Chapter 4 Pululahua Area

Reginal geological survey was carried out in area of 90 km² for Phase II survey.

4-1. Geological Survey

4-1-1. Purpose and method of survey

The purpose of the survey is to study the geology of Pululahua area(90km²) in order to clarify the ore-bearing circumstances. The important objectives in this survey is to clarify the outline of geological structure of this area and to summarize the characteristics of known ore deposit and the mineralized zones.

Before the survey, the topographic base map on a scale of one to ten thousand was made by enlargement the existing topographical map on a scale of one to twenty five thousand. The route map was also made based on this enlarged map. The routes of the survey were decided with careful examination of the existing data. The aerial photographs were fully used in the survey.

The geological plan map is shown in Fig. II-4-1 and Pl. II-4-1(1) and (2), Geological profile in Pl. II-4-2 and generalized columnar section in Fig. II-4-2.

Samples for various tests were collected with careful consideration. Sampling points and the results of the tests are described in this report and shown also in Fig.II-4-3 and the appendix.

4-1-2 Geology

Geology of this area consists of volcanic rocks, sedimentary rocks and intrusive rocks of Cretaceous System and Quarternary System.

(1) Stratigraphy

The stratigraphy of this area consists of Cretaceous System and Quarternary System. The Cretaceous System consists of Macuchi Formation(KM) and Yunguilla Formation(K7) in ascending order. The Quarternary System consists of volcanic rocks and s edimentary rocks, the strata is talus deposits(tl), Pululahua volcanics(Hp), volcanic mudflow deposits(lh), Quangagua Formation(Qc), lake deposits(), colluvial deposits(), and fluvial deposits in ascending order.

(i) Cretaceous System

(a) Macuchi Formation

The Macuchi formation distributes approximately in the central part to the nor—thern part of this area. The thickness of the Formation is more than 1,000m.

The Formation consists of andesitic volcanic breccia which is composed of coarse grained tuff to lappili tuff partly mainly and of fine grained tuff. The rock shows bluish green color, massive, compact and hard. The nature of the rock is hard. The internal structure of rock is indistinct because of massive without stratification.

This Formation is corresponded to the early to the middle of upper Cretaceous Period.(J.W.Baldock, 1982)

(b) Yunguilla Formation(K7)

The Yunguilla formation distributes stretching approximately from south to north in the western part of this area. The thickness of the Formation is presumed to be more than 500m. The formation consists of shale(K7s) and alternation of sandstone mainly, and of conglomerate with thin layers of sandstone and conglomerate, and of alternation of sandstone and shale.

The shale shows dark brownish to brownish color. The lithology is generally massive without stratification. Rhythmic stratification of 1 cm to 30 cm develops, however, in the marked part of alternation of sandstone and shale, and striped structure of 1cm to 20cm develops in the part of siliceous shale.

The alternation of sandstone and conglomerate (K7a) shows chocolate color to dark brownish and dark greyish color, and includes various colored and rounded pebbles and gravels. Grading of conglomerate to sandstone or siltstone well develops and forms alternation more than 30cm to 10m in thickness. The biggest grading of alternation is sometimes more than 10m in thickness. The gravels consist of tuff, silice—ous shale and chart, which diameter is less than 10cm, generally less than 3cm, and which matrix is muddy. Strong silicification is partly observed.

The strike is the N-S to the NE-SW. The dip is markedly steep and generally inclined eastward or westward. The strong folding is estimated, because the strata is reversed in the lower reaches of Rio Tanachi..

The age of this formation is later Cretaceous(Briston and Hoffstetter, 1977).

(ii) Quarternary System

(a) Talus deposits(tl)

This deposts distribute in the upper reaches of the main stream of Rio Tanachi and it's right side bank. The thickness of the strata is less than 50cm.

The deposits consist of various scales of subangular to angular gravels. The matrix consists of comparatively soft and pale brownish colored clay to granules. Reflecting the background geology, almost all the gravels are composed of tuff of Macuchi Formation and partly include the shale of Yungilla Formation. The internal structure of the deposits is indistinct, because of the massive without stratification.

The depositing epoch is decided to correspond to the lowest Quarternary, because of no Quarternary ash in the matrix. On the other hand, the deposition epoch might be still considered to be between the late Cretaceous during Yunguilla Formation or later and a age before the Pululahua volcanic activity.

(b) Pululahua Volcanics(Hp)

The rocks widely distribute in the central part to the eastern part of this survey area. The thickness of the formation is more than 600m.

The rocks consist of andesite lavas, andesitic pyroclastic rocks and volcanic ash. The andesite lava is greyish hornblende andesite. The marginal part of the lava flow shows auto-brecciated like features. Pyroclastic rocks and volcanic ash forms approximate horizontal stratification with ash including breccias and fine to coarse ash. However, the horizontal continuity is poor.

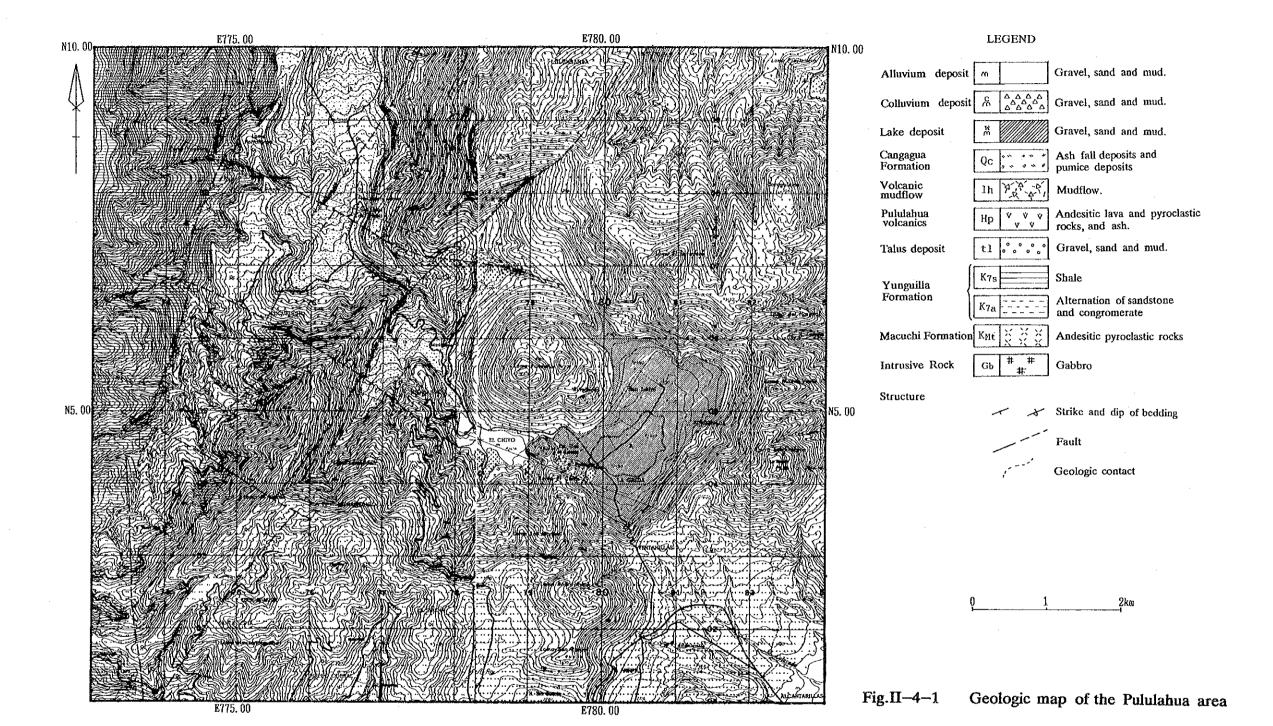
The microscopic observation(Tab.II-1-2) of typical rock is as follows:

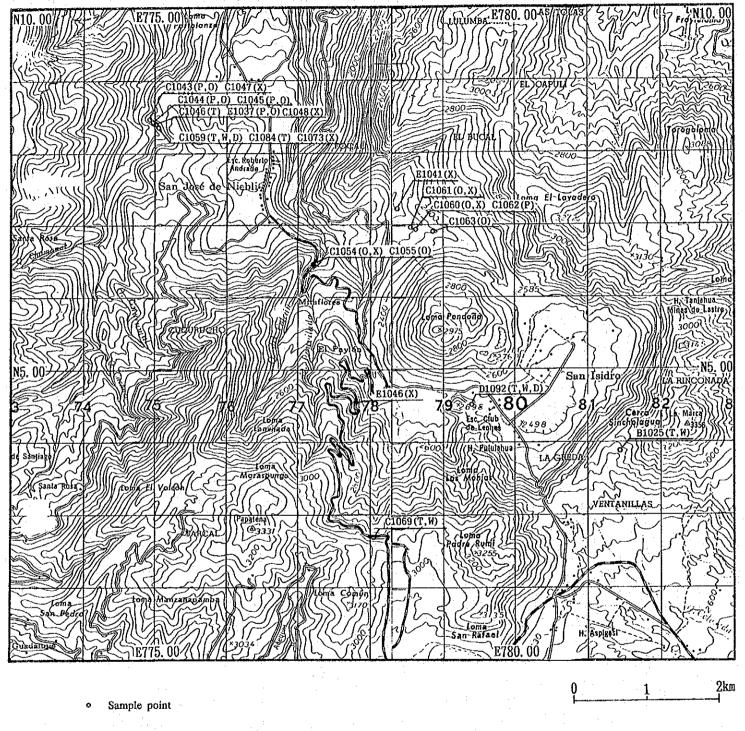
Andesite(B1025)

Location : quarry in the south-eastern part of this survey area

Texture : porphyritic and intersertal

Phenocryst: plagioclase> hornbende


Groundmass: plagioclase> glass> opaque minerals


Pululahua volcanic rocks form the skelton of the existing geological structure of this area such as caldera and central lava dome.

By the chemical analysis of bulk rock of Pululahua volcanic rocks, they are classified in the calc-alkaline rock series.

Geo. Age	Formation	Columnar Section	Lithology	Igneous Activity	Minerali- zation
	Alluvium deposit	M	Gravel, sand and mud.		: ·
	Colluvium deposit		Gravel, sand and mud.		
À	Lake deposit		Gravel, sand and mud.		zone.
Quaternary	Cangagua Formation Volcanic mudflow Pululahua volcanics	" " "	Ash fall deposits and pumice deposits. Andesitic lava and pyroclastics, and ash.	Andesitic. Dacitic.	Tanachi mine. (Ga, Sph, Py and Cp) Reventazon alteration 2 (Gyp, Py Mar Chr)
	Talus deposit (including terrace deposit)	o o o tl o o o	Gravel, sand and mud.		
Tertiary					
	Yunguilla Formation	K7s	Shale, alternation of sandstone and congromerate, sandstone conglomerate, and alternation of sandstone and shale.		
Cretaceous	(Silante Formation)				
	Macuchi Formation	X X X X X X X X X X X X X X X X X X X	Andesitic pyroclastics consisted of fine to coarse tuff and andesitic lapilli tuff.	Andesitic.	

Fig.II-4-2 Generalized columnar section of the Pululahua area

: Thin section
: X—ray diffraction analysis
: K—Ar dationg
: Whole rock analysis
: Polished section
: Ore analysis

Location of samples for laboratory tests Fig.II-4-3

The isotope age determination of andesite which forms central lava dome of Pululahua volcano(D1092) shows 0.8 Ma. The age is corresponded to the Alluvium of Quarternary.

(c) Volcanic mudflow deposit(lh)

The deposits distribute in the central part to the north-northwestern part of this survey area. The thickness of the Formation is presumed to be about 200m.

This deposit(lh) is composed of various scales of gravels and matrix of angular to subangular breccias. The gravels are andesite of Pululahua volcanics, which are generally 1 cm to 10 cm in diameter. The blocks of 5 m in diameter are, however, sometimes observed. The matrix is fine to coarse grained volcanic ash.

The dip is horizontal to gently inclined toward NW. The deposit is presumed to be the erupted material of Pululahua volcano which repeatedly flew down buring the valley toward the direction of NNW.

(d) Cangagua Formation(Qc)

The Cangagua formation distributes widely in the southern part of this survey area. The thickness of the Formation is presumed to be less than 30m. This Formation consists of greyish ash and pumise fall deposit accompanied with the dacitic volcanic activity. It is considered to be areal fall deposit, because the extensive distribution of ash covers the lower layers of old topography.

(e) Lake deposit()

The Lake deposit distributes in the lowland within the old crater in the eastern part of the central dome of Pululahua volcano. It consists of garavels, sand and clay which deposited in the crator lake.

(f) Colluvial deposit()

The Colluvial deposit distributes in the caldera of Pululahua volcano.

The distribution area of the deposit is extensive in the northern part of the central dome of Pululahua volcano. The rock masses of the Reventazon alteration zone distributes up to the Rio Blanco in the western part of the area. It is considered to be the secondary deposit due to collapse of slope, therefore, it includes various sizes of gravels.

(g) Fluvial deposit.

The Fluvial deposit distributes within the caldera, in the south-eastern part of the area and in the rivers of this area.

(2) Intrusive rocks

The intrusive rocks in this area show dyke form of Gabbro (Gb).

The Gabbro distributes in the caldera wall of the southern part of Pululahua volcano and intrudes into Macuchi Formation. The rock shows greenish grey color and is holocrystalline massive.

The microscopic observation(Tab.II-1-2) of this rock is as follows;

Gabbro(C1069)

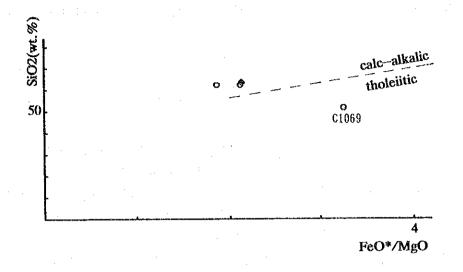
Location: La Sirena, the southern part of this survey area

Texture: equi-granular

Main mineral composition: plagioclase> monoclinic-pyroxene> opaque minerals

Altered minerals : chlorite> calcite> epidote

The epoch of intrusion of this rock corresponds to the same epoch or later of depositing of Macuchi Formation of Cretaceous Period.


The chemical analysis of bulk rock of Gabbro, andesite lava of Pululahua volcanic rocks, and andesite boulder in mud-flow deposit of Pululahua volcano is shown on Tab.II-1-1. The chemical variation diagram: (FeO /MgO)-SiO₂ and (FeO /MgO)-FeO are shown in Fig.II-4-4. As the result, Gabbro is clssified in tholeitic rock series, while the other are into calc-alkalic rock series.

4-1-3. Geological structure

Lineaments, faults and volcanic caldera are observed as geological structures in this area.

(1) Lineament

As the result of the interpretation of aerial photographs, many lineaments which are comparatively long and distinct are observed in this area. The direction of them are NE-SW and WNW-ESE. Most of the lineaments distribute in the western to

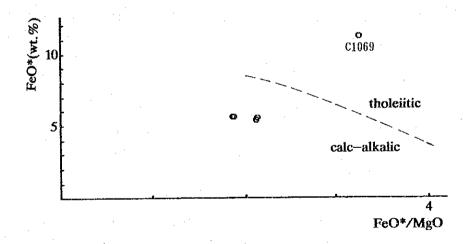


Fig.II-4-4 Chemical variation diagram:(FeO*/MgO)-SiO2 and (FeO*/MgO)-FeO*

north—western area where Macuchi Formation and Yunguilla Formation distribute. There are less lineaments in the eastern to the south—eastern area where coverd by Quater nary System. Short but comparatively distinct lineaments are recognized around the caldera of Pululahua volcano.

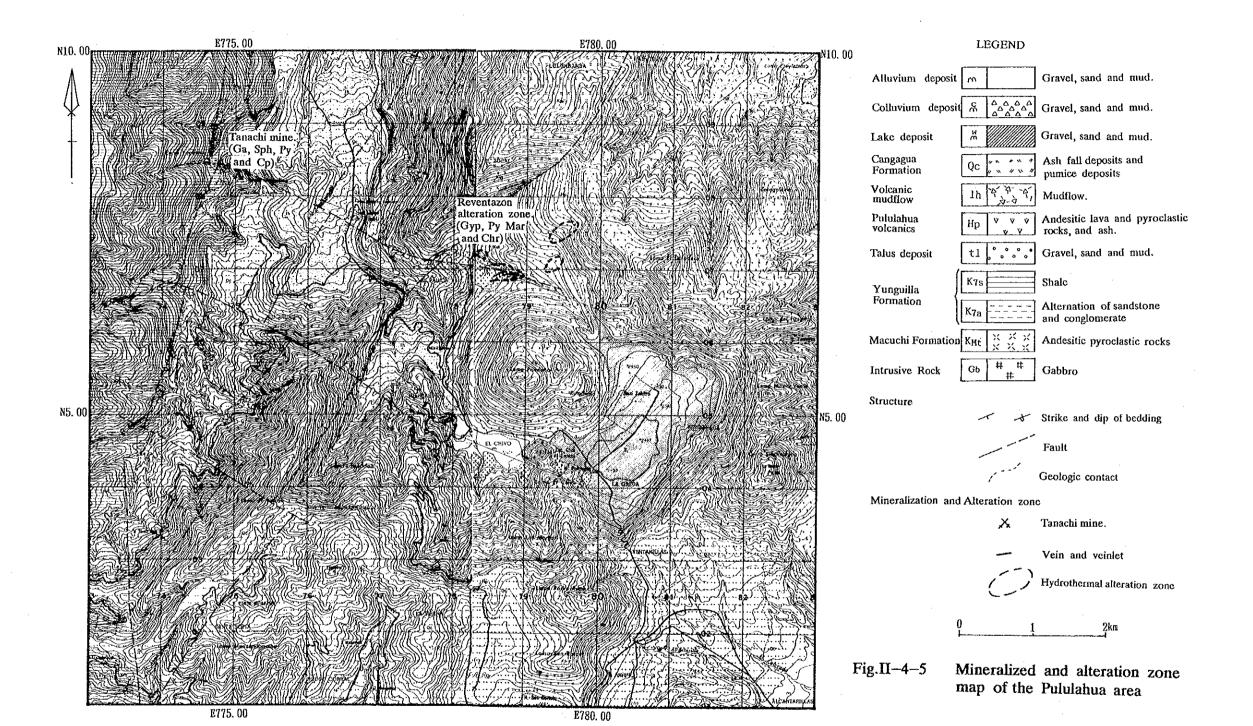
(2) Fault

Two faults of the NNE-SSW and the NE-SW direction, and three faults of the NW-SE to the WNW-ESE direction are recognized in this survey area.

One of the former faults extends from the right side of the upper reaches of Rio Tanachi in the south-western area to the lower reaches of Rio Blanco in the north-central area, bordering Macuchi Formation and Yunguilla Formation. The direction of strike of Yunguilla Formation is NNE-SSW to NE-SW and shows strong folding.

The existance of large structure of the direction of N-S to NE-SW is estimated, because Yunguilla Formation contacts Macuchi Formation without lower layer of Silante Formation. Near the south-western end of this area, fall ash of Cangagua Formation distributes across the existing topography along the fault near the estimated fault, and valley topography is presumed to had been there along the fault in early Quarternary.

The existence of another fault is considered from Agua Amarilla in the southwestern area to Q.Reventazon through the north-western skirt of Pululahua volcano.


The latter fault(the direction of NW-SE to WNW-ESE) intersects Macuchi Formation and Yunguilla Formation, and crosses the former fault(the direction of NNE-SWW to NE-SE).

(3) Volcanic caldera

The volcanic activity of Pululahua volcano in Quarternary Period formed the existing geology and topography such as collapse and the central dome due to the formation of caldera.

4-1-4. Mineralization and alteration

Tanachi ore deposit and Reventazon acidic alteration zone can be pointed out as known two ore deposits and alteration zones in this area. There are other alteration zones, which situate about 2 km southwest and about 1 km west of Reventazon acidic alteration zone, and which are recognized to be similar to the alteration zone described later (Fig. II-4-5).

(1) Tanachi ore deposit

The Tanachi ore deposit locates along the branch of Rio Tanachi in the northwestern part of this survey area.

There are four old drifts in this ore deposit within the section of 150m arranged the direction of NW. Three of the drifts collapsed, the inside of the mine can be observed in one drift (Fig. II-4-6). The roof and floor are bordered with clay which is more than 70cm thick include various sizes of sub-rounded gravels to sub-an gular breccias of 1cm to 5cm in average diameter (the maximum diameter is 15cm). Gravels more than 1m in diameter are included in the clay layer according to the documents. The minaral compositions of the gravels are galena-zincblende-chalcopyritequartz, pyrite-chalcopyrite-quartz, chloritizated-silicificated-pyritizated rock (Macuchi Formation), argillizated-chloritizated rock(Yunguilla Formation) and coarse grained silicificated-pyritizated rock(Quarternary andesite).

The microscopic observation of coarse grained silicificated-pyritizated rock (Quarternary andesite) is as follows;

Coarse grained silicificated-pyritizated rock(C1084)

Location: Tanachi mine

Texture

: porphyritic

Phenocryst: plagioclase homblende

Groundmass: unknown

Altered minerals: secondary quartz> calcite> chlorite> epidote>

sericite> opaque minerals

Coarse grained silicificated-pyritizated rock is presumed to have been Quarternary andesite(C1084) which was strongly altered. Therefore, it shows porphyritic texture with plagioclase and hornblende phenocrysts. On the other hand, fresh andesite of Pululahua volcanic rocks also shows porphyritic texture with plagioclase and hornblende phenocrysts. Therefore, this altered rock(C1084) is presumed to originate from the andesite of Pululahua volcanic rocks.

The isotope age determination was carried out for andesitic the rock of small central dome. The result is under 0.8 Ma(Tab.II-1-2). The age of mineralization of the Tanachi deposit is considered to be that of Quaternary.

The matrix of this ore deposit consists of white clay. The altered minerals such as sericite/montmorillonite mixed layer, kaolinite and quartz were identified

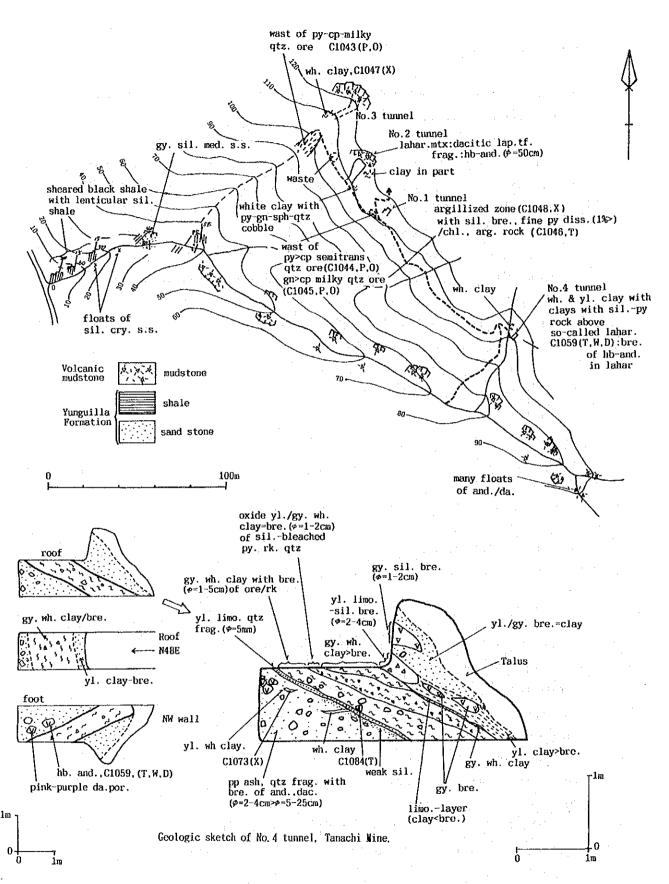


Fig.II-4-6 Sketch of the mineralized part of the Tanachi mine

with powderly X-ray diffractive analysis. The alteraed mineral assemblage identified the one which is recognized in the alteration zone relating with the acidic hydrothermal alteration activities.

By the microscopic observation of ore minerals (C1043, C1044, C1045, C1037), chalcopyrite, galena, sphalerite and pyrite are observed as ore minerals, and quartz as gangue mineral. Those minerals show fractured and/or brecciated texture.

By chemical analysis of the slime(C1043, C1044, C1045, C1037) from the old drift, the following grades are obtained; 0.3g/t to 1.7g/t Au, 182.5g/t to 52.3g/t Ag 3.99% to 0.57% Cu, 9.34% to 0.06% Pb, and 24.8% to 0.08% Zn.

(2) Reventazon acidic alteration zone

This alteration zone locates in the central part of this area. Six alteration zones of 100m to 500m are recognized including secondary moved alteration zone with—in the area of 1km square. These alteration zones are initially accompanied with pyrite of dissemination and network of pyrite—limonite—malachite—gypsum—white clay(ka—olinite) in brecciated andesitic tuff of Macuchi Formation which is accompanied with strong silicification—chloritization. It is so—called acidic hydrothermal alteration zone. Hydrothermal breccias are observed at three places and sulfur sinters are also observed at two places.

Altered minerals such as kaolinite, pyrophyllite, quartz and gypsum were identified in this altered zone (samples C1060 and C1061) by X-ray diffraction method. In addition to these minerals, montmorillonite and anhydrite were also recognized (Appendix 3).

The mineral assemblage of these minerals identified are recognized in the alter ation zone which is considered to be associated with acidic hydrothermal activities.

Chemical analysis of pyrite-gypsum ore was carried out. As the result, the contents of Cu, Pb, Zn, Mo, Au and Ag were all less than the detectable limit (Appendix 4).

(3) Other alteration zones

The alteration zones, which are similar to Reventazon acidic alteration zone, are located in the following places:

- 1) about 2 km southwest of the Reventason acidic alteration zone
- 2) about 1 km west of Reventazon alteration zone.

By X-ray diffraction method of the samples from each alteration zone, quartz, chlorite and calcite were identified for the sample of (C1054) of alteration zone

1) mentioned above and kaolinite, quartz, goethite and hematite were for (E1046) of alteration zone 2) mentioned above, respectively.

By chemical analysis of samples (C1054, and C1055), the grade of the ore was as follows; under 0.1g/t Au and under 0.1g/t Ag, under 0.01% Cu, 0.02% to under 0.01% Pb, 0.04% to under 0.01% Zn, and under 0.01% Mo.

4-2. Discussion

Tanachi ore deposit is aggregates of breccias with ore minarals and argillizated layer of more than 70cm put between mudflow deposit.

The estimated metallogenesis of Tanachi ore deposit by the geological features of Reventazon acidic alteration zone is as follows:

The metallogenic epoch is presumed to be Quarternary by the following reasons;

- 1. the floor of ore deposit includes mudflow deposit with the breccias of Quarternary andesite, and
- 2. includes breccias of coarse-grained silicificated-pyritizated rocks(Quart-ernary andesite?).

The mechanizm of mineralization and metallogenetic process is considered on the following reson mentioned below that the hydrothermal solution with metals such as Pb-Zn-Cu rose along the fracture of the direction of NW-SE, and rised the metal components precipitated as sulfide minerals (so-called supergene deposit) initially, then the deposit moved by subsidence with volcanic activity, collapse and landslide secondarily. It is presumed, consequently, that the form of primary deposit was not able to be preserved.

- 1) The mineral assemblage identified in this mineralized and alteration zone is the same as that of the acidic alteration zone
- 2) The texture of ore and gangue minerals is obseved to be fructured and brecciated

PART III CONCLUSIONS AND RECOMMENDATIONS

Chapter 1 Conclusions

(1) Geology of Junin area

Geology of Junin area consists of Apuela-Nanegal batholith of granodiorite and stock or dike of quartz porphyry and diorite porphyry, which intrude into batholith of granodiorite (Figs.II-1-1 and II-2-1). Lineaments were also analyzed to radiate outlying section of the drainage system from the Junction of Q. Limonita and Q. Crysocola.

(2) Mineralization and alteration in the Central Zone of Junin area

Mineralized and alteration zones in this Zone were clasified in three types based on their occurrences: Type I, Type II and type III (Tables II-4-1 and II-1-12, and Fig.II-1-3).

Type I occured mainly in the granodiorite around stocks or dikes of quartz porphyry. Mineralized zones, which are characterized by Cu-Mo mineral dissemination (> network of quartz stringers with sulfides), disributed in the down stream of Q.Limon ita and in the middle to down stream of Q.Verde, accompanied with phyllic alteration zone. The assay result of ore samples were 1.35 % Cu and 1.44 % Cu respectively.

Type II were recognized in various zones such as the up stream of Rio Jinin, the up stream of Q.Limonita, the Q.Crisocora, the down stream of Q.Controvercia and the up atream of Q. La Rica. Type II, which occured as veins composed of as same ore mineral assembly as Type I, was divided into two sub-type Type IIA and Type IIB on their occurrences.

- 1) Type IIA: abundant in ore minerals which was scattered in clay, principal gangue mineral.
- 2) Type IIB: quartz veins with ore minerals.

Both phyllic and potassic alteration zones were identified along the vein contacts. The assay results of ore samples were as follows: 0.3 g/t Au, 137.2 g/t Ag and 42.42 % Cu for Type IIA of Q.Limonita; 0.1 g/t Au, 4.6 g/t Ag, 2.17 % Cu and 0.97 % Mo for Type IIB of Rio Junin mineralized zone.

Type III was observed to be as acidic alteration zone being accompanied with networky quartz veins.

The distribution of these three types of mineralized zones are summaried as follows: The Type I dominates in the Central Zone and extends southeastward and northeastward; Type II dominates in the Central Zone mainly and extends northwestward and southeastward, further to the Surrounding Zone of Junin area; and Type III

is limited in the eastern half of the Central Zone.

(3) Drilling survey

Drilling Hole No. MJJ-1, which was carried out in the western edge of the Q.Li-monita mineralized zone and drilled down to 151.50 m in depth. The MJJ-1 revealed that the lower part of the hole intersected and corresponded to the marginal section of the Q.Limonita mineralized zone.

(4) Mineralization in the Surrounding Zone of Junin area (Fig.II-2-3)

The Q.Espelanza mineralized zone, which was proved to be similar to type IIA and Type IIB of the Central Zone, were accompanied with phyllic alteration zone.

Ore grade assayed was as follows: 0.6 g/t Au, 784 g/t Ag, 20.97 % Cu and 0.28 % Zn.

The Q. Fortuna mineralized zone was recognized to be similar to the Type I and the Type IIA of the Central Zone. A section corresponding to the Type I was accompanied with phyllic alteration zone and graded to be 8.3 to 1.1 g/t Ag, 2.68 to 0.33 % Cu and 0.09 % Mo or under, while the other section corresponding to Type IIA was as sayed to be 0.2 g/t Au or under, 3.5 to 1.8 g/t Ag and 1.26 to 0.37 % Cu.

In the Q.Cristal branch alteration zone, several mineralized sections were recognized to be corresponded to Type I and Type IIB defined in the Central Zone.

(5) Result of geochemical exploration

As the results of rock geochemical exploration in the Central Zone of Junin area, the zoning of alteration mineral assemblage was proved precisely to be reflected on the distribution of geochemical anomalous zones which were corresponded also to each mineralized zones respectively (Figs.II-1-7 and II-1-8). For instance, Cu-Mo geochemical anomalous zone was centered on a intense mineralized zone, on the other hand Pb-Zn anomalous zones were distributed generally in surrounding part of each mineralized center.

The Au-Ag anomalous zone was suspected only to show a vague relationship with mine-ralized zone. Every Au-Ag anomalous zone over 10 ppm of Au was, anyhow, delineated within the Type III acidic alteration zones.

Cu-Pb-Zn geochemical anomalies were detected by stream sediments in areas corresponding to the mineralized outcrops along the Q.Limonita, the Q.Fortuna, and a branch of the Q.Cristal of the Surrounding Zone of Junin area (Fig.II-2-6).

(6) Cuellaje area

Geology of Cuellaje area consists mainly of the Apuela-Nanegal batholith of granodiorite, and stocks or dikes of andesitic porphyry, dioritic porphyry and/or quartz porphyry, which intrude the batholith (Fig.II-3-1).

The Rio Magdarena mineralized zone was accompanied with a zonal structure of three alteration mineral assemblages: the potassic alteration zone; the phyllic alteration aone; and propylitic alteration zone in outward order.

The assay result of ore samples there was 5.2 g/t Ag, 1.66 % Cu and 0.11 % Mo. These mineralized zones could be comparable in extension and intensity with those of the Central Zone of Junin area.

The Q.San Miguel mineralized zone was observed to be surrounded by the propylitic alteration zone.

Both the Rio Cristopamba mineralized zone and the mineralized zone between Rio Magdarena and Q.San Miguel contain Type II zones which are accompnied with contact zonal alteration in the vicinity of veins: the phyllic alteration zone at the central part, the propylitic alteration zone outwards.

The assay results of the Rio Cristopamba and the Q.San Miguel mineralized zones were as follows: 45.6 to 6.3 g/t Ag, 6.97 to 1.43 % Cu and 0.13 % Mo; 0.4 g/t Au, 3 6.5 g/t Ag, 7.98 % Cu and 0.03 % Mo respectively.

(7) Pululahua area

Geology of Pululahua area consists of the Cretaceous Macuchi formation (andesitic coarse tuff mainly), the Cretaceous Yunguilla formation (mudstone mainly), the Quaternary Talus breccias, Pululahua volcanic explosions, its mud-flow, and its detritus falls (Fig.II-4-1).

There are two areas of interest for prospect in this area, which are known as the Tanachi deposit and the Reventazon alteration zone.

The Tanachi deposit, which situates in the northwestern part of the area, occurs as secondary deposit of ore breccias. These ore breccias were supposed to be derived from polymetallic epithermal deposits formed in Quaternary age associating with the acidic hydrothermal activities, and to be transported possibly by landslide movement.

The assay result of ore samples obtained from waste stock pile in the Tanachi mine was 1.7 to 0.3 g/t Au, 182.5 to 52.3 g/t Ag, 3.99 to 0.57 % Cu, 9.34 to 0.06 % Pb and 24.8 to 0.08 % Zn. The Rebentazon acidic alteration zone situates in the cent ral part of the Pululahua ara. The assay result of ore was under detectable level.

Chapter 2 Recommendations for Phase II survey

Junin and Cuellaje areas were proved to have high potential of Cu-Mo dissemination and vein deposits. Followings are, therefore, recommended for Phase II survey.

(1) Central Zone of Junin area (Fig.2-1)

According to the steep topography, it is difficult to adopt the geophysical exploration. Drilling survey is, consequently, commended although a transportation ploblem needs to be solved.

Taking the movilization of diamond drilling machine into consideration, the recommended order of drilling survey is as follows:

- 1) Q.Limonita mineralized zone (Type I)
- 2) An area between Q.Limonita and Q.verde mineralized zones (Type I)
- 3) Rio Junin mineralized zone (Type II)

A detailed geological survey is, furtheremore, recommended to be carried out in the area of Q. Verde mineralized zone (Type I) and mineralized zones of Q. Limonita up stream, Q. Crisocora, Q. Controvercia and Q. La Rica (Type II) in order to delineate promissive mineralized zone for future drilling survey.

(2) Surrounding Zone of Junin area (Fig.2-2)

To correlate mineralization between Central Zone and Surrounding Zone of Junin area, detailed geological survey and geochemical exploration are recommended to be carried out in the three mineralized zones, Q.Espelanza mineralized zone, Q.Fortuna mineralized zone, and Q.Cristal branch mineralized zone.

(3) Cuellaje area (Fig.2-3)

Detailed geological survey, rock geochemical exploration, and geophysical exploration are recommended to be carried out in Rio Magdarena mineralized zone and a limited area between Rio Cristopamba and Q.San Miguel mineralized zones.

The reason of recommendation is as follows:

- -Topography in Cuellaje area is comparatively gentler than that of Junin area, geophysical exploration method should be adoptable consequently.
- -Occurrence of mineralization here is quite similar to that of Junin area, geological and geochemical survey could be efficient exploration methods.

REFERENCE

REFERENCES

- CHAPPEL, B.W. and WHITE, A.J.R. (1974): Two contrasting granite types. Pacific Geol., v.8, p.173-174.
- DGGM/DCF/DCT/SEB(1984):Informe de la comision efectuada al sector Pululahua, para verificar denuncias de explotación de oro al margen de la Ley.7p.
- ENADIMSA(1977): Trabajos Realizados en la Zona Norte de Ecuador. 68p.
- FAIRBRIDGE, R.W. (1975): The encyclopedia of World Regional Geology, Part 1: Western Hemisphere. Dowelen, Hutch. Ross., p. 261-270.
- HENDERSON, W.G. (1979): Cretaceous to Eocene volcanic arc activity in the Andes of northern Ecuador. Jour. Geol. Soc. London, v. 136, p. 367-378.
- INEMINE and AGCD-ABOS(1988):Proyecto Desarrollo del Sector Minero en el Ecuador. 278p.
- INEMINE (1990): Proyecto Desarrollo del Sector Minero en el Ecuador. 136p.
- ISHIHARA, S. (1977): The magnetite-series and ilmenite-series granitic rocks. Mining Geol., v. 27, p. 293-305.
- KURZL, M. (1988): Exploratory Data Analysis: Recent advances for the interpretation of geochemical data. Jour. Geochem. Explor., v. 30, p. 309-322.
- MINISTERIO DE RECURSOS NATURAIS Y ENERGETICOS/DIRECCION GENERAL DE GEOLOGIA Y MINAS(1980): Mapa Geologico del Ecuador(1:100,000) (64-Pacto,83-Otavalo)
- MINISTERIO DE RECURSOS NATURAIS Y ENERGETICOS/DIRECCION GENERAL DE GEOLOGIA Y MINAS(1980): Mapa Metalogenico del Ecuador(1:1,000,000)
- MINISTERIO DE RECURSOS NATURAIS Y ENERGETICOS/DIRECCION GENERAL DE GEOLOGIA Y MINAS(1982): Mapa Geologico Nacional del Ecuador(1:1,000,000) (Spanish and English)
- MINISTERIO DE RECURSOS NATURAIS Y ENERGETICOS/DIRECCION GENERAL DE GEOLOGIA Y MINAS(1982):Geology of Ecuador.69p.
- MINISTERIO DE RECURSOS NATURAIS Y ENERGETICOS/DIRECCION GENERAL DE GEOLOGIA Y MINAS(1985):Proyecto Junin.42p.
- MIYAKE, T. (1974): Characteristics of Chaucha Porphyry Copper Deposit, Ecuador. Mining Geol., v. 24, p. 129-135 (text in Japanese).
- PUIG, C.A. (1984): Ecuador-not only oil, but also mining. Mining Magagine, 588-591.
- SATO, K. and ISHIHARA, S. (1983): Chemical composition and magnetic susceptibility of the Kofu granitic complex. Bull. Geol. Surv. Japan, v. 34, p. 413-427 (text in Japanese).
- STEWART, J.W., Evernden, J.F. and Snelling, N.J. (1974): Age Determination from Andean Peru: A Reconnaissance Survey. Bull. Geol. Soc. America, v. 85, p. 1107-1116.
- TAKAHASHI, M., ARAMAKI, S. and ISHIHARA, S. (1980): Magnetite-series/ilmenite-series vs. I-type/S-type granitoids. Mining Geol., Spec. Issue, no. 8, p. 13-28.

LIST OF FIGURES AND TABLES

FIGURES

Fig.1	Location of the project area
Fig.2-1	Survey results and recommendation for further survey (Central zone, Junin area)
Fig.2-2	Survey results and recommendation for further survey (Surrounding zone, Junin area)
Fig.2-3	Survey results and recommendation for further survey (Cuellaje area)
Fig.I-1-1(1)	Location of the survey area(Junin area)
Fig.I-1-1(2)	Location of the survey area(Cuellaje area)
Fig.I-1-1(3)	Location of the survey area(Pululahua area)
Fig.I-3-1	Geotectonic and metallogenic zones of Ecuador
Fig.II-1-1	Geologic map of the Central zone, Junin area
Fig.II-1-2(1)	Chemical variation diagram:normative quartz(Q)-orthoclase(Or)-plagioclase(Ab+An)
Fig.II-1-2(2)	Chemical variation diagram: ACF diagam
Fig.II-1-2(3)	Chemical variation diagram:SiO2-(Fe3+/Fe2+)
Fig.II-1-3	Mineralized and alteration zone map of the Central zone, Junin area
Fig.II-1-4	Sketch of the mineralized outcrop along the Quebrada Limonita
Fig.II-1-5	Correlation diagram between each element
Fig.II-1-6	Histograms and boxplots of seven elements
Fig.II-1-7(1)	Geochemical anomalies of rock samples(Cu)
Fig.II-1-7(2)	Geochemical anomalies of rock samples(Soluble-Cu/Total-Cu)
Fig.II-1-7(3)	Geochemical anomalies of rock samples(Pb)
Fig.II-1-7(4)	Geochemical anomalies of rock samples(Zn)
Fig.II-1-7(5)	Geochemical anomalies of rock samples(Au)
Fig.II-1-7(6)	Geochemical anomalies of rock samples(Ag)
Fig.II-1-7(7)	Geochemical anomalies of rock samples(Mo)
Fig.II-1-8(1)	High factor scores from factor analysis of rock samples:Factor 1;Cu-Mo-(Ag)
Fig.II-1-8(2)	High factor scores from factor analysis of rock samples:Factor 2;Pb-Zn
Fig.II-1-8(3)	High factor scores from factor analysis of rock samples:Factor 3;Au-Ag
Fig.II-1-9	Location and geologic map of the drill hole MJJ-1
Fig.II-1-10	Progress record of hole MJJ-1
Fig.II-1-11	Geologic profile of the drill hole MJJ-1
Fig.II-2-1	Geologic map of the Surrounding zone, Junin area
Fig.II-2-2	Generalized columnar section of the Junin and Cuellaje areas
Fig.II-2-3	Mineralized and alteration zone map of the Surrounding zone, Junin area
Fig.II-2-4	Correlation diagram between each element
Fig. H25	Histograms and hoxplots for three elements

Fig.II-2-6(1) Geochemical anomalies of stream sediment samples(Cu) Fig.II-2-6(2) Geochemical anomalies of stream sediment samples(Pb) Fig.II-2-6(3) Geochemical anomalies of stream sediment samples(Zn) Geologic map of the Cuellaje area Fig.II-3-1 Location of samples for laboratory tests Fig.II-3-2 Mineralized and alteration zone map of the Cuellaje area Fig.II-3-3 Geologic map of the Pululahua area Fig.II-4-1 Generalized columnar section of the Pululahua area Fig.II-4-2 Location of samples for laboratory tests Fig.Ⅱ-4-3 Chemical variation diagram:(FeO*/MgO)-SiO2 and (FeO*/MgO)-FeO* Fig.II-4-4 Mineralized and alteration zone map of the Pululahua area Fig.II-4-5 Sketch of the mineralized part of the Tanachi mine Fig.II-4-6

TABLES

sounts of field works and laboratory tests

Tab.I-1-1	Amounts of field works and laboratory tests
Tab.I-1-2	Member list of project administration
Tab.I-1-3	Member list of survey team
Tab.I-3-1	Classification of metallogenic zones
Tab.I-4-1	Summary of survey results
Tab.II-1-1	Analytical data of rock samples
Tab.II-1-2	Results of isotopic age determination(K-Ar method)
Tab.II-1-3	Mineral assemblages of each alteration zone
Tab.II-1-4	Method and detection limits of chemical analyses
Tab.II-1-5	Summary of statistical analysis of rock geochemical data
Tab.II-1-6	Correlation of six elements of rock geochemical data
Tab.II-1-7	Results of the EDA analysis of rock geochemical data
Tab.II-1-8	Results of factor analysis of rock geochemical data
Tab.II-1-9	Generalized drilling results
Tab.II-1-10	Summary record of drilling activities(MJJ-1)
Tab.II-1-11	Drilling equipments and consumed materials
Tab.II-1-12	Summary of each mineralized zone
Tab.II-2-1	Summary of statistical analysis of stream sediment geochemical data
Tab.II-2-2	Correlation of three elements of stream sediment geochemical data
Tab.II-2-3	Results of the EDA analysis of stream sediment geochemical data

APPENDICES

- Appendix 1 Mineral assemblages of the rocks under thin section
- Appendix 2 Mineral assemblages of the ores under polished section
- Appendix 3 Mineral assemblages of the rocks by X-ray diffraction analysis
- Appendix 4 Assay data of ore samples
- Appendix 5 Analytical data of geochemical rock samples
- Appendix 6 Analytical data of geochemical stream sediment samples
- Appendix 7 Drilling log of MJJ-1(1:200)

PLATES

- Pl. II-1-1 Geologic map of the Central zone, Junin area(1:5,000)
- Pl. II-1-2 Geologic profile of the Central zone, Junin area(1:5,000)
- Pl. II-1-3 Location map of rock and ore samples of the Junin area(1:10,000)
- Pl. II-1-3 Location map of geochemical rock and stream sediment samples of the Junin area(1:10,000)
- Pl. II-2-1 Geologic map of the Surrounding zone, Junin area(1:10,000)
- Pl. II-2-2 Geologic profile of the Surrounding zone, Junin area(1:10,000)
- Pl. II-3-1 Geologic map of the Cuellaje area(1:10,000)
- Pl. II-3-2 Geologic profile of the Cuellaje area(1:10,000)
- Pl. II-4-1 Geologic map of the Pululahua area(1:10,000)
- Pl. II-4-1 Geologic profile of the Pululahua area(1:10,000)

APPENDICES

Appendix 1 Mineral assemblages of the rocks under thin section

Π.	,]	Opaque minerals	0			0	•					0	٠		9					O	J	0			0]
0.4	197251	Sericite Libonite	0	0	····	0	0	O			•		Ô	O				•							•		
	2372	(Alcite	Ж							Ô) O O ●		0			0	o o		0		o O	0		
		Epidote Chlorite	O O	<u>O</u>	0		9	0	•	•	•	0	•	•					Ö	Y		•		•	•	••••	
1	secomar y	% feldspar #uscovite				•		Ö			••••		0						,								
	22	Albite						0 0						*********											0		
┞		Zircun Quartz	<u>•</u>	•	•	<u>Q</u>		<u> </u>	•			•	0		•	•		0	0	0		O			<u> </u>		1
	veces.	Allanite Sphene		•					•		•	•	,					•			ļ			•			1
l L	A S	Apatite	• .	•	•				•		•	•				•		•									1
818		Opaque elnerals	0							•					0					0	0		0			®	
lineral	or ounded ss	Biotite llornblende Sassa						•••••		O					O			•••••	Ο.		ļ					••••••	
	מו	k-feldspar Biotite	<u>Q</u>		O		<u>o</u>	····	ļ				O	O			<u>Q</u>										
	O I	Quartz Plagioclase X-feldspar	0		Ŏ.		0	0 0 0		0	•••••		© O	° 0 0	Ø O		0		0	<u>Q</u>	Ο.		<u> </u>			<u>O</u> _	
H		Opaque minerals	9	•			<u> </u>	<u> </u>	•	•	Ó	•	$\mathbf{\dot{\bullet}}$	•		•		•			ļ		•	O		9	
	ys: nera	llornblende Clinopyroxene	~	<u>.</u>				O	0	0	Ö	0				0		Ö	Ö	o	Ö		o	O	0	O	
	raenocryst main minera	Biotite	ő	0	0	· • • • • • • • • • • • • • • • • • • •	0	0	0		0	0 0 0 0	О	0		。。 ○ ○ ○	•	0000		0	ļ						
	ain	9281001gs19 Zeqsb191-Z	0	() () ()	©		0	0	<u>0</u>	Ö	0	<u>8</u>	O	O O	0	© ©	• • • • • • • • • • • • • • • • • • • •	Ø.	0	Ö.	b	0	0	0	O	0	
LF	Č	21,1200	Ō.		Ō	Q	Ŏ	Ŏ.	O.				8	Ö	_		0		•	0		<u> </u>				-	-
	Texture		porphyritic	hypidiomorphic granular	porphyritic	porphyritic	porphyritic	porphyritic	hypidiomorphic granular	porphyritic and	hypidiomorphic granular	hypidiomorphic granular	porphyritic	porphyritic	porphyritic	hypidiomorphic granular	porphyritic	hypidiomorphic granular	porphyritic	porphyritic	+	intersertal	porphyritic and	granular	porphyritic	porphyrytic and	o :a little, . rare
	Rock Name		quartz porphyry	granodiorite	quartz porphyry	altered	quartz porphyry quartz porphyry	diorite porphyry	granodiorite	andesite porphyry	granodiorite	granodiorite	diorite porphyry	quartz porphyry	diorite porphyry	granodiorite	quartz porphyry	granodiorite	andesite porphyry	quartz bearing	andesite	sandstone	andesite	gabbro	silicifed rock	andesite	nt, O :common,
	Geologic	Units	යු	B	ď	d)	c _y	å	밁	ф	В	ęg	ď	Q _D	dQ .	P9	e G	25	ďγ	γр	ď	<u>.</u>	41	g.	41	dH d	3 :abundant,
		Årea		(1	1619	(I) II	inul			(lis	təbi	aəS)	utu	m[əįs	[[ən	o			i 	suńs	լոլո	1		
	Sample	No.	A1003	A1016	C100Z	C1011	D1003	E1013	C1022	C1027	D1015	D1028	E1026	E1027	C1030	C1033	C1035	D1046	D1057	F1008	B1025	C1046	C1059	C1069	C1084	01092	
	Set		-	83	'n	47	, i	9	7	00	හ	10	11	12	13	74	15	16	11	22	67	20	21	22	23	24	

Γ		••••	Opaque ainetals	0	•	6
Į į	_		Sericite	0000	\sim	
	Secondary	minerals	k-feidspar Epidorie Epidorie	O	Ő	8
	걸	g	(hlorfte	Ö	ď	Ö
	ğ	ē	Epidote	Ö		Ö
	မွ်း	ij	v_teinabet			
1	S	E	ZJ7mJ)	~	0	
1			NooliZ	¥-		
	Acces.		Sphene	<u>.</u>		
	ĕ		Sohene	•		
S	ŏ	Ì	Allanite		***********	
Minerals			a) i Jedy	•	0 0	•
9			Flagioclase L'eldapar Biotite Spaque ainerals			•
J.5	l-6	1	atitoid		0	·
7	9	S	X-feldspar		0	0
	ē	Bass	Plagioclase	,,,,,,,,,,	0	Ö
1	ပ	ĕ			Ő	<u>.</u>
		_	Obsdoe atherats	•		•
1	~	G3	Clinopyroxene Opaque minerals			
	뚫	ä	Biotite Biotite Biomblende	<u> </u>		
	l 🌣	Ξ.	abraidmail	Ж		
	ĮΫ	a	atitofA	Ψ.	0	<u>y</u>
1	Phenocryst & Ground-	main mineral	Quartz Plagioclase Tegsbiəl-X	<u>Q</u>		Q
l	2	6	Plagioclase	0	O	0
i	۵,	22	23.18119	0	O	0
	h			hypidiomorphic granular @@OOO		hypidiomorphic granular @ 0000
		re Le	,	18 0		c gr
		Texture		thqu	ပ္	ida
l		ŭ		ĝ	porphyritic	<u> </u>
l				Ö	H	5
ı				-6	笺	Ö
ı				2	H	6
1				三	ይ	ć
-						
		e)			quartz porphyry	
[ĕ		9	Ę	, di
1		Rock Name	:	granodiorite	7	granodiorite
		,14	•	Ö	ష	0
		8		5	24	G
ĺ		æ		12	끍	22
ĺ			,	12	<u> </u>	eg.
<u> </u>		_		50	<u></u>	80
		ogic	Units			
1		ã	i t	B	Ĉ,	25
1		ĕ	ng.	Ι-	_	
		_		├		
		덮	hole (B)	115	130m	150₽
			.5	11	13	12
Г						
		Ξ		MJJ-1	¥33-1	¥33-1
_		5	<u> </u>			=
1		ër.	No.	- - \$.	63	ش.
L		رة ح	×	L		

⑤ :abundant, ○ :common, ○ :a little, • :rare.

Appendix 2 Mineral assemblages of the ores under polished section

							,					····						· 1	
Polished Section	Area	Occurrence	Chalcopyrite (cp)	Bornite (bn)	Chalcocite (cc)	Coyetite (cv)	Cuprite (Cup)	Malachite (Mal)	Nativecopper (Cu)	Wolybdenite (mo)	Tetrahedrite	Sphalerite (Sp)	Galena (gn)	Pyrite (py)	Magnetit (Mt)	Goethite (Goe)	Hematite (Hm)	Cangueminerals (G):0:0maryz	Remarks
A 1 0 0 1		bn-cc dissemination		•	•													0	J
A 1 0 0 8	·	bn-cc ore(from clayey vein?)	•	0	0		_											•	minar occurrence of chalcopyrite in gualtz
A 1 0 1 2	21.62	pu-cc ore		0	0													ိ	minor occurrence of chalcopyrite in bornite
C 1 0 0 1	Junia	co veinlet and dissemination	0		Ŀ		ļ					•						0	
C 1 0 0 7	Jun	py-Mt dissemination												•				0	
C1008	jo.	cp veinlet and dissemination	0															0	
C1010	zone	bn-cc ore	•	0	0									•	-			0	Secondary enriched copper ore
C1015		Bo-Q vein	•		•					0			·						minor occurrence of cha lcopynite in molybdenit
C1016	Central	mo-Q vein	٠.		•	•												©	
D1007	C C	no dissemination		٠	•			e .		О								@ ⁰	
E1002		Oxidized copper ore	•				0	0	0									©	Native copper in cuprite
D1019	9 .	td-cp-py dissemination	•								•			O				©°	
D1022	zone	cp-py dissemination	•											0				0	
D1023	rounding Junina	td-py dissemination	•								•			0	-			Ο.	
E 1 0 2 2	Jun Jun	cp-py dissemination	•											0				0	
E 1 0 2 5	Surr	cp-py dissemination	0											•	. :			© _C	
C 1 0 3 2		ср-шо оге	0					•		•								೦	
E 1 0 3 0	area	cp-Mt dissemination	•	•	-	_			:						•			@ ^c	
E1031		Weathered op ore	0		٠											0		ဝ	
F1010	Cuellaje	bn-cp-Q veinlet	•	•	•			•								·		೦	Partly weathered
F1011	Cue	mo-co veinlet			•					•								0	
C 1 0 4 3		and dissemination	•			-	-							0				O	
C1944	2 rea	py-Q vein	•								-	٠	-	0				@ ^Q	
C1045		sp-gn-cp-py ore	0	H		-			<u> </u>			0	0	•				O	
C1062	lahı	py-Q vein							<u> </u>					0				© _C	
E1037	Pululahua	sp-gn-cp ore	0	-	_			Г			<u> </u>	0	0	•	T-			೦	
118, 00m		cp-cp veinlet mo-cp-py-Mt dissemination	•			-	 	-	-			•		0			Π	0	
		co-co veinlet	0		-	-		-		1				0	_			0	
130. 80m	KJJ-1	cp-cp dissemination	<u> </u>	-		-		<u> </u>				 -	-			<u> </u>	·	0	
132, 40m	3	(cp)-(py) dissemination	_		-	-	-	-	-	 	-	 	-		 	-	١.	0	
139. 70 m		cp dissemination			-			-	-		-	\vdash			 	-	 -	0	
147. 40m		cp-(py) dissemination	_	<u>L</u> .	L	l	ــــــــــــــــــــــــــــــــــــــ	<u>L</u>	<u> </u>	J	í	Щ	L	<u> </u>	L	Ц.	٠		L

@>O>•>·

Appendix 3 Mineral assemblages of the rocks by X-ray diffraction analysis

			Γ			:			N	line	ra	1		Na	шe	S			·				
		·																					
			မ	,				:															
Ser.	Sample	Rock Name	į	363													te			g			a
No.	No.		렲	يہ	ø	Ę				જ્ઞ	点	ø		2	A)	43	B			Ŧ		Ę	11t
			or;	Ş	Ħ	ysi	3	3.Ee	ţ	8 2	dsb	Ž	မ္	ali	ŢŢ.	3	ğ	ψ	jte	ξ, Q	ą	- <u>T</u> et	퓻
		e je se se s	퉏	r.	01	2	ō	Ľ.	Ġ.	# E	3	듄	矣	1	2	Ę	2	Ē	23	a	Ē	ď	1
			율	፠	₽2:	띮	5	፠	ю. С	Plagioclase	hat	A.	뮵	Ę,	c5	હ	2	ፈ	33	បី	ᄶ	ĕ	,
1	RA1001	Granodiorite				:		<u>し</u>		9.	:							:					
2	RA1003	Quartz porhyry					O			00													
3	RA1004	Granodiorite	١.				0			<u> </u>													
4	RA1006	Granodiorite	ļ			1	0 (9	(0								О					
5	RA1007	Granodiorite						O		9								•					
6	RA1008	Quartz porhyry	l				0	0		00	Ю												
7	RA1009	Quartz porhyry	١.				(O		9						•		:					
. 8	RA1010	Quartz porhyry	ŀ							00	-												
9	RA1011	Granodiorite	١.				Ō				О							•					
10	RA1012	Granodiorite	١.							0 •								•					
11	RA1013	Quartz porhyry					0			00													
12	RA1016	Granodiorite					0	-		00	\mathbf{O}	\mathbf{O}			- 1							_	
13	RA1017	Granodiorite	1			,		O.		0											О	0	
14	RA1019	Granodiorite					: = :			000									•				
15	RA1021	Granodiorite					O			<u>00</u>													•
16	RA1023	Granodiorite					0			00													
17	RA1028	Granodiorite	'				O			00													
18	RA1029	Granodiorite	ြ							00											:		:
19	RA1032	Quartz porhyry					•		(00											:		
20	RA1034	Granodiorite					O			00								•		;			:
21	RB1002	Granodiorite								<u></u> 00													
22	RB1003	Granodiorite					Ο	\bigcirc		∵ ;	О												
23	RB1004	Granodiorite	1	•				O	(<u>)</u>						•							
24	RB1005	Granodiorite					\mathbf{O}		• (00	HO)												
25	RB1007	Granodiorite					1	\bigcirc		0													
26	RB1009	Granodiorite						Ų		9			_			•							
27	RB1012	Granodiorite					Q	•		00			O										:
28	RB1014	Granodiorite		i			O	- :		00								:					-
29	RB1016	Granodiorite					0			00													
30	RB1020	Granodiorite	ļ				•			00													
31	RB1024						\circ		~ (00													
32	RB1028	Quartz porhyry					\mathcal{C}		\circ	00 00													•
33	RB1030	Quartz porhyry					0																
34	RB1031	Quartz porhyry					0			00													
35	RB1033	Granodiorite					0			00													
36	RB1035	Granodiorite					0	$\overline{}$		00	9				•								
37	RB1037	Granodiorite						V		0: 3:0					\sim	V							
38	RB1039	Granodiorite		0	: :		\sim			00					\lesssim		}	:					:
39	RB1040	Granodiorite		0			0			00					0			:	:				-
40	RB1042	Granodiorite ◎: ab	<u> </u>		ابــا		0								1 :	4.4	1 -	<u>: </u>	<u>: </u>	:	га	_	:

A-9

			ľ							Nin	er	a I		Na	шe	S							
			به	,					:										:				
Ser.	Sample	Rock Name	nit	***								-					ite			3			a)
No.	No.		110	4.7	ø	မှ		41			10 P	ه ځ		8	63	۵)	8		6)	Ę		Ē	5
			i,	ğ	ij	ySi	7	#	ţ	Ŋ	8 8	8	<u>.</u>	Ē	ä	μt	8	e	Ę	ą	ıte	F	ğ
			Ę	\ <u>`</u>	01;	=	Ö	ĭ	O.	Ę.,	χς: α	. <u>.</u>	ě		á	æt	ģ	Ę	Ŋ	Ę	Ę	ç	<u>y</u>
_			ğ	8	ž	표	5	ß	8	Quartz		1 2	Ġ.	Ę	G	ঙ	۳.	6.	ıΞ	ರ	<u>~</u>	~	×
41	RB1043	Granodiorite		O			0		•	O.C	ノし), C	1										
42	RB1046	Granodiorite						0		0	C				•								
43	RB1048	Granodiorite					0	\sim		0()(C)) C	1		Q		7						
44	RB1049	Granodiorite						\circ		0		•				•							-
45	RB1050	Granodiorite					_	O		0						O	•						
46	RB1052	Granodiorite	1				0			0()).			\cup			:					
47	RB1056	Quartz porhyry		1		0	: :	0		(O)													
48	RB1060	Granodiorite					0			00													
49	RC1001	Granodiorite						\sim		0(
50	RC1003	Granodiorite						$\stackrel{\cup}{\sim}$		0	(
51	RC1004	Granodiorite						0		0						:		10					
52	RC1005	Granodiorite					9	0		0(V			
53	RC1006	Quartz porhyry					_	\mathcal{C}		0(7	i			•							
54	RC1007	Quartz porhyry						0		0(グ												
55	RC1008	Granodiorite						0		(O)													
56	RC1010	Granodiorite						$\overline{}$		0	٠.												
57	RC1011	Quartz porhyry						\bigcirc		() ()	. •												
58	RC1013	Granodiorite					.0	\sim	-		<i>)</i> (,,,	'										
59	RC1017	Granodiorite Granodiorite		1			О	\cup		() () ()	\sim	1											
60	RC1020									() ()													•
61	RC1023 RC1024	Granodiorite Granodiorite					: :	$\stackrel{\smile}{\circ}$		(O)(
62	RC1024	Granodiorite					:	. ~		(O)(1											
63 64	RC1020	Granodiorite	'							0		`											
65	RC1023	Granodiorite		:			o			0(-		•		!			
66	RC1028	Granodiorite								0						•	0						
67	RC1030	Quartz porhyry						Ŏ		0						Ī	Ĭ						
68	RC1031	Granodiorite	ŀ				0			Ŏ(ЭïС) a											
69	RC1034	Granodiorite						0	ŏ	Ŏ.		1											
70	RC1035	Granodiorite						Ŏ		0	5)					:							
71	RC1036					-	0			Ŏ()											
72	RC1037	Granodiorite					•	\circ		Ŏ(-					:			
73	RC1039	Granodiorite		:				Ó		Ŏ(
74	RC1040	Granodiorite		:	-		\bigcirc	Ŏ		<u>o</u>													
75	RC1041	Quartz porhyry			-	:		Ō		0()	•					•	:				
76	RC1043	Granodiorite					О			Ō(0	į									
77	RC1044	Granodiorite		:			Ō	O		0(
78	RC1046	Granodiorite					0	0		0(:	•										
79	RC1048	Granodiorite		:	-			0		0(
80	RC1050	Granodiorite			<u>:</u>	:	•	0		0(:	:		1		<u> </u>					1
		◎ : al	ur	ıda	nt		$\overline{\bigcirc}$:	CO	迅速(n.	C	· :	a	1 i	tt	16	<u>, </u>		:	ra	re	

A-10

			<u> </u>							Hin	era	11		Na	ne	S							
										-[-		1									_		
			ų.	,																			
Ser.	Sample	Rock Name	ij	;-i						Quartz							Ę			9			, a>
No.	No.		2	نب	ø	ង				2	Į į	60		8		41	g		65	Ę		Ę	Ĭ
			P	Ş	Ė	Š	ite.	ţ	ę.	19	Si	8,	jt.	6	11.	ij	ğ	9	ŭ	Š	ţ	Ę.	ğ
			ŧ	ù	ii.	110	ö	ř	당	List of	به ف	년	ģ	E S	ğ	ķ	ģ	Ę	183	alc	Ę	Ġ.	Š
			2	8	Z	呂	5	<i>S</i>	8	<i>6</i> √ ∆	. <u></u>	. 2	덮	<u> </u>	3	ঙ		ፈ	Ħ	Ö	ďΣ	۳	×
81	RC1051	Granodiorite	-					<u>O</u>	. ;	(O):	1	1								O			
82	RC1053	Granodiorite	٠.					\bigcirc		0.0													
83	RC1055	Granodiorite						O		00)) (C)											
84	RC1057	Granodiorite					Ô			00			•		-	_							
85	RC1059	Granodiorite					0			0	\sim	•				•		•					
86	RC1061	Granodiorite			-		Ó			()() ()()													
87	RC1062	Granodiorite					0			00				:									
88	RC1064	Granodiorite Granodiorite								0					-								
89	RC1067									00			0										
90 91	RC1070 RC1072	Granodiorite Granodiorite								0(1		:		•	•			О			:
91	RC1074	Granodiorite			•		~	$\stackrel{\smile}{\sim}$		<u></u>) ()											
93	RC1077	Granodiorite			$\overline{\cap}$	i.				0	\sim	Ś							•				:
94	RC1079	Granodiorite			ŏ):):	•	Ō		Ŏ.	Č)		1									-
95	RC1013	Granodiorite	1.3					Ŏ		0									•				
96	RD1000	Granodiorite						Ŏ		(O)	C)											
97	RD1003	Granodiorite						ŏ		Ŏ.	C)											
98	RD1009	Granodiorite						Ŏ		Ŏ.	0		į		•								
99	RD1011	Granodiorite						0		0	Č												
100	RD1014	Quartz porhyry						Ō		0	į	1				:	:						
101	RD1017	Quartz porhyry						O		0						•							
102	RD1018	Granodiorite					О	•	•	00)() e	O	1			-	•					
103	RD1021	Granodiorite	1			1		Ο		0	C):		•	:	-							
104	RD1023	Granodiorite			-			Ο		0	i			•									
105	RD1027	Granodiorite	1					Q		0							•	•					
106	RD1029	Granodiorite	1.					O		0					: :		-						
107	RD1033	Granodiorite	1		:		O	•		00))					-	•					
108	RD1034	Granodiorite			-			O		0(ĺ
109	RD1036	Granodiorite	:				0	٠ :		00					-					•			
110	RD1038	Granodiorite				•	0			0(-										
111	RD1039					Ю	0	\circ		0)				•	1				:			
112	RD1041	Granodiorite	.]	•		_		\mathcal{C}		0000										:			
113	RD1043	Diorite porphyry	וא			•	1	\sim		0	:	:	:		-					:			
114	RD1047	Granodiorite				:		$\stackrel{\smile}{\sim}$		0						i	-	:					:
115	RD1051	Granodiorite Granodiorite			:			\asymp		9										•			
116	RD1055	Granodiorite	1				o	\mathcal{C}		0	<u>م</u> د) ·											
117	RD1058	Granodiorite	1				0			00) :	1		:						
118	RD1060	Granodiorite					0			00							•	:					
119	RD1061 RD1062	Granodiorite					O	: :		0(1					:						
120	PDIOOS	© : al	hiir	: :	: ani							· ·	`		1	+1	1	<u>.</u>			ra	LTP	<u></u>

			_						Ni	ne	ra	1		Na	ne	S							1
Ser. No.	Sample No.	Rock Name	Montmorillonite	Ser. /Mont. M. L.	Kaolinite	Halloysite	Chlorite	Sericite Biotite	Quartz	Plagioclase	K-feldspar	Amphibole	Epidote	Tourmaline	Gibbsite	Goethite	Lepidocrocite	Pyrite	Hematite	Chalcopyrite	Вогліте	TenTetra.	Molybdenite
121	RD1065	Granodiorite					(ന -	ത	Ė	4							•		0			•
122	RD1067	Granodiorite					• (): C	0	0												. :	
123	RD1069	Granodiorite				O		Э.	0		O												;
124	RD1071	Quartz porhyry					() :															
125	RD1072	Diorite porphyry	1				.(9	0														
126	RE1002	Granodiorite					()	0														
127	RE1004	Granodiorite					()	0														
128	RE1005	Quartz porhyry					()	(0)	(0)	0							i					
129	RE1006	Quartz porhyry					()	000		0												
130	RE1007	Granodiorite				-	()	0				-									1	
131	RE1008	Granodiorite					•()	0		0							şi.				. :	
132	RE1009	Granodiorite				•	()	0	0	0		1					- 4					
133	RE1010	Granodiorite					() ·	0		O.	11											
134	RE1012	Granodiorite				•	(). 	0		0			٠ ا							1	: 3	
135	RE1014	Granodiorite				9	()	00000000		0												
136	RE1017	Granodiorite					()	0				•									1	
137	RE1019	Granodiorite					()	0				1	:	-								
138	RE1020	Granodiorite				;	())	0			-						,				;	
139	RE1022	Granodiorite					() <u>:</u>	0			•			. :								
140	RE1026	Granodiorite					()	0		0											į	
141	RE1027	Granodiorite			(0	(0000	0				1	-							;	1	
142	RE1031	Quartz porhyry			.(0	()				•	•										
143	RE1033	Quartz porhyry			(0	()	•				:								į	. :	
144	RE1036	Quart porphyry			O	O.	(00	Ю		•	•		1									
145	RE1039	Diorite porphyry		•	(0	())				1		į									
146	RE1042	Granodiorite			(0	.(0).															
147	RE1047	Diorite porphyry			• (\bigcirc	(00	Ė														
148	RE1048	Granodiorite			O	•		00			•	-										:	
149	RE1050	Diorite porphyry			Ο.)(O	0		•											;	
150	RE1051	Granodiorite			(<u>o</u>	(<u>)</u>				:									_ :		

②: abundant, ○: common, ○: a little, •: rare.

						Hi	ner	a l		Naı	aes		
	Ser. No.	Sample No.	Rock Name	Chlorite	Sericite	Biotite	Quartz Plagioclase	K-feldspar	Amphibole	Calcite	Goethite b::::45	Chalcopyrite	TenTetra.
	1	C1023	str. sil. Gd.	•	0		0()	•	О	•	Þ	
	- 2	C1024	silchl. Gd.	0		О	0(0 (O		•	Þ	
	3	C1025	float of sil. Gd.	0	0		0		•			С)
	4	C1026	sil. Gd	0		О	0() (•			. •	,
	5	C1027	Dp	0		Ο	(()	0			9 4	•
	6	D1009	sil. Gd	0	O		0)					
	7	D1010	sil. Gd.	•	О		0()			(Э	
	8	D1016	Gd.	0		О	0()C	О		•		
	9	D1024	Py-Cp-clay-vein in st. sil. Gd.		0						(Э С)
	10	D1025	Cp-Py qz vein in st. sil. Gd.		0		0				(Э.	0
	11	D1026	Cp-Py qz vein in st. sil. Gd.		•		0				() ()O
	12	D1027	Py qz vein in st. sil. Gd.		О		0				(Э	•
	13	D1040	silarg. Gd.		0)	0				,	•	
•	14	D1043	silarg. Gd.		О)	0						
	15	E1020	Py rich vein		•		((9	
:	16	E1021	Py st. diss. in st. sil Gd.		•		0				(C	•
	17	E1022	Py-Cp diss. and film in sil. Qp.		0)	0					• ()
	18	E1023	Py rich vein in st. sil. Gd.				0				() ()
	19	E1024	Py-Cp diss, in qz vein.		o		0					•	•
	20	E1025	Cp-Py diss. in qz vein.		•		0					o ()

						Ni	ıer	al i	Van	es					<u> </u>		
Ser.	Are	Sample	Rock Name	lonite		Tre-			Se		9					te	te
No.		No.		ril ont	11 te	_ _ _ _	9	ט	S S	ν Q	13.	. به	1 te	ė		מ לי	en
				Montao	Kaolin	Chlori	verici	Quartz	Plagio X-feld	Part P	Laumon	Cuncil	Anhydr	Geothi	Pyrite	Chalco	No Vod
1		C1028	chl. Gd.			0)	0	0								
2		C1033	sil. Gd.	•		o	C	0	(O		- 1	o					
3		C1034	Cp diss. in str. sil. Gd.			О	• () (O	00)						С	>
4		C1037	limclay vein in Gd.	οò	0			0	0								
5	1	C1038	sil. Gd.			О	C)(O)	() ()	•		o.					
6		C1039	sil. Gd.			0 (O,	0	00	•							
7	:	C1041	silarg. chi. Gd.			О	C	000	9								
8		D1050	Cp diss. in Gd.			o	C)(O)(9C	0							
9	:	D1054	Cp film in chl. Gd.	o		О	c	000	00)						С	•
10		D1061	Py diss. in chl. sil. Gd.			О	C	00	() ()	•							
11		D1062	Py diss. in sil. gd		o		•	0	9C)							
12	aje	D1065	Py diss. in sil. chl. Gd			0	C) (O	0 0	0							
13	Cuellaj	E1030	Cp-Py-Chr diss. in chl. sil. Gd.			О	C	000	9C) (С)
14	ت	E1031	LimCp vein in Gd.			О	0 0	000	9.C	• (О			
15		E1032	Lim-Cp-Hm vein in Gd.			О	ó	0	οC)						o •)
16		E1034	Chr film & diss. in chl. Gd.			О	C	000	0	О	. (0					ļ.
17	ŀ	E1035	Py-Cp film & diss. in sil. Gd.			•		0	ЭC)							
18		F1009	Cp film & diss. in sil. arg. Gd.			O	0	0	o	•							į
19		F1010	Cp-Bo-Cv diss. in sil. Gd.			o	o		Q)							
20		F1011	No ntwk & Cp Bo diss. in sil. Gd.		О		C	0	C)						С	0
21		F1012	Cp-Cv-Bo Cup diss in sil. chl. Gd.			0	(00	о С)							
22		F1014	Py-Cp film & diss. in arg. Gd.			0	9	0	ЭC)							
23		F1015	Cp-Py Chr vein & diss. in sil. chl. Gd.			О	0 0	000	<u>Э</u> С)							
24		F1016	Cp-Bo-Cv diss. & film sil. arg. Gd.		0	О	o C)@(Э С)					•	О)
25		C1047	white clay	О	٠o:	11	T	0		T	1	i			o		
26		C1048	white clay	0	О	•		0							0	•)
27	전	C1054	Lim bleached zone			•		0	o		O	c)				:
28	Pululahua	C1060	бур		00	Э		0				C)				
29	ulu.	C1061	Gyp-Py	• ,				О				C	0 (
30	<u> </u>	C1073	yellowish white clay	0	O			0	O	o							
31		E1041	andesitic tuff with Py diss.			О	0	0				C)		O		
32		E1046	white arg. &sil. rock		0			0						0		э.	

· N.L. : Mixed Layer

			T		Mineral Names
		;			
					2 1
	Ser.	Hole	Depth	Rock Name	
	No.	No.	(m)		of the state of th
				44	ntmori r./Mon olinit illovsi illovsi iotite iotite iagioci feldsp aphibol pidote alcite libsite
					Montmoril Ser./Mont Kaolinite Hallovsit Chlorite Sericite Biotite Quartz Plagiocla Plagiocla K-feldspa Amphibole Epidote Calcite Glibbsite Fyrite
	1	N JJ-1	3.0	Granodiorite	
	2	mjj i	6.0	Granodiorite	0 • 0 • 0
	3		9.0	Quartz porhyry	0 0 000
	4		12.0	Quartz porhyry	
	5		15.0	Granodiorite	
	6		18.0	Granodiorite	l i i i i i i i i i i i i i i i i i i i
	7		21.0	Granodiorite	Ŏ ŎŎOO
	8		24. 0	Granodiorite	0 00000 0
	9	1	27. 0	Granodiorite	Ŏ ÖÖ O O ●
	10		30.0	Granodiorite	O 00000 O 0000 O 0000 O 0000 O 0000 O 0000
	11	·	33.0	Granodiorite	0.0000
	12		36.0	Granodiorite	0 0000
	13		37.3	Granodiorite	0 0000
	14		39.0	Granodiorite	O •00000
	15		42.0	Granodiorite	O 000 • I
	16		45.0	Granodiorite	O O O O O
:	17		47.6	Granodiorite	0 0 000
	18		48.0	Granodiorite	
•	19		51.0	Granodiorite	
	20		54.0	Granodiorite	O OOOOO
	21	:	57.0	Granodiorite	(a)
	22		58.4	Granodiorite	o ● ⊚⊚o o ●
	23		60.0	Granodiorite	O O O O O O O O O O O O O O O O O O O
	24		63.0	Granodiorite	O 00000
•	25		64. 2	Granodiorite	0 00000
	26		66.0	Granodiorite	0 00000
	27		69.0	Granodiorite	0 0000
	28		72.0	Granodiorite	0 00000
	29		75.0	Granodiorite	0 000 0 •
	30		78.0	Granodiorite	0 00 00 •
	31		81.0	Granodiorite	
	32		84.0	Granodiorite	0 0000
	33		85.6	Granodiorite	
	34		87.0	Granodiorite	
4	35		90.0	Granodiorite	
	36		93.0	Granodiorite	
	37		96.0	Granodiorite	
	38		99.0	Granodiorite Granodiorite	
	39		102.0	Granodiorite	
	40	<u> </u>	105.0	1 granoground	

	<u> </u>						ì	lir	era	ıl	N	lam	es				
Ser. No.	Hole No.	Depth (m)	Rock Name	Montmorillonite	Ser. /Mont. M.L.	Kaolinite	Halloysite	Chlorite	Sericite Biotite	Quartz	Plagioclase	K-feldspar	Epidote	Calcite	Gibbsite	Pyrite	Chalcopyrite
41	MJJ-1	108.0	Granodiorite				(Ċ		0	0	o c)	0			
42		111.0	Granodiorite				(9	O	0							
43		112.0	Granodiorite)				o C					
44		114.0	Granodiorite				()		0							
45		117.0	Granodiorite				(000000		0							
46		119.5	Granodiorite				() 		0							:
47		120.0	Granodiorite				. (Э.		0				0			
48]	123.0	Granodiorite				(\mathcal{C}		0							
49		126.0	Granodiorite							0)	•			
50	ļ	127. 1	Granodiorite					C			(O			O		•	
51		129.0	Quartz porhyry					0			0			•			
52		130.8	Quartz porhyry				:	O.			©					•	
53		132.0	Quartz porhyry					O.			0			o o			
54		135.0	Quartz porhyry				:	0			0			Ø		•	
55		138.0	Granodiorite):):	`: ÷		0	0	Ю	O,			
56		141.0	Granodiorite	1				9		0) E		Ö		•	
57	* * *	144.0	Granodiorite					\bigcirc	•		0		•	Ŏ,			
58		147.0	Granodiorite		7.		. () ()	•			o c)	•			
59	٠	148.0	Granodiorite		О					0							
60		150.0	Granodiorite	L			(Э.	<u> </u>	0	(O):	<u>o:(</u>	<u>): </u>	<u>:</u>			

②: abundant, ○: common, ○: a little, ●: rare.

*: There is possibility that the mineral is chalcopyrite.

Appendix 4 Assay data of ore samples

1.5									
Ser.	Sample No.	Аге	Description	Cu	Assa Pb	y Resul Zn	ts Au	, Ag,	Yo
		me		(%)	(%)	l (x)	(g/t)	(g/t)	_(%)
	A1001		Bo-Cc films along the crucks in qz. por. Cp-Cc-Bo in qz. vein.	1.35	<0.01	<0.01	⟨0.1	3.4	<0.01
2	A1004		Cp-Cc-Bo in qz. vein.	3. 68	0.01	0.18	0.1	10.6	0.13
3	A1006		Cp diss. in qz. vein,	0.08	<0.01	<0.01	<0.1	0, 2	0.07
4	A1008	:	Cp-Py clay vein	32. 02	<0.01	0.01	1.7	97.0	0.01
-5	A1011		Secondary minerals in clay vein.	18.07	<0.01	<0.01	0.2	81.8	<0.01
6	A1012		Bo-Cp and secondary	42. 42	<0.01	0.01	0.3	137. 2	<0.01
7	A1013		ninerals. Bo-Cp and secondary	4. 80	<0.01	<0.01	<0.1	12.5	<0.01
8	A1014	4.	ninerals. Py-Cp(?)-Bo-No(?)	20.65	<0.01	0.01	0. 2	74.8	<0.01
9	A1015		Secondary minerals enrichments.	0.07	<0.01	0.01	<0.1	0.4	<0.01
10	A1018		Py-Cp diss. in gd	0. 24	0.01	2. 23	<0.1	23. 4	<0.01
11	B1001		No qz. vein (V:3cm).	0.01	0.01	<0.01	<0.1	<0.1	<0.01
12	B1002		Lim-Py qz. vein (V:65cm).	0. 17	<0.01	<0.01	0.1	1.7	<0.01
13	B1003		Lin qz. vein (4:5-7cm).	0. 10	<0.01	<0.01	<0.1	0.4	<0.01
14	B1004	£	Lim qz. vein (W:5cm).	0. 10	<0.01	<0.01	0.1	0.6	0.01
15	B1005	(Detail)	Lim in cruck (V:10cm).	0.46	<0.01	<0.01	0.1	9.3	<0.01
16	B1006		Lin qz. vein.	0.03	<0.01	<0.01	<0.1	19. 4	<0.01
17	B1007	Junia	Lin vein.	4. 32	<0.01	<0.01	<0.1	14.5	0.08
18	B1008		Cp-Mo-Py clay vein.	1. 45	<0.01	<0.01	0.1	25. 2	0.09
19	B1009		Cp-Py-No qz. vein,	1. 33	<0.01	0.02	<0.1	9.9	<0.01
20	B1010		Cp-Py-No qz. vein.	1. 28	<0.01	0.02	<0.1	3.5	0. 74
21	B1011		Cp-Py diss.	0.67	<0.01	<0.01	<0.1	1.4	<0.01
22	C1001		Cp-Bo-Cc-Cup diss./ntwk	1.44	<0.01	<0.01	<0.1	<0.1	<0.01
23	C1003		in str. sil. gd Cup-Cc diss./chry films.	0.07	<0.01	<0.01	<0.1	0.3	<0.01
24	C1005		Float of Bo-Chry diss in gd.,	0.70	<0.01	<0.01	<0.1	0.5	<0.01
25	C1006	, i .	Float of Cc-Cv qz, banded	0.01	<0.01	<0.01	<0.1	<0.1	<0.01
. 26	C1007		vein. Cp-Py-Bo diss/films in	0.37	<0.01	<0.01	<0.1	0,9	0.01
27	C1008		qz, por, and gd,. Bo-Cp-Mo-Cc diss,/films in	1.09	<0.01	0.01	<0.1	2.0	0. 01
28	C1009	:	str. sil. gd Py-Cp netwk. vlet	0.09	<0.01	<0.01	<0.1	7.9	<0.01
29	C1010	1	Bo-Cc-Chry ore.	15. 51	<0.01	<0.01	0. 1	43. 8	<0.01
30	C1011		Cp-Py-Cc-Chry diss in str. silgd	0. 14	<0.01	<0.01	<0.1	0.5	0.01
	J		L 54	L		L	L	L	L

Ser.	Sample			I	Assa	y Resul	ts		
No.	No.	Are	Description	Cu (%)	Pb (%)	Zn (%)	l (g/t)	(g/t) 2.4	ko (%)
31	C1012	<u> </u>	Cc-Lin-No qz. vein (2.7m).	(%) 0.16	<0.01	₹0.61	₹0.1	2.4	0.62
32	C1013		Cup-Chry-No-clay qz. vein.	0. 26	<0.01	<0.01	<0.1	6.4	0.01
33	C1014	: 1	Bo-Cp-Cc-Chry qz. vein (1.5m).	1.63	<0.01	<0.01	<0.1	2.7	<0.01
34	C1015		Cp-Mo qz. vein (1m).	2. 17	<0.01	<0.01	0.1	4.6	0.97
35	C1016		Bo-Cc-Cp-No qz. vein	0. 28	<0.01	<0.01	<0.1	4.4	0. 14
36	C1017		Cp diss in str. sil. gd	0.25	<0.01	<0.01	<0.1	1.3	<0.01
37	C1018		Py-Cp-Cc-Bo-Chry diss/films	0.37	<0.01	<0.01	<0.1	3.5	<0.01
38	C1019		in str. sil. gd Bo-Cc-Cp diss/film in	0. 10	<0.01	<0.01	<0.1	0.8	<0.01
39	C1020		arg.>sil. gd Sil-arg-Cc-Cp-Py zone (50m).	1. 22	<0.01	<0.01	<0.1	1.3	0.01
40	C1021	ii)	Str. sil-sulf zone (2m),	0. 72	<0.01	<0.01	<0.1	1.7	<0.01
41	D1001	(Detail)	ntwk films>diss. Lim veins in gd	0.06	<0.01	<0.01	<0.1	23.0	<0.01
42	D1002	Junin (Lim-Py veins in gd.	0. 19	<0.01	<0.01	<0.1	3, 8	0.01
43	D1004	Jur	Py-Cp-Bo-Chry sulfide rich	26. 32	<0.01	0.01	0. 1	77.1	<0.01
44	D1006		vein. Cp-Py-No diss. in gd	0. 97	<0.01	<0. 01	<0.1	1.0	<0.01
45	D1007		Cp-Py-No diss in qz. vein.	0. 13	<0.01	<0.01	<0.1	0.4	0.51
46	E1002		Cup-Cc-Chry rich vein.	41. 62	0.03	0. 07	<0.1	<0.1	0.39
. 47	E1003		(%:50cm) Cc-Chry rich qz. vein.	42. 28	<0.01	0. 01	0.1	8.1	0.02
48	E1007		(T:1m) Qz, vein	0.06	<0.01	<0.01	<0.1	<0:1	0.01
49	E1011		Py-Cc diss. in str. sil. rock.	0.66	<0.01	<0.01	<0.1	0.5	<0.01
50	E1012		Cc-Lim-Bo rich vlet.	6. 23	<0.01	<0.01	0.2	32. 0	1.14
51	E1014		(5cm) Cc-Bo-Cp-Py-Mo str. diss	2.48	<0.01	0. 01	0.1	14.2	0.01
52	E1015		in qz. vein, (V:40cm) Cc-Bo-Py str. diss. in qz vein. (40cm)	3. 76	<0.01	0. 03	0.1	23.6	0.06
53	C1023	:	Light grey str. sil. gd	0.02	<0.01	₹0. 01	<0.1	₹0.1	<0.01
54	C1024	9	Silchl. gd with Py film.	0.01	<0.01	0.01	<0.1	<0.1	<0.01
55	C1025	(Semidetail)	Float of sil. gd with	0. 24	<0.01	0.01	0.3	1.7	<0.01
56	C1026	enid	Bo-Cc qz. vlet. Sil gd with Py-(Cp) Film.	0.01	<0.01	0. 01	<0.1	<0.1	<0.01
57	C1027		Dio por. with Py-Cp diss	0.01	<0.01	0. 01	<0.1	<0.1	<0.01
58	D1019	Junin	Float of Cp-Py-Bo-Mo-Chry	3. 68	<0.01	0. 24	0. 1	13.0	0.06
59	D1021		vein. Cp-Py-Bo-Mo sulfide rich	20. 97	0.01	0. 28	0.6	748.0	<0.01
60	D1022		vein, (N70W85S, O.Gmx3m) Py-Cp-Wo qz vein, (N70E8ON, O.Gmx4mx2m)	2. 38	<0.01	0.02	<0.1	156. 7	<0.01

Car	Sample				Assa	v Resul	ts		1
Ser. No.	No.	Are	Description	Cu	Pb	y Resul Zn	Au (g/t)	Ag (g/t)	
61	D1023		Py-Cp-clay sulfide rich vein.	(%) 10. 47	₹(%) ₹0.01	(x) 0.02	70.1	13.9	<0.01 √0.01
62	D1024		(NYOE90, W:10cm) Py-Cp-Bo-Mo-Chry Clay vein. (N50E80S, 1mx8mx4m)	11. 07	0. 01	<0.01	0. 1	27. 3	<0.01
63	D1025		Cn-Pv-No oz vein	5, 77	<0.01	<0.01	<0.1	31.0	<0.01
64	D1026		(KGOÉSOS, 1.6mx10m) Py-Cp-Mo clay gz vein. (60ESOS, 1.6mx5mx3m)	0.66	0. 03	0.07	<0.1	27. 9	0.01
65	D1027		Py-Mo qz vein. (N40E90, 1mx6mx3m)	0. 34	<0.01	0. 01	<0.1	12.1	<0.01
66	D1044	(Semidetail)	Float of Cp-Py-No vein.	0. 22	0. 02	0. 02	0. 7	11.7	0.01
67	E1020	ē	Py rich vein.	0. 37	<0.01	<0.01	0. 2	3. 5	<0.01
68	E1021	S) ui	(%:10cm) Py str. diss. in str. sil. gd	0. 25	<0.01	<0.01	0. 1	1.1	0.01
69	E1022	Junia	Tet-Py-Cp md. diss. and film	0.63	<0.01	<0.01	<0.1	1.4	<0.01
70	E1023		in sil. po. Py rich vein in str. sil. gd (W:10cm)	1. 26	<0.01	<0.01	<0.1	1.8	<0.01
71	E1024		Py-Cup-Cc wk, diss in qz. vein.	0. 33	<0.01	<0.01	<0.1	8. 3	0.09
72	E1025		(%:40cm) Tet-Py-Cp diss and film in gz. vein. (%:50cm)	2. 68	<0.01	<0.01	<0.1	4. 5	0.03
73	G1001		Py-Cp diss. in sil. gd	1. 10	<0.01	<0.01	<0.1	24.8	<0.01
74	B1024	1	qz. vein.	<0.01	₹0.01	<0.01	<0.1	<0. I	<0.01
75	C1028		Chry-Spec clay viet, in chl. gd., (5-30cm)	6.94	<0.01	0.02	<0.1	<0.1	<0.01
76	C1029		Chry-Spec clay viet, in	1. 43	<0.01	0.02	0.1	45, 6	<0.01
77	C1031		weathered gd Chry-Lim-qz. vein zone.	5. 18	<0.01	0.02	<0.1	<0.1	<0.01
78	C1032		(30cm) Py-Cp-Cc-Bo-Chry-Lim qz, vein. (15cmx6m)	6. 97	<0.01	<0.01	<0.1	6.3	0. 13
79	C1034		lCv-Cn-Chrv-Pv in ioint of	0.66	<0.01	<0.01	<0.1	0.2	<0.01
80	C1037	<u>e</u>	str. sil. gd./diss. Lim clay vein in gd. (%:5-15cm)	0.07	<0.01	<0.01	<0.1	<0.1	<0.01
81	C1038	Cuellaje	Wk, sil, gd, with Cp-Py diss.	0.06	<0.01	<0.01	<0.1	<0.1	<0.01
82	C1039	∂ੱ	Arg. <sil, clay="" in<="" td="" with="" zone=""><td>0. 15</td><td><0.01</td><td><0.01</td><td><0.1</td><td><0.1</td><td><0.01</td></sil,>	0. 15	<0.01	<0.01	<0.1	<0.1	<0.01
83	C1041		wk. sil. gd., qz. ntwk vlet Sil. arg. chl. gd with Chry qz ntwk vlet/Cp-Py diss.	0.36	<0.01	<0.01	0.1	5.5	<0.01
84	C1042	١.,	Fresh gd., Cp-Py diss/film.	0. 11	<0.01	<0.01	<0.1	<0.1	<0.01
85	D1050		Cp films/diss. in gd	0.11	<0.01	<0.01	<0.1	<0.1	<0.01
86	D1054		Cp films/veins in chl. gd	0.42	<0.01	<0.01	<0.1	0.9	<0.01
87	D1061		Py-Cp diss./films in chl. and sil. gd	0.01	<0.01	<0.01	<0.1	<0.1	<0.01
88	D1062	'	Py-Cp diss. in sil. gd.	0. 04	<0.01	<0.01	<0.1	<0.1	<0.01
89	D1065		Cp-Py diss, in sil. and chl, gd.	0.08	<0.01	<0.01	<0.1	<0.1	<0.01
90	E1030		Cni. gd Cp Py Chry diss, and film in wk. chl. and sil gd	0. 53	<0.01	<0.01	<0.1	<0.1	<0.01

92 E1032 Lim-Cp-Ht vlet. in gd. 7.31 (0.01 0.01 0.1 (1.4cm) (1.4cm) Chry film and wk. diss. 0.46 (0.01 (0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 <0.1 <0.01 <0.01 <0.1 <0.01 <0.01 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	1.6 <0.1 <0.1 <0.1 <0.1 <0.1 4.8 5.2	(%) 0. 03 <0. 01 <0. 01 <0. 01 <0. 01 <0. 01 0. 05 <0. 01 0. 05 <0. 01
92 E1032 Lim-Cp-Ht vlet. in gd 7,31 < 0.01 0.01 0.1 (W:4cm) Chry film and wk. diss., rare Bo. in wk. chl. gd 0.46 <0.01 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 <0.1 <0.01 <0.01 <0.1 <0.01 <0.01 <0.1 <0.01 <0.01 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	30. 7 1. 6 <0. 1 <0. 1 <0. 1 6. 1 <0. 1 4. 8 5. 2	0, 03 <0, 01 <0, 01 <0, 01 <0, 01 <0, 01 0, 05 <0, 01 0, 05
92 E1032 Lim-Cp-Ht vlet. in gd 7,31 < 0.01 0.01 0.1 (W:4cm) Chry film and wk. diss., rare Bo. in wk. chl. gd 0.46 <0.01 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 <0.1 <0.01 <0.01 <0.1 <0.01 <0.01 <0.1 <0.01 <0.01 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	30. 7 1. 6 <0. 1 <0. 1 <0. 1 6. 1 <0. 1 4. 8 5. 2	<0.01 <0.01 <0.01 <0.01 <0.01 0.05 <0.01
93 E1034 Chry film and wk. diss., rare Bo, in wk. chl. gd., Py-Cp film and wk sil. gd. 0.07 <0.01 <0.01 <0.1 95 E1036 Py-Cp film and wk sil. and ckl. gd., Lim-qz vein in fault zone. (T:30cm) Cp-Lim qz vein. (T:3cm) 0.05 <0.01 <0.01 <0.01 <0.1 98 F1009 F1010 Cp-Cc-Cv diss./film/ cp. vein in str. sil. gd. (30m) 0.74 <0.01 <0.01 <0.1 99 F1011 Cp-Cc-Ro-Chry diss./Mo ntwk, Lim-qc vein in str. sil. gd. (30m) 0.74 <0.01 <0.01 <0.01 <0.1 90 F1011 Cp-Cc-Ro-Chry diss./Mo ntwk, Lim-qc vein in str. sil. gd. (30m) 0.74 <0.01 <0.01 <0.01 <0.1 90 F1011 Cp-Cc-Ro-Chry diss./Mo ntwk, Lim-qc vein in str. sil. gd. (30m) 0.74 <0.01 <0.01 <0.01 <0.1 90 F1011 Cp-Cc-Ro-Chry diss./Mo ntwk, Lim-qc vein in str. sil. gd. (30m) 0.74 <0.01 <0.01 <0.01 <0.1 90 F1011 Chry film and wk. diss., Po ntwk. Py-Cp film and wk. diss., Py-Cp film and wk. dis	<0.1 <0.1 <0.1 <0.1 6.1 <0.1 4.8 5.2	<0.01 <0.01 <0.01 0.05 <0.01 0.01
94 E1035 Py-Cp film and wk sil, gd. 0.07 <0.01 <0.01 <0.1 95 E1036 Py-Cp film in wk, sil, and ckl, gd. 96 F1006 Lim-qz vein in fault zone. 0.05 <0.01 <0.01 <0.1 97 F1007 F1007 Cp-Cc-Chry film/Cp diss in mod, sil, wk, arg. gd. (15m) 99 F1010 Cp-Bo-Cc-Cv diss, ffilm/ qz, vein in str. sil, gd. (30m) 100 F1011 Cp-Bo-Cc-Bo-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.1 101 Co-Ro-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.1 102 Cp-Cc-Bo-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.1 103 Cp-Cc-Bo-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.1 104 Cp-Ro-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.1 105 Cp-Cc-Bo-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.1 106 Cp-Cc-Bo-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.1 107 Cp-Ro-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.01 <0.1 107 Cp-Ro-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.01 <0.1 107 Cp-Ro-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 107 Cp-Ro-Chry diss, Mo ntwk, 1.66 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 6.1 <0.1 4.8 5.2	<0.01 <0.01 0.05 <0.01 0.01
96 F1006 Ckl. gd Lim-qz vein in fault zone. 0.05 <0.01 <0.01 <0.1	<0.1 6.1 <0.1 4.8 5.2	<0.01 0.05 <0.01 0.01
96 F1006 Lim-qz vein in fault zone. 0.05 <0.01 <0.01 <0.1 (#:30cm) Cp-Lim qz vein. (#:3cm) 0.05 <0.01 <0.01 <0.3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	6. 1 <0. 1 4. 8 5. 2	0. 05 <0. 01 0. 01
97 F1007 98 F1009 99 F1010 3 Cp-Cc-Cry film/Cp diss in mod, silwk. arg. gd. (15m) 100 F1011 3 Cp-Cc-Bo-Cry film/Cp diss in mod, silwk. arg. gd. (15m) 100 F1011 4 Cp-Cc-Bo-Cry diss./film/ 100 F1011 5 Cp-Cc-Bo-Cry diss./film/ 100 F1011	<0. 1 4. 8 5. 2	<0. 01 0. 01
100 F1011	4. 8 5. 2	0.01
100 F1011	5. 2	- 1
100 F1011		0.11
in mod, sil. mod, arg, gd		
101 F1012 Cp-Cc-Cv-Bo-Cup. diss in str. 0, 28 <0.01 <0.01 <0.1 sil, -wk, chl. dio. por. (30a)	<0.1	<0.01
102 F1013 F10at of Pv-Co-Cc-Bo-Cv diss. 0.12 <0.01 <0.01 <0.1	1.6	<0.01
in mod. sil. gd por Py-Cp-Cc film/vlets/diss. 0.13 <0.01 <0.01 <0.1 in wk arg. gd(10m)	<0.1	<0.01
104 F1015	1.3	<0.01
in silargchl. gd/dio por. Cp-Bo-Cc-Cv diss/film in mod. 0.53 <0.01 <0.01 <0.1 silwk. arg. gd. (15m)	1.9	<0.01
106 G1004 Py diss. in mylo./dio 0.02 <0.01 0.01 <0.1	<0.1	<0.01
107 G1007 Chry film/Cp-Py diss and film 0.17 <0.01 0.01 <0.1 in chl., gd.		<0.01
108 C1043 Float of Py-Cp milky qz ore, 3.99 0.06 0.05 1.7	I82. 5	<0.01
109 C1044 Float of Py>Cp semi-trans. 1.52 0.08 0.62 1.3 qz ore.	93. 5	<0.01
110 C1045	52.3	<0.01
110 C1054 E Lim bleached zone, C1055 E Py sil, andesitic coarse tf., C1056 C	<0.1	<0.01
112 C1055 Py sil, andesitic coarse tf., <0.01 <0.01 <0.01 <0.01	<0.1	<0.01
113 C1060 Gyp-Gr min. vein. <0.01 <0.01 <0.01 <0.01 <0.1	<0.1	<0.01
114 C1061 Gyp-Py. < 0.01 <0.01 <0.01 <0.01	<0.1	<0.01
115 C1063 bre. str. sil. rock, Py diss. 0.01 <0.01 0.01 <0.1 (hydrothermal breecia)	<0.1	<0.01
116 E1037 Ga-Sph-Cp ore. 1.10 9.34 22.31 0.3	58.3	<0.01

Ore a	nalysis	of MJJ-1 drillin	g hole.			<u> </u>		
Ser.	Hole	Depth	Cu	Pb	Zn	Au	Ag	Жo
No.	No.	(m)	(ppm)	(ppm)	(ppm)	(g/t)	(g/t)	(ppm)
1	¥JJ-1	72.8 - 73.8	27	152	200	Tr	Tr	<1
2		73.8 - 74.8	24	89	137	Tr	Tr	<1
3	1	74.8 - 75.8	28	45	189	Tr	Tr	<1
4		76.2 - 76.3	11	40	77	Tr	Tr	<1
5		76.6 - 76.7	14	31	81	Tr	Tr	<1
6		77.0 - 77.5	181	34	91	Tr	Tr	20
7		77.7 - 77.8	13	36	214	Tr	Tr	<1
8	,	78.0 - 78.2	12	27	99	Tr	Tr	<1
9		79.5 - 79.8	63	30	124	Tr	Tr	<1
10		90.8 - 90.9	9	36	99	Tr	Tr	1
11		91.8 - 91.9	340	27	90	Tr	Tr	7
12		92. 7 - 92. 8	28	29	74	Tr	Tr	<1
13		93.2 - 94.6	531	25	92	Tr	Tr	4
14		95.3 - 95.5	11	18	75	Tr	Tr	<1
15		95.8 - 96.0	10	16	74	Tr	Tr	<1
16]	97.7 - 97.8	26	22	76	Tr	Tr	<1
17		97.9 - 98.3	906	16	87	Tr	2. 5	18
18		100.1 - 100.2	40	17	59	Tr	Tr	<1
19		100.3 - 100.8	384	21	81	Tr	Tr	22
20		102.5 - 102.8	62	21	70	Tr	Tr	<1
21		104.5 - 104.7	77	18	89	Tr	Tr	<1
22	1	104.9 - 105.9	70	23	. 66	Tr	Tr	<1
23		106.6 - 106.7	48	17	85	Tr	Tr	<1
24		107.5 - 107.6	14	16	92	Tr	Tr	<1
25		108.0 - 108.6	45	23	95	Tr	Tr	<1
26		108.9 - 109.0	72	16	116	Ţr	Tr	<1
27		110.7 - 110.8	59	21	80	Tr	Tr	<1
28		111.8 - 112.0	118	19	105	Tr	Tr	3 .
29		112.7 - 112.8	71	30	95	Tr	Tr	<1
30		113.8 - 114.3	65	18	82	Tr	Tr	2
31		114.3 - 115.0	49	20	90	Tr	Tr	<1
32		116.4 - 116.7	42	21	127	Tr	Tr	<1
33		117.9 - 118.0	764	22	132	Tr	Tr	35
34		120.3 - 120.6	206	28	158	Tr	Tr	1
35	1	121. 2 - 121. 3	15	18	130	Tr	Tr	<1

Ore a	nalysis	of MJJ-1 drillin	g hole.	200				
Ser,	Hole	Depth	Cu	Pb	Zn	Au	Λg	Мо
No.	No.	(m)	(ppm)	(ppn)	(ppm)	(g/t)	(g/t)	(ppm)
36	MJJ-1	122.4 - 122.5	- 18	17	111	Tr	Tr	<1
37		124.0 - 124.4	85	18	95	Tr	Tr	₹1
38		125. 2 - 125. 5	16	20	148	Tr	Tr	<1
: 39	1	126.1 - 127.1	162	23	- 87	Tr	Tr	3
40	:	127.1 - 128.1	26	17	203	Tr	Tr	<1
41		128.1 - 129.1	185	17	85	Tr	Tr	<1
42		129.1 - 130.1	507	13	81	Tr	Tr	<1
43		130.1 - 131.1	74	21	50	Tr	Tr	<1
44		131.1 - 132.1	89	13	57	Tr	Tr	<1
45		132.1 - 133.1	23	10	60	Tr	Tr	<1
46		133.1 - 134.1	196	12	86	Tr	Tr	<1
47		134.1 - 135.1	18	15	47	Tr	Tr	<1
48		135.1 - 136.1	14	-16	70	Tr	Tr	<1
49		136.1 - 137.1	13	11	36	Tr	Tr	<1
50		137. 1 - 138. 1	29	44	75	Tr	Tr	<1
51		138.1 - 139.1	94	17	81	Tr	Tr	5
52		139.9 - 140.0	12	18	81	Tr	Tr	<1
53		140.3 - 140.4	18	15	156	Tr	Tr	<1
54		141.6 - 142.1	133	21	161	Tr	Tr	<1
55		142.5 - 142.9	173	14	94	Tr	Tr	<1
56		143.0 - 143.1	62	26	234	Tr	Tr	<1
57		144.0 - 145.2	128	18	146	Tr	Tr	<1
58		146.5 - 146.6	44	16	119	Tr	Tr	<1
59	: .	148.0 - 148.1	123	13	125	Tr	Tr	<1
60		148.4 - 148.5	104	16	69	Tr	Tr	<1
61		148.9 - 149.0	54	15	126	Tr	Tr	<1
62		149.6 - 149.7	141	14	65	Tr	Tr	<1

Appendix 5 Analytical data of geochemical rock samples

4	2 2	<u> </u>		3 6	A &	8	<u>-</u>	۵.	8	<u>ه</u>	8	A	<u> </u>	<u></u>	8	8	÷	<u>ه</u> -	9	<u> </u>	<u>.</u>	6	<u></u>	<u>6</u>	8	<u>.</u>	<u>.</u>	0 7	<u> </u>	≙ é	3 6	3.6	8	<u>.</u>	<u>.</u>	٥.	≙ &	3 6	<u> </u>	<u>}</u>	: <u>-</u>	8.2	6	٥	<u>2</u>	<u> </u>	<u> </u>	<u>}</u>	
~ <	D &	200	36	26	<u>}</u> ≙	<u> </u>	<u></u>	<u>6</u>	≙.	<u>6</u>	<u>6</u>	<u> </u>	<u> </u>	<u>8</u>	<u>A</u>	<u>6</u>	8	<u>a</u>	<u>8</u>	<u>.</u>	₽.	1.60	<u>8</u>	<u> </u>	≙	<u>≙</u>	<u>&</u>	<u>≙</u> :	<u>≙</u> :	≙:	20.5	3.5	<u>.</u>	<u>6</u>	<u>≙</u>	≙	≙.	<u>≙</u>	<u>}</u>	<u></u>	. 5	<u>}</u> ≙	۵	<u></u>	<u>.</u>	≙:	<u>≙</u>	\$ ≙	!
	2 6	200	36) c	۰. د	4	8	0.8	٥.	<u>.</u>	<u>٠</u>	<u>^</u>	<u>.</u>	8	6	6	0	<u> </u>	8	8	۵.:	۵.	6	8	6	9	٠.	<u>^</u>	<u>۵</u>	۵ <u>۱</u>	ວ ດ ກໍ ຕ	3 6	<u>}</u>	8	3.0	۵		<u>^</u>	o 6	<u>}</u>	\$ {	8.6	2	6	<u>\$</u>	<u> </u>	<u>۵</u> .	ງ ດ ວ ດ	:
.	C 2	EGG.	7 1	8 0	, E	, C	4	88	æ	8		45	20	72	452	90	156	20	8	60	88	112	42	සු	44	ස	છ્ઠ	8	27	_단	4 6	ខ្លួន) -	2	4	8	29	2/2	242	<u> </u>	- 6-	- 82	7.	4	8	සි	23	20 KG	}
/ STEXT	2 1	EG C	0.0	4, c	0 5	e c	50	2.0	0	3.0	ට ෆ්	3.0	ර	0	0	e e) C	2.0	ပြ	o G	0	0 88	25.0	6.0	o នៅ	2.0	0.0	4.0	ဝ လ	6,0	- .	ઝ લ જો ર	, ¢	0	2.0	5.0	O M	ထပ	o (4, c	o c	ာ င ဂါ (c	e c	ာဝ	2.0	4.0	ဘ (က် •	⊃ ⊂ વું લ	> . 5
מוזרכים ביות	3	EG .	514	ខ្លួម	2 . 5 m	5.6	90	205	321	82	540	229	215	7	0	2	8 8	=	ហ	2,	8	300	23	g G	29	155	12	527	621	142	52	200	ខ្លួ	9 6	98	277	183 5	8	2	7.00	7 6	2,0	Ę	<u>-</u> r	17	=	€	⊇⊈	3
io de constante de	Ou (Km)	1-000rd	35, 961	35.94	50° 30	30.00	36. 479	36.570	36.606	36. 747	36.803	36, 853	34 845	34 918	24 930	35,055	25,023	35 107	35.	35.193	35, 021	34 992	35.001	35,035	35, 072	35, 116	35, 158	35.838	35, 901	36.019	35.098	36.167	50. 27. 20. 27. 27.0	36.472	36, 587	36, 712	36, 795	34, 938	34. 992	35.073	000	35.242	200	35.387	35,413	35, 508	35, 623	35, 734	5
ST	Locati	X-coord	760, 353	760, 292	750 212	760 201	760.267	760 473	760, 486	750, 590	760, 641	760, 695	760 745	760 688	760 642	780 549	700.00	780.447	760 413	760 355	760, 524	760 441	760.378	760 334	760, 280	760, 276	760, 246	760, 808	760, 782	760. 726	760, 644	760, 588	760.528	760 550	760, 655	760, 709	760, 760	760, 755	760, 709	760, 645	100,007	760.537	360	760.045	760.091	759, 975	760.024	750,045	- CO.
	(6 0]	Unit	टु	& ,	8 8	9 3	3.5	3 3	8 28	9	1 6	3.5	3	3 2	3 3	3 3	2 70		3 8	3	£	3 2	3.5	38	3	129	3	193	B	છુ	99	B	9 0	3 2	3.0	8	ይ	ટુ	9	8 8	9	<u> </u>	3 2	3 %	3 5	8	8	- - - - - - - - - - - - - - - - - - -	3
	Sample	છું	PA 1007	RA1008	RA1009	200	241013 DA1016	01010	RA1020	RA1022	RA1023	RA1024	50105	DA 1025	1000	24102	1000 1000 1000 1000	020140	0,100	04100	PA1032	ξá	٤۵	5 6	8	2	8	2	22	82	82	22	2 2	2 8	2 22	82	82	2	80	82	¥ 1		2 8	58	ă	à	8	& 6	
!	Ş	ġ	-	ci	ω, 1	at L	n u	-1 C	- œ	ġ) <u>C</u>	? =	5	4 5	2 \$	7 4	<u>0</u>	οţ	- 0	2 2	2 6	3 6	- ç	18	3.5	15	29	27	28	28	ဓ	ග (88	3.5	() () ()	8	37	8	စ္တ	육;	4.	3 ¢	? :	4 £	} ધ	47	₹	4 0 0	3

	Q. E	1	<u> </u>	4	۵	٥	0.1	٥.	٥	٥	8	٥.	٥	<u>\</u>	8	6	٥.	8	<u> </u>	۵	ê	4	<u> </u>	8	8	<u>٠</u>	٥.	<u>.</u>	<u>-</u>	<u>۸</u>	<u>^</u>	<u>^</u>	<u> </u>	<u>\$</u> €	3.6	36	36	<u> </u>	. 4	0 7	ເດ	e e	8	34.0		20	<u>۲</u>	31.0	4, č	<u> </u>
	Pg &	- F		<u></u>	.00	6	₽.	<u>≙</u>	<u>8</u>	<u>6</u>	≙.	<u>6</u>	1.20	Ş	<u>\$</u>	<u>≙</u>	<u></u>	<u></u>	4	.≙	2	2	<u></u>	<u>\$</u>	≙	≙.	8	10	<u>6</u>	<u>^</u>	<u>A</u>	<u></u>	<u>\$</u>	<u>\$</u>	<u>}</u>	26	<u>}</u>	<u></u>	8	6	<u>^</u>	<u></u>	<u>^</u>	<u>^</u>	<u>\$</u>	<u></u>	≙	<u>\$</u>	\$ \$	} f
	3 5	36	2	à <u>A</u>	<u> </u>	6	<u>.</u>	٥.	ry O	<u>-</u>	39.0	<u>۸</u>	0 1	က (၁	6	٥	.	0 6	٥	<u> </u>	۵	<u> </u>	8	٥	0	67.0	<u>۲</u> ۵	۳. ٥	0	<u>.</u>	٥.	<u>.</u>	7.0	<u>\$</u>	36	3 6	36	2	<u> </u>	8	8	۵	8	. <u>A</u>	<u> </u>	8	2.0	0	^ °	
al	Z,	2 2	3 5		8	22	=	9	8	4	ဗ္ဗ	8	37	2	ო	71	£	6	67	Z.	8	יט	27	22	8	4	n	43	រក ល	8	<u></u>		40	3 5	700	9 8	000	27	σ	5	26	m	44	ហ	800	12	83	ເດ	4 č	2
alysis (g.	, 2 5	י ניני	່ວິດ	0	9	2.0	ტ	2.0	ဝ	0 6	ი ი	တ	7.0	တ ဝ	31.0	က်	C	Ç.	C.	e e		331.0	0.7	33.0	ဗ	4.0	2.0	0.9	ဝ ဗ	40.0	D (ာ	25.0	o c	o c) c) C	000		0	0 %	. 4 0	0	2.0	5.0	0.1	0	တင ကို လ	> .
emical An	3 8	2585	1973	2511	340	1759	5 8	4	82	<u>6</u>	49	38	23	S	88	27	173	-	i C	226	0	97	. 4	408	654	8	57	5	91	တ	8	က	23	<u>,</u>	8°	0 2	7 7	7	233	803	493	9	911	156	674	953	362	223	<u></u>	3
t of Geoch	on (km)	3F 490	35.55	35.615	35, 659	35, 708	35, 768	35, 793	35,850	35, 872	35, 870	35, 874	35, 893	36, 156	36, 231	36, 190	36.211	36.290	36 394	3F 497	36.558	36 622	36.658	36, 697	36, 752	36,880	36, 925	34, 530	34, 719	34, 795	34.842	34, 927	35.004	35,042	55. COO	00. 00. 00.	25. 25. 25. 24.7	35 428	35, 805	35,883	36, 401	36. 478	36, 554	36, 474	36, 545	36, 590	36.627	36.654	36. 675 36. 707	3
S[]	Locati																																																761, 231 761, 046	
	Geo]	- F	3.5		8	g	&	8	8	જુ	8	gg	9	છુ	g	g	99	9	P.	5	5	2	9	1.0	S	9	. Pg	8	gg	ဗွ	g	9	8	25	9 2	9 3	3.5	3.5	3.5	88	:	S	100	8	8	8	8	B	इ ह	3
	sample No	PR1025	RR1026	RB1027	RB1028	RB1029	RB1030	RB1031	RB1032	RB1033	RB1034	RB 1035	RB1036	RB1037	RB1038	RB 1039	881040	RB1041	SB1042	RB1043	RB1044	RB1045	RB1046	RB1047	RB 1048	RB1049	R81050	RB1051	RB 1052	RB1053	RB1054	KB 1055	2002	7000	0000	00000	PR 1061	81062	RC1001	RC1002	RC1007	RC1008	RC1009	PC1013	RC 1012	SC1013	RC1014	500	RC1016	2
•	ر الج	21	3	1 6	25	ន្ល	S	27	ස	වූ	8	6	8	g	8	8	99	67	88	g	2	7	2	120	7	K	92	1	8	ღ (8	5 6 6	36	38	3 6 6	8 6	36	8	8	88	6	8	8	ð	က်	မ္တ	97	8	85	3

	9 €		8	<u></u>	<u>.</u>	o 6	3 6	8 8	0.92	0	35.0	တ က်	တ က •	3 c	- c) C	0:	A	<u>8</u>	<u> </u>	-	8	22.0	<u>.</u>	20	<u> </u>	à	9	8.	<u> </u>	8	<u> </u>	o 6	^	o 6 o	<u> </u>	<u>.</u>	117.0	က (က (- é	<u> </u>	۵.	86	<u>;</u>
•	Ag	E 00	2.0	<u>a</u>	≙	3 5	. 4 5 5	3 ≙	8	<u></u>	2. 70	<u>a</u>	<u> </u>	2,5	2 4	<u>}</u>	S	8	<u>6</u>	<u> </u>	<u> </u>	<u>4</u>	≜	<u>ê</u>	≙.	÷ 8 €	2 5		<u> </u>	≙≙	<u></u>	<u>≙</u>	≙ :	<u>\$</u> €	2 0	<u> </u>	≙	≙.	ဝ င် က	<u>\$</u>	<u>}</u> ≙	≙	≙4	2
	A de	86	<u>}</u>	8	<u>^</u>	۵. خ	; ;	<u>.</u>	۵	<u>.</u>	۵.	<u>-</u>	<u>.</u>	<u> </u>	36	<u> </u>	S O	5.0	A .	86	6	& &	4.0	0	۵.		- 4 9 C	12.0	o:	- -	0	3.0	0 0	ာ လ	o ⊂) 	2.0	4.0	0 0) c	200	2.0	000	, ,
~ .	Zn	E	8	12	1	ဗ္ဗ	ў . п		•	82	ω	চ	: ∞ (20 L	o [3 88	94	102	(2	145 75	5.6	386	വ	56	ωį	67	5 &	1333	8	ទិទិ	52	7	<u>8</u>	3 8	- E	24	50	8	47 (ກຸເ	<u>ာ က</u>	ω	<u>ლ</u> 5	1
lysis (3	&	mcd c) င () ()	0	ဝ ဗ	0 0 0 0) c	, r.	. A	2	1:0	2.0	۵,	0 0	, .	. 6	7.0	ر ا ا	4, i	0 0	1 <u>6</u>	4 3 0 0	2.0	3.0	2.0	0 c) C	33.0	25	ے د د	ලේ ලේ	2.0	0 (ာ (o c) (6.0		ه د .		0	0 0) -
emical And	ਡ	E S	57.6	152	122	1423	4 40	- <u>e</u>	ទ	1136	2514	147	92	208 208	1877	388	156	<u></u>	13	និត្	200	126	297	464	410	920	- <u>u</u>	88 89 88	ដ	7 4	2 22	8	<u></u>	8 8	2 2 2 3 3 4	30	3.7	7145	8 3 i	2 6	و رو	137	257	=
t of Geoch	on (km)	7-000rd	9 8 9 8 9 8	36, 972	37.065	36, 112	30, 229	767 767 768 768 768 768 768 768 768 768	35, 722	35, 578	35, 494	35, 334	35, 204	35, 204	35, 151	35.00	34,918	34, 841	34, 746	34.672	24.022	2 % 2 %	35, 372	35, 431	35, 481	35. 521	25. 500 25. 500	35.48 48.18	35, 484	35, 507	35.55	35, 623	35, 650	35.678	35. 78 27. 75	35.758	35, 703	35, 632	36,040	36, 130	50 2U2 20 20 20 20 20 20 20 20 20 20 20 20 20 2	36 339	36 467	700 OF
Lis	Locati	X-300rd	761 059	761.075	761.091	760, 754	720 001	760.05	767 733	750, 689	760, 741	760, 703	760, 784	760, 726	760, 809	760.000	760, 823	760, 786	760,806	760, 825	200	780.78	760.906	760, 662	760, 604	760, 527	760.445	760, 297	760, 224	760, 160	760.382	760, 324	760, 263	750, 198	760, 302	760.35	760, 531	760, 555	761.487	761, 559	761.55	761. 498	761.460	(0). 405
	Į.	11¢											~	773		n. 7	. ~	. 71	75	70.7			·	. 70	70	7017	o 1	3 65	ס	ר סד	o 6		י סד.	· o	דטי	זכ	o ic			· 0	oτ	סינ	0	· Q
	ple Geo	ت اور	30.00 50.00	1020	1021 Gc	1026 GC	3028										240	045	046	740	9 9	0.50 0.50	050	054	055	056	200	680 080	090	98	200	064	990	066	/90	980	020	071	073	074	5707 1076	. 220	.620	200
	Ser. Sam	9	2 E	. 55 - 55	104 PC	55	5 5 5	≥ 5 ≥ 5	36	501	::	112 PC	113 元	Z :	S : :	2 t	118	58	120 R			-	٠	126 R																			149 55	

₽	8	0,0	ည (ည (က်	۵,	⊃ (<u>ه</u> د	ဘ က	<u>^</u>	0	<u>.</u>	2.0	A	, ,	i -) :	. ć	<u>}</u>	<u></u>	<u>۲</u>	٥.	0	8	ر ا	o c	200	9 6	j j	o :	<u>\$</u>	3.0	0.0	<u>٥</u>	<u>.</u>	<u> </u>	4	6	٦ ا	-	· c	. é	8	3 6	3 6) é	<u>ه</u> د	<u>۸</u>	<u>\$</u>	20	က က	4.0	0	4.0	<u>\$</u>
Ag	udc.	٥.	<u>^</u>	g;	8	≙:	≙ :	<u>^</u>	<u>^</u>	<u>6</u>	<u>6</u>	9	10	<u> </u>		2 5	2 6	<u>^</u>	11. 20	<u>6</u>	≙	<u>6</u>	<u></u>	£	<u></u>		<u>}</u>	2 5	<u>6</u>	<u>^</u>	8	<u>^</u>	<u>^</u>	8.00	<u>6</u>	6	2	<u></u>	ي		<u> </u>	2	2	<u>}</u> <u>6</u>	2.6	<u> </u>	<u>}</u>	<u>\$</u>	<u></u>	<u>`</u>	<u>\$</u>	≙:	≙;	≙
Ą	g G	41.0	۵,	21.0	4; ¢	0 0	ာ (က (7.0	ი რ	5.0	င္တ	21.0	0.7	· c) -		9 0) -	47.0	2	0 0	17.0	-	, c) c	11	> c) ()	12.0	2.0	39.0	2	2.0	18.0	٥	â	۵	2	<i>£</i>	, ц	; -	6		\ - r	- ć	<u>^</u>	<u>^</u>	<u>^</u>	0	50	<u>.</u>	0	<u>۵</u>	n •
5	mad	~	xo (m i	2	. 7	4 (?	ທີ	۲,	N	8	7	۰,		rc	4	7	മ	120	247	4	er.	> <	r) (V U	οı	ימ	വ	~	7	7	æ	383	88	60		6	3 5	8	38	3 5	<u>,</u> -	1 (N 0	, ,	8	က	ω ·	7	ក្ (ლ (99
Pb	HGG.	<u>۵</u>	- (2.0	က (က (۵,	D (ဘ က	5.0	5	٥.	0	C.) -) (2	ဝ	7 0	0.0	2.0	i –		o c) () () V	22.0	4.0	0	<u>^</u>	11.0	7.0	3.0	6	4	, c	0) c	ָ ה מ) c) C) c	J () C) (5.0	5.0	<u>.</u>	<u>.</u>	4,0	0	<u>\$</u>
3	HOC	25	60	8	2/3	8 8 8	24	જ	145	33	54	98	110	ç	, () t	ດເ	3	173	189	218	49	5	. 6) a	3 5	စ္ ပ	5 t	328	177	č	<u></u>	တ	453	<u>o</u>	10	·	<u>.</u>	2 C	3 5	g	8 %	2 12		<u>.</u>	2	5	25	56	æ	24	181	88	€
on (km)	-000rd	35, 574	55.55 5.55 5.55 5.55 5.55 5.55 5.55 5.	35, 498	35.570	35 544	35 / 1	CS/ CS	35, 899	35, 990	36.061	36, 128	36 189	280.080	26. 26.1	3 6	000	20.00	36, 691	36.926	37,006	35, 714	35 700	200.00	250	200	00.00 00.00 00.00	8 8	36, 224	36, 307	36. 558	36, 622	36, 769	34, 733	34, 741	34 734	34 716	34 689	27.652	20.75	37 505	34 50	36	200	000	35, U54	35. USS	35. 18	35, 158	35, 230	35, 308	35, 383	35.416	35, 465
	ŎΙ	-: '								٠.	- 1	-								٠.				•				•							٠.			•			•				•		• .		•			•	761, 975	
					ř																									,					-	:											٠			:				
(Sec.)	Ē	<u> </u>	5	9	3	3	3	9	g	ß	B	ß	હ	3 2	3 8	} {	5 6	9	8	g	B	ß	3	3 6	3 6	3 6	3 6	3 6	Ğ	g	ß	g	g	Ö	Ö	č	3	3 2	3 6	3 8	3 2	3 6	3 3	3 5	5 (3	2	යි.	පි	2	g	8	8	3
Sample	<u>Ş</u>	1901	KD1002	80108	400 400 400 400 400 400 400 400 400 400	F01005	HD1006	F0100	PD1008	RD1009	RD1010	RD1011	801012	2000	200		200	500	PD1017	PD1018	RD1019	RD1020	10010	00,00	20100	200	1000 1000 1000 1000 1000 1000 1000 100	22.22	PD1026	RD1027	RD1028	RD1029	RD1030	PD 103 1	RD1032	PD1033	PD1034	PD 1035	20100	1001	955	36		25	200	F01042	55.55	RD1044	RD 1045	RD1046	RD1047	R01048	RO 1049	1020 1020 1020
Ser.	į	<u>[</u>	20									- :		-		1				٠.												_		-							٠.	. :									1.		90	_

c ¥ d	8	ပ	8	<u>۵</u>	8	A 6	5.	4 t	o (9	42.0	21.0	: :	0 6 1	20.0	2.0	8	<u>.</u>	4	<u>.</u>	<u>್ಟ</u>	တ်	26.0	0 0	5 é	⊝ c	o c	> é	3 &	6	2	0.3	16.0	တ္ (24.0	0 (۵ <i>و</i>	ρį	က္က	ე ე ე	ာင ပောင်	⊃ ¢	jç) c	> c	ے د د	7 7	<u>.</u>	
Ag	. 20	<u> </u>	<u>a</u>	12.50	8	200	<u>\$</u>	^ ։	2	<u>\$</u>	<u>\$</u>	<u>\$</u> ;	3; 3;	≜.	<u>6</u>	<u></u>	≜	<u>A</u>	<u>≙</u>	<u>8</u>	٤.	<u>8</u>	<u>8</u>	≙.	<u> </u>	<u>\$</u> £	<u> </u>	<u> </u>	<u> </u>	<u>A</u>	8	<u>ያ</u>	<u>≙</u>	<u>≙</u> :	<u>A</u> :	<u>A</u>	<u> </u>	<u>\$</u>	<u>≙</u>	<u>≙</u> :	<u>≙</u> .	<u>≙</u> ≙	<u>}</u> <u>4</u>	<u> </u>	36	<u>}</u>	<u>}</u> <u>€</u>	_≙	
P Add	3.0	8	.	79.0	0 ග්	ი ი	o 6	<u>۸</u>	o (o ;	ာ (ဂို (<u>ه</u>	0 0 0	2.0	<u> </u>	<u></u>	<u> </u>	4	٥.	<u>۵</u>	<u>.</u>	٥.	2.0	۵.	o 6	<u> </u>	- c	5 6 5 -	8.	8	8	٠:	<u>-</u> :	32.0	0.0	6	۵ <i>و</i>	46.0	0 9		ထ (ဖ	3.6	3 6	36	^	^ <u>c</u>	2 c	8	
4 <u>7</u>	6	1 Q 2	ෆ	თ	12	ខ្ល	2;	_ (7 8	3	d (211	<u>-</u>	(2)	α	N	<u>س</u>	ω	7	<u>.</u>	ဖ	7	ភេ	% 1	Ω	⇔ -	- c	2 05	3 K	· ~	ı -	8		0	(*)	- (<u></u>	, co	~ 0	90	20 4	N •	† C	чc	ŋ̈́₹	4. ñ	0 C	<u> </u>	
4. g	0	2.0	2,0	2.0	4,0	20°		<u>۸</u>) ·	4	.		0	5.0	-	0.	0	.0	0:1	20	ငာ က်		5.0	ට (ෆ් •	- d	o 'c	o 6	<u></u>	o ∈ - «	8	8	1.0	⊹	0:0	O (50	က (က (0 :	- 4	2.0		4,0	000) c	⊃ 6 V	<u>^</u> -	- c	00	
3 8	55	5,7	8	හු	113	တ္ဆံုံ	121		<u>۾</u>	4 6	89	103	120		128	45	ဗ္ဗ	107	B	329	200	78	107	<u>ب</u>	3	\$ G	8 F	- 1.6	, <u>r</u>	200	4	168	83	98	135	4.		25	Q	က္ခ	115	~ u	0 10	O C	2	2.5	1 0	96	
ton (km) Y-coord	35, 564	35, 652	35, 722	35, 774	35, 831	36, 085	36, 163	35.219	65, 148	35, 256	35.273	35, 292	35, 294	35, 275	35, 294	35, 966	36.050	36, 135	36, 237	36, 311	35, 714	35, 832	35, 979	36, 067	35.55	35.510	กับ เกิด เกิด	30.057 24.101	07 00	35.00	35, 084	35, 167	35, 253	35, 330	35, 409	35, 101	35, 157	35, 220	35, 360	35, 462	35, 599	35.670	00 in	30, 444	35, 108	35, 128	60. 00. 00. 00. 00. 00. 00. 00. 00. 00.	35, 324	!
Locat						762, 132																	761.836	761.886		761.268	•	767.033	750.0013	760 953	760, 943	760, 966	761,009	761, 009	761.043	761.450	761.500	761.574	761, 630	961, 696	761. 737	(61.850	0.00	701. 800	(61.531	751. 602	761.008	761. 726	!
								· .																																									
Geo Unit	ફ	3 3	B	જુ	છુ	8	g,	8	g,	<u>م</u>	3	g.	ð	<u>ල</u>	8	3	B	ष्ट	g	g	g	B	ß	हुं	3	8 8	3 6	3 8	3 8	38	8	B	8	છું	g,	8	<u>ල</u>	ይ	<u>e</u> ;	8	ල (36	3 3	5 6	<u>3</u> c	පුද්	3 2	38	
Sample No.	RD1051	RD 1052	RD 1053	RD 1054	201055	RD 1056	RD 1057	RD1066	1000	RD 1068	RD1069	RD1070	R01071	RD 1072	RD 1073	RE1011	RE1012	RE1013	RE1014	RE1015	RE1019	RE1020	RE1022	RE1023	RE1024	RE1025	75 10 20 20 10 20 20 10 20	ME1027	051020	RE1030	RE1031	RE1032	RE1033	RE1034	RE1035	RE1036	RE1037	RE1038	RE1039	RE1040	RE1041	KF1042	250 mg	\$10.00 \$10.00 \$10.00	KE1045	RE1046	100 100 100 100 100 100 100 100 100 100	RE1049	!
Ser.	201	202	203	204	202	206	207	88	203	210	211	212	233	214	215	216	217	218	219	220	22	222	223	224	223	526	78	87.5	223	38	232	233	234	235	399	237	338	233	540	241	242	243	# H	242	246	747	9 6	250	İ

Í	οŅ	E 0	18.0	124.0
	Ag	E G G	. 20	2.30
	₹	Q Q	٠, 0	<u>:</u>
ا	77	Hada a	13	ന
alysis (6	9	ElOC.	2.0	1.0
emical An	3	60	212	296
ist of Geochemical Analysis	ocation (km)	Y-coord	35, 381	35, 433
5 1 :	Locat	X-coord	761. 756	761. 798
٠	Geo]	Unit	දු	g
	Sample	ġ	RE1050	RE1051
	%	ģ	251	252

A-32

	2 6	21.0	0.4	3 2	4.0	<u>۵</u>	<u> </u>	8	.	٥.	<u></u>	٥.	31.0	9 0 0	4.0	15.0	0 0	13. 0.5.	^ ~ ç	ာင ကြွဲက်	. ≙	21.0	0.0	A. .֍) () ()	ું જ	2.0	<u> </u>	<u> </u>	} c -` c	, 65 10 10 10 10 10 10 10 10 10 10 10 10 10	13.0	≙ .	o c	5 C	36	် တ် တ်	ų O	13.0	တ (က် -	<u>-</u> ≙	တိ	7.0
	Ag m	4.20	<u> </u>	, c	_≙	<u>6</u> ;	8.5	<u> </u>	<u>≙</u>	33.50	<u>6</u>	<u>8</u>	2 8 5	` &	<u>.</u>	8. 8	<u>\$</u>	8	<u> </u>	3 ≙		80 80	≙:	<u>\$</u>	38	ላ ያ የረ	8	≙:	≙.	9.€	<u>}</u>	8.	<u>≙</u> ;	ន	۸ 2 3	36	} 8	50	<u>\$</u>	≙.	≙≙	કે જ	8
	.¥. 60	29.0	<u> </u>	- <u>6</u>	<u>.</u>	<u> </u>	<u> </u>	\ 	8	9.0	÷	<u> </u>	o 6	^ - ^	-	34.0	<u> </u>	6	^ 	2 6	8	20.0	۵.	≙ .	A 6	- é	6	<u> </u>	<u>.</u>	<u> </u>	8 8	<u>.</u>	<u>.</u>	≙.	∆ c	s 6		٥.	ဝ အ	, ,	5 E	. v.	0
	Z Z	4.0	တ္ တို့ ငြ	. T	76.0	116.0	51.0	0.00	165.0	46.0	107.0	146.0	က က (· .	13.0	12.0	20.0	0 6	o c	- g	; ç	-0	33.0	8.0 6.0	9 C	۰ د د د	24.0	00.0		2 c	38	4	19 0	တ (က် ;	7. 0.0	9 0	5 4 5 C	24.0	11.0	2.0	0.0	ာ ဝ က် တ်	4
s(8 8	တ	თ გ	7 =	2	ლ :	<u></u>	3 6	88	<u>დ</u>	<u>9</u>	4	≘:	= 2	<u>:</u>	12	12	2	ຫ ະ	= 2	<u>က</u>	2	2	ნ ი	ວນ ເວົ	2 ►	တ	9	<u>ლ</u> :	<u>- </u>	<u>.</u>	=	2	₽'	හ <u>ද</u>	29	ກ໘	2	2	<u>ස</u>	25	<u> </u>	<u> </u>
l Analysi	구 양	867	£ ;	0 00	353	82	4 4	177	142	1223	334	163	200	, g	n S	2521	484	1233	154	070	30.00	2973	289	38	1625	2 C 2 C 2 C 2 C	3175	350	324	8 3	87	1449	284	33	147	207	2,5	326	107	<u>8</u>	385	35	88 88
eochemica	구 [16082	98	8 6	75	1282	2018	7.0	17.	7435	50	216	365	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100	5254	572	1256	204	2000 4000 4000 4000	4099	10815	248	443	9607	3556 5056 5056	3414	353	324	0 1 1 1 1	- A	4679	633	808	181	226	8 E	377	13	88	443 6 6	5 5 8 8 8 8	339
List of G	on (km)	35, 774	35.842	35.852 25.007	35, 953	35, 962	36.014	30 35 150	36. 196	36.407	36, 516	36.679	35, 961	36.034	36. 36.	36.313	35, 999	36, 027	36, 102	36.06/	35,558	35, 525	35.411	35, 292	35, 291	35, 320	36. 431	34,820	34.817	34.927	35,007 37,007	35, 143	35, 120	35, 120	35, 745	35.78	35. 508 35. 508	35, 619	35, 658	35, 636	35, 725	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	35, 627
	Locati	760, 766	760. 662	760, 532	760, 457	760, 434	760, 403	760, 337	750.359	760, 361	760, 447	760, 534	760.831	750.848	2000	760,933	760, 909	750.987	761, 026	760, 790	760, 033	760, 793	760, 726	760, 729	760.809	750.860	761, 506	760, 894	760, 999	761,009	761.033	761. 166	761. 222	761.279	760.838	754.914	161.00	761, 150	761, 230	761. 421	761.418	761.401	761. 492
	c +						No.											8													٠												
	8 -	ટ્ર	ያ	83	33	ß	8	38	3 6	38	B	B	8	8 9	3 8	3				٠									٠.													38	38
	Sample No.	RA1001	RA1002	KA1003	R 1005	RA1006	RA1011	24 10 12 24 10 12	201018	RA1017	RA1018	RA1021	RC1003	FC1004	200	SC1010	RC1022	8	8	28	Ş	8	8	æ	2	28	2	2	2	28	§ &	8	8	&	Ж 6	¥ ;	200 200 200 200 200 200 200 200 200 200	, W	씵	낊	& C	250	RE1016
	j ≥	<u> </u> -	N	m 4	າ ທ	ω	r~ (10 0	n ⊊		. 2	3	7	ក ក	2 1	<u> 00</u>	<u>ტ</u>	50	<u>;</u>	ខ្ល	3 2	25	8	27	8	9 23	3 6	8	8	8 8	တ္တ ဗွ	86	8	စ္တ	육 :	4 4	2 5	4	45	46	<u></u>	\$ 5	8

			List of	Geochemic	List of Geochemical Analysis (\$(_2)	•		
ample	1005	Locat	ion (km)	300	3 8	æ	Z	₹	¥
ģ	Unit	X-coord	Y-coord	wad	udd d	EGG.	ш а а	-Qd	D
RE1017	8	761.578	35.644	153	133	7	6	3.0	1.20
RE1018	3	761, 668	35.677	575	220	5	0	9	×

	 Ω#	$(SC/TC) \times 100$	8.2	60.7	97.7	94.4	81.7	92.5	81.7	58.8	79.7	87.9	86.9	95. 7									
	Sample	No.	RE1002	RE1003	RE1004	RE1005	RE1006	RE1007	RE1008	RE1009	RE1010	RE1016	RE1017	RE1018									opper.
	Ser.	No.	41	42	43	44	45	46	47	48	49	20	51	52		11.			:				soluble copper
	- A	$(SC/TC) \times 100$	75. 5	36.3	33. g	96.9	27.5	52.3	53.3	16.9	47.7	34.8	93.0	99, 2	100.0	85.0	88. 1	67.1	31.0	91.4	6.7	81.2	အ
	Sample	No.	RC1024	RC1025	RC1027	RC1032	RC1034	RC1036	RC1038	RC1051	RC1052	RC1072	RC1078	RD1058	RD1059	RD1060	RD1061	RD1062	RD1063	RD1064	RD1065	RE1001	total copper
3	ær.	No.	21	22	23	24	25	26	27	28	33	30	31	32	33	34	8	36	37	88	6 6	40	: : :
of ratio of T-Cu and So-Cu	 24	(SC/TC)x100	5.4	65.0	76. 7	26.3	47.4	21.9	8.0	87.1	82.1	81.1	16.4	59.2	75.5	58.9	23.0	16.7	93.6	48.0	84.6	98.2	R : ratio, T
	Sample	No.	RA1001	RA1002	RA1003	RA1004	RA1005	RA1006	RA1011	RA1012	RA1013	RA1014	RA1017	RA1018	RA1021	RC1003	RC1004	RC1005	RC1006	RC1010	RC1022	RC1023	
Table	Ser.	ું	-	2	ന	-	ın	(0)		∞	0	10	∺	12	<u></u>	7	15	16		200	13	20	

											: 1								-																						
3	2.844		1.057	177	225	428	303	794	 0. 0 4. 0 4. 0	200	- 129	. 887	1. 495	4.080	. 628	77	. 084	134	. 017	/8/	1,053	230	2.487	216	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	838	- 777	- 650	500	י פוני פוני	-, 517	-, 580	602	. 952	-, 429	1. 455 5.00 5.00 5.00	. 0	0 80 1	623	- 299	000
Factor 2	1.533	1.050	-, 155		1. 127	478	1.089	1. 537	ກີ ເກີດ ເກີດ ເກີດ ເກີດ ເກີດ ເກີດ ເກີດ ເກ	252	926	1.067	. 300	-, 192	1, 149	000	1 097	1.038	1.553	. 656	1, 033	9	. 970	. 890	332	966	-1.399	512	317	> 0 5 0 1	-2.036		. 218	. 295	. 853	. 73	25.00	200	1.954	- 069	***
	.310	- 119	. 093	2000	423	805	953	1.495	. 248		107	. 911	1. 110	319	304	900	276	395	- 184	107	- 860	.377	281	1. 225	1.329	124	805	. 388	. 172	9 6	- 047	. 871	. 679	. 659	. 782	. 846	87.8	. 523 564		. 098	
	151		15. 15.	2 4	225	. 28	129	80		2 6	2 9	165	166	167	8 5	5 C	2 5	172	173	4/1	2 <u>7</u>	177	178	179	280	- 6	283	184	88	9 0	0 00	68 9 8 1 8	180	<u>6</u>	192	66.	2) C	ი დ ი დ	200	198	
	-																																								
က	. 673	776	-, 765		2, 798	-, 726	- 123	832	540	7 000	049	350	861	837	1, 432	7.00	- 795	826	886 6	. 286 286	- 342	737	. 864	-, 760	1.324	1. 732	285	- 693	358	233	277	1, 461		338	- 061	- 162	. x22	717	087	137	
Factor 2	. 129	648	-, 620	200	. 089	- 776	2, 549		921	2,0	126	142	. 696	261	- 844	587	-1. 217	-1.002	-1 906	-3.236	362	202	-, 849	362		2.570			- 503	1 2 3 3	777	- 197	421	432	741	. 637	000	200	435	614	
1	- 603	396	. 470	174.1	096	393	1.70	- 454	-2.545	0 0	0.00 0.00 0.00	-1. 227	172	. 089	. 233	ກ ແ ພິດ ແ	230	333	- 011	066	064	. 353	725	. 571	. 177	. 44.	38.	1.071	928	1.083		-1.314	. 754	. 580	. 275	-2. 430	4/4	000	2 60 2 60 2 60 2 60 2 60 2 60 2 60 2 60	719	
Ser. No.	101	103	104	0 0	0.01	801	109	0 :	= :	2 :	. T	 	116	117	æ :	D C	121	122	123	24	25	127	128	129	93	3	33	3 6	135	136	, e	38	04	4	142	143	44.	 	147	148	:
														-																								-			
က	015	836	478	ה ה ה ה		208	-, 645	1, 711	-, 722	7.00.	- 441	-, 627	-, 705	399	1. 595 131	0 4	000	-, 424	- 775	. 251	2, 181	017	-, 251		. 501	. 546	- 580	- 684	-, 552	9 6	0 10 0 10 1 1	159	-, 952	949	609	764	. 911	-, 812	428.1	- 508	
Factor 2	-, 692	-1.021	646	1.40.		312	- 264	229	-, 527	1 20 0	042	-1,519	672	. 824	 53	100	200	-2 171	-1.089	-1.773	472 205	088	- 617	-, 158	-1. 182	900	-1.616	- 502	- 262	- 152	0.40	783	1.167	585	1.088	694	1, 645	- 107	177	3.4	
-	- 903	649	470	900																																					
Ser. No.	51		Ω 4 ι	0 0	8 6	e e	9 60	9	19	200	20 00	9	99	. 67	89	3 C	2.5	72	73	74	75	7,7	- 22	79	8	- 6 6	83	8	88	98) K	9 60	8	60	92	93	94	9 9	9 6	- 80 7 67) ·
							:								:																								,		
က	-: 071	. 357	- 642		176	- 799	798	785	-, 742	7.82	920	- 780	-, 775	-, 655	- 620	1 0 0 1	704	-, 556	- 603	1 03	1 1	840	712	738	2, 450	05.	1 1	570	. 467	. 790	2 60	023	821	701	-, 654	- 680	- 663	- 605 - 605	. 582	- 651	
Factor 2	- 184 - 584		-1.030	000	240	444	- 7	- 611	-, 494	. 686	- 42/	. 69	- 736	~. 095	 655	6 G	-2.553	-1.173	- 517	- 522	-, 152	- 286	626	-, 266	741	. 500 1.	, 608 828	192	. 598	. 968	222	-1. 151	-1.000	216	223	-, 788	- 365	. 168	2000 1	- 611	
,I	- 534		•																																						
Ser. No.	1 .	ر ا																	23																. 0	თ.	4	ທະ		- 00	,

3	. 755 1. 290 1. 725 349
Factor 2	-, 152 , 042 1, 090 , 157
-	-, 998 -1, 357 -1, 259 -2, 024
Ser. No.	301 302 303 304

m	-, 369	. 546	90	88	. 76	2, 142		- 825	231	-, 723	-, 701	-, 745	1.882	778	- 776	987	131	100		200		- 6		2. 198	jo i	3775	2. 7.00	ດ ເ ດ ເ ດ ເ	, ' 40, 0	165.	25.00		7 000	- 747	730	-, 798	936	. 321	651	-, 019	- 683	1. 428	- 586	1.305	- 275	. 461	980	. 628	
Factor 2	754	1, 722	-, 034	. 032	-1.762	-, 731	- 398	-1.584	-1. 525	-1, 579	-1.810	-1,885	-1,899	-1, 574	-1.538	192	. 363	- 261	٠ ١ ١	555	294	/ 00 t	1,537	026	986	-1, 327	1. 4500 0.001	1. 53C	-1, 373	080	. 063	, i	1 -1	-1.364	-1.497	971	-, 120	-, 039	805	430	-, 251	-, 739	513	. 330	460	. 246		844	
-	2	20	7	60	8	-2.700	8	8	Ö.	112	8	8	-1.907	٠	5	4	en e	8	33	8	3	:	ŏ	٠ ش	4	1, 992	š.	က်	N.	ő.	o 0	σò	'n∽	121	. 074	-, 400	4	ö	-, 327	ŏ.	ö	ñ	-	ø,	-19	647	, i	208	,
Ser. No.	251	252	253	254	25.0	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	27	272	2/3	274	275	276	277	278	279	280	281	787	200	, c	286	287	288	289	290	291	292	293	294	295	296	297	9 0	6 OO	;

	٠	- i		1 1	 	:.		9 1		2, 13	44	86.	. 79	0	i		i i	. 5		. 52	i 6	5	. 68	٠. ق	- 8		1.4	7	8	٠. 9	. 6	1		5 0	ö 3	4 α	ı	1	 Ċ	-	. LC	9	1	ı	ו	1	• ,	
F. 0	-				? è	77 .		97	1, 23	1. 26	÷.	1, 82	1 94	-			 - :	80		. 7	0	₹.	173	1.32	1.86	1. 29	9	1.46	1.73	. 4	1.36	6		- 6	•	5 è		ו י	 		. 0							
er.			,	, ,	- (ń	7.0	e i	Ö		. 60	- 54				,	2	17 1.08	18 . 67	19 . 85	Ë.	21 -1.44	22 17	23 61	24 - 84	25 - 14	26 61	27 . 20	9.	29 . 29	30 . 7	31 . 15	232 - 420	4 .	- i	ΩÜ	í	46		i	1	. 1				1 1	יו כ	•

Appendix 6 Analytical data of geochemical stream sediment samples

		:																																												
																٠																														
																		٠.																												
5 8	තු දි	8 55	26	33	24	52	3 8	20	0 9	n o	2 6	3 6	31-	<u> 9</u>	82	8	7	56	24	7,		24	3 8	٥ ب	143	3 5	35	172	234	106	8	ខ្ល	20.00	_ 6	- C	5 to	3 %	3.5		8	88	55	81	3 g	368	;
																			-																											
ag Egg	24.0	o o	9	9,0	တ ((၁)	4 () c	4; ¢) c) c	, ,	o c) (0	2	2.0	0	0	2.0	20	20	က က	တ က	4,0) C	ο C	i i i	80	12.0	က က	ω	တ က်		4 (ວ c ກໍ່ ເ	- 0	ر از د	i	i 4	4	9.0	2.0	0 o	00	; ? ?	:
3 g	88	3 3	47	4	음 !	တ္က မ	01	<u> </u>	<u> </u>	<u> </u>	5 त	2 0	<u> </u>	1 7-	<u> </u>	23	Ξ	83	27	œ	<u>ლ</u>	ස	55	38	ž t	2 8	3 🗠	8	<u>8</u>	න	27	စ္	÷ 5	8	88	3 8	g <u>o</u>	; ;	1 C	3.2	302	8	234	<u> </u>	328	}
				.:									. •																																	
on (km) -coord	33, 513	33,936	34, 202	34 484	33 33	33 700	27 4	37.003	0.000	27.607	27 803	37.000	37.875	37, 956	33, 523	33.648	33, 720	33. 750	88 97	8 19	34, 226	34. 2.1	36. 738	5. 5. 5. 5.	36.43	3 5	35.952	35,986	35, 851	35.885	8	35, 178	35. 5.0 5.0 5.0 5.0	200	20.00	2000	38.442	30,	38	36.475	36, 742	36.899	36.906	37,039	37.218	:
12													٠								٠.			:						٠.																
X-coor	759, 546	759.61	759. 48	759.50	759.55	759.52	6 6 6 6	5 6 3 6	5 č	200	2 d	300	1 0 0 C	759	758.8	758.3	758. 26	758, 25	758.2	758.1	758.	758.	763.9	200	763. 20.03	900	5.55 5.55 5.45 5.45 5.45 5.45 5.45 5.45	763. 4	763.	763.	763.9	763.9	9.192	202	7.02.	707	7.89	25	35	100	760	760.3	760.3	20.00	760.8	
	-									:			_				٠				٠,			•														,								
Geol Unit	B 8	38	ष्ठ	8	8	ु ह	3 2	9 7	8 2	3 2	5 6	33	9 6	3 6	0	B	3	8	<u>छ</u>	S	Z	ष्ट	8	3	8 5	3 3	3 3	8	8	8	8	9	2	2	9 8	3 8	3 &	3 29	3 5	B	છુ	ပြ	당	5 g	3 g	5
ω.	01	100	4	မ	9	5 6	98	20 5	2:	- 6	7 0	2 u	<u>.</u>	25	80	019	20	21	23	24	25	26	27	20 20 20	ල ද	_ e	3 %	93	36	37	8	တ္က ဗ	58	2 6	200	# IE	2 2	20	2	88	2	Ξ.	2	2 4	<u> </u>	<u> </u>
Sample No.	SC1001	200	8	8	S 5	မှု မှ	38	38	38	36	36	36	3 5	35	0100	8	850	8	85	8	8	8	8	3		35	88	8	ဒ္ဓ	8	8	8	3 8	3 8	3 8	36	36	88	9	88	S	8	8	8000	}8 .⊃	
S.Ser. Ser.	، -	1 (1)	4	ഹ	φ.	٠ (o c	ກຸ	2;	- 5	2 5	2 <	<u>τ</u>	<u> </u>	_	<u></u>	ũ	8	71	2	33	24	33	2	S 5	8 8	18	မ	33	8	Ŗ	32	3 8	~ c	88	9 6	3 4	4	4	₹	45	49	7.4	\$ Q	25	,

_
?
$\overline{}$
ysis
$\overline{}$
Analys
Geochemica
ð
ist

5 8	35	8	8	37	6	ភ	ភ	9	1	σ.	? ~		<u>.</u>	33	9		5		2	7	8	7	₽	26	22	24	-1	2	5	18	23	8	25	ĸ	8	2	8	8	2	ñ	₽	2	က	4	ℵ	#	7	×	Ä	ä	21	
රු ය සියි	3.0	0	9.0	0.4	2.0	2.0	2.0	0) -) C	ic	٠ د د د	200	ဝ တ	18.0	တ	0,	က်	ဝ	0	0	2.0	2,0	3.0	0	0	ට ල්	6	0.70	0	2.0		2	0 %	0:	2.0	1.0	2.0	ဝ ဖြ	1.0	សួ	6.0	ខ	0.6	50	,	20	2.0	3.0	် တ	4 ,	
3 g	865	410	1104	848	6	13	2	Ξ	: :	: =		- 6	8	917	41	406	443	518	25	=	277	4	5	50	47	່ທ	10	200		3 =	6	졌	5 8	ល	36	2	23	ក	140	279	107	156	382	131	17	φ	=	00	12	=	ខ្ម	
rtion (km) Y-coord	37 011	37, 001	37, 212	37,079	38,636	38, 606	38, 484	38, 419	38,520	30.00	300	000	56.59	33,619	34.076	34, 223	36, 404	36.387	36.417	36, 449	36, 341	36, 356	36, 478	36, 441	36, 479	36,034	36,002	35,658	35, 579	35 562	35.211	35,075	35.068	34, 778	34, 715	34.644	34.468	34, 441	34, 306	34, 698	34, 694	34, 492	34, 474	36, 922	36, 947	37. 128	37, 144	37, 189	37, 217	17 37.252	37, 462	
13 5	L	761, 970	57	76	8	8	69	4	Ä	Ş	36	5 6	2 ;	8	2	8	8	8	စ္တ	8	8	8	8	7	5	e	8	3 15	8	8	5	2	8	8	7	7	છ	ຜ	7	2	~	ဖ	ၽ	တ်	ó	တ်	ਚ	-	**	763, 217	ò	
Geol Unit	Ę	33	:33	9	8	- PG	9	35		3 6	3.5	9.	9	<u>a</u>	දු	8	Pg.	8	gg	gg	g	g	9	. To	3	3 2	3.5	ş	3.5	યુ	3.5	S. S.		·	13	g	g	8	2	g	g	- 29	25	99	g	g	9		B	gq Qq	g	
Sample No.	ç	Ş	ā	Ş	á	9	Š	į	Š	2	Ş	ָּבָּ בָּי	Ų.	Ж	Щ.	Ж	띴	Ж	SE 10	SE 10	ΣE 10	<u>일</u>	12	110	12	100	ה ה	117	100		717	3 4	SE		S					SE			SE1031	SE1032	SE1033	SE1034	SE1035	SE1036	SE1037	SE1038	SE1039	
Ser. S	1	6	සි	27	22	29	27	3	8 8	3 6	3 2	<u>-</u> 6	8	S	8	92 00	99	67	88	69	22	7	2	12	77	4	2 2	2,5	- g	2 g	2 8	3 00	8	8	8	8	8	8	8	8	හි	on	8	တ္တ	8	S	8	6	88	တွ တ	9	

Z _Z	E S	22.00	17	2 ع	ţ <u>Ч</u>	<u>.</u>	<u>ლ</u>	7	22	= ?	8	= {	38	2 6	0 F	2.5	- e	2 2	. ic	7	22	1	35	∞	8	84	<u>5</u> :	ਰ ਫ਼	5 5	5	ō.	21	<u>ო</u>	<u>დ</u>	<u>o</u>	<u>∞</u>	ဋ	នះ	85	\$ <u>;</u>	- 6	8 ਵ	€	₹ <u>7</u> 2	5 8	ე <u>ტ</u>	
g.	വ	၀ ၀ ၈ ၈		0 0	o 6	200	2.0	5.0	-	5.0	_	64 i	⊃ເ ດີເ	ာ (၁ င စီ ဇ		o ∈		0	2 0	0	3.0	4.0	2.0	4.0	က် ဗို) ()		0	2.0	2.0	5.0	რ 0	20	2.0		0 0	o i	, ,	→ c) c) C	e Fed) က ကြ	
3	шdd.	<u>က</u>	<u>0</u>	တင့်	<u>-</u> σ	. <u>C</u>	2	12	2	2	20	2828	200	200	200	2 10	9 K	200	a O) -	G	4	<u>0</u>	2	2118	2195	25	8 5	200	2144	8	22	F	8	တ္ထ	4	17	9	= {	2.3	0 6	200	† 6 6 6	3 6	38	7 7	
Location (km)	7-000rd	37. 484 38. 033	38, 632	38.819 8.819	000 000 000 000 000	38,870	38, 669	38: 652	38, 524	38, 433	37, 589	37, 545	37.315	37.329	37.157	000	20.00	38.32	25 25 25 25 25 25 25 25 25 25 25 25 25 2	39.057	39.086		39, 392			34.331						38.	38.019	37, 957	37, 663	37, 483	37.371	37,058	37, 051	20.00	0 0	20 00 00 00 00 00	00 000 00 000 00 000		27.07.0	37, 695	
	-X	763, 069 763, 491	763, 416	763, 542	763, 525	758.913		758, 968	٠.	758, 782	di.	di.	oi o	162.276	vi o	i c	762 474	762 841	ic	762 540	• 1:	نہ ن	i			760, 627			760, 492									758. 264		(63. 65)	D L	28.07	N.C	762, 933	762 985	763, 660	
Geol	Unit	88	g	8	3 2	5 6	38	3	સુ	g	3	B	3	g	8	5 6	2 2	2 2	3.5	3 2	3 2	3 &	38	B	g	g	g	छ	9 6	9 79	9 7	3 28	S	B	છ	ટુ	ટુ	ያ	द्ध	3	3 6	3	9 7	5 6	5 5	9 8	;
Sample	9	SE1040 SE1041	SE1042	SE1043	011044	SE1043	SF1002	SF1003	SF1004	SF1005	드	SF1007	SF1008	SF1009	SF1010	- ,	21012	0.0010	41014	2 5	. .	SF1018		SF1020	\$61001	\$61003	SG1004	\$61005	861006		0000	\$61010	\$61011						\$61017					861022		\$61024	
Ser.	Ş	101 102	103	0.0	25	96	80	60	110	Ξ	112	=	7	15	<u>0</u>	_ ;	<u> </u>	. ç	3 5	- £	25	124	125	126	127	128	129	8	<u> </u>	7 5	3 5	3.0	138	137	8	139	140	141	142	£3	44	45	ş;	7 0 7	3 €	200	<u>'</u>

List of Geochemical Analysis (4)

Ser.	Sample	Geo]	Locat	ion (km)	3	&	১
2	ģ	Unit	X-coord	Y-∞ord	e C	mdd	Š
151		ß	763, 688	37, 700	œ	2.0	12
152		g	763, 464	37, 984	9	0 6	54
153		B	763, 454	38.016	ø	2.0	<u></u>
154		B	763, 264	38, 332	ø	2.0	7
155		3	763, 298	38, 342	=	2.0	<u>დ</u>
156		8	759, 359	37, 830	Ξ	2.0	
157		B	758, 288	33, 856	<u>;</u> _	2.0	R
8		B	763, 828	36, 468	œ	3.0	5
159	SC1032	8	763, 769	36, 320	88	0.0	181
6		gg.	760, 754	34, 546	99	50	8

Appendix 7 Drilling log of MJJ-1(1:200)

					Alt	erat	ion		Ore	e Mir	eral	s		•	i	\ssy	Resu	ilts			
epth (m)	Col	गम्म	Struc- ture	Description	Silicification	Argillization	Chloritization	Epidotization	Chalcopyrite	ite	Chalcocite	Molybdenite		Depth	Core	Au	Ag	Cu	Pb	Zn	Но
			ļ		Silic	Argi	Chlor	Epide	Chal	Bornite	Chal	Moly	Pyrite	(m)	(C#)	ppn	ppm	ppu	ppm	ppa	pp
				0-3.00 pink(hm)-clay with qtz-pc gravel							. '										
3.00				3.00-7.00 gravel of qtz por in yellowish clay																	
7.00				7.00-12.50 weathered qtz-por(qtz 1cm diameter)										:							
		L														٠.					
10	L								-	-	ļ	·	-	ļ							H
12.50	<u></u>																				
12.50	+			12.05-41.60 gray granodiorite																	
		+		mafic minerals epi>chl epi-films/stringer(ntwk) 12.00-14.70 fine brittle																	
		+		15.30-15.60 limo & clay -16.20 epi-limo stringer -16.65 limo & clay						-											
20	+	+		-17.50 dk inclusion -17.90 dk inclusion 18.20-18.50 epi-sericite(?) -18.25 dk inclusion -19.10 dk inclusion							. :			e e							
	+	+	∠ 20 C	20.60-21.10 fine brittle 20.60-22.00 limo-epi stringer, pl sericite(?) 22.35-23-20 fine brittle																	
	ተ	+ : +	∠ 45 V	limo-epi stringer pl sericite(?) -22.90 qtz vein (H:2 cm) 23.90-24.80 limo-epi stringer 23.90-26.10 fine brittle,																	
	+	+		pl sericite(?)																	
	4	+	45 C	27.60-28.30 fine brittle 27.60-29.80 epi sringer.pi sericite(?)																	
30	†		2-55 F									l.									
	+	+	∠ 30 VL	30.85 qtz veinlet with Py spec(W:1 cm) 30.90-31.80 fine brittle, limo-clay																	
	+	+	∠ 45 C ∠ 30 F	32.10-32.30 pl sericite(?), arg(1) 32.80-32.90 fine brittle																	
	+	+	∠. 50 F	33.80-34.50 fine brittle	-																
	+-	+	4 30 S	37.00-38.00 fine brittle, arg(1)																	
40	+	+	∠ 70 C ∠ 20 F																		

									,									.,	-		
					Alt	erat	ion		Ore	e Mia	ier a l	s				Assa	y Res	sult	S		
Depth (m)	Col	ממע	Struc- ture	Description	Silicification	Argillization	Chloritization	Epidotization	Chalcopyrite	Bornite	Chalcocite	Molybdenite	Pyrite	Depth (m)	longth		Ag	Cu	Pb ppn		Mo ppm
	+																				
41.60	~	+ ~		41.60-46.60 limo-clay zone sheared zone			:					·									
	~	~																			
46.60	+		∠ 30 F ∠ 40 C	46.60-47.30 fine brittle, arg(2) limo-epi ntwk and/or film 47.70-48.00 Py-epi stringer																	
48.10 50 49.90	^	+ ~		-47.90 blk inclusion 48.10-49.90 fine brittle, arg(2) limo-clay ntwk & film -49.55 specularite																	
	+	+	40 F 45 F 25 S	Gray granodiorite epi stringer & ntwk with diss of Fy & Cp																	
	+	+	د 70 F د 70 S	.52.60-53.00 Py & epi stringer 53.00-53.40 arg(1) 53.60-54.00 Py-clay film -54.60 Py-hm-epi film																	
	+	+	4 60 F 4 80 F 4 45 F	54.80-54.90 arg(2) -55.00 Py-hm-epi-qtz v-let 55.80-56.00 Cp-Py-epi film 56.60-56.80 Py-epi-chl film																	
	+	+	- 30 S - 70 F	57.55-57.70 Cp-epi stringer -57.90 Py-epi film 58.20-58.30 Py-epi-chl film									-								
50		+	د 80 S د 60 F			:		:					<u> </u>								
	+	+	80 F 60 F 60 F 60 F 45 VL 45 VL	-60.15 Py-epi chl film -60.30 Cp-Py-epi film 60.50-60.70 Py-epi-chl film & diss 61.30-61.40 Py-epi-chl film & diss 61.80-61.90 Py-epi-chl film & diss 62.30-62.70 Py-epi-chl film & diss -62.60 Py-epi-chl-qtz v-let(M:1cm)																	
	+	+	45 F 4 30 S 4 55 S	63.40-63.50 Cp-Py stringer & diss -63.65 Py-epi film 64.80-65.00 Py-Cp-mal-(po) stringer -65.60 Py-(Cp)-epi stringer																	
70	+	+	45 F 30 F 40 S 20 F 70 F	65.70-65.80 Py-epi stringer -65.90 Py diss 66.05-66.30 Py-epi film 67.40-67.50 Py-Cp stringer & diss 67.80-67.90 Cp-Py-chl film -68.70 Py-Cp diss						•						+					
	+	+	60 S 55 S 60 S	70.40-70.85 Py-Cp-epi-chl stringer or film	3		1 2 2	1 2 2	S S				S/F S/F								
	+	+	20 F 60 F	72.05-72.25 Py-epi film>diss 72.40-72.50 Py-epi film 72.50-72.60 Py-Cp-epi film 73.00-73.40 Py-Cp-epi-chl film & diss	2		1 2	1 2	F F/D				S/F S/F	ŀ	100 100		ŀ	27	Į.	200 137	ì l
	+	+	∠ 30 VL ∠ 60 V ∠ 40 F	73.40-73.80 Py-hn-epi-chl film -73.85 Py-epi-chl film &diss 74.75-74.85 Py-Cp-epi-chl stringer & diss 75.0Py-Mo-Cp-qtz vlet(w:6mm)75.60qtz vein(w:3cm)	3		2 2 3	l	F/D			ın	F/D F/D	74.8 76.2	3 100 2 40	Tr	Tr Tr	28 11 14	45	189 77	<1 <1
	+	+	∠ 35V L ∠ 90 F ∠ 65 F	-76.85 Cp diss & film 76.90-77.05 Cp-Py-epi-chl stringer & diss -77.95 Cp-Py-qtz V (W:1.4 cm) 78.00-78.20 Py-Cp film & diss	3 2		3 2	3 2	F/D VL F			, ¥L	F/D F/D	76.6 77.6 77.3	5 5 (22	ZZ	181 181 13	34 36	214	20 1
80		+	2. 75 F 2. 80 F		2		1		F/D				F/D	79.5	ł	zz	1	63		124	1 1

				Al	terai	ion		Ore	alk e	eral	s			1	issa	y Res	sults	i		
Depth (m)	Column	Struc- ture	Description	Silicification	Argillization	Chloritization	Epidotization	Chalcopyrite	Bornite	Chalcocite	Molybdenite	Pyrite	Depth (m)	length		Ag			Zn pps	
	+	~ 30 S ∠ 75 F ∠ 80 S	80.30-80.40 Py-Cp-epi-chl stringer & diss 80.70-80.90 Cp-chl film 81.70-81.90 Py-epi-chl stringer & diss 82.50-82.75 Py-epi-chl stringer & diss	2 2 2		1 0 1 0	1 0 2 0	F/D F				F/D 7 S/D F								
	+	45 F 4 65 F	-83.10 Cp-Py-chl film	3		2	2					P/D								
	+-	£ 50 F	-84.60 Py-epi film -85.50 Py-epi film	3		0	0					r r								
	+	∠ 45 F ∠ 50 VL	85.90-86.00 Py-Cp-Bn-epi film & diss 86.30-86.50 Py-Cp-epi-chl film & diss -86.90 Cp-Py-qtz v-let & diss	3 3 3	:	1 2 0	1 2 0	F/D F/D VL /D				F/D F/D VL /D								
	+	80 F	88.30-88.60 Cp-Py-chl film	2		0	0	P F				F								
90	+	45 F	-89.80 Py-epi film	3	<u> </u>	0	1	<u> </u>		_		<u> </u>								1
	+	70 F	91.00-91.10 Cp-Py-epi stringer	2 2		0	0	S/D				S/D	90.8		Tr	Tr	9	36		ı
	+	80 F	-91.90 Cp-Py film 92.80-92.80 Cp-Py-ch1 fil	2		0	0	F F/D				F/D	91.8 92.7		Tr Tr	Tr Tr	340 28	27 29	ł	
	+ +	80 F	94.10-94.60 Cp-Py-epi-chl stringer & diss -95.05 Py-epi film	3 3 3 3		1 1 0 0	1 2 1 1	F				F/D S/D F/D	93.2 95.3 95.8	20	Tr	Tr Tr	531 11 10	25 18 16	75	5
	+		·	3		0	1					F	97.7		Tr		26	22		
	+	¥ 45 F ≠ 80 F	97.50-97.80 Py-epi film -98.00 Cp-Py-Mo film & diss	3		0	1	F/D			F/D	F/D	97.9	40	Tr	2.5	906	16	87	
100	+	∠ 30 S ← 85 F	99.30-99.60 Py-epi-chl stringer & diss	3		1	2	<u> </u>				S/D								ļ
	+	45 F 45 VF	100.05-100.60 Py-Cp-epi-chl stringer & diss -101.40 Py-qtz v-let	3		1 0	2	S/D				S/D	100.1 100.3	10 50	Tr Tr	Tr Tr	40 384	17 21		
	+	45 S	102.70-102.90 Py-Cp-epi-chl stringer -103.60 Cp-Py-chl film	3		1	1	S				s	102.5	30	Tr	Tr	62	21	70	
	+	80 F 45 F	-104.00 Py-epi film -104.60 Cp-Py-chl stringer -105.10 Cp-Py-chl-epi stringer	2		0	0	F S F				F S F	104.5 104.9	20 100		Tr Tr	77 70	18 23	89 66	
	+	50 S 2 30 S	105.70-105.80 Py-epi film -106.10 Cp-Py stringer & diss -107.10 Py-epi film	2 2		1	1	F/S				F/S	106.6	10	Tr	Tr	48	17	85	ļ.
	+	45 F ≥ 30 S	-107.60 Cp-Py-chl stringer	2		0	0	S D				s/D	107.5 108.0	- 1	Tr Tr		14 45	16 23		ı
110	+	45 F 20 S 20 F	-109.00 Cp-Py-chl stringer -109.70 Py-Cp-chl-epi stringer & diss	2 2		0	1	F S/F /D				F S/F /D	108.9	10	Tr	Tr	72	16	116	
	+	2 75 F 2 60 F 2 30 F	-110.30 Cp-Py film -110.90 Cp-Py-epi film	2		0	0	P P				P	110.7		Tr	Tr	59	21	80	1
	+	4 40 F 4 50 F	111.10-111.40 films of Cp.Py & epi 111.90-113.90 films of Cp.Py & epi	2		0		P F				F	111.8 112.7	- 1	Tr Tr		118 71	19 30	105 95	l
e e	+	45 S	113.90-114.90 Cp-Py-chl stringer & diss	1 1		0	0	S/F				S/F	113.8 114.3	ı	Tr Tr	Tr Tr	65 49	18 20		l
	+	4 15 S		1		2	1	P/D				/D F/D	116.4		Tr		42		127	
	+	∠ 80 F ∠ 45 VL	-118.00 Cp-Py-chl-epi v-let & diss	2		1	0	F/D VL /D				F/D VL /D	117.9	- 1	Tr	Ì	764		132	l
	+	← 65 F ← 85 F	-118.80 Cp-Py-chl film	2		i 0	1	P				F								

						Al	tera	tion	•	Ore	e Mir	era!	ls			:	Assa	y Re	sult	s		:
	epth (m)	Col	umn	Struc- ture	Description	Silicification	Argillization	Chloritization	Epidotization	Chalcopyrite	ite	Chalcocite	Molybdenite	te	Depth	Core Imph	Au	Ag	Cu	ръ	Źn	Мо
Į						Silic	Argi	Chlo	Epid	Cha1	Bornite	Chal	50	Pyrite	(m)	(ca)	рра	ppu	рķп	ppe	ppm	ppm
	·	+	4	د. 45F د. 45F	120.30-120.70 Cp-Py-chl-epi diss & film 121.10-121.50 Cp-Py-epi film & diss 122.40-122.50 Cp-Py-epi film & diss	3 2		1 1	1	F/D F/D				F/D	120.3 121.2		Tr Tr	Tr Tr	206 15		158 130	
		+			123.30-123.50 Cp-Py-epi film	2		0	1	E/D	,			F/D	122.4	10	Tr	Tr	18	17	111	<1
			+	4 60 F	124.00-125.70 Cp-Py film & diss	2		0	1	F F/D				F F/D	124.0	40	Tr	Tr	85	18	95	<1
		+		4 45 F	124.00 120.10 up () 11.2 u 0100	2		0	1	F/D				F	125.2		Tr	Tr	16		148	<1
			+	40 F	126.10-127.10 Py-chl-epi film	2		0	1	F/D				F	126.1			Tr	162			
	127.60	+		4 4 45VL	Porphyry(127.60-137.50) -128.00 Cp-Bn-Cc-Py diss	2		2	2					F F D/F	127.1			Tr	26	17		
l	-	L.			128.00-129.00 Py-Cc-Cp-spe-hm siss	2		1	0	D D	D	D D		D : D	128.1 129.1	1		Tr	185 507			
1	130	_	<u>L</u>	< 60 F	129.00-130.00 Py-Cp-Cc-hm diss	2	1	î	ŏ	D.		Ď		D	123.1	100			301	1.3	01	
١		┞		2 80VL 2 45VL	Pale bluish green porphyry	2	1	0	0	D/ VL		D		D	130.1	100	Tr	Tr	74	21	50	<1
İ		١.	L.	45F	130.00-132.00 Py-Cp-Cc?-spec-hm diss	2	1	0	0	D/		D		D/	131.1		:	Tr	89		57	
l		╎└	L		132.00-133.00 Py-Cc?-spec-hm diss	2	0	0	0.			D.		D	132.1			Tr	23		1	
l		۱.	-	€ 60F	133.00-134.00 Py-Cp-Cc?-hm diss	2 2	1	0	0	D .		D D	:	D.	133.1 134.1			Tr	196	i		
		-	L.		134.00-135.00 Py-Cp-Cc?-hm diss	2	1	0	0			D		D .	135.1		ţ	Tr	10			<1
		 -		∠ 45F ∠ 60F	135.00-137.00 Py-Cc?-hm diss	1	ı	0	0			Đ		D	136.1			Tr	13			
	137.50	┞		4 85P	137.00-138.00 Py-Cc?-hm diss Gray compact granodiorite(137.50-151.50)	1	1	0	0			D		D	137.1	100	Tr	Tr	29	44	75	<1
l			+	≥ 65P	138.00-139.00 Py-Cc?-hm diss	1 2	0	3	2 2	D		D	١.	α	138.1	100	Tr	Tr	94	17	81	5
	40	+		45F	139.00-140.00 Py-Cp-Bo diss & film	2	0	1	1	F	P	·			139.9	10	-	Tr	12			<1
			+	428	140.00-141.00 Py-Cp film & diss	2		3	1 2	F S/D S/D				F/D S/D	140.3	10	100	Tr	18			-
			+	20S	141.00-142.00 Py-Cp stringer & diss 142.00-143.00 Py-Cp-Cc?-hm diss	2		3	1	D D		D		S/D D	141.6 142.5 143.0	40	Tr	Tr Tr	133 173 62	21 14 26	94	<i< td=""></i<>
		+		85F	-143.30 Py-Cp-ch1-epi v-let -143.70 films of chl & Py	2		2	1	VI.				F.	144.0			Tr	128		146	
	144.60 145.20		Δ.	45F 45F 45F 70F	-144.30 Py-Cp-chi film 144.60-145.20 Brecciated zone & chi ntwk with diss of Py,Cp.	2		1	1	8				P	146.5		Τc	Tr	44	16		
	143,20	· · ·	+	45F	146.00-147.00 Ch1 film with Cp	3		3	1	D				ם		Ĭ			1	- 1		-1.
		+		£ 60S	147.40-147.60 Cp-Py-hm stringer	2		2	1						148.0			Tr	123	13	125	
			+	90F	148.70-149.50 Py-chi film	1		1	1						148.4			Tr	104	16	69	<1
١,	50	+	+	45F 4 90F	149.50-151.50 Cp-hm film in sil gramodiorite	1		1	1	S				S F	148.9 149.6	10 10	Tr	Tr Tr	54 141	- 1	- 1	
۲	30	+ +		300		 ^	لـــــا	L		Н					149.0	19		IF	141	14	65	×1
L	151.50		<u>.</u>	۷ 45F	Drilling was finished at 151.50 m in depth.					<u> </u>												

1>2>3

F:filmy.S:stringer,VL:veinlet, D:dissemination.G:crack

ATTTER OF THE