5.3 Discussion and Decision

Discussion for JICA's proposal between JICA Team and Indonesian Government was made in March, 1991 and some changes were made as follows.

(1) Central Java

4 (four) among 16 IKKs proposed by JICA team were deleted and another 2 (two) IKKs were additioned instead.

Main reasons were the balance of numbers of High Priority IKKs among Kabupaten and Provinces and the difficulty to get the water.

(2) East Java

3 (three) IKKs among 10 IKKs proposed by JICA team were deleted and 5 (five) IKKs were additioned instead by the same reasons as in Central Java.

(3) Bali

4 (four) IKKs proposed by JICA team were accepted without change.

Selection of High Priority IKKs, including identification and discussion results, is summarized in Table 5.2.

High Priority IKKs finally decided (14 IKKs in Central Java, 12 IKKs in East Java and 4 IKKs in Bali) are shown in Table 5.3 and Fig. 5.3.

Table 5.2 Summary of Identification of High Priority IKKs

*

•

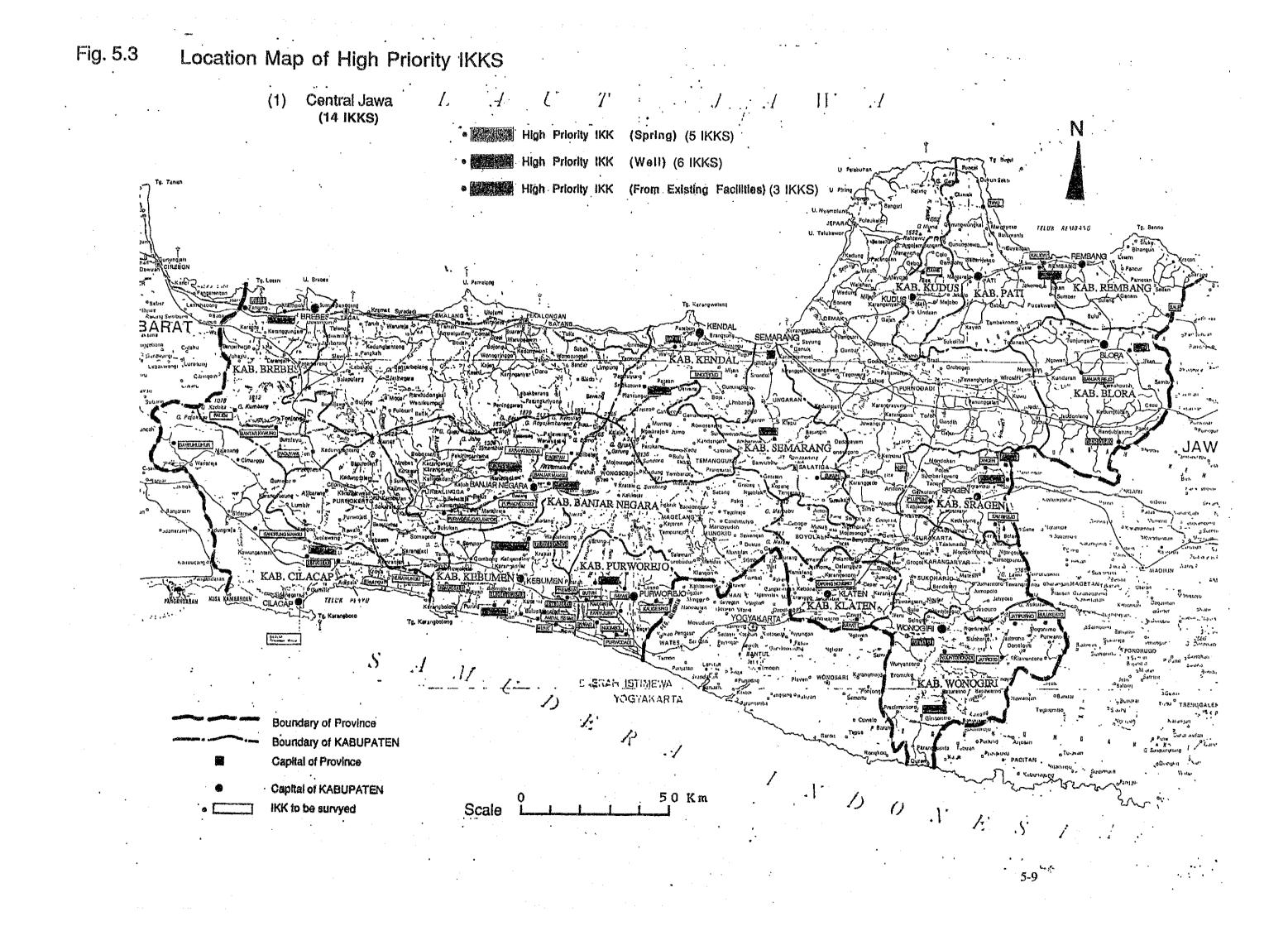
	-	1		\$ • • • • • • • • • • • •		Television mart					000000000000000000000000000000000000000		*AX-DARAMA		Part Colorado da	and the second second		•			The state of the	****																					
Priority KKs	, 	0			-	0			-7	0	•	N MA (Inclusioned and		ò	0			• (С	0		0	0		Ö			0	Q,		O		C)		00	₩ ₩ ₩	in the set of the set	` C)	0	<u></u>	0
5		Xo		- Contribute	100-100-00-14-14					0									<u> yn eigind</u> t			,						Χ.		X				Х		00			SOLEN, par en manhado		0		X
Addition to	Step 3)															- -		27 <u></u>		<u></u>			4 44 (17))), (16)		, e							and the second secon						• •	4 22 10.00		╡ <u>╋</u> ╹╡╪┧┸ <u>╕┝╾┍╺╌</u>		<u>2019) I I I I I I I I I I I I I I I I I I I</u>
ep (@.q. @.b)	. ()				0				t in Main me per	Starstern)			0	0	in all and an end and		ka mang ng ng Kalanga	0	0	Manufa Jak Kota Kata Kota	0	0		0			0 0.	0	O .	0	*************	· C	00					(>	nga()€100		00
2. Step	C	00	0	0	0	0				Ô,	0			0	0	. ()	in dan series dan dan dan dan dan series dan s	00	0		0	0		0			00	0	0	ò)	ζ	00	•				· (>			00
		00	00	00	0	00	•	0		0	00	00)	00	0	00)		00	0		0	0		000	0	0	00	00	0	С		00		0			0	(00		0	00
Θ		N U	υv	υr) U	ററ	. م	<u>م</u> م	U n	د د	U D	U g	b) c	م م	, o.	3 eg c	. م د	 	י ס	<u>م م</u>	ചെ	م م	ъ а	יםי	ע ב, ני	 o, .o	c) et	ചെ	<u>, с</u> д	20	<u>ה ה ה</u>		<u>، م د</u>	0.0.	مم	ه م	ء م	, ta (م م	مم	مم	م م	م م
Factor		-UN 101	10 FO	<u>م</u> ۳	57 (T	രച	. ъл	^{ه،} 0.	កថ ព	5 75	م ۳	<u>م</u> ک	പ്പ	പ്പ	n bn	, m t	খ নয	ល ៧	സ് സ്	ក្រ ក្រ	(d. (d.	67 57	<u>م</u> ۵	j (d ,	0 00 0	to to	ta ta	۳ <u>م</u>	ທ ຫ	م م	ר אין	201	ι <u>α</u>	<u>م «ا</u>	40 K	U U	กมิถ	. م י	0.0	<u>م</u> ۲۵	17 17	b Q	ל ה נה
.¤ ₽		ະກາ ໄກ	0 (J	~~~	b) (d	م 🕫	, b)	م م	ے م	5 (C)	പ വ ന	ي م	مد	م ۳	n (n	י בר	مە	rd (1)	to to	b a	b C	6 0 07	10 10	. م י	, m ,	5 0	മര	ta ta	സ്ഥ	ര്മ	ہ م د	י ס י	י ס נ	10 10	مٰم	67 69	» م	م י	to to	a o	10 D	ه ۵	11 11
e	-	rđ (đ	10 10	n to	t rt	തര	. م	ب م	പ്പ	57 C	т т	rt 0	ه ه	rs es	(d 2) na n	۹.۵.	۵۵	70 70	\$7 CA	مم	C. B	ه م	م	100 kg	Q. M	പോ	10 10	r t rt	1 (1) A	n Q. (، م ا	র তে ৫	ថា	പെ	1 ·	م م	১ ব্য .	-	ra a	<u> </u>	പ്പ	1 1 11
Installation Cost (Rp/Man)		64,000 76,700	59,200	72,200 65.000	71,200	52,400 42,000	162,200	85,700 81,000	88,700 83.300	77,300	73,400 45,000	76,300 76 500	85,600	, 74,200 63,800	· 70;200	60,000 73.100	88,700	94,900 111,700	76,500	81,800	104,300 87,900	56,400 105,500	106,400 79.700	87,100	67,300 49,600 71,400	96,000	79,600	62,200 78,600	69,700	72,000	88,700	83,600	67,300	76,300	75,700 91,800	89,700 87,700	110,200	81,200	000,68	66,100	90,000 107,600	74,700 135,000	72,400 78,400
Type of Water Supply	System	، م ہ ۵ ۵ •	- - - - - - - - - - - - - - - - - - -	A-0 4-4	ш	لك لك	ш.	မ က က က	ο B B C	7 4 . 1 0 1	م ب	A-5	A-a	ъ Ч Ч	00 00 	2 m 4 1 m C		မ ရ စ ပ	ی م ان	န န ပ ပ	န န ပ မ	ъ ы	a a a	 . 0 .	<u>л</u> н 2	o a o	ດ ດີ ດີ	D Q P A	4 4		ہ م م م	، م • ش «	د م ب ر د م ت	n n n n	န န ပ ပ	م م 0 0	4 4 0 0	•	р`р. С. в. (م ن <i>ب</i>	م م 0 0	بر م	م م 0 ن
XX	Banlarkawınını	Bulakamba	Salem	Losari Dayeuhluhur	Gandrungmangu	Jerukiegi Kesugihan	Musawingu Buth the	Banyuurip	Grabag Kaligesing	Kemid	Purwodadi Bayan	Ngombol Bariamanou	Karangu Kobar	Nadukara Pagentan	Purggelan Purwonegoro	Purworejo Klampok Karanosambum	Ambairesmi	Setrojenar	Karanggayam Kegenwonosari	Mirit Petanahan	Prembun Gemth	Sukareja Singaraja	Banjarrejo Jepon	Wenderrejo	Batangan	layu Kaliori	Sale . Tangan .	Miri Gontang	Jenar Piuruh	Sambirejo	Nguntoronadi Giriwovo	Jatipumo	Manyaran	Suruh	Bayat . Karangnongko	Balen Baureno	Kapas Sumberraio	Banglan	Bulu Parengan	Jenu Kerek	Karanggeneng Kembangbahu	Tikung Noimbang	Brandong Diwek
Kabupaten	1 REFRES			5 6 CILACAP					C) 4		0 ~	8 9 BANJAR NEGARA			~~~~	5 6 KEBUMEN		0 6 4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 5 KENDAL		B BLORA		2 PATI	3 4 REMBANG	5 6 SRAGEN	60 /1	5	51 S1 WONDGIRI		F 10 4		58 SEMARANG	60 KLATEN 61	1 BOJONEGORD 2		5 TUBAN			10 LAMONGAN	2 5	4. IS JOMBANG .
Province			-							. 4 6 1			50	<u>5</u> 2	2 23	25	272		Java 31	9 75 9 75	35	36	8 8				4 4	4 4		<u> </u>		י והא ע יייייייייייייייייייייייייייייייייייי	., ., 1	43 4 <u>0</u>				n gady kan di t		.		,	

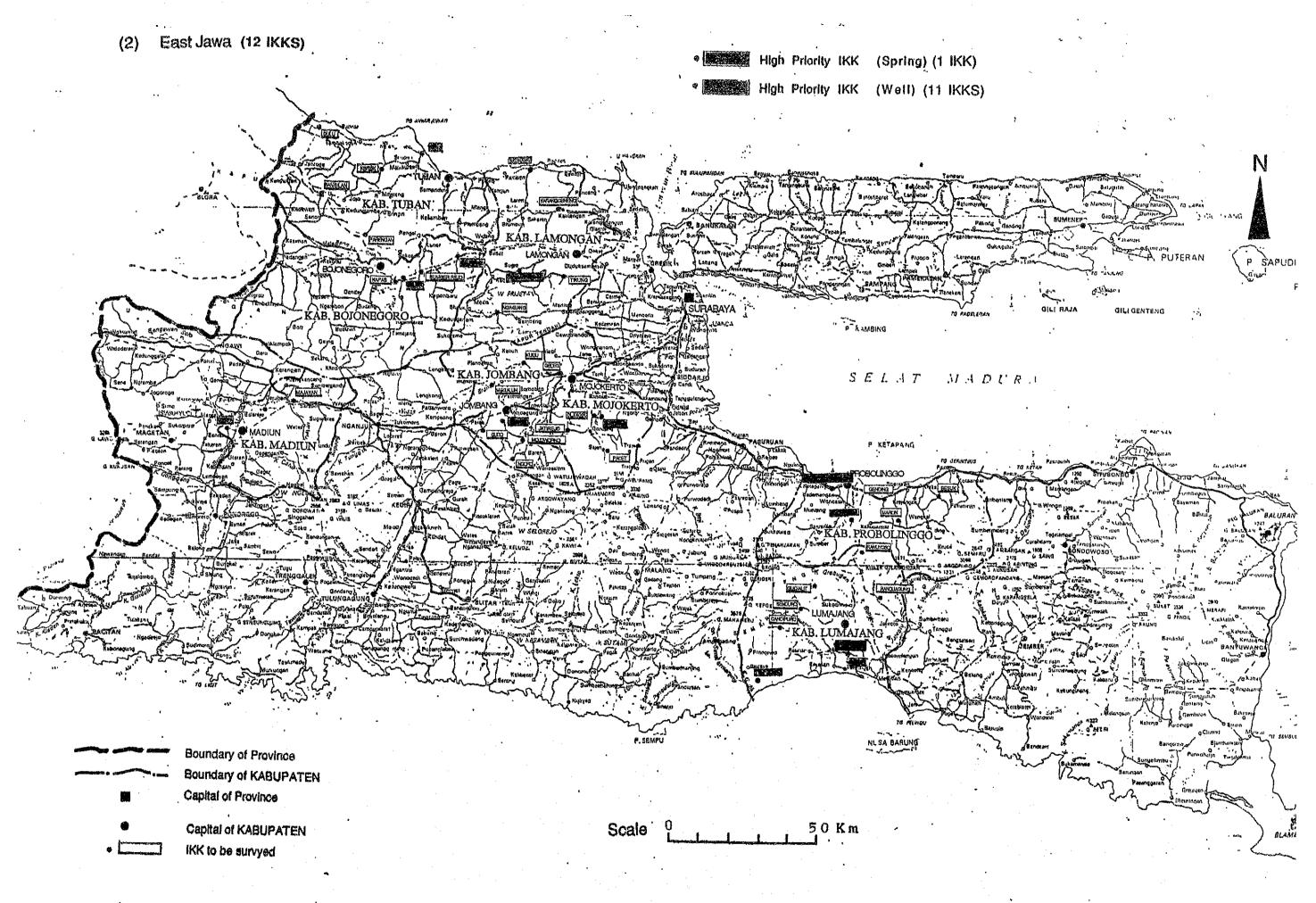
.

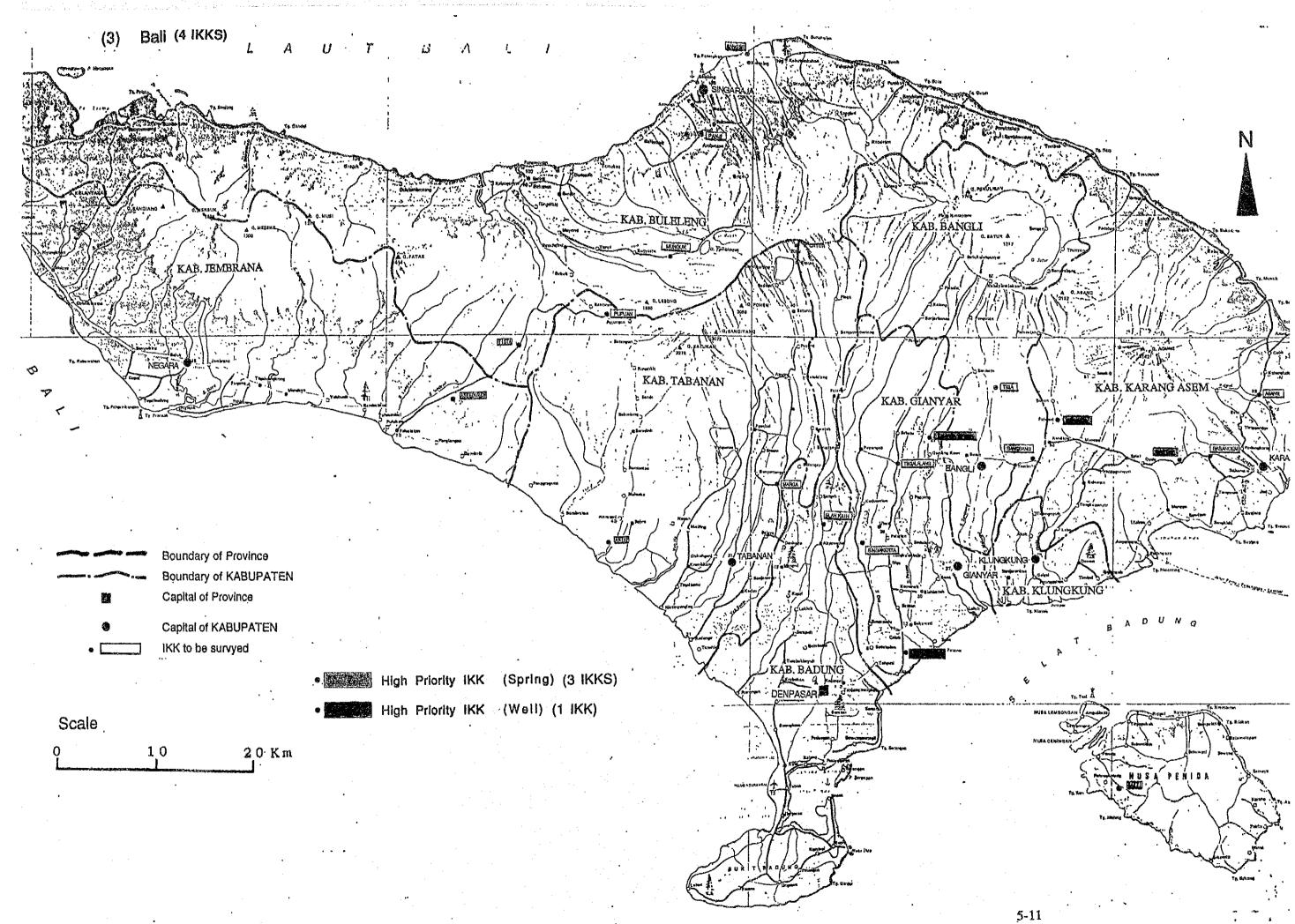
•	ССТ. И ИЛИ И ИЛИ И ИЛИ И ИЛИ (W. CHAN С С С С С С С С С С С С С С	ייייייייייייייייייייייייייייייייייייי	to *a*	x Deleted in Step 5. In Factor @, IKKs classified to "a" are as follows.	xDeleter In Factor @, IKk are as follows.	(3) x (4) In F are	• .	4	Row	Jun Jun	pMan} so diffcult) is) ∩∩∩PpM,C < 75	b > 82,700 ^F ult, B ⁻ Noi : No, b: Yi M0 > b > 75	Installation cost (a < 82,700RpMan, b > 82,700RpMan) Difficulty to get the water (a: Difficult, B ⁻ Not so difficult) Existence of water supply facilities (a: No, b: Yes) Income level (a > 135,000RpM, 135,000 > b > 75,000RpM, C < 75,000RpM)	 0 0 0 6	(1) Factor	• •
	2		o	24	eb	60	[:						13	No. of IKKs	(Note)	
					******* { 	-	с o	0.0	' <mark> </mark>		<u>.</u>	A-a B-b	Bangbang Tiga	19 BANGLI 20		5-6
	in de la constant de			***********			<u>а 9</u> (5 rd .			7,800	B-5 - 1 - 1	Antap			
						0	υ£	22	م م		2,700	A-2	Marga			•
	0	545 <u>566 - 1000 - 10</u>		0	ο .	Q	<u>م م</u>	<i>ه</i> ک	נה נה	a' n		A-a b-b	Sibetan Sakti	14 15 KLUNGKUNG		•
•	·0(0				ച	. 67	લા			A-8	Meranga	: ជ		· .
	4						U c	രം	70 D7	0.0	94,100 94,600	A-a b-b	Abang Behamem		· ·	•
	0	National Institution	in the second	0	0	0	n o	م م	പ്പ		78,100	ب م م	Ketewel Asahdren	9 10 JEMBRANA	Bail	
· •	2)		D	D	U 13	م` ہ	<u>م</u> ۳		171,600	В-0 А-а	Tampak Siring Tegalalang	~ 8		
	(20 k cy (w cy a cy	((. α.	1 10	0	150,100	<u> </u>	Singakerta	6 GIANYAR	· · ·	
		Riantan ten					ם ם	ء م	<u>ہ</u> م		102,500	1.4	Sangsit Panii	•		
							א מ	D rd	<u>р</u> 4	مم	-	ې م 0 ۵	Munduk Tista	2 BULELENG 3		
P-000-00-00-00-00-00-00-00-00-00-00-00-0							<u> </u>	، م	ci.			.A=a	gahkith.	1 .		
Statistic process	0			0	0	0	م م	ചര	» م	<u>ہ م</u>	109,100 75,900	A-a b-b	Waron Sumberasih	39 40		:
							م	র থে	d (13		158,500	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Gending	5 88		
, 	0	0					<u>،</u> ۵	3	(C) (<u> </u>	90,400 106,200	ې د د	Banyranyar	36 PROBOLINGO	·	
1000, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 20	0		0				م م	60 F0	10 N	à a	94,800 84,300	е с 4	Senduro Tempursari	34 55		
		<)).	>	ບ່	م د	51 D		88,100	0 4 0	rai budyu y Panyoso	99 K		
and a state of the	00	>	D (0	200		v a (ູຫຼ	nd nd (ເສ ເ ຜ ິ (81,400	A-0 5	lempen Kunir	31		
	(((0 (م	م	<u>م</u>	ra (66,600	A-a	Gucialit	59		
Drugt and the second		X		0	0	000	. م. ه	o d	n n 1	na eo eu	61,500	- 4 	Candipuro	28 LUMAJANG		
	0		0			<	ہ م	، م	n 1	i	91,000 68 000	4-0 -	Kutorejo	26 27		
Anan caraon	ay labar ann aig						ہ م	a 5	مم	م م	99,600 109.900	0-0 8-8	Gedeg Jatireio	24 25		
						>	ص ت	o, c	പ		382,700	, LL,	Dlanggu	23 MOJOKERTO		
	0	0				C	، م	പ	م م	, o.	84,700 56,100	å "	Jiwan Meavan	21 MADIUN 22	Java	
100 100 100 100 100 100 100 100 100 100						0	م ا	1 (1)) (Ç	66,300	4 - 0	Ngoro		East	
1940 Party and the second		•				o	<u>ი</u> თ	10 m	0_0	с. 'n	82,400 90,400		Mojowamo	<u>ہ</u> و		
						(<u>ပ</u>	6	(ď	.o.	98,500		Kudu	17 .		
Anizacian de)			S	с С	0	ວບ	67 (F)	a b	a.o	85,400	م م م م	Crucio Grado	DAMAMUL CI		
-	C	X		00	0	0		i na	กเ	, 40	72,400	2	Brondong			
1920-2020						0	م م	,c r	0 (1)	ra .ca	135,000	- - -	Ngimbang	13 12	•	
the state of the s	0	0				(<u>، م.</u>	10 J	<u>,</u> 107	<u>, </u>	107,600	ດ ດີ "	Kembargtahu	± \$		
2010-07-07-72						0	م م	» م	0 10	т <u>с</u> о	66,100 90.000	یم ا ا	karanggeneng	TO LAMONGAN		
•***	0	Eurite Containe		0	0	0	.	, n	; es ,		74,300	<u>م</u> ن	Jeru			
SSS-Contractions							<u> </u>	ء م	rt n	ي م	85,000 99 700	р`д О б	Butu Parencan	9 ~		
ti Stantanta age		in a caracteria	•			0	יי ב	م ۲	τ.c.	3 (73	81,200		Bangilan	S TUBAN		
0.22.2× 7 4.6× 1 9	ye mediated prije yg						. د.	- es (A I	۵.	110,200	4 4 0 0	Kapas Sumberreio	(7) və		
DAT JUNE	0	0	at a state	•			4	۲۵	r 3	2	87,700	م- 0	Baureno	€ 1	a an	

	0	I		are as follows.	
	0	1	Income level (a > 135,000 $^{\text{RpM}}$, 135,000 > b > 75,000 $^{\text{RpM}}$, C < 75,000 $^{\text{RpM}}$)	1) There are not enough water sources and the residents	(MCDMAN) and
				feel inconvenience because of lack of water.	
(2) Step	-		Nominale O-a.	2) Fairly long time and much labour, are required for the	
	2].	Nominate @-a out of Step 1.	people to get the water for daily use.	
	3	l	Nominate O-a and O-b out of step 2	3) The residents are forced to buy drinking water.	
•	*		Review and Revision of Step 1 \sim step 3	4) The rain water reservoirs are installed.	
•	Ŝ		Discussion with GOI		

.


Table 5.3


. .


High Priority IKKs

1	ana ang dan ang mga ng hiti ini nay pa paté ito tau ing mé hiti ing	المتعاد المتعاد المتعادي ويهم مرتبة المتعادي ويهو ويتبع المتعاد المتعاد المتعاد المتعاد المتعاد المتع	ین اور این ایس این
No.	Province	Kabupaten	IKK
1	Central Java	BREBES	Bulakamba
2	n	CILACAP	Jeruklegi
3	t:	PURWOREJO	Kemiri
4	Π	BANJAR NEGARA	Madukara
5	ł	بين من من بين من بين من	Punggelan
6	ff	KEBUMEN	Karanggayam
7	Ħ	n	Petanahan
8	TT	KENDAL	Sukorejo
9	17	BLORA	Jepon
10	n	PATI	Batangan
11	n n	SRAGEN	Gondang
12	F1	tt	Jenar
13	ti	WONOGIRI	Giriwoyo
14	ş1	SEMARANG	Bawen
15	East Java	BOJONEGORO	Balen
16	na (15 al) an va sy al vi an ar a sh ah an an ar		Baureno
17	an an to an	TUBAN	Jenu
18	یں ہے۔ اور میں بنی ہے سے سے منظ کی ہی ہے، ہی ہی ہی ہی ہی ہی ہے ہی ہے ہیں ہے ہیں ہے ہیں ہے ہیں ہی ہی ہے ہیں اور 11	MADIUN	Jiwan
19	بی بن ک ک پر بی ک ک کر اور پر بی ک ک ک کار اور پر بن ک ک ک کار اور پر بی پر بی کار کار اور پر بی کر کار اور پر 11	LAMONGAN	Kembangbahu
20		JOMBANG	Diwek
21	ی این بات کے لیے ہیں پی این برب شہ میں کے کی بنا ہے۔ بنا این بات کے لیے ہیں این برب این کی کی این این کی	MOJOKERTO	Kutorejo

		tan ma say nas ann a' a par ann a' a par ma can a' a dar a' a ma can a' a a a a a a a a a a a a a a a a a	
No.	· Province	Kabupaten	IKK
22	East Java	LUMAJANG	Tempeh
23	44 At the set of	انده من دور بين شم منه من	Kunir
24	29 100 20 20 40 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	د الله الله الله الله الله الله الله الل	Tempursari
25	and the last and all the last are an an at the last and the last are an	PROBOLINGGO	Banyuanyar
2.6	gar Can hai siy gar an an in ya ya na ma can shi ka ku ya ya	مده خدی کو بین اور بین می می بین می می می اور بین می	Sumberasih
27	Bali	GIANYAR	Tampak Siring
28	1	11	Ketewel
29	1	KARANG ASEM	Menanga
30			Sibetan

•

.

CHAPTER 6 FEASIBILITY STUDY FOR 30 IKKs

CHAPTER 6 FEASIBILITY STUDY FOR 30 IKKS

6.1 Plan of Water Supply Facilities

6.1.1 In-depth Field Surveys

Detailed field surveys for High Priority IKKs were conducted to determine the conditions for feasibility study from May to August 1991. In the surveys, the following surveys and investigations were included.

(1) Field Survey for Additional Data Collection

JICA Study Team visited 30 High Priority IKKs and conducted the field reconnaissance to receive and confirm the Answers to the Additional Questionnaires.

The following items in the Basic Plan were reviewed and revised in this survey.

1) Water Supply Area

Based on the Answers to the Additional Questionnaires and field reconnaissance together with the officials of Kecamatan/Desa office, water supply area, including the piping route, for each IKK was reviewed and confirmed.

This results were reflected to the Topographical Survey and finally to the design of water supply facilities.

2) Water Surved Population

Population of each IKK in year 2,000 was also reviewed and revised based on the Field Surveys and Statistic data published in 1991 (Census results in 1990).

3) Income Level

Income level of house-holds was revised based on the Answers to the Additional Questionnaires.

Comparison of income level on Basic Plan and Feasibility Study is shown in Table 6.1.1.

This results were reflected to the ratio of population served by public taps and house connections.

4) Water Sources

Water source for each IKK was reviewed through this survey also. Details are shown in Chapter 3 and 6.1.2 in Chapter 6.

Comparison of Income Level on Basic Plan and Feasibility Study Table 6.1.1

		B	Basic Plan	Addition	Additional Questionnaire Dat	natre Da	Monthly Income
Province	IKK	Monthly	Monthly	Mo	Monthly Income (Rp.)	le (Rp.)	will be used for
		Income (Rp.)	xpenditure (Rp	Low	Medium	High	easibility study (Rp.)
Central Taua	Buietemba	54 310 54 310	17 270	76,000	127 500	187 500	127 500
		109.167		51.567	107.166	174.569	107.166
	Kemiri	60,934	58,744	75,000	150,000	300,000	150,000
	Madukara	116,667	91,667	30,000	100,000	200,000	100,000
	Punggelan	112,917	87,917	40,000	60,000	80,000	112,917 *
	Karanggayam	79,167	79,167	37,500	52,500	262,500	79,167 *
	Petanahan	109,167	109,167	45,500	80,000	105,000	109,167 *
	Sukorejo	97,917	÷	70,000	1	200,000	* 216,76
	Jepon	139,167	119,167	70,000	160,000	310,000	160,000
	Batangan	216'26	82,917	50,000	200,000	300,000	200,000
	Gondang	86,667	71,667	,	37,500	147,000	86,667 *
	Jenar	78,042	74,542	45,000	67,000	104,000	78,042 *
	Girtwoyo	94,167	84,167	60,000	143,000	187,500	143,000
	Bawen	79,167	74,167	36,000	155,000	300,000	155,000
				010		000 001	+ 002 FGE
East vava	Daten	07/101		002,70	120,000		
	Baureno	135,812	1	105,000	120,000	145,000	135,812
	Jenu	110,526	100,526	60,000	81,000	105,000	110,526
	Kembangbahu	110,526	105,526	49,775	107,245	159,715	110,526 *
	Diwek	82,895	,	35,000	175,000	325,000	175,000
	Jiwan	118,421	,	84.250	168,500	337,000	168,500
	Kutorejo	102,632		80,000	105,000	128,000	105,000
	Tempeh	63,158	55,658	60,000	80.000	120,000	80,000
£74	Kunir	94,737	74,737	40,000	50.000	195,000	94,737 *
	Tempursari	120,789	117,789	104.750	150,750	199,000	150,750
	Banyuanyar	86,842	86,842	132,600	145,560	174,820	145,560
	Sumberasih	98,684	1	119,200	147,650	170,250	147,650
Bali	Tampaksiring	59,831	ł	75,000	115,000	200,000	115,000
	Ketewel	113,263	98,263	135,000	180,000	270,000	180,000
	Menanga	77,221	r	105,000	140,500	225,000	140,500
	Sibetan	99,748	84,748	53,000	145,000	241,000	145,000
Note : - Income for feasibility	for feasibility study t	ook from mediu	study took from medium monthly income base on additiona	ome base of	n additional		
dues	questionnaire data, except several IKK (with * mark), still used monthly income	t several IKK (w	vith * mark), stil	l used mon	ithly incom	63	
for h	for basic plan because the incomes was decreased if compare with basic plan	e incomes was	ปครรคระครี if การ	nnare with	hasic nlan		
	and promit account				which where		

(2) Socio-Economic Survey

Socio-Economic Survey regarding the institutional and organizational aspects was conducted.

In this survey, the following items were included.

- 1) Laws and Regulations related to domestic water supply.
- 2) Establishment, Organization and Function of BPAM and PDAM
- 3) Financial Aspects of BPAM and PDAM

Results of this survey are shown in Chapter 2 and Supporting Report A.

(3) Topographical Survey

Topographical survey for 30 IKKs was conducted by a local survey company from May, 1991 to August, 1991.

The survey area and route for pipeline were decided previously by the Field Survey for Additional Data Collection.

Survey results were submitted to JICA Team as Survey Drawings ; total 684 drawings of A1 size consisting of location plan of pipe line, plan of water source, longitudinal section and cross section.

(4) Geological Observations

Supplemental geological investigations were carried out to determine the most suitable water source for each IKK of 30 high priority IKKs and to allocate the well locations including the test wells for IKKs where groundwater shall be used as the water source. In order to accomplish this purpose, outcrop investigation, topographic feature observation, existing deep well survey, land-use condition observation, river condition observation, existing data collection on deep wells, investigation about area inundated during the rain season, and so forth were carried out by visiting the sites.

(5) Hydrological Observations

Study confirmation of availability and discharge of springs as water source for proposed IKKs, and collecting data of existing deep wells nearby those IKks which are proposed to get water from deep wells were conducted.

(6) Water Quality Analyses

Water quality analyses were conducted on samples collected from springs which are proposed as water sources for High Priority IKKs and on samples collected from test wells.

1) Analysis at Site

Using the portable test kit provided by JICA, analyses were conducted on some items for samples collected from spring sources.

2) Analysis at Laboratories

Samples collected from springs and test wells were sent to the authorized laboratories and analyzed.

3) Bacterial Test

Bacterial tests were conducted to measure the numbers of coliform and bacteria at site using two kinds of simplified detection papers provided by JICA team.

Analysis results are described in 3.5 in Chapter 3.

6.1.2 Water Sources

(1) Selected Water Sources

Based on hydrogeological information obtained and compiled in the Phase I, the test well drilling and pumping test, water quality analysis, and a supplemental field survey and reconnaissance were carried out in the Phase II in order to confirm and determine the most suitable water supply source source for each IKK of 30 high priority IKKs. Results of the investigations in Phases I and II are described in Chapter 3, and related data are provided in Supporting Report B.

In the last analysis for selecting the water source, Table 6.1.2 - Summary of Selected Water Sources for High Priority IKKs - was constructed.

Table 6.1.2 consists of two tables; one for the IKKs of Central Java and the other for the IKKs of East Java and Bali. Table 6.1.2 is the last product that was prepared at the conclusion of the field investigations on water resources. It aims to be used for the feasibility study. Table 6.1.2 summarizes the selected water source and its condition in each IKK of 30, together with recommendations on water collecting facilities.

More detailed data and information related to hydrogeological condition and water resources are provided in Table B-2.7 and Section 2.2.2 of Supporting Report B.

(2) Water Sources Changed for New Ones

As is mentioned in Paragraph (2) of Section 3.2.4, water sources that had been proposed for the Basic Plan were inevitably changed for new ones. Their reasons are as explained hereinafter.

1) Madukara, Central Java

For the Basic Plan, Jurang Jero spring - the biggest spring in Madukara kecamatan - was proposed as the water source; however, according to a field survey in Phase II, the discharge rate of the spring was much lower than that (10 1/s) estimated in Phase I, and it was obliged to discard the use of the spring. It was thought that the spring discharge decrease is due to its specific nature of physical environment; Jurang Jero spring is located on a valley consisting of talus deposits; and the ground slope and the waterway are at instable condition.

Subsequently, the necessity of searching for an alternative water source occurred.

Available springs being around this IKK are Siton spring (13 1/s) in Pagentan kecamatan and Mudal spring (30 1/s, of which 10 1/s is available) in Banjarmangu kecamatan. Both springs are located at a good distance, so a collector well installed by the Serayu river on the south boundary of Madukara was also studied.

After the study on these alternative sources, a scheme of the collector well was renounced because the thickness of a riverbed gravel layer was estimated to be about 2m, and a conclusion was drawn to use the Mudal spring. In case of Mudal spring, existing water supply facilities for Banjarnegara City can partly be used.

2) Tempeh, East Java

Takir spring was proposed for the Basic Plan. It is far from the IKK area; about 9m along road. It has been disclosed by the site survey in Phase II that to take water from this spring is practically difficult because of its water right for irrigation.

In conclusion, the water source was changed from spring to groundwater, since this IKK area is underlain by a highly productive aquifers consisting of young Quaternary pyroclastics.

3) Tempursari, East Java

Sidomukti spring was used as the water source for Basic Plan. In the site survey of Phase I, only this spring was recommended by the local official. It is located on a mountain area of difficult accessibility. But, as a result of detailed site survey, Umbulsari I spring (600 l/s capacity) was discovered at a location nearer than Sidomukti. There is no problem to take the water from Umbulsari I spring. Thus, source spring was changed from Sidomukti to Umbulsari I from economical point of view.

4) Sumberasih, East Java

For the Basic Plan, Sumberbendo spring (15 1/s capacity) was proposed as the water source. However, it was disclosed by a site survey in Phase II that taking water from this spring is practically difficult because it has been used for irrigation. Thus, the supply source was changed to groundwater from Sumberbendo spring. There are two operating P2AT wells in this kecamatan, and a groundwater potential map indicates that this IKK area belongs to one of the most productive aquifer zones with the potential of more than 40 l/s yield.

5) Ketewel, Bali

The use of existing Singakerta waterworks was proposed for the Basic Plan, but after that the extension of this waterworks has been proposed by other project for areas excluding Ketewel and it is in process. Therefore, the scheme for using existing Singakerta waterworks was obliged to be abandoned. Fortunately, it was recommended by PPSAB Denpasar that existing test well (50 1/s in normal capacity) at desa Batubulan is usable for Ketewel. Thus, the supply source was changed to groundwater abstracted from an existing test well.

6) Menanga, Bali

Here, spring was changed from Arca (500 l/s) to Gerubug (280 l/s) by a simple reason that the former is used for irrigation but the latter is not used for it and has enough surplus capacity; besides, these two springs are located near each other.

(3) Supplementary Remarks on Groundwater Investigation

Eighteen (18) IKKs among 30 high priority IKKs are scheduled to use groundwater as the water source, of which 10 IKKs need plural wells. In or near some IKKs highly productive deep wells are in operation and in some IKKs there are some test well data. In addition, not only new test well drilling and pumping tests but also pumping tests of existing dug wells were carried out at some several IKKs in the Phase II. However, confirmation of aquifer potential and water quality is important in case of groundwater development by means of wells. Therefore, it is recommended to perform supplementary aquifer investigations in some IKKs to make certain the said characteristics before the implementation, even though there was some kind of available information. The necessity of confirmatory groundwater exploration will depend on usefulness of available information and design requirements. The following factors are considered to be of importance in the site selection of confirmatory exploration.

- 1) More than two wells are required since the groundwater potential is not high.
- 2) There is some degree of anxiety about water quality since the site is near to sea or to saline groundwater zone.
- 3) Available information infers that the site is underlain by highly productive aquifers, but there is neither drill well in operation nor test well in the IKK area.

When these factors are taken into consideration, it appears that at least the following 9 IKKs need a confirmatory investigation.

Bulakamba, 2) Kemiri, 3) Petanahan, 4) Jepon, 5) Gondang, 6) Balen,
 Baureno, 8) Kunir, and 9) Banyuanyar

The confirmatory exploration shall consist of test well drilling and pumping tests including borehole logging and water quality analysis. It is better to carry out geoelectrical survey for the determination of the well location. Reexamination of water quality is also recommended for IKKs where groundwater has been analyzed to be out of the norm in some items.

of IKK amba legi i ara elan ggayam ahan	Water De- mand(1/s) 22.8 20.2 17.7 8.1 7.1 5.4 9.3	Source Type G.W. Exist. G.W. SPR. SPR. Exist.	Source Name or Aquifer Type Confined aquifers of sand layers in sedimentary facies Cilacap City water supply system Unconfined type aquifer of alluvial sands Mudal spring Trabawulan spring Kebumen City water supply system	Source Location and Distance Desa Jubang, 5km south of the Kec. office Tapping point is near the southern boundary of Kec. Desa Kerep, 1km west of the Kec. office In another Kecama- tan (Banjarmanggu) Desa Petugulan, 7.5km from the Kec. office Tapping point is at	Min. Spring Yield or Test Well Data Bulakamba I ;D=51m, T=190-357m ² /d for Q=3-7 1/s A 30m deep test well infers that the well capacity is 5-10 1/s 30 1/s, of which 10 1/s is available 40 1/s in total	Vater Quality Within norm E.C.=334, but Fe and Mn ex- ceed the norm Within norm	yield each Tapping to existing pipeline 3 drilled wells; 40m depth and 6 1/s yield each Spring-fed reservoi Creek-fed reservoir with protection cov
i ara elan ggayam	20.2 17.7 8.1 7.1 5.4	Exist. G.W. SPR. SPR.	of sand layers in sedimentary facies Cilacap City water supply system Unconfined type aquifer of alluvial sands Mudal spring Trabawulan spring Kebumen City water	5km south of the Kec. officeTapping point is near the southern boundary of Kec.Desa Kerep, 1km west of the Kec. officeIn another Kecama- tan (Banjarmanggu)Desa Petugulan, 7.5km from the Kec. officeTapping point is at	A 30m deep test well infers that the well capacity is 5-10 1/s 30 1/s, of which 10 1/s is available	Within norm E.C.=334, but Fe and Mn ex- ceed the norm Within norm	75m depth and 12 1/ yield each Tapping to existing pipeline 3 drilled wells; 40m depth and 6 1/s yield each Spring-fed reservoi Creek-fed reservoir with protection cov
i ara elan ggayam	17.7 8.1 7.1 5.4	G.W. SPR. SPR.	supply system Unconfined type aquifer of alluvial sands Mudal spring Trabawulan spring Kebumen City water	near the southern boundary of Kec. Desa Kerep, 1km west of the Kec. office In another Kecama- tan (Banjarmanggu) Desa Petugulan, 7.5km from the Kec. office Tapping point is at	infers that the well capacity is 5-10 1/s 30 1/s, of which 10 1/s is available	Fe and Mn ex- ceed the norm Within norm	Tapping to existing pipeline 3 drilled wells; 40m depth and 6 1/s
ara elan ggayam	8.1 7.1 5.4	SPR.	aquifer of alluvial sands Mudal spring Trabawulan spring Kebumen City water	1km west of the Kec. office In another Kecama- tan (Banjarmanggu) Desa Petugulan, 7.5km from the Kec. office Tapping point is at	infers that the well capacity is 5-10 1/s 30 1/s, of which 10 1/s is available	Fe and Mn ex- ceed the norm Within norm	40m depth and 6 1/s yield each Spring-fed reservoi Creek-fed reservoir with protection cov
elan ggayam	7.1 5.4	SPR.	Trabawulan spring Kebumen City water	tan (Banjarmanggu) Desa Petugulan, 7.5km from the Kec. office Tapping point is at	10 l/s is available		Creek-fed reservoir with protection cov
ggayam	5.4		Kebumen City water	7.5km from the Kec. office Tapping point is at	40 1/s in total	Within norm	with protection cov
		Exist.		Tapping point is at			1 "Barnot Latitus Sto
ahan	9.3		Lui i i i i i i i i i i i i i i i i i i	the south boundary of the Kecamatan			Tapping to existing Kebumen waterpipe
		G.₩.	Confined aquifers of sand layers in alluvium	Desa Karangduwur, Northern edge of the IKK area	P2AT EW99 in Desa Petanahan: S.W.L = 1.2m, S.C.=1.7 1/s/m	E.C.=1700 for EW99 of 50m depth	1 drilled well of 6 depth and 10 l/s yi
ejo	16.5	SPR.	Tlogomili spring in a riverhead pond	Desa Tlogopayung in Kec. Plantungan, 15km from the IKK	800 1/s in total	Within norm	Collector caisson o Embedded perforated conduits
	17.5	G.₩.	Fissure water in a limestone formation	Desa Soko, 9km north of IKK in the same Kecamatan	P2AT TW 77 & TW81; TW77 Q = 2 1/s TW81 Q = 5 1/s +	Within norm except Fe =1.4	4 drilled wells; 150m depth and 5 1/s yield each
an	12.1	Exist.	Sani river flown out from Genbong dam	Desa Karangdowo of Kec. Pati		Muddy	Upgrade the pump capacity of existing intake for Juwana s
8	22.4	G.₩.	Highly productive aquifer of young volcanic products	Desa Tunggul, 5km south of the Kec. office	Q> 15 1/s from exist deep wells in the same geological zone	E.C.=300-750	2 drilled wells; 150m depth and 12 1 yield each
	8.7	G.₩.	Unconfined type of aquifer of alluvial sand	Dusun Prayunan in Desa Dawung in the IKK area	K=0.01cm/s from the tests on existing shallow wells	Within norm	2 drilled wells; 30m depth and 5 1/s yield each
уо	7.2	SPR.	Kakap spring, from underground stream (cave)	Desa Giriwoyo, within the IKK	33 l/s in Oct. 1990 (52 l/s in Aug. '91)	Within norm	Spring-fed reservoi or Intake weir
	21.3	SPR.	Umbul spring	Desa Keban Dalem in Kec. Jambu, 15km south of 1KK	130 1/s in total	Within norm	Tapping to outlets of existing spring- reservoir
8	0	an 12.1 22.4 8.7 0 7.2 21.3 urce type symbols:	an 12.1 Exist. 22.4 G.W. 8.7 G.W. 0 7.2 SPR. 21.3 SPR. urce type symbols: G.W.= Grou SPR.= Spri	17.5G.W.limestone formationan12.1Exist.Sani river flown out from Genbong daman12.1Exist.Sani river flown out from Genbong dam22.4G.W.Highly productive aquifer of young volcanic products8.7G.W.Unconfined type of aquifer of alluvial sand07.2SPR.Kakap spring, from underground stream (cave)21.3SPR.Umbul springurce type symbols:G.W.=Groundwater SPR.=	17.5G.W.limestone formationof IKK in the same Kecamatanan12.1Exist.Sani river flown out from Genbong damDesa Karangdowo of Kec. Patian12.1Exist.Sani river flown out from Genbong damDesa Karangdowo of Kec. Patian22.4G.W.Highly productive aquifer of young volcanic productsDesa Tunggul, 5km south of the Kec. office8.7G.W.Unconfined type of aquifer of alluvial sandDusun Prayunan in Desa Dawung in the IKK areao7.2SPR.Kakap spring, from underground stream (cave)Desa Keban Dalem in Kec. Jambu, 15km south of IKK21.3SPR.Umbul springDesa Keban Dalem in Kec. Jambu, 15km south of IKK	17.5G.W.limestone formationof 1KK in the same KecamatanTW77 Q = 2 1/s TW81 Q = 5 1/s +un12.1Exist.Sani river flown out from Genbong damDesa Karangdowo of Kec. Pati22.4G.W.Highly productive aquifer of young volcanic productsDesa Tunggul, 5km south of the Kec.Q> 15 1/s from exist deep wells in the same geological zone8.7G.W.Unconfined type of aquifer of alluvial sandDusun Prayunan in Desa Dawung in the IKK areaK=0.01cm/s from the tests on existing shallow wellso7.2SPR.Kakap spring, from underground stream (cave)Desa Keban Dalem in Kec. Jambu, 15km south of 1KK130 1/s in totalurce type symbols:G.W.=Groundwater SPR.=SpringDesa Keban Dalem in Kec. Jambu, 15km south of 1KK130 1/s in total	17.5G.W.limestone formation out from Genbong damof IKK in the same KecamatanTW77 Q = 2 1/s TW81 Q = 5 1/s +except Fe =1.4an12.1Exist.Sani river flown out from Genbong damDesa Karangdowo of Kec. Pati—Muddy22.4G.W.Highly productive aquifer of young volcanic productsDesa Tunggul, 5km south of the Kec.Q> 15 1/s from exist deep wells in the same geological zoneE.C.=300-7508.7G.W.Unconfined type of aquifer of alluvial sandDusun Prayunan in Desa Dawung in the IKK areaK=0.01cm/s from the tests on existing shallow wellsWithin normo7.2SPR.Kakap spring, from underground stream (cave)Desa Keban Dalem in Kec. Jambu, 15km south of 1KK33 1/s in totalWithin normurce type symbols:G.W.= Groundwater SPR.=Umbul springDesa Keban Dalem in Kec. Jambu, 15km south of 1KK130 1/s in totalWithin norm

Table 6.1.2(1) Summary of Selected Water Sources for High Priority IKKs -- Central Java

	p-/
le ting s	Remarks
; 2 1/s	
ting	
; 1/s	Deep aquifers are not productive
rvoir	Existing Banjarnegara supply system is part- ly used.
voir, cover stones	
ting pe	
of 60m s yield	Groundwater of the south area is brackish
on or ated	Several springs in the riverhead pond
; 5 1/s	Pumping test of exist. P2AT TW81 was run in NovDec, 1991
p sting na syst	Existing Juwana water supply line is partly used
; 12 1/s	
; 1/s	Deep aquifers are not productive
rvoir	
ets ing-fed	Spring intake has been constructed by DINAS Cipta Karya

	IKKs	·••			Selected Water Sou	irces		T	1
N	a Name of IKK	Water De- mand(1/s)	Source Type	Source Name or Aquifer Type	Source Location and Distance	Min. Spring Yield or Test Well Data	Vater Quality	Recommendable Water Collecting Facilities	Remarks
1	5 Balen	16.4	G.₩.	Confined aquifers of sand layers in alluvium	Desa Kedungdowo, 4km north of the 1KK center	Existing test wells in Desa Kedungdowo; D=60-100m, capacity=10-20 1/s	Below a depth of 80m is saline	2 drilled wells; 70m depth and 10 l/s yield each	3 test wells by Solo River Authority exist in Desa Kedungdowo
10	3 Baureno	14.8	G.₩.	Confined aquifers of sand layers in alluvium	Desa Sumbung Lor, 5km west of the IKK center	EJWR-5 in Desa Tam- bakrame; D=24m, well capacity=7.5 1/s	Within norm	2 drilled wells; 70m depth and 10 l/s yield each	
11	7 Jenu	11.8	G.₩.	Fissures in a limestone formation	Desa suwalen, 3km south of the Kec. office	Many deep wells in the vicinity yield more than 40 l/s/well	Within norm	1 drilled well of 100m depth and 20 1/s yiels	
18	Jiwan	22.8	G.₩.	Highly productive aquifers of fluvial sand and gravel of volcanic origin	Eastern part of Desa liwan, within the IKK area	Existing deep wells in Kota Madiun at 5km SE produce 40† 1/s/well	Vithin norm	1 drilled well of 100m depth and 25 1/s yield	
19	Kembangbahu	7.1	G.W.	Confined sand seams in sedimentary facies	Desa Mangkujajar and Desa Kedung Megarih		TDS = 1634 Chloride = 666.5	2 drilled wells; 125m depth and 4.0 1/s yield each	The test well can be used as one of prod- uction wells
20	Diwek	17.1	G.₩.	Highly productive aquifers of alluvial sands and gravels	Desa Cukir in the IKK area	Existing deep wells within 3km from IKK have capacity of more than 40 1/s	Within norm	1 drilled well of 100m depth and 25 1/s yield	
21	Kutorejo	17.8	G.∀.	Highly productive fluvial deposits of volcanic products	Desa Karangdieng, within the IKK area	P2AT well No.97 in Desa Karangdieng yields 40 1/s plus	Within norm	1 drilled well of 100m depth and 25 1/s yield	
22	Tempeh	15.6	G.₩.	Pyroclastics of young Quaternary volcanic products	Desa Tempeh Lor in the IKK area	20-40 1/s for a deep well, from Ground- water Potential Map	Within norm	1 drilled well of 80m depth and 20 1/s yield	
23	Kunir	21.2	G.₩.	Alluvial deposits of sand and gravel, and Tertiary pyroclastics	Desa Kunir Lor in the IKK area	20-40 1/s for a deep well, from Ground- water Potential Map	Vithin norm	1 drilled well of 100m depth and 25 1/s yield	Geoelectric survey was conducted in this IKK last year (1990)
24	Tempursari	13.7	SPR.	Umbulsari 1 spring	About 3km from IKK	600 1/s in total	Within norm	Intake tower or spring-fed reservoir	······································
25	Banyuanyar	19.5	G.¥.	Unconfined aquifer of volcanic sand and breccia	About 250m north of main road in Desa Liprak Kulon	5.0 1/s for a 40m deep well, by a theoretical analysis	Within norm	3 drilled wells; 50m depth and 8.0 l/s yield each in average	A new test well in- dicates that the lava below 37m has no aquifer potential
26	Sumberasih	11.8	G.₩.	High potential aquifer of young volcanic products	Southernmost corner of the IKK in Desa Muneng Kidul	P2AT TW012: D=102m 32 1/s capacity 24 1/s in operation	Vithin norm	1 drilled well of 80m depth and 15 1/s yield	
27	Tampak Siring	9.7	SPR.	Tirta Empul spring	Near the north-east boundary of the IKK area	400 1/s in total	Within norm	Outflow-fed reservoir or reconstruction of spring-fed reservoir	The spring is in the temple yard
28	Ketewel	11.1	G.W.	High potensial aquifer of volcanic products	Desa Batubulan, 3km west of the IKK	TPW2: Depth 200m Capacity 50 1/s	Within norm	Existing TPW2 well. Submersible pump of 20 I/s capacity	
29	Menanga	6.9	SPR.	Gerubug spring	1.2km from the Desa Menanga 50 1/s	280 1/s in total	Within norm	Spring-fed reservoir	
30	Sibetan	11.6	SPR.	Dukuh Muding spring	Banjar Dukuh, 2km southwest of Desa Sibetan office	27 1/s in total	Within norm	Reconstruct spring-fed reservoir	

.

.

6.1.3 Design Conditions

(1) Review of Design Criteria

After the In-Depth Field Surveys for 30 IKKs which resulted in the revision of design conditions such as income level and population served, JICA team conducted a review of design criteria based on the comparison with another projects shown in the Table 6.1.3.

Main items revised from the Basic Plan, through discussions with Cipta Karya, are reservoir capacity and module system of water supply capacity per population.

1) Reservoir Capacity

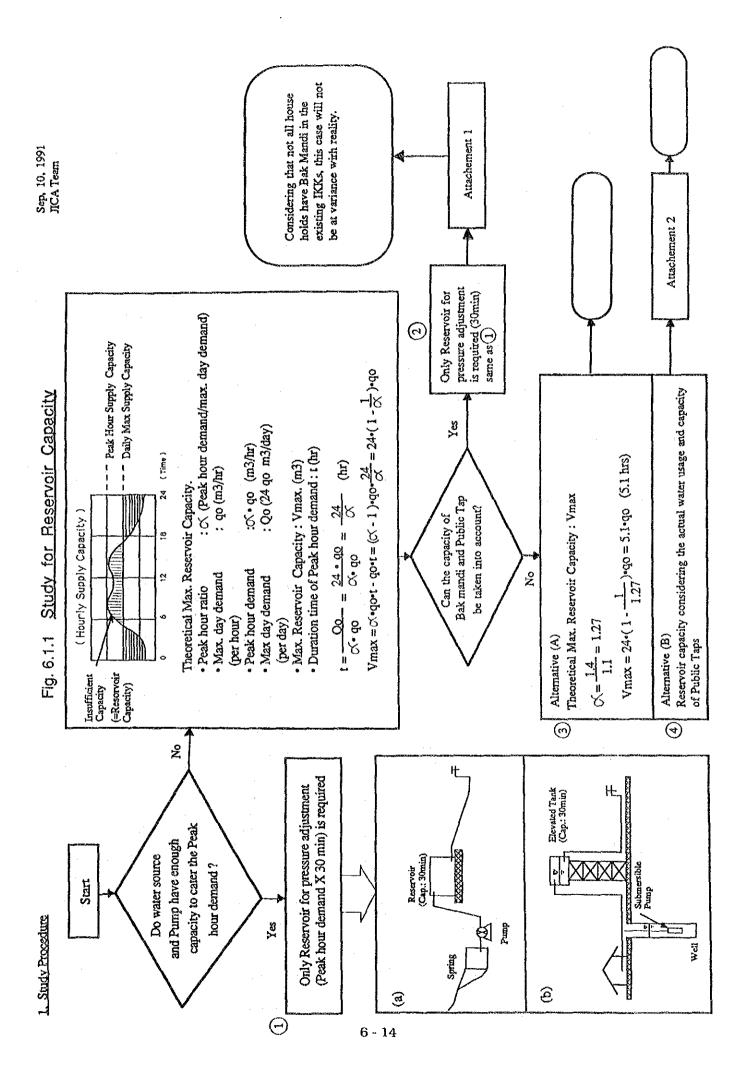
Reservoir capacity of each water supply system was studied theoretically as shown in Fig. 6.1.1.

After discussions between JICA Team and Cipta Karya, the capacity of reservoir, including a capacity of elevated tank if required, was decided to have a two (2) hours of retention time for the maximum day demand, taking the capacity of Public Taps and some numbers of the existing Bak Mandi into account.

In this decision, actual water usage of the people and economization of the facilities were also considered.

2) Module System

Modular system of water supply capacity per population was adopted considering existing and under going another IKK system water supply facilities.


Pump capacity and reservoir capacity are modulated.

Design Criteria finally decided are shown in Table 6.1.4.

		3,000 - 5,000 9 More than 5,000 8				
) O E	Capacity (1) (1)	1,000 - 2,000 12 2,000 - 3,000 10	2.0 m3/P.H. Bak mandi/H.C.	Modul 5.0 : 30m3(1.7hr) Modul 10.0: 40m3(1.1hr)	2	
(1) (B)	Refer to Study for Reservoir	(Population) (hr)	Decentralized	Modul 2.5 :20m3(2.2hr)		15 Capacity of Reservoir
			2.1 Vmin for P.H.		1251/hr for P.T.	
)			(Gravity) 0.42 limin for H.C.		(Gravity) 251/hr for H.C.	
٩	£	£	4.2 Umin for P.H.	Z	2500hr for P.T.	
			(Pumping) 0.83 Vmin for H.C.		(Pumping) 50thr for H.C.	14 Flow Restrictor
	4 4		Pumping System : 12	\$ V	Pumping System : 12	1.3 [Cperauon nours] [(Hours)
(76	24	Cravity Custar · 24	2.4	Control Sustern - 34	
	10	0	₽ ₽	10	10	12 (Target Year (in Fubure) (Years)
٩	1,4	2.4	1.1	1.4	1.1	11 Factor for Peak Hour
ditto	1.1	1.1	1.1	1.1	1.1	10 Factor for Maximum Day
ditto	t s	n U	15	30	2	Leakage and Losses (%)
						Water Allocation for
ditto	ŋ	Ŋ	IJ	v	νî	Water Allocation for Non-Domestic Demand (%)
ditto	100	001	100 (P.H.)	-100 	50	Number of People per P.T.
ditto	0	10	40	10	10	Number of People per H.C.
() () () () () () () () () () () () () (60/40 - 80/20	50/50	50/5	040 -	50/50 - 80/20	Ratio of Population Surved by H.C./P.T.
0 0 0	(Supply Level) X Population (I/c/d)	(Suppiy Level) X Population (I/c/d)	(Gravity Spring) (Other) 2.5 Vs 3,000- 6,000 5,0 Vs 3,000 - 6,000 5,0 Vs 6,001-12,000 10,0 Vs 12,001-20,000 20,0 Vs 12,001-20,000	(Source Cap) (Population) 2,5 1/s 1,000 - 3,000 5.0 1/s 3,001 - 5,000 10 1/s 5,001 - 10,000	(Source Cap) (Population) 5 //s 3.000 - 6.000 10 //s 6.001 - 12.000 20 //s 12.001 - 20.000	Water Supply Capacity per Population
(n a) (n Economical coint of view — (50-100	50-100	S0-100	50-100	50-100	Population Served
(i) a) (ii) So as not to stand out of another project -(b)	30	30	g	30	S	Supply Level at Public Tap (P.T.) (I/c/d)
Considering the recent Actual Water usage — a		ე ფ	O W	0 8	ç	Supply Level at House Connection (H.C.) (I/c/d)
Reason for Proposal	(JICA) 1991	1991	1985	1990	1986	(No.) Criteria
	East Java and Bali (Proposed)		(IBRD)	(AOB)	(Modification)	
				-	-	

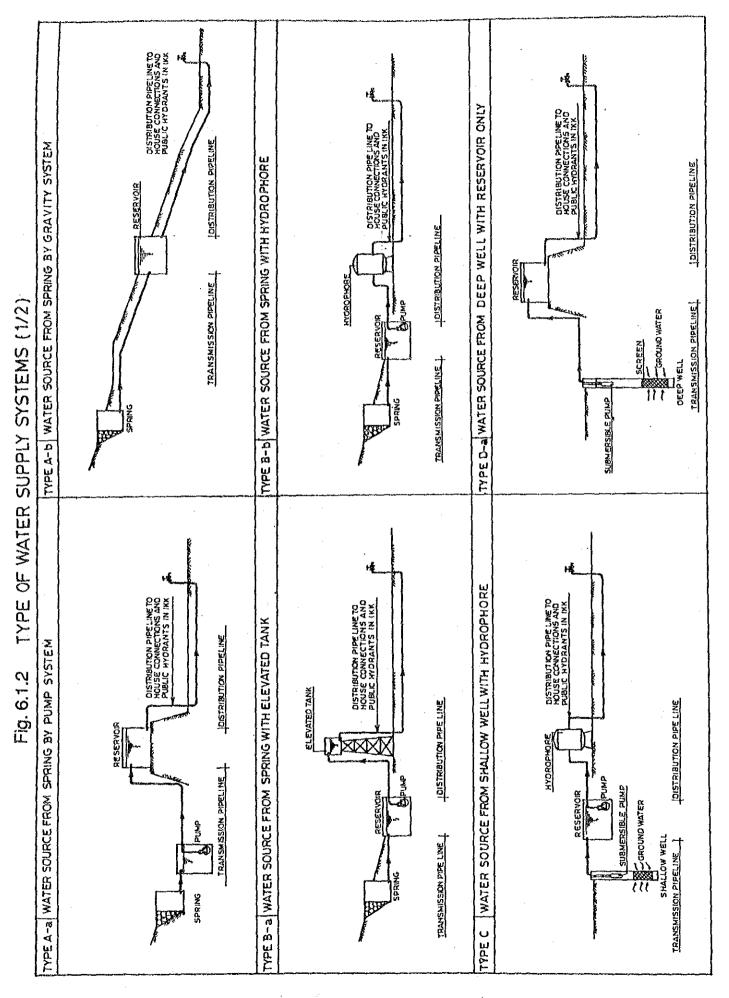
Table 6.1.3 Comparison List of Design Standard

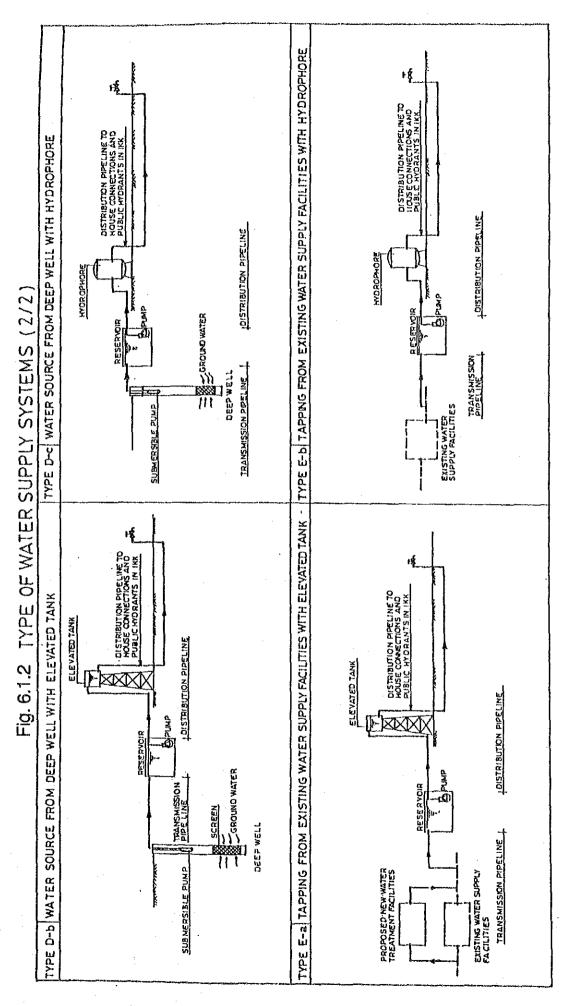
Revised on Sep. 23 Sep. 91

	Phase	1	2
No.	Criteria	Basic Plan	Feasibility Study
1	Supply Level at House Connection (H.C.) (l/c/d)	90	90
2	Supply Level at Public Tap (P.T.) (l/c/d)	30	30
3	Population Served (%)	50 - 100	50 - 100
4	Water Supply Capacity per Population	(Supply Level) x Population (l/c/d)	(Source Cap)(Population) 10.0 4,900 - 8,800 15.0 9,200 - 11,500 20.0 14,100 - 16,400 25.0 17,800 - 20,400
5	Ratio of Population Surved by H.C./P.T.	60/40 - 80/20	70/30 - 80/20
6	Number of People per H.C.	5	10
7	Number of People per P.T.	100	100
8	Water Allocation for Non-Domestic Demand (%)	5	5
9	Water Allocation for Leakage and Losses (%)	15	15
10	Factor for Maximum Day	1.1	1.1
11	Factor for Peak Hour	1.5	1.4
12	Target Year (in Future) (Years)	10	10
13	Operation Hours (Hours)	24	24
14	Flow Restrictor	No	No
15	Capacity of Reservoir	(Population) (hr) Less than 5,000 9 More than 5,000 8	Module (l/s) Cap (m3) (hr) 10.0 80 (2.0) 15.0 120 (2.0) 20.0 160 (2.0) 25.0 200 (2.0)

Table 6.1.4 Design Criteria

6.1.4 Water Supply Facilities


Based on the design condition shown in 6.1.3 and the topographical survey drawings, water supply facilities for 30 IKKs have been designed.


(1) System Design

According to the water sources and the ground elevations, water supply systems for 30 IKKs have been studied from the economical point of view and finally they are divided into 10 types of supply systems shown in Fig. 6.1.2.

Design methodology of these systems is shown in Supporting Report C.

- (2) Summary of Water Supply Facilities
 - Summary of Water Supply Facilities for 30 IKKs is shown in Table 6.1.5.
 Design drawings are included in Supporting Report C.
 - 2) Design methodology of the facilities is also described in Supporting Report C.
 - Ca (OCl)₂ injection facilities are provided in all IKKs except Jeruklegi and Karanggayam (Type E-b).
 - 4) Lead (Pb) treatment facilities in Madukara and Iron (Fe) treatment facilities in Kemiri and Jepon are finally proposed to be installed.

	1 Name Code 2 Kabupaten 3 Kecamatan 4 I K K	I BREBES BULAKAMBA BULAKAMBA	2 CILACAP JERUKLEGI JERUKLEGI	3 PURWOREJO KENIRI KENIRI	4 Banjarnegara Madukara Madukara	5 BANJARNEGARA PUNGGELAN PUNGGELAN	6 Kebumen Karanggayam Karanggayam	7 KEBUMEN PETANAHAN PETANAHAN	8 KENDAL Sukorejo Sukorejo	9 BLORA JEPON JEPON	10 PATI BATURSARI BATANGAN	11 SRAGEN GONDANG GONDANG	12 SRAGEN JENAR JENAR	13 MONOGIRI GIRIWOYO GIRIWOYO	14 Semarang Harjosari Bawen
	 5 Total Population in the year 2000: A. Project Area B. Served Area 6 Sarved Population 	19.100 19.100 100 %	18.370 18.370 18.370 100 %	14.860 14.860 100 %	7.320 7.320 100 %	11.730 6.450 55 %	8.200 4.920 60 %	9.570 8.420 88 %	15.010 15.010 100 %	14.650 14.650 100 %	10.100 10.100 100 %	22.100 20.330 92 %	$12.540 \\ 7.900 \\ 63 \%$	6.720 6.050 90 %	17.880 17.880 100 %
	7 %-tage of Population served by House Connections (H.C.)	80	70	80	70	70	. 70	70	70	80	80	70	70	80	80
1	8 Water demand for H.C. (D = 90 /cap/day)(1/day)	1375200	1157310	1069920	461160	406350	309960	530460	945630	1054800	727200	1280790	497700	435600	1287360
	9 %-tage of Population served by Public Hydrants (P.II.)	20	30	20	30	30	30	30	30	20	20	30	30	20	20
	l0 Water demand for P.H. (D = 30 1/cap/day)(1/day)	114600		89160	65880	58050	44280	75780	135090	87900	60600	182970	71100	36300	107280
1.	(1/day)	1489800	1322640	1159080	527040	464400	354240	606240	1080720	1142700	787800	1463760	568800	471900	1394640
	$(5 \% \times (11))(1/day)$	74490	66132	57954	26352	23220	17712	30312	54036	57135	39390	73188	28440	23595	69732
	3 Water demand for leakage and losses 15 % × (11)(1/day) 4 Total average demand (1/day)	223470 1787760	198396 1587168	173862 1390896	79056	69660	53136	90936	162108	171405	118170	219564	85320	70785	209196
1	5 Total Average demand (1/sec)	20.69	1387108	1550850	632448 7.32	557280	425088	727488	1296864	1371240	945360	1756512	682560	566280	1673568
	6 Max day : 1.1 × (15)(1/sec)	20.05	20.21	17.71	8.05	6.45 7.10	4.92 5.41	8.42 9.26	15.01	15.87	10.94	20.33	7.90	6.55	19.37
	7 Peak hour demand : $1.4 \times (15)(1/sec)$	28.97	25.72	22.54	10.25	9.03	6.89	3.20 11.79	16.51 21.01	17.46 22.22	12.04	22.36	8.69	7.21	21.31
	8 Source capacity required for 24 hours operation/day (1/sec)	22.76	20.21	17.71	8.05	7.10	5.41	9.26	16.51	17.46	15.32 12.04	28.46 22.36	11.06 8.69	9.18 7.21	27.12 21.31
1	9 Potential source available	G.W.	EXT.	G.W.	SPR.	SPR.	EXT.	G.W.	SPR.	G.W.	EXT.	G.W.	G.W.	SPR.	SPR.
20 2 22	1 System 2 Source Pump (Submersible Pump)	12 x 2 D-b	E~b	6 × 3 C	10 B-a	35 ∆-a	E-b	10 D-b	100 A-b	5 x 4 D-a	E-a	12 x 2 D-a	5 X 2 C	30 Л-а	30 A-b
23	A. Number of pump B. Capacity (1/sec) C. Head (m) 3 Main Distribution Pump (Submersible Pump)	2 15 30	-	3 10 30				1 10 30	 	4 5 40		2 15 60	2530	-	-
	A. Number of pump B. Capacity (1/sec) C. Head (m)	3 15 30	3 15 60	3 10 60	3 5 80	3 5 80	3 5 80	3 5 30			4 5 30		3 5 60	35	-
24	4 Booster Pump (Submersible Pump) A. Number of pump P. Connector (Merce)	-	-	-	3	3	-	-	_	_		- 0	UU o	80	-
25 28	8 Hydrophore	150	200		5 60 60	5 60 20	- 80	- 60	40	160	 90	5 60 200	5 30 80	- 20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
27	A. Capacity (m ²) B. Working Pressure (kg/cm ²) 7 Break Pressure Tank A. Number		9 6	9 6	-	_	5 8			-		3 6	5:3 6:6	-	3:6.5 6:8
28	B. Capacity (m ²) B. Booster Pump Pit			-	2 6	5 6		-	2 10	2 10		-	-	-	1
	A. Number B. Capacity (m ²) B. Elevated tank	-	-		1 6	1	_	-	-	-	-	$\frac{1}{3}$	1 1.5	-	2
	A. Capacity (m ²) B. Height (m) Generator Set	50 15			20 15	-	-	20 15		-	30 15		-	- -	-
	A. Number B. Power (KVA)	2 60	2 80	2 80	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 80	2 60	$\frac{2}{40}$		2 40	2 20	2:2	2:2	2	2:2 80:20
31 32	Water Treatment Facility (1/sec) Chlorination Unit (1/hr)	2.7	-	18 2.7	2.7	2.7		2.7	2.7	40 18 2.7	20 13 2.7	20 : 60 2.7	60 : 20 2.7	60 2.7	
33 34		1528 38	1286	1189 30	512 22	452 19	344 15	589 25	1051 45	1172 29	808 20	1423 61	553 24	484 12	2.7 1430 36

Note : No:19 (Abrev. list): Spring = SPR. Groundwater = G.W. Extension = EXT.

No.20 : 12 × 2 : 12 = Capacity (1/sec) 2 = Number of Well No.21 : D - b etc = Type of Water Supply System

Table 8.1.5 SUMMARY LIST OF FEASIBILITY STUDY FOR 30 1KKS (2/3)

1 2 3 4	Name Code Kabupaten Kecamatan K K	15 BOJONEGORO BALEN BALEN	16 BOJONEGORO BAURENO BAURENO	17 TUBAN JENU JENU	18 MADIUN JIWAN JIWAN	19 Lamongan Kembangbahu Kembangbahu	20 Jonbang Diwek Diwek	21 MOJOKERTO KUTOREJO KUTOREJO	22 Luma Jang Tempeh Tempeii	23 Lunajang Kunir Kunir	24 Lumajang Tempursari Tempursari	25 PROBOL I NGGO BANYUANYAR BANYUANYAR	26 PROBOLINGGO SUMBERASIN SUMBERASIN
5 6	Total Population in the year 2000: A. Project Area B. Served Area Sarved Population	18,860 14,900 79 %	12.660 12.410 98 %	10.740 10.740 100 %	21,190 19,070 90 %	7,550 6,420 85 %	20,800 14,350 69 %	22.750 16.150 71 %	$22.460 \\ 14.150 \\ 63 \%$	24.030 19.220 80 %	17.130 11.480 67 %	21.770 16.330 75 %	10,720 9,860 92 %
7	%-tage of Population served	70	80	70	80	70	80	70	70	70	80	80	80
8	by House Connections (H.C.) Water demand for H.C. (D = 90 l/cap/day)(l/day)	938700	893520	676620	1373040	404460	1033200	1017450	891450	1210860	826560	1175760	709920
9	%-tage of Population served by Public Hydrants (P.H.)	30	20	30	20	30	20	30	30	30	20	20	20
10	Water demand for P.H. (D = 30 1/cap/day)(1/day)	134100	74460	96660	114420	57780	86100	145350	127350	172980	68880	97980	59160
11	Sub-total water demand (1/day)	1072800	967980	773280	1487460	462240	1119300	1162800	1018800	1383840	895440	1273740	769080
12	Water demand for non domestic (5 % × (11))(1/day)	53640	48399	38664	74373	23112	55965	58140	50940	69192	44772	63687	38454
13	Water demand for leakage	160920	145197	115992	223119	69336	167895	174420	152820	207576	134316	191061	115362
14	and losses 15 % × (11)(1/day) Total average demand (1/day)	1287360	1161576	927936	1784952	554688	1343160	1395360	1222560	1660608	1074528	1528488	922896
15	Total Average demand (1/sec)	14.90	13.44	10.74	20.66	6.42	15.55	16.15	14.15	19.22	12.44	17.69	10.68
16	Max day : 1.1 × (15)(1/sec)	16.39	14.79	11.81	22.73	7.06	17.10	17.77	15.57	21.14	13.68	19.46	11.75
17	Peak hour demand : 1.4 × (15)(1/sec)	20.86	18.82	15.04	28.92	8.99	21.76	22.61	19.81	26.91	17.41	24.77	14.95
18	Source capacity required for 24 hours operation/day (1/sec)	16.39	14.79	11.81	22.73	7.06	17.10	17.77	15.57	21.14	13.68	19.46	11.75
19	Potential source available	G.W.	G.¥.	G.W.	G.W.	G.W.	G.W.	G.W.	G.W.	G.W.	SPR.	G.W.	G.W.
20 21	Water source capacity available System	10 x 2 D-b	10 x 2 D-c	20 D-c	25 D-c	4.5 × 2 D-c	25 D-b	25 D-c	20 D-e	25 D-b	50 В-b	8 x 3 D-c	15 D-b
22	Source Pump (Submersible Pump) A. Number of pump B. Capacity (1/sec) C. Head (m)	2 10 40	2 10 30	1 15 40	1 25 40	2 5 40	1 20 40	1 20 40	1 20 40	1 25 40		3 10 40	15 40
	Main Distribution Pump (Submersible Pump) A. Number of pump B. Capacity (1/sec) C. Head (m)	3 10 30	4 5 80	4 5 60	3 15 60	3 5 60	3 10 30	3 10 60	3 10 30	3 15 30	4 5 60	3 10 40	4 5 30
24	Booster Pump (Submersible Pump) A. Number of pump	-	-	-		~~	-					-	
	B. Capacity (1/sec) C. Head (m)		-	-		-	-	-		-	-	-	-
25 26	Service Reservoir (m) Hydrophore	120	120	120	200	80	120	160	160	150	30	160	90
	A. Capacity (m²) B. Working Pressure (kg/cm²)	-	$6.5 \\ 8$	6.5 6	9 6	5 6	-	9 6	9 6		6.5 6	. 6	-
	Break Pressure Tank A. Number	-		-	~	_		~	-		~~	-	-
28	B. Capacity (m ²) Booster Pump Pit	. –	-	-	-	_	-	-	-		-		-
	A. Number B. Capacity (m ²)				-	-	-		-		· _	· _	-
29	Elevated tank A. Capacity (m ²)	40 15	-			_	40 15	_	-	50 15	-	-	30
30	B. Height (m) Generator Sot	0 10		 0	~	~		~	-	15	-	-	15
	A. Number B. Power (KVA)	60 60	2 80	2 80	100	$\begin{array}{cccc} 2 & : & 2 \\ 20 & : & 40 \end{array}$	2 60	2 80	2 60	80 80	2 60	60^{2}	2 60
31 32	Water Treatment Facility (1/sec) Chlorination Unit (1/hr)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
33	Number of House Connections Number of Public Hydrants	1043 45	993 25	752 32	1526 38	449 19	1148 29	1131 48	991 42	$\begin{array}{r}1345\\58\end{array}$	918 23	1306	789 20

Note : No:19 (Abrev. list): Spring - SPR. Groundwater - G.W. Extension - EXT.

No.20 : 10 x 2 : 10 - Capacity (1/sec) 2 - Number of Weij No.21 : D - b etc - Type of Water Supply System

Table 6.1.5 SUMMARY LIST OF FEASIBILITY STUDY FOR 30 IKKS (3/3)

1 2 3 4		27 GIANYAR TAMPAKSIRING TAMPAKSIRING	28 GIANYAR SUKAWATI Ketewel	29 KARANGASEM RENDANG MENANGA	30 KARANGASEM Bebandem Sibetan
5 6	A. Project Area B. Served Area	8.730 8.730 100 %	9.250 9.250 100 %	5.760 5.760 100 %	9.710 9.710 100 %
7	%-tage of Population served by House Connections (H.C.)	70	80	80	80
8	Water demand for H.C. (D = 90 [/cap/day)(I/day) %-tage of Population served	549990	666000	414720	699120
9	I DY PUDLIC Hydrants (P.H.)	30	20	20	20
10	Water demand for P.H. (D = 30 l/cap/day)(l/day) -Sub-total water demand	78570	55500	34560	58260
1	(I/day)	628560	721500	449280	757380
12	(5 % X (11))(1/dav)	31428	36075	22464	37869
13	Water demand for leakage and losses 15 % x (11)(1/day)	94284	108225	67392	113607
14	lotal average demand (1/day)	754272	865800	539136	908856
15		8.73	10.02	6.24	10.52
16	Max day : 1.1 x (15)(1/sec)	9.60	11.02	6.86	11.57
17	Peak hour demand : 1.4 x (15)(1/sec)	12.22	14.03	8.74	14.73
18	Source capacity required for 24 hours operation/day (1/sec)	9.60	11.02	6.86	11.57
19	Potential source available	SPR.	G.W.	SPR.	SPR.
20 21	Water source capacity available System	300 B-a	20	250	_12
22	Source Pump (Submersible Pump) A. Number of pump	Da	D-b	В-в	. Ва
	C. llead (m)		1 15		
23	Main Distribution Pump (Submersible Pump) A. Number of pump	- 9	40	0	
	B. Capacity (1/sec) C. Head (m)	3 5 40	4	3	45
24	Booster Pump (Submersible Pump) A. Number of pump	40	40	80	80
	B. Capacity (1/sec) C. Ilead (m)	- -		2:2:2:4 2.5:2.5:5.0:5.0	4 5
25 26	Service Reservoir (m) Hydrophore	20	90	60:80:60:80 20	80 90
	A. Capacity (m ²) B. Working Pressure (kg/cm ²)	-	-	2 : 3 : 3 : 3 : 2 : 5 6 : 6 : 8 : 8 : 8 : 8	· _
27	Break Pressure Tank A. Number	_	-		-
28	B. Capacity (m ²) Booster Pump Pit	· _		3 1.5	$ \begin{array}{c} 1 & : & 1 \\ 3 & : & 9 \end{array} $
	A. Number B. Capacity (m ²)	-		$\begin{array}{cccc} 3 & : & 2 \\ 3 & : & 1.5 \end{array}$	1
f	Elevated tank A. Capacity (m)	20	30	· · · · · · · ·	30
30	B. Height (m) Generator Set	11.5	10.5	-	50 11
	A. Number B. Power (KVA)	40^2	2 60	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 100
31 32	Water Treatment Facility (1/sec) Chlorination Unit (1/hr)	2.7	2.7	2.7	
33	Number of House Connections	611	740	461	2.7
ə4	Number of Public Hydrants	26	. 19	ĬŽ	Î9

Note : No:19 (Abrev. list): Spring = SPR. Groundwater = G.W. Extension = EXT.

6.2 Management Plan

6.2.1 Construction Plan

Construction plan for 30 IKKs has been proposed as shown in Table 6.2.1, based on the following conditions.

- (1) For the detailed design, field investigations including the followings should be conducted.
 - 1) Topographical survey for detailed design
 - 2) Soil investigation
 - 3) Geophisical prospecting and test well drilling and pumping test for IKKs for which ground water will be proposed to be a water source and where they have not been conducted in this Feasibility Study.
- (2) For tender packages, 30 IKKs were proposed to be devited into six (6) groups, that is three (3) groups in Central Java, two (2) in East Java and one (1) in Bali, as shown in Table 6.2.1, considering the followings.
 - 1) Shortening of construction period.
 - 2) Availability and capability of contractors
 - 3) Efficiency of detailed design and tender works

Table 6.2.1 : CONSTRUCTION SCHEDULE FOR 30 IKKs

D. Stat. 3. Distance of page		MONTH
No.	Description	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1	Loan Negotiation	
2	Field Investigation	EGEND LEGEND
3	Detailed Design	(15) BALEN
4	Land Acquisition	(17) JENU
5	Tender Document	(1) BULAKAMBA (18) JIWAN (4) MADUKARA (19) KEMBANGBANU
6.		A A STREET (4) MADUKARA (19) KEMBANGBANU (5) PUNGGELAN (20) DIWEK
		(8) SUKOREJO (21) KUTOREJO
		C GROUP(B) (Central Java) GROUP(E) (East Java)
		F DESCRIPTION (2) JERUKLEGI (2) TEMPEH
		Image: Constraint of the second se
		F GREENER (7) PETANAHAN (25) BANYUANYAR
7	Procurement	(13) GIRIWOYO (26) SUMBERASTH
	Pipes, Machine and	A, B, F
	Electrical Equipment	A, b, r (9) JEPON (27) TAMPAKSIRING C, D, E (10) BATANGAN (28) KETEWEL
	Construction	(11) GONDANG (29) MENANGA
******	Well Drilling	
8.2	Civil Works	A, B, F
	· · · · · · · · · · · · · · · · · · ·	
8.3	Pipe Laying Works	
8.4	Public Hydrants and	
	House Connections	
	Installation of Machine	
		A, B, F
	and Electrical Equipment	Test Run

6.2.2 Operation and Maintenance Plan

(1) Organization

Water supply facilities in each IKK will belong to BPAM or PDAM in Kabupaten to which the IKK is belonging and BPAM or PDAM will manage the facilities.

As for organization and function of BPAM and PDAM, refer to Chapter 2 in this Main Report. For one sample, organization structure of BPAM including operation and maintenance is shown in Fig. 6.2.1.

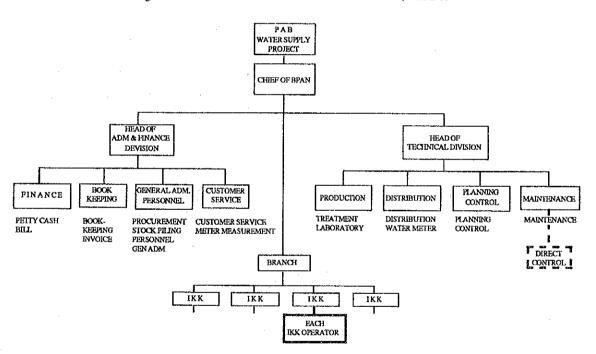


Fig. 6.2.1 ORGANIZATION STRUCTURE OF BPAM, TYPE A

- (2) Operation
 - 1) Operators necessary for water supply facilities will belong to each BPAM or PDAM.
 - 2) Arrangement of operators in each IKK is as follows.

(i) As a general rule, just like in existing IKK System water supply facilities, total three (3) operators should be assigned to each IKK. That is, two (2) operators (1 person x 2 shifts) for pump operation, pump inspection, Chlorine injection, etc., and one (1) operator (1

person $x \ 1$ shift, day time) for watching of water source, inspection of reservoir and pipeline, etc.

- (ii) However, in those IKKs where more than three pump stations including booster pump stations are installed, following total five (5) operators should be assigned. Four (4) operators (2 persons $x \ 2$ shifts) for pump operation, pump inspection, Chlorine injection, etc., and one (1) operator (1 person $x \ 1$ shift, day time) for watching of water source, inspection of reservoir and pipeline, etc.
- 3) Numbers of operators in each IKK are shown in Table 6.2.3.

(3) Maintenance

Maintenance of the facilities would be conducted by the Maintenance section of each BPAM or PDAM directly.

Repairs and replacements of the facilities should be done by the persons of Maintenance section or contractors based on the request from operators.

6.2.3 Cost Estimates

(1) Basis of Cost Estimation

The following basic prices have been used for the estimation of the Construction Cost for Water Supply Facilities in 30 IKKs.

- Basic price from Pusat Informasi Teknik Bangunan Jawa Tengah. (Agustus - September 1991)
- Basic price from Pusat Informasi Teknik Bangunan Jawa Timur. (Agustus - September 1991)
- Basic price from Pusat Informasi Teknik Bangunan Bali (Agustus - September 1991)
- 4) Quotation from Suppliers.
- 5) Standard Unit Cost from Cipta Karya.
- (2) Items of Cost Estimation
 - 1) Direct Cost

The installation cost (material, labour and equipment cost) for the following facilities will be included.

- (i) Intake facilities for spring
- (ii) Well (Shallow well / Deep well)
- (iii) Reservoir / elevated tank
- (iv) Water treatment facilities
- (v) Break pressure Tank
- (vi) Chlorination Unit
- (vii) Pumps
- (viii) Generator
- (ix) Hydrophore
- (x) Piping (including valves, airvalves, wash out etc.)
- (xi) Public Hydrants
- (xii) House Connection
- (xiii) Housing (Sub-Station, Pump House etc.)
- (xiv) Others (main water meter and spare parts)
- (xv) Internal transportation fee of imported materials.

2) Indirect Cost

The following indirect cost will be included in this Cost Estimation.

- (i) Land acquisition 1.7 % of direct cost
- (ii) Administration Fee 1.9 % of direct cost
- (iii) Training 0.6 % of direct cost
- (iv) Consultants Fee including the followings 13 % of direct cost.
 - i) Topographical Survey
 - ii) Soil investigation
 - iii) Geophisical prospecting
 - iv) Test well drilling and pumping test
 - v) Detailed Design
 - vi) Construction Supervision
 - vii) Others
 - Physical Contingency 10 % of direct cost
- (vi) Price escalation

(v)

- i) 4.7 % of Foreign portion cost per year.
- ii) 8 % of local portion cost per year.
- 3) Operation and Maintenance Cost

The following cost will be included in Operation and Maintenance Cost.

- (i) Operation Cost
 - i) Man power fee for operators
 - ii) Electric power and fuel
 - iii) Chemical

Ca(OCl)₂ injection fee

(ii) Maintenance Cost

5 % of equipment cost, such as pumps, generators, chlorination unit etc., per year.

- (3) Results of Cost Estimation
 - Summary of Construction Cost for 30 IKKs is shown in Table 6.2.2. Details of direct cost are shown in Supporting Report E.
 - 2) Summary of Operation and Maintenance Cost for 30 IKKs is shown in Table 6.2.3.

TABEL 6.2.2 (1) SUMMARY LIST OF CONSTRUCTION COST

CODE	1	2	3	4	5	6	7	8	9	10
NAME OF I K K	BULAKAMBA	JERUKLEGI	KEMI RI	MADUKARA	PUNGGELAN	KARANGGAYAM	PETANAHAN	SUKOREJO	JEPON	BATANGAN
PROVINCE	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JA
POPULATION	19,100	18,370	14,860	7,320	6,450	4,920	8,420	15,010	14,650	10,1
A. DIRECT COST a. Intake Facility for Spring		13,650	_	7,500	22,750	4,500		39,000		
. Water Treatment Facility		-	184,100	110,700	-			-	184,100	226,2
			21 070						202 010	
c. Well (Shallow / Deep)	65,170		74,970	210 000	104 000	190 475	36,660		203,916	-
d. Pump + Generator	149,000	174,755	198,005	219,000	164,000	138,475	101,750	-	103,500	56,0
e. Chorination Unit	2,460	-	2,460	2,460	2,460	-	2,460	2,460	2,460	- 116 0
f. Reservoir / Elevated Tank	183,044	55,691	50,771	133,444	109,279	23,079	84,164	66,950	103,771	115,8
g. Piping	622,648	599,410	235,167	610,193	230,898	274,399	153,646	1,007,179	871,848	982,1
h. Public Taps	83,600	121,000	68,000	48,400	41,800	33,000	55,000	99,000	63,800	44,0
i. House Connection	382,000	321,500	297,250	128,000	113,000	86,000	147,250	262,750	293,000	202,0
j. Others	43,732	41,519	33,989	41,306	24,549	22,932	19,729	41,891	50,579	47,4
k. Internal Transportation Fee	6,540	4,515	5,895	3,563	4,892	4,477	3,752	4,500	4,588	6
of Imported Materials										
•										ļ
TOTAL DIRECT COST	1,538,194	1,332,041	1,148,607	1,304,566	713,628	586,862	604,411	1,523,730	1,881,562	1,674,4
n an					······································					
B. INDIRECT COST			·	· · · · · ·						
a. Land Acquisition	26,149	22,645	19,526	22,178	12,132	9,977	10,275	25,903		28,4
b. Administration	29,226	25,309	21,824	24,787	13,559	11,150	11,484	28,951	35,750	31,8
c. Training	9,229	7,992	6,892	7,827	4,282	3,521	3,626	9,142	11,289	10,(
d. Consultants	199,965	173,165	149,319	169,594	92,772	76,292	78,573	198,085	244,603	217,9
e. Physical Contingency	153,819	133,204	114,861	130,457	71,363	58,686	60,441	152,373	188,156	167,4
	(10,000	210 200	919 491	354,842	194,107	159,626	164,400	414,454	511,785	455,4
TOTAL INDIRECT COST	418,389	362,315	312,421	504,046	104,101	100,000				
TOTAL DIRECT AND INDIRECT	1,956,582	1,694,356	1,461,028	1,659,408	907,735	746,489	768,811	1,938,184	2,393,346	2,129,8
COST (A + B)		and the second		Company of the second			and the second	n ang ang ang ang ang ang ang ang ang an	and the second	
C. PRICE ESCALATION	266,429	221,865	190,046	208,237	108,881	87,140	99,465	278,906	336,469	300,
C. PRICE ESCREATION	200,423	661,000	100,040	2001201				·		
TOTAL COST $(A + B + C)$	2,223,012	1,916,220	1,651,075	1,867,645	1,016,617	833,628	868,276	2,217,090	2,729,816	2,430,
Construction Cost / Person (Rupiah/Person)	116,388	104,312	111,109	255,143	157,615	169,437	103,121	147,708	186,336	240,

TABEL 6, 2, 2 (2) SUMMARY LIST OF CONSTRUCTION COST

.

<u>UNIT : 1,000 Rp.</u> CODE	11	12	13	14	15	1.6	17	18	19	20
NAME OF I K K	GONDANG	JENAR	GIRIWOYO	BAWEN	BALEN	BAURENO	JENU	JIWAN	KEMBANGBAHU	DIWEK
PROVINCE	CENTRAL JAVA	CENTRAL JAYA	CENTRAL JAVA	CENTRAL JAVA	EAST JAVA	EAST JAVA				
POPULATION	20,330	7,900	6,050	17,880	14,900	12,410	10,740	19,070	6,420	14,350
A. DIRECT COST										
a. Intake Facility for Spring			19,500	19,500	-		-			-
b. Water Treatment Facility	-	-	—	-		-	-			-
	100 500	46,600			76,452	46,600	44,670	44,670	85,000	44,170
c. Well (Shallow / Deep)	108,592		125,000	204,630	144,750	183,518	174,018	219,005	149,475	140,000
d. Pump + Generator	171,613	194,475		2,460	2,460	2,460	2,460	2,460	2,460	2,460
e. Chorination Unit	2,460	2,460	2,460	100,191	160,549	39,948	39,948	65,971	27,257	160,549
f. Reservoir / Elevated Tank	77,391	30,329	11,699				237,507	236,335	138,927	255,462
g. Piping	475,689	246,091	168,157	1,103,122	515,614	394,102		91,200	45,600	69,600
h. Public Taps	134,200	52,800	26,400	79,200	108,000	60,000	76,800		121,230	309,960
i. House Connection	355,750	138,250	121,000	357,500	281,610	268,110	203,040	412,020		29,188
j. Others	40,224	27,703	19,509	59,400	37,936	33,631	27,563	34,193	20,230	
k. Internal Transportation Fee	5,241	4,921	3,681	4,055	11,520	11,644	10,294	10,974	7,686	8,283
of Imported Materials		÷								
) . ·					507 001	1 010 070
TOTAL DIRECT COST	1,371,160	743,630	497,405	1,930,058	1,338,891	1,040,013	816,299	1,116,828	597,864	1,019,672
		· · · ·								
B. INDIRECT COST	00.010	10.040	8,456	32,811	22,761	17,680	13,877	18,986	10,164	17,334
a. Land Acquisition	23,310	12,642		36,671	25,439	19,760	15,510	21,220	11,359	19,374
b. Administration	26,052	14,129	9,451		8,033	6,240	4,898	6,701	3,587	6,118
c. Training	8,227	4,462	2,984	11,580		135,202	106,119	145,188	77,722	132,557
d. Consultants	178,251	96,672	64,663	250,908	174,056		81,630	111,683	59,786	101,967
e. Physical Contingency	137,116	74,363	49,741	193,006	133,889	104,001	01,000	111,000	00,100	
TOTAL INDIRECT COST	372,955	202,267	135,294	524,976	364,178	282,884	222,033	303,777	162,619	277,351
TOTAL DIRECT AND INDIRECT COST (A + B)	1,744,115	945,898	632,699	2,455,034	1,703,070	1,322,897	1,038,333	1,420,605	760,483	1,297,023
C. PRICE ESCALATION	232,927	109,369	73,784	323,310	229,986	166,753	127,563	180,127	90,495	173,509
$\begin{array}{c} \textbf{TOTAL COST} \\ \textbf{(} A + B + C \textbf{)} \end{array}$	1,977,042		706,484	2,778,344	1,933,056	1,489,650	1,165,895	1,600,732	850,978	1,470,533
Construction Cost / Person (Rupiah/Person)	97,248	133,578	116,774	155,388	129,735	120,036	108,556	83,940	132,551	102,470

TABEL 6.2.2 (3) SUMMARY LIST OF CONSTRUCTION COST

<u>UNIT : 1,000 Rp.</u> CODE	21	22	23	24	25	26	27	28	29	30
NAME OF I K K	KUTOREJO	TEMPEH	KUNIR	TEMPURSARI	BANYUANYAR	SUMBERASIH	TAMPAKSIRING	KETEWEL	MENANGA	SIBETAN
PROVINCE	EAST JAVA	EAST JAVA	EAST JAVA	EAST JAVA	EAST JAVA	EAST JAVA	BALI	BAL I	BALI	BAL I
POPULATION	16,150	14,150	19,220	11,480	16,330	9,860	8,730	9,250	5,760	9,710
A. DIRECT COST										
a. Intake Facility for Spring	_	. ~	_	29,500	-		19,500	-	19,500	7,800
b. Water Treatment Facility			-			_n	-	-	-	-
c. Well (Shallow / Deep)	44,170	33,910	44,670	-	91,455	33,910	-	~		
d. Pump + Generator	184,505	164,255	158,250	149,518	178,505	141,000	92,500	141,000	503,088	211,000
e. Chorination Unit	2,460	2,460	2,460	2,460	2,460	2,460	2,460	2,460	2,460	2,460
f. Reservoir / Elevated Tank	59,252	59,252	201,691	13,581	59,252	127,803	85,115	128,152	89,957	186,990
g. Piping	275,200	186,935	339,120	341,261	190,247	178,378	186,789	366,227	228,761	291,133
h. Public Taps	115,200	100,800	139,200	55,200	79,200	48,000	63,700	46,550	29,400	46,550
i. House Connection	305,370	267,570	363,150	247,860	352,620	213,030	175,968	213,120	132,768	223,776
j. Others	31,769	26,867	36,350	28,808	29,708	24,517	20,440	29,629	47,298	34,086
k. Internal Transportation Fee	11,004	10,140	9,519	8,854	9,671	8,313	11,124	16,806	61,759	28,260
of Imported Materials					· · · · · · · · · · · · · · · · · · ·		L		·	
							057 500	0.00.000	1 114 000	1 099 054
TOTAL DIRECT COST	1,028,930	852,189	1,294,410	877,042	993,117	777,412	657,596	943,939	1,114,990	1,032,054
B. INDIRECT COST	17,492	14,487	22,005	14,910	16,883	13,216	11,179	16,047	18,955	17,545
a. Land Acquisition		14,407	24,594	16,664	18,869	14,771	12,494	17,935	21,185	19,609
b. Administration	19,550	5,113	7,766	5,262	5,959	4,664	3,946	5,664	6,690	6,192
c. Training	6,174 133,761	110,785	168,273	114,015	129,105	101,064	85,487	122,712	144,949	134,167
d. Consultants	102,893	85,219	129,441	87,704	99,312	77,741	65,760	94,394	111,499	103,205
e. Physical Contingency	106,033	00,610	140,441	01,104	00,010					
TOTAL INDIRECT COST	279,869	231,795	352,079	238,555	270,128	211,456	178,866	256,751	303,277	280,719
TOTAL DIRECT AND INDIRECT COST (A + B)	1,308,799	1,083,984	1,646,489	1,115,597	1,263,245	988,868	836,462	1,200,690	1,418,267	1,312,773
C. PRICE ESCALATION	167,372	137,660	223,273	141,215	163,364	126,835	110,822	155,398	132,139	163,136
TOTAL COST $(A + B + C)$	1,476,171	1,221,645	1,869,762	1,256,813	1,426,610	1,115,703	947,283	1,356,088	1,550,406	1,475,909
Construction Cost / Person (Rupiah/Person)	91,404	86,335	97,282	109,478	87,361	113,154	108,509	146,604	269,168	151,999

UNIT : 1,000 Rp.

SUMMARY LIST OF CONSTRUCTION COST FOR EACH PROVINCE

<u>UNIT : 1,000 Rp.</u>	· · · · · · .	•		OVINCE
	-14	15-26	27-30	1-30
NAME OF IKK ALL I	N CENTRAL	ALL IN EAST	ALL IN	ALL THREE
PROVINCE JAVA	PROVINCE	JAVA PROVINCE	BALI PROVINCE	PROVINCES
POPULATION	171,360	165,080	33,450	369,890
NER EIN MER GREFTUNTUNGEN UM DE VERSEN KAN DE NER AND DE NER D		n an	<mark>na na na sana na</mark>	and a first state of the second
A. DIRECT COST		. · ·		
a. Intake Facility for Spring	126,400	29,500	46,800	202,700
b. Water Treatment Facility	705,177	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	705,177
c. Well (Shallow / Deep)	535,908	589,677	·	1,125,585
d. Pump + Generator	2,000,203	1,986,798	947,588	4,934,588
e. Chorination Unit	27,060	29,520	9,840	66,420
f. Reservoir / Elevated Tank	1,145,696	1,015,052	490,214	2,650,961
g. Piping	7,580,617	3,289,087	1,072,910	11,942,613
h. Public Taps	948,200	988,800	186,200	2,123,200
i. House Connection	3,205,250	3,345,570	745,632	7,296,452
j. Others	514,490	360,762	131,453	1,006,705
k. Internal Transportation Fee	61,278	117,902	117,943	297,123
of Imported Materials				
	· · · · · · · · · ·			
TOTAL DIRECT COST	6,850,277	11,752,667	3,748,578	32,351,523
B. INDIRECT COST		· · · · · · · · · · · · · · · · · · ·		
a. Land Acquisition	286,455	199,795	63,726	549,976
b. Administration	320,155	223,301	71,223	614,679
c. Training	101,102	70,516	22,491	194,109
d. Consultants	2,190,536	1,527,847	487,315	4,205,698
e. Physical Contingency	1,685,028	1,175,267	374,858	3,235,152
			· · · · · · · · · · · · · · · · · · ·	
TOTAL INDIRECT COST	1,583,275	3,196,726	1,019,613	8,799,614
TOTAL DIRECT AND INDIRECT 2	,433,553	14,949,393	4,768,192	41,151,138
COST (A + B)				
C. PRICE ESCALATION	2,837,495	1,928,154	561,495	5,327,144
i i i	1,271,047	16,877,547	5,329,687	46,478,282
(A + B + C)				
			· · · · · · · · · · · · · · · · · · ·	energen den des beingen er en den en den stat
Construction Cost / Person	141,638	102,239	159,333	125,654
(Rupiah/Person)				

Table 6.2.3 : SUMMARY LIST OF OPERATION AND MAINTENANCE COST FOR 30 IKK

UNI	T : 1,000 Rp.			:				<u>, 0031 10K 30 1</u>				
	CODE		1	2	3	4	5	6	7	8	9	10
	NAME OF IKK		BULAKAMBA	JERUKLEGI	KEMI RI	MADUKARA	PUNGGELAN	KARANGGAYAM	PETANAHAN	SUKOREJO	JEPON	BATANGAN
	PROVINCE		CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA					
	POPULATION		19,100	18,370	14,860	7,320	6,450	4,920	8,420	15,010	14,650	10,100
	TYPE OF W.S.S		D-b	E-b	С	B-a	A-a	E-b	D-b	A-b	D-a	E-a
	No. OF OPERAT	OR	3	3	5	3	3	3	3	3	5	3
1.	Operation	(per year)	4,284	4,284	7,140	4,284	4,284	4,284	4,284	4,284	7,140	4,284
2.	Power & Fuel	(per year)	19,217	25,623	25,623	32,029	25,623	19,217	12,812	-	12,812	6,406
3.	Chemical	(per year)	6,280	5,577	4,887	2,221	1,959	1,493	2,555	4,556	4,818	3,322
4.	Maintenance	(per year)	7,573	8,738	10,023	11,073	8,323	6,924	5,211	123	5,298	2,800
	TOTAL COST OF OPERATION AND PER YEAR		37,355	44,221	47,673	49,607	40,189	31,918	24,861	8,963	30,067	16,812

CODE		11	12	13	14	15	16	17	18	19	20
NAME OF IKK		GONDANG	JENAR	GIRIWOYO	BAWEN	BALEN	BAURENO	JENU	JIWAN	KEMBANGBAHU	DIWEK
PROVINCE		CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	CENTRAL JAVA	EAST JAVA	EAST JAVA				
POPULATION		20,330	7,900	6,050	17,880	14,900	12,410	10,740	19,070	6,420	14,350
TYPE OF W.S.S		D-a	С	A-a	A-b	D-b	D-c	D-c	D-c	D-c	D-b
No. OF OPERAT(OR	5	5	3	3	3	3	3	3	3	. 3
1. Operation	(per year)	7,140	7,140	4,284	4,284	4,284	4,284	4,284	4,284	4,284	4,284
2. Power & Fuel	(per year)	25,623	25,623	19,217	32,029	19,217	25,623	25,623	32,029	19,217	19,217
3. Chemical	(per year)	6,170	2,398	1,990	5,880	4,523	4,081	3,259	6,272	1,948	4,719
4. Maintenance	(per year)	8,704	9,847	6,373	10,355	7,361	9,299	8,824	11,073	7,597	7,123
TOTAL COST OF OPERATION AND PER YEAR		47,637	45,008	31,864	52,548	35,384	43,287	41,990	53,658	- 33,046	35,343

CODE		21	22	23	24	25	26	27	28	29	30
NAME OF I I	K	KUTOREJO	TEMPEH	KUNIR	TEMPURSARI	BANYUANYAR	SUMBERASIH	TAMPAKSIRING	KETEWEL	MENANGA	SIBETAN
PROVINCE		EAST JAVA	EAST JAVA	EAST JAVA	EAST JAVA	EAST JAVA	EAST JAVA	BALI	BALI	BALI	BALI
POPULATION	······	16,150	14,150	19,220	11,480	16,330	9,860	8,730	9,250	5,760	9,710
TYPE OF W.S	, S	D-c	D-c	D-b	B-b	D-c	D-b	B-a	Db	B-b	B-a
No. OF OPEI	ATOR	3	3	3	3	5	3	3	3	5	3
1. Operation	(per year)	4,284	4,284	4,284	4,284	7,140	4,284	4,284	4,284	7,140	4,284
2. Power & Fue	l (per year)	25,623	19,217	25,623	19,217	19,217	19,217	12,812	19,217	70,463	32,029
3. Chemical	(per year)	4,903	4,296	5,833	3,775	5,370	3,242	2,649	3,041	1,893	3,193
4. Maintenance	(per year)	9,348	8,336	8,036	7,599	9,048	7,173	4,748	7,173	25,277	10,673
TOTAL COST OPERATION / PER YEAR	OF ND MAINTENANCE	44,159	36,133	43,776	34,875	40,775	33,917	24,493	33,715	104,774	50,178

.

	CODE	1-14	15-26	27-30	1-30
	NAME OF I K K	ALL IN CENTRAL	ALL IN EAST	ALL IN	ALL THREE
	PROVINCE	JAVA PROVINCE	JAVA PROVINCE	BALI PROVINCE	PROVINCES
	POPULATION	171,360	165,080	33,450	369,890
OPF	ERATION AND MAINTENANCE COST				an a
	TYPE OF W.S.S	-	_		_
	No. OF OPERATOR	50	38	14	102
1.	Operation (per year)	71,400	54,264	19,992	145,656
2.	Power & Fuel (per year)	281,853	269,042	134,521	685,415
3.	Chemical (per year)	54,106	52,222	10,775	117,103
4.	Maintenance (per year)	101,363	100,816	47,871	250,050
	TOTAL COST OF OPERATION AND MAINTENANCE PER YEAR	508,722	476,343	213,160	1,198,225

6.3 Project Evaluation

6.3.1 General

The project evaluation is conducted from the financial and economic points of view for each IKK and the whole 30-IKK.

The financial aspect is evaluated by means of a Financial Internal Rate of Return (FIRR), by providing two alternative revenue conditions of current tariff and affordability of customers to pay for water consumed. Where, the current tariff applies an average water tariff rate of BPAMs and PDAMs concerned, and the affordability is assumed to be a rate of 4% of the average household income (hereinafter referred to as the "4% -affordability"), in accordance with similar projects of Indonesia in recent years.

In addition to the FIRR analysis, a financial cash flow of the project would be examined for the 30 IKK as a whole, assuming that a foreign loan is applied to the initial investment cost. But, the financial analysis concerning operation of each BPAM and PDAM is not included in the present study.

On the other hand, the economic evaluation is carried out by means of an Economic Internal Rate of Return (EIRR), by using the estimated economic cost and benefit of the project.

In accordance with Section 6.2 Management Plan, construction works of the project would be completed within three years, including the period of preparation work and detail design, and the works are assumed to be commenced in 1993.

The project life is taken as 30 years after completion of the construction works. The project revenue (or benefit), together with operating and maintenance costs (OM cost), is assumed to occur every year during the period of project life. Other conditions and assumptions necessary for the financial and economic evaluations are given in Annex 1.

Project Cost

Construction cost of the project is in detail given for each IKK in Table 6.2.2, and the total cost for the whole 30-IKK is estimated at Rp.46,478 million, taking account of the annual price escalation of 4.7% for foreign currency portion and 8% for local currency portion.

The OM cost for each IKK is indicated at the 1991 price level in Table 6.2.3. During the period of project life the OM cost would amount to Rp.199,474 million for the whole 30-IKK, taking the said price escalation into account. Cash flow of the OM cost together with the construction cost is given in Table 6.3.1.

Project Revenue

As mentioned in previous Section 6.3.1, two alternatives are prepared for estimating the project revenue, and the result is given in Table 6.3.2, under the conditions and assumptions described in Annex 1. The total revenue at the 1991 price level is estimated at Rp. 1,469 million per annum and Rp.4,311 million per annum by applying the current tariff and the 4%-affordability, respectively. Annual flow of the revenue for the whole 30-IKK for the period of project life is shown in Table 6.3.1.

Cost-Revenue Analysis

The FIRR is estimated under the conditions and assumptions stated in Annex 1, and the result is summarized in Table 6.3.3. In case where the 4%-affordability is applied, the FIRR for the whole 30-IKK comes to 15.7%, which the project shows to be feasible financially. The FIRR for each IKK also shows the high figure comparatively as a water supply project of small scale, except the rate for Madukara and Menanga. The low FIRR for the said two IKKs would be due mainly to that construction, operation and maintenance of the project are costly relatively to the low number of population served.

In case where the current tariff is used for estimating the revenue, the FIRR comes to nearly zero percent for the whole 30-IKK and a negative for 16 IKKs (See Table 6.3.3).

aline a Dynama

From result of the foregoing financial analysis, it is estimated that the FIRR for the whole 30-IKK will attain to 10% and 5% by raising the average current tariff (Rp.150/m³) to Rp.280/m³ (85% up) and to Rp.200/m³ (30% up), respectively.

Apart from the evaluation, a cash flow statement of cost and revenue for the whole 30-IKK is provided assuming a foreign loan for the construction cost. The loan condition is assumed as follows:

- Interest rate : 3.0% per annum
 - Grace period : 10 years
- Repayment period : 30 years (including grace period)

In this statement, the 4%-affordability is adopted for the project revenue, and the result is given in Table 6.3.4. The statement shows that the project will be borne to repay the loan without any problem. In this case, the FIRR would come to 10.0%.

6.3.3 Economic Evaluation

Economic Cost

The economic cost of the project is converted from the financial cost under the conditions and assumptions described in Annex 1, and the result is given for each IKK as shown in Table 6.3.5. The total economic cost for the whole 30-IKK amounts to Rp.36,568 million for the construction cost and Rp.1,079 million for the annual OM cost. Annual flows of these costs are given in Table 6.3.7.

Economic Benefit

The economic benefit is mainly estimated based on a concept of time saving for fetching water from the water sources, and in addition the benefit of reduction in cost for purchasing water from water-vendors is estimated for a part of water consumption in IKKs of Baureno and Menanga. The benefit is given as a difference between both conditions of with and without the projects, under the conditions and assumptions stated in Annex 1. The economic annual benefit is estimated at Rp.5,408 million in total of the whole 30-IKK and the result for each IKK is given in Table 6.3.6. As shown in Table 6.3.7, the total economic benefit for the whole 30-IKK would amount to Rp.161,709 million during the period of project life.

Cost-Benefit Analysis

The EIRRs for the whole 30-IKK and each IKK are given in Table 6.3.3. The EIRR for the whole 30-IKK is estimated at 10.1%, which is a fairly high rate from a viewpoint of basic human needs project.

As seen in Table 6.3.3, the EIRR has a tendency to give a comparatively high figure for the IKK where is difficult to fetch water. Therefore, a priority for execution of the project should be given to such IKK with high EIRR, as well as the IKK with high FIRR.

Sensitivity Test of EIRR

Various conditions and assumptions have been set in the present study based on professional experience and appropriate judgment of experts, but there always remains the question as to the degree of reliability of inputs. Therefore, a test is carried out for sensitivity of the EIRR to variations in the economic cost and benefit which have been estimated for the whole 30-IKK.

The sensitivity of the EIRR is tested for the 5% and 10% increases in the economic cost and the 5% and 10% decreases in the economic benefit. The result is given as follows:

Increase	Decrease in Benefit						
in Cost	0%	-5%	- 10%				
0%	10.1	9.4	8.7				
+5%	9.5	8.8	8.1				
+10%	8.8	8.2	7.5				

Sensitivity Test of EIRR (%)

The EIRR would come to 7.5% in the most pessimistic condition which combines 10%-increase in the cost and 10%-decrease in the benefit. This percentage is in somewhat higher position than an average EIRR of the regional water supply projects. It seems therefore that the project still maintains the socio-economic feasibility, even if it comes to such a pessimistic condition.

Socio-Economic Impacts

Aside from the foregoing tangible benefit, the following effects would be expected by implementation and/or completion of the construction works:

- (1) A stimulative effect for promotion of the socio-economic development in and around the study area.
- (2) Reduction in cases of water-borne diseases in IKKs due to supply of clean water.
- (3) Creation of employment opportunities for inhabitants in and around the study area.
- 6.3.4 Summary of Project Evaluation

Result of the project evaluation is summarized as follows:

- In case where the 4%-affordability is applied for the financial evaluation, the FIRR for individual IKKs shows a high figure comparatively as a water supply project of small scale, except the rate for Madukara and Menanga. As a result, the FIRR for whole 30-IKK indicates 15.7%, which the project is feasible financially.
- (2) Whereas, in case where the current tariff is used, the FIRR comes to nearly zero percent for the whole 30-IKK. Accordingly, to get the FIRR of 10% which is close to an opportunity cost of capital in the study area, the average water rate for domestic use has to be raised from the current tariff of Rp.150/m³ to Rp.280/m³ (85% up). And also to get the FIRR of 5% taking account of the "Basic Human Needs", it would need to raise the tariff to Rp.200/m³ (30% up).
- (3) The EIRR for the whole 30-IKK shows 10.2% which is a fairly high rate as a basic human needs project, i.e. the project would be feasible socioeconomically.
- (4) As regards the individual IKKs, the EIRR has a tendency to give a comparatively high figure for the IKK where it is difficult to fetch water. For example, the IKK Menanga shows a the high EIRR of 19.4%, despite the FIRR is a negative. On the other hand, almost all of IKKs with the lower

EIRR than 5% indicate a high FIRR, under condition of the 4%-affordability.

(5) In conclusion, the project as a whole of 30-IKK is feasible financially (by raising the average current tariff by about 30%) and socio-economically. The sub-project for individual IKK also would be feasible, under a condition which the project should satisfy the feasibility of either financial or economic aspect.

ANNEX 1. Conditions and Assumptions used for the Project Evaluation

1. Financial Conditions and Assumptions

The following conditions and assumptions are set for financial evaluation of the project.

- (1) The annual price escalation of commodities and services procured for the project is assumed to be a rate of 8% for the local currency portion and 4.7% for the foreign currency portion, during the periods of construction works and project life.
- (2) In estimating the water supply revenue, two alternatives of water tariff rate are prepared; one is an average rate of current tariff of BPAMs and PDAMs concerned, the other is a rate which corresponds to 4% of an average household income (the 4%-affordability).
- (3) The average tariff rate of BPAM/PDAM for household in 1991 is estimated at Rp.150/m³ for house connection (H.C.) and Rp.100/m³ for public hydrant (P.H.). On the other hand, the tariff rate which is estimated in accordance with the said 4%-affordability comes to Rp.440/m³ for H.C. and Rp.293/m³ for P.H. by applying an average household income of Rp.128,000 per month shown in Table 2.1.5 of Section 2.1.
- (4) According to the design criteria shown in Paragraph 6.1.3, the ratio of house connection and public hydrant uses in the population served is defined to be 70 : 30 (or 80 : 20) by IKK. This ratio is also applied to non-domestic users which are presumed to be 5% of the total water demand.
- (5) The water supply revenue is firstly estimated at the tariff rate in 1991, and after that year it is assumed to increase at the same rate (8% per annum) as the price escalation of local commodities and services.
- (6) Calculation of the water supply revenue is based on the population served in the target year 2000 in accordance with the design criteria, and after that year this revenue would accrue every year during the period of project life. On the other hand, the revenue which will accrue in each year from 1996 to 1999 after completion of the construction works is estimated on the basis of the population served in each year.

- (7) A bad debt is presumed to be 5% of the water supply revenue expected in each year.
- (8) Opportunity cost of capital is assumed to be a rate of 10% in the study area.
- (9) The construction cost of house connection facilities in the initial investment is assumed to be repaid in yearly installments for 4 years after completion of the construction works.
- 2. Economic Conditions and Assumptions

The following conditions and assumptions are set for economic evaluation of the project.

- (1) Transfer payments such as taxes and duties are assumed to be 10% of market prices of commodities and services procured locally, and to be exempted from duties for those imported from abroad.
- (2) Standard conversion rate to be applied for local commodities and services is assumed to be approximately 100%, based on export and import statistics in recent years.
- (3) Economic wage of unskilled laborers to be employed for the construction works is assumed to be 90% of the actual market wage, taking account of the employment opportunity of laborers in the study area.
- Economic cost of land compensation is assumed to be 90% of the financial cost, taking account of the opportunity cost of land use.
- (5) The economic cost and benefit of the project are given in the present value (PV) at the 1991 price level and are taken no account of the price escalation during the periods of construction works and project life.
- (6) At present, the majority of inhabitants in IKKs concerned are using water of well, spring, canal, river or water-vendor for their daily lives (condition of without the project), and after completion of the project it is expected that they will get their domestic water from water supply facilities of house connection or public hydrant (condition of with the project). In the present study, economic benefit of

the project is given as an economic difference between both conditions of with and without the projects.

- (7) For estimating the economic benefit, a saving of time for fetching water from the water sources is adopted, and in addition to the time saving, a reduction in cost for purchasing water from the water-vendors is applied to a part of water consumption of inhabitants in two IKKs of Baureno and Menanga.
- (8) At the condition of without the project, the time necessary for fetching water was estimated based on the answer of questionnaire survey to officers of Kecamatans related to the 30-IKK. This time varies in distance between household and water source, seasons, topographic condition in IKKs, etc. Nevertheless, as an average the following relation between time spent per day and distance for fetching water was given from results of the survey:

Distance (m)	Time (hour)	Distance (m)	Time (hour)
5	0.5	500	1.8
10	0.6	1,000	2.0
20	0.8	2,000	3.0
50	1.0	3,000	4.0
100	1.5	4,000	5.0

Relation between Time spent per day and Distance for fetching Water

The above-mentioned relations are used as a standard for estimating the saving time. However, of course the topographic and other special conditions in each IKK were separately taken into account, according to information from the Kecamatan officers.

- (9) On the other hand, at the condition of with the project the time spent for fetching water is assumed to be zero hour for the house connection and 0.5 hours for the public hydrant.
- (10) It is assumed that the time saved for fetching water will produce an increase in working time, and that the economic benefit will come to Rp.168.75 per hour in 1991, on the basis of a laborer wage of Rp.1,500/day, a work time of 8-hour/day and the employment opportunity rate of 90%.

- (11) In estimating the reduction in cost for purchasing water from the vendors stated in (7) above, the economic water price in 1991 is assumed to be Rp.150 per 40 liters on average, based on information from the Kecamatan officers.
- (12) The matters described in (4), (6) and (8) of the said financial conditions and assumptions are also applied to the economic conditions and assumptions.

Table 6.3.1	CASH FLOW OF FINANCIAL COST AND
	BENEFIT FOR THE WHOLE 30-IKK

Unit: Million Rps.

Year		Fin	ancial Co	st	Financial	Revenue
Y	ear	Const.	OMR	Total	Case (A)	Case (B)
1	1993	6,011	0	6,011	0	C
2	1994	28,903	0	28,903	0	C
3	1995	11,567	0	11,567	0	(
4	1996	0	1,761	1,761	2,724	6,745
5	1997	0	1,902	1,902	2,909	7,288
6	1998	0	2,054	2,054	3,117	7,897
7	1999	0	2,218	2,218	3,339	8,547
8	2000	0	2,396	2,396	2,937	8,618
9	2001	0	2,587	2,587	3,172	9,308
10	2002	0	2,794	2,794	3,426	10,052
11	2003	0	3,018	3,018	3,700	10,857
12	2004	0	3,259	3,259	3,996	11,72
13	2005	0	3,520	3,520	4,315	12,663
14	2006	0	3,802	3,802	4,661	13,676
15	2007	0	4,105	4,106	5,033	14,770
16	2008	0	4,434	4,434	5,436	15,952
17	2009	· · 0	4,789	4,789	5,871	17,228
18	2010	0	5,172	5,172	6,341	18,600
19	2011	0	5,586	5,586	6,848	20,095
20	2012	0	6,033	6,033	7,396	21,702
21	2013	0	6,515	6,515	7,987	23,439
22	2014	0	7,036	7,036	8,626	25,314
23	2015	0	7,599	7,599	9,317	27,339
24	2016	0	8,207	8,207	10,062	29,520
25	2017	Ó	8,864	8,864	10,867	31,888
26	2018	0	9,573	9,573	11,736	34,439
27	2019	0	10,339	10,339	12,675	37,194
28	2020	0	11,166	11,166	13,689	40,169
29	2021	0	12,059	12,059	14,784	43,383
30	2022	0	13,024	13,024	15,967	46,854
31	2023	0	14,066	14,066	17,244	50,602
32	2024	Ő	15,191	15,191	18,624	54,650
33	2025	0	16,406	16,406	20,114	59,02
	Total	46,481	199,474	245,955	246,914	719,54

Note:

Case (A): Current Tariff Basis.

Case (B):

B): 4 % Criterion of Household Income.

Table 6.3.2 VOLUME AND REVENUE OF SUPPLIED WATER AT THE 1991 PRICE LEVEL

Effective 118.40 4,311.28 112.79 (32 %) 232.90 203.57 181.20 81.12 71.48 54.52 166.34 178.64 123.16 225.29 87.55 73.77 218.03 165.12 151.33 119.02 71.15 232.54 178.97 156.81 212.99 139.98 199.12 120.23 96.74 70.24 93.3I (2) 4 %-Household Income Criterion 124.63 \$,538.19 159.29 125.28 74.89 184.19 188.39 165-06 224.20 147.35 126.56 101.84 175.09 188.04 129.64 237.15 92.15 77.66 229-50 173-81 244.77 209.61 118.73 73.93 245.15 214.29 190.74 85.39 75.24 57.39 98.22 Total 9.27 12.32 15.65 13.71 7.42 10.55 6.37 8.46 5.98 3.72 96.80 14.44 8.02 6.22 18.63 6.27 8.16 9.46 6.53 19.70 7.66 3.91 11.55 12.34 17.80 9.60 7.09 6.25 14.55 Р.Н. 4.77 (95 %) Non-Domestic 4,241.39 232.82 196.48 181.14 78.29 68.99 90.06 160.55 178.56 178.56 217.45 84.50 73.75 73.75 73.75 151.27 114.87 151.27 114.87 86.67 68.67 151.35 205.58 139.94 199.06 120.19 93.38 118.36 174.92 232.45 172.74 112.75 52.62 70.21 н.с. & Revenue (Million Rps./Year) Effective 24.24 59.64 79.25 60.98 53.43 72.58 67.86 40.98 40.35 56.26 40.56 47.71 32.97 79.38 61.76 18.58 31.79 56.68 60.88 41.97 76.77 29.83 25.14 74.31 51.57 38.44 23.94 1,469.21 27.64 24.36 (1) Average Current Tariff 42.48 43.13 1,546.54 59.23 54.29 42.69 25.52 62.77 83.42 64.19 56.24 76.40 50.22 71.44 34.70 40.46 64.09 44.18 31.40 26.47 78.22 65.01 29.10 25.64 19.56 33.47 59.66 80.81 25.20 83.55 73.02 [ota] 00.61 2.16 3.53 3.14 4.18 4.65 2.51 3.58 2.87 2.13 р.н. -2.40 1.62 2.77 **4**.93 6.68 2.60 1.32 3.92 4.89 2.72 2.11 6.31 2.03 1.26 3.21 2.21 5.3] Non-Domestic 1,445.93 54.33 51.57 39.16 59.63 79.25 58.89 51.60 70.08 67.86 40.97 31.83 79.37 66.98 61.75 26.69 23.52 17.94 30.70 60.83 41.97 74.13 28.81 25.14 74.30 23.41 47.71 23.94 40.35 н.с. & 41,763 35,763 21,593 28,678 41,829 60,345 25,952 13,250 27,178 53,053 46,483 63,138 25,141 20,258 12,614 21,265 32,543 48,947 21,090 31,427 9,639,530 1,006,097 р.Н. 49,308 32,084 22,119 35,281 24,046 21,188 16,162 27,660 66,784 39,157 Supplied Water (m3/year) Non-Domestic 529,137 446,556 528,306 392,590 343,972 212,218 495,339 156,064 397,545 467,219 256,257 159,572 411,674 364,878 405,856 279,805 362,204 343,800 261,079 318,036 452,398 273,157 269,001 177,942 156,793 119,600 204,682 494,202 192,041 167,606 н.С. <u>8</u> ampak Siring tembangbahu (aranggayam Sumber as th empursari Banyuanyar Pungge lan ^oetanahan Bu lakamba Jeruk legi ladukora Siriwoya (utorejo Sukore jo Batangan (etewe] Sibetan Baureno lenanga Kemiri Gondang empeh IҚ Jepon Balen) inan (unir Jenar [ota] Sawen lenu Diewk NO. 18 19 \$ \$ \$ \$ 2 2 16 17 222222

aurra estate da managa Palate de Lando de anna esta esta esta	FIR	₹ (%)	EIRR (%)
ІКК	Current	4 % Af-	
	Tariff	fordability	
(1) BULAKAMBA	6.2	18.6	2.2
(2) JERUKLEGI	4.2	18.1	5.7
(3) KEMIRI	1.9	17.8	5.2
(4) MADUKARA	ħ	5.3	15.9
(5) PUNGGELAN	N	9.1	23,2
(6) KARANGGAYAM	N	8.4	1.1
(7) PETANAHAN	1.6	17.7	2.9
(8) SUKOREJO	6.9	16.1	11,6
(9) JEPON	3.3	13.9	4.1
(10) BATANGAN	2.8	12.0	11.4
(11) GONDANG	4.9	19.3	6.6
(12) JENAR	N	11.4	15.7
(13) GIRIWOYO	N	14.8	18.9
(14) BAWEN	1.4	14.4	10.8
(15) BALEN	3.1	15.6	7.3
(16) BAURENO	N	16.4	23.6
(17) JENU	N	15.5	0.7
(18) JIWAN	5.4	21.7	3.0
(19) KENBANGBAHU	N	12.0	22.8
(20) DIWEK	5.5	19.5	2.3
(21) KUTOREJO	3.4	19.0	3.9
(22) TEMPEH	4.7	20.4	7.3
(23) KUNIR	5.1	19.2	1.6
(24) TEMPURSARI	2.9	18.3	5.6
(25) BANYUANYAR	6.4	21.9	14.3
(26) SUMBERASIH	0.5	17.4	6.6
(27) TAMPAKSIRING	2.2	16.9	17.3
(28) KETEMEL	H	14.2	9.7
(29) MENANGA	N	N	19.4
(30) SIBETAN	N	12.2	13.6
WHOLE	0.1	15.7	10.1

Table 6.3.3 RESULT OF PROJECT EVALUATION

.

.

Note : "N" means a negative FIRR.

Unit: US\$ 1,000

Table 6.3.4 CASH FLOW STATEMENT

Accumu lation (585) (87) 26,916 29,604 923 2,535 1,265 6,114 7,845 9,689 11,650 12,639 13,789 15,107 16,599 18,272 20,133 20,133 22,188 22,188 22,447 32,519 35,672 39,071 42,726 46,649 50,849 55,339 60,131 65,237 70,670 77,541 84,734 92,266 Surplus (499) 2,258 2,469 2,688 2,916 3,153 3,399 3,655 5,106 7,193 7,532 92,266 Revenue Deficit ,849 .318 3,922 4,490 4,792 5,433 1,509 1,612 1,729 344 1,150 ,492 1,861 2,056 6,871 (87 1,673 4.201 ,731 1,961 0L 4,778 5,002 5,238 5,484 5,484 5,741 6,011 6,294 6,590 6,899 7,224 7,563 7,919 8,291 8,680 9,088 9,516 9,516 10,431 196,501 2,892 13,733 5,294 3,798 3,464 3,627 3,976 4,359 4,563 Total Construction Revenue Total 2,932 3,226 3,385 3, 309 4,163 3,071 174,583 2188.467 4,778 5,002 5,238 5,484 5,484 6,011 6,294 6, 590 6, 899 7,224 7,563 7,919 8,291 8,680 9,088 9,516 9,963 10,431 2,932 3,226 3,385 3,309 3,464 ,359 , 798 , 976 .563 3,071 1,627 163 21,918 2,892 13,733 5,294 Fund 04,236 1,666 2,809 2,826 2,845 2,845 2,845 2,845 2,947 2,947 2,947 2,947 2,947 3,015 3,015 3,015 3,015 3,015 3,015 3,015 3,096 3,096 3,096 3,096 3,096 3,096 3,096 3,097 3,095 3,0050 3,301 3,363 3,429 3,499 3,499 3,575 3,575 2,655 2,655 2,655 2,645 2,769 2,899 Cost 2,892 [3,819 5,792 1,423 1,459 1,497 1,620 1,536 1,577 CM Cost ر, 056 18,306 1,749 1,918 2,899 839 878 ,008 . 268 , 328 1,456 1,524 1,596 1,671 1,832 2,008 2,102 2,201 2,305 2,413 2,526 2,645 2,769 1,391 801 1,157 1,212 608.32391 , 105 21,918 Interest Capital 1,096 1,096 l,096 1,096 1,096 1,096 1,096 1,096 1,096 ,096 (,096 1,096 1,096 1,096 1,096 1,096 , 096 , 096 960, Loan Payment 12,093 525 559 526 493 427 395 362 329 296 263 230 164 66 66 658 160 197 21,918 2,892 Total 5,294 16,446 **2,**466 9,607 4,372 ن د Capital Cost 5,473 425 4,126 921 с. С. 2005 2006 2003 2009 2009 2010 2011 2011 2012 2014 2018 2019 2020 2021 2022 2023 2013 2015 2016 2017 1993 1994 1995 9661 956 999 2000 2002 2003 2004 1991 2001 2024 2025 66 otal Year 17 28 33 32 33 33 5 ଛ 2825282

Table 6.3.5 ECONOMIC CONSTRUCTION COST AND OWR COST

Unit: Million Rps.

IKK Ist Year Znd Year Znd Year Znd Year Total Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total F.C. L.C. Total Total <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Construc</th> <th>Construction Cost</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ON Coct</th>							Construc	Construction Cost						ON Coct
F.C. L.C. Total L.200 L200 L201 L201 L201 L201 L202 L201 L202 L202 <thl202< th=""> <thl202< th=""> <thl202< th=""></thl202<></thl202<></thl202<>	IKK		F			2nd Year			3rd Year			Total		at 1991 Price
BURALKMEM 52 240 292 323 1,155 27 246 7.72 1,722 JERRALKMEM 55 164 712 100 453 553 411 1,032 1,503 JERRALKMEM 55 164 203 256 561 10 1,321 1,722 MUDKAR 20 75 256 361 617 90 387 477 365 992 1,201 MUDKARM 20 76 106 171 341 663 673 466 1/01 1,321 1,503 MUDKARM 20 76 106 127 199 326 563 631 674 674 KRANGE/VMEM 20 864 1,006 17 341 663 475 1,667 1,691 1,691 1,691 1,691 1,691 1,691 1,691 1,691 1,691 1,691 1,691 1,691 1,691 1,691 1,691		F.C.	г.С.	Total	F.C.	г.C.	Total	F.C.	г.С.	Total	F.C.	т. С.	Total	Level
JERUKLEGI 45 133 238 266 446 712 100 453 553 411 1,092 1,503 MOUNARA 39 164 203 233 391 677 355 391 673 353 167 1014 1,401 MOUNARA 24 96 170 171 341 66 169 277 256 193 1,401 1,401 MOUNARA 20 327 246 329 575 22 96 118 267 1,014 1,401 PUNAREXNM 20 324 329 575 216 1,605 1,667 2,097 SURVEX 13 125 139 289 773 1,014 1,401 766 564 573 2,017 1,617 1,401 1,692 5,032 1,416 6,74 6,74 6,74 6,74 6,74 6,74 6,74 6,73 6,74 6,73 6,74	BURALKAMBA	52	240	292	322	833	1,155	27	248	275	401	1,321	1,722	34
KEMIRI 39 164 203 238 381 617 90 387 477 365 932 1,294 1,481 MUDUKARA 24 99 123 389 673 1,026 34 168 233 389 673 1,026 1,014 1,481 MUDUKARA 20 56 170 171 341 68 222 467 1,014 1,481 MUNUKARA 20 56 106 127 193 326 565 566 573 58 467 1,014 1,481 MUNUKARA 16 163 170 323 389 171 1,015 1,563 1,961	JERUKLEGI	45	193	238	266	446	712	100	453	553	411	1,092	1,503	40
MDUKKA 44 189 233 389 657 1,026 34 168 222 467 1,014 1,481 KARMKGELM 2 95 127 393 575 364 673 FTANMAR 20 86 105 127 393 375 594 166 FTANMAR 20 86 105 127 393 375 559 487 569 SKURRELON 5 5 556 563 <td< td=""><td>KEMIRI</td><td>39</td><td>164</td><td>203</td><td>236</td><td>381</td><td>617</td><td>06</td><td>387</td><td>477</td><td>365</td><td>932</td><td>1,297</td><td>43</td></td<>	KEMIRI	39	164	203	236	381	617	0 6	387	477	365	932	1,297	43
PUNKGELVM 24 99 123 246 329 575 25 52 524 815 RAAMGGAYAM 20 76 96 170 171 341 68 169 227 554 614 674 RAAMGGAYAM 20 76 96 170 171 341 66 163 145 168 169 270 156 169 674 SUCOREJO 52 251 303 122 894 1,106 17 266 566 563 561 1561 1,691 1,691 JENDAM 17 57 64 225 289 778 1,007 1,691<	_	44	189	233	389	637	1,026	34	188	222	467	1,014	1,481	45
KARAMGAYAM Z0 76 96 170 171 341 68 169 237 256 415 673 FFTANMIAN Z0 Z6 120 117 341 66 127 199 365 195 487 662 JERON 18 122 203 326 129 1,601		24	56	123	246	329	575	22	96	118	292	524	816	36
FFTAMMIA 20 86 106 127 199 326 48 202 250 195 487 682 SUCORE-LO 52 251 333 223 884 1,106 17 265 283 151 1,400 1,611 1,400 1,611 1,400 1,611 1,400 1,611 1,400 1,611 1,400 1,611 1,400 1,611 1,400 1,611 1,410 1,602 1,603 1,603 1,603 1,603 1,603 1,603 1,603 1,603 1,603 1,611 1,410 1,611 1,410 1,603 <		20	76	96	170	171	341	68	169	237	258	416	674	29
SUKOREJO 52 251 303 222 884 1,106 17 265 223 71 1,662 2,037 JEFON 18 182 200 334 870 1,204 63 650 633 455 1,662 2,037 JEFON 16 16 16 165 178 1,067 56 561 34 195 239 1,151 GONDAMG 17 55 64 292 266 561 34 195 222 333 521 864 CONDAMG 17 65 282 144 145 289 571 149 1561 1561 CAMEN 35 101 217 257 103 1,460 1571 333 521 653 1,140 1,563 BALEN 36 17 1,003 1,460 272 1291 233 521 633 1,140 1,563 BALEN<		20	86	106	127	199	326	48	202	250	195	487	632	22
JEPON 18 182 200 334 870 1,204 63 630 633 415 1,662 2,037 BATANGAN 16 163 173 125 133 255 1,662 2,037 BATANGAN 16 163 173 125 133 225 556 1,661 1,511 1,511 1,541 JENM 7 7 5 64 292 269 921 561 462 361 1,555 1,866 JENM 65 233 358 477 1,003 1,490 41 297 333 521 533 2,176 BALEN 45 204 249 203 7,4 1,017 233 531 1,140 1,503 BALEN 36 161 199 322 557 866 1,160 7,503 2,176 BALEN 36 161 199 325 863 1,160		52	251	303	222	884	1,106	17	265	282	291	1,400	1,691	60
BATANGAN 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 1,50 1,605 1,605 1,605 1,605 1,611 1,511 JEMAR 1 5 82 144 103 5.66 5.61 361 1,615 1,515 JEMAR 65 293 3.66 5.61 361 1,61 1,514 5.73 JEMAR 65 293 3.66 5.14 103 5.65 2.17 10 2.17 10 1,140 1,503 JENU 36 114 112 2.61 3.91 6.62 3.61 1,503 2.176 JENU 36 114 112 2.61 3.91 4.77 1,007 2.62 2.17 3.75 1.16 1.503 1.563 1.563 1.563 1.760 1.76 1.76 1.76	9. JEPON	18	182	200	334	870	1,204	63	630	693	415	1,682	2,097	27
CONDANG 13 125 138 326 595 921 51 431 482 390 1,151 1,541 JENMR 7 57 64 292 269 561 34 195 229 333 521 564 JENMR 65 82 144 145 209 561 34 195 523 353 517 564 GINI JOYO 17 65 82 144 145 209 531 513 513 514 513 513 513 514 1,503 BAUREND 36 144 142 261 391 652 231 136 1,130 150 1,503 2,176 JENU 28 161 199 322 557 879 1,503 1,140 1,503 2,176 JENU 28 161 199 322 519 375 169 1,503 1,167	10. BATANGAN	16	163	179	289	778	1,067	56	564	620	361	1,505	1,866	15
JENAR 7 57 64 292 265 561 34 195 229 333 521 864 GINIMOYO 17 65 82 144 146 202 563 331 614 173 553 521 864 573 BANEN 65 82 144 145 203 724 1,003 1,460 41 207 333 633 1,140 1,503 BANENO 35 144 142 201 213 263 1,140 1,503 BANENO 36 161 199 325 657 879 28 161 1,93 363 1,140 1,503 JENU 38 161 199 322 557 879 287 287 287 287 287 287 1,40 1,503 JENU 38 161 199 322 557 879 1,267 286 1,101		13	125	138	326	595	921	15	431	482	390	1,151	1,541	43
GIRINMOV 17 65 82 144 145 289 58 147 1,003 1,480 41 297 338 683 1,593 2,176 BANEN 65 293 358 477 1,003 1,480 41 297 338 683 1,593 2,176 BANEN 35 149 184 306 514 820 27 149 1,503 2,176 368 812 1,303 BANERNO 35 144 142 261 391 652 23 113 136 1,100 1,503 BANERNO 36 101 199 322 557 886 17 1,00 1,503 JIMM 36 161 199 322 557 886 132 1,167 147 JIMM 36 157 101 126 779 265 147 126 126 1267 146 JIMM </td <td></td> <td>7</td> <td>57</td> <td>64</td> <td>292</td> <td>269</td> <td>561</td> <td>34</td> <td>195</td> <td>229</td> <td>333</td> <td>521</td> <td>854</td> <td>41</td>		7	57	64	292	269	561	34	195	229	333	521	854	41
65 293 358 477 1,003 1,480 41 297 338 583 1,593 2,176 323 2,176 363 1,593 2,176 363 1,140 1,503 2,176 363 1,140 1,503 2,176 363 1,140 1,503 2,176 363 1,140 1,503 2,176 363 1,140 1,503 2,176 363 1,140 1,503 2,176 363 1,140 1,503 312 613 930 930 28 161 199 322 557 879 28 161 199 324 567 879 1,267 686 1,47 587 1,461 1,47	13. GIRIWOYO	17	65	82	144	145	289	58	144	202	219	354	573	29
BALEN 45 204 249 293 724 1,017 25 212 237 363 1,140 1,503 BAURENO 35 149 184 306 514 820 27 149 176 368 812 1,180 JENU 28 114 142 261 391 652 23 113 136 312 618 930 JIPAN 38 161 199 322 557 879 263 136 1,267 JIPAN 20 81 101 211 275 486 19 388 879 1,267 JIPAN 20 81 131 211 275 486 19 266 686 JIPAN 20 134 572 146 147 269 267 466 166 167 166 168 161 167 166 168 167 166 168 166 <td></td> <td>65</td> <td>293</td> <td>358</td> <td>477</td> <td>1,003</td> <td>1,480</td> <td>41</td> <td>297</td> <td>338</td> <td>583</td> <td>1,593</td> <td>2,176</td> <td>47</td>		65	293	358	477	1,003	1,480	41	297	338	583	1,593	2,176	47
BAURENO 35 149 184 306 514 820 27 149 176 368 812 1,180 JENU 28 114 142 261 391 652 23 113 136 312 618 930 JIHAN 38 161 199 322 557 879 26 866 686 636 686 636 686 636 636 686 636 686 636		45	204	249	293	724	1,017	25	212	237	363	1,140	1,503	32
JENU 28 114 142 261 391 652 23 113 136 312 618 930 JIHAN 38 161 199 322 557 879 1267 616 636 JIHAN 38 161 199 322 557 879 1267 1461 147 588 155 147 290 250 253 1,167 KUNIR 13 157 170 160 720 880 170 218 1,167 245 1,461 1,451 TEMPERARI 13 157 160 720 880 <td></td> <td>35</td> <td>149</td> <td>184</td> <td>306</td> <td>514</td> <td>820</td> <td>27</td> <td>149</td> <td>176</td> <td>368</td> <td>812</td> <td>1,180</td> <td>39</td>		35	149	184	306	514	820	27	149	176	368	812	1,180	39
JIWAN 38 161 199 322 557 879 28 161 189 388 879 1.267 KEMBANGBAHU 20 81 101 211 275 486 19 80 99 250 436 686 DIWEK 34 155 189 234 545 779 20 159 179 288 859 1.147 KUTOREJO 35 150 185 287 519 806 25 151 176 347 820 1.167 TEMPEH 9 94 103 136 436 572 148 142 290 293 672 965 KUNIR 13 157 170 160 720 880 170 231 401 343 1.108 1.451 TEMPURSAR1 9 98 107 141 447 588 155 145 300 305 690 995 BANYUANYAR 10 114 124 149 520 669 162 167 329 321 801 1.122 SUMBERASIH 8 88 96 121 402 523 131 131 262 260 621 881 TAMPAKSIRING 21 136 157 159 309 468 14 102 116 194 547 741 KETEWEI 31 190 221 252 430 682 22 147 164 305 762 1.067 MEMANGA 36 158 194 634 329 953 59 102 161 729 589 1.318 SIDETAN 84 4.437 5.270 7.826 15.105 22.931 1.765 6.602 8.367 10.429 26.139 36.569 36.569 36.5660 3660 1661 1778 3660 366 366 366 366 366 366 366 366 36		28	114	142	261	391	652	23	113	136	312	618	930	38
KEMBANGBAHU 20 81 101 211 275 486 19 80 99 250 436 686 DIWEK 34 155 189 234 545 779 20 159 176 347 820 1,147 KUTOREJO 35 150 185 287 519 806 25 151 176 347 820 1,167 TEMPEH 9 94 103 136 572 148 142 290 293 672 965 KUNIR 13 157 170 160 720 880 176 247 820 1,167 FKUNIR 13 157 141 447 588 155 145 300 305 690 305 BANVUANYAR 10 114 124 149 520 660 167 329 321 801 1,125 BANVDANYAR 21 81		38	161	199	322	557	879	28	161	189	388	879	1,267	48
DIWEK 34 155 189 234 545 779 20 159 179 288 859 1,147 KUTOREJO 35 150 185 287 519 806 25 151 176 347 820 1,167 TEMPEH 9 94 103 136 436 572 148 142 290 293 672 965 KUNR 13 157 170 160 720 880 170 231 401 343 1,108 1,451 KUNR 13 157 170 160 720 880 170 231 401 343 1,108 1,451 KUNR 10 114 124 149 520 669 162 167 300 305 690 995 BANYUANYAR 10 114 447 588 155 145 300 305 672 965 SUMBEASIH 8 8 96 121 402 520 166 162 <t< td=""><td></td><td>20</td><td>81</td><td>101</td><td>211</td><td>275</td><td>486</td><td>19</td><td>80</td><td>66</td><td>250</td><td>436</td><td>686</td><td>30</td></t<>		20	81	101	211	275	486	19	80	66	250	436	686	30
KUTOREJO 35 150 185 287 519 806 25 151 176 347 820 1,167 TEMPEH 9 94 103 136 436 572 148 142 290 293 672 965 KUNIR 13 157 170 160 720 880 170 231 401 343 1,108 1,451 TEMPURSARI 9 98 107 141 447 588 155 145 300 305 690 995 BANYUANYAR 10 114 124 149 520 669 162 167 329 321 801 1,128 BANYUANYAR 10 114 124 149 520 669 167 329 321 801 1,122 SUMBERASIH 8 96 121 402 523 131 131 262 260 631 741 TAMPAKSIRING 21 136 223 330 468 14 102 <t< td=""><td></td><td>34 24</td><td>155</td><td>189</td><td>234</td><td>545</td><td>522</td><td>20</td><td>159</td><td>179</td><td>288</td><td>858</td><td>1,147</td><td>32</td></t<>		34 24	155	189	234	545	522	20	159	179	288	858	1,147	32
TEMPEH 9 94 103 136 436 572 148 142 290 293 672 965 KUNIR 13 157 170 160 720 880 170 231 401 343 1,108 1,451 TEMPURSARI 9 98 107 141 447 588 155 145 300 305 690 995 BANYUANYAR 10 114 124 149 520 669 167 329 321 801 1,122 SUMBERASIH 8 86 96 121 402 523 131 131 262 260 621 881 SUMBERASIH 8 86 96 121 402 523 131 131 262 260 631 312 881 TAMPAKSIRING 21 136 157 159 309 468 14 102 116 194 547 741 KETEWEL 31 190 221 252 430 663 <td></td> <td>35</td> <td>150</td> <td>185</td> <td>287</td> <td>519</td> <td>806</td> <td>25</td> <td>151</td> <td>176</td> <td>347</td> <td>820</td> <td>1,167</td> <td>40</td>		35	150	185	287	519	806	25	151	176	347	820	1,167	40
KUNIR 13 157 170 160 720 880 170 231 401 343 1,108 1,451 TFMPURSARI 9 98 107 141 447 588 155 145 300 305 690 995 BANYUANYAR 10 114 124 149 520 669 162 167 329 321 801 1,122 SUMBERASIH 8 96 121 402 523 131 131 262 260 651 881 TAMPAKSIRING 21 136 157 159 309 468 14 102 116 194 547 741 KETEWEL 31 190 221 252 430 682 22 142 164 305 762 1.067 MENANGA 36 158 194 634 329 963 59 1002 161 729 589 1.318 SIBETAN 34 200 234 320 728 1563 1.662 6.602 8.367 1.067 MIL 38 4.432 5.270 7.826 15.105 2.2931 1.765		ნ	4 6	103	136	436	572	148	142	290	293	672	965	32
TEMPURSARI 9 98 107 141 447 588 155 145 300 305 690 995 BANYUANYAR 10 114 124 149 520 669 162 167 329 321 801 1.122 SUMBERASIH 8 86 96 121 402 523 131 131 262 260 695 TAMPAKSIRING 21 136 157 159 309 468 14 102 116 194 547 741 TAMPAKSIRING 21 136 157 159 309 468 14 102 116 194 547 741 KETEWEL 31 190 221 252 430 682 22 142 164 305 762 1,067 MENANGA 36 158 194 634 329 963 59 102 161 729 589 1,175 SIBETAN 34 200 7.826 15.105 22.931 1,765 6.602 8.367 10.429 26.139 36.568		13	157	170	160	720	880	170	231	401	343	1,108	1,451	39
BANYUANYAR 10 114 124 149 520 669 162 167 329 321 801 1.122 SUMBERASIH 8 88 96 121 402 523 131 131 262 260 621 881 TAMPAKSIRING 21 136 157 159 309 468 14 102 116 194 547 741 KETEWEL 31 190 221 252 430 682 22 142 164 305 762 1.067 MENANGA 36 158 194 634 329 963 59 102 161 729 589 1.318 SIBETAN 34 200 234 320 447 767 28 146 174 382 793 1.175 TOTAL 838 4.432 5.270 7.826 15.105 22.931 1.765 6.602 8.367 10.429 25.139 36.568	•	6	. 98	107	141	447	588	155	145	300	305	690	395	31
SUMBERASIH 8 96 121 402 523 131 131 262 260 621 881 TAMPAKSIRING 21 136 157 159 309 468 14 102 116 194 547 741 KETEWEL 31 190 221 252 430 682 22 142 164 305 762 1,067 MENANGA 36 158 194 634 329 963 59 102 161 729 589 1,318 MENANGA 34 200 234 320 447 767 28 146 174 382 793 1,175 TOTAL 838 4.432 5.270 7.826 15.105 22.931 1,765 6.602 8.367 10.429 26.139 36.568		10	114	124	149	520	699	162	1.67	329	321	801	1,122	37
TAMPAKSIRING 21 136 157 159 309 468 14 102 116 194 547 741 KETEWEL 31 190 221 252 430 682 22 142 164 305 762 1,067 MENANGA 36 158 194 634 329 963 59 102 161 729 589 1,318 MENANGA 34 200 234 320 447 767 28 146 174 382 793 1,175 TOTAL 838 4.432 5.270 7.826 15.105 22.931 1,765 6.602 8.367 10.429 26.139 36.568		8	88	96	121	402	523	131	131	262	260	621	881	31
KETEWEL 31 190 221 252 430 682 22 142 164 305 762 1,067 MENANGA 36 158 194 634 329 963 59 102 161 729 589 1,318 SIBETAN 34 200 234 320 447 767 28 146 174 382 793 1,175 TOTAI 838 4.432 5.270 7.826 15.105 22.931 1.765 6.602 8.367 10.429 25.139 36.568	· ·	21	136	157	159	309	468	14	102	116	194	547	741	22
MENANGA 36 158 194 634 329 963 59 102 161 729 589 1,318 SIBETAN 34 200 234 320 447 767 28 146 174 382 793 1,175 TOTA: 838 4.432 5.270 7.826 15.105 22.931 1.765 6.602 8.367 10.429 25.139 36.568		31	190	221	252	430	682	22	142	164	305	762	1,067	30
SIBETAN 34 200 234 320 447 767 28 146 174 382 793 1,175 TATA: 838 4.432 5.270 7.826 15.105 22.931 1.765 6.602 8.367 10.429 26.139 36.568		36	158	194	634	329	963	59	102	161	729	583	1,318	94
R3R 4 432 5.270 7.826 15.105 22.931 1.765 6.602 8.367 10.429 26.139 36.568		34	200	234	320	447	767	28	146	174	382	793	1,175	45
	TOTA:	838	4.432	5.270	7.826	15,105	22, 931	1,765	6,602	8,367	10,429	26,139	36,568	1,079

NO.	IKK	Househo 1	d Served	Saving	Time (hr	/hh/day)	Annual Benefit
		H.C.	P.H.	H.C.	P.H.	Total	(Mil. Rps.
1	Bulakamba	3,553	888	1,777	0	1,777	115
2	Jeruk leg i	2,990	1.282	2,093	256	2,350	152
3	Kemiri	2,765	691	1,935	138	2,073	134
4	Hadukora	1,192	511	3,694	1,328	5,022	326
5	Punggelan	1,050	450	3,150	1,125	4,275	277
6	Karanggayam	801	343	721	137	858	56
7	Petanahan	1,371	587	822	59	881	57
8	Sukorejo	2,443	1,047	2,932	733	3,665	238
9	Jepon	2,726	681	2,180	204	2,385	155
10	Batangan	1,879	470	3,382	611	3,993	259
11	Gondang	3,310	1,418	2,317	284	2,600	169
12	Jenar	1,286	551	2,315	717	3,031	197
13	Giriwoyo	1,126	281	2,026	366	2,392	155
14	Bawen	3,327	832	4,324	665	4,990	324
15	Balen	2,426	1,040	2,183	416	2,599	168
16	Baureno	2,309	577	5,079	981	6,061	393
17	Jenu	1,748	749	1,049	75	1,124	73
18	Kembangbahu	1,045	448	2,613	896	3,509	227
19	Diewk	2,670	667	1,335	0	1,335	87
20	Jiwan	3,548	887	1,774	0	1,774	115
21	Kutorejo	2,629	1,127	1,577	113	1,690	110
22	Tempeh	2,303	987	1,612	197	1,810	117
23	Kunir	3,129	1,341	1,564	0	1,564	101
24	Tempursari	2,136	534	1,495	107	1,602	104
25	Banyuanyar	3,038	760	3,038	380	3,418	222
26	Sumber as th	1,834	459	1,468	138	1,605	104
27	Tampak Siring	1,421	609	2,132	609	2,741	178
28	Ketewel	1,721	430	2,065	301	2,366	153
29	Menanga	1,072	268	5,144	1,152	6,296	408
30	Sibetan	1,807	452	3,071	542	3,613	234
	Tota]	64,653	21,368	70,870	12,529	83,399	5,408

Table 6.3.6 ESTIMATES OF ECONOMIC BENEFIT

Table 6.3.7 FLOW OF ECONOMIC COST AND BENEFIT

Unit: Million Rps.

		Econo	mic Cost		Economic Benefit		
Y	ear _	Const.	OM	Total	Benerit		
1	1993	5,270	. 0	5,270	D		
2	1994	22,931	0	22,931	0		
3	1995	8,367	0	8,367	0		
4	1996	0	1,079	1,079	5,201		
5	1997	0	1,079	1,079	5,244		
6	1998	0	1,079	1,079	5,301		
7	1999	0	1,079	1,079	5,354		
8	2000	0	1,079	1,079	5,408		
9	2001	0	1,079	1,079	5,408		
0	2002	0	1,079	1,079	5,408		
1	2003	0	1,079	1,079	5,408		
12	2004	0	1,079	1,079	5,408		
13	2005	0	1,079	1,079	5,408		
4	2006	0	1,079	1,079	5,408		
15	2007	0	1,079	1,079	5,408		
16	2008	0	1,079	1,079	5,408		
l7	2009	0	1,079	1,079	5,408		
18	2010	0	1,079	1,079	5,408		
9	2011	0	1,079	1,079	5,408		
20	2012	0	1,079	1,079	5,408		
21	2013	0	1,079	1,079	5,408		
22	2014	0	1,079	1,079	5,408		
23	2015	0	1,079	1,079	5,408		
24	2016	0	1,079	1,079	5,408		
25	2017	0	1,079	1,079	5,408		
26	2018	0	1,079	1,079	5,408		
27	2019	0	1,079	1,079	5,408		
28	2020	0	1,079	1,079	5,408		
29	2021	0	1,079	1,079	5,408		
30	2022	0	1,079	1,079	5,408		
31	2023	0	1,079	1,079	5,408		
32	2024	0	1,079	1,079	5,408		
33	2025	0	1,079	1,079	5,408		
	Total	36,568	32,370	68,938	161,709		

6.4 Recommendations

- The proposed project for 30 High Priority IKKs is technically feasible and economically justified conditionally.
 Immediate implementation of the project is recommended from the social and sanitary reasons.
- (2) Because of the high costs required for the implementation, foreign financial assistance may be necessary.
- (3) For another IKKs except 30 IKKs, feasibility studies are also required in the next stage.
- (4) Before implementation of these 30 IKKs, a confirmatory investigation for ground water capacity in IKKs shown below, where test well drilling and pumping tests were not conducted at the proposed well points in this feasibility study, is recommended.

Bulakamba, 2) Kemiri, 3) Petanahan, 4) Jepon, 5) Gondang
 Balen, 7) Baureno, 8) Kunir, and 9) Banyuanyar

Basides the test well drilling and pumping tests, geoelectrical survey for the determination of the well location and water quality analyses are also recommended.

(5) As for water quality of the following water sources, where some items of water quality showed somewhat higher than the Standard, recheckings (sampling and analyses) are recommended before implementation.

Name of IKK	Water Source	Check items
Madukara	Mudal Spring	Lead (Pb)
Batangan	Juwana System	Lead (Pb)
Kemiri	Shallow Well	Iron (Fe)
Jepon	Deep Well	Iron (Fe)
Kembangbahu	Deep Well	TDS and Chloride (Cl ⁻)

(6) Coliform and Bacteria showed high value at almost all existing water sources except deep wells in field surveys in Phase 1 and 2.

It is necessary to conduct a $Ca(OCI)_2$ injection to each supply water to keep a residual Chlorine at the Taps, for sanitary reasons. Education to the community is also required.

- (7) Operation and Maintenance
 - Operation including the inspection of the facilities should be conducted faithfully based on the Operation Manual, to keep the people served safe and healthy and give them easiness of living.
 - During the construction period of the water supply facilities, Test Run for the facilities should be conducted before commencement of the operation.

Training of operators is also required.

- 3) Periodical Maintenance, based on the Maintenance Manual, is also important to prevent the facilities from accidents and deterioration.
- (8) Education to the community, regarding the necessity of a clean water supply facilities and sanitation, is also required especially in rural areas.
- (9) Community Participation

Community Participation for the following items will be required.

- 1) Cooperation to the land acquisition and construction works.
- 2) Cooperation and Assistance to BPAM or PDAM regarding the followings.
 - (i) Conservation of safety for water supply facilities, including the prevention of deterioration of the facilities and contamination of supply water.
 - Report to BPAM or PDAM office on accidents such as water leakage and illegal connection, etc.
 - (iii) Tariff payment

CHAPTER 7 SUPPLEMENTARY STUDY

Supplementary Study Chapter 7

This study was conducted in response to the request from Indonesian Government. Details are described in this Chapter.

- 7.1 Study Condition
 - 7.1.1 IKKs to be studied

The objects of this study are the 30 High Priority IKKs listed in Table 5.3.

7.1.2 Design Criteria

The design criteria proposed in the minutes of meetings on the Draft Final Report dated February 5, 1992 were applied to this study. They are shown in Table 7.1.1.

No.	DESIGN CRITERIA	FIRST STAGE *)	FINAL STAGE **)
1.	Supply Level at House Connection (H.C.) (l/c/d)	-	90
2.	Supply Level at Public Hydrant (P.H) (l/c/d)	30	30
3.	Population Served (%)	50 - 100	50 - 100
4.	Water supply capacity per population	Module system ·	Module system
5.	Ratio of Population served by H.C./P.H.	0/100	70/30 - 80/20
6.	Number of people per H.C.	-	10
7.	Number of people per P.H.	100	100
8.	Water allocation for non-domestic deman (%)	5	5
9.	Water allocation for leakage and losses (%)	15	15
10.	Factor for maximum day	1.1	1.1
11.	Factor for Peak Hour	1.4	1.4
12:	Target year (in future)	10 years	10 years
13.	Operation hours	24 hours	24 hours
14.	Flow restrictor	No	No
15.	Capacity of reservoir	(2 hrs)	(2 hrs)

Table 7.1.1 Design Criteria

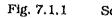
Notes : (1) *) Means the first 2 (two) years

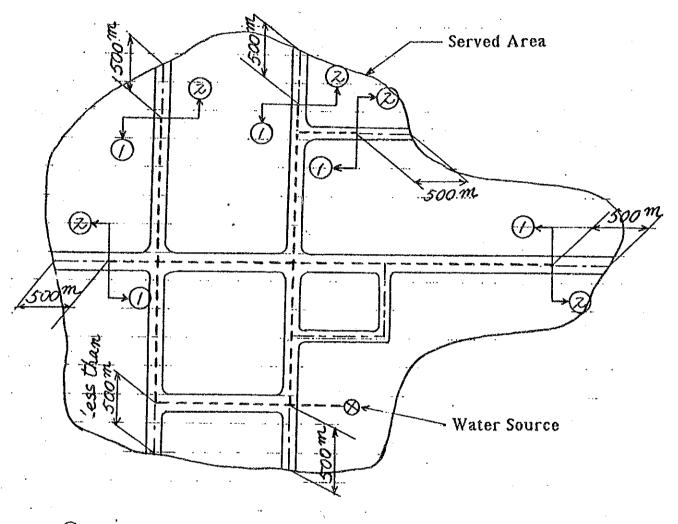
(2) **) Same as Table 6.1.4

7.1.3 Construction and Operation Schedule

The construction and operation schedule will be considered as follows with the condition that this project will be implemented from 1993.

Year Item	1 1993	2 '94	3 '95	4 '96	5 '97	6 '98	7 '99	8 2000	
(1) Construction for the First Stage									
Water supply by the Public Hydrants				۰ ا	044-0				
(3) Construction for the Final Stage (Installation of House Connections)									
(4) Water supply by the House Connections and Public Hydrants									→
	¥	(Fir	st Stat	(e)	 	->-	(Final	Stage)	→
				7. 1					


7.1.4 Others


- (1) The water supply systems for the final stage are the same as proposed in 6.1.4 in this Report.
- (2) 'The water supply systems for the first stage are proposed with the following conditions.
 - (i) Ratio of population served by Public Hydrants
 - In the first stage of the project, water supply shall be conducted only with Public Hydrants as proposed. The water demand reduced by this

approach compared with that in the final stage shall be taken into consideration on well construction, well pump installation and so forth, to minimize the construction cost for the first stage implementation.

- (ii) Pipe line
 - The pipeline shall be designed taking into consideration of the water supply capacity in the final stage, even water supply in the first stage should be conducted with a smaller amount by the Public Hydrants.
 - The maximum access to the nearest Public Hydrant in the first stage shall be 500 meters or less. Hence, pipelines in the edge of the planned area with a length of 500 meters shall not be constructed in the construction for the first stage, but in the construction for the final stage.

Refer to Fig. 7.1.1.

To be installed in the First Stage
 To be installed in the Final Stage
 Pipeline installed in the First Stage
 Pipeline installed in the Final Stage