Table 2-6 Assay Results of Samples in the Bau Prospect

| Sample | Width                    | Au       | Ag    | Cu   | Pb    | Zn    | Sample type and locality |
|--------|--------------------------|----------|-------|------|-------|-------|--------------------------|
| No.    | (cm)                     | (g/t)    | (g/t) | (%)  | (%)   | (%)   |                          |
| A20R   | 12                       | <0.015   | <0.3  | 0.02 | <0.01 | 0.01  | Qz vein. Bau footpath    |
| A22R   | 2.5                      | · <0.015 | 0.6   | 0.40 | <0.01 | 0.01  | Qz vein, Kp.Salupolin    |
| A24R   | *: 30 ·                  | <0.015   | <0.3  | 0.03 | <0.01 | 0.06  | Qz vein, S.Belopi        |
| B17R   | 200 <u>(111</u> 2)       | <0.015   | <0.3  | 0.03 | <0.01 | <0.01 | Qz float, S.Balimbing    |
| B18R   | grab                     | <0.015   | <0.3  | 0.04 | <0.01 | <0.01 | And Py-diss, S.Balimbing |
| B20R   | grab                     | <0.015   | <0.3  | 0.02 | <0.01 | 0.01  | And Py-film, S.Balimbing |
| B23R   | i, e i <del>epi</del> ti | ₹0.015   | <0.3  | 0.17 | <0.01 | 0.01  | Qz float, S.Salúpolin    |
| C26R   | grab                     | <0.015   | 0.6   | 0.80 | <0.01 | 0.02  | Qz-sulphide, S.Belopi    |
| C29R   | 2 <del>-</del>           | <0.015   | <0.3  | 0.30 | ₹0.01 | 0.03  | Qz float, S.Salore       |
| E36R   | 20                       | <0.015   | <0.3  | 0.02 | <0.01 | 0.01  | Qz vein, S.Bosokan       |
| E38R   | 15                       | <0.015   | <0.3  | 0.03 | <0.01 | 0.01  | Qz vein, Bau footpath    |

## Methods of Analysis and Limits of Detection for Ore Assay

| Element | Methods of Analysis              | Detection | Upper   |  |  |
|---------|----------------------------------|-----------|---------|--|--|
|         |                                  | Limit     | Limit   |  |  |
| Au      | Fire assay with AA finish        | 0.015g/t  | 10 g/t  |  |  |
| Ag      | Nitric aqua regia with AA finish | 0.3 g/t   | 600 g/t |  |  |
| Cu 😅    | Nitric aqua regia with AA finish | 0.01 %    | 100 %   |  |  |
| Pb      | e ditto                          | 0.01 %    | 100 %   |  |  |
| Zn      | ditto                            | 0.01 %    | 100 %   |  |  |

Carried Control of Artificial Control of the Contro

De Posta Established Control of the

X AA means Atomic Absorption Method

★ Chemical analysis

conducted by Chemex Labs Ltd.

Table 2-7 Assay Results of Samples in the Batuisi Prospect

| Sample | Width | Au     | Ag    | Cu   | Pb    | Zn    | Sample type and locality    |
|--------|-------|--------|-------|------|-------|-------|-----------------------------|
| No.    | (cm)  | (g/t)  | (g/t) | (%)  | (%)   | (%)   |                             |
| A35R   | 47    | <0.015 | <0.3  | 0.03 | <0.01 | 0.07  | Qz vein, S.Tarawa(Zone ②)   |
| A37R   | 33    | <0.015 | <0.3  | 0.01 | <0.01 | <0.01 | Qz vein, S.Tarawa(Zone ②)   |
| A42R   | 35    | <0.015 | 0.3   | 0.03 | <0.01 | <0.01 | Qz vein, S.Bone(Zone ②)     |
| B43R   | 20    | <0.015 | 0.3   | 0.01 | <0.01 | <0.01 | Qz vein, S.Bone(Zone ①)     |
| B46R   | 48    | 0.015  | <0.3  | 0.13 | <0.01 | 0.20  | Qz vein, NW Tarawa(Zone①)   |
| C38R   |       | <0.015 | 0.6   | 0.02 | <0.01 | 0.15  | Qz block, NW Tarawa (Zone①) |
| D34R   | 200   | <0.015 | <0.3  | 0.02 | <0.01 | 0.01  | Oz vein, S.Tarawa(Zone ①)   |
| D37R   | 100+  | <0.015 | <0.3  | 0.09 | <0.01 | 0.06  | Qz vein, S.Tarawa(Zone ①)   |
| E50R   | grab  | <0.015 | <0.3  | 0.01 | <0.01 | 0.01  | Sil shale, S.Malela         |
| E51R   | 80    | <0.015 | <0.3  | 0.32 | <0.01 | 0.05  | Qz network, S.Malela        |
| E52R   | 280†  | <0.015 | <0.3  | 0.09 | <0.01 | 0.01  | Qz vein, S.Malela           |
| E66R   | 15    | <0.015 | <0.3  | 0.05 | <0.01 | 0.41  | Qz vein, S.Malela           |

X Details of assaying same as

in Table 2-6.

Table 2-8 Assay Results of Samples in the Other Prospects

| Sample | Width | Au     | Ag    | Cu   | Pb    | Zn    | Sample type and locality |
|--------|-------|--------|-------|------|-------|-------|--------------------------|
| No.    | (cm)  | (g/t)  | (g/t) | (%)  | (%)   | (%)   | port the children of     |
| B7R    |       | <0.015 | <0.3  | 0.03 | <0.01 | <0.01 | Qz float, S.Uroh         |
| B32R   |       | <0.015 | <0.3  | 0.04 | <0.01 | <0.01 | Qz float, S.Taroto       |
| B34R   | · -   | 0.030  | 1.2   | 0.40 | <0.01 | 0.02  | Py float, S.Taroto       |
| C5R    |       | <0.015 | <0.3  | 0.04 | <0.01 | 0.01  | Qz float, S.Rasasisi     |
| C6R    | •     | 0.030  | 0.3   | 0.01 | <0.01 | 0.01  | Sil-Py float, S.Rasasisi |
| C20R   |       | 0.015  | <0.3  | 0.03 | <0.01 | 0.01  | Sil float, S.Kakea       |
| C21R   | ·     | <0.015 | <0.3  | 0.02 | <0.01 | 0.01  | Qz float, S.Kakea        |
| G5R    | -     | 0.390  | 1.2   | 0.02 | <0.01 | 0.01  | Qz float, Rantedonga     |

\* Details of assaying same as

in Table 2-6.

Table 2-9 Results of Ore Nicroscopy

| Sample | Locality          | 1 1          | 1.0 |         | Mine | rals |        |    |       | Remarks                       |
|--------|-------------------|--------------|-----|---------|------|------|--------|----|-------|-------------------------------|
| No.    | otick Asia (Cara) | Ру           | As  | Ср      | Sp   | Ga   | Мc     | Cv | 10    | alty second wife non-the non- |
| A31R   | S.Tarawa          | $\nabla_{i}$ |     | •       | •    |      | :      | •  |       | Quartz float                  |
| A41R   | S.Tarawa          | Δ            |     | •       |      |      | •      | •  | •     | Quartz float                  |
| B23R   | S.Salupoling      | Δ            |     | Δ       |      |      |        | •  |       | Quartz float                  |
| B34R   | S.Lebutang        | 0            | Δ   | •       | •    |      |        | •  |       | Py(-Qz-Epidote) vein          |
| B46R   | NW Tarawa         | Δ            | •   | •       | •    | •    |        | •  |       | Quartz vein (Wd=48cm)         |
| C26R   | S.Belopi          | Δ            |     | •       |      |      | •      |    |       | Quartz(-Chlorite) block       |
| C29R   | S.Salore          | , Д          | •   | : •:    | •    |      | 7 (5 ) | •  |       | Quartz block                  |
| E51R   | S.Malela          | Δ            | i . | •       |      |      |        | •  | 7 7 1 | Quartz network (Wd=80cm)      |
| E66R   | S.Malela          | Δ            |     | •       | •    |      |        |    |       | Quartz vein (Wd=15cm)         |
| E70R   | S.Malela          | •            |     | 6 - 1 % |      |      |        | •  |       | Quartz vein (Wd=200cm)        |

Abundance of Minerals: ○; Common, △; Rare, •; Trace

commented to the state of the contract of the

Abbreviations : Py; Pyrite, As; Arsenopyrite, Cp; Chalcopyrite,

Sp;Sphalerite. Ga;Galena, Mc;Malachite, Cv;Covelline.

lo; Iron Oxide

and the first of the second of 

Control of the Berlin of Control of the Control of

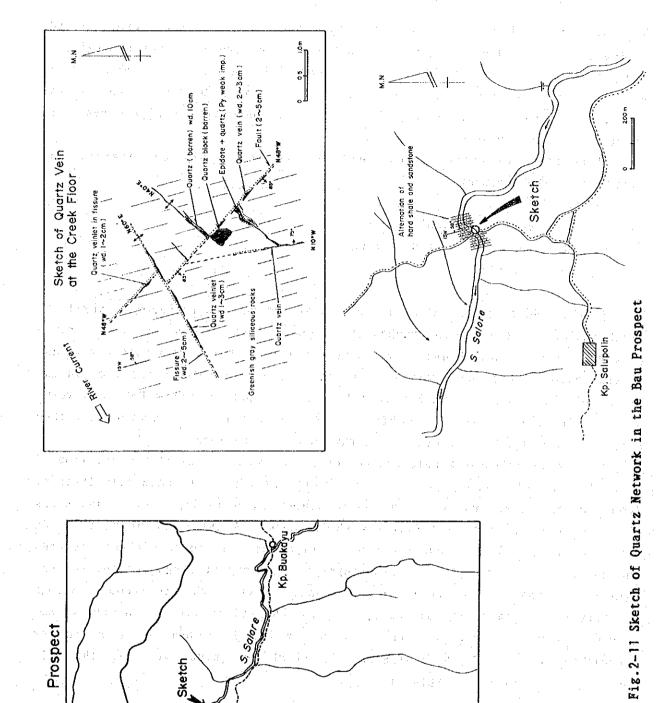
Near the junction of S. Salore and S. Belopi, several quartz veins/networks were caught at four localities during geological survey. Each veins run N10°W to N20°W and dip 35°W to 40°W. Their widths vary from few centimeters up to 30 cm. Pyrite, arsenopyrite, chalcopyrite, and sphalerite were observed in quartz vein. Chalcopyrite is replaced by malachite and covelline. Pyrite is sometimes oxidized and replaced by iron-oxide mineral (limonite). Gold has not been observed under the microscope.

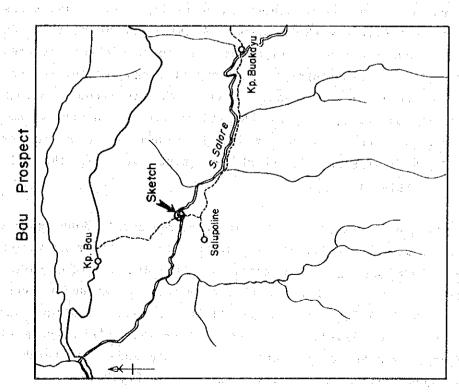
Both northern and southern extensions of the zone were inaccesible because of the steep topography.

In the northern side of S. Salore, quartz veins/networks again appear. Outcrops of quartz veins were found at 10 localities along the footpath from the bridge of S. Salore up to Kp. Bosokan. Strikes and dips change variously. Their width are from few centimeters to 25 cm. A small amount of pyrite and limonite was observed in quartz (Fig.2-11).

Strong silicification and pyritization were observed in metasediments and dolerite adjacent to quartz veins. According to X-ray diffraction analysis, quartz, sericite, chlorite, calcite, and pyrite were detected as alteration minerals in the country rocks. At the northern end of the mineralized zone, a siliceous clay vein of 1.2 m wide occurs within shale at a small creek. This vein is composed mainly of quartz and sericite. Pyrite is disseminated in the footwall side of vein. A small amount of gypsum was detected in this vein.

A couple of other mineralized zones was found within the prospect. A quartz float zone was identified around Kp. Salupoling. A small amount of pyrite and chalcopyrite were observed in some of the quartz floats.


A silicified zone occurs in black shale near the junction of S. Salore and S. Balimbing. Black shale is strongly silicified and pyrite is disseminated in this zone.


Quartz floats are widely distributed at the upper reaches of S. Balimbing. Some of them contain pyrite. Gold and chalcopyrite were detected in pan concentrates in this zone. These floats would be originated from surrounding mountains.

Total of 11 samples of quartz veins and quartz floats was assayed within the Bau prospect. No significant value was obtained.

#### (2) Batuisi prospect

The Batuisi prospect is located between S. Karataun and the upper reaches of S. Pongo in the northwestern part of the survey area (Fig.1-2). The area is approximately  $50~\rm km^2$ . The altitude of S. Karataun is  $150~\rm m$  (at the bridge of





Kp. Batuisi). High ridge of more than 600 m above sea level extends northwestward, dividing the prospect into two. The prospect lies geologically among the area of metasediments of the Latimojong Formation. The Mamasa granite batholith occurs at the southeastern area adjacent to the prospect. Dacite lava and volcanic breccia of the Barupu Tuffs are distributed at the high elevations, forming very steep ridges.

Three zones of quartz veins/networks containing sulphide minerals were found within the prospect:

- ( Middle reaches of S. Tarawa
- ② Upper reaches of S. Tarawa
- (3) S. Malela

At the middle reaches of S. Tarawa, 13 quartz veins were found in phyllitic black shale. At the middle reaches of S. Bone, which is located about 1,500 m northwest of S. Tarawa, 6 quartz veins were found in shale. One quartz vein and several quartz float zones were recognized at the hill between the two places. Strike of veins ranges from N-S to N40°W, and is predominantly NNW, and veins steeply dip to the west in general. These quartz veins were grouped together and called the middle reaches of S. Tarawa mineralized zone.

Quartz veins at the middle reaches of S. Tarawa are generally wide, from 30 cm to 2 m in width. Whereas at S. Bone, widths of veins are comparatively thin, from few centimeters up to 25 cm. Vein quartz is generally massive and shows fine— to medium—grained and slightly chalcedonic. A small amount of sulphide minerals is contained in quartz veins. Sulphides tend to concentrate towards one of the wallsides. Pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, malachite, covelline, and limonite were identified under the microscope. Strong silicification with pyrite dissemination was observed at wallrock around veins. A small amount of chlorite and trace of pyrophyllite were detected in the alteration zone by X-ray analysis. A sketch of quartz vein at the hill northwest of S. Tarawa is shown in Fig. 2-12.

At several localities of the upper reaches of S. Tarawa and S. Bone, quartz veins/networks occur in bluish grey shale/siltstone. Strike of veins varies from place to place. They generally have gentle dip. Width of veins varies from few centimeters up to 2 m. Pyrite, chalcopyrite, and malachite were observed in quartz veins. Silicification, pyritization, chloritization, and some carbonatization were identified as wallrock alteration. This group of veins was named the upper reaches of S. Tarawa mineralized zone. A sketch of quartz network at the upper reaches of S. Tarawa is shown in Fig.2-13.

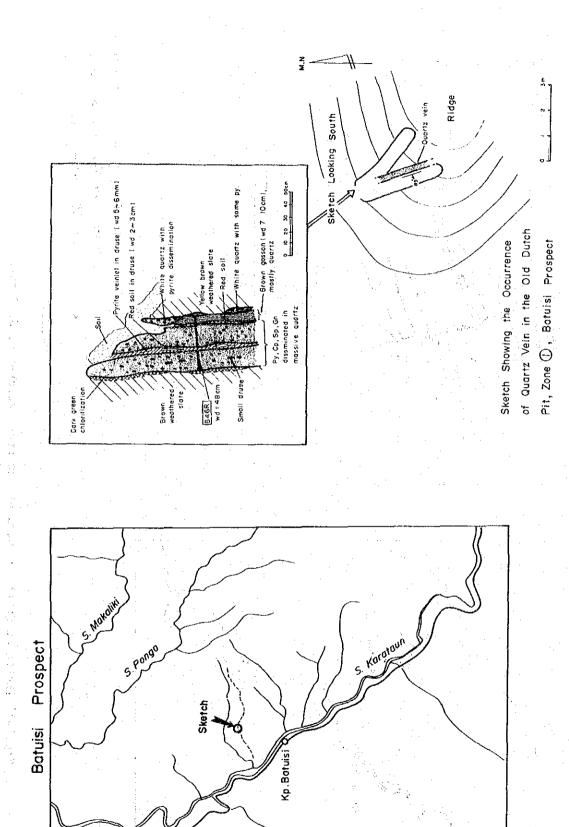



Fig. 2-12 Sketch of Quartz Vein at the Hill Northwest of S. Tarawa.

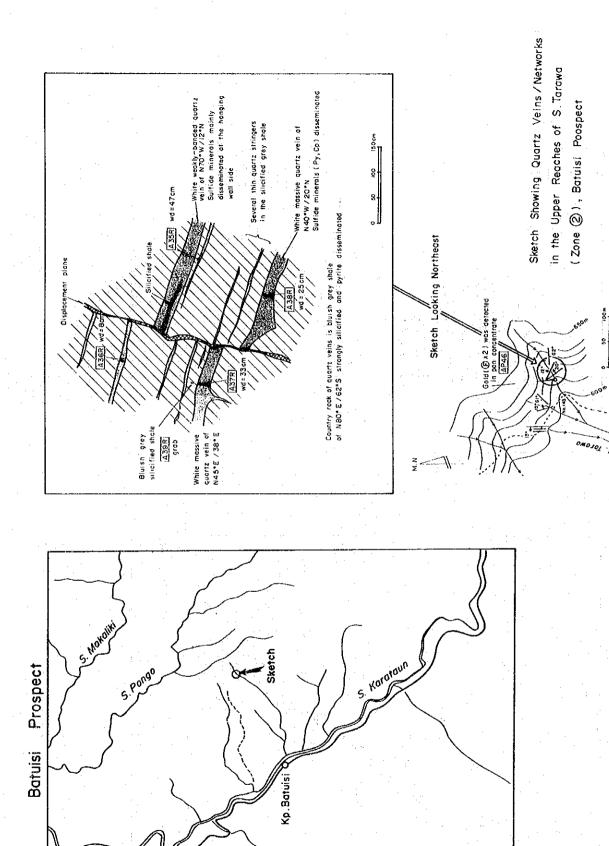



Fig.2-13 Sketch of Quartz Network at the Upper Reaches of S. Tarawa

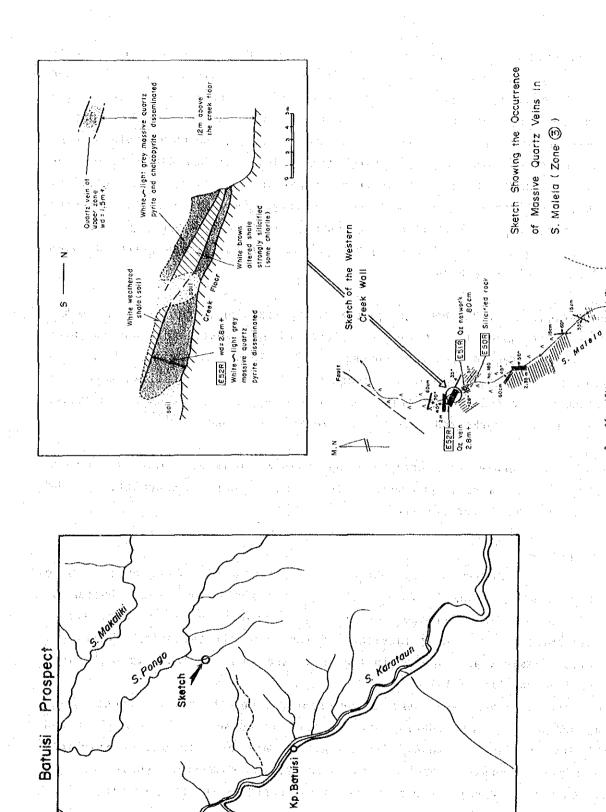
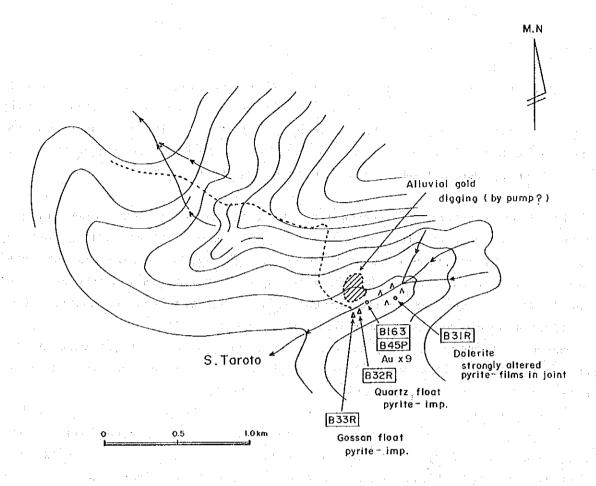



Fig.2-14 Sketch of Massive Quartz Vein at S. Malela

The S. Malela mineralized zone occurs at the other side of the dividing ridge in the northeastern part of the Batuisi prospect. Quartz veins were found at 10 localities along S. Malela (a branch creek of S. Pongo). Veins are hosted by bluish grey shale and dolerite. Trend of veins changes variously. One of the representative veins for example, which was found just below the old Bobokan place, is a massive and about 5 m thick (Fig.2-14). It has N70°W strike and 35°N dip. A small amount of sulphide minerals — pyrite, chalcopyrite, sphalerite, covelline — is disseminated in quartz. Gold has yet been detected under the microscope. Silicification, chloritization, and pyritization were observed in the wallrocks. A small amount of calcite and pyrophyllite was also detected in the alteration zone.

Indications of gold bearing quartz mineralization were found at other localities in the prospect. At several places along S. Mate, gold and sulphide minerals were detected in pan concentrates. Those are situated at the northwestern extension of the middle reaches of S. Tarawa mineralized zone. In the southeastern extension of this zone at the upper reaches of S. Beranak, quartz veinlets/networks and quartz float zones were found.


Total of 12 samples of quartz veins and quartz floats was collected for ore assay within the Batuisi prospect. The results were disappointing. No significant gold value was returned.

## (3) Other prospects

During the regional survey, gold and heavy mineral concentrations were detected by panning along S. Petagunan and its tributaries. Distribution of quartz floats was also observed. At the upper reaches of S. Taroto, strong pyrite dissemination was found in altered dolerite of the Latimojong Formation. Old alluvial diggings are located in the area, and quartz and/or limonite float zone spread nearby (Fig.2-15).

Quartz float zones were found in many places along the middle reaches of S. Lebutang and S. Lelating. Geology of the area is composed of black shale and andesite lava of the Latimojong Formation. Floats of vein quartz sometimes contain a small amount of pyrite, arsenopyrite, chalcopyrite, sphalerite, and galena. Chlorite and calcite were observed in quartz as gangue minerals.

8 samples consisting of quartz floats were collected from various places within the regional survey area. The assay results showed no significant value of both gold and basemetals.



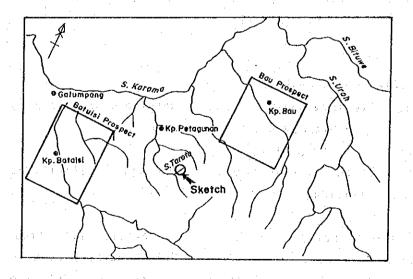



Fig. 2-15 Outline of Mineralization at S. Taroto

#### 2-7 Discussions

Indications of primary gold mineralization were caught at several localities in the northwestern part of the survey area, and semi-detailed survey was carried out in two prospects — Bau and Batuisi. The indications which show primary gold mineralization are; ① occurrence of gold in pan concentrates. ② distribution of quartz floats, and ③ outcrops of quartz veins.

In those prospects, distribution of gold, cinnabar, and some sulphide minerals in pan concentrates are closely related to each other forming "panning anomalies". Distribution of quartz veins and quartz floats overlaps on those anomalies in a broad scale. Quartz veins generally contain a small amount of sulphide minerals such as pyrite, arsenopyrite, chalcopyrite, and galena. Gold and silver minerals have not been observed in quartz so far.

Based on those evidences, it was assumed that the gold in pan concentrates might come from quartz veins/networks intensively developed at the upper reaches of creeks in the prospects.

31 samples of quartz veins and quartz floats were collected from all over the prospects and provided for assaying this time. The results were disappointing. Almost all samples showed very low gold values. Assay has not proven the origin of gold yet.

Characteristic features of gold mineralization in the northwestern part of the survey area -- Bau, Batuisi, and S. Taroto -- are briefly summarized as follows:

- ① Metasediments hosted.
- ② Intensive development of rather massive quartz veins.
- (3) Associated with sulphide minerals.
- 4 Lack of silver mineral.
- (5) Hydrothermal alteration mainly composed of silicification and chloritization.

Many gold mineralizations are known in Sulawesi. But almost all of them are volcanic-hosted (Carlile et al.,1990). Gold mineralization in this area is exceptional in that it is hosted by metasediments and dolerite of probably Cretaceous age. The prospects are located north of the Mamasa granite. It is spatially situated around the fringe part of the batholith. Emplacement of granite is inferred to be late Miocene. Intrusions of small stocks and dykes of

granitic rocks occur in the prospects. However, any evidence genetically relating mineralization to igneous activities has not been found so far.

Quartz veins sometimes contain a small amount of sulphide minerals in every prospects. Primary sulphide minerals observed under the microscope are; pyrite, arsenopyrite, chalcopyrite, sphalerite, and galena. Occurrence of sulphides in quartz vein is generally common in epithermal gold deposits. From the chemical aspect of mineralization, a distinctive feature of this area is lack of silver mineral in sulphide association. Silver content in ore is generally low.

Hydrothermal alteration mainly composed of silicification, pyritization, and chloritization occur in gangue minerals and wallrocks. Neither argillic alteration accompanying with quartz-adularia vein, nor advanced argillic alteration comprizing alunite-kaolinite-pyrophyllite assemblage resulting from acidic condition has been found in the prospects.

Considering these features, primary gold mineralization in the prospects may not fit with the category of standard epithermal gold mineralization. Mesothermal is probably the most suitable type for the chemical character of the mineralization. Those unique features of mineralization should be further studied together with geochemical characteristics in the future work.

Gold bearing quarzt veins networks were preliminary grouped as three mineralized zones trending NW in the Batuisi prospect. Individual vein, however, varies in its strike direction as was explained in the previous section. It could be defined as an aggregate of veins arranged en echelon of NNW trend, though overall arrangement of the zones tends to be NW direction. A couple of quartz float zones was found outside of the Batuisi prospect. Indications of gold mineralization in panning prospecting also came out at the surrounding areas. Some of them lie at the extensions of known minerilized zones. Entire structure will be drawn out when geochemical analysis is completed. The extent of mineralized zones could be somehow regional.

Prominent direction of vein systems in both Bau and Batuisi prospects is NW to NNW. As is already discussed in the photogeological interpretation, the inferred principal direction produced by the emplacement of granite batholith is NNE to N-S. Anticlinorium recognized in the northwestern part of the survey area is probably the product of granite intrusion. Local fold structures also show similar trend. Whereas fissure patterns of quartz veins are different from the above structure. Evidences connecting the formation of veins with granite intrusion are not known. Thus the source and mechanism of the formation of these veins is, at present, not clear.

### Chapter 3 Geochemical Exploration

## 3-1 Regional Geochemical Exploration

#### (1) Sampling and chemical analysis

Regional geochemical exploration by means of stream sediment sampling was carried out for the purpose of defining hidden mineralized zones which would otherwise be undetected by geological survey, as well as for clarifying the extension of mineral occurrences known through the geological survey.

Fine sand samples of -80 mesh were collected from sediments in major channels and some of the bigger tributaries. The number of samples collected was more than one thousand (1,010), which corresponds to a sampling density of approximately one sample per 3 km². The samples, after being air-dried in the field, were analyzed at Chemex Labs Ltd. of Canada, for 10 elements; Au, Ag, As, Bi, Sb, Hg, Cu, Pb, Zn, and Ba. The analytical methods and the limits of detection are summarized in Table 2-10.

#### (2) Results

The data processing and analysis of the results will be explained in the report of the next phase of this project.

#### 3-2 Semi-Detailed Geochemical Sampling

## (1) Outline of sampling and chemical analysis

The semi-detailed geochemical sampling, composed of pan concentrate sampling and soil sampling, was carried out mainly in two areas; ① Bau prospect and ② Batuisi prospect. Numbers of pan concentrate samples and soil samples collected in the field amounted to 366 and 510 respectively.

Pan concentrate samples were obtained during the stream sediment sampling from trap sites in the active drainage channels mainly in the semi-detailed survey. A bucketful of sand and gravel which were about 2 liters was gathered and carefully panned out. Approximately 5 grams of concentrate was collected at every point. Number of gold grains was counted and heavy mineral composition was examined roughly in the field and carefully under the microscope in the laboratory later.

Table 2-10 Methods of Analysis and Limits of Detection for Stream Sediments

| Element | Methods of Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Detection | Upper  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|
|         | e was a second of the contract of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit     | Limit  |
| Au      | Fire assay with AA finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 ppb     | 10 ppm |
| Ag      | Nitric aqua regia with AA finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05 ppm  | 0.02 % |
| As      | Aqua regia hydride with AA finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2 ppm   | 0.5 %  |
| Bi      | $ m HC1/KC1O_3$ extraction with AA finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2 ppm   | 0.5 %  |
| Sb      | ditto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2 ppm   | 0.1%   |
| Hg      | HNO <sub>3</sub> /HCl cold vapour with AA finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1 ppm   | 0.5%   |
| Cu      | Nitric aqua regia with AA finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 ppm   | 0.5 %  |
| Pb      | Antiger Alfiditto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5 ppm   | 0.5 %  |
| Zn      | Bloom to see the after the section after the section of the section and the se | 1 ppm     | 0.5 %  |
| Ba      | Total digestion with AA finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 ppm    | 1 %    |

the state of the s

Table 2-11 Methods of Analysis and Limits of Detection for Soil Samples

|         | The second of the second of the second                                                                         | Part of the part of the second |        |
|---------|----------------------------------------------------------------------------------------------------------------|--------------------------------|--------|
| Element | Methods of Analysis                                                                                            | Detection                      | Upper  |
|         | de de la companya de | Limit                          | Limit  |
| Au      | Fire assay with AA finish                                                                                      | 5 ppb                          | 10 ppm |
| Ag      | Nitric aqua regia with AA finish                                                                               | 0.05 ppm                       | 0.02 % |
| As      | Aqua regia hydride with AA finish                                                                              | 0.2 ppm                        | 0.5 %  |
| Bi      | HC1/KC10 <sub>3</sub> extraction with AA finish                                                                |                                | 0.5%   |
| Sb      | e all a la ditto fixes as                                                                                      | 0.2 ppm                        | 0.1 %  |
| Hg      | HNO <sub>3</sub> /HC1 cold vapour with AA finish                                                               | 0.1 ppm                        | 0.5 %  |
| Cu      | Nitric aqua regia with AA finish                                                                               | 0.2 ppm                        | 0.5 %  |
| Pb      | ditto                                                                                                          | 0.5 ppm                        | 0.5 %  |
| Zn      | ditto                                                                                                          | 1 ppm                          | 0.5 %  |
| Ва      | Total digestion with AA finish                                                                                 | 10 ppm                         | 1 %    |

X AA means Atomic Absorption Method

Soil samples were collected from B-layer of residual soil at depths of 20 to 60 cm from the surface. Sampling traverses were set almost at right angles to the inferred strike direction of mineralization. Sampling intervals along the traverses were 300 m on the average. Soil samples were air-dried at the base camp, then sieved to -80 mesh. Chemical analysis was conducted at Chemex Labs for 10 elements; Au. Ag. As. Bi. Sb. Hg. Cu. Pb. Zn. and Ba. The analytical details are given in Table 2-11.

# (2) Results of pan concentrate sampling

Panning prospecting was conducted not only in the semi-detailed survey but also during the regional survey. In the regional survey area, topographically important localities such as the junction of major drainage system and its tributaries were checked by pan concentrates. When gold, cinnabar, sulphide minerals, or some heavy minerals were detected in a pan concentrate, a sample of that particular pan concentrate was collected. Total amount of pan concentrate samples collected this year was 366. Among the collected samples, 209 important samples were picked up, and studied in detail microscopically.

## Procedure of heavy mineral analysis

The procedure of heavy mineral analysis in the laboratory is as follows:

- ① Dry pan concentrate samples in the open air.
- 2) Weigh the dried samples.
- Magnetic mineral fractions high magnetic minerals (magnetite) and
  medium to low magnetic minerals (ilmenite and others) were removed by handmagnet. Remaining non-magnetic concentrate fractions (zircon, gold, cinnabar,
  sulphide minerals, quartz, etc.) were investigated under binocular microscope.
- (4) Estimate the percent abundance of mineral distribution for each fractions and count the number of gold grains under binocular microscope.
- ⑤ Describe the shape and size of gold, cinnabar, chalcopyrite, arsenopyrite, galena, and other minerals.
  - ⑥ Photomicrograph of the selected minerals.

The procedure is illustrated in Fig. 2-16. Mineral identification is briefly summarized in Table 2-12.

## Results of microscopic observation

Gold was detected in 74 pan concentrate samples under the microscope. Cinnabar, chalcopyrite, arsenopyrite, and galena were observed in 16, 12, 9, and

Fig. 2-16 Flow Chart of Heavy Mineral Analysis

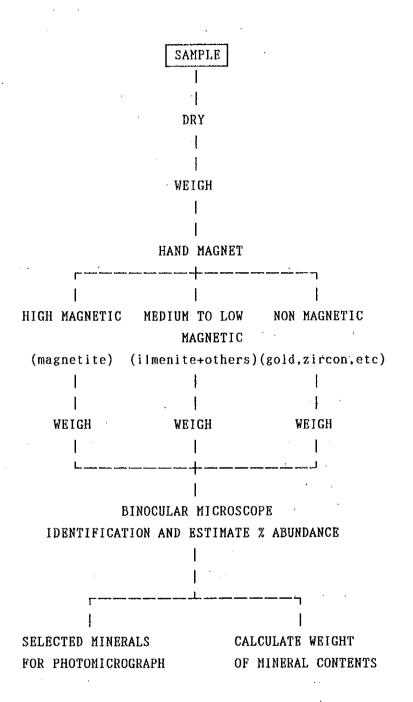



Table 2-12 Identification Table of Heavy Minerals

| Mineral      | Specific Features for Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Magnetite    | Black metallic or dirty black, some grains coated by iron-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | oxide, sub-angular to sub-rounded, strong magnetic, to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | seen chain-like, size 0.1 to 0.4 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ilmenite     | Black metallic, medium to low magnetic, typical crystal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | sub-rounded, size 0.1 to 0.4 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pyroxene     | Green to yellowish green, transparent to translucent,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | typical crystal to sub-angular, size 0.1 to 0.6 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Iron oxide   | Dark red to reddish yellow, sub-angular to sub-rounded, size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 0.1 to 0.6 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Epidote      | Dark yellow, prismatic to sub-rounded, high reflectivity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *            | size 0.1 to 0.8 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Amphibole    | Black sub-metallic, typical crystal to sub-angular, size 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | to 0.8 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Biotite      | Brown to dark brown, candle shape or platy, hexagonal, size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •            | 0.1 to 0.6 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Garnet       | Yellow, pink, or reddish brown, very brilliant, transparent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | to translucent, typical crystal to sub-rounded, high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | reflectivity, size 0.1 to 0.8 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Zircon       | Rose, reddish yellow, brown, or white, very brilliant,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | transparent, typical crystal (needle / prismatic) to sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | rounded, high reflectivity, size 0.1 to 0.5 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Barite       | White milky, translucent, platy to sub-angular, soft, size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 0.1 to 1.0 mm. and succession of the second  |
| Corundum     | Brilliant blue, transparent with zoning, high reflectivity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | size around 0.3 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Marcasite    | Reddish brown, replacement of fossil with sulphide mineral,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | elongated to rounded, typical fossil shape, size 0.1 to 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pyrite       | Yellow metallic, cubic crystal to sub-angular, size 0.1 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 1.0 mm. arrived as the control of th |
| Chalcopyrite | Yellow to bluish yellow copper metallic, sub-angular to sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | rounded, size around 0.3 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Arsenopyrite | Pale yellow to white metallic, cruciform twins crystal, sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | angular, or sub-rounded, size 0.1 to 0.8 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Galena       | Lead grey metallic or dirty grey, cubic crystal, very good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | cleavage, size around 0.3 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Cinnabar                                                                                                                                    | Red colour, very soft, sub-   | angular to sub-rounded, size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                             | around 0.3 mm.                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Gold                                                                                                                                        | Typical gold colour, sub-ang  | gular to well-rounded, thin to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                             | solid, coarse surface to      | soft surface, size $50$ to $500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                             | micron.                       | March 1997 and San San San Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                             |                               | and the second contract of the second contra |
|                                                                                                                                             | K Standard of gold grain size | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                           | VVFC (very very fine)         | less than 50 micron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                             | VF (very fine)                | 50 to 150 micron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                             | FC (fine)                     | 150 to 400 micron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                             | MC (medium)                   | 400 to 500 micron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $  \hat{\mathbf{t}}   =   \hat{\mathbf{t}}  _{L^{2}(\Omega)}$ $  \hat{\mathbf{t}}  _{L^{2}(\Omega)} =   \hat{\mathbf{t}}  _{L^{2}(\Omega)}$ | CC (coarse)                   | more than 500 micron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                             |                               | Divide the construction of an architecture of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rutile                                                                                                                                      | Reddish brown to brown, pri   | smatic typical crystal or sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| with the training                                                                                                                           | rounded, high reflectivity, s | size 0.1 to 0.6 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rock fragment                                                                                                                               | Many variety.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Quartz                                                                                                                                      | Many variety.                 | eesta ja ja kilka ja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

2 samples respectively. The most common minerals are; magnetite, ilmenite, pyroxene, amphibole, epidote, garnet, zircon, pyrite, and quartz. Other minerals such as barite, cinnabar, chalcopyrite, corundum, galena, rutile, gold, arsenopyrite, and iron-oxide minerals were observed.

Shape of minerals are mostly subangular to subrounded, with lesser amount of typical crystal of zircon, garnet, magnetite, ilmenite, and corundum.

The results of field observation and laboratory check are listed in Appendix 4.

#### Discussions

Three areas of intensive distribution of gold and some heavy minerals in pan concentrates were obtained; Bau, Batuisi, and S. Lebutang and its tributaries. Distribution of gold, cinnabar, and sulphide minerals in pan concentrates appear to be closely related to each other forming "panning anomalies". Distribution of quartz veins and quartz floats roughly overlap on these anomalies. This correspondence suggests that panning prospecting could play a significant role in the regional to semi-detailed level of survey.

Origin of cinnabar in pan concentrate is debatable. There are three possibilities; ① product of hydrothermal system associated with gold mineralization, ② associated with volcanic rocks such as andesite, and ③ precipitation from recent geothermal convection through faults. The close spatial relationship between the occurrences of cinnabar and gold in pan concentrate in a broad scale indicates the possibility of ①. Distribution of mercury in gold deposits is reported in many cases. Although the zoning patterns are specific to individual mineralizing systems, mercury concentration is present in an alteration halo of gold mineralization (Silberman & Berger, 1985). Details of the distribution behaviour of cinnabar in pan concentrates must be examined together with the results of geochemistry.

### (3) Results of soil geochemistry

The data processing and analysis of the result of soil geochemistry will be explained in the report of the next phase of this project.

# Chapter 4 Preliminary Works of Biogeochemistry and Mercury Gas Geochemistry

### 4-1 Plant Leaf Sampling

#### (1) Sampling and analysis

Test sampling of plant leaves for biogeochemistry was carried out in the Batuisi prospect. A sampling line, extending approximately east-west about 2 km long, was set crosscutting the major quartz vein in zone ① at the middle reaches of S. Tarawa. Mercury gas mesurements were also undertaken along this survey line.

Samples were collected from ten locations, positioned within a radius of twenty meters from the soil sampled holes. Four out of ten locations were set very close to the vein (within 50 m), two moderately close to the vein (100 to 150 m), and remaining four locations far from the vein (700 to 900 m). Location map of samples is shown in Fig. 2-17.

6 kinds of grass leaves were collected this time. Two belong to a fernery order -- Kadak and Potok. One is a cogan grass -- Tille. The other three are herbs -- Reubombo, Lito, and Tilutilu. Plant names used here are local Indonesian names. Scientific names are cited in the sample list.

Photographs of leaves were taken on the place. Botanical specimen were also collected in the field. Scientific name was checked by a botanist from the Technical Institute of Bandung. Details of samples are explained in Table 2-14.

Stems and stalks were taken off. Only leaves were selected, washed by river water and dried under the sun. Dried leaves of about 100 grams were sent to Chemex Labs for analysis. 7 elements were analyzed; Au, As, Sb, Cu, Pb, Zn, and Ba. The analytical methods and the limits of detection are shown in Table 2-13.

#### (2) Results

Results of chemical analysis are listed in the Appendices. The data processing and analysis of the results will be explained in the report of the next phase.

医乳性皮肤 医胸膜炎 医皮肤 医皮肤

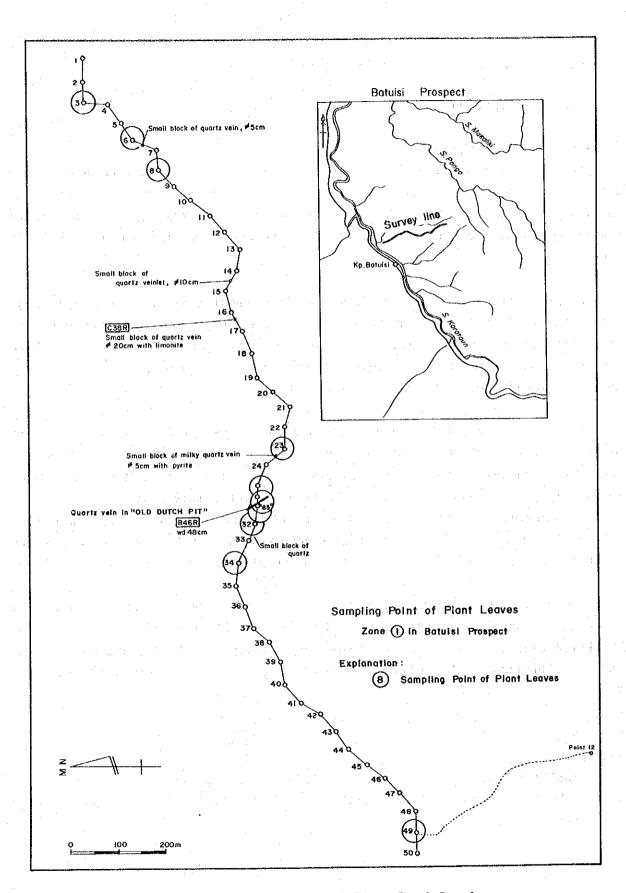



Fig. 2-17 Location Map of Plant Leaf Samples

Table 2-13 Methods of Analysis and Limits of Detection for Plant Leaves

| Element   | Methods of Analysis                              |           |        |  |
|-----------|--------------------------------------------------|-----------|--------|--|
| , Diemene | nections of Mary 515                             | Detection | Upper  |  |
|           |                                                  | Limit     | Limit  |  |
| Au        | Fire assay with NAA finish                       | 0.2 ppb   | 1 ppm  |  |
| As        | Aqua regia hydride with NAA finish               | 10 ppb    | 0.01 % |  |
| Sb        | HC1/KC1O <sub>3</sub> extraction with NAA finish | 5 ppb     | 0.01 % |  |
| Cu        | Nitric aqua regia with AA finish                 | 1 ppm     | 1 %    |  |
| Pb        | ditto                                            | 1 ppm     | 1 %    |  |
| Zn        | ditto                                            | 1 ppm     | 1 %    |  |
| Ba        | Total digestion with AA finish                   | 10 ppm    | 1 %    |  |

NAA means Neutron Activation Analysis
AA means Atomic Absorption Method

Table 2-14 Sample List of Plant Leaves

| Sample | Name of Samples                   | Sample | Name of Samples   |
|--------|-----------------------------------|--------|-------------------|
| No.    |                                   | No.    |                   |
| 3-0    | der u                             | 6-0    |                   |
| 25-0   | ln:Reubombo                       | 8-0    | ln:Potok          |
| 28-0   | sn:Asteraceae                     | 23-0   | sn:Polypodiaceae  |
| 30-0   | eupatorium inulifolium            | 49-@   | dryopteris sp.    |
| 32-0   |                                   | 3-\$   | 4.1.1             |
| 34+0   |                                   | 6-6    |                   |
| 3-@    |                                   | 8,50   |                   |
| 6-0    |                                   | 23-9   | ln:Lito           |
| 8-0    | military management of the second | 25~§   | sn:Schizaeaceae   |
| 23-0   | ln:Tille                          | 28-6   | lygodium palmatum |
| 25-@   | sn:Poaceae                        | 30-6   |                   |
| 28-0   | imperata cylindrica               | 32-6   |                   |
| 30-@   |                                   | 34-9   | •                 |
| 32-0   |                                   | 49-6   |                   |
| 34-0   |                                   | 3-6    |                   |
| 49-2   |                                   | 6-6    |                   |
| 3-3    |                                   | 8~6    |                   |
| 6-8    |                                   | 23-6   | ln:Tilutilu       |
| 8-0    |                                   | 25~6   | sn:Taecaceae      |
| 23-0   | ln:Kadak                          | 28-@   | tacea pulmata     |
| 25-0   | sn:Dovalliaceae                   | 30-6   |                   |
| 28-3   | nephiolepis sp.                   | 32-6   |                   |
| 30-0   |                                   | 34-6   |                   |
| 32-0   |                                   | 49-6   |                   |
| 34-3   |                                   |        |                   |
| 49-3   |                                   |        |                   |

<sup>%1</sup> in=local\_name. sn=scientific name

#### 4-2 Mercury Gas Geochemistry

## (1) Measuring method

Mercury content in gas from soil were measured using portable-type mercury analyser. The instrument adopted was the Mercury Sniffer model PM-1A of Nippon Instruments Corp. The methodology is gold amalgamation: Mercury in soil gas is caught as a gold-amalgum in a ceramics-based collector. The mercury atoms are released through thermal decomposition. Mercury content is, then measured by cold vapour atomic absorption double beam photometer. Detection limit is 0.01 nanograms. Upper limit is 100 nanograms.

Holes of 45 mm in diameter and 50 cm deep were dug using hand auger. PVC tube was then inserted to the depth of about 40 cm. Mouth of the hole was sealed.

Gas of 1.2 liters in soil was sucked out from hole, and analyzed at the point. Fifty measurements were made. The sample line tested for mercury mesurements was running roughly east-west about 2 km long, and crosscutting to the major quartz vein in the zone ① in the Batuisi prospect (same line as plant leaf sampling). The average interval of the holes was 50 m along the line. While in the vicinity of the vein (within 35 m radius), holes were dug much closer -- about 10 m apart from each other. Map of the mercury gas mesurements is shown in Fig.2-18.

### (2) Results

Results of mercury contents in the soil gas are listed in Table 2-15. The data processing and analysis of the results will be explained in the report of the next phase.

Table 2-15 Results of Mercury Gas Measurements in the Zone ①, Batuisi Prospect

|     | *.                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A STATE OF THE STA |
|-----|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Hole                                                           | Hg-cont                                                                                                                                                                                    | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No.          | Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hg-cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | No.                                                            | (nanogr)                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (nanogr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1   | C73S                                                           | 0.10                                                                                                                                                                                       | Eastern end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26           | C98S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Close to vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2   | C74S                                                           | 0.08                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27           | C99S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Close to vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3   | C75S                                                           | 0.08                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28           | C50S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Close to vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4   | C76S                                                           | 0.07                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29           | C51S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Close to vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5   | C77S                                                           | 0.07                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30           | C52S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Close to vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6   | C78S                                                           | 0.07                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31           | C53S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Close to vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7   | C79S                                                           | 0.07                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32           | C54S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Close to vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8   | C80S                                                           | 0.05                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33           | C55S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9   | C81S                                                           | 0.06                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 34         | C56S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10  | C82S                                                           | 0.05                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35           | C57S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11  | C83S                                                           | 0.06                                                                                                                                                                                       | ren esta e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36           | C58S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12  | C84S                                                           | 0.05                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37           | C59S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13  | C85S                                                           | 0.04                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38           | C60S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14  | C86S                                                           | 0.05                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39           | C61S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15  | C87S                                                           | 0.04                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40           | C62S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16  | C88S                                                           | 0.03                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41           | C63S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17  | C89S                                                           | 0.05                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42           | C64S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18  | C90S                                                           | 0.04                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43           | C65S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19  | C91S                                                           | 0.05                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44           | C66S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20  | C92S                                                           | 0.04                                                                                                                                                                                       | 1 4 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45           | C67S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21  | C93S                                                           | 0.05                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46           | C68S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22  | C94S                                                           | 0.04                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47           | C69S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23  | C95S                                                           | 0.03                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48           | C70S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24  | C96S                                                           | 0.04                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49           | C71S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25  | C97S                                                           | 0.04                                                                                                                                                                                       | Close to vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50           | C72S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Western end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | No. 1 C73S 2 C74S 3 C75S 4 C76S 5 C77S 6 C78S 7 C79S 8 C80S 9 C81S 10 C82S 11 C83S 12 C84S 13 C85S 14 C86S 15 C87S 16 C88S 17 C89S 18 C90S 19 C91S 20 C92S 21 C93S 22 C94S 23 C95S 24 C96S | No.         (nanogr)           1         C73S         0.10           2         C74S         0.08           3         C75S         0.08           4         C76S         0.07           5         C77S         0.07           6         C78S         0.07           7         C79S         0.07           8         C80S         0.05           9         C81S         0.06           10         C82S         0.05           11         C83S         0.06           12         C84S         0.05           13         C85S         0.04           14         C86S         0.05           15         C87S         0.04           16         C88S         0.03           17         C89S         0.05           18         C90S         0.04           19         C91S         0.05           20         C92S         0.04           21         C93S         0.05           22         C94S         0.04           23         C95S         0.03           24         C96S         0.04     < | No. (nanogr) | No.       (nanogr)         1       C73S       0.10       Eastern end       26         2       C74S       0.08       27         3       C75S       0.08       28         4       C76S       0.07       29         5       C77S       0.07       30         6       C78S       0.07       31         7       C79S       0.07       32         8       C80S       0.05       33         9       C81S       0.06       34         10       C82S       0.05       35         11       C83S       0.06       36         12       C84S       0.05       37         13       C85S       0.04       38         14       C86S       0.05       39         15       C87S       0.04       40         16       C88S       0.03       41         17       C89S       0.05       42         18       C90S       0.04       43         19       C91S       0.05       44         20       C92S       0.04       45         21       C93S       < | No.       (nanogr)       No.         1       C73S       0.10       Eastern end       26       C98S         2       C74S       0.08       27       C99S         3       C75S       0.08       28       C50S         4       C76S       0.07       29       C51S         5       C77S       0.07       30       C52S         6       C78S       0.07       31       C53S         7       C79S       0.07       32       C54S         8       C80S       0.05       33       C55S         9       C81S       0.06       34       C56S         10       C82S       0.05       35       C57S         11       C83S       0.06       36       C58S         12       C84S       0.05       37       C59S         13       C85S       0.04       38       C60S         14       C86S       0.05       39       C61S         15       C87S       0.04       40       C62S         16       C88S       0.03       41       C63S         17       C89S       0.05       42 | No.         (nanogr)         No.         (nanogr)           1         C73S         0.10         Eastern end         26         C98S         0.05           2         C74S         0.08         27         C99S         0.04           3         C75S         0.08         28         C50S         0.09           4         C76S         0.07         29         C51S         0.09           5         C77S         0.07         30         C52S         0.12           6         C78S         0.07         31         C53S         0.15           7         C79S         0.07         32         C54S         0.09           8         C80S         0.05         33         C55S         0.08           9         C81S         0.06         34         C56S         0.08           10         C82S         0.05         35         C57S         0.08           11         C83S         0.06         36         C58S         0.08           12         C84S         0.05         37         C59S         0.08           12         C84S         0.05         39         C61S         0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Eight holes (C975~C54S) are arranged ten meters apart. The other holes are arranged approximately fifty meters apart.

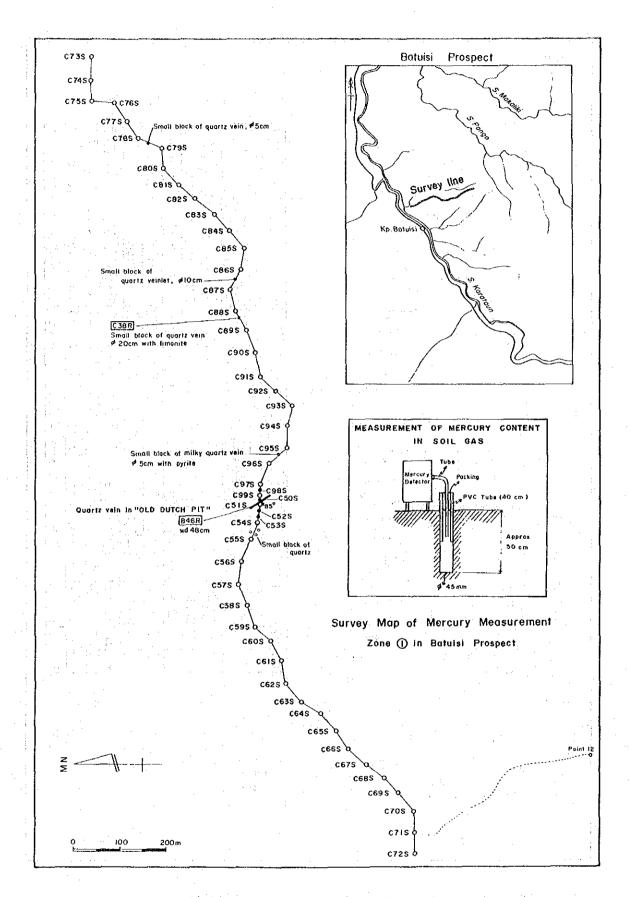



Fig. 2-18 Location Map of Mercury Gase Mesurements

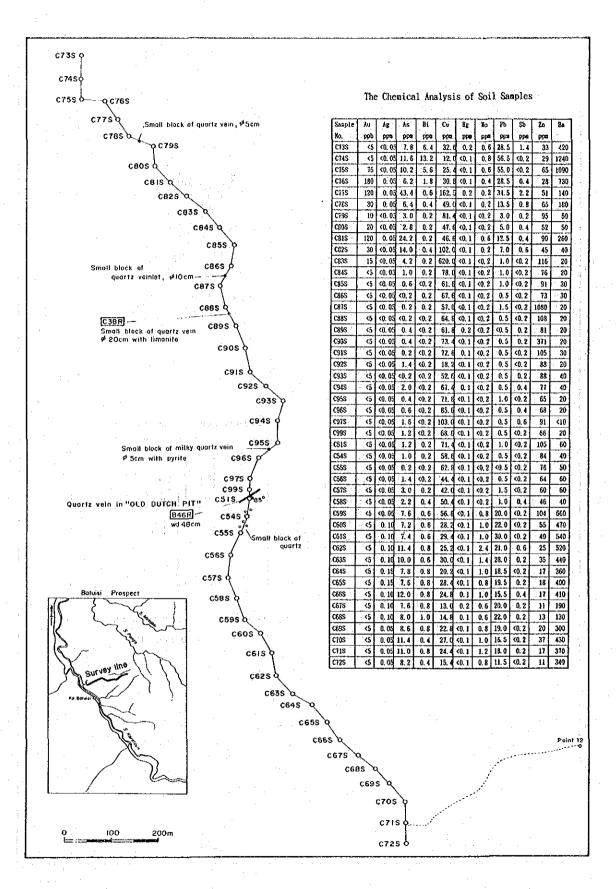



Fig. 2-19 Location Map of Soil Samples at the Hill Northwest of S. Tarawa.

# PART II CONCLUSIONS AND RECOMMENDATIONS

# PART III CONCLUSIONS AND RECOMMENDATIONS

#### Chapter 1 Conclusions

The first phase exploration in the Toraja area consisted of satellite imergery photogeological interpretation, regional geological and geochemical survey, semi-detailed geological and geochemical survey, and preliminary works for plant leaf biogeochemistry and mercury gas geochemistry. Because of the limited time of the first phase, interpretations and discussions have been made only for photogeology, geology, and mineralization of the survey area. Results of geochemistry will be discussed in the report of the next phase.

Prior to the survey, three potential mineralizations in the survey area were picked up. Those were; primary gold mineralization, massive sulphide mineralization, and porphyry copper-gold mineralization.

In the course of the regional survey, no positive indication of the latter two mineralizations has been found. Consequently they were eliminated from the target for exploration.

the contract of the case of the contract of th

the end of the first of the second section is a second

Indications of primary gold mineralization were caught at several places in the northwestern part of the survey area, and semi-detailed geological survey and geochemical sampling were carried out in two prospects — Bau and Batuisi. The indications which show primary gold mineralization are; ① occurrence of gold in pan concentrates, ② distribution of floats of vein quartz, and ③ outcrops of quartz veins.

In those prospects, distributions of gold, cinnabar, and some sulphide minerals (such as chalcopyrite, arsenopyrite, and galena) in pan concentrates are closely related to each other forming "panning anomalies". Distribution of quartz veins and quartz floats overlaps on those anomalies in a broad scale.

Quartz veins generally contain a small amount of sulphide minerals. Pyrite, arsenopyrite, chalcopyrite, sphalerite, and galena were observed as primary minerals under the microscope. Gold and silver minerals have not been found in quartz so far.

Based on those evidences, it was assumed that the source of gold in pan concentrates might be quartz veins/networks intensively developed at the upper reaches of creeks in the prospects.

31 samples of quartz veins and quartz floats were collected from all over

the survey area and provided for assaying this time. The results were disappointing. Almost all samples showed very low gold values. Assay has not proven the origin of gold yet.

Petrography, ore microscopy and X-ray diffraction analysis showed several characteristic features of mineralization in this area; ① metasediments hosted. ② intensive development of massive quartz veins, ③ associated with sulphide minerals. ④ lack of silver mineral, and ⑤ hydrothermal alteration mainly composed of silicification and chloritization. These features suggest that the gold mineralization in this area may be different from the typical epithermal gold mineralization.

Fissure patterns of quartz veins show the dominant NNW trend in both Bau and Batuisi prospects. It was interpreted as an aggregate of veins arranged en echelon of NNW trend, though overall arrangement of the zones tended to be NW direction in the Batuisi prospect.

Photogeological analysis using satellite imergery showed that the principal direction produced by the emplacement of the Mamasa granite might be NNE to N-S in the northwestern area. Anticlinorium recognized through the geological survey has an axis of N-S direction, and was interpreted to be the product of the granite intrusion. Whereas the patterns of quartz veins are different from the above structure. Any evidence genetically connecting the vein formation with the emplacement of granite bodies has not been found so far. Mechanism of vein formation is one of the important theme to be investigated in the next stage work.

Anyhow at this stage, the source of gold in pan concentrates has not been identified. It is supposed that gold could be contained either in the quartz veins/networks or in the alteration zones adjacent to veins. Samples collected in the prospects this time were limited. Only small part was tested. It is not sufficient for finding and delineating ore zone, compared to the extensive development of quartz veins/networks in the prospects. Much detailed and minute sampling is required for identifing primary gold mineralization. The next phase exploration must be aimed at finding primary gold mineralization and delineating the distribution of ore within the areas of extensive quartz veinning.

As the results of the regional and semi-detailed survey in the first phase exploration, northwestern area of approximately 150 km<sup>2</sup> including both Bau and Batuisi prospects is selected for the next stage exploration.

The data processing and statistical analysis of the geochemical survey will be made in the succeeding period. It is expected to reveal the figure of geochemical structure of gold mineralization in the prospects.

Sentition of the second of the second

Sampling of plant leaves for the application test of plant leaf biogeochemistry was made in the Batuisi prospect. Measurement of mercury content of soil gas in the soil sampled holes was also conducted along the same line of biogeochemical sampling. The results will be discussed in the next phase report.

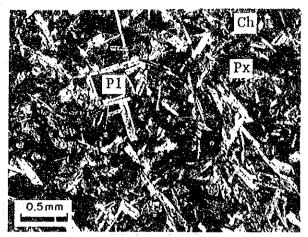
## Chapter 2 Recommendations for the Second Phase

As the results of this year's survey, three areas have been picked up for the next phase exploration prospects. Those are ; ① Batuisi prospect, ② Bau prospect, and ③ S. Lebutang and its tributaries including S. Taroto.

- ① In the Batuisi prospect, central part of the intensive quartz veinning zone will be checked at first. Detailed survey mainly comprizing gridding, geological survey, and soil sampling is recommended in the prospect. Trenching will be effective for prospecting the nature of primary gold mineralization.
- ② In the Bau prospect, detailed survey mainly comprizing geological survey and soil sampling is also recommended. Topographic condition must be considered in the survey programme.
- (3) Along S. Lebutang and its tributaries, semi-detailed level of survey consisting of geological survey, pan concentrate sampling, and soil sampling is recommended. Amount and density of samples for assaying must be significant enough for identifing gold mineralization.

# REFERENCES

## REFERENCES

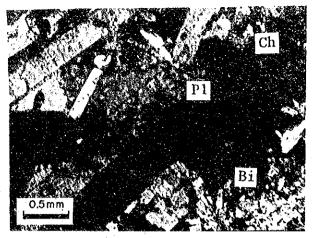

- Bemmelen, R. W. van, 1949: The Geology of Indonesia, Vol. IA. General Geology, Govn. Printing Office, The Hague, 732pp.
- Carlile, J.C., Digdowirogo, S., and Darius, K., 1990, Geological setting, characteristics and regional exploration for gold in the volcanic arcs of North Sulawesi, Indonesia: Jour. Geochem. Expl., v.35, 105-140.
- Djumhani, 1981, Metallic mineral deposits of Indonesia, A metallogenic approach: Report of Geological Survey of Japan, n.261, 107-124.
- Hamilton, W., 1979, Tectonics of the Indonesian region: U.S.Geol.Surv., Prof.Pap., 1078, 345pp.
- Ichihara, S., Yaya, S., and Koswara, Y., 1979: Survey Report on Sangkaropi and Rumanga Ore Deposits, Tana Toraja, Sulawesi (unpublished), 17pp.
- Katili, J.A., 1978, Past and present geotectonic position of Sulawesi, Indonesia: Tectonophysics, v.45, 289-322.
- Lowder, G.G., and Dow, J.A.S., 1978, Geology and exploration of porphyry copper deposits in North Sulawesi, Indonesia: Econ. Geol., v.73, 628-644.
- Priadi, B., et al., 1991, Tertiary and Quaternary magmatism in central Sulawesi: Chronological and petrologic constraints: The proceedings of the Silver Jubilee Symposium, Yogyakarta, Sept., 1991.
- Sato, K., and Ishihara, S., 1983, Chemical composition and magnetic susceptibility of the Kofu granitic complex: Bull.Geol.Surv.Japan, v.34, 413-427.
- Silberman, M.L., and Berger, B.R., 1985. Relationship of trace-element patterns to alteration and morphology in epithermal precious-metal deposits: Geology and Geochemistry of Epithermal Systems, Reviews in Economic Geology, v.2, 203-232.
- Sukamto.R., 1975: Geological map of Indonesia, Sheet VIII, Ujung Pandang, scale 1:1,000,000, Geol.Surv.Indonesia.

- Sukamto,R., 1978, The structure of Sulawesi in the light of plate tectonics: In Proc.3rd Region.Conf.Geol.Miner.Res.SE Asia, Jakarta, 1975, Indonesian Assoc. Geologists, 121-141.
- Sunarya, Y., 1989, Overview of gold exploration and exploitation in Indonesia: Geol.Indonesia., v.12, 345-357.
- Tayler, D., and van Leeuwen, T., 1980, Porphyry-type deposits in Southeast Asia: Mining Geology Special Issue, n.8, 95-116.
- Yoshida, T., Hasbullah, C., and Ohtagaki, T., 1982. Kuroko-type deposits in Sangkaropi area, Sulawesi, Indonesia: Mining Geology, v.32, 369-377.

See a constitution of the contract of the cont

## **PHOTOGRAPHS**

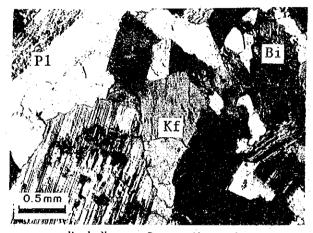
Photo. 1 Photomicrographs of Thin Sections




Rock Name : Dolerite (K1)

Sample No.: B21R

Locality : S. Balimbing


(Crossed Nicol)



Rock Name : Diorite (Tmk)

Sample No.: C13R Locality : S. Kakea

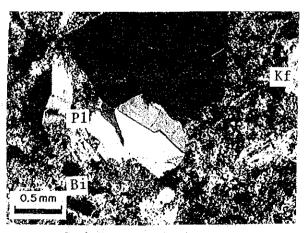
(Crossed Nicol)



Rock Name : Quartz Monzonite (Tmg)

Sample No.: C34R Locality : S. Karate (Crossed Nicol) P1

Hb

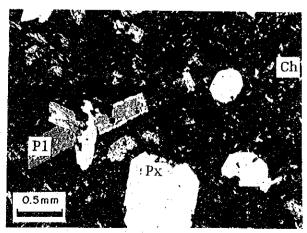

Ch

Rock Name : Andesite (Dyke)

Sample No.: A29R

Locality : S. Karataun

(Crossed Nicol)

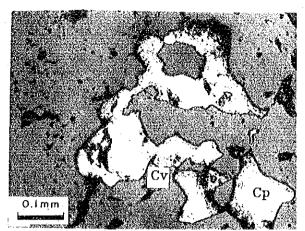



Rock Name : Dacite (Toml)

Sample No.: A3R

Locality : S. Marampa

(Crossed Nicol)

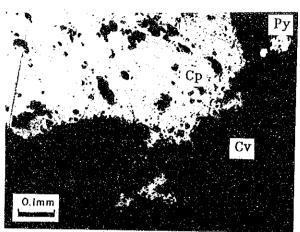



Rock Name : Andesite (Tmt)

Sample No.: D7R
Locality : S. Uroh
(Crossed Nicol)

Abbreviations: Qz;Quartz, Pl;Plagioclase, Kf;Potash Feldspar, Bi;Biotite Hb;Hornblende, Px;Pyroxene, Ch;Chlorite,

## Photo. 2 Photomicrographs of Ores

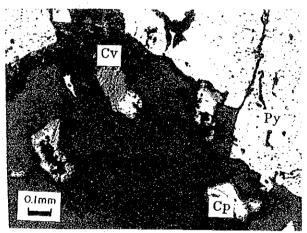



Minerals : Cp-Cv(-Py)

Sample No.: A31R

Locality : S. Tarawa

(Open Nicol)

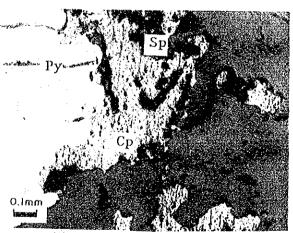



Minerals : Cp-Cv(-Py)

Sample No.: B23R

Locality : S. Salupoling

(Open Nicol)




Minerals : Py-Cp-Cv

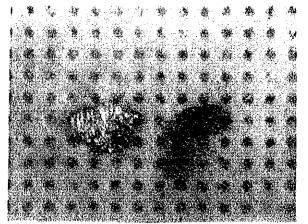
Sample No.: B46R

Locality : NW of S. Tarawa

(Open Nicol)



Minerals : Sp-Py(-Cp)

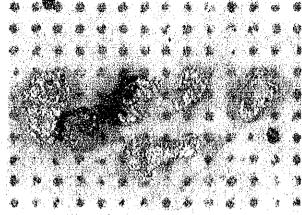

Sample No.: E66R

Locality : S. Malela

(Open Nicol)

Abbreviations: Py; Pyrite, Cp; Chalcopyrite, Sp; Sphalerite, Cv; Covelline

Photo. 3 Photomicrographs of Gold and Heavy Minerals

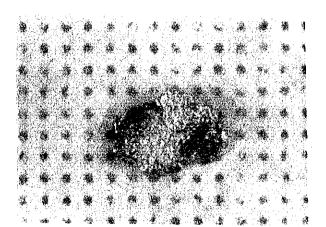



Minerals : Gold (300micron)

& Iron Oxide

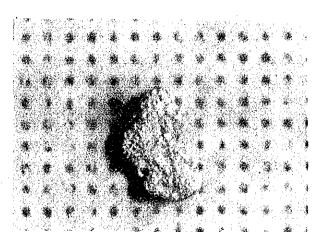
Sample No.: A3P

Locality : S. Karataun




Minerals : Gold(150~

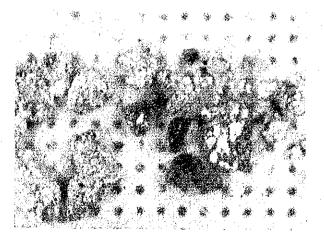
400micron)


Sample No.: ASP

Locality : S. Karataun



Minerals : Gold (500micron)

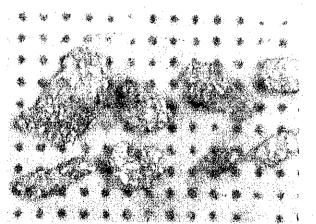

Sample No.: A24P Locality : S. Bullo



Minerals : Gold(500micron)

Sample No : B27P

Locality : S. Balimbing




Minerals : Gold (50-400mic)

& Cinnabar

Sample No.: B35P

Locality : S. Lebutang



Minerals : Gold(75-

500micron)

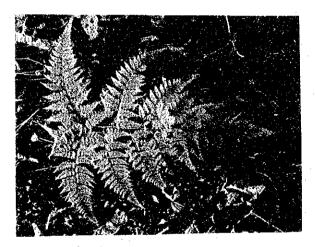
Sample No.: AP48

Locality : S. Bituwe

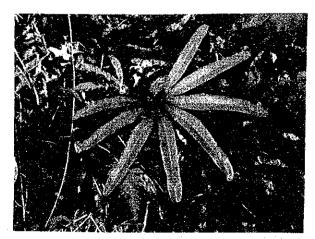
₹ Backing grid 100 micron

Photo. 4 Photographs of Plant Leaves

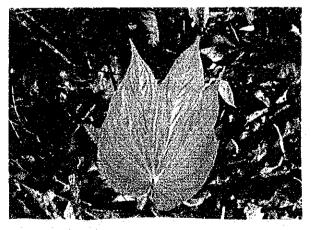



In:Reubombo sn:Asteraceae eupatorium inulifolium




ln:Tille sn:Poaceae imperata cylindrica




in:Kadak sn:Dovalliaceae nephiolepis sp.



ln:Potok sn:Polypodiaceae dryopteris sp.



In:Lito sn:Schizaeaceae lygodium palmatum



ln:Tilutilu sn:Taecaceae tacea pulmata

## APPENDICES

App. 1 Results of Chemical Analysis of Stream Sediments (1/21)

| Mo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample     | Au      | Ag               | Aś    | Bi     | Cu      | Hg   | Ио     | Pb      | Şb   | Zn          | Ba                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|------------------|-------|--------|---------|------|--------|---------|------|-------------|----------------------|
| A000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | '       | I                |       | 1.0    |         | l    | l .    |         |      |             | 1.0                  |
| Mone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |         |                  |       |        |         |      |        |         |      | <del></del> |                      |
| A6003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |         | . <del> </del> - |       |        |         |      |        |         | 1    |             |                      |
| Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |         |                  |       |        |         |      |        |         |      |             |                      |
| Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |         |                  |       |        |         |      |        |         |      |             | {· · · · · · · · · · |
| MODG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |         |                  |       |        |         |      |        |         | }    |             | }                    |
| MOOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |         |                  |       | ****** |         |      |        |         |      |             | {                    |
| MOBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |         |                  |       |        | ·       |      |        |         |      | <b></b>     |                      |
| MO09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |         |                  |       |        |         |      |        |         | }    |             |                      |
| MO10         C5         C4,055         2.4         0.4         3.6         C1,1         0.2         15.5         C0,2         43         1500           A011         C5         C0,05         3.6         1.8         4.2         C0,1         <0.2         17.5         0.2         48         1420           A012         C5         <0.05         2.6         0.2         4.8         C0,1         <0.2         17.5         0.2         49         1420           A013         C5         <0.05         2.8         0.6         0.2         0.1         <0.2         11.0         0.2         24         2150          22         17.0         0.2         24         21560           A015         C5         <0.05         2.4         0.6         3.6         <0.1         <0.2         18.0         <0.2         47         1480           A016         C5         <0.05         2.8         0.6         4.6         <0.1         <0.2         21.0         0.2         47         1480           A019         <5         <0.05         2.8         0.4         3.4         <0.1         <0.2         21.0         0.2         47         1480 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                              |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A011         C5         C0.05         3.6         1.8         4.2         C0.1         C0.2         17.5         0.2         49         1420           A012         C5         C0.05         2.6         0.2         4.8         C0.1         0.2         19.0         0.2         70         1330           A013         C5         C0.05         2.8         0.6         4.0         C0.1         C0.2         11.0         0.2         42         1560           A014         C5         C0.05         2.2         8.0         4.2         C0.1         1.0         2.1         1.0         0.2         42         1560           A016         C5         C0.05         2.2         4.0         6.0         1.0         1.0         2.1         1.0         0.2         47         1.480           A016         C5         C0.05         2.8         0.0         3.6         C0.1         C0.2         17.0         0.2         47         1480           A018         C5         C0.05         2.8         0.0         3.4         0.1         C0.2         17.5         0.2         47         1480           A021         C5         C0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         | 1                |       |        |         |      |        |         | <0.2 | ·           |                      |
| M012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A013         C5         C0.05         2.8         0.6         4.0         C0.1         C0.2         17.0         0.2         42         1560           A014         C5         C0.05         2.8         0.4         2.6         C0.1         C0.2         11.0         C0.2         32         720           A015         G5         C0.05         2.4         0.6         3.6         C0.1         C0.2         11.0         C0.2         47         1480           A016         C5         C0.05         2.4         0.6         3.6         C0.1         C0.2         17.0         0.2         47         1480           A018         C5         C0.05         1.8         0.4         6.0         C0.1         C0.2         22.0         0.2         247         1480           A020         C5         C0.05         0.8         C0.2         2.6         C0.1         C0.2         22.0         C0.2         25         90           A021         C5         C0.05         3.8         0.4         3.4         C0.1         C0.2         15.5         C0.2         40         1580           A022         C5         C0.05         3.8         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A014         <5         <0.05         2.8         0.4         2.6         <0.1         <0.2         11.0         <0.2         32         720           A015         <5         <0.05         2.6         0.2         4.2         <0.1         0.2         18.0         <0.2         47         1480           A016         <5         <0.05         2.4         0.6         3.6         <0.1         <0.2         17.0         <0.2         42         1520           A018         <5         <0.05         3.0         0.6         4.6         <0.1         <0.2         21.7         0.2         47         1480           A019         <5         <0.05         1.6         0.4         6.0         <0.1         <0.2         21.0         <0.2         550         900           A021         <5         <0.05         3.8         <0.2         2.6         <0.1         <0.2         13.0         <0.2         40         1520           A022         <5         <0.05         3.2         0.4         4.2         0.1         0.2         17.5         0.2         43         1540           A023         <5         <0.05         3.2         0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [          |         |                  |       |        |         |      |        |         | }    |             |                      |
| A015         \$\rightarrow{\circ}\$         \$\rightarrow{\circ}\$ |            |         |                  |       |        |         |      |        |         |      |             | <b>{</b>             |
| A016         <5         CO. 05         2.4         0.6         3.6         CO. 1         <0.2         17.0         <0.2         42         1520           A018         <5         CO. 05         3.0         0.6         4.6         CO. 1         <0.2         17.0         0.2         47         1480           A019         <5         CO. 05         1.6         0.4         6.0         CO. 1         <0.2         22.0         <0.2         250         900           A020         <5         CO. 05         0.8         CO. 2         2.6         CO. 1         <0.2         13.0         <0.2         29         780           A021         <5         CO. 05         2.8         0.4         3.4         CO. 1         <0.2         17.5         CO. 2         40         1530           A022         <5         CO. 05         3.2         0.4         4.2         CO. 1         0.2         17.5         CO. 2         40         1530           A023         <5         CO. 05         3.2         0.4         4.2         CO. 1         0.2         17.5         CO. 2         44         1520           A024         <5         CO. 05         3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |         |                  |       |        |         |      |        | ******* |      |             | {                    |
| A018         < 5         < 0.05         3.0         0.6         4.6         < 0.1         < 0.2         < 17.0         0.2         47         1480           A019         < 5         < 0.05         1.6         0.4         6.0         < 0.1         < 0.2         22.0         < 0.2         50         900           A020         < 5         < 0.05         0.8         < 0.2         2.6         < 0.1         < 0.2         13.0         < 0.2         29         780           A021         < 5         < 0.05         3.2         0.4         4.2         0.1         0.2         15.5         < 0.2         40         1530           A022         < 5         < 0.05         3.2         0.4         4.2         0.1         0.2         17.5         0.2         43         1540           A023         < 5         < 0.05         3.2         0.4         4.2         0.1         0.2         17.5         0.2         43         1540           A024         < 5         < 0.05         3.6         0.6         4.4         < 0.1         0.2         18.0         0.2         44         4122           A025         < 5         0.05         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |         | v= v=======      |       |        | ******* |      |        |         |      |             |                      |
| A019         C5         C0.05         1.6         0.4         6.0         C0.1         C0.2         22.0         C0.2         25         50         900           A020         C5         C0.05         0.8         C0.2         2.6         C0.1         C0.2         13.0         C0.2         29         780           A021         C5         C0.05         2.8         0.4         3.4         C0.1         C0.2         15.5         C0.2         40         1530           A022         C5         C0.05         3.2         0.4         4.2         0.1         0.2         17.5         0.2         43         1540           A023         C5         C0.05         3.2         0.4         4.2         C0.1         0.2         17.5         C0.2         44         1520           A024         C5         C0.05         6.6         0.8         4.4         C0.1         0.2         11.5         0.2         43         1430           A025         C5         C0.05         18.6         0.8         0.2         0.1         0.4         37.5         0.2         45         1430           A026         C5         0.05         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A020         <5         <0.05         0.8         <0.2         2.6         <0.1         <0.2         13.0         <0.2         29         780           A021         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |         |                  |       | ****** |         |      |        |         |      |             |                      |
| A021         C5         C0.05         2.8         0.4         3.4         C0.1         C0.2         15.5         C0.2         40         1530           A022         C5         C0.05         3.2         0.4         4.2         0.1         0.2         17.5         0.2         43         1540           A023         C5         C0.05         3.2         0.4         4.2         C0.1         0.2         17.5         0.2         44         1520           A024         C5         C0.05         6.6         0.8         4.4         -0.1         0.2         18.0         0.2         46         1430           A026         C5         C0.05         3.6         0.8         4.4         <0.1         <0.2         20.5         2.6         48         940           A026         C5         0.05         18.6         2.2         7.2         0.1         0.4         37.5         0.2         45         1360           A027         C5         0.05         18.6         2.2         7.2         0.1         0.4         37.5         0.2         45         1360           A028         C5         0.05         18.6         1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | {ii-i-i    |         | }i               |       |        |         |      |        |         |      |             |                      |
| A022         C5         C0.05         3.2         0.4         4.2         0.1         0.2         17.5         0.2         43         1540           A023         C5         C0.05         3.2         0.4         4.2         <0.1         0.2         17.5         <0.2         44         1520           A024         C5         C0.05         6.6         0.8         4.4         <0.1         <0.2         18.0         0.2         46         1430           A026         C5         C0.05         3.0         6.6         8.6         0.2         0.6         49.5         0.4         44         1420           A026         C5         0.05         18.6         2.2         7.2         0.1         0.4         37.5         0.2         45         1360           A027         C5         0.05         18.6         2.2         7.2         0.1         0.4         37.5         0.2         45         1360           A028         C5         0.05         18.6         1.6         6.6         0.2         0.4         22.1         5         0.4         44         1280           A0330         C5         0.05         33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A023         < 5         < 0.05         3.2         0.4         4.2         < 0.1         0.2         17.5         < 0.2         44         1520           A024         < 5         < 0.05         2.8         0.6         4.4         0.1         0.2         18.0         0.2         46         1430           A025         < 5         < 0.05         6.6         0.8         4.4         < 0.1         < 0.2         20.5         2.6         48         940           A026         < 5         0.05         30.8         5.6         8.6         0.2         0.6         49.5         0.4         44         1420           A027         < 5         0.05         18.6         2.2         7.2         0.1         0.4         37.5         0.2         45         1360           A028         < 5         0.05         18.6         1.6         6.6         0.2         0.4         43.1         0.2         49         1280           A030         < 5         0.05         18.6         1.6         6.6         0.2         0.4         21.5         0.2         49         1280           A031         < 5         0.05         12.6         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A024         <5         <0.05         2.8         0.6         4.4         0.1         0.2         18.0         0.2         48         1430           A025         <5         <0.05         6.6         0.8         4.4         <0.1         <0.2         20.5         2.6         48         940           A026         <5         0.05         30.8         5.6         8.6         0.2         0.6         49.5         0.4         44         1420           A027         <5         0.05         18.6         2.2         7.2         0.1         0.4         37.5         0.2         45         1360           A028         <5         0.05         18.6         1.6         6.6         0.2         0.4         21.5         0.4         44         1280           A029         <5         0.05         18.6         1.6         6.6         0.2         0.4         21.5         0.4         44         1280           A030         <5         <0.05         12.6         1.0         5.4         <0.1         0.2         18.5         0.2         79         1180           A031         <5         <0.05         12.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ••••       |         |                  |       |        |         |      | ****** |         |      |             |                      |
| A025         C5         C0.05         G. 6         0.8         4.4         C0.1         C0.2         20.5         2.6         48         940           A026         C5         0.05         30.8         5.6         8.6         0.2         0.6         49.5         0.4         44         1420           A027         C5         0.05         18.6         2.2         7.2         0.1         0.4         37.5         0.2         45         1360           A028         C5         0.05         18.4         2.4         6.6         0.1         0.4         33.0         0.2         49         1280           A029         C5         0.05         18.6         1.6         6.6         0.2         0.4         21.5         0.4         44         1280           A030         C5         0.05         35.2         26.6         12.0         0.1         1.0         98.5         0.2         79         1180           A031         C5         0.05         12.0         1.0         5.4         0.1         0.2         18.5         0.2         61         1200           A033         C5         0.05         12.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A026         5         0.05         30.8         5.6         8.6         0.2         0.6         49.5         0.4         44         1420           A027         5         0.05         18.6         2.2         7.2         0.1         0.4         37.5         0.2         45         1360           A028         5         0.05         18.4         2.4         6.6         0.1         0.4         33.0         0.2         49         1280           A029         5         0.05         18.6         1.6         6.6         0.2         0.4         21.5         0.4         44         1280           A030         5         0.05         35.2         26.6         12.0         0.1         1.0         98.5         0.2         79         1180           A031         5         0.05         12.6         1.0         5.4         0.1         0.2         18.5         0.2         35         1340           A032         5         0.05         12.0         1.0         9.8         0.1         0.2         27.5         0.2         61         1200           A033         5         0.05         12.0         1.0         0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A027         <5         0.05         18.6         2.2         7.2         0.1         0.4         37.5         0.2         45         1360           A028         <5         0.05         18.4         2.4         6.6         0.1         0.4         33.0         0.2         49         1280           A029         <5         0.05         18.6         1.6         6.6         0.2         0.4         21.5         0.4         44         1280           A030         <5         <0.05         35.2         26.6         12.0         <0.1         1.0         98.5         0.2         79         1180           A031         <5         <0.05         12.6         1.0         5.4         <0.1         0.2         18.5         <0.2         35         1340           A032         <5         <0.05         12.0         1.0         9.8         <0.1         0.2         27.5         0.2         61         1200           A033         <5         <0.05         14.4         1.0         10.0         0.2         0.2         28.0         0.2         60         1300           A034         <5         <0.05         4.2         0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ;          |         |                  |       |        |         |      |        |         |      |             |                      |
| A028         <5         0.05         18.4         2.4         6.6         0.1         0.4         33.0         0.2         49         1280           A029         <5         0.05         18.6         1.6         6.6         0.2         0.4         21.5         0.4         44         1280           A030         <5         <0.05         35.2         26.6         12.0         <0.1         1.0         98.5         0.2         79         1180           A031         <5         <0.05         12.6         1.0         5.4         <0.1         0.2         18.5         <0.2         35         1340           A032         <5         <0.05         12.0         1.0         9.8         <0.1         0.2         28.5         0.2         35         1340           A033         <5         <0.05         11.4         1.0         10.0         0.2         0.2         28.0         0.2         60         1300           A034         <5         <0.05         7.4         0.8         8.2         0.1         0.2         22.5         0.2         45         1260           A035         <5         <0.05         9.4         0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A029         <5         0.05         18.6         1.6         6.6         0.2         0.4         21.5         0.4         44         1280           A030         <5         <0.05         35.2         26.6         12.0         <0.1         1.0         98.5         0.2         79         1180           A031         <5         <0.05         12.6         1.0         5.4         <0.1         0.2         18.5         <0.2         35         1340           A032         <5         <0.05         12.0         1.0         9.8         <0.1         0.2         27.5         0.2         61         1200           A033         <5         <0.05         11.4         1.0         10.0         0.2         0.2         28.0         0.2         60         1300           A034         <5         <0.05         7.4         0.8         8.2         0.1         0.2         22.5         0.2         45         1260           A035         <5         <0.05         4.2         0.8         8.6         0.2         0.2         22.5         0.2         32         1270           A036         <5         <0.05         5.2         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A030         5         <0.05         35.2         26.6         12.0         <0.1         1.0         98.5         0.2         79         1180           A031         <5         <0.05         12.6         1.0         5.4         <0.1         0.2         18.5         <0.2         35         1340           A032         <5         <0.05         12.0         1.0         9.8         <0.1         0.2         28.5         0.2         61         1200           A033         <5         <0.05         11.4         1.0         10.0         0.2         0.2         28.0         0.2         60         1300           A034         <5         <0.05         7.4         0.8         8.2         0.1         0.2         22.5         0.2         45         1260           A035         <5         <0.05         4.2         0.8         8.6         0.1         <0.2         12.5         <0.2         32         1270           A036         <5         <0.05         9.4         0.8         8.6         0.2         0.2         24.0         0.4         52         1280           A037         <5         <0.05         4.6         0.4 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A031         C5         C0.05         12.6         1.0         5.4         C0.1         0.2         18.5         C0.2         35         1340           A032         C5         C0.05         12.0         1.0         9.8         C0.1         0.2         27.5         0.2         61         1200           A033         C5         C0.05         11.4         1.0         10.0         0.2         0.2         28.0         0.2         60         1300           A034         C5         C0.05         7.4         0.8         8.2         0.1         0.2         22.5         0.2         45         1260           A035         C5         C0.05         4.2         0.8         8.2         0.1         C0.2         12.5         C0.2         32         1270           A036         C5         C0.05         9.4         0.8         8.6         0.2         0.2         24.0         0.4         52         1280           A037         C5         C0.05         5.2         1.0         23.0         C0.1         0.2         25.0         0.2         82         1340           A038         C5         C0.05         4.6         0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A032         <5         <0.05         12.0         1.0         9.8         <0.1         0.2         27.5         0.2         61         1200           A033         <5         <0.05         11.4         1.0         10.0         0.2         0.2         28.0         0.2         60         1300           A034         <5         <0.05         7.4         0.8         8.2         0.1         0.2         22.5         0.2         45         1260           A035         <5         <0.05         4.2         0.8         5.8         <0.1         <0.2         12.5         <0.2         32         1270           A036         <5         <0.05         9.4         0.8         8.6         0.2         0.2         24.0         0.4         52         1280           A037         <5         <0.05         5.2         1.0         23.0         <0.1         0.2         25.0         0.2         82         1340           A038         <5         <0.05         4.6         0.4         22.2         <0.1         0.2         25.0         0.2         86         1320           A040         <5         <0.05         4.8         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |         |                  |       |        |         |      |        |         |      |             |                      |
| A033         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |         |                  |       |        |         |      |        | 27. 5   | 0.2  | 61          | 1200                 |
| A034       <5       <0.05       7.4       0.8       8.2       0.1       0.2       22.5       0.2       45       1260         A035       <5       <0.05       4.2       0.8       5.8       <0.1       <0.2       12.5       <0.2       32       1270         A036       <5       <0.05       9.4       0.8       8.6       0.2       0.2       24.0       0.4       52       1280         A037       <5       <0.05       5.2       1.0       23.0       <0.1       0.2       25.0       0.2       82       1340         A038       <5       <0.05       4.6       0.4       22.2       <0.1       0.2       25.0       0.2       82       1340         A039       <5       <0.05       4.6       0.4       22.2       <0.1       0.2       25.0       0.2       86       1320         A040       <5       <0.05       4.8       1.0       23.8       0.1       0.2       19.0       <0.2       107       1020         A041       <5       <0.05       5.8       1.2       24.2       <0.1       0.2       12.5       0.2       98       1280         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |         |                  |       |        |         |      |        | 28. 0   | 0. 2 | 60          | 1300                 |
| A035         <5         <0.05         4.2         0.8         5.8         <0.1         <0.2         12.5         <0.2         32         1270           A036         <5         <0.05         9.4         0.8         8.6         0.2         0.2         24.0         0.4         52         1280           A037         <5         <0.05         5.2         1.0         23.0         <0.1         0.2         25.0         0.2         82         1340           A038         <5         <0.05         4.6         0.4         22.2         <0.1         0.2         25.0         0.2         82         1340           A039         <5         <0.05         4.4         0.4         19.4         0.1         0.2         19.0         <0.2         107         1020           A040         <5         <0.05         4.8         1.0         23.8         0.1         0.2         22.5         0.2         86         1200           A041         <5         <0.05         5.8         1.2         24.2         <0.1         0.2         14.5         <0.2         91         1180           A042         <5         <0.05         3.4         0.4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.2</td> <td>22.5</td> <td>0. 2</td> <td>45</td> <td>1260</td>                                                                                                                                                                                                                                                                                                                                                                                                            |            |         |                  |       |        |         |      | 0.2    | 22.5    | 0. 2 | 45          | 1260                 |
| A036         <5         <0.05         9.4         0.8         8.6         0.2         0.2         24.0         0.4         52         1280           A037         <5         <0.05         5.2         1.0         23.0         <0.1         0.2         25.0         0.2         82         1340           A038         <5         <0.05         4.6         0.4         22.2         <0.1         0.2         25.0         0.2         86         1320           A039         <5         <0.05         4.4         0.4         19.4         0.1         0.2         19.0         <0.2         107         1020           A040         <5         <0.05         4.8         1.0         23.8         0.1         0.2         19.0         <0.2         107         1020           A041         <5         <0.05         5.8         1.2         24.2         <0.1         0.2         12.5         0.2         86         1200           A042         <5         <0.05         3.4         0.6         14.6         <0.1         0.2         20.5         <0.2         91         1180           A043         <5         <0.05         3.4         0.8<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |         |                  |       |        | 5.8     | <0.1 | <0.2   | 12.5    | <0.2 | 32          | 1270                 |
| A037         <5         <0.05         5.2         1.0         23.0         <0.1         0.2         25.0         0.2         82         1340           A038         <5         <0.05         4.6         0.4         22.2         <0.1         0.2         25.0         0.2         86         1320           A039         <5         <0.05         4.4         0.4         19.4         0.1         0.2         19.0         <0.2         107         1020           A040         <5         <0.05         4.8         1.0         23.8         0.1         0.2         22.5         0.2         86         1200           A041         <5         <0.05         5.8         1.2         24.2         <0.1         0.2         14.5         <0.2         91         1180           A042         <5         <0.05         4.2         0.4         22.0         <0.1         0.2         13.5         <0.2         91         1180           A043         <5         <0.05         3.4         0.6         14.6         <0.1         0.2         13.5         <0.2         63         980           A044         <5         <0.05         3.4         0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |         |                  |       |        |         | 0. 2 |        | 24.0    | 0.4  | 52          | 1280                 |
| A038         <5         <0,05         4,6         0,4         22,2         <0,1         0,2         25,0         0,2         86         1320           A039         <5         <0,05         4,4         0,4         19,4         0,1         0,2         19,0         <0,2         107         1020           A040         <5         <0,05         4,8         1,0         23,8         0,1         0,2         22,5         0,2         86         1200           A041         <5         <0,05         5,8         1,2         24,2         <0,1         0,2         14,5         <0,2         91         1180           A042         <5         <0,05         4,2         0,4         22,0         <0,1         0,2         14,5         <0,2         91         1180           A043         <5         <0,05         3,4         0,6         14,6         <0,1         0,2         13,5         <0,2         68         1380           A044         <5         <0,05         3,4         0,6         14,6         <0,1         0,2         13,5         <0,2         63         980           A044         <5         <0,05         3,4         0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |         |                  |       |        | ~~~~    |      |        | 25.0    | 0. 2 | 82          | 1340                 |
| A039         <5         <0.05         4.4         0.4         19.4         0.1         0.2         19.0         <0.2         107         1020           A040         <5         <0.05         4.8         1.0         23.8         0.1         0.2         22.5         0.2         86         1200           A041         <5         <0.05         5.8         1.2         24.2         <0.1         0.2         14.5         <0.2         91         1180           A042         <5         <0.05         4.2         0.4         22.0         <0.1         0.2         20.5         <0.2         91         1180           A043         <5         <0.05         3.4         0.6         14.6         <0.1         0.2         13.5         <0.2         68         1380           A044         <5         <0.05         3.4         0.6         14.6         <0.1         0.2         13.5         <0.2         63         980           A044         <5         <0.05         3.4         0.8         25.6         <0.1         0.2         23.0         <0.2         87         1320           A045         <5         <0.05         3.2         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |         |                  |       |        |         | <0.1 | 0. 2   | 25. 0   | 0. 2 | 86          | 1320                 |
| A040         <5         <0.05         4.8         1.0         23.8         0.1         0.2         22.5         0.2         86         1200           A041         <5         <0.05         5.8         1.2         24.2         <0.1         0.2         14.5         <0.2         91         1180           A042         <5         <0.05         4.2         0.4         22.0         <0.1         0.2         20.5         <0.2         68         1380           A043         <5         <0.05         3.4         0.6         14.6         <0.1         0.2         13.5         <0.2         63         980           A044         <5         <0.05         3.4         0.8         25.6         <0.1         0.2         23.0         <0.2         87         1320           A045         <5         <0.05         5.2         1.4         27.6         <0.1         0.2         23.0         <0.2         108         1220           A046         <5         <0.05         3.2         0.6         24.6         <0.1         0.2         19.5         <0.2         103         1320           A047         <5         <0.05         3.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0. 2</td><td></td><td>&lt;0.2</td><td>107</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                    |            |         |                  |       |        |         |      | 0. 2   |         | <0.2 | 107         |                      |
| A041         <5         <0.05         5.8         1.2         24.2         <0.1         0.2         14.5         <0.2         91         1180           A042         <5         <0.05         4.2         0.4         22.0         <0.1         0.2         20.5         <0.2         68         1380           A043         <5         <0.05         3.4         0.6         14.6         <0.1         0.2         13.5         <0.2         63         980           A044         <5         <0.05         3.4         0.8         25.6         <0.1         0.2         23.0         <0.2         87         1320           A045         <5         <0.05         5.2         1.4         27.6         <0.1         0.2         23.0         <0.2         108         1220           A046         <5         <0.05         3.2         0.6         24.6         <0.1         0.2         19.5         <0.2         103         1320           A047         <5         <0.05         3.0         0.6         23.4         <0.1         0.2         18.5         <0.2         92         1100           A048         <5         <0.05         4.6         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | ******* | <0.05            |       |        |         | 0.1  | 0. 2   |         | 0. 2 | 86          | 1200                 |
| A042         <5         <0,05         4.2         0.4         22.0         <0.1         0.2         20.5         <0.2         68         1380           A043         <5         <0.05         3.4         0.6         14.6         <0.1         0.2         13.5         <0.2         63         980           A044         <5         <0.05         3.4         0.8         25.6         <0.1         0.2         23.0         <0.2         87         1320           A045         <5         <0.05         5.2         1.4         27.6         <0.1         0.2         23.0         0.2         108         1220           A046         <5         <0.05         3.2         0.6         24.6         <0.1         0.2         19.5         <0.2         103         1320           A047         <5         <0.05         3.0         0.6         23.4         <0.1         0.2         18.5         <0.2         92         1100           A048         <5         <0.05         4.6         1.0         24.8         <0.1         <0.2         26.0         0.2         88         1260           A049         <5         <0.05         15.8         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | ******* |                  |       | *i     |         |      | 0. 2   | 14. 5   | <0.2 | 91          | 1180                 |
| A043         <5         <0.05         3.4         0.6         14.6         <0.1         0.2         13.5         <0.2         63         980           A044         <5         <0.05         3.4         0.8         25.6         <0.1         0.2         23.0         <0.2         87         1320           A045         <5         <0.05         5.2         1.4         27.6         <0.1         0.2         23.0         0.2         108         1220           A046         <5         <0.05         3.2         0.6         24.6         <0.1         0.2         19.5         <0.2         103         1320           A047         <5         <0.05         3.0         0.6         23.4         <0.1         0.2         18.5         <0.2         92         1100           A048         <5         <0.05         4.6         1.0         24.8         <0.1         <0.2         26.0         0.2         88         1260           A049         <5         <0.05         15.8         <0.6         29.6         <0.1         <0.4         <0.2         <0.2         <0.2         109         <570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |         |                  |       |        |         |      | 0. 2   |         | <0.2 | 68          | 1380                 |
| A044         <5         <0.05         3.4         0.8         25.6         <0.1         0.2         23.0         <0.2         87         1320           A045         <5         <0.05         5.2         1.4         27.6         <0.1         0.2         23.0         0.2         108         1220           A046         <5         <0.05         3.2         0.6         24.6         <0.1         0.2         19.5         <0.2         103         1320           A047         <5         <0.05         3.0         0.6         23.4         <0.1         0.2         18.5         <0.2         92         1100           A048         <5         <0.05         4.6         1.0         24.8         <0.1         <0.2         26.0         0.2         88         1260           A049         <5         <0.05         15.8         0.6         29.6         <0.1         0.4         17.5         0.2         109         570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | •••••   |                  |       |        |         |      |        |         | <0.2 | 63          | 980                  |
| A045         <5         <0.05         5.2         1.4         27.6         <0.1         0.2         23.0         0.2         108         1220           A046         <5         <0.05         3.2         0.6         24.6         <0.1         0.2         19.5         <0.2         103         1320           A047         <5         <0.05         3.0         0.6         23.4         <0.1         0.2         18.5         <0.2         92         1100           A048         <5         <0.05         4.6         1.0         24.8         <0.1         <0.2         26.0         0.2         88         1260           A049         <5         0.05         15.8         0.6         29.6         <0.1         0.4         17.5         0.2         109         570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |         |                  |       |        |         |      |        |         | <0.2 | 87          | 1320                 |
| A046       <5       <0.05       3.2       0.6       24.6       <0.1       0.2       19.5       <0.2       103       1320         A047       <5       <0.05       3.0       0.6       23.4       <0.1       0.2       18.5       <0.2       92       1100         A048       <5       <0.05       4.6       1.0       24.8       <0.1       <0.2       26.0       0.2       88       1260         A049       <5       <0.05       15.8       0.6       29.6       <0.1       0.4       17.5       0.2       109       570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |         |                  |       |        |         |      |        |         | 0.2  | 108         | 1220                 |
| A047       <5       <0.05       3.0       0.6       23.4       <0.1       0.2       18.5       <0.2       92       1100         A048       <5       <0.05       4.6       1.0       24.8       <0.1       <0.2       26.0       0.2       88       1260         A049       <5       0.05       15.8       0.6       29.6       <0.1       0.4       17.5       0.2       109       570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |                  | ***** |        |         |      |        |         | <0.2 |             | 1320                 |
| A048     <5     <0.05     4.6     1.0     24.8     <0.1     <0.2     26.0     0.2     88     1260       A049     <5     0.05     15.8     0.6     29.6     <0.1     0.4     17.5     0.2     109     570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |         |                  |       |        |         |      |        |         | }    |             | 1100                 |
| A049 <5 0.05 15.8 0.6 29.6 <0.1 0.4 17.5 0.2 109 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ********** | 4       |                  |       |        |         |      |        |         | 0.2  | 88          | 1260                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |         |                  |       |        |         |      |        |         | 0.2  | 109         | 570                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |         |                  |       | 1.4    |         |      | <0, 2  |         | 0, 2 | 91          | 1160                 |

App. 1 Results of Chemical Analysis of Stream Sediments(2/21)

| Sample | Λu            | Λg    | Λs     | Bi     | Cu    | Ilg   | llo   | Pb    | Şb    | Zn    | Ba    |
|--------|---------------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| No.    | (ppb)         | (ppm) | (ppm)  | (pps)  | (ppm) |
| A051   | ⟨5            | <0.05 | 7. 0   | 2. 2   | 24, 2 | <0.1  | <0, 2 | 24. 5 | 0.2   | 104   | 880   |
| A052   | <5            | <0.05 | 4. 8   | 0.4    | 24. 4 | 0.1   | 0. 2  | 25. 0 | 0.2   | 101   | 1220  |
| A053   | <5            | <0.05 | 9. 2   | 1.0    | 40.6  | <0.1  | 0. 2  | 17. 0 | <0.2  | 166   | 680   |
| A054   | <5            | <0.05 | 4.4    | 1.0    | 26. 2 | <0.1  | <0.2  | 26.5  | 0.2   | 92    | 1200  |
| A055   | <b>√</b> 5    | <0.05 | 6.0    | 2.6    | 23. 0 | <0.1  | <0.2  | 25. 0 | 0.4   | 99    | 1140  |
| A056   | <5            | <0.05 | 7.4    | 1, 4   | 36.0  | <0.1  | 0. 2  | 18. 5 | <0.2  | 149   | 640   |
| A057   | <5            | <0.05 | 4.8    | 0, 6   | 24. 2 | <0.1  | <0.2  | 26. 5 | 0.2   | 88    | 1300  |
| A058   | <5            | <0.05 | 5. 2   | 1.4    | 27.4  | <0.1  | <0.2  | 27. 0 | 0.4   | 87    | 1370  |
| A059   | <5            | <0.05 | 4.8    | 0.8    | 26.2  | <0.1  | <0. 2 | 27.5  | <0.2  | 80    | 1360  |
| A060   | <5            | 0.05  | 15. 2  | 1. 2   | 34. 4 | <0.1  | 0.4   | 18.0  | <0.2  | 134   | 500   |
| A061   | <5            | <0.05 | 4. 2   | 1.6    | 25.4  | <0.1  | <0. 2 | 27.5  | 0. 2  | 87    | 1360  |
| A062   | <5            | <0.05 | 5.0    | 0.8    | 21, 6 | <0.1  | <0.2  | 25. 5 | 0. 2  | 93    | 1200  |
| A063   | <5            | <0.05 | 5. 0   | 0.6    | 26. 4 | <0.1  | <0.2  | 27.0  | 0. 2  | 79    | 1420  |
| A064   | <5            | <0.05 | 4.8    | 1. 6   | 23.6  | <0.1  | <0.2  | 24.0  | <0.2  | 90    | 1430  |
| 1065   | <5            | <0.05 | 2.2    | 0. 2   | 40.0  | <0.1  | 0. 2  | 20.0  | <0.2  | 204   | 1160  |
| A066   | <5            | 0.05  | 9.8    | 0. 2   | 45. 2 | <0.1  | 0.4   | 16.5  | 0.2   | 128   | 580   |
| A067   | <5            | <0.05 | 6.4    | 0. 2   | 43.6  | <0.1  | 0.2   | 15.0  | <0.2  | 156   | 780   |
| A068   | <5            | <0.05 | 5.0    | 0.8    | 23.8  | <0.1  | <0.2  | 26. 0 | <0.2  | 93    | 1220  |
| A069   | <5            | <0.05 | 4.8    | 1. 8   | 25. 2 | <0.1  | <0.2  | 24. 0 | 0.2   | 106   | 1130  |
| A070   | √5            | <0.05 | 4.4    | 2. 2   | 18. 4 | <0. i | <0, 2 | 25. 5 | <0.2  | 122   | 940   |
| A071   | 20            | <0.05 | 0.6    | 0.4    | 55.8  | <0.1  | 0.2   | 13. 5 | <0.2  | 177   | 1200  |
| A072   | <5            | <0.05 | 1.0    | 0. 2   | 60. 4 | <0.1  | 0. 2  | 13. 5 | <0.2  | 151   | 1000  |
| A073   | <5            | <0.05 | 1.2    | 0. 2   | 72.0  | <0.1  | 0, 4  | 27. 5 | <0.2  | : 121 | 2450  |
| A074   |               | <0.05 | 1.8    | 1. 2   | 59. 2 | <0.1  | 0.2   | 33. 0 | <0.2  | 130   | 3500  |
| A075   | <5            | <0.05 | 2.4    | 1.4    | 60.0  | <0.1  | <0.2  | 39. 5 | <0.2  | 102   | 4700  |
| A076   | <5            | <0.05 | 2.6    | 2.0    | 59. 2 | <0.1  | 0.2   | 31. 5 | <0.2  | 101   | 3300  |
| A077   | <5            | <0.05 | 2.4    | 1.6    | 72, 4 | <0.1  | 0.4   | 37. 5 | <0.2  | 87    | 4300  |
| A078   | <b>&lt;</b> 5 | <0.05 | 13.0   | 1.4    | 60. 2 | <0.1  | 0.4   | 32. 0 | 3.4   | 119   | 1900  |
| A079   | <5            | <0.05 | 4.4    | 4.2    | 41.0  | ₹0.1  | <0.2  | 29. 0 | <0.2  | 112   | 3100  |
| A080   | ₹5            | <0.05 | 4.4    | 1.0    | 22. 2 | <0.1  | 0.2   | 46. 5 | <0.2  | 62    | 1100  |
| A081   | <5            | <0.05 | 3.8    | : 0. 8 | 17.0  | <0.1  | 0. 2  | 37. 5 | <0.2  | 53    | 1120  |
| A082   | <5            | <0.05 | 6.2    | 1.0    | 17. 6 | <0.1  | <0.2  | 37. 0 | <0.2  | 40    | 940   |
| A083   | <5            | <0.05 | 5.6    | 3. 2   | 16.0  | <0.1  | <0.2  | 42. 5 | <0.2  | 47    | 1020  |
| A084   | ₹5            | <0.05 | 4.6    | 1.4    | 16.0  | <0.1  | <0.2  | 34. 5 | 0.2   | 46    | 920   |
| A085   | <5            | <0.05 | 5.2    | 1.0    | 15.8  | <0.1  | <0.2  | 35. 5 | <0, 2 | 47    | 1000  |
| A086   | <5            | <0.05 | 6.2    | 3. 0   | 16.8  | <0.1  | <0.2  | 39. 5 | 0.2   | 44    | 940   |
| A087   | <5            | <0.05 | 6.4    | 1. 6   | 32.4  | 0.1   | <0. 2 | 78. 5 | 0. 2  | 100   | 1000  |
| 880A   | <5            | <0.05 | 3.8    | 0.6    | 15. 4 | <0.1  | 0. 2  | 36.0  | <0.2  | 49    | 920   |
| V088   | <5            | <0.05 | 5.6    | 2.4    | 15. 4 | <0.1  | <0.2  | 37. 0 | 0.2   | 48    | 930   |
| A090   | 20            | <0.05 | 6.2    | 3. 2   | 45. 4 | <0.1  | <0.2  | 33. 5 | 0.2   | 65    | 1440  |
| A091   | <5            | 0, 05 | 4.4    | 0.6    | 16. 2 | 0.2   | 0.2   | 33. 5 | 0.4   | 50    | 1000  |
| A092   | ₹5            | <0.05 | 35.0   | 0.6    | 7.8   | <0.1  | 0. 2  | 20.0  | 0.6   | 38    | 700   |
| A093   | <b>&lt;</b> 5 | <0.05 | 38.4   | 0.8    | 7.2   | <0.1  | 0.2   | 20. 5 | 0.6   | 41    | 760   |
| A094   | <5            | <0.05 | 71.8   | 2.2    | 7. 6  | <0, 1 | 0.2   | 23. 0 | 1.2   | 42    | 700   |
| A095   | ₹5            | <0.05 | 63.4   | 4. 2   | 8. 0  | 0.3   | 0.4   | 24. 5 | 1.0   | 45    | 700   |
| A096   | . <5          | 0.05  | 153. 5 | 9. 2   | 11. 2 | 0.1   | 0.4   | 30. 5 | 2.4   | 46    | ÷780  |
| A097   | <5            | <0.05 | 37.6   | 0.6    | 6. 4  | <0.1  | 0.2   | 22. 0 | 0.8   | 35    | 700   |
| A098   | <5            | <0.05 | 31.6   | 0.6    | 6.8   | <0.1  | 0.2   | 20. 5 | 0.6   | 38    | 740   |
| A099   | <5            | <0.05 | 30. 2  | 0.6    | 6, 6  | <0.1  | 0. 2  | 20.0  | 0.6   | 40    | 760   |

App. 1 Results of Chemical Analysis of Stream Sediments(3/21)

| Sample |               | Ag     | ۸s     | Bi .  | Cu    | lig   | Жo    | Pb    | Sb    | 2n    | Ba    |
|--------|---------------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| No.    | (ppb)         | (ppm)  | (ppm)  | (ppp) | (ppm) | (ppm) | (ppa) | (ppm) | (ppm) | (ppa) | (ppm) |
| A100   | <5            | <0.05  | 43.0   | 0.6   | 6.6   | <0.1  | 0. 2  | 21.0  | 0.6   | 38    | 760   |
| A101   | <5            | <0.05  | 47. 2  | 4. 0  | 6. 4  | <0.1  | 0.2   | 23. 0 | 0.8   | 41    | 780   |
| A102   | <5            | <0.05  | 5.2    | 0.6   | 15. 8 | 5. 1  | 0, 2  | 8.0   | 0.4   | 72    | 240   |
| A103   | <5            | <0.05  | 73. 2  | 1.8   | 7.8   | <0.1  | 0.2   | 23. 0 | 0.8   | 37    | 700   |
| A104   | <5            | <0.05  | 37.0   | 1. 0  | 6.4   | <0.1  | 0. 2  | 18.0  | 0.6   | 34    | 760   |
| A105   | ₹5            | <0.05  | 7.4    | 0.8   | 14.8  | 1.7   | 0.2   | 9. 0  | 0.6   | 58    | 200   |
| A106   | <5            | <0.05  | 37.8   | 1.0   | 6.6   | <0.1  | 0. 2  | 21. 5 | 0.6   | 40    | 680   |
| A107   | <5            | <0.05  | 57.0   | 7.6   | 6.4   | 1.1   | 0.2   | 19. 0 | 0.6   | 37    | 720   |
| A108   | <5            | <0.05  | 50. 2  | 0.8   | 6.8   | <0.1  | 0. 2  | 20.0  | 0.8   | 38    | 740   |
| A109   | ∴<5           | <0.05  | 48.6   | 0.6   | 6.6   | <0.1  | 0. 2  | 21.0  | 0.8   | 38    | 840   |
| A110   | <5            | <0.05  | 72, 8  | 0.8   | 6.8   | <0.1  | 0. 2  | 20.5  | 1.0   | 41    | 860   |
| A111   | 450           | <0.05  | 46. 2  | 0.6   | 31. 6 | 0.2   | 0. 2  | 5, 5  | 0.4   | 48    | 300   |
| A112   | <5            | <0.05  | 37.4   | 1.0   | 6.8   | <0.1  | 0.2   | 21.0  | 0.6   | 40    | 740   |
| A113   | <5            | <0.05  | 42.0   | 0.6   | 10.0  | <0.1  | 0, 2  | 17. 5 | 0.8   | 40    | 680   |
| A114   | <5∷           | <0.05  | 25. 4  | 0.4   | 9.4   | <0.1  | 0. 2  | 14.5  | 0.4   | 42    | 720   |
| A115   | <5            | <0.05  | 13.6   | 0.6   | 12. 4 | <0.1  | 0. 2  | 11.5  | 0.2   | 41    | 560   |
| A116   | <5            | <0.05  | 92.6   | 1.6   | 6.6   | <0.1  | 0. 2  | 26. 5 | 1.2   | 43    | 820   |
| A117   | ₹5            | <0.05  | 7.6    | 0.6   | 57. 8 | <0.1  | <0.2  | 9. 5  | 0.4   | 94    | 440   |
| A118   | <5∷           | <0.05  | 3. 6   | 0.6   | 8.6   | <0.1  | <0.2  | 10.0  | <0.2  | 30    | 1280  |
| A119   | <5            | <0.05  | 86.6   | 3. 2  | 7. 0  | <0.1  | 0. 2  | 26. 5 | 1. 2  | 39    | 800   |
| A120   | <5.           | <0.05  | 9.8    | 0.8   | 24. 2 | <0.1  | 0.4   | 11.5  | 0.2   | 56    | 360   |
| A121   | <5            | 0.05   | 131. 5 | 4. 6  | 7. 8  | <0.1  | 0. 4  | 32. 5 | 1.8   | 42    | 720   |
| A122   | <5            | 0.05   | 98. 2  | 5. 6  | 6.8   | <0.1  | 0. 2  | 28. 5 | 1.0   | 42    | 760   |
| A123   | <5∶           | <0.05  | 76.8   | 0.8   | 6.8   | <0.1  | 0.2   | 23. 5 | 1.0   | 40    | 700   |
| A124   | <5            | 0.05   | 94, 4  | 2. 2  | 6.6   | <0.1  | 0. 2  | 28, 0 | 1. 2  | 39    | 760   |
| A125   | <5            | <0.05  | 57.0   | 0.8   | 6.0   | <0.1  | 0. 2  | 25. 5 | 0.8   | 44    | 740   |
| A126   | 65            | <0.05  | 7.4    | 0.6   | 46. 4 | <0.1  | 0.2   | 13. 0 | 0.4   | 84    | 970   |
| A127   | 30            | 0.05   | 10. 6  | 0.4   | 44. 0 | <0.1  | 0.6   | 20, 5 | 0.6   | 109   | 520   |
| A128   | 350           | 0.05   | 19. 8  | 0.8   | 51. 4 | ₹0.1  | 0.8   | 22. 0 | 0.8   | 109   | 720   |
| A129   | <5            | <0.05  | 4.4    | 0.4   | 43. 8 | <0.1  | 0.2   | 9. 0  | 0.2   | 68    | 320   |
| A130   | <5            | <0.05  | 4. 2   | 0.2   | 38. 4 | <0.1  | 0.2   | 8.0   | 0.2   | 68    | 300   |
| A131   | <5            | <0.05  | 6.0    | 0.4   | 38. 6 | <0.1  | 0.4   | 11.0  | 0.2   | 64    | 360   |
| A132   | <b>&lt;</b> 5 | <0.05  | 4.0    | <0.2  | 41.4  | <0.1  | 0.2   | 9. 5  | 0, 2  | 70    | 330   |
| A133   | 100           | 0. 10  | 15. 6  | 0.8   | 58. 6 | <0.1  | 1.8   | 15. 5 | 0.6   | 87    | 430   |
| A134   | <5            | <0.05  | 4.8    | 0.2   | 47. 6 | <0.1  | 0.4   | 9.5   | 0.2   | 81    | 300   |
| A135   | <5            | 0.05   | 6.0    | 0.4   | 30. 0 | <0.1  | 0.4   | 13. 5 | 0.2   | 79    | 420   |
| A136   | <5            | <0.05  | 2.6    | 0.2   | 1.4   | <0.1  | 0.2   | 5. 5  | 0.2   | 15    | 380   |
| A137   | <5            | 0.05   | 25.0   | 1.6   | 22. 0 | <0.1  | 0.4   | 14.5  | 1.4   | 51    | 320   |
| A138   | 110           | <0.05  | 22.4   | 1.4   | 22.8  | <0.1  | 0.4   | 14.0  | 1, 2  | 61    | 360   |
| A139   | <5            | <0.05  | 9. 0   | 0.8   | 10.8  | <0.1  | 0. 2  | 9.5   | 0.4   | 34    | 420   |
| B001   | <5            | <0.05  | 2, 6   | 0.2   | 4.6   | <0.1  | 0.2   | 19.0  | <0.2  | 52    | 1360  |
| B002   | <5            | <0.05  | 2. 4   | 0.4   | 4.4   | <0.1  | 0.2   | 18.0  | <0, 2 | 45    | 1300  |
| B005   | <5            | <0.05  | 2.8    | 1.8   | 4.6   | <0.1  | 0.2   | 20.0  | <0.2  | 50    | 1390  |
| B006   | <5            | <0.05  | 1. 2   | 0.2   | 2.8   | <0.1  | <0.2  | 16.0  | <0.2  | 36    | 1220  |
| B007   | <5            | <0.05  | 1.8    | 0. 2  | 3. 4  | <0, 1 | <0.2  | 17. 5 | <0, 2 | 44    | 1560  |
| B008   | <5            | <0.05  | 2. 2   | 0.2   | 4.4   | <0.1  | 0.2   | 19. 5 | <0.2  | 55    | 1420  |
| B010   | <5            | <0.05  | 2. 2   | 0.2   | 4.6   | <0.1  | 0.2   | 20. 5 | <0.2  | 50    | 1170  |
| B011   | <5∶           | <0, 05 | 2.6    | 0.8   | 5, 0  | <0.1  | <0.2  | 27. 5 | 0.2   | 51    | 1240  |
| B012   | ₹5            | <0.05  | 6.6    | 4.6   | 5. 2  | <0.1  | 0.2   | 21.5  | <0.2  | 61    | 1300  |

App. 1 Results of Chemical Analysis of Stream Sediments (4/21)

| Sample | Au            | Ag    | As    | Bi    | Çu    | Hg    | No    | Pb    | Sb    | Zn    | Ba    |
|--------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| No.    | (ppb)         | (ppm) | (ppa) | (ppm) | (ppm) |
| B014   | <5            | <0.05 | 1.4   | 0.4   | 2, 4  | (0.1  | <0.2  | 11.0  | <0.2  | 32    | 1700  |
| B015   | <5            | <0.05 | 4.0   | 0. 2  | 4. 2  | 0.6   | 0.2   | 16. 5 | ⟨0.2  | 44    | 1360  |
| 8016   | <5            | <0.05 | 3.2   | 0.4   | 4.8   | <0.1  | 0. 2  | 18, 5 | 0. 2  | 55    | 1360  |
| B017   | <5            | 0.05  | 3.4   | 0.8   | 4, 2  | <0.1  | 0.2   | 36, 5 | <0.2  | 59    | 1700  |
| B018   | <5            | <0.05 | 3.6   | 0.4   | 5. 8  | <0.1  | <0.2  | 19. 5 | <0.2  | 48    | 1540  |
| B019   | <5            | <0.05 | 4. 0  | 0.4   | 4. 0  | <0.1  | 0.2   | 23. 5 | <0.2  | 43    | 1120  |
| B020   | <5            | 0.05  | 10. 2 | 0.8   | 35. 6 | <0.1  | 0.2   | 58, 0 | 0.4   | 106   | 2200  |
| B021   | <5            | <0.05 | 3.6   | 0, 6  | 4. 6  | <0.1  | 0.2   | 18.5  | <0.2  | 53    | 1340  |
| B022   | <5            | 0. 05 | 4. 0  | 0. 2  | 12. 0 | <0.1  | <0.2  | 28. 5 | <0.2  | 67    | 3100  |
| B023   | ₹5            | <0.05 | 4.4   | 0. 4  | 4. 2  | <0.1  | 0. 2  | 22, 5 | <0.2  | 54    | 1320  |
| B024   | <5            | <0.05 | 3. 0  | 0. 2  | 6, 6  | <0.1  | <0.2  | 19. 0 | <0.2  | 30    | 1060  |
| B025   | <5            | <0.05 | 2.4   | 0. 2  | 4. 2  | <0.1  | 0. 2  | 19. 5 | <0.2  | 49    | 1330  |
| B026   | 160           | <0.05 | 2. 4  | 0.4   | 4.4   | <0.1  | 0. 2  | 23.0  | <0.2  | 72    | 1040  |
| B027   | <5            | <0.05 | 1.8   | 0. 2  | 4. 2  | 1.7   | 0. 2  | 20.0  | 0.2   | 38    | 1040  |
| B028   | <5            | <0.05 | 2. 6  | 0.4   | 3.6   | <0.1  | 0. 2  | 18.5  | <0.2  | 44    | 1360  |
| B030   | <b>√</b> 5    | <0.05 | 23.8  | 0.4   | 12. 4 | <0.1  | 0. 2  | 27.0  | 1.4   | 63    | 1320  |
| B031   | . ≺5          | <0.05 | 1.8   | 0. 2  | 4.0   | <0.1  | 0. 2  | 19.0  | <0.2  | 52    | 1330  |
| B032   | <5            | <0.05 | 1. 8  | 1, 0  | 3. 8  | <0.1  | 0. 2  | 18.5  | <0.2  | 52    | 1340  |
| B033   | <5            | <0.05 | 2. 0  | 0. 2  | 3. 8  | <0.1  | 0. 2  | 17.5  | <0.2  | 43    | 1360  |
| B034:  | <b>&lt;</b> 5 | <0.05 | 1.8   | 0. 2  | 3. 8  | 0.3   | 0. 2  | 16. 0 | 0. 2  | 43    | 1440  |
| B035   | √5            | <0.05 | 1.8   | 0. 2  | 3.6   | 0.3   | 0. 2  | 16.0  | 0. 2  | 40    | 1320  |
| B036   | <5            | <0.05 | 3, 6  | 0.4   | 9.6   | <0.1  | 0. 2  | 22. 0 | 0. 4  | 69    | 850   |
| B037   | <5            | <0.05 | 1.6   | 0. 2  | 4. 2  | <0.1  | 0. 2  | 19. 0 | <0.2  | 47    | 1240  |
| B038   | ⟨5            | <0.05 | 2.2   | 0.2   | 4.2   | 0.2   | 0. 2  | 19.5  | <0.2  | 45    | 1320  |
| B039   | ₹5            | <0.05 | 13. 6 | 0.6   | 10. 4 | <0.1  | 0. 2  | 33.5  | 0.6   | 70    | 900   |
| B040   | <5            | <0.05 | 1.6   | 0.2   | 4. 0  | 0.4   | 0. 2  | 17.5  | 0.2   | 42    | 1240  |
| B041   | <5            | <0.05 | 1.6   | 0.2   | 4.0   | 0. 1  | 0. 2  | 18. 0 | 0. 2  | 46    | 1260  |
| B042   | <5            | <0.05 | 2.8   | 0.4   | 18. 4 | 0. 3  | <0.2  | 23. 5 | 0.2   | 56    | 900   |
| B043   | <5            | <0.05 | 10.2  | 0.6   | 22. 8 | 0. 2  | 0. 2  | 29. 0 | 0.4   | 63    | 1850  |
| B044   | <5            | <0.05 | 1. 2  | 0. 2  | 4.0   | 0.3   | 0. 2  | 16.5  | 0.2   | 47    | 1380  |
| B045   | <5            | <0.05 | 1. 2  | 0. 2  | 3.4   | <0.1  | 0. 2  | 16.0  | <0.2  | 42    | 1340  |
| B046   | <b>&lt;</b> 5 | <0.05 | 20.4  | 4.4   | 21. 2 | <0.1  | 0.2   | 31.5  | 0.4   | 53    | 1400  |
| B047   | <5            | <0.05 | 3. 2  | 0.6   | 8.6   | <0.1  | 0. 2  | 38.5  | <0.2  | 42    | 580   |
| B048   | <5            | <0.05 | 3.0   | 0.4   | 4.4   | 0. 1  | 0, 2  | 18.5  | <0.2  | 53    | 1380  |
| B049   | <5            | <0.05 | 9.0   | 0.4   | 6.4   | <0.1  | 0.2   | 35.5  | <0.2  | 43    | 880   |
| B050   | <5            | <0.05 | 3.2   | 0.4   | 4.4   | <0.1  | <0.2  | 19.0  | <0.2  | 48    | 1260  |
| B051   | <5            | <0.05 | 31. 4 | 0.8   | 8.8   | 0. 1  | 0.6   | 37. 0 | 0.8   | 54    | 600   |
| B052   | <5            | <0.05 | 3. 2  | 0.2   | 3.8   | <0.1  | <0.2  | 16.5  | 0.2   | 42    | 1380  |
| B053   | .<5           | <0.05 | 5. 2  | 0.2   | 27. 6 | 0.1   | <0.2  | 25. 5 | 0.4   | 53    | 2300  |
| B054   | <5            | <0.05 | 5.0   | 2.0   | 5. 6  | <0.1  | <0.2  | 21. 5 | 0. 2  | 58    | 1200  |
| B055   | <5            | <0.05 | 4.2   | 0.6   | 43.0  | <0.1  | <0.2  | 44.5  | <0.2  | 67    | 2800  |
| B056   | <5            | <0.05 | 5.6   | 0.2   | 6.2   | <0.1  | <0.2  | 20.5  | <0.2  | 52    | 1700  |
| B057   | <5            | <0.05 | 3.0   | 0.2   | 27.4  | 0.2   | 0. 2  | 28. 5 | 0.2   | 58    | 2200  |
| B058   | <5            | <0.05 | 3. 0  | 0.4   | 29. 4 | <0.1  | <0.2  | 29.0  | <0.2  | 70    | 2200  |
| B059   | <5            | <0.05 | 4.8   | 0. 2  | 5. 6  | <0.1  | <0.2  | 18.5  | <0.2  | 46    | 1480  |
| B060   | <5            | <0.05 | 4. 2  | 0.2   | 6.0   | <0.1  | <0.2  | 19.5  | 0.2   | 48    | 1320  |
| B061   | <5            | <0.05 | 2.6   | 0.4   | 21.8  | <0.1  | <0.2  | 32.0  | <0.2  | 61    | 3100  |
| B062   | <5            | <0.05 | 1.8   | 0.4   | 13. 0 | <0.1  | <0.2  | 28. 5 | <0.2  | 45    | 3500  |
| B063   | <5            | <0.05 | 2. 4  | 0.4   | 13. 6 | <0.1  | <0.2  | 40.0  | <0.2  | 69    | 4500  |

App. 1 Results of Chemical Analysis of Stream Sediments (5/21)

|        |                 |        |       |       |        |       |       | 1     |       |       |       |
|--------|-----------------|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|
| Sample | Au              | Λg     | As    | Bi    | Cu     | Ilg   | Мо    | Pb    | Sb    | 2n    | Ba    |
| No.    | (ppb)           | (ppm)  | (ppm) | (ppm) | (ppm)  | (ppm) | (ppm) | (ppn) | (ppn) | (ppa) | (ppm) |
| B064   | ₹5              | <0.05  | 2. 2  | 0, 2  | 9.0    | <0, ) | (0. 2 | 32. 0 | <0.2  | 43    | 4200  |
| B065   | <b>&lt;</b> 5   | <0.05  | 21. 2 | 0.6   | 43.6   | <0.1  | 0.4   | 24.0  | 1.4   | 86    | 1480  |
| B066   | <b>√</b> 5      | <0.05  | 4.4   | 0.2   | 10.6   | <0.1  | 0.2   | 26. 5 | 0.2   | 61    | 4500  |
| B067   | <5              | <0, 05 | 7, 4  | 0.6   | 18. 6  | <0.1  | 0.4   | 25. 5 | 0.4   | 64    | 3300  |
| B069   | 90              | <0.05  | 8, 4  | 0.4   | 50.2   | <0.1  | 0.2   | 22.5  | <0.2  | 97    | 1120  |
| B070   | <5              | <0.05  | 6.0   | 0.4   | 21. 4  | <0.1  | 0,4   | 26.0  | 0. 2  | 70    | 3100  |
| B072   | <5              | <0.05  | 4.6   | 0.6   | 45. 2  | <0.1  | <0.2  | 19.0  | 0. 2  | 76    | 1660  |
| B073   | <5              | <0.05  | 4.8   | 0.4   | 17.4   | 0. 1  | 0.4   | 26.0  | <0.2  | 61    | 3350  |
| B074   | <5              | <0.05  | 3.4   | 0.4   | 56.0   | <0.1  | <0.2  | 13.0  | <0.2  | 89    | 960   |
| B075   | Κõ              | <0.05  | 5. 0  | 0.4   | 26. 8  | <0.1  | 0.2   | 18.0  | 0. 2  | 89    | 980   |
| B077   | <5              | <0.05  | 3. 2  | 0.4   | 10.6   | <0.1  | 0.2   | 26.0  | <0.2  | 57    | 3700  |
| B079   | <5              | <0.05  | 3. 4  | 0.4   | 10.6   | <0.1  | 0. 2  | 25. 5 | <0.2  | 57    | 3750  |
| B080   | <5 ∶            | <0.05  | 3. 4  | 0.4   | 10. 2  | <0.1  | 0.4   | 27. 5 | <0.2  | 59    | 4000  |
| B081   | <5              | <0.05  | 3. 0  | 0.4   | 9.2    | 0.2   | 0.2   | 25.0  | <0. 2 | 57    | 4000  |
| B082   | 65              | <0.05  | 7.8   | 0.4   | 40.4   | <0.1  | 0.2   | 17. 5 | 2. 8  | 56    | 840   |
| B083   | <5              | <0.05  | 3.8   | 0.4   | 9.2    | <0.1  | 0. 2  | 27. 0 | <0.2  | 59    | 4000  |
| B084   | <b>&lt;</b> 5   | 0.05   | 7. 6  | 0.4   | 24. 4  | <0.1  | 0.8   | 32. 0 | <0.2  | 104   | 2400  |
| B085   | <5              | <0.05  | 9. 4  | 0. 4  | 35.0   | <0.1  | 0.2   | 24. 5 | 0.6   | 86    | 1020  |
| 8086   | <5              | <0.05  | 5. 6  | 0. 2  | 32. 8  | <0.1  | 0.2   | 21. 5 | 0. 2  | 74    | 2400  |
| B087   | ₹5              | <0.05  | 2. 6  | <0.2  | 25. 0  | <0.1  | <0.2  | 13. 5 | 0.2   | 68    | 1160  |
| B088   | <5              | <0.05  | 6. 4  | <0.2  | 28. 8  | <0.1  | 0.4   | 21. 0 | 0. 2  | 74    | 2300  |
| B089   | <5              | <0.05  | 7. 2  | 0. 2  | 31.6   | <0.1  | 0.2   | 22. 5 | <0.2  | 76    | 2300  |
| Б090   | ₹5              | <0.05  | 8. 2  | 0.4   | 29.6   | <0.1  | 0. 2  | 21. 5 | 0.4   | 77    | 1500  |
| B091   | <b>√5</b>       | <0.05  | 6.0   | 0. 2  | 57. 8  | <0.1  | 0.2   | 7. 0  | <0.2  | 143   | 160   |
| B094   | <5              | <0.05  | 6.4   | 0.2   | 57.0   | <0.1  | 0.2   | 7.0   | <0.2  | 121   | 150   |
| B095   | <5              | 0.05   | 5. 0  | <0.2  | 45. 2  | <0.1  | 0.2   | 7. 5  | <0.2  | 96    | 140   |
| В096   | <5              | <0.05  | 4.8   | 0. 2  | 54.8   | <0.1  | 0.2   | 7.0   | <0.2  | 120   | 180   |
| B097   | <5              | <0.05  | 8, 4  | 0.4   | 48. 0  | 0.1   | 0.4   | 14. 5 | <0.2  | 97    | 400   |
| B098   | 310             | 0.05   | 10. 2 | 0.4   | 45. 4  | <0.1  | 0.6   | 17. 0 | 0. 2  | 105   | 390   |
| B099   | <5              | <0.05  | 9.8   | 0.4   | 50.4   | <0.1  | 0.4   | 15. 5 | 0.2   | 102   | 450   |
| B101   | <b>\ &lt;</b> 5 | <0.05  | 4.4   | 0.2   | 33. 6  | <0.1  | 0.4   | 11.5  | <0.2  | 72    | 420   |
| B102   | 30              | <0.05  | 8.8   | 0.2   | 46. 4  | <0.1  | 0.6   | 15. 0 | 0.2   | 109   | 400   |
| B103   | 10              | <0.05  | 2.0   | 0.2   | 8. 0   | <0.1  | 1.6   | 7.0   | <0.2  | 130   | 500   |
| B104   | <5              | <0.05  | 8.4   | 0.2   | 48. 4  | <0.1  | 0.4   | 13. 0 | 0.2   | 94    | 360   |
| B106   | <5              | <0.05  | 17.4  | 0.6   | 47. 8  | 0. 7  | 0.6   | 18. 0 | 0.8   | 98    | 600   |
| B107   | <5              | 0.05   | 20.6  | 0.4   | 44. 0  | <0.1  | 1.0   | 21, 5 | 0.6   | 112   | 540   |
| B108   | <5              | 0.05   | 17. 2 | 0.4   | 43. 8  | <0.1  | 0.8   | 20. 0 | 0.6   | 102   | 440   |
| B109   | <5              | <0.05  | 4.6   | 0. 2  | 42.4   | <0.1  | 0. 2  | 10.5  | <0.2  | 74    | 300   |
| B111   | ₹5              | <0.05  | 6.2   | 0.2   | 30.0   | <0.1  | 0.4   | 13.5  | 0.2   | 96    | 300   |
| B113   | <5              | <0.05  | 7. 6  | 0.4   | 47.0   | 0.1   | 0.4   | 12.5  | 0.4   | 95    | 320   |
| B114   | <5              | <0.05  | 9. 0  | 0.4   | 48.6   | 0. 2  | 0.6   | 13.5  | 0.6   | 94    | 380   |
| B115   | <5              | <0.05  | 10.4  | 0.4   | 41.4   | 0.1   | 0.8   | 29.0  | 0.6   | 126   | 540   |
| B116   | 10              | <0.05  | 9. 2  | 0.2   | 46. 0  | 0.3   | 0.4   | 11.0  | 0.4   | 80    | 370   |
| B117   | <5              | <0.05  | 10.6  | 0. 4  | 47. 8  | <0.1  | 0.6   | 12.5  | 1.0   | 84    | 500   |
| B118   | <5              | <0.05  | 1.2   |       | 131. 0 | <0.1  | 0. 2  | 1. 0  | <0.2  | 193   | 20    |
| B119   | ₹5              | <0.05  | 1.0   |       | 141. 5 | <0.1  | <0.2  | 1.0   | <0.2  | 165   | 40    |
| B120   | <5              | <0.05  | 14.0  | 0.4   | 41.0   | <0.1  | 0. 2  | 18. 5 | 3.4   | 68    | 1520  |
| B121   | <5              | <0.05  | 3.6   | 0.2   | 39. 8  | <0.1  | 0. 2  | 2. 5  | 2.8   | 63    | 80    |
| B122   | <5              | <0.05  | 4. 6  | <0.2  | 46.0   | <0.1  | 0. 2  | 13. 0 | 0.6   | 74    | 140   |
|        |                 |        |       |       |        |       | 3.21  | -7. 7 | V. U  | 1.3   | -70   |

App. 1 Results of Chemical Analysis of Stream Sediments (6/21)

| Sample       | Λu               | Ag             | Λs         | Bi         | Cu           | Hg          | No           | Pb             | Sb           | Zn       | Ba           |
|--------------|------------------|----------------|------------|------------|--------------|-------------|--------------|----------------|--------------|----------|--------------|
| No.          | (ppb)            | (ppm)          | (ppm)      | (ppm)      | (ppm)        | (ppm)       | (pps)        | (ppm)          | (ppm)        | (ppm)    | (ppm)        |
| B123         | <b>&lt;</b> 5    | <0,05          | 3, 0       | <0.2       | 45. 2        | 0.1         | 0.2          | 10.5           | 0.4          | 69       | 230          |
| B124         | <5               | 0, 05          | 14.6       | 0.4        | 41, 0        | 0, 1        | 0.6          | 23.0           | 2. 2         | 92       | 430          |
| B125         | <5               | <0.05          | 12.0       | 0.4        | 36. 4        | <0.1        | 0.8          | 31.0           | 0.4          | 88       | 520          |
| B126         | <5               | .<0. 05        | 11, 4      | 0.4        | 45. 4        | 0.1         | 0.6          | 25. 5          | 0.4          | 101      | 570          |
| B127         | 2660             | <0.05          | 2.0        | 0.4        | 20. 6        | 0, 1        | 0.2          | 18. 5          | <0.2         | 73       | 1160         |
| B128         | <5               | <0.05          | 1. 4       | 0.2        | 24. 4        | 0.1         | 0.2          | 14.0           | <0.2         | 55       | 1240         |
| D129         | <5               | <0.05          | 0.8        | 0.4        | 22. 6        | <0.1        | 0. 2         | 17.5           | 0.2          | 58       | 1350         |
| B130         | 40               | <0.05          | 1.8        | 0.2        | 17.8         | <0.1        | <0.2         | 18. 0          | <0.2         | 60       | 1480         |
| B131         | <5               | <0.05          | 0. 2       | 0.2        | 35. 6        | <0.1        | <0.2         | 3, 0           | <0.2         | 44       | 260          |
| B132         | <5               | <0.05          | 0.6        | 0.2        | 22. 2        | <0.1        | 0.2          | 14. 5          | <0.2         | 63       | 1840         |
| B133         | <5               | <0.05          | 7. 2       | 0.4        | 45. 6        | <0.1        | 0.8          | 13.0           | <0.2         | 70       | 600          |
| B134         | <5               | <0.05          | 0.8        | 0.4        | 27. 0        | <0.1        | 0. 2         | 18. 5          | <0.2         | 61       | 1100         |
| B135         | <5               | <0.05          | 1. 2       | 0.2        | 26. 2        | <0.1        | 0.2          | 19.0           | <0.2         | 62       | 1240         |
| B136         | <5               | <0.05          | 2. 0       | 0.2        | 27. 2        | <0.1        | 0.2          | 21.0           | <0.2         | 74       | 1120         |
| B137         | <5               | <0.05          | 1.4        | 0. 2       | 25. 0        | <0.1        | 0. 2         | 23, 0          | <0.2         | 71       | 1180         |
| B138         | <5               | <0.05          | 0. 2       | <0.2       | 31. 6        | <0.1        | <0.2         | 5. 5           | <0.2         | 41       | 420          |
| B139         | <5               | <0.05          | 0.8        | 0.2        | 26. 6        | <0.1        | 0.2          | 20. 5          | <0.2         | 67       | 1160         |
| B140         | <5               | <0.05          | 2.6        | 0.2        | 27. 2        | <0.1        | <0.2         | 19.5           | <0.2         | 69       | 1030         |
| B141         | <5               | <0.05          | 7.2        | 0.4        | 36.8         | <0.1        | 0.6          | 23.0           | 0.2          | 73       | 940          |
| B142         | <5               | <0.05          | 1.6        | 0.2        | 26.0         | <0.1        | <0.2         | 19. 5          | <0, 2        | 64       | 1180         |
| B143         | <5               | <0.05          | 1.6        | 0.2        | 25. 2        | <0.1        | 0.2          | 19.5           | <0.2         | 66       | 1120         |
| B144         | <5               | <0.05          | 1.4        | 0.4        | 28. 2        | 0, 2        | <0.2         | 17. 0          | <0.2         | 60       | 1100         |
| B145         | <5.              | <0.05          | 1.2        | 0.4        | 26.4         | <0.1        | <0.2         | 20.5           | <0.2         | 67       | 1230         |
| B146         | <5               | <0.05          | 2.4        | 0.6        | 14. 4        | <0.1        | 0. 2         | 21.5           | <0.2         | 64       | 1540         |
| B147         | <5               | <0.05          | 2.8        | 0.2        | 20.6         | <0.1        | 0. 2         | 11.0           | <0.2         | 60       | 820          |
| B148         | <5               | <0.05          | 0.8        | 0.4        | 26. 4        | 0.1         | <0.2         | 11.5           | <0.2         | 55       | 1260         |
| B149         | <5               | <0.05          | 1.6        | 0.6        | 12.0         | <0.1        | 0.2          | 23.0           | <0.2         | 62       | 1670         |
| B150         | <5               | <0.05          | 2.8        | 0.6        | 15.8         | <0.1        | 0.2          | 21.0           | <0.2         | 61       | 1600         |
| B151         | <5               | <0.05          | 0.2        | 0. 2       | 27. 0        | <0.1        | <0.2         | 10.0           | <0.2         | 46       | . 880        |
| B152         | <5               | <0.05          | 1.2        | 0.8        | 5.6          | <0.1        | <0.2         | 17. 5          | <0.2         | 42       | 2150         |
| B153         | <5               | <0.05          | 2.6        | 0.6        | 13.8         | 0.2         | 0. 2         | 26. 0          | <0.2         | 69       | 1680         |
| B154         | <b>₹</b> 5       | <0.05          | 1.8        | 1.2        | 7.6          | <0.1        | <0.2         | 26.0           | <0.2         | 51       | 1960         |
| B155         | <5<br>           | <0.05          | 3.2        | 0.4        | 15. 2        | <0.1        | <0.2         | 14.5           | <0.2         | 51       | 1320         |
| B156         | <5               | <0.05          | 1.4        | 0.8        | 9. 2         | <0.1        | 0. 2         | 22. 5          | <0.2         | 50       | 1540         |
| B157         | 210              | <0.05          | 6.8        | 0.8        | 49. 6        | <0.1        | 0.4          | 23.5           | <0.2         | 129      | 1540         |
| B158         | 1250             | <0.05          | 6.2        | 1.0        | 43.6         | <0.1        | 0.4          | 29.5           | <0.2         | 166      | 1380         |
| B159         | ,<5 <sub>.</sub> | <0.05          | 6.4        | 0.4        | 24. 2        | <0.1        | 0.6          | 34.5           | <0.2         | 122      | 2300         |
| B160         | 85               | <0.05          | 5.6        | 0.4        | 86. 4        | <0.1        | 0.4          | 11.0           | <0.2         | 131      | 630          |
| B161         | 110              | <0.05          | 4.0        | 0.6        | 41. 4        | <0.1        | 0.2          | 5.0            | <0.2         | 70       | 200          |
| B162         | 100:             | 0. 15          | 6.4        | 0.4        | 101. 0       | <0.1        | 0.6          | 28.5           | <0.2         | 246      | 1360         |
| B163         | 570              | <0.05          | 2.4        | 1.0        | 73.2         | <0.1        | 0.2          | 12.0           | <0.2         | 147      | 490<br>460   |
| B164         | 1050             | <0, 05         | 2.0        | 0.6        | 53. 8        | <0.1        | 0.4          | 25.0           | <0.2         | 118      | 460<br>1970  |
| B165         | <5<br><5         | <0.05          | 2.2        | 0.4        | 6.0          | 0.1         | 0. 2<br>0. 4 | 25. 0<br>27. 0 | <0.2<br><0.2 | 60<br>70 | 1970<br>1680 |
| B166<br>B167 | <5<br><5         | 0.05           | 18         | 0.6<br>0.6 | 7. 4<br>6. 8 | <0.1<br>0.1 | 0.2          | 25. 5          | <0.2         | 66       | 1900         |
| B168         | <5,<br><5,       | <0.05<br><0.05 | 1.8<br>4.2 | 0.6        | 12. 2        | 0.1         | 0.2          | 19.5           | <0.2         | 50       | 1300         |
| B169         | √5.<br>√5        |                | 1.8        | 0.6        | 7.4          | <0.1        | 0. 2         | 20.5           | <0.2         | 52       | 1780         |
| B170         | 140              | <0.05<br><0.05 | 2.4        | 0.8        | 8.6          | 0.2         | 0. 4         | 27.5           | <0.2         | 73       | 1460         |
|              |                  |                | 3.6        |            | 32.0         | 0. 2        | <0.2         |                | 0.4          | 51       | 80           |
| B171         | 670              | <0.05          | 0.0        | 0.2        | 04. U        | U. 1        | 10.6         | 2, 5           | 0.4          | 16       | - 00         |

App. 1 Results of Chemical Analysis of Stream Sediments(7/21)

| Sample | Au            | Ag     | As     | Bi    | Cu    | Иg    | No      | Pb     | Sb    | Zn    | · Ba  |
|--------|---------------|--------|--------|-------|-------|-------|---------|--------|-------|-------|-------|
| No.    | (ppb)         | (ppm)  | (ppn)  | (ppm) | (ppm) | (ppm) | (ppm)   | (ppm)  | (ppm) | (ppn) | (ppm) |
| B172   | <5            | <0.05  | 5, 6   | 0.2   | 52.6  | <0.1  | 0.2     | 6.5    | 0.2   | 77    | 140   |
| B173   | <5            | <0.05  | 1.8    | 0.4   | 8.0   | 0.1   | <b></b> | 21.5   | <0.2  | 52    |       |
| B174   | ₹5            | <0.05  | 2.8    | 0.4   | 16.6  | 0.1   | 0, 2    | 22. 0  | <0.2  | 67    | 1720  |
| B175   | <5            | <0.05  | 5, 8   | 0.4   | 26. 8 | <0.1  | 0, 4    | 18. 5  | 0.2   | 97    | 600   |
| B176   | ⟨5            | <0.05  | 2. 0   | 1.4   | 8.0   | <0.1  | <0.2    | 25. 0  | <0.2  | 52    | 1920  |
| B177   | <5            | <0, 05 | 1.6    | 1.8   | 7.2   | <0.1  | <0.2    | 25. 0  | <0.2  | 47    | 1980  |
| B178   | <5            | <0.05  | 4.8    | 0.2   | 33. 4 | <0.1  | 0. 2    | 10.5   | 0, 2  | 76    | 560   |
| B179   | <5            | <0.05  | 1.0    | 0.4   | 6.8   | <0.1  | <0.2    | 17.0   | <0.2  | 37    | 2700  |
| B180   | <5            | <0.05  | 1. 6   | 1.8   | 6.6   | <0.1  | <0, 2   | 26.5   | <0.2  | 50    | 2000  |
| C001   | <5            | <0.05  | 17. 0  | 1.6   | 6.0   | <0.1  | 0.4     | 31.0   | <0.2  | 43    | 1280  |
| C002   | <5            | 0.05   | 95. 8  | 1.8   | 14.2  | <0.1  | 0.6     | 53. 5  | 1.0   | 62    | 860   |
| C003   | <5            | 0.05   | 83. 4  | 1, 0  | 18.8  | <0.1  | 0.4     | 49.5   | 4.0   | 74    | 680   |
| C004   | <5            | 0.05   | 50. 2  | 1. 0  | 16.6  | <0.1  | 0.4     | 49. 0  | 1.8   | 70    | 640   |
| C005   | <5            | <0.05  | 22. 2  | 1.6   | 6.6   | <0.1  | 0.4     | 50.0   | 0.8   | 45    | 940   |
| C006   | <5            | 0.05   | 54. 8  | 0.6   | 17. 2 | <0.1  | 0. 4    | 33. 5  | 1.8   | 68    | 700   |
| C007   | 35            | 0.05   | 39, 6  | 0.6   | 13. 2 | <0.1  | 0.2     | 34.5   | 1.0   | 56    | 1160  |
| C008   | <5            | 0.05   | 10, 0  | 1.0   | 8.8   | <0.1  | 0. 2    | 40.0   | 0.2   | 33    | 1200  |
| C009   | <5            | <0.05  | 14.6   | 0.8   | 7.0   | <0.1  | 0, 2    | 22. 5  | 0. 4  | 35    | 960   |
| C010   | 20            | <0.05  | 36. 0  | 0.6   | 11.4  | 0. 1  | 0. 2    | 24. 5  | 0.8   | 59    | 680   |
| C011   | <5            | <0.05  | 2.4    | 0.2   | 2.0   | <0.1  | <0.2    | 13.5   | <0.2  | 22    | 1100  |
| C012   | <b>&lt;</b> 5 | 0.05   | 33. 0  | 5. 6  | 8.2   | 0. 2  | 0.8     | 69.0   | 0. 2  | 64    | 1280  |
| C013   | <5            | <0.05  | 124. 5 | 2. 2  | 14. 6 | <0.1  | 0.6     | 77. 0  | 1.4   | 61    | 860   |
| C014   | ⟨5            | <0.05  | 134. 5 | 1.0   | 5.2   | 0.1   | 0.4     | 35.0   | 3. 2  | 41    | 1020  |
| C015   | <5            | <0, 05 | 28. 6  | 1.6   | 6.6   | <0. 1 | 0.4     | 29. 0  | 0. 4  | 46    | 1320  |
| C016   | <b>&lt;</b> 5 | 0.05   | 42. 2  | 0.4   | 16. 2 | <0.1  | 0.2     | 30.5   | 1.6   | 60    | 900   |
| C017   | <5            | <0.05  | 51.6   | 0.4   | 12.8  | <0.1  | <0.2    | 26. 5  | 2.4   | 55    | 760   |
| C018   | <5            | <0.05  | 39. 6  | 0.2   | 13. 0 | 0. 1  | <0.2    | 25. 0  | 1.8   | 62    | 760   |
| C019   | ⟨5            | <0.05  | 31.0   | 1.0   | 8. 2  | <0.1  | 0. 2    | 30.0   | 1.0   | 50    | 800   |
| C020   | <5            | 0.05   | 59. 0  | 18.8  | 14. 4 | 2. 9  | 0.6     | 155. 5 | 1.0   | 68    | 1140  |
| C021   | <5            | <0.05  | 32. 4  | 0.8   | 5. 4  | <0.1  | 0.6     | 41.0   | 0.6   | 46    | 500   |
| C022   | <5            | <0.05  | 28. 2  | 16.2  | 5.8   | <0.1  | 0.4     | 53.0   | 0.2   | 44    | 1060  |
| C023   | <5            | 0.05   | 35. 6  | 19.8  | 7.8   | <0.1  | 0.4     | 70.5   | 0.4   | 54    | 1140  |
| C024   | <5            | <0.05  | 23. 6  | 11.0  | 5. 8  | <0.1  | 0.6     | 34. 5  | <0.2  | 43    | 1160  |
| C025   | ⟨5            | <0.05  | 10.4   | 0.6   | 3.8   | <0.1  | 0.2     | 24.5   | 0.2   | 36    | 1080  |
| C026   | ₹5            | <0.05  | 11.6   | 0.4   | 4.8   | <0.1  | 0. 2    | 27. 0  | <0.2  | 37    | 900   |
| C027   | ∢5            | <0.05  | 6.6    | 1.0   | 6.8   | <0.1  | 0.2     | 32.0   | <0.2  | 40    | 1090  |
| C028   | <5            | 0. 05  | 21.0   | 1.4   | 7. 0  | <0.1  | 0.4     | 37.5   | <0.2  | 44    | 1280  |
| C029   | <5            | <0.05  | 21. 2  | 0, 6  | 9. 6  | <0.1  | 0.4     | 36. 5  | 0.4   | 59    | 720   |
| C030   | <5            | 0. 05  | 42.6   | 1.4   | 13. 0 | <0.1  | 0.4     | 44.5   | 1.0   | 68    | 750   |
| C031   | <5            | <0.05  | 19.6   | 0.8   | 8. 0  | <0.1  | 0. 2    | 35. 0  | 0.6   | 53    | 740   |
| C032   | <b>&lt;</b> 5 | <0.05  | 5. 2   | 0.6   | 26. 4 | <0.1  | 0.4     | 33. 0  | 0.6   | 202   | 1520  |
| C033   | <b>&lt;</b> 5 | <0.05  | 5.6    | 0.6   | 23. 0 | <0.1  | 0. 2    | 31.5   | 0.4   | 170   | 1140  |
| C034   | <5            | <0.05  | 3. 2   | 0.6   | 32.0  | <0.1  | 0. 2    | 34. 5  | <0.2  | 244   | 1340  |
| C035   | <5            | <0.05  | 1.0    | 0.8   | 28. 2 | <0.1  | 0. 2    | 25. 5  | <0.2  | 254   | 640   |
| C036   | <5            | <0.05  | 1.6    | 0.6   | 31.4  | <0.1  | 0. 2    | 20.5   | <0.2  | 201   | 1000  |
| C037   | ₹5            | <0.05  | 0.6    | 0.6   | 35. 6 | <0.1  | 0.2     | 26. 5  | <0.2  | 199   | 1280  |
| C038   | <5            | <0.05  | 2.0    | 0.8   | 35. 6 | ⟨0, 1 | 0. 2    | 41.0   | <0.2  | 273   | 930   |
| C039   | <b>&lt;</b> 5 | <0.05  | 7.2    | 0.6   | 23. 2 | <0,1  | 0. 2    | 30, 5  | 0, 6  | 106   | 1140  |
| C040   | <5            | <0.05  | 3.0    | 0.6   | 42.8  | 0.1   | 0.4     | 44. 5  | <0.2  | 206   | 1160  |
| ヘルゴハ   | `''           | .0. 00 | - V- V | U, U  | 46. 0 | 0.1   | U. 4    | 44. J  | \U. Z | 400   | 1100  |

App. 1 Results of Chemical Analysis of Stream Sediments (8/21)

| Sample | Au    | Ag     | As    | Bi    | Cu     | Ilg     | No    | Pb      | Sb    | Zn    | Ba     |
|--------|-------|--------|-------|-------|--------|---------|-------|---------|-------|-------|--------|
| No.    | (ppb) | (ppm)  | (rpm) | (ppm) | (ppm)  | (ppm)   | (ppm) | (ppm)   | (ppm) | (ppm) | (ppm)  |
| C041   | <5    | <0.05  | 3. 6  | 0.8   | 36. 0  | <0.1    | 0. 2  | 40.5    | <0.2  | 262   | 540    |
| C042   | <5    | <0.05  | 8. 0  | 0.6   | 23. 6  | <0.1    | 0.2   | 30.0    | 0.8   | 121   | 1180   |
| C043   | <5    | <0.05  | 3, 2  | 0.4   | 33. 2  | 0. 1    | 0.2   | 34. 5   | <0.2  | 236   | 1460   |
| C044   | <5    | <0.05  | 3.8   | 0.8   | 27. 6  | <0.1    | 0.6   | 57, 5   | <0.2  | 268   | 460    |
| C045   | <5    | <0.05  | 4. 0  | 0.6   | 36.0   | <0.1    | 0. 2  | 29.0    | <0.2  | 230   | 1020   |
| C046   | <5    | <0.05  | 3. 2  | 0.4   | 25.0   | <0.1    | 0.2   | 31. 0   | 0.2   | 179   | 1460   |
| C047   | <5    | <0.05  | 10. 4 | 0.4   | 22. 8  | <0.1    | 0, 2  | 31. 0   | 0.8   | 95    | : 1300 |
| C048   | √5    | <0.05  | 11.2  | 0.4   | 46. 8  | <0.1    | 0. 2  | 48. 5   | 0. 2  | 136   | 2150   |
| C049   | <5∙   | <0.05  | 5. 0  | 0.8   | 53. 4  | <0.1    | 0.2   | 33. 5   | <0.2  | 216   | 1150   |
| C050   | <5    | <0.05  | 5, 4  | 0.4   | 44. 4  | <0.1    | 0.2   | 42.0    | 0.2   | 154   | 1800   |
| C051   | ₹5    | <0.05  | 7. 2  | 0.4   | 31. 0  | 0. 1    | 0.8   | 47. 0   | 0.6   | 239   | 980    |
| C052   | <5    | <0.05  | 9.4   | 0.4   | 22.0   | <0.1    | 0.2   | 31. 5   | 0.8   | . 88  | 1240   |
| C053   | <5    | <0.05  | 6.0   | 0.8   | 26. 4  | <0.1    | 0.2   | 32.0    | 0.4   | 113   | 820    |
| C054   | 400   | <0.05  | 7.4   | 0.4   | 26. 2  | <0.1    | 0.6   | 36. 5   | 0.6   | 114   | 1020   |
| C055   | <5    | <0.05  | 6.6   | 0.4   | 27. 6  | · <0. 1 | 0.2   | - 31. 0 | 0.6   | 94    | 780    |
| C056   | <5    | <0.05  | 11. 6 | 0.4   | 59. 4  | <0.1    | 0.2   | 42.0    | 0.6   | 215   | 1700   |
| C057   | <5    | <0.05  | 3.8   | 0.4   | 37. 0  | 0.1     | <0.2  | 37. 0   | 0.4   | 118   | 1230   |
| C058   | <5    | <0.05  | 5, 6  | 0.6   | 37.0   | <0.1    | 0.2   | 32. 0   | 0.4   | 146   | 1880   |
| C059   | <5    | <0.05  | 10.4  | 0.6   | 14.4   | 0.1     | 0. 2  | 29. 5   | 1.0   | 63    | 1460   |
| C060   | <5    | <0.05  | 2.6   | 0.4   | 19. 4  | 0. 1    | 0.2   | 28. 5   | <0.2  | 109   | 1680   |
| C061   | <5    | <0. 05 | 15. 2 | 0.4   | 31.0   | <0.1    | <0.2  | 27.0    | 0.6   | 64    | 2400   |
| C062   | <5    | <0.05  | 9.6   | 0.6   | 37. 6  | <0.1    | <0.2  | 40.0    | 0.4   | 118   | 1580   |
| C053   | <5    | <0, 05 | 17. 8 | 0.6   | 19. 2  | <0.1    | 0.2   | 34. 5   | 1.0   | 73    | 1540   |
| C064   | <5    | <0.05  | 10.6  | 0.8   | 11.8   | <0.1    | <0.2  | 29. 5   | 1.0   | 58    | 1140   |
| C065   | √5    | <0.05  | 8.6   | 0.4   | 11.8   | <0.1    | <0.2  | 29.0    | 1.0   | 57    | 1060   |
| C066   | <5    | <0.05  | 6.8   | 0.4   | 11.4   | <0.1    | <0.2  | 26.0    | 0.8   | 62    | 1150   |
| C067   | 210   | <0.05  | 13. 2 | 0.6   | 21.6   | <0.1    | 0.2   | 39.0    | 2.8   | 111   | 1050   |
| C068   | ₹5    | <0.05  | 11.2  | 0.6   | 14.0   | <0.1    | 0.2   | 31. 5   | 1. 2  | 65    | 1080   |
| C069   | <5    | <0.05  | 3.6   | 0.4   | 32. 6  | ₹0.1    | <0.2  | 29.0    | <0.2  | 64    | 3550   |
| C070   | <5    | <0.05  | 47. 4 | 0.6   | 15.0   | <0.1    | 0. 2  | 36. 5   | 1.8   | 76    | 1200   |
| C071   | <5    | <0, 05 | 14. 2 | 0.6   | 19. 2  | 0.3     | 0.2   | 37.0    | 1.0   | 70    | 1630   |
| C072   | <5    | <0.05  | 7. 2  | 0.8   | 26. 4  | <0.1    | 0.2   | 48. 5   | 1.0   | 88    | 1270   |
| C073   | <5    | <0.05  | 13. 8 | 0.8   | 21.6   | <0.1    | 0.2   | 35. 0   | 1.0   | 75    | 1680   |
| C074   | <5    | <0.05  | 5. 4  | 0.8   | 13. 6  | <0.1    | <0.2  | 38. 5   | 0.4   | 44    | 1340   |
| C075   | <5    | <0.05  | 4. 2  | 0.6   | 14. 2  | <0.1    | 0.2   | 35.0    | 0.4   | 56    | 1520   |
| C076   | <5    | <0.05  | 54. 2 | 0.6   | 16.0   | <0.1    | 0.2   | 37. 0   | 2.4   | 88    | 1160   |
| C077   | <5    | <0.05  | 7.0   | 0.4   | . 22.8 | <0.1    | 0.2   | 28. 0   | 0.6   | 137   | 1250   |
| C078   | <5    | <0.05  | 7. 0  | 0.8   | 24. 2  | <0.1    | 0.2   | 28. 5   | 0.6   | 127   | 1320   |
| C079   | <5    | <0.05  | 5.8   | 0.6   | 25. 6  | <0.1    | 0.2   | 29. 5   | 0.4   | 141   | 1330   |
| C080   | <5    | <0.05  | 5. 2  | 0.6   | 44. 2  | <0.1    | 0.4   | 47.0    | 0.6   | 164   | 1720   |
| C081   | <5    | <0.05  | 4.6   | 0.6   | 27. 2  | <0.1    | 0.2   | 31.0    | 0.2   | 90    | 1300   |
| C082   | .<5   | <0.05  | 24. 4 | 1.8   | 38. 2  | <0.1    | <0.2  | 55. 0   | 0.8   | 53    | 3500   |
| C083   | <5    | 0. 05  | 58.8  | 3.0   | 59.0   | <0.1    | <0.2  | 56. 5   | 1.0   | 78    | 2750   |
| C084   | <5    | 0.05   | 23. 2 | 3. 2  | 53. 4  | <0.1    | <0.2  | 68. 5   | 0.8   | 59    | 2700   |
| C085   | <5    | <0.05  | 20. 4 | 2.4   | 40.0   | <0.1    | <0.2  | 58. 0   | 0.8   | 56    | 2400   |
| C086   | <5    | <0.05  | 18. 2 | 1.8   | 35. 4  | <0.1    | <0.2  | 64. 5   | 0.6   | 61    | 2350   |
| C087   | <5    | <0.05  | 22. 8 | 1.4   | 32. 6  | <0.1    | <0.2  | 72.0    | 0.6   | 72    | 1320   |
| C088   | <5    | 0. 05  | 38. 6 | 2.6   | 45. 8  | <0.1    | <0.2  | 114.5   | 0.6   | 96    | 2450   |
| C089   | <5    | 0. 05  | 22. 2 | 0.8   | 35.8   | <0.1    | <0.2  | 64. 0   | 0.8   | 71    | 1720   |

App. 1 Results of Chemical Analysis of Stream Sediments(9/21)

| Sample       | Au                | Ag             | As            | Bi           | Cu             | Hg           | l Ko          | Pb            | Sb         | Zn       | Ba         |
|--------------|-------------------|----------------|---------------|--------------|----------------|--------------|---------------|---------------|------------|----------|------------|
| No.          | (ppb)             | (ppm)          | (ppm)         | (ppm)        | (ppm)          | (ppm)        | (ppm)         | (ppm)         | (ppm)      | (ppm)    | (ppm)      |
| C090         | <5                | <0.05          | 5.0           | 0. 6         | 22. 6          | <0.1         | 0.2           | 27, 5         | 0, 2       | 116      | 960        |
| C091         | <5                | 0.05           | 21.6          | 0, 8         | 18. 2          | <0.1         | <0.2          | 111.5         | 1.4        | 83       | 1640       |
| C092         | <5                | 0.05           | 11. 2         | 0. 6         | 39.0           | <0.1         | <0.2          | 119.5         | 1.2        | 83       | 2000       |
| C093         | ₹5                | 0.05           | 21.6          | 0.8          | 28. 2          | <0.1         | <0.2          | 123. 5        | 1.4        | 86       | 1930       |
| C094         | <5                | <0.05          | 2.8           | 0. 4         | 4.4            | <0.1         | <0.2          | 17.0          | <0.2       | 22       | 820        |
| C095         | <5                | <0.05          | 0.6           | 0.2          | 3. 2           | <0.1         | <0. 2         | 9. 5          | <0.2       | 16       | 680        |
| C096         | 115               | <0.05          | 4.4           | 0. 6         | 10.8           | <0.1         | <0.2          | 21.0          | <0.2       | 73       | 800        |
| C097         | <5                | 0.05           | 26. 6         | 0. 2         | 37.8           | 0.1          | 0. 2          | 15. 5         | 1.4        | 93       | 640        |
| C098         | <5                | 0.05           | 30. 4         | 0.4          | 35.0           | <0.1         | 0.2           | 17.0          | 1.6        | 92       | 680        |
| C099         | <5                | 0.05           | 29. 8         | 0.4          | 34. 8          | <0.1         | 0. 2          | 18. 5         | 1.4        | 93       | 770        |
| C100         | <5                | 0.05           | 33. 6         | 0.4          | 31.6           | <0.1         | 0.4           | 18. 5         | 1.8        | 91       | 800        |
| C101         | <5                | 0.05           | 29. 6         | 0.4          | 29.8           | <0.1         | 0.2           | 18, 5         | 1.4        | 97       | 830        |
| C102         | <5                | 0.05           | 38. 6         | 0.4          | 27.8           | 0.1          | 0.4           | 19.0          | 2. 2       | 85       | 1040       |
| C103         | <5                | 0.05           | 3, 0          | 0. 2         | 93. 4          | 0.1          | <0. 2         | 2. 0          | 0. 2       | 129      | 120        |
| C104         | <5                | 0.05           | 8.6           | 0.2          | 36.6           | <0.1         | 0.2           | 13. 5         | 0.4        | 70       | 240        |
| C105         | <5                | 0.05           | 36. 0         | 0.4          | 27. 8          | <0.1         | 0.4           | 21. 0         | 2.0        | 87       | 1000       |
| C106         | <5                | 0.05           | 34.6          | 0.4          | 26.6           | <0.1         | 0.4           | 22.0          | 1.8        | 87       | 1080       |
| C107         | <5 ⋅              | 0.05           | 34.0          | 0.2          | 25. 4          | <0.1         | 0.4           | 21.5          | 1.8        | 83       | 1160       |
| C108         | <5                | 0.05           | 26. 6         | 0.4          | 29. 2          | <0.1         | 0.6           | 23. 5         | 1.4        | 91       | 1280       |
| C109         | <5                | 0.05           | 28. 4         | 0.4          | 25. 4          | <0.1         | 0.4           | 24. 0         | 1.6        | 84       | 1240       |
| C110         | <5                | 0.05           | 43. 6         | 0.4          | 29.8           | <0.1         | 0.4           | 23.0          | 1.8        | 83       | 1180       |
| C111         | ₹5                | 0.05           | 28. 2         | 0.4          | 45. 2          | <0.1         | 0.2           | 14.0          | 1.4        | 92       | 640        |
| C112         | <b>₹</b> 5        | <0.05          | 17. 0         | 0.4          | 38.8           | <0.1         | 0. 2          | 23. 0         | 4. 2       | 69       | 1780       |
| C113         | <5                | <0.05          | 17. 2         | 0.4          | 41.0           | 0. 1         | 0. 2          | 24.0          | 5. 4       | 74       | 1800       |
| C114         | <5<br>            | <0.05          | 15. 0         | 0.6          | 31. 4          | <0.1         | , 0.2         | 25. 0         | 4.0        | 76       | 1830       |
| C115         | <5<br>            | <0.05          | 15. 2         | 0.4          | 43.4           | <0.1         | 0. 2          | 23. 5         | 3.8        | 72       | 1820       |
| C116         | <b>&lt;</b> 5     | <0.05          | 15. 0         | 0.6          | 44.2           | <0.1         | 0. 2          | 23. 0         | 3.6        | 70       | 1840       |
| C117         | <5                | <0.05          | 17.6          | 0.6          | 35.4           | ⟨0, 1        | 0.2           | 23.0          | 4. 2       | 73       | 1780       |
| C118         | <b>₹</b> 5        | <0.05          | 15. 2         | 0.6          | 39.6           | <0.1         | 0, 2          | 23.0          | 3.4        | 71       | 1700       |
| C119         | <b>&lt;</b> 5     | <0.05          | 15. 4         | 0.4          | 39. 2          | <0.1         | 0.2           | 22. 0         | 3.0        | 74       | 1600       |
| C120         | <b>√</b> 5        | <0.05          | 17.4          | 0.6          | 36.8           | <0.1         | 0.2           | 21. 5         | 4.0        | 77       | 1520       |
| C121         | <5<br>155         | <0.05          | 15.6          | 0.6          | 33. 2          | 0.1          | 0.2           | 25. 5         | 3.6        | 70       | 1900       |
| C122<br>C123 | 155<br><b>≺</b> 5 | <0.05          | 7.0           | 0.2          | 52.4           | <0.1         | 0.2           | 11.0          | 0.4        | 84       | 680        |
| C124         | √5                | <0.05<br><0.05 | 2. 0<br>60. 0 | 0. 4<br>0. 8 | 7.6            | 0.2          | <0.2          | 9.0           | <0.2       | 27       | 1260       |
| C125         | \\<br>\\          | <0.05          | 4.4           |              | 6.8            | <0.1         | 0, 2<br><0, 2 | 23.0          | 0.8        | 43       | 700        |
| C125         | <5<br><5          | <0.05          | 2. 4          | 0. 2         | 16. 6<br>15. 8 | <0.1<br><0.1 | <0.2          | 7.5           | 0.2        | 36       | 1140       |
| C127         | <b>√5</b>         | <0.05          | 3.0           | 0. 2         | 5.4            | 0.1          | <0.2          | 10. 0<br>9. 5 | 0.2        | 33       | 340        |
| C128         | <5:               | 0.05           | 156.5         | 6.0          | 9,0            | 0. 1         | 0.4           | 9. 5<br>36. 0 | <0.2       | 35       | 240<br>750 |
| C128         | <5                | <0.05          | 7. 0          | 0. 0         | 6.4            | <0.1         | <0.2          | 6. 0          | 1.6<br>0.2 | 45<br>24 | 220        |
| C130         | √5                | 0.05           | 109.5         | 4.4          | 6.8            | ⟨0.1         | 0. 2          | 27. 5         | 0. 6       | 40       | 780        |
| C131         | <b>&lt;</b> 5     | <0.05          | 68.6          | 0.8          | 7.2            | 0. 1         | 0.2           | 21. 0         | 0.4        | 44       | 820        |
| C132         | <b>√</b> 5        | <0.05          | 17. 4         | 2.0          | 15. 6          | 0. 4         | 0.2           | 11.5          | 0.4        | 43       | 280        |
| C133         | <b>&lt;</b> 5     | <0.05          | 0.8           | 0.2          | 0.4            | <0.1         | 0. 2          | 3.5           | <0.2       | 8        | 380        |
| C134         | <b>&lt;</b> 5     | <0.05          | 126, 0        | 5. 0         | 7.4            | <0.1         | 0. 2          | 28. 0         | 0.8        | 47       | 880        |
| C135         | <5                | <0.05          | 1.6           | 0. 2         | 10.0           | <0.1         | <0.2          | 5. 0          | <0.2       | 34       | 490        |
| C136         | <5                | <0.05          | 0, 4          | 0.2          | 9. 0           | <0.1         | <0.2          | 4.5           | <0.2       | 41       | 480        |
| C137         | <5                | <0.05          | 0.8           | 0.2          | 6.6            | <0.1         | <0.2          | 5, 0          | ⟨0, 2      | 42       | 620        |
| C138         | <5                |                | 193. 0        | 3.4          | 8.2            | <0.1         | 0.4           | 29. 5         | 1.6        | 50       | 800        |
| لتبتنينا     |                   |                |               |              |                |              |               |               |            |          | 000        |

App. 1 Results of Chemical Analysis of Stream Sediments (10/21)

| Sample | Au            | Ag    | As     | Bi    | Cu    | Hg    | No    | Pb    | Sb     | Zn          | Ba    |
|--------|---------------|-------|--------|-------|-------|-------|-------|-------|--------|-------------|-------|
| No.    | (ppb)         | (ppm) | (ppm)  | (ppn) | (ppn) | (ppm) | (ppm) | (ppm) | (ppzi) | (ppm)       | (ppm) |
| C139   | √po)<br>√5    | <0.05 | 2.8    | 0.8   | 3, 2  | <0.1  | <0.2  | 9.0   | (DDE)  | (ppm)<br>20 | 400   |
| C140   | <5            | 0. 10 | 53.0   | 70.0  | 7.6   | <0.1  | 0, 4  | 55, 5 | 0.6    | 51          | 620   |
| C141   | <5            | <0.05 | 60. 4  | 5.8   | 7.8   | 0.1   | 0.2   | 37. 5 | 1. 2   | 37          | 700   |
| C142   | <5            | <0.05 | 38.6   | 1. 2  | 6.6   | 0.1   | 0. 2  | 29, 5 | 0.8    | 37          | 620   |
| C143   | √5            | <0.05 | 0.8    | <0.2  | 2.6   | <0.1  | <0.2  | 6.5   | <0.2   | 14          | 400   |
| C144   | <5            | 0.05  | 2.4    | 0, 4  | 4.8   | <0.1  | <0.2  | 22. 5 | <0, 2  | 32          | 480   |
| C145   | <5            | <0.05 | 1. 2   | 0.4   | 5.0   | <0.1  | <0.2  | 10.5  | <0.2   | 21          | 650   |
| C146   | <5            | <0.05 | 38.8   | 0.6   | 7.0   | <0.1  | 0, 2  | 31.0  | 1.0    | 39          | 660   |
| C147   | <5            | <0.05 | 1. 2   | 0.8   | 5.8   | 0.2   | <0.2  | 19.0  | ⟨0.2   | 30          | 700   |
| C148   | <5            | <0.05 | 2.4    | 0. 2  | 3.0   | <0.1  | <0.2  | 8. 5  | <0.2   | 18          | 360   |
| C149   | <b>&lt;</b> 5 | 0.05  | 90.0   | 7. 2  | 10.4  | <0.1  | 0.4   | 47. 5 | 2, 0   | 50          | 860   |
| C150   | <5            | <0.05 | 3. 2   | 1. 2  | 2.8   | <0.1  | <0.2  | 9. 5  | <0.2   | 20          | 530   |
| C151   | <5            | <0.05 | 53.6   | 2. 6  | 6.4   | 0.1   | 0. 2  | 34. 0 | 1.4    | 46          | 740   |
| C152   | <5            | <0.05 | 89.6   | 3. 2  | 8.0   | <0.1  | 0. 4  | 50.0  | 1.8    | 52          | 750   |
| C153   | <b>&lt;</b> 5 | 0.05  | 51.0   | 0.6   | 7.2   | 0.3   | 0. 2  | 25. 0 | 0.6    | 45          | 900   |
| C154   | ζ5            | <0.05 | 2.4    | <0.2  | 4.2   | 0. 2  | <0.2  | 9.5   | <0.2   | 31          | 1020  |
| C155   | <5            | <0.05 | 1.4    | 0. 2  | 4.2   | 0.1   | <0.2  | 6.0   | <0.2   | 23          | 500   |
| C156   | <5            | <0.05 | 2.0    | 0. 6  | 4.0   | 0. 1  | <0.2  | 7.5   | <0.2   | 21          | 520   |
| C157   | <5            | <0.05 | 0.6    | 2. 8  | 3. 2  | <0.1  | <0.2  | 5. 5  | <0.2   | 15          | 440   |
| C158   | <5            | <0.05 | 1.4    | 3.4   | 2.8   | 0. 1  | <0.2  | 4. 5  | <0.2   | 14          | 440   |
| C159   | <5            | <0.05 | 78. 4  | 0.4   | 6. 2  | <0.1  | 0. 2  | 32. 0 | 1. 2   | 47          | 840   |
| C160   | <5            | <0.05 | 181. 0 | 0.6   | 6. 2  | 0.1   | 0. 2  | 30.0  | 1.6    | 45          | 880   |
| C161   | <b>₹</b> 5    | <0.05 | 6.8    | 13.6  | 6.4   | <0.1  | <0.2  | 8.0   | <0.2   | 35          | 690   |
| C162   | <5            | <0.05 | 1.4    | 0. 2  | 2.8   | <0.1  | <0.2  | 11. 5 | <0.2   | 25          | 980   |
| C163   | <5            | <0.05 | 1.2    | 5.8   | 3.8   | ⟨0.1  | <0.2  | 9. 5  | <0.2   | 30          | 540   |
| C164   | <5            | <0.05 | 3. 4   | 0.2   | 6.4   | <0.1  | <0.2  | 7.0   | <0.2   | 28          | 620   |
| C165   | <b>&lt;</b> 5 | <0.05 | 0.8    | <0.2  | 5.0   | <0.1  | <0.2  | 7. 5  | <0.2   | 28          | 560   |
| C166   | ₹5            | <0.05 | 1.6    | <0.2  | 4.4   | <0.1  | <0.2  | 4.0   | <0.2   | 26          | 650   |
| C167   | <5            | <0.05 | 4.4    | 0.4   | 7.8   | <0.1  | <0. 2 | 5. 0  | <0.2   | -31         | 670   |
| C168   | <5            | <0.05 | 1.8    | 0.4   | 5.0   | <0.1  | <0.2  | 4. 5  | <0.2   | :36         | 560   |
| C169   | <5            | <0.05 | 1.2    | 0.4   | 4.8   | <0.1  | <0.2  | 4.0   | <0.2   | 26          | 620   |
| C170   | <5            | <0.05 | 1.6    | 7.4   | 3.0   | <0.1  | <0.2  | 5.0   | <0.2   | 19          | 560   |
| C171   | <5            | <0.05 | 1. 2   | 2.6   | 3.8   | <0.1  | <0.2  | 10.5  | <0.2   | 23          | 480   |
| C172   | <5            | <0.05 | 84.4   | 5.8   | 6.0   | <0.1  | 0.2   | 27.5  | 1.0    | 45          | 880   |
| C173   | <5            | <0.05 | 1.8    | 1.2   | 3.0   | <0.1  | <0.2  | 11.5  | <0.2   | 20          | 460   |
| C174   | ₹5            | <0.05 | 1.2    | 1.6   | 2.8   | <0.1  | <0, 2 | 10.0  | <0.2   | 20          | 470   |
| C175   | <5            | <0.05 | 0.8    | 0. 2  | 2.4   | <0.1  | <0.2  | 5. 5  | <0.2   | 18          | 460   |
| D001   | <5            | <0.05 | 16. 6  | 0.6   | 8.0   | <0, 1 | 0. 2  | 32. 0 | 0.6    | 49          | 1100  |
| D002   | <5            | 0. 05 | 20. 0  | 0.6   | 11.4  | <0.1  | 0.4   | 43. 5 | 1.8    | 68          | 630   |
| D003   | <5            | <0.05 | 11.8   | 0.8   | 7.0   | <0.1  | 0. 2  | 30. 5 | 0.2    | 48          | 1200  |
| Đ004   | <5            | <0.05 | 15.0   | 0.8   | 7.0   | <0.1  | 0. 2  | 31. 0 | 0.4    | 52          | 1280  |
| D005   | ₹5            | <0.05 | 13. 2  | 0.6   | 6.6   | <0.1  | 0. 2  | 29.5  | 0.4    | 48          | 1140  |
| D006   | <5            | 0.05  | 16.0   | 1.2   | 7.8   | <0.1  | 0.2   | 33. 0 | 0.4    | 49          | 990   |
| D007   | <5            | <0.05 | 18. 6  | 1.6   | 6. 6  | <0.1  | 0. 2  | 37.0  | 0, 8   | 46          | 660   |
| D008   | <5            | <0.05 | 17. 2  | 0.4   | 7.4   | <0.1  | 0. 2  | 33.0  | 0.4    | 52          | 950   |
| D009   | <5            | <0.05 | 14.8   | 0.4   | 9. 2  | 0.1   | <0.2  | 33. 0 | 0.4    | 67          | 630   |
| D010   | <5            | <0.05 | 15. 4  | 0.4   | 8.0   | <0.1  | 0.2   | 36. 0 | 0.4    | 52          | 1180  |
| D011   | <5            | <0.05 | 14.2   | 0.6   | 6.4   | <0.1  | 0. 2  | 26.5  | 0.4    | 51          | 1420  |
| D012   | <5            | <0.05 | 10.6   | 0.6   | 7.2   | <0.1  | 0.2   | 28. 0 | 0. 2   | 48          | 1280  |

App. 1 Results of Chemical Analysis of Stream Sediments(11/21)

| Sample | Au            | Аg      | As    | Bi    | Cu    | llg   | No    | Pb    | Sb    | Zn          | Ba      |
|--------|---------------|---------|-------|-------|-------|-------|-------|-------|-------|-------------|---------|
| No.    | (ppb)         | (ppm)   | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm)       | (ppn)   |
| D013   | <5            | <0.05   | 10.0  | 0.8   | 6.6   | 0.1   | 0.4   | 28.0  |       | (PPS)<br>51 |         |
| D014   | <5            | <0.05   | 9. 2  | 0.6   | 5. 8  | <0.1  | 0. 2  | 24. 0 | 0, 2  | 45          |         |
| D015   | ₹5            | <0.05   | 11.0  | 0.6   | 6.6   | 0. 1  | 0.2   | 27. 5 | 0. 2  | 54          | .       |
| D016   | <5            | <0.05   | 9.0   | 0.6   | 6.0   | 0. 2  | 0, 2  | 24.5  | <0.2  | 45          | <b></b> |
| D017   | <5            | <0.05   | 10. 4 | 0.6   | 5.8   | 0. 1  | 0.2   | 26.0  | 0. 2  | 47          |         |
| D018   | <5            | <0.05   | 9.8   | 0.6   | 6.0   | <0.1  | 0.2   | 25.5  | 0. 2  | 51          | 1480    |
| D019   | <5            | <0.05   | 11.2  | 0.6   | 7.0   | <0.1  | 0.2   | 28. 5 | 0. 4  | 52          |         |
| D020   | √5            | <0.05   | 6.6   | 0.4   | 24. 0 | <0.1  | 0, 4  | 36.5  | 0. 2  | 81          | 1580    |
| D021   | <5            | <0.05   | 4. 2  | 0.6   | 6.6   | <0.1  | <0.2  | 20.5  | 0. 2  | 50          | 1260    |
| D022   | <5            | <0.05   | 4. 6  | 0.8   | 40. 4 | <0.1  | 0.2   | 48.5  | <0.2  | 73          | 2800    |
| D023   | <5            | <0.05   | 2.0   | 1.8   | 11.0  | <0.1  | 0.2   | 47.5  | <0.2  | 105         | 3250    |
| D024   | <5            | <0.05   | 5. 4  | 0.6   | 8, 2  | <0.1  | 0.2   | 23.5  | ⟨0, 2 | 66          | 1400    |
| D025   | <5            | <0.05   | 3. 2  | 0.6   | 15.8  | <0.1  | 0.2   | 33. 0 | <0.2  | 56          | 1840    |
| D026   | <5            | <0.05   | 4. 2  | 0.4   | 6. 4  | <0.1  | <0.2  | 20, 5 | <0.2  | 50          | 1420    |
| D027   | <5            | <0.05   | 4.0   | 0.2   | 6.4   | <0.1  | 0.2   | 20.0  | <0.2  | 50          | 1420    |
| D028   | <5            | <0.05   | 4.6   | 0.8   | 51. 0 | <0.1  | <0.2  | 33. 0 | 0.2   | 65          | 1960    |
| D029   | 25            | <0.05   | 4. 8  | 0.4   | 7.4   | <0.1  | 0. 2  | 23. 5 | 0.2   | 54          | 1360    |
| D030   | <5            | <0.05   | 6. 2  | 0.6   | 28. 0 | <0.1  | 0.2   | 41. 5 | 0.2   | 100         | 1640    |
| D031   | <5            | <0.05   | 4.8   | 0.6   | 7. 4  | <0.1  | 0.2   | 20. 5 | 0. 2  | 57          | 1380    |
| D032   | <5            | <0.05   | 5. 2  | 0.4   | 6. 4  | <0.1  | <0.2  | 20. 5 | 0. 2  | 52          | 1320    |
| D033   | <5            | <0.05   | 3. 2  | 0.6   | 61. 0 | <0.1  | <0.2  | 37. 0 | <0.2  | 61          | 4700    |
| D034   | <5            | <0.05   | 4. 8  | 0.6   | 7. 2  | <0.1  | 0. 2  | 20. 5 | <0.2  | 55          | 1380    |
| D035   | 15            | <0.05   | 3.0   | 0.8   | 52. 4 | <0.1  | 0.2   | 35. 0 | <0.2  | 66          | 2900    |
| D036   | <5            | <0.05   | 2.8   | 0.6   | 24. 0 | <0.1  | <0.2  | 28. 0 | <0.2  | 46          | 3900    |
| D037   | ₹5            | <0.05   | 3.0   | 0.6   | 36. 0 | <0.1  | 0. 2  | 33. 0 | <0.2  | 79          | 2000    |
| D038   | <5            | <0.05   | 0.8   | 0.6   | 30. 2 | <0.1  | <0.2  | 34. 5 | <0.2  | 67          | 3450    |
| D039   | <5            | <0.05   | 2.0   | 0.6   | 34. 4 | 0.1   | <0.2  | 34. 5 | <0.2  | 80          | 1800    |
| D040   | <5            | <0.05   | 1. 2  | 0.8   | 52.8  | <0.1  | <0.2  | 34. 5 | <0.2  | 81          | 2700    |
| D041   | <5            | <0.05   | 2.6   | 0.4   | 37. 0 | <0.1  | <0.2  | 30. 5 | <0.2  | 76          | 1980    |
| D042   | <5            | <0.05   | 1. 2  | 0.2   | 59. 8 | 0.1   | <0.2  | 32. 5 | <0.2  | 72          | 2450    |
| D043   | ⟨5            | <0.05   | 3. 0  | 0.4   | 32.4  | <0.1  | 0.2   | 33. 5 | <0.2  | 70          | 2700    |
| D044   | <5            | <0.05   | 2.4   | 0.2   | 33. 8 | 0.1   | <0.2  | 32. 5 | (0.2  | 80          | 4200    |
| D045   | ₹5            | <0.05   | 1.8   | 0.8   | 58. 2 | <0.1  | <0.2  | 42.5  | <0.2  | 115         | 2600    |
| D046   | <5            | <0.05   | 1.0   | 0.6   | 54.4  | <0.1  | 0. 2  | 39. 5 | 0. 2  | 103         | 3300    |
| D047   | <5            | <0.05   | 1.2   | 1.0   | 37. 0 | 0.1   | 0.2   | 32. 5 | ⟨0.2  | 74          | 2100    |
| D048   | <5            | <0.05   | 1.4   | 0.6   | 63. 2 | <0.1  | <0.2  | 45. 5 | <0.2  | 121         | 2000    |
| D049   | <5            | <0.05   | 2. 0  | 0.8   | 68. 2 | 0.2   | <0.2  | 35. 5 | <0.2  | 84          | 2900    |
| D050   | <5            | <0.05   | 2.2   | 0.4   | 22. 2 | <0.1  | 0. 2  | 31, 0 | <0.2  | 79          | 1520    |
| D051   | <5            | <0.05   | 2.4   | 0.6   | 19.6  | <0.1  | 0. 2  | 29. 5 | <0.2  | 76          | 1640    |
| D052   | <5            | <0.05   | 3. 4  | 0.6   | 9. 2  | 0.1   | 0.2   | 25. 5 | 0.2   | 62          | 1480    |
| D053   | <b>&lt;</b> 5 | <0.05   | 1.8   | 1.0   | 46.6  | <0.1  | <0.2  | 45. 5 | <0.2  | 110         | 1120    |
| D054   | <5            | <0.05   | 2.6   | 1.0   | 48.4  | <0.1  | 0.2   | 40.5  | 0.2   | 111         | 1130    |
| D055   | <5            | <0.05   | 2.8   | 2.0   | 11.6  | <0.1  | 0.4   | 28.0  | <0.2  | 150         | 1300    |
| D056   | 40            | <0.05   | 0.8   | 0.8   | 44.0  | 0. 2  | 0. 2  | 32. 5 | <0.2  | 102         | 1560    |
| D057   | <5            | <0.05   | 1. 4  | 1.2   | 73. 0 | <0.1  | 0. 2  | 46. 0 | <0.2  | 170         | 2700    |
| D058   | <5            | <0.05   | 1.4   | 1.0   | 57.6  | <0.1  | 0. 2  | 40.5  | <0.2  | 156         | 3000    |
| D059   | <5            | <0.05   | 0.6   | 0.4   | 59. 6 | <0.1  | 0. 2  | 20, 5 | <0.2  | 101         | 1450    |
| D060   | <5            | <0.05   | 7. 6  | 0.6   | 46.4  | <0.1  | 0. 2  | 37. 0 | 0.2   | 106         | 1380    |
| D061   | <5            | <0. (°5 | 3. 4  | 0.2   | 17. 2 | <0.1  | <0.2  | 8.5   | 0.4   | 60          | 230     |
|        |               |         |       |       |       |       |       |       |       |             |         |

App. 1 Results of Chemical Analysis of Stream Sediments(1 2/21)

| r      | 1.            |       | 4.     | n.    |       | n.,   | N-    | n.    | Ch.   | 20    | Ba    |
|--------|---------------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| Sample | Au            | Ag    | As     | Bi    | Cu    | Bg    | No    | Pb    | Sb    | Zn    | l i   |
| No.    | (ppb)         | (ppm) | (ppm)  | (ppm) | (ppm) | (ppn) | (ppm) | (mqq) | (ppn) | (ppm) | (ppm) |
| D062   | <b>&lt;</b> 5 | <0.05 | 4. 2   | 0.4   | 19. 6 | <0.1  | 0, 2  | 14.0  | 0.6   | 91    | 380   |
| D063   | ₹5            | <0.05 | 3. 6   | 0.6   | 11.4  | <0, 1 | 0.2   | 26.0  | 0.2   | 93    | 1360  |
| D064   | <b>(5</b>     | <0.05 | 5. 6   | 0.4   | 21.4  | <0.1  | 0.2   | 10.5  | 1.2   | 76    | 320   |
| D065   | <b>&lt;</b> 5 | <0.05 | 2.0    | 0.4   | 21.8  | <0.1  | 0.2   | 18.5  | <0.2  | 89    | 290   |
| D066   | ₹5            | <0.05 | 2.0    | 0.2   | 8.2   | <0.1  | 0.2   | 7.5   | <0.2  | 64    | 160   |
| D067   | <5            | <0.05 | 3.6    | 0.6   | 10.2  | <0.1  | 0.2   | 26.0  | <0.2  | 56    | 1380  |
| D068   | ₹5            | <0.05 | 5.8    | 0.6   | 65. 2 | <0.1  | 0.4   | 22.5  | <0.2  | 101   | 840   |
| D069   | <5            | <0.05 | 8.6    | 0.6   | 52.0  | <0.1  | 0.8   | 19.5  | <0.2  | 70    | 320   |
| D070   | <5            | <0.05 | 11. 2  | 0.8   | 42.6  | 0, 1  | 0.6   | 29.5  | 0.2   | 111   | 680   |
| D071   | <b>&lt;</b> 5 | <0.05 | 14. 2  | 0.8   | 38.6  | <0.1  | 1.2   | 38.5  | 0.4   | 102   | 700   |
| D072   | <5            | <0.05 | 12. 2  | 0.8   | 40.6  | <0.1  | 0.6   | 24.0  | 1.2   | 100   | 520   |
| D073   | <5            | <0.05 | 0.8    | 0, 2  | 3.6   | <0.1  | 0.2   | 4, 5  | <0.2  | 20    | 520   |
| D074   | ₹5            | <0.05 | 125. 5 | 3. 2  | 7.8   | <0.1  | 0.2   | 25. 0 | 1. 4  | 59    | 880   |
| D075   | <b>&lt;</b> 5 | 0.05  | 99. 6  | 0.6   | 7.6   | <0.1  | 0. 2  | 26.0  | 1.2   | 43    | 800   |
| D076   | <5            | <0.05 | 13.0   | 0, 2  | 32. 2 | ⟨0, 1 | 0.4   | 9.5   | 0.4   | 60    | 400   |
| D077   | <5            | <0.05 | 81.8   | 5, 2  | 10.8  | 0. 1  | 0. 2  | 23.5  | 0.8   | 41    | 760   |
| D078   | <5            | 0.05  | 116, 0 | 12. 6 | 6.6   | <0.1  | 0.2   | 27.5  | 1. 2  | 47    | 830   |
| D079   | <5            | <0.05 | 6.6    | 0.2   | 30. 2 | <0.1  | <0.2  | 2.0   | 0.2   | 43    | 110   |
| D080   | <5            | <0.05 | 17.6   | 0.2   | 14.2  | <0.1  | <0.2  | 9.5   | 0. 2  | 27    | 340   |
| D081   | ₹5            | <0.05 | 60. 2  | 0.4   | 6.4   | <0.1  | 0.2   | 25. 5 | 0.8   | 44    | 780   |
| D082   | ₹5            | <0.05 | 3.4    | <0, 2 | 16. 6 | <0.1  | <0.2  | 4.0   | 0.2   | 21    | 60    |
| D083   | 30            | <0.05 | 4.6    | 0. 2  | 13.2  | <0.1  | <0.2  | 3. 0  | <0.2  | 34    | 320   |
| D084   | ⟨5            | <0.05 | 1.8    | 0.4   | 5. 2  | <0.1  | <0.2  | 7. 5  | <0.2  | 30    | 700   |
| D085   | ₹5            | <0.05 | 3.8    | 0.4   | 20.0  | 0. 1  | <0.2  | 6.0   | <0.2  | 29    | 410   |
| D086   | √5            | <0.05 | 0.6    | <0.2  | 8.6   | <0.1  | <0.2  | 3.5   | <0.2  | 31    | 400   |
| D087   | ⟨5            | <0.05 | 2. 2   | 0, 2  | 4.8   | <0.1  | <0.2  | 8.0   | <0.2  | 29    | 760   |
| D088   | ₹5            | <0.05 | 2.0    | <0.2  | 8.8   | <0.1  | <0.2  | 3.0   | <0.2  | 36    | 440   |
| D089   | <5            | <0.05 | 1.0    | <0, 2 | 6.6   | <0.1  | <0.2  | 3. 5  | <0.2  | 43    | 460   |
| D090   | <5            | <0.05 | 2.6    | 0.2   | 5.0   | <0.1  | <0.2  | 11.0  | <0.2  | 32    | 780   |
| D091   | <5            | <0.05 | 0.8    | 5. 4  | 3.4   | <0.1  | <0.2  | 6.5   | <0.2  | 21    | 490   |
| D092   | <5            | <0.05 | 0.8    | 2.0   | 3.6   | <0.1  | <0.2  | 9.5   | <0.2  | 23    | 450   |
| D093   | ⟨5            | <0.05 | 1.0    | 0.6   | 4.8   | <0.1  | 0.2   | 4, 5  | <0.2  | 55    | 610   |
| D094   | <5            | <0.05 | 0.8    | 0.8   | 3.4   | <0.1  | <0.2  | 6.0   | <0.2  | 21    | 440   |
| D095   | <5            | <0.05 | 1. 2   | 0.4   | 4.0   | <0.1  | <0.2  | 6.0   | <0.2  | 25    | 440   |
| D096   | <5            | <0.05 | 0.8    | 1.0   | 3.8   | <0.1  | <0.2  | 5, 5  | <0.2  | 29    | 660   |
| D097   | <b>&lt;</b> 5 | <0.05 | 1.8    | 1.8   | 4.0   | <0.1  | <0.2  | 5.0   | <0.2  | 24    | 520   |
| D098   | ₹5            | <0.05 | 1, 4   | 0.4   | 3.8   | <0.1  | <0.2  | 5.5   | <0.2  | 25    | 520   |
| D099   | ₹5            | <0.05 | 2.0    | 3, 0  | 5.0   | <0.1  | <0.2  | 10.5  | <0.2  | 33    | 800   |
| D100   | <5            | <0.05 | 1. 4   | <0.2  | 8.8   | <0.1  | <0.2  | 2.0   | <0.2  | 35    | 300   |
| D101   | <5<br>        | <0.05 | 2.2    | 1, 8  | 5.4   | <0.1  | <0.2  | 3.5   | <0.2  | 36    | 480   |
| E001   | <5            | 0.05  | 39. 0  | 1, 8  | 7.0   | 0.1   | 0.4   | 33. 0 | 0.4   | 48    | 1220  |
| E002   | <5            | 0.05  | 34.6   | 2.0   | 6.6   | <0.1  | 0.4   | 30.5  | 0.2   | 46    | 1180  |
| E003   | <5            | 0.05  | 16. 2  | 0.8   | 13.0  | <0, 1 | <0.2  | 24. 5 | 0.8   | 59    | 780   |
| E004   | <5            | 0.05  | 30.0   | 2.2   | 8.0   | <0.1  | 0.2   | 36.0  | 0.4   | 47    | 1120  |
| E006   | <5            | <0.05 | 6.4    | 0, 8  | 4.0   | <0.1  | <0.2  | 6.5   | <0.2  | 28    | 500   |
| E007   | <5            | 0.05  | 35.8   | 15.6  | 8.6   | <0.1  | 0.2   | 51.0  | 0,4   | 44    | 1060  |
| E009   | <5            | <0.05 | 22.0   | 1.6   | 7.2   | <0.1  | 0.2   | 28.0  | 0.2   | 44    | 1140  |
| E010   | <5            | <0.05 | 6.0    | 0.6   | 4.0   | <0.1  | <0.2  | 11.5  | <0, 2 | 38    | 660   |
| E011   | <5            | 0.05  | 31.0   | 0.8   | 5.6   | <0.1  | <0.2  | 22.0  | 2. 4  | 56    | 700   |

App. 1 Results of Chemical Analysis of Stream Sediments(13/21)

| Sample       | Au                | Ag             | As           | Bi          | Cu             | Hg          | No    | Рь             | Sb    | Zn        | Ba          |
|--------------|-------------------|----------------|--------------|-------------|----------------|-------------|-------|----------------|-------|-----------|-------------|
| No.          | (ppb)             | (ppm)          | (ppm)        | (ppm)       | (ррд)          | (ppm)       | (ppm) | (ppg)          | (ppn) | (ppm)     | (ppm)       |
| E012         | <5                | <0.05          | 33. 4        | 0.6         | 7. 2           | <0.1        | <0.2  | 14. 0          | 1.0   | 65        | 560         |
| E013         | <5                | 0.05           | 15.8         | 1.6         | 8. 4           | 0, 1        | 0.2   | 48. 5          | 0.2   | 68        | 850         |
| E014         | <5                | 0.05           | 45.0         | 2.8         | 9.0            | 0.1         | 0.4   | 46, 0          | 0.6   | 51        | 1060        |
| E015         | <b>&lt;</b> 5     | 0.20           | 7.8          | 8.4         | 11.4           | <0.1        | <0, 2 | 61. 5          | 0. 2  | 107       | 840         |
| E016         | <5                | 0.05           | 3.4          | 6.0         | 6.0            | <0.1        | <0.2  | 28.0           | <0.2  | 62        | 780         |
| E017         | <5                | 0.10           | 61.0         | 17. 4       | 10.6           | 0.2         | 1.2   | 92. 5          | 0.8   | 61        | 1050        |
| E018         | ; .<5 .           | <0.05          | 12.6         | 4.0         | 9, 6           | <0.1        | <0.2  | 33.5           | <0.2  | 62        | 540         |
| E019         | <5                | <0.05          | 7.0          | 1. 2        | 5.8            | 0.1         | <0.2  | 34.0           | <0.2  | 91        | 440         |
| E020         | <5                | <0.05          | 5.0          | 0.8         | 5.6            | <0.1        | <0.2  | 16, 0          | <0.2  | 75        | 580         |
| E021         | <5                | 0.05           | 7.6          | 0.8         | 11.0           | <0.1        | <0.2  | 29, 0          | 0.4   | 59        | 740         |
| E022         | ₹5                | 0.05           | 24.2         | 1. 0        | 16.8           | <0.1        | 0.2   | 24, 5          | 1.2   | 62        | 830         |
| E024         | <5                | 0.05           | 1.4          | 8.8         | 7.2            | ₹0.1        | <0.2  | 39, 0          | <0.2  | 53        | 640         |
| E025         | ₹5                | 0.05           | 7.8          | 0.6         | 11.2           | <0.1        | <0.2  | 28. 5          | 0.2   | 61        | 780         |
| E026         | <5                | 0.05           | 0.6          | 1.2         | 8. 2           | 0.3         | <0.2  | 31.5           | <0.2  | 54        | 780         |
| E027         | <5                | <0.05          | 25. 4        | 0.8         | 3. 2           | <0.1        | <0.2  | 16.5           | 1.0   | 33        | 720         |
| E028         | <5                | <0.05          | 5.0          | 1.4         | 1.8            | <0.1        | <0.2  | 9.5            | 0.2   | 27        | 600         |
| E029         | <5                | 0.05           | 15. 6        | 0.6         | 1.8            | <0.1        | <0.2  | 11.0           | 0, 6  | 32        | 560         |
| E031         | .<5               | <0.05          | 22. 8        | 0.6         | 4. 4           | <0.1        | ₹0.2  | 17.5           | 1.6   | 35        | 730         |
| E032         | <b>&lt;</b> 5     | <0.05          | 25.0         | 1.0         | 6. 4           | <0.1        | 0.4   | 28.0           | 0.2   | 42        | 1250        |
| E033         | <5                | 0.10           | 28. 4        | 6.6         | 10.6           | <0.1        | 0.4   | 51.5           | 0.8   | 53        | 650         |
| E034         | <5                | <0.05          | 23.8         | 0.8         | 5. 2           | <0.1        | <0.2  | 27. 5          | 2.0   | 42        | 680         |
| E036         | <5                | <0.05          | 20. 4        | 0.6         | 3. 4           | <0.1        | <0.2  | 21.0           | 1.0   | 38        | 840         |
| E038         | <5                | <0.05          | 20.8         | 0.8         | 5.8            | <0.1        | 0.2   | 24. 5          | 0.2   | 35        | 1200        |
| E039         | <5                | <0.05          | 12. 8        | 0.6         | 2. 2           | <0.1        | <0.2  | 17. 5          | 0.2   | 26        | 740         |
| E041         | <u> </u>          | <0.05          | 22. 8        | 1.0         | 6. 2           | <0.1        | 0.4   | 28. 5          | 0.2   | 43        | 1220        |
| E042         | <5<br>            | <0.05          | 17. 4        | 0.4         | 2.8            | <0.1        | <0.2  | 15. 5          | 0.2   | 25        | 1040        |
| E043         | <5<br>            | <0.05          | 11.6         | 0.4         | 3.2            | <0.1        | <0.2  | 11.0           | <0.2  | 36        | 960         |
| E044         | <5                | <0.05          | 1.8          | 1.0         | 2.8            | <0.1        | <0.2  | 8.5            | <0.2  | 45        | 640         |
| E045         | ₹5                | 0.05           | 15.8         | 0.6         | 15. 0          | <0.1        | 0.2   | 25, 0          | 1. 2  | 63        | 820         |
| E046         | ₹5                | <0.05          | 5. 2         | 1.6         | 5.6            | <0.1        | <0.2  | 23.0           | <0.2  | 49        | 730         |
| E047         | ζ5                | <0.05          | 1.8          | 0.8         | 2.4            | <0.1        | <0.2  | 20.0           | <0.2  | 47        | 620         |
| E048         | <5<br>            | <0.05          | 13. 4        | 0.4         | 37.8           | 0.2         | 0.2   | 16.5           | 1.8   | 90        | 940         |
| E049<br>E050 | <5                | <0.05          | 1.6          | 0.2         | 5.0            | <0.1        | <0.2  | 8.0            | <0.2  | 32        | 260         |
| E051         | <5<br><5          | <0.05<br><0.05 | 5. 2<br>5. 6 | 0.6         | 21. 8<br>21. 0 | <0.1<br>0.3 | 0.2   | 25. 0          | 0, 2  | 92        | 1440        |
| E052         | <5                | <0.05          | 3.4          | 0. 4        | 20.6           | <0.1        | 0.2   | 28.5           | **-:  | 117       | 1240        |
| E053         | 430               | <0.05          | 5. 2         | 0. 4        | 20.0           | <0.1        | 0.2   | 10.5           | <0.2  | 63<br>87  | 140         |
| E054         | 450<br><b>K</b> 5 | 0.70           | 5. 4         |             | 24.4           | ⟨0.1        | 0.2   | 13, 0<br>29. 5 |       | ~         | 160<br>1200 |
| E055         | <b>≺</b> 5        | <0.05          | 0.4          | 0.8<br><0.2 | 30.8           | <0. 1       | <0.2  | 4.5            | <0.2  | 157<br>63 | 80          |
| E056         | <b>√5</b>         | <0.05          | 3.8          | 0.4         | 24.8           | <0.1        | 0. 4  | 9. 5           | <0.2  | 84        | 190         |
| E057         | <b>√</b> 5        | 0. 70          | 4.4          | 0.8         | 24.8           | 7. 3        | 1.2   | 37.0           | 0. 2  | 120       | 1330        |
| E058         | <b>√5</b>         | <0.05          | 5.4          | 0.4         | 14.4           | <0.1        | 0.4   | 16.5           | <0.2  | 77        | 800         |
| E059         | √5                | <0.05          | 6.6          | 0.4         | 18.4           | <0.1        | 0.4   | 26. 5          | <0.2  | 93        | 820         |
| E061         | <b>&lt;</b> 5     | <0.05          | 10. 2        | 0.2         | 24. 2          | 0.3         | 0. 2  | 16.0           | <0.2  | 90        | 860         |
| E062         | <b>√5</b>         | <0.05          | 5.6          | 0. 4        | 36.8           | <0.1        | 0. 4  | 23.0           | <0.2  | 94        | 1020        |
| E063         | <5                | <0.05          | 4. 6         | 1. 2        | 23. 8          | <0.1        | 0. 2  | 26.0           | <0.2  | 85        | 1460        |
| E065         | <b>&lt;</b> 5     | <0.05          | 1.2          | 0.2         | 7.0            | ⟨0.1        | 0.2   | 20. 5          | <0.2  | 74        | 860         |
| E066         | <5                | <0.05          | 4.8          | 0.6         | 19. 0          | <0.1        | 0.2   | 30.0           | <0.2  | 82        | 1390        |
| E067         | <b>&lt;</b> 5     | <0.05          | 3. 8         | 0.6         | 18. 0          | <0.1        | 0. 2  | 25. 5          | <0.2  | 102       | 1320        |
| E001         | (۵/               | VV. UO         | 0.0          | V. 0        | 10. U          | /U. I       | V. &  | 40.0           | NU. Z | 102       | 1020        |

App. 1 Results of Chemical Analysis of Stream Sediments(  $1\,4/2\,1$  )

| Sample | Au            | Лg    | ۸s      | Bi    | Çu    | Bg .    | llo   | Pb    | Sb    | 2n    | Ba    |
|--------|---------------|-------|---------|-------|-------|---------|-------|-------|-------|-------|-------|
| No.    | (ppb)         | (ppm) | (mqq)   | (ppm) | (npm) | (ppn)   | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) |
| E068   | <5            | 0.05  | 5. 2    | 0, 6  | 16.6  | <0.1    | 1. 4  | 67.0  | <0.2  | 127   | 1980  |
| E069   | <5            | <0.05 | 3. 0    | 0, 6  | 16, 6 | ∶ <0. 1 | 1, 0  | 71.5  | <0. 2 | 139   | 1700  |
| E070   | ₹5            | <0.05 | 4. 8    | 0.4   | 21, 0 | <0.1    | 0. 2  | 26. 5 | 0. 2  | 84    | 1380  |
| E071   | <5            | 0.05  | 3, 6    | 0.4   | 15. 4 | <0.1    | 0.8   | 66. 5 | <0.2  | 163   | 1660  |
| E072   | <5            | <0.05 | 2. 8    | 0.6   | 9. 2  | 0. 2    | 0.4   | 23. 5 | <0.2  | 241   | 1280  |
| E073   | <5            | <0.05 | 11. 6   | 0. 2  | 32. 2 | <0.1    | 0.4   | 18.5  | 1. 2  | 83    | 1060  |
| E074   | <5            | <0.05 | 4.0     | 0. 4  | 26.0  | <0.1    | 0. 2  | 17. 0 | <0.2  | 68    | 420   |
| E076   | 25            | <0.05 | 3. 0    | 0. 2  | 30. 2 | <0.1    | 0, 2  | 10.0  | <0.2  | 69    | 340   |
| E077   | <5            | <0.05 | 3. 8    | 0. 2  | 22. 4 | <0.1    | 0. 2  | 12.5  | <0.2  | 68    | 400   |
| E080   | <5            | <0.05 | 4. 6    | 0. 2  | 32.6  | <0.1    | 0.4   | 12.5  | <0.2  | 73    | ⊹400  |
| E081   | <b>&lt;</b> 5 | <0.05 | 11. 0   | 0.4   | 32.0  | <0.1    | 0.4   | 18. 5 | 1. 2  | 91    | 1180  |
| E083   | <5            | <0.05 | 4.6     | 0. 2  | 32.4  | <0.1    | 0.6   | 16.5  | <0.2  | 92    | 500   |
| E085   | <b>&lt;</b> 5 | <0.05 | 12.0    | 0.4   | 35. 6 | <0.1    | 0.4   | 21. 5 | 2. 2  | - 88  | 1430  |
| E086   | <5            | <0.05 | 6.8     | 0.2   | 36. 4 | <0.1    | 0.4   | 16.0  | 0. 2  | 74    | 620   |
| E087   | ₹5            | <0.05 | 12.4    | 0.4   | 34.4  | 0.1     | 0.4   | 19.0  | 1. 4  | 82    | 1160  |
| E088   | <5            | <0.05 | 7.0     | 0.4   | 36.0  | <0.1    | 0.4   | 14.5  | 0. 2  | . 86  | 620   |
| E089   | ₹5            | <0.05 | 7.6     | 0.6   | 18.4  | <0.1    | 1.0   | 36.5  | 0.4   | . 93  | 1360  |
| E091   | ₹5            | <0.05 | 6.6     | 0.4   | 30.0  | <0.1    | <0.2  | 14.5  | 0.2   | 83    | 260   |
| E092   | <5            | <0.05 | 16.6    | 0.4   | 24. 4 | ₹0.1    | 0. 2  | 14.5  | 1. 2  | 84    | 580   |
| E093   | <5            | <0.05 | 16. 4   | 0.4   | 23.6  | <0.1    | 0. 2  | 14.0  | 1.0   | 79    | 540   |
| E094   | √5            | <0.05 | 16. 8   | 0.4   | 23.8  | <0.1    | 0.2   | 14.5  | 1.0   | 82    | 570   |
| E095   | <5            | <0.05 | 15. 2   | 0.6   | 32.8  | <0.1    | 0. 2  | 15. 5 | 1.0   | 91    | 420   |
| E096   | <5            | <0.05 | 18. 6   | 0.2   | 23.4  | <0.1    | 0.2   | 13.0  | 1. 2  | 78    | 720   |
| E097   | <5            | <0.05 | 19. 4   | 0.4   | 22.8  | <0.1    | 0. 2  | 13. 5 | 1.4   | 78    | 660   |
| E098   | <5            | <0.05 | 17. 2   | 0.4   | 22.8  | <0.1    | 0. 2  | 14. 0 | 1. 2  | 80    | 620   |
| E099   | <5            | <0.05 | 18.4    | 0.4   | 24.6  | <0.1    | 0. 2  | 14.5  | 1.2   | 83    | 640   |
| E100   | <5            | <0.05 | 17.4    | 0.2   | 26.0  | <0.1    | 0.2   | 15.5  | 1.4   | 84    | 610   |
| E101   | <5            | <0.05 | - 15. 4 | 0.2   | 22.0  | <0.1    | 0. 2  | 14.0  | 1. 2  | 87    | 720   |
| E102   | <5            | <0.05 | 16. 2   | 0.4   | 22.0  | <0.1    | 0. 2  | 13. 5 | 1.2   | 79    | 680   |
| E103   | <5            | <0.05 | 13, 0   | 0.4   | 28. 4 | <0.1    | 0.2   | 16. 5 | 0.8   | 79    | : 560 |
| E104   | <5            | <0.05 | 15. 6   | 0.2   | 21. 2 | <0.1    | 0.2   | 14.0  | 1. 2  | 79    | 680   |
| E105   | <5            | <0.05 | 15. 4   | 0.2   | 21.8  | <0.1    | 0. 2  | 14.0  | 1.6   | 74    | 770   |
| E106   | <5            | <0.05 | 14. 2   | 0.4   | 21.4  | <0.1    | 0.2   | 13, 0 | 1. 2  | 75    | 800   |
| E107   | <5            | <0.05 | 15. 6   | 0.4   | 20.8  | 0.2     | 0.2   | 14. 0 | 1.2   | 74    | 760   |
| E108   | <b>&lt;</b> 5 | <0.05 | 15. 2   | 0.2   | 25. 2 | 0.1     | 0. 2  | 13. 5 | 1.2   | 78    | 620   |
| E109   | <5            | <0.05 | 16. 8   | 0.2   | 39.0  | <0.1    | 0. 2  | 21. 5 | 4.4   | 63    | 2400  |
| E110   | <5            | <0.05 | 15.0    | 0.8   | 28.8  | <0.1    | 0.2   | 32.0  | 5.4   | 114   | 1100  |
| E111   | <b>&lt;</b> 5 | <0.05 | 16. 4   | 0.6   | 29. 0 | <0.1    | 0.2   | 24.5  | 5.0   | 73    | 2300  |
| E112   | <b>&lt;</b> 5 | <0.05 | 18. 8   | 1.0   | 36. 8 | 0.1     | 0. 2  | 23. 0 | 5. 2  | 70    | 2300  |
| E113   | <5            | <0.05 | 19. 6   | 0.4   | 35. 6 | 0.1     | 0.2   | 24.0  | 5.8   | 67    | 2450  |
| E114   | <5            | <0.05 | 16. 4   | 0.4   | 46. 2 | <0.1    | 0. 2  | 22. 5 | 5. 4  | 67    | 2400  |
| E115   | <5            | <0.05 | 13. 4   | 0.2   | 21.0  | <0.1    | 0.2   | 14. 5 | 1.2   | 79    | 880   |
| E116   | <5            | <0.05 | 15.0    | 0.4   | 39. 2 | <0.1    | 0. 2  | 23.0  | 3. 2  | 72    | 1840  |
| E117   | <5            | <0.05 | 19.8    | 0. 2  | 52. 2 | 0.3     | 0.4   | 14.0  | 2.0   | 102   | 240   |
| E118   | <5            | <0.05 | 20. 6   | 0.4   | 30.0  | <0.1    | 0. 2  | 24. 5 | 5.6   | 77    | 1840  |
| E119   | <5            | <0.05 | 16. 4   | 0. 2  | 43.6  | <0.1    | 0, 2  | 24. 0 | 4.2   | 68    | 2400  |
| E120   | <5            | <0.05 | 14. 2   | 0. 2  | 42.8  | <0.1    | 0. 2  | 23. 0 | 4.0   | 66    | 1600  |
| E121   | <b>&lt;</b> 5 | <0.05 | 13. 4   | 0.4   | 31. 2 | <0.1    | 0. 2  | 21. 5 | 3. 2  | 73    | 2500  |
| E122   | <5            | <0.05 | 16. 2   | 0, 4  | 35. 4 | <0.1    | 0. 2  | 23. 5 | 4.0   | 73    | 1960  |

App. 1 Results of Chemical Analysis of Stream Sediments (15/21)

| Sample | Au            | Ag    | As           | Bi    | Cu    | Пg    | No    | Рь    | Sb    | Zn    | Ba    |
|--------|---------------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|
| No.    | (ppb)         | (ppn) | (ppm)        | (ppm) | (ppm) | (ppn) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) |
| E123   | ₹5            | <0.05 | 15. 0        | 0.4   | 39, 2 | <0.1  | 0. 2  | 23. 5 | 3, 8  | 67    | 2300  |
| E124   | ⟨5            | <0.05 | 10, 4        | 0.6   | 28. 4 | <0.1  | 0. 2  | 26. 0 | 0. 4  | 78    | 900   |
| E125   | ₹5            | <0.05 | 9. 4         | 0.4   | 26. 6 | <0.1  | 0. 2  | 17. 0 | 0.4   | 77    | 650   |
| E126   | <5            | <0.05 | 18.0         | 0.4   | 35, 6 | <0.1  | <0.2  | 16.0  | 0.6   | 80    | 280   |
| E127   | <5            | <0.05 | 20. 4        | 0.6   | 36, 4 | <0.1  | 0. 2  | 17.0  | 0. 8  | 81    | 240   |
| E128   | ₹5            | <0.05 | 17. 6        | 0.6   | 35. 4 | 0.1   | 0.2   | 17. 0 | 0, 6  | 81    | 290   |
| E129   | <5            | <0.05 | 18.6         | 0.4   | 35. 0 | <0.1  | 0. 2  | 17. 5 | 0.6   | 83    | 300   |
| E130   | ₹5            | <0.05 | 13.8         | 0.4   | 40. 4 | <0.1  | 0.2   | 14. 5 | 0.6   | 86    | 240   |
| E131   | ₹5            | <0.05 | 17. 2        | 0.4   | 38. 0 | <0.1  | 0. 2  | 18.5  | 0.6   | 84    | 150   |
| E132   | <5            | <0.05 | 18.6         | 0.4   | 26. 4 | 0. 1  | 0. 2  | 15.0  | 1.0   | 78    | 630   |
| E133   | ∢5            | <0.05 | 5.0          | 0.6   | 20.8  | <0.1  | 0. 2  | 20.5  | <0.2  | 73    | 980   |
| E134   | ₹5            | <0.05 | 3. 2         | 1.0   | 20.0  | <0.1  | 0. 2  | 45. 0 | <0.2  | 77    | 2000  |
| E135   | ₹5            | <0.05 | 11.8         | 0.2   | 28. 0 | <0.1  | 0.2   | 13. 0 | 0.4   | 80    | 350   |
| E136   | <5            | 0.05  | 66.0         | 0.8   | 8. 2  | <0.1  | 0.2   | 20, 5 | 0.6   | 38    | 720   |
| E137   | 690           | 0. 05 | 12. 8        | 0.4   | 39. 2 | <0.1  | 0.8   | 18. 5 | 0. 2  | 87    | 860   |
| E138   | <5            | 0, 05 | 12.0         | 0.4   | 39.6  | <0.1  | 0.8   | 20. 0 | 0. 2  | 88    | 880   |
| E139   | <5            | <0.05 | 11. 2        | 0.6   | 36. 8 | <0.1  | 0.6   | 16.0  | <0.2  | 83    | 980   |
| E140   | <5            | <0.05 | 5.6          | 0.2   | 30. 4 | <0.1  | 0. 4  | 11.0  | <0.2  | 62    | 500   |
| E141   | <5            | <0.05 | 11.6         | 0.6   | 39. 2 | <0.1  | 0. 6  | 16.5  | 0.4   | 84    | 920   |
| E143   | <5            | <0.05 | 7.8          | 0.6   | 28. 2 | <0.1  | 0.4   | 16.0  | <0.2  | 67    | 1020  |
| E144   | <5            | 0.05  | 17.4         | 1. 2  | 47. 0 | <0.1  | 0.8   | 20.5  | 0.4   | 101   | 850   |
| E145   | <b>&lt;</b> 5 | <0.05 | 6. 2         | 0.6   | 25. 0 | <0.1  | 0.4   | 16.0  | <0.2  | 63    | 1180  |
| E147   | ₹5            | <0.05 | 3.2          | 0. 2  | 32. 2 | 0. 1  | 0.4   | 11.5  | <0.2  | 85    | 700   |
| E148   | 70            | 0. 05 | 15.4         | 0.8   | 45. 4 | <0.1  | 0.8   | 23.0  | 0. 4  | 100   | 930   |
| E149   | <5            | 0.05  | 15.6         | 0.6   | 44. 8 | <0.1  | 0.8   | 20.0  | 0. 4  | 97    | 960   |
| E150   | <5            | <0.05 | 4.8          | 0.4   | 42.6  | <0.1  | 0.4   | 10.0  | <0.2  | 75    | 520   |
| E151   | <b>&lt;</b> 5 | 0.05  | 16.8         | 0.8   | 43. 4 | 0. 1  | 0.8   | 21.5  | 0. 4  | 100   | 1060  |
| E153   | <b>&lt;</b> 5 | <0.05 | 5.8          | 0.4   | 47. 2 | <0.1  | 0.8   | 14.0  | <0.2  | 76    | 440   |
| E154   | <5            | 0.05  | 16.4         | 0.6   | 40.6  | <0.1  | 0.6   | 22.5  | 0.6   | 108   | 1280  |
| B155   | 100           | 0.05  | 16.6         | 0.4   | 35. 0 | <0.1  | 0.6   | 24. 5 | 0, 6  | 97    | 1240  |
| E156   | <5            | 0.05  | 18.6         | 0.6   | 58. 2 | <0.1  | 1.2   | 35.0  | 0.4   | 147   | 880   |
| E157   | <5            | <0.05 | 10. 2        | 0.4   | 25. 2 | <0.1  | 0.4   | 20.0  | 0. 2  | 76    | 1460  |
| E158   | 20            | <0.05 | 5.6          | 0.6   | 45. 0 | <0.1  | 0.8   | 13. 5 | <0. 2 | 82    | 480   |
| E160   | <5            | <0.05 | 7. 2         | 0.2   | 24. 2 | <0.1  | 0.4   | 14.5  | 0. 2  | 60    | 1200  |
|        | <5            | <0.05 | 6.0          | <0.2  | 21. 2 | 0. 2  | 0.4   | 14.0  | 0. 2  | 57    | 1220  |
| E161   | \5<br>\5      | <0.05 | 2.6          | <0.2  | 23. 2 | <0.1  | 0. 2  | 9.0   | <0.2  | 56    | 700   |
| E162   | <5            | <0.05 | 4.2          | 0.4   | 19. 2 | <0.1  | 0.2   | 15.5  | <0.2  | 63    | 1260  |
| E163   |               | <0.05 | 3.0          | 0.2   | 33. 4 | <0.1  | 0.4   | 9.0   | <0.2  | 61    | 370   |
| E165   | <5            | <0.05 | 5. 0         | 0.2   | 39.0  | <0.1  | 0. 2  | 13.0  | <0.2  | 75    | 490   |
| E166   | <5<br>        | <0.05 | 3.4          | 0.2   | 18.0  | <0.1  | 0.2   | 15.5  | <0.2  | 56    | 1420  |
| B167   | <5<br><5      | <0.05 | 2.8          | <0.2  |       | <0.1  | 0. 2  | 14.0  | <0.2  | 50    | 1400  |
| E168   |               | <0.05 | 2.6          | 0.2   | h     | <0.1  | 0. 2  | 14.0  | <0.2  | 52    | 1540  |
| E169   | <5<br>/5      | 0.05  | 23. 2        | 0. 2  | 57. 6 | <0.1  | 1. 4  | 26.5  | 0.6   | 130   | 560   |
| E170   | <b>₹</b> 5    | <0.05 | 8.0          | 0.0   | 43. 4 | <0.1  | 0.4   | 11.0  | 0.4   | 72    | 380   |
| E171   | <b>₹</b> 5    | <0.05 | 1.6          | <0.2  | 14. 4 | <0.1  | 0. 2  | 12.5  | <0.2  | 45    | 1430  |
| E172   | √5<br>✓6      |       |              | 0.2   | 14. 4 | <0.1  | 0. 2  | 12.0  | <0.2  | 46    | 1440  |
| E173   | <5            | <0.05 | 2, 2<br>7, 4 | <0.2  |       | <0.1  | 0. 4  | 13.5  | 0.2   | 63    | 660   |
| E174   | √5<br>✓5      | <0.05 | 4            | <0.2  |       | <0.1  | <0.2  | 9.5   | <0.2  | 40    | 1400  |
| E175   | <5<br>/5      | <0.05 | 0, 8         |       |       |       | 0. 2  | 14.0  | <0.2  | 46    | 1660  |
| E176   | <5            | <0.05 | 1.8          | <0.2  | 11.6  | <0.1  | 0. Z  | 14.0  | \U. Z | 40    | 1000  |

App. 1 Results of Chemical Analysis of Stream Sediments(16/21)

| Sample | Лu            | λg     | As    | Bi    | Cu    | Ag    | No.   | Pb    | Sb    | Zn    | Ba    |
|--------|---------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| No.    | (ppb)         | (ppm)  | (ppa) | (ppm) | (ppm) | (ppm) | (ppm) | (ppn) | (ppm) | (ppm) | (pps) |
| E177   | <5            | <0.05  | 5. 0  | 0.2   | 14.6  | <0.1  | 0, 4  | 11.0  | <0.2  | 41    | 840   |
| E178   | <5            | <0.05  | 1. 2  | 0, 2  | 9.8   | <0.1  | 0.2   | 16.5  | <0.2  | 53    | 1820  |
| E179   | <5            | <0.05  | 0.4   | <0.2  | 9.8   | <0.1  | <0.2  | 14. 5 | <0.2  | 37    | 1900  |
| E180   | <5            | <0.05  | 0.4   | 0.2   | 6.4   | <0.1  | 0.4   | 18.0  | <0, 2 | 66    | 1720  |
| E181   | <5            | <0.05  | 0.8   | 0, 2  | 5.4   | <0.1  | <0.2  | 20. 5 | <0.2  | 44    | 2500  |
| E182   | <5            | <0.05  | 1. 0  | <0.2  | 8.8   | <0.1  | <0.2  | 8.5   | <0.2  | 31    | 1190  |
| E183   | <5            | <0.05  | 0, 6  | 0. 2  | 3.0   | <0.1  | 0.2   | 22.0  | <0.2  | 50    | 2650  |
| E184   | <5            | <0.05  | 2. 2  | <0.2  | 33. 4 | 0. 3  | <0.2  | 6.0   | <0.2  | 48    | 390   |
| E185   | <b>&lt;</b> 5 | <0.05  | 0.6   | <0.2  | 4.8   | <0.1  | <0.2  | 22. 0 | <0.2  | 42    | 2800  |
| B186   | <5            | <0.05  | 0.4   | <0.2  | 1.4   | <0.1  | <0.2  | 5. 5  | <0.2  | 14    | 1120  |
| E187   | <5            | <0.05  | 0.8   | 0. 2  | 5. 6  | <0.1  | <0.2  | 16.0  | <0.2  | 34    | 2100  |
| E188   | ₹5            | <0.05  | 1. 2  | 0.4   | 5. 4  | <0.1  | <0.2  | 11.5  | <0.2  | 29    | 1440  |
| E189   | <5            | <0.05  | 15. 0 | 0.4   | 42. 4 | <0.1  | 0.4   | 13. 0 | 1, 4  | 65    | 680   |
| E190   | <5            | <0.05  | 1.6   | 0.4   | 6.0   | <0.1  | <0.2  | 13, 0 | <0.2  | 22    | 1700  |
| E191   | <5            | <0.05  | 0. 2  | <0.2  | 1. 4  | <0.1  | <0.2  | 8.0   | <0.2  | 15    | 1840  |
| E192   | <5 :          | <0.05  | 5. 0  | 0. 2  | 9. 2  | 0.1   | 0. 2  | 15. 5 | <0.2  | 33    | 1300  |
| E193   | <5            | <0.05  | 1.6   | 0.2   | 2. 2  | <0.1  | 0. 2  | 19. 0 | <0.2  | 19    | 2700  |
| E194   | <5            | <0.05  | 1, 0  | 0. 2  | 8. 4  | <0.1  | <0.2  | 15. 5 | <0.2  | 53    | 3000  |
| E195   | <5            | <0.05  | 2.0   | 0. 2  | 8.8   | <0.1  | <0.2  | 8. 5  | <0.2  | 28    | 1080  |
| E196   | 385           | <0.05  | 3. 4  | 0. 2  | 20.6  | <0.1  | <0.2  | 16. 5 | 0. 2  | 66    | 2200  |
| E197   | 80            | <0.05  | 5. 2  | 0.2   | 21.8  | <0.1  | 0.2   | 16. 5 | 0.2   | 62    | 1480  |
| E198   | 70            | <0, 05 | 5. 2  | 0. 2  | 18.8  | <0.1  | 0.2   | 20.0  | 0.2   | 58    | 1580  |
| E199   | 275           | 0.05   | 12.4  | 0.2   | 43, 8 | <0.1  | 0.6   | 23, 5 | 0.2   | 112   | 1160  |
| E200   | ∢5            | 0.05   | 18. 6 | 0.4   | 54.0  | <0.1  | 0.8   | 26. 5 | 0.4   | 125   | 1100  |
| E201   | <5            | <0.05  | 10. 2 | 0.2   | 28.4  | 0.1   | 0.4   | 21, 0 | 0.6   | 81    | 1330  |
| E202   | <5            | <0.05  | 3. 6  | <0.2  | 16.0  | <0.1  | 0.2   | 15. 0 | <0.2  | 44    | 1710  |
| E203   | 505           | 0.40   | 8. 2  | <0.2  | 67. 0 | 0.1   | 0.2   | 8. 5  | 1.6   | 124   | 400   |
| E204   | <5            | <0.05  | 1.8   | <0.2  | 13. 0 | <0.1  | <0.2  | 13. 0 | <0.2  | 37    | 1820  |
| E205   | <5            | <0.05  | 1. 8  | 0.2   | 11.0  | <0.1  | <0.2  | 13. 5 | <0.2  | 37    | 1960  |
| E206   | 20            | 0.05   | 16.8  | 0.2   | 47. 4 | <0.1  | 0.4   | 18. 5 | 1.0   | 97    | 980   |
| E207   | <5            | 0.10   | 13. 2 | 0.4   | 30. 4 | 0.1   | 0.4   | 31, 5 | 1, 6  | 116   | 1740  |
| E208   | <5            | <0.05  | 5, 8  | <0.2  | 19. 6 | <0.1  | 0.2   | 12. 0 | 0.4   | 46    | 1140  |
| E209   | <5            | <0.05  | 1.4   | <0.2  | 10. 2 | <0.1  | <0.2  | 15.0  | <0.2  | . 37  | 1920  |
| E210   | <5            | <0.05  | 1.2   | <0.2  | 3.6   | <0.1  | <0.2  | 5. 0  | <0.2  | 20    | 960   |
| E211   | <5            | <0.05  | 0.6   | <0.2  | 13, 4 | <0.1  | <0.2  | 11, 0 | <0.2  | 35    | 1600  |
| F001   | <5            | <0.05  | 1.4   | 0.6   | 1.8   | <0.1  | <0.2  | 12, 5 | <0.2  | 25    | 1480  |
| F002   | :<5           | <0.05  | 1.8   | 0.8   | 4.4   | <0.1  | <0.2  | 17. 0 | <0.2  | 26    | 1500  |
| F003   | <5            | 0. 05  | 8.8   | 8.8   | 11.6  | <0.1  | 0.2   | 16. 5 | <0.2  | 34    | 640   |
| F005   | <5            | 0.05   | 7.0   | 6.8   | 9.0   | <0.1  | 0.2   | 16. 0 | <0.2  | 32    | 660   |
| F006   | <5            | <0.05  | 0.8   | 0.6   | 12.6  | 0.1   | <0.2  | 4.5   | <0.2  | 14    | 600   |
| F007   | ₹5            | <0.05  | 2.8   | 1.6   | 8. 2  | <0.1  | <0.2  | 13. 5 | <0.2  | 27    | 1030  |
| F009   | <5            | 0.05   | 13.6  | 3.6   | 8.8   | <0.1  | 0, 2  | 26.0  | <0.2  | 35    | 640   |
| F010   | ₹5            | <0.05  | 3.4   | 1.4   | 15.0  | <0.1  | <0.2  | 9. 5  | <0.2  | 23    | 420   |
| F012   | :<5           | 0.05   | 6.0   | 5. 2  | 6. 2  | <0.1  | <0.2  | 17. 5 | <0.2  | 32    | 860   |
| F013   | <5            | 0, 05  | 14. 4 | 4.8   | 7.8   | <0.1  | 0. 2  | 21. 0 | <0.2  | 35    | 620   |
| F014   | <5            | <0.05  | 1. 2  | 0.8   | 14.0  | <0.1  | <0.2  | 5. 5  | <0.2  | 23    | 640   |
| F015   | <5            | <0.05  | 1.6   | 1.0   | 5.0   | <0.1  | <0.2  | 12.5  | <0.2  | 39    | 620   |
| F016   | ₹5            | 0. 05  | 11.6  | 2.2   | 7.4   | <0.1  | <0.2  | 19. 0 | <0.2  | 36    | 570   |
| F018   | <5            | <0.05  | 1.2   | 1.0   | 4.2   | <0.1  | <0.2  | 14. 5 | <0.2  | 33    | 660   |

App. 1 Results of Chemical Analysis of Stream Sediments(17/21)

| Sample | Au            | Ag      | As    | Bi    | Cu     | Hg    | No    | Pb             | Sb    | Zn     | Ba    |
|--------|---------------|---------|-------|-------|--------|-------|-------|----------------|-------|--------|-------|
| No.    | (ppb)         | (ppm)   | (ppm) | (ppm) | (ppm)  | (ppm) | (ppm) | (ppm)          | (ppm) | (ppm). | (ppm) |
| F019   | <5            | <0.05   | 2.2   | 2. 4  | 9.0    | ⟨0.1  | (0.2  | 7.0            | ⟨0.2  | 20     | 1000  |
| F020   | <5            | <0.05   | 1,0   | 4.4   | 4.4    | <0, 1 | <0.2  | 9, 5           | ⟨0.2  | 33     | 560   |
| F021   | <5            | 0.05    | 8.6   | 1.6   | 9. 4   | <0.1  | 0. 2  | 20. 5          | <0.2  | 41     | 700   |
| F022   | ₹5            | <0.05   | 11.0  | 0.6   | 4.6    | <0.1  | <0.2  | 8, 0           | <0.2  | 25     | 1040  |
| F023   | <5            | <0.05   | 1.4   | 1.0   | 7. 2   | <0.1  | <0.2  | 7.0            | <0.2  | 28     | 840   |
| F024   | ₹5            | <0.05   | 0.6   | 0.8   | 4.0    | <0.1  | <0.2  | 11.5           | <0.2  | 36     | 540   |
| F025   | <5            | 0.05    | 5. 4  | 2.6   | 7. 2   | 0.1   | 0. 2  | 25. 0          | <0.2  | 37     | 740   |
| F026   | <b>&lt;</b> 5 | 0.05    | 11.8  | 2.0   | 8.8    | <0.1  | 0.2   | 23. 5          | <0.2  | 41     | 660   |
| F027   | <5            | <0.05   | 1.8   | 0.6   | 5.8    | 0.1   | <0.2  | 8.5            | <0.2  | 31     | 580   |
| F029   | <5            | 0.05    | 15.6  | 4, 0  | 9.4    | <0.1  | 0.6   | 26.0           | <0.2  | 44     | 640   |
| F030   | <5            | <0.05   | 3. 2  | 1.0   | 5. 0   | 0.2   | <0.2  | 13. 0          | <0.2  | 37     | 550   |
| F031   | ₹5            | <0.05   | 2.6   | 2.6   | 3.8    | <0.1  | <0.2  | 13. 0          | <0.2  | 30     | 460   |
| F032   | ₹5            | 0. 15   | 1.6   | 3.8   | 13.0   | <0.1  | 2. 0  | 60.0           | ⟨0, 2 | 47     | 640   |
| F033   | <b>(</b> 5    | <0.05   | 0.8   | 0, 8  | 3. 4   | <0.1  | <0.2  | 10.0           | <0.2  | 33     | 560   |
| F034   | <5            | 0. 10   | 13.8  | 3. 2  | 9. 2   | <0.1  | 0. 2  | 23. 5          | <0.2  | 42     | 700   |
| F035   | ₹5            | <0.05   | 8.4   | 11.8  | 7.0    | <0.1  | <0.2  | 23. 5<br>14. 5 | <0.2  | 34     | 740   |
| F036   | <5            | 0.05    | 12. 2 | 1, 6  | 8.8    | <0.1  | 0. 2  | 24. 0          | <0.2  | 44     | 650   |
| F037   | <5            | <0.05   | 3. 2  | 3. 2  | 6.0    | <0.1  | <0.2  | 8.0            | <0.2  | 30     | 520   |
| F038   | <5            | 0.05    | 15.0  | 15. 0 | 8.4    | <0.1  | 0.2   | 12.0           | <0.2  | 37     | 660   |
| F039   | <5            | 0.05    | 19. 8 | 10. 8 | 9.8    | <0.1  | 1. 2  | 30. 5          | <0.2  | 44     | 640   |
| F041   | <5            | 0. 10   | 51.0  | 10.8  | 12.0   | 0.1   | 0.4   | 58. 0          | <0.2  | 53     | 740   |
| F042   | <5            | 0.05    | 2.6   | 4. 8  | 7.6    | 0.1   | <0.2  | 11.5           | <0.2  | 33     | 560   |
| F044   | <5            | 0. 10   | 10.6  | 2.0   | 13.8   | <0.1  | 0. 2  | 33. 0          | <0.2  | 55     | 680   |
| F045   | <b>&lt;</b> 5 | 0.05    | 5.6   | 5. 8  | 11.0   | ⟨0, 1 | 0. 2  | 13. 0          | <0.2  | 40     | 600   |
| F046   | <5            | <0.05   | 7.8   | 2, 0  | 6.4    | <0.1  | <0.2  | 11.5           | <0.2  | 40     | 660   |
| F047   | <5            | 0. 05   | 16. 4 | 1.8   | 9. 2   | <0.1  | 0. 2  | 22. 5          | 0. 2  | 39     | 740   |
| F048   | <5            | 0.05    | 12. 2 | 1. 8  | 9.8    | <0.1  | 0.2   | 26. 5          | <0.2  | 44     | 640   |
| F049   | <5            | <0.05   | 12.4  | 2. 0  | 12.6   | <0.1  | 0. 2  | 17.0           | <0.2  | 40     | 640   |
| F050   | <5            | <0.05   | 5.6   | 0.6   | 17.0   | <0.1  | ⟨0.2  | 7. 5           | <0.2  | 43     | 540   |
| F051   | <5            | <0.05   | 7.8   | 2.0   | 10.8   | <0.1  | ⟨0, 2 | 16. 5          | <0.2  | 44     | 660   |
| F052   | <5            | 0.05    | 7. 6  | 2. 0  | 13. 8  | <0.1  | <0.2  | 13. 0          | <0.2  | 39     | 640   |
| F053   | <5            | <0.05   | 4.8   | 2. 6  | 35. 2  | <0.1  | <0.2  | 47. 5          | <0.2  | 51     | 1850  |
| F054   | <5            | <0.05   | 5. 2  | 0.6   | 12. 2  | <0.1  | 0. 2  | 15. 5          | 0.2   | 49     | 2000  |
| F055   | <5            | <0.05   | 5, 0  | 3.0   | 37. 4  | <0.1  | <0.2  | 35. 0          | 0.2   | 30     | 1680  |
| F056   | <b>&lt;</b> 5 | <0.05   | 19.8  | 0.4   | 105. 5 | <0.1  | 2. 0  | 36.5           | 0.6   | 118    | 790   |
| F058   | 90            | <0.05   | 3. 4  | 1.2   | 9.6    | <0.1  | <0.2  | 26. 0          | <0.2  | 60     | 1800  |
| F059   | √5            | <0.05   | 3. 0  | 0.4   | 5. 4   | <0.1  | <0.2  | 15. 0          | <0.2  | 38     | 1500  |
| F061   | <b>&lt;</b> 5 | <0.05   | 5.0   | 1.6   | 14.4   | <0.1  | <0.2  | 32.0           | <0.2  | 41     | 1100  |
| F062   | 45            | <0.05   | 8. 4  | 1. 2  | 38.6   | <0.1  | 0.4   | 20, 5          | <0.2  | 110    | 1000  |
| F063   | <b>&lt;</b> 5 | <0.05   | 3. 8  | 1.6   | 7. 0   | <0.1  | 0. 2  | 25. 5          | <0.2  | 105    | 1920  |
| F064   | <b>&lt;</b> 5 | <0.05   | 2. 2  | 1.6   | 78.0   | <0.1  | 0. 2  | 25. 0          | <0.2  | 107    | 1760  |
| F065   | ₹5            | <0.05   | 3.6   | 1.2   | 8. 2   | <0.1  | <0. 2 | 21.5           | <0.2  | 43     | 1820  |
| F066   | <b>&lt;</b> 5 | <0.05   | 2.6   | 3.0   | 35. 6  | <0.1  | <0.2  | 35. 0          | <0.2  | 128    | 2200  |
| F067   | ⟨5            | <0.05   | 4.4   | 0.4   | 7.2    | <0.1  | 0.2   | 18.5           | <0.2  | 48     | 1700  |
| F069   | °<br><5       | <0.05   | 8.2   | 2.6   | 30. 6  | <0.1  | <0.2  | 36. 5          | 0. 2  | 46     | 1629  |
| F070   | <5            | <0.05   | 5. 0  | 0.8   | 11.8   | <0.1  | 0.2   | 20.5           | <0.2  | 57     | 1980  |
| F071   | ₹5            | <0.05   | 3. 8  | 2.0   | 37. 4  | 17. 1 | <0.2  | 31.0           | 0. 2  | 50     | 2000  |
| F072   | <b>&lt;</b> 5 | <0.05   | 8.0   | 0.8   | 27. 6  | <0.1  | 0.6   | 28. 0          | <0.2  | 68     | 2100  |
| F073   | <b>&lt;</b> 5 | <0.05   | 3. 2  | 2.0   | 37. 4  | 0.2   | <0.2  | 26. 5          | 0. 2  | 46     | 1780  |
|        |               | ~ ~ ~ ~ |       |       | 91.7   | 0.2   | .0. 2 | 20.0           | ٠. ٥  | 10     | 1100  |

App. 1 Results of Chemical Analysis of Stream Sediments(18/21)

| Sample | Λυ             | Ag    | As    | Bi    | Cu     | Hg    | Мо    | Pb    | Sb    | Zn    | Ba    |
|--------|----------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|
| No.    | (ppb)          | (ppm) | (ppm) | (ppm) | (ppa)  | (ppm) | (ppn) | (ppm) | (ppm) | (ppm) | (ppm) |
| F074   | <5             | <0.05 | 31. 4 | 0, 8  | 160. 5 | 0.3   | 3.4   | 51.0  | 1.0   | 170   | 780   |
| F075   | <5             | <0.05 | 3.8   | 1.8   | 17, 6  | <0.1  | <0.2  | 36.0  | 0.4   | 58    | 1640  |
| F076   | <5             | <0.05 | 4.8   | 1.2   | 46.4   | 0, 7  | <0.2  | 21. 0 | 0.2   | 67    | 1840  |
| F078   | <5             | <0.05 | 21. 6 | 2.2   | 35. 0  | <0.1  | 0.2   | 24. 0 | 1.0   | 63    | 1600  |
| F079   | ₹5             | <0.05 | 23. 0 | 1.2   | 37.6   | <0.1  | 0.2   | 25.0  | 1. 2  | 71    | 1660  |
| F080   | <5             | <0.05 | 2. 2  | 1.6   | 54. 2  | <0.1  | <0.2  | 22. 0 | <0.2  | 72    | 2000  |
| F083   | <5             | <0.05 | 41.8  | 0.8   | 20.8   | <0.1  | 0.4   | 24. 0 | 1.8   | 66    | 1530  |
| F084   | <5             | <0.05 | 11. 2 | 1.2   | 27.8   | <0.1  | <0.2  | 23. 5 | 0.4   | 62    | 2800  |
| F085   | <5             | <0.05 | 42, 6 | 1, 2  | 20, 8  | <0.1  | 0.4   | 24. 5 | 1.8   | 68    | 1760  |
| F086   | <5             | <0.05 | 9. 6  | 2.0   | 45. 6  | <0.1  | <0.2  | 24. 5 | 0.6   | 60    | 2600  |
| F088   | <5             | <0.05 | 47. 4 | 2. 2  | 20, 2  | <0.1  | 0.4   | 27. 0 | 2.0   | 67    | 1620  |
| F089   | <5             | <0.05 | 4.8   | 1.8   | 34. 0  | <0.1  | 0. 2  | 33. 5 | <0.2  | 95    | 3900  |
| F090   | <5             | <0.05 | 4. 2  | 0.6   | 8. 2   | <0.1  | 0.2   | 22. 5 | 0. 2  | 52    | 1820  |
| F092   | <5             | <0.05 | 4.8   | 0. 2  | 8. 4   | <0.1  | <0.2  | 8.0   | <0.2  | 46    | 200   |
| F093   | <5             | <0.05 | 4. 6  | 0.2   | 15. 2  | <0.1  | 0.2   | 5. 5  | 0.4   | 56    | 280   |
| F094   | ₹5             | <0.05 | 3. 2  | 0.2   | 7.4    | 0.4   | 0.2   | 10, 5 | <0.2  | 73    | 200   |
| F095   | <5             | <0.05 | 3.6   | 0.8   | 10.4   | 9.8   | 0. 2  | 24. 5 | <0.2  | 69    | 1780  |
| F097   | <5             | <0.05 | 6.6   | 0.4   | 25. 6  | 0. 1  | 0.4   | 29. 0 | 0. 2  | 75    | 700   |
| F093   | <5             | 0.05  | 13.0  | 0.8   | 40.0   | 0.1   | 0.2   | 42. 5 | 0.4   | 94    | 500   |
| F099   | <b>&lt;</b> 5  | <0.05 | 10.4  | 0.8   | 35. 2  | 0.2   | 0. 2  | 40.5  | 0.4   | 87    | 380   |
| F101   | <5             | <0.05 | 9. 2  | 0.6   | 37.8   | <0.1  | 0.6   | 22. 0 | 0.2   | 122   | 710   |
| F102   | 170            | <0.05 | 2.8   | 1.2   | 36. 2  | <0.1  | <0.2  | 26. 5 | <0.2  | 147   | 980   |
| F103   | 35             | <0.05 | 12. 2 | 0.4   | 34. 2  | <0.1  | 0.2   | 16. 5 | 2, 6  | 82    | 1440  |
| F104   | <5             | <0.05 | 6.2   | 0.4   | 33. 0  | <0.1  | 0.2   | 18. 0 | <0.2  | 113   | 630   |
| F105   | <5             | <0.05 | 9. 2  | 0.8   | 39. 0  | <0.1  | 0.4   | 21.0  | 0.2   | 96    | 600   |
| F106   | 1 ≺5           | <0.05 | 7.6   | 0.6   | 36. 8  | <0.1  | 0.4   | 20.0  | 0.2   | 90    | 700   |
| F107   | <5             | <0.05 | 10.2  | 0.6   | 36. 4  | <0.1  | 0.2   | 18.0  | 0.8   | 80    | 1120  |
| F108   | ₹5             | <0.05 | 9.8   | 0.6   | 35. 6  | <0.1  | 0.8   | 25. 0 | 0.4   | 96    | 640   |
| F109   | <5             | <0.05 | 4.2   | 0.6   | 27. 0  | <0.1  | 0.6   | 18, 0 | <0.2  | 82    | 830   |
| F110   | 40             | <0.05 | 8.2   | 0.6   | 37. 2  | <0.1  | 0.4   | 16.5  | <0.2  | 87    | 520   |
| F111   | <5             | <0.05 | 47.4  | 0.8   | 59. 6  | <0.1  | 0.6   | 17.5  | 0.6   | 104   | 560   |
| F112   | 40             | <0.05 | 76.0  | 0.8   | 37. 8  | 0.1   | 1.4   | 29. 0 | 1.4   | 96    | 580   |
| F113   | <5             | <0.05 | 21. 2 | 0.4   | 21.8   | <0.1  | 0.8   | 27. 5 | 0.2   | 118   | 680   |
| F114   | <5             | 0.05  | 42.4  | 0.6   | 44. 2  | <0.1  | 1. 2  | 29. 0 | 1.0   | 124   | 620   |
| F115   | <5<br>         | 0.05  | 35. 6 | 0.6   | 52.8   | <0.1  | 1.0   | 27.5  | 0.8   | 135   | 560   |
| F116   | 75             | <0.05 | 10.4  | 1. 2  | 85.0   | <0.1  | 1.4   | 22. 0 | <0.2  | 101   | 740   |
| F117   | 1060           | <0.05 | 15. 2 | 1. 2  | 36.0   | <0.1  | 0.4   | 22.0  | 2. 2  | 86    | 1420  |
| F118   | <b>&lt;</b> 5  | <0.05 | 13.6  | 0.4   | 35.8   | <0.1  | 0.2   | 16.5  | 1.8   | 81    | 1280  |
| F119   | <b>&lt;</b> 5. | <0.05 | 7.4   | 1.0   | 24.4   | <0.1  | 0.4   | 21.5  | 0.2   | 62    | 820   |
| F120   | <b>≺</b> 5     | <0.05 | 13.8  | 0.2   | 20.8   | <0.1  | 0.6   | 18.0  | 0.6   | 64    | 520   |
| F121   | <5<br>         | <0.05 | 3.8   | 0.4   | 17.0   | <0.1  | 0.2   | 15. 5 | <0.2  | 72    | 840   |
| F122   | <b>&lt;</b> 5  | <0.05 | 7.6   | 1.8   | 23.0   | <0.1  | 0.6   | 19.0  | 0.2   | 54    | 760   |
| F123   | .≾5<br>•••     | <0.05 | 9.6   | 0.4   | 38.4   | <0.1  | 0.2   | 14.0  | 0.2   | 75    | 490   |
| F124   | 10             | <0.05 | 9.6   | 1.6   | 25. 2  | <0.1  | 0.6   | 19. 5 | 0.2   | 62    | 820   |
| F125   | <5<br>         | <0.05 | 15. 4 | 0.4   | 35.0   | ⟨0.1  | 0.2   | 23.0  | 0.4   | 71    | 500   |
| F126   | <5             | <0.05 | 8.4   | 2.0   | 23.6   | <0.1  | 0.6   | 16.5  | 0.4   | 53    | 800   |
| F127   | <5<br>1500     | <0.05 | 8.6   | 1.6   | 21.6   | <0.1  | 0.4   | 17.5  | 0.2   | 56    | 740   |
| F128   | 1530           | <0.05 | 7.0   | 2.4   | 20.4   | <0.1  | 0.2   | 13.5  | 0.2   | : 48  | 730   |
| F129   | <5             | <0.05 | 2.8   | 0.6   | 18.2   | <0.1  | 0.2   | 20. 5 | <0.2  | 54    | 720   |

App. 1 Results of Chemical Analysis of Stream Sediments(19/21)

| Samp | le         | Au             | Ag             | As            | Bi           | Cu             | Ilg              | Мо    | Pb             | Sb           | Zn       | Ba          |
|------|------------|----------------|----------------|---------------|--------------|----------------|------------------|-------|----------------|--------------|----------|-------------|
| No   |            | (ppb)          | (ppm)          | (ppm)         | (ppa)        | (ppm)          | (ppm)            | (ppm) | (ppm)          | (ppm)        | (ppm)    | (ppm)       |
| F13  | 0          | 55             | 0.05           | 41. 6         | 2. 2         | 77.2           | <0.1             | 1.8   | 36. 5          | 2.2          | 58       | 1350        |
| F13  | 1          | <5             | <0.05          | 2. 4          | 0.6          | 20.4           | <0.1             | <0.2  | 11.5           | <0.2         | 52       | 460         |
| F13  | 2          | 140            | <0.05          | 10.6          | 3.0          | 22. 0          | <b>∶&lt;0.</b> 1 | 0.4   | 32.5           | 0. 2         | 43       | 1540        |
| F13  | 3          | <5             | <0.05          | 5. 4          | 1.4          | 18.4           | <0.1             | 0.2   | 11.0           | 0. 2         | 54       | 580         |
| F13  | 4          | <5             | <0.05          | 2. 6          | 2.0          | 13. 2          | <0.1             | 0.6   | 13.0           | <0.2         | 30       | 1920        |
| F13  | 5          | <5 ,           | <0.05          | 1.6           | 0.2          | 20.2           | <0.1             | <0. 2 | 11.5           | <0.2         | 59       | 420         |
| F13  | 6          | <5             | <0.05          | 2.4           | 0.2          | 22.6           | <0.1             | <0.2  | 11.0           | <0.2         | 60       | 340         |
| F13  | 7          | <5             | <0.05          | 6.0           | 1.2          | 21.4           | <0.1             | 0.2   | 11.5           | 0.2          | 66       | 590         |
| F13  | 8          | <5             | <0.05          | 2.8           | 2.4          | 12.0           | <0, 1            | 0.4   | 14.5           | <0.2         | 33       | 2000        |
| F13  | 9          | <5             | <0.05          | 1.8           | 0.2          | 7.8            | <0.1             | <0.2  | 4.0            | <0.2         | 33       | 180         |
| F14  | 0          | <5             | <0.05          | 2.8           | 2.8          | 13.0           | <0.1             | 0.4   | 16, 0          | <0.2         | 38       | 1640        |
| F14  | 1          | <5             | <0.05          | 3.0           | 2.6          | 15. 2          | <0.1             | 0.4   | 13. 5          | <0.2         | 34       | 1540        |
| F14  | 2          | <5             | <0.05          | 4. 6          | <0.2         | 22.0           | <0.1             | <0.2  | 9. 5           | <0.2         | 63       | 280         |
| F14  |            | <5             | <0.05          | 8. 0          | 0.4          | 24.8           | <0.1             | 0. 2  | 12.0           | 0.4          | 74       | 340         |
| F14  |            | <5             | <0.05          | 3.6           | <0.2         | 25.0           | <0.1             | <0.2  | 10.5           | <0.2         | 64       | 200         |
| F14  | }          | <5             | <0.05          | 3. 8          | : 4.0        | 12.6           | <0.1             | 0.2   | 13. 5          | <0.2         | 32       | 1960        |
| F14  | }          | ं ₹5           | <0.05          | 9. 8          | 0.8          | 23.0           | <0.1             | 0.2   | 15. 5          | 0.2          | 87       | 360         |
| F14  |            | ₹5             | <0.05          | 3. 8          | 0. 2         | 18.4           | <0.1             | <0.2  | 6.5            | <0.2         | 55       | 160         |
| F14  |            | <5             | <0.05          | 10. 4         | 0.4          | 29.4           | <0.1             | <0.2  | 11.5           | 0.8          | 75       | 220         |
| F14  |            | <5             | <0.05          | 13. 4         | 0.2          | 32.0           | <0.1             | 0.2   | 14.5           | 1.4          | 85       | 260         |
| F150 |            | <5<br>         | <0.05          | 6.8           | 0.2          | 22.0           | <0.1             | 0.4   | 17.5           | <0.2         | 63       | 1660        |
| F15. | }          | <b>√</b> 5     | <0.05          | 4.8           | 0.4          | 22. 2          | <0.1             | 0.2   | 15.5           | <0.2         | 58       | 1600        |
| F15  |            | <5<br><5       | <0.05          | 5. 0          | 0.4          | 27. 0          | <0.1             | 0.4   | 12.0           | <0.2         | 61<br>ec | 460         |
| F15  |            | <5<br>         | <0.05<br><0.05 | 7.6           | 1.2          | 22. 2<br>38. 6 | <0.1<br><0.1     | 0.2   | 18. 5<br>17. 5 | <0.2<br><0.2 | 66<br>83 | 1840<br>700 |
| F150 | }          | <5<br><5       | <0.05          | 6. 4<br>11. 2 | 0. 4<br>0. 4 | 18.6           | <0.1             | 0.4   | 23. 0          | <0.2         | 71       | 2100        |
| F15' | }          | <5             | <0.05          | 0.4           | 0.4          | 33. 2          | <0.1             | <0.2  | 25.0           | <0.2         | 42       | 140         |
| F15  | }          | <5             | <0.05          | 13. 0         | 0. 8         | 20. 2          | <0.1             | 0.4   | 28. 0          | <0.2         | 85       | 2200        |
| F159 |            | <5             | <0.05          | 7. 6          | 0.2          | 19.0           | <0.1             | 0.4   | 23. 0          | <0.2         | 66       | 2300        |
| F160 |            | √5             | <0.05          | 1.0           | 0. 2         | 33. 8          | <0.1             | <0.2  | 5. 0           | <0.2         | 48       | 260         |
| F16. | }          | <br><b>√</b> 5 | <0.05          | 0. 2          | 0.4          | 41. 2          | <0.1             | <0.2  | 4.5            | <0.2         | 52       | 160         |
| F16  |            | <5             | <0.05          | 2.4           | 0.6          | 30. 8          | <0.1             | 0.2   | 9. 5           | <0.2         | 55       | 1200        |
| F164 |            | <5             | <0.05          | 7.8           | 0.6          | 20. 2          | <0.1             | 0.4   | 23. 5          | <0.2         | 82       | 2200        |
| F165 |            | : <5           | <0.05          | 13. 8         | 0.6          | 19. 2          | <0.1             | 0.4   | 35. 5          | <0. 2        | 103      | 2400        |
| F160 |            | <b>&lt;</b> 5  | <0.05          | 13. 4         | 2.0          | 18.6           | <0.1             | 0.4   | 25. 0          | <0.2         | 76       | 2150        |
| F167 |            | <5             | <0.05          | 1.8           | 0.2          | 48, 6          | <0.1             | 0.2   | 8.0            | <0.2         | 61       | 320         |
| F169 |            | <5             | <0.05          | 5, 2          | 0.2          | 24. 6          | <0.1             | 0.2   | 12. 5          | <0.2         | 63       | 860         |
| F170 | )          | 420            | <0.05          | 12.0          | 0.6          | 19.8           | <0.1             | 0.4   | 26. 5          | <0.2         | 79       | 2200        |
| F171 | l          | <5             | <0.05          | 10.0          | 0.4          | 17.4           | <0.1             | 0.6   | 37. 0          | 0. 2         | 103      | 2700        |
| F172 | ?          | <5             | <0.05          | 14. 2         | 0.4          | 15. 2          | <0.1             | 0.6   | 34.0           | <0.2         | 92       | 2800        |
| F173 | }          | <5             | <0, 05         | 3, 2          | <0, 2        | 21.6           | <0.1             | <0.2  | 10.5           | <0.2         | 57       | 800         |
| F174 |            | <5             | <0.05          | 13.6          | 0.6          | 17. 4          | <0.1             | 0.6   | 37. 0          | 0.2          | 89       | 2800        |
| F175 | j [        | ₹5             | <0.05          | 10.8          | 0.4          | 16. 2          | <0.1             | 0.6   | 31. 0          | <0.2         | 85       | 2700        |
| F176 | <b>i</b> [ | <5             | <0.05          | 1.8           | 0.2          | 32.0           | <0.1             | 0.2   | 10.0           | <0.2         | 73       | 420         |
| F177 | <u> </u>   | <5             | <0.05          | 19. 2         | 0.6          | 17. 2          | <0.1             | 0.6   | 41.0           | 0.2          | 116      | 2600        |
| F178 | }          | <5             | <0.05          | 13. 8         | 0.4          | 17. 2          | <0.1             | 0.6   | 35. 5          | 0.2          | 102      | 2600        |
| F179 |            | <5             | <0.05          | 10. 2         | 0.4          | 16.6           | <0.1             | 0.4   | 31.5           | <0.2         | 84       | 2450        |
| F180 |            | <b>&lt;</b> 5  | <0.05          | 5.8           | 0.4          | 30, 6          | <0.1             | 0.4   | 30, 0          | <0.2         | 98       | 1630        |
| F181 |            | <5             | <0.05          | 12. 2         | 1.0          | 16. 2          | <0.1             | 0.6   | 39. 0          | 0.2          | 102      | 2750        |

App. 1 Results of Chemical Analysis of Stream Sediments(20/21)

| ,  |        |               | -      | ****  |       |       |       |       |       |       |       |       |
|----|--------|---------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    | Sample | Au ,          | Ag     | As    | Bi    | Cu    | Ħg    | Но    | Pb    | Sb    | Zn    | Ва    |
|    | ii No. | (ppb)         | (ppm)  | (ppn) | (ppm) | (gpg) |
| -  | F182   | <5            | <0.05  | 9.4   | 0. 4  | 34.6  | <0.1  | 0.4   | 21, 0 | 0.2   | 106   | 720   |
| -  | F183   | <5            | <0.05  | 7.0   | 0.4   | 29, 8 | 0.1   | 0.4   | 21.5  | 0. 2  | 85    | 1440  |
|    | F184   | . : .<5       | <0.05  | 11.8  | 0.4   | 15. 2 | <0.1  | 0.6   | 30. 0 | 0.2   | 83    | 2800  |
| 1  | F185   | 245           | <0.05  | 2.0   | 2.8   | 5. 2  | <0.1  | 0. 2  | 23. 5 | <0.2  | 57    | 3600  |
| 1  | F186   | <5            | <0.05  | 7.8   | 0.8   | 14.8  | 0.1   | 0.6   | 31. 0 | 0.2   | 117   | 2000  |
|    | F187   | ₹5            | <0.05  | 16.0  | 0.4   | 15. 6 | <0.1  | 0.6   | 44.0  | 0.2   | 116   | 3000  |
|    | F188   | <5            | <0.05  | 3.8   | 0. 4  | 31.0  | <0.1  | 0.4   | 9. 5  | <0.2  | 48    | 700   |
|    | F189   | <5            | <0.05  | 3. 4  | 0. 2  | 30. 8 | <0.1  | 0. 2  | 9. 5  | <0.2  | 50    | 700   |
|    | F190   | <5            | <0.05  | 3. 2  | 0.2   | 32.0  | <0.1  | 0.2   | 9.0   | <0.2  | 52    | 660   |
| 1. | F191   | <5            | <0.05  | 3.8   | 0. 2  | 34. 8 | <0.1  | 0.4   | 9. 5  | <0.2  | 55    | 640   |
| I. | F192   | <5            | <0.05  | 7. 6  | 0.6   | 33. 2 | <0.1  | 0.8   | 17. 5 | <0.2  | 91    | 500   |
|    | F193   | <5            | <0.05  | 3. 2  | 0. 2  | 32.6  | <0.1  | 0, 2  | 9. 5  | <0.2  | 52    | 700   |
| Ĺ  | F194   | <5            | <0.05  | 6.8   | 0.4   | 28.6  | <0.1  | 0.4   | 14.0  | 0.2   | 67    | 360   |
| -  | F195   | <5            | <0.05  | 3.0   | 0.4   | 23, 4 | <0.1  | 0. 2  | 8. 0  | <0.2  | 46    | 460   |
|    | F196   | <5            | <0.05  | 7. 2  | 0. 2  | 46.6  | <0.1  | 0.6   | 12.0  | 0.2   | 77    | 450   |
| 1  | F197   | ₹5            | <0.05  | 2.6   | 0.4   | 28.6  | <0.1  | 0. 2  | 8.5   | <0.2  | 46    | 720   |
|    | F198   | <5            | <0.05  | 5. 6  | 0.4   | 48.4  | <0.1  | 0. 2  | 11.5  | <0.2  | 74    | 340   |
|    | F199   | <5            | <0.05  | 3. 2  | 0. 2  | 36.6  | <0.1  | 0.2   | 8.5   | <0.2  | 61    | 400   |
|    | F200   | <5            | <0.05  | 2.6   | 0.4   | 23. 4 | <0.1  | 0.2   | 9. 5  | <0.2  | 42    | 920   |
| ſ  | F201   | <b>&lt;</b> 5 | <0.05  | 2. 2  | 0. 2  | 16.6  | <0.1  | <0.2  | 10.0  | <0.2  | 40    | 1140  |
|    | F202   | ₹5            | <0.05  | 3.8   | 0.4   | 33. 2 | <0.1  | 0.2   | 8.0   | <0.2  | 45    | 740   |
|    | F203   | <5            | <0,05  | 4.2   | 0.4   | 34. 2 | <0.1  | 0. 2  | 9. 0  | <0.2  | 52    | 740   |
|    | F204   | <5            | <0.05  | 1.8   | 0.8   | 36.8  | <0.1  | <0.2  | 6. 5  | <0.2  | 58    | 280   |
|    | F205   | <5            | <0.05  | 5. 0  | 0.4   | 38.0  | <0.1  | 0.4   | 11.5  | <0.2  | 78    | 440   |
| 1  | F206   | <5            | <0.05  | 3. 2  | 0. 2  | 35. 4 | <0.1  | 0. 2  | 9. 5  | <0.2  | 54    | 730   |
|    | F207   | 25            | <0.05  | 1.4   | 0.4   | 46. 2 | <0.1  | <0.2  | 3.5   | <0.2  | 59    | 220   |
|    | F208   | <5            | <0.05  | 6. 2  | 0. 2  | 48.4  | <0.1  | 0.4   | 12. 5 | <0.2  | 77    | 380   |
| [  | F209   | <5            | <0, 05 | 3.8   | 0.2   | 33. 6 | <0.1  | 0.2   | 10.0  | <0.2  | 49    | 780   |
|    | F210   | <5            | <0.05  | <0.2  | 0.2   | 10.4  | <0.1  | <0.2  | 8.0   | <0.2  | 26    | 770   |
|    | F211   | <5            | <0.05  | 2.2   | 0.2   | 16.6  | <0.1  | 0.2   | 9.0   | <0.2  | 37    | 1140  |
|    | F212   | <5            | <0.05  | 2.0   | 0. 2  | 16.8  | <0.1  | <0.2  | 9. 5  | <0.2  | 42    | 1120  |
|    | F213   | <5            | <0.05  | 8.2   | 0.4   | 44. 2 | <0.1  | 0.4   | 14.0  | 0. 2  | 75    | 500   |
| [  | F214   | <5            | <0.05  | 0.8   | <0.2  | 7. 6  | <0.1  | <0.2  | 8. 0  | <0.2  | 26    | 1300  |
| [  | F215   | <5            | <0.05  | 4.2   | 0.2   | 34. 6 | <0.1  | 0.4   | 8. 5  | <0.2  | 49    | 660   |
|    | F216   | <b>&lt;</b> 5 | <0.05  | 1, 2  | <0.2  | 5.6   | <0.1  | <0.2  | 9.0   | <0.2  | 28    | 1440  |
| ľ  | F217   | <5            | <0.05  | 0.6   | <0.2  | 5. 0  | <0.1  | <0.2  | 9. 5  | <0.2  | 27    | 1640  |
| [  | F218   | <5            | <0.05  | 0.8   | 0.2   | 5. 2  | <0.1  | <0.2  | 9.0   | <0.2  | 27    | 1400  |
| [  | F219   | <5            | <0.05  | 1, 0  | 0.2   | 5.0   | <0.1  | <0.2  | 8.0   | <0.2  | 24    | 1320  |
| Γ  | G001   | ⟨5            | <0.05  | 2.6   | 1.0   | 5. 6  | <0.1  | <0.2  | 24. 0 | <0.2  | 52    | 1080  |
|    | G002   | <5            | <0.05  | 3.4   | 1.0   | 4.6   | <0.1  | 0. 2  | 21. 5 | <0.2  | 51    | 1280  |
| [  | G003   | <5            | <0.05  | 3.0   | 0.8   | 4.4   | <0.1  | 0.2   | 19. 0 | <0.2  | 48    | 1400  |
| -  | G004   | <5            | <0.05  | 25. 2 | 2. 2  | 12. 2 | <0.1  | 1.0   | 49. 5 | 0.6   | 70    | 920   |
| -  | G005   | <5            | <0.05  | 3. 8  | 0.6   | 5. 4  | <0.1  | 0.2   | 22. 0 | 0.4   | 53    | 1260  |
| [  | G006   | <5            | <0.05  | 2.8   | 0.6   | 4.4   | <0.1  | <0.2  | 20. 5 | 0.4   | 45    | 1460  |
|    | G009   | <5            | <0.05  | 2.8   | 1.0   | 5.0   | 0.6   | 0.2   | 20.0  | <0.2  | 58    | 1430  |
| [  | G010   | <5            | <0.05  | 12. 4 | 2.6   | 43.0  | <0.1  | <0.2  | 25. 0 | 0.4   | 71    | 1930  |
| -  | G011   | <5            | <0.05  | 66.4  | 0.6   | 31. 4 | ₹0.1  | 0.2   | 10.0  | 13.8  | 80    | 360   |
|    | G012   | <5            | <0.05  | 14.4  | 2.4   | 41.8  | <0.1  | <0.2  | 23. 5 | 0.4   | 66    | 1760  |
|    | G013   | <5            | <0.05  | 13. 4 | 2.6   | 41, 4 | <0.1  | <0.2  | 22. 5 | 0.8   | 68    | 1720  |
|    |        |               |        |       |       |       |       |       |       |       | 1     |       |

App. 1 Results of Chemical Analysis of Stream Sediments (21/21)

| Sample | λu    | Ag    | As    | Bi    | Cu    | llg   | Мо     | Pb     | Sb    | Zn    | . Ba  |
|--------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|
| No.    | (ppb) | (ppm) | (ppm) | (ppm) | (ppn) | (ppm) | (ppm). | (ppm)  | (ppm) | (ppm) | (ppm) |
| G014   | <5    | <0.05 | 51.8  | 0.6   | 12. 6 | <0.1  | <0.2   | 3. 5   | 4.8   | 65    | 140   |
| G015   | <5    | <0.05 | 255   | 1.2   | 29. 0 | <0.1  | 0.2    | 19. 5  | 160.5 | 57    | 1800  |
| G016   | <5    | <0.05 | 12.6  | 1.4   | 25. 0 | <0.1  | <0.2   | 33. 5  | 3. 6  | 65    | 3100  |
| G017   | <5    | <0.05 | 49.4  | 1.8   | 37. 2 | <0.1  | 0. 2   | 22. 5  | 25. 0 | 69    | 1940  |
| G018   | <5    | <0.05 | 19. 0 | 1. 2  | 11.0  | <0.1  | 0. 2   | 25. 0  | 3. 4  | 46    | 2800  |
| 6019   | <5    | <0.05 | 7.6   | 0.6   | 18, 8 | <0.1  | 0.2    | 7.5    | 2.6   | 60    | 190   |
| G020   | <5    | <0.05 | 17. 2 | 1.8   | 23. 2 | <0.1  | <0.2   | 27.5   | 5.8   | 60    | 3100  |
| G021   | ₹5    | <0.05 | 18. 2 | 2. 0  | 21.0  | <0.1  | <0.2   | :17. 5 | 5. 4  | 75    | 120   |
| G022   | <5    | <0.05 | 19. 2 | 2. 8  | 22. 6 | <0.1  | <0.2   | 25. 0  | 6. 0  | 62    | 2650  |
| 6023   | ₹5    | <0.05 | 4. 2  | 0.6   | 15.8  | <0.1  | <0.2   | 14.0   | 0.4   | 60    | 1360  |
| G027   | <5    | <0.05 | 6. 2  | 0.8   | 22. 2 | <0.1  | <0.2   | 11. 0  | 0.4   | 68    | 240   |
| G029   | <5    | <0.05 | 11.4  | 0.8   | 28. 6 | <0.1  | 0.2    | 17.0   | 0.8   | 73    | 770   |
| G030   | <5    | <0.05 | 1.8   | 0.6   | 13. 2 | <0. 1 | <0.2   | 14. 0  | 0.2   | 52    | 2200  |
| G031   | <5    | <0.05 | 2.6   | 0.6   | 19. 6 | <0.1  | <0.2   | 4.0    | 0.8   | 50    | 260   |
| G032   | <5    | <0.05 | 22.4  | 2. 6  | 27. 8 | <0.1  | <0.2   | 24. 0  | 5. 2  | 66    | 1970  |
| G033   | <5    | <0.05 | 12. 0 | 0. 2  | 27.8  | <0.1  | 0.2    | 11.0   | 0.6   | 76    | 480   |
| G034   | <5    | <0.05 | 14.8  | 0.6   | 24: 2 | <0.1  | 0.2    | 13. 5  | 1.0   | 81    | 700   |
| G035   | <5    | <0.05 | 14. 2 | 1.6   | 27.8  | <0.1  | 0. 2   | 21. 0  | 2.6   | 69    | 1480  |
| G036   | <5    | <0.05 | 12. 2 | 0. 6  | 56.0  | 3. 0  | 0.4    | 14. 5  | 0.8   | 101   | 360   |
| G037   | <5    | <0.05 | 15. 2 | 2. 2  | 28.4  | <0.1  | <0.2   | 20.0   | 3.0   | 69    | 1560  |
| G038   | <5    | <0.05 | 8.2   | 0.8   | 34.4  | <0.1  | <0.2   | 13, 0  | 0.4   | ์เริ  | 440   |
| G039   | 10    | <0.05 | 4. 6  | 0.8   | 42. 4 | 0. 1  | . <0.2 | 6. 5   | 0.4   | 70    | 300   |
| G040   | <5    | <0.05 | 2.2   | 0.8   | 30.6  | <0.1  | <0.2   | 18. 0  | <0.2  | 66    | 1300  |
| G041   | <5    | <0.05 | 2.0   | 0.6   | 32. 4 | <0.1  | 0.2    | 7. 0   | <0.2  | 58    | 1080  |
| G042   | <5    | <0.05 | 2. 0  | 1.0   | 28. 4 | <0.1  | <0.2   | 19.0   | <0.2  | 66    | 1260  |
| G043   | <5    | <0.05 | 1.6   | 1.0   | 34.8  | <0.1  | <0.2   | 10.0   | <0.2  | 58    | 1080  |
| G044   | ζô    | <0.05 | 2. 4  | 1. 6  | 27. 2 | <0.1  | <0.2   | 18.0   | <0.2  | 62    | 1380  |
| G045   | <5    | <0.05 | 1.8   | 1. 2  | 26.4  | <0.1  | <0.2   | 16. 5  | <0.2  | 63    | 1160  |
| G046   | <5    | <0.05 | 1.8   | 1.2   | 29. 8 | <0.1  | <0.2   | 3. 5   | <0.2  | 42    | 260   |
| G047   | ₹5    | <0.05 | 1.8   | 1. 2  | 26. 2 | 0. i  | ⟨0. 2  | 20.0   | <0.2  | 64    | 1360  |

App. 2 Results of Chemical Analysis of Soil Samples(1/11)

| Sample               | Λυ            | Ag    | As           | Bi          | Cu             | Hg           | No           | Pb            | Sb    | Zn       | Ba         |
|----------------------|---------------|-------|--------------|-------------|----------------|--------------|--------------|---------------|-------|----------|------------|
| No.                  | (ppb)         | (ppn) | (ppa)        | (ppm)       | (mqq)          | (ppm)        | (ppn)        | (mqq)         | (ppm) | (ppm)    | (ppm)      |
| A. 01. S             | ₹5            | 0.05  | 28.4         | 0.2         | 31.0           | <0.1         | 0.8          | 25, 0         | 1.8   | 79       | 480        |
| A. 02. S             | <5            | 0.15  | 49. 0        | <0.2        | 24. 4          | <0.1         | 0.6          | 30.0          | 1. 0  | 77       | 560        |
| A. 03. S             | <5            | 0. 15 | 41.0         | 0, 2        | 16. 2          | 0.1          | 0.4          | 59. 0         | 1. 2  | 111      | 520        |
| A. 04. S             | <b>&lt;</b> 5 | <0.05 | 105.5        | 0.2         | 14. 2          | <0.1         | 0.8          | 21, 5         | 1, 6  | 40       | 380        |
| A, 05. S             | <5            | <0.05 | 20. 4        | 0.6         | 39. 8          | <0.1         | 1.2          | 33. 0         | 0.6   | 97       | 440        |
| A. 06. S             | <5            | 0.10  | 20.6         | 0.8         | 55. 6          | <0.1         | 1.0          | 55. 0         | 0.6   | 125      | 610        |
| A. 07. S             | ₹5            | 0.05  | 13.8         | 0.4         | 46. 8          | <0.1         | 1.2          | 34, 0         | 0.6   | 103      | 600        |
| A. 08. S             | <b>&lt;</b> 5 | 0, 05 | 51. 2        | 0.4         | 49.0           | <0.1         | 2.4          | 27.0          | 0.6   | 73       | 520        |
| A. 09. S             | <5            | 0. 15 | 107. 0       | 0.2         | 36.4           | <0.1         | 1.2          | 21.0          | 1.8   | 80       | 640        |
| A. 10. S             | <5            | 0. 10 | 123. 5       | 0.4         | 34. 4          | <0.1         | 1.6          | 21. 5         | 1.6   | 64       | 420        |
| A. 11. S             | <5            | 0.10  | 19, 6        | 0.4         | 80.4           | <0.1         | 1.2          | 16. 5         | 0.8   | 79       | 430        |
| A. 12. S             | <5            | 0.05  | 6.6          | 0.2         | 79. 2          | <0.1         | 4.4          | 14. 5         | 0.2   | 100      | 630        |
| A. 13. S             | <5            | 0.10  | 10.6         | 0.4         | 54, 8          | <0.1         | 1.0          | 24. 5         | 0.6   | 79       | 400        |
| A. 14. S             | ₹5            | 0.05  | 9.6          | 0.2         | 26. 0          | <0.1         | 0.4          | 12. 5         | 1.8   | 47       | 250        |
| A. 15. S             | <b>&lt;</b> 5 | <0.05 | 2. 2         | <0.2        | 61.4           | <0.1         | 0.2          | 3.0           | 0.4   | 88       | 80         |
| A. 16. S             | <5            | 0.05  | 3.6          | <0.2        | 58. 4          | 0.4          | 0.4          | 2.0           | 0.4   | 82       | 40         |
| A. 17. S             | <b>&lt;</b> 5 | <0.05 | 1. 2         | <0.2        | 53. 6          | 0.1          | 0.2          | 1.0           | 0.6   | 76       | 30         |
| A. 18. S             | <5            | <0.05 | 1.8          | 0.2         | 60.0           | 0.1          | 0.4          | 2. 5          | 0.4   | 99       | 40         |
| A. 19. S             | ₹5            | 0.05  | 1.6          | <0.2        | 45. 8          | 0.1          | 0.6          | 2. 5          | 0.4   | 80       | 60         |
| A. 20. S             | <5            | 0.05  | 2. 2         | 0.2         | 120.5          | <0.1         | 0.2          | 2.0           | <0.2  | 181      | 30         |
| A. 21. S             | <5            | <0.05 | 10.6         | 0.2         | 25. 0          | <0.1         | 0. 2         | 12.5          | 0.4   | 68       | 180        |
| A. 22. S             | <b>&lt;</b> 5 | 0.05  | 7.6          | 0.2         | 31.8           | 0.1          | 0.2          | 21.0          | 0. 2  | 75       | 320        |
| A. 23. S             | <5            | 0.05  | 10.8         | 0.2         | 31.4           | <0.1         | 0.2          | 18.5          | 0.4   | 73       | 580        |
| A. 24. S             | <b>&lt;</b> 5 | 0.05  | 12.6         | 0.4         | 193.0          | <0.1         | 0.4          | 9.5           | 0.4   | 91       | 180        |
| A. 25. S             | <5            | <0.05 | 3.6          | 0.6         | 24.8           | <0.1         | <0.2         | 2.5           | <0.2  | 39       | 40         |
| A. 26. S             | <b>√</b> 5    | 0, 05 | 1.4          | 0.2         | 180.0          | <0.1         | <0.2         | 1.0           | <0.2  | 155      | 40         |
| A. 27. S             | <5            | <0.05 | 3.0          | <0.2        | 52. 4          | <0.1         | <0.2         | 9.0           | <0.2  | 73       | 180        |
| A. 28. S             | <5            | 0.10  | 2.4          | 0.2         | 47.6           | <0.1         | 0.4          | 10.0          | 0. 2  | 67       | 120        |
| A. 29. S             | ⟨€            | 0. 10 | 1.2          | 0.2         | 113.0          | <0, 1        | 0.2          | 1.5           | <0.2  | 238      | 40         |
| A. 30. S             | <b>√</b> 5    | 0.05  | 2.6          | <0.2        | 157. 5         | 0.1          | <0.2         | 1.0           | <0.2  | 245      | 40         |
| А. 31. S             | <5            | <0.05 | 3.4          | 0.2         | 107.0          | <0.1         | 0.2          | 2.0           | 0.6   | 115      | 20         |
| A. 32. S             | <5<br>        | <0.05 | 10.6         | 0.6         | 60.4           | <0.1         | 0.4          | 17, 5         | 0.8   | 105      | 340        |
| A. 33. S             | <b>(5</b>     | <0.05 | 53. 0        | 0.8         | 10, 2          | <0.1         | 0.2          | 26. 0         | 0.8   | 46       | 770        |
| A. 34. S             | <b>&lt;</b> 5 | 0.10  | 5.4          | 0.2         | 66.0           | <0.1         | 0.4          | 16.5          | 0.4   | 122      | 500        |
| A. 35. S             | √5            | <0.05 | 12.6         | 0.4         | 26.0           | <0.1         | 1, 0         | 20.0          | 0.4   | 30       | 360        |
| A. 36. S             | <5<br>        | <0.05 | 9.4          | 0.2         | 14.6           | <0.1         | 0.8          | 12.5          | <0.2  | 20       | 350        |
| A. 37. S             | <5<br>        | 0. 20 | 7.4          | 0.4         | 36.8           | <0.1         | 0.6          | 16.0          | 0.4   | 79       | 440        |
| A. 38. S             | <5<br>        | 0.05  | 3.0          | 0.2         | 18. 2          | <0.1         | 0.2          | 8.5           | <0.2  | 34       | 220        |
| A. 39. S             | <5<br>        | 0.05  | 9.2          | 0.2         | 56.0           | 0.6          | 0.6          | 15.5          | 0.2   | 94       | 400        |
| A, 40, S             | <5<br>        | 0.05  | 1.8          | 0.2         | 57.4           | <0.1         | <0, 2        | 8.5           | 0.6   | 74       | 320        |
| A, 41. S             | <5<br>/5      | <0.05 | 9.0          | 0.2         | 58.8           | <0.1         | <0.2         | 14.0          | <0.2  | 74       | 260<br>520 |
| A. 42. S             | <5<br>95      | 0. 10 | 11.2         | 0.2         | 56.6           | <0.1         | 0.4          | 12.5          | <0.2  | 78<br>71 | 520<br>240 |
| A. 43. S             | 25            | 0.05  | 1.6          | 0.2         | 46.8           | <0.1         | <0.2         | 5.0           | <0.2  | 71<br>54 | 240        |
| A. 44. S             | <5            | 0.05  | 0.8          | <0.2        | 53. 2          | <0.1         | (0.2         | 3.5           | <0.2  | 54<br>74 | 360        |
| A. 45. S             | <5            | 0.05  | 7.4          | 0.2         | 44. 6<br>26. 4 | <0.1<br><0.1 | 0. 8<br>0. 2 | 19. 5<br>8. 0 | <0.2  | 74<br>48 | 380<br>220 |
| A. 46, S             | <5<br><5      | <0.05 | 2. 4<br>5. 2 | <0.2<br>0.2 | 53.8           | <0.1         | 0. 2         | 11.5          | 0.6   | 86       | 480        |
| A. 47. S             | √5<br>√5      | 0. 10 | 5.0          | 0. 2        | 8.0            | <0.1         | 0. 2         | 42.5          | <0.2  | 35       | 990        |
| A. 48. S<br>A. 49. S | \si           | <0.05 |              |             | 8.4            | <0.1         | <0.2         | 23.0          | <0.2  | 48       | 1100       |
| n. 45. O             | 70            | 0.05  | 2.6          | 0.6         | 0.4            | .v. 1        | V. Z         | 40. V         | \U. & | 40       | 1700       |