	29.60 - 29.80	2.465	1.46	t	539.47	ı	1	,	,	,	1	١	1	•		1


Table D-7 Design Value for Heightening of Krenceng Dam Embankment Materials and Foundation


	Item	Unit	Impervious random	Filter	Rock	Existing Krenceng dam	Foundation (welded tuff)
1)	Specific gravity	t/m ³	2,492	2.768	2.30	-	
2)	Water content	%	23.9	7.293	6.0	-	-
3)	Void ratio		0.72	0.73	0.40	<u>.</u>	-
4)	Dry density	t/m ³	1.468	1.60	1.643	**	-
5)	Wet density	t/m ³	1.728	1.717	1.742	1.70	
6)	Saturated density	t/m ³	1.857	2.021	1.928	1.80	
7)	Friction angle	degree	26	33	40	20	32
8)	Cohesion	t/m ²	3	0	0	2	5
9)	Permeability	cm/sec	1x10 ⁻⁶	1x10 ⁻³	$1 \times 10^{0} - 10^{-1}$	1×10^{-5}	1x10 ⁻⁴

FIGURES

APPENDIX - E WATER DEMAND SURVEY

APPENDIX - E WATER DEMAND SURVEY

TABLE OF CONTENTS

			<u>Page</u>
1.		SENT CONDITIONS OF INDUSTRIAL AND MESTIC WATER SUPPLY	E - 1
	1.1	Water Supply Organizations and Water Charges	E - 1
	1.2	Present Industrial and Domestic Water Use	E - 1
2.	IND	USTRIAL WATER DEMAND	E - 2
	2.1	Methodology for Industrial Water Demand	E - 2
	2.2	Projected Industrial Water Demand	E - 5
3.	DOM	MESTIC WATER DEMAND	E - 5
	3.1	Methodology for Domestic Water Demand	E - 5
	3.2	Projected Domestic Water Demand	E - 7

LIST OF TABLES

Table No.	List	Page
E-1	PDAM Water Tariff	ET - 1
E-2	Current and Future Average Water Demand	2, 1
	(Customer Demand) in the Study Area	ET - 2
E-3	Water Supply of Krakatau Steel in 1990	ET - 3
E-4 (1)	Industrial Water Use in 1990 by Water Source	
	(Customer Demand)	ET - 4
E-4 (2)	Industrial Water Use in 1990 by Water Source	
	(Customer Demand)	ET - 5
E-5	GOI Urban Water Supply Levels of Service Targets	_
	for Repelita V	ET - 6
E-6	Current and Future Population in the Study Area	ET - 7
E-7 (1)	Collected Data during Water Demand Survey for	
4	Manufacturing Enterprises and Residents (1/7)	ET - 8
E-7 (2)	Collected Data during Water Demand Survey for	
	Manufacturing Enterprises and Residents (2/7)	ET - 9
E-7 (3)	Collected Data during Water Demand Survey for	
	Manufacturing Enterprises and Residents (3/7)	ET - 10
E-7 (4)	Collected Data during Water Demand Survey for	
	Manufacturing Enterprises and Residents (4/7)	ET - 11
E-7 (5)	Collected Data during Water Demand Survey for	
	Manufacturing Enterprises and Residents (5/7)	ET - 12
E-7 (6)	Collected Data during Water Demand Survey for	
	Manufacturing Enterprises and Residents (6/7)	ET - 13
E-7 (7)	Collected Data during Water Demand Survey for	
	Manufacturing Enterprises and Residents (7/7)	ET - 14

LIST OF FIGURES

Figure No.	List	Page
E-1	Location Map for Industrial Area	EF - 1

1. Present Conditions of Industrial and Domestic Water Supply

1.1 Water Supply Organizations and Water Charges

At present, PDAM is providing treated water with only limited portion of Kabupaten Serang. According to PDAM, Serang is estimated service factors in 1990 was as follows:

	Service Factor (%)
Serang city	36
Administrative area of Cilegon city	19
IKK Systems /1	17

1: Sub-urban and rural water supply system by PDAM

State owned Krakatau Steel Company has been taking water from Cidanau river and supplying water through its own facilities to public entities as well as private enterprises, volume of which totalled about 975 litter/sec. in 1990 according to the company.

Water charge varies according to the supplier. In case of PDAM, water tariff is as given in Table E-1. In case of Krakatau Steel, water charge is 500 Rp/m³ but water charge due to other private suppliers lies in the range of 2,750 - 9,000 Rp/m³. PDAM tariff is not full-cost-recovery basis, only sufficient to meet operation and maintenance expenses on water supply facilities.

1.2 Present Industrial and Domestic Water Use

According to the data provided by PDAM, Serang and Krakatau Steel Company as well as those provided by the manufacturing enterprises located in the Study Area through the interview survey, about 24.4 million m³ of water was consumed in 1990 for industrial use and domestic use including commercial and public uses. Together with leakage and other unaccounted water as well as treatment use, 30.8 million m³ of raw water was presumed to be obtained either from surface water, spring or groundwater. Water use in Kabupaten Serang in 1990 is shown in Table E-2 by Kecamatan. Estimated supply by Krakatau Steel Company and industrial uses by supply source in 1990 are shown in Table E-3, Table E-4 (1) and E-4 (2), respectively.

It should be noted that PDAM is provided with up to 30 litter/sec. of water by Krakatau Steel Company besides water taken from the springs.

2 Industrial Water Demand

2.1 Methodology for Industrial Water Demand

Industrial water demand in Kabupaten Serang has been sharply increasing since late 1980s. Sizable scale power plant is located in Suralaya and is scheduled to be expanded further within this decade. Accommodation facilities in Anyer and Merak as well as ferry port in Merak require the supply of treated water.

Industrial water demand is projected according to the above-mentioned categories up to the year 2010 based on:

- (1) Present water use in 1990,
- (2) Expansion programs contemplated by factories and industrial estates,
- (3) Expected growth based on the regional and national economic growth contemplated in Repelita V, and
- (4) Expansion plan of the toll road up to Merak by 1995.

Methodology for the industrial water demand projection is given hereunder.

1) Industrial (factory/industrial estate) water demand

Methodologies

- (1) Comprise water uses in the factory land, including both industrial and employees' uses.
- (2) Based on the actual water use data for 1990 obtained from interview survey.
- (3) Factory operation is 300 days/y and 24 hours/day.

(4) Bojonegara

Based on the planned factory expansion and water use increase up to 1995 and 7.2%/y increase, which is the manufacturing sector growth target of Repelita V for the West Java Province, afterwards.

(5) Pulo Merak

7.2% increase after 1990

(6) Anyer

- Based on the planned expansion of factories and industrial estate up to 2000.
- 7.2%/y increase afterwards
- Water use of the factories located in KIEC (Krakatau Industrial Estate Cilegon) in Anyer is estimated based on the data/information obtained from factory interview survey and not based on the land area of KIEC and unit water use per ha.
- PPI IE (PPI industrial estate) is assumed to be fully developed by 2000.

(7) Cilegon

- Krakatau Steel (KS) production use:
 Based on the data provided by KS until 2005
- KIEC (Cilegon portion: 473 ha) is assumed to be fully developed by 2000.
- Cigaden port demand is to be fully met by KS water supply, i.e., 5 lit./s.
- PLTU Suralaya's (Power station) demand is estimated by its expansion plan, part of which is to be supplied by KS, i.e., 50 lit./s. Operation is 365 days/y and 24 hours/day.

2) Port water demand

(1) 365 days/y and 24 hours/day operation.

(2) Growth rate of ferry traffic/passengers

a. Merak Port (Ferry)

Rate

~ 1995

5%/y

1995~

10%/y

Reason

Same as that for "Hotel Water Demand"

b. Cigaden Port

According to Krakatau Steel's data.

c. Banten Port (Freight)

Rate

~ 1995

5%/y

1995 ~

10%/y

Reason

Same as that for Merak Port

3) Hotel water demand

(1) Based on guest data in 1989

(2) Growth rates of visitor • days

1989 ~1995

5%/y

1995 ~

10%/y

Based on the national economic growth rate of 5%/y for Repelita V period (1989/90 ~1993/94), considering that major portion of the visitors are and will be coming from Jakarta. The rate will be doubled due to the completion of the toll road by 1995.

(3) No. of visitor • days

Unit: No. of Visitor • days/y (m^3/y)

	1990	1995	2000	2005	2010	2015	2020
Anyer	38,332	48,912	78,797	126,942	204,504	329,456	530,754
Pulo Merak	47,371	60,445	97,377	156,874	252,724	407,138	655,900
Total	85,703	109,357	176,174	283,816	457,228	736,594	1,186,654

(4) 365 days/year and 24 hours/day operation.

2.2 Projected Industrial Water Demand

Projected water demand is given in Table E-2. Industrial water demand would reach 70 million m³/y in 2005 in terms of customer demand. As shown in the table, manufacturing demand is dominant accounting for 95% of the industrial demand and 61% of the total including the domestic.

3 Domestic Water Demand

3.1 Methodology for Domestic Water Demand

Domestic water demand is projected based on:

- (1) Domestic water demand comprises household use, commercial use and public use,
- (2) Present and future population up to 2010 by Kecamatan based on the projection of Biro Pusat (Central Statistical Office), taking into consideration the recent rapid industrialization in Anyer and Bojonegara generating sizable employments,
- (3) Target service factor (SF) contemplated by Cipta Karya for Repelita V, being modified considering the actual SFs in Study Area in 1990,
- (4) Target per Capita water use by Cipta Karya for Repelita V, being modified considering the actual figures in Study Area in 1990.

Methodology for the domestic water demand is given hereunder.

1) Estimated water use & PDAM supply in 1990

(1) PDAM supply

Actual Supply provided by PDAM

(2) Estimated use by factory employees and their families outside factory land.

- Service factor :

100% supply through the company

- Per capita use

150 lit./cap./day

- 2) Demand for PDAM supply after 1990
 - (1) Population projection
 - a. For 11 Kecamatan's within the Study Area other than Cilegon, Bojonegara and Anyer, according to Biro Pusat's projection.
 - b. Anyer: Until 2000, 1990 population plus PPI industrial Estate related population for urban and no growth for rural and 7.2%/y growth afterwards for both.
 - c. Bojonegara & Polomerak:7.2%/y growth after 1990.
 - d. Cilegon: Until 2000, 1990 population plus KIEC (Cilegon portion 473 ha) related population for urban and no growth for rural and 7.2%/y growth afterwards for both.
 - e. Serang: 100% of urban population and 52.5% of rural population based on the ratio of the area within the Study Area.
 - f. Kasemen: 31.5% of the population
 - (2) Service factor (SF), per capita consumption, etc.

a. SF <u>1995</u> <u>200 and afterwards</u> 0.50 0.80

Remarks; Based on Repelita V (1989 - 1993) target by Cipta Karya with Downwards modification, considering the actual figures in 1990.

b. Per capita consumption

Classification	Consumption
<u>Urban</u>	
$500,000 > P \ge 100,000$	150
$100,000 > P \ge 20,000$	130
20,000 > P	100
Rural	100

c. Multiplying factor

- Multiplying Factor:
 (Household + Commercial + Public) ÷ Household
- 1995 and onwards
- 1.29 for Serang and 1.16 for Cilegon and 1.00 for others
- Based on historical data from 1984 to 1990 provided by PDAM, Serang

3.2 Projected Domestic Water Demand

The Projected population for the Study Area up to 2010 is given in Table E-6 and the projected domestic water demand is given in Table E-2. As shown in the table, total demand would be 41.7 million m³ in 2005 in terms of customer demand, accounting for about 36.2% of the total.

TABLES

Table E-1 PDAM Water Tariff (Jan. 1992)

Unit: Rp./m³

		Category III							
Volume of Water Supplied (m ³)	Category I	Category II	Category II		Category IV	Category V	Category VI		
	Non- Commercial	Commercial	A	В	Social	Public Hydrant	Niaga Khusus		
1 - 10	175	435	700	875	150	150	1400		
11 - 20	275	435	700	875	150	150	1400		
21 - 30	375	615	1050	1050	275	150	1400		
>30	525	875	1400	2100	360	150	2200		

Table E-2 Current and Future Average Water Demand (Customer Demand) in the Study Area

Kecamatar	Water Use		1990		1995	2000	2005	201
Bojonegara								
	Manufacturing	PDAM /1	991		1,655	2,344	3,319	4,70
	Domestic	Fac. /2	11	Urban	265	779	1,103	1,56
			456	Rural	917	2,077	2,941	4,16
Pulo Merak	Sub-total		1,458		2,837	5,201	7,364	10,42
	Manufacturing		351		497	704	997	1,41
	Power station		1,328		1.826	2,822	2,822	2,82
	Port		10		12	20	32	2,62
	Hotel		47		60	97	157	25
	Domestic	PDAM /I	٠,	Urban	487	1,102	1,560	
	2020000	Fac. /2	300	Rural	1,297	2,937		2,20
	Sub-total		2,036	10101	4,179	7,682	4,158	5,88
Anyer							9,725	12,63
	Manufacturing		1,475		13,074	15,465	16,578	17,77
	Port		173		177	189	208	23
	Hotel		38		49	79	127	20
	Domestic	PDAM /I	11	Urban	1,649	2,967	4,847	6,86
	***************************************	Fac. /2	618	Rural	390	624	883	1,25
litegon	Sub-total		2,315		15,339	19,323	22,643	26,32
	Manufacturing		16,142		30,384	49,207	49,207	69,67
	Domestic	PDAM /1	320	Urban	1,267		9,008	
		Fac. /2		Ruzal	1,155	6,363 1,848	2,616	12,75
	Sub-total	7 501 15	16,462	Rottes	32,806	57,418		3,70
erang							60,831	86,13
	Domestic		1,350	Urban	828	1,350	1,374	1.40
	·			Rural	1,159	1,889	1,924	1,95
Cinaneka	Sub-total		1,350		1,988	3,239	3,298	3,35
	Domestic		_	Urban	159	253	251	24
				Rural	552	877	870	86
	Hankam		725	110121	725	725	725	
	Sub-total		725		1,437	1,855	1,846	1,83
liomas	Domestic		-	Urban	124	228	262	301
				Rural	430	790	908	1,04
	Sub-totel		•	XU(U)	554	1,018	1,171	1,343
asemen	Domestic		-	Urban	77	149	178	213
				Rurat	268	515	617	738
	Sub-total				345	664	795	952
ramatwatu								
	Domestic		14	Urban	165	311	365	429
				Rural	573	1,077	1,265	1,487
Innank	Sub-total		14		738	1,388	1,631	1,916
fancak	Domestic		-	Urban	130	225	243	263
				Rural	451	779	842	910
abwaran	Sub-total		-		581	1,004	1,085	1,173
#0.4431 Wil	Domestic		-	Urban	161	256	318	353
				Rural	557	990	1,101	1,224
	Sub-total		-		718	1,246	1,419	1,577
undaringcang	Domestic		5	Urban	178	282	279	276
				Rural	618	977	966	955
ektaken	Sub-total		5		796	1,259	1,245	1,230
marit.	Domestic		-	Urban	152	260	279	298
				Rural	527	902	966	1,034
	Sub-total		-		679	1,163	1,244	1,332
aringukurung								
	Domestic		•	Urban	106	179	190	201
•	Sub-total			Rural	366 472	621 800	657 847	696 897
udy Acea	Manufacturin		10.050		45.610	CD 800		
	Manufacturing		18,959		45,610	67,720	70,101	93,560
	Power station		1,328		1,826	2,822	2,822	2,822
	Port		183		189	209	239	289
	Hotel		86		109	176	284	457
	Domestic		3,809		15,733	32,333	41,697	54,008

Remarks: 1) Average day demand.

²⁾ Source demand = 1.265 x Customer demand, where 1.265 is the ratio used by P.T. Krakatau Steel.

³⁾ Domestic water demand includes commercial and public water demand.

⁴⁾ Hankam is a base for the military police.
// PDAM supply
// Enterprise's supply

Table E-3 Water Supply of Krakatau Steel in 1990

	UNIT: LIT./S
	1990
Krakatau Steel Production Use	568.5
Supply to Other Entities	
KIEC	321.5
Cigaden Port	5
PLTU Suralaya	.50
PDAM Cilegon	30
Sub-total	406.5
Total	975
Loss (15% of total)	146.2
Make-up Water (10% of (total + loss))	112.1
Grand Total	1,233.3

Table E-4 (1) Industrial Water Use in 1990 by Water Source (Customer Demand)

	Krake	tan Steel	Water St	ioply	Desailn:	ation Plant	Deep Well	River	<u> </u>	
Area/Factory		Price(Rp/m3)	Vol(m3/y)	Price(Rp/ta3)			Vol(m3/y)	Vol(m3/y)	Total (m3/y)	Remarks
Војопевна										
i. p.t. redeco petrocen utama	-	-	•	-	-	-	•			15,000 m3/y in total
2. P.T. SULFINDO ADIUSAHA	-	-		-	-	-		300,000 (Through		
3. P.T. GUNA NUSA UTAMA PABRICATOR (PMDN)	-	-	21,000 P.T. Sumber Alan	5,000	-	-	-	P.T. Indpnu)		
4. SPW1	-	-	10,800 P.T. Gunz Sugih	9,000	-	-	**	-		
5. p.t. sriwuaya Rakuan sejati	-	-	Jaya + P.T. Peteka	-	-	-	•	-		13,500 m3/y in tetal
6. TRANS BAKRIE	-	-	P.T. ADES	855	- .	-	•	-		270m3/y in total
7. CILEGON FABRICATOR	-	~	18,000 P.T. Petaka	6,000	-	-	-			
8. P.T. CONTINENTAL CARBON INDONESIA	-	-	-	-	144,000	-	21,600	-		
9. POLICHEM LINDO INC.	-	-	P.T. GSI	7,000		, i	*	_		Also rain water attrage 45,600m3/y in total
10, P.T. INDOCHLOR PRAKARSA INDUSTRIES (INDPRIN)	_ ;		-	-	-	-	-	420,000 Pasawan R.		
Bojonegara Total	\		49,800		144,000		21,600	720,000	935,400	Only the total of the allocated figures
Polomerak Factory 11. P.T. STATOMER PYC RESIN FACTORY	_	-	12,000	3,500	151,290	5,000	45,000	-		
12. P.T. UNGGUL INDAH CORPORATION	-	-	6,000 (P.T. Gunung	2,750	-	-	-	-		
13. P.T. PETROKIMTA NUSANTARA INTERENDO	-	-	Suginjaman) 	-	136,800		-	-		
Sub-Total	<u> </u>		18,000	L	288,000		45,000		351,000	
Power Station 14. P.L.T.U. SURALAYA	671,600	500		-	656,270		_	-		
Port 15. MERAK PORT AUTHORITY	-		8,100	5,000	-		_	-		Stom P.T. Peteka
Sub-total	671,600		8,106		656,270				1,335,970	
Polomerak Total	671,600		26,100		944,270	_	45,000	0	1,686,970	

Table E-4 (2) Industrial Water Use in 1990 by Water Source (Customer Demand)

		lan Steel	Water S			ation Plant	Deep Well	River]	
Area/Pactory	Vol(m3/y)	Price(Rp/m3)	Vol(m3/y)	Price(Rp/m3)	Vol(m3/y)	Cost(Rp/m3)	Vol(m3/y)	Vo!(m3/y)	Total (m3/y)	Remarks
Anycı			İ	İ						
Factory]	l		!						
• •							!			Í
16. Polytama Karsa Agung	-	-	-	-	-	_	- 1	-		Operation is scheduled to be started from
			ļ							Dec. 1993. Water source is not yet determin
17. P.T. Tri Polita	-	-	(432,000)	5,000	-	-	-	-		From Dec. 1991
18. Chandre Asli		Ī	(P.T. Peteks)			ļ				
10. Chandle Agii	-	-	(2,160,000) (P.T. Peteka)	5,000	-	-]	- 1	-		Prom Dec. 1993
19. P.T. SANKYU		_	(P.1. Peteka)							
INDONESIA	İ	_		-	•	-		-		1,500m3/y in total
INTERNATIONAL										
										•
20. P.T. SATYA RAYA INDAH	~	-	-	-	-		249,600	86,400		
WOODBASED INDUSTRIES			,							
21. ASAHIMAS SUBENTRA	1 000 000		i							1
CHEMICAL	1,008,000	500	-	-	~	~	-	-		
- CHAMORE										·
22. P.T. LAUTAU OTSUKA	129,600	500	_	_	_	,				
CHEMICAL					_		_	-		
Sub-total	1,137,600		0				249,600	86,400	1473600	
			(2,592,000)						(4,065,600)	· · · · · · · · · · · · · · · · · · ·
Роп						İ				
23. PERUM DELABUHAN II	12,059	500	5,274	i						
CABANG (Banten Port)	12,033	500	(P.T. Peteka)		-		- 1	-		
` '			(111.100000)							
24. Cigadeng Port	157,680	500	_ j	_		_	_	_	j	
Sub-total	169,739		5,274						175,013	
		-					Ţ			
Anyer Total	1,307,339		5,274				249,600	86,400	1,648,613	
			(2,597,274)						(4,245,887)	
Cilegon	ŀ	Į	ľ		Ì	1		ĺ		
25. Krakatau Steel	14,736,000	į		1		1			f	
	, ,					j	ı	i	j	
26. KIEC	1,406,000					1	i	İ	l	
				1	l	ļ	. [Į	ĺ	
Cilegon Total	16,142,000						L		16,142,000	
Grand Total	18,120,939		81,174		1,088,270		315,200	806,400	20,412,983	
			(2,673,174)				[(23,004,983)	

- Remarks: 1) Comprising factory, port and power station uses.
 - 2) All the figures are for 1990 except 4 factories/industrial estate in Anyer.
 - 3) Data for the following factories are not made available and not included in this table:
 - P.T. GPK (existing) --- Anyer
 - P.T. Dong Jing (existing) --- Anyer
 - P.T. Indotermina (under construction) --- Not located
 - P.T. Sterindo Maromer Indonesia (under construction) --- Bojonegara
 - P.T. Jasa Ganerba Pura (under construction) ··· Bojonegara
 - P.T. Multisida Agrotindo (existing)
 - 4) (); not in 1990

Table E-5 GOI Urban Water Supply Levels of Service Targets for Repelita V

_		<u> </u>	BNA Program		
Town Category	Metro (1)	Large City (2)	Medium Town (3)	Small Town (4)	IKK Program (5)
Population ('000)	>1,000	Large City Medium Tow (2) (3)	100 <p<500< td=""><td><100</td><td><p<20< td=""></p<20<></td></p<500<>	<100	<p<20< td=""></p<20<>
Percent of 1993/94 population to be served	80	80	80	80	80
Domestic demand (I/cap/day)					
Direct house of yard connections	190	170	150	130	100
Public standpipe	30	30	30	30	30
Total				·	
Allowance for Unaccounted Water (% of total production)	20	20	20	20	20

Table E-6 Current and Future Population in the Study Area

		1990	1995	2000	2005	2010
DAM Serang						
Seidin	Urban	26,574	27,063	27,561	28,068	28,585
	Rural	48,359	49,249	50,155	51,078	52,017
	Total	74,933	76,312	77,716	79,146	80,602
Cilegon						
35117833317	Urban	15,738	46,036	125,236	177,298	251,002
	Rural	54,553	54,553	54,553	77,231	109,337
	Total	70,291	100,589	179,789	254,529	360,339
ικ						
Anyer						
	Urban	6,164	69,524	78,164	110,657	156,658
	Rural	21,364	21,364	21,364	30,245	42,818
D-1	Total	27,528	90,888	99,528	140,902	199,476
<u>Bojonegara</u>	Urban	10,246	14,505	20,534	29,070	41,155
	Rural	35,496	50,252	71,142	100,716	142,584
	Total	45,742	64,757	91,676	129,786	183,739
<u>Cinangka</u>						
	Urban	8,805	8,736	8,667	8,600	8,532
	Rural	30,503	30,264	30,027	29,791	29,558
<u>Ciomas</u>	Total	39,308	39,000	38,694	38,391	38,090
Ojojjias	Urban	5,914	6,798	7,813	8,979	10,321
	Rural	20,489	23,548	27,065	31,108	35,753
	Total	26,403	30,346	34,878	40,087	46,074
<u>Kasemen</u>						
	Urban	3,553	4,232	5,093	6,097	7,300
	Rural	12,309	14,659	17,643	21,123	25,289
Kramatwati	Total	15,862	18,891	22,736	27,220	32,589
Manigrate	u Urban	7,709	9,059	10,646	12,510	14,701
	Rural	26,708	31,385	36,880	43,338	50,927
	Total	34,417	40,444	47,526	55,848	65,628
<u>Mancak</u>						
	Urban	6,597	7.129	7,703	8,324	8,995
	Rural	22,854	24,695	26,686	28,837	31,161
<u>Pabuaran</u>	Total	29,451	31,824	34,389	37,161	40,156
<u> 1 doddian</u>	Urban	7,923	8,807	9,790	10,883	12,097
	Rural	27,447	30,511	33,916	37,701	41,909
	Total	35,370	39,318	43,706	48,584	54,006
Padaringcan	g					
	Urban	9,888	9,773	9,659	9,547	9,436
	Rural	34,255	33,856	33,463	33,073	32,689
Dulamarak	Total	44,143	43,629	43,122	42,620	42,125
<u>Pulomerak</u>	Urban	14,486	20,508	29,033	41,102	58,188
	Rural	50,185	71,047	100,582	142,395	201,590
	Total	64,671	91,555	129,615	183,497	259,778
<u>Taktakan</u>		,	, -,			
	Urban	7,784	8,332	8,918	9,545	10,217
	Rural	26,967	28,864	30,894	33,068	35,394
Marinaia V.	Total	34,751	37,196	39,812	42,613	45,611
<u>Waringin</u> Ku	<u>irung</u> Urban	5,467	5,792	6,135	6,499	6,885
	Rural	18,941	20,064	21,255	22,516	23,85
	Total	24,408	25,856	27,390	29,015	30,736
Study Area		567,278	730,605	910,577	1,149,399	1,478,949

Table E-7 (1) Collected Data during Water Demand Survey for Manufacturing Enterprises and Residents (1/7)

No. Type of Manufacturing (Name of enterprises)	Name of Sub. district	Total Water employee source		Water use in 1991 1 year /s/ha I/s
CHEMICAL INDUSTRY				
1 PT. Yasa Ganesa Pura	Bojonegara		2	
2 PT. Inti Envestring Indonesia	Bojonegara		5	
3 PT. Pasific Indomas Plastik Income	Pulomerak		5	
4 PT. Ptrokimia Nusantara Interido	Pulomerak	265 Desalination	1	4.3
5 PT. Hamparan Rejeki	Bojonegara		5	
6 PT. Dinamika Ekajaya	Bojonegara		5	
7 PT. Graha Swakarsa Prima	Bojonegara		5	
8 PT. Bakrie Kasei Corporation	Pulomerak		3	
9 PT. Gema Politama Kimia	Ciwandan		1	
10 PT. Petrolindo Citra Indonesia	Bojonegara		5	
11 PT. Indochlor Prakarsa Industries	Bojonegara	Peteka	1	13.3
12 PT, Sriwijaya Pakuan Sejati	Bojonegara	72 Well/Peteka	1	0.4
13 PT. Unggul Indah Corporation	Pulomerak	50 Others	1	0,2
1.4 PT, Polychem Indo	Bojonegara	70 Others	1	1.4
1.5 PT. Statomer PVC Resin Factory	Pulomerak	200 Well	1 .	6.60
1 6 PT. Sari Sarana Kimia	Pulomerak		5	
1.7 PT. Dover Chemical	Pulomerak	•	1	
18 PT. Receco Petrolin Utama	Bojonegara	50 Well	. 1	0.4
19 PT. Dupont Sari Agri Chemical	Pulomerak		5	
20 PT. Multisida Agro Lindo	Bojonegara	50 Well/KS	1	0.1
21 PT. Indo Terminal	Bojonegara		2	
22 PT. Chandra Asri	Ciwandan	Peteka	2	
23 PT. Polytama Karsa Agung	Ciwandan		3	
24 PT. Panca Puri Perkasa Indah	Ciwandan	2000 Others	2	0.9
25 PT. Sulfindo Adi Usaha	Bojonegara	60 Others	1	9,5
26 PT. Tripolita	Ciwandan	Peteka	1	0.6
2.7 PT. Sauh Bahtera	Bojonegara		4	
CONCRETE POLE				~
1 PT. JSI	Bojonegara		5	
Sub Total				38.1

Remarks ;

- 1 Existing
- 2 Under Construction
 3 Land clearing
 4 Land acquisition
 5 Requested

Table E-7 (2) Collected Data during Water Demand Survey for Manufacturing Enterprises and Residents (2/7)

	Type of Manufacturing (Name of enterprises)	Name of Sub.district	Total employee		1/:	Vater use in 1991 s/ha 1/s
	PACKAGING,CONTAINER,DECK PLAT BOILERS,FABRICATOR					1.4
	PT. Guna Nusa Utama Fabricator	Bojonegara	375	Others	1	0.6
	PT. Trubalati Purneang	Bojonegara			5	
	PT. Werudara Jaya Sakti	Pulomerak			5 5	
	PT. Lima Kencara Utama	Pulomerak			5 5	
	PT. Banten Bay Febricator PT. Trans-Bakrie	Bojonegara Bojonegara	302	Well	1	0.0
	PT. Cilegon Febricator	Bojonegara		Peteka	i	0.7
	METAL FOUNDRY,FACTORY					
1	PT. Krakatau Steel	Pulomerak		Cidanau river	. 1	800.0
	- KHI					
	- Pabrik Baja Profil					0.3
	- Pabrik Besi Srons - Pabrik Baja Tulangan					32 1.2
	- Pabrik Baja Tulangan - Pabrik Baja Hecket					1.2
	- Pabrik Billet					71.1
	- Pabrik Slab					92.7
	- Pabrik HSM		÷			2
	- Pabrik Batang Kawat					3.0
	- Pabrik Kawat					0.7
	Work Shop, Warehouse, Service					0.0
1	PT. Propelat	Ciwandan			5	•
2	PT Prointal	Pulomerak			5	
	PT. Sankyu Indonesia Internasional	Ciwandan	405	KS	1	0.0
	PT. Meissei Sarana Indonesia	Bojonegara			2	
5	PT. Indo Sembawang Fabricase	Ciwandan			5	
	MUD LUBRICANT					
	PT. Baroid Indonesia	Pulomerak			5	

¹ Existing 2 Under Construction 3 Land Clearing 4 Land acquisition 5 Requested

Table E-7 (3) Collected Data during Water Demand Survey for Manufacturing Enterprises and Residents (3/7)

No. Type of Manufacturing (Name of enterprises)	Name of Sub.	Total Water employee source		Water use 1991 s/ha I/s	
CARBON FACTORY					
1 PT. Petrocarb Indonesia 2 PT. Kerta Anugerah Utama 3 PT. Continental Carbon	Pulomerak Pulomerak Bojonegara	1800 Well & desalinat	5 5 1 ion		5.25
CRUSHER STONE					
1 PT. Propelat 2 PT. Anuta Indonesia 3 PT. Batu Mulia 4 PT. Widuri Kencana 5 PT. Batu Permata Indah 6 PT. Beton Cilegon Agung 7 PT. Agung Jaya	Ciwandan Pulomerak Pulomerak Cilegon Cilegon Cilegon Pulomerak		5 5 5 5 5 5 5 5 5 5		
Cutting The Ex-Ship					
1 PT. Inter Trias Abadi Ind. 2 PT. Randahi Agung 3 PT. Jangkar Mas 4 PT. Agung Module 5 PT. Tami Raya	Bojonegara Ciwandan Pulomerak Pulomerak Pulomerak		5 5 5 5 5 5		
SHIP YARD				·	
1 PT. Dias Raya Shipyard	Bojonegara		. 5		
OFF SHORE DRILLING FACILITY			·		
1 PT. Brown & Root Indonesia 2 PT. Santa-fe Deremoy Ind. 3 PT. Pribumi Paripurna	Ciwandan Pulomerak Bojonegara		5 1 5	0.5	6.4
ub Total					11.74

Remarks;

1 Existing

- 2 Under Construction
 3 Land clearing
 4 Land acquisition

- 5 Requested

Table E-7 (4) Collected Data during Water Demand Survey for Manufacturing Enterprises and Residents (4/7)

No. 	Type of manufacturing (Name of enterprises)	Name of Sub. district	Total employee		Remarks	Water 1991 I/s/ha	
 	KRAKATAU INDUSTRY ESTATE CILEGON (KIEC)						44.58
	PT. Dongjin INdonesia	Ciwandan		KS	2		
) 2	PT. Krakatau Prima Dharma Sentana	Pulomerak	63	KS	1		
•	PT. Dava Swahasta Cipta	Pulomerak	153	KS	1		
•	PT. Lautan Otsuka	Ciwandan	144	KS	1		
	PT. Garuda Mahakam Prahasta	Pulomerak	20	KS	1		4.11
	PT. Trans-Bakrie Seamles Pipe Ind.	Pulomerak		KS	3		
•	PT. Hoechst Cilegon	Pulomerak	81	KS	1		
	PT. Latinusa	Pulomerak	482	KS	1		
	PT. Industri Mesin Perkakas Ind	Pulomerak	61	KS	1		
	PT. Coold Rooling Mill Indonesia ut	Pulomerak	2171	KS	1		
	PT. Distinct INdonesia Cement	Ciwandan	51	KS	1		
	PT. Cabot PT. CBI Indonesia	Pulomerak		KS KS	2		
	PT. Multi Fabrindo Gemilang	Pulomerak Ciwandan	51 61	KS KS	1		
	PT. Cigading Habban Center	Ciwandan	441	KS	1		
	PT. Samudera Ferro Engineering	Pulomerak	25	KS			
	PT. Aneka Gas Industri	Pulomerak	7	KS			
	PT. Kratama Belindo International	Ciwandan	183	KS	1		
	PT. Tjokro Putra Persada	Pulomerak	85	KS			
	PT. Kapurindo Sentana Baja	Pulomerak	33	KS	,		
	PT. Barata Indonesia	Pulomerak	93	KS	i		
	PT. Indonesia Asri Refractories	Pulomerak	18	KS	1		
	PT. Asahimas Subentra	Ciwandan	536	KS	1		31.96
	PT. Santika Pramesti	Pulomerak	425	KS	•		01.00
	PT. Siemens Indonesia	Ciwandan	82	KS	i		
	PT. Tiksna Yasa	Pulomerak	16	KS			
	PT. Sumimagne Utama	, alomoran	, ,	KS	5		
 	Not Yet Known						
 1	PT. Arpeni Pratama Ocean Line	Bojonegara			5		
	PT. Indofrist Nusanta Syathetic Ru	Bojonegara			5 5		
	PT. Ispat Alyos Indonesia	Bojonegara			5		
	PT. Hall Beurton	Pulomerak			5 5		
	PT. Dowel	Pulomerak			5 5		
_	PT. Argo	Pulomerak			5		
	PT. Ayapco	Pulomerak			5		
	PT. Ipplo	Ciwandan			5		
	1 1777						
Sub 1	otal						80.65

Remarks;

- 1 Existing 2 Under Construction
- 3 Land clearing 4 Land accuisition
- 5 Requisted

Table E-7 (5) Collected Data during Water Demand Survey for Manufacturing Enterprises and Residents (5/7)

).	Type of Manufacturing (Name of enterprises)	Name of Sub. district	Total employee	Water source	Remarks	Water 1991 I/s/ha	
	PT. Bast Man Work Shop	Pulomerak			· 5		
	PT. Oil Fool	Pulomerak			5		
	PT. Inti Jatampura	Pulomerak			5		
	PT. Nusantara Supraloka Enterprise	Ciwandan			5		
	PT. Galuh Putra Setia	Omanaan			5		
	PT. Saneka Indonesia				5		
	PT. Krawindo Utama Dinamika				5		
	PT. Dunia Alam Semesta				5		
	PT. Sarana Trimurti Swadaya	Bojonegara			5		
	PT. Beton Sarana Indah	20,2			5		
	PT. Summa Raya Sansung Eng	Bojonegara			2		
	PT. Sterindo Marumer Indonesia	Bojonegara			2		
	GENERATE ELECTRICITY						

	PLTU Suralaya	Bojonegara		KS&Desalination	1		
2	PLTU 400 MW	Ciwandan		KS	'	•	`
	HARBOUR		^* ^ 				
1	Pelabuhan Ferry Merak	Pulomerak	300	Others	1		0.2
	Pelabuhan Barang Banten	Ciwandan	100	Peteka	1		0.3
	Pelabuhan Khusus Cigading/KS	Ciwandan		KS	1		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		De			l/d/roon	ım l/s
	HOTEL						
	Mambruk Beach Resort	Anyer	162	Well	1		0.
	Sanghyang Indah Resort	Anyer		Well	1		0.
	Patra Jasa Anyer Beach Hotel	Anyer	124		1		
	Matahari Beach Resort	Cinangka	8		•		
	Puri Retno	Cinangka	15		1		
	Villa Karang Bolong	Cinangka	4		1		
	Lalita Cottages	Cinangka	7		1		
	JCS Hide Away	Cinangka	6		1		
	Siyoni Anyer Sea Side Coltages	Anyer	11		1		
	Tambang Ayam SSC	Anyer	22		1		
	Anyer Cottages	Anyer	16		1		
	Marina Village	Anyer	24		1	-	
	Pondok Tubagus	Anyer	2		1		
	LOUGOV I grados	raijoi	-		•		

Sub Total

- Remarks;
  1 Existing
  2 Under Construction
  3 Land clearning
  4 Land aqcuisition
  5 Requested

Table E-7 (6) Collected Data during Water Demand for Manufacturing Enterprises and Residents (6/7)

lo.	Type of Manufacturing (Name of enterprises)	Name of Sub.	Total employee	Water source		Water use in 1991
		district	• •     • • • • • • • •	<b>-</b>		l/d/roonm l/s
14	Kalimaya Putih	Anyer	8		1	
	Griya Indira	Anyer	9		1	
	Anyer Beach Hometel	Anyer	41		1	
17	Parikesit	Anyer	17		1	
	Merak Beach Hotel	Pulomerak	59		1	
	Pulorida Village	Pulomerak	69		1	
20	Santafe Pomeroy	Pulomerak	16		1	
21	Violeta	Pulomerak	4		1	
22	Robinson	Pulomerak	4		r	
	Vita Beach	Pulomerak	22		1	
	Anda	Pulomerak	6		1	
25	Sulawesi I	Pulomerak	4		1	
26	Butet	Pulomerak	6		1	
27	Nirmala	Pulomerak	4		1	
28	Sulawesi II	Pulomerak	4		1	
29	Bahari	Pulomerak	2		1	
30	Kurnia	Pulomerak	4		1	
	Sony	Pulomerak	6		1	
υZ	Surabaya Isyana	Pulomerak	10			
	PDAM					·
	PDAM Cilegon			KS	1	į
2	PDAM Serang			Others	1	
	- Kota Serang				1	
	- Hankam					
	Kota Cilegon					
	- IKK	Kramatwatu			1	
	- IKK	Ciruas			1	
	- IKK	Bojonegara			1	
	- IKK	Baros.			1	
	- IKK	Pontag			1	
	- IKK	Cikeusal			1	
	- IKK	Tirtayasa			ĵ	
	- IKK	Anyer			1	
	- IKK	Mancak			2	
	- ikk	Padarincang			1	
	- IKK	Cikande			1	
	- IKK	Carenang			2	
	- IKK	Pamarayan			.2	
	· IKK - IKK	Ciomas Walantaka			2 2	

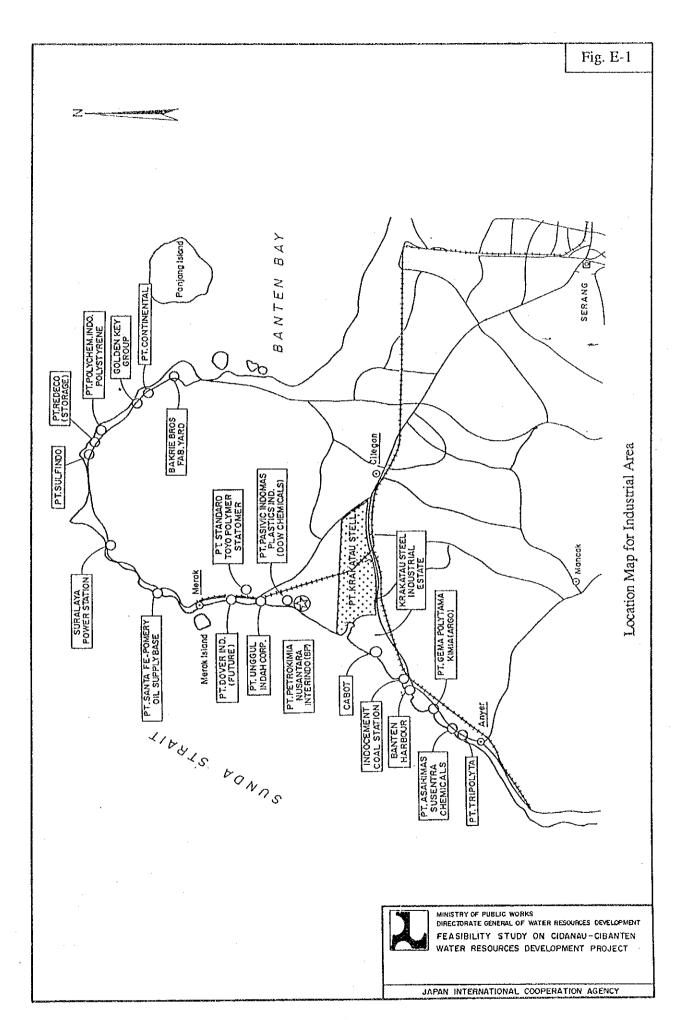
Subtotal

50

- ntotal
  Remarks
  Remarks
  Sunder construction
  Land cleaning
  Land acquisition

Table E-7 (7) Collected Data during Water Demand for Manufacturing Enterprises and Residents (7/7)

No.	Type of Manufacturing (Name of enterprises)	Name of Sub. district	Total employee	Water source	Remarks Water use in 1991 Years I/s/ha I/s	
-	K IKK IK IKK K IKK	Pabuaran Kasemen Kragilan			2 2 2 2	!
	PLYWOOD PROCESSING	· · · ·				
	1 PT. Satya Raya Indah W B Co. 2 PT. Suralaya Prakarsa Wood Ind				1 10.6 1 0.4	55   44


Sub Total Total

11.09 951.77

## Remarks;

- 1 Existing
  2 Under Construction
  3 Land clearing
  4 Land aqcuisition

## **FIGURES**



