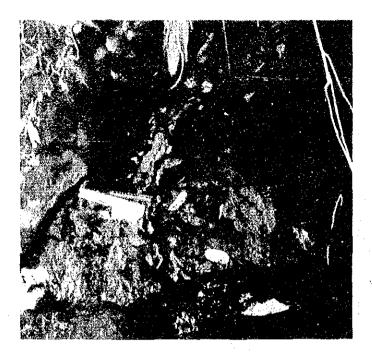
REFERENCES


REFERENCES

- Colly, H. (1976): Mineral deposits of Fiji (metallic deposit). Mem. Miner. Resour.

 Div. Fiji. Legts. Counc. Pap. 1910 (19).
- Hawkes, H. E. and Webb, J. S., (1962): Geochemistry in mineral exploration. Harper and Row, New York, N.Y. 28~31.
- Hamburger, M. W., Everingham I.B. and Isacks, B. and Barazangi, M. (1988): Active tectonism within the Fiji platform, southwest Pacific. Geol. . 16, 237~241.
- Hayaba, D.O., Bethke, P.M., Heald, P. and Foley, N.K. (1985): Geologic, mineralogic, and geochemical characteristics of volcanic-hosted epithermal precious metal deposits. In Geology and geochemistry of epithermal system: Rev. Econ. Geol., v. 2, 129~167.
- Heald, P., Foley, N. K. and Hayaba, D. O. (1987): Comparative anatomy of volcanic -hosted epithermal deposits. Econ. Geol., 82, 1~26.
- Hedenquist, J. W. (1987): Mineralization associated with volcanic-related hydrothermal systems in the circum-Pacific basin. *In* Transactions of the Fourth Circum Pacific Energy and Mineral Resources Conference, Singapore. Horn, M. K. Ed., Am. Assoc. Pet. Geol., 513~524.
- JICA and MMAJ(1991):Report on the Cooperative Mineral Exploration in the Viti Levu Area, the Republic of Fiji Fhase I.
- Jezek, P. (1976): Gravity base stations in Indonesia and in the southwest pacific. Technical Report, Woods Hole Oceanographic Institution.
- La Porte, M. (1962): Elabolation rapide de cartes gravimetriques deduites, del anomalie de Bouguer a laide dune calculatrice electronique: Geophys. Prosp., 10, 238~257.
- Lepeltier, C. (1969): A simplified statistical treatment of geochemical data by graphical representation. Econ. Geol., 64, 538~550.
- Otsu, H., Kubota, R., and Matsuda, Y. (1983): Determination of statistical frequency of geochemical data. Mining Geol., 33, 427~431.
- Rodda, P. and Duberal, R. (1966): Specific gravity of Viti Levu rocks. G. S. Note , 23~66, Geological Survey Department.
- Rodda, P. (1989): Geology of Fiji. MRD.
- Scheibner, E., SATO, T., Doutch H.F., Addicott W.O., Terman, M.J. and Moore, G.W. (1991): Tectonic Map of the Circum-Pacific Region, South Quadrant, scale 1:10.000,000. U.S. Department of the Interior, U.S. Geological Survey.

- Sinclair, A. J. (1974): Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor., 3, 129~149.
- Talwani, M., Worzel, J. L. and Landisman, M. (1959): Rapid gravity computations for two dimensional bodies with application to the Mendocino Submarine fracture zones: Jour. Geophys. Res. 64, 49~59.
 - Stoffregen, R. (1987): Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Econ. Geol., 82, 1575~1591.

PHOTOGRAPHS

Auriferous Quartz Vein (Yaloku OK-10)

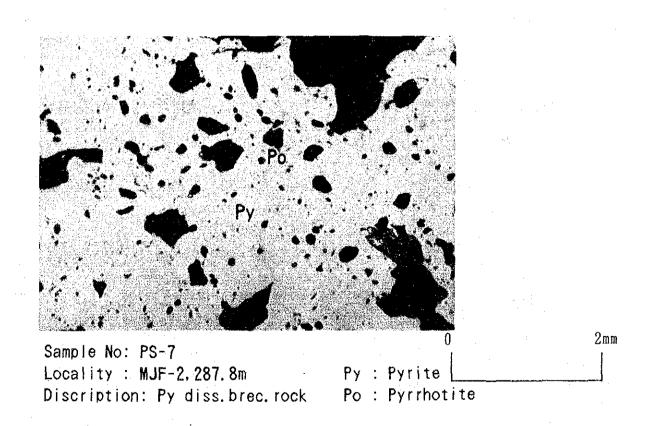


Photo 1 Outcrop of Auriferous Quartz Vein and Microscopic Photograph of Polished Section

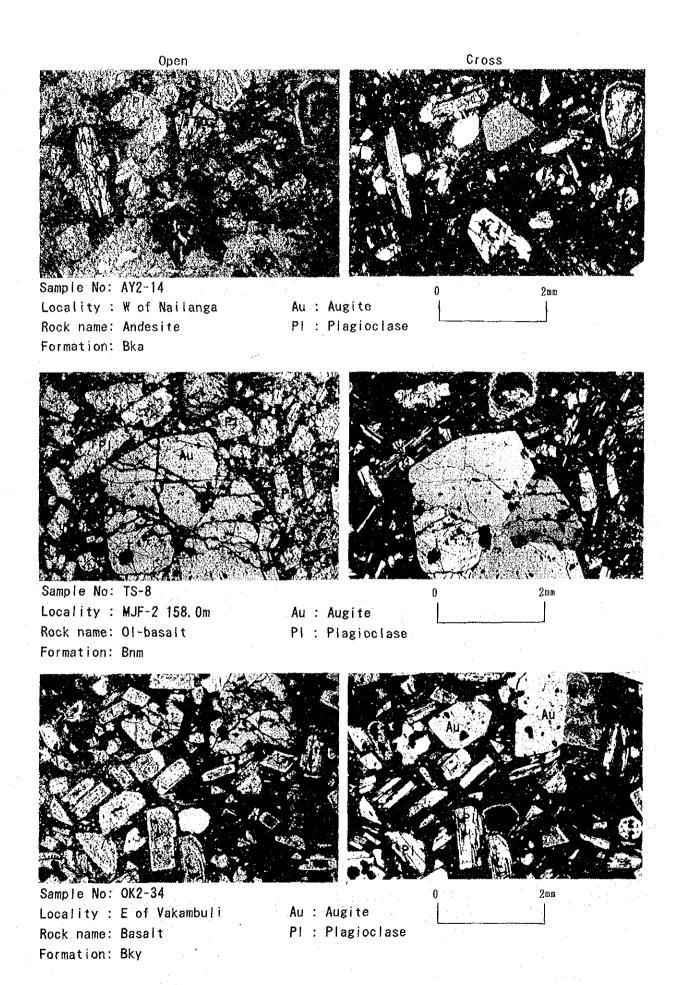
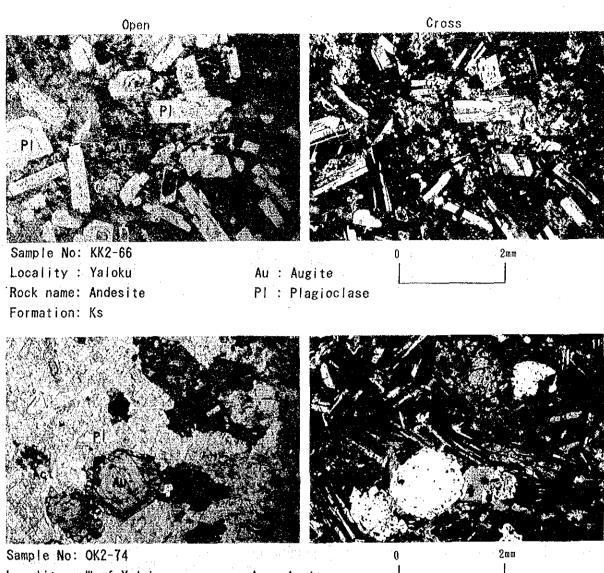



Photo 2 Microscopic Photograph of Thin Section (Mba-west Area) -1

Locality: W of Yaloku

Rock name: Monzonite
Formation: Intrusive rock

Au : Augite

Pi : Plagioclase Act: Actinolite

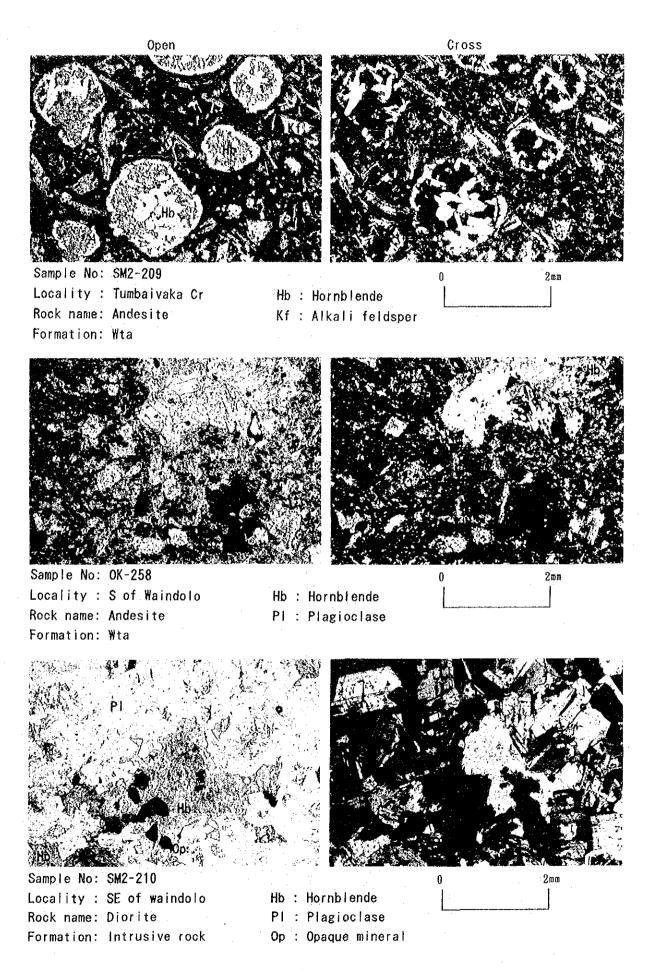


Photo 3 Microscopic Photograph of Thin Section (Sigatoka Area)-1

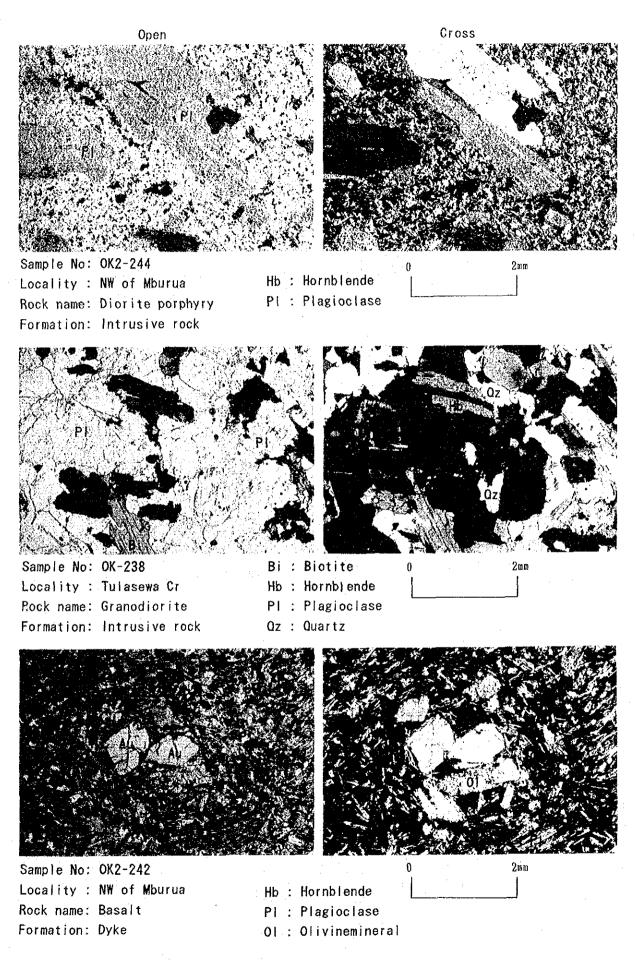


Photo 3 Microscopic Photograph of Thin Section (Sigatoka Area)-2

APPENDICES

- 1. Results of Soil Analysis (Mba-west Area)
- 2. Results of Soil Analysis (Sigatoka Area)
- 3. Geologic Log of MJF-1 ~ MJF-2
- 4. Gravity Base Stations Description
- 5. List of Gravity Values
- 6. List of Terrain Correction Values
- 7. List of Bouguer Anomalies

1. Results of Soil Analysis (Mba-west Area)

Table 1 Results of Soil Analysis (Mba West Area)

					٠																								- 3										i									
ON No	AY0051	AX0053	AY0054	AY0055	AY0056	AY0057	AY0058	AX0059	AX0060	AY0061	AY0062	AY0063	AY0064	AY0065	AY0066	AY0067	AY0068	AY0069	AY0070	AY0071	AY0072	AY0073	AY0074	AY0075	AX0076	AY0077	AY0078	AX0079	AY0080	AX0081	AXCOSZ	Arousa	A10004	A40080	00000	AY0089	00000	470091	AY0092	AY0093	AX0094	AY0095	AX0096	AY0097	AY0098	AY0099	0	4V0109
(ppm)	<0.05	90	0		•		•	<0.05		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05		0		0	. 0	0.05		0.05		<0.05	<0.05	<0.05	<0.05	<0.05	0.00	0.00	0.00	20.0	9 6	0.00) (CV	う。 で り で	<0.05	×0.03	<0.03	<0.05	<0.05	0.50	0.05	<0.05	•	- UC \
(ppp)	20	20.5	30	20	20	20	900	90	10	40	30	20	20	30	40	40	30	110	130	50	202	150	000	190	9	70	20	30	20	90	08	3	2.0	2 0	36	2 6	2 6	2 -	O.E.	202	30	30	27	20	30	40	20	ć
(mdd)	0.2			<0.2	•	٠	٠	0	<0 ×	<0.2	×0.2	٠	×0.2	<0.2	<0.2	<0.2	<0.2	40. 2	40.7	<0.2	0 2	<0.2	<0.2	40.2	40.2	×0.2	<0.2	40.2	×0.2	<0.2	20.0	2.00	9 6	9.0	9 6	000	,,,		2 V>	×0 ×		40.2	0.2	0.2	<0.2	0.2	×0.2	<
AS (ppm)	2		۲	77	н	н.	₹	-	₽	1		٦	-	73	-1	-1	7	7	m	2	64	n	N	64	-	-	m	63	- 1	77	rd (7.	71 (10	٦ -	10	7	7.	4	4	15	۲-	7	19	Ö	ო	н	•
(mdd)	<0.2 0.2 0.2		<0.2	×0.2	<0.2	40.2	×0.2	0	20.2	<0.2	×0.2	40.2	×0.2	<0.2	<0.2	<0.2 2	40.2	40.2	<0.3	<0.2	0.5	×0.2	40.2	<0.2	<0.2	<0.2	<0.2	0 V	ç0.5	v0.2	200	2 9	9 0	7 0	0 0	700	0		<0.2		<0.2	40.2	<0.2	<0.2	<0.2	×0.2	<0.2	
(dqq)	δ. K	ψ	V V	۸ ن	ŝ	ιΩ V	က V	ν V	ν Ω	\$	\ \ \ \ \	10	ν	\$	N N	, O	, O	\$	Ϋ́	52	, N	\ \ \ \	ιΩ V	iO V	\$	ψ	δ.	ν V	ς,	ν Ω	, V	0	2 4) \	, /	9 (9	, v		×55	A 55	N.	· \$2		S	ις V	vo V	\$	1,
ov No	AYOOO1	AY0003	AY0004	AY0005	AY0006	AY0007	AY0008	AY0009.	AY0010	AY0011	AY0012	AY0013	AY0014	AY0015	AX0016	AY0017	AY0018	AY0019	AX0020	AY0021	AY0022	AY0023	AY0024	AY0025	AY0026	AY0027	AY0028	AX0029	AY0030	AY0031	AY0032	Axooss	A10004	98000	00000	AY0038	0.0004	AY0040	AY0041	AY0042	AY0043	AY0044	AY0045	AY0046	AY0047	AY0048	AX0049	OLOGICA

	اہ	Δ I/		1/5	10	10	io.	_					١٨		-	in	IV.	10	'n	in	50	in	ı.			. LC		10	n	ю	10	מ		ທ່	in i		ın ı	O I	~	n j	S)	<u>α</u>	ומ	0	ומ	ומו	io i	ומ	וו מו	٦
Je		2.0 2.0	0	0	٥.	Ö		٠		0	0 0 0 V		<0.05	40.05	0.05	<0.05	×0.05	0.0	0.0×	0.0	S0.0>	O	c	C	Ċ	c	Ò	Ċ	O	Ö	O	0	Ö	0	o.	o	o,		Ö,		0	0	٥,	9	٠,	0	Ö	3	9,6	2.5
HE	വ	9 6	88	10	30	30	200	25	90	40	30	30	40	20	30	40	20	70	70	40	50	40	505) in	30	888	90	30	100	30	20	20	30	20	20	င္က	000	0.0	တ္တ ်	20	09	70	20	40	- -	\$	000	7007	S 6	20
qs	(Edd)	9 0	0.0	<0.2	<0.2	<0.2	000	70.7	40.2	V V	<0.2	40.2	40.2 2.0	<0.2 0.2	×0.2	40.2	×0.2	<0.2	<0.2	0.0	<0.2	<0.2	200	0	V 0	0	000	×0.2	VO. 2	40.2	<0.2	40.2	<0.2	40.2 2	×0.2	0.2	40.2	×0.2	40·2	V0 2	40. 2	40.2	VO. 5	<0.2	×0.2	<0.2	<0.2	×0.2	9.5	40.4
As	(Edd)		44	i +-1	₹	₹	∀:	₹	₹	₹		н	₹	H	₹	+	4	н	-	 I 	Ī	! 	7	V		2.	ł - -	· 5	,	7	-1	н	러	₹	e)	H	-1	н.	e-4	T	-1	н	rd ·	H	H	₹,	Τ.	ed i	r-1 +	4
Ag	(ppm)	9 0	0.00	<0.2	<0.2	×0.2	000	V 0 V	×0,2	, 0 2	<0.2	×0.2	40.2	40.2	40.2	40.2	40.2	×0.2	40.2	0.0	<0.2	<0.2	, V	0	000	000	000	40.2	V V	<0.2	<0.2	<0.2	<0.2	0°.2	×0.2	×0.2	40.2	7.00	V0.2	7 0 V	V0.2	V0.2	700	70.7	7.00	000	000	200	0 0	4.57
ηV	(Qdd)	J (. i.	ίζ	\$	Š	φ,	€'	S.	ŝ	ç	S V	N V	S.	,	V2	N N	ů	in V	Ϋ́	25	V	10	ıç.	, r.	, V) (V	V V	, io	\$	\$\$	\$, ,	Ş	Ş	ເດ V	io i	Ç!	Ϋ́	is i	Ω.	S I	ν.	Ç i	€ 1	φ,	ç	g į	Ŝ.	3
Sample	SO.	AY0051	AY0053	AY0054	AY0055	AY0056	AY0057	AXOOS	AX0059	AY0060	AY0061	AY0062	AY0063	AY0064	AY0065	AY0066	AY0067	AY0068	AY0069	AY0070	AY0071	AY0072	AY0073	AY0074	AY0075	AY0076	AY0077	AY0078	AY0079	AY0080	AY0081	AY0082	AY0083	AY0084	AX0086	AY0087	AY0088	Axonso	AY0090	AY0091	AY0092	AY0093	AY0094	AY0095	AX0096	AY0097	AY0098	AX0099	AY0101	ALOLOG
														-											•																								<u> </u>	
Te	QυI	0.00		•	•	•		?'	<0.05	0	•	٠	۰.	۰.	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	<0.05	<0.05	50.0		0.00	20	0.00	VO 05	×0.05	<0.05	0		<0.05	<0.05		<0.05	0.05 0.05	40.05	Ö	0		o,	۰,	۰.	9	ιύ (٠,		0,0	•1
			2.0	Q	<u>0</u>	<u>့</u>	0.9	<u> </u>	0	0	0	<u>0</u>	õ	ဝ္	9	9	9	9	0	2	Ó	ő	S	. <u> </u>	2	2 9	2 0	9		000	Ö	0	ő	0	 0		<u></u>	2	Ö.	_; _;	စ္က	2 2			2:	25	<u>و</u>	2 6	9 5	3

Results of Soil Analysis (Mba West Area) Table 1

Au (ppb)	<5	\$	δ	S S	(C)	ξ,	θ, /	9 4	ů.	7.5	, r.	ν ()	\$,	\$	ů	\$	δ,	Ŷ	ις V		ν V) £			 	<5×	ιŞ	, 5	S,		_ ιδ	0 4) IC / V	10	\$5	ŝ	Δ.	ν	Ω, i		ν, ν		? (? ₩	
Sample	AYO153	AY0154	AY0155	AY0156	AY0157	AY0158	AYOLEO	ATOTOT	AY0162		AY0165	AY0166	AY0167	AYO168	AY0169	AY0170	AY0171	AY0172	AYOL73	AX0174	AY0175	271070	AY0178	AY0179	AY0180	AY0181	AY0182	AY0183	AY0184	AY0185	AY0186	AZOTEZ	AY0189	AY0190	AY0191	AY0192	AY0193	AY0194	AY0195	AY0196	AXOTO'S	010100	VIOLOS VIOLOS	AY0201	AX0202	AY0203
Te (ppm)	\sim	0	0	٠		0,00	0.00	20.00	0.00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			0.03	00.00	00.00	000	20.00		0,10	0.02	~		<0.05	-	•	0.15	0.02 0.03	20.00	0000	<0.02	<0.05	\sim	•	<0.02 0.05	0.00	0.00	0.00	35		9	의
(qđđ)	09	20	30	20	္က :	200	96	2 6	000	20	90	70	130	80	70	80	20	0.0	On t	2.6	000	3 5	5 4	9 00	20	40	99	20	70	20	20	200	5 F	40	09	09	30	20	20	30	4 6	2 (2	9 6	8	28	30
SP (mdd)	<0.2	40.2	<0.2	VO. 2		7 V	700	9.0	2 0	•: •	×0×	<0.2	<0.2	<0.2	×0.2	<0·3	40. 2	9 9	7 (O	200	0 0	9,6	200			<0.2	<0.2	<0.2	<0.2	<0.2	0.5	9 0))) (0	\$0.5 2.0	<0.2	VQ. 5	•			•	200				
As (ppm)	2	ຕ	r	+1	7	-	٦,	7-	7 7	-	7	<1	1	۲>	₹	7	ਜ	₩.	T	7	7,7	-i		1	7	ო	2	2	7	₹,	י מי	7	75	7	\ \ \	1>	7	₹	₹ :	₫;	7.	7	71	7.	; ∵	.△
Ag (ppm)	<0.2	<0.2	<0.2	<0.2	<0:2		70.7	70.0		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		\$ 0.2 2.0	N (7.00	200	1 6 7 7	20.0	40.2	<0.2	<0.2	<0.2	<0.2	<0.2	40.2	0.5	9.0	7 0			<0.2	<0.5	<0.2	×0.5	700	9.0			200	\$0.5	
Au (ppb)	<5		\$	(O)	Ω V	νį	Λ, Λ Ο π) V) (r) V V	×55	\$	20	\$5	ស្ត	S.	ເກ V	ر ک	N V	0	ŷ	ς V	? ⁽) IO	Ν.	ν 13	N N	20	S S	€.	Ş	Ϋ́	Ç.) (i:	Š	5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ر در	ان ا	י א	0 t) V	, v) V		\$ 2
Sample No	AY0103	AY0104	AY0105	AY0106	AY0107	AYOLOS	Aretos	AV0113	AV0112	XYOII3	AYC114	AY0115	AY0116	AY0117	AY0118	AY0119	AY0120	AYO1ZI	AY0122	AYOLKS	A1014	AV0126	AY0127	AY0128	AY0129	AY0130	AYOLSI	AY0132	AYOLSS	AY0134	AY0135	AYOLSE	AV0139	AV0139	AY0140	AY0141	AY0142	AY0143	AYO144	AY0145	AICIAG	21014 2004	AV0140	AV0150	AY0151	AY0152

	Ţ	3 6		n i	ומ		n		n S	'n	ب. در	'n	ທ	v:	U		· v	- IC	10		, IO	10	· in	i)	10	, v	· 10	· (7)	E)	30	<u>ب</u>	n	เก	'n	י לו	<u></u>	r)	L ()	2	n L	ת מ) U	U F	U F) R	. I	י נא	n I	ιn	in i
) L	ŠΙ	90	•	0	ċ.	o,	0	ċ	•		ö			c		ċ			Ö			ic									•	•	•		•		•	•	٠,		2 0	•	9 6		5 0	· .	•	oʻ.	ċ	0.0
444	١,	3 6	1	0.4	20	70	30	10	8	90	50	40	40	9	2	0.00	70	30	30	9 6	. 4	30	40	40	80	30	40	30	40	30	40	50	40	8	တ္တ (40	09	200	90	200	227	7	36	200	2 6	9 6	70	99	ဝင္ဂ	40
((M. C.	3.0	9.0	7.00	0,0	700	70.7	40.2	0 7	40.2		: .	-								200	٠.		٠.	٠.					: •		•	٠		•		•			7.00	36	4.6	200		9 9	3.6	40.2	×0.2	40.2	40.2 1
(000	,	7 7	7;	7	۷ ۲	₹ '	₹	₹	7	7	77	_ {}	~ 1	7	7	V	V	7	7	7	7 7		\ V	7	V	\ \	7	' V	∀	<1	7	₹	₹	₽	₩.		₹	∀ 1	₹.	7 :	- √ \	 ;;	Մ ՝	7 0	9 **	۹ ,	₹.	н	7	₹
(E & C	() () () ()	9 6	7.5	7.0	70.5	×0.2	×0×	<0.2	VO. 2	<0.2	<0.2	<0.2	<0.2	<0×	200	20.2	200	20.2	<0.2	0	200	<0.2		40.2			000	20.2	40.2	<0.2	٠.	<0.2		<0.2	0°	×0.2	40.2 70.2	V0.7	7.0	7.00	200	4.0	0 9	7.00	7.0	7.0	×0.2	×0.2	<0.2	×0.2
(400	101	9 (7 4	?	ů,	0 1	Ŷ	Ş	Ş	i V	ις V	1.82	10°	ις: V	ır V	10	, r	, r.	10	, v	2 50	25.	ic.	V 23	i.C		- IO	10	, iù	<5	5	\$	δ	Ϋ́	S I	ς V	Ş	Ŋ.	Ç,	Ç,	Ο ή	7.4		g ų	? "	? !	S I	S V		10
OT CZ	100	AY0154	ם נ	o i	O U	2 :	2	9	9	16	_	ø	16	16	18	AY0168	9	1	AY0171	AV01.72	AY0173	AY6174	AY0175	AY0176	AY0177	AY0178	AY0179	AY0180	AYOISI	AYO182	AY0183	~	~		AY0187	д,		AYO190	-1:-	4 .	A1018	1.0	AYOTAS	7.0	ס מ	9 6	5	X02	Š	AY0202

Results of Soil Analysis (Mba West Area) Table

	.—																		٠,																			-										٦,
Te (ppm)	0.00 0.05	0.00	40.05	<0.05	<0.05	0.02	0.00	<0.05	\$ \$	<0.05	<0.05	0.05	40.05	0.05 0.05	40.05	VO. 05	<0.05	0.00	0.05 0.05	000		3 6	40.05 0.05	0.05	<0.05	<0.05	<0.05	<0.05	\$0.02	<0.02	0.05	20.05	0.00	000	30	000	200		200	0.0	0.00			200	200	200	200	
Hg (ppp)	0.6	5 4 C	8	40	9	40	04	4	30	40	30	90	30	30	09	00	င္မ	25	66	8 6	- R	3 4	70	2	20	00	06	20	60	170	20	0.0	0 0	9 5	4 4	2 5	2 6	200	200	200	200	0 6	0 0	200	200	3 0	3 6	3
Sp (mdd)	9,6	200	40.2	40·2	40.2	×0.2	V0.7	40.5	۷0.2 د	×0.2	40.2	0°5	0.2	0.0	V 0	70.7	2.0	00	7 7 7	9 9	96	9,0	200	40.5	<0.2	<0.2	40.2	<0.2	<0.2	0.2	VO. 2	2.05	000	,	9,0	100	7 9 9	7.00	200	7.00	7.0	7.0	2 6	7.0	9.0	7.0	200	4.5
As (ppm)	₽,	7 ₹	7	Ą	4	₹	7	Ÿ	٦	4	7	∀	₹	₹.	₩.	∜ '	₹	₹	√	·	٠,	; -	1 7	. ☆	7	7	7	₽	4	₹	₹	♥:	₹ 5	;	7.	1 -	t		٠,	7 ;	7:	7,	; ;	71	71	7	√ \	7
Ag (ppm)	0 0	0 0	0 0	<0.2	<0.2	0.0 V	0 × 0	V V	v0.2	×0.2	v0.2	V0.5	V0.2	0 0	000	70.0	VO. 7	0°	×0.2	9 9	9 6	3 0	V 0	000	<0.2	<0.2 2.0	40.2	40.2	<0.2	<0.2 0.2	V0.2	200	0 0	, (3 6		9 6	7.×.v.	200	7 0	7 0	9 6	200	200	, ,	9 0	2.0	,
Au (ppb)	\$	9 10) iQ	₩.	€	Ş	សុ	Ş.	\$5		Ş	Ņ.	V 25	ις V	ς V	?	C	S.	\$	i S f	3 (? (, ₁ 0	. v	\$	V 2	Ş	Ş	<5	\$	Ω,	Ω.	Ω /	? () /) R) V	? "	0 3	? 4	? (Ç 4	? ¥	? "	Λ / Ο π) N	3 4	Λ / Ο π	7
Sample No	AY0254	AY0256	AY0257	AY0258	AY0259	AY0260	AY0261	AY0262	AY0263	AY0264	AY0265	AY0266	AX0267	AY0268	AY0269	AX0270	AY0271	AY0272	AY0274	AY0275	017078	AV0278	AY0279	AY0281	AY0282	AX0283.	AY0284	AY0285	AY0286	AY0287	AY0288	AY0289	AYOZSO	45000V	A10202	200000	1000014	AYOZAO	AXOZAG	AXOZO	410298	A1028	M10500	AXOSOL	200024	770000	AX0304	Alcond
				-					_•	•			_						•			•							•																		••	
Te (ppm)	<0.05	0.00	0.05	<0.05	<0.05	<0.05	<0.05	0.03 0.03	0.05	40.0 2	<0.05	<0.05	VO.05	0.00 0.00	40.05	00.00	40.05	×0.05	40.0 5	0.00	200	300	20.00	40.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.02 0.05	0.03 0.03	0.03		200	3 4	000	200	0.00	0.00	0.00	200	0.00	0.0	0 0	3.0	0.00	3
Hg (ppp)	000	200	ခိုင္က	20	20	70	ဝင္ပ	20	09	0	09	30	20	50	90	70	04	90	30	2 5		3 6	110	80	09	90	20	20	40	09	150	000	0 0	3 0) (C) (9 6	2 / C	2 0	2 6	2 6	O C	9 6) (2 6	2 (2 6	>
Sb (mdd)	2.0 0.2	7 0	20.0	<0.2	<0.2	×0.2	, v	20.2	0 V	V 0.2	40.2	40.2	×0.2	0 0	0 0	70.	, v	40.2 2	40 2	9 9	9.0	9 0	200	000	40.2	0.2	40.2	40.2	<0.2	0.0 V	V 0	0.0	200	200	40	9 0	N (7.00	0.00	700	200	0 0	7 (V V	200	7.0	N 0	7.5
As (ppm)	√,	7 7	. ८	∀	∜	₹	7	₹ '	₹	7	₩.	<u>.</u>	v	√ :	₹.	7	-	ᅻ ·	7	մ ։	75	, ,	7	! ₹	√	₹	4	√ ∨	√ 1	∀	Ճ.	⊢ ;	₹ ₹	75	7,5	7;	71	7	٦,	- - - - - - -	7.	7.	;	7:	7,	,	٦,	1
Ag (ppm)	40.2	7 0 0	V	40.2	40.2	×0.2	V V V	V	~ 0.2	×0.2	×0.2	×0.2	V0.2	VO. 2	V0.5	×0.2	×0.2	40.2	40. 2	0 0	4 6	200	20.0	0.00	40.2	<0.2	×0.2	40.2	×6.2	×0.2	0.0 0.0	700	000	9 0	300	9 6		7.00	× 0	7 0	7.0	7 0	7 7	7 0	900	\$ C	, v	• [
Au (ppb)	δ <u>/</u>	? V	, iô	\$	s,	₩	 V	ις i	Ş	ıçi V	φ.	ν V		 ν	v i	Ç I	Ŷ	ις V	Ŷ	۵ /) () V	, fû	, v	V V	, N	in V	សូ	\$ \$	က် V	ν,	0 1	n v	? "	 } {	, ,) V	2.4) V	, v) V) i) tf) V) (? U	3 f	7
Sample No	AX0204	AY0206	AX0207	AY0208	AX0209	AY0210	<u> </u>	N a	AY0213	-10	10	AY0216		in i	AY0219		AY0221	AX0222		4.0	AV0226		- 00	<u> </u>	AY0230	AY0231		_	AX0234		AY0236				AV0241	AV0242	4 0	A10243	A10244	n (2000	0.000	0.0	A VO 24 S	0.000	4 9	A10252	3

Results of Soil Analysis (Mba West Area) Table 1

_																			٠		•										•									-										
Sample	AY0356	AY0357	AYOSSB	AY0359	AY0360	AX0361	AY0362	AY0363	AY0365	AY0366	AY0367	AY0368	AY0369	AY0370	AY0371	AV0272	AV0272	AV0374	10000	AY0378	446044	AVOSTA	AY0379	AY0380	AVORA	AY0382	AY0383	AY0384	AY0385	AY0386	AY0387	AY0388	AY0389	AY0390	AX0391	AY0392	AX0393	AY0394	AY0395	AY0396	AX0397	AY0398	AY0359	AY0400	AY0401	AY0402	AX0403	AY0404	AX0405	AY0406
																	-									_			_						•	-									,					
(mdd)	40.05 01	0.05 0.05	00.00	20.00	00.0	0.0	0.05	40.05	20.02	<0.05	<0.05	40.05 0.05	<0.05	<0.05	<0.05	(O O)	0.0	0	200	20.0	10.0	0.05	0.05	0.0	. O.	01.0	×0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.02	40.05	<0.02	<0.05	0.03	\$0.05 \$0.05	40.05	×0.05	000	VO.05	000	200	40.05	<0.05	o	40.05	<0.05	ر ار ار
(ppp)	50	205	D (9 6	000	07	207	30	ဓ	20	40	20	30	20	207	200	, r.	40	2 0	0 0	200	9 6	96	200	200	200	202	09	20	30	40	20	40	09	09	90	90	20.	09	40	20	20	000	D :	20	50	20	70	40	40
(mdd)	ö	0 0	5 (-			•			•		40.2					20.0		•	200		2.0	200					40.2			<0.2	•	٠		•	-	0.5			.:	•	0.5 0.5	•			40.2	•		×0.2	. 0
(mdd)	₽.		⊽ :	⊽ :	⊽ :	7	 7	- !	₹	∀	Ţ	₹	7	⊽	7	7		V	; ;	; ₽	<u> </u>	V	7.	V	V	7 7	7	7	' ♥	₹	v	7	۲,	₹	7	7	₹	₹:	₹	7	₹	ζ,	₹ :	₹'	₹	⊽	₹	7	7	7
(mdd)			•				×0.2	•			×0.2	40.2		40.2	٠.			• •			100	000			0	200					<0.2	<0.2	•	•	. O. 2	•			٠	<0.2			٠	•		\$0.2 \$0.2	<0.2	٠	<0.2	,
(qdd)	ξ	Ϋ́	0	ů.	0	ů		\$	ş	5	\$5	\$, 5		, V	, r.	S S	A R.	, / . r	, V		y ur	, c	, v	, c) in	S. S.	Š	Š	ψ.	\$ V	ů.	,	Ŷ	ις V	V	V	o i	ů.	\$	9	ı,	ů,	Ç!	Ω V	٠ دي دي	ŝ	\$	ŝ	ı,
No	AYU306	AY0307	AYUSUB	AX0309	Arosto	AYOSII	AY0312	AY0313	AY0314	AYOBIS	AY0316	AY0317	AY0318	AY0319	AY0220	AY0321	AY0322	AY0323	700074	AY0325	AV0926	AY0327	AY0328	AY0329	AY0330	AY0331	AY0332	AY0333	AX0334	AY0335	AY0336	AY0337	AYO338	AY0339	AY0340	AY0341	AY0342	AY0343	AY0344	AY0345	AY0346	AY0347	AY0348	AY0349	AY0350	AY0351	AY0352	AY0353	AY0354	10

(DDE)	(maa) (maa)	(maa) (
-	Ĉ.	(mdd) (
1	<0.2	2
	40.2	_
	٠.	0
	2.0×	00
	40.2	
	×0.2	
	40.2	
	7.0	3.6
	V 0	
	<0.2	
	40°	÷
	<0.2 0.2	
	7.0	_
	40. 2	
	×0.2	
	×0.2	°
	<0.2	0
	40.2	0
- 1	<0.2	
	<0.2	
	<0.2	
	40.2 2.0	
	<0.2	
	<0.2	
	40.2	
	<0.2	
	40.2 0.2	
	×0.2	<u>.</u>
:	<0.2	
	<0.2 0.2	_
	<0.2	
	<0.2	
	40.2	
	40.2	
	×0.2	
	0 0 0 7	
	×0.2	
		٠ ۲
	<0.2	ç V
	<0.2	_
	<0.2	
	<0.2	
	<0×	
	200	
	,	
	2.0	
	×0.2	
		0
	40.2	ζ.
		?

Results of Soil Analysis (Mba West Area) Table 1

Te (ppm)	9	Q	0	0	o	٥.	o	٥.	<0.05	C) (C		5 6	٦,	o.	o,	<0.05	0.0	•	•	90) ·	9	0	<0.05	<0.05	0	C	9	•		3 6	?;0	, c	00.00	Ş	<0,05	٥.	٩	0	0	9		? <	? ∙	ď	٥,	0,05	0	_		? =	, .	20.02
(qād)	30	30	40	270	30	120	30	20	ဓ	20	- V4	3 6	2 6	707	30	-04	40	09	000	200	110	2	4	04	40	40	200	09	202	- 4	9 6	3 6		36))	04	09	40	20	70	20	90	9 6	2 4	96	09	70	20	06	9	30	. G	9 6	35
(mđđ)	<0.2	ö	0.5 0.5	•			<0.2		40.2 70.2	٠,	•		9 9	7.00	×0.2	40.2 -	0.2			, ,	9 0	9 (×	×0.2	40. 2	40.2 2.0	40.2	<0.2		,	9,0	, ,	4 0	•	7.0	20.5	V	٠	0.2 2.7	.0°	×0.2	<0.7		•:	7.0	•	<0.2	0.2	<0.2			, ,	7 0	2.6
As (mgd)	4	7	7	₹	7	Ţ	7	₹	∵ 7	Ţ	+15	;	7 :	7	₹	₹	₹	\	7	; ;	 ;;	7	7	₹	₹	₹	7	V			77	7 7	†*************************************	 ;	7 :	7	₹	N	∀	₩.	7	V	7	<i>/</i> ;	7	∀	₹	₹	7	 ! \	-	7.	7;	7 2
Ag (ppm)	<0.2	0	<0.2	<0.2	0.2 0.2	<0. 2.0	40.2	<0.2 2.0	99		- K. K.	,	9 0	20.0	40.2	. o	0,5		,		, ,	::	20.5			0.2	40.2 2					0	6 0	7 0	7 0	•	×0.2		٠	•	40.2	,		-:	٠	٠			40.2 2	٠,				7.6
Au (ppb)	-	Ş	\$	V.	ις V	ις V	S V	ŝ	ς,	ις. Υ	4	, ,	? \	Ç	ŝ	ίζ	Ş	S.	ı.) ti	9 (?	0	ŝ	ŝ	ν Ω	Š	- Y	, V	, K	, v	, r.	- u	. v	9 (Ç.	ç	S.	ιΩ V	Š	ν V	(C)	. if	? *	9	ç	ŵ	ic V	ŝ	, v	, re) v	? 4	9 5
Sample No	AY0407	AY0408	AY0410	AY0411	AY0412	AY0413	AY0414		덖	-	.4	•	4 C	7 !	1	AY0422	AY0423	5	2	307070	٠.	77.014	AYUAZS	7	5	AY0431	AY0432	63	ന		000000	. 4		ANOTO	230458	AX0440	de i		•	AY044	πĖ	AY0446	AVOAAT	r :	AY0448	AY0449	AY0450	AY0451	AY0452	AY0453	440454	AV0455	À II	AY0457

Š		,	'n	2	NO L	Đ
ļ		(mdd)	(mdd)	Ħ.	(qdd)	
AY0458	0 V	9,6	₹ ₹	200	36	9,0
707) C	7.	; c	2 6	
ָ בריים בריים) (15	; c	2 6	, c
100) k		7.	;	υĈ	
1) \ \ \ \	•	7.7		3 5	, 0
9 (? "		;	•	4 6	, (
ָ מַלְּי		7 0	۲۰,	, v	O 0	3.0
9 0	? "		7.	9 0	3 6	ې د
107) W		7.5	5 c	2 0	90
2 (27	.:	7	7.00	2 4	
XC46	Ç i		7	5 (54	
Y046	v V	5	7	V0.2	က္ခ	
47	N V	ċ.	4	×0.5	ထ	0°0°
047	Š	ċ	₹	ċ	100	
47	\$	ď	7	ö	20	<0.05
047	iO V	d	4	ö	9	
7	IO V		7	ó	100	<0.05
7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	d	7		₽	
7	ŝ	0	7	ď	80	o
Y047	₹	O	77	ö	8	0
<u></u>	Ş	: .	17	: .	9	<0.0>
Y047		ö	7	Ö	20	0.0
V048	K. V	<0.2	V		70	C
7048	, C	· c	V	c	,	C
2) v	Ò	′ `) C	•
9 9) ų	0	7,	;	2 6	. <
201	9 4	o (7,	;	5.0	, (
Ď.	9 1	7.00	7	ς.	ο.	
φ.	ις V	0°5	7		റാ	o. (
AY0486	n V	V V V	7	<u>.</u>	c v	0
ŝ	\$	ç. 2	7	ö	~:	
Y048	۸ 55	<0.2	۲×	0	170	0
8	S.	, o	턴 V	ö	ന	
049	Š		7	<0.2	06	
9	Ϋ́	<0.2	7	ö	ω	0
2	Ω		₹	ö	N	0.05
5	Š		₹		120	
6	Λ 55	<0.2	⊢	ö	Ç.	0.0
249	ស្ត	40.2 40.2	က	×0.2	ന	ᅻ
AY0496	×5	0.0 20.2	ന	0.5	$^{\circ}$	٥.
Y049	,	40.2 2.0	m	0	110	0.15
5	Ŷ	<0.2	2	<0.2	ഹ	़
7049	3	0	m		70	
0	۸ 5	<0.2	7	0	80	0.02
7050	Ş	•	63	٠.	000	٥.
8	\$	<0.2	-1	0	S,	٥.
50	ŝ	<0.2	2	0	150	<0.05
050	ŝ	<0.2	73	0.3	4	0
ည	55	×0×2	н	<0.2	70	<0.05
7050	N V	<0.2	н	0.5	80	0:0
ŭ	ις Υ	40.2	н	0.2	200	<0.05

Results of Soil Analysis (Mba West Area) Table 1

re (ppm)	0.0 0.0 0.0 0.0	30	<0.05	0.05	.05	.05	.03 .03	.05	107	0 6	3 6	0.02	.05	0.05	<0.05	0.05	0 0 0 0 0	2000	3 6	0.05	0.05	50.0	2 6	.03	.05	.03	0.05	3 E	0.05	40.05	<0.05	0.03	0.05	000	25	300	0.05	0.05	<0.02	<0.05	0.00	200	30
																		1	_	_,	_					_									Ļ			_					
(qdd) 2)	110	- 86 - 86	100	ઌૻ	~	7	100	ന് 	ĕ	~ ŭ	ő ĕ	18	170	~	~	ŭ	ω̈́ •	ř .	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4	i či	. κ	. 4	700	16(96	- 4	200	ŭ	ğ	ğ	20 i	F- E	29	200	· @	· iñ	ğ	13	ii.	4	120
Sb (mdd)	999	2.00	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	70. V	9 6	9 6	9 0	\$0.2 2	<0.2	×0.2	40. 2	9 ç	2 (2.0	9	<0.2	9 9	9 6	0.0	٥٠.2 د	<0.5 40.2	9 9	9 9	40.2	40. 5	×0.2	0.5 0.5	700	9.5	7.00	2.00	0,0	40.2	<0.2	40.2 0.2	9 9	7.00	\$ 0°.2
As (ppm)			н	-	н	ਜ		- -1	7	~ i -		7		+1	**1	r-1	₹ ₹	7.5	7.0	7	m	₹ 5	77	₹ V	ત્ન	₽	-15	77	ı	~	∺	r-1 1	٦,	r	7		' ₩	4	7	1	71 -	4 C	2 (2
Ag (ppm)	9.5	0 0	<0.2	<0.2	<0.2	0.0 0.2	0.2	×0.2	V. 0	200	200	000	<0.2	<0.2	<0.2	0. 0. 2	9 9	7 0	9 9	40.2	<0.2	0,0	70	90.5	<0.2	0.2	9 6	000	0.0	<0.2	×0.2	0.5	2.0	0,0	7.00	3.0	40.2	×0.2	40.2	<0 ×	0 0	7 0	000
Au (ppb)	δ. ć	? \$	\$	Ş	ů	\ \.		ν V	S S	٠ د ۱	7 (7 17	15	5	ι	5	٧ <u>۱</u>	2"	9 V	0	Š	Ω	0 5	12	10	20	ۍ <u>دې</u>	2 47	φ.	\$	ξ	₩,	φ.	ν, ή	o i	0.0	, in	Ϋ́	₩.	Ş	Ω. #	9 4	7 17
Sample	AY0558 AY0559	AY0560	AY0561	AY0562	AY0563	AY0564	AY0565	AY0566	AY0567	AVOSES	AY0570	AY0571	AY0572	AY0573	AY0574	AY0575	AX0576	0.000	AY0579	AY0580	AY0581	AY0582	AY0584	AY0585	AY0586	AY0587	AY0588	AY0590	AY0591	AY0592	AY0593	AY0594	Axosss	AY0596	AYOS97	AY0599	AY0600	AYOGOL	AY0602	AY0603	AY0604	ATOROS	AY0607
																ï	_													,													
Te (ppm)	0.0 8.0	×0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.02	0.0v	50.00		0.05	<0.05	<0.05	<0.05	<0.05	0.00	20.07	0.00	<0.05	<0.05	0.00		<0.05	<0.05	0.10	0,0 0,0 0,0	VO.05	<0.05	<0.02	<0.05	40.05 0.05	0.00	0.00	20.00 20.00	000	<0.05	0.15		•	0 T O	2 .	0.03
Hg (ppb)	9 20	00	70	70	20	20	09	150	190	230	O C	800	06	130	04	0	0 0	2 0	200	20	140	96	130	06	20	100	9.6	200	202	20	80	900	02	0 6	200	2 6	20.00	06	20	30	200	007	202
Sp (ppm)	9 9	200	<0.2	<0.2	40.2 2.0	×0.2	0.5	<0.5	0 ×	70.0	2 0	000	40·2	<0.2	40.2	×0.2	0 9	3.6	9 0	\$0.5 \$0.5	40.2	9,0	9.0	0.0	<0.2	0 V	9 9	2 0	0.0	40.2 0	40.2	40°	V0.2	9 9	Z 0 Z	200	40.2	40.2	<0.2	<0×	0 0	200	200
As (ppm)	+-4 r-	- es	7	H	Н	63	7	7	H	₹;	7.	7 ₹	7	₹	7	₹	₹;	7.5	7 0	₹	n	m c	3 6	ဖ	2	4	ന	3 6	2 23	7		~ (NI (. 10	- X	- ۵		1 🕏	es	က	2 6	71 (o
≓	86				•				V × × × × × × × × × × × × × × × × × × ×		•	V		<0.2	<0.2	•	9 0	200		40.2	40.2	9,5	7 0	V V	<0.2	<0.2	2 °		40.2		<0.2		×0.2			0 0					•	7.00	200
Au (ppb)	i S i	3 13	N N	δ	N V	S V	N V	ις V	200) k0) in	, 55	¥	× 22	ν V	ιςς μ V V	2 1) LC	V V	\$ \$	ζ, í	2 (\$ \$	\$	Ŝ	ΰ,) LC / V	, v	10,	,	ις V	Ç.	\$ V	CV.	ý ť	, to	ů	8	ν V	N N	Ç V	3,10
Sample No	AY0508	X0510	X0511	AY0512	Y0513	Y0514	X0515	X0516	70517	07007	Y0520	Y0521	Y0522	X0523	Y0524	Y0525	AY0526	7000	Y0529	Y0530	Y0531	Y0532	V0534	Y0535	Y0536	Y0537	Y0538	Y0540	AY0541	Y0542	Y0543	AY0544	AY0545	Y0546	YOU 47	AY0549	AY0550	AY0551	AY0552	Y0553	Y0554	20000	AY0557

Results of Soil Analysis (Mba West Area) Table 1

	l .			.	
(qđđ)	0 C				
	00 V 00 V V V V V V V V V V V V V V V V				
As (ppm)	77				
Ag (ppm)	0 0 0 0 0 0	·			
Au (ppp)	ι δ. ι δ				
Sample No	AY0658 AY0659				
			 .		
	<u>စစ်စစ်စစ်စစ်စစ်စ</u> စစ်စစ်စစ်စ	00000000000000000000000000000000000000		000000000000000000000000000000000000000	ລູດວ່ວວ່ວວ່ວວ່ວ ພະຍະຄະທະຍະຄະຄະຄະຄະຄະຄະຄະຄະຄະຄະຄະຄະຄະຄະຄະຄ

	_		_					-				_			_										_					_																				
Te (ppm)	0	0	0	0	0	9	-	C).C		0	0		· c		9 0	, 0) C	•	90	··c	9	, 0					9	0.00	0	0	۰.	o	o	0.10		000 000 000	? (?	9	٥.	o.	٥.	ö	0	0	0	0.0 0.0 0.0 0.0	
(qdd)	08	40	09	20	20	70	70	100	0.00	2 6	70	70	110	100	86	יי ה ע	200	200	2 6	900	50	000	200	, L	04	04	0 0	20	30	110	20	40	70	30	ဓ	20	40	54.	000	OF.	24	30	90	000	04	30	30	0.40	0 6	3
Sb (maa)	40.2	40.2	40.2	40.2	×0.2	<0.2	<0.2	<0.7	VO. 2	0	<0.2	<0.0×	200	200	500	,	200	0	, ,	200	20.2	2	40.2	2	200	200	000	<0.2	V V V	<0.2	<0.2	40.2			V V	40°2	V .0		VO. 7			0	0	•			V V	70	9 0	1
As (ppm)	- -			₽		<u>-</u>	9	er)	•	V	2	V	· V	! ₩	,	7	7.0		7	70			n		1	1 -	र च	-	l CA	2	2	~	63	63	73	4	77	N (. 17	7	27	-	-		N		н ;		⊽;	
Ag (ppm)	<0.2	40.2	40.2	40.2	40.2	<0.2	<0.2	<0.2	VO. 2	600	<0.2	<0.0	20.2	200	,	9.5	000		, ,	200	202	×0.2	×0.2	V	200	200	0,00	40.2	40.2		<0.2		•		×0×	٠	9.0	20.5	•	7.0		0	<0.2			40.2 -	, vo. 2		90	7
Au (ppb)	9	55	, V	ν	ŝ	Λ	, N	A)	A 10	V.	<55	V	, r.) ()	, K) () IC) (C) () ₁₀	52) IC	IC V	IC.	i.) rô	, r.	, N	ů	: V	\$	Ş	ν. Ω	ις V	Λ Ω	S,	ເ ເ	Ç	Ç I	Ŷ	€ :	ŝ	လူ	Š	ις		iÇ i	Ÿ	Ċ, έ	?
Sample No	AY0608	090	5	6.1	X06	G	ဖ	w	2	AV0637	19	YORT	200	2 (4067	1000	i c	100	10	ÄN	100	Ċ	Lea	(0)	0	90A) C	6		60	'n	33	4	<u>6</u>	4.	4 .	4.	4 .	Y064	X064	X06	4	in O	S	S	ß.	S)	9	AY0656	3

Results of Soil Analysis (Mba West Area) Table

									_:										÷-									_									+		_						
Hg (ppb)	20	5.6	80	5	40	8	9 6	٠. د	07	3 6	3 6	3 6	3 4	25	3 6	200	30	91	20	20	8	음 6	3 5	2 5	200	33	09	30	20	S 5	3.6	3 6	2 6	3 6	2 6	30	30	22	20	9	70	200	2 6	2 6	50
Sp (mdd)	<0.2	200	0.2	0 0 7	0.5	000	000	7.00	7.00	0,0	200	7.0	100	100	, ,	200	40.2	<0.2	<0.2	4.0	×0.2	9 9	9 6	7 0	00.2	40.5	<0.2	<0.2	<0.2	9 9	9,0	5 6	4.0	200		200	<0.2	40.2	<0.2	<0.2	×0.2	000	3.6	7 6	<0.2
As (ppm)	ζ.	¹ ♥		₹	end i	63 (n +	۲.	7	7 -	٠,		₹ +-		4 +-	٠٠	•		Ī	⊽	7	010	<u>/</u>	7 4) 4	4	< <u>1</u> >	<1	7	·		٦ ,	,	17	je		-	7	н	н	-1		٦,	7 -	† ₹
Ag (ppm)	\$0.2 \$0.2	9 9	0.2	40.2	V0.2	×0.2	70.0	7.00	V0.2	9 9	2 0	200	9 0	100	90	200	CO. 2	V 2	<0.2	40·2	<0.2	40.2 10.2	0.0	7.0	000	40.2	<0.2	<0.2	×0.2	V0.2	0.0	0 6	9 6	200	200	90	20.2	0 0	<0.2	<0.2	40.2	000	200	9 6	40.2
(qdd)	\$ \ \$ \	9 19	Ą	Ϋ́	S.	21	000	21	SV V	n c		4 / 5 f.	2 (3 (? () tr	i tû	V.	525	\$	× 35	Ş	ις V	S £	2 10	Ϋ́	N.	<5	ςς ·	ις, i	Ç,	0 4	2 4) (C) ť	9 (255	ń	\$	<.5 5	ς,	iO i	O V	? 4	G.
Sample No	KK0058	KK0060	KK0061	KK0062	KK0063	KK0064	KK0065	AKCOC6	KK0067	ANOUGE TITOGGE	PROCES	KKOO21	KKOO72	KKOO12	KKOOYA	KKC075	KK0076	KK0077	KK0078	KK0079	KK0080	KK0081	KK0082	KKOOSA	KKOORS	KK0086	KK0087	KK0088	KK0089	KK0090	KKOOSI	MACOUST	NACOUSTA VALOUES	X KOOON	XICOOR	KKOO97	KKNOGE	KK0099	KK0100	KKO101	KK0102	KK0103	KKO104	COTOWN	KK0107
																					:													•											
Te (ppm)	0.05	0.02	<0.05	<0.05	\$0.02 0.03	<0.05	0.00	20.00	20.02	000	0.0	200	20.00	200	20.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	3.5	20.00	<0.05	<0.05	0.45	<0.05	<0.05	50.05	20.02	20.00	200	000	0.00	50.05	×0.05	40.05	<0.05	<0.05	<0.05	0.02 0.03	0.0	20.0	<0.05
Hg (ppb)	30 020	202	90	20	04	040	9 6	200	0 to 1	200	2 6	200	20	2 6) (F	40	40	20	30	20	130	06	5 6	5 6	30	20	20	20	20	20.) C	3 5	o c	9 6	000	0 4	30	20	30	20	20	200	0 0	50 5	20
SP (ppm)	40.2 20.2	0.0	<0.2	×0.2	×0×	V 0.5	000	20.7	7007	7 0	7 0	7 0	200	000	000	V V V	<0.2	<0.5	<0.2	0 V	×0.2	V 0.0	7 0	7 0	200	40.2	<0.2	<0.2	40.2 1	7 0	2 0	7 0	9 0	0.0	200	0	<0.2	V V	<0.2	<0.2	×0.2	V . 0	700	7 0	<0.2
As (ppm)	₹ 5	' ∀	₹	∜	₹,	₹;	V	4 ,	7	٦ ;	7.	٠ ۲	-t ←	۲.	7 ₹	1 7	-	-	2	-	C1	7	- - -	7 ⊽	1	7	н	2	₹'	ri v	٦,	7.	7.5	7 -	-			7	н :-	н	ન •	₹;	7.7	7.	77
Ag (ppm)	0 0	\$ 0.5 \$ 0.5	×0.2	<0.2	×0×	V0.2	700	×0.7	N X X X	9 0	9 0	700	0 0	9 0	9.0	20.00	<0.2	<0.2 20.2	<0.2	<0.2	40.2	× 0 × 0	0.00	2.0	40.2	40.2	<0.2	<0.2	×0.2	200	7.0	7.0	3 0	100	0	000	40.2	<0.2 0.2	<0.2	×0.2	×0.2	0.0	700	9 0	\$0.5 0.2
Au (ppb)	φ. (0, f0	ຸທ		ις	ς Υ	δ,	Ç	וֹ נו	O W) E	? ") ic) IC	2 10) (C	10	, V	ın V	5.5	ស្ក	ν. V	ıç i	S f	2 tr	v V	10	15	S.	ς, i	? V	γ V	י ני) () v		, rê	×55	V.	Ş	10	70	ψ, í	? ;	1+	12
Sample No	KK0001	KK0010	KK0011	KKOO12	KK0013	KK0014	270	TOOUT	AKANIS.	0 0	KKOOSO	KKOO21	KKO022	100	220	KK0025	KK0026	KK0027	100028	KK0029	XX0030	53	KWOOSS	200	035	980	037	980	680	KK0040	TROOM T	KKOO44	KKOO44	KKOD45	KKO046	740	048	KK0049	KK0050	051	052	KKOOSS	1 V	מי כ	KK0057

Results of Soil Analysis (Mba West Area) Table 1

		_	_				_		_		•				_		_			_	_		_	_		-					_	: '		_	_	_		_		_					-	-	_				
									•																																										
	_								_		_							_														,														_	_			_	
(HC	0.5	0	00	ι C	0.0	05	50	150	2 6) (2	3 6	3 6	3 6	3	o O	S	Ö.	9	0	င္ပ	ô	0	ö	Ö	ű. O	О	S	ö	S	0	05	S	0	3	8	0	Ö	ö	0	0	S	O	Ö	Ö	03	0.5	02	0	03	8
Te on	o			C.V	Ç	0	Q V	Q	ç	, c	\sim) C	; ;	; ;	,	ç.	0	0	Ŷ	ç	ç	ç	ô	9	0	ô	ô	٥ ٥	0	ô	0	0>	0	0	0,	ç	0	0		0	0	0	0	Ŷ	0	ô	ô	Ŷ	ç	ę,	Ŷ
<u> </u>	ĕ	 	0	C	20	00	. 0		2 0	2 5	3.5	2 5	2 9	2 6	2	<u>.</u>	စ္က	0	00	<u>0</u>	000	o O	000	20	20	6	0	9	ç	20	20	30.	0	0	20	90	-04	40	40	30	00	40	-04	40	6	30	202	00	6	40	6
Hg. (pp)		•	•	-		4,						•	•	•	•	•	_	•	••		_					•	•	Ū	•	•			•	•		••		•	•				•	-				_	Ĭ	•	-
	2									10	1,4	1 0	4 0	4 0	4	N	(1	 N	N	~	~	N	N	N	63	N	N	~	N	N	2	C)	N	N	7	Ŋ	~	N	64	N	N	~	7	<u>رب</u>	7	2	N	N	7	77	7
Sp	ŝ				ç	8		ç	ç	, (?	?	; ;	9 9	;	ŝ	ô	ö	ô	ő	ő	ô	ô	ô	å	ô	ô	ô	ô.	ç	0	Ŷ	8	ô	ô	ô	ô	ô	ô			8			Ŷ	ô	ô	0	Ŷ.	ô	ç
	L							_			1										_	_				_				_		_			_							-		_					_		
As (ppm)		. △	Ÿ	V	Ÿ	7	•	[++		1 -	1	4 -	٠,	7.5	,	₹	₹	∜	₩	∀	-	-₁	-	⊽	₹	4	₹	₽	∀	Ţ	₹	⊽	7	₽	7	∜	4	7	4	ო		2		₩.	⊽	7	₹	∜	₹	+-1	
	Ļ										1	_					_						_			_			_			Ļ	_									-			-			,	-		
Ag Dom)	0.2				2	2.5		2	10		4.0		9 0	40	4	7		Š	2	2	0.7	~	2.2	2.2	2	2.2	2.2	2.2	2	2	2.2	2.2	2.2	2	2.2	2.2	2.2	2.2	9	2.2	2	2.0		0	2	0.2	0.7	.2	2		.2
A8 (00)	V	Ŷ	V	Ŷ	8	Ŷ	Ŷ	V	\$ \$? ?	7.5	9 5	<i>;</i>	? ?	,	₽.	ô	ç	8	ç	ŏ	¥	Ŷ	ç	ô	Ŷ	ô	ô	ç	Ŷ	ç	0	Ŷ	ů	ô	Ŷ	₽	Ŷ	Ŷ	8	⊽	8	8	8	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	ç	v
	107	iù.	10	ı.	ii)	ίλ	S	ıŋ	, v) (, , <u>,</u>	'nί	? !	9 4	?	ç	ις	Ŋ	ŝ	ŝ	ις.	ŝ	ú	ů	เก	ŝ	ທ	ŝ	ñ	ŝ	Ś	ŝ	ŝ	ທ	ιζ	ç	ŝ	ŝ	ŝ	ιΩ	ŝ	S	15	ŝ	ŝ	ູ່	ŝ	κ	Ω̈́	ίζ	ů
Au (ppp)		•	•	•	•	•	٠	•								•	•	•	•	•	•		·	•	·			•			·			·	-	•							•								
۵.	800	0	0	_	2	'n	4		9 4					4 0		ď	33			8	<u>ი</u>	ŏ	37	32	60	34	33	36	33	8		40	4,4	42	ф Э	4	45	46	47	8		20	21	(U	23	54	55	26	57	28	39
Sampl	010	KK0109	5	5	9	5011	KKO11	KK013	KKOT	KKO	1.	KKOT	j	TOUR	į	-1	-1	K01.	KK01.		KKOT	KOT		KO1.		CK013	KOT	KK013	KK013	CK01	CK01;	:	н	KK01	KO1	CKOL	KK01	KK01	KKOL	KK01	-	:	-4	٠,	KK01	KK01	KK01	KK01		KK01	
Š	Ž	Ż	Ż	¥	2	Ž	×	Ž	! 🕏	1 5	3	3 5	2 5	25	3	2	2	2	2	7	Z	고	Z	2	Z	Z	Z	Z	Z	2	2	2	2	2	昱	Z	2	2	2	2	2	:2	모 _	2	¥	2	Z	2	×	2	¥4

_		.					_		· · ·						_								·							_	_											_									
	(ppm)	<0.05	<0.05	<0.05	40.05 0.05	000	0.00	2000	20.00	0.00	0.00	20.02	<0.05	<0.05	<0.05	<0.85	<0.05	<0.05	<0.05	40.05	<0.05	<0.05	<0.05	40.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	<0.05	<0.05	40.05	<0.05		0	0	o	0		Ö	0	o
27	(qdd)	20	30	30	04	0,4	24.0	0,0	÷ 4	20,	04	200	20	80	120	70	30	40	20	30	30	270	20	9	40	40	30	40	.09	20	70	40	20	60	. 60	09	9	70	50	09	ည	50	20	20	50	20	30	30	150	20	40
6	(Edd)	<0.2	<0.2	×0.2	0.0	200	700	7.0	7 0	2.00	7.00	٠	×0.2	40.2	<0.2 0.2	×0.2	40.2	40.0	<0.2	×0.2	40.2	<0.2	40.2	40.2	<0.2	<0.2	<0.2	<0.2	<0.2 0.2	<0.2	<0.2	<0.2	40.2	<0.2	<0.2 0.3	<0.2	<0.2	V0.2	×0.2	40.2	<0.2	<0.2	<0.2	<0.2	<0.2 2	40.2	V 70,7	40.2	0.2	<0.2	<0.2
0	(Edd)	7	н	₹	₹:	₹;	7 7	₹ \	7,5	₹ ;	7	₹	7	7	∀	7	7	7	₹	7	7	-	7	₹	7	п	7	7	₹	び	₹	7	7	7	₹	₹	7	Ų.	۲ ۱	7	7	⊽	₹	7	77	Ų	V	7	<1 <1	7	<1
8	(mdd)	<0.2	<0.2	40.2	0 0 0 0 0 0	S C	7 0	V (9,0	7.0	7.00		×0.2	×0.2	0.5 0.5	<0.2	<0.2	<0.2	40.2	40.2	40.2	<0.2	40.2	40.2	<0.2	<0.2	<0.2 0.7	40.2	<0.2	<0.2	40.2	<0.2	v 0.7	40.2	ç0.2	40.2	40.2 40.2	V 9	×0.2	Z.0.Z	<0.5	<0.2	40.2 0.2	<0.2	40.2	<0.2	0	ó	0		<0.2
4	(ddd)	\$	Σ	Ϋ́	iŷ i	Ç (Ç V		? \	2 1	ŷ	Ŷ	V	,		Ÿ	Š	· •	S V	ις V	× 55	ç	₹,	ŝ	Λ 55	Š	S,	\$	ŝ	5	Š	52	S,	, S	Λ.	ij,	V	N N	v V	in V	ŝ	\$	₩.	\$	\$	ŝ	N.	10	in V	ις V	۸ 5
Compos	No	KK0160	KK0161	KK0162	KKO163	AKOTO4	COTOWN	KKOL66	OTOUR	POTOV	KKO169	KK0170	KK0171	KK0172	KK0173	KK0174	KK0175	KK0176	KK0177	KK0178	KK0179	KK01.80	KK0181	KK0182	KK0183	KK0184	KK0185	KK0186	KK0187	KK0188	KK0189	KK0190	KK0191	KK0192	KK0193	KK0194	KK0195	KK0196	KK0197	KK0198	KK0199	KK0200	KK0201	KK0202	KK0203	KK0204	KK0205	KK0206	KK0207	KK0208	KK0209
									•																																										
4	(mgg)	\sim	<0.05	o.	o, o	> (20.00	0.00		000	CO 02	<0.05	<0.05	×0.05	<0.0°	<0.02		<0.05	<0.05	<0.03	40.05	<0.05	<0.05			50.02 0.03		<0.05	<0.05	<0.02	<0.05	<0.05	<0.02	<0.03	<0.03	\$0.05	0.03 0.03	0.0	00.00	.0.03 .0.03	20.0°	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	0	<0.05	<0.05
H		ļ			_	_	_				_÷		_		_					_		÷	_	_								÷						-			-	∺	_		-				<u>.</u>	_	\dashv

Results of Soil Analysis (Mba West Area) Table 1

Au,	(odd)	? V) V	Y.	۷ د	ان ۷	ις ν	υ: •	, v	, ,	2.0	? 5		ů,	Ş	S V	Ϋ́	ů	N N	Λ	۸ دن	ار V	V) ()	, v) tr	, v	, .) L	3 4) ()) , () U) u	,	ů,	Ω V	N N	۸ د	Ş	χ Δ	\$5	N N	() V	ν 3	ů	ς. Σ	ı.	ις :	\ \ \	<5
Sample	000000	KK0261	KK0262	KK0263	KK0264	KK0265	KK0266	KK0267	KK0268		**************************************	2000	T TOOL	NN0272	KK0273	KK0274	KK0275	KK0276	KK0277	KK0278	KK0279	KK0280	KK0281	KK0282	KK0283	KK0284	KKO285	KKOSBA	KX0287	KKO288	KKOZBO	000000	KKOZOZ	TOTOMA	2000	NO.293	NAUGUS A	NAC ZYJ	KK0296	KK0297	KK0298	KK0299	KK0300	KK0301	KK0302	KK0303	KK0304	XX0305	KK0306	KK0307	KK0308	KK0309
L				• • •	•	_				_	•					-						•	-																				•									
Te	70 CF	0.00	<0.05	C	0	<0.05	<0.05	<0.05	<0.03	200	ンと	2 6	20.03	٠,	co.05	<0.05	40.05	<0.02	<0.02	<0.05	<0.02	<0.05	×0.05	<0.05	<0.05 0.05	<0.05	0.00	100	200	200	0.0	300	30.0	200		00.00	20.00	20.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.02	<0.05	<0.05	<0.05	<0.05	40.05	<0.05	0.0	\$0.02 50.03
Hg	1000	200	Ç,	30	900	20	30	20	4	2 0	2.5	9 6	200	၁ (5	70	00	20	10	80	20	40	70	40	08	30	04	- C) c	3 4	40	200	3 6	2 0	3 6	2 5	2 0	0.7	707	702	20	30	20	10	10	20	20	20	000	30	10	20
Sb	(Doug	000				40.2	<0.2	<0.2	0		•:	9 6		200	70.7	×0.2	0.5 0.5	×0.2	0 0 7	ç0.5	40.2	<0.2	<0.2	0.0	000	Ç0.2	0	0	,	200	000	200	,,	2 0	9 6	9,9	4.6	20.7	70	40. 2.	<0.2	40.2 0.3	<0.2	40 40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.0 2	<0.2
As	(NAM)	7 7	7	V V	7	77	7	V	; v	; ;	 	7;	7	₹,	₹	ij	₹	₹	∀	7	Ų	1>	\ ₩	! \	· 🗸	! ⊽	: 5	1	; ;	7.	! 5	***	7.	7:	7 7	7;	7 :	7	Ų	₹	₽	ゼ	Ţ	₹	7	₹	₹	₹	. △	, t	7	41
Ag	(Ppm)	200	×0×		40.2	×0.2	40.2	<0.2	40.2		12	9 6	7 (700	200	×0.2	v 0.7	×0.2	<0.2	40.2	40.2	<0.2	<0.2	20.2	200	VO. 2	20	,	,	0 0	0	2.0	200		9 6				70			<0.2 0.2	<0.2	<0.2	40.2 2	<0.2	40.2	40.2				<0.2
Au	1000) IO	, r.	ic V	ν V	, S	×	ıç v) IC) U	7.1) (Ĝ i	٠. د	ŷ	ξ	ý	ŝ	Ş	N N	V C		, rc) (C	, r.) is	y V	, (, ,) in	, /) K	211	2 4) u	7 1	2 4	Ç, í	o i	က (က V	Ą	ς. Υ	55	×	S V	ις V	ŝ	ν V	0	ίζ	v.	\$
Sample	0.40037	KK0211	KK0212	KK0213	KK0214	KK0215	KK0216	KK0217	KK0218	2000		710022	TZZOWY	NN0222	NN0223	KK0224	KK0225	KK0226	KK0227	KK0228	KK0229	KK0230	KK0231	KK0232	KE0233	KK0234	KK0235	KKO236	KKO227	KK0238	KKO239	C C C A	KK0241	KICOSAS	270073	STOOM'S	##70212	0.000	NN0246	NK0247	KK0248	KK0249	.KK0250	KK0251	KK0252	KK0253	KK0254	KK0255	KK0256	KK0257	KK0258	KK0259
									-												•																															

Table 1 Results of Soil Analysis (Mba West Area)

۳.	ı																																													
Sample No	KK0370 KK0371	KK0372	KK0373	KK0374	KK0375	N. K. C. C. C.	KKO278	EEC 270	KKNYKN.	KK0381	KK0382	KK0383	KK0384	KK0385	KK0386	KK0387	KK0388	KK0389	KK0390	KK0391	KK0392	KK0393	KK0394	KK0395	KK0396	KK0397	See our	KK0399	KK0400	KK0401	KK0402	AKO403	WK0404	CO CAL	KK0407	KK0408	KK0409	KK0410	KK0411	KK0412	KK0413		<u>.</u>	NK0416		KK0418 KK0419
(ppm)	\$0.02 \$0.05	40.05	<0.05	V 02	0000	200	500	0 0	20.00	0.00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.02	<0.02	<0.05	<0.05	0.05	0.0 0.0	00	0.00	20.0	0.0	0.00	0.00	0.05	000	0.00	0.00	2 0	20	0.00	V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	<0.05	۰.	9	9		? '	0000
(pdd)	000	12	30	50	200	2 6	3 6	200	200	202	70	30	40	20	40	9	20	30	40	20	20	30	6	20	Oc.	04.	4. f	0,	09	40	200	5 6	0 0	5 5	5 4	4	40	30	30	20	20	30	0 0	0 0	0 0	3.4
81	00	•		•	, c			٠	2000		0	٠.	<0.2	40.2	40.2	<0.2 0.2	<0.2	<0.2	<0.2	40.2	<0.2	<0.2	40.2 0.2	×0.2	V0.2	0.0	200	V .0	V.0.5	V	V		7 (9.6	100	×0.2	×0×	<0.2	<0.2	<0.2	<0.2	×0.2	0°2	0.00	V (7.0°
AS (ppm)	∀ ₹	∀	₽.	₹ 5	7 (_ /:	7.	7		7 7	V	4	₹	۲	7	₹	₹	₹	₹	₹	7	₹	₹	₹	7	₹ ;	7;	7	√;	₹ :	₹ :	7	7,	7,	- 7√	· V	14	7	7	₹		₹	₹'	7 5	7	∀ ∀
Ag (bbm)	0.0		V0.2	V0.2	000	36	3 0	٠	٠: ،			<0.2	<0.2	40.2		40.2	40.2	×0.2	<0.2	<0.2	<0.2	0.2 0.2	V V V	0.2 2.0	70.7	700	2.00	70.5	700	20.5	200	700	36		0.00		40.2	<0.2	<0.2	<0.2	0 7	0 0 7	0.0	200	200	7 C
Au (ppb)	S, IS	Ϋ́	ŧŞ.	V) (7 K) ⁽	7.0	. r.	, r.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N N	53	Ş	ν. Ω	Ą	សូ	ιδ	ς Υ	ų	₹ •	Ŝ	Ş	S.	O	9 4	Ç.	ις, ί	i Çi	ů,	Û,) í) to) V	, ro	S.	\$,	Ϋ́	ψ.	iÇ i	Ç.	Ç,	
Sample	KK0320 KK0321	KK0322	KK0323	KK0324	KKO325	NAC SZE	KKO228	KKOSSO	KKONY.	KK0331	KK0332	KK0333	KK0334	KK0335	KK0336	KK0337	KK0338	KK0339	KK0340	KK0341	KK0342	KK0343	KK0344	KK0345	KK0346	KK0347	NN0348	KK0349	KK0350	KK0351	KKO352	ANOSOS SERVICES	ANDOON A	SCOOK	KKO357	KK0358	KK0359	KKO360	KK0361	KK0362	KK0363	KK0364	KK0365	NAU366	NAU367	KK0368

Ag	Au (ppb) (ppp) (ppm) (p
(Ppd)	Au (Ppb) (Ppp) (P
(Ppb) (Ppp)	(Ppb) (Ppp)
### C	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
A C T S T S C T S T S C T S T S C T S T S	dd A A A A A A A A A A A A A A A A A A
Sample NAME	Sample No KK0370 KK0371 KK0373 KK0373 KK0373 KK0373 KK0373 KK0373 KK0383 KK038 KK0383 KK0403 KK0403 KK0403 KK0403 KK0403 KK0403 KK0403 KK0403 KK0411 KK0411 KK0411
<u> </u>	•

Results of Soil Analysis (Mba West Area) Table

_								,_																																							
Te	(ppm)	0.05	×0.05	<0.05	<0.05	40.05	0.02 0.03	0.05	<0.02	0.05	<0.05	0.05	0,0	0.00	200	,	200	0.03	0.05	0.20	0.03	0.15	0.25	\$0.02 10.03	0.13	0.0	0.00		200	200	<0.05	0.05	40.05	40.05 0.05	40.05	20.05	0.00	20.0V	9 6	0.0	200	200	<0.03	<0.02	<0.05	\$0.03	<0.05
Hg	(qdd)	160	200	96	100	100	06	100	100	06	70	2.	140	770	240	1 +	000	130	110	100	120	100	8	4 i	70	96	1 (0	2 6	300	200	80	100	80	င္ဆ	20	071	2 (200	္က (2 6	2 5	5 4	09	02	20	20	20
38	(mdd)	<0.2 <0.2	20,0	40.2	<0.2	×0.2	70.0	<0.2	40.2	٥٠.2 د٥.2	<0.2	ç0.	0.0	7.0	3.5	90	2 0	V 0 7	<0.2 2	<0.2	40.2	×0.2	ç0.7	0,0	V0.2	700	200	9 0	3 0	200	ç0.5	<0.2	<0.2	<0.2 0.3	ç0.5	2.0	700	7 %	0.0	200	2 0	200	000	0.2	<0.2	<0.2 0.2	<0.2
As	(mdd)	~ r			7	-	- 1	ન	7	₹	₹	, ,	N -	-1 •	40	۹ ۲) 4	2	14	4.	m	ഗ	es .		red (e	-1 C	40	ş c	4 (2	+4	73	H	<u>.</u> ਜ	۲,		٦,	7		٦ ;	77	7 7	ļ 	, ti	- TV	7	7
AE	(mdd)	<0.2 0.2	20.0	<0.2	<0.2	40.2	×0.2	×0.2	×0.2	<0.2	40.2	0.2 0.2	0 0	7 0	700	200	× 0.2	<0.5	40.2	<0.2	<0.2	<0.2	×0.2	000	200	7.0	200	90	200	700	40.2	<0.2	×0.2	V0.2	×0.2	7.0	7.0	70.0	0,0	200	7 0	200	<0.2	40.2	<0.2	×0.2	<0.2
Au	(qdd)	i S r		Š	က V	ν Ω	v V	Š	۷ ک	~22	ıŞ ı	ا ا	ם נו י V	? "	9 (0	? v	, A	V V	V V	Ŷ	ν V	, S	υ, Γ	Ϋ́	0	ν V	ก น V \	? 5	+ **	3 13	Ω V	V 25	S V	بر ا ا	ις V	ů, í	٠ ن	S V	Ŋ,	Ç i	ν \ ν μ	? V	, rc	Λ	ν Ω	מו	 S
Sample	No	KK0470	KK0472	KK0473	KK0474	KK0475	KK0476	KK0477	KK0479	KK0480	KK0481	KK0482	KK0483	NN0484	KKO486	KK0487	KK0488	NK0489	KK0490	KK0491	KK0492	KK0493	KK0494	KK0495	KK0496	KK0497	NA0498	KKOSOO	TOSON	KK0502	KK0503	KK0504	KK0505	KK0506	KK0507	NAGOOR I	KKUSUS	KKOSTO	KROSII	KKOSIZ	KKUSI3	XKO513	KK0516	KK0517	KK0518	KK0519	KK0520
-																				_																											
Te	(mdd)	0.05	0.20	0.03	0.05	0.05	0.20	<0.05	0.05	0.03	<0.05	00.00	0.00	0.00	100		0.05	<0.05	<0.02	<0.05	<0.03	40.05	0,00	0.00	00.00	200	0000	36	200	000	<0.05	<0.05	0.05	0.0 0.0	00.00	0.00	200	0 k	0 0	00.00	200		<0.05	0.05	<0.05	00 00 00 00	<0.05
311	(qdd)	70	8	ည္တ	70	9	20	09	20	04	70	2,0	110	200	25	9	08	80	9	120	06	70	30	200	96	2 6	26	36	200	800	20	20	90	90	90	000	000	0/1	0 6	2 (000	8 4	09	120	120	130	170
Se	(mdd)	0.0	40.2	<0.2	40.2	40.2	40.2	<0.2	<0.2	<0.2	<0.5	, ç	9,0	200	200	700	20,5	<0.2	<0.2	<0.2	40.2	<0.2	×0.2	9 9	2.0	2.0	300	300	100	0.5	40.2	40.2	40.2	<0.2	40°2	2.0	2.0	7.0	0 0	200	200	7.0	<0.2	40.2	<0.2	\$0.2 2.0	<0.2
As	(mdd)	03.00	າ ຕາ	Η.		4	₹ .	 rd		-		 ed (77 -				; ;	V	7		₽		√ '	₹'	;	7.	 7	7.	<u> </u>	; ☆	· •	₹	₹	7	₹ :	7:	7	T>	₹,	٦;	₹ ₹	7 0	1 7	Ų	₹	-	1
Ag	(mdd)	0.0	40.2	•		000				• 1		•	9 0		3 6					<0.2	-			0.0		0 0	700		•:	9 0			٠	×0.2			•	7.00	7.0		70.0	7.0				40.2	- 1
Au	(qdd)	φ ψ	, V	۷. دئ	S I	ນ ທີ່	ν V	S.	 S	ις: V	ν V	 	0 4	? () v	. V	, C	S,	\$	- Y	ς V	က (လ	in i	0 1	V V		7 (, v	9.10	\$	Υ.	iù V	ເນ	ς V	Ç (ny.	ů, í	9 4	Ç V	2 10	100	ιů	Ġ,	ις	<5
Sample	oN N	KK0420	KK0422	KK0423	KK0424	KK0425	KK0426	KK0427	KK0428	KK0429	KK0430	KK0431	KK0432	NAC455	KKO435	KK0436	KK0437	KK0438	KK0439	KK0440	KK0441	KK0442	KK0443	KK0444	(K0445	VK0446	NEO244	CK0449	KKOARO	KK0451	(K0452	(K0453	KO454	KK0455	KK0456	2000 2000 2000 2000 2000 2000 2000 200	NKO408	NECKON!	KK0460	10000	NKO462	KK0464	KO465	KK0466	KK0467	KK0468	KK0469

Results of Soil Analysis (Mba West Area)

Samp	KKO	KKO	KKO	KKO	KKO	KKO	N C		KS	KKCO	KKO	KKO	KKO	KKO	KKO	KKO	KKO	KKO	KKO	KKO	27.7	XX	KKO	KKO	S	N N	KKO	KKO	KKO	KKO	KKO	N K	KKO	KKO	KKO	KKO	KKO	NAO	PAKO	DYY.	N N	NAC NAC NAC NAC NAC NAC NAC NAC NAC NAC	PANO	- KKO
,			_																																	_							·	_
Te (ppm)	<0.05			•	•			9 6	• : .	•						•	o.	<0.05	•	0 0	•			•	0 0		•;	; ;		40.05											•			0
Hg.	04	09	09	40	70	86	3.5	3 -	204	20.	110	100	100	110	9	40	140	140	110	120	3 6	2	70	20	00 00	5 6	200	38	110	120	920	27	9	. 09	06	120	04 (200	200	200	200	 2 6	2 (1.1.
Sb (mgg)	ര	6			•	0,0	700		7.02	6			<0.2	40.2 2.0			•	40.2	<0.2	0,00		0,00			0.0	9 0	•: •	20,00	40.2	0 0 0 7	0.00	7 0			0 0 7	•	0.0		•	•	2.00	٠	700	
As (ppm)	∀ ⊽	,	. △	7	₹		ر د د	, ,	+ 5/	10	m	N	n	7	63	н	47	2	(1)		1 7	7	#1	ť,	m (1 07	→	N	- 1!	Ω -	1 8-	\	∜	∀	7	₩.	₹ :	 ♥ :	7	ζ.	٠,	٦,	_
Ag (ppm)	0.0 0.0 0.0	0.00		<0.2 0.7	×0.2	9 9	9 6	,	200	0	00.0	0,0	<0.2	<0 2	V0 2	<0.2 0.2	40.2 2.0	<0.2	0.5	0 6		000		90	9.5	3 6	<0>>		ç0.5	9	9 6	0 0	0.0	<0.2	٥٠.2 د	V0.2	0 0	7.00	200		000		700	- C
Au (ppb)	\$ £		, ro	ξ,	ς Υ	Ϋ́	3 (, v	250) IC	, v	Ą	\$	ŝ	Š	Š	ζ,	\$2	٠ ا	Ω. () V	. fû	ŝ	ιδ	Ω. f	9 (5.5	δ. δ.	δ	ψ, 1	٠ د ل) V	\$	ψ.	ςς	9	ν, i	9 1	9 4	9 (g (9 4	Ç (r
Sample No	KK0521	KK0523	KK0524	KK0525	KK0526	KK0527	KK0528	CENTRAL	KKOS31	KK0532	KK0533	KK0534	KK0535	KK0536	KK0537	KK0538	KK0539	KK0540	KK0541	KK0542	KK0544	KK0545	7.0	KK0547	NKOS48	KKORES	KK0551) IO	KK0553	KK0554	KKOSSS	KK0557	I.O.	KK0559	ഗ	KK0561	KK0562	ńι	ANOUGH VIVOROR	AKOSOS SOCIOS	NKOS66	NACOS OF THE PARTY	ANOUGH STRONGS	ĸ

	•						'				:					_						_ :											;											<u>:</u>										
qs ,	(mdd)	V 0.0	7 ° °		200	20.5	40.0	<0.2	<0.2	<0.2	<0.2	40 ×	9 6	9.0	4.0	7 0.5	<0.2 2	<0.2	,	9 6	7.0	7 0 7	70.5	<0.2	<0.2	40·2	<0.7	0,00	9 0	7.0	200	700	×0.2	<0.2	40.2	×0.2	40.2	<0.2	<0.2	<0.2	<0.2	<0.2	×0.2	<0.2	×0.2	0	,) (7.00	40.2	40.2	<0.2	<0.0	9 6
As	(Edd)	-1 -		7	/ .	! 🗸	7	rd	r-l	7	3	-	ł +		٦.			-	7	;	,	Ţ	₹	rd	44	r d	-		۱,	ન ;	7 :	₹	₹	:-4	+	н	+1	-		-	· =-1			12	l e-i	1 -	1 -	1 +	t ·	67	77	-1		1 -
AE	(Edd)	200	0.0	, ,	30	20.5	40.0	<0.2	×0.2	40.2	<0.2	40	9 0	90	3	V. 0.	<0.2	6	,	9 0	7,0	7.0	×0.2	×0.2	0.0 0.2	×0.2	<0.0	0	9 0	7.0	70.0	7.00	2	×0.2	40.2	40.2	v 0.2	40.2	×0.2	V 0	40.2	<0.2	40.2	<0.2	V 0	200		3 0	7.00	V 0 V	×0.2	<0.5	×0.2	000
Au	(add)	ů, í	0 K	, /) IO	, A N	V	Ω V	V	V V	\$	V) t	? (? '	S S	N N	,	V) v	? ¥	Ç	Ŷ	Ϋ́	N N	N N	N V	V.) V	? !	9 1	0	Ŷ	Ÿ	ů,	Ŷ	Š	SO V	۲ ک	V 25	\ \ \ \	V 73	, N	45	N V	ır. V	ı v) U	Ç	Š	\$	\ \ \ \ \	ار در	, v
Sample	NO	KKO572	KK0573	KK0575	KK0576	KK0577	KK0578	KK0579	KK0580	KK0581	KK0582	KK0583	VIVOR DA	#0000M	COCOUNT	KK0586	KK0587	KKONA	KKORBO	COCOLUL A	NACO SOL	PECON	KK0592	KK0593	KK0594	KK0595	KK0596	XX0597	000000	0000000	NAU OUR	N.KOBOO	KK0601	KK0602	KK0603	KK0604	KK0605	KK0606	KK0607	KKOGOB	KK0609	XK0610	KK0611	KK0612	KK0613	KK0614	KKOG15	0.000m	OTODAN	KK0617	KK0618	KK0619	KK0620	KKO 601
Te	(Hdd)	50.05	0000	- C	50.05	<0.03	<0.05	<0.05	<0.05	<0.05	0.05	CO. 03	000	300	7	<0.02 0.03	\$0.02 20.03	50.0	. O.		2 0	20.00	0.20	<0.05	<0.03	<0.05	<0.05	20.02	200	20.07	200	200	0.03	<0.05	<0.02	<0.05	<0.05	<0.02	<0.05	<0.05	<0.05	\$0.03	<0.05	<0.05	<0.05	20 C) (\$0.05	<0.05	<0.05	<0.02	0.00	S C
Hg Te			40 CO CO				90 <0.05	_			!		_						_			4		_				_		<u>'</u>			_								60 <0.05		00.0>	1		50.05	_			60 <0.05	70 <0.05	70 <0.05	70 0 00	40.00
HE	(odd) (m	2.0		36	200	70	.2	_		.2	!		2 5	150	7			60	2 40	255	7.	061	.2 110	.2 120	.2			202	2 0	000	000		_					.2		2.	.2	. 2	2.	1		2005	- C	96			<0.05 70 <0.05	<0.2 70 <0.05	20 70	- C
HE	(odd) (mdd)	2.0	54	36	40	70	<0.2	<0.2 90	<0.2 70	<0.2 70	!	.2	2 5	150	7	.2 100	.2 110	50	2 40	255	7.	061	.2 110	.2 120	<0.2	.2	70	20.2	2 0	000	000	080	_		.2	110	.2 120	.2	.2 110	2.	.2	<0.2	2.		<0.2	200	200	300	08		1 <0.05 70 <0.05	1 <0.2 70 <0.05	20 70	
As Sb Hg	(odd) (mdd) (mdd)	< 2 40 40 40 40 40 40 40 40 40 40 40 40 40	54	36	40	×0.2	<0.2	.2 5 <0.2 90	.2 <1 <0.2 70	.2 <1 <0.2 70	!	.2	100	150	7	.2 100	.2 110	50	1 40	000	077	061	.2 110	.2 120	<0.2 50	<0.2 50	<0.2 70	20.2	2 0	000	000	080	_		.2	110	.2 120	.2	.2 110	2.	<0.2	.2 <1 <0.2 60	.2 <1 <0.2		<0.2	< 1 < 0.2	000	300	7:0> 7:0>	2 <1 <0.2 60	.2 1 <0.2 70	<0.2 1 <0.2 70 <0.05	2 2 70	0.00

Results of Soil Analysis (Mba West Area) Table 1

Au (ppb		-				
Sample						
Te (ppm)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	40.05 40.05 0.05 0.05		
(qdd)	80000000000000000000000000000000000000	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		200 200 200		1.1
SP (Edd)	000000	0000	\$\$\$\$\$\$\$\$\$\$\$\$\$\$	0 0 0 0 0 0 0 0 0 0 0 0 0		
As (ppm)	-44444	700 A H	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	∆ - 4 ∞		
Ag (ppm)	99999	00000	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0		
Au (ppb)	ស្សស្ស	\$ \$ \$ \$ \$	~	Λ. Λ. Λ. Λ.		
Sample	KK0622 KK0623 KK0624 KK0625 KK0626	KK0629 KK0629 KK0630 KK0631	KKO632 KKO633 KKO633 KKO635 KKO636 KKO638 KKO640 KKO640	KK0642 KK0643 KK0644 KK0645	i.	

Te (ppm)				
ļ				
Hg (ppb)			· .	
Sb (ppm)				
As (ppm)				
Ag (ppm)				
Au (ppb)	-			
Sample				
			,	
		•		

Results of Soil Analysis (Mba West Area) Table

Te (ppm)	<0.05	0.0	0	0	0	٥,	0	C) X		0	•	0	<0.05	0,0) C	•	? C	2.1	200	•	٠,	0.0	9	0	•	٩.	0	40.05	0	۹.	٥.	ċ	9	9	<0.05	<0.05	40.05	Ç	·C	0.0	.0	0	0.0	0		C		
(qdd)	20	20	70	20	20	20	30	20	C	3 6	25	200	စ္တ	40	04	20	40	, r.	70	2 6	2 5	2.0	000	200	20	30	30	40	30	40	04	40	90	- 20 	9	30	10	30	20	30	30	10	20	30	20	20	40	40	40	20		9 6
Sb (mqq)	<0.2		0		×0.2	40.2	<0.2		200		7.4		70.7	V 0.7	, 0 , 2	40.2	40.2	200	0	,	9.0	7	9 9	7.0	0.0	×0.2	<0.2	0.2 0.3	0 0 0	<0.2	0.0	×0.2	×0.2	×0.2	×0.2	<0.2 2	×0.2	<0.2	40.2	×0.2	40.2 2.0	<0:2	<0.2	40.2	40.2	40.2	40·2	<0.2	<0.2	1.0		7.7.
As (ppm)	7	7	н	H	<u> </u>	н	-	ı -	1 1-	1 -	4.4	4			√	7	-		 ! \(\f\)	; ;	_ /:	77	⊢ •	7		7	₹	۲ ۲	н	₹	-	₽	٦	7	-1	7	7	₹	7	₹	₹	7	1	- -	7	7	Ų	¥	V			 7
Ag (ppm)	<0.2	<0.2	40.2	40.2	40,2	×0.2	<0.2	<0.	0		'nς	7 .	<0.2	V0 V	0 V	40.2	×0.2	VO . 2	0		100	3 (0 0	200	200	V0.7	×0.2	0 V	0 0	V V V	40.2	40.2 2	<0.2		VO. 2	V 0 2	•		40.2 2	×0.2	0.5	: +	<0.2		70.7		<0.2	<0.2	0 2	<0.2	,	, 64 50 50 50 50 50 50 50 50 50 50 50 50 50
Au (ppb)	<5×	\$	×	10°		55	S.	ν V	, c	Ų	? "	? !		v V	in V	N S	V	, fC	, r.) () V	7	o i	Ç i	Ŷ	S.	ເດ	S S	က V	N N	S V	ŝ	δ	٠ دي	δ	\ ស	ν V	۸ س	, 55	Š	Ϋ́	ν V	\$2	\$	\$		Ş		100			? ! ?
Sample No	8	OK0002	K000	OK0004	Ö	0K0006	OK0007	0.00008	000000		3.0	å.	₹;	₹.	Ö	OK0015		-		010000	OKOOSO	20000	0.000 C	770000	010023	K002	OK0025	0K0026	0K0027	N.	KOOZ	8003	0K0031	and a	OK0033	OK0034	OKO035	OK0036	0K0037	OK0038	OK0039	OK0040	0.00041	OK0042	OK0043	OK0044	0K0045	0100046	OK0047	OKO048	5	S

¢s.	(PDE	0,0	9 0	V 0.5		9.0	000	7.0	70.7	4.0	9 0	3 0	200	<0.2	×0.2	40.2	<0.2	<0.2	40.2 2	×0.2	0	0.0	200	7 C	40.2 20.2	<0.2	<0.2	<0.2	<0.2 0.2	V	0 9 0 9	56	200	0.2	V .0.2	\$ 0.2	×0.2			റ്		? ?	V 0	, c		
As	(mdd)	₹	7 7	/ V	10	7	ဖ	 		10	0 0	3 6	-، ۱	. IC		m	7	ᆏ	гH	H	ņ	N ·	 •	3 6	1 tO	· ਜ	77	ເດ	r-l i	rd	 	10	N =	ſrd	H	₹	۲۷	 -	H	<u>ਜ</u>	- i -		7,			
Ag	(mdd)	000	200		40.2	40.2	0,0	2.05	0 0	100	3.6	200	200	×0.2	×0.2	40.2	40.2 2	40.2	<0.2	40.2	0 0 7	0.0	V V	200	200	40.2	×0.2	<0.2	×0.2	V0.7	0 9	9.0	200	0,0	40.2	40.2	V 0 7	V V	00	0.00	2.00	7.00	200	, v	×0.2	<0.2
Au	(qdd)	, N	? (, ₍ (Ŷ	\$	Α,	Ç ţ	Ω «	?.	? ") / /	, c	V	N V	ŝ	iç.	Ş	V	S,	S.	Ů,	0 K	7 🗸	10	Š	in V	, R	ν V	iQ I	N f	ζ / 	7 10	N V	ς Υ	ŝ	ν. V	Š	ູ	in i	e i	Ç,	ָרְ אַרְ) v	IC.	×5
Sample	S.	0K0051	0K0053	0K0054	OKODSS	0K0056	0K0057	070028	OKOOSE	120000	TOOMO	S S S S S S S S S S S S S S S S S S S	0K0064	OK0065	0K0066	OK0067	0K0068	0K0069	0K0070	OK0071	0K0072	0K0073	OK0074	OK0076	OK0077	0X0078	0K0079	0K0080	OKOOSI	0K008Z	OK0083	00000	0K0086	OK0087	OK0088	6800X0	0K0090	00000	0K0092	OK0093	50000	S (0K0096	D 0		OK0100
																							_																					÷		
Te	튒	\$0.05 0.05	9 0	90	0	۰.	000	<u>ې</u> د	j c	ÿ	; c	, (0.00	9	0	۰.	0	0	<0,05	٥.	0.	٠,	၁ (3	0.05	റ	\circ	0	<0.05	\circ	0.0) C	, 0	, 0	0	Ö	<0.02	Ö	0	-	?			j c		
28 H	(Qdd)	200		200	202	20	90	707	0 6	2.2	200	3 5	4	200	40	20	40	40	40	30	ဝင္ပ	200	200	2 4	30	4	40	40	09	000	40	2 5	300	202	30	30	70	20	30	200	07	24.	5 6) C	30	30
qs	(mdd	0 0	200	200	40.2	40.2	0,0	2.0	2 0		9.6	3 6	20	2.0	200	40.2	40.2	40.2	0	0.2	0	20.0	200	200	200	40.2	40.2	\$0.2	0.0	20.5	000	200	40.5	40.2	<0.3	40.2	<0.2	20.5	0.2	0,0	7.0	7.00	7.00	70		<0.2
n	9	۰ ۷			•	•	*	•	٧,		•	•	•	٧	٠	•													Ì													-	-			

Table 1 Results of Soil Analysis (Mba West Area)

										1_										:									- 3							_			•								_		
Sample No	01(01.51	030153	OK0154	OK0155	OK0156	0K0157	0K0158	OK0159	0K0160	010161	0K0162	0K0163	0X0164	010165	OK0166	010167	OK0168	0K0169	0K0170	OK0171	OK0172	OK0173	OK01.74	OK0175	0K0176	OKO177	0K0178	01010	OK0180	0K0181	291000	0K0183	010184	CRITONO	000700	ONOT SO	01010	STOVO	0KC190	0K0191	000192	0K0193	OK0194	0K0195	0K0196	010197	01(01)98	0K0199	002000
																																										٠							
0.1	0000	20	2		<0.05	<0.05	<0.05	0	<0.02	0	0	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0	<0.05	:~	0	\sim	<0.05	<0.05	<0.05	<0.05	<0.05	0	<0.05	വ (?'	0.05	0 6	٠,	2 5	2000	200	20.03	3×	0.00	VO 02	000	0.03	0.03 0.03	<0.05	<0.05		S 6	<0.05
Hg (ppb)	90	30	20	300	30	20	20	09	09	50	40	102	40	20	40	30	20	20	20	50	80	9	20	30	70	40	20	40	30	30	4.	ဂ ဂ	3;	5 6	9 6	2 5	7	770	40	30	30	64	40	30	20	20	22	500	4 0
Sb (mdd)	\$ 0.2 2.0	0.0	0	0.0	<0.2	<0.2	40.2	<0.2	<0.2 0.3	<0.2	40.2	<0.2	<0.2	<0.2	<0.2	<0.2	40.2	40.2 0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	40.2	<0.3	<0.2	×0.2	۷0.2	40.2	×0.2	0. ç) ¢	200	7.00	7.0	7.00) ()	×0.2	V0.2	0.7	×0.2	<0.2	<0.2 2.0	40.2 0.2	40.2	0,0	<0.2
As (ppm)	٠,٠	٠,٠	10		ત	ત	₹	∜	∜		∜	7	ન	∜	₹	∜	₩	₹	⊽	۲>	ત	ભ	ਜ ਜ		⊽	₹	₹	⊽	⊽	Հ.	₹'	♥ 5	7.5	7 5	7.	77	; ;	7 1	7	н,	₫,	₹	₹	7	7	્ર ∀	ರ.	⊽ 5	7
Ag (ppu)	<0.2 20.2	200	20.7	0.0	<0.2	<0.2	×0.2	40.2	40.2	<0.2	<0.2	×0.2	<0.2	40.2 0.2	<0.2	<0.2	<0.2	40.2	<0.2	<0.2	\$0.5	<0.2	<0.2	<0.2	<0.2	40.2	<0.2 0.3	0 0 7	۵ ۷	40.2 0.2	70.7	0.0	9 9	200	7 (4000	9 6	3.6	7.00		7.0		×0.2	v v v	×0.2	0 V	×0.2	9 9	4.05
Au (ppb)	& (9 10	, iu	i.	\$	ıņ V	ស្ត	ťΩ	Š	<5>	5	ςŞ	Ŝ	ę	ıç,	5	ŝ	, r	û	۸ ئ	Š	S S	Ŝ	50	r5	ις. V	\$	ς.	လို	ις.	Ç.	Ç,	Ç ų			3.6	? "	9	Ç.	က် လ	S i	ŝ	ທ V	Ş	Ϋ́	ς,		Ω 4	Ç
Sample	OKOJOJ	OKOJOS	OK0104	OKOLOS	000000	0K0107	0K0108	OK0109	01000	OKOILI	OK0112	OK0113	OK0114	OK0115	OKO116	0K0117	0K0118	OK0119	OK0120	OK0121	OK0122	OK0123	OK0124	OK0125	0K0126	OK0127	OK0128		OK0130	OK0131	SETONO	OK0133	010134	OKOTONO OKOTONO	OVOTOR	00000	000000	651000	OKOT 40	OK0141	OK0142	4	OK0144	0K0145	OK0146	OK0147	01(0148	0K0149	OKUTONO
								-																																									

(ppb) (ppm)		Sample	Au	AE	As	Sp	HZ.	e
52	-		ppp	-	(ppm)	Ę	qdd	(mdd)
15.54 15.55 15		5	<5		<1>		30	<0.05
153		ū	ស្ត		47		20	0
534 555		2	Ş		<1		40	c,
12 12 12 12 12 12 12 12		Ľ	ır. V				C.	c
1536 1537 1538 1539 1540 1551 1552 1553 1553 1554 1555		9 1	, /	_			0 0	, (
12 12 12 12 12 12 12 12		? 1	? "	_	7) (٠,٠
12 12 12 12 12 12 12 12		٠,	Ç i		·	٠	> د	; ·
158 159		2	i Q		н,		09	9
100 100		S	ŝ	40.2		<0.2	30	o.
10 10 10 10 10 10 10 10		5	ŝ	0			30	Ö
10 10 10 10 10 10 10 10		9	Ş	O			30	0
16.2 16.2 16.2 16.2 16.2 16.2 16.3		9	2	Ö		; •	20	<0.05
10		9	S.V	0		-	80	0
17.1 17.2 17.3 17.4 17.5		2) IC	C		<0.2	30	9
172 173 174 175		2	, v	0		<0.2	40	\sim
173 174 175		1 .) u	0	,	,) C	•
17.0 17.0		2 5	,	0		9 0	200	•
17.1 17.2 17.2 17.3		2	o i	2		2.0	٧.	Э (
173 174 175		2	Ŷ	Э.		2.0.	-1 1	•
17.2 17.2 17.3		9	လ လ	40.2		<0.2 2.0	20	0
17.0 17.0		16	in V	Ó		<0.2	20	Ö
171		2	Ϋ́	0		<0.2 <0.2	20	o
173		7	\$	0		<0.2	30	0
17.7		7	សូ	40.2		•	09	9
174		7	ر دی	×0.2		•	40	0
175 175			\$	<0.2			60	0
176 177 178		2	N V	<0.2			40	0
177		1	\$	<0.2			20	O
178		7	\$	<0.2		<0.2	30	Ö
179 45 45 45 45 45 45 45 4		-	V	<0.2		<0.2	20	0
80 C C C C C C C C C		7	10°	<0.2	7		30	0
		æ	iO V	<0.2	<1		30	0
183 65 60.2 184 65 60.2 185 65 60.2 1 60.2 186 65 60.2 1 6		8	\$	<0.2		: •	60	0
184		B	ις. V	×0.2			20	0
184 < 5 < 60.2		18	ŝ	<0.2			50	<0.05
185 <5 <0.2		3	ν Ω	<0.2		<0.2	30	0
186		8	\$	<0.2	н	<0.2	80	0
189		ø	ເນ V	40.2		<0.2	40	0
188 <5 <0.2		ω	, ,	40.2	-1	<0.2	20	0
189		8	۸ 5	0	rd	<0.2	20	ó
190		8	ຽ	0		40.2	ဗ္ဗ	0
91		6	15	0		40.2	60	0
192 <5 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1		9	<5	Ö			30	2
193 <5 <0.2		6	V V	0	7		20	Ö
194 <5 <0.2 <1 <0.2 2 191		5	ις. V	0	М		09	0
195 <5 <0.2 <1 <0.2 2 191		S	N V	0	<1×	<0.2	20	ó
196 <5 <0.2 <1 <0.2 2 197 <5 <0.2 <1 <0.2 3 1198 <5 <0.2 <1 <0.2 3 1198 <5 <0.2 <1 <0.2 4 1200 <5 <0.2 <1 <0.2 5 1200 <5 <0.2 <0.2 <0.2 5 1200 <0.2 5 <0.2 5 1200 <0.2 5 <0.2 5 1200 <0.2 5 1200 <0.2 5 <0.2 5 1200 <0.2 5 <0.2 5 1200 <0.2 5		19	ŝ	0	۲>	<0.2	40	0
197 <5 <0.2 <1 <0.2 3 4 1		67	ស Y	Ó	Ÿ	<0.5	20	
198 <5 <0.2 <1 <0.2 4 199 <5 <0.2 <1 <0.2 5 200 <5 <0.2 <1 <0.2 5		3	ŝ		Ÿ	<0.2	30	Ö
199 <5 <0.2 <1 <0.2 9 200 <5 <0.2 <1 <0.2 3		3	r.		₹		40	ं
K0200 <5 <0.2 <1 <0.2 3		19	ίΩ		<1>		06	0
		K020	1 <u>0</u>		₹	40.2	30	0.0

Results of Soil Analysis (Mba West Area) Table 1

	į.							1								j				_								-						•								
SP (mdd)	40.2 20.2	0.00	200	0 0	<0.2	000	2.0	<0.2	<0.2	000	V 0 V	000	200	0	×0.2	<0.2	<0.2	9 9	200	000	<0.2	<0.2	9 9	V 0.	<0.2	40.2	<0.2	40.2	0 9	7 0	100	×0.2	40.2	<0.2	<0.2	40.2	000	V 0 0	700	200	0 0	<0.2
As (ppm)	∀ ₹	7 ₩	₩.	! ∀	₹	∀:	₹ 5		Ų	∀.	₹ .	₹ 7	75	! ♥	7	₹	7	7	7;	7 ₹	۲	7	√;	7 ∇		4	4	₹	۲,	7.	1 V	; v	7	IV	√	63	ส -	н,	₹ ₹	√ ₹	1:	77
Ag (ppm)	40.2 20.0	40.2	V V	0 0	<0.2	000	2.5	<0.2	<0.2	0.5 0.5	200	9 6	0 0	<0.2 0.2	<0.2	<0.2	<0.2	000	200	0 0	×0.2	<0.0	9 6	200	<0.2	<0.2	<0.2	×0.2	0 0	7 0	20.0	×0.2	40.2	<0.2	<0.2	×0.2	40.2	0.0	9,0	V V	200	<0.2
Au (ppb)	1. A		in A	. .	₩.	N I	Λ . Λ π	S V	in V	Å.	ņ	€) V) 1 <u>0</u>	\$	iù V	S S	V V	9 () \ \	ν V	V	₩,	7 10	<5	Ϋ́	δ	ψ, i	ν V) K	7 15	9 10	N.	25	۸ 5	ν. Ω	ις, V	V.	O U	Ç V	2 LF	<55
Sample	OK0251	OK0253	OK0254	0K0256	OK0257	0K0258	OK0259	OKOZEI	OK0262	OK0263	ON0264	0K0265	OK0267	0K0268	OK0269	OK0270	OK0271	OK0272	000013	0K0275	OK0276	OK0277	OK0278	OK0280	OKOZBI	0K0282	OK0283	0K0284	OK0285	02000	OK0288	OK0289	0K0290	.0K6291	OK0292	OK0293	OK0294	0K0Z95	OK0296	OK0297	000000	OK0300
					-			_																																		
																										_								. <u>,</u> .								
Te (ppm)	\$0.05 \$0.05	<0.05 0.05	000	<0.05	<0.05	0.00	0.0	×0.05	<0.05	0.05	00.00	0 0 0 0 0) C	<0.05	<0.05	<0.03	<0.05	0.00	0 0	0.00	<0.05	<0.05	000	000	<0.05	<0.05	<0.02	0.05	000	0 0) C	0.00	0.00	<0.05	<0.05	<0.05	00.05	0.0	0.00	0 0	0 0	<0.05
Hg (ppb)	20	30	25	ခွင္တ	20	010	200	20	30	200	010	3.6	36	20	20	20	20	220	0 0	8 4	20	20	22	202	10	30	20	000	2 5	2 0	2 6	200	9 4	50.	30	20	20	40	3 6	200	9 6	30
Sp (mdd)	\$ \$0.2 2.2	40.2	2.00	0.0	40°	9 9	9 0	<0.2	<0.2	0,0	70.0	0 0	200	0.2	<0.2	×0.2	<0.2	000	2 0	0.0	40.2	×0.2	999	7 0	<0.2	\$ 0.5	×0.2	V0.2	000	7 0	N C	200	40.2	<0.2	<0.2	×0.2	V0.2	0.0	9.6	200	,	<0.2
As (mgg)	₽	. △		4	♥	√ 7	7 7		⊽	-1	7	√ '	- i r-	i	₹	₽	7	₹,	7;	- - - /	₹	₹	♥;	,		∀	7	√	ς,	71	7.	. ↓	7	4	et V	7	₹ .	♥ :	♥ \		7	7.₹
AE (ppm)	\$ \$0.2 2.0 2.0 2.0 2.0	40.2	0.0	40.2	40.2 20.2	0,0	700	<0.2 (-	<0.2	000	700	9.6	. 0	0.2	40.2	۷0.2 د	<0.2	8.6	7 0	0.2.0	40.2	40.2	9,6	0.00	<0.2	<0.2	ç. 2	40.2	0.0	200	9 9	40.2	40.2	<0.2	<0.2	V0.2	0.0	2.00	200	700	, ,	<0.2
Au (ppb)	\$ \$	Ω	φ ξ	ψ	ς,	ີ ທີ່	9 (1.92	V V	iQ i	0 4	0 () V	û	, 5	. \$	\$) Y	9 😲	ιΩ V	, S	φ (9 19	\$ V	iC V	<5	ιζ,	Ω «) if) (C	5 65	Ç	<5×	Š	SS I	ς.	0	0 8	3 6	, 4	3.6
Sample No	OK0201	OK0203	OK0204	OK0206	OK0207	0K0Z08	OK0208	OKOZII	OK0212	OK0213	ONOZIA OTOBIT	OKOZIS OKO216	OK0217	OK0218	OK0219	0K0220	OK0221	OK0222	0000000	OK0225	0K0226	0K0227	OK0228	OK0230	OK0231	0K0232	OK0233	OK0234	0K0235	OKO294	OK0238	OK0239	0K0240	OK0241	OK0242	OK0243	OK0244	OK0245	0K0246	OK0247	07070	OK0250

Table 1 Results of Soil Analysis (Mba West Area)

) ()	?	Ag	As	Sp	34	Te	Š	Sampie	Au
કૃ	(qdd)	(mdd)	(mdd)	(mdd)	(qdd)	Edd		S	(qdd)
OK0301	ις, ή		₹.	700	100			OK0351	i,
2020A0	Ç'	70.7	₹	7.02	27	į,	<u></u>	2550V0	0
OK0303	ŝ	40.2	7	40.2	20	•	ō	nā.	,
OK0304	S	٠	⊽	40.2	30	٠	Ö	0K0354	V
0K0305	Ş	40.2		٠	40	<0.05	ö	OK0355	V
OK0306	\$	×0.2	64		160	•	о -	0100356	Υ΄
OK0307	٠ د	<0.2 0.2	တ	VO. 2	230	<0.05		0K0357	Ϋ́
OK0308	Ş	×0.2	n	•	580	•	<u></u>	OK0358	Š
OK0309	55	<0.2	ო	40.2 2	260	0.10	0	OK0359	សូ
OK0310	\$	<0.2		40.2	.09	<0.05		OK0360	Š
OK0311	<5	<0.2	~	<0.2	40	<0.05	Ö	K0361	Ý
OK0312	ις	40.2	₹	40.2	40	<0.05	5	OK0362	Ϋ́
0,0313	ις. Υ	<0.2	な	40.2	30	<0.05	0	OK0363	Ş
OK0314	10		₹	<0.2	40	<0.05	6	0X0364	, ru
OK0315	, r.			0	8			OK0365	V
918030	v.		lo	•	000	200		996030	
OK0317	, tÇ	0	o		000	1.00 V	5 6	796030	V V
0.00318	N. A.	200			000	40.05	ō	0.000	
08030) L	000			9	20.07	5 6	0980	, r
0K0320	ιĈ	0.00	7		0.4	<0.05		010370	A
0K0321	45	<0.2	7	: .	30	<0.0>		K0371	Y
0K0322	, ,	<0 ×	٧		20	<0.05	-	OK0372	V
OK0323	\$	<0.2	17		20	<0.05	-	OK0373	۸ دی
0K0324	۸ ئ	<0.2	₹	40.2	40	<0.05	0	OK0374	S S
0K0325	, ,	<0.2			20	<0.02	0	0K0375	, S
0K0326	N N	<0.2	7	٠.	110	<0.05	0	OK0376	ŝ
OK0327	5	<0.2 0.2		40.2 2.0	30	<0.05	5	OK0377	Λ.
OK0328	\$	0.2 0.2	₹.	V 0	တ္ထ	<0.05	6	0K0378	ς,
OK0329	in v	<0.2 	₹	٠	40	0	<u></u>	010379	Ÿ
0K0330	ŝ	<0.2	-	. :	300	0	8	0K0380	V
OK0331	ιή I		٠.		09	<0.05	ō	OK0381	ν Υ
CK0332	က (V	•	Υ,	• '	0.4	0.00	Ö	0K038Z	Ÿ
OK0333	ů,	000	∵ ∵		20	20.05	ö ö	010383	۷ ۱
070334	o f		7 3	2.6	9	000	5.6	OK0384	۰ ۷
020020	,	7 0	7 7	9 6	2.5	2000	5 6	000000	, .
000000	? "	•	7.7		5 6	2 0	5 6	000000	<i>'</i> '
0,0000	7 5		7.5		2 6		5 6	010000	<i>,</i> v
OK0339) V		7 ₹		8	2		08030	, v
080340	i.		7		300	? 9		OK0390	· V
	\$2			<0.2	30	0		OKO391	
OK0342			7	٠.	50	0	6	OK0392	, IO
OX0343	\ \ \ \ \		7		120	0	- G	010393	-
0X0344	S.		77	40.2	170	<0.05	-	010394	٧
OK0345	55	<0.2	77	<0.2	180	<0.05	5	OK0395	ν Ω
0K0346	i,	<0.2	77	<0.2	100	<0.05	ō	0К0396	٧
010347	15		41	<0.2	110	Ö	Ö	OK0397	٧
010348	\$	74	♡	×0.2	40	۰.	5	Ö	٧
0K0349	\$	<0.2	₹	<0.2 2.0	40	<0.02	5	0K0399	S
OK0350	က္	<0.2	7	<0.2	06	<0.05	ö	01/0400	*

35	HE	Te	Sample	Au	AB	As	Sb	Hg	Te
(mac	(qdd)		ON	(qdd)	(mdd)	(mdd)	(bpm)	(qdd)	(mdd)
0.5	100	0.00	OKOSSI	iS i	<0.2		<0.2	90	0.00
7 . 7	27	•	0K0352	0	40.2	- (40·2	08	V0.05
0.2	20	\$0.05	010353	٠ دي د	40.2	₹	<0.2	70	<0.05
2.0	30	, vo. os	0K0354	₩ 1	40.2	₹	40.2	70	<0.05
0.0	04.	50.05	OKOSSS	₩.	40.2	\ V	<0.2	200	<0.05
7.00	160	0 G	OKO336	ů,	40.2 40.2	₹ .	×0.2	30	<0.05
2.0	230	200	OKOSSY	0,	0.0	₹ 5	0.9	99	20.05
, ,	200	500	UNUSSE	9 !	2.00	v.	7.00	200	50.05
9 9	260	07.0	OKOSSS	Ş	40.2	₹ :	×0.2	70	<0.05
2.0	09	40.05	010360	Ş	40.2	₹	<0.2	70	<0.05
0.5	40	<0.05	0K0361	٠ ۲	40.2	₹	0.2	60	<0.05
2.0	40	<0.05	OK0362	5	×0.2	7	0.2	09	<0.05
0.2	30	<0.05	0K0363	₩.	40.2	₹	0.2	70	<0.05
0.2	40	<0.05	- 0X0364	10	40.2 0.3	∜	0.2	20	<0.05
0.2	80	<0.05	· 0K0365	\$	<0.2	7	0.2	50	<0.05
0,2	290	<0.05	0K0366	5	<0.2	₹	<0.2	50	<0.05
0.2	130	40.05	0K0367	\$	<0.2	7	<0.2	80	<0.05
60.2	290	<0.05	000368	Ş	<0.2	4	40.2	30	<0.05
40.2	. 60	<0.05	000369	150	<0.2	V	<0.2	9	<0.05
0.7	40	<0.05	010370	100	<0.2	V	0.5	102	<0.05
50.5	UE	50.02	OK0371	50	<0.2	12	< 02	30	<0.05
2	20	V 0.5	OK0372	N.	<0.2	· ·	200	202	0.00
0	200	200	OK0373	V.	0	V	0	200	
	2	1000	26030) U	, ,	! \	, ,	1) to
, (7 11	2 0	100000) i	9 (· `	9 0	2 6	200
3 6	2	2 0	C/CONO	? (700	7.	7.00	9 6	20.02
7.9	211	200	OLCOVO C	? '	40.2	7	×0.2	3	20.00
2.0	On On	C0.02	000377	?	N.0V	₹	×0.2	် မ	\$0.02 \$0.02
0.2	30	<0.05	0K0378		40. 2	₹	×0×	0,	<0.05
0.2	40	40.05	010379	vý V	<0.2	₹	0.0 0.0	04	<0.05
0.2	300	0.03	0K0380	Ş	<0.2	₹	<0.2	40	<0.02
0.2	09	<0.05	OK0381	کر د	<0.2	₹	<0.2	40	<0.05
2.0	40	<0.05	0K0382	\$	<0.2	₹	×0.2	30	<0.05
60.2	20	<0.05	000383	\$	×0.2	₹	<0.2	20	<0.05
40.2	09	<0.05	0K0384	\$	40.2	7	<0.2	40	<0.05
0.2	70	<0.05	OK0385		<0.2 2.0	7	40.2	20	<0.05
2.0	70	<0.05	OK0386	\$	<0.2	7	<0.2	20	<0.05
0.2	40	<0.05	0K0387	5	<0.2	₹	0.2	30	<0.05
0.2	30	<0.05	0K0388	io V	<0.2	₹	×0.2	30	<0.05
2.0	30	<0.05	98CONO	Ş	<0.2	7	<0.5	09	<0.05
40.2	30	<0.05	OK0390	ŝ	<0.2	∜	<0.2	30	<0.05
<0.2	30	<0.05		×5×	<0.2	Ϋ́	<0.2	20	<0.05
0.2	20	<0.05	OK0392	iç V	<0.2	7	<0.2	20	<0.05
0.0	120	<0.05	010393	10	<0.2	7	<0.2	20	<0.05
0.2	170	<0.05	0K0394	Ϋ́	<0.2	4	×0.2	40	40.05
60.2	180	<0.05	OKO395	\$	<0.2	ಗೆ	0.2	20	40.05
0.5	100	<0.05	0K0396	io V	×0.2	₹	×0-2	20	<0.05
0.2	110	<0.05	OK0397	<u>د</u>	<0.2	₹	0.2	80	<0.05
0.5	6		0K0398		<0.5	₹	<0.2	160	<0.05
0.2	40	<0.05	666000	Ş	<0.2	1,	<0.2	50	0.02
<0.2	06		00000	<5	<0.2	₹	0.2	240	<0.05

Table 1 Results of Soil Analysis (Mba West Area)

Al (PJ																																																				
Sample No	0K0451	ON0452	0000	000000	UNU455	0x0426	0K0457	0K0458	0K0459	0X0460	OK0461	0K0462	OK0463	0K0464	0K0465	0,000	0207020	000000	0K0468	0K0469	OK0470	OK0471	OK0472	OK0473	OK0474	OK0475	OK0476	OK0477	OK0478	OK0479	OKO480	010000	0K0482	OKOASS	Day 0 % 0	10000	987030	0000000	000000	0000	ONC488	0K0490	0K0491	0K0492	OK0493	0K0494	0K0495	0K0496	0K0497.	0K0498	0K0499	OK0500
Te (ppm)	<0.05	0.00	•	0.00	? (?'	•	۰.	<0.05		<0.05		<0.02	<0.02	<0.05	2 10	0 0	? (0.0	$\overline{}$	<0.05	<0.05	\sim	<0.05	<0.05	~	0		•		•		200	•	20	? 0	کر د	•		ģ		0	•	0	•	0	40.05	0	õ	<0.05	<0.05	
(qdd)	0.00	9 6	2 6	200	1 4	2.4	ဝင္သ	30	30	30	30	30	30	C	20	2 6	200	2 6	သ	04	-04	20	40	30	202	40	08	2	14	Ç	0.4	c c	2 4	0 0	2 4	2 0	2 6	0 0	200	2 (2 (05	40	04	20	40	70	30	20	30	30	60
Sp (ppm)	<0.2	300	9.0	200	7.0	20.0	700	×0×	0 V	<0.2	<0.2	<0.2	<0.2	<0 2	×0.2	, 0	9 6	7.0	70.7	<0.2	<0.2	<0.2	<0.2	<0.2			40.2	200	0,0	0 0	0	100	100	200	0	000	000	100	200	9 0	7.00	V V		•				•		<0.2	0	0.2
As (ppm)	7	7.5	73	75	7 7	₹ '	₹	₹	₹	7	₹	7	7	\	V	;	71	7 :	₹	∀	٦	T	\ \	. ☆	! ₹	' ₩	V	! \	7	7.	17	1	7.	7.5	7	7.	17	;	7;	7;	7	ℴ	v	7	₹	₹	₹	₹	∀	₹	∀	7
Ag (ppm)	<0.2	V V	9 0	200					×0.2	<0.2	<0.2	<0.2	<0.2		0	٠	9 0		•	V 0	0 V	<0 2	<0>	<0.2		0	20.0	0	0	000	0	100	000	200		,		9 6	9.0	: -	7	70.7	700	×0.2	0 2	0 2	×0.2	×0.2		40. 2	<0 ×	<0.2
Au (ppb)	ις,	, u	3 1	3 4	Ç	2 1	o V	9	ŝ	Š	Ŷ	Ϋ́	, C	K.	ı.C) (4) \	? "	<u>;</u>	Q.	ψ	Ą	3	S.	ı,	, in	ις V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) IC	V 25	ç	y W	9 10) (C	λ	, /	, /) K) W	? 4	Ç	S.	Ç	S.	Ω V	۸ ئ	N N	ŝ	i.	· ·	5	5.
Sample	0K0401	0K04040	20000	01010	010403	00000	0K0407	OK0408	OK0409	OK0410	OK0411	OK0412	0K0413	OK0414	OK0415	0.70	010010	Trough	UN0418	OK0419	OK0420	OK0421	OK0422	OK0423	OK0424	OK0425	OK0426	OK0427	OK0428	OK0429	OK0430	OKO431	OK0432	OK0433	OK0434	OKOASE	OK0436	000000	0K070	000000	0000	000440	OK0441	OK0442	OK0443	OK0444	OK0445	0K0446	OK0447	0K0448	0K0449	OK0450

Te (mun)	300	٠.			36	•				40.05				• "	3	0	•	<0.05			•	5	0.02	<0.05		٠	•				0.02 0.05	<0.05		<0.05		200		٠	•		<0.05	40.05	<0.05			٠.	9	0	0	0	<0.05	<0.02	0	<0.05	0	0
Hg (And)	30	88	30	2	3 6) (C	2 6	က	ဝင္ပ	4	30	20	5	2 6	3;	20	90	20	20	2	3	22	30	20	30		9 6	9	ဗ္ဗ	20	20	30	20	20	20	4	Ç Ç	24	20	30	70	30	30	30	6	2 0	0	40	40	9	30	20	70	80	20	20
Se (mus.)	200	0.5	40.2	100	•		7.0		×0.2	×0.2	40.2	<0.2	6	9 6	700	7.0	V0.7	40.2	<0.2	, ,	3.9	7.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<0.2	40.2	100	4.0	7.00	40.2	40.5	40.2	<0.2	×0-2	<0.2	<0.2	10	90	7.00	×0.2	×0.2	40. 2	40.2	×0.2	<0.2	,	V	×0.7	<0.2	٥٠ د0.	<0.5	<0.2	×0.2	0.2	<0.2	<0.2	<0.2
As (nom)	1 2 2	1	7	7	7,5	ł +	٦,	I	₹	₹	~	V	1	; ;	7	₹	7	٧		1 -	4 9	7	7		-	,	7	7	V	₹	г ч	7	7	V	· ·	7	, ,	7	~	∀	₹	₹	7	V	1	7		₹	H	디	7	7	H	₹	₹	
Ag (num)	0	9 0	20.2		100	, ,	700	20.2	40.2	40.2	<0.2	<0.2		200	7.0	40.2	×0.2	<0.2	0	,	7 0	7.0	40.2	<0.2	٠ ٧	100	20.0	70.0	40.2	40.2	×0.2	40.2	<0.2	×0.2	202	30	7 (700	×0.2	40.2 2.0	40.2	40.2 2.0	40.2	<0.2	0	1	×0.2	×0.2	×0.2	40.2	40.2	40.2	<0.2	<0.2	×0.2	<0.2
Au) 2 2) in	V V	, i) (2 14	9 (, V	Š		V	9	, IC	2 4	9 1	S S	Š	ري ريا	V	9 4	;	?	ů.	157	Ľ) E	9 !	Ŷ	Ϋ́	Ϋ́	Ϋ́	22	5.5	, ,	100	, /) į	0	ıÇ	ιŞ	55	× 55	5	ıç.	, u	?:	₹	÷	Ϋ́	Š	\$	5	ςŞ	<2	\$	ŝ
Sample	DKO AS	OK0452	OX0453	OKOASA	080455	0000000	004000	0K0457	0K0458	0K0459	0X0460	OK0461	080462	02070	20100	0K0464	OK0465	0K0466	080467	027070	000000000000000000000000000000000000000	UKO468	OK0470	OK0471	OK0472	0.000	2000	OK0474	OK0475	OK0476	OK0477	OK0478	OK0479	0K0480	OKO481	08040	2000000	020483	OX0484	0K0485	0K0486	0K0487	0K0488	OK0489	007070	2000	0K0491	0K0492	OK0493	0K0494	0K0495	0K0496	0K0497	0K0498	OK0499	10
																				_											_																									
(80	ខ្លួ		, C	2 10) U	3 5	S.	5	050	0.50	0.5	. K		0 10	02	050	05	r.) u	71	20	02	05	ı.) ii	3 6	ດ	5	02	02	05	0.55	05	5.0		3 6	3 1	0.0	00	5	.03	02	0.5		31	ر ا ا	5	02	.05	05	05	03	.05	.05	0.0

Soil Analysis (Mba West Area) Results of Table 1

_	L								`.								_:										<u>:</u> _			_	_					;											_1
qdd)	130	1001	100	220	130	80	130	140	200	2 6	200	40	20	20	ည	ဓ္ဓ	30	2 9	0 0	9 5	O U	200	O.	110	70	70	70	100	100	09	20	20	2	70	90	140	150	160	150	150	06	80	000	100	10	2 6	2
Sp (mdd)	0 S	<0.5	0°5	0 V	70.0	<0.2	×0.2	40.	200	9 6	2 6	<0 ×	<0.2	40.2	×0.2	V 0 0	<0 ×	° 0	7.00	9 6	2 0	200	0.2	<0.2	<0.2	<0.2	<0.2	40.2	×0.2	<0.2	<0.2	40.2	40.2	×0.2	70	×0.2	<0.2	VO 2	×0.2	40.2	<0.2	<0.2	200	0,0	,	7 (7.05 CO. 7
As (mqq;		1-1	rd i		1 +-1	H	н	н,		٦,	-1 m) ***	-	4	16	<u>.</u> ما	-1	н,		⊣ ₹	. 00	10	ונט	1	7	7	н	7	7	7	7	-	rd	-		2	4	က	es	က	6	2		10		^ <	4
Ag (ppm)	40.2 00.2	00	0°.2	9 9	200	40.2	<0.2	, 0,	9 0	200	700	, 0 2	<0.2	40.2	<0.2	0.0	C C V	0.0	7.0	7.0	VO. 2	0.5	V0.2	<0.2	<0.2	<0.2	<0.2	<0.2	40·2	<0.2	<0.2	40.2	<0.2	VO. 2	40.2	×0.2	<0.2	<0.2	<0.2	40.2	40.2	<0.2	000	000		N (20.7
Au (ppp)	\$ 5	Ϋ́	ń	o v		Ç,	v V	Ç.	S K	? () v	in V	Š,	93	110	ψ,	o V	ůί	0 4		y C	ı Ç	ν V	A.55	N N	Ş	Ŷ	\$	ς.	5.5	V V2	A5	V	LS I	ς V		55	\$	S,	,	\$.C	ý) i	, r) V	C
Sample No	0K0551	0K0553	0K0554	0K0556	OK0557	0K0558	0K0559	0K0560	OKOREZ	OKOROS	0K0564	0K0565	0K0566	0K0567	OK0568	OK0569	0K0570	0K0571	0K037.2	0x05/3	0K0575	0K0576	0K0577	0K0578	0K0579	0K0580	OK0581	OK0582	0K0583	0K0584	OK0585	010586	OK0587	0K0588	0K0589	0,000	0K0591	0K0592	OK0593	0K0594	OK0595	080396	0803030	00000	000000	0000000	009000
													•												٠																						
Te (ppm)	<0.05 <0.05	<0.05	\$0.05	0.0	0.00	<0.05	0.03	\$0.03 \$0.03	20.00	3 5	35	0.05	0.05	\$0.05	<0.05	0.05	0.05	ວ ເກີ	20.00	3.0	0.03	, K	0.05	30.05	0.05	<0.05	.05	0.05	.05	0.05	0.05	co. 05	03	5	0.0	S	0	50	30	33	<0.05	<0.05	200	3 5) t	2 6	3
		٧	∀;	9 9	Ŷ	ଟ	Ş.	ç	? (9 5	9 9	ô	ô	0	0	<u>و</u>	₽	٥ ۲	\$ 5	? ?	9	0.00	0	٥ ٥	Ŷ	Ş	₽	ô	0	0	0	Ŷ	<0.03	<0.05	Ö	٥ ٥	0	0	0	<0.05	å	ç	? {	? ?	÷ (900	1
(qdd)	30			06.4	-			4	200								_		0.4							130 <0	_				150 0.	_	09	<u> </u>		_	50 05		70 0.3	0	70 <0.					96	_
(qdd) (mdd)	<0.2 <0.2 40	40	200		200	40	.2	4	2 0	300	909	22			.2 50	40		20	_	000		7.0	0			130	.2 50	.2 100	.2	7 100		.2	.2	60	70	.2	2 50	.2 70 0	<0.2 70 0.3	0	_	140	1	3.6	2 2	7.0	_
So (mgq) (n	ω 4	<0.2 40	200	2 4 5 4	200	40	09	40	2 0	300	909	22	40	.2	.2	40	30	20	24 n	000	25	7.0	30	.2	120	130	2 50	.2 100	.2	7 100	150	.2	.5	60	70	.2	2 50	2 70 0	.2 70 0	.2 50 <0	70	140	1	3.6	2 2	7.0	017 7.
As Sb (ppm) (0.2 0.2 0.2	.2 <1 <0.2 40	2 <3 <0.2	2 4 5 4	21 × 20 20 20 20 20 20 20 20 20 20 20 20 20	2 <1 0.2 40	2 1 <0.2 60	2 1 <0.2 40	2 0	7.00	2 × 1 × 0.2	2 <1 <0.2 60	40	.2	2 1 <0.2 50	2 1 <0.2	2 2 30	.2 <0.2 .2 50	24 n	000000000000000000000000000000000000000	2	<1 <0.2 70	.2 <1 <0.2 90	<0.2 70	120	130	2 1 <0.2 50	2 1 2 <0.2 100	.2	7 100	2 1 <0.2 150	2 <0.2 80	2 3 <0.2 60	2 0 2 60 4	2 4 <0.2 70	.2 1 <0.2 60	.2 4 <0.2 50	2 4 <0.2 70 0	4 <0.2 70 0	.2 50 <0	1 <0.2 70	2 0 0 140	08.07	0000	3000	7.0	2.0> 2 2.0
As Sb (ppm)	2 <1 <0.2 3	<0.2 <1 <0.2 40	<0.2 <1 <0.2 20 <20.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2 20 <0.2	×0.2 × × × × × × × × × × × × × × × × × × ×	<0.2 <1 <0.2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <p< td=""><td><0.2 <1 0.2 40</td><td><0.2 1 <0.2 60</td><td><0.2 1 <0.2 40</td><td>0 V V V V V V V V V V V V V V V V V V V</td><td>000</td><td><0.2 <1 <0.2 <0.2 <0.2</td><td><0.2 <1 <0.2</td><td><0.2 <1 <0.2 40</td><td><0.2 1 <0.2 50</td><td>(0.2 1 <0.2 50</td><td>40.2 1 < 0.2 40.</td><td><0.2 1 <0.2 30 </td><td>40.2 40.2</td><td>2.00 L</td><td>000000000000000000000000000000000000000</td><td>< < > < < < > < < < < < < > < < < < > < < < < < < < > < <</td><td><0.2 <1 <0.2 70</td><td><0,2 <1 <0,2 90</td><td><0.2 <1 <0.2 70</td><td><0.2 1 <0.2 120</td><td><0.2 1 <0.2 130</td><td><0.2 1 <0.2 50</td><td>00.2 2 100</td><td><0.2 <0.2 70</td><td><pre>< 0.2 1 < 0.2 100 </pre></td><td><0.2 1 <0.2 150</td><td><0.2 2 <0.2 80</td><td><0.2 1 <0.2 60</td><td><0.2 3 <0.2 60 <</td><td><0.2 4 <0.2 70</td><td><0.2 1 <0.2 60</td><td><0.2 4 <0.2 50</td><td> <0.2</td><td><0.2 4 <0.2 70 0</td><td><0.2 2 <0.2 50 <0</td><td><0.2 1 <0.2 70</td><td><0.2 2 40.2 140</td><td>000</td><td>000</td><td>2007</td><td>7.00</td><td>017 7.05 7 710</td></p<>	<0.2 <1 0.2 40	<0.2 1 <0.2 60	<0.2 1 <0.2 40	0 V V V V V V V V V V V V V V V V V V V	000	<0.2 <1 <0.2 <0.2 <0.2	<0.2 <1 <0.2	<0.2 <1 <0.2 40	<0.2 1 <0.2 50	(0.2 1 <0.2 50	40.2 1 < 0.2 40.	<0.2 1 <0.2 30	40.2 40.2	2.00 L	000000000000000000000000000000000000000	< < > < < > < < > < < > < < > < < > < < > < < < > < < < < < < > < < < < > < < < < < < < > < < < < < < < < < < < < < < < < < < < <	<0.2 <1 <0.2 70	<0,2 <1 <0,2 90	<0.2 <1 <0.2 70	<0.2 1 <0.2 120	<0.2 1 <0.2 130	<0.2 1 <0.2 50	00.2 2 100	<0.2 <0.2 70	<pre>< 0.2 1 < 0.2 100 </pre>	<0.2 1 <0.2 150	<0.2 2 <0.2 80	<0.2 1 <0.2 60	<0.2 3 <0.2 60 <	<0.2 4 <0.2 70	<0.2 1 <0.2 60	<0.2 4 <0.2 50	<0.2	<0.2 4 <0.2 70 0	<0.2 2 <0.2 50 <0	<0.2 1 <0.2 70	<0.2 2 40.2 140	000	000	2007	7.00	017 7.05 7 710

Results of Soil Analysis (Mba West Area)

	L			_						_		<u>:</u>	_					_					-							_	_			<u> </u>											<u>.</u>	_			_					
									•																																													
			ì											_																			<u>.</u>							:														
Te (ppm)	ıl۰	<0.05	0	0	9	0	C	•	ç	?	۰.	?	c		•	•	2	़	9	0	•	•	?	ó	٥.	<0.05	0	9	9		? <	? <	; <	?!	٠,	۰.	0	o.	۰.	9	<0.05	۰,	0	? C) (C		•	, ,	, ,	, ,			•	200
Hg (ppp)	40	06	20	40	09	20	9	2 6	2 6	2	80	9	909	a	0 0	0 0	100	100	80	110	1 +	7	Dar	100	70	9	80	40	2.4		9 0	0 6	2 (0	2	9	09	150	150	120	80	20	30	98	30		200	0.00	36	200	200	3	36	9 6
Sp (mdd)	ഥ		40.2	<0.2	<0.2	\circ		ċ	9 6	7.0	0	<0.2	<0.2	C	0	•	200	0 V	40.2 2.0	0	٠	9 0	70.7	×0.2	×0.2	×0×2		C	c	C		9 6	7 0	7.0	70.7	×0×	٥.	40.2	×0.2	40.2	×0.2	40.2		, C	× ×		200				0	0		9.0
As (ppm)	4	. 13	N	77	8	Н	V	1 7	1.		-1	6		. 6	4 T.) (N		-	-	10	2 .	7	<u>ო</u>	H		-	*-	l :-	1 -	₹ -	- } -	⊰ ¢	N 1	O.	.71		n	ភ	~1	_ _					10	10		٦.	-	10	10	10	¥ .
Ag (mad)	40.2	0	<0.2	<0.2	<0.2					7.0	×0.2	<0.2	×0.2) C			٠		٠,	•	7 0	7.00	, 0, 7	V0.5	VO. 5	<0,2		, C			٠	3 6	7.0	70.7	×0.2	0	•	×0.2	•	×0.2				<0.2	0	000	0	· C		40 ×	0		9.0
Au (ppb)	ı٧	, v			10°	N N	٧ ٢:) ¥) l	?	ν Ω	×55	ıç.	V) \ \ \ \	, ,	0	Š	ή,	in V) ii) v	9	ς,	, N	S,	10		υ. V	, r) W	? 4	? !	?	Ç'	Ç i	V	Š	۸ تن	N V	, S	N.	in V	ir.	\$2	ir V) V	, v	y tr) tr	V	in.) U	?.
Sample No	OK0601	OKO602	OK0603	OK0604	· «n	0K0606		000000	000000	20000	OK0610	תג	OK0612 (· cr) (C	36	CTONNO	OK0616	0K0617	OK0618	010030	670000	UNDONO	OK0621	OK0622	OK0623	OK0624	OK0625	OKO626	2000 NO	00000	ı	3 -	n:	UKOPSI	m	m	ന	OK0635 }	~	m	OK0638	m	4		7	7	•	* **	ਾ⊽	7	4	rs	00000

ŝ	(qdd)	Ag (ppm)	AS (ppm)	(Edd.)	Hg. (add)	Te (ppm)
65	ŀν	<0.2	7	<0.2		۲
OK0652	S,	40.2	7	•	20	Ġ
365		40.2	7	40.2	40	ó
065	3	<0.2	₹	V0.2	30	0
065		<0.2	7	o	30	0
065		<0.2		c	40	0
600			-		C	0
OKO658	, ₁₀	000	101	000	000	0.05
365		<0.2	-		909	C
KOGG		×0.2	· **	,	40	C
366) ACV	20.2	1	<0.2	40	2
1 4						
5 ¢			٠,		2 5	۶
מ נ		7 0	† 1		2 9	-
0	Ç,	200	₹.	7.0	5 (Ş,
			7	70.0	၁	٠,
			7	×0.2	40	
		7 V	₹		200	Ö
ıΛ	ν Ω	×0.2	∀		02	Ó
m		<0.2	Н		30	Ó
		<0.2	7	VO. 2	OĽ.	Ó
	\$ \$	<0.2	-		99	0
~		<0.2			04	Ó
		40.2	н		30	0
> _		<0.2 2.0	н	×0.2	40	Ó
OK0675		×0.2	73	40.2	000	ø
	s.	<0.2	7	<0.2	40	0
ř.		<0.2 0.2	61	<0.2	100	
~			4	40.2	30	0
~		×0.2	7	0.0 70.5	20	ó
M		×0.2	4	, 0 7	တ်	rd.
•		<0.2	4	<0.2	60	٠.
OK0682		<0.2	н	<0 ×	90	0
an.		<0.2	1	0 0	က္ရ	ó
0.00684	5	<0.2	ო	0	90	ó
88	ŝ	×0.2	4	×0.2	60	0
38	\$ \$	<0.2	ເດ	<0.2	80	۲.
88	ŝ	<0.2	ო	<0.2	09	o
88	10	×0 ×	н	<0.2	30	0
80		<0.2	H	<0.2	20	ó
6		<0.2	₹	40.2	01	Ö
30	<5>	<0.2	1>	<0.2	30	<0.05
Ġ,	۸ دئ	<0.2	н	40.2	01	0
Š	10	v 0.2	က	40.2	410	Ö
OK0694	\$		n	0 V	40	4
8	ŝ		ี่	<0.2	0.4	0
õ		×0 ×0	7	<0.2	40	ं
690	5		ß	<0.2 0.2	S S	ij
690	Ş		7	٥٠. د	30	0
0K0699	, ,	×0.2	H	0 7	9	0.0
9	ທ	<0.2	5	<0.2	40	7

Table 1 Results of Soil Analysis (Mba West Area)

Te (ppm)	ı٠		•	d	ö	٠	ö	•	5	<0.05 0.05		•	; 0	0	• •	ö	•	<0.05	• •	• :	0 0 0 0	; 0	o		ö			•	30				0.00	\$0.00		-		 	
Hg (ddd)	40	40	20	20	40	09	ဝင္ပ	09	021	50	200	0 0	200	200	90	40	100	20	20	9	85	200	30	20	20	9	6 E	202	2 4	2.2	8	081	200	000					
SP (bpm)	<0.2		٠.					V 0	•	• ;	2.0	7.00	9 0	200	000	40.2	<0.2	×0.2	0	•	9 9	200			2.0			9.0			•		V (20.0					
As (ppm)	3		**	ri	ri	н	1	-	7	7	7	7	70	200	7	7	₹	7	7	₹	н с	7 7	' ₹	-	⊽	7	♥ ;	7.7	75	; ₹	₹	∀.	٦,	7 7				 	
Ag (ppm)	<0.2	40 ×				<0.2		٠	٠	70 V		٠					•		•:							• .								200					
Au (ppb)	<5	V 35	Ş	ιδ	ŝ	ŝ	S.	ις.	ů,	ς.	9 4	Ů, ń	? () IC	\$	Ą	\$	Ş	io i	Ç,	Ω. í) IC	10	ŝ	ເລ	N V	iĈ ń	ο η/ Ο η/	2 IO	\$ 45	₩.	υń	Ç K	S 45				•	
Sample	20	0K0702	0K0703	0K0704	0K0705	0K0706	OK0707	OK0708	607070	OK0710	000711	21,000	080713	OK0715	0K0716	OK0717	OK0718	OK0719	0K0720	OKO721	OK0722	0X0724	OK0725	0K0726	OK0727	0K0728	0K0729	02070	OK0732	OK0733	0K0734	0K0735	000000	OKO738		 			

	<u> </u>	·	·		
(bbm)					
(qdd)					
(Edd)					
AS (ppm)					
Ag (ppm)					
(ppp)				:	
No					:
					·

Results of Soil Analysis (Mba West Area) Table

Sen Sen	SMO	0 W.S	SMO	SS	SMO	SMO	SMO	OW.S.	3 6	2	OE O	OWS -	88	SMO	SMO	SWO	OW C	2 6	200	SMO	SMO	SMO	SMO	SMO	OM.		Sec	2 2	2 0	200		SNO	SMO	S	0 8	SMO	SMO	SMO	SNO	SMO	S	2 6	200	200	SMO	SMO	SMO	SMC	OMC		2 6	N. S.	SNO
																						,			_				_						_							_	_										
Te (ppm)	<0.05 0.05 0.05	90	Ö	<0.02 0.05	9	0	0	c	•	2:	? '	•	٥.	9	0	9	· C	•	ġ	9	0	0	<0.05	0	0		2		•	? <	Ş. (0	<0.05	٠,	o.	0	ċ	ó	0	0		ġ	n k	j,	o,	×0.03	0.10	7	I٨	i c		o.	0.05
ਸਫ (ਰੋਹੋਰ)	130	200	300	160	20	000	40	7.0		24	7 1	10	10	10	10	10	200	2 6	2 0	07	40	30	20	20	08	38	0	2 0	3 6	000	200	20	90	0.7	70	20	20	20	30	30	- 6	2 5	O K	000	30	20	20	30	120	1	2 0	0 1	D C
SS (mdd)	0 0 0 0 0 0		o							7.6	3.0	40.2	<0.2	<0.2	<0.2	<0.2	0	200	9 9	700	×0.2	<0.2	<0.2	<0.2		0 0	200	9 6	9 (200	7 0	v 0	0.0 0.0	70.7	×0.2	0 0	0 V	0 2	<0.2	<0.2		9 0	7.4	V (V 0	00	40.2	<0.2			9 6	V. 2	V 0
As (ppm)	۷٠	41	-	N	7	7	-	-	,	7.	;	7	₹	7	N	<1×	7	; -	٠,	4	-4	41	7	77	7	7	.	4 -	1 (-1 ·	7 :	₹		7,	17	н	-	7	7	7	1	,	7,	-i	-	-	ო	9	2	ł t-	1 ;	₹	∀'
A6 (ppm)	V V V					<0.2	٠,	•		4 X		V0.7	200	<0.2	<0.2	<0.2	0	0	9 9	×0.2	7 V	<0.2	<0.2	40.2	<0.2	0	0	9 0		V (7.0	×0.2	40.5	×0.2	<0.2	<0.2	V0.2	40.2	40.2	40.2	0		· .	N (0.2	40.2	40.2	<0.2	0) C		7.0	0.0
Au (Agg)	i S (, v	Ņ	ů	\ \ \ \	IQ V	,		'n	7.	?!	Ŷ	ις V	iQ V	υΩ V	IC V	uri V	; v	<u>;</u>	01	ŝ	S,	ťγ	V	V.) I.C.	P IV) V) H	O I	9	ç	ψ, i	Ç	S S	ν V	ς V	ŝ	ŝ	\$	ı.) u	?!	9 !	V	ς S	N N	N V	ır.) i() li	Ç	ν, V
Sample	SMOOOI	SMOOOS	SM0004	SMOOOS	SM0006	SM0007	SM0008	6000MS	0.000	010070	TTOOTE	SMOOLZ	SM0013	SM0014	SM0015	SM0016	SMOO17	0.0000		SMOOTS	SM0020	SM0021	SM0022	SM0023	SM0024	SMOOSE		SWOOD S	000000	000000	870000	SM0030	SMOO31	SMOOSS		SM0034	00	SM0039	SM0040	SM0041	SM0042	O NO ONO	2000	440004	SM0045	SM0046	SM0047	SM0048	SM0049	SMOORS	7 I	0.1	SM0052

																																								,									
Te (ppm)	40.05 0.05			<0.02	\$0.05	000	<0.05	•	0.10	0.15	•	0.15		•	•	<0.05		<0.05	<0.05		. 0	V 0.5	<0.05	<0.05	<0.05	40.05 0.05	<0.02	<0.02	<0.02 0.03	0.05	VO: 05	00.02	0.05	×0.05	<0.02	<0.05	<0.02	A0.05	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		A0.05
(qdd)	08 04	200	30	30	30	40	09	0	20	20	30	30	30	30	30	ဝင္ပ	င္သ	40	30	30	40	20	100	000	404	200	40	40	04	40	30	205	40	10	20	20	40	30	110	06	70	20	20	909	30	09	50	9	20
(madd)	0 V 0 V	8	•	×0.2	V	0.0	0.2	×0.2	V0.2	<0.2	<0.2	<0.2	<0.2	0.2 0.2	×0.2	V0.2	•	<0.2	×0.2	<0.2	×0.2	<0 ×	×0.2			70.0	<0.2	40.2 2	<0.2	<0.2	0.0 0.2	<0.2	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	40.2	<0.2	<0.2	40.2	<0.2	<0.2	40.2	40.2
As (ppm)	7 ₽	1 111	H	-1	н.	·	н		ന	1	ч	7	₩	4	₹	rt	rH	77	r-4	2		1 +-	 I ←	 F-		1	 H	H	н	ю	-	<u></u> н	64	H	ન -	- -1	₹	17	7	12	7	H	Ų	₹	マ	₩	₹	4	7
Ag (ppm)	0 V 0 V	00		0.2 2.0	0 0	9.50	20.7	×0.2	40.2	٥٠. ده.	40.2	00	0 2	<0.2	, 0	0.2	.0 .2	×0.2	<0.2	<0.2		V 0	0.2	V 0 . 2	200	V (V0.	0 0 7	<0.2	<0.2	0.7	40.2	×0.2	0 0 7	40.2 2.0	40.2	.0 2.0	<0.2	<0.2	40.2	<0.2 0.2	×0.2	40.2	¢0.2	40.2	×0.2	0.5 0.5	<0.2	40°2
Au (ppb)	\$ \$ \$5	ιδ	ιΩ V	ŝ	ις i	ις L		in V	ίζ	دئ	Ϋ́	₩.	A N	ŝ	Ş	Ϋ́	ΐ	\$	10	200	, V	10	\$	S	5 50		, V	ν Ω	N N	გ გ	ίζ	Ŋ	ŝ	Λ 5	N N	N V	Š	180	ເນ	55	Λ	ŝ	<5	10	\$	ş	, N	5	Š
Sample	SM0054	SM0056	SM0057	SM0058	SM0059	SM0060	SM0061	SW0062	SM0063	SM0064	SM0065	SM0066	SM0067	SM0068	8900WS	SM0070	SM0071	SM0072	SM0073	SM0074	SM0075	SM0076	SM0077	SM0078	SM0079	SM0080	SM0081	SMOOSZ	SM0083	SM0084	SM0085	SM0086	SM0087	SM0088	SM0089	0600MS	SM0091	SM0092	SM0093	SM0094	SW0095	9600MS	2000NS	8600MS	6600MS	SM01.00	SM0101	SM0102	SM0103
																																														٠			
Te (ppm)	<0.05	<0.05	0	٥.	9	्	o.		×0.05		٥.	9	٠	9	ୢ	ó		<0.05	0	0	0	9	9	9		9		ó	•	<0.05	0.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0	<0.05		0.10	Ŋ	40.05	0	0	40.05
			_	_	<u></u>	<u> </u>	_	_	_		0	<u> </u>	_	_	_	Ġ	0			-				_				0	0	0	_	0		0	o	0	0	-	0	0	0	0	0	0	0	0	_		_

Soil Analysis (Mba West Area) Results of Table 1

Ag	(pbu)	9 9	2 0	200	2.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0:5	40. 2	<0.2	<0.2 -	<0.2	0	<0.2	<0.2	40. 2	40. 2	40.2	×0.2	×0×	<0 ×	<0.2	×0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	¢0.5	<0.2	<0.2	¢0.2
Au	(add)	ν ,) <u>(</u>) IT	, v	, r.	Λ.	<.	2,	ις V	^	5	55	A 55	\$	ν Ω	\$	ŝ	15	Š	۸ 5	ស	ις V	Ş	in V	S S	ស	S S	S V	ς. V	১	Ϋ́	ŝ	Ş	ω •	in V	S V	ç	\$	Ŝ	Ş	Ş	\$	\$	\$	Ŝ	ιζ	ζ,	÷	\$
Sample	ON CONTRACT	SMOLUS	SMOTER	SMOTES	SM0158	SN0159	SM0160	SMO161	SM0162	SM0163	SM0164	SM0165	SM0166	SM0167	SMOIGE	SM0169	SM0170	SM0171	SM0172	SM0173	SM0174	SM0175	SM0176	SM0177	SM0178	SM01.79	SM0180	SM0181	SM0182	SM0183	SM0184	SM0185	SM0186	SM0187	SM0188	SM0189	SM0190	SM0191	SW0192	SM0193	SMO194	SM0195	SM0196	SN0197	SM01.98	SM0199	SM0200	SM0201	SN0202	SM0203
				_	_	_						_	_																																					
Te	(mdd)	000	26		40.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.05	<0.02	<0.05	<0.05	<0.02	40.03	<0.02	<0.05	<0.02	0.20	<0.05	40.05	0.02	<0.05	0.0s	<0.05	<0.05	0.02 0.03	<0.02 0.05	\$0.02 0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.05 0.05	0.03 0.03	়	40.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.02	<0.05
315	(gdd)	200	5 4	2 4	10	20	09	80	100	160	06	20	30	40	50	70	50	30	20	04	40	40	09	09	09	20	20	20	20	20	9	70	09	2.0	80	09	09	20	20	40	20	40	40	40	20	30	40	20	20	30
Se	(mad)	7.0	200	000	20.0	<0.2	<0.2	40.2	<0.2	<0.2	<0.2	40.2	<0.2	<0.2	<0.2	<0.2	<0.2	×0.2	<0.2	<0.2	<0.2	<0.2	40.2 2	0,2	40.2 2.0	×0.2	×0.2	×0.2	×0.2	۲۹ ۲۹	×0.7	40.2	<0.2	<0.2	V V V	×0.2	×0.2	<0.2	×0.2	v.0.2	<0.2	40.2	<0.2	40.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
AS	(BDD)	- 1 €	1 4		10	 ਜ	13	7	Fi	~	-	₹	7	7	Т	-	H	H	н		7	7	₹	7	7	₹	7	√	7	₹	₹	7	۲	7	+1	₩ ₩	₹	7	₹	₹	₹	₹	₹	7	₹	ri	₹	7	₹	1
Ag	(Edd)	, ç		000	20.0	<0.2	<0.2	<0.2	40.2	<0.2	<0.2	<0.2	<0.2	40.2	<0.2	<0.2	\$0.2 \$0.2	<0.2	<0.2	<0.2	<0.2	<0.2	40.2	×0.2	×0.2	×0.2	×0.2	×0.2	×0.2	٥٠.2 د د د	<0.2	40.2	40.2	0 V	•	×0.2	×0.2		<0.2	×0.2	<0.2	<0.2	40.2	<0.2	<0.2			<0.2	<0.2	×0.2
Au	(add)	O A		er.) in	\ \ \ \	\$	ν Ω	ν Ω	Ş	<5>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Ϋ́	ç	\$	Ŝ	in V	ις V	ŝ	\$	\$	ŝ	ν. Υ	۸ گ	Ş	\$	\$	V	S.	ς,	,	ທ V	S S	S .	 ស	V V		۸ س	ıç V	c.	Ϋ́	\$, 5	۸ ت	, 53	, 13	53	ů	\$5
Sample	0 50,00	SMOTOR	SMOTORS	SMOTOT	SNOTOB	SN0109	SMOLLO	SN0111	SM0112	SNO113	SN0114	SM0115	SMO116	SM0117	SNO118	SN0119	SM0120	SM0121	SN0122	SM0123	SM0124	SM0125	SM0126	SN0127	SM0128	SN0129	SM0130	SMO131	SM0132	SN0133	SM0134	SM0135	SN0136	SM0137	SM0138	SN0139	SN0140	SN0141	SM0142	SN0143	SM01.44	SN0145	SM0146	SN0147	SN0148	SM0149	SN0150	SM0151	SM0152	SN0153

Results of Soil Analysis (Mba West Area) Table 1

000000000000000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
199999999999999999999999999999999999999			700000000000000000000000000000000000000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1000000000			, 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
10000000			14444444444444444444444444444444444444
0000000			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			44444444444444444444444444444444444444
	V V V V V V V V V V V V V V V V V V V		<u> </u>
			44444444444444444444444444444444444444
000	• • • • • • • • • • • • • • • • • • • •		<u> </u>
2.0			44444444444444444444444444444444444444
	• • • • • • • • • • • • • • • • • • • •		4 - 4 4 4 - 1 - 1 4 4 4 4 4 4 4 4 4 4 4
7.00	• • • • • • • • • • • • • • • • • • • •		<u>, 444444444444444444444444444444444444</u>
40:2	• • • • • • • • • • • • • • • • • • • •		44444444444444444444444444444444444444
40.2	****		44444444444444444444444444444444444444
40.2	· · · · · · · · · · · · · · · · · · ·		44444444444444444444444444444444444444
40.2	V V V V V V V V V		44444444444444444444444444444444444444
2.0	V V V V V V V V		
2,0			- 444444444444444444444444444444444444
0.2	~~~~~		<u> विवयवववव</u>
	·		, त्या त्या त्या त्या त
,	, , , , , , ,		
0	70000		777777
9 0	<i>,</i> , , ,	· · · · · · · · · · · · · · · · · · ·	नंबंबंबं १५५५
9 0	<i>,</i> ,		, e e e
9.0	۰,		777
7.9	١		7.7
7 9	,		
9 6		7;	7 7
3 6		7	7. 7.
70.0		₹.	7 (7
7.0		7 ;	7 0
9.0		 ;	4.0
4 6		 7;	7.00
100		/ ;	40
		,	9 0
) C		; ,	
2 6		, r	10
		; ;	10
Ò	1	/\	3.5
	,		7 7
7.9	٧		7 .
7.0	•	7 :	7.
20.2		٦.	1,
20.2		7	7
20.2		۲ ۷	.2
0.2		₹	V .
. o			.2.
<0.2		4	
<0.2			

Te	(mdd)	<0.05	ċ.	<0.05		<0.05			<0:02	<0.02	<0.05	<0.05	0.10	<0.05	<0.05	<0.05	0.15	0.10	<0.05	<0.0>	40.05 40.05	0.15	50.0	50.02	200		300	200	3 6	0.6	200	3 0	200	000	50.00	<0.05 0.05	<0.05	0	0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	Ó	0		O	ď	<0.05
HR	(qdd)	20	08	10	60	30	80	20	107	30	20	20	60	30	40	40	20	40	20	40	130	60	10	Ç.	2 0	8 6	P U	2 6	2 6	2 5	2 5	r	200	25	2 6	200	202	30	30	09	100	60	20	30	30	98	30	40	30	30	20
qs	(mdd)	<0.2	V0.2	V 0 7	×0.2	40.2	×0.2	×0.2	×0.2	<0.2	<0.2	<0.2	0. S	<0.2	<0.2	<0.2	<0.	<0.2	<0.2	<0.0		<0.2	0	000	200	000	200	700	2 9	200	0 0	9 0	200	200	,	000	V V	0.5	40.2	<0.2	<0.2	<0.2		40.2	40.2	0.2	<0.2	0.2	<0.2	<0.2	<0.2
As	(mdd)	(1)	₩	₹.	Ţ	₩	₹	₹	₹	₩	7	V	7	7	! ₩	7	7	V	7	V	! ₩	TV.	V	7.	7.	7.7	75	7.5	7:	J' ₹	7 5	//	7.	7.5	7.	7 ₹	7	7	₹	₹	ť	77	. ☆	₹ ₹	V	. △	V	7	17	₹	<1
Ag	(mqq)		00	Z 00	20.0	2.0	40.2	×0.2	0.0 V	<0.2	<0 2	<0.2	<0.2	<0.2	0.0	<0.2	VO 2	V V	×0.2	200	0.0	<0.2	C	0	200	200	90	700	9 6	7.00	9 6	7 (000	200	,	Ç	V 0 V	00.2	V0.7	<0.2	0.0	<0.2	<0 ×	00	40.2	0.2	40.2	00	<0.2	<0.2	<0.2
Au	(qdd)	<5>	S I	Š.	ν V	×	ري دي	Ŷ	Š	<.	\$	<5×	Š	S.	S	, N	S.	N.	, ro	IC.	, iû		, tr) IC	, V	? (? (Λ / Ο π	? !	9 (2 (7."	0 √) (? !(, r	in V	, N	ŝ	100	\$	<5	\$ 5	ν V	100	ψ.	100	ις. V	ις. V	S S	<5
Sample	Š	SM0254	SM0255	SM0256	SM0257	SM0258	SM0259	SM0260	SM0261	SM0262	SM0263	SM0264	SM0265	*C	SM0267	i to	SM0269	SW0270	SM0271	SM0272	SM0273	SM0274	۸.	٠.	٠.	CMOSTO	- r	SMOZO	0000000	SMOZOS	202020	2000000	SM0284	CMCCMC	SMO 207	SMOSBB	SM0289	SM0290	SM0291	SM0292	SM0293	SM0294	SM0295	SM0296	SM0297	SM0298	SM0290	SM0300	SM0301	SM0302	SMO303
																																																		-	
Te	(mdd)	<0.05	VO.05	Ó.	٥.	٥.	o	<0.05	<0.05	<0.05	<0.05	<0.05	0	O	0.05	0	0	<0.05	റ		0.02		50.05		1	200	3 () C	0.0	0.00		2.0	0.0	000	9 6	200	<0.03 0.03	<0.05	0	0	0	<0.05	0	9	9	90	<0.05	0	0		<0.05
F	<u>م</u>	00	40	06	2	09	20	40	50	40	30	40	20	20	20	20	30	20	30	40	200	30	0	0 0	9 4		2 5	÷ 6	2 6	2 6	1 L) (2 6	0 0	2 0		0 4	90	9	9	20	40	50	20	04	8	20	2	30	30	20.

Results of Soil Analysis (Mba West Area) Table 1

L		•								1																					_	_														<u>. </u>
Hg (ppb)	04	20	20	4.6	3.2	70	06	09	150	70	80	100	20	9	90	9	20	8	001	3 6	70	2	70	80	80	8 6	9,0	200	120	09	50	20	၀	20	20	20	20	40	20	09	40	70	40	0 6	င္သ	6 6
Sp (mdd)	<0.2	<0.2	0.0 0.0	9 9	2.0	<0.2	40.2	40.2	<0×	<0.2	40.2	<0.2	, o	<0.2	<0.2	<0.2	<0.2	99	V	9 9	× 0.2	\$	<0.5	<0.2	<0.2	0 0 0 0	000	7.0	, c	40.2	<0.2	<0.2	<0.2	V0.2	×0.2	<0.2	40.2	<0.2	40.2 2	40.2	×0.2	40.2 1	×0.2	V . 5	V0-2	9 9
As (ppm)	₹	7	₹,	7.	7 7	7	7	7	10	· ·	7	7	7	7	7	7	7		7	7 (0 (1)	m	N	7	7	77		40	40	। त	-	ਜ	N	8	ຕ	ぴ	7	Ţ		(·		 Н :	i •	ਹ :	ij	∀ ₹
Ag (ppm)	<0.2	V0.2	× 0 × 0	9.6	0,0	0.0	00.0	0 0	0	<0.2	0.0	<0.2	40.2	40.2	40°2	40.2	40.2	000	70.0	9 6	00	0.0	40.2	<0.2	00.2	0.0	200	7.0	000	0.0	<0.2	40.2	40.2 2.0	40.2 .0	40.2	×0.2	V V V	<0.2	0.7	40.2	40.2	20.5	70.7	200	×0.2	0.0
(qdd)	Ş	ပ္	δ, i	9 (7 10	ı,	, fû	, r	V.		S V	S V	100	Ş	<.	ŝ	ŝ	Ω,	0	0 10	, co	S.	\$.V	\$2	ις, ή	O W		7 🗸	ń	5	ŝ	S	ις, I	ıç,	ŝ	\$	\$	Ω.	ν ν	S V	ι	ις i	S, í	S I	S
Sample	SM0354	SMO3SS	SM0356	SMOSS.	SM0359	SN0360	SM0361	SM0362	SWORGS	SMO364	SM0365	SM0366	SM0367	SM0368	SM0369	SN0370	SM0371	SM0372	SM0373	SM0374	SM0376	SM0377	SM0378	67EOMS	SN0380	SM0381	SACORS	SMOSEA	SMOSSS	SM0386	SM0387	SMO386	SM0389	SM0390	SM0391	SM0392	SM0393	SM0394	SM0395	SN0396	SM0397	SM0398	SN0399	SN0400	SM0401	SM0402
	•																									٠															-					
Te (ppm)	<0.05	<0.05	30.00	0.00	VO.05	<0.05	<0.05	<0.05	\$0.0V	<0.05	<0.05	<0.05	<0.02	<0,05	<0.05	<0.05	<0.05	50.05	20.00	0.00	<0.05	<0.05	<0.05	<0.05	<0.05	\$0.05 0.05	0.00	200	20.0	<0.05	<0.05	<0.05	<0.05	0.10	<0.05	\$0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	×0.05	<0.03	0.00
Hg (ppb)	20.	70	200	200	200	90	10	30	30	30	40	40	30	130	20	40	60	96	200	2 0	30	30	20	10	20	25	2 0	200	200	20	30	50	04	30	0.1	30	ဝင္ပ	50	20	09	000	000	20	9	40	N F
Sb (ppm)	<0.2	40.2	700	2.0	40.2	V 0 V	<0.2	<0.5	<0 >	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	×0.2	×0.2	000	000	2.0	×0×	<0.2	<0.2	<0.2	<0.2	2 0	0,0	200	200	<0 ×	<0.2	×0 ×	×0.2	×0.2	×0.2	×0.2	, 0 7	<0.2	<0.2 0.2	<0.2 0.3	×0.2	40.2	0 0 0 0	0 °	<0.2	9 9
As (ppm)	₹	₹	₹ ;	7.	7	7	7	₹	· .	ζ. Υ	₹	7	7	∜	7	₹	, ,	√ ։	Ţ,	7.7	7	₹	₹	₹	₹	⊽ :	₹ ₹	7.	7 V	7	7	7	7	7	⊽	,	۲>	7	₹	₹	<1	41	₽,	ժ՝	₹	√ (
Ag (ppm)	<0.2	V . 0	200	3.0	40.5	<0.2 40.2	40.2	<0.2	V 0 . 2	<0.2	<0.2	<0.2	×0.2	<0.2	<0.3	<0.2	×0.2	9.5	700	2.00	0,7	40.2	×0.2	<0.2	<0.2	9,0	200	3.0	7 0	V 0 0	<0.2	<0.2	<0.2	40.2	, v	×0.2	<0.2	<0.2	40.2	×0.2	40.2	<0.2	40.2	×0.2	×0.2	9 9
Au (ppb)	<5	ı,	S í	S ru	2 12	, to	Ŷ	, N	У	^	ŝ	Ϋ́	ιδ	ν 2	S.	ις V	ν γ	Ωí	0.1	0 f0	Ş	, ,	ů	ς. Υ	Ϋ́	Åί	O I	? \) (V	, ro	ν V	in V	۸ S	ເກ V	S S	S S	ιΩ V	N.	۸ ئ	Ş	۸ دن	,	S,	ν. V	ιΩ •	
Sample	N0304	M0305	SMOSOC	SM0308	SM0309	SM0310	10311	SM0312	NO313	10314	SM0315	M0316	SM0317	M0318	M0319:	M0320	M0321	M0322	10323	SM0324	M0326	M0327	M0328	M0329	M0330	M0331	70332	2000	MOSS	M0336	M0337	M0338	SM0339	SN0340	SN0341	SN0342	M0343	M0344	SN0345	SM0346	M0347	M0348	10349	10350	N0351	SN0352

Results of Soil Analysis (Mba West Area) Table 1

QS (maa)	<0.2	٥٠.2	0°,2	99	9 C	2 0	20	0	00	. 0>	0	00	00	0°	9 9	9 6	? ?	9	°.	8	0	8	0	0	9 9	9.0	9	0>	Ŷ	0	99	O C	ç	9	0	40.2	0	×0.2	8	9 9	2	9 9	5 8	÷ ;	9 9
AS (maa)	1	77	7	₹;	7.	7-	10		1	7	rH		Ţ	4	m c	30	40	10	2	7	ო	7	010	77	N .		' ∀	<1	7	1	r-1 :	- u	5 0	01	30	+-1	Ţ	₹	н	₹;	₹ '	₹1	70	n .	۲.
Ag (ppm)	<0.2	<0.2	<0.2	0 0	7.0	9 0	200	200	200	<0.2	<0.2	<0.2	<0.2	×0.2	0.0	7 0	9 0	000	<0.2	40.2	9.0	×0.2	000	×0.2	0.0	200	000	<0.2	<0.2	40.2	0.5	9,6	200	0 0	×0.2	×0.2	<0.2	×0.2	× 0 ×	0 0	200	0.0	V (200	9.0
Au (ppb)	<5	S.	ιζ	ių, i	ο / Ο μ	, /) V	, V	100	<5>	ů,	۸ د	ŝ	10	io i	γ V	2 4	7 10	52	δ	Ŝ	N V	ស្ត	ις (1	Ç.	Ç (, r.	\$	Λ 5	S V	\$	ů,	ייי	V V	000	,	<\$	\$	ις V	ις i	Ç.	ν, ή	Ç.	Ç.	δ, ń
Sample	SM0454	SM0455	SM0456	SM0457	SMO458	SMOASS	SW0461	SM0462	SM0463	SM0464	SM0465	SM0466	SM0467	SM0468	SM0469	0.40E0	CWC 472	SM0473	SM0474	SM0475	SM0476	SM0477	SM0479	SM0480	SM0481	0.300482 0.40482	SM0484	SM0485	SM0486	SM0487	SM0488	SM0489	2004000	SM0492	SM0493	SM0494	SM0495	SM0496	SM0497	SM0498	SM0499	SMOSOO	SMOSOL	SMOSOZ	SM0503
														•					•							-											,						-		
Te (pom)	<0.05	<0.05	0.05	000	0 0 0	3.6	200	20.02	40.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.00	000	2 6	20.00	0.05	0.10	<0.05	<0.02	<0.05	\$0.02 1	0.00	200	, c	<0.05	<0.05	<0.05	0.05	40.05 60.05	200	0.00	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	<0.02	0.03	0.00	20.00	0.00 0.00 0.00 0.00
Hg (pop)	70	20	100	110	0 6	2 6	9 6	90	200	50	70	70	06	09	උර	000	200	000	06	70	70	100	100	150	70	90.1	1 4	110	120	60	90	200) C	80	70	70	100	120	80	0,4	04	000	200	2	2.0
QS (maa)	<0.2	<0.2	×0.2	V 0.0	V V	9 6	9 00	× 0 ×	40.2	<0.2	<0.2	<0.2	40.2	×0.2	0.00	7 0	4 6	20.0	<0.2	<0.2	40.2	40.2	V0.5	V0.2	700	9 9	7 O V	<0.2	<0.2	<0.2	<0.2	7000	7 0	200	<0.2	<0.2	<0.2	40.2 2.0	×0.2	×0.2	×0.2	0.0	7.0	×0.2	0.0
As (pom)	7	₹	₽,	64 (N 6	96	9.00		100	77	74	8	#4	+4	C	N 0	3 6	4 64	(01	N	N	Ø	co o	01 (N.	-1 -		2	.01	es.	7	ζ,	√7	7	7	7	√	۳ţ ۷	₹	र V	₹	₹.	₹ 5	₹	∜ ₹
Ag (ppm)	<0.2	<0.2	<0.2 -	9.5	200	3.0	200	×0.2	40.2	<0.2	<0.2	40.2	0.2 0.2	<0.2	V 00 0	9 6	9 6	7.00	<0.2	<0.2	<0.2 0.2	VO-2	0 0 0	0.2	200	9.6	200	<0.2	40.2	40.2	<0.2	0 0	2,6	×0×	40.2	<0.2	<0.2	40.5	×0.2	0.5 0.5	0°2	0.0	2.00	7.00	9 9
Au (pob)	<5>	9	10	וט ו	Λ / Ο π	- V) ₍ (, rč	V CS	<5	Ş	10	in V	,	N, i	Λ / Ο π	2 IV	7 0	ŝ	\$, 5	S S	ν V	Ω.	ů,		, ro	\$2 \$2	Ŝ	i?	٧ د	ıÖ fi	y v	, 17 V	Λ	, N	S.	iQ V	\$	ις, _i		ις V	, v	Ç.	ις V
Sample	SM0404	SM0405	SM0406	SM0407	SMO408	SW0410	SMO411	SM0412	SM0413	SM0414	SM0415	SM0416	SM0417	SM0418	SM0419	SMO420	TV CV CNC	SM0423	SM0424	SM0425	SM0426	SM0427	SM0428	SM0429	SMC460	SMO481	SMO433	SM0434	SM0435	SM0436	SM0437	SM0438	SWOA AD	SM0441	SM0442	SM0443	SM0444	SM0445	SM0446	SM0447	SM0448	SM0449	SM0450	SM0453	SM0452

Results of Soil Analysis (Mba West Area) Table 1

Ę.	000000000000000000000000000000000000000	200			 		
mdd)		9 9		-	·	· . ·	:
(dqq)	000000000000000000000000000000000000000	000		. :			
(mdd)	99999999999999999999999999999999999999	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
(mgd)	ਜਜਰੂਰਜਜਜਰੂਰੁਰੂਰੁਰੂਰਜਜਜ	1 T T					
ppm)	000000000000000000000000000000000000000	70,0	 				
)			· 	-	
No	SMOSOS SMOSOS SMOSOS SMOSOS SMOSIS SM	SMO522 SMO522	:				

·	:		

Results of Soil Analysis (Mba West Area) Table 1

Au (ppt	ľ	•		•			·	٠	•			•	•	•			·																			-											
Sample	ST0051	ST0052	SHOOF	STOOPS	ST0056	ST0057	ST0058	ST0059	ST0060	ST0061	ST0062	ST0063	ST0064	ST0065	ST0066	ST0067	ST0068	ST0069	20010	210072	ST0072	ST0074	ST0075	ST0076	ST0077	STOOTS	ST0079	ST0080	ST0081	ST0082	ST0083	ST0084	ST0085	ST0086	ST0087	810088	810089	STOOMS	STOOPS 2000ES	A COOLE	O COCE O	1000010	000000000000000000000000000000000000000	800000	STOOPS	STOOPS	ST0100
					•	_																																									
re (ppm)	40.05	200	200	200	00.02	01.0		<0.05	<0.05	<0.05			<0.05	<0.05	<0.05	<0.05	<0.05	20.00	٠,٠	200	200	9.0	, c	90	0	<0.05	<0.05		<0.05	<0.05	۰.	<0.05	0.05 0.05	40.05 40.05	40.05	į.	0000	ķ	Óσ	•	200	ጉィ	, (0,0	١.	ò	
(qdd)	100	2 6	- C	3 4	0 0	0.00	20.0	09	09	40	40	70	70	9	40	30	20	000	2 0	0 0	2 6	0 0	38	4	9	30	30	40	30	30	30	30	90	000	200	2 6) C	200	2 6	3 6	3 6	2 6	200	000	000	9 6	88
SP (mdd)	2.0 2.0 3.0	7.0	700	, C	V 00 V	×0×2	0 0	×0.2	20,0	<0.2		<0.2	V V	<0.2	40·2	<0.2	40.2	0 9	7.0	200	9 6	000	000	700	40.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	×0.2	×0.2	0.0	700	200	70.0	200		7.0		9 6	N 0	200	9.0	0.00
As (ppm)	⊽;	7,	7.	<i>i</i> 7	17	7	1	\ \ \	4	<1	7	× ×	7	, T.	₹	1,	7	ψ';		7.	70	7 7	7.7		1	41	7	7,	₹	ţ	₹	, ,	್.	1	∀ ;	7	7.7	***************************************	7.	7,5	7.	7 :	71	7.	7.5	7.	プマ
Ag (ppm)	1 .	7 0					40.2			<0.2	<0.2	<0.2		<0.2 0.3	•	×0.2		0 0 0 0	1000	4,6	, c	0.00	0,0	200	V V V	<0.2	<0.2	<0.2 0.2	<0.2	40.2	×0.2	×0.2	9.5	V . 2	200	7.00	200					7 0	200	200	200	9.0	9.57
Au (ppb)	£,	S I	? K) II) iç	V V	, L	ır.	V V	Ş	, 10	700	Ω V	۸ ان	\ \ \ \ \ \ \ \ \ \	\$	5	i V	2") u) iç) IC	9 IC	9 10	S S	in V	S V	\$	\$	Š	Λ	ις V	N N	က V	ν V	Ç.	o u	210) v	? V	, i	7 1) u	V V	, Á) () \	3 ₩
Sample No	ST0001	200018	STOOMS	STOODS	ST0006	STOOOT	ST0008	9000TS	ST0010	ST0011	ST0012	ST0013	ST0014	ST0015	STOOLE	ST0017	STOOLS	ST0019	10000	TYCOTA:	STOOLS	ST0028	ST0025	ST0026	ST0027	ST0028	ST0029	ST0030	STOOSI	ST0032	STOO33	ST0034	ST0035	ST0036	ST0037	87,0038	STOOMS STOOMS	OTOCTO.	210010	770000	010043	110000	010040	010010	ST0048	010010	ST0050

					_																																														:_
Te (ppm)	P		0.	0	0.	0	0.0	0	0	0			•	, 0	,	5,0	٠,	o	ó	o.	9	0	ó.	o,	ᅼ	Ŋ	N	9		-	0.05	H	10	O	o	H	0		<0.05	٥.	Ó	0	٠,	0	٠.		90	, c	? 0	<0.05	0
(qdd)	20	20	20	30	30	20	40	30	20	40	30	Ç	3 6	3 6	2 6	200	2	20	8	8	စ္တ	30	20	30	40	09	40	30	20	30	20	30	30	30	30	30	20	20	30	20	99	30	20	30	40	G	5 4	202	09	30	04
CSO (Hdd)	<0.2	40.2	40.2	٠	٠	40.2	٠	•	•	•			٠	10	•		•	•	•	40.2	• 3		٠	•	. •	٠	•	•		•	•	•	40.2	<0.2	4				•	•	<0.2	<0.2		<0×	40.2	600	4.0	200	V0.2	<0.2	V 2.0
As (ppm)	17	П	₹	7	₹	₹	7	7	7	7	12		₹ +	46	۷ ,	7	-	₹	7		- 1	2	7	r-1	63	8	101	0		2	7	4	- -	H	н	7	7	⊽	7	Ţ	₹	77	77		10		1 -	1.5	V	· +4	
Ag (ppm)	<0.2	40.2 2	<0.2	40.2	<0.2 20.3	<0.2	<0 S	<0 ×	VO. 2	40.2	<0.2	200	0 0	9 6	9 6	0 9	00	×0×	×0.2	<0.2	0 0 7	<0.2	0 2	0.2 0.2	<0.2	40.2	40.2	×0.2	0	0.2	0.0	<0.2	0,00	<0.2	×0.2	<0.2	0.0	0 S	<0.2	<0.2	×0.2	<0.2	40.2 0.2	<0.2	00	0	100	200	0 2	<0.2	7 OV
Au (ppb)	<5	Ş	,	ιζ	ψ.	Ş	55	ŝ	ŝ	100	300	υς V	, / S R	? ') 1	9 !	Ŷ	 V	Š	\$	ťΩ	\$	5	\$	Ş	55	Ŋ	V.	IC.	, c	\ \ \	~	Ý	ŝ	ιΩ	ť	S	ŝ	ŝ	ιÇ	Ϋ́	\$,	S.	5 5	ı,	7 (9 10	100	ψ,	5
Sample No	ST0051	ST0052	ST0053	ST0054	ST0055	ST0056	ST0057	ST0058	ST0059	ST0060	ST0061	STOORS	000E	1000E	1000E	cannis	ST0065	ST0067	ST0068	ST0069	ST0070	ST0071	ST0072	ST0073	ST0074	ST0075	ST0076	ST0077	STOOTS	ST0079	STOOSO	ST0081	ST0082	ST0083	ST0084	ST0085	STOOSE	ST0087	ST0088	ST0089	ST0090	ST0091	ST0092	STOORS	ST0094	ROCOTA	000000000000000000000000000000000000000	870094	ST0098	ST0099	ST0100
								-																																											
(mď	.05	50.	.03	.05	.05	.05	10	02	05	50	50	r.	- 6	3 6	2 6	0.0		.05	-05	.05	50.	.05	.05	50.	.03	.05	50.	0.5	50.5	50.	50.	.05	.05	50.	.05	.05	.05	.05	.05	.03	.05	.03	.03	60	, O	n C	3 6	000	0.00	50.	-03

Results of Soil Analysis (Mba West Area) Table 1

~																																														١
Sample	ST0151	ST0153	ST0154	STUT SE	ST0157	ST0158	ST0159	ST0160	STOIGL	ST0162	STOIGS	101010	STOTE	STOTES	ST0168	ST0169	ST0170	ST0171	ST0172	ST0173	ST0174	ST0175	ST0176	ST0177	ST0178	STOTE	810180	STOTE	STOTO STOTO	STOIR	ST0185	ST0186	ST0187	ST0188	ST0189	ST0190	S70191	ST0192	ST0193	ST0194	ST0195	ST0196	ST0197	ST0198	ST0199	210200
																																				-	-				•					_
Te (ppm)	0.03 0.03	40.05	000	000	40.05	<0.05	<0.05		<0.05	0.05 0.05	0.00	200		? •	40.05	<0.05	<0.02	<0.05	<0.05	<0.05	<0.05	0	0	۰,	0.00	2000	20.00	0.0	000	30		<0.05			<0.05	<0.05	<0.05	٥,	20.03	40.05		0	•	9	٠	\$0.05
Hg (ppb)	30	4	00.5	2 4	202	30	70	20	၁၉	000	000	5 6	4	30	40	30	70	40	30	80	40	40	20	20	02.	200	250	200	3.4	0.4	300	20	09	20	20	9	40	30	30	06	40	တ္တ	40	40	200	1,75
qS (mdd)	× 0.2		999	2.6		40.2	<0.2	40.2	40. 2	0,0	200	9 6	100		<0.2 2	×0.2	<0.0>	<0.2	<0.2	<0.2	<0.2	<0.2	, v	40.2 	0,0	7.00	200	7 00		0	×0.2	40.2		٠.	•	<0.2 0.2	: •	<0.2	3				•	٠	V 00.0	40.2
As (ppm)	77	4	٠٠,	75	7	₽	₽	7	₹	₩,	Ų.	٦,	, -	і Н	н	ri	₹	7	٦	H	, ,	7	₽	7	r-1 (7		Υ °	11	· er	+-1	7	П		٦	⊽	41	7		7	₹	7			기	4
(wdd)	<0.2		9.5	9 6	000			۰, 0,	<0.2	000	0 6	200	7 0	0,00	40.2	40.2	<0.2	<0.2	<0.2	<0.2	40.2	40.2	<0.2	V V V	000	7.0	200	000	200	0	40.2	\$ 0.2	<0.2	\$0.2 0	<0.2	<0.2	<0.2	<0.2			14	<0.2 0.2	0 0 7	×0.2	0.0 0.0	20.7
(qdd) ny	<5 <5	ŝ	io k	3 f	δ. ιδ	ŝ	\$	<5	\$	iù i	ກ V) V) ť	, io	Ϋ́	\$	ις V	<5>	ŝ	<5×	٠ دي	\$	S V	Ş,	i,	? 5	?	ů í) (<u>(</u>) IC	, C	ເ ₂	, 55	10	S	បូ	8	ŝ	ς	Ŝ	ŝ	ψ,	ស្ត	S,	ς,	3
Sample	STOIOI	STOIOS	STO104	STOTOR	ST0107	ST0108	ST0109	STOLIO	STOIL	STOILS	STOITS	B TOTO	21012	STOIL	STOILS	ST0119	ST0120	ST0121	ST0122	ST0123	ST0124	ST0125	STOIZG	ST0127	ST0128	871018	210130	STOISI	STOTS	ST0134	ST0135	ST0136	ST0137	ST0138	ST0139	ST0140	STOIAL	ST0142	ST0143	ST0144	ST0145	ST0146	ST0147	ST0.148	ST0149	OCTORS
									-		_			-								_							~																	

ľ	9	Comple	1,6	200	A C	40	6	3
<u> </u>	(mdd)	N ON	(qdd)	(maa)	(mdd)	(maa)	(qdd)	(mda)
30	<0.05	ST0151	\$	<0.2	V	<0.2	20	<0.05
30	<0.02	STOISS	150	40.2	1	40.2	. 70	<0.05
6	\sim	STOISS	, S		Ţ		09	<0.05
20	0	ST0154	S V	,	V		30	<0.05
9	0	STOISS	100		· 7	0.5	30	<0.05
40	٥.	ST0136	55				40	<0.02
70	0	ST0157	10.		V		30	<0.05
90	0	ST0158	\ \ \ \		Н	×0.2	06	40.05
20	0	STOTS	IO V			×0.2	30	<0.05
20	9	ST0160	, V			×0.2	0.4	<0.05
30	0	S70161	10	<0.2	, v	<0.2	30	<0.05
90	0	STOIGE	10	V 2 1	Ų		20	<0.05
9	Ç	24010	, ,	, ,	17	0	יייייייייייייייייייייייייייייייייייייי	0
200		STOTE) ki	200	į		0.00	0.00
2 4	· C	I W LOLL	, /	,	· `	0	9 6	100
2 0	2	SOTOTS STOTES) Ir	, ,		000	4 0	10.05
9	20	PATOTA	, v		7.	200	200	0.00
) 4	· C	OTOTA OTOTA	, r.	900	7.	200	\$ P	500
2 6	9 0	091010) v	, ,	7,	0 0	2 5) (
3 6	200	OF LOTS	? v	, ,	7.	100	c c	200
Ş	i C) K	100		0	200	20.07
2 6	ŚC	STOTE) \ } !	4 0	4 ;	100	ייייייייייייייייייייייייייייייייייייי	200
3 6) C	41010	? "	9 0	; ,	9.0	200	300
3 5) C	o tropic	? "	9 0	,	3 6	200	3 0
2 6	ס כ	PLTOTO	? \	7 0	;	3.0	700	300
2 6) C	CHOIS	? 4	7.0	;	7.0	2 6	
2 5	200	OF TOTO) v	7.0	7;	9 6	96	
2 6	0.00	/ TOTO	9 (2.05	7 ;	7.00	000	0.00
2 6	200	STOIZE	ů,	2.0	₹ 1	000	000	0.0
3 9	20.00	STOYS	Ç ţ	2.05	7	40.4	0,1	20.00
3	×0.02	81018	Ç	7.00	7	V	0.40	0.00
50	×0.05	STOIST	ις, I	×0.2	Υ,	V0.2	90	50.05
္က	<0.05	ST0182	S.	×0.2	7	40.2	130	0.05
\$	<0.05	ST0183	\$	V V V V	₹	\$ 0.2	100	<0.05
6	0.30	ST0184	ςÿ	0 V	₹	40.2	40	<0.05
90	0.05	ST0185	S	0 0 7	ဖ	×0.2	20	\$0.05
20	<0.02	ST0186	10	40.2 2.0	₹	<0.2	20	<0.05
9	0.03	ST0187	ŝ	40.2	-	×0.2	09	o.
20	40.05	ST0188	S	<0.2 <0.2	7	<0.2	50	<0.05
20	40.05	ST0189	\$	<0.2	7	<0.2	30	٥.
၀ွ	<0.05	ST0190	ŝ	<0.2	17	<0.2	40	9
40	<0.05	STOISI	\$	<0.2	₹	<0.2	30	0
20	40.05	ST0192	ເລ	40.2	₹	40.2	၁၀	•
90	<0.05	ST0193	Ş	40.2	7	×0.2	20	<0.05
8	40.05	STOI94	, 33	<0.2	₹	40.2	80	ç
40	<0.05	ST0195	δ	<0.2	7	×0.2	30	<0.05
ဗ္ဗ	<0.05	STOIS	Ş	<0.2	7	40.2	20	Ö
40	<0.05	ST0197	Ŷ	40.2	7	<0.2	20	•
64	40.05	ST0198	ပ္	40.2	7	40.2	30	o
20	40.05	STOIS	ŝ	<0.2	ન	<0.2	240	•
30	<0.05	ST0200	ر دئ	<0.2	1	<0.2	20	\$0.05

Results of Soil Analysis (Mba West Area) \vdash Table

	<u>. </u>	·						·							<u> -</u>															_;	_								
(Edd)	0.0 0.0	0.00	90	\$ 0.5 2	0.0 0.0	200	0	<0.2	0.0 0.0	000	40.2	<0.2 0.2	0 0	0.2 0.2	7 0 V	0.00	0 0	90	000	<0.2	0 0	0 0	<0.2	9 0	8	<0.2	0 0	000	<0.2	<0.2	×0.2	7 C	9 9	9 6	700	000	2.0	0 2	<0.2
AS (ppm)	₹₹	√	∀ ₹	; ☆	∀;	7	'∀	7	rd (√ ⊽	∀	∀'	∀ ⊽	4	₹	7 V	<u>,</u> H	₹ 5	7 ∀	∀	₹ 5	14	₹,	7 2	. △	₹	۷ ۲	7 7	₹	₹	₹	₹;	√ ;	7 7	7 :	۲ ک	, 7	7	₹
Ag (ppm)	40.2 20.2	0.00	000	0.0	40°5	V 0.2	<0.2	<0.2	0 0	0 0	40. 2	<0.2 0.2	0 0	ç0.5	V0 V	9.0	900	000	0 0	<0.2	0.0	40. 2	× 0.2	2.0	40.2	<0.2	9 9	0.0	<0.2	<0.2 0.2	700	0 0	2.0	7.0	9 9	0.0	0 0	40.2	<0.2
(qdd)	δ, r	7 ₹	Λ / ໜ ແ	ά	î,	9 19	ιΩ	\$	i V	Ω Ω	\$	φ,	io io	ιζ	ις: V	0 K	9 10	Ωú		ιŞ	iS iS	ά	i,	0 v	₩.	Ϋ́	ς, ή	9 10	A.55	55	Ω I	ů,	ς,	Ö K	9 (ů,	₹ 5	, S	<5
ONO	ST0251	ST0253	ST0254	ST0256	ST0257	ST0259	ST0260	ST0261	ST0262	ST0263	ST0265	ST0266	ST0267 ST0268	ST0269	ST0270	STO272	ST0273	ST0274	ST0276	ST0277	ST0278 ST0279	ST0280	ST0281	ST0282	ST0284	ST0285	ST0286	ST0288	ST0289	ST0290	STOZĐI	ST0292	ST0293	10701S	310233	ST0296	ST0298	ST0299	ST0300
										٠		•																											
(bbm)	<0.05 0.05	0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.05	\$0.02 \$0.05	0.00	<0.05	<0.05	VO.05	0.05	<0.05	40.05	0000	<0.05	0.05 0.05	0 0 0 0	0.02	0.05 0.05	0.00 0.05	<0.05	0.00	<0.05	<0.05	9.6	50.05	<0.05	0.00	0.02	<0.05	<0.05	<0.05	20.02	000	0.00	00.00	0.00 0.00	20.02	0.05	<0.03
(qdd)	10	800	30	202	200	200	30	9	40	90	30	40	08 0	8	040	200	88	O C	8 4	99	200	20	40	0.6	S S	01.	200	200	20	20	30	2 5	20	2 6	0,7	010	130	40	80
9.0																																						1 12	.2
(E	40.2	VO. 52	86	40.2	0,0	700	00	<0.2	0 0	200	40.2	40°	V 00.7	<0.2	×0.2	2.5	0,0	000	000	<0.2	000	, ç	<0.2	200	0.0	<0.2	× 0.5	70,0	40.2	۷0.2 دو.2	×0.2	V V	V V V	7 C	40.4	, v	200	0	Ŷ
		\$ \document{\documents}		40.2	₹ 0.5			<u> </u>		7 V		<1 <0.2	70.7	1 40.2	1 <0.2	7.007	100	4		1 <0.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<1 <0.2	<1 <0.2	70.5	700.7	1 <0.2	41 × 0.2	7.00	. <1 <0.2	<1 <0.2	<1 <0 < 1 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 2 < 0 < 0	7 V	7 V		7.05	7 V	7.5	, o	.^
(EQQ)			₹.	₹ ₹	∀;	 7 ♥	₹		ረ ነ		\	₹	<pre><0.2</pre>	——— Г г І	-1	70.7	11		7 ♥	H	<0.2 <1 <0.2 <1 <0.2	₹ ₩	Ţ	×0.52	1 1	-H	<0.2	7.7	.2.	₹	7	7 7	₩;		7	VO.72	7 7	7 7	₹
(mdd) (mdd)	∀ ₹	1000	₹.	₹ ₹	∀;	 7 ♥	<0.2		ረ ነ	 ⊽ ⊽	\ \	₩		0.2	-1	7.00	11	rd ç	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	H	 ♂∇	₹ ₩	Ţ		1 1	-H	∜;	7 7	7	<0.2	7	₹ :	₩;	√ ∜	7.00	♥ 5	7 7	7 7	4

Results of Soil Analysis (Mba West Area) Table 1

									÷-										****	****	_		~	_		-					~						-					_				-1
(qdd)	04.0	2 2 2	40	င္က ၄		22	ခ္က	40	30	50	20	30	40	200	200	200	5 6	C C	0 0	200	09	4	20	61	22	3.	2	25	2 62	26	202	20	20	20	30	20	50	30	98	200	200	300	5	5	70	
(mad)	0.0 0.0 0.0	0.7	×0.2	99	3 6	200	0 0	<0×	<0.2	×0.2	0. 2.0	40.2	×0.2	0.0	200	000	9 6	600	000	0	<0.2	40.2	00.2	40.2 2.0	99	000	V 0	9 6	3 6	000	40.2	<0.2	\$ \$	40. 2	0.5 50	ο Ο Υ	40.2	V	9.0	2.0	2.00	9.6	200	300	0.0	
As (ppm)	⊽ ⊽	; ☆	₹	ር ፡	7.5	7.7	7		1>	7	7	₹	₹	⊽:	7	7	7.	T. (1)	7.	V	7	₽	7	₹	₹,	7,	Ţ	71	7	70	7	₽	₹	₹	₹.	₹	٠ ۲	7	∵ :	 ⊢I (φ.	4.6	o e	2 3	າຕາ	
Ag (ppm)	0. 2	9	<0.2	0.5	7.0	2 0	0 2	0.2	<0.2	×0.2	40.2	40.2	<0.2	000	70.7	700	90	2.00	000	20	×0×2	<0.2	<0.2	<0.2	0.0	9 9	7.00	200	200	200	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	40.2 7	<0.2	40.2 2.0	709	0 0	200	700	3.6	0.05	
Au (ppb)	\$5	δ	Ş	Ωį	O V	7 5	, V	V V		5.5	សូ	\$	Ą	ς S	Ç.	S I	δ. 	,	9 5		, r.	, 53	Š	\$		ů,	Ç	0 U	9 (2 10	ŝ	\$	15	ij	S S	ŝ	\$	Ş	ψ,	0 1	0 1	n v) í	7 8	
Sample	ST0351	ST0353	ST0354	ST0355	ST0536	ST0358	ST0359	ST0360	STOSEL	ST0362	ST0363	ST0364	ST0365	ST0366	200012	STORES	025075	- C.	ST0372	ST0373	ST0374	ST0375	ST0376	ST0377	ST0378	ST0379	STOSEO	STOSET	ST0383	ST0384	ST0385	ST0386	ST0387	ST0388	ST0389	ST0390	ST0391	ST0392	ST0393	ST0394	STOAOL	STOAOZ	010403 010403	#04040	ST0406	
																														-																
Te (ppm)	<0.05	40.05	<0.05	9.6	30.00	0.10	40.02 0.03	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	0.05	20.00	20.00	3.5	1000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	00 6 00 6	0.00	00.00	0.00	310	0.00	<0.05	<0.05	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.02	40-05	40.05	0.00	3 5	20.00	\$ 0.00 \$ 0.00	
Hg (qdd)	10	30	30	2 2	3 6	28	30	20	30	30	40	40	0	200	Ş (0 0	3 6		202	20	10	20	20	20	0, 8	200	0.0	4 4	2 4	200	10	20	40	40	30	09	30	40	0,4	30	05.	5 6	2 6	200	28	
Sp (mdd)	<0.2 0.2 0.2	40.2	×0.2	9 9	200	000	V .0	<0,2	<0.2	40.2	<0.2	<0.2	×0.2	0.0	200	200	200	20.2	000	×0×	40.2	40.2	<0.2	<0.2	V 00 0	200	N (C	7.0	200	000	VO. 2	<0.2	<0.2	VO.2	×0.2	<0.2 0.2	<0.2	<0.2	V V	70	2.0	200	200	200	0 0	
As (ppm)	7.		₹.	₹;	7.2	7 7	7	7	۲>	41	7	7	ť	₩,	7;	7	7.	÷	V		\	₹	Ţ	₹	₹;	7;	7	71	77	; 7	I ed	7	7	7	7	7	₹	- 1	7	♥ '	₹ :	7	7.	7.	1∀	
Ag (ppm)	<0.2 <0.2	, o,	<0.2	2.0	7 0	V V	<0.2 2	×0.2	<0.2	×0.2	<0.2	<0.2 0.3	<0.2	0,0	7.0	×0.2	× × ×		2000	V .0 .	40.5 2	<0.2	40.2	<0.2	× 0 0 0	7.00	V	V V	4.0	100	70.0	<0.2	<0.2	0.2 0.2	40.2 2.0	×0.2	×0.2	<0.2	V0.2	70°	70.7	7.0	7 0	V V	V V	
(qdd)	S 2	. f.	in V	ភូ ម	9 (V V	\ \ \ \ \ \ \ \ \	N.	<5	Λ 5	in V	5	V V	y Y	Ç	0		2	S R.	× ×	Ş	۸ دن	ις V	ιŞ	io i	o t	0	V (3 () V		\$	55	ν Ω	, S	ŝ	Ş		Ç,	ψ,	ν,	0 4	Ω W V	0 E	7 ♥	
Sample No	ST0301	ST0303	ST0304	ST0305	ST0307	ST0308	ST0309	ST0310	STOSIL	ST0312	STORIS	ST0314	ST0315	ST0316	LTCOIS	SICOIS	010010 010010	K-1022	ST0322	ST0323	ST0324	ST0325	ST0326	ST0327	ST0328	87.0378	810330	STORRY OTOBRA	400010 610010	STORAGE	ST0335	ST0336	ST0337	ST0338	ST0339	ST0340	ST0341	ST0342	ST0343	ST0344	ST0345	ST0346	- 0	0 0	ST0350	

Results of Soil Analysis (Mba West Area) Table 1

Te (ppm)		2 0	90	90	0	0	0	C	? (2.0	9 0	•			9		o.	o	0	0	0.0	٩	0	٥.	0	0	0	0	•	0	0 (٠,	, 0	, ,	2 C) C	90	•) C	×	90	200)))	0	0	0	0.0	0.0	0.0	<0.05
Hg (phd)	200	\$ U		36	0 10	50	200	04		C C	0 0	2 4	- C	3 6	2 6	2 :	40	-04	တ္ထင်	40	110	80	102	09	09	70	140	202	08	္တ	2 2	2 6	2 6	0 0	2 4) C	2 4	C C	2 4	C V	3 6	2 5	T L	200	06	404	40	40	30	30 [
Sp (bpm)	<0.2 20.2		7 6	9 0	VO. 2	<0.2	<0.2	V 0	0 0	1000	,	2 6	4 6	9 6	7.0	7.00	×0.2	×0.2	0 0 0 0	70	<0.2 -	•		V V	0 2 7	V V V		0.0		0		200	100		200	, ,		000	200); c		4.0	7.0	700	×0.2	<0.2	×0.2	40.2		<0.2
As (ppm)	ω.	c	d r	0 0	N		7	· ·	, ,	, , ,		1 5	 ! *	٠,	7.	-4 1	~	1	+-1	7	₹	₹	₹	₹	∀	₹	7	₽;	₹ :	₹		7,	7.	7.5	; v	, ,		, .	7.7	<u> </u>	7;	7 7	7	7	7	₹	- н	Н	₽	<1
Ag (ppm)	0.2 0.2	7 0		7 V			٠.			202		•	9 6		-	700			V0.2	- :			٠		V. 2	•		0,0	•	٠;	700	٠	•	•		0	20.00	20.0	0	20.0		36	7	2.05	0.2 0.2	×0.2	×0.2	<0.2	<0.2	<0.2
Au (ppb)	\$ 5	3 /	3 4 —	9 5	. rð	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10	N.	Ų) (C	, r) L) () u	3 4	G	v.	Ş	S V	ŷ	ŝ	V	ν V		S S		S S	Λ,	9	Ŷ	ů,	2 (Ų	, ť	, Å	, K) ₁) (Ç) v	7 4) N	9 4	3 i	Ç'	9	ŝ	۸ ان	S,	S.	\$
ا يا	ST0407	2 3			Н	ST0413	\pm	Η	:	2104	! :	1 :	15	3 6	9 9	-	N	Ň	연.	Ν.	<u>N</u>	7	7	2 :	ლ :	<u> </u>			3 :	2.	3.	35	2 4	. 4	. 4	: 7	7	7	4	Ž	4 <		.	.	1045	T045	ဋ	T045	ST0455	ST0456

		_	_			_		_	-		_	_	_				٠;						-	 		 	:			 	
1 0				•	٠			•		٠		•		٠,		•	• ;	0.05 0.05 0.05													
Hg (ppb)	8 8	88	40	04	S 6	200	40	30	06	000	9 6	5 6	3 6	200	20	200	ZOZ	920											•		
1 8				•	٠					٠	•	•				٠	• •	0000						 							
As (ppm)	₹.5	; ₩	₹	₹	۲.	7 7	4	4		7	n	, 7	7.	7 7	寸	∜.	7	444				,			•			·			
	_																.:	0 0 0 0 0 0 0 0 0													
Au (ppb)	ů. K	Ω	ů	ស្ត	ς, ή) io	, S	\ ស	ν,	Ω I	δ./) () (7 V	, ro	Υ V	Ω	r) V	A A A	•	••••	·	•						••		 	
amp1 No	T045	1045	T046	T046	1046	7046	T046	1046	1046	1045	1040	7 7 7 F	1047	1047	1047	T047	1047	ST0477 ST0478 ST0479				-		 	•	 					
!	•								•		-				•		•	<u>' </u>					•				•	•		 •	•

2. Results of Soil Analysis (Sigatoka Area)

Results of Soil Analysis (Sigatoka Area) ~ Table

							<u>.</u>									Ļ.,																•								
(ppm)	8 T.	32	89	104	84	~;	4,	3.0	14	33	225	25	33	24	22.0	29	225		등	G 4	24.0	. S. S.	24	Ξ,	4.0	22	_	12	=	130	55 4	2	310	14	57		27.5	25		35
Ag (ppm)	6.6.8 22.23	2.5	0.2		6 .2	0°5	7.0	0.2	0.5	<0.2	 0;	⇒ <	, c	2.0	9	Z 0>	0,0	9	40.	\$ \$ 6 6	, c	0,2	0 .2	2 c	35	000	0,2	0. 2	0 0 0	2.5	> °	2,5	; c	0.5	\$0°2	2.6 5.6 5.6	7 : 2 : 2 : 3 : 5 :); ; ; ;	0.5	\$0°5
Au (ppb)	សស់	ទ	Ġ	ភ ភ	. . .	Ç,	∵ ∜	95	Ç	\$	Ċ.	٠.	25		\$	\$	<u>۱</u>	? !		Ωŕ	25		\$	<u>ئ</u>	Э.К	V	.⇔	\$	ξ.	Ċ.	\$ 1	?	? \	ŝĈ	\$		∵ ∖	\$ K	\$	\$
Sample No	AY0851 AY0852	AY0854	AY0855	AY0856 AY0857	AY0858	AY0859	AYUSBU	AY0862	AY0853	AY0864	AY0865	AYUSDD	AYDREA	AY0869	AY0870	AYD871	AY0872	AY0874		AY0876	AY0878	AY0879	AY0880	AY0881	AYDEEZ	AY0884	AY0885	AY0886	AY0887	AY0888	AYUSSS	DECON.	AY6892	AY0893	AY0894	AY0895	AYU8SB	AYUSSA	AY0899	AY0900
Mo (ppm)	\$\$:	70	4			♥:	7	J	₹	⊽	Ϋ.	a, -	, -	•	₹	▽:	 ;	7	₹	₹;	- - -	; 4	⊽	♥;	Ż	7	₹	₹	ς:	Ų:	7.	ス	70	. □	₹	;	₹;	₹.	- -	∵
Hg (bpb)	20 40	20	27	97 9	50	88	30	20	8	20	40	38	35	200	28	101	202	32	20	200	30.	201	10	30	30	20	22	9	2	Ξ.	26	07	3.5	20	10	25	246	22	301	10
Sb (ppm)	2000	2.5	9:2	÷.	0.2	2.0	, ç () <	200	¢0.2	60.2	÷;	⇒ <	; ; ; ;	9	0.5	<0.2	÷.	90	<0.2	99	?5	0.2	0. 2	2.5	3.5	200	0.2	\$ \$	\$?;ç	7.5	;5	0.5	<0.2 0.7	S:		? ? ?	900	<0.2
AS (ppm)	D D S	 	\\\\	72	:∵	∇;	7	7	Ç	♡	♥:	ار د	, ,	; ,	∵	7	7 5	7	:▽	₹:	72	; 	⊽	∵:	75	7	!♥		∵:	♥:	7	7.	76	,∴	₩	₩.	7:	7 5	77	'♥
(ppm)	78	50	22	108	300	20	4.0	115	48	108	25	191	# X	92	25	19	2:	72	95	285	707	3.5	53	25	25	200	94	23	05	200	79	2	3 6	163	44	88	<u> </u>	20-	77	148
Pb (ppm)	77:	7	'♥'	7~	'♥	₽,	2	, –	•••	▽	₹.	4.	76	1 -	· <7*	2	♥;	77	-	Ç.	70	; ▽	<1	7	J.	-	'∵	₽	ζ:	∵:	♥ (*	70	;⇔	₽	∵ :	₹.		1♥	-
(mdd)	112	e 00	13	22.0		2,0	30	107	Q.	28	= 1	S. C.	77	27	45	(°)	100	2.7	35	27	- K	4.00		8		- 63	35	25	28	29	233	c u	200	929	S	27	40	25	22.	7
Ag (ppm)	0.2 0.2 0.2	200	<0°2	 	0.2	9,6	7 6	200	6 0.2	9	2.5	, , ,	, C	20,0	6 0.2	<0.2	; ç	200	6 0.2	200	; c	\$ 0°	Ç 0.2	2.5	200	200	<0.2	2 0 7	0 0 0 0	>	7.0	7 6	, c	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 9	0 0 0 0	2,6	> <	000	<0.2
Au (ppb)	\$10.6		Ψ.	\$6	ŝ	Ć,	2		25	ις.	Ω.	9,4	25		\$	\$? <u>'</u>	255	\$	S, K	350	, Ç	ç	50.0	3,6	; ;	5	\$	ς,	Ş	Ş. (7	343	\$	5	œί.	Ç.	S.C	3.65	\$
Sample No	AY0801 AY0802	AY0804	AY0805	AY0808	AY0808	AY0809	AYUSTU	AY0812	AY0813	AY0314	AY0815	AYUSID	AYARIA	AY0819	AY0820	AYUSZI	AY0822	AY0824	AY0825	AY0826	AY0828	AY0829	AY0830	AY0831	A10832	AY0834	AY0835	AY0838	AY0837	AY0838	AYORSO	L V U A Y	AY0842	AY0843	AY0844	AY0845	AYUS40	A10847	AY0849	AY0850

A8 C	baa	95	900	78	86	\$\$	86	909	₹\$	8	2	88	\$6	₹	86	?8	88	8	₹5	;₽	₽₹	9	ς;	??	20	? 🗢	88	75	9	25	\$0
Au (ppb)	\$\$	ا	\$\tau_{\text{.}}	25	& &	\$\$	64	S. C.		÷.	& &																				
Sample No	AY0851 AY0852 AY0853	AY0854	AY0856	AY0858	AY0859 AY0860	AY0861 AY0862	AY0853	AY0865	AY0867	AY0868	AY0869 AY0870	AY0871 AY0872	AY0873	AY0875	AY0876	AY0878	AY0879 AY0880	AYOSSI	AY0882 AY0883	AY0884	AY0885	AY0837	AY0888	AY0889 AY0890	AY0891	AY0893	AY0894	AYORG	AY0897	AY0898	AY0900
Mo (ppm)	₽ ₽₽	\ ⊽ ₹	######################################	77	44	₽₽	マ:	>♥.	*∵	; ;	7 7	⊽⊽	ς;	7	ζ;	7	~ ₩	▽	Ç.	.≏	∇:	; ₩	₩;	d	₹:	7	۵.	~ ∵	7	₹.	; ⊽
Hg (ppb)	844	02	229	207	22	20 20	86	348	38	50	28	10	20	202	20	32	22	30	20	12	200	12	Ξ.	20 .	20	202	10	9	20	30	10
Sb (ppm)	888 222	9.5	; ; ; ; ;	9.5	÷ ; ; ;	0.2 0.2	2.0	 	÷ 5	id.	\$ \$ 2 2	2.5 9.6 7.7		2.0			99		9.5		Ö:		٠.		70°5					9,5	<0.2
AS (ppm)	777	U	700	77	7 7	⊽≎	Ç		70	, U	77	22	₹:	77	₹:	72		Ş	75	!♡	∵ :		Ų:	70	ζ'	"▽	ς:	75	70	∵	77
(ppm)	8,7-5	20.5	108	300	56 43	58 115	48	200	160	28	25	7.9	11	92.6	885	22	 	25	22.5	8	9.0 4.c	38	83	2.99	45	163	4.0	200	83	114	148
Pb (ppa)	775	·(;;;;	"♥	₽~	7-		77	4.0	. 7	7 7	2 T	₹:	, -	Ų;	70	~	Þ	75	•	∵ ₹	7	₹	7 0	Ç;	7	₹:	75	7 0	~;	1
(mdd)	2110	ထင္	200	777	30.0	10		3=:	22.2	10	45	2.5	25	4 (3	27	52	44 R. GD R.S	38	4. c.	4.	200	186	62	9 K3	222	200	ហ	77	210	35	7
Ag (ppm)	200	9,6	, , , ,	, o	0.0 2.0	0.0 0.2	\$ 6	; ; ; ; ;	7 0 7 0 7	<u> </u>		0 0 2 2 2	0,0	0.0	2000	;e;	& & & & &	<0.2	7 °		0 0 0 0 0		\$ 5 7	> 0 0 0 0 0 0	2 0 V	\$ 0 2 0 2 0	200	, , , ,	60.2	9.5	<0.2
(add)		~~	/ / \	<i>></i> ∵	~~	&&	√ ₹	· • •	<i>></i>	· • ·	~~	~~	♡₹	<i>></i> ▽	V	∕ ∵.	က်က	``	~~	~	~ \	' \	~ `	~~	\$3,5	·~		/ \	/ / ·		\$ 5
Sample No	AY0801 AY0802 AY0803	AY0804	AY0808	AY0808	AY0809 AY0810	AY0811 AY0812	AY0813	AY0815	AY0817	AY0818	AY0819 AY0820	AY0821 AY0822	AY0823	AY0825	AY0826	AY0828	AY0829 AY0830	AY0831	AY0832 AY0833	AY0834	AY0835	AY0837	AY0838	AY0839 AY0840	AY0841	AY0843	AY0844	AYD845	AY0847	470848	AY0850

Results of Soil Analysis (Sigatoka Area) \sim Table

	ı						1							- 1								- 1								•							
Sample	KK0805 KK0806	KK0808	KK0809	KK0811	KK0812	KK0814	KK0815	KKOS 13	KK0818	KK0819	KK0820	XX0823	KK0823	KK0824	KK0825	KK0827	KK0828	KK0829	XX0830 XX0831	KK0832	KK0833	KK0834	KK0836	KK0837	KK0838	XXOXX	KK0841	KK0842	KK0843	Pronuc.	KK0846	KK0847	KK0848	KKU848	KK0851	KK0852	XX0853
																																					_
Mo (ppm)	00 :	7 ♥				7							77			-	♥:			-	♥:	▽ ₹	# T	'₹		75		2	∵:	*	70	~	Φ:	J:	70	\\$\;	#
Hg (ppb)	80	98	200	86	65	20	20	35	22	30	20	07	30	30	98	28	02	20	25	202	25	30	30	20	9	36	2	22	23	3.5	9	20	202	350	38	9.5	25
Sb (ppm)	0.2 0.2 0.2	9.6	0.0 2.0	0.5	9.5	2 .0		? <	6.2	<0.2		?;ç			200		60.2						200		2.0	_ `				7 0	0.0	<0.2	99	7.5	<0.2	0.5	2.5 9.5
AS (ppm)	∵ 1;	20	∵ ⊽	; ; ;	\$₹	; ♥	\$₹	72	; ₩	-4	∵	- :	; ;		75	₹	φ:	ζ.	7		ς:	▽.	3 \(\tau_{\text{.}}	₽₽	♥;	₹	₹	₽	♥:	3	; ;	♡	∵	7 5	7	♥:	7 5
Zn (ppm)	98 40	92	86	22	140	72	, u	2 42	88	8	8	200	25	ဆိ	0.0	138	8	117	200	, ee	£5.	42	205	7.	φ.	132	46	410	88	63	29	505	88		69	7	200
Pb (ppm)	7.7	70	⊽₹	; ,	75	70	ζ,	;-	'▽	12	▽:	75	7	⊽	7	V	♥:	₹.	72	:	ς:	~ \	7,7		∵:	75	₹	⊽	₩.	7	782	⊽	ς:	7	70	♥:	75
(ppm)	24	5 5	13	r LO	222	110	-6- n	7.0	35	61	900	75	 : ::	38	9 7	5.5	40	105	2.0	2	55	220	225	25	~ ·	2 6	8	49	27	5 10	202	50	7:	75	2.2	ານໍາ	45
Ag (ppm)	\$0.5 \$0.2 \$0.2	2.0	9.5	2.2	9.5	, ç,	× 0.5	, ; ; ;	6.5	C 0.2	200	3.5			9.5		60.2	200	; ; ; ;	8	2.	2.5	25	<0.2	9;	36	0.2	40. 2	000	7.¢	200	\$	9:5	96	9	9.5	\$ \$ 7.
(ppp)	\$\$\$	9 tS	e c		٠ دې در	\$\$	\$	95	\$ 45	ŝ	iù i	S.f.	56	\$	ų.	\$ 10	ν.	~ `	~~	. ~	ν.		/ \		~`	~~		~	~ `		. :		~ `	•	, v	•	
Sample No	AY0901 AY0902	AY0904	A Y 0 9 0 5	AY0907	AY0908 AY0909	AY0910	AY0911	A Y 0 9 1 2	AY0914	AY0915	AY0916	AY091/	AY0319	AY0320	AY0921	AY0923	AY0924	AY0925	A10926 AV6097	AY0928	AY0929	AYDB30	AY0932	AY0933	AY0934	A10930	AY0937	AY0938	AY0939	A 10 340	AY0942	AY0943	AY0944	AYUSAS	KK0801	KK0802	KKUSU3 XKUSU3

Au (ppp)	1	~~	· • ·		· • ·	~~	Δ. Ω	~	~~	Ψ,			\$5 K	5.6	?≎⊀	S.S.	دی د		\$	≎.	Ŕέ		%	\$	Ç, έ	75		3,4		Ĉ.	, (0)	
Sample	KK0805 KK0806	KK0807	KK0809	KK0810 KK0811	KK0812	KK0814	KK0815 KK0815	KK0317	KK0818 KK0819	KK0820	KK0822	KK0823 KK0824	KK0825	KK0827	KK0828	KK0830	KK0831	KK0833	KK0834	KK0835	KK0837	KK0839	KK0840	KK0842	KK0843	KKIB45	KK0846	XX0847	= == :	KK0850	KK0852	KK0853
		_				_																										
(mod)	22	22	\□:	7	;⇔;	77	∵"	'♥:	77	i)	70	.	7	₹	♥ ₹	70	∵ ∶	ブマ	Σ;	₹₽	⊽ ∶	70	⊽₹	72	'♥;	*	::::: ::::::::::::::::::::::::::::::::	70) 	♥:	; ∵ :	⊽⊽
(qdd)	0.8	88	20	36	65	28	0.0 100 100 100 100 100 100 100 100 100	202	300	20	201	88	88	28	20	22	22	32	30	36	20	99	55	32	88	40	99	n 2	100	23.3	:04	28
Sb (ppm)		\$ 0.2 \$ 2.2	0.5	2.00	9.5	Ç0.7 (0.7	9.9 9.7	0.5	2.0	ç0.5	0.7 0.7 0.7	6.6		9,5	 95		 9:9	90	Q 5	20°2	20.5	0.5	2°		2.0	7 0	0.5	3.6	0.2	2.5	0.00	<0.2 <0.2
AS (ppm)	N.		.⇔.	7	; □	3 \$7	⊽⊽	ζ:	~	ψ;	 ;;	V	22	=	V	,	∵-	→	▽:	₹	Ϋ́	7 ♥	₹:	70	♥(3 \(\tag{7}	:♥:	77	;¢	\$ \$; ∵ :	\$\$
(mdd)	ידשי מלו.	100	8	5 5	26	72	65	92	200	8	54	န္ က ဆိ	200	138	88	•∞	63	. KS	42	28	4.4	73	112	410	88	73	25	Š	200	145	3 6	88
(mdd)	22	5 5	. □	₹.	;∇;	77	∵ ∵	, - 1	72	₹.	7	₹₹	7	7	₹.	7	⊽₹	- -	₹.	77	ζt	70	ζ;	70	₩.	7	;٠٧	75	77	σt	70:	⊽⊽
(add)	200	36	13	d ru	120	110	51	23	S 2	38	3.60	88	25	5.5	140	22	56	38	26	222	225	20.	80 0	40	24	200	225	2.2	: = :		أسأ	47
Ag (ppm)		6.6	9.5	3.5	\$0.5	 	0.2 0.2 0.2	0.5	~ ~ • •	0.2	2.0	8.8	9.5	0.2	\$.5	0.00	9 9 7	; ; ; ;	9.5		9.5	99	99	0.0	000	7.0	0.5	>. 3 €	9	9.5	; e	6.6
(app)	1	~~		~~		~~	~~	· • ·	VV	· · ·	~~	\$ \$	~`	· ~	~ \	,	V\	/ / ·	ŸÌ	~~	~ `	/ \	V \		· ·	~		~ ~		~	, , ,	`
Sample	AY090T AY090Z	AY0903	AY0905	AY0905	AY0908	AY0910 AY0910	AY0911 AY0912	AY0913	AY0914	AY0916	AY0917	AY0919 AY0920	AYOSZI	AY0923	AY0924	AY0926	AY0927	AY0929	AY0930	AY0932	AY0933	AY0935	AY0936	AY0938	AY0939	A 10 8 0 1	AY0942	AY0043	AY0945	AY0946	KK0802	KK0803 KK0804

Table 2 Results of Soil Analysis (Sigatoka Area)

- B	2.5	~.~	.~	~ •	N C		25	~	70	101	~	N د	٧.	• ~	~	7.0	1 C	~	~ ~	4 ~	~	7	~~	~	~:	40	10	~	~ .	~1.	7	~	~ .	30	. ~	~ .	200
80	8.8	95	\$	99	7	" 00	70		35	?0	8	99	?5	20	8	₹	?\$	8	♥5 	?5	; ; ; ;	7	96	9	\$	₹5 _	?	9	99	∂\$	38	8	₽;	75	9	~	7 🗸
As (ppm)	22	<u> </u>	7	ς:	75	; ; ; ;	**	;⇔;	J T	77	! ♡	ن	プマ	70	7	♥:	/ ▽	♥	♥₹	70		7	7	; -	∵:	J-	¹♥	\	♥:	7 1	- -	'∵	ς;	75	, H	∵:	77
(ppm)	50 50	20 CO		က (200	77	89	23 EC	395	138	ထင်	? -	95	693	120	105	107		0.00	210	S	253	30	67	001	95	2	38	80	77	63	2,2	7.7	(C)	rs e	293
(mdd)	77	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	∵:	7 -	·~·	2	ان :	72	77	~1	c2+	•	* 64	2	~1	467	∵₩	~-	-1		T	₹^	' ⊽	ζ:	70	7	∵	∵;	7	70	\\	ζ;	75	:4:	▽ ⟨	70
(ppm)	58 58	2. c	28	7	≓ °	55.		4.0	20 tr	> r	32	4°C	3.5	, 4 , 8	52	25	787	29	62 to	3 67	, s	7	38	21	5	£ 6	7.7	57	13	/ 2	4.6	17	 	7.	8	200	77
Ag (ppm)	6.6 2.6 2.2	\$ \$ \$	(0.2	200	, ; ; ; ;	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2.0	9	; ; ; ; ;	90	40.2	& . & .) c	200	<0.2	÷.	9	<0.2	9.5	200	999	7	000	0.2	2; 2;	, ; ; ;	, 0 2 2 2	<0.2	0.5	?: ?:	\$ 0.2 \$0.2	0. 2	7.0 0 0 0 0	7 C	0.2); ?:	(0.2 (0.2
Au (ppb)		ŵ.α	\$ 62	<u>نې ر</u>	Ç.	366	25	Ĉ.		250	\$	٠,	95	36	<5	Ç.	36	\$°	ŵ.κ	25	i (c)	\$	S S	8	÷.	?\ -	, (,	\$	10,	Ş.	- - - - -	\$	<u>ئ</u>	75		ζ\ -	S &
Sample	KK0905 KK0906	KK0907	KK0909	KK0910	KKOST	KK0913	KX0913	KK0918	KKU91	KK0919	KK0920	KK0921	770077	KK0924	KK0925	KK0925	KK0928	KK0929	KK0930	KK0932	KK0933	KKUS 34	KK0935	KK0937	KK0938	KKUY39	0K080Z	0K0803	0K0804	COKUSU.	080806	080808	OK0809	OKO811	0K0812	080813	OK0815

(ppm)	22	⊽⊽	:▽	ς;	77	∀ ₹	7.7	¦♥°	7.	77	'₹	ζ;	J.	77	▽:	₹	7	⊽	⊽5	;		7	⊽⊽	₽	ζ:	∵ -	; □	2	;	7	∵	▽	♥;		; ♥:	∵ ∶	
H8 (ppb)	22	25	28	25	200	845	130	88	38	202	50	25	3 6	32	40	S 6	02	20	20	10	222	G	28	10	20	- T	10	22	28	Λ. 7	200	20	010	26	50.		30
Sp (ppm)	\$0.2 \$0.2	8 8	60.2	99	2.5	999	2.02	9,5	9.5	0.5	ç 0.5	200	; ; ;	200	<0. Z	2.0	200	0. 2	9.5	\$ \$	0.00	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	2 C	6 0.2	0; 0;	\$ \$ 7 6	\$ 9	<0.2	2.0	7.°		<0.2	9,6	, c	<0.2 0.2 0.2	۰ د ز	7.0° (0.2
As (ppm)	-1 :	==	₽	♥;	72	701	7	;∪;	72			♥;	 	7	7	75	70	♡	∵,	'∵		7	7	₹	ζ:	75	; \	₽	∵:	7	 ;;	₽	⊽∶	75	₹	٠	77
(mdd)	230	88	30	52.	2 5	285	21.7	70	2 5	7.5	23	22.5	2.5	130	108		165	46	35) (-	246	41	5 2 2 2	25	151		2 4	မ	48	250	3 C	33	4, t	A00	200		20.24
pb (pp∎)	77	7 7	Ų.	∵ ∶	7°	' ♥₹	75		7 -	'♥	101	∵°	"	77	7	7 5	7	♡	9	" ▽	120	7	75	! ♥	7	, ~	¹♡	2	₩;	77	70	!₹	Ç.	250	34.	~;	77
(ppm)	45	က က နှ	3	4	dr cr	, es 4	220	28	7.7	24	en :	₩.	3 5	30	4"		100	54	62	2 1.0	229		25.00	800	44	79	30	110	7	120	20	71	5.5	1. 5.7.	41.	, c.)	1
Ag (ppm)	<0.2 0.2	0, C	20,5	Ö;	2.5	900	7 C	0.0	7. 5. 5. 5.	20.5	6 .2	~ • • •	7.5	(0.2 (0.2	<0° Z	7.°	0.0	0 2	⇔ €	, c	0	7	2.0 0.0	60.2	2.00		200	0.2	200	7×	9.5	60.2	200	25	0.2	S 5	7 7 (0.7 (0.7
₩0																																					.
Sample No	KK0855 KK0856	KK0857 KK0858	KK0859	KK0850	KKOSS	KK0863	KK0865	KK0866	KKOSER	KK0869	KK0870	KK0871	KK0872	KK0874	KK0875	KKU878	KK0878	KK0879	KKD880	KK0882	KK0883	F22021	KKO885	KK0887	KK0888	KKUSKS	KK0891	KK0892	KK0893	380084 30000	KKU895 KKU896	KK0897	KK0898	KKUGOS	KK0901	KK0902	KK0904
							<u>.</u>								`															<u> </u>							

Table 2 Results of Soil Analysis (Sigatoka Area)

දීල						ì																														
(qdd)	22.5	988	388	200	325	20.	228	2 %	8	140	35	32	30	30	40	200	202	8:	36	25	30	200	202	20	25	26	202	20	20	200	3 2	20	40	00 %	36	20
Sb (ppm)	\$ \$ \$ 2.2.0						9.5	000	6.2	2.c		99	2 D>	200	0,2	? ? ? ?	2.0 0.2	\$0.2 \$0.2			<0.2	÷.	6.2	9:5	7: 9:5	200		\$ 0°.2	7 0 7 0 7	; ; ;	; ¢	6.2	<0.2	9.5	9.5	<0.2
As (ppm)	1			=		;;;; 	∵	⇒ 	₩,	4.			▽	7	₩.	♥ .	7	▽ :	₹ 		♡.		. 173	♥!	:	J:		. 	7	₹ ₹			~	 		\$ \\
(appe)	200	265	25.5	222	282	388	162	105	56	200	300	262	23	282	186	248	2.62	92	200	32	26	355	88	32	525		102	21	, 48 8 7 8 7 8		7.5	103	88	75	38	81
Po (appa)		,	ੇ 😅			, C.	т с	70	~		46	 ,≏	~	-14	~ ?	~~	3 63	<u> </u>	• t	-	▽.	♥ \ 	32	-	▽ :	; -	· ~	~~	▽'	`			7	▽: 	70	1
(bba)		4.0			. 51	3.5.5	12	36	88	E "	"	212	31	300	7		3 4	9.5	162		21	140	S	5.5		90	77	, co	29		2	31.	9	8 š	7.1	37
Ag (ppm)	 	\$0.0	90.5	2.5 9.5	98	200	2°	9	000	= ć	- -	2.5	2 O	2° 9°	0 2	25	200	S:2	9.5	000	Z 0>		2.5	9.5	? ? ? ?	99	200	6.2	2.00	> <	5	0	<0.2	.; ;;	7.0 0.0 0.0	<0.2
(609)	Į.	966	\$ (\$)	25	٠ د د د د	3 ¢,	ω.ĸ	25	Ċ,	ψ,	36	. A.	\$	ά. Ω	Ŝ.	5,	\$	Ŝ,	℃ ,	ŝ	\$2	ις. Υ		\$	<u>ن</u> ۲		3.0	5		25	35	ŝ	\$	~~	? S	\$
Sample No	0K0865 0K0867	0K0869	OK0871	OK0872	0K0874	000876	OK0877	OK0879	0K0880	0K0881	OKORRS	0K0884	0K0885	0K0887	0K0889	OK0890	0K0892	0K0893	OKUSSA	SM0801	SM0802	SMORD	SM0805	SM0806	080WS	SVADSO	SMORT	SW0811	SM0812	SMOST	CWORL	SM0816	SM0817	SHUBIS	SM0820	SM0821
				_									_																							
(mad) (edd) (edd)	200	; Ç:	77:	7	; , , ,	701	ار	7 -		۲ 		; \(\tau_{\text{-}}	⊽	77								₹ 			∵ ∶	J =	; -	. ₩	Σ.	J:	75 		▽	.	⊅⊽ 	2
(9dd)	888	200	288	300	88	389	5.40	2	20	25	38	25	9	28	20	92	28	25	22	38	20		22	88	25	25	32	8	30	25	32	202	8	86	202	20
Sparie Sparie	9.6.6	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	; ; ; ; ;	200	9.5	9.5	9.6	2.2	200	?; ?;		66.2	7 0 7	90	0.5		9	60.2	7.5	0.2	<0.2 0.2	200	0.2	2.0°	99	26	7 C	<0.2	0.2	÷.	7 0	9.5	<0.2	9.5	;°;	<0.2
AS (ppm)	222	## 	70:	₹ ₹	700	; ; ; ;	~ \	77	∵;	#	70	; ~	~	7 7	♥:	75	; ~	~:	٦ 	70	~	۵t 	7	₽:	ر: د	7 5	; .	!₩	7	∵: —	75			▽:	70	∵
(ppdd)	5000	4 AT 6	26.	787	110	2.65	135	42	09	27.5	2.2	13	18	3.5	29	35	37	7.	- V	28	ŝ		200	265	430	67.	16.5	110	15	208	200		33		200	2.6
4. Edg	5 55	## 	70:	75	`♥₹	;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V V		دی:	⊽ ₹	70	; ♥ 	▽:	77	∵:	######################################	; -	ζ,	~ ~	70	▽.			♥:	۲: -	J.		:₹ -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	75	_	♡	⊽:	70	⊽
er Constant	∞∞5		7 7 1	2 5	- ∞ α	200		26	36	. <u> </u>	12	25	15	16	=:	25	121	::		120	191	200	26.	21	7.5	202	25	80	27	7.	25		<u> </u>	-	75	~
(ppm)	aaa	÷ ;	999	25	9.5	 O:	?; ;;	900	0,0	?; ;;;	9.0	0.2	40.2	? ? ? ?	0.5	3.5	0.5	9.5	9,5	9.5	<0.2	- - - - - - - - - - - - - - - - - - -	9	2.0°	2.5) () (, C	2.5	7 00 1	7.° ⊖.°	? `	65.2	<u><0.2</u>	 	7.0°	40. 2
(ppb)	ಏಎಎ					•				•																										
	0K0816 0K0817 0K0817	000	5C	V (7)	4710	37251	- 2	3 C7	0	- 6	বল	· •	زدي	o r	000	<i>3</i> 5 C	5==	स्पर	- T =	מי	ĺΖ,	~ ×	565	0		45	2.3	Tri i	9	- 0	ु त	50		77	7	22

Results of Soil Analysis (Sigatoka Area) **~**3 Table

[]	1			. :													1												
Pb (ppm)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		17	70	,~-	22	2	Δ.	,△,	~ £;	7	, 00	77 47	₩;	70	₹~;	*	₹5	; †	~ ;	Δ.	4. △	⊽	77	₩.	70	ζ:	70:	75
Ë																•													
(mdd)	26 51	12.	- (3)	2 g	34.8	300	32	n S) t 1	- 6	6	38	52	നം	78	38.5	282	24	1	S 82	e :	19	20	27		13.5	55	077	127
	200						2101	~								~~~			101				_	010			0.0		2101
Ag padd	\$\$\$	\$5		===	200	88		0,0		\$\$¢	je	0	99	000	;≎	\$86		00	9	20	\$	= =	Ą	: =	\$	98	9.	; ;;	≘.e
Au (ppb)	ឧស	ŵ.ƙ	. to	ۍ د ې	\$ 60 cc	S:S	£ &	Ω, f.	36	សិ សិ <i>តែ</i>	?\	S. f. i	\$ \tau	\$\$ £	, (Ç	& & £	25	Ωú	26	& &	(C)	\$	₩.	& £	÷.	20	\$ 5	3. 2.	చి సి
<u></u>	26.4	7 7		× 20	88	228	80 80 40 80	200	8	200		100	200	60.0	- -	500	- 1 2	80	20	96	8	55	Ξ	~~	4	20		200	320 821
Samp le No	SM0872 SM0873 SM0874	SMO	SMO	OWS CENT	SKO	SWOS	SWOS	SMO	SEC.	OWS SWO		OWS		SMOS	SWG	SHOWS		SWO	SS	ONS.	묾		8	25	25	OW.	000	SM091	SKO
L	L	_				<u> </u>					•						<u>.</u>			_									
						٠.																							
e (mdd)	77 7	'₹5	7 0	44	######################################	77	⊽ ♥	'♥₹	7 7 3	∀ ∀ :	72	; ⇔	₽Ġ	₽₹	70	₹;	7	Ċ.	70	⊽⊽	; ♥:	⊽⊽	; ▽	ζt	.	o o	;⇔:	₹ ₩	77
(add)	62% 62%	9.5	88	202	354	20	202	888	38	829	20	388	502	205	300	222	20.1	200	507	22	46	88	20	200	223	328	\$	566	70 70 70 70
	<u> </u>					:			<u>.</u>								<u>i</u>												
Spin)	⇒ 000 000	99	9	9.5	0.0	6.6 2.2	6.6 24	0.0	90	999	7.5 5.5	; ; ; ;	÷.	9.5	⇒ ⊖ •	\$ \$ \$ 2 2 4 4	2.5 ⊖ ⊖	2.5		000	9	000	0	9.5	0	25	0.0	3 3 4 4 7	0.2 0.2 2.2
AS (ppm)	277	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	7	75	; \begin{align*} \begin{align*} \be	22		. ♥ ₹	<u> </u>	۵.		70	77	♥;	70	77 :	, (2)	⊽:	77	75	;⊅:	75	U	VV	; ♥ :	7	'♥	7 7 :	0 0
<u> </u>	ļ	-						·	·						-		<u>.</u>			_									
(ndd)	290 80 145	182	22	115		85	35	46	. .	184	28	200	388	138	33.2	160	9.0	223	28	110	86	52	28	27	6	28	82	32;	133
	∞∞-										j	44 -					÷							7.					
Pb (ppm)		V,		συ		VV	VV		/\\			<i>,</i>	VV	V	<i>)</i> 🗸	VV		~ (/ V	VV	· • ·	V:V	~		· ~ ·	~~	· ~ `	/V`	~~
(BQQ)		53.5	20	200	, 2 2	135	328	22		20	P 9	* *** ·		77	10	10 10	28	L- 4	7	n n n	35.	1.4	æ	21	23	2. TO TO	30	10.	14
Ag (ppm)	2010	C) C	01	7 (10101	22	2,2	~~	1010	700	4.	, 0, 0	પુલ્ય	~ .	7~	400	ואני	~;	101	~~	0	20	~	~~	~	~~	~!	467	22
8,5	888	95	0	₹ ₹	66	86	66	\$ 5		999	32	999	\$ \$	9,6	₹	\$\$¢	9	99	99	66	9	₹\$	0	95	9	24	₽\$	36:	≎ ≎
Au (ppb)	ឧឧ	Çξ	<u>수</u>	\$ £	សូល	လူလ	Α. A.	ŔŔ	; ;	3.A.	? \$	i C	\$ \%	\$	36		\$	Ŕά	300	\$	ſς		\$	ς.	ψ,	.	i S	3Q!	\$\$
Sample No	SM0822 SM0823 SM0824	SW0825	SM0827	SMC826	SM0830 SM0831	SM0832 SM0833	SMC834 SMC835	SM0836	SH0838	SM0839	SM0841	SW0843	SM0844 SM0845	SM0846	SM0848	SM0849 SM0850	SM0852	SW0853	SM0855	SM0856 SM0857	SM0858	SMC859	SM0861	SM0862	SM0864	SW0865	SM0857	SM0869	SM0870 SM0871
L	1					,											•						,						

⊒ d g	>	~	~	~	~	~	~	~	`~	′~	~	~	~	~	~	~	~	`~	` `	/ \		^ \	<u></u>	/ \	/ \	/ \	/ \	^ \	/∖	· \	^	~	· •	Υ.	~	~	~	ν.	~ `	~	ν,	~`	~ `	~ `	✓ \	∕ °	4 ~	/ \	~
Sample No	SM0872	SEC. 20	SM0874	SM0875	SM0876	SM0877	SM0878	CM087	SK088	SK0.881	SW0.882	SM0883	SM0884	SM0885	SM0886	SM0.887	SM0.888	CM0889	CMORGO	CMUSQ1	100000	CONDED	200000	# 000 CN	000000	000000	CACOUND	0000000	CECONO	SWOOD I	ZUBUMS.	SW0903	SM0904	SW0905	2M080B	200 0KS	SMD 30 8	8080WS	SM0910	T T T DWS	SM0912	STROKS	OF COLE	0.000	DIPONE	CKOOLO	CKORTO	CKOGO	SM0921
																																																	<u>_</u>
(mdd)	; ;	7	⊽	∵	⊽	V	V	! ▽	:	Ç	Ş	₩	~	₩	⊽	⊽	₹					ノ、					プミ	; ;	;;	75	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ö	₽	₹	⊽	♥	⊽	∵.	ς:	₹	∵ :	∵:	; ;	プţ	さい	ブミ	スマ	7 5	70
(dqq)	40	25	8	40	30	30	20	2	35	40	205	20	20	20	20	20	200	200	36	40	re	36	200	76	3.5	35	200	200	9 6	35	20.1	2	20	70	2	33	40	9	e:	50	95	200	72	7,6	25	3.5	3.6	200	20
(mqq)	0.2																																								÷;								
AS (ppm)	őř	7	₹	₩	⊽	♡	∇		; ~	: =		⊽	⊽	₹	⊽	⊽	:	-	· `	; -		- - - - -	7.	<u>ر</u>						75		` \	:	⊽	⊽	♥:	7	∵:	∵:	Ç	∵ :	∵:	∵ ∶	7 :	7 \	フマ	70	75	7
(mqq)	067	3	145	82	112	72	115	22	***	* £50 00	44	82	90	70	46		7	184	78	7 5	20	0 6	2 6	36	200	130	2.0	ું •	180	300	40.	22	57	26	110	φ. :	89	23	29	တို	21	20	25	× 5	30	300	35	2 %	13
Pb (ppm)	8	×	-	⊽.	⊽	~	∇	5	; 	; -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₽	~	⊽	▽	∇		-	';	:=	******	さて	; ;	75	さく	プミ	; ;	ブマ	75	70	, 	; -	:∵	♡	₹	♥:	∵.	▽:	∵:	7	∵ :	ت :	;	ゴミ	75	プロ	75	75	'▽
(BQQ)	83	2	cn	29	9	20	9			77	32	135	32	88	57	9	8	7	C	3 70	10	# ₹ -	7 6	7.	4.0	- 1	n <u>c</u>	2 4	2 =	-	28	-	و.	14	23	10°	32	7	15	ю.	73	e	2.5	2, 4 U n	200	2	r ur	2 4	7
Ag (ppm)	<0. 2		٠.	٠.				. ,		200		<0.2	<0.2	<0.2	<0.2	<0.2	0.2	\ \ \	ر د د د د	2.5		300	300	700	300		7.0		: -		٠		<0,2	<0.2					0		20.5								<0.2
(ppb)		9	\$	\$	Ç	⇔	\$	\$	5	; (\$	\$	ς,	\$	\$	\$	5	5	, T.			? (? !	?(2 4	2 4	? (? (? (. S>	\$	~	Y	V	.	ν.	· ·	Υ.	~	ζ;	~ `		∕ \		<u> </u>	· ·	/ \	<5.
Sample No	SH0822	SM1823	SM0824	SM0825	SM0826	SM0827	SMB828	SM0.829	CMUSSO	SW0831	SN0832	SW0833	SMC834	SM0835	SM0836	SM0837	SM0838	SM0839	CWORLD	CADS 41	0.00	2400EC	200000	# TOO NO	20000	070070	0700EC	010010	P C C S C S C S C S C S C S C S C S C S	SMI 851	SMN857	SM0853	SM0854	SM0855	SM0856	SM0857	SM0858	SW0859	SW0860	SMU861	SM0862	SMUSES	200000	200000	0000000	0000000 000000	ON CONTROL	CMON TO	SM0871

Table 2 Results of Soil Analysis (Sigatoka Area)

	L																							_			
РЬ (рря)	~~~	22	200	 ¤¤¤	Z \$7	77	⊽	77	~!>	₽ ₽	27-7	22	; \;	7,00	2:	7 7	ζ:	; ~	∵∵	,	7	σ:) T	; Ç:		♥:	∵
(ppm)	∞ v. ₹	8 <u>1</u>	7 70	445	223	120	30	S	553	≅.∞	23	34	5.5	225	35.	288	98	27	⇔ ⊆	176	42	II	3.5	23	22	24	53
Ag (ppm)	988	0.0	6.6	999	22	66.2 60.2	99	9 9 9	\$ \$0.2 \$ 0.2	8.2 8.2	9 9 9	98	9.5		9	2 C 2 C 2 C 2 C	9.5	300	~ © ©	95	<0.2 0.2	200	2.5	9	28	¢0.2	60.2
(ppp)	666	<u> </u>	ড় ড	668	\$3	S.	î,	200	\$8	SS	<u> </u>	សស	<u>ښ</u>	300	S.	SS	<u>ۍ</u>	35	5.6	ن ئ	\$	<u>ہ</u> د	25	<u>ښ:</u>	00	Ω.	SS
Sample	ST0851 ST0852 ST0853	ST0854 ST0855	ST0856 ST0857	ST0858 ST0859 ST0860	ST0867 ST0862	ST0864	ST0865 ST0866	ST0867 ST0868	ST0859 ST0870	ST0871 ST0872	ST0873 ST0874	ST0875	ST0877	ST0879	STOBBI	ST0882 ST0883	ST0884	570886	ST0887	ST0889	ST0891	ST0892	20000	ST0895	S10895 ST0897	ST0898	ST0900
	·			·				-		·					•												
Mo (ppm)	222	⊽⊽	77	777	5 5.	7	7 7	=	7	22	77	77	;⇔:	700		7 7	₹:	70	.	₩.	;\ <u>\</u>	₹:	70	:0:	2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹
Hg (ppp)	248	20	201	254	20	20	82	300	20.0	20	35	08.6	98	286	30	40.5	40	22	9 6	225	30	40	25	20	202	20	22.53
Sb (ppm)	0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	¢0.2	999	÷6,6,	<0.2 <0.2 <0.2	0.5	9.8	0.6 2.2	\$.0 \$.2 \$.2	0.2 0.2 0.2	0 0 0 0	000	999	9.00	200	7.7 ;;;;	200	9.5	0.2	9.5	<0.2	0.5	2.5	0.2	> e	60.2	<0.2 2.0 2.0
AS (ppm)	222	⊽⊽	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		77	77	♥ ₹	∵ ∀	22	⊽⊽	22	20	, ~ <u>~</u>	700	2:		₹.	;⊽:	~ ~		-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	70	; ¢:	77	∵;	7
(mdd)	202	282	120	2 4 Z	61	× 50	488	38	20	89	102		22	192	200	23. AL 20. ED	200	200	1.55	7.5	26	85.	286	200	≥ \.	27	25 CJ
(mdd)	77=	~ Ç	5 5:	Ç~∵	22:	70	 		 	₹	<u> </u>	~7		70-	<u>.</u>	70	♥₹	77		. □	V		7^	101	· (**	ζ;	7
(mad)	57. 8.4.	22	. <u> </u>	- 23.z	42	282	48	® 93	100 40	37	27	7 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	7.5	122	4	 	25.	25.	25		18	- 82	57	82	77.	8	တ ဆ
Ag (ppm)	9.6	99	999	999	868	99		99	9.6	88	2.2	99	9.5	999	2 9	 	9,5	9	~;~	99	2.0	9.5	3.6	9	2 0	0.5	9.6
Au (ppb)	ឧទ្	6.6	សិសិរ	င်္လေ	\$\$	\$ \tag{2}	လ် လ	î, î,	î,	\$ \$.	ς, _ε ς,	25.25	Ωú	\$ \$ \$	\$	ទទ	% ۲	\$6	& &	: : : :	\$\$ \$2	5	36		១ប	ۍ <u>د</u>	S &
Sample No	70801 70802 70803	T0804 T0805	10805	1080 1080 1081 1081	10811 10812	1081	70815 70816	T0817 T0818	T0819 T0820	70821 70822	10823 10824	T0825	10827	T0829	10831	10833	T0834	10838	10837	ST0839	T0841	T0842	10040	10845	10845 10847	10848	ST0849 ST0850

<u>a-accededpacacedprecesesespacedpacacedpacace</u>

Results of Soil Analysis (Sigatoka Area) **⊘**1 Table

Į.	+						:								:								:														
88		200	S. C.	<u>ه</u>	207	3 6																															
<0.2 <0.2	9.6	25	0.2	9.5	;;;	9																															
																	_																				
ST0951 ST0952	ST0953	20010 070050	ST0956	ST0957	AT1055	ST0960																								•			_				
																							-						_								
7 4	.دے د	70	;⇔:	♥:	プロ	7	₽	Ç.	J:	7 ▽	₽₩	ζ:	ζ;	J 5	Į,	♥:	∵ ۃ	ブモ	70	⊽	♥:	70	7	ت :	75	; ,	₹	دى ز	ا ۃ	70	⊽	∵ ∶	70	'▽	∵:	75	
88	200	30	9	9.5	35	20	20	202	200	202	20	20	38	3 5	10	20	2	2 5	38	8	88	38	20.	35	2 4	20	20	0.5	16	207	30	90	20	20	20	300	889
\$0.2 \$0.2		5	<0.2					0.0	2.5		<0.2	99	7.5	700	<0.2	2.0	7.5	200	\$ 0.5 \$ 0.2	<0.2	200	\ 0 2 2 3 3	<0.2	2.5	7	9.5	<0.2	7.0	7.6	70°5	<0.2 50.2	7.0	000	<0.2	?; ?;	2 C	9.5
72	·	;-	(7)	7	7	7	7	₹:	75	77	₽	Ų:	7:	32	Ţ	♥;	J:	70	₹	\$:	♥;	;	7	72	77	₽₩	₹.	ς"	7	,60	∵	; -	Ţ	4	ζ-	-	'∵'
57	225	25	8	4.7	132	325	7.7	225	130	8	83	800	200	107	245	× 6	2) Q	35	96	77	115	- 63	77	150	52	36	217	265	73	50	69	75	80	46	200	200	o tr
ł							:								:								;								1					0 -4	∵∵;
832	S. C		32	~ 6	~ U.	325	61	22	2.5	34	ů.	54	5.5	507	29	===	32		30	9:	17	- L7	39	27	Ç.	22	30		95	16	24	97	22	32	202	200	27.
6.2 6.2 2.2	\$5.5	\ \ \ \ \ \	60.2	2.5	; ; ; ;	9.5	2.0	2.5	7.5	\$ \$ \$ \$ \$ \$ \$	60. 2	Ö. 6	> <	200	2.0 0.7	?;	2.5		8	\$.5 5.5	9:5	9.5	Z 0.	9.5	2.0	0.5	\$0°.2	9,6	7°	2.0	\$ 6.2	3.5 5.5	2.5	0.2	9,6	200	0,0
ST0901 ST0902	ST0903	STORUS	ST0908	210907	0000LS	ST0910	ST0911	ST0912	010010 010010	ST0915	ST0918	ST0917	010010	ST0920	\$10921	226013	010323	STUGS	870928	ST0927	ST0928	ST0930	ST0931	S10832	ST0834	ST0935	ST0936	ST0937	000000000000000000000000000000000000000	ST0940	ST0941	24010	ST0944	ST0945	ST0946	ST0948	ST0949
	<5 <0.2 35 2 14 <1 <0.2 30 <1 ST0951 <5 <0.2 <6 <0.2 30 4 ST095 <5 <0.2	<5	\$\left(\text{0.2}\) \text{35} 2 14 \$\left(\text{1.2}\) \text{30} \$\left(\text{1.2}\) \text{30} \$\left(\text{1.2}\) \text{30} \$\left(\text{3.2}\)	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\text{Constraints}\$Constr	Column C	Column	Column C	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	\$\text{c}{\text{c}}\$\text{c}{\te	Colored Colo	24

₹Ÿ								ļ	(
82	ST0951 ST0952 ST0953 ST0954 ST0955	00000							
							·		
Mo (ppm)	C4600;	7000	00 0000	000 0	7777	77777	######################################		0000000
Hg (ppb)	30 20 80 80	2888	222222	2882	70000 70000	388888	2004200	20 30 40 20 20 20 20 20 20 20 20 20 20 20 20 20	20 20 20 30 40 40
Sb (ppm)	00000						50500000 50000000000000000000000000000		
As (ppm)	22-5-6	2000	,	0000	7777	7	 	75.024	<u>.</u>
(mād)	14 52 123 99	3.4.0	126 130 88 83	88 112 107	∀ 1.~ € 00 0	957 115 97 837	77 150 117 52 36 217 265	188.054.4 184.051.8	94 N & N 4 & D & O N O N O
Pb (ppm)	25.23.52	300°0		~∆ <u>^</u>	777°°	2256	7-272843		~~~~~
(ppm)	22 23 23 23 23 23 23 23 23 23 23 23 23 2	, 600 10 10 10 10 10 10 10 10 10 10 10 10 1	24 44 44 44 44 44 44 44 44 44 44 44 44 4	2245 2045	23 30 54	2000 2000 2000 2000 2000 2000 2000 200	8 2 4 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	22 2 2 8 8 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5	32228 31228 31138
Ω.j	99999999999999999999999999999999999999	:	999999				\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$		
Au (ppb)		/	~~~~		~~~	J~~~~	\$\$\$\$\$\$\$\$\$	/	**********
을	96010 06010 06010	00000	200001	7097 7097 7097	2002	00000000000000000000000000000000000000	ST0931 ST0932 ST0932 ST0934 ST0935 ST0936	10094 10094 10094	1094

3. Geologic Log of MJF-1 \sim MJF-2

Geologic Log of MJF-1 \sim MJF-2

Abbreviations

Rocks

Bs. : Basalt

bre. : brecciated

Tf-br: Tuff breccia

Mineralization

diss. : dissemination

Minerals

Alu. : Alunite

Aug. : Augite Cal. : Calcite

Chl. : Chlorite

Kao. : Kaolinite

Pheno: Phenocryst

Py. : Pyrite

D D 1 1111

Pyp.: Pyrophyllite

Qz. : Quartz

Ser. : Sericite

Sme. : Smectite

Zeo. : Zeolite

Alteration

Arg. : Argillization

Alt. : Altered

Prop. : Propylitization

Sili. : Silicification

W. : weak

N. : Noderate

Str. : Strong

Colour

dk. : dark

grn, : green

whi. : white

others

comp. : compact

v. : very

.

Drill hole No. : MJF-1(1)
Latitude : S 17°32.65'

Direction: 290° (true north)
Longitude: E 177°37, 45°

Inclination: -30°
Elevation: 91.0s

de concesso a consti	7//10/TD (D. erCodes)					-					DECEM : 200		(1)
Depth	Core	Lithology	Alteration	Mineralization	R, Q. D	Samp,	Au	Ag	Cu	.Pb	Zn	Ио	Te
(n)	Log.	31101087			0~100%	No.	g/t	g/t	96	96	96	96	ppu
0a	^ ^	-			28	0A-				`			'
	۸	Basalt							, i				-
	A A	Veathered											,
1 [٨		deep weathering				\			\	'		
5m	A A		brown soft Arg.			<u> </u>							
	^					Į		:					
}	1	· 					 			. '			
7.0_	^ ^	lug phononunt	partial	-	L								
_	^ ^	Aug, phenocryst						٠.					
t.t_		rich (3mm±)	weathering		L	 	, 1		· .				
10a	^	· · · · · · · · · · · · · · · · · · ·			ĺ			: .					
_	^ ^	greenish gray	propylitization					٠,					
	^	compact hard	Λυg.→chloritized v.white argil.	fine Py. diss.			1	.	·				
	^ ^	altered Basalt	v. varte algii.		ل ا								
	^	* 7	Zeo? film∼patch										
15m	Λ Λ	1	partly				<u> </u>			<u> </u> -	'		.
-	٨										i		
-	^ ^	·											
-	^ ^		17.0s								.		
-			Zeo.? irreguler	<u> </u>									
	^ ^			:									
20a	^		film net with druse	,						[,
-	^ ^				.		ļ.						
<u> </u>	^			-	▎⋰┌┘								
	^ ^			[· [ļ					1		
	۸	·	24. 2~24. 7¤			21.2					. ,		
25m	~∧~	4	gray soft, Arg.	!	<u> </u>	21.2 1-1 21.7	⟨0. 07	(0.3	0.02	⟨0, 01	⟨0, 01	KO. 001	0. 25
-	^ ^	gray altered(M)				l''''					-		
	^	compact hard]										
-	^ ^										;		
-	٨												
30m	л л]	·]]]]		
- "	_ ^				F	1	ļ						
-	л л	•						:				i	
] -]		l	1		1]	}		
-			Aug. →pale green										
_	^ ^		рineral										
35m	^)]			1	1])]	
	^ ^			pyr ^l ite.	:		'	:		1		.	
	~^~	ing a superior of	36. 6~39. On	black small	┞┷┙	16.6 2-1 11.6	/0 07	(0.3	n no	⟨0.01	0.01	(0. 001	Ո 30
]	\~ ^		partly Arg.	mineral diss.) ·	11.62-1	V. 01	(0. 0	!	I		i I	
-	~^~ ^~^		(SmeCh1.)			2-2	⟨0.07	(0.3	U. 02	⟨0.01	0.01	(0, 001	0. 20
40m	^ ^		39. 9~41. 8₪			_							
-	^~^		partly Arg.gray		<u> </u>	1.]			,
-	~^~ ^~^				ľ				:				
12.5	ΛΛ		<u> </u>	<u></u>		1				.			
-	^ ^	black feach		very slightly	-							\ \ \ \ \	
	^	black fresh	.		╽╶╷	:	Ì						
45m		Aug. Basalt		Py. diss.				İ				-	
_	^ ^	~12.~55°	1		لہ ا	'	} .			}	}	: '	
_	^	fracture with				1							
	^ ^	cal. ~zeo.]										
"	^	·			} }	1				'	}	1	İ
50m	A A				50								
L	لسسيا	L		L		<u> </u>	L.,				·		

Drill hole No. : MJF-1(2) Latitude : S 17°32,65' Birection: 290° (true north)
Longitude: E 177°37.45′

Inclination: -30°
Elevation: 91.0s

(2) Depth Core R. Q. D Te Samo λu Ĉя Ph ٨g Zn No Lithology Alteration Nineralization 0~100% 96 (a) No. 7/1 g/t 96 96 56 Log. eqq50a black Basalt 0.:-۸۸ Aug. 3mmt fresb -35-60° fractures with pale grn clay Λ 55m -cal. compact, hard 55.5 grayish white gray~white Arg. (K) ٨ altered Basalt fine Py. diss. str.arg., white propylitization 51.7 black-dark green (¥~¥) Aug, Basalt Py. slightly diss. 60a ٨ partly fresh 3-(0. 07 (0.3 0. 01 (0. 01 (0. 01 (0. 001 0. 30 61.7 white gray white clayey rock <0.07 (0.3 0. 02 (0. 01 (0. 01 (0. 001 0. 10 str. Arg., soft sheared fine Py. diss. (str.) 61.0 ---- (Qz. -A1u.) whitish altered w. sili, ? partly Basalt 65m phite-gray Arg. (¥) 66.9 dark green propylitization(N) Λ Λ ■.altered Basalt 61.2 slighly Py, diss. ٨ partly Prop. /fresh 70m ۸۸ 70. green fine part Δ. Tuffaceous, 5cm ΛΛ black Aug. Basalt 72.3 conpact, hard $\overline{\Lambda}$ ۸۸ whitish gray shite Arg. (N) 75m altered Basalt (Prop.) fine py, diss. ۸۸ compact, bard dai. -Zeo. patch-film Py, replace after Aug, phenocryst ٨ 27.0 gray thin layer gray str. ~m. Arg. (str. diss.) ΛΛ unit boundary? Aug. - white clay T. sil. 80m Λ Λ Λ IJ.ĩ black-dark green propylitization ۸۸ slightly py, diss. altered Basalt Aug. -+ Chl. Zeo, patch \$2.5 ٨ 85¤ gray~white Arg.(M) Py. diss. ~irregular ٨ file r. sil. ۸۸ 15.200 (Kao. -Pyp-Zeo.) 4-1 (0.07 ٨ (0.3 0. 01 (0. 01 (0. 01 (0. 001 0.35 4-2 <0.07 87.4 0. 01 (0. 01 (0. 01 (0. 001 white Alu.? vein (0.3 (0.05 (Qz, -Alu.) compact hard 4-3 (0.07 (0. 01 (0. 01 (0. 01 (0. 001 0.05 (0.3 90m with gray patch gray arg., soft Py, str. diss. 0. 01 (0. 01 (0. 01 (0. 001 4-4 (0.07 (0.3 0.35 ۸ str. - 🛚 \$9.7 39.30 Py. slightly diss.
Py. diss. propylitization V. V black 11.5 gray arg. (0.1m) altered Basalt ۸۸ Zeo. patch-film Aug -gra-white alt, 95m partly propylitic -35° Zeo, film ۸ ٨ gray-white Arg. (N) gray-white altered Λ Λ compact, hard Zeo. patch-film (75° 100m fine Py. diss.

Drill hole No. : MJF-1(3) Latitude : S 17°32,65' Direction: 290° (true north)

Longitude: E 177°37, 45'

Inclination: -30°
Elevation: 91.0m

(3) Core Pb Te Depth R. Q. D Samp. Zn ¥о Cu Λu ٨g Lithology Mineralization Alteration (a) 0~100% Ro. g/t g/t 36 96 98 96 Log. ១១៦ gray-white Arg. Zeo druse rich white-gray alt. Bs. compact, hard TIJIII 100m OA-Py. diss. ٨ black-dark green Py. slightly imp. Zeo, patch rich altered Basalt (Sme. -Chl. -Cal.) compact, hard white~gray alt. Bs gray-white Arg. 105m Py. str. diss. compact, hard (Str.~W) black-dk, grn, Bs. Λ Propylitizatoin(N) 105.94 5-1 | <0. 07 | <0. 3 | <0. 01 | <0. 01 | <0. 01 | <0. 001 | 0. 50 | gray~white mite-gray Arg. (Str) 106.1e clayey rock Py. v. str. diss. (Sue. -Chl. -Cal.) (Str. ~ Y) 110m Propylitization green~gray Pv. diss. Zeo, film altered Basalt very weak Aug. →green, white III.15s lt. (Sme. -Chl. -Cal.) Hydrothermal 6-1 112.75• 0. 02 (0. 01 (0. 01 (0. 00) (0. 05 (0.07 (0.3 Δ bracciation gray-vbite Arg. (N) 1.-Sili? gray-white altered fine Py. str. diss. Λ 1 breccia zone 6-2 (0.07 0. 02 (0. 01 (0.3 KO. 01 KO. 001 0.10 TI 3 60. 115m black-dark green fresh Aug. Basalt compact, hard ¹⁵ fractures Λ 120a green-white white Arg. (M) altered Basalt Zeo, patch compact, hard fine Py. diss. ٨ 113.14 55 Zeo. film partly gray-white (drusy) Arg. 125**n** partly Propylitization greenish gray altered Basalt Zeo. patch black Aug. -Basalt Frop. leo. Ghite ctay) Py. diss. pale green alt.Bs. .X. 130m Λ dark green~black Bs. partly Prop. pale green alt.Bs. compact, bard Prop. -white clay. Py. diss. ٨ Zeo. gradually ٨ black Aug. Basalt compact, hard Irregular Zeo, film Aug. Pheno. (3mm2) 135¤ breccia zone Allydrothermal ≕ fine Py. diss. brecciation (weak Sili.) (Qz. -Kao. -Pyp. -Alu.) (0.07 0, 01 (0, 01 (0, 01 (0, 001 (0.3 0.40 140a 7-1 7-2 (0.07 (0.3 0.02 (0.01 0.01 (0.001 0.25 green~white white-gray str. Arg. clayey rock Zeo. spot 7-3 (0.07 (0.3 <0.01 (0.01 <0.01 Kg. 001 0.40 fine Py, (0, 07 (0.3 0, 01 (0, 01 (0. 01 (0. 001 0.15 str. diss. 7-5 (0.07 ₹0.3 0.02 (0.01 **(0.01 (0.001** 0.10 pale green-whitish 145¤ (0.07 (0.3 0, 01 (0.01 (0. 01 (0. 001 0.20 Prop. -white Arg. (N) (0.07 0.01 (0.01 (0. 01 K0. 001 0.25 (0.3 white-gray Arg. (Str.) 7-8 (0.07 (0.3 0.01 (0.01 (0, 01 (0, 001 (0, 05 gray-white white-gray Arg. (N) altered Basalt Zeo. patch~film compact, bard 50 150a

Drill hole No. : MJF-1(4)

Latitude : S 17'32.65'

Direction: 290 (true north)

Longitude : E 177'37.45'

Inclination: -30°

Elevation: 91.93

			and the side of the state of th								-		(4)
Depth (a)	Core Log.	Lithology	Alteration	Mineralization	R. Q. D 0~100x	Samp. No.	Au g/t	Åg g/t	Cu 96	Pb 96	Zn S6	Ио 96	Te ppm
150m	^ ^	greenish gray altered Basalt compact,hard	Propwhite Arg. (V) AugChl. Zeo. spot	fine Py, diss,	59 1811	0A~			************			-	
- 155m	^ ^ ^	black Aug. Basalt compact, bard	Zeo, films(-45°~55°)										
-	^ ^ ^		mstr. Arg.	= fine Py.diss.								·	
160m	^ ^	·	160.00 ~70° (3cm±)					:			:	-	
- -	^ ^ ^ ^		gray Arg. (N)							:			
165n	^ ^	grayish altered Basalt compact.bard	gray~white Arg. (N) Propylitization remain sligthly Zeo. drusy veinlet	:		166.50s 8-1 165.50	(0. 07	(0. 3	0. 01	⟨0.01	0. 01	(0. 001	0. 20
170a	^ ^ ^ ^		(-55°) & patch (ChlZeoCal.)	fine Py. diss.									
+	^ ^ ^	greenish gray	-X gradual Propylitization			-							
175æ	^ ^ ^ ^	altered Basalt compact, hard 170.3-175.0- brecciated	(white Arg.)		· [i !			
- -	^ ^	black Aug,Basalt	↓ gradual Zeo. films	\	 -			:	. '				
180m	^ ^ ^ ^	compact, hard	(-55°~-35°)						÷			÷	
-	^ ^			· !									
185¤ 	^ ^		Zeo, -Cal, films (-55°~-25°)										
190=	^ ^ ^	greenish gray altered Basalt compact.hard	Propylitization(W) Cal.spot rich partly white clay spot	Py. sligtbly diss.									
:	^ ^ ^		gradual					-					
195=	^ ^ ^ ^	black Aug. Basalt compact, bard	Zeo. films (-60°~-70°)										
200=	^ ^							:					

Drill hole No. : MJF-1(5) Latitude : S 17°32.65'

Direction: 290° (true north)

Longitude : E 177°37,45'

Inclination : -30°

Elevation : 91.0a

	1,d	titude : 8 17-32.6	O LONGI	tude : E 111 31, 45			Freva			. 041			(5)
Depth	Core		·		R, Q. D	Samp.	Au	Ag	Cu	Pb	Zn	No	Te]
(m)	Log.	Lithology	Alteration	Nineralization	0~1009		g/t	g/t	ς _α	96	86	96	ррш
200					11111111 0-1004	OA-	8/	8/1	- 20	/*-	- ′	/0	ppm
200 a 201.1	< < < < < < < < < < < < < < < < < < <	black Aug. Basalt compact, hard dark green altered Basalt compact, hard 204.5-205.6- brecciated, green	partly Prop. like veinlet, CalZeo, film (-15'-40') Propylitization (N-S) white clay films (-10°-25°, partly sheared), Zeo, spot	fine Py. weak diss.	50	UN-			:				The state of the s
210=	^ ^	!				l							
	^ ^ ^ ^ ^		very weak Prop.	Py, very slightly diss.									
215m	^ ^ ^ ^ ^	black Aug, Basalt conpact, hard Aug, phenocryst-2nm±	white clay films	:		-		:					
220m_	^ ^ ^ ^			÷		,							
220.1	^ ^ ^ ^	whitish gray altered Basalt compact, hard	white Arg. (M)	fine Py. diss.		9-2	<0.07	⟨0, 3	0, 01	(0.01	(0.01	<0. 001 <0. 001	0. 35
228.6	2	228.4=	gray-white Arg. soft(StrW) (SerCal.)			9-4 9-5	<0.07 (0.07 (0.07 (0.07	0. 3	0, 02 (0, 01	<0.01	<0.01	(0, 001 (0, 001 (0, 001 (0, 001	0. 30 0. 40
230m 	^ ^ ^ ^	include irregular pale green fine tuff(0.2m)	Hydrothermal bre.	\dv fine Py. diss. ~films		232.1 10-1	⟨0. 07	⟨0.3	0. 03	⟨0. 01	⟨0. 01	(0. 001	0. 55
233.2 — 235s	^ <u> </u>	oreceiated Basait	white Arg. (N), V. Sili ** ** ** ** ** ** ** ** **	*		īi.1		·					
237.4 = 238.4 = 238.4 = 239.3 = 240 m = 210.2	^ ^ ^ ~ ^ ~ ^	dh grn altered Bs. white altered Bs. dk grn~black Bs,	Prop. (N) white str.krgsoft white Arg. (N) Prop.	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		191.4 	(0. 07	1.4	0, 02	0.04	0. 10	(0. 001	0. 30
241.3		white altered Bs. greenish gray altered Basalt black Aug. Basalt	white Arg. (N) Prop. (N)-white	fine Py. diss.									
245m	^ ^ ^ ^ ^	compact, hard	Zeo.films(-20°) ~patch(drusy)										
-	^ ^		weak Prop.										
250≖	^				آ	<u> </u>			<u> </u>	<u></u>	<u></u>		

Drill hole No. : MJF-1(6) Latitude : S 17 32 65'

Δ

Direction: 290° (true north)

Longitude : E 177'37,45'

Inclination: -30° Elevation: 91.0m

(6) Depth Core Samp. ۸u Λg Рb 2n No Te Alteration Mineralization Lithology 0~100% No. 96 98 (a) Log. g/t g/t 98 96 ppa black Aug. Basalt 0A-٨ ۸ 250m ۸ ۵ greenish Py, v. slightly diss. brecciated Basalt Δ (flow) ٨ Δ 254.2 green, Basaltic tuff Propylitization(N) 255 Δ breccia (254, 2~254, 6m: Δ lapilli size) with mega Aug. pheno. fragments(5mm±) Δ Δ coppact, hard 251.0-259.30 pale green fine tuff Δ 260a (thin layer, -70°~-30°) ΔΔ 260.9 ٥ green Basaltic lapilli tuff yellovish green Δ Aug. crystal rich Fe-chl.? diss. in matrix ۵ compact, bard 265a ۵ 766.\$x.-65° Δ Arg. fracture gradual Δ Basaltic tf-or. yellowish Fe-Chl? 270m compact, hard diss. \wedge 271.6 Zeo. film A A black mega Aug. (4mm±)-Basalt Λ 271.1 275mgray Arg. -Zeo. fractures(-40°~ Pr. diss. Δ Δ green Basaltic Δ tuff breccia compact, hard Δ with mega Aug. (1cmt)fragments Δ 280¤ greenish gray Δ Py. slightly diss. w, altered, compact. Δ massive hard with huge blocks (40cm2) Δ fresh Aug. phenocryst rich ΔΔ 285¤ Δ Δ 166.1 gray mega Aug. Bs compact, hard 241.5 brecciated Basalt 290¤ Δ - Zeo, films(-45°) 290.6 ^ ^ white altered zone hite Arg. -Sili gray mega Aug. Bs. (Str.) 290.7~ 210.5 Py. diss. ٨ gray mega Aug.Bs. ⁵⁰∫pale green Fy. w. diss. " w " weak Arg. ۸...۲ v. altered tuff - Py. diss. 293.7a (3cm, 20cm, 20cm, white clay-Zeo,? (3cm, -25°~-40°) .۸. - Py. diss. 295m Λ 295.8 Δ greenish Basaltic Zeo, films(-55°--20° Δ tuff breccia matrix poor Δ nega Aug. included white Str. Arg. (Cul. -Ser.) (0.07 (0.3 0.02 (0.01 (0.01 (0.001 300a Py. diss.