

Fig. 26 Fe and Co content of soil samples in area A-3

very short. The range, median, mean value and standard deviation are shown in area A-2 soil geochemistry. Histogram and cumulative probability curve of each element are shown in Appendix 5. The content of each element is classed by mean value and standard deviation, and plotted on the element content map (Fig. 23 to Fig. 26). Anomalous values are also shown on the element content map. The geochemical pattern of each elements is as follows;

The correlation between Pt and Pd is very high; thereby they have very similar geochemical pattern each other. Anomalous zones of both elements are distributed the area from Pagasa 1 to the southern part, on the south of Pagasa 2, the area from Pagasa 2 to Pagasa 4 and west of the national highway.

The Au content is very low in this area.

The Ni, Cr, Co and Fe contents in soil are relatively high in the area distributed ultramafic rocks whereas very low in the gabbro area. No significant anomalies of Ni and Co contents are found in A-3.

The geochemical anomalies of Cr occur in Pagasa 1 vicinity, the south portion of Pagasa 2 and the opposite side of the Pagasa 1 separated by national highway. The areas of high Fe content are the ridge from the west of the Peak 291 m and the area along national highway.

1-2-4 Discussion

It appears from the soil geochemical survey that chromite deposit is only potential in this area, because nickel and cobalt content are low in soil. The dunite tectonite in area A-3 is distributed in high elevation to the east of national highway. Since almost all chromite deposits occur in dunite tectonites in Palawan, the dunite tectonite has a potential for chromite ore. Because of this, it can be stated that the areas of high chromium content in soil within this dunite body are delineated as high potential area for chromite deposits; thereby the areas around Pagasa 1 and south of Pagasa 2 are promising areas for chromite deposits.

Chapter 2 Test pitting survey

The follow-up work with test pitting survey was carried out in the area selected last year by the detailed geological survey and geochemical prospecting in area A-1 and B-1 (Fig. 6).

Two hundreds and four test pits were sunk by hand to reach to basement rock. Soil samples were collected from bottom of pit and upper 1m from the bottom in each pit. Heavy mineral in the bottom soil was also collected by panning and checked the weight. The weights of heavy mineral were shown in Appendix 7 and results of chemical analyses were shown in Appendix 8.

2-1 Area A-1

2-1-1 Pananlagan area

The objectives of test pitting survey in Pananlagan area are as follows;

- 1. To confirm the extension of massive chromite ore body in lower Pananlagan
- 2. To make clear the anomaly along the branch of the Pananlagan River
- 3. To confirm the extension and discovery of chromite ore body in upper Pananlagan Profile of each pit is shown in Appendix 9.

1) Confirmation of lower Pananlagan massive chromite ore body

Small scale minings were operated by Sulu Sea Mines Corp. in this area. Massive and disseminated types' ore bodies 50 cm wide, strike N80°W and dip 60° to 80°W, occur in the weathered and brecciated dunite. The test pitting survey was operated at 2 sites (PB047 and PB048) to confirm the extension of ore bodies (Fig. 27), but extension was not recognized here.

2) Anomaly along the branch of the Pananlagan River

A remarkable geochemical anomaly was detected last year by soil geochemical prospecting. Test pits were sunk at 4 sites (PB041 to PB044) to make clear this anomaly (Fig. 6). Every pit reached to basement rock of harzburgite, and no mineralization was recognized. Chromium content of harzburgite is very low, 0.2 to 0.4 %. This area is alluvial fan formed by many small streams running from eastern slope, therefore this geochemical anomaly may be regarded as false anomaly due to secondary concentration of chromite.

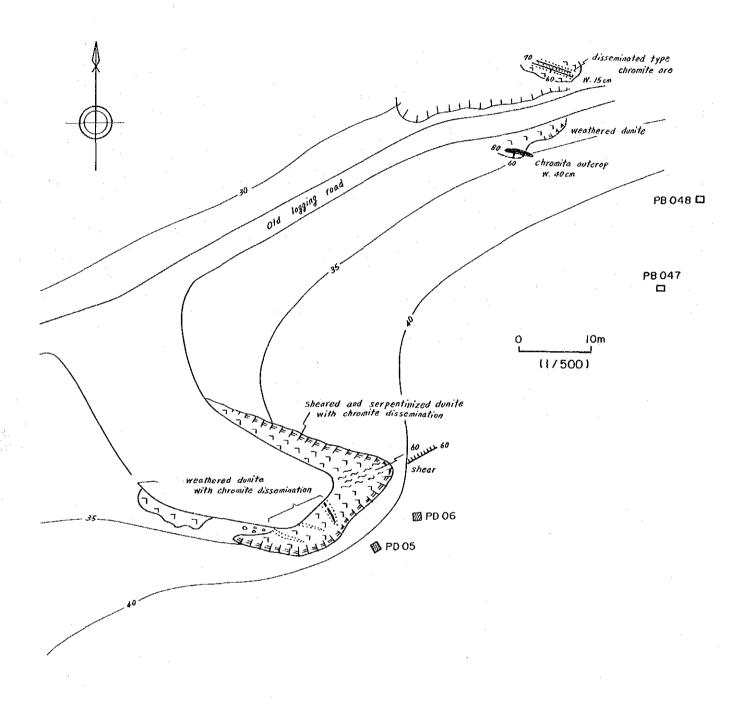


Fig. 27 Location of test pits in the Lower Pananlagan area

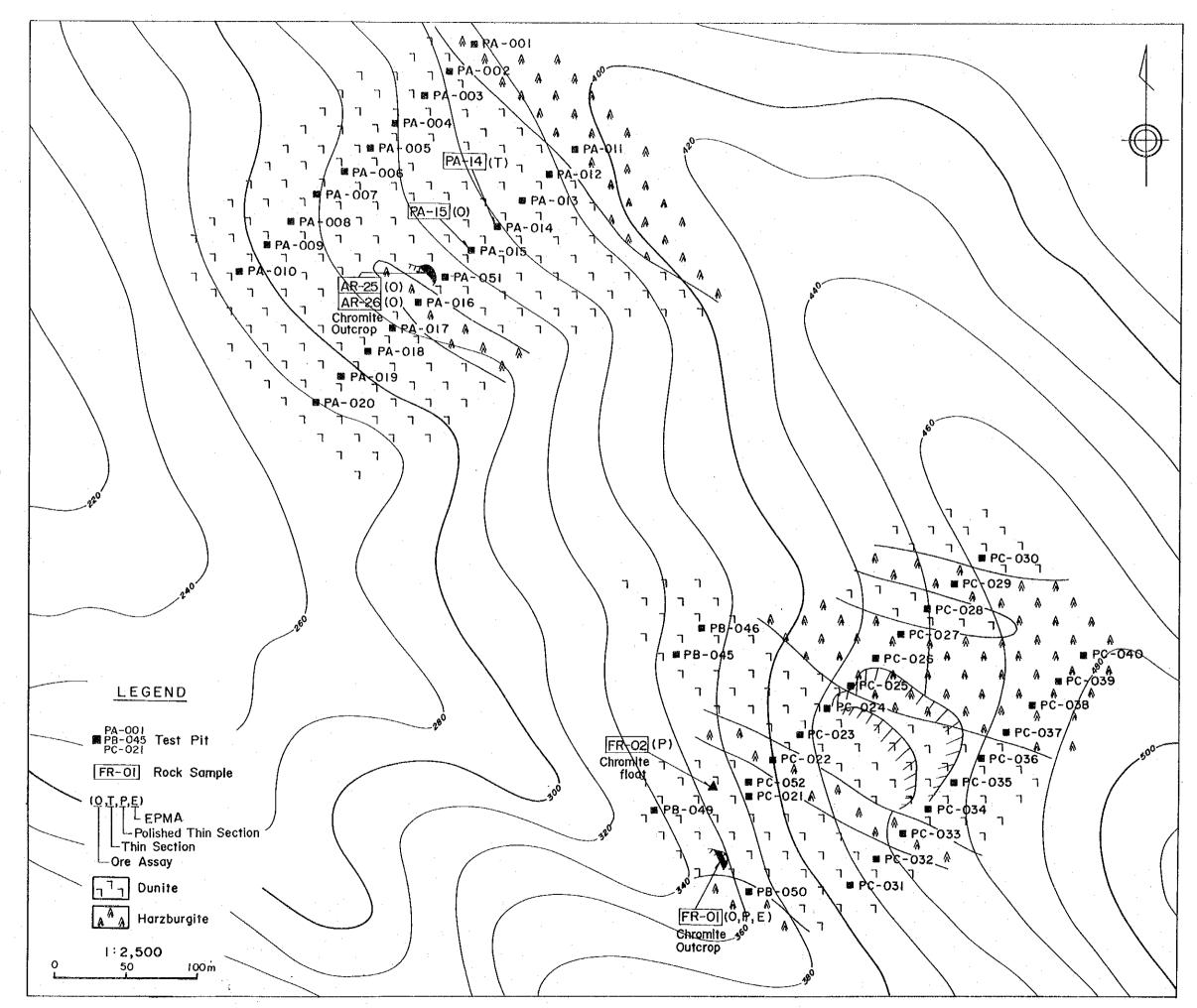


Fig. 28 Geology and location of test pits in the Upper Pananlagan area

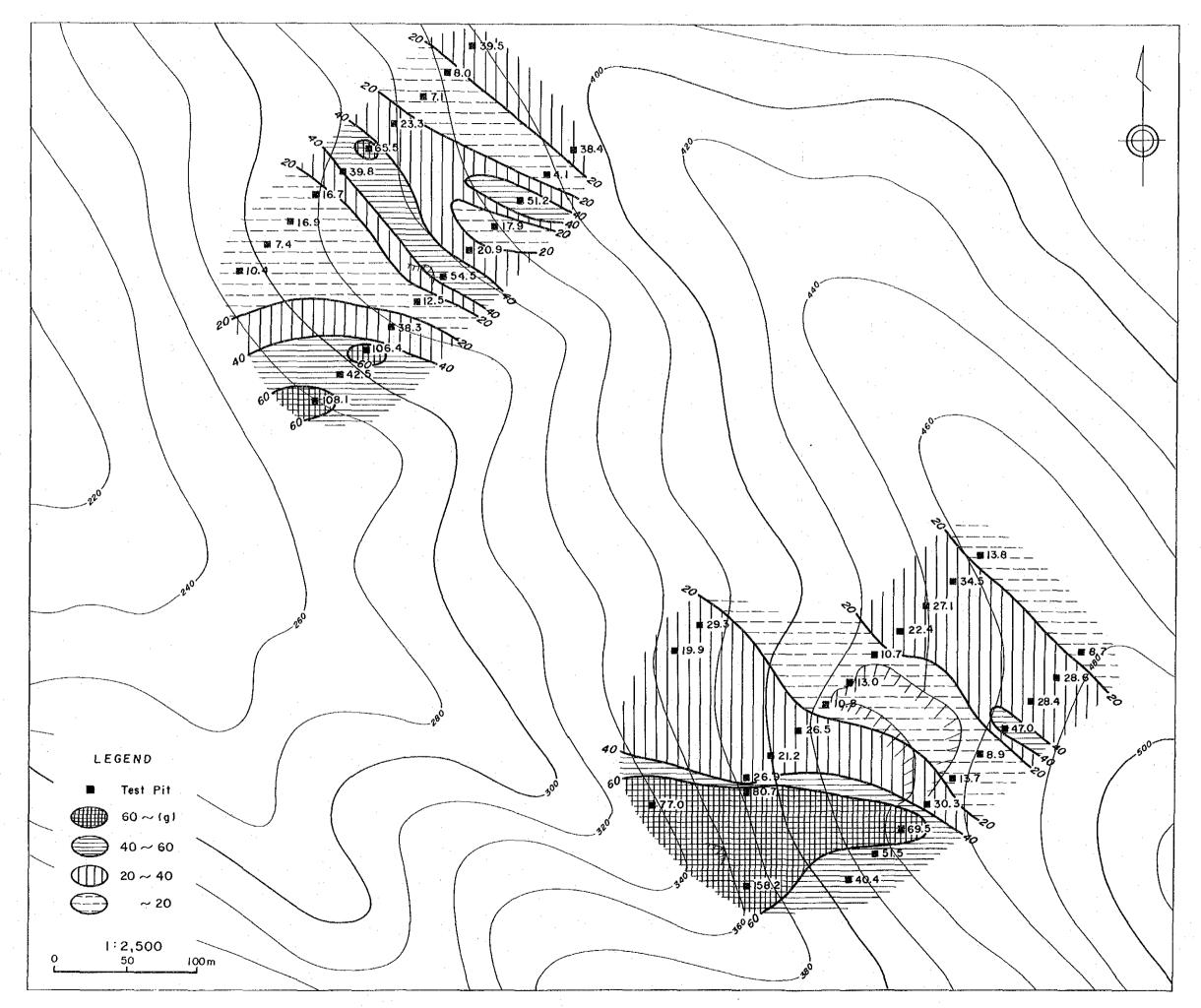


Fig. 29 Heavy mineral content in the Upper Pananlagan area

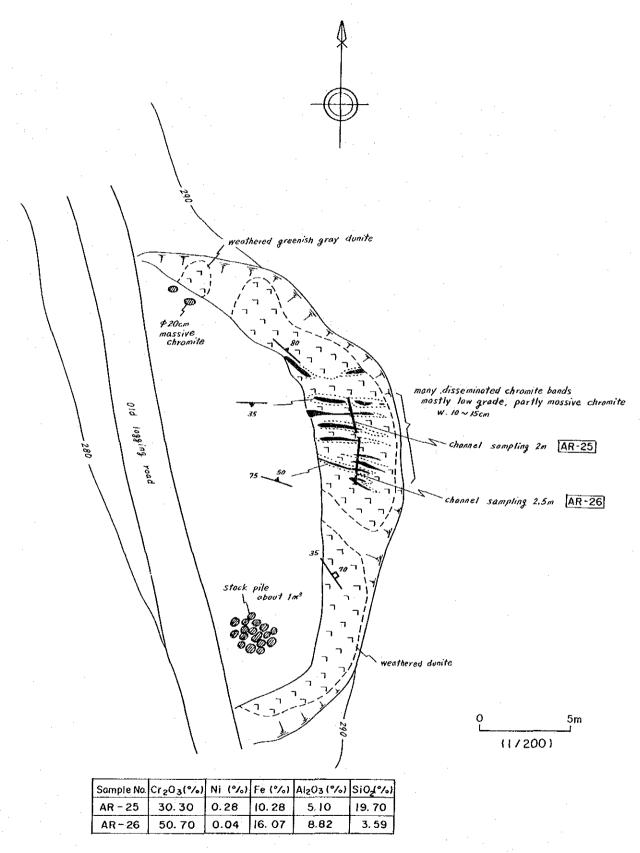


Fig. 30 Sketch of a small old working in the Upper Pananlagan area

3) Confirmation of chromite ore deposits in upper Pananlagan area

Two old workings are recognized in the north slope of Pananlagan River. Test pits were sunk at 46 sites setting on 5 survey lines in the direction of northeast that cross general trend of dunite around the mineral showings. The spacing between survey lines was 100 meters, and the interval between pits 25 meters. Location of test pits and geology were shown in Fig. 28. The distributions of element content are shown in Appendix 10. The content map of heavy minerals in bottom soil is shown in Fig. 29, considering the direction of dunite body and chromite body.

A disseminated type ore extending in the E-W direction crops out 10 meters long in the lower old working (Fig. 30). Channel samples of 2.0 meters wide (AR-25) and 2.5 meters wide (AR-26) from this outcrop show 30.30 % and 50.70 % Cr_2O_3 . This ore continues to PA051, 10 meters apart from outcrop. Another chromite band was discovered in the pit PA015, and this band is inferred to parallel with this ore body. The analysis of this chromite band shows 18.10 % Cr_2O_3 .

Another old working is rather large 50 x 200 meters in scale. Though no outcrop of chromite ore was recognized in this working, residents said that massive chromite ores were mined in this old working before, but this outcrop was buried now. Several tons of massive chromite ore are stocked near the working. An outcrop of massive chromite ore was newly discovered 100 meters apart from the working, and the scale of outcrop is more than 7 meters long and 2 meters wide. The analysis of channel sample 1 meter wide (FR-01) shows 49.00% Cr₂O₃.

Dunite containing chromite is widely recognized in upper Pananlagan area, but they show low chromite content.

2-1-2 Tagkawayan area

A remarkable chromium anomaly was detected and two chromite disseminated zones about 3 meters wide were discovered last year by Phase 1 follow-up survey along the north branch of the Tagkawayan River, and fifty test pits were sunk in this survey. Five survey lines were set in the N-S direction considering the general trend of dunite striking N70°E to E-W, dipping 60° to 70°N. The spacing between lines was 100 meter, and pit interval 25 meters. Location of pits and geology are shown in Fig. 31.

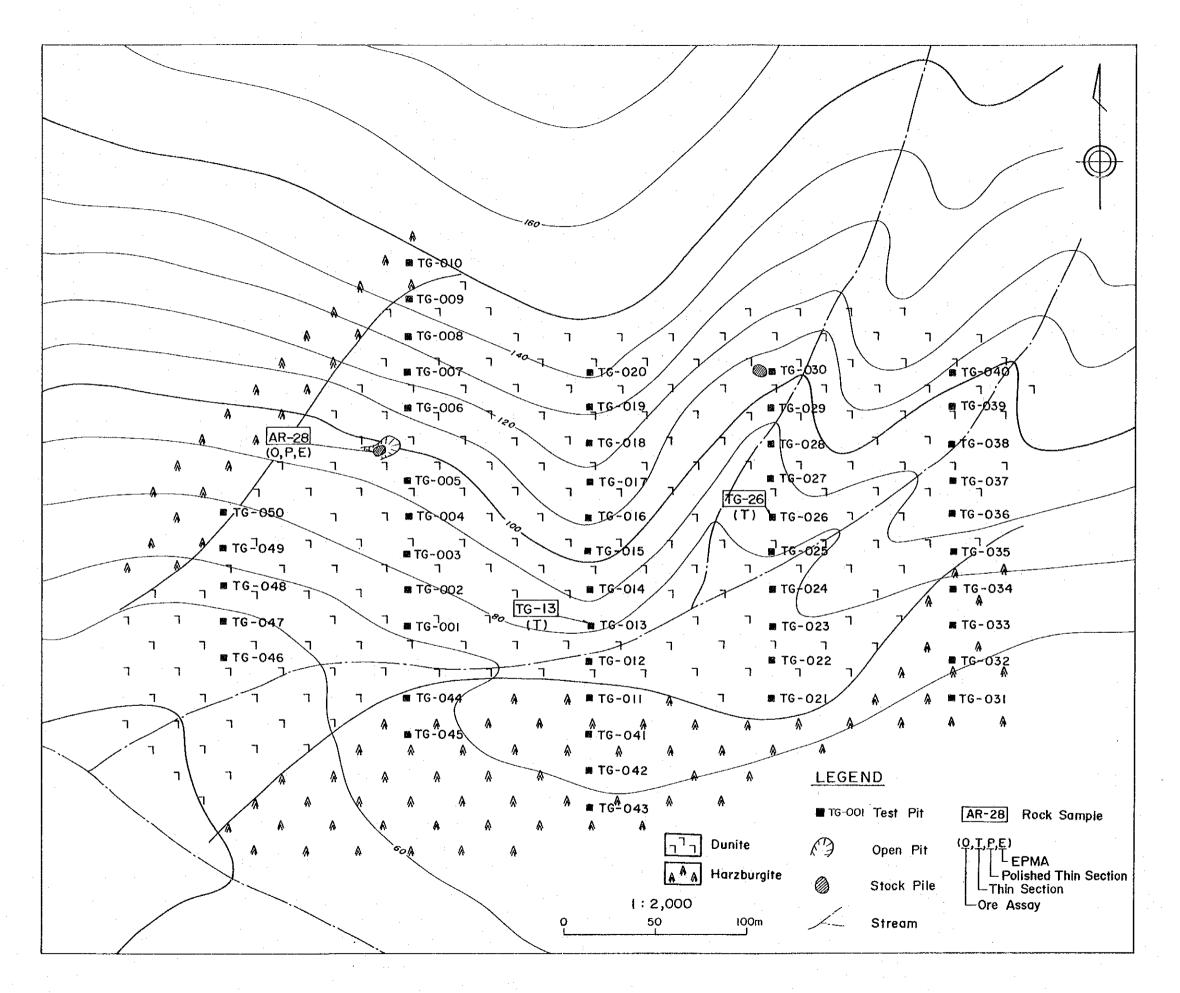


Fig. 31 Geology and location of test pits in the Tagkawayan area

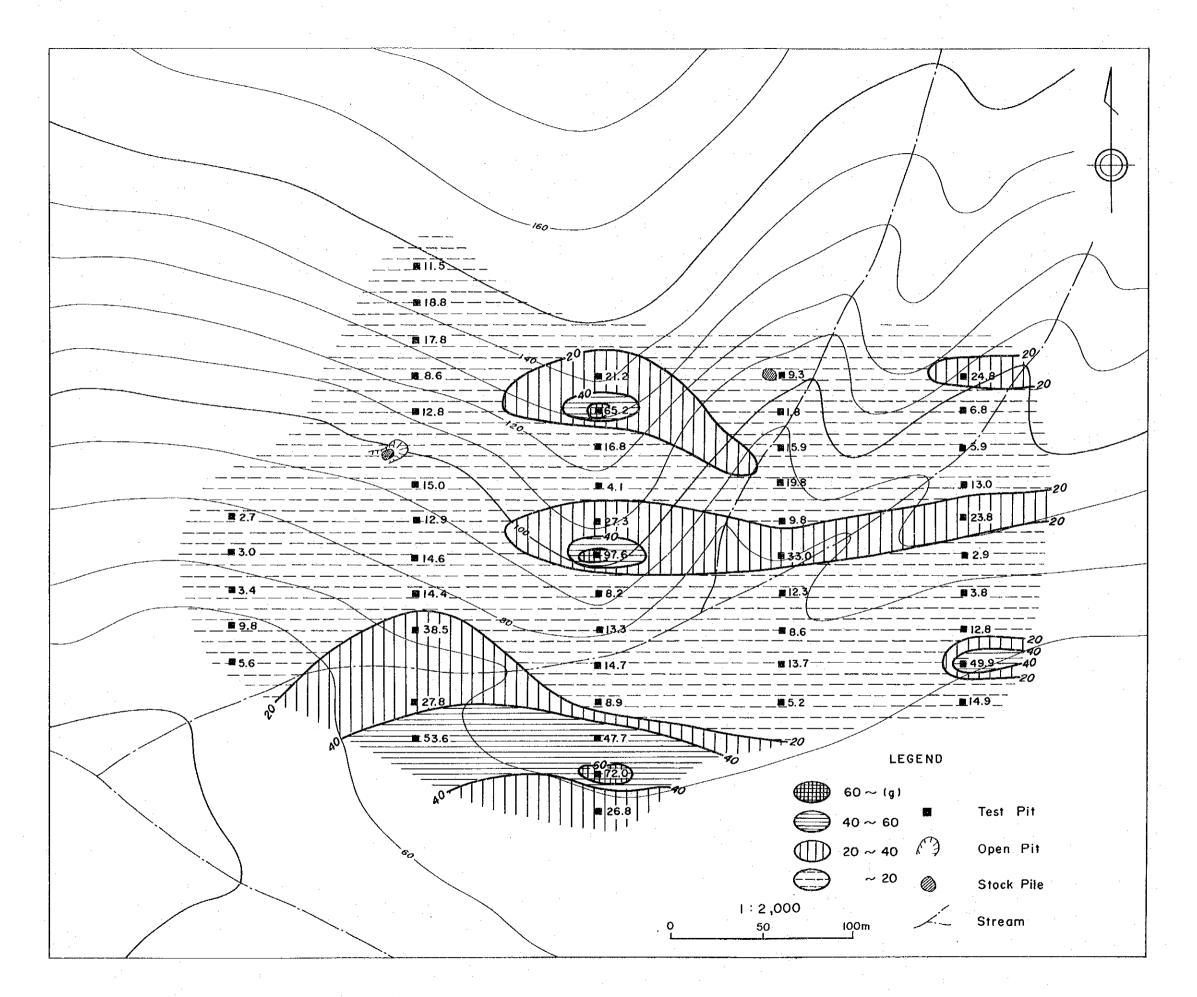


Fig. 32 Heavy mineral content in the Tagkawayan area

Profiles of every pit are shown in Appendix 11, and element distribution maps are shown in Appendix 12. The map of heavy mineral weight in the bottom soil is shown in Fig. 32 considering the general trend of dunite distribution.

A small working was found when the survey lines were cut, where several tons of massive chromite ore were stocked. The analysis of the ore from this stock (AR-28) shows 35.30 % Cr_2O_3 . Another small stock of massive chromite ore is found near TG030 pit. It is inferred that small scale of prospecting was conducted before. Many floats of massive chromite ore are also scattered along small branch.

Though it was thought that this area promised to chromite deposit because of the existence of many mineral showings, the dunite in this area contains chromite little and no chromite disseminated portions and bands.

2-2 Mariwara area in area B-1

Test pitting survey was carried out at the Mariwara area in the upper stream of Marinao River northwestern portion of area B-1 (Fig. 33). This chromium anomaly area was extracted last year by Phase 1 follow-up survey. Transition zone and cumulate dunite are distributed in the area, and chromite dissemination and bands are observed in many places within this. The electron microprobe study in Phase 1 survey shows that the chromite of this dunite is high aluminum and low chromium type.

Five survey lines were set in N-S direction to crosscut the general E-W trend of dunite body. The spacing between lines was set 100 meters, and the interval between pits was generally 25 meters along the line. More pits were sunk in distance of 5 to 10 meters around the mineralized pits to confirm the extension of mineralization. Locations of pits are shown in Fig. 34, Profile of each pit in Appendix 13 and the results of chemical analyses in Appendix 14.

Though no outcrop of chromite ore was found on surface, floats of massive and leopard type ore are found in the branch of Marinao River. The analysis of this floats (FR-16) shows 30.50% Cr_2O_3 .

Heavy minerals were collected from the soil of pit's bottom by panning. The distribution map of heavy mineral weight is shown in Fig. 35, considering the trend of chromite bands and dunite. It may be inferred from this map that some chromite disseminated zones exist ranging in width from 20 to 50 meters. Almost all pits reached to basement and dunite was recognized in every pit. Chromite

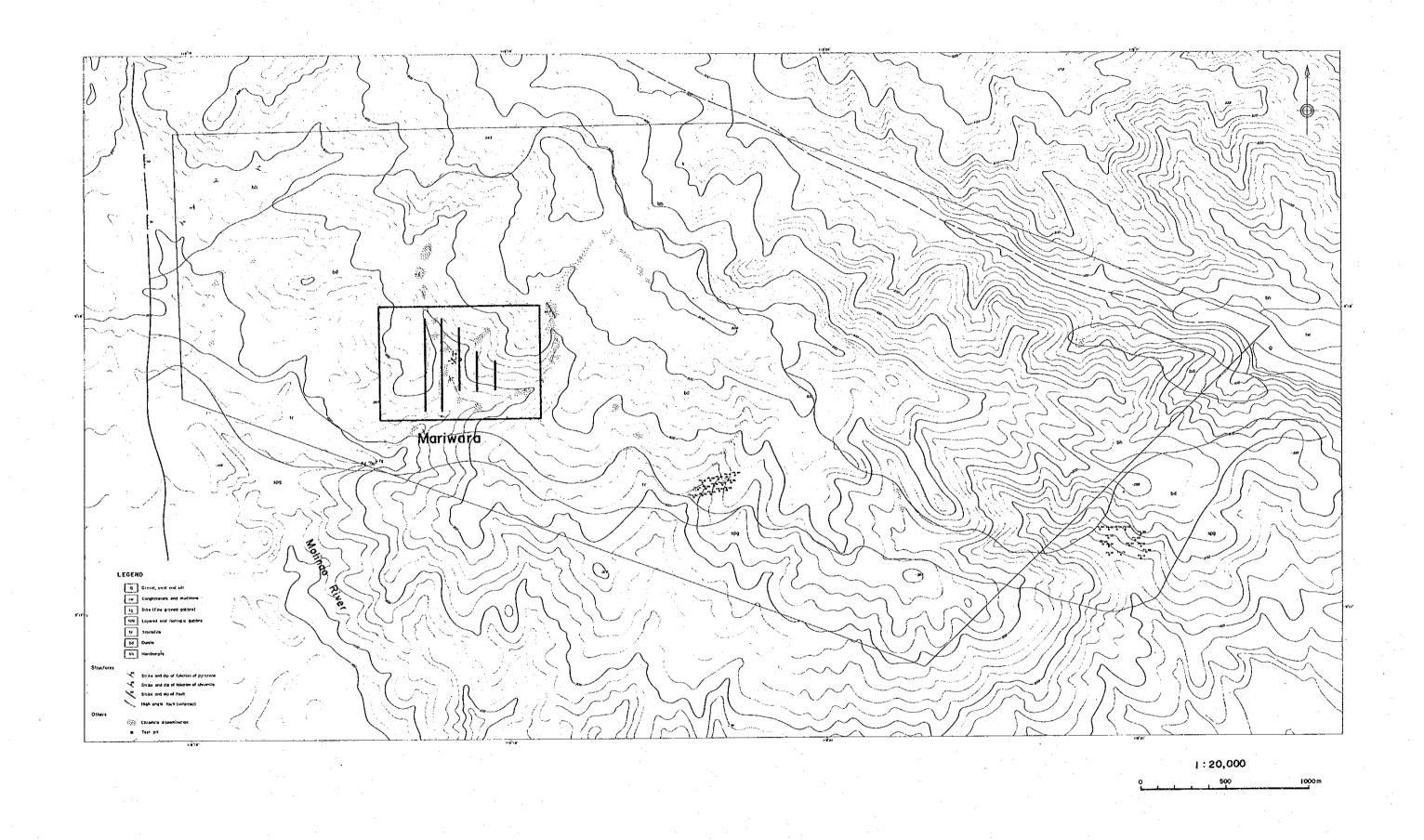
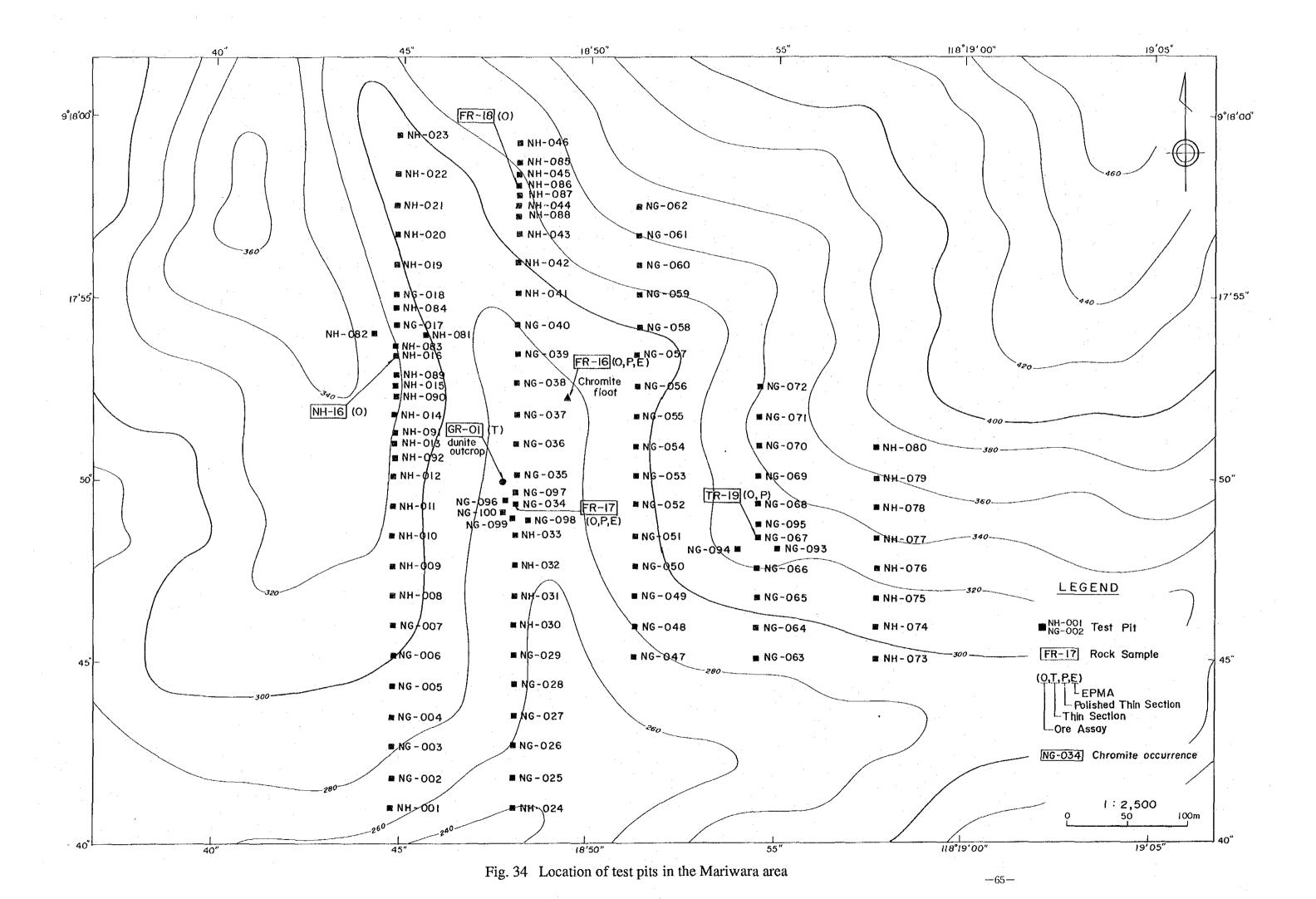



Fig. 33 Location of test pits in the area B-1

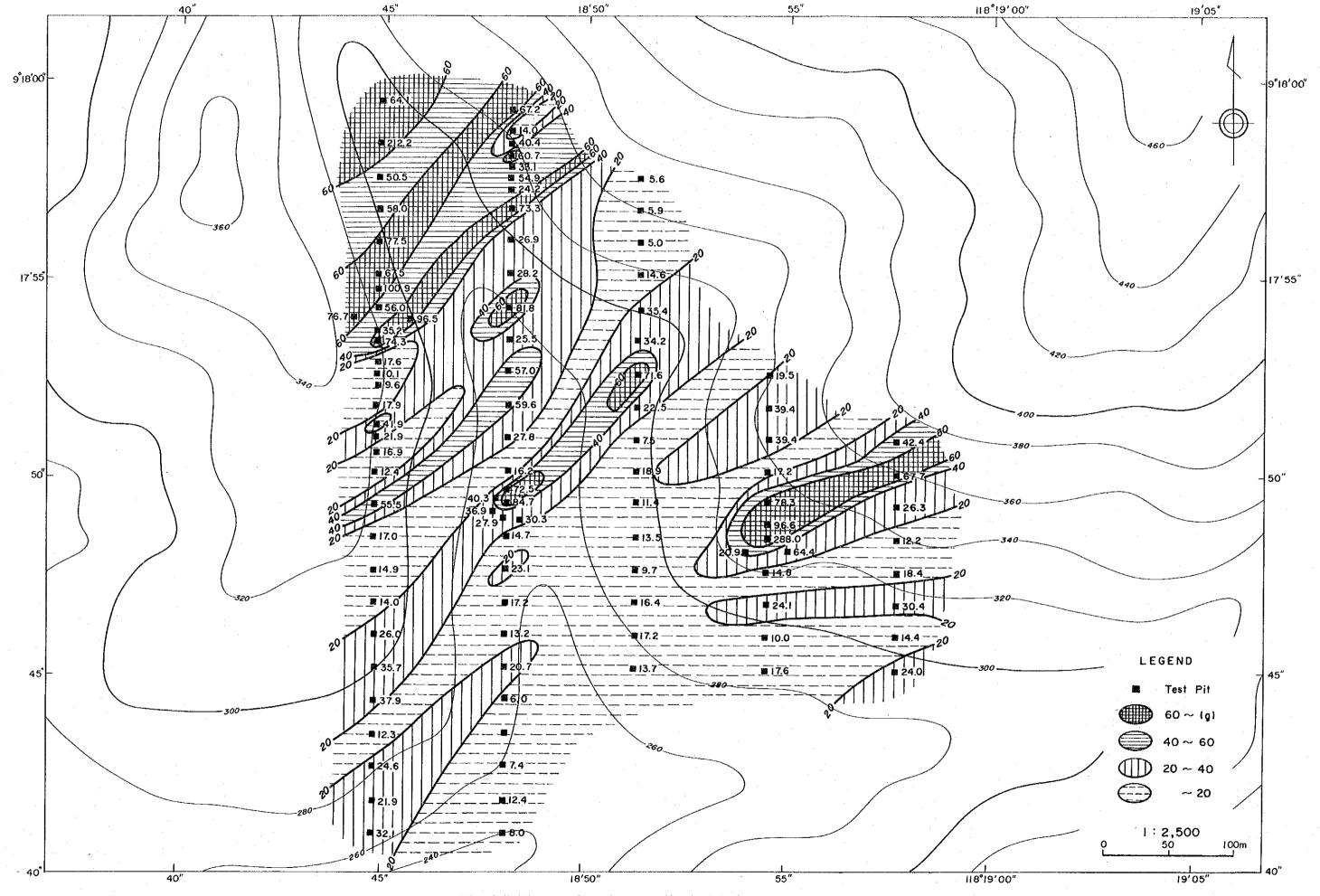


Fig. 35 Heavy mineral content in the Mariwara area

mineralization was recognized in 13 pits (Fig. 7). Sketches of important mineralization are shown in Appendix 15.

Mineralized zone from NH044 pit to NH045 pit in the north of the area consists of chromite dissemination and thin bands (Fig. 36). Channel sample was collected in width of 0.6 meter crossing chromite band in NH086 pit which is 10 meters south of NH045, and obtained 3.09 % $\rm Cr_2O_3$ (FR-18).

Mineralized zone from NH014 pit to NH017 pit in the west consists of chromite dissemination and thin band (Fig.37). The mineralized dunite (NH-16) shows 4.23 % Cr₂O₃.

Massive chromite ore was found in NG034 pit within mineralized zone in the central portion of the area (Fig. 38). This ore body is 1.4 meter wide and 2 meters long, and 1.4 meter channel sample (FR-17) shows 26.70 % Cr₂O₃. Platinum related elements are also high content in this mineralized zone. Soil samples collected from the pit bottom show Pt; 1,600 ppb and Pd; 3,400 ppb for NG034 pit, Pt; 1,200 ppb and Pd; 740 ppb for NG100.

Several chromite bands ranging in width from 2 to 6 centimeters are recognized in the east. The analysis of channel sample 1.0 meter wide (FR-19) shows $17.20 \% \text{ Cr}_2\text{O}_3$.

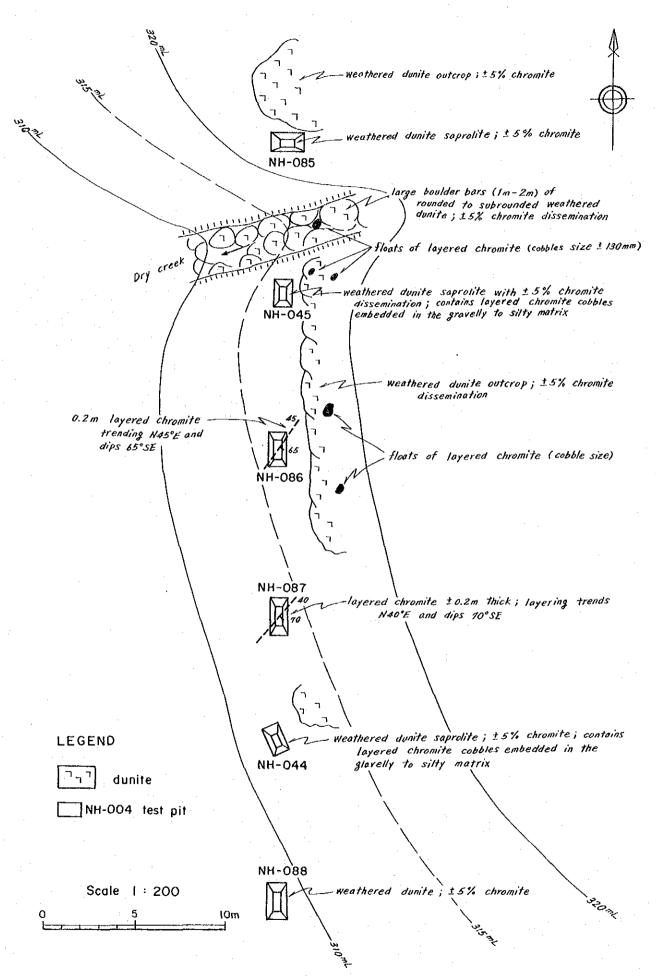


Fig. 36 Detail from NH085 to NH088

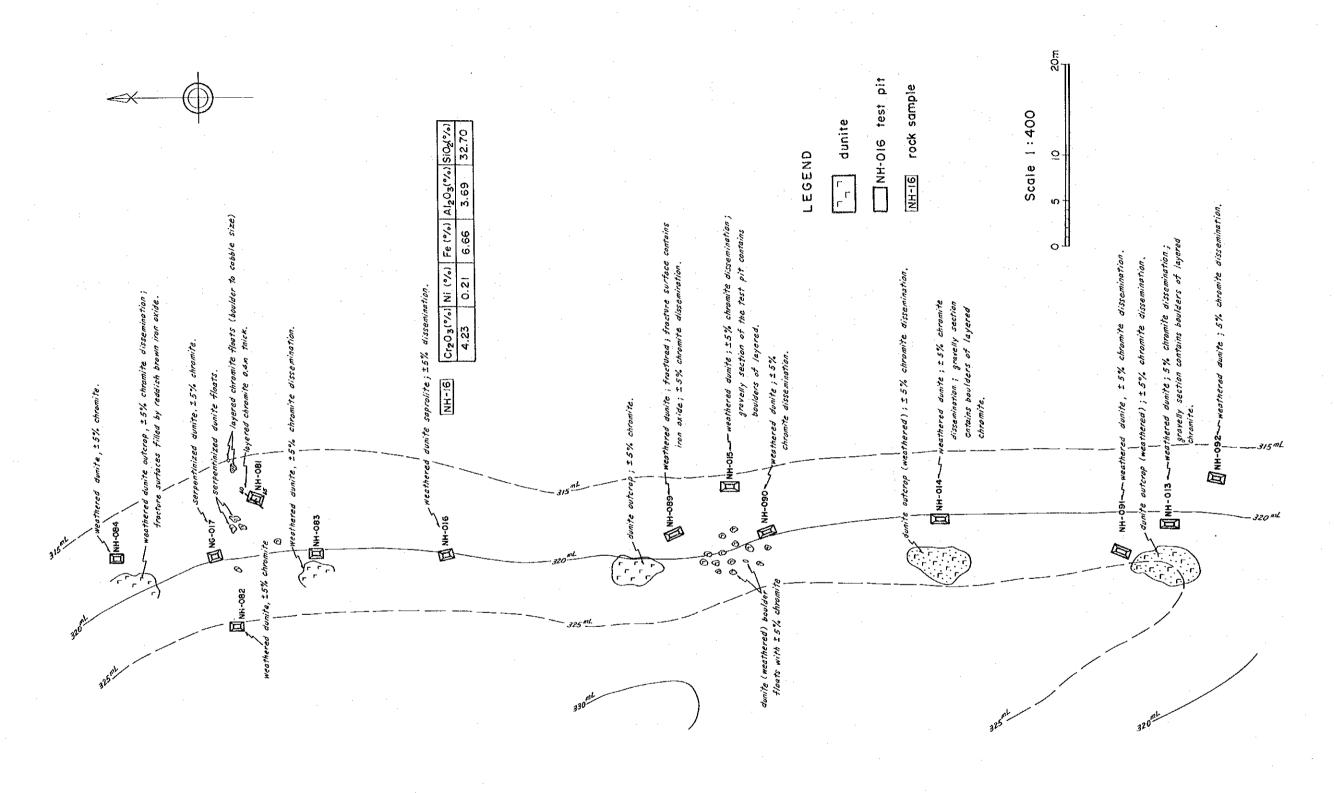


Fig. 37 Detail from NH084 to NH092

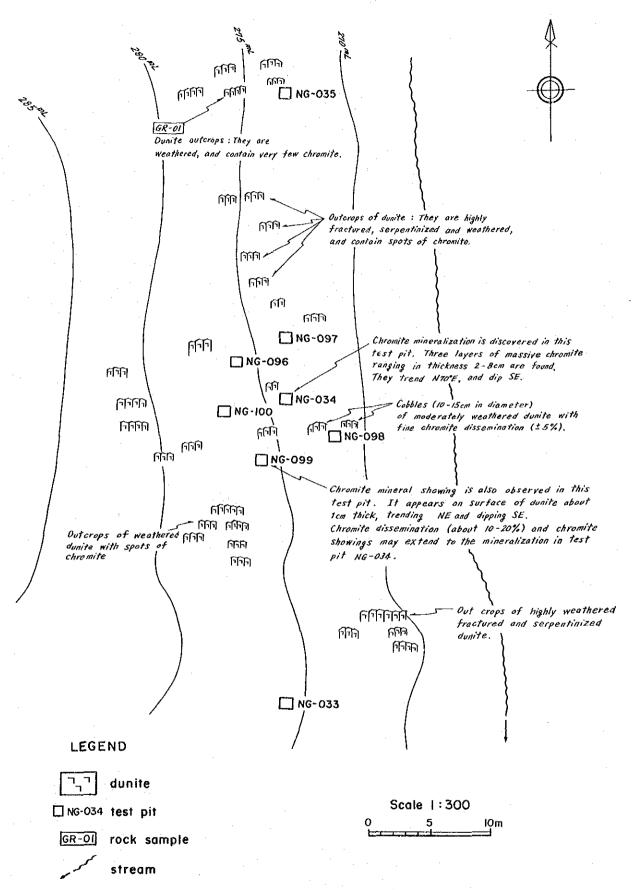


Fig. 38 Detail from NG035 to NG033

Chapter 3 Chemical composition of chromite

Chromite series is one series of spinel group minerals. The end-member of chromite is magnesiochromite (MgCr₂O₄) and chromite (ferrochromite, FeCr₂O₄). Natural chromites contain a considerable amount of Al and Fe³⁺ replacing Cr. These minerals are often called chromian spinel. Chemical composition of chromite determines directly the grade of ore, because chromite ores are economically divided into three grades due to the wide compositional variation of chromite. Chromite is also extremely sensitive to bulk composition, mineralogy and petrogenesis of the host rocks.

Chromites were analyzed with the electron microprobes for chromitites taken from representative 10 mineral showings in this survey. Thirty-two analyses and their recalculated cations on a 4-oxygen basis are presented in Table 5. Fe³⁺ and Fe²⁺ were calculated so that R^{3+} : $R^{2+} = 2$: 1 in the spinel formula. Core and rim of each grain were analyzed to detect chemical zoning, but there is no apparent chemical zoning.

The Cr-Al-Fe³⁺ triangular plot is shown in Fig. 39, and Cr/(Al+Cr) versus Mg/(Fe²⁺+Mg) diagram and Al₂O₃ versus Cr₂O₃ diagram in Fig. 40. Chromites from area A-2 have wide Cr/(Al+Cr) ratios of between 0.36 and 0.83. Those from area A-3 have the ratios of 0.81-0.83. Chromites from the Mariwara area have the ratios of 0.47-0.48. This variation in the Mariwara area is included in the range of area B-1 chromites (0.18-0.56) decided by the Phase 1 survey.

It is reported by Rammlmair et al. (1987) that the chromites from the chromitites occurrence in the Central Palawan ophiolite show the entire variation in major-element chemistry for alpine-type (podiform) chromitites in ophiolite complexes, and Cr/(Al+Cr) values of chromite increase from a shallow level of ophiolite complex to a deeper level, gabbro zone (0.38-0.5), cumulates and diapirs dunite of immediate gabbro lower contact (0.5-0.64), a shallower tectonite level of ophiolite complex (0.64-0.78), and a deep tectonite level (0.78-0.90). These compositional distributions and spatial separation are also found in Zambales. For example, Acoje Mine produces metallurgical-grade ore whereas the Coto district yields refractory-grade ore. In Zambales, Leblanc and Violette (1983) report that the Al-rich chromite pods are contained in the peridotite which underlie the gabbroic cumulates whereas the Cr-rich chromite pods related to deeper peridotite.

The Cr/(Al+Cr) ratios of chromites from area B-1 are lower than those from almost other areas. On the basis of geological survey, the chromitite occurrences in area B-1 are located in a cumulate dunite

Table 5 Chemical composition of chromite

Area	A-2								
Sp. No. Locality	FR-08 Maranat (Stock pile)			AR-16 Nagtabon No. 1 (Outcrop)			AR-13 Nagtabon No.2 (Stock pile)		
point	core	mid	rim	core	mid	rim	core	rim	rim
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ FeO MgO TOTAL	0. 01 37. 78 32. 30 2. 66 9. 66 18. 76	0.00 37.50 31.97 2.64 9.53 18.62	0. 00 36. 94 31. 40 2. 76 9. 66 18. 21	0. 19 16. 05 51. 54 4. 93 13. 08 13. 96	0. 08 15. 86 53. 32 3. 09 14. 57 13. 04	0. 12 13. 91 55. 20 4. 35 13. 10 13. 91	0. 17 9. 20 60. 64 3. 47 15. 37 12. 01	0. 13 8. 63 60. 54 3. 18 15. 14 11. 80	0. 14 8. 72 60. 92 3. 78 15. 25 12. 03
Spinel formula on the basis of 4 oxygen									
Mg Fe ²⁺ Cr Fe ³⁺ Al Ti	0. 776 0. 224 0. 709 0. 056 1. 236 0. 000	0. 777 0. 223 0. 707 0. 056 1. 237 0. 000	0. 771 0. 229 0. 705 0. 059 1. 236 0. 000	0. 655 0. 344 1. 283 0. 117 0. 595 0. 004	0. 615 0. 385 1. 333 0. 074 0. 591 0. 002	0. 654 0. 346 1. 376 0. 103 0. 517 0. 003	0. 582 0. 418 1. 558 0. 085 0. 352 0. 004	0. 581 0. 418 1. 581 0. 079 0. 336 0. 003	0. 584 0. 415 1. 569 0. 093 0. 335 0. 003
Mg/(Mg+Fe²+) Cr/(Cr+Al)	0. 776 0. 364	0. 777 0. 364	0. 771 0. 363	0. 655 0. 683	0.615 0.693	0. 654 0. 727	0. 582 0. 815	0. 581 0. 825	0. 584 0. 824

Area	A-2					A-3				
Sp. No. Locality	AR-14 Nagtabon No.3 (Stock pile)			CR-04 The eastmost of A-2 area (Stock pile)			AR-01 Pagasa 1 (Outcrop)			
point	core	mid	rim	core	mid	rim	core	mid	rim	rim
TiO ₂ A1 ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ FeO MgO	0. 24 29. 05 41. 75 2. 71 10. 82 17. 23	0. 28 28. 66 40. 58 3. 33 10. 23 17. 26	0. 20 29. 19 41. 03 3. 03 10. 50 17. 35	0. 27 21. 24 49. 71 2. 29 13. 70 14. 54	0. 42 20. 64 48. 53 1. 33 13. 51 13. 89	0.00 20.91 49.48 2.49 13.43 14.48	0. 13 8. 60 60. 94 4. 40 12. 86 13. 49	0. 15 8. 40 62. 03 4. 32 13. 91 13. 09	0. 28 8. 27 60. 12 5. 31 12. 65 13. 52	0.00 8.63 59.99 4.18 13.41 12.85
TOTAL	101.80	100. 34	101. 29	101.76	98, 32	100.78	100. 42	101.91	100. 17	99.06
Spinel formula on the basis of 4 oxygen										
Mg Fe ²⁺ Cr Fe ³⁺ Al Ti	0. 739 0. 260 0. 950 0. 059 0. 985 0. 005	0. 750 0. 249 0. 935 0. 073 0. 984 0. 006	0. 746 0. 253 0. 936 0. 066 0. 993 0. 004	0. 654 0. 346 1. 185 0. 052 0. 755 0. 006	0. 646 0. 353 1. 197 0. 031 0. 759 0. 010	0. 658 0. 342 1. 192 0. 057 0. 751 0. 000	0. 651 0. 348 1. 560 0. 107 0. 328 0. 003	0. 626 0. 373 1. 574 0. 104 0. 318 0. 004	0. 655 0. 344 1. 545 0. 130 0. 317 0. 007	0. 631 0. 369 1. 562 0. 104 0. 335 0. 000
Mg/(Mg+Fe ²⁺) Cr/(Cr+Al)	0. 739 0. 491	0. 751 0. 487	0. 747 0. 485	0. 654 0. 611	0. 647 0. 612	0. 658 0. 614	0. 652 0. 826	0. 626 0. 832	0. 656 0. 830	0. 631 0. 823

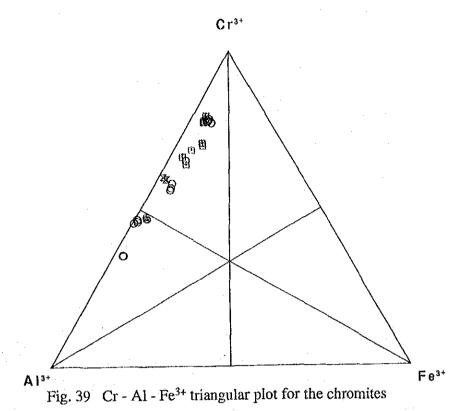

Fe²⁺ and Fe³⁺ calculated from total Fe using spinel stoichiometry

Table 5 Chemical composition of chromite

Area		A-3					A-1			
Sp. No. Locality		AR-03 Pagasa 4 Outcrop)				-28 awayan cpile)			FR-01 er pananla (Outcrop)	gan
point	core	mid	rim	core	mid	rim	rim	core	mid	rim
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Pe ₂ O ₃ PeO MgO	0. 18 9. 44 60. 64 3. 45 14. 18 12. 77	0. 18 9. 02 59. 90 3. 35 14. 43 12. 25	0. 48 8. 49 61. 63 3. 18 14. 57 12. 45	0. 20 20. 26 47. 90 4. 18 10. 54 15. 90	0. 24 21. 90 47. 89 4. 89 9. 94 17. 08	0. 08 16. 17 53. 94 4. 50 12. 20 15. 01	0. 00 21. 35 47. 95 4. 74 10. 35 16. 55	0.00 11.72 57.29 5.97 13.97 13.49	0. 17 11. 68 55. 82 6. 34 13. 74 13. 35	0. 11 11. 35 55. 11 5. 80 13. 99 12. 74
TOTAL	100.66	99.11	100.79	99.00	101.94	101.90	100. 94	102. 45	101. 10	99. 10
		\$	Spinel for	mula on 1	the basis	of 4 oxy	zen			
Mg Fe ²⁺ Cr Fe ³⁺ Al Ti	0. 616 0. 384 1. 551 0. 084 0. 360 0. 004	0. 602 0. 398 1. 561 0. 083 0. 350 0. 004	0. 603 0. 396 1. 583 0. 078 0. 325 0. 012	0. 728 0. 271 1. 164 0. 097 0. 734 0. 005	0. 753 0. 246 1. 120 0. 109 0. 764 0. 005	0. 687 0. 313 1. 309 0. 104 0. 585 0. 002	0. 740 0. 260 1. 138 0. 107 0. 755 0. 000	0. 633 0. 367 1. 424 0. 141 0. 434 0. 000	0. 634 0. 366 1. 405 0. 152 0. 438 0. 004	0. 619 0. 381 1. 419 0. 142 0. 436 0. 003
Mg/(Mg+Fe ²⁺) Cr/(Cr+Al)	0. 616 0. 812	0. 602 0. 817	0.604 0.830	0. 729 0. 613	0. 754 0. 595	0. 687 0. 691	0. 740 0. 601	0. 633 0. 766	0. 634 0. 762	0. 619 0. 765

Area		B-1		
Sp. No. Locality	FR-17 Mariwara NGO34 pit (Outcrop)			
point	core	core	core	
TiO ₂ AI ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ FeO MgO	0. 39 30. 39 40. 52 0. 87 11. 48 16. 63	0. 13 31. 69 40. 14 0. 61 11. 74 16. 77	0. 42 31. 07 40. 63 1. 27 11. 67 16. 94	
TOTAL	100. 27	101. 10	102.00	
Spinel formul	a on the b	asis of 4	oxygen	
Mg Fe ²⁺ Cr Fe ³⁺ Al Ti	0. 720 0. 279 0. 930 0. 019 1. 040 0. 008	0. 718 0. 282 0. 911 0. 013 1. 072 0. 003	0. 720 0. 278 0. 917 0. 027 1. 045 0. 009	
Mg/(Mg+Fe²+) Cr/(Cr+Al)	0. 721 0. 472	0. 718 0. 459	0. 721 0. 467	

Fe²⁺ and Fe³⁺ calculated from total Fe using spinel stoichiometry

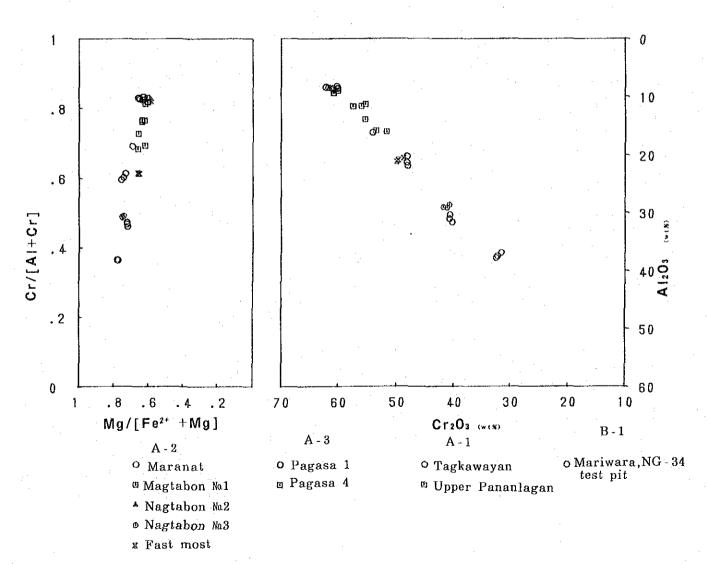


Fig. 40 Plot of Cr/(Al+Cr) versus Mg/(Fe²⁺+Mg) and Al₂O₃ versus Cr_2O_3 weight percent for chromite -74-

whereas other chromitite occurrences are distributed in dunite pockets in the harzburgite tectonite, therefore the chromite compositions correspond to the level in ophiolite sequence in these survey areas. The wide range of chromite compositions from mineral occurrences in area A-2 may result from the complicated geology around Nagtabon Pass.

The grade of chromite ore is inferred from the Al_2O_3 - Cr_2O_3 diagram of chromite composition (Fig.40). Economically the grade of chromite ore is divided into metallurgical-grade ($Cr_2O_3 > 48$ %), chemical-grade ($Cr_2O_3 > 45$ %), and refractory-grade ($Cr_2O_3 > 30$ %, $Cr_2O_3 + Al_2O_3 > 60$ %). The mineral occurrences are classified as follows;

Metallurgical-grade: Nagtabon No .1, Nagtabon No .2 (A-2), Pagasa 1, Pagasa 4 (A-3),

Upper Pananlagan (A-1)

Chemical-grade: Easternmost (A-2), Tagkawayan (A-1)

Refractory grade: Maranat, Nagtabon No. 3 (A-2), Mariwara (B-1)

PART III	CONCLUSION	AND	RECOMMENDATION

Capter 1 Conclusion

[Geological survey and geochemical prospecting in area A-2]

- 1) Area A-2 is mainly underlain by the nappe of ultramafic complex, consisting of harzburgite, dunite and pyroxenite.
- 2) Large dunite tectonites are distributed in southwest of Mt. Airey and the vicinity of Nagtabon Pass.
- 3) Almost chromite deposits occur in the dunite tectonite around Nagtabon Pass. Ore bodies consist of massive and disseminated types' chromite ores, which vary markedly in width. The scale of occurrences is small except the Nagtabon No. 1 deposit.
- 4) The disseminated type's ore is well-exposed in the Nagtabon No. 1 deposit, and massive ore was once mined. Though subsurface occurrence is not clear, the volume of 2,000 tons as chromite is estimated only from the disseminated type's ores near surface.
- 5) From soil geochemical prospecting, the chromium anomalies were detected scatteringly at places in the area. They don't seem to be coincide with the distribution of dunite tectonite and ore deposits. Therefore promising areas for chromite deposits could not define only by this result. An anomaly zone of platinum related elements is distributed along a small river to the north of Maranat, where some sample shows more than 100 ppb of both platinum and palladium. Nickel and iron anomalies overlap the area in the north of Bacungan, south of Mt. Airey and north of Maranat. These areas have potential for nickeliferous laterite.

[Geological survey and geochemical prospecting in area A-3]

- 1) Area A-3 is mainly underlain by ultramafic complex, consisting of harzburgite, dunite and pyroxenite.
- 2) Dunite tectonite is distributed around 291m peak in the central portion of the area. Pagasa 1, 2 and 4 deposit are located in this dunite tectonite.
- 3) Many massive and disseminated ores crop out in Pagasa 1 deposit. The mineralized zone covers at least 150 x 150 meters. Though it is difficult to estimate the volume of ore only by surface survey, 40 to 60 thousand tons of chromite is thought to be estimated.
- 4) The disseminated and massive chromite ore bodies occur in Pagasa 2 and 4 deposits. Massive chromite ore body usually does not extend so much and vary markedly in width.

5) As the results of soil geochemical prospecting, chromium anomalies are recognized in the area south of Pagasa 1 and south of Pagasa 2, and these areas are thought to be promising for chromite deposit.

The anomalies of platinum related elements are distributed in the area south of Pagasa 1, from Pagasa 2 to Pagasa 4, and west of national highway.

[Test pitting survey in area A-1]

- 1) Extension of massive chromite ore body in lower Pananlagan was not confirmed by this survey.
- 2) Test pits revealed that geochemical anomaly along the branch of the Pananlagan River was a false anomaly by secondary concentration of chromite.
- 3) Extension of disseminated chromite ore body at lower old working in upper Pananlagan is confirmed to extend to the pit 10 meters apart. Another chromite band parallel to this ore body was also recognized in another pit.
- 4) Outcrop of massive chromite ore was newly discovered near the upper old working in upper Pananlagan. The ore body strikes N45°W, dips 40°NE, and extends more than 7 meters in length and 2 meters in width. The analysis shows 49.00% Cr₂O₃. No other ore body was found around this area.
- 5) Two small old workings were found in Tagkawayan area, and the analysis of a stock shows 35.30% Cr_2O_3 . The dunite is almost barren in this area. No other mineral showing was found.

[Test pitting survey in area B-1]

- 1) Chromite mineralization was recognized at 13 pits in the Mariwara area.
- 2) Massive chromite was discovered at NG034 pit in the central portion of the area. The analysis of this ore shows 26.70% Cr₂O₃. Contents of platinum related elements are also high around this pit. The bottom samples of pit show Pt; 1,600 ppb, Pd; 3,400 ppb at NG034 and Pt 1,200 ppb, Pd 740 ppb at NG100.
- 3) Other mineralized zones consist of disseminated chromite and thin chromite band, but the grade is low.
- 4) Floats of massive chromite ore and leopard type nodular ore were found in the branch of Marinao River. The analysis shows 30.50% Cr_2O_3 .

Chapter 2 Recommendation for Phase 3 survey

Many chromite occurrences are distributed in area A-2 and A-3. The evaluation has led that the Nagtabon No. 1 deposit in area A-2 and the Pagasa 1 deposit in area A-3 have potential for the chromite deposit. Therefore it is preferable that the further detailed exploration including drilling survey will be conducted at Pagasa 1 deposit and maybe Nagtabon No. 1 deposit to clarify the occurrence of subsurface ore body.

Several mineral showings were newly discovered through test pitting survey in area A-1 and B-1, but all of them are small in scale. Therefore further survey may not be necessary in these two areas.

References

Bureau of Mines and Geo-Science (1982): Geology and Mineral Resources of Philippines, Vol. 1 Geology.

Bureau of Mines and Geo-Science (1986): Geology and Mineral Resources of Philippines, Vol. 2 Mineral Resources.

Dick, F.K.J. (1984): Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas, Contrib Mineral Petrol 86, 54-76.

Fletcher, W. K., Hoffman, S. J., Mehrtens, M. B., Sinclair, A. J. (1986): Review in economic geology Volume 3, Exploration Geochemistry: Design and interpretation of soil survey, Society of Economic Geologist.

Hawarth, R. J. (1985): Handbook of mineral exploration geochemistry Volume 2, Statistic and Data Analysis in Geochemical Prospecting, Elsevier Scientific Publishing Company.

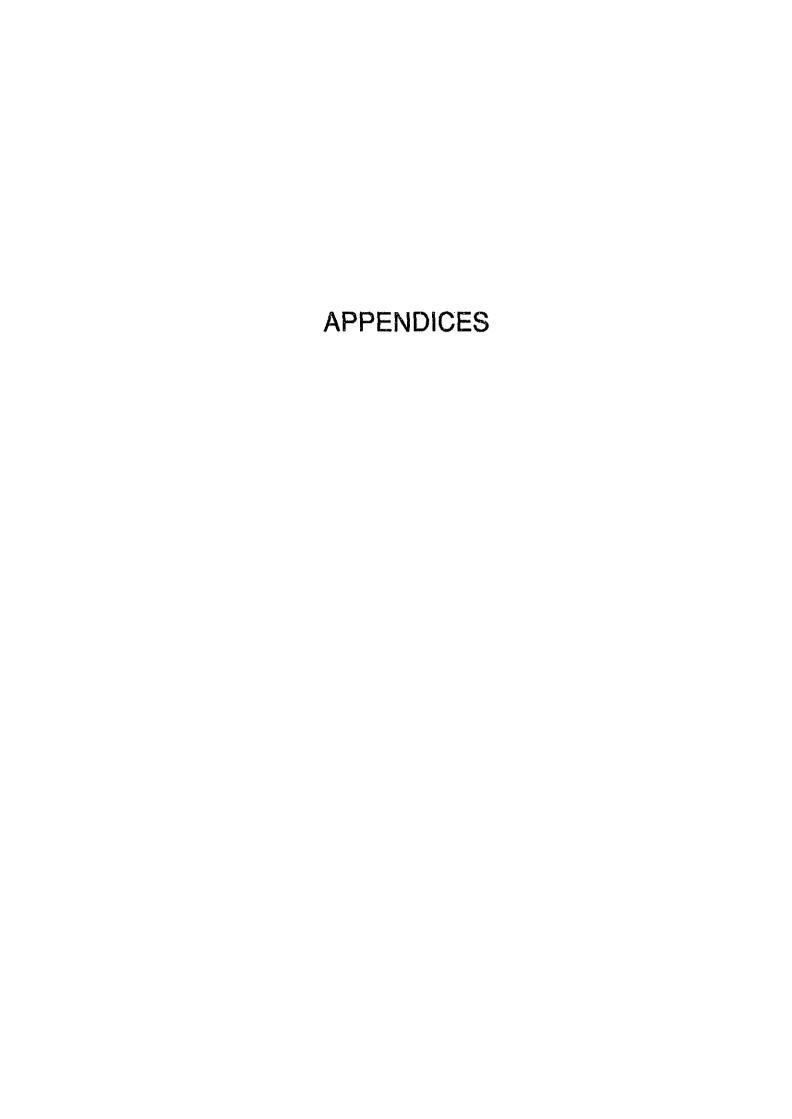
JICA-MMAJ (1987): Report on the mineral exploration in the Republic of the Philippines, Phase (III).

JICA-MMAJ (1988): Report on the mineral exploration in the Republic of the Philippines, Phase 3 (I).

JICA-MMAJ (1989): Consolidated Report on Palawan Area.

JICA-MMAJ (1989): Report on the mineral exploration: mineral deposit and tectonic of two contrasting geologic environments in Republic of the Philippines - Semidetailed survey in Palawan.

Leblanc, M. and Violette, J. F. (1983): Distribution of Alminum-Rich and Chromium-Rich Chromite Pods in Ophiolite Peridotites, Economic Geology Vol. 78, 293-301.


Rammlmair, D., Raschka, H. and Steiner, L. (1987): Systematics of chromitite occurrences in Central Palawan, Philippines, Mineral, Deposita 22, 190-197.

Santos, R. A. (1988): The geology of Palawan and It's Tectonic Implication, unpublished report.

United Nations (1985): Geology of Central Palawan, UNDP Technical Report No. 6.

United Nations Revolving Fund for Natural Resources Exploration (1990): Chromite exploration in the Philippines, Semi-annual report November 1988 - December 1989.

United Nations Revolving Fund for Natural Resources Exploration (1990): Chromite exploration in the Philippines, Semi-annual report (1 January - 30 December 1990).

Appendix 1 Microscopic observation of rock thin section

### Secondary mineral Xf P1 Bi Hb Cpx Opx 01 Cr Pl Hb Cpx Opx Sr Se Ch Ba Ca Op So So So So So So So So																	1			ŀ	
S				I		}	<u></u>	- 1		8		.				Secor	dary	e i e	er a		
O O O O O O O O O O	No Sample No. Rock name Q	No. Rock name	паше	O'	M		<u>m</u>	=				ပ	Δ.				S	Se	Сh	ω q	Ca
O	1 AR-04 gabbro		gabbro				(O)		<u> </u>									0			
O	2 AR-08 mylonite ©	mylonite		0			(a)											٥			
O	3 AR-09 quartz schist	quartz schist	schist	(O)										n		0					
	4 BR-09 granodiorite	BR-09	granodiorite			9.	0	(O)		-											
	5 DR-14 harzburgite		harsburgite							•	<u> </u>					J	0			0	
O	6 DR-18 dunite	-18	dunite							-	<u> </u>					•	0		0	0	0
O	7 DR-19 gabbro		gabbro		1		0		·										0		
	8 BR-01 dolerite		dolerite				0	(O)		<u> </u>									•		
	9 DR-08 olivine bearing pyroxenite	olivine bearing pyroxenit	olivine bearing pyroxenit						©		0						0			0	
	10 ER-01 mylonite ©	mylonite		(O)	5		(O)											0	0		
lase, Bi;biotite, Hb;hornblende, Cpx;clinopyroxene, Sr;serpentine, Se;sericite, Ch;chlorite, Ba;bastite, ce	11 PA-14 dunite		dunite								(O)						0				
lase, Bi:biotite, Hb:hornblende, Cpx:clinopyroxene, Sr:serpentine, Se:sericite, Ch:chlorite, Ba:bastite, ce	12 TG-13 dunite		dunite								©		0		٥		0				
lase, Bi:biotite, Hb:hornblende, Cpx:clinopyroxene, Sr;serpentine, Se;sericite, Ch;chlorite, Ba;bastite, ce	13 TG-27 dunite		dunite								(O)						0				
lase, Bi:biotite, Hb:hornblende, Cpx:clinopyroxene, Sr:serpentine, Se:sericite, Ch:chlorite, Ba;bastitce	14 GR-01 dunite		dunite								<u> </u>						0				
.; tr	Abbreviation Qiquartz, Kf;potassium feldspar, Pl Opx;orthopyroxene, Oliolivine, Cr;c Ca;calcite, Op;opaque mineral	Q:quartz, Kf;potassium feldspa Opx:orthopyroxene, Ol;olivine, Ca;calcite, Op:opaque mineral	m feldspa ;olivine, mineral	kr. Pl		pl:	agioc mite.	ase Sr;	Bi	4.3	0 T.	Hb e;s	.C. L.	bler te,	700	Cpx;c hlorj	te.	pyro Ba;b	xene asti	. 4.3	·
	Symbols : @: abundant, O; common, o; rare,	: @: abundant, O: common, o: rar	abundant, O; common, o; rar	rare,		•	ţ	Ф О													

Appendix 2 Microscopic observation of polished thin section

	L				r H	Primary mineral	>			Secondary	ndar		mineral		
Area	No	Sample No.	Chromitite	ЕРМА	Срх	5	Ç	vd0	10	Sr	Ch	Ва	S	n Sd	i Id
	1	FR-08	Maranat	0		0	0			0			0	<u> </u>	ļ
	2	AR-16	Nagtabon No.1	0	0	0	0						٥		-
	3	AR-13	Nagtabon No.2	0			0	•		0					
A-2	4	AR~14	Nagtabon No.3	0			0			0					
	ъ	AR-17	Nagtabon No.4				0			0					
	9	AR-15	Nagtabon No.5		٥		0			0		0			
	7	CR-04	Eastern most	0		٥	0			0			, , , , , , , , , , , , , , , , , , ,		
	9 0	AR-01	Pagasa 1	0		0	0			0			0		•
A - B	6	AR-07	Pagasa 2				0	<u> </u>		0					
	10	AR-03	Pagasa 4	0			0			0				0	
***************************************	11	AR-28	Tagkawayan	0		0	0			0			•		
	12	FR-01	Upper Pananlagan	0		٥	0			0					
	13	FR-02	Upper Pananlagan				·@		•	0					
voia ·	14	FR-19	Test pit NG067				0		0	0					
B-1	15	FR-17	Test pit NG034	0		•	0			0				٥	٥
	16	FR-16	Mariwara float				0		0	©					
	Abb	Abbreviation	Cpx:clinopyroxene, Ol:olivin Sr;serpentine, Ch;chlorite, Li:limonite, Id:iddingsite	Oliolivine. thlorite, Ba lingsite	ъ. Ва.	e. Cr:chromite. Ba:bastite, Ms:			px;o gnes	rtho ite,		Opx;orthopyroxene, agnesite, Sd;siderite	ite,		
	Syn	Symbols :	©;abundant, ○;common,	o;rare,	re.	 	· ;trace								
														3	

Appendix 3 Chemical composition of ore samples

Area A-2 and A-3

No.	Area	Šp. No.	Locality	Cr ₂ O ₃ (%)	A12O3(%)	Fe ₂ O ₃ (%)	SiO ₂ (%)	Ni (%)
1 2 3 4 5 6 7 8 9 10 11 12 13 14	A-2	AR-10 FR-09 FR-10 FR-11 FR-12 FR-13 FR-14 AR-12 AR-13 AR-14 AR-15 AR-17 AR-18 CR-04	Maranat Nagtabon No. 1 Nagtabon No. 2 Nagtabon No. 2 Nagtabon No. 3 Nagtabon No. 5 Nagtabon No. 4 Nagtabon No. 6 The eastmost	26. 50 19. 50 18. 10 9. 93 14. 10 2. 31 11. 60 38. 40 37. 80 39. 60 33. 50 47. 20 31. 80 41. 20	17. 60 6. 43 5. 87 4. 03 5. 02 1. 27 4. 34 22. 10 22. 60 20. 50 28. 00 16. 50 18. 00 13. 90	13. 10 12. 17 12. 20 11. 01 10. 55 8. 74 11. 38 14. 68 14. 25 15. 31 14. 60 18. 03 13. 57 15. 23	14. 00 24. 80 26. 90 32. 90 30. 70 38. 50 37. 00 5. 60 3. 86 5. 09 3. 72 3. 72 9. 64 9. 03	0. 15 0. 18 0. 22 0. 21 0. 20 0. 27 0. 29 0. 08 0. 06 0. 08 0. 10 0. 08 0. 13 0. 06
15 16 17 18 19 20 21 22 23	A-3	FR-03 FR-04 FR-05 FR-06 AR-06 AR-07 BR-07 FR-07 ER-03	Pagasa 1 Pagasa 1 Pagasa 1 Pagasa 1 Pagasa 2 Pagasa 2 Pagasa 2 Pagasa 2 Pagasa 4 West	16. 50 22. 70 46. 80 46. 70 49. 00 51. 30 46. 60 30. 90 11. 70	2. 21 3. 33 7. 22 6. 11 7. 62 9. 30 17. 10 4. 62 4. 37	12. 60 15. 47 18. 64 17. 73 17. 26 20. 10 18. 51 16. 16 17. 00	29. 20 26. 50 7. 46 10. 70 7. 32 3. 51 2. 73 22. 10 27. 20	0.77 0.18 0.08 0.09 0.09 0.06 0.05 0.17 0.23

Test pit area

No.	Area	Sp. No.	Locality	Cr ₂ O ₃ (%)	A1 ₂ O ₃ (%)	Fe ₂ O ₃ (%)	Si02 (%)	Ni (%)
24 25 26 27	A — 1 (Panan lagan)	AR-25 AR-26 FR-01 PA-15	Upper Pananlagan Upper Pananlagan Upper Pananlagan PAO15 pit	30. 30 50. 70 49. 00 18. 10	5. 10 8. 82 11. 10 3. 48	14. 70 22. 98 19. 99 11. 37	19. 70 3. 59 3. 60 26. 80	0. 28 0. 04 0. 04 0. 32
28	(Tagkawayan)	AR-28	Tagkawayan	35.30	5.84	14, 03	16. 10	0.23
29 30 31 32 33	B−1 (Mariwara)	FR-16 FR-17 FR-18 FR-19 NH-16	Mariwara float NGO34 pit NGO45 pit NGO67 pit NHO16 pit	30. 50 26. 70 3. 09 17. 20 4. 23	14. 10 23. 90 6. 32 14. 50 3. 69	14. 13 13. 50 9. 18 12. 51 9. 52	12. 90 11. 10 38. 40 19. 70 32. 70	0. 11 0. 21 0. 29 0. 38 0. 21

												(1)
No. Sample No.	Long i tude	Latitude Geolo	gy Horizo	on Depth	Color	Pt ppb	Pd ppb	Au ppb	Ni ppm	. Cr ppm	Fe %	Co ppn
1 A021	118, 46, 53	9° 56. 64' H	В	10	RD	< 5	<2	2	5500	9000	11.6	280
2 A022	118' 46. 46'	9' 56. 72' H	В	15	BR	10	12	2	2600	15000	11.5	410
3 A023 4 A024	118' 46. 39' 118' 46. 36'	9' 56. 84' H 9' 56. 97' H	B B	15 20	BR BR	<5 15	6 16	<2 <2	2300 2600	-8000 18000	8. 8 8. 1	140 190
5 A025	118' 46. 35'	9 57. 07 11	В	15	BR	5	10	<2	5800	7600	8.4	610
6 A026	118' 46. 33'	9' 57. 17' II	В	25	BR	<5	8	2	3000	9000	7.2	320
7 A027 8 A028	118' 46. 43' 118' 46. 36'	9' 56. 59' H 9' 56. 63' H	B B	10 10	RD BR	15 15	10 12	<2 4	3100 2900	9000 13000	14. 1 10. 7	360 530
9 A029	118' 46. 28'	9' 56. 74' H	B	10	BR	40	30	4	5200	18000	15.6	750
10 A030	118 43 63	9°57.01′ II	В	10	BR	10	8	8	3100	18000	12.2	390
11 A031	118' 43. 67'	9'56.87' II	· B	10	BR	15	16	- 8	614	3100	6.9	110
12 A032 13 A033	118, 43, 56, 118, 43, 66,	9° 56. 86° H 9° 56. 75° H	B B	10 15	BR BR	15 5	30 - 8	20 10	60 19	1600 1200	6. 1 7. 5	62 44
14 A034	118' 43. 64'	9' 56. 62' H	B	15	YE	2Ŏ	30	10	28	1500	3.6	39
15 A035	118' 43. 50'	9' 56. 74' G	В	15	YE	< 5	14	16	24	1400	2.5	42
16 A036	118° 43. 46° 118° 43. 45°	9' 56. 91' H 9' 56. 81' G	B B	15	BR YE	40	20 16	14	4700 33	21000 1400	16.7	610 69
17 A037 18 A038	118 43 45	9'56.81' G 9'57.01' H	В	15 10	BR	30 20	10	22 4	2000	12000	6. 4 7. Î	160
19 A039	118' 42, 49'	9' 56. 77'	B	10	RD	35	8	6	5400	33000	22.4	600
20 A040	118 42 56	9' 56. 83' H	В	10	RD	60	24	6	4600	20000	45.0	410
21 A041	118' 42 62'	9° 56, 92° H 9° 56, 70° H	B B	15 10	OR RD	25 40	16 32	<2 4	5100 6100	22000 30000	17. 1 29. 5	790 700
22 A042 23 A043	118' 42. 61' 118' 42. 79'	9° 56. 70° H 9° 56. 78° H	В	10	RD	30	32 12	4 4	7300	14000	29. 5 29. 5	740
24 A044	118, 42, 88,	9' 56. 73' H	В	10	RD	35	20	<2	6400	10000	24. 2	610
25 A045	118' 42, 98'	9' 56. 77' H	В	15	RD	20	10	2	10100	16000	43.0	680
26 A046	118' 43. 11'	9' 56. 77' H	В	20	RD	25 25	26 10	<2 <2	7500 4200	23000 -16000	52. 0 18. 2	250 450
27 A047 28 A048	118' 43, 17' 118' 42, 56'	9' 56. 85' H 9' 56. 59' H	B B	15 10	YE RD	25 25	10 26	6	10000	10000	16. 5	480
29 A049	118' 44. 63'	9' 56. 79' H	. B	15	YE	20	6	⟨2	4000	23000	15.8	150
30 A050	118' 44. 55'	9°56.82′ H	В	15	BR	20	6	6	4500	23000	11.7	370
31 A051	118' 44. 52'	9°56.92′ H	В	10	BR	35 25	20 10	4	4600 6400	19000 16000	13. 4 16. 8	480 650
32 A052 33 A053	118' 44. 43' 118' 44. 41'	9° 57. 02′ H 9° 57. 14′ H	В В	10 10	BR BR	23 35	20	4 <4	3100	11000	9.6	360
31 A054	118' 44. 57'	9' 57. 13' H	В	15	BR	40	16	16	5100	13000	14.6	430
35 A055	118°44.69′	9'57.06' H	В	15	BR	30	14	8	5100	17000	16.7	560
36 A056 37 A057	118' 44. <i>77'</i> 118' 39. 49'	9' 56. 92' H 9' 56. 07' H	B B	15 15	BR BR	20 15	14 10	<2 8	3000 1200	30000 4140	8. 8 5. 5	320 82
38 A058	118, 35, 38,	9' 55. 99' H	B	10	BR	10	2	4	4200	16000	12.3	520
39 A059	118' 39. 28'	9°55.91′ H	В	15	BR	20	8	6	2000	8000	7.1	270
40 A060	118' 39: 22'	9' 55. 85' H	В	15	BR	5	4 <2	· 6	4300 3000	15000 13000	11. 2 9. 4	370 380
41 A061 42 A062	118' 39. 16' 118' 39. 15'	9' 55. 79' D 9' 55. 71' H	B B	15 15	BR RD	15 10	8	<2	2700	19000	10.1	620
43 A063	118' 39. 17'	9 55. 64 II	В	20	BR	10	- 6	6	2200	15000	7.6	430
44 A064	118' 39. 30'	9°55.67′ S	В	15	BR	40	44	<4	291	2000	5.2	79
45 A065	118' 39. 44'	9'55.77' S	В	20	RD DD	25	6	<2	140 4500	1500 13000	5. 2 10. 0	64 430
46 A066 47 A067	118' 39. 50' 118' 39. 57'	9' 55. 87' Q 9' 55. 95' H	B B	20 20	BR BR	25 30	6 6	<2 <4	2800	11000	10.5	290
48 A068	118`39.61'	9' 55. 98'	B	30	BR	30	<2	<2	6400	16000	21.6	610
49 A069	118, 39, 69,	9° 56. 03′ H	В	20	BR	<5	<2	4	1500	9000	5.1	140
50 A070 51 A071	118' 39. 76' 118' 39. 09'	9° 56. 10° H 9° 56. 22° H	B B	15 25	BR RD	25 20	8 40	<2 <2	2100 6700	13000 14000	9. 7 27. 8	320 670
52 A072	118, 33, 03,	9 56. 26' D	В	25	BR	15	14	(2	3200	14000	12.7	440
53 A073	118° 38. 99°	9° 56. 13′ D	В	25	RÐ	35	4	8	6200	18000	20.6	700
54 A074	118, 39, 00,	9' 56. 05' D	В	20	BR	40	8	<4	5200	15000	17.5	560
55 A075 56 A076	118' 39. 05' 118' 39. 08'	9' 56. 01' D 9' 56. 08' D	B B	25 15	RD BR	15 20	12 14	<2 6	4800 5700	20000 24000	14.9 17.2	710 670
57 A077	118' 39. 12'	9'56.15' H	B	15	BR	25	12	8	3100	27000	11.1	530
58 A078	118' 39. 17'	9° 56. 22′ H	В	15	BR	15	4	<2	4200	17000	16.0	530
59 A079	118' 39. 09'	9'55, 92' D	B	30	BR DD	25 20	4	<2	6400 4600	8000 18000	10.5	290 570
60 A080 61 A081	118' 39. 16' 118' 39. 20'	9° 55. 90° D 9° 56. 03° D	B B	20 20	BR BR	20 15	10 12	6 <2	4600 1600	8000	12.5 7.4	110
62 A082	118° 39. 31 ′	9' 56. 06' D	В	15	RD	25	20	18	2500	15000	8.5	420
63 A083	118*39.30*	9°56.17′ D	В	15	BR	70	40	14	2700	36000	14.5	570
64 A084	118' 38. 98'	9' 56. 39' D	В	15	RD -	20 15	6	6	5600 4900	13000	18.7	420 280
65 A085 66 A086	118' 38. 97' 118' 39. 03'	9' 56. 50' D 9' 56. 55' D	B B	15 15	RD Br	15 30	<2 15	<2 8	4900 5800	11000 22000	12. 8 20. 9	630
67 A087	118° 39. 10′	9° 56. 66′ D	B	20	RD	70	52	58	6100	20000	2 4 . 1	570
68 A088	118° 39. 22°	9° 56. 75′ D	В	20	BR	25	18	8	6000	21000	22, 1	640
69 A089 70 A090	118' 39. 26' 118' 39. 35'	9' 56. 87' D 9' 57. 05' D	B B	25 25	RD RD	10 20	<2 14	10 2	6200 5100	20000 54000	26. 0 20. 0	500 340
เบ กนฮน	110 99 99	ט טווטט ט	Ð		no.	20	I'I	u	0100	0.1000	20.0	010

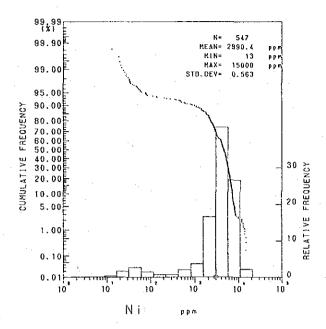
No. 1	Sample No.	Long i tude	Latitude G	icology	Horizon	Depth (Color	Pt ppb	Pd ppb	Au ppb	Ni ppm	Cr ppm	Fe %	Co ppm
71	A091	118, 39, 56,	9' 57. 13'	Р	. B	20	RD	120	90	34	1500	17000	18.3	490
72 73	A092 A093	118, 39, 12, 118, 39, 30,	9' 57. 12' 9' 56. 93'	P D	B B	20 25	RD RD	70 20	64 10	4 10	1500 6100	9000 14000	16.0 22.6	430 550
74	A093 A094	118, 33, 30	9 55. 48'	S	В	25	RD	<i>2.</i> 0 <5	10	15	43	1300	6.0	42
75	A095	118' 39, 14'	9' 56. 37'	Н	B	20	BR	35	2A	8	5800	16000	19.7	650
76	A096	118' 39. 15'	9' 56. 51'	D	В	25 25	BR	70	40	. 4	2100	12000 19000	8.8 11.3	370 410
77 78	790A 800A	118° 39, 21° 118° 39, 04°	9' 56. 62' 9' 56. 41'	D D	B B	20 20	BR BR	45 <5	10 4	<4 <2	2400° 2800	22000	11.3	380
79	A099	118' 39. 75'	9, 22, 36,	Q	B	20	BR	10	10	<2	2600	29000	11.3	580
80	A100	118' 39. 65'	9' 55. 90'	Q	В	20	BR	<10	50	<4	2200	11000	11.1	300
18	A101	118' 39. 59' 118' 39. 79'	9' 55. 85' 9' 56. 69'	Q D	B B	15 15	BR RD	<5 75	8 50	4 <2	610 6300	2800 21000	5.6 41.0	91 590
82 83	A102 A103	118, 35, 13	9' 56. 73'	Ď	B	15	RD	85	46	4	7300	23000	51.0	610
84	A104	118' 40. 04'	9* 56. 78*	D	В	15	RD	85	40	<2	6200.	23000	52.0	650
85	A105	118, 40, 16,	9' 56, 84'	D	В	15	RD	30	6	<2.	6800	9000	55. 0	640 470
86 87	A106 A107	118' 40. 26' 118' 40. 32'	9' 56. 88' 9' 56. 95'	D D	B B	15 15	RD BR	85 35	50 14	<2 <2	5500 5000	11000 10000	23.5 21.4	460
88	A108	118, 39, 66,	9' 56. 86'	P	B	15	BR	90	120	26	499	3800	9.0	140
89	A109	118 39.74	9' 56. 93'	P	В	15	RD	130	130	20	1900	6900	30.1	430
90	A110	118, 39, 81	9' 57. 04'	Р.	В	15	BR	20	6 52	12 10	6800	11000 21000	24. 6 15. 0	500 510
91 92	A111 A112	118' 39. 86' 118' 38. 77'	9' 57. 13' 9' 56. 84'	P P	B B	15 15	BR YE	95 25	56 ₹2	10 <2	1800 2700	12000	13.0	310
93	A113	118 38 93	9 56. 90	P	В	15	BR	60	34	4	2300	21000	13.1	270
94	A114	118, 39, 03,	9 56.94	P	В	20	BR	110	78	20	2200	14000	16.9	360
95	A115	118, 39, 19,	9' 57. 03'	D	В	15	SD.	60	28	8 10	2300 6700	14000 15000	18. 2 25. 0	340 520
96 97	A116 A117	118° 39. 14° 118° 38. 63°	9' 56. 85' 9' 56. 96'	D P	B B	20 20	RD RD	20 25	6 12	6	6600	21000	33.0	470
98	A118	118' 38. 60'	9 57.06	P	В	20	RD	35	34	<Ž	4200	20000	53.0	470
99	B016	118' 45, 59'	9 56.87	H	В	15	BD	15	14	6	4900	28000	11.6	320
100	B017	118' 45. 47'	9' 56. 88'	H	В	15	RD	25 25	. 6 22	<2 <2	4800	13000 23000	. 10.6 19.5	410 400
101 102	B018 B019	118 45 46 1 118 45 43	9' 56. 99' 9' 57. 08'	. 	B B	15 15	RO RD	25 15	12	⟨2	5900 5000	18000	14.0	460
103	B020	118, 45, 30	9' 57, 05'	11	B	15	BR	15	12	4	5000	16000	14.2	370
104	B021	118, 45, 28,	9 57. 18	H	В	15	RD	15	<2	₹2	5800	18000	16.5	470
105	B022	118, 45, 18	9' 57. 19'	H	В	15 15	RD RD	25 <5	14 <2	<2 <2	4900 2200	22000 27000	15. 8 10. 3	390 58
106 107	B023 B024	118° 45. 07′ 118° 45. 01′	9' 57. 10' 9' 57. 01'	H	B B	15	RD	60	30	4	1400	23000	11.3	180
108	B025	118, 45, 09,	9, 26, 95,	ä	B		RD	<3ŏ	24	30	1700	8000	14. 1	250
109	B026	118 45.20	9' 56. 86'	H	В	15	BR	25	14	<2	5000	25000	21.3	370
110	B027	118' 45. 19' 118' 45. 31'	9' 56. 75' 9' 56. 82'	H	В	1 5 15	BR BR	10 <30	10 <12	4 <12	54 1100	. 1500 . 5000	5. 8 7. 5	65 180
111 112	B028 B029	118 42.31	9 55. 97	H H	B B		ea RD	15	4	<2	3100	26000	11.6	370
113	B030	118, 42, 34,	9' 56. 16'	ü	B	15	RD	10	<2	<2	2900	32000	11.7	240
114	B031	118' 42. 34'	9' 56. 23'	K	В	15	RD	< 5	<2	<2	5300	24000	18.3	470
115	B032 B033	118' 42, 28' 118' 42, 00'	9' 56. 08' 9' 56. 10'	H H	B B	15 15	RD BR	20 30	10 10	<2 4	6000 5000	23000 8500	26. 4 11. 2	830 320
116 117	B034	118, 42, 07	9 56. 02	H	В	15	BR	30	8	<2 ✓	4400	13000	14.5	470
118	B035	118'41.95'	9' 55, 97'	Ä	В	15	BR	35	<\$	<2	5200	14000	17.2	520
119	B036	118' 42. 07'	9, 55, 91,	H	В	15 15	RD RD	35 40	<2 36	4 <2	6200 6200	25000 21000	21. 2 50. 0	770 520
120 121	B037 B038	118' 42. 00' 118' 41. 94'	9' 55. 78' 9' 55. 86'	H	B B	15 15	BR	20	<2	2	2100	21000	8.8	110
122	B039	118' 42. 23'	9. 55. 95.	Ï	В		BR	20	10	<2	5100	38000	20.7	150
123	B040	118' 41. 64'	9' 56. 01'	ii	В	15	BR	20	8	8	2800	38000	19.7	190
124	B041	118' 41. 55'	9' 56. 03'	H	В		BR DD	15	10 16	2 6	3100 5100	10000 10000	10. 7 14. 3	350 450
125 126	B042 B043	118° 41. 48° 118° 41. 39°	9' 56. 07' 9' 56. 05'	}{ }{	B B		BR BR	20 20	6	4	3100	5600	7.7	260
127	B044	118' 41. 36'	9 56. 14	H	В		BR	15	12	10	4600	10000	11.3	310
128	B045	118' 41. 30'	9 56. 23	H	В		RD	30	26	4	5100	2000	7.5	160
129	B046	118' 41. 23'	9 56. 30' 9 56. 36'	H	B B		BR BR	45 40	48 34	20 12	2600 6000	3300 12000	7. 4 48. 0	160 720
130 131	B047 B048	118,41, 10' 118,40, 96'	9 56.38	H H	В		RD	65	38	. 10	5500	19000	50.0	1250
132	B049	118' 40. 83'	9'56.40'	H.	B	15	RD	55	58	6	3200	11000	57.0	370
133	B050	118' 40. 75'	9 56. 49	11	В.	15	RD	110	130	30	3100	11000	48.0	1170
134 135	B051 B052	118' 40. 58' 118' 40. 46'	9° 56. 55° 9° 56. 59°	fl D	B B	15 15	RD RD	65 50	64 40	6 8	5600 7300	13000 14000	55. 0 50. 0	840 610
135 136	B053	118 40.46	9 56. 69°	D	В		RD	35	18	⟨2	5500	13000	30. 9	780
137	B054	118' 40, 61'	9 56, 67	H	В	15	RD	36	44	10	3200	14000	57.0	340
138 139	B055	118' 40. 75'	9' 56, 68'	H	В	25	RD	55 30	60 54	10 8	3200 4100	21000 18000	50. 0 53. 0	240 300
	B056	118, 40, 85	9 56 61	H	В	15	RD	75	24	ĸ	ann	1211121	2011	. 411

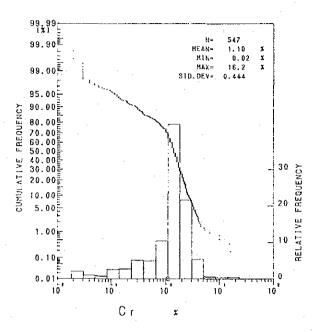
No.	Sample No.	Long i tude	Latitude	Geológy	Horizon	Depth (Color	Pt ppb	Pd ppb	Au ppb	Ni ppm	Cr ppm	Fe %	Co ppm
141 142	B058 B059	118' 41. 77' 118' 41. 75'	9' 56. 16' 9' 56. 27'	H H	В В	25 25	BR BR	<5 15	8 18	4 8	2300 5200	11000 17000	7.5 17.7	160 650
143	B060	118, 41, 76,	9, 26, 38,	Н	В	25 25	BR.	20	<2	<2	5200 5200	17000	16.7	660
144	B061	118' 41. 93'	9' 56. 16'	H	В	25	BR	15	6	4 ·	3000	8000	9.0	210
145 146	B062 B063	118' 41. 81' 118' 41. 85'	9' 56. 04' 9' 55. 89'	¥1 H	B -	25 25	BR BR	25 30	14 20	8 4	4000 4300	17000 19000	14.1 11.4	500 500
147	B064	118' 41, 73'	9' 55, 96'	H	B	25	BR	65	56	14	7600	18000	43.0	510
148	B065	118' 41. 73'	9, 55, 84,	H	В	25	BR	5	<2	<2	396	13000	15. 5	71
149 150	B066 B067	118' 41. 47' 118' 40. 77'	9' 55. 92' 9' 55. 97'	H	B B	25 25	BR BR	20 5	10 <2	<2 <2	4200 2900	9500 5200	11.4 7.7	390 280
151	B068	118' 40, 97'	9, 26, 00,	ij	B	25	BR	25	16	24	3200	16000	11.5	500
152	B069	118' 40. 80'	9' 56. 09'	·	В	25	BR DD	30	24	36	3200	7700	12. 1	330
153 154	B070 B071	118' 40. 71 ' 118' 40. 56 <i>'</i>	9° 56. 17° 9° 56. 12°	H H -	B B	25 25	BR BR	90 35	46 10	14 8	2900 2900	27000 7500	11. 4 11. 6	410 390
155	B072	118'40.42'	9 56.04	Ï	· B	25	BR	20	14	12	2400	6000	8.2	300
156	C016	118' 46. 70'	9, 57, 09,	H	В		BR	20	<2	4	3900	22000	15. 2	320
157 158	CO17 CO18	118' 46. 58' 118' 46. 88'	9' 57. 18' 9' 56. 91 '	H H	B	30 30	BR BR	20 25	10 <2	<2 . 4	3400 6000	11000 17000	12. 1 20. 2	390 560
159	C019	118' 46. 75'	9' 56. 91'	Ď	B	25	BR	20	16	<2⁻	4700	10000	18.4	230
160	C020	118' 46. 67'	9' 57. 02'	D	В	35	BR	20	6	<2	5600	3000	12.4	200
161 162	CO21 CO22	118° 46. 52' 118° 46. 74'	9° 57. 08° 9° 56. 76°	D H	B B		BR BR	20 25	<2 10	10 <2	5100 5700	3400 18000	11.7 19.8	180 580
163	CO23	118' 46. 66'	9' 56. 71'	H	В	35	BR.	39	⟨2	2	5400	13000	19.1	500
164	C024	118' 46. 84'	9' 57. 10'	H	В	30	BR	25	6	<2	5100	12000	18.1	510
165 166	C025 C026	118' 46. 86' 118' 46. 81'	9' 57. 19' 9' 56. 85'	H D	B B	25 25	BR BR	20 25	6 4	<2 4	4900 5800	7650 14000	16. 3 13. 2	260 550
167	C020	118' 43, 44'	9 57. 16	Ĭ	В	35	BR	20	8	2	6300	12000	17.5	300
168	C028	118' 43, 42'	9' 57. 08'	II	В	30	BR	30	10	<2	8200	20000	26.3	460
169 170	CO29 CO30	118' 43. 31' 118' 43. 10'	9° 57. 04′ 9° 57. 05′	H H	B B	35 30	RD RD	40 35	14 16	<2 <2	7800 8600	32090 25000	29.0 31.0	540 560
171	0031	118' 42. 98'	9'57.05'	ï	В		RD	25	<2	<2	12000	26000	24.9	520
172	C032	118' 43, 19'	9' 57. 07'	i ji	В		BR	35	2	<2	15000	20000	34.0	590
173 174	C033 C034	118' 43, 12' 118' 42, 37'	9' 57. 17' 9' 56. 69'	H H	B B		BR RD	40 60	24 48	<2 6	8400 5900	16000 33000	35. 0 37. 0	590 5 7 0
175	C035	118' 42, 39'	9, 26, 86,	H	B	30	RD	40	38	<2	5900	23000	37.0	540
176	0036	118' 42. 37'	9' 56. 97'	ļi .:	В		BR	20	10	<2	7100	24000	31.7	600
177 178	C037 C038	118' 42. 38' 118' 42. 48'	9° 57. 07′ 9° 57. 07′	H H	B B		BR BR	30 35	26 4	2 <2	7300 7600	24000 19000	24. 8 30. 3	330 730
179	0039	118, 42, 58,	9' 56. 44'	ï	В		BR	10	<2	4	6000	16000	19.8	900
180	C040	118, 42, 21,	9' 56. 36'	Н	В		BR	15	10	6	8100	5500	16.8	790
181 182	C041 C042	118' 42. 14' 118' 42. 32'	9' 56. 35' 9' 56. 57'	\ H	B B		RD BR	4 25	10 10	2 <2	3309 5500	12000 21000	12.8 27.6	250 510
183	C04Z	118' 42. 18'	9' 56. 85'	ij	В		RD	30	28	4	6800	16000	44.0	840
184	C052	118'42.10'	9 56. 94	H	В	25	BR	35	12	<2	12000	16000	31.0	680
185	0053	118' 42.06'	9, 57, 03,	H	B B		BR DD	45 60	4 28	6 22	5600 5200 ·	24000 16000	18. 4 40. 0	590 310
186 187	C054 C055	118° 42. 03° 118° 41. 96°	9'.57. 12' 9'.57. 17'	H H	В		BR BR	50	34 34	22	7400	15000	45.0	660
188	C056	118`41.81'	9* 57. 22′	₩.	В	25	BR	70	10	12	6400	11000	40.0	350
189 190	C057 C058	118° 42, 29° 118° 42, 20°	9' 56. 64' 9' 56. 56'	H	B B		BR BR	120 50	40 26	4 4	5600 6700	35000 40000	38. 0 31. 0	550 590
191	C059	118' 41. 49'	9' 57. 01'	H	В		BR.	120	56	6	6900	19000	39.0	600
192	C060	118' 41. 36'	9 56. 96	H	В	25	BR	55	22	12	13000	18000	33.0	700
193 194	CC61 CC62	118' 41. 26' 118' 41. 17'	9' 56. 91' 9' 56. 85'	. H	B B		BR BR	65 30	46 24	10 10	14000 6400	14000 15000	34.0 44.0	620 1640
194	C063	118' 41. 60'	9° 57. 04′	H H	В		BR	30	12	4	6200	13000	42.0	440
196	C064	118'41.56'	9' 57. 16'	Н	В	25	RD	40	22	10	6400	23000	38.0	500
197	C065	118' 41. 69'	9' 57. 13'	#	В		BR BR	45 50	22	10	7100	17000 16000	42. 0 39. 0	560 720
198 199	C066 C067	118° 41. 81° 118° 41. 55°	9° 57. 06′ 9° 56. 87′	H H	B B		DR. BR	50 55	26 26	20 10	8400 6800	29000	35.0	600
200	C068	118, 41, 53,	9' 56. 74'	H	В	20	BR	25	14	4	7400	8700	21, 4	370
201	C069	118°41.45°	9' 56. 68' 9' 56. 61'	H	В		BR BR	35 45	10	14 6	13000 7400	14000 14000	36. 0 27. 0	720 630
202 203	C070 C071	118' 41. 36' 118' 41. 64'	9 56. 90'	H H	B B		br BR	45 70	20 56	6 24	7400 6400	40000	32.0	520
204	C072	118' 41. 92'	9*56.67*	H	В	- 25	BR	60	32	36	5700	23000	37.0	380
205	C073	118′ 42. 10′	9° 56. 61′ 9° 56. 58′	H H	В		BR BR	10	4	10	5300	22000 19000	38. 0 19. 5	330
206 207	C074 C075	118' 41, 99' 118' 39, 76'	9' 56, 61'	H D	B B		BR	10 90	<2 62	10 14	5800 8200	17000	19.5 49.0	350 690
208	C076	118, 39, 86,	9 56.62	D	В	15	BR	130	72	<4	12000	17000	41.0	830
209	C077	118' 39. 96'	9' 56. 61'	D	В		BR DD	65 50	26	6	7400	17000	41.0	700
210	C078	118' 40. 09'	9 56.63	D	В	25	BR	50	22	10	8600	14000	44.0	670

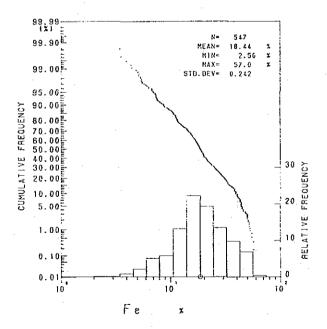
No.	Sample No.	Longitude	Latitude Geolog	gy Horizo	on Depth cm	Color	Pt ppb	Pd ppb	hbp yn	Ni ppa	Cr ppm	Ге %	Ço ppai
211	C079	118' 40. 22'	9' 56. 64' D	В	25	BR	10	4	6	7000	31000	33.0	650
212	.080	118' 40. 33'	9° 56. 64′ D	В	10	BR	10	6	12	4600	67000	19.0	580
213	C081	118' 39. 61'	9' 56. 56' H	В	15	BR	90	62	34	503	2150	10.7	210
214	C082	118' 39. 64' 118' 39. 63'	9' 56. 94' P 9' 57. 05' P	B B	20 25	RD BR	110 80	88 42	40 10	1100 1400	3850 3100	13. 1 17. 5	290 270
215 216	C083 C084	118 39.69	9' 57. 05' P 9' 57. 14' P	В В	25 15	RD	65	34	10	1600	7900	19.8	320
217	C085	118, 38, 22,	9 56. 67 P	B	15	BR	40	40	Ř	2300	3300	20.7	390
218	C086	118*38.64*	9°56.60° P	B	15	BR	60	44	12	4400	9500	21. 1	440
219	C087	118' 38. 65'	9, 26, 68, P	В	20	BR	140	70	20	5200	20000	26. 7	560
220	C088	118' 38. 77'	9' 56. 68' P	В	20	RD DD	140	90 60	14 24	7400 6300	17000 16000	38. 0 27. 3	720 650
221 222	CO89	118' 38. 87' 118' 38. 64'	9' 56. 64' D 9' 56. 48' P	B B	20 15	RD RD	100 50	20	<2	5400	17000	22.3	620
223	C091	118 38 73	9 56. 48' P	. B	15	RD	55	20	2	5200	24000	25. 8	590
224	C092	118, 38, 83,	9 56 48 P	B	25	RD	55	32	6	7500	13000	33.0	680
225	C093	118` 38. 68 <i>'</i>	9' 56. 38' P	В	15	BR	60	30	. 8	4400	13000	22. 3	490
226	C094	118' 38. 66'	9' 55. 81'	В	25	BR	15	<2	6	3200	10000	13.5	260
227	C095	118' 38. 77'	9° 55. 74° H	В	25	RD	40 40	20 12	8 26	6200 5100	13000 13000	24. 1 18. 5	600 640
228 229	C096 C097	118' 38. 63' 118' 38. 65'	9° 55. 71° 11 9° 55. 58° H	- B - B	25 25	RD BR	40 5	6	20 14	3500	14000	15.6	230
230	C098	118, 38, 69,	9' 55. 43' H	В	25 25	BR	2Ŏ	10	26	4300	10400	14.4	290
231	CO99	118' 38. 71'	9' 55. 48' H	B	25	RD	45	14	12	7600	21000	26.8	1090
232	C100	118' 38. 82'	9°55.43° II	В	25	RD	20	8	<2	5000	16000	19.8	470
233	C101	118, 38, 93,	9' 55, 38' II	В	25	RD	25	8	16	3900	8200	16.8	370
234	0017	118' 46, 18'	9, 26, 93, 11	. B	25 30	BR BR	10 10	8 6	8 6	6000 6600	13000 3300	18. 4 13. 9	550 240
235 236	DO18 DO19	118' 46. 26' 118' 46. 14'	9° 57. 00′ H 9° 57. 04′ H	В В	30 30	BR	10	18	14	6200	1400	11.9	240
237	D013 D020	118' 46. 04'	9° 57. 00' H	В	30	BR	15	14	6	5200	2200	10. 7	102
238	D021	118' 46. 18'	9' 56. 81' II	B	30	BR	25	10	10	3700	6200	11.6	170
239	D022	118' 46. 07'	9' 56. 80' H	В	40	BR	<5 05	12	16	5300	14000	21.9	230
240	D023	118' 45. 96'	9, 26, 80, H	В	30	BR	25 20	16 12	- 18 10	6000 4100	7200 5000	18. 1 15. 7	390 300
241 242	DO24 DO25	118' 45. 95' 118' 45. 86'	9' 56. 90' II 9' 56. 80' II	В. В	30 30 -	BR BR	10	8	26	3800	12000	13.5	210
243	D026	118' 45. 78'	9° 56. 77′ H	В	30	BR	25	1Ğ	16	6200	11000	18. 1	420
244	D027	118′ 43. 84′	9° 57. 01′ H	В	30	RD	35	16	18	7200	12000	27.8	560
245	D028	118' 43. 77'	9° 57. 08° H	В	25	RD	25	8	.2	6100	18000	20.0	440
246	D029	118' 43.77'	9, 57, 17,	B B	25 30	BR BR	15 5	6 4	14 6	4100 4900	3600 10000	11.0 16.8	270 360
247 248	D030 D031	118' 43. 79' 118' 43. 88'	9' 56. 95' H 9' 56. 84' H	В	25	BR	20	3	10	6500	17000	22.0	960
249	D032	118' 43. 81'	9° 56. 75° H	В	30	BR	10	Š	ž	6000	19000	21.5	340
250	D033	118' 43. 96'	9' 56. 92' H	В	25	BR	15	4	<2	5500	14000	18.7	400
251	D034	118' 42.70'	9' 56. 15' Н	В	40	BR	40	14	4	6200	24000	19.7	410
252	D035	118 42 72	9° 56. 23' H	В	35	BR	30	14	6	5900	29000	19. 8 25. 0	420 480
253	D036	118' 42' 67'	9°56.29′ H 9°56.36′ H	B B	35 35	RD RD	65 40	38 16	6 4	5200 3800	28000 25000	25. 0 16. 9	350
254 255	D037 D038	118' 42. 61' 118' 42. 68'	9'56.42' II	B	35	OR	·<5	(2	8	36	300	12. 4	34
256	D039	118 42 91	9' 56. 46' II	B	30	OR	5	⟨2	10	31	490	6.8	30
257	D040	118' 43, 03'	-9°56.45′ H	В	35	OR	<5	2	4	13	300	11.1	19
258	D041	118 43 04	9' 56. 66' 11	В	35	OR	5	<2	10	13	200	10.8	38 76
259	D042	118' 42. 92'	9' 56. 58' H	В	30	OR OR	<5 <5	<2 2	6	20 79	300 300	14. 6 8. 1	43
260 261	D043 D052	118' 42. 77' 118' 44. 55'	9' 56. 48' H 9' 56. 75' H	В В	30 20	BR	160	260	28	3400	13000	27. 4	420
262	D052 D053	118' 44. 45'	9 56. 67' H	В	30	OR	20	22	10	215	1300	14.3	57
263	D054	118' 44. 36'	9' 56. 60' H	B	30	BR	10	6	16	56	300	12.4	49
264	D055	118' 44, 24'	9° 56. 55′ H	В	- 30	BR	<5	4	8	33	300	9.6	44
265	D056	118' 44. 12'	9° 56. 51′ H	В	35	OR	< 5	<2	- 6	28	200	17.5	62
266	D057	118 44 00'	9° 56. 48′ H	В	35	BR	<5 15	<2 22	<2 8	34 87	200 400	13.8 7.6	66 45
267 268	D058 D059	118' 43. 88'	9°56.48° II 9°56.54° II	8 B	30 30	GR BR	19 10	12	<2	48	300	10.6	47
269	D059 D060	118' 43. 80' 118' 43. 73'	9'56.61' H	В	30	BR	55	56	26	59	400	5.6	50
270	D061	118 41 69	9° 56. 09′ H	B	30	BR	25	22	16	6700	17000	21.4	490
271	D062	118 41.61	9' 56. 17' H	. B	25	RD	45	24	6	7400	24000	30.2	520
272	D063	118' 41. 48'	9' 56. 18' II	· B	20	BR	15	12	<2	4600	23000	16.9	490
273	D064	118' 41. 55'	9' 56. 27' H	В	30	RD	35	26	<2 <2	7300 6300	7400 18000	25. 4 25. 9	530 550
274	D065	118' 41. 49' 118' 41. 39'	9° 56. 38′ H 9° 56. 46′ H	B B	30 30	RD RD	30 25	14 16	ζ <u>2</u> ζ <u>2</u>	7800	14000	25. 9 32. 0	450
275 276	D066 D067	118 41.33	9 56. 47 H	В	30 30	RD	55	32	8	14000	13000	37.0	440
277	D068	118' 41. 10'	9' 56. 51' H	· B	35	RD	70	38	8	13000	12000	52.0	650
278	D069	118'41.01'	9' 56. 56' H	В	30	RD	70	22	<2	7300	16000	32.0	520
279	D070	118' 40. 97'	9' 56. 60' H	В	35	RD	140	80	.8	5200	25000	39.0	610
280	D071	118' 40. 91'	9° 56. 67° H	В	30	RD	95	62	12	5500	15000	38.0	840

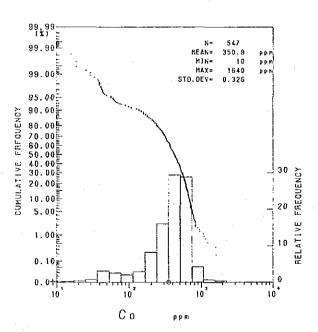
												(0)
No.	Sample No.	Longi tude	Latitude Geology	Horizon	Depth Color cm	Pt ppb	Pd ppb	Au ppb	Ni ppa	Cr ppm	Fe %	Co ppm
281	D072	118' 40. 82'	9' 56. 78'	В	30 RD	90	54	18	6600	13000	39.0	510
282	D073	118' 40, 72'	9° 56. 86° H	В	35 BR	95	72	10	4500	23000	45.0	620
283	D074	118' 40, 61'	9' 56. 92' H	В	30 RD	90	82	4	4900	33000	44.0	510
284 285	D075 D076	118' 40, 53' 118' 40, 67'	9' 56, 96' H 9' 57, 03' H	B B	30 RD 30 RD	200 140	200 150	46 28	3100 4000	12000 16000	43.0 46.0	180 360
286	D077	118' 40. 78'	9° 56. 96° II	B	30 RD	70	50	8	5000	13000	39.0	370
287	D078	118' 40, 88'	9, 26, 30, H	В	30 RD	290	240	52	4100	15000	39.0	630
288 289	D079 D080	118' 40, 98' 118' 41, 07'	9° 56, 84° H 9° 56, 78° H	B B	30 RD 30 RD	65 60	38 42	<2. <2	4100 5000	20000 14000	44.0 39.0	440 640
290	D081	118 41. 15'	9 56. 71 II	В	30 BR	95	58	<2	5200	18000	39.0	560
291	D082	118°41,46′	9'55.78' H	В	25 BR	.10	4	<2	1800	7000	11.8	310
292	DO83 DO84	118' 40. 38' 118' 40. 44'	9' 56. 21' II 9' 56. 32' II	B B	25 BR 25 BR	40 65	26 28	<2 <2	8200 5400	16000 14000	29. 9 32. 0	720 530
293 294	D085	118 40, 44	9 56. 42' II	В	20 BR	70	44	<2	5000	25000	28.5	580
295	D086	118'40, 10'	9, 29, 50 H	B	25 BR	10	4	<2	3300	22000	14.6	180
296	D087	118' 40. 21'	9' 56. 32' H	В	20 BR	40	12	<2 cc	7500	17000	17.0	320
297 298	D088 D089	118' 39. 75' 118' 39. 83'	9' 56. 76' H 9' 56. 83' H	B B	30 OR 20 BR	240 120	240 100	66 54	1800 1000	6500 3100	28. 4 14. 1	300 320
299	D090	118, 33, 88,	9, 26, 91, D	B	30 RD	90	52	<2	7200	13000	46.0	810
300	D091	118, 39, 96,	9, 24, 00, D	В	30 RD	100	44	8	7900	16000	44.0	710
301	D092	118 39.63	9' 56. 75' P	B	25 RD	200	220	60	2100	10000 1900	33.0	470 240
302 303	D093 D094	118 39.52'	9°56.75° H 9°56.84° H	B B	25 BR 25 BR	85 200	110 180	48 44	484 507	1700	16. 8 16. 5	220
304	D095	118' 39. 45' 118' 39. 44'	9'56.96' H	B	25 BR	80	110	6	1600	3800	18.7	370
305	D096	118′39.46′	9'57.09' H	₿.	30 RD	120	66	6	5900	30000	35.0	680
306	D097	118' 39. 52'	9°56.66° H	B B	30 BR 25 RD	85 120	- 120 110	20 26	1200 2400	11000 16000	20. 9 26. 1	300 380
307 308	D098 D099	118' 39. 64' 118' 38. 78'	9' 56. 63' H 9' 56. 13' P	В	20 RD 30 BR	25	4.	<2	4900	22000	15.8	550
309	D100	118, 38, 89,	9° 55. 83° H	В	30 BR	20	10	4	4600	11000	17.5	370
310	D101	118, 39, 00,	9' 55. 88' D	В	30 BR	30	14	4	4600 1300	12000 2000	15. 8 5. 4	370 93
311 312	D102 D103	118, 38, 80, 118, 38, 80,	9°55. 93′ H 9°55. 73′ H	B B	25 BR 25 BR	10 15	4 12	2 8	6200	13000	3. 4 19. 7	580
313		118' 38, 86'	9' 55. 63' H	В	25 RD	25	8	10	6600	11000	19.0	650
314	D105	118' 38, 92'	9' 55. 56' H	В	30 BR	15	2	10 10	5500 6200	11000 13000	20. 1 20. 6	450 410
315 316	D106 D107	118' 39. 01' 118' 38. 15'	9°55.60° H 9°55.84° H	B B	30 BR 25 BR	25 40	8 24	6	1800	4600	20. 0 18. 4	350
317	D108	118′ 38. 36′	9° 55. 79° H	B	20 BR	20	12	10	3300	5200	14.7	300
318	D109	118`38.45'	9' 55. 59' H	В	. 20 BR	15	6	10	3800	5600	16.1	330
319 320	D110 D111	118' 38. 48' 118' 38. 59'	9' 55. 37' II - 9' 55. 19' II	B B	20 BR 25 OR	25 10	6 6	12 12	5400 · 2800	12000 7580	19. 1 17. 6	470 220
321	D112	118 38.35	9' 55. 97'	·B	30 BR	10	10	6	4000	14000	16. 2	340
322	D113	118, 38, 59,	9' 55. 37' H	В	25 BR	20	10	4	5500	22000	19.0	530
323	D114	118, 38, 37,	9, 55, 30,	В	25 BR	20	2	2	4700 4200	13000 11000	16. 4 17. 2	370 330
324 325	D115 D116	118' 38. 45' 118' 38. 53'	9' 55. 25' H 9' 55. 18' H	B B	30 BR 35 BR	15 20	10 10	<2 <2	5700	7010	19. 2	400
326	D117	118' 38. 59'	9° 55. 08' H	B	30 BR	5	<2	<2	447	860	7.7	100
327	D118	118' 38. 31'	9°54.94° D	В	30 RD	30	16	4	9000	10000 11000	22.0	640 400
328 329	D119 D120	118° 38. 25°	9°55. 04° D 9°55. 14° D	B B	25 BR 25 OR	15 10	6 12	4 8	4900 7800	12000	18. 6 27. 6	520
330	D121	118° 38. 22′ 118° 38. 22′	9° 55. 27° II	B	25 OR	120	. 10	<2	7000	19000	23.5	630
331	D122	11 8' 38. 26'	9'55.47' H	В.	30 BR	<5 00	<2	<2	1800	3090	9.3	170
332 333	D123 D124	118° 37. 60° 118° 37. 70°	9' 55, 28' D 9' 55, 32' D	B B	25 BR 30 BR	20 5	6 12	2 <2	7100 4300	11000 6080	15. 3 16. 5	520 300
334	D125	118 37.53	9° 55. 16° H	В	25 OR	15	8 -	₹2	8300	21000	33.0	730
335	D126	118' 37. 44'	9°55.11° H	В	35 BR	<5	4	2	4700	21000	16.8	. 380
336	D127	118' 37. 48'	9' 54. 99' II	В	25 BR	10	12	4	5500 6100	12000 8160	18. 2 17. 3	400 620
337 338	D128 D129	118' 37. 48' 118' 37. 50'	9° 54. 87′ H 9° 54. 76′ D	. В В	25 OR 30 OR	25 30	10 10	<2 <2	6800	17000	23.5	610
339	D130	118' 37. 56'	9° 54. 65° D	В	25 RD	20	8	2	7200	21000	24.6	690
340	D131	118 37.64	9' 54. 55' D	В	25 RD	25	10	<2	8100	17000	31.3	670
341 342	E016 E017	118' 45. 71' 118' 45. 77'	9° 56. 91° H 9° 56. 95° H	B B	30 BR 15 BR	30 40	<4 18	32 12	5800 5900	11000 13000	18. 1 18. 3	350 750
343	E017	118 45.77	9 57. 02' H	В	20 BR	40	16	14	4000	17000	17.8	610
344	E019	118, 45, 93,	9° 57. 12′ D	. В	25 BR	50	40	32	4100	11000	15.8	550
345	E020	118' 45, 94' 118' 45, 61'	9, 22, 32, n	В	25 BR 30 BR	20 25	14	4 - <2	5400 6400	15000 20000	18.1	470
346 347	E021 E022	118 45.61 118 45.68	9' 56. 78' II 9' 56. 72' II	B B	30 BR 25 BR	25 25	4 12	16	6400 6500	16000	15. 4 20. 0	340 470
348	E023	118' 45. 60'	9° 56. 66′ H	В	15 BR	15	8	₹2	5600	24000	20.0	320
349	E024	118' 45. 59'	9° 56. 53′ H	В	25 BR	<5	<2	4 .	52	760	6.4	44
350	E025	118' 44. 09'	9' 57. 02' H	В	15 BR	10	<2	4	6000	8750	14.4	270

No.	Sample No.	l.ong i tude	Latitude Ge	ology	Horizon	Depth om	Color	Pt ppb	Pd ppb	Au ppb	Ni Ppm	Cr ppm	Fe %	Co ppm
351	E026	118' 44. 04'	9' 57. 11'	 H	В	20	BL	10	6	2	7000	3450	11.7	280
352	E027	118' 44, 03'	9 57. 18	11 .	В	15	BR	35	16	4	5700	15000	17.8	470
353	E028	118' 44. 05'	9' 56. 86'	D	В	15	BR	25 55	4	<2	.7700	27000	18.8	1620 240
354 355	E029 E030	118' 44. 21 <i>'</i> 118' 44. 34'	9' 56. 78' 9' 56. 75'	 }	B B	15 15	BR BR	55 35	74 4	10 <2	1400 7000	4180 27000	11.6 18.8	380
356	E031	118' 44. 43'	9 56.77	ii	B	15	YE	15	18	<2	141	19000	8.2	. 30
357	E032	118'42 56'	9' 56. 24'	D	В	15	RD -	40	28	4	4100	35000	24.7	450
358	E033	118' 42 61'	9' 56. 11'	D	В	15	BR	35	12	<2	3600	20000	28.8	490
359	E034	118' 42, 49' 118' 42, 46'	9' 56, 33' 9' 56, 44'	D D	B B	15 35	RD RD	30 15	25 14	8 6	5900 6300	18000 18000	31. 4 40. 0	400 610
360 361	E035 F036	118' 42. 29'	9' 56. 29'	II	В	25 25	YE	35	20	<2	4000	24000	18.3	350
362	E037	118' 42. 23'	9* 56. 23*	H	В	15	YE	25	8	<2	7300	10000	19. 2	420
363	E046	118' 43 64'	9' 56. 37'	G	. B	15	BR	60	46	22	144	16000	4.4	67
364 365	E047 E048	118' 43. 63' 118' 43. 36'	9' 56. 53' 9' 56. 53']] }}	· <i>B</i>	15 15	YE : YB	20 40	<2 24	42 22	50 82	620 1300	3.5 4.5	19 40
366	E049	118' 43. 23'	9' 56. 63'	H	В	20	OR	15	18	<2	369	5710	14.4	150
367	E050	118' 43, 23'	9' 56. 75'	H	В	15	BR	15	<2	<2	4300	6750	11.6	290
368	£051	118' 43' 35'	9, 26, 39,	G	В	15	OR	5	12	6	6000	970	7.5	10
369	E052	118 42 24* 118 42 12'	9' 56. 74' 9' 56. 72'	H H	· В В	15 15	RD BR	25 30	12 10	<2 <2	6300 5900	16000 17000	41. 0 20. 1	520 590
370 371	£053 £054	118 41 99	9 56. 77'	H	B	10	RD	30	12	14	15000	16000	28. 6	620
372	E055	118' 41. 68'	9' 57. 00'	H	B	25	RD	70	54	20	6700	16000	43.0	510
373	£05 6	118'41.89'	9' 56. 97'	H	В	25	RD	45	28	<6	5300	17000	44.0	210
374	£057	118, 41, 82,	9' 56. 94'	H	В	25	RD	40	36 64	12 24	6800 6500	17000 17000	38.0 44.0	730 610
375 376	E058 E059	118' 41. 46' 118' 41. 28'	9° 57. 11 ' 9° 57. 18'	H	B B	25 25	RD RD	85 70	48	14	7300	15000	38.0	640
377	E060	118' 41, 17'	9' 57. 21'	H.	В	15	RD	85	36	12	6700	19000	28. 8	520
378	E061	118'41.06'	9' 57. 16'	H	В	20	ВD	45.	20	8	15000	15000	32.5	610
379	£062	118' 40, 96'	9' 57. 12'	H	В	20	RD	75	46	6	7300	16000	43.0	750 660
380 381	E063 E064	118° 40. 83° 118° 40. 70°	9' 57. 10' 9' 57. 12'	H R	B B	25 25	RD RO	120 75	76 36	<12 10	8200 7700	12000 14000	36. 0 38. 0	600
382	E065	118' 41. 86'	9' 56. 77'	H	В	15	RD	45	30	2	5800	23000	35. 0	690
383	E066	118' 41. 75'	9' 56. 73'	Н	В	20	RD	60	36	<2	5100	43000	36.0	380
384	E067	118' 41. 64'	9' 56. 71'	H	В	15	RD	40	36 20	<2 <2	4600	24000 22000	36.0	210 790
385 386	E068 E069	118' 41. 55 <i>'</i> 118' 41. 51 <i>'</i>	9° 56. 61° 9° 56. 52°	H	B B	15 15	BR BR	40 45	20 18	<2	6700 5500	20000	22.6 24.3	660
387	E070	118' 41. 91'	9 56. 49	H	B	20	YE	10	ĺŽ	16	6800	17000	18.9	470
388	E071	118' 41. 87'	9 56. 41	H	В	15	YE	20	16	16	5400	18000	23.0	490
389	E072	118' 41. 83'	9' 56. 34'	H	В	15	BR	15 20	12	4	4300	13000 11000	17.7	400 430
390 391	E073 E074	118, 39, 82, 118, 39, 82,	9° 56. 33° 9° 56. 39°	H H	B B	15 15	BR BR	35 120	22 50	<2 12	2300 4000	20000	15. 9 17. 7	510
392	£075	118' 40. 08'	9' 56. 43'	D	B	15	BR	110	26	16	4200	100000	22.8	670
393	E076	118' 40, 19'	9' 56. 47'	D	В	15	BR	60	60	12	2800	27000	25. 7	660
394	E077	118' 39, 89'	9' 56. 47'	D	8	20	BR	30	20	4	14000	33000	34.0	820
395 396	E078 E079	118° 39. 76′ 118° 39. 48′	9° 56. 41° 9° 56. 48°	H H	B B	25 15	RD YE	65 100	60 76	<4 12	8000 2000	13000 14000	43. 0 19. 4	1110 400
397	E080	118 39, 40	9' 56. 51'	ii	· · · · · · · · · · · · · · · · · · ·	10	BR	120	74	12	468	4080	6.2	220
398	E081	118' 39, 40' 118' 39, 45'	9' 56. 34'	II	В	35	BR .	15	10	8	5700	10000	40.6	970
399	E082	118' 39. 56'	9' 56. 40'		В	25	BR	110	50	4	5600	12000 17000	34. 0 24. 3	580 650
00 01	E083 E084	118' 38. 80' 118' 38. 82'	9' 56. 11' 9' 56. 04'	P H	B B	20 20	BR BR	60 50	26 24	6 4	6500 6100	21000	24. 3 26. 2	750
02	E085	118, 38, 31,	9' 56. 20'	P	B	20	RD	40	10	10	7100	13000	22.4	470
03	E086	118' 38. 87' 118' 39. 30'	9 56. 28	P	В	20	BR	36	4	2	7200	19000	25.0	630
04	£087	118' 39. 30'	9' 56. 33'	II.	В	20	BR	110	68	.2	8400	21000	21.1	570
05	E088	118' 39. 27' 118' 39. 29'	9' 56. 45' 9' 56. 56'	H u	B B	25	YE	25 30	30 6	14 6	4600 5200	28000 8610	21. 9 17. 6	560 330
06 07	E089 E090	118, 30, 31,	9 56. 67'	H	В	20 15	BR BR	. 30	18	12	6200	40000	28.8	590
08	£091	118' 38. 91'	9. 56. 11	Ĥ	B	20	BR	65	40	18	3200	15000	21.6	440
09	E092	118' 39. 31' 118' 38. 91' 118' 38. 25' 118' 38. 41'	9' 55. 87'	H	В	10	BR	75	54	8	1097	6570	16. 1	280
110 111	E093 E094	118°38.41′ 118′38.46′	9° 55. 69′ 9° 55. 47°	H H	B B	20 15	BR BR	30 15	8 2	2 <2	4900 884	15000 3010	19. 4 8. 9	480 130
112	E095	118 38.54	9' 55. 29'	n H	- B	25	BR	20	<2	2	4000	11000	21.0	480
113	E096	118, 38, 23,	9° 55. 86°	H	В	20	BR	25	<2	6	5400	31000	19. 7	570
114	E097	118' 37, 95'	9' 55. 71'	K	В	20	BR	180	120	30	2700	16000	29.5	590
115 116	E098 E099	118' 37. 78' 118' 37. 73'	9' 55. 65' 9' 55. 58'	H H	B B	20 25	YE Br	20 50	8 12	<2 4	845 5000	3950 31000	13. 0 29. 1	100 580
110 [17	E100	118' 37. 72'	9 55. 58 9 55. 42	n H	В	20 20	BR.	140	84	4	4100	18000	29. 1 19. 8	450
418	E101	118' 37. 84'	9 55. 40	H	В	. 15	BR	35	20	2	4800	15000	17.9	440
419	E102	118' 37. 92'	9' 55. 31'	D	В	25	RD	25	10	<2	6600	13000	28.0	670
120	E103	118' 38. 01'	9' 55. 22'	D	В	15	BR	<5	4	<2	4000	13000	13.9	430

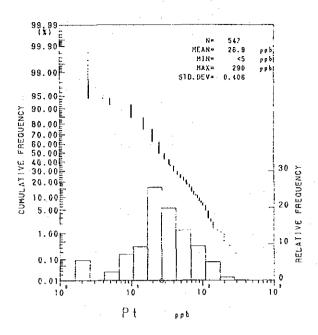

Appendix 4 Chemical analyses of geochemical soil samples in area A-2

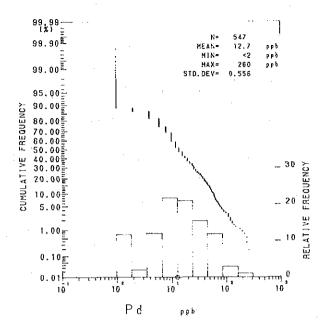

	-	rphonary		.011110		,		Booom		oon on	p.co	III WION	, 1 1	(7)
No.	Sample No.	Longitude	Latitude	Geology	Horizon	Depth cm	Color	Pt ppb	Pd ppb	Au ppb	Ni ppm	Cr ppm	Fe %	Co pp∌i
421	E104	118, 38, 02,	9, 55, 11,	D	В	15	BR	25	2	<2	4300	15000	18. 2	580
422	B105	118, 38, 55,	9' 55. 59'	H	В	25	BR	25	20	<2	5300	13000	18.7	510
423	E106	118, 38, 13,	9°55,75°	H	В	20	BR	25	16	8	5700	10000	19.0	610
424	E107	118° 37. 68°	9*55.17*	H	.B	20	BR	15	8	6	6600	13000	17.5	490
425	E108	118' 37, 89'	9' 55. 19'	H	В	20	RD	20	<2	12	6500	15000	27.2	680
126	E109	118, 32, 80,	9' 55. 14'	H	В	15	RD	25	16	4	5600	15000	26.9	660
427	E110	118, 37, 68	9, 22, 09,	Н	В	. 15	BR	20	8	.6	5400	36000	22. 2	530
428	E111	118` 37. 75 '	9* 54. 98*	- 11 -	В	15	BR	15	4	. 4	4000	15000	15.5	570
429	E112	118° 37. 82°	9, 24, 88,	H	В	20	BR	25	16	<2	7800	20000	27. 9	780
430	E113	118, 37, 30,	9' 54. 76'	H	÷Β	20	BR	15	10	12	4700	11000	17.8	440
431	E114	118, 37, 33,	9' 54. 63'	D	В	20	RD	30	.14	<2 ∶	8500	15000	32.5	620
432	F001	118' 44. 15'	9° 56. 36°	}}	В	20	BR	10	<2	<2	22	980	5.5	26
433	F002	118' 44. 36'	9°56.42°	Н	В	25	BR	(5)	<2	<2	26	1040	14.0	58
434	F003	118' 44. 58'	9*56.55*	H	: B	35	BR .	10	<2	<2	115	1190	6.8	63
435	F004	118' 44, 78'	9 56. 58	Н	В	25	RD	10	<2	<2	64	1080	10.3	73
436	F005	118' 44, 87'	9 56.57	H	В	30	RD	10	<2	<2	86	1150	11.3	91
437	F006	118' 44, 86'	9 56.66	H	В	35	RD	70	140	8	586	12000	31.6	240
$4\overline{38}$	F007	118' 44, 80'	9 56.76	Н	В	25	BR	25	10	4	3000	45000	9.8	390
439	F008	118' 44. 86'	9, 26, 83,	13	В.	30	BR	20	4	8	3400	33000	16.5	270
440	F009	118' 45. 48'	9, 26, 62,	H	B	25	BR	100	110	16	1400	6460	16. 1	290
441	F010	118 45. 48	9' 56. 57'	·H	B	20	BR	50	26	12	809	3790	15.2	290
442		118' 45. 35'	9 56.59	i	č.	15	BL	20	8	8	2900	5690	18.7	330
443		118' 45. 41'	9 56. 76	jį	B	25	BR	<30	<12	30	678	4020	10.6	230

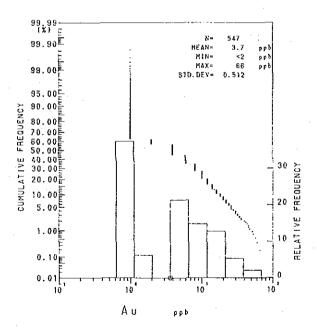

Abbreviation


Geology: D;dunite, H;harzburgite, P;pyroxenite

Color: BL;black, BR;brown, OR;orange, RD;red, YE;yellow







Appendix 5 Cumulative probability plots and histograms of soil samples in area A-2 and A-3

Appendix 5 Cumulative probability plots and histograms of soil samples in area A-2 and A-3

			•										(1)
No.	Sample No.	Long i tude	Latitude Geolog	/ Norizo	Depth Co	lor I	t xb	Pd ppb	Au ppb	Ni ppm	Cr ppm	Fe %	Co ppm
1	A001	118' 43.78'	9'51,84' 11	В	25 B	}	55	36	4	2600	11000	23.5	460
Ž	A002	118' 43. 83'	9' 52. 10' H	B	10 0	} 7	75	38	<2	6200	29000	40.3	780
3	A003	118' 43, 83'	9 52 30' II	В	15 0	} : 7	75	60	<2	2200	8000	25.7	440
4	A004	118, 43, 87	9' 52, 40' D	·B	15 B	}	25	6	(2	2900	162000	23.5	660
5	A005	118' 43, 95' 118' 43, 65'	9' 52, 24' H 9' 52, 21' H	B B	20 00 15 81		su 30 -	<12 14	<12 <2	-3000 2800	29000 14000	29. 6 27. 2	510 420
6 7	A006 A007	118 43 39	9' 52, 21' H 9' 52, 22' H	В	15 B) [55	22	<2	2000	19000	19.5	500
8	800A	118' 43. 48'	9' 52, 38' D	В	15 Y		25	34	22	2300	10000	26.4	390
ğ	A009	118' 43 51'	9 52 44 D	B	15 B	1	75	24	<6	2400	52000	9.8	260
10	A010	118' 43. 64'	9' 52. 54' D	В	20 B	} 2	25	2A :	<4	2100	18000	18.0	340
11	A011	118, 43, 70,	9 52.41 D	В	20 0	} (<u> </u>	98	<2	1300	2400	12.0	180
12	A012	118' 44. 46'	9' 52. 35' H	В	20 B	3	35	14	2	2500	3700	7.7	230
13	A013	118' 44. 26'	9' 52. 48' D	В	15 B	(4	15 20	46 42	<4 6	2100 2200	12000 11000	19.8 23.2	410 440
14	A014 A015	118' 44. 16' 118' 44. 03'	9' 52. 35' D 9' 52. 49' D	В В	15 B 15 Y		30 35	42	2	2300	13000	19.0	310
15 16	A016	118, 43, 76	9.25.61, D	В	20 B	2	5	20	<2̈́	2100	12000	15.4	250
17	A017	118, 43, 60,	9 52 75' D	B	15 B	, 4	ĬŠ	38	<2	241	2800	4.9	160
18	A018	118' 43. 61'	9 52.63 D	B	1 0	?]	15	12	<2	2200	1970	11.9	220
19	A019	118' 43.75'	9 52.72° D	В	10 B	} 3	35	32	<3	2100	15000	23.3	450
20	A020	118, 43, 91,	9' 52, 59' D	В	10 B	} 5	55	38	-6	3100	17000	30.5	490
21	B001	118' 43. 22'	9°51.80° II	В	15 B	} 2	20	16	<2	4300	17000	12.4	560
22	B002	118' 43 12'	9'51.73' 11	B B	15 Bl 15 Bi		10 10	<24 10	<24 <2	2400 2700	16000 6400	7. 8 9. 0	550 310
23 24	B003 B004	118' 43, 23' 118' 43, 39'	9°51.67′ H 9°51.86′ H	В	15 Bi	\ 1	15 15	26	⟨2	4400	155000	18.3	570
25	B005	118' 43. 53'	9, 25. 05, H	В	15 B	? 3	15 ·	20	₹2	5600	45000	50.0	510
26	B006	118' 43. 41'	9° 52. 09° D	B	15 RI) 3	3 5	20	<2	4200	26000	40.0	580
27	B007	118' 43, 63'	9°51.90′ H	В	15 BI	≀ 2	5	16	<2	2700	42000	32.9	550
28	B008	118' 44. 08'	9° 53. 03° D	В	15 BI	2	20	14	<2	2600	23000	27.5	460
29	B009	118' 43. 98'	9' 53. 04' H	В	15 BI	10	X)	44	<2	4300	37000	30.3	600
30	B010	118' 43. 82'	9'53.06' II	В	15 BI 15 RI	(5	ic 0	28 22	<2 6	4000 2500	35000 41000	32. 1 17. 4	490 360
31 32	B011 B012	118' 43, 66' 118' 43, 57'	9° 52. 95° H 9° 53. 00° D	B B	15 RI 15 RI		15 1 0	22 12	<2	2300	2020	11.4	170
33	B012	118 43 57	9.23.10. D	В	15 B	. 6	50	52	₹4	2200	17000	19.5	380
34	B014	118, 43, 65	9' 53. 23' H	B	15 B	2	Š	10	4	2600	39000	18.8	320
35	B015	118' 43. 83'	9° 53. 19° H	В	15 BI	5	0	54	. 6	2500	23000	20.0	320
36	C001	118' 42, 98'	9'51.95' II	В	25 B	1	0	<2	- 8	1900	3400	7.8	130
37	C002	118 42 86	9 51.85 H	В	30 BI	2	5	12	<2	3200	2900	8.0	180
38	0003	118, 42, 68,	9°51.96° H	В	30 B]	0	<2	<2	1400	2300	7.4	160
39	C004	118, 42, 50,	9 52.04' H	В	25 Bl	1 2	25 20	4 <2	<2 <2	4100 4800	4800 11000	8. 7 15. 1	300 470
40 41	C005 C006	118° 42. 61′ 118° 42. 42′	9' 52. 16' H 9' 52. 23' H	B B	30 BI	9	D D	. ₹2	₹2	2900	4600	9.7	250
42	C007	118 42 33	9'52.03'	В	30 B		5	<2	₹2	80	500	5. 4	43
43	CO08	118' 44. 45'	9' 52. 76' H	В	30 BI		Ď	<2	<2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	3200	5200	11.1	260
44	C009	118' 44, 49'	9° 52. 60° H	В	25 BI		DC CC	<2	<2	4800	10000	15.3	460
45	C010	118' 44. 29'	9' 52. 71' H	В	30 B	3 3	5	16	<2	2700	14000	10.4	380
46	C011	118° 44. 23′	9 52.88' H	В	35 RI) 3	5	12	⟨2	4900	10000	17.3	380
47	0012	118' 44.06'	9' 52. 83' D	В	30 8) 5	ί <u>δ</u>	66 ec	<2 ≺2	3100 4500	11000 10000	19. 8 40. 0	290 470
48 49	C013 C014	118° 44. 02° 118° 44. 37°	9' 52. 91' D 9' 52. 17' II	B B	35 RI 35 BI	, ,	15 15	26 2	⟨2	6100	15000	18.8	500
50	CO15	118' 44. 11'	9 52. 22'	В	30 B		5	6	₹2	3900	3700	12.4	190
51	CO43	118' 43. 46'	9 53. 43 G	B	25 B		Š	<2	$\overline{4}$	40	400	10.3	40
52	C044	118' 43. 62'	9° 53. 37° G	В	25 RI		0	. 8	8	34	300	13.5	46
53	CO45	118' 43.51'	9 53.32 G	В	20 B		Ω	<2	6	60	700	6.8	40
54	CO46	118' 43. 44'	9'53.17' D	В	20 B		0	26	2	3100	12000	23.0	330
55	C047	118' 43' 41' 118' 43' 34'	9'53.05' D	В	20 RI		0	30	. 4	3400 21	13000 600	19.8 4.0	320 16
56 57	CO48 CO49	118 43.34	9'.53.28' G 9'.53.06' D	B B	25 Bi 25 Bi		10 10	6 62	12 10	2100	11000	25. 8	360
58	C050	118'43'25'	9 53.12' D	В	25 RI	1 4	5	40	12	3900	30000	21, 5	390
59	0001	118' 43. 25' 118' 43. 72'	9 51.61' 11	. B	25 BI		ă	10	14	4400	4400	15.4	260
60	D002	118' 43, 68'	9'51.70' H	В	25 B	7	0	60	18	1100	2500	12.7	240
61	D003	118, 43, 68, 118, 43, 49,	9'51.63' H	В	30 BF	7	5	- 70	14	2800	7200	22.5	340
62	1004	118' 44. 01'	9 51.96' H	В	40 B	. 2	0	14	<2	2800	16000	15.8	170
63	D005	118' 44. 09'	9'51.82' H	В	20 BF	. 2	0	6	<2	3800	12000	14.1	360 240
64 65	D006 D007	118° 44. 19° 118° 44. 01	9'51.81' H 9'51.63' H	B B	20 BF 30 BF		0	6 22	<2 6	5200 3900	3900 18000	12.9 16.7	240 200
66 66	D008	118 44.01 118 43.99	9' 51. 63' 9' 51. 39'	В	30 B	, 0 7	'5	∠∠ <2	8	2800 2800	11000	10. 7	200
67	D009	118' 44. 64'	9 52.94' H	В	30 BI	2	5	12	⟨2	2600	11000	15. 9	220
68	D010	118° 44. 58′	9°53.08′ H	В	35 Br	2	õ	. 8	₹2	5900	2100	11.0	140
69	D011	118 44 36	9 53. 15' H	В	35 BI	1	5	6	₹2	5200	4000	15.6	230
70	D012	118' 44. 23'	9° 53. 12' II	В	30 B	2	5	10	<2	5700	14000	19. 1	460

Appendix 6 Chemical analyses of geochemical soil samples in area A-3

No. S	Sample No.	Long i tude	Latitude	Geology	Horizo	n Depth cm	Color	Pt ppb	Pd ppb	Au ppb	Ni ppm	Cr ppm	fe %	Co ppm
71	D013	118' 44. 32'	9' 53. 01'	Н	В	40	BR	<15	16	<2	2600	20000	17.3	260
72	D014	118' 44. 03'	9' 53, 21'	H	· B	35	BR	15	: 6	<2	2700	11000	16.4	250
73	D015	118' 43. 84'	9, 23, 38,	H	В	35	BR	25	10	2	5500	21000	19.8	530
74	D016	118,43,89	9' 53, 27'	Н	В	30	BR	15	4	2	5700	6500	17.6	310
75	D044	118' 42. 95'	9' 52. 77'	P	. B	25	BR	55	68	18	1800	6700	15.3	220
76	D045	118'42.83'	9, 25, 61,	D	В	30	BR	40	16	4	6700	31000	30.6	690
77	DO46	118' 42, 79'	9' 52. 47'	D .	В	25	BR	70	42	<2	1800	2700	12.9	190
78	DO47	118' 43. 09'	9' 52. 83'	. D	B	30	BR	50	28	<2	4000	16000	25. 2	540
79	D048	118' 43, 24'	9, 25, 88,	D	В	20	BR	30	18	<2	3500	22000	23.6	550
80	D049	118' 43, 37'	9' 52, 88'	D	В	. 30	BR	45	28	2	1800	8200	21.4	310
81	D050	118' 43, 45'	9 52 89	D	В	20	8L	30	38	4	1000	3760	8.9	150
82	D051	118' 43. 03'	9' 52. 62'	H	В	20	BR	35	20	<2	3200	18000	21.4	370
83	E001	118'43, 16'	9 51. 99	H	В	- 25	BR	20	. 14	4	5000	11000	17.6	370
84	E002	118'43.19'	9' 52. 13'	Н	В	25	BR	40	28	14	5100	17000	20.9	430
85	E003	118' 43, 00'	9' 52. 17'	H	В	20	BR	25	- 8	<2	3700	20000	20.8	380
86	E004	118'42 96'	9'52.02'	H	В	15	BR	35	<2	4	3900	21000	16.4	750
87	E005	118' 42, 72'	952, 35	Ď	В	15	BR	25	20	<2	3100	19000.	23.3	420
88	E006	118 42 57	9' 52. 27'	D	В	20	BR	15	<2	<2	3800	13000	15.3	370
89	E007	118' 42, 56'	9' 52, 38'	- D	В	15	BR	30	25	46	2800	16000	19. 2	410
90	E008	118'44.30'	9' 52, 58'	D	В	20	BR	30	2	<2.	4400	13000	14.7	410
91	E009	118'44, 15'	9' 52, 55'	D	. B	15	BR	. 30	<2	<2	4500	32000	21.8	490
92	£010	118'44.15'	9 52.66	D	В	15	BR	25	24	<2	2700	9000	18.9	320
93	E011	118' 43, 90'	9' 52, 70'	D	В	15	BR	60	34	8	3500	15000	28.5	460
94	E012	118, 43, 81,	9 52 83	Ð	: B	20	BR	- 20	<2	<2	3100	100000	17.1	55(
95	£ 013	118' 43, 68'	9°52,87°	D	В	20	BR	40	16	2	4600	19000	32.0	620
96	E014	118' 44, 12'	9' 52. 11'	Н	В	15	BR	25	18	2	4500	14000	11.8	240
97	E015	118'44.22'	9"51.95"	H	В	25	BR	20	10	10	4100	14000	15, 1	330
98	E038	118' 43, 24'	9' 52, 58'	H	В	35	RD	110	82	<2	5500	17000	45.0	580
99	E039	118' 43, 38'	9, 25, 69,	H	В	35	BD	20	. 2	<2	6400	13000	46.0	696
100	E040	118' 43. 06'	9' 52. 49'	Н	В	20	BR	110	50	<2	4500	24000	25. 1	760
101	E041	118' 42, 93'	9' 52, 37'	H	В	25	BR	110	64	16	2800	23000	25.7	420
02	E042	118'43.06'	9' 52, 30'	P	В	15	BR	100	60	22	3000	<i>7</i> 750	18. 1	380
103	E043	118`43,39'	9' 52. 52'	H	В	15	RD	40	18	<2	3600	17000	31.1	510
104	EO44	118' 43, 22'	9' 52, 34'	H	В	25	RD	130	52	<2	5600	20000	29.7	540

Abbreviation

Geology: D; dunite, H; harzburgite, G; gabbro, P; pyroxenite rich dunite,

Q;quartz schist, S;Sulu Sea Mine Formation

Color: BL;black, BR;brown, OR;orange, RD;red, YE;yellow

Appendix 7 Weight of heavy mineral from soil at the test pit bottom

P	anan lagan (Area A-		T	agkawayar (Area A-		*** *** *** *** ·	Mariwara (Area B-			Mariwa (Area	ra area A-1)
No.	Pit No.	Weight g/kg(soil)	No.	Pit No.	Weight g/kg(soil)	No.	Pit No.	Weight g/kg(soil)	No.	Pit No.	Weight g/kg(soil)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	PA001 PA002 PA003 PA004 PA005 PA006 PA007 PA008 PA009 PA011 PA012 PA013 PA014 PA015 PA016 PA017 PA018 PA019 PA020 PC021 PC022 PC023 PC024 PC025 PC026 PC027 PC028 PC028 PC029 PC030 PC031 PC032 PC030 PC031	g/kg(soi1) 39. 5 8. 0 7. 1 23. 3 65. 5 39. 8 16. 2 16. 9 7. 4 10. 4 38. 4 4. 1 51. 3 17. 9 20. 9 12. 5 38. 3 106. 4 42. 5 108. 1 80. 7 21. 2 26. 5 10. 8 13. 0 10. 7 22. 4 27. 1 34. 5 13. 8 40. 4 51. 5 69. 5 30. 3 13. 7 8. 9 47. 0 28. 4 28. 6 8. 7 9. 6	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	TG001 TG002 TG003 TG004 TG005 TG006 TG007 TG008 TG009 TG010 TG011 TG012 TG013 TG014 TG015 TG016 TG017 TG018 TG019 TG020 TG021 TG022 TG023 TG024 TG025 TG026 TG027 TG028 TG029 TG030 TG031 TG031 TG032 TG031 TG032 TG031 TG032 TG031 TG031 TG032 TG031	38.5 14.4 14.0 12.9 15.0 12.8 8.6 17.8 18.8 11.5 8.9 14.7 13.3 8.2 97.6 27.3 4.1 16.8 65.2 21.2 5.2 13.7 8.6 12.3 33.0 9.8 15.9 1.8 9.3 14.9 12.8 9.3 14.9 12.8 9.3 14.9 12.8 13.9 14.9 12.8 9.3 14.9 15.9 16.8 16.8 17.8 18.8 19.8 19.8 19.8 19.8 19.8 19.8 19	1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	NH001 NG002 NG003 NG004 NG005 NG006 NG007 NH008 NH009 NH010 NH011 NH012 NH013 NH014 NH015 NH016 NG017 NG018 NH020 NH020 NH021 NH022 NH023 NH023 NH023 NH024 NG025 NG026 NG027 NG028 NG029 NH030 NH031 NH032 NH033 NH033 NH033 NH033 NH033 NH033 NH033 NH034 NH035 NH030 NH031 NH032 NH030 NH031 NH032 NH033 NH033 NH033 NH034 NG035 NG036 NG037 NG038 NG036 NG037 NG038 NG039 NG040 NH041	g/kg(soi i) 32. 1 21. 9 24. 6 12. 3 37. 9 35. 7 26. 0 14. 0 14. 9 17. 0 55. 5 12. 4 21. 9 17. 9 10. 1 74. 3 56. 0 67. 5 77. 5 58. 0 50. 5 212. 2 64. 1 8. 0 12. 4 7. 4 0. 0 6. 0 20. 7 13. 2 27. 8 59. 6 57. 0 25. 5 81. 8 28. 2	51 52 53 54 55 56 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 89 90 91	NG051 NG052 NG053 NG054 NG055 NG056 NG057 NG058 NG060 NG061 NG062 NG063 NG064 NG065 NG066 NG067 NG068 NG069 NG070 NG071 NG072 NH073 NH074 NH073 NH074 NH075 NH077 NH078 NH077 NH078 NH079 NH080 NH081 NH082 NH083 NH088 NH089 NH090 NH090 NH091	8/kg(soi1) 13.5 11.4 18.9 7.5 22.5 71.6 34.2 35.4 14.6 5.0 5.9 5.6 17.6 10.0 24.1 14.8 288.0 78.3 17.2 39.4 39.4 19.5 24.0 14.4 30.4 18.4 12.2 26.3 67.7 42.4 96.5 76.7 35.2 100.9 14.0 60.7 33.1 24.2 17.6 9.6 41.9
41 42 43 44 45 46 47 48 49 50 51	PB042 PB043 PB044 PB045 PB046 PB047 PB048 PB049 PB050 PA051	9. 6 13. 0 17. 4 15. 8 19. 9 29. 3 8. 0 16. 5 78. 0 158. 2 54. 5 26. 9	41 42 43 44 45 46 47 48 49 50	TG042 TG043 TG044 TG045 TG046 TG047 TG048 TG049 TG050	47. 7 72. 0 26. 8 27. 8 53. 6 5. 6 9. 8 3. 4 3. 0 2. 7	41 42 43 44 45 46 47 48 49 50	NH042 NH043 NH044 NH045	28. 2 26. 9 73. 3 54. 9 40. 4 67. 2 13. 7 17. 2 16. 4 9. 7	91 92 93 94 95 96 97 98 99	NH091 NH092 NG093 NG094 NG095 NG096 NG097 NG098 NG099 NG100	41. 9 16. 9 64. 4 20. 9 96. 6 40. 3 72. 5 30. 3 27. 9 36. 9

Appendix 8 Chemical analyses of test pit samples

Pana	nlagan area (Area A-1)						(1)
No.	Sample No.	Pt ppb	Pd ppb	Au ppb	Ni ppm	Cr ppm	Fe %	Co ppm
1	PA001-1	55	28	4	7600	3980	18.6	310
2	PA001-2	50	20	6	7100	4930	22.1	360
3	PA002-1	20	24	<2	5100	2730	14.4	250
4 5	PA002-2 PA003-1	25 20	20 8	10 12	7200 3700	3830 3560	17.0 14.5	260 300
6	PA003-2	15	2	10	2600	2250	9.6	160
7	PA004-1	25	$\ddot{6}$	10	7100	4810	25.6	430
8	PA004-2	30	12	8	7200	7250	27.0	500
9	PA005-1	25	14	12	12000	10000	34.0	720
10	PA005-2	20	10	8	12000	12000	37.0	760
11 12	PA006-1 PA006-2	15 15	<2 <2	4	14000 16000	10000 16000	17. 1 29. 9	460 630
13	PA007-1	55	2	₹2	7300	4100	10.9	330
14	PA007-2	10	<2	12	6800	5190	10.8	310
15	PA008-1	<5	<2	<2	4500	1300	9.1	270
16	PA008-2	10	<2	<2	4700	1930	8.0	270
17	PA009-1	15	8	2	4200	2750	11.6	200
18 19	PA009-2 PA010-1	10 <5	<2 10	6 8	3000 6600	1600 1960	7. 9 12. 2	85 400
20	PA010-1	5	<2	4	6400	2370	11.5	310
21	PA011-1	25	14	6	8400	4210	20.7	360
22	PA011-2	35	18	4	7200	7670	2A. 7	380
23	PA012-1	10	4	<2	2800	1520	10.9	140
24	PA012-2	10	8	<2	3800	2400	16.0	250
25	PA013-1	10	<2	2	12000	5720	23.1	490
26 27	PA013-2 PA014-1	10 5	8 10	<2 <2	7600 7100	8270 4380	31.5 15.1	550 420
28	PA014-2	15	6	⟨2	8400	12000	27.3	630
29	PA015-1	5	<Ž	6	5800	7620	12. 1	290
30	PA015-2	15	<2	12	7600	6320	12.7	290
31	PA016-1	10	10	<2	6000	3470	13.6	340
32	PA016-2	15	6	<2	7900	7190	19.2	400
33	PA017-1	20	4	<2	3100	5870 4500	15.8 17.1	190 180
34 35	PA017-2 PA018-1	<5 25	<2 8	<2 <2	3000 22000	7290	25. 1	630
36	PA018-2	-30	20	₹2	19000	11000	35.0	700
37	PA019-1	15	<2	⟨2	12000	4390	20.5	480
38	PA019-2	20	2	<2	18000	4850	25.0	580
39	PA020-1	. 10	16	10	16000	10000	31.1	680
40	PA020-2	30	12 30	12	17000	15000	38. 0 33. 0	790
41 42	PC021-1 PC021-2	40 60	54	10 <2	7900 6900	9100 11000	36.0	510 500
43	PC022-1	55	28	16	6800	5250	21.8	420
44	PC022-2	50	22	2	12000	9700	30.1	450
45	PC023-1	40	30	<2	7100	5990	20.2	360
46	PC023-2	35	24	<2	7900	7800	23.5	380
47	PC024-1	40	32	<2	4500	5790	15.8	250
48 49	PC024-2 PC025-1	40 40	34 42	<2 <2	4800 4800	8670 3140	18. 0 22. 3	- 350 380
50	PC025-2	25	36	⟨2	4200	2460	17.8	270
51	PC026-1	50	66	⟨2	5100	3780	17.5	350
52	PC026-2	40	44	8	6100	2500	21.4	410
53	PC027-1	50	48	90	6700	4700	21.7	430
54	PC027-2	55	38	. 14	6300	5400	25. 1	410
55 ce	PC028-1	45	18	4	5000	3800	20.7	360
56 57	PC028-2 PC029-1	45 35	32 28	12 6	5400 7300	4300 5700	23.5 31.4	380 440
58	PC029-2	აა 55	38	<2	7000	6400	28. 2	390
59	PC030-1	40	30	16	6500	3900	22.5	370
60	PC030-2	35	24	10	6700	3400	26. 2	370

Pana	nlagan area	(Area A-1)		•				(2)
No.	Sample No.	Pt ppb	Pd ppb	Au ppb	Ni ppm	Cr ppm	Fe %	Co ppm
61 62 63 64	PC031-1 PC031-2 PC032-1 PC032-2	30 35 45 50	18 18 30 56	14 14 6 8	5800 6800 7200 6500	4900 5000 5300 4400	22. 7 25. 1 20. 9 19. 6	380 400 380 360
65 66 67 68 69	PC033-1 PC033-2 PC034-1 PC034-2 PC035-1	45 45 30 20 15	30 36 30 28 38	4 <2 4 <2 8	6800 6600 5800 5500 4600	8400 8400 3800 3600 1900	19. 6 19. 6 19. 0 19. 2 16. 1	390 370 340 310 360
70 71 72 73 74	PC035-2 PC036-1 PC036-2 PC037-1 PC037-2	25 10 25 40 80	40 30 36 40 54	10 8 10 10 2	6300 10000 10700 10600 9100	2800 2500 3200 4700 6200	19. 4 14. 9 19. 8 28. 0 31. 6	370 340 390 470 470
75 76 77 78 79	PC038-1 PC038-2 PC039-1 PC039-2 PC040-1	40 25 40 50 50	38 32 52 54 36	4 12 10 12 <2	7900 8500 7900 8200 6800	4800 4300 7000 8100 7300	21. 0 24. 0 25. 1 32. 0 20. 5	370 390 420 440 390
80 81 82 83 84	PC040-2 PB041-1 PB041-2 PB042-1 PB042-2	50 10 10 40 46	36 16 10 34 44	10 <2 4 8 10	6900 3600 4000 6700 6300	9400 1900 2700 3900 4100	21. 9 12. 5 12. 2 16. 1 16. 4	420 280 310 330 370
85 86 87 88 89	PB043-1 PB043-2 PB044-1 PB044-2 PB045-1	25 50 30 50 30	26 60 16 40	8 18 6 4	4700 4600 4200 6200	3400 5400 4900 4900	13.0 14.5 13.5 17.0	300 310 340 520
90 91 92 93	PB045-2 PB046-1 PB046-2 PB047-1	25 30 50 10	20 26 32 46 16	14 12 10 45 18	7400 7600 9400 10100 4400	3700 3900 3500 5700 1400	20. 2 18. 8 25. 3 32. 0 12. 4	380 340 510 630 290
94 95 96 97 98	PB047-2 PB048-1 PB048-2 PB049-1 PB049-2	25 45 25 30 40	12 68 42 14 10	10 12 30 8 6	5300 4100 3500 6300 6800	2400 2200 2700 6000 6400	13. 2 11. 9 11. 1 28. 3 29. 3	310 270 149 400 480
99 100 101 102 103 104	PB050-1 PB050-2 PA051-1 PA051-2 PC052-1 PC052-2	30 35 15 <5 45	14 6 <2 16 26 48	۷2	5000 4900 6200 5700 7100 6900	14000 24000 8540 6570 8200 9900	19. 1 18. 7 15. 9 13. 5 30. 5	340 340 430 320 430 450
	awayan area	/Amon A 1\		ч 	-	<i>55</i> 00	<i>UG</i> , 4	400
No.	Sample No.	Pt.	Рd		Ni	Cr ppm	Fe %	Co ppm
105 106 107 108 109 110 111 112 113 114 115 116	TG002-2	25 20 20	6 46 32 10 48 4	<2 4 <2	4600 5500 6000 5900 8200 8700 6800 6100 6300 6500 5800 5700	1800 3100 2600 3200 2300 4300 3700 5000 3400 3200 4400 4500	19. 6 15. 8 15. 4 14. 7 17. 1 15. 5 17. 9 15. 9 16. 4	300 310 310 360 400 350 360 340 350

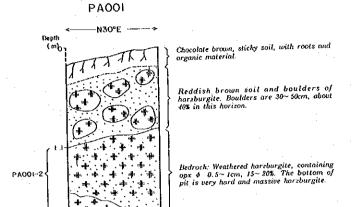
Appendix 8 Chemical analyses of test pit samples

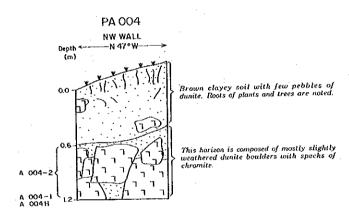
Tagk	awayan area (Area A-1)						(3)
No.	Sample No.	Pt ppb	Pd ppb	Au ppb	Ni ppm	Cr ppm	Fe %	Co ppm
117	TG007-1	15	22	<2	3800	2600	11. 1	230
118	TG007-2	15	6	12	4400	3800	11.9	150
119 120	TG008-1 TG008-2	20 40	26 40	6 12	4700 3600	1700 2300	14. 1 13. 6	290
121	TG009-1	20	40 <2	1 <i>a</i> 4	5500	6300	20.7	250 390
122	TG009-2	25	4	⟨2	5600	7200	21.5	430
123	TG010-1	<5	<2	<2	3700	2700	12.9	240
124	TG010-2	<5 20	8	<2	4100	3400	14.6	280
125 126	TG011-1 TG011-2	80 20	80 24	12 10	2300 5400	2400 3900	15. 1 18. 6	290 320
127	TG012-1	150	100	10	4400	2600	18.1	350
128	TG012-2	120	100	8	4300	4900	20.4	360
129	TG013-1	180	170	12	5300	2900	15.0	330
130	TG013-2	190	190	12	5500	3500	16.0	360
131 132	TG014-1 TG014-2	45 30	36 34	<2 4	5300 3800	3400 2400	17.9 15.2	360 300
133	TG014-2 TG015-1	- 55	38	6	6500	9800	32. 0	820
134	TG015-2	60	30	4	6800	5900	32.6	1050
135	TG016-1	40	12	2	6600	3300	20.6	440
136	TG016-2	40	24	4	6800	3700	25.8	570
137 138	TG017-1 TG017-2	30 25	12 <2	6 6	7400 7100	2200 5100	17.9 21.7	880 1210
139	TG018-1	50	36	4	6600	2800	18.6	620
140	TG018-2	30	22 .	4	6900	5300	26.9	980
141	TG019-1	15	<2	6	6700	5500	17.2	710
142	TG019-2	45	<2 22	2	12000 5300	6800	17.0	1330
143 144	TG020-1 TG020-2	20 40	22 22	<2 <2	5700	4500 6800	16. 9 20. 1	350 470
145	TG021-1	30	44	6	5100	1400	15.0	340
146	TG021-2	35	42	<2	5200	1500	16.4	340
147	TG022-1	25	26	<2	5400	600	17.4	330
148 149	TG022-2 TG023-1	35 40	44 88	<2 8	5600 4300	2200 2200	22. 7 17. 0	410 270
150	T6023-1	50	72	12	4900	8900	26.7	570
151	TG024-1	70	76	14	4800	4100	22.2	380
152	TG024-2	75	78	8	5100	6200	24.8	420
153	TG025-1	75 70	52	4	7400	4400	20.0	440
154 155	TG025-2 TG026-1	70 25	42 28	10 8	7500 6900	7900 2000	28.0 18.5	670 360
156	TG026-2	60	42	6	6100	2600	18.2	280
157	TG027-1	40	28	4	8400	5300	22.7	940
158	TG027-2	50	50	6	7000	8900	30.1	700
159 160	TG028-1 TG028-2	25 30	26 46	6 2	8700 8300	5900 11000	21.8 32.3	470 600
161	TG029-1	40	40	4	7500	12000	31.0	750
162	TG029-2	30	- 24	4	6500	14000	32.0	560
163	TG030-1	10	26	4	9500	2000	14.4	310
164	TG030-2	10	12	6	8100	2500	15.8	320
165 166	TG031-1 TG031-2	70 110	54 90	<2 10	7800 6300	2600 7500	18. 2 32. 0	510 700
167	TG032-1	120	130	14	5100	3100	19.5	350
168	TG032-2	120	110	12	5100	4600	23.1	410
169	TG033-1	35	92	6	5000	4700	19.6	290
170 171	TG033-2 TG034-1	35 220	56 170	4 10	5200 3400	5600	19.4	300
172	TG034-1 TG034-2	220 200	190	10	3800	3000 3000	16.5 17.9	154 260
173	TG035-1	90	100	28	3400	5500	9.1	105
174	TG035-2	170	160	32	4200	7700	16.4	280
175	TG036-1	60	50	<2 '0	6600	4100	21.8	380
176 177	TG036-2 TG037-1	95 35	80 12	<2 <2	6200 8600	4300 2700	28.6 19.7	550 480
178	TG037-2	35 35	48	<2	9100	4300	23. 4	660
_			-	A - 18				

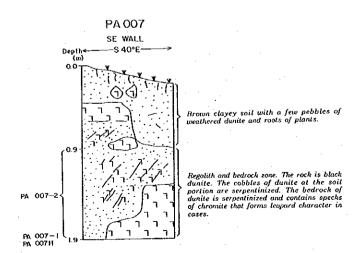
Appendix 8 Chemical analyses of test pit samples

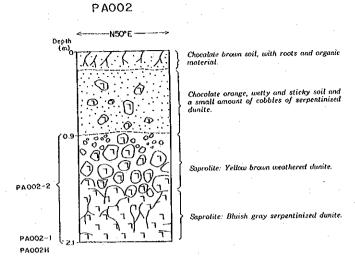
1000	awayan area ((Arta A-1)						(4)
No.	Sample No.	Pt ppb	Pd ppb	Au ppb	Ni ppm	Cr ppm	Fe %	Co ppm
179	TG038-1	15	12	<2	3000	2300	14.8	350
180	TG038-2	20	22	10	2800	1000	14.4	210
181	TG039-1	20	38	<2	3200	800	16.2	144
182 183	TG039-2	20 110	34	<2	3400	1000 3900	17.5 19.9	138 410
184	TG040-1 TG040-2	120	68 50	8 6	5900 5700	4600	23.0	450
185	TG041-1	35	38	6	3900	3200	2A. 4	380
186	TG041-2	30	36	6	3800	3700	24.6	340
187	TG042-1	30	32	1Ž	4300	8900	18.7	350
188	TG042-2	45	34	4	3700	7800	17.7	510
189	TG043-1	40	28	14	5500	5800	18, 0	206
190	TG043-2	75	100	20	2400	2700	13.5	176
191	TG044-1	30	44	6	3900	7300	21.0	360
192	TG044-2	55	50	<2	3900	9000	20.9	450
193	TG045-1	25	- 32	4	4800	8100	19.7	290
194	TG045-2	55	36	<2	4300	11000	21.3	460
195	TG046-1	30	34	6	5100	4800	18.7	260
196	TG046-2	35	26 26	<2	5200	6800 4500	18.7	300
197 198	TG047-1 TG047-2	25 35	36 38	12 4	5000 5500	3100	: 15.3 16.6	280 310
199	TG047-2	35	38	2	6000	6000	14.2	310
200	TG048-2	30	24	₹2	6400	3300	13.5	260
201	TG049-1	-35	26	4	5900	2000	14.2	370
202	TG049-2	30	14	4	6200	3300	14. 1	330
203	TG050-1	45	64	<2	4300	2100	15.7	220
204	TG050-2	35	32	4	3400	2500	14. 1	154
	wara area (Ar							
No.	Sample No.	Pt ppb	Pd ppb	Au dqq	Ni ppm	Cr ppm	Fe %	Co ppm
No. 205	Sample NoNH001-1				ррт 5400	ppm 5000	% 15. 6	ppm 300
205 206	NHOO1-1 NHOO1-2	ppb 10 <5	ppb 18 30	ppb 6 <2	ррт 5400 5400	ppm 5000 6900	% 15. 6 17. 1	300 300
205 206 207	NH001-1 NH001-2 NG002-1	ppb 10 <5 <5	ppb 18 30 16	ppb 6	5400 5400 4800	ppm 5000 6900 1700	15. 6 17. 1 14. 0	300 300 280
205 206 207 208	NH001-1 NH001-2 NG002-1 NG002-2	ppb 10 <5 <5 <5	ppb 18 30 16 16	ppb 6 <2 6 6	5400 5400 4800 5600	5000 6900 1700 2800	15. 6 17. 1 14. 0 16. 2	900 300 300 280 250
205 206 207 208 209	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1	ppb 10 <5 <5 <5 <5 <5	ppb 18 30 16 16 12	ppb 6 <2 6 6 10	5400 5400 4800 5600 4700	5000 6900 1700 2800 2300	15. 6 17. 1 14. 0 16. 2 15. 7	300 300 300 280 250 310
205 206 207 208 209 210	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2	ppb 10 <5 <5 <5 <5 <5 <5	18 30 16 16 12 14	ppb 6 <2 6 6 10 <2	5400 5400 4800 5600 4700 4800	5000 6900 1700 2800 2300 2400	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5	300 300 280 250 310 290
205 206 207 208 209 210 211	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1	ppb 10 <5 <5 <5 <5 <5 <5 <5 <5	18 30 16 16 12 14 18	ppb 6 <2 6 6 10 <2 10	5400 5400 4800 5600 4700 4800 5300	5000 6900 1700 2800 2300 2400 2400	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7	300 300 280 250 310 290 250
205 206 207 208 209 210 211 212	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2	ppb 10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	18 30 16 16 12 14 18	ppb 6 <2 6 6 10 <2 10 8	5400 5400 4800 5600 4700 4800 5300 5200	5000 6900 1700 2800 2300 2400 2400 2800	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3	300 300 280 250 310 290 250 240
205 206 207 208 209 210 211 212 213	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1	ppb 10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	18 30 16 16 12 14 18 16 80	ppb 6 <2 6 6 10 <2 10 8 50	5400 5400 4800 5600 4700 4800 5300 5200 1700	5000 6900 1700 2800 2300 2400 2400 2800 8100	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5	300 300 280 250 310 290 250
205 206 207 208 209 210 211 212 213 214 215	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1	ppb	18 30 16 16 12 14 18 16 80 16	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100	5000 6900 1700 2800 2300 2400 2400 2400 2800 8100 14000 4600	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5 25. 1 16. 1	300 300 280 250 310 290 250 240 240 480 330
205 206 207 208 209 210 211 212 213 214 215 216	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG005-2 NG006-1 NG006-2	ppb	18 30 16 16 12 14 18 16 80 16 12 46	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5 25. 1 16. 1 38. 0	300 300 280 250 310 290 250 240 240 480 330 670
205 206 207 208 209 210 211 212 213 214 215 216 217	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG005-2 NG006-1 NG006-2 NG007-1	ppb 10 <5 <5 <5 <5 <5 <5 <5 10 20 15	18 30 16 16 12 14 18 16 80 16 12 46 24	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 <2	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5 25. 1 16. 1 38. 0 24. 2	300 300 280 250 310 290 250 240 240 480 330 670 510
205 206 207 208 209 210 211 212 213 214 215 216 217 218	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG005-2 NG006-1 NG006-2 NG007-1 NG007-2	ppb 10 <5 <5 <5 <5 <5 <5 10 20 15 20	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 <4	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5 25. 1 16. 1 38. 0 24. 2 32. 0	300 300 280 250 310 290 250 240 240 480 330 670 510 700
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG005-2 NG006-1 NG006-2 NG007-1 NG007-2 NH008-1	ppb 10 <5 <5 <5 <5 <5 <5 10 20 15 20 5	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 <4 12	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500 9600	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5 25. 1 16. 1 38. 0 24. 2 32. 0 19. 4	9pm 300 300 280 250 310 290 250 240 240 480 330 670 510 700 410
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG005-2 NG006-1 NG006-2 NG007-1 NG007-2 NH008-1 NH008-2	ppb 10 <5 <5 <5 <5 <5 <5 10 20 5 10	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 <4 12 4	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500 9600	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400	% 15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5 25. 1 16. 1 38. 0 24. 2 32. 0 19. 4 22. 7	300 300 280 250 310 290 250 240 240 480 330 670 510 700 410 490
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG005-2 NG005-1 NG006-2 NG006-2 NG007-1 NG007-2 NH008-1 NH008-2 NH009-1	ppb 10 <5 <5 <5 <5 <5 <5 10 20 5 10 <5	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 <4 12 4 10	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500 9600 9600	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600	% 15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5 25. 1 16. 1 38. 0 24. 2 32. 0 19. 4 22. 7 14. 1	300 300 280 250 310 290 250 240 240 480 330 670 510 700 410 490 390
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG005-2 NG005-1 NG006-2 NG006-1 NG007-2 NG007-2 NH008-2 NH008-2 NH009-1 NH009-2	ppb 10 <5 <5 <5 <5 <5 10 20 5 10 <5 15 15	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 <4 12 4 10 4	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500 9600 9600 19000 11600	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000	% 15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5 25. 1 16. 1 38. 0 24. 2 32. 0 19. 4 22. 7 14. 1 28. 4	300 300 280 250 310 290 250 240 240 480 330 670 510 700 410 490 390 720
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG005-2 NG005-1 NG006-2 NG007-1 NG007-2 NH008-2 NH008-2 NH009-2 NH009-2	ppb 10 <5 <5 <5 <5 <5 15 10 20 5 15 <30	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8 18 <12	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 4 12 4 10 4 <12	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500 9600 9600 19000 11600 12900	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000	%	300 300 280 250 310 290 250 240 240 480 330 670 510 700 410 490 390 720 310
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG005-2 NG005-1 NG005-2 NG006-2 NG007-1 NG007-2 NH008-2 NH008-2 NH009-1 NH009-2 NH010-1	ppb 10 <5 <5 <5 <5 <5 15 10 20 5 15 <30 20	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8 18 <12 12 12	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 4 12 4 10 4 <12 10	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500 9600 9600 11600 12900 12300	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000 3900 8200	%	300 300 280 250 310 290 250 240 240 480 330 670 510 700 410 490 390 720 310 460
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG005-2 NG006-1 NG006-2 NG007-1 NG007-2 NH008-2 NH008-2 NH009-1 NH009-2 NH010-1 NH011-2	ppb 10 <5 <5 <5 <5 <5 10 20 15 <30 20 20 15	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8 18 <12 12 12 12 8	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 4 12 4 10 4 <12	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 8300 8500 9600 9600 19000 11600 12900 12300 10700 11100	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000 3900 8200 5900 7400	%	300 300 280 250 310 290 250 240 240 480 330 670 510 700 410 490 390 720 310 460 480
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG006-2 NG006-1 NG007-2 NH008-2 NH008-2 NH009-1 NH009-2 NH010-1 NH010-2 NH011-2 NH011-2	ppb 10 <5 <5 <5 <5 <5 10 20 15 10 <20 20 15 10 <10 <10 <10 <10 <10 <10 <10 <10 <10	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8 18 <12 12 12 12 8 6	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 4 12 4 10 4 <12 10 10 10 6	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 8300 8500 9600 9600 1600 12900 12300 11100 5400	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000 3900 8200 5900 7400 2900	%	250 310 290 250 240 240 240 480 330 670 510 700 410 490 390 720 310 460 480 440 230
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG006-2 NG006-1 NG007-2 NH008-1 NH008-2 NH009-1 NH009-2 NH010-1 NH011-2 NH011-2 NH012-1	ppb 10 <5 <5 <5 <5 <5 10 20 15 10 <20 20 15 10 10 10	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8 18 <12 12 12 12 8 6 4	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 4 12 4 10 4 <12 10 10 6 4	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 8300 8500 9600 9600 1600 12900 12300 12300 11100 5400 5400	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000 3900 8200 5900 7400 2900 5000	%	250 250 250 250 250 240 240 240 480 330 670 510 700 410 490 390 720 310 460 480 440 230 230
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG006-2 NG006-1 NG007-2 NH008-1 NH008-2 NH009-1 NH009-2 NH010-1 NH011-2 NH011-2 NH011-2 NH012-1 NH012-2 NH013-1	ppb 10 <5 <5 <5 <5 <5 54 15 10 20 15 20 20 20 15 10 <5 10 <5	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8 18 <12 12 12 12 8 6 4 8	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 4 12 4 10 4 <12 10 10 6 4 8	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 8300 8500 9600 9600 9600 11600 12900 12900 12300 11100 5400 5400 7100	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000 3900 8200 5900 7400 2900 5000 5400	%	250 250 250 250 250 240 240 240 480 330 670 510 700 410 490 390 720 310 460 480 440 230 230
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG006-2 NG006-1 NG007-2 NH008-1 NH008-2 NH009-1 NH009-2 NH010-1 NH011-2 NH011-2 NH011-2 NH012-1 NH012-2 NH013-1 NH013-2	ppb 10 <5 <5 <5 <5 54 15 10 20 15 20 20 15 10 <5 20 20 20 20 20 20 20 20 20 20 20 20 20	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8 18 <12 12 12 12 8 6 4 8 10	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 4 12 4 10 4 <12 10 10 6 4 8 24	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500 9600 9600 1600 12900 12900 12300 11100 5400 5400 7100 6700	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000 3900 8200 5900 7400 2900 5400 13000	%	250 240 240 240 240 240 480 330 670 510 700 410 490 390 720 310 460 480 440 230 230 400
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG006-2 NG006-1 NG007-2 NH008-1 NH008-2 NH009-1 NH009-2 NH010-1 NH011-2 NH011-2 NH011-2 NH012-1 NH012-2 NH013-1 NH013-2 NH014-1	ppb 10 <5 <5 <5 <5 54 15 10 20 5 10 <5 15 (30 20 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8 18 <12 12 12 12 8 6 4 8 10 6	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 4 12 4 10 4 <12 10 10 6 4 8 24 6	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500 9600 9600 11600 12900 11600 12900 11100 5400 5400 7100 6700 6000	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000 3900 8200 5900 7400 2900 5400 13000 4500	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5 25. 1 16. 1 38. 0 24. 2 32. 0 19. 4 22. 7 14. 1 28. 4 13. 6 23. 1 16. 5 17. 2 12. 4 15. 1 17. 7 23. 1 16. 8	280 280 250 310 290 250 240 240 480 330 670 510 700 410 490 390 720 310 460 480 440 230 230 320 400 330
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 231 231 231 231 231 231 231 231 231	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG005-2 NG006-1 NG006-2 NG007-1 NG007-2 NH008-1 NH008-2 NH009-1 NH009-2 NH010-1 NH011-2 NH011-1 NH011-2 NH011-1 NH011-2 NH012-1 NH013-2 NH013-1 NH013-2 NH014-1 NH014-2	ppb 10 <5 <5 <5 <5 <5 <5 10 <5 15 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8 18 <12 12 12 12 8 6 4 8 10 6 <2	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 4 12 4 10 4 <12 10 10 6 4 8 24 6 <2	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500 9600 9600 12900 11500 12900 11100 5400 5400 7100 6700 6000 6100	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000 3900 8200 5900 7400 2900 5400 13000 4500 2700	\$\frac{15.6}{17.1}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	280 250 310 290 250 240 240 480 330 670 510 700 410 490 390 720 310 460 480 440 230 230 320 400 330
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231	NH001-1 NH001-2 NG002-1 NG002-2 NG003-1 NG003-2 NG004-1 NG004-2 NG005-1 NG006-2 NG006-1 NG007-2 NH008-1 NH008-2 NH009-1 NH009-2 NH010-1 NH011-2 NH011-2 NH011-2 NH012-1 NH012-2 NH013-1 NH013-2 NH014-1	ppb 10 <5 <5 <5 <5 54 15 10 20 5 10 <5 15 (30 20 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5 20 10 <5	ppb 18 30 16 16 12 14 18 16 80 16 12 46 24 38 14 18 8 18 <12 12 12 12 8 6 4 8 10 6	ppb 6 <2 6 6 10 <2 10 8 50 <2 <2 <2 <2 4 12 4 10 4 <12 10 10 6 4 8 24 6	5400 5400 4800 5600 4700 4800 5300 5200 1700 7900 11100 9100 8300 8500 9600 9600 11600 12900 11600 12900 11100 5400 5400 7100 6700 6000	5000 6900 1700 2800 2300 2400 2400 2800 8100 14000 4600 13000 4100 12000 3300 5400 4600 14000 3900 8200 5900 7400 2900 5400 13000 4500	15. 6 17. 1 14. 0 16. 2 15. 7 16. 5 15. 7 15. 3 17. 5 25. 1 16. 1 38. 0 24. 2 32. 0 19. 4 22. 7 14. 1 28. 4 13. 6 23. 1 16. 5 17. 2 12. 4 15. 1 17. 7 23. 1 16. 8	280 280 250 310 290 250 240 240 480 330 670 510 700 410 490 390 720 310 460 480 440 230 230 320 400 330

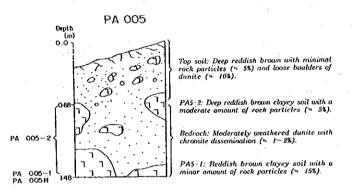
marı	wara area (Ar	ea b-1)						(5)
No.	Sample No.	Pt ppb	Pd ppb	Au ppb	Nì ppm	Cr ppii	Fe %	Co ppm
234	NH015-2	< 5	6	<2	3700	2900	12.5	230
235	NH016-1	<5	4	⟨2	4400	16000	16.4	360
236	NH016-2	<5	2	2	4500	7800	15.5	320
237	NG017-1	110	20	<4	4100	27000	17.2	430
238	NG017-2	75	10	<6	4000	34000	17.0	440
239	NGO18-1	40	<12	<12	10100	12000	17.7	290
240	NG018-2	40	20	16	9900	24000	21.3	390
241	NH019-1	15	.8	6	8000	5500	17.6	350
242	NH019-2	25	12	⟨2	8500	23000	31.0	600
243 244	NH020-1 NH020-2	15 20	<2 10	<2 4	7300 7800	25000	23.8	530
245	NH021-1	30	12	6	8400	21000 6900	25.7 17.7	480 310
246	NHO21-2	10	6	<2	7900	7900	18. 1	310
247	NH022-1	₹5	8	⟨2	8000	26000	31.0	600
248	NH022-2	5		6	8300	20000	28.4	560
249	NH023-1	<5	8 8	<Ž	7300	6900	19.8	370
250	NH023-2	<5	6	<2	10000	8500	24.8	450
251	NH024-1	<5	14	4	3100	1700	10.6	280
252	NH024-2	10	12	<2	3000	1500	10.7	220
253	NG025-1	20	14	14	4700	2900	18.9	310
254	NG025-2	<60	24	50	5400	4800	20.4	340
255	NG026-1	65	36	12	7400	2400	18.4	370
256	NG026-2	70	<12	<12	8400	2500	15.2	330
257	NG027-1	<30 <10	18	22	4400	1100	10.9	290
258 259	NGO27-2 NGO28-1	<10 <60	12 <24	8	5500 4200	1900 2600	12. 3 10. 2	260 186
260	NG028-2	<10	12	<24 8	5400	1900	10. 2	174
261	NG029-1	15	14	<2	7500	4700	20.5	280
262	NG029-2	10	18	4	7600	5500	21.9	290
263	NH030-1	10	6	⟨2	6900	3100	15.4	260
264	NH030-2	10	4	<2	7800	7300	18.9	340
265	NH031-1	15	6	<2	8200	4300	18.0	320
266	NH031-2	<5	8	<2	8500	6800	18.3	310
267	NH032-1	10	. <2	<2	5800	3800	15.8	260
268	NH032-2	15	16	<2	6400	9000	21.1	320
269	NH033-1	45	.8	10	4000	4600	11.8	220
270 271	NH033-2 NG034-1	1000	12	10	4900	6400	13.3	230
272	NG034-1 NG034-2	1600 220	3400 110	50 10	6400 6300	17000 6900	15, 5 16. 8	310 310
273	NG035-1	10	<2	<2	4300	2300	13.8	240
274	NG035-2	15	2	₹2	4700	2800	13.5	250
275	NG036-1	15	4	⟨2	4200	6500	10.4	165
276	NG036-2	20	$\overline{4}$	<2	4300	7400	10.5	163
277	NG037-1	10	6	4	7400	11000	17.6	280
278	NG037-2	20	10	- 10	6800	16000	18.8	290
279	NG038-1	30	12	<2	8900	14000	17.7	350
280	NG038-2	35	10	<2	9400	19000	18.7	360
281	NG039-1	10	4	6	6500	5400	17.6	230
282	NG039-2	10	4	<2	6300	9100	17.1	230
283 284	NG040-1	15	6	<2	5400	5700	18.3	240
285	NGO40-2 NHO41-1	20 15	8 6	16	5500	10000	16.3	300
286	NH041-1 NH041-2	20	4	<2 <2	7300 6800	5400 13000	14.0 18.1	200 310
287	NH042-1	15	4	<2	5300	4500	13. 1	260
288	NH042-2	<5	6	<2	6600	14000	18.8	400
289	NH043-1	40	4	₹2	6700	6100	14.4	250
290	NH043-2	30	4	₹2	7500	8500	18.4	310
291	NH044-1	55	8	<2	3700	6500	10.0	200
292	NH044-2	50	6	<2	5400	8200	12.6	210
293	NH045-1	85	8	<2	5700	13000	11.8	164
294	NII045-2	25	. 6	<2	6500	4700	11.4	172
295	NH046-1	5	2	<2	4300	11000	16.1	330

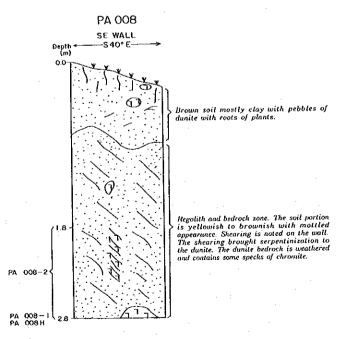


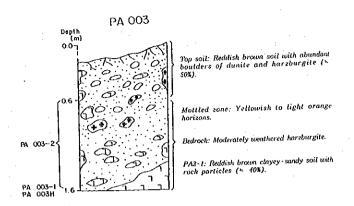

Appendix 8 Chemical analyses of test pit samples

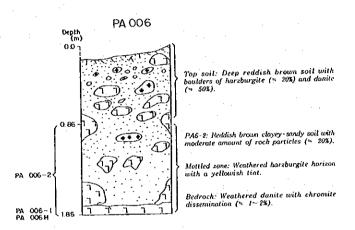

								(8)
No.	Sample No.	Pt ppb	Pd ppb	Au ppb	Ni ppm	Cr ppm	Fe %	Co ppm
296	NH046-2	15	4	<2	6000	15000	18. 1	380
297	NGO47-1	5 5	14	14	3400	3100	9.8	197
298 299	NGO47-2 NGO48-1	5 · ·	10 12	8 10	3700 5000	3900 2900	9.8 13.4	210 169
300	NG048-2	10	12	14	5700	4900	15. 2	240
301	NG049-1	10	14	14	5800	2100	13.9	230
302 303	NG049-2 NG050-1	<5 <5	10 8	16 10	7400 6000	2900 2500	19.0 16.9	290 260
304	NG050-1 NG050-2	10	6	6	5700	5600	16.9	250 250
305	NG051-1	<5	8	12	3800	3600	13.3	260
306	NG051-2	20	6	10	3700	4900	12.9	260
307 308	NG052-1 NG052-2	10 5	4 6	4 8	3800 4900	3400 3200	11.0 12.6	270 300
309	NG053-1	15	4	8	4400	1700	13. 2	290
310	NG053-2	10	10	8	5900	3600	15. 1	310
311	NG054-1	15	6	<4	3500	2500	12.9	230
312 313	NG054-2 NG055-1	<5 15	6 12	<4 16	3900 6400	3200 5600	13. 5 12. 1	230 330
314	NG055-2	20	12	12	6500	7000	13.7	270
315	NG056-1	25	16	16	8500	14000	17.7	350
316	NG056-2	15	10	<4	7000	19000	17.2	350
317 318	NG057-1 NG057-2	15 15	8 10	<4 2	8000 8600	7000 14000	16. 2 18. 3	300 340
319	NG057-2 NG058-1	10	4	<2	9500	8900	16.7	310
320	NG058-2	15	12	6	9000	16000	19.6	360
321	NG059-1	15	8	6	7400	3500	12.6	280
322	NG059-2	15	10	<2	7400	4400	14.1	270
323 324	NG060-1 NG060-2	15 15	-4 8	<2 <2	5800 4000	2500 1400	$\begin{array}{c} 11.2 \\ 9.9 \end{array}$	230 168
325	NG061-1	<5	12	8	3000	1000	7.2	105
326	NG061-2	<5	12	10	3100	900	8.2	101
327	NG062-1	10	16	14	2700	1800	7.8	180
328 329	NG062-2 NG063-1	15 10	18 10	8 6	1300 6100	1100 4800	3. 8 15. 4	51 300
330	NG063-2	<5	12	12	6300	4500	15.8	300
331	NG064-1	5	16	8	3500	1100	13.3	153
332	NG064-2	<5 10	12 12	8	4500 4700	1100 3500	16.2	210 240
333 334	NG065-1 NG065-2	10 10	12	10 8	4000	2900	14.4 14.3	220
335	NG066-1	10	10	. 8	5600	4000	13.9	260
336	NG066-2	10	10	8	5200	5000	15.0	230
337 338	NG067-1	15 15	10 10	4 8	5200 6100	38000 28000	18.4 19.9	460 430
339	NG067-2 NG068-1	10	16	14	8900	24000 24000	27.2	550
340	NG068-2	15	14	6	7100	32000	31.0	610
341	NG069-1	20	14	6	7400	3500	15.6	290
342	NG069-2	15	14	<2	6400	5100	17.7	320
343 344	NG070-1 NG070-2	25 20	18 16	<2 <2	8000 7700	6000 5700	21.0 17.8	260 320
345	NG071-1	5	10	<2	6500	4800	18.4	340
346	NG071-2	15	16	<2	4300	2600	13.3	200
347	NG072-1	5	4	<2	6600	4100	15.9	300
348 349	NG072-2 NH073-1	₹5 10	4 8	<2 2	7500 5300	4800 4900	14. 2 15. 4	310 240
350	NH073-2	5	8	6	4900	6500	14.9	220
351	NH074-1	10	<2	<2	4100	10000	8.5	113
352	NH074-2	. 5	4	6	4300	9900	11.5	200
353 354	NH075-1 NH075-2	10 10	10 14	<2 2	4300 4100	3900 9200	13. 3 11. 3	260 185
355	NH076-1	10	4:	4	2800	7400	7.7	166
356	NH076-2	10 10	6 6	<2 <2	4000	9200	12.1	230
357	NH077-1				6000	8000	18. 1	270

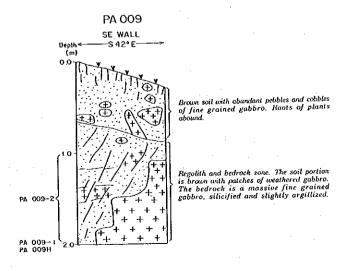

Appendix 8 Chemical analyses of test pit samples

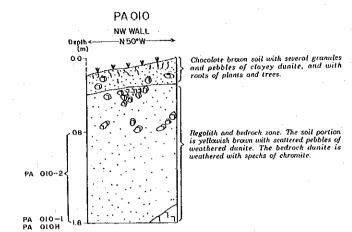

No.	Sample No.	Pt ppb	Pd ppb	. Au ppb	Ni ppm	Cr ppm	Fe %	Co ppm
 358	NH077-2	10	6		6500	11000	18.4	280
359	NH078-1	5	4	8	6500	5800	16.8	280
360	NH078-2	10	8	12	6100	6700	17.5	280 280
361	NH079-1	15	12	4	10000	17000	43.0	890
362	NH079-2	20	6	10	9700	20000	40.0	820
363	NH080-1	10	12	2	10300	19000	30.0	560
364	NH080-2	20	12	2	10300	32000	36.0	740
365	NH081-1	65	14	10	4600	17000	15.0	250
366	NH081-2	60	12	6	4800	29000	19.3	390
367	NH082-1	15	10	12	6800	19000	21.9	380
368	NH082-2	10	4	6	6300	24000	24.1	430
369	NH083-1	20	6	4	4500	5600	13.7	240
370	NH083-2	15	6	<2	5000	12000	16. 1	270
371	NH084-1	80	22	4	7900	21000	23.7	450
372	NH084-2	85	22	6	8200	21000	25.3	490
373	NH085-1	10	<2	<2	7600	2800	14.9	260
374	NH085-2	30	6	<2	6800	6200	15.7	250
375	NH086-1	75	12	<2	4700	17000	12.2	167
376	NI1086-2	70	12	<2	6100	12000	16.3	220
377	Ni1087-1	75	8	<2	6000	23000	18.4	360
378	NH087-2	60	8	<2	5600	14000	16.3	250
379	NH088-1	55	6	2	5700	5500	14.3	230
380	NH088-2	75	6	<2	6800	6800	15.1	240
381	NH089-1	√ 5	<2	2	3200	3400	10.3	220
382	NH089-2	<5 15	2	4	3500	4700	12.3	210
383	NH090-1	15 15	8	14	3800	6300	15.3	220
384	NH090-2	15	6	4	4900	10000	19.9	370
385 386	NH091-1	<5 10	4	6	8300	6500	17.7	360
აიი 387	NH091-2	10	6	6	8300 4500	10000 10000	24.9	460
388 388	NH092-1 NH092-2	5	8 2	10 10	5300	10000	17.6 16.4	260 250
389 389	NG093-1	10	8	<2	7200	15000	16. 4 16. 2	300
390	NG093-2	15	6	⟨2	6700	33000	22. 1	430
391	NG094-1	15	6	4	6300	6400	16. 9	250
392	NG094-2	20	8	⟨2	6200	21000	21.1	360
393	NG095-1	15	6	⟨2	6800	21000	18. 1	360
394	NG095-2	< 5	4	⟨2	7600	7200	15.6	290
395	NG096-1	₹5	6	⟨2	5400	8600	15.7	280
396	NG096-2	< 5	6	⟨2⟩	5400	7800	15.7	310
397	NG097-1	5	32	<2	7200	6800	17.3	410
398	NG097-2	5 5	12	<2	6600	7700	17.2	390
399	NG098-1	25	32	<2	4900	3200	13.4	230
400	NG098-2	95	58	<2	5000	5200	13.9	240
401	NG099-1	60	34	<2	4700	1900	11.6	220
402	NG099-2	65	26	<2 ⁻	4300	4000	11.1	200
403	NG100-1	1200	740	4	5700	4400	13.9	270
404	NG100-2	140	200	2	5600	19000	18.0	380



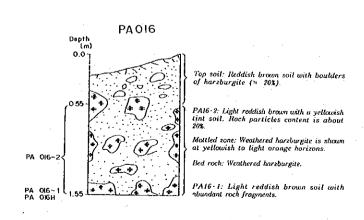


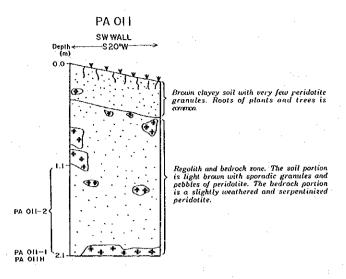


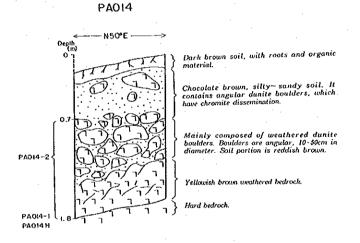


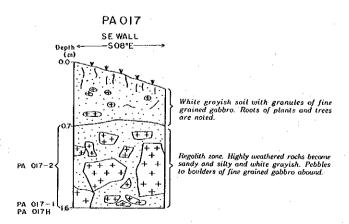


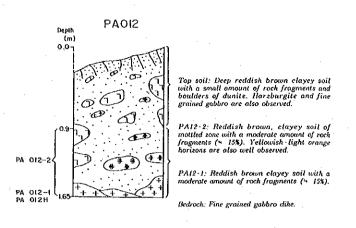

Appendix 9 Profile of test pits in the Pananlagan area

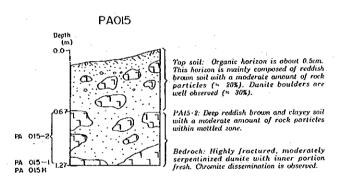


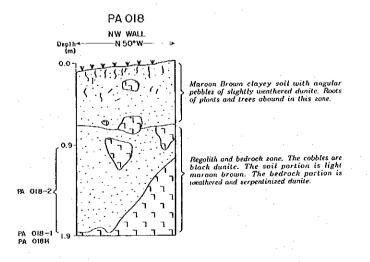


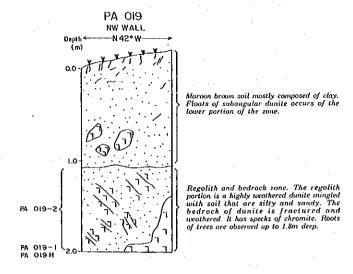


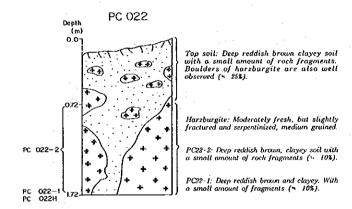


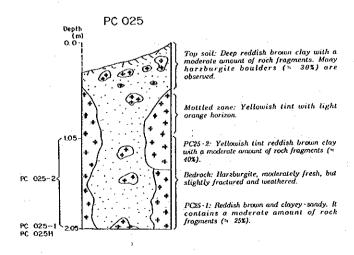


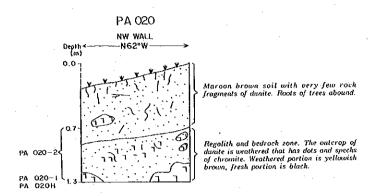


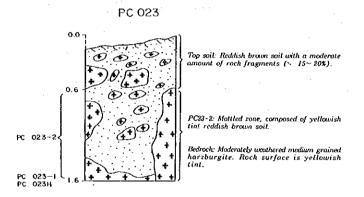


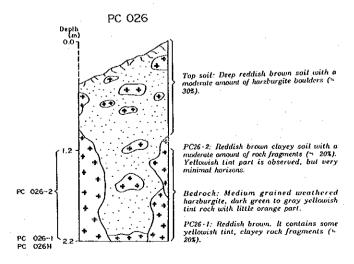


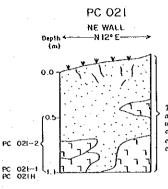

Appendix 9 Profile of test pits in the Pananlagan area

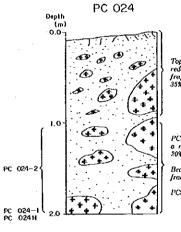




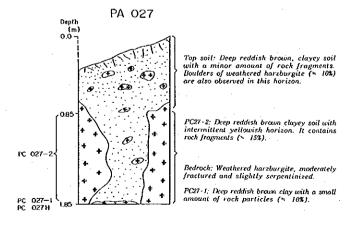


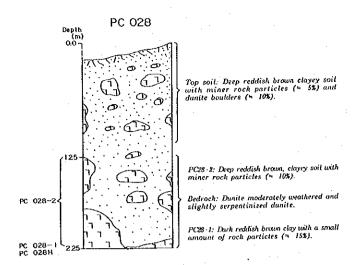


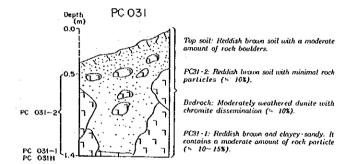


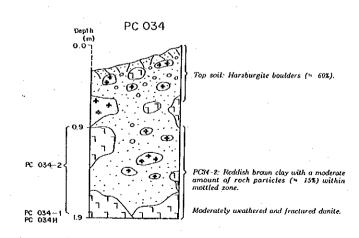


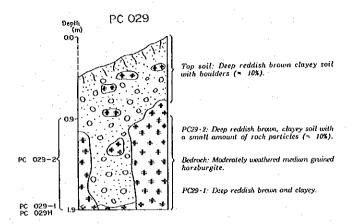
Appendix 9 Profile of test pits in the Pananlagan area

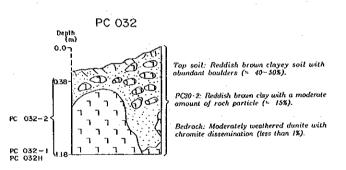

There is no distinct separation of top soil and regolith. The soil is brown and chyey with a few cobbles of dunite with speeks of chromite. Six pebbles to cobbles of massive chromite were recovered from this pit. The chromite floats are angular to sub-angular.

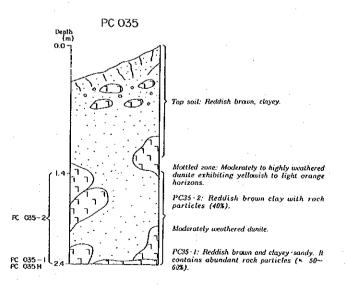


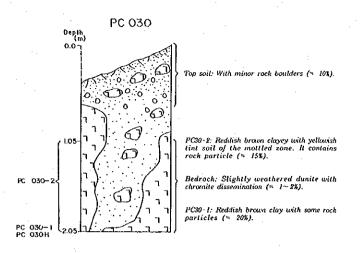

Top soil: Made up of clayey material, light reddish brown with a moderate amount of rock fragments. Boulders of harzburgite is about

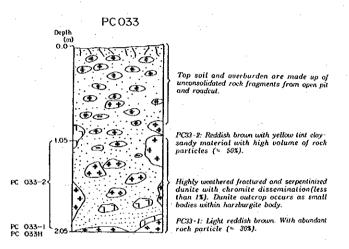

PC24-2: Light reddish brown clayey soil with a moderate amount of rock particles (= 20%).

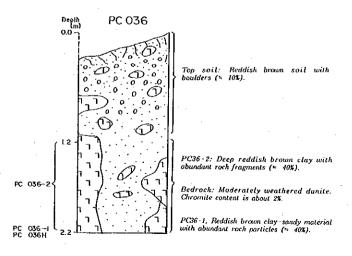

PCM-1: Reddish brown and clayey.

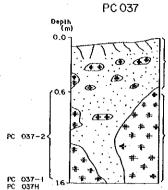




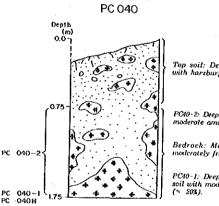








Appendix 9 Profile of test pits in the Pananlagan area

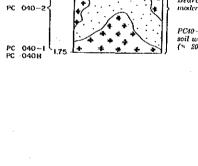


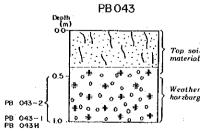
Top soil: Deep reddish brown clayey soi with a minor amount of rock particles (* 10%). Boulders of harzburgite are well observed (* 15%).

PC37-2: Deep reddish brown clayey soil with ninmal rock fragments (* 10%).

Bedrock: Medium grained slightly weathered harzburgite.

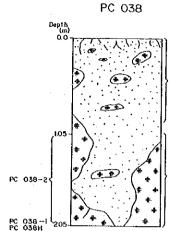
PC37-1: Deep reddish brown clayey soil wir rock particles (= 5~10%).




Top soil: Deep reddish brown clayey so with harzburgite boulders (* 20%).

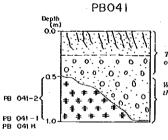
CAO-2: Deep reddish brown, clayey soil with noderate amount of rock particles (* 20%).

Bedrock: Medium grained harzburgite, moderately fractured and weathered.


PC40-1: Deep reddish brown, clayey-sand soil with moderate amount of rock particle (* 20%).

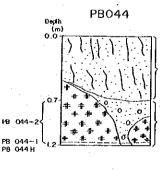
Top soil: Dark brown soil with organi materials.

Weathered dark greenish serpentinized harzburgite.



Top soil: Deep reddish brown clayey soil with a small amount of rock particles (* 5%). Boulders (* 10%) made up of weathered harzburgite.

PC38-2: Deep reddish brown clayey soil with i yellowish tint. The amount of rock barticles is about 20%. Weathered parsburgite boulders are along the 1 meter tretched (= 40~50%).


Bedrock: Harzburgite, medium grained, moderately weathered and slightly serpentinized.

PC38-1: Reddish brown clayey soil with moderate amount of rock particles (* 15%).

op soil: Brownish red soil, containing reanic materials.

Weathered and fractured harzburgite. It has thin clayey surface.

Top soil: Varies in thickness. Reddish brown soil, containing organic materials.

Weathered and serpentinized harzburgite. The water table has been reached at 1.2m deep.

Appendix 9 Profile of test pits in the Pananlagan area

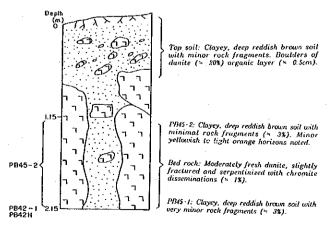
Depth (m) 0.0 Top soil: Deep reddish brown, clayey soil with weathered harzburgite boulders (~ 20%). Mottled zone: Deep reddish brown soil with a yeilowish tint horizons. Boulders (20% 15cm) of harzburgite are observed (~ 20%). PC39-2: Deep reddish brown, clayey-sandy soil with moderate amount of rock particles

PC 039

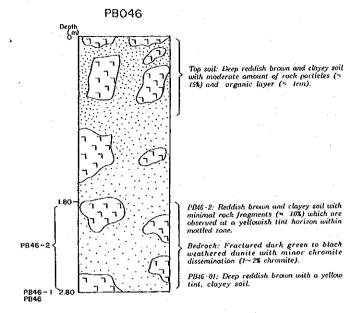
PC39-2: Deep reddish brown, clayey-sandy soil with moderate amount of rock particles (* 25%).

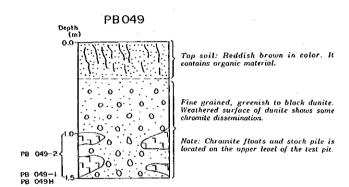
Bedrock: Medium grained deep green to groy slightly serpentinized harzburgite.

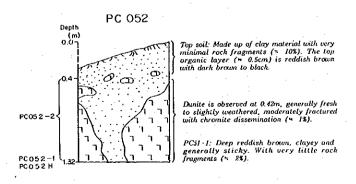
PC39-1: Beddish brown clayer sail with

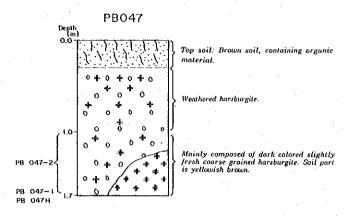

PC39-1: Reddish brown clayey soil with moderate amount of rock particles (* 30%).

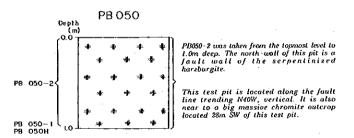
PB042

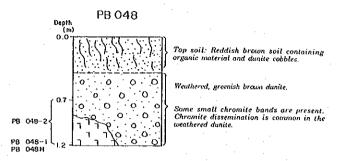

PC 039~2

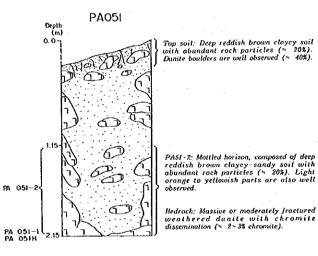


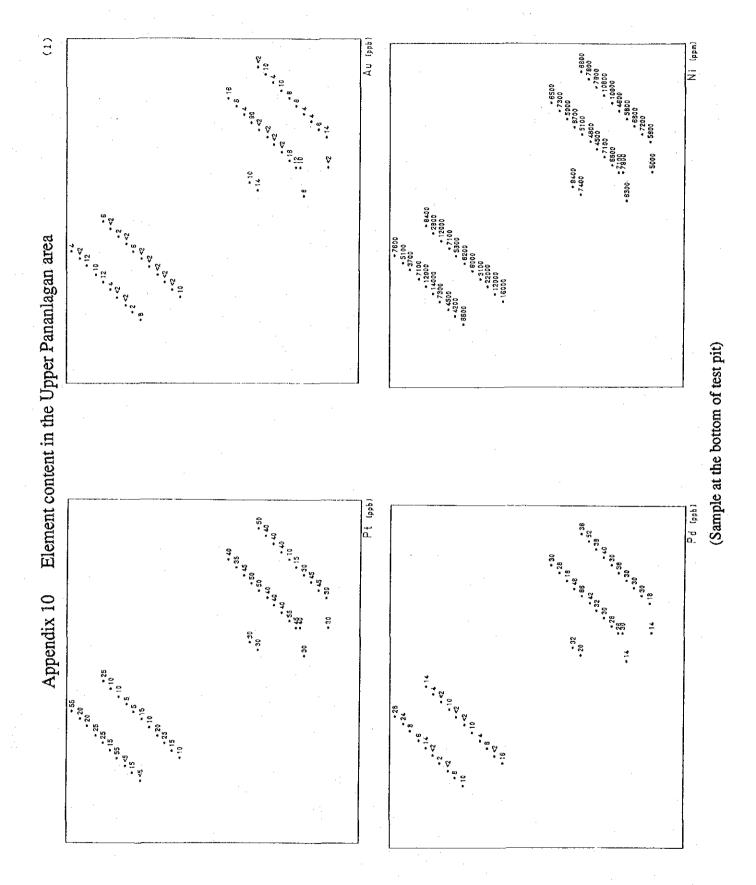

PB045

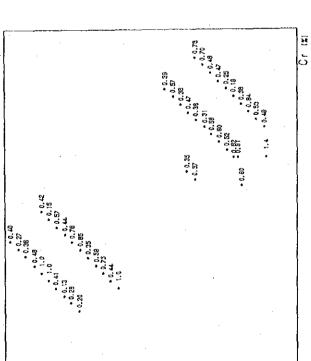


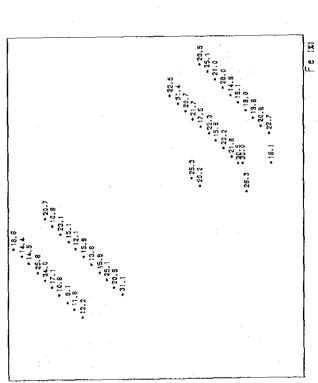

A - 27



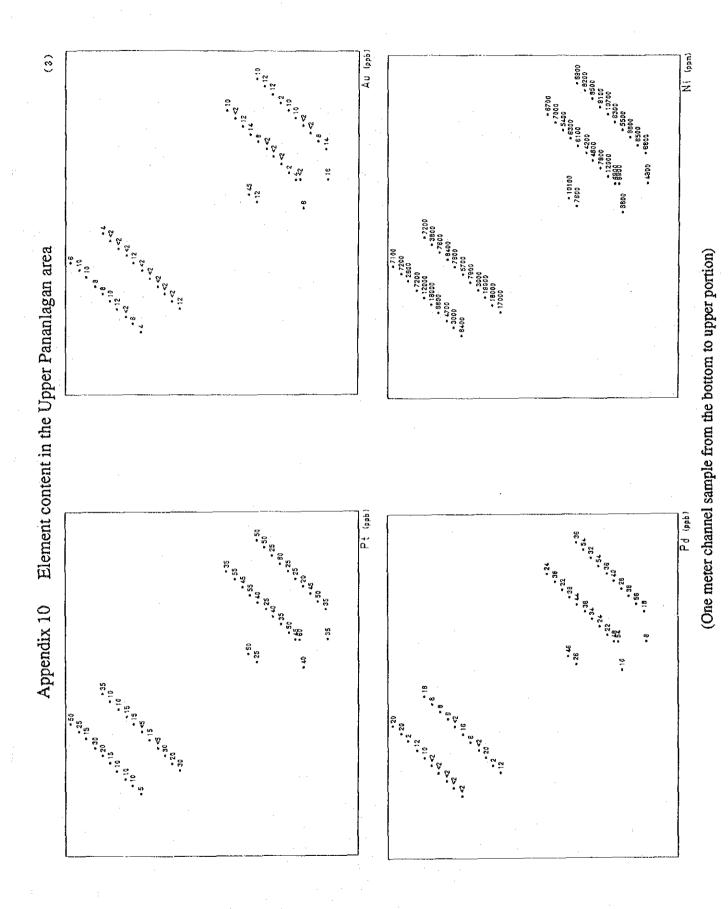


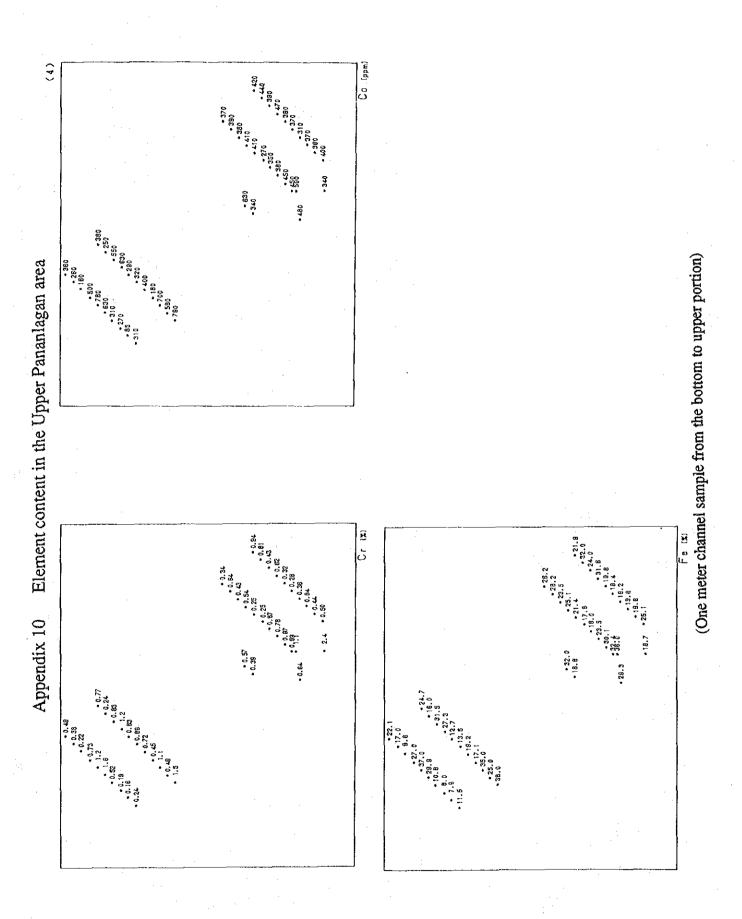


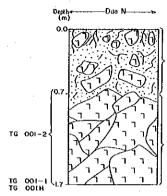




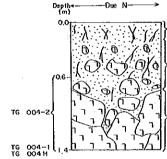
A-29


(3)




(Sample at the bottom of test pit)

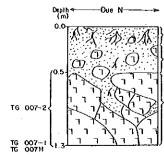
A-31



Dark reddish brown soil: Sandy and sitty, moist and toose soil, with an abundance of plant root. This layer contains pebbles and cobbles (32-250mm) of fresh to weathered dunite.

Bedrock: Fractured dunite. Fracture surface contains iron oxide and yellowish to brown soil. Soil is generally loose, moist, and sandy to silty.

TG 004

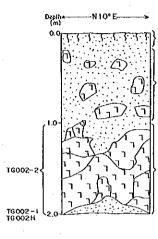


Dark reddish brown top soil: Sandy and silty, loose and moist soil containing a small amount of organic debris.

Gravelly section: Cobbles (64-250mm) of dunite are embedded in sandy to silty matrix. Matrix is reddish brown, moist and loose, and contains a small amount of plant roots.

Bedrock: Fractured dunite. Fractures are filled with ferruginous material and serpentinized soil. Soil is generally orange brown, moist, and sticky.

TG 007

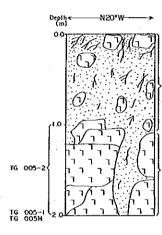


Dark reddish brown top soil: Sandy to silty dry and loose soil, with an abundance of plant root.

Gravelly section: Cobbles (130-250mm) of weathered or fresh dunite are embedded in gritty to sitty matrix. Soil is orange brown in color, generally loose and moist, and contains a few plant roots.

Bedrock consists of fractured dunite. Fracture surface contains iron oxide material. Soil portion is generally yellow ocher in color, moist and loose, contains a few roots.

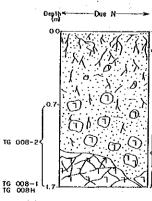
TG 002



Thin layer of reddish brown soil: Sandy to silty, loose and dry soil, rich in roots of plants.

Yellowish brown soil layer: Sandy and silty soil, with angular cobbles and boulders of dunits

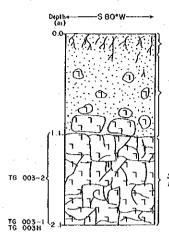
Bedrock: Moderately weathered, serpentinized, massive and hard dunite stained by iron or manganese. The bottom portion tends to break into small angular pieces. Fresh rock portion shows very little chromite dissemination.


TG 005

Gravelly section: Pebbles and cobbles (32-130mm) of dunite are embedded in sandy to silty matrix. Matrix is generally reddish brown, moist and loose, contains an abundance of root at the topmost layer and a minimal amount at the lower horizon.

Bedrock: Fractured and serpentinized dunite. Fracture surface contains reddish brown iron oxide, white magnesite, and serpentine fibers. Soit in the fractures is generally brain, loose and moist, and contains a small amount of plant roots.

TG 008

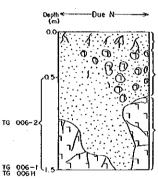

Reddish brown soil cover: Sandy to silty, moist and loose soil with an abundance of plant root.

Gravelly section: Angular to subrounded pebbles and cobbles (32-250mm) of weathered dunite are embedded in gritty to silty matrix. Soil is generally orange brown, moist and loose, contains a minimal amount of root.

Brown to erange brown saprolite: Weathered and highly fractured dunite. Fracture surface contains reddish to orange brown iron oxide.

Appendix 11 Profile of test pits in the Tagkawayan area

TG 003

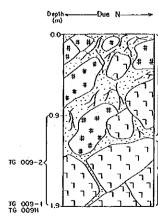


Dark reddish brown soil containing

Gravelly section: A minimal amount of cobbles and boulders (61-572mm) of weathered dunite are embedded in sandy to silty matrix. Matrix is generally reddish brown in color, loose and moist, and contains a few plant roots.

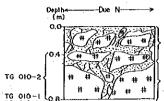
aprolite: Weathered and fractured dunite. Dunite is yellowish to orange brown.

TG 006



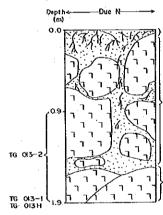
Reddish brown soil cover: Sandy to silty, moist and loose soil, with an abundance of

Gravelly section: Angular to subrounded pebbles and cobbles (32-130nm) of weathered dunite are embedded in sandy to silty matrix. Soil is generally yellow ocher in color, loose and moist, contains a few plant roots


Bedrock is composed of fractured dunite. Fracture surface contains iron oxide. Soil is generally orange brown, loose, moist, and sandy to silty.

TG 009

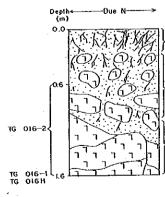
Gravelly section: Angular to subrounded cobbles and boulders (6-100cm) of durite and harzburgite are embedded in gritly to silty matrix. Matrix is generally dark reddish brown, moist and loose, and contains plant roots.


Bedrack consists of fractured dunite. Fracture surface contains reddish brown iron oxide. Soil is generally reddish brown, moist and loose.

Gravelly section: Angular cobbles and boulders (6-100xm) of weathered harzburgite are embedded in sandy to sitly matrix. Soil is generally orange brown, dry and loose, and contains a small amount of plant roots.

Bedrock consists of fractured harzburgite. Fracture surface contains iron oxide. Soil is orange brow, moist and loose.

TG 013

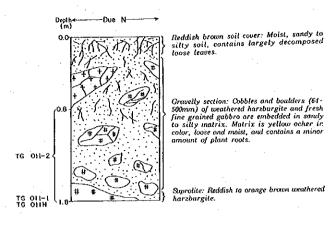


Dark reddish brown soil cover: Sandy and silty, loose and dry soil, with an abundance of roots.

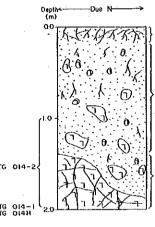
Gravelly section: Angular to subrounded cobbies and boulders (6-100cm) of dunite are embedded in sandy to silty matrix. Soil is orange brown, moist and loose, and contains a small amount of plant roots.

Bedrock: Fractured dunite. Fracture surfa

TG 016



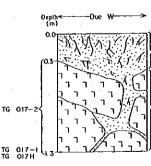
Dark reddish brown soil cover: Sandy to sitty, moist and toose soil, with an abundance of roots.


Gravelly section: Angular to subrounded pebbles and cobbles (32-130mm) moderately weathered dunite are embedded in sandy to silly matrix. Matrix is orange brown and contains a small amount of plant roots.

Bedrock: Fractured dunite. Fracture surface contains iron oxide. Soil filling fracture is yellowish brown, moist, loose, and sandy to silly.

TG OII

TG 014

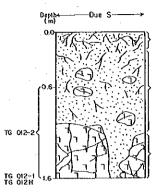


Dark reddish brown top soil: Sandy to sitty, dry and loose soil, with an abundance of root.

Gravelly section: Angular to subrounded pebbles and cobbles (15-130nm) of weathered dunite are embedded in gritty to sitty matrix. Soil is reddish brown, loose and moist. A small amount of plant roots is still present in soil.

Saprolite: Weathered and intensely fractured dunite. Saprolite is generally brown in color.

TG 017

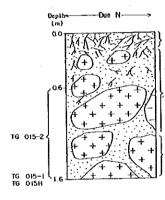


Reddish brown soil cover: Sandy to silty, noist and loose soil, with an abundance of

Bedrock is composed of fractured dunite. Fracture surface contains ferruginous material. Soil is generally orange brown, moist and loose.

Appendix 11 Profile of test pits in the Tagkawayan area

TG 012

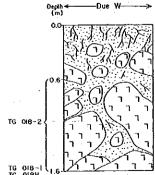


Dark reddish brown top soil: Sandy to sill moist and loose soil, with an abundance

Gravelly section: Cobbles (64-250mm) of weathered dunite are embedded in sandy to silty matrix. Matrix is yellowish brown, moist and loose, and contains a minimal amount of plant roots.

prolite: Weathered and fractured dunite.

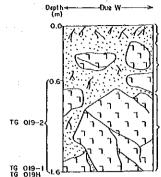
TG 015



Dark reddish brown top soil: Sandy to silt loose and moist soil, with an abundance of root

Gravelly section: Angular to subrounded cobbles and boulders (6-100cm) of fine grained gabbro are embedded to sandy to silty matrix. Matrix is reddish brown, lose and moist. A small amount of plant roots is still present.

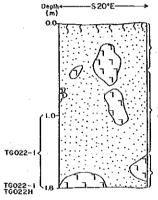
Bedrack consists of fine grained gabbro. Fracture surface contains reddish brown iron oxide. Soil filling fracture is generally reddish brown, sandy to silty, loose and moist.


TG - 018

Reddish brown top soil: Sandy to silty, loose and dry soil, with an abundance of plant roots.

Gravelly section: Subrounded cobbles (250-64mm) of dunite are embedded in sandy to sitly matrix. Soil is orange brown, moist, and loose, and contains a small amount of plant roots.

Dunite bedrock: Weathered surface contains iron exide. Soil filling fractures is yellowish brown, sandy to silty, moist, and loose.

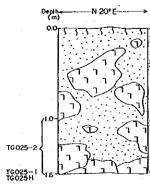


Reddish brown top soil: Sandy to silty moist and loose soil, with a moderate amount of plant roots

Gravelly section: Angular to subrounded cobbles (250-61mm) of dunite are embedded in sandy to silty matrix. Matrix is generally brown in color, loose and moist.

Bedroch is composed of fractured dunite. Fracture surface contains iron oxide. Soil is brown in color, generally moist and loose, sandy to silty.

TG 022

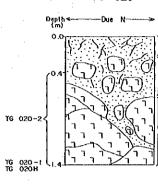


Reddish brown, sandy and silly, very moist soil, rich in root.

Cobbles (20-40cm) are found in a yellowish

Bedrock: Moderately to highly weathered dunite, stained by iron or manganese material. Bedrock contains very little chromite.

TG 025

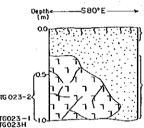


Reddish brown, sandy and silty soil, rich ir roots of plants.

Gravelly section: Cobbles and boulders (30-10cm) of weathered dunite are embedded in yellowish brown soil. Soil is sandy and silty.

Bedrock: Moderate to highly weathered, massive and hard dunite. It contains very few spots of chromite.

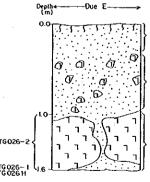
TG 020



Reddish brown soil cover: Critty to silty, dry and loose soil containing a small amount of plant roots.

Gravelty section: Subrounded cobbles (64-130mm) of moderately weathered dunite are embedded in gritty to sitty matrix. Matrix is orange brown, moist and loose.

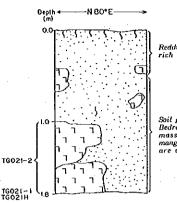
Bedrock is composed of fractured dunite. Fracture surface contains iron oxide. Soil is generally yellowish brown, moist and loose, sandy to silty.


TG 023

Top soil: Reddish brown, sandy, loose an

Highly weathered, serpentinized, fractured and jointed, oxidized dunite. Chromite spots are visible about 3%.

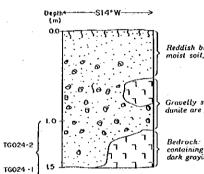
TG 026


Reddish brown, sandy to clayey soit, rich in

Gravel section: Angular to subangular obbles of highly weathered dunite are found n yellowish brown soil.

Bedrock: Weathered and fractured dunite stained by iron or manganese material in sandy and clayey matrix. Fractured surfaces are dark grayish in color.

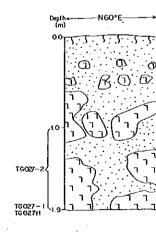
Appendix 11 Profile of test pits in the Tagkawayan area


TG 021

Reddish brown, clayey and very moist soil, rich in plant roots.

Soil portion is yellowish brown and clayey. Bedroch is weathered, fractured, hard and massive dunite stained by ferruginous or manganess material. A few spots of chromite are visible.

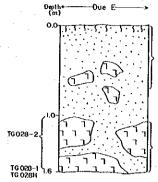
TG 024



Reddish brown, sandy and clayey, highly moist soil, rich in roots of plants.

Gravelly section: Cobbles and pebbles of dunite are found in a yellowish brown soil.

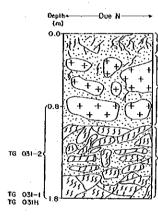
Bedrock: Moderately weathered dunite, containing little chromtie. Fresh portion is dark grayish, hard and massive.


TG 027

Reddish brown, sandy and silly, loose and dry soil, with an abundance of root. Angular to subangular weathered dunite fragments nee loyed in soil at 40 Mem deen

Yellowish brown soil, with weathered dunit boulders

Bedrock: Moderately to highly weathered dunite, containing about 3% chromite dissemination.

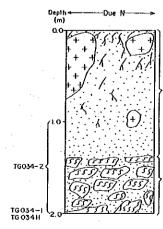


Reddish brown, sandy and silty soil, rich is

Boulders of highly weathered dunite are found in yellowish brown soil at 40-70cm

Bedrock: Weathered dunite. Fresh portion of the rocks is dark grayish and stained by iron or manganese material. Chromite dissemination is noted in rocks and soil.

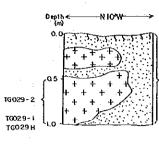
TG 031



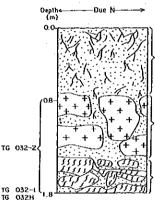
Dark reddish brown soil cover: Sandy to silty, dry and loose soil, with an abundance of roots.

Gravelly section: Angular and subrounded boulders (25-100cm) of weathered fine grained gabbro are embedded in gritty to silly matrix. Weathered surfaces of boulders contain reddish brown iron oxide. Soil is generally dark reddish brown, moist and loose, and contains a small amount of roots.

Saprolite: Fractured, weathered serpentinite. Soit is generally dark greenish gray, moist and loose.


TG 034

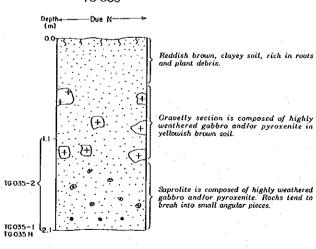
Gravelly section: Some cobbles and a few boulders of fine grained gabbro are embedded in reddish brown sandy to sitty matrix. Matrix is moist and bose, contains an abundance of plant roots at the top while lesser at the lower part.


Gravelly section: Cobbles (64-500mm) of weathered serpentinite are embedded in gritly to silty matrix. Matrix is generally greenish gray, moist and loose.

TG 029

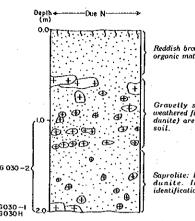
Reddish brown, sandy and sitty soil, with a few big boulders of fine grained gabbro (about 10cm in diameter). Cabbro is massive and hard, probably derives from a dike.

TG 032



Dark reddish brown, gritty to silty, moist and loose soil, with an abundance of plant roots.

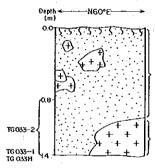
Gravelly section: Cobbles and boulders (6-100cm) of fine grained gabbro are embedded in gritty to silty matrix. Matrix is generally reddish brown, moist and loose, and contains a small amount of plant roots.


Gravelly section: Cobbles and boulders (6-100cm) of serpentinite are embedded in gritly to sitly matrix. Matrix is generally greenish gray, moist and loose.

TG 035

Appendix 11 Profile of test pits in the Tagkawayan area

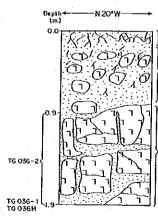
TG 030



Reddish brown, sandy and silty soil, rich in organic material.

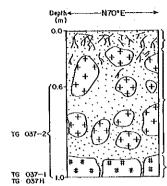
Gravelly section: Small fragments of weathered fine grained gabbro for probably dunite) are embedded in yellowish brown enil

Saprolite: Intensely weathered gabbro or dunite. Intense weathering makes identification very hard.


TG 033

Reddish brown, clayey soil, with an abundance of plant debris and a few fine grained gabbro fragments that derives probably from a dihe.

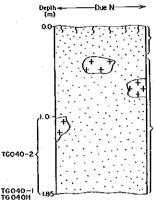
Highly weathered gabbro in sandy and silty yellowish brown soil.


TG 036

Reddish brown top soil: Sandy to silt; moist and loose soil, with an abundance root.

Gravelly section: Rounded to subrounded cobbles of weathered dunite are embedded in gritly to silty matrix. Matrix is orange brown, moist and roots, contains few plant roots.

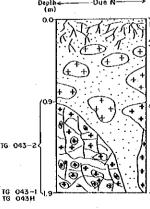
Saprolite section: Yellow ocher highly fractured, weathered dunite. Soil is generally yellowish brown, moist and loose.



Vandyke brown soil cover: Sandy to sill loose and dry soil, with an abundance roots

Gravelly section: Rounded to subrounded cobbles (64-500mm) of fine grained gabbro are embedded in gritty to sitty matrix. Matrix is generally reddish broun, loose and moist, and contains a few plant roots.

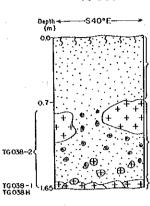
Saprolite: Weathered harzburgite. Fracture is filled with yellowish brown soil, and fracture surfaces contain iron oxide.


TG 040

Reddish brown, clayey to sandy soil, rich in roots of plants.

This layer is composed of about 70% soil material and 30% rock fragments. Soil is yellawish brown, sandy and silly. Fragments are composed of moderately weathered fine grained gabbro.

TG 043

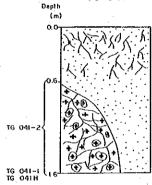


Reddish brown top soil: Sandy to silly, moist and loose soil, with an abundance of

Gravelly section: Cobbles and boulders (64-500mm) of fine grained gabbro and harburgite are embedded in pebbly to silty matrix. Matrix is generally reddish brown, and silty part moist and loose.

Saprolite: Spheroidal weathering is found in highly fractured serpentinized harzburgite. Fracture surfaces contain yellowish to orange brown iron oxide.

TG 038

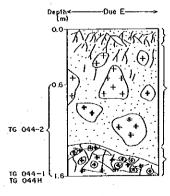


Reddish brown clayey soil, rich in roots of

Gravel section is composed of angular to wbangular fragments of weathered fine rained gabbro stained by iron or manganese naterial, and sandy to silty matrix.

foderately to highly weathered fine grained abbro, tending to break into small angular

TG 041

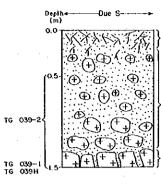


Dark reddish brown, sandy to silty, dry and loose soil, with an abundance of plant

Reddish brown, gritty to silty, moist and loose soil, with few plant roots.

Saprolite: Spheroidally weathered to intensely weathered serpentinized harzburgite. Fracture surfaces contain reddish to orange brown iron oxide.

TG 044

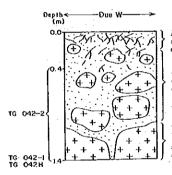

Dark reddish brown, sandy to silty, moist

iravelly section: Cobbles and boulders (64 Obmin) of weathered harzburgite and fin rained gabbro are embadded in pebbly tilty matrix. Matrix is loose and moist range brown soil at the top and brown a be bottom.

Saprolite: Spheroidally weathered, high fractured serpentinized harzburgite. saprolite is generally greenish gray. Fracture network is filled with blach material.

Appendix 11 Profile of test pits in the Tagkawayan area

TG 039

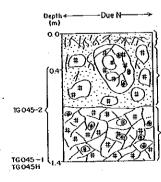


Reddish brown soil: Sandy to silty, mois and loose soil, with an abundance of plan remains

Gravelly section: Angular to subrounded cobbles (61-180mm) of weathered and/or fresh fine grained gabbro are embedded in gritty to sitly matrix. Matrix is generally orange brown, contains a few plant roots.

Bedrock: Fractured fine grained gabbro. Fracture surfaces contains reddish brown iron oxide.

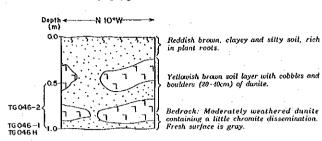
TG 042

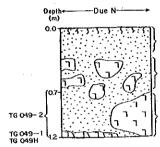


Dark reddish brown soil cover: Sandy to silty, moist and loose soil, with an abundance of roots.

Gravelly section: Angular to subrounded cobbles and boulders (61-500nm) of weathered to Iresh fine grained gabbro are embedded in gritly to sitly matrix. Matrix is generally reddish brown, moist and loose.

Bedroch consists of fine grained gabbro. Fracture and bedroch surface are stained by yellow brown iron oxide. Yellowish brown soil fills fracture, and is moist and sticky.

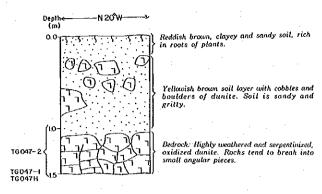

TG 045


Dark reddish brown, sandy to silly, moi

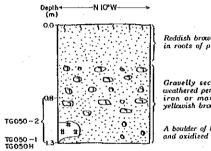
Gravetly section: Cobbles and boulders (6-100cm) of weathered hardwighte are embedded in pebbly to silty matrix. Spheroidal weathering is seen on the boulders.

Saprolite is mainly composed of weathered harzburgite. Matrix is generally brown. Network of fractures contains black material.

TG 049



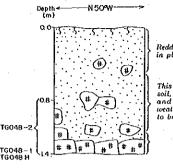
Reddish brown soil, rich in roots and plant


Gravel section is composed of cobbles and soulders of dunite in a yellowish brown soil. Soil is sandy and gritty.

Bedrock: Moderately to highly weathered, oxidized and serpentinized dunite, with a few chromite spots.

TG 047

TG 050

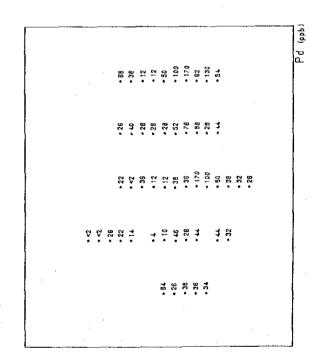


Reddish brown, clayey and sandy soil, rich in roots of plants.

Gravelly section is composed of highly weathered peridotite (dunite?) stained by iron or manganese material. Soil is yellowish brown, sandy and silly.

A boulder of highly weathered, serpentinize and oxidized peridotite.

TG 048


Reddish brown, clayey and sandy soil, rich in plant roots.

This portion is composed of yellowish brown soil, mainly sandy and some gritty portion, and cobbles and boulders of highly weathered, oxidized peridotte. Rocks tend to break into small angular pieces.

3												÷							
					•	٠	23.	2.	•	• 28	- 10	ŧ	71.	Ç					
					?	7.	9	7.	Đ	7.	- 14	. 8	٧	Ø					
		÷			• 42	9.	4	ю •	.5	9.	٥.	• 12	÷	21.	Φ.	- 12	*1.	•	
33 4		• •2	' :	9•	ç	w •		2	?	. 54	•	• <2		.	7.				
									٧	7.	2.	. 12	9						
0																			
							-	-								-			
					• 110	• 20		. 35	08+	08•	022.	- 35	• 120	• 70					

	-										•				_			
				* 5800	• 3200	- 3000	. 8800	- 6600	-3400	- 3400	+ 5000	• 5100	• 7800				i	
				• 8500	-7500	- 8700	- 8400	- 6800	• 7400	- 1900	- 4300	- 5400	• 5100					
				- 5300	- 6700	• 6800	-7400	- 6600	- 8200	5300	• 5300	27	• 2300	- 3900	0064 -	• 5500		
	- 3700	• 5500	• 4700	- 3800	• 5800		• 8300	• 6800	-8200	- 8000	• 4800		4 3900	- 1800				
								• +300	- 5800	- 6000	. 5000	• 5100						

	.	,			_				_			_				 	7
			• 110	• 20		• 35	• 80	. 80	- 220	• 35	120	• 70					4
			- 10	07.	• 25	04.	• 25	• 75	9/-	07.	- 25	• 30	-				
			• 20	• 15	. 50	96.	07.	85 •	33	• 180	- 150	• 80	• 35	• 30	. 40		
	Š	• 20	• 15	• 25		• 25	- 20	07.	- 20	• 30		• 30	• 25				
·							\$7.	u)	• 35	• 25	• 30						

(2)							 F. S		9		~	,				-,				
						•		20	87	- 360	- 10 5	.154	• 280	• 350	- 510	:				
		:				• 310	57.	470	078 -	• 360	0177	• 380	• 270	• 330	-340					
						• 0.0	. 710	• 620	- 830	077.	• B20	. 380	• 330	350	• 280	.380	3 50	- 208		
area		•		7.7.	200	- 280	.350	•	• 340	• 350	. 360	• 310	• 310		- 360	- 290				
Element content in the Tagkawayan area			-							* 220								_	-	
o juar																				
									~~~										 	
Appendix 12 Element c						96	0.08	2.0.	.0.27	• 0.41	- 0.55	- 0.33	.0.0	.0.31	• 0.26			•		

•										_						 	
			• 0.39	• 0.08	.0.23	.0.27	17.0	• 0.55	. 0.33	.0.47	.0.3	• 0.28					
			• 0.20	. 1.2	0.58	.0.53	- 0.20	- 0.44	- 0.41	0.22	• 0.06	+0.14					.
		1	• 0.45	• 0.55	• 0.28	. 0.22	• 0.33	• 0.B8	+0.34	• 0.29	• 0.26	+0.24	- 0.32	• 0.89	• 0.59		
• 0.27	• 0.83	- 0.17	• 0.26	77.0		- 0.34	-0.37	- 0.23	- 0.26	- 0.18		• 0.73	0.81				
							+ 0.21	- 0.20	09.0	. 0.43	• 0.48						

				:	_				•								
			18.8	- 16.2	14.8	19.7	* 21. B	B.1	16.5	. B. B	18	18.2					
			141.	•31,0	-21.8	• 22.7	* 18.5	• 20,0	- 22.2	• 17.0	- 17.4	• 15.0					
			• 18.8	- 17.2	-18.6	• 17.9	- 20.8	32.0	-17.8	• 15.0	18.1	• 15.1	• 24.4	• 18.7	.18.0		
• 12.8	- 20.7	- 17.1	• 11.1	• 17.8		• 15.B	• 15.5	• 16.7	• 15.8	. 17. 3		21.0	18.7				
							-15.7	- 14.2	.14.2	• 15,3	*18.7						



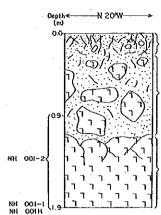
						Au (ppb)											~~		
	<u>ن</u> ۷	2 2 2 2	71.	<u> </u>		<1		-		00.45	- 3400	• 2890	• 6200	3800	5200	- 6300			İ
	\$ 4	7 · · · · · · · · · · · · · · · · · · ·	# <u>;</u> ,	<b>.</b>						61.00	- 6500	2000	• 5100	5100	- 4800	• 5200			
·	¥ ~ .	1 10 1 1		0 + 1 0 2 4 5 8 4 5 8 5 8 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	•		* *			. 5200	- 12000	- 7100	. 6800	- 3800	. 5500	- 5400	- 3800	. 2400	
	2 2 2 2 4		\$ \$	6.6					. 5600	9800	- 5700	- 6500	• 8100 • 8700	- 5800	• 5500	00BE -	• 4303		
		* *	o ; o										- 3400	. 8400	• 5500			.:	
						, (ppb)													
	. 120	00 · 00 · 00 · 00 · 00 · 00 · 00 · 00	* 200 ·			Pt (ppb)				CI III	16.	87.	00 •	180	. 56	• B¢		_	
	·	. 50 . 95 . 50 . 95 . 50 . 95 . 70 . 170				Pt (ppb)					-24 -34								
	0.00			မှ ဗ •		P ( (ppb)				22		205	ç, ç,	• 78	; <del>,</del>	. 42	96 °	001.	
	0.00	980	.30 .75 .190 .50 .120 .35	မှ ဗ •		P ( (pp)			B • • •	22	• 52 • 54	05.	- 30 - 42	• 78	180 . 72	. 42		05:	

(One meter channel sample from the bottom to upper portion)

A-41



• 0.34 • 0.23 • 0.38 • 0.45 . 0.32 . 0.43 . 0.32


0.25

.1.1

			-23.0	• 17.5	<del>* *   •   •   •   •   •   •   •   •   • </del>	. 23.4	• 28.6	18,4	- 17.B.	18.4	- 23. 1	.32.0				
			- 15.8	.32.0	- 32.3	30.1	• 18.2	- 28.0	.24.8	- 26.7	- 22.7	• 16.4				
			- 20	• 17.0	• 26.8	• 21.7	• 25. B	• 32.6	- 15.2	16.0	- 20.4	- 18.B	24. B	• 17.7	• 13.5	
*14.8	-21.5	• 13.6	9.11.	• 17.7		16.4	• 17.B	• 17.1	+ 15.4	• 18.8	٠	• 20.8	• 21.3			
							- J.	• 14.1	13.5	• 16, B	18.7					

(One meter channel sample from the bottom to upper portion)

### NH 001



Reddish-brown soil: Generally gritty to silty, dry and loose soil with cobbles and abundant plant.

abundant plant.
Gravelty section: Soit is loose and moist, fairly easy to disintegrate. Large cobbles and small boulders (13cm~ 270cm) of weathered seppentinized dunite are found in a sandy to sitly matrix. Soit material ranges from reddish brown at the top and yellowish brown at the bottom of the profile. A small amount of plant roots are still present. Chromite dissemination is also found in the soit.

Saprolite zone: Highly weathered, fractured and serpentinized dunite with a minor amount of chromite (£ 5%). Fractured surface contains iron oxide that turn the weathered rock to distinct reddish brown.

## NG 004 Depth Due E 0.0 0.0 NG004-2 NG004-1 NG004-1 NG004-1

Dark brown, dry and loose soil with abundant roots and plants debris and a small amount of rock debris.

Yellowish brown, generally loose and easy disintegrated soil with highly weathered dunite boulders, which surface is distinct durh gray due to intense serpentinization. Bedroch was not found due to a big boulder at the bottom.

# NG007-2 NG007-1 NG007H

NG 007

Layer of dark reddish brown sandy and silty soil with cobbles (15-20cm) of slightly weathered and serpentinized dunite. Roots and plants debris is abundant in soil.

Highly weathered massive dunite undergone intense serpentinization is at the bottom. Light brown soil has some spots of chromite.

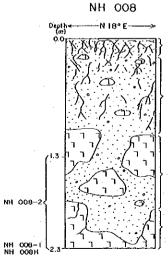
### epih Due N

NG002-2

NG 002

Dark brown, dry and sandy to silty soil, containing rock fragments of dunite.

This horizon exhibits the change of color from dark brown to yellowish brown, and contains boulders of weathered and serpentinized dunite. Roots and plant debris are still present.


Saprolite: Moderately to highly weathcred dunite, notably serpentinized. Spots of chromite are present.

### NGO05-2 NGO05-1 NGO05H

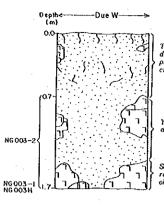
NG 005

Dark brown, sandy and silty, relatively dry and easy disintegrated soil with abundant plant and organic debris and occasional dunite floats.

Yellowish brown soil and rocks. Dunite is relatively massive, moderately weathered and serpent inized. It disintegrates into anyular rock fragments, and is hard to break down. Spots of 2-5% chromite were observed in rock and sandy soil.



Dark reddish brown top soil: Cenerally sandy to silty, moist and loose soil. It contains abundant organic materials.

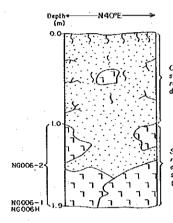

Reddish brown sandy soil with occasional subrounded, brown colored, cobbles pebbles of weathered dunite. Chromite grain (± 5%) were also noted in the weathered rock fragments. Sail is loose and moist, resulting in a generally crumbly and porous texture, and contains minimal amount of plant roots and chromite sand.

Gravelly section: Small cobbles and small boulders (64~ 500mm) of brown weathered angular to subrounded dunite with chromite disseminations (± 34) embedded in a sandy to sitly matrix. Soil is yellowish brown, generally loose and moist, fairly easy to disintegrated. It contains chromite sands.

Saprolite horizon: Weathered and fractured dunite which contains iron oxide. Ferruginous sections appear as red brown to light yellowish brown streaks or lenses. Cenerally saprolite zone contains ± 5% chromite.

### Appendix 13 Profile of test pits in the Mariwara area

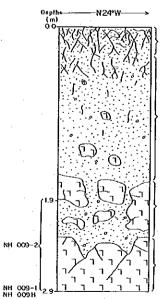
### NG 003




Thick section of dark brown suil probably due in part to decay of roots and other plant debris. The soil is sandy to silty and clayey in portion.

Yellowish brown soil with highly weathered and serpentinized dunite boulders.

Saprolite: Weathered bedrock of dunite. A relatively massive portion of dunite is also observed.


### NG 006



Composed of dark reddish brown sandy to sitty material and cobbles (6~8cm) of relatively weathered dunite. Roots and plant debris are abundant in the soil.

Saprolite: Highly serpentinized, weathered, relatively massive, jointed and fractured dunite. Fractured surface is generally stained with iron oxide. Spots of chromite (± 5%) are present in the rock.

### NH 009



Dark reddish brown soil top: Sandy to silly, dry and loose soil with abundant plant roots.

Generally the soil is loose and moist, and the color of soil changes reddish brown at the top of the section down to yellowish brown at the bottom. A small amount of plant roots still present in the whole section. Chromite grain (± 1%) also present in the soil. Occasionally dunite pebbles and cobbles with ± 5% chromite are embedded in a sandy to silty matrix.

Gravelty layer: It consists of angular boulders and cobbles of weathered dunite with ± 5% chromite, and sandy to silty matrix. The matrix also contains a varying amount of chromite (± 1%). The soil is yellowish brown and moist.

Saprolite: It consists of fractured, weathered and serpentinized dunite. The fractured surface contains reddish brown ferruginous material which makes the saprolite zone a reddish brown color. This zone contains about \$5\$ chromite.