調査地域の東端に北端から南端まで連続して露出する。カイコ岩体の西部はピクイ断層を介してセリド層に接し、東側は一部ブラジリアン花崗岩に接し、調査範囲外に伸びる。

2) 岩相

Jardim de Sa (1987) はこの岩体を、TTG (Tonalite-Trondhjemite-Granite)と略称される深成岩起源でミグマタイトを伴う片麻岩、及び角閃岩-片岩-珪岩-超塩基性岩-大理石などで構成される変堆積岩の2つに大別されるとしている。本年度調査域には片麻状黒雲母花崗岩(pegn1)、ミグマタイト、変堆積岩が複雑に入り組んで分布する。

本岩体の北部バハドカラパト(Barra do Carrapato)付近から2試料(C208, C209), 中部のポソダオンサ(Poco da Onca)から1試料(A202), そして南部タマンドゥラ(Tamandura)付近から4試料(C201, C203, C244, C245)を採取し(Figure II-4-3), 化学分析及び薄片の検鏡を行った(Table II-4-1, Table II-4-2). 検鏡の結果は以下のとおりである.

①C208は肉眼的には淡灰色、細粒、等粒状である.

岩石名:変黒雲母角閃石花崗岩

組織:グラノブラスティックあるいは等粒状

構成鉱物:主成分;石英,斜長石,カリ長石,黒雲母,ホルンブレンド

副成分:チタン石、燐灰石、ジルコン、方解石

不透明鉱物;有

二次鉱物;緑泥石, 細粒白雲母, 褐鉄鉱

②C209は肉眼的には淡緑色、中粒、等粒状である.

岩石名:角閃岩

組織:等粒状

構成鉱物:主成分;ホルンプレンド, 斜長石, 黒雲母

副成分;チタン石, ジルコン

不透明鉱物;有

二次鉱物;無

③A202は肉眼的には淡褐色、細粒、等粒状である.

岩石名: 思雲母片麻岩

組織: 片麻状

構成鉱物:主成分;石英、斜長石、カリ長石、黒雲母、白雲母

副成分:チタン石、燐灰石、ジルコン

不透明鉱物;有

二次鉱物; 綠泥石, 緑簾石, 細粒白雲母

④C201は肉眼的には淡褐色、細粒、等粒状で、片麻状構造を呈する.

岩石名: 片麻状黑雲母花崗岩

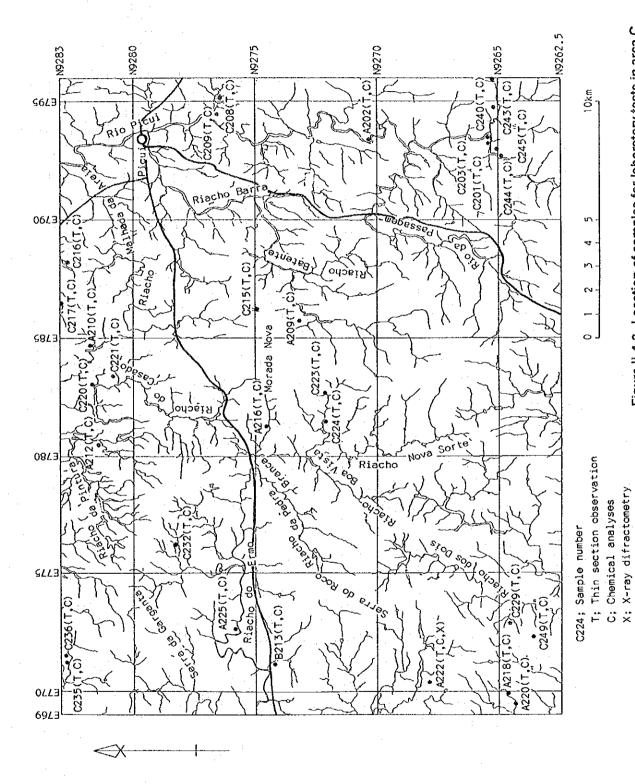


Figure II-4-3 Location of samples for laboratory tests in area C

Table II-4-1 Analytical data of rock samples in area C

														_																
C215	E786.23	N9274.98	mu-bi-Sch		64.10	0.77	15.68	2.92	4.01	0.20	2.12	2.54	3.85	2.48	0.31	0.76	99.74	L 0.5	0.1	5.16	1577		139	o	12	01 10	37.9	7.4	***	L 1
C209	E794,45	N9276.50	Hormblen-	dite	57.99	0.46	12.10	1.63	5.22	0.15	8.01	7.72	4.08	1.65	0.12	0.78	99.91	1 0.5	0.2	5.20	1152	ㅂ	33	ഹ	11	L_10	20.2	∞		2
C208	£795.14	N9276.32	bi-h	Gnanite	65.22	0.40	15.34	1.56	4.08	0.11	1.80	4.00	3.14	3.72	07.50	0.34	99.91	1 0.5	0.3	4.26	829	-	20	4	L 10	01 T	18.3	26		2
C203	E793.58	N9265.41	Amphibolite		57.56	0.68	15.34	2.44	6.12	0.14	4.43	7.25	3.19	1.96	0.25	0.39	99.72	I 0.5	0.2	6.47	1067	L 1	=	-	. 18	L 10	22.0	35	-	1
C201	E793, 26	N9265, 32	bi Gneiss A		68.24	0.28	15.12	0.92	3.06	0.07	1.00	3.20	3.43	4.17	0.21	0.25	98.95	L 0.5	1.0.1	3.02	545		23	L 2	13	T 10	21.3	31	-	2
B213	E771.28	N9274.22	and Owartz	:	80.02	0.08	10.23	0.71	0.83	0.02	0.46	0.50	1.36	4.82	0.04	0.73	99.86	L 0.5	. 0.1	1.19	166	ന	38	2	L 10	0T 7	16.6	23		1
A225	E772.67	N9275.71	Dolerite		42.41	2.31	9.40	3.97	9.06	0.21	15.22	9.50	2.94	1.61	0.78	1.21	98.62	2.0 7	0.3	9.82	1619	12	1037	. 40	67	1 10	16.8	12	2	L 1
A222	E770.40	N9267.83	2-px	Granulite	46.62	0,46	12.29	3.09	3.51	0.25	8.21	17.82	6, 49	0.26	0.18	3.34	36.52	ß	33.7	4.89	1961	432	2030	₹	2	L 10	268.6	24	1 1	4
A220	E769.53	N9264.35	bi Sch		65.99	0.76	13.89	1.44	4.34	0.12	2.55	1.98	3.11	2.18	8.24	0.81	99.41	L 0.5	L 0.1	4.38	1941	- 1	12	က	12	L 10	7.0	16		-1
A218	E769.96	N9264. 68	bi Sch		69.21	0.73	13.93	1.23	4.27	0.12	2.21	1.44	2.91	1.47	0.17	1.71	99.40	1 0.5	0.1	4.18	936		20	7	10	L 10	12.4	22		
A216	E781.22	N9274, 44	mu-bi	Schist	69.30	0.72	14.04	0.71	4.40	0.08	1.79	1.81	3.37	1.80	0.33	1.05	99.40	I 0.5	0.2	3.92	650		14	9	14	10 7	12.5	64		
A212	E780.55	N9281.34	bi Schist	,	70.73	0.71	13.92	0.73	4.79	0.11	2.13	1.63	2.97	1.13	0.23	0.77	99.85	1. 0.5	0.1	4.23	854		54	ന	L 10	L 10	16.6	100	1 1	L 1
A210	E784.70	N9281.75	mu-bi	Gneass	70.27	0.68	13.45	0.61	4.46	0.08	1.86	1.75	3.52	2.05	0.21	0.64	99.58	1 0.5	0.2	3.90	652		23	LO	16	T 10	16.2	38	2	L 1
A209	E785.70	N9273.00	2-px	Granulite	54.97	0.32	17.45	2.23	1.53	0.08	1.64	7.44	6.53	1.41	0.08	1.72	95.39	L 0.5	1.6	2.75	730	20	573	'n	13	01 7	22.8	10		ï
A202	E793.35	N9270.27	bi-Gneiss		73.00	0.26	13.26	1.03	1.79	0.04	0.60	1.36	2.69	5.15	07.10	0.40	99.68	1. 0.5	0.2	2.11	327.0	~7	76	ယ	=	01 1	17.6	45		L 1
Sample No.	Coordinates	of location	Lithology		Si02 %	Ti02 %	A1203 %	Fe203 %	Fe0 %	% Ouw	% OSW	% 020	Na20 %	K20 %	P205 %	% IOI	total %	Au ppb	Ag ppm	ች %	mgg aw	add ow	mdd #	Sn ppm	No ppm	Ta ppm	Be ppm	Li ppm	As ppm	Sb ppm

Table II-4-1 Analytical data of rock samples in area C (continued)

Sample No.	0216	C217	C220	C221	C223	C224	C223	C232	C235	C236	C240	C243	C244	C245	C249
Coordinates	E788.40	E786.43	E783.03	E783.40	E782.67	E781.51	E772.99	E776.23	E771.20	E771.55	E796.00	E794.73	E792.74	E793. 13	E772.43
of location	N9282.74	N9282.97	N9281.65	N9280.79	N9272.06	N9272.08	N9264.60	N9278.18	N9282.70	N9282.71	N9265.25	N9265.14	N9264.97	N9265.07	N9263. 52
Lithology	ms-bi-Sch	mu-bi Sch	mu-bi Sch	mu-bi Sch	m-bi Sch	mu-bi Sch	Cortlandite	bi Sch	mu Quartz	Pegmatite bi Granite	i Granite	bi Granite	bi Gneiss b	bi Gmanite	Skærn
Si02 %	58.14	67.64	66.85	70.48	70.26	73.92	48.70	67.60	76.24	74.23	70.06	73.24	64.09	73.98	48.72
Ti02 %	0.73	0.54	0.86	0.47	09.0	0.45	0.29	0.82	0.15	0.05	0.37	0.14	0.43	0.12	0.86
A1203 %	20.46	15.54	13.92	13.86	13.93	12.68	7.81	14.28	12.04	13.95	13.95	13.23	16.41	13.37	18.37
Fe203 %	1 04	0.86	3.17	1.52	0.84	1.10	3.33	0.85	0.30	0.00	0.98	0.34	1.53	0.70	4,58
Fe0 %	7.27	4.34	3.51	2.61	3.25	2.87	3.45	4.91	1.21	1.40	2.74	1.92	3.13	1.40	3.45
% Out	0.20	0.08	0.10	0.10	0.03	0.10	0.40	0.12	0.03	0.18	0.05	0.04	0.09	0.03	0.22
% 03 1	4.05	2.13	2.26	0.65	1.57	0.71	10.72	2.10	0.61	0.09	0.66	0.24	1.91	0.15	4.75
% 0g 0g	1.05	1.37	3.42	1.38	2.23	1.05	20.90	2.18	0.36	0.40	1.80	0.98	3.60	0.87	16.55
Na20 %	1.48	2.38	2.96	3.62	3.70	3.45	0.13	3.70	1.54	4.24	3.38	3.19	4.24	3.83	0.45
K20 %	2.04	2.17	1.86	4.32	1.96	2.69	0.08	2.04	5.49	4.74	5.28	5, 95	3.23	5.21	0.31
P205 %	0.20	07.0	0.24	0.16	0.28	0.14	0.18	0.25	0.11	0.30	0.17	0.11	0.33	0.07	0.10
701	1.89	1.63	0.51	0.35	0.36	0.56	2.74	0.72	0.78	07:50	0.47	0.35	0.34	0.26	1.37
total %	98.55	98.38	99.67	99.52	99.07	79.66	98.71	99,58	99.46	99.81	99,89	99.71	99, 33	99.89	99.74
dqq uA	&	5.0 T	T 0.5	L 0.5	1 0.5	1 0.5	1 0.5	0.9	9.0	L 0.5	1. 0.5	9	L 0.5	5.0 1	15
Ag ppm	0.5	0.3	0.1	0.1	L. 0.1	1.0.1	0.4	1.0.1	1.0.1	0.1	L 0.1	L 0.1	0.1	0.2	1.0
94 94	6.38	3.97	4.95	3.09	3.12	3.00	5.01	4.42	1.57	1.13	2.8	1 73	3.50	1.58	5.83
add us	1511	596	810	764	623	775	3067	908	1381	233	375	282	674	230	1676
andd ow	2	·			 1	- ,	4		60	23	co.	12	2	4	22
andd A	48	21	83	42	∞	24	183	17	84	64	152	504	74	47	1150
Sn ppm	ຕ	2	ഹ	51	က	យ	8	2	2	80		cn.	2	9	4
No ppm	II	L 10	11	18	16	42	L 10	L 10	7 10	30	32	21	. 18	L 10	16
Та ррп	1 10	L 10	01.7	01 7	1 10	L 10	L 10.	F 10	L 10	L 10	L 10	L 10	L 10	L 10	10
Be ppm	35.9	17.7	28.0	17.1	22.3	22.2	272.4	13.3	24.1	9.8	30.8	19.9	29.6	20.3	42.3
Li ppe	109	30	8	41	33	ਝ	1	22	20	ᄧ	24	24	64	25	22
As ppm	-	r-4	-					r 1	1	 				1	-1
andd qs	_	-1	1 1		<u>п</u>	-4	23	 1	2	~7	m	1	7	67	

Table II-4-2 Mineral assemblages of rock samples determined by thin section observation

	Rock name	 		···				- 1	₹ock	fo	raie	ıg I	ine	rals	S			_	: .		rals	Se	cond		
Sample	determined by thin section observation	Structure (Texture)	Quartz	K-feldspar	Perthite	Plagioclase	Biotite	Ruscovite	Hornblende	Pyroxene	Pyralspite	Cordierite	Sphene	Apatite	Zircon	Epidote	Calcite	Tourmaline	Silimanite	Alanite	Opaque mine	Finerrained B SS	Limonite	Chlorite	Remarks
A202	bi Gneiss	Gneissose	0	٥		0	•														٠		_		Epidote : Secondary
A209	2-pyroxere Granulite	Granublastic				0			0р Ср	0					Γ		٠								Calcite : Secondary
A210	mu-bi Gnetss	Schistose	0	0		0	0															٠			Epidote Secondary
A212	bl Schist	Schistose	0			0	٠.					0													
A216	mu-bi Schist	Schistose	0			0		٥			Ī												l.		
A218	bi Schist	Schistose	Ö			0							}									<u>.</u>		 .	Cordierite→Pinite
A220	bi Schist	Schistose	0			0	٥						}									i •			Cordierite→Pinite
A232	2-pyroxere Granulit o	Grano- blastic	[[٥			0	ô	(Ор (Ср	22									٠			 	Epidote : Secondary
B213	mu Quartzite	Schistose	0	0		0		0																	
C201	bi Gneiss	Equi- granular	0	o		o	٥							٠							٠		L	·	Myrmekyte included Pyroxeme : Salite
C203	Amphibolite	Grano- blastic	0			0	٥	٥													-		 		
C208	bi-hb Granite	Grano- blastic	0	0		0	٥		0		_				_		٥				•	Ŀ	ļ.	ļ <u>.</u>	
C209	Hornblendite	Equi- granular							0		<u> </u>	ļ Ļ	<u> </u>			 				_	٠	_		_	
C215	mu-bi Schist	 Schistose 	0			o	0								<u> </u>					l 		Ŀ		<u> </u> .	
C216	mu-bi Schist	Schistose	o			۰	o		! ! !	L		0			ļ. ļ.		! !	ļ.,	<u> </u>			<u> </u>	<u> </u>	 	
C217	mu-bi Schist	Schistose	o	?		0	٥	٠	 	 	<u> </u>		_	<u> </u> .	Ŀ			Ŀ	Ŀ			<u> </u>		<u> </u>	
C220	mu-bi Schist	Schistose	o	?	 	ø	۰			! ! !		_		١.		Ĺ.					٠			 	
C221	mu-bi Schist	Schistose	0	٥		0	0			_	<u> </u>		_		ŀ	-	 	<u> </u> .	_		٠	<u> </u>	<u> </u>	<u> </u>	
C223	mu-bi Schist	Schistose	0		ļ 	0	۰		<u> </u>		L	Ĺ	ļ 				ļ	<u> </u>	_	Í 				<u> </u>	
C224	mu-bi Schist	Schistose	9		 	0	٥	o	_	<u> </u>	_	ļ 			<u> </u>		_				·		_	-	
C229	Cortlandite	Poikilitic	_	ļ +	<u> </u> 	<u> </u> .	ļ 		6	Aug			Ŀ	<u>L</u>	,	ļ					·			-	
C232	bi Schist	Schistose	0	 	_	0	۰	_	L	<u> </u>	ļ.	L	<u> </u>		<u> </u>		_	_	 	_	·			<u> </u>	
C235	mu Quartzite	Schistose	Ø	Ö	<u> </u>	0	Ŀ	o		<u> </u>				Ŀ	Ŀ	_		Ŀ	<u> </u> 	_	Ŀ				
C236	Pegæatite	granita nytyre AHotro-	o	o	_	0	.	ļ .	_	_	_	<u> </u>	<u> </u>		_	-		Ŀ	<u> </u> 		_			<u>i</u>	
C240	bi Granite	Equi- granular	0	0	-	o	٥	١.					_	<u> </u>		_	<u> </u>	 		1	<u> </u>	<u> </u>	_	<u> </u> .	Calcite: fine, veinlet
C243	bi Granite	Equi- granular	0	0	ļ.	0	0	<u> </u> .				_	ļ.	<u> </u>	.	ļ_		-				<u> </u>		 	
C244	bi Gneiss	Gneissose	9	0		0	٥	<u>i</u>				-	-	ļ.	•		_] 	ļ	_			_	ļ 	
C245	bi Granite	Equi- granular	o	0	Ŀ	0	<u> </u>	.	<u> </u>		_	Ľ	-		-	_	ļ	ļ	-	_		•			
C248	Skarn	Grani- blastic	٥		<u> </u>	0					ļ	_	ļ.	L	ŀ	0		Ļ	_	L	.				
A225	Dolerite	Porphyritic	Ph Ca	enoc icit	ryst e Se	COD	gite dary	.0rl sii	hop	yrox ls:0	hlo	Gro	unda . fin	ass:	Pla	gioc ed M	ias	yit	gite e:Op	, Mag aque	net Bi	ite, nera	Apai ls	ite.	

0> 0> 0>

...

組織:片麻状

構成鉱物:主成分;石英,カリ長石,斜長石,黒雲母

副成分; サーラ輝石, チタン石, 燐灰石, ジルコン

不透明鉱物;有

二次鉱物;緑泥石, 細粒白雲母, 褐鉄鉱

⑤C203は肉眼的には滞緑灰色中粒, 等粒状で, 片麻状構造を呈する.

岩石名:角閃岩

組織:グラノブラスティック

構成鉱物:主成分;斜長石、ホルンプレンド、石英、黒雲母、白雲母、カリ長石

副成分;チタン石, 燐灰石, ジルコン

不透明鉱物;有二次鉱物;褐鉄鉱

⑥C244は肉眼的には滞灰色、中粒、等粒状で、片麻状構造を呈する.

岩石名: 黒雲母片岩

組織:片麻状

構成鉱物:主成分;石英,斜長石,黒雲母,カリ長石

副成分;燐灰石、ジルコン、緑簾石、電気石

不透明鉱物;有

二次鉱物;無

⑦C245は肉眼的には淡褐色,中粒,等粒状である.

岩石名:花崗岩 組織:等粒状

構成鉱物:主成分;石英,カリ長石,斜長石,黒雲母,白雲母

副成分:無

不透明鉱物;有

二次鉱物;緑泥石,細粒白雲母

3) 時代

本地域からは時代を示す直接の証拠はでていないが、岩相の特徴からカイコ岩体に対比した。 Jardin de Sa (1984a)によれば始生代とされている。

4) 層序関係

本地域における最下位層である.

(b) エクアドル層

1) 分布

調査地域の西部に分布する。北西部では北部のB地域から延長してアレイアダコブラ(Areia da Cobra)まで広く分布する。分布域はほぼ N-S方向で、その幅は3 ~ 5kmである。アレイアダコブラからさらに 3km南方のピントゥラス川(Riacho das Pinturas) 沿いには 0.1km×1km程度に小分布する。また南西部のキシャバ(Quixaba) 付近にも約 2kmの幅で南北方向に分布する。本岩体は調査地域の外部まで延長する。本岩体は北方のA、B地域では標高 600m 台の、深く刻まれた山脈を形成していたが、C地域に入り、その高度を 400m まで低くし、分布南端部ではセリド層の下部に潜っていく。A、B地域では本層は 40 度以上の傾斜であったが、C地域に入り傾斜を緩め、分布域南部では10度以下になっている。ピントゥラス川沿いの露出は東西方向の断層により上昇したものである。

2) 層厚

リオグランデドノルテ州中央南部では 800m+ (Ebert, 1968) とされているが、本地域では上位のセリド層と接するものの、下位層との接点がみられず、層厚は不明である。

3) 岩相

珪岩、白雲母珪岩、白雲母長石質珪岩等からなる。場所により黒雲母も少量認められ、セリド層と同様の黒雲母片岩も介在する。セリド層の黒雲母片岩より固く、風化に強い、層理面・片理面で、数 cm の厚さに割れることが多い。西部のシキシキ(Xique xique) 及び北西部のログラドロ(Logradouro)北方からそれぞれ1試料 (B213, C235)を採取し(Figure II-4-3), 化学分析及び薄片の検鏡を行った(Table II-4-1, Table II-4-2)。検鏡結果は以下のとおりである。

①B213は肉眼的には滞褐色,細粒,等粒状で,片状構造を呈する.

岩石名:砂質片岩

組織:片状

構成鉱物:主成分:石英、斜長石、カリ長石、白雲母、黒雲母

副成分:ジルコン

不透明鉱物;有

二次鉱物;無

②C235は肉眼的には淡褐灰色,中粒,等粒状で,片状構造を呈する.

岩石名:砂質片岩

組織:片状

構成鉱物:主成分;石英,カリ長石,斜長石,白雲母,黒雲母

副成分: 鱗灰石、ジルコン、電気石

不透明鉱物;有

二次鉱物;無

4) 時代

時代を示す資料は見付からないが、他の地層との層序上の関係から原生代初期とされる.

5) 層序関係

下位のジュクルトゥ層とは整合とされているが、本地域ではその接点は見られない。

6) 堆積環境

先造山期の堆積物であるとされている.

(c) セリド層

1) 分布

調査地域全体に広く分布する。分布の方向性はA地域では NE-SW方向、B地域では NNE-SSW 方向であったが、本地域に入り N-S方向になる。

2) 層厚

不明である.

3) 岩相

主として雲母片岩からなり、珪質片岩、石灰珪酸塩岩を伴う.

本年度調査域でも、昨年同様、雲母片岩は3種(pessx1,pessx2,pessx4)に分かれる. セリド層分布域の中央部及び北西部にpessx1が分布する.これは主として黒雲母片岩で構成されるが、その中に柘榴石を含む柘榴石・黒雲母片岩、また、菫青石を含む菫青石・黒雲母片岩が局部的に介在する.pessx2はpessx1に比較し、緻密で固く、黒雲母の含量が少ない珪質な黒雲母片岩で、pessx1の分布域中、ほば調査地域の中央部に局部的に分布する.その方向はNNE-SSWないしNNW-SSEである.pessx4はセリド層分布域の東部及び西部に広く分布する.本層は黒雲母・片岩、柘榴石・黒雲母片岩及び菫青石・柘榴石・黒雲母片岩の互層である.それぞれの片岩の厚さは10cm~2m程度である.

p € ssx2が露出する地域は調査地域中央部を南北方向に伸びるほぼ 3kmのソーンにあり、このソーンは B 地域から連続する褶曲ソーンに一致する。この褶曲ソーンは調査地域を南北に貫いている。

B地域では pessx1と pessx4は調査地域をほぼ二分し東西に別れて分布するが、C地域に入り複雑な分布状況を呈するようになる。

以上のように、セリド層は岩相から pessx1と pessx4に大別され、 pessx1の中の褶曲帯に小規模の石灰珪酸塩岩層(pessx2) が局在するという形になる。

p C sscsは厚さが数 10m, 露頭延長が数m~数 10mといずれもごく小規模であり、セリド層

の西端のエクアドル層との境界部近くに分布する。本層に接するか若干離れて角閃岩の薄層が見られる所もある。ガルガンタ山、ピントゥラス川沿い及びキシャバの西方に分布する。 B地域では調査地域中央部の褶曲ソーンの東部の pG ssx4に数多く露出していたが、C地域では褶曲ソーンの東方にはほとんど認められない。セリド層全体として片理がよく発達している。調査域中央部の NE-SV方向の断層では黒雲母片岩の一部がマイロナイト化している

セリド層分布域から、肉眼的に異なる試料 16 個を採取し(Figure II-4-3), 化学分析及び 薄片の検鏡を行なった. 試料は p c ssx1から 7個, p c ssx2から 2個, p c ssx4から 4個, p c sscsから 3個である.

化学分析の結果はつぎの通りである(Table II-4-1)、ACF図では片岩の試料はいずれも 泥質岩ーグレイワッケの組成を示す範囲内におさまっている(Figure II-4-4)、今年度調査域 内からの試料は昨年度調査域内からの試料と同様にF頂点からAC線の方にシフトしている。 すなわち、(FeO + MgO + MnO)がより少なくなっている。

pesscsはACF図上では全て塩基性の範囲に入る(Figure II-4-4). これらの試料はフィールド名として石灰珪酸塩岩を使用しているものの、本米は塩基性岩であったと考えられる. すなわち、層序的にセリド層を考える場合、セリド層は大局的に雲母片岩を主とし、そのなかに塩基性岩が介在するという層序になる。A222はAg, No, W, Be等が富化され、C229、C249はAg, V, Be等が富化され、鉱化作用を受けたと考えられる。

薄片の検鏡結果はTab. II-2-2の通りであり、以下のようにまとめられる.

① p € ssxlの雲母片岩(A210, A216, A220, C215, C220, C223, C232)

これは肉眼的には灰色~暗灰色、細粒~中粒で、片状を呈する.

岩石名:白雲母-黒雲母片岩,柘榴石-黒雲母片岩

組織: 片状

構成鉱物:主成分;石英、斜長石、黒雲母、(カリ長石)、(白雲母)、(董青石) (パイラルスパイト)、董青石はピナイト化している。

副成分: 燐灰石、ジルコン、(チタン石)、(電気石)、(珪線石)

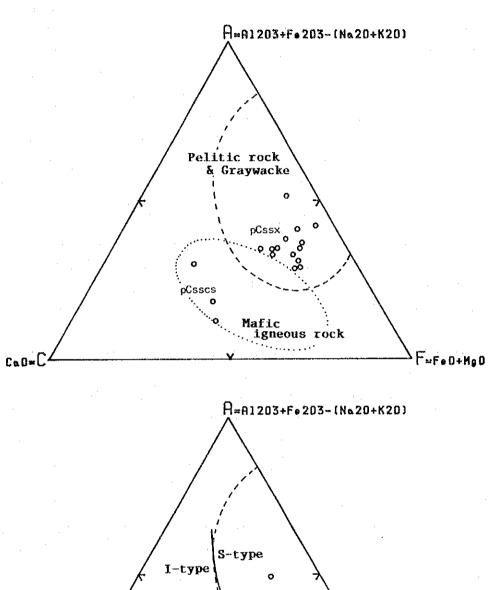
不透明鉱物:有

二次鉱物: (細粒白雲母), (緑泥石)

() 内の鉱物は試料により欠如するものもある.

② p € ssx2の雲母片岩(C221, C224)

これは肉眼的には淡灰色、細粒~中粒で、片状を呈する.


岩石名:白雲母-黒雲母片岩

組織:片状

構成鉱物:主成分:石英、斜長石、黒雲母、カリ長石、白雲母

副成分; 燐灰石, チタン石,

不透明鉱物;有

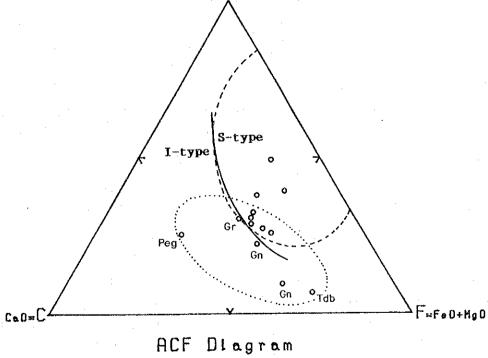


Figure II-4-4 ACF diagram drawn from the analytical data of rock samples in area C

二次鉱物: (細粒白雲母), (緑泥石)

③ p C ssx4の雲母片岩(A212, A218, C216, C217)

これは肉眼的には灰色~暗灰色、中~粗粒で、片状を呈する。一般に黒雲母が多い。C216 には 黄石の斑状変晶が入っている。

岩石名:柘榴石-董青石-黑雲母片岩,柘榴石-董青石-黑雲母-白雲母片岩,董青石-黒雲母-白雲母片岩,白雲母-黒雲母片岩

組織:片状

構成鉱物:主成分;石英、斜長石、黒雲母、(カリ長石), (白雲母), (パイラルスパイト), (黄青石), 董青石はピナイト化している.

副成分;ジルコン, 鱗灰石, (電気石), (珪線石)

不透明鉱物;有

二次鉱物: (細粒白雲母), (緑泥石)

④ pCsscsの石灰珪酸塩岩(A222, C229, C249)

これは肉眼的には緑灰色~暗緑色、細粒~粗粒、片状、A222には緑色の銅鉱物が認められる。

岩石名:両輝石グラニュライト(A222), コートランダイト(C229), スカルン(C249)

組織:グラノブラスティック、ポイキリティック

構成鉱物:主成分; A222-ホルンプレンド, 斜方輝石, 斜長石, カリ長石

C229-ホルンプレンド,オージャイト,斜長石

C249-斜長石, 石英, ホルンブレンド

副成分:チタン石、燐灰石、ジルコン、 (緑簾石、C249), (方解石)

不透明鉱物;(有)

二次鉱物;(緑泥石),(細粒白雲母)

A222についてはX線回折による鉱物の同定を実施したところ、斜方輝石は普通輝石~透輝石であることが分かった(Table II-4-3).

4) 時代

トランスアマゾン造山運動 (2,200 ~1,800 ma, Brito Neves,1983)の造構運動を受けていることから、原生代前期とされる.

5) 層序関係

下位のエクアドル層とは整合に接する、調査地域西部のガルガンタ山の東及びガビアオ山(Serra da Gaviao)の西にエクアドル層とセリド層の指交関係の境界が見られる。エクアドル層との境界には前述したように石灰珪酸塩岩及び角閃岩が胚胎する場所もある。

6) 堆積環境

Table II-4-3 Mineral assemblages of samples determined by X ray diffraction

				N	/lir	ı e ı	a l	I	nar	nes	3		
Number	Sumple number	Sericite/Montmolli Hixed layer	Sericite	Chlorite	Biotite	Quartz	Plagioclase	Augite ~Diopside	Actinolite	Epidote	Dravite	Hematite	Goethite
1	A=222						0	0	0	0			
2	B-2642					0						o	
3	B-3040					0					0		
4	B-3042					0					0		
5	A = I = 1, $81 m$		o	•		0	0			0			:
6	A-II-1, 41.7m			0	0	0	0						
7	A-II-1, 46.3m				•	0					0		
8	A-11-2, 68m	•				0	0						
9	A-I-3, 23m				0	0	0						
10	A-II-3, 43 m				0	0	0				ı		

@>0>a>

フリッシュ堆積物で、グレイワッケ~アージライト・タービダイトのサイクルで構成される 深海堆積物とされている。

(2) 第三系

(a) セハドスマルティンス層

1) 分布

調査地域中央部のメサを形成している所の標高 680m 以上に分布する. 分布場所は散在し,ひとつひとつの分布面積は狭い.

2)層厚

本地域では 50 m 以上に達するが、上部が削剥されているため、実際の厚さは不明である.

3) 岩相

本地域では珪岩礫を主とする礫岩,砂岩,それに粘土質の頁岩からなる。酸化し,特徴的に 赤味を呈する。

調査地域西部のエルモ川沿いから1試料(A225)を採取,化学分析及び顕微鏡による観察を実施した。

4) 時代

化石はないが、本地域周囲の地層との対比から新生代第三紀とされている。

5) 層序関係

本地域では原生代の地層の上に直接不整合に載る.

6) 堆積環境

Bigarella (1975) (in Santos et al, 1984) によれば、ペディプレーン上に堆積した陸上堆積物であるとされている。

(3) 貫入岩類

本地域の貫入岩類は、ブラジル造山輪廻期の貫入岩 (pegr3),およびそれ以後の原生代-古生代の貫入岩 (pepg),そして第三紀の貫入岩 (Tdb)に分けられる。pegr3の命名はJardin de Sa (1981)による。

(a) p∈gr3 岩体

調査地域南東端のカポエイラドルイス(Capoeira do Luis)からポソダオンサ(Poco da Onca) にかけ、さらに調査地域外に向け分布する、本岩体はカイコ岩体の内部に分布する。

岩相は、灰色〜紅灰色、細粒〜粗粒、等粒状の黒雲母花崗岩である。

本地域の本岩体には放射年代等のデータはないが、岩相の特徴から G3 とした.

試料 C201 , C240, C243 を採取し (Figure II - 4-3) , 化学分析および薄片の検鏡を行った (Table II - 4-1, Tab. II - 4-2) .

これらは、肉眼的には灰色あるいは淡褐色、中粒~粗粒で等粒状を呈する。試料(C201)は細粒で、黒雲母が多く、一見セリド層中の黒雲母片岩と類似している。

岩石名: 黒雲母花崗岩

組織:等粒状

構成鉱物:主成分;石英,カリ長石,斜長石,黒雲母, (白雲母)

副成分; (ジルコン), (チタン石), (燐灰石), (緑簾石), (電気石)

不透明鉱物:有

二次鉱物;(緑泥石),(褐鉄鉱)

(b) ペグマタイト

小規模の岩脈状を呈するものと、規模が大きく岩体状を呈するものに別れる。岩体状を呈するものは、調査地域の中央部に東西の最大幅 4kmで南北方向に 18km 以上にわたり分布する最も大きなもの、この岩体の西武で州道 PB-288 から北のフォルテ山(Serra do Forte)にかけての岩体、南西端の NNE-SST方向沿いに伸びる岩体、そして最大の岩体とピクイ市の間のバハダキシャバ(Barra da Quixaba)付近に分布するもの、ピクイ市東方 2kmのものである。岩脈状を呈するものは調査地域全体見られる。ペグマタイトの延長方向は一般に片岩の片理の方向と一致し、調査地域北部及び東部ではほぼ N-S方向であるが、調査地域南西部では片理の方向と交差し NE-ST方向になる。調査地域中央東部のバハダキシャバのペグマタイト岩体周囲にも NNE-SST方向のペグマタイト岩脈が見られる。個々の岩脈の幅は数 cm から厚いもので 10m程度に達する。また走向延長は一般に短く、最大で 1km程度と推定される。全地域におけるペグマタイトの傾斜は一般に急であるが、緩傾斜の物も見られる。

N-S 方向のペグマタイトと NE-SV方向のペグマタイトは調査地域の中央部でぶつかる. C地域の南東部では、A、B、C地域と続いてきた大局的な構造方向にここで突然新しい構造が加わったことを意味している.

以上のペグマタイトは第三系を除いた地層,岩体に貫入しているが,調査地域内のG₂ およびジュクルトゥ層内では確認していない.

調査地域中央部の最大のペグマタイト岩体中には黒雲母片岩,等の捕獲岩が見られる.

ペグマタイトの組成鉱物は主としてカリ長石,石英,斜長石,白雲母,黒雲母,電気石などであり、場所によっては緑柱石,コロンバイトータンタライト等を含む、白雲母,緑柱石,コ

ロンバイトータンタライトの多い所では、小規模に採掘されていることが多い。

時代は、貫入母岩からセリド層堆積以後の貫入である。

ペグマタイト(C236)及びペグマタイト中の捕獲岩を採取(A209), 化学分析および薄片の検鏡を行った (Table II-4-1, Tab. II-4-2).

A209は肉眼的には淡褐色, 中粒〜粗粒で等粒状を呈する. C236は淡褐色, 粗粒, 等粒状である.

①ペグマタイト中の捕獲岩(A209)

岩石名: 両輝石グラニュライト

組織:グラノブラスティック

構成鉱物:主成分;斜長石,石英,カリ長石,斜方輝石,パイラルスパイト

副成分;チタン石, 燐灰石

不透明鉱物;有

二次鉱物;緑泥石,方解石,細粒白雲母

②ペグマタイト(C236)

岩石名:ペグマタイトあるいはアプライト

組織:他形粒状

構成鉱物:主成分;石英、斜長石、カリ長石、黒雲母、白雲母

副成分;電気石不透明鉱物;無

二次鉱物;細粒白雲母

(c)第三紀玄武岩

本調査地域内では、エクアドル層及びセリド層の内部に岩脈状に貫入している。調査地域西部のシキシキ北東方のエルモ川に沿い、中央北部のカイサラ(Caicara)、中央北部のセハノバ(Serra Nova)、中央東部のオリョドスメンデス(Olho dos Mendes)東部に見られる。いずれもその走向は WNW-ESE~E-W ~ENE-WSW 方向で、急傾斜である。幅は数 $10 \, \mathrm{cm} \sim 2 \, \mathrm{m}$ 程度であり、数条の岩脈で構成されていることが多い。

この岩脈から試料 A225 を採取し(Figure II-4-3) , 化学分析, 薄片の検鏡を行った(Table II-4-1) .

試料は肉眼的には暗黒色を呈し、細粒、緻密である.

岩石名:ドレライト

組織:斑状

構成鉱物:斑晶;オージャイト, 斜方輝石

基質;斜長石, オージャイト, 燐灰石, 方解石, 磁鉄鉱

不透明鉱物:有

二次鉱物;緑泥石,細粒白雲母

(1) 地質構造の特徴

広域的な構造上の位置づけについては、一昨年度及び昨年度の報告書、および本報告書の第 1部・第3章に記述した、ここではC地域内に分布する地層の構造について述べる。

A, B地域では全ての地層が NNE-SSW方向に分布していたが、C地域では東端のカイコ岩体及び西端のエクアドル層がほぼ南北方向に延長するものの、セリド層は特にある方向を持った分布をしていない。しかしながら、ペグマタイト岩脈、断層、岩石の片理などにはA, B地区と同様に強い方向性が現れている。その方向性は北半部及び東側では N-Sが強く、南西部では NE-SWが強い。

まず断層であるが、調査地域東端でのセリド層とカイコ岩体を分けるピクイ断層は大きな構造単元であるセントラル領域とセントローオリエンタル領域を分ける構造線であり、東に傾斜する逆断層である。ピクイ断層の西部にも同方向の断層が推定される、調査地域の中央部にはN-S方向の数本の断層群が認められる。この断層群の西端の断層はA、B地域から連続するものであり、セリド層の中央部を縦走する。この断層沿いにはマイロナイトが認められる。エクアドル層とセリド層の境界はB地域では一部NNE-SSV方向の断層であったが、本C地域では同方向の断層は認められない。

上述の断層を切り、またはそれらと交差する WNW-ESE~N-S ~ ENE-WSW 方向の断層も地域全体に見られる。これらの断層に沿い第三紀玄武岩岩脈あるいは石英脈が貫入していることがある。この系統の岩脈は一般に WNW-ESE~N-S ~ ENE-WSW 系統の断層より短い。調査地域西部ではこの断層の南側が上昇し、そのためにエクアドル層が繰り返し出現している。また、東部のセリド層とカイコ岩体の境界付近には NE-SW方向の断層も認められる。この種の断層はB地域にも認められた。

本地域の中央部をB地域から連続する褶曲ゾーンが南北に縦走する。このゾーンの幅は約3kmで、このゾーンの中に NNE-SST~ N-S~ NNT-SSE方向の小規模の褶曲が複数存在する。これらの褶曲は波長が1km以内程度、軸の長さは2~3km程度である。この褶曲ゾーンの東端に沿って大規模なペグマタイト岩体が貫入している。また、B地域同様 pcsx2は主としてこの褶曲ゾーン内に小規模に分布する。エクアドル層中にも振幅の小さい褶曲が認められる。エクアドル層も全体として背斜構造を示すが南へ向けプランジする。

片理の走向も大きな構造と平行で、上述の通りであるが、傾斜は東部では一般に30°以上であり、西部ではその傾斜は緩やかになる。

本地域の南西部ではペグマタイト岩脈の走向が NE-SVで本地域全体の走向とは異なっている. ここでの片岩の片理はほぼ N-S方向でペグマタイト岩脈の走向とは交差してい,一般の構造と は異なっている.

(2) 地質構造と鉱化作用との関係

本年度調査地域内ではペグマタイトを除けば明瞭な鉱化作用は発見していない。従って, 鉱化作用と地質構造との関連は見出だされない。

4-2-3 鉱化作用及び変質作用

(1) C地区の鉱嶺について

本地域にはスカルンに関連するタングステン鉱床、ペグマタイトに関連するニオブータンタル鉱床、金砂鉱、ニオブータンタル砂鉱がある(Figure II-4-5).

金の鉱徽については、調査地域中央西部の含金石英脈が報告されていた(CPRM, 1980)が、現地調査の段階では確認することができなかった。金砂鉱は全て地元民の情報によるもので、現在採掘中のものはない。従ってその規模等については不明である。

タングステンの鉱化作用は調査地域南西部及び東端中央部の2か所に認められた、南西部のものはセリド層中にあり、東部のものはカイコ岩体中にある。南西部のものはエクアドル層とセリド層の境界近くのセリド層中にあり、石灰珪酸塩岩に伴う。石灰珪酸塩岩の地下での分布面積は東西1kmに渡る。東端中央部のものはカイコ岩体の角閃岩を伴う片麻岩中の脈状鉱床で、その走向はほば N-Sである。脈幅は不明であるものの、採掘幅から見て、数cmのものが幾条かあるものと推定される。品位等については不明である。

ペグマタイトに伴うニオブータンタル鉱床は調査地域全体にわたり散在する。全て小規模に 採掘されているガリンポによりその位置が確認されるが、その規模、品位等については不明で ある。

(2) 岩石の徽量成分について

記述した岩石試料 30 件について地化学探査に使用した元素と同元素の化学分析を実施した (Table II - 4-1). Ta, Sn, Agはいずれも検出限界未満の値であり、 II は試料 C122 を除き全て 検出限界未満である。 Fe は第三紀玄武岩の 7.9 %を除き、 $2.0 \sim 5.8$ % 含まれているが、岩質による特徴は明瞭ではない。 試料 C122 は調査域南東部の p ϵ sscsからの試料で、薄片観察 による岩石名は含柘榴石角閃石片岩である。以下に述べるように Sn , Be, Au等はいずれも他 より高い値を示しており、鉱化作用を受けたと考えられる。

以下に岩質により特徴の明瞭な元素について述べる.

(a) 金 (Au)

金を検出した試料はセリド層中の黒雲母片岩(0.9ppb,3ppb), 石灰珪酸塩岩(5ppb,15ppb), エクアドル層の珪岩(0.6ppb), G。の花崗岩(6ppb), である。他は全て検出限界の 0.5 ppb未満である。

石灰珪酸塩岩の2試料(A222, C249)は金そのものの含有量は低いが、後述する銀、モリブデン、タングステン、ベリリウム等が多量含まれ、鉱化作用に伴うものと判断される。

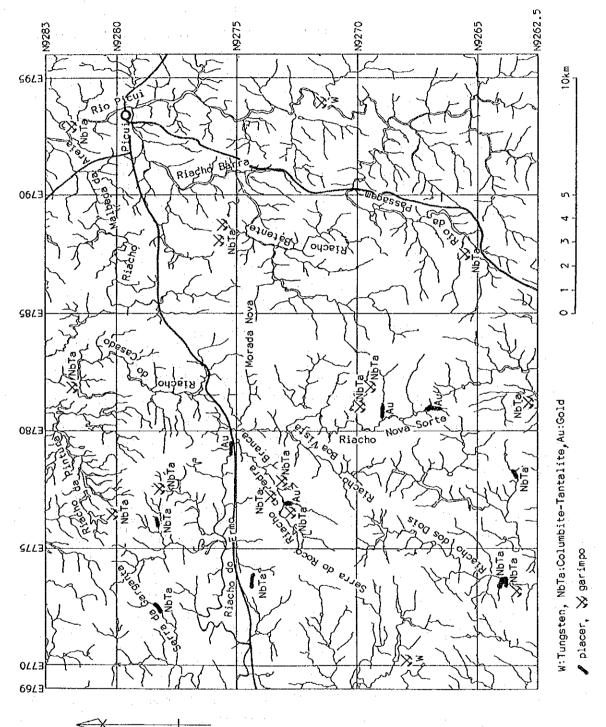


Figure II-4-5 Location of mines and mineral showings in area C

セリド層中の黒雲母片岩はA、B地域に比較して低く、しかも検出限界の試料が多い。

(b) 銀 (Ag)

石灰珪酸塩岩の A-222とペグマタイト中の捕獲岩 A-209でそれぞれ 33.7ppm, 1.6ppmが検出され,他は 0.1ppm ~0.4ppmである。昨年度及び一昨年度の調査地域では高くても 0.2ppm で、大部分が 0.2ppm 未満であったことと比較すると、C地域は銀の含有量は高い、特に上記の2試料は鉱化作用に伴うものと判断される。

(c)鉄(Fe)

最低が 1.13%, 最大が 9.82%である. 第三紀の塩基性岩脈は最も高く 9.82%である.

(d) マンガン (Mn)

石灰珪酸塩岩の C-229が最も高く、3,067ppm. 他は数100ppm~2,000ppm程度で、昨年度、 一昨年度の地域の岩石試料と同様に、他の元素に比較して高い含有量を示す。 C-229は鉱化作用を被った可能性があるが、他は柘榴石が多い岩石組成を反映している。

(e) モリブデン(Wo)

石灰珪酸塩岩の A-222とC-249 は高く、それぞれ 432ppm 、22ppm である。また花崗岩(C-243) 及びペグマタイト中の捕獲岩(A-209) もやや高く、それぞれ 12ppm, 20ppm である。試料 A-222 は特に高く、鉱化作用を受けたと考えられる。

(f) タングステン(W)

(g)錫(Sn)

全試料が 9ppm 以下と全般的に低い、岩石種による含有量の高低の傾向は認められない。

(h) ニオブ (Nb)

調査地域中央部のセリド層からの黒雲母片岩 C224 で 42ppm, 調査地域北西部の玄武岩岩脈の A225 が 67ppmで、やや高い値を示す、他の元素との相関はない。

(i) タンタル (Ta)

全ての試料で検出限界未満である.

(h) ベリリウム (Be)

一般に 2ppm 以下と低い、石灰珪酸塩岩の A-222とC-249 はそれぞれ 268.6ppm , 272.4ppm と高く, 鉱化作用によると考えられる。ペグマタイトの C-236が 9.8ppm と低いのはベリリウムがベリル等の鉱物中に濃集し、試料中にはこの鉱物がないことによると考えられる。

(i) リチウム (Li)

昨年度および一昨年度の地域でもそうであったが、黒雲母片岩中の含有量が他の岩石中より高い傾向がある。A-212 , C-216 はそれぞれ 100ppm , 109ppmであり、他は 80ppm未満である。 岩石そのものの成分を反映していると考えられる。

(k) 砒素 (As)

1ppm 未満の値が多く、最大は 2ppm である。上記の鉱化作用をうけたと考えられる A-222 は特に高くはなく、 2ppm である。この鉱化作用には砒素は伴っていない。

(1) アンチモン (Sb)

検出限界の 1ppm 未満から最大は 4ppm である。石灰珪酸塩岩の A-222と花崗岩の C-240は それぞれ 4ppm , 3ppmと若干高いが、特に鉱化作用によるとは考えられない。

4-3 考 察

(1) 地質及び地質構造について

C地域においては、北部のB地域同様にセリド層は $p \in ssx1$ と $p \in ssx4$ に分割された。これら2つの岩相間の境界は明瞭である。その境界はA,B地域ではほぼ中央部を南北方向に縦断したが、C地域に入り複雑に入り組んでいる。即ち,A,B地域では東側に $p \in ssx4$ が,西側に $p \in ssx1$ が分布していたが、C地域に入りその分布傾向がくずれる。同時に,A,B地域で $p \in ssx4$ の西端に多く賦存していた $p \in sscs$ はC地域ではほとんど認められない。また,A,B地域では西端のエクアドル層との境界近くの $p \in ssx1$ 中にタングステンの鉱化作用を伴う $p \in sscs$ の薄層が賦存していたが、C地域では西端の $p \in ssx4$ にタングステンの鉱化作用を伴う $p \in sscs$ の薄層が認められる。従って, $p \in ssx1$ と $p \in ssx4$ は場所の違いによる同時異層ではないかと考えられる。

pcssx1はC地域の中央部で南北方向に pcssx4の分布域にくいこんでいるが、ここはA、B地域から連続する褶曲ゾーンである。

本地域において特徴的なのは巨大なペグマタイト岩体の存在である。このペグマタイト岩体は上記の褶曲ソーンの東部境界に沿う形で貫入しており、その岩体の伸びの方向もほぼ南北で

ある。このペグマタイト岩体の西方、南西方および東方にも小規模ではあるがペグマタイト岩体がある。特に南西方のペグマタイト岩体が NE-SW方向に延長していることなどからも、A、B地域とは異なった地域であることが分かる。

断層は NNE-SSW~N-S 系、 WNW-ESE~ENE-WSW 系であり、前者は後者より古い時代のものであることが判明している。 ENE-WSW ~ WNW-ESE系の断層には、これに沿って玄武岩岩脈が貫入している。 NNE-SSW~N-S 系はC地域東半部に見られるが、 WNW-ESE~ENE-WSW 系はほぼ全体に見られる。さらに、 NNE-SSW~ N-S系はA、B地域より連続するものである。

岩石の化学分析の結果、昨年度の調査地域ではセリド層に 1~9 ppb 程度の金が含有されていたのにたいし、C地区のセリド層には金はほとんど含有されていない。また、 pc sscsに区分した岩石は石灰質源の他にかなりおおくの部分が塩基性源の岩石であることが推定され。しかもセリド層に比較し金及びヒ素を多量含有する岩石があることが分かった。このことから pc sscsを多く胚胎するゾーンを NNE方向に延長すると昨年度調査地域のヒ素及び金の異常がみられたゾーンに一致する。

(2) 鉱化作用について

C地域ではペグマタイト岩脈に関連する鉱化作用およびセリド層中の pcsscsに関連するタングステン鉱化作用を除けば明瞭な鉱化作用は認められない。特に、金の鉱化作用については砂鉱を採取した場所が知られているのみで、母岩中の鉱化作用は見出だされていない。

後述する河川堆積物地化学探査にも現れているが、本地域における金の鉱化作用はA, B地域に比較しても非常に弱いことが分かる。

第5章 С地域の地化学探査

5-1 河川堆積物による地化学探査

5-1-1 探查目的

沢砂地化学探査の目的は、第2年次調査の南部延長にあたるC地域 (500km²) において、 鉱化作用と関連する元素を地化学的手法で把握し、鉱床特に金鉱床の胚胎有望地を抽出することである。

5-1-2 探查方法

(1) 試料採取及び試料調整

全体で 807個の河川堆積物試料を採取した(Plate II-5-2, Figure II-5-1). 採取密度は平均 1.6個/km² であるが、東部の花崗岩、西部のエクアドル層及び中央部のペグマタイトの分布域では若干採取密度を低くした。

試料採取点では、表面から約10cmまでの深さの沢砂を、フルイにより80メッシュアンダーの 試料にして採取した、採取した各試料は四分法により 50 グラムを分析用とした。また、試料 採取点の情報として地質層序、沢のオーダー、沢幅及び沢砂の粒径等を記録した。

(2) 化学分析

試料は、現地にて概略秤量調整した後に、ブラジルのGEOSOL及び大手開発㈱地科学試験所へ送付し、化学分析を行った、対象元素は、Au、Ag、Fe、Mn、Mo、W、Sn、Nb、Ta、Be、Li、As及びSbの13元素である。各元素の化学分析法と検出限界値をTable II-3-1に示した。化学分析の結果は、Appendix 3に示す。この分析結果を昨年度の結果と比較すると、すべての元素においてC地域はB地域より濃度が低いことが判明した。

(3) データ処理

(i) 単変量解析

得られた分析値をコンピューターに入力し、統計処理を行った。この際、処理の都合上検出限界値に満たない試料については検出限界値の半分の値を用いた(Auについては検出限界値 0.5 ppb を 0.2 ppb として入力した)。基本統計量及び各元素間の相関係数をTable II-5-1、Table II-5-2にそれぞれ示す。Ag及び Sb は試料の 99.9%以上が検出限界未満なのでこれらの表の数字には実際上意味がない。Fe-Mn 及び Ta-Nb間の相関係数はそれぞれ 0.74,0.567 で相関がある。

地化学異常を求めるしきい値の決定には、既述のEDA法を使用した、各成分について分析値のヒストグラム及び boxplotを作成し (Figure II -5-2(1) ~(4) Table II -5-3), この

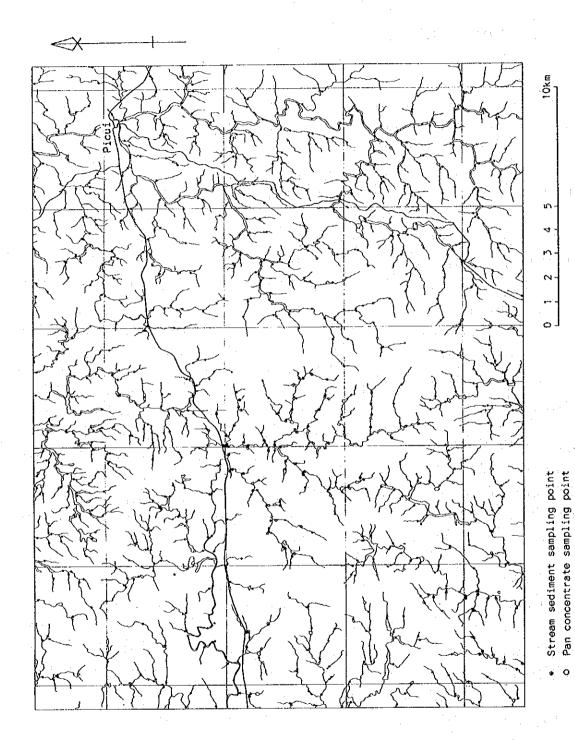


Figure II-5-1 Location of stream sediments and pan concentrates

Table II:5-1 Summary of statistical studies of stream sediment analytical data

Elements	Mean	Variance	Standard	Minimum	Maximum	Below detection
			deviation			Linit (%)
Au (ppb)	.0.2246	0.119	0.344	0.200	63.000	93.1
Ag (ppm)	00.1160	0.000	0.021	0.100	0.400	6.69
Fe (%)	3.279	0.030	0.173	0.510	18.580	none
Mrn (popm)	1036.945	0.057	0.239	89.000	7386.010	none
(mdd) ow	0.578	0.026	0.162	0.500	4.000	84.8
(mdd) M	55.2246	0.016	0.125	5.000	268.000	96.5
Sn (ppm)	22,149	0.6070	0.239	1.000	19.000	40.6
Nb (ppm)	23.147	0.140	0.374	5,000	680.000	11.8
Ta (ppm)	5.799	0.051	0.226	5.000	270.000	90.8
Be (ppm)	22.837	0.032	0.180	9 900	372.900	лопе
Li (ppm)	26.369	0.041	0.201	5.000	000798	none
As (ppm)	1:381	0.054	0.233	0.500	4.000	15.5
Sb (ppm)	0.500	0.000	0.011	0.500	1.000	6.66

Table II-5-2 Correlation coefficient among thirteen elements in stream sediments

Elements	Au	AB	Fe	Ŋu	Ho	*	Sn	NP	Ta	Be	Li	AS	Sp
ЪЧ	1:000												
Ag	-0.009	1.000								• •			
ь- -	0:030	0.035	1.000			-							
uw.	0.072	0.107		1.000									
og R	0.026	-0.014		-0.159	1.000				-			-	
7 5	0.044	-0.006		0.076	0.023	1:000				-			
S	-0.005	-0.039	0.085	-0:033	0.049	0.101	1:000			-			
Q.	0.052	-0.024	0.358	0.488	-0.001	0.152	0.198	1.000	-				
Ta	.0.092	-0.010	0.208	0.313	-0.008	0.129	0.107	0.567	1:000				
Be	0.021	-0.032	0.097	0.012	0.066	0.127	0.316		0,233	1.000			
Ţ	0.024	0.024	0.443	0.220	-0.104	0.005	0.104	0.037	0.015		1.000		
As	0.018	0.024	-0.007	-0.033		-0.093	-0.089	,	-0:008	0.043	-0.029	1:000	
Sb	-0.009	-0.001	-0.018	0,001		-0:006	-0:038	0 00 0	-0:010		0.007	-0.067	1.000

Table II-5-3 EDA analysis of stream sediment analytical data

Elements	Median	Lower	Lower	Lower	Upper	Upper	Upper	Upper fence
.		fence	wisker	hinge	hinge	wisker	fence	or more (%)
Au (ppb)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	6.9
Ag (ppm)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
Fe(%)	3.35	0.39	2.46	2.67	4.19	4.54	6.47	2.7
Mn (ppm)	1025	-307.5	669	735	1430	1598	2472.5	5.7
Mo (ppm)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	15.2
W (ppm)	5	5	5	5	5	5	5	3.5
Sn (ppm)	3	-3.5	1	1	4	4	8.5	1.2
Nb (ppm)	22	-18	13	15	37	45	70	10.0
Ta (ppm)	. 5	5	5	. 5	5	. 5	5	9.2
Be (ppm)	22.5	-2.05	15.8	17	29.7	32.5	48.75	2.6
Li (ppm)	27	-5.5	18	20	37.	40	62.5	1.9
As (ppm)	2	-0.5	1	1	2	2	3.5	0.01
Sb (ppm)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0

Table II-5-4 Factor analysis of stream sediment analytical data

	4	(1	
Elements	Factor 1	Factor 2	Factor 3	Factor 4	Communality
Au	-0.023	0.377	0.098	-0.522	0.4252
Ag					
Fe	0.823	0.173	0.210	0.113	0.7648
Mn	0.763	0.355	-0.057	0.192	0.7342
Мо	-0.226	0.050	0.027	0.133	0.0722
₩	•				.i.
· Sn	-0.033	0.242	0.464	0.239	0.3318
Nb	0.226	0.729	0.129	0.310	0.6959
Ta	0.103	0.809	0.135	-0.167	0.7109
Ве	-0.055	0.126	0.541	0.067	0.3157
Li	0.230	-0.089	0.486	-0.170	0.3263
As	-0.006	-0.027	-0.026	-0.142	0.0215
Sb					
Contributions	32.5%	35.4%	19.0%	13.1%	

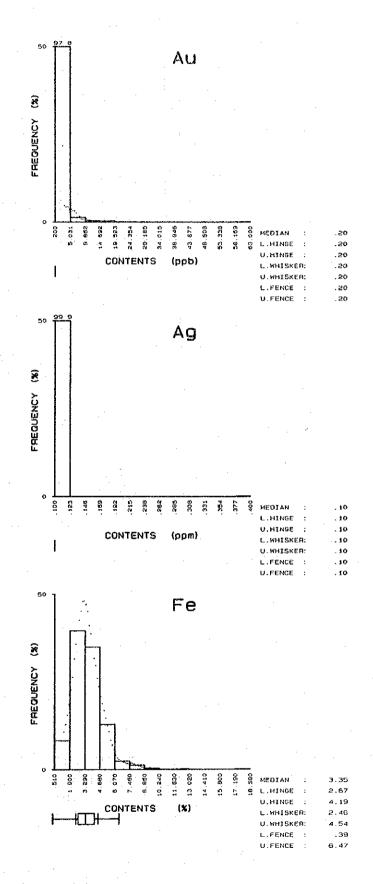


Figure II-5-2(1) Histograms and EDA boxplots for Au, Ag and Fe in stream sediments

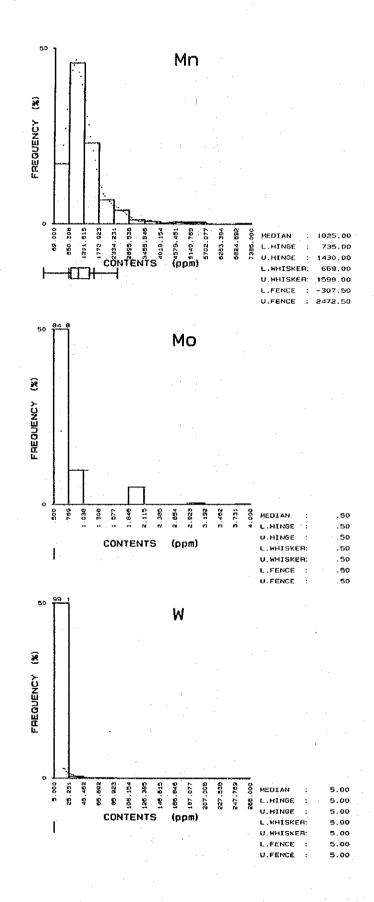


Figure II-5-2(2) Histograms and EDA boxplots for Mn, Mo and W in stream sediments

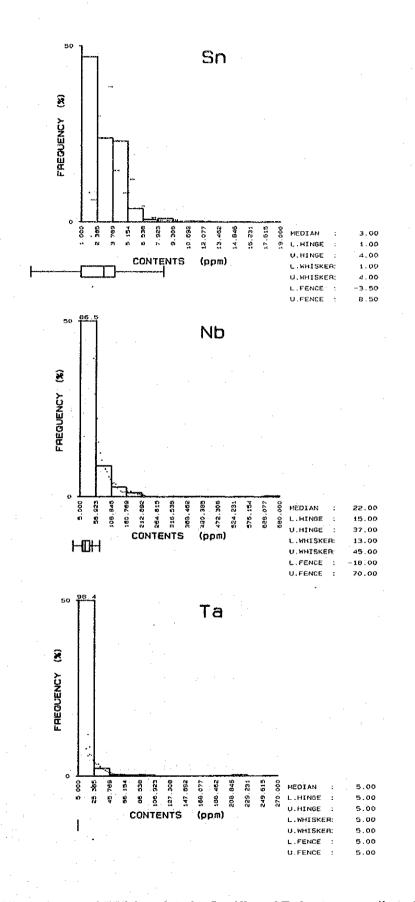


Figure II-5-2(3) Histograms and EDA boxplots for Sn, Nb and Ta in stream sediments

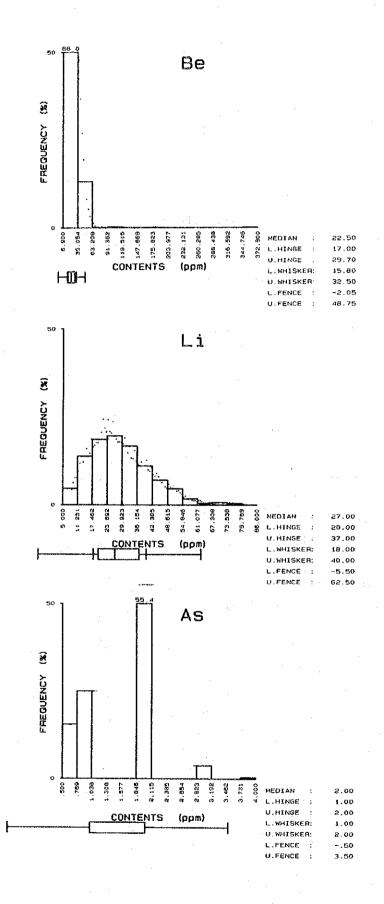


Figure II-5-2(4) Histograms and EDA boxplots for Be, Li and As in stream sediments

boxplotの upper fenceの 値をしきい値とした.

(ii) 多変量解析

各試料の分析値から元素と鉱化作用あるいは母岩の特性などとの関連性を検討するために因子分析法を使用した。初期因子負荷行列の因子軸はバリマックス法で回転した。計算の対象とした元素はAu, Fe, Mn, Mo, Sn, Nb, Ta, Be, Li, Asの 10 元素である。分析値が検出限界未満のものの数が 95%以上を占める Ag, W 及び Sb は計算の対象外とした。

計算結果の因子負荷量・共通性・因子寄与量(%で表示)をTable II-5-4に示す。この表の因子負荷量及び因子寄与量から,① Fe-Mn, ② Ta-Nb, ③Be-Li-(Sn), ④ Au の4つの因子がこの順序の寄与度で抽出される。さらに各試料につき4つの因子に関する因子得点を計算した。ここでは,各試料に対する因子の関与の基準として因子得点1以上を選定し、1以上を持つ試料について地質及び鉱化作用との関連について検討した。

5-1-3 探査結果

(1) 元素別地化学異常

Ag 及び Sb を除いた 11 元素について単変量解析により地化学異常図を作成した.

(a) 金 (Au)

金の濃度は、最小値が0.5ppb (検出限界)未満、最大値が 63ppbである。検出限界未満の試料数は全体の93.1%もあるので0.5ppb以上はすべて異常値として取り扱わざるを得ないが、昨年度及び一昨年度の調査の結果と調和させるため、1ppb以上の点を表示した。ちなみに 1ppb 未満で、0.5ppb以上の値は 0.8ppb であり、3か所で得られているに過ぎない。また、10ppb 以上の値は6か所で得られているに過ぎない(Appendix 2)。

異常点は全般的に散在するが、ひとつの水系中にあるいは地形上から見てまとまっている所はつぎの3か所である (Figure II-5-3(1)).

- ①中央部やや北西よりのエルモ川(Riacho do Ermo)とカサド川(Riacho do Casado)に囲まれた地域。すべて一つの山系に顔を辿ることができる。この山系の頂部にはペグマタイトが分布している。
- ②北西部ガルガンタ山(Serra da Garganta)の南部、2点のみではあるが、沢沿いに連続している。本水系の上流には石灰珪酸塩岩の薄層がエクアドル層とセリド層の境界近くに分布している。
- ③調査地域西端やや南. 2点のみであるが、連続している。本水系の上流にも石灰珪酸塩岩及び角閃岩の薄層がエクアドル層とセリド層の境界近くに分布している。

本地域で最高の 63ppbはマリャダダアレイア川(Riacho Malhada da Areia) の西端で得られたが、1点のみで孤立している。また、調査域南西端では異常点が1点であるが、隣り合う沢でパンニング試料中に金粒が確認されている。

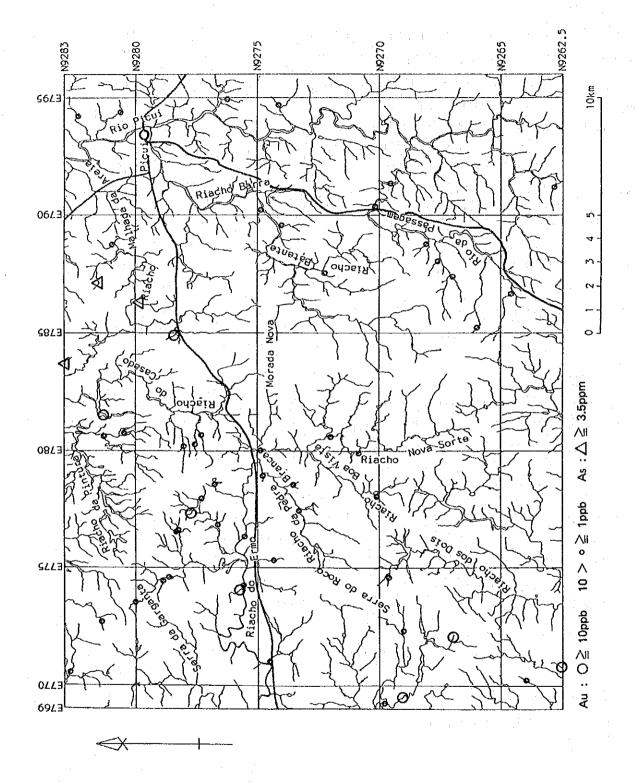


Figure II-5-3(1) Au and As anomalies in stream sediments

(b) 鉄 (Fe)

鉄の濃度は最小値 0.51 %,最大値が 18.58%である。検出限界未満のものはなく、Upper fence は6.47%である。異常点の分布には傾向が無く(Figure II-5-3(2)),散在する。ただ、エルモ川の一点を除けばすべてがセリド層の分布域内である。元素別の濃度を比較すると鉄が最も高いが、鉄は岩石の主成分の一つでもあり、当然と考えられる。昨年度調査域B地域では鉄の高異常点は中央部を南北方向に伸びる褶曲帯に沿う分布を示したが、C地域ではその傾向は全く見られない。

(c) マンガン (Min)

マンガンの濃度は最小値 89ppm, 最大値は 7,386ppm である. Upper fence は 2472.5ppmである。 異常点は水系上あるいは地形的にまとまることはないが,全般的にセリド層の分布地域に分布する(Figure II-5-3(2)). これはセリド層を中心にした岩相の鉱物組成に示されるように(Table II-4-1参照) ,岩石の成分そのものに由来するのであろう。 調査地域中央南部に 5,000ppm 以上の点が並ぶが,ここにはセリド層の董青石-柘榴石-黒雲母片岩が分布するのみで,他の岩相は見られない。 鉄とマンガンの相関係数は0.74でこれらの元素間には相関があるといえるが,異常点の分布はモラダノバの北東方及び南西方を除いて大局的には一致する。

(d) モリブデン(No)

モリブデンの濃度は、最小値 1 ppm (検出限界)未満、最大値が 4ppm である。これも B地域に比較すると全体的に低い、検出限界未満の試料数は全体の84.8%で、B地域の36.7%より遥かに多い、そのため、1 ppm 以上の値はすべて異常値として取り扱わなくては ならないが、ここでは 2 ppm 以上の点のみ表示した。1 ppm 以上の点すべてを表示しても 分布の傾向は同様である。これによれば、異常点は中央部のペグマタイト分布域の周囲、特に東部に集中している (Figure Π -5-3(3))。その他ピクイ市の南方にも異常点がまとまるが、カイコ岩体及びセリド層の分布域にあるもので、岩相との関連は特に明瞭ではない。

(e) タングステン (▼)

タングステンは 10ppmの検出限界未満のものが96.5%もあり、最大値は268ppmである。検出限界以上の値はすべて異常値として取扱わざるをえない。異常点は東部のセリド層とカイコ岩体の境界からカイコ岩体の内部にかけて分布しているものが多い。また北西部にも異常点が散在する(Figure II-5-3(3))。これらのうち、ガルガンタ山の東部および北東部の異常は同水系の上流に石灰珪酸塩岩があり、タングステンの鉱化作用を伺わせる。しかしながら、30ppm 、34ppm 、57ppm 、81ppm および最大値の 268ppm 等はすべて東部にあり、しかも 57ppmおよび 268ppm はカイコ岩体に源を発する水系に生じている。81ppm はバテンチ川(Riacho Batente)の東部のものであるが、ここではタングステンの鉱化作用

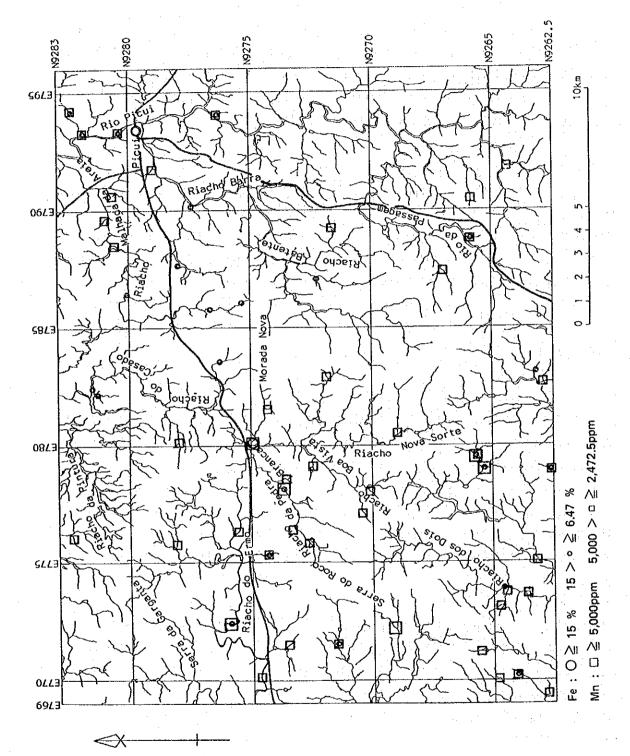


Figure II-5-3(2) Fe and Mn anomalies in stream sediments

Figure II-5-3(3) Mo and W anomalies in stream sediments

に関する岩体、岩相は発見されていない.

(F) 錫(Sn)

錫の濃度は最小値2 ppm (検出限界) 未満,最大値は 19ppmである. 検出限界未満の試料数は全体の40.6%である. Upper fence は8.5ppmである.

Upper fence 以上の異常点は中央部のモラダノバの周囲に見られる。岩相上はペグマタイトの周囲である(Figure II-5-3(5)).

(G) ニオブ (Nb)

ニオブの濃度は最小値が10 ppm (検出限界) 未満, 最大値が 680ppm である. 検出限界 未満の試料数は全体の11.8%である. Upper fence は 70ppmである. Upper fence 以上の 異常点は西部を除き全体にわたる.北西部にはエクアドル層が分布し,南西部はセリド層 の分布域である。晁常点の分布は南西部を除き、ペグマタイト岩脈の分布域にほぼ重なる ニオブは本地域ではペグマタイトに付随するので当然のことでは (Figuire II -5-3(4)). あるが、南西部には多くのペグマタイトがあるにもかかわらず異常点がほとんどない。こ の地域のペグマタイトの方向が他の地域の N-S方向と異なり NE-SVであるので、ペグマタ イト中のニオブ含量はこの方向と関連するのかも知れない、中東部のバテンチ川(Riacho Batente)東部にも N-S, NE-SV, NW-SE 方向のペグマタイトがあり、この付近にも異常点 が見られない。これもペグマタイトの方向と関連するのかも知れない。また、ニオブは Table II-4-1に示すように、下記のタンタルに比較して岩石中の含有量が高いので、検出 限界未満の試料数が少ないことも含め沢砂中では全体的にタンタルより含有量が高くなっ ているものと考えられる。またニオブの検出限界未満の試料数 11.8 %に比較し、タンタ ルの検出限界未満の試料数が90.8%もあるということはこれが比重の高い鉱物であって沢 底に沈む傾向が高いということも考えられる.

(h) タンタル (Ta)

タンタルの濃度は最小値が 10ppm (検出限界) 未満,最大値が 270ppm である. 検出限界未満の試料数は全体の90.8%である. したがって 10ppm以上の値を異常値として取り扱った.

異常域はニオブとほとんど同じ分布を示す(Figure Π -5-3(4)). ニオブもペグマタイトに付随するので、当然のことと考えられる.

(i) ベリリウム (Be)

ベリリウムの濃度は最小値 6.9ppm, 最大値は 372.9ppm である。昨年度のB地域では 検出限界未満の試料数は全体の35.9%あり、最大値も 78ppmであったことに比較すると、 C地域では全般的に濃度が高くなっている。 Upper fenceは 48.75ppm であり、これ以上

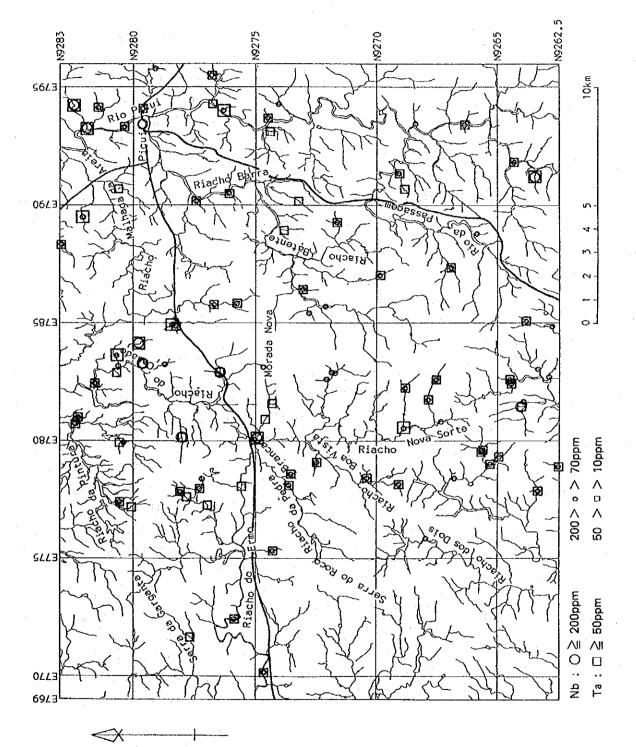


Figure II-5-3(4) Nb and Ta anomalies in stream sediments

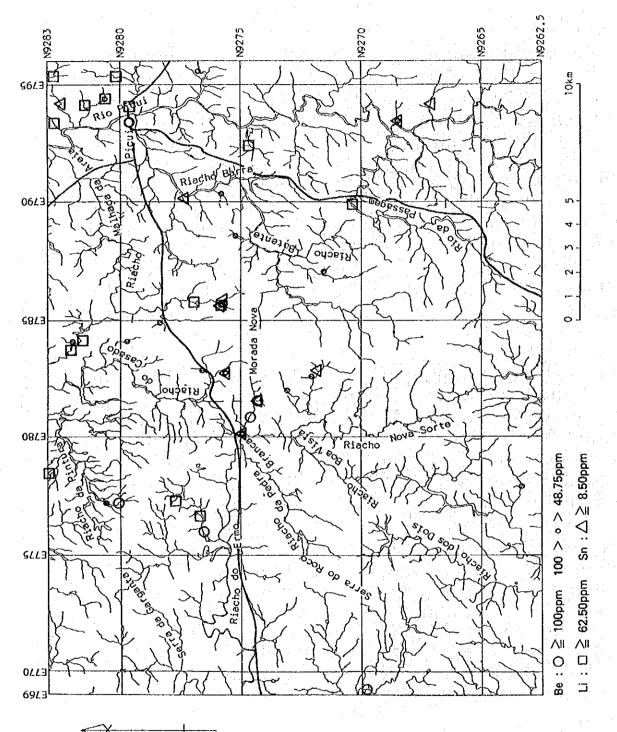


Figure II-5-3(5) Be, Li and Sn anomalies in stream sediments

を異常値とした、異常点は、中央部のモラダノバの周囲にややまとまるが、他は散在する (Figure II-5-3(5))、モラダノバの周囲はペグマタイトの終縁部にあたり、ニオブ、タンタルと同様の分布位置である。本地域ではベリルもペグマタイトい付随するので、当然と考えられる。

(j) リチウム (Li)

リチウムの濃度は最小値が 5ppm , 最大値が 86ppmである. これは B地域とほぼ同様である. Upper fence は 62.5ppmであり, これ以上を異常として表示した. 異常点はほとんど調査域の北半部にみられる. ピクイ市の北東方に異常点がまとまり, このソーンは昨年度の B地域から連続するものである (Figure II-5-3(5)). 主としてカイコ岩体の片麻岩から発する水系に異常が見られ, この岩相に関連するのかも知れない. ピクイ市の北東方以外では異常点はまとまらないが, カサド川(Riacho do Casado) の北方の近接する 2点はセリド層中のものである. リチウムは主として雲母中に含まれる. 高濃度域はセリド層中にあるが, 岩石分析によれば南東部の花崗岩が最も高い値を示したので, 南東部に高濃度域があるのはそれをも反映しているのかも知れない.

(k) ヒ素 (As)

ヒ素の濃度は、最小値が 1ppm (検出限界)未満、最大値が 4ppm である。検出限界未満の試料数は全体の 15.5 %である。昨年度のB地域では検出限界未満の試料数が全体の 88.2%であったことと比較すると、C地域では全体的にヒ素含量が高いが、最大値はB地域の 14ppmよりはるかに低い。Upper Fence は 3.5ppm であり、これ以上を異常値として表示した。

異常点はカサド川の北ないし東方にあり、異常域のソーンとしてみた場合にはB地域より連続するものであり、調査地域中央部を南北に伸びる褶曲帯の東側にあたる(Figure II -5-3(1)). A地域およびB地域では本ソーンには p€sscsで表現した石灰珪酸塩岩及び角閃岩が分布する.

(2) 因子分析結果

(1) 第1因子: Fe-In

因子得点が 1.0以上の高因子得点の分布をFigure II-5-4(1) に示す.

高因子得点分布域は中央部のペグマタイト分布域,東部のカイコ岩体及び花崗岩分布域, 及び北西部のエクアドル層分布域を除いたセリド層のほぼ全域に渡る.鉄,マンガンそれ ぞれの分布域に重なり、セリド層の岩相の特徴を表わしている.

(2) 第2因子: Ta-Nb

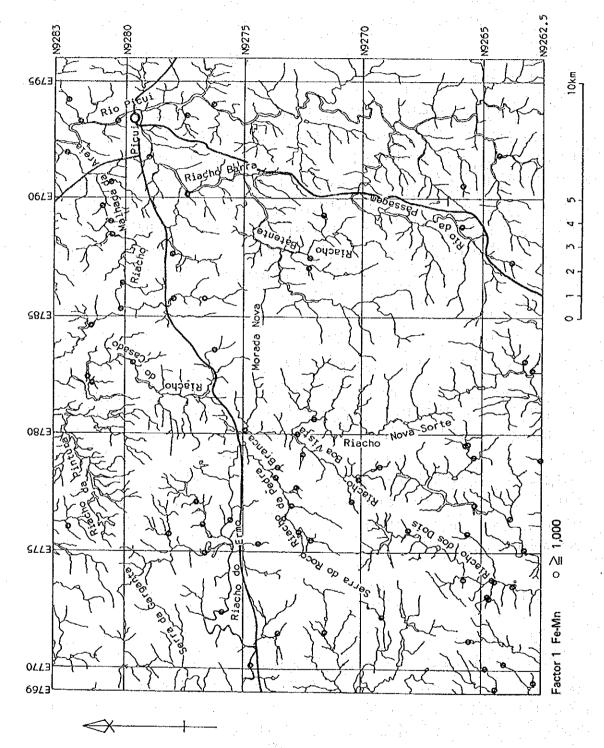


Figure II-5-4(1) Location of high factor score; Factor 1, Fe-Mn

因子得点が 1.0以上の高因子得点の分布をFigure II-5-4(2) に示す.

高因子得点分布域はニオブ、タンタルそれぞれの分布域と同様に、中央部のペグマタイトの内部及びセリド層中の南西部を除いた地域全体に渡る。それぞれの元素の濃度分布の所で述べたが、NE-SV 方向のペグマタイトを除いたペグマタイト分布域に分布しており、やはりペグマタイトの分布との関連が強い。

(3) 第3因子: Be-Li-(Sn)

因子得点が 1.0以上の高因子得点の分布をFigure II-5-4(3) に示す. これは因子負荷量が 0.541, 0.486, 0.464 と第1, 第2因子と比較して低く, 因子寄与量が全体の 19 % しかないので弱い因子である.

高因子得点を持つ点は、中央部のモラダノバ周辺及びその北方、ピクイ市の東方で集中する。モラダノバにはペグマタイトが分布しており、ピクイの東方にはペグマタイト及びカイコ岩体の片麻岩が分布する。またピクイ川の南部にも高因子得点が散在し、ここには花崗岩が分布する。その他の散在する高因子得点は特に岩相、鉱化作用等とは関連づけることができない。したがって、本因子はペグマタイト、片麻岩及び花崗岩に関連するものと考えられる。

(4) 第4因子: Au

因子得点が -1.0 以下の因子得点の分布をFigure II-5-4(4) に示す.

同因子は因子負荷量が -0.522 とその絶対値が小さく、しかも因子寄与量が全体の 13.

1%と第3因子よりさらに弱い、ペグマタイト鉱床に関連したものと考えられる。

因子得点が -1.0 以下の点はエルモ川の北方で集中する. 金の分析値が 10ppb以上の点がそのまま表示されている.

5-2 河川堆積物パンニング試料による地化学探査

5-2-1 探査目的

沢砂のパンニング試料による探査の目的は次の2つである.

- ①DNPM, CPRMなどによって過去に実施された調査で、金を含有すると報告された岩石岩体や沢砂の位置の周囲においてその含金岩体あるいは流系の広がりを調査すること。
- ②本年度の調査の結果、含金石英脈、砂金等の新たな情報が得られたならば、その周囲の流 系を調べることにより、鉱化の広がりを調査すること.

5-2-2 探査方法

(1) 試料採取及び試料調整

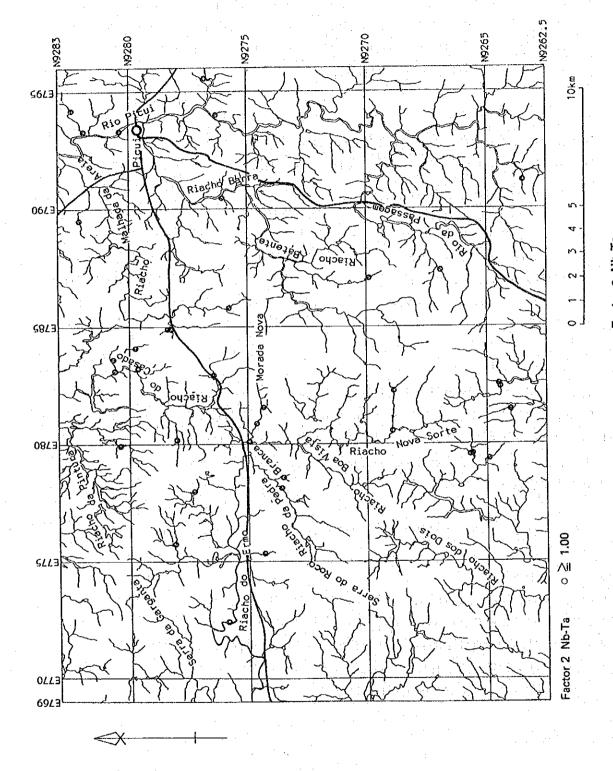


Figure II-5-4(2) Location of high factor score; Factor 2, Nb-Ta

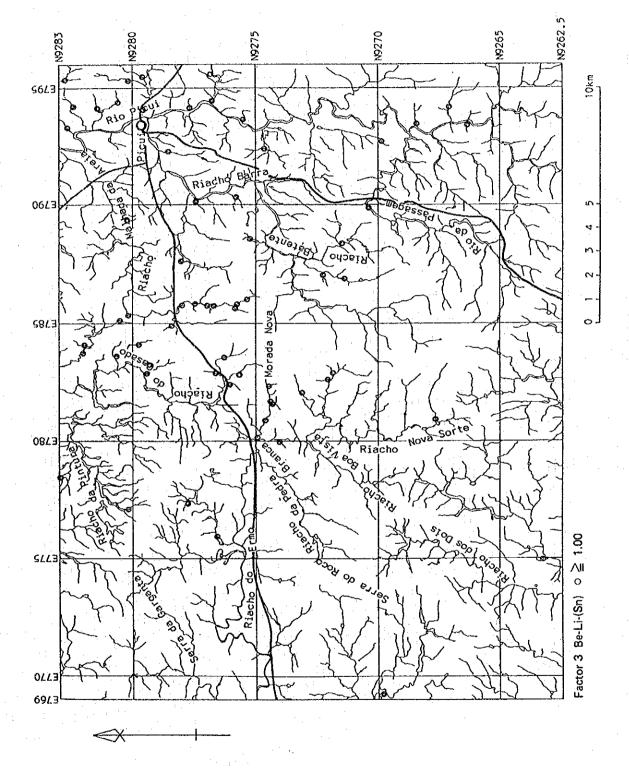


Figure II-5-4(3) Location of high factor score; Factor 3, Be-Li

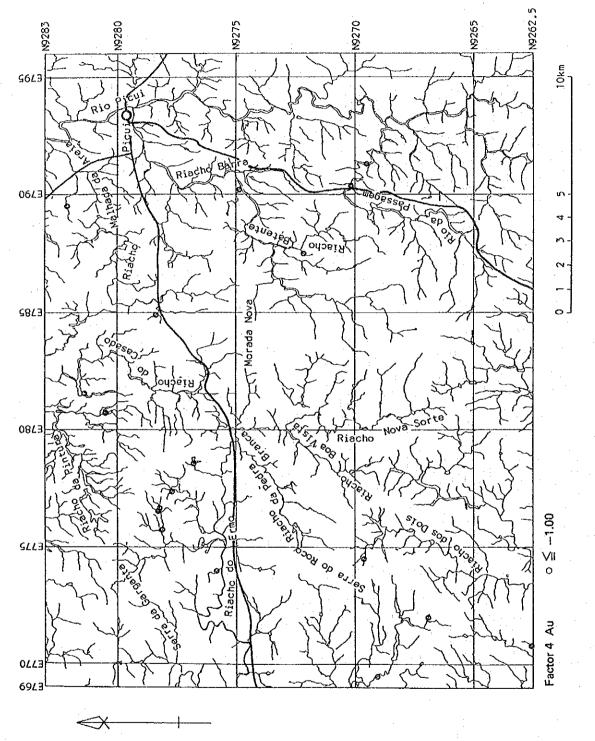


Figure II-5-4(4) Location of high factor score; Factor 4, Au

1/25,000の地形図上であらかじめ試料の採取地点を計画し、現地で採取可能かどうかを検討する。可能であれば、さらに河川による堆積物の運搬様式を検討しながら採取ポイントを決める(Plate II -5-2、Figure II -5-1). 小流であれば屈折部の内側などであり、普通の流れであれば岩石ブロックの陰などである。試料の採取深度は各沢により異なるが、できるだけ基盤直上から採取した。大きな沢で、容易に基盤まで到達できない所では、途中の重鉱物が濃集している所から採取した(Appendix 4).

試料の採取法は次の通りである。まず、 40 ~50 kg の砂礫をふるいを使って 4mmアンダーの砂礫約 20kg し縮小し、次にその砂礫をパンニングした。パンニングの段階では金粒の有無を確認することを主目的としたので、できるだけ重い鉱物のみ、しかもパンのそこが容易に見える程度までパンニングを繰り返し少量の試料を採取した。従って、パンニングにより重い鉱物が濃集される程度は試料ごとに異なり、統一されない。

(2) 化学分析

パンニングにより採取した試料を Au, Ag, Mo, W, Sn, Ta, Nbの 7成分について化学分析した。各元素の分析方法及び検出限界は既述の通りであり、分析はGeosol Ltd. 及び大手開発株式会社地科学試験所で実施した。分析結果は Appendix 3 に示す。

(3) データ処理

試料採取の項で述べたように、より重い鉱物のみを、しかも少量採取することを目的とした ため、即ち、試料の採取過程及び量がそれぞれ異なるため、これらの分析値をひとつの母集団 とすることができず、統計的なデータ処理は意味をなさない。従って、分析データについては 個々の元素の相対値のみについて述べることとした。

5-2-3 探査結果

(1) 試料の肉眼鑑定

その他肉眼鑑定の結果、磁鉄鉱、コロンバイト-タンタライト、灰重石等が多く見られた。

(2)元素別濃度分布

(a) 金 (Au)

分析値は最小値が検出限界(0.5ppb)未満,最大値が 10,000ppbを越える。 10.000ppbを越え

る試料は南西部の金粒が確認された2点のうちの北部のものである。試料中に金粒を確認した位置及び試料の分析値が 1,000ppb を越えた位置を図示した(Figure II-5-5(1)). 分析値が 1,000ppb を越えた地点は調査地域の南西部に2か所、中央西部に2か所、中央部に1か所である。当然のことながら金粒を確認した点では高い値が出た。調査地域中央部では金粒採取の情報が多かったにもかかわらず、金粒も分析値も高い値が出なかった。中央西部では金鉱化作用の情報はあったが、今回の調査で金粒及び高分析値が得られた場所のさらに西方である。南西部では情報が得られた地点で金粒及び高分析値が得られた。しかしながら、いずれの場所においても母岩中の金の鉱化作用は見出だされていない。

(b) 銀 (Ag)

銀は最小値が検出限界(0.2ppm)未満,最大値は 0.6ppm であり,ごく低いので図示していない.しかしながら,調査地域地中央部のペドラ川 $(Riacho\ da\ Pedra)$ では $2\sim6ppm$ の値が連続する.

(c) モリブデン(No).

モリブデンは最小値が検出限界 (1ppm)未満、最大値が 7 ppm である。これは B 地域と比較すると非常に低い。 5 ppm 以上の点をひろってみると中央部に 1 点、西部と南西部にそれぞれ 2 点づつある (Figure II-5-5(2))。西部の 2 点のうちの 1 点は金の高含有点と一致する。中央部の 1 点はペグマタイト岩体内で得られた。

(d) タングステン (¥)

最小値が1ppm,最大値が265ppmである。この値もB地域の試料に比較するとごく低い。試料を採取した地域には灰重石等の鉱化作用は知られていない。タングステンの鉱化作用は、B地域では主としてセリド層とエクアドル層の境界付近のセリド層側に見られた。本地域では試料を採取した中央西部及び南西部にはエクアドル層が分布しているが、ここではタングステンの高含有は認められない。高含有が認められた場所は中央部に多く、しかもペグマタイト岩体及びセリド層中の褶曲ソーンを通り流下する水系にある(Figure II-5-5(2))。A、B地域ではペグマタイトに関連するタングステンの鉱化作用は知られていず、本地域でも知られていない。しかしながら、沢砂地化探でも調査地域中央の同様の地区でタングステンの異常が検出されているので、このペグマタイト岩体の中に、あるいはペグマタイト中の包有岩体中にタングステンの鉱化作用があるのかも知れない。

(e) 錫 (Sn)

錫の値は最小値が検出限界(2ppm)未満,最大値は 660ppm である。この最高値はB地域の最高含有量よりも高い。 660ppm は試料採取地区中央部にあり、錫、タングステンの高含有点と重複する。この点もペグマタイト岩体及びセリド層中の褶曲ゾーンを通り流下する水系にある。

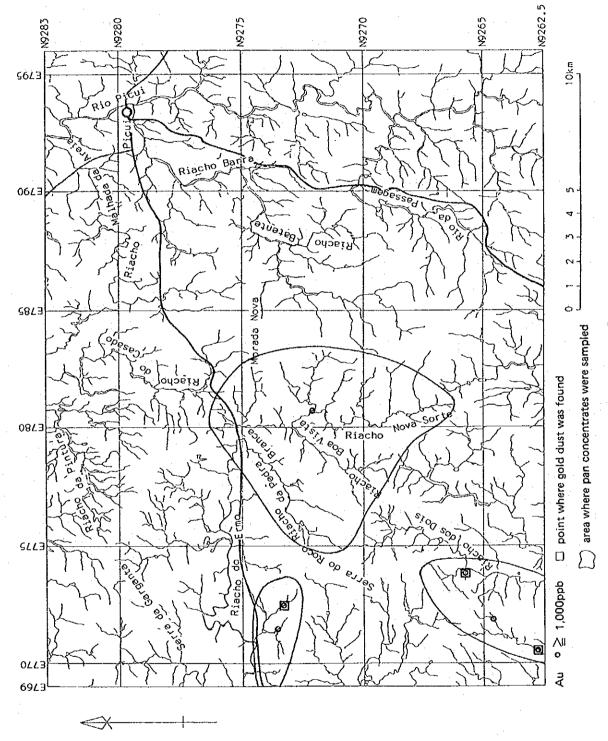


Figure II-5-5(1) Au concentration in pan concentrates

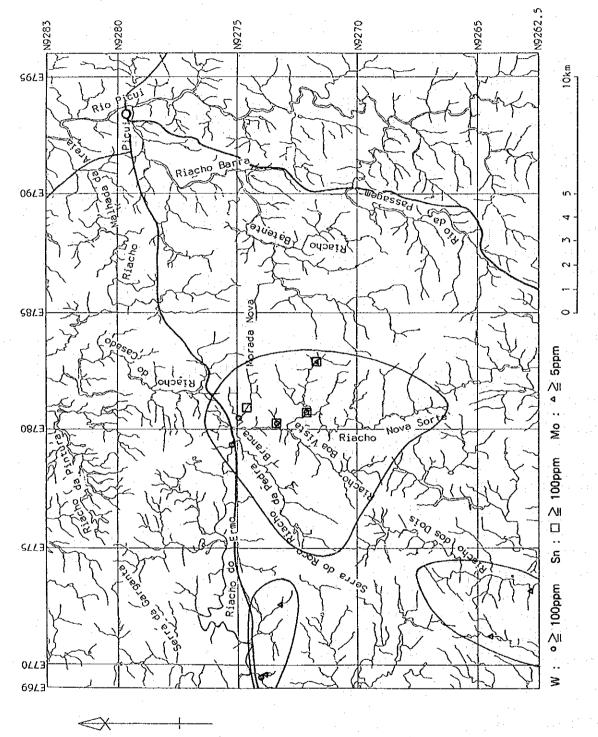


Figure II-5-5(2) W, Sn and Mo concentration in pan concentrates

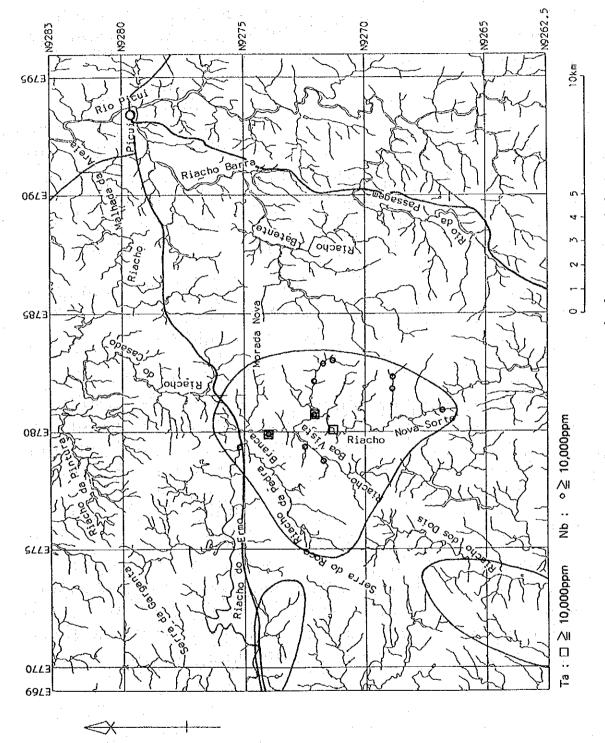


Figure II-5-5(3) Nb and Ta concentration in pan concentrates

錫の高含有点はいずれも中央部のペグマタイト岩体及びセリド層中の褶曲ゾーンを通り流下する水系にある(Figure II-5-5(2)).

沢砂地化探においても同様の地域, すなわち調査地域の中央部でペグマタイトを取り囲むように, 錫の異常が検出された. したがって, 本地域のペグマタイトあるいはその中の包有岩体中にタングステンの鉱化作用があるのかも知れない.

(f) タンタル (Ta)

タンタルは次に述べるニオブとともにコロンバイトータンタライトとしてペグマタイト中に産するものであり、ペグマタイトの多い本地域に多いのは当然である。パンニングでの試料採取時に最後まで残る鉱物のうちのひとつである。分析の最小値は 19ppm、最大値は 12、050ppmである。10、000ppm より高い値を示した試料は中央部の試料採取地区にのみ存在する(Figure II-5-5(3))。高含有点と同じ点での沢砂地化探ではタンタルの異常は検出されない。しかしながら、同じ水系では異常が検出されているので、この水系全体がタンタルの高含有を示すことは確かである。

調査地域の西部及び南西部ではペグマタイト岩脈があるにもかかわらずタンタルの高含有は 検出されていない。これは沢砂地化学探査においても同様である。ペグマタイト岩脈の方向の 違い等も考えると、ペグマタイトそのものに組成の差があるのかもしれない。

(g) ニオブ (Nb)

ニオブの最小値は 69ppm, 最大値は 30,000ppmである。上記のタンタルとあわせコロンバイトータンタライトを形成しているが、一般的にニオブの方が含量が高い。これは片岩、片麻岩を含めた本地域の岩石中の成分でも同様である。10,000ppm より高い値を示した点はタンタルと同様に中央部のみにみられ、西部及び南西部には見られない(Figure II -5-5(3))。

5-3 考 察

沢砂地化探で得られた金の異常点は顕著なまとまりをみせず、調査地域中央部のペグマタイト岩体及び中央南部、そして東端を除いて調査地域全体に散在する。異常点と地質及び地質構造との関連性は、ペグマタイトと関連していないということの他は特定できない。

沢砂地化探で地形、水系上から金の異常が集中した所はエルモ川とカサド川に囲まれた地区であるが、ここではセリド層の中にペグマタイト岩体が露出している(Figure Ⅱ-5-6).

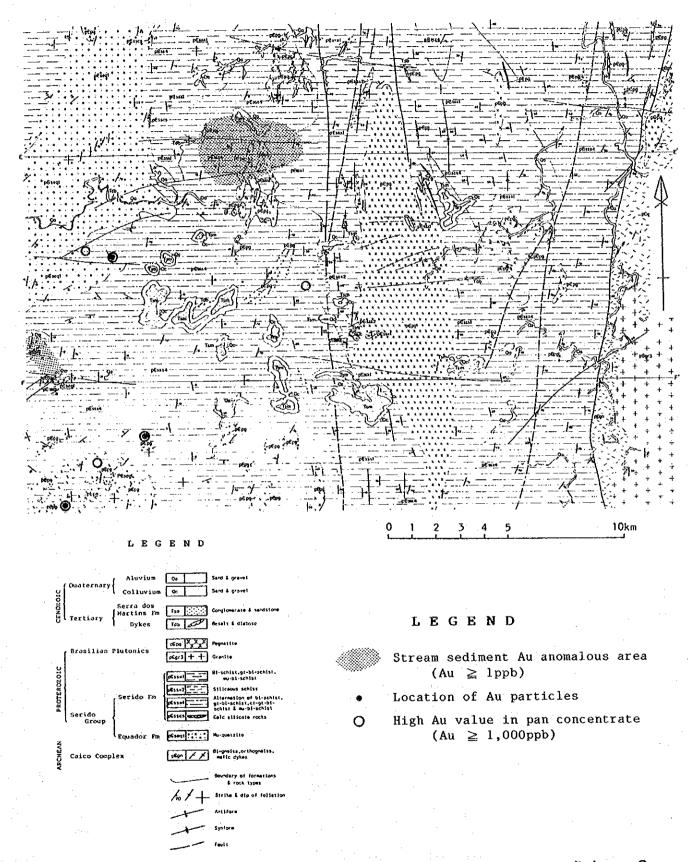


Figure II-5-6 Compilation of the survey results in area C

第Ⅲ部 結論及び提言

第1章 結 論

(1) A地区

A-I地区では地化学探査で土壌の金異常が検出されたにもかかわらず、トレンチでは金の 異常は検出されなかった。A-I地区では金鉱床胚胎の可能性は低く、今後の調査の必要はない。

A-II地区では、中央部の地化学探査と物理探査の異常が重複する場所で、しかもサンフランシスコ鉱床の東部 200m で金の鉱化作用を検出した、金の鉱化作用はサンフランシスコ鉱化ソーンから離れた位置にも存在すると考えられる。この2つの鉱化作用は、物理探査の結果によれば深部で連続するのかも知れない。サンフランシスコ鉱床東部 200m の金の鉱化作用は植物地化探の異常の集中度及び物理探査の異常の集中度からほとんど点状のものであり、鉱化帯はごく小規模であると判断される。以上から、A-II地区では、サンフランシスコ鉱床を除けば、金鉱床胚胎の可能性はほとんどなく、今後の調査は必要ない。

トレンチ調査の結果,物理探査は本地区の含金石英脈の探査に有効であることが判明した。 土壌地化探は土壌の発達が悪いため本地区の金探査にはあまり有効ではないと判断される。

(2) B地区

B-I地区で Au , As及び Sb を指示元素として土壌地化探を実施した。 Sb は全て検出限界未満であった。他の2元素はそれぞれ異常点を示すが、2元素に相関関係がないために金鉱床の探査には Au のみが有効であると考えられる。

土壌の金の異常点は散在する。北東方のウンブラナ山の西麓にはこの山に沿うように土壌の 異常点が存在する。ウンブラナ山の西麓にはまた硫化物を伴う石英脈があり、その走向延長部 に前述の土壌の異常点が存在する。ウンブラナ山東麓には硫化物を伴った含金石英脈があるの で、ここから 300m 程度しか離れていないウンブラナ山の西麓の硫化物を伴う石英脈には金を 含有する可能性があり、それがさらに土壌の金異常点の所に延長している可能性がある。

しかしながら、これらの硫化物を伴う石英脈はいずれも小規模であり、土壌地化探による異常も金の値が低く、局部的なので、大規模な含金石英脈が発見される可能性は低い、従って、 経済的に採掘可能な鉱量を持つ鉱床が発見される可能性は低い。

(3) C地区

C地区には広く先カンプリア紀の地層が分布し、その上に小規模に第三紀と第四紀の地層が載る。先カンプリア紀の地層は始生代のカイコ岩体と原生代のセリド層群からなる。セリド層群はさらに下位よりエクアドル層及びセリド層に細分される。C地区にはジュクルトゥ層は露出していない。カイコ岩体は花崗岩及び片麻岩で構成される。エクアドル層及びセリド層はそれぞれ珪岩と黒雲母片岩で代表される。カイコ岩体は東端に、、エクアドル層は西部に、そしてセリド層は中央部に広く分布する。中央部のセリド層中には大規模なペグマタイト岩体があ

る。東部のカイコ岩体とセリド層はピクイ断層で分けられる。セリド層中の中央部には南北に延びる褶曲帯があり、A及びB地域より連続する。全体に NE-SW~NNE-SSW 方向,及び WNW-ESE ~ENE-WSW 方向の断層が発達する。

本地域にはペグマタイトに付随するニオブータンタル鉱床及び小規模のタングステン鉱床が 賦存する他には明瞭な鉱徴はない.

13の指示元素を利用した沢砂地化探の結果, Au の探査には Au しか有効ではないことが判明した。金の異常点は数少なく、しかも地形・水系上まとまる所も少ない。比較的まとまる所は C地域北西部のエルモ川とカサド川にはさまれた地区である。調査地域中央北部では最高の 63ppb以上の異常点が一点検出された。

以上のようにC地域では河川堆積物の金含有量が低く、異常点もまとまらない。しかも地質 調査によって基盤中の金の鉱化作用も発見されていないので、金鉱床が発見されるポテンシャ ルは低いと考えられる。

第2章 将来の調査への提言

本調査地域には大規模な金鉱床が胚胎する可能性は極めて少ないが、さらに調査を進めるのであれば、以下のことを提言する.

(1) A地区

サンフランシスコ鉱床南端の鉱化帯の状況は物理探査の結果よりほぼ判明したが、北端については未だ不明である。できれば北部についても鉱化の状況を物理探査及びトレンチあるいは試錐により解明し、将来のこの種の鉱床の探査に役立てることが望ましい。

(2) B地区

中央部のウンブラナ山に沿い、精密な地質鉱床調査及び物理探査 (IP法)を実施し、鉱化の状況を把握すること。

参考文献

REFERENCES

(1) REPORTS

- Almeida, F.E.M. and Hasui, Y. (1984): O Precambriano do Brasil, 378p. Editora Edgard Blucher Ltda.
- Almeida, F.E.M. et al. (1988): Magmatismo pos-Paleozoico no Nordeste Oriental do Brasil, Rev. Bras. Geoc., vol.18, no.4, pp.451-462.
- Angelim, L.A. de A. (1983): Prospecto Ouro de Encanto. Relatorio Final, Cprm, Recife, 15p.
- Barbosa, A.J.(1989): Ensaio sobre a oportunidade de investimento no prospeccao de ouro Faixa Serido-Cachoeirinha-R. do Pontal. Curso de Metalogenia do Ouro. CPRM Sureg-Re.
- Barbosa, O.(1968): Projeto Ouro, Pianco-PB. Recife, DNPM/PROSPEC, 13p.
- Bowles, J.F.W.(1988): Mechanical and chemical modification of alluvial gold, Asian Mining '88 Conference held in Kuala Lumpur, pp.25-28.
- Boyle, R.W.(1979): The geochemistry of gold and its deposits, Geological survey of Canada, Bulletine 280, p.584.
- Brito Neves, B.B.de (1981): O Ciclo Brasiliano no Nordeste, Atas do X simposio de geologia do nordeste, Recife, pp.329-336, Recife, atas...SBG Recife.
- Brito Neves, B.B. de (1983): O Mapa Geologico do Nordeste Oriental do Brasil, escala 1:1,000,000, Sao Paulo, 177p, (Teste de Livre Docencia, IGUSP)
- Brooks, R.R. (1982): Biological methods of prospecting for gold, Journal of Geochemical Exploration, 17, 109-122.
- Busche, F.D.(1989): Using plants as an exploration tool for gold, Journal of Geochemical Exploration, 32, 199-209.
- Cassedane, J.P. et al.(1973): A Paragenese da Mina de Oro de Sao Francisco, Mineracao e Metalurgia, Rio de Janeiro, Vol. 37(343), pp.6-13.
- Cerny, P. and Meintzer, R.E. (1988): Fertile granites in the Archean and Proterozoic field of rare-element pegmatites; crustal environment, geochemistry and petrogenetic relationships, in Recent Advances in the Geology of Granite-related Mineral Deposits, pp.170-207, CIM Special Vol.39, edited by R.P. Taylor and D.F. Strong.
- CPRM (1980): Comite de Ouro, Reratorio final, vol.1, CPRM Racife.
- Ebert, H.(1970): The Precambrian Geology of the Borborema Belt (States of Paraiba and Rio Grande do Norte, northeastern Brasil) and the Origin of Its Mineral Provinces, Geol. Rundschau, vol.59, no.3, pp.1299-1326.
- Einaudi, M.T. et al.(1981): "Skarn Deposit" in Econ. Geol., 75th Aniv. Vol., pp.317-391.
- Einaudi, M.T., Burt, D.M.(1982): Introduction-Terminology, Classification and Composition of Skarn Deposit, Econ.Geol., vol.77, No.4, pp.745-754.
- Eisenlohr, B.N. et al. (1989): Crustal-scale shear zones and their significance to Archaean gold mineralization in Western Australia, Mineral. Deposita, 25, 1-8.
- Ferina, M. (1977): Perspectivas Metalogeneticas de Alguns Granitos Pos-orogenicos do Nordeste Brasileiro, Atas do VIII Simposio Geologia do Nordeste, Campina Grande (PB), no.6,

- pp.122-129.
- Ferran, A. (1988): Mina de ouro de Sao Francisco, Currais Novos, Rio Grande do Norte, in Principais Depositos Minelais do Brasil, vol.3, Metais Basicos nao-Ferrosos, Ouro e Aluminio, pp.589-595, DNPM.
- Gama Jr., T. and Albuquerque, C.A.R.(1985): Petrologia do Grupo Serido; Currais Novos-Parelhas (RN), Rev.Bras.Geoc., vol.15, no.2, pp.132-138.
- Getsinger, J.S. et al. (1990): Gold exploration success along structural trends in the Sicker Group of Vancouver Island, British Columbia, CIM Bulletine, vol.83, no.935, pp.125-935.
- Guilbert, J.M., Park, C.F.Jr. (1986): The Geology of Ore Deposits, p.985, W.H. Freeman and Company.
- Gustafson, L.B.(1989): SEG Distinguished Lecture in Applied Geology; The importance of Structural Analysisin Gold Exploration, Economic Geology, Vol.84, No.4, pp.987-993.
- Hama, M.(1980): Geocronologia da Regiao do Serido; Novas Datacoes Geocronologia para o Projeto Scheelita do Serido, Relatorio Tecnico, Sao Paulo, CPRM, 28p.
- Hanspacker, P.C. and Legrand, J.M. (1989): Microstructural and Metamorphic Evolution of the Portalegre Shear Zone, Northeastern Brazil, Rev. Bras. Geoc., vol. 19, no. 1, pp. 63-75.
- Hayashi, I. and Numata, M.(1976): Structure and Succession of Caatinga Vegetation in the Brazilian Northeast, in Tokyo ageography Papers XX Reports on the 3rd FieldStudy of the Brazilian Northeast, Department of Geography, Tokyo Kyoiku Univ., pp.23-44.
- Hinse, G.J. et al.(1986): On the origin of Archean vein-type gold deposits with reference to the Larder Lake "break" of Ontario and Quebec, Mineral. Deposita, 21, 216-227.
- Hodges, K.V. and Spear, F.S. (1982): Geothermometry, geobarometry and the Al₂SiO₅-triple point at MT. Moosilauke, New Hampshire, American Mineralogist, vol.67, pp.1118-1134.
- Hutchinson, R.W.(1987): Metallogeny of Precambrian Gold Deposits, Space and Time Relationships, Econ. Geol., Vol.82, pp.1993-2007.
- Jardim de Sa, E.F. (1978): Revisao sobre a "Faixa Dobrado do Serido" e eventuais correlatos no Nordeste, Rev. Ciencia, Natal, pp. 77-83.
- Jardim de Sa, E.F.(1978): Evolusao Tectonica da Regiao do Serido; Sintese Preliminar, Problema e Impricacoes, in Ciclo de Estudos Sobre a Prospeccao de Scheelita no Nordeste, vol.1, Currais Novos, 14p.
- Jardim de Sa, E.F. and Salim, J.(1980): Reavaliação dos Conceitos Estratigraficos na Região do Serido, RN-PB, Min.Metal., Rio de Janeiro, vol.44, no.421, pp.16-29.
- Jardim de Sa, E.F. et al.(1980): Estratigrafia de Rochas Granitoides na Regiao do Serido, RN-PB, CBG XXX Boletine no, Resumos das Comunicasoes, p.310.
- Jardim de Sa, E.F. (1984): A Evalucao Proterozoica da Provincia Borborema, Atas do XI Simposio de Geologia do Nordeste, Natal, pp.297-316.
- Jardim de Sa, E.F.(1984): Geologia da Regiao do Serido; Reavariacao de Dados, in Atas do XI Simposio do Geologia do Nordeste, Natal, pp.278-296.
- Jardim de Sa, E.F. et al.(1986): Granitogenese Brasiliana no Serido; o Masico de Acari (RN), Rev.Bras.Geoc., vol.16, no.1, pp.95-105.
- Jardim de Sa, E.F. and Sa, J.M.(1987): Proterozoic granitoids in a policyclic setting: A field excursion in the Serido Region, NE Brasil, ISGAM. Excursion guide, pp.33-46.

- Jardim de Sa, E.F. et al.(1987): Proterozoic granitoids in a polycyclic setting: the Serido region, NE Brasil, ISGAM extended abstracts, pp.103-109.
- Jardim de Sa, E.F.(1988): An update of the Precambrian geology of northeast Brazil, Benin-Nigeria Geotraverse-International Meeting on Proterozoic Geology and Tectonics of High Grade Terrains-Program and Lecture Series.
- Jardim de Sa, E.F. et al. (1988): Geochronology of metaplutonics and the evolution of supracrustal belts in the Borborema Province, NE Brazil, Atas do VII Congresso Latino-Americao de Geologia, Belem, Para, V.1, pp.49-62.
- Kurtz, H.(1988): Exploratory data analysis: recent advances for the interpretation of geochemical data, Jour.Geoc.Expl., vol.30, pp.309-322.
- Laing, W.P. et al.(1978): Structure of the Broken Hill Mine area and its significance for the genesis of the ore bodies, Econ. Geol., vol.73, pp.1112-1136.
- Lima, E. de A.M. et al.(1980): Projeto Scheelita do Serido, Relatorio Final, Recife, DNPM/CPRM, 35v.
- Lima, E.S. (1986): Metamorphism and Tectonic Evolution in the Serido Region, Northeastern Brazil, 215p. (PhD Thesis UCLA).
- Lima, E.S. (1987): Evolucao Termo-Barometrica das Rochas Metapiliticas da Regiao do Serido, Nordeste Brasileiro, Rev. Bras. Geol., vol.17, no.3, pp.315-323.
- Lins, C.A.C.(1984): Mineralizacoes auriferas dos Estados de Pernambuco, Paraiba e Rio Grande do Norte, in Atas do XI Simposio de Geologia do Nordeste, Natal, 473p.(Boletin 9), pp.452-464.
- Lins, C.A.C. et al.(1985): Projeto mapas metalogeneticos e de previsao de recursos auriferos, escala 1:1,000,000, texto e mapas, Folhas SB.24/SB.25, Jaguaribe/Natal, CPRM Recife.
- Mallic, B.(1987): Geochemical Surveys Care and common sense are needed to interpret complex data, E & MJ, July 1987, pp.44-47.
- Maranhao, R.J.L.(1978): Os Sistemas de Prospeccao em Ocorrencias de Scheelita do Nordeste, in Ciclo de Estados Sobre a Prospeccao Scheelita do Nordeste, vol.1, Currais Novos, 10p. (patroc. DNPM, manuscripto inedito).
- Maranhao, R. et al.(1986): A jazida de scheelita de Brejui/Barra Verdc/Boca de Lage/Zangarelhas, Rio Grande do Norte, in Principais Depositos Minerais do Brasil, vol.II, pp.393-407.
- Maron, M.A.C.(1988): Ouro, in Balanco Mineral Brasileiro, DNPM Brasilia, pp.211-230.
- Masuda, F. et al. (1989): Elementtal partition among tree, soil and basement rocks in thorn scrub in Northeast Brazil: A preliminary note, in Ann.Rep., Inst.Geosci., Univ.Tsukuba, no.15, pp.88-91, Dec.25, 1-8.
- Masuda, F. et al. (1990): Elemental partition among tree, soil and basement rocks in thorn scrub in Northeast Brazil: A preliminary note, Report of Inst. Geosci., Univ. Tsukuba, pp.71-83.
- Meira Barbosa, R.L. (1988): Tungstenio, in Balanco Mineral Brasileiro, DNPM Brasilia, pp.299-306.
- Mero, E.B.(1980): Excursao No.3 Provincia scheelitifera do Nordeste Distritos de Currais Novos e Sao Tome. CBG XXX. Bol 2 Roteiro das Excursoes. pp.45-57.
- Mont'Alverne, A.A.F. coodinacao (1984): Principais depositos minerais de Nordeste Oriental, Geologia Economica no.4, 437p., DNPM.

- Moraes, J.F.S. (1989): Concideracoes geologico-ecomonicas sobre o Projeto Itapetim, CPRM.
- Nesbitt, B.E. and Muehlenbacks, K.(1988): Mesothermal Au ± Ag Deposits of the Canadian Cordillera: Evidence for meteoric water involvement in the genesis of methothermal Au deposits. in Bicentenial gold 88, pp.344-346, Geological Society of Australia Inc. Abstracts No.22, Melbourne, May 1988.
- Neves, J.M.C. et al. (1986): A Provincia Pegmatitica Oriental do Brasil a Luz dos Conhecimentos Atuais, Rev. Bras. Geoc., vol.16, no.1, pp.106-118.
- Oliveira e Silva, E.H.R.(1987): Carta Metalogenetica, Carta de Previsao de Recursos Minerais, Carta de Previsao de Acoes Govermentais (1:250,000), Natal Falha SB.25-V-C Regiao Nordeste, DNPM.
- Pettijohn, E.J. (1975): Sedimentary rocks, Third edition, p.628, Harper & Row, Publishers.
- Pulkkinen, E. et al. (1989): Geobotanical and biogeochemical exploration for gold in the Sattasvaara volcanic complex, Finnish Lapland, Journal of Geochemical Exploration, 32, 223-230.
- Reading, K.A.L. et al. (1987): Biogeochemical Prospecting for Gold in the Canadian Arctic, Journal of Geochemical Exploration, 27, 143-155.
- Salim, J., Aguiar, A.P. and Veiga, J.P.(1978): Mineralizacao de Tungstenio na Serra do Feticeiro, Lages, RN., UFRN Natal, Rev.Ciencia., vol.1, no.1, pp.59-67.
- Salim, J.(1978): Ciclo de Estudos sobre a prospeccao Scheelitifera do Nordeste, Currais Novos (RN), (patroc. DNPM).
- Salim, J.(1979): Geologia e Controles das Mineralizacoes Scheelitiseras da Regiao da Serra do Feiticeiro e Bonfim, 106p. (Teste de Mestrado, UNB).
- Salim, J. (1988): Mapas metalogeneticos e de Previsao de Recursos Minerais (1:250,000), DNPM (Todas as folhas que englobem a Provincia Scheelitifera do Nordeste).
- Schobbenhaus, C. et al. Coodinators (1984): Geologia do Brasil: Texto Explicado do Mapa Geologicco do Brasil e da Area Oceanica Adjacente incluindo Depositos Minerais, Escala 1:2,500,000, 501p., DNPM Brasilia.
- Schobbenhaus, C. coodinator (1974): Carta Geologica do Brasil ao Milionesimo: Folha Jaguaribe (SB-24), Folha Fortaleza (SA-24), DNPM, Brasilia.
- Sial, A.S. (1986): GRanite Types in Northeastern Brazil: Current Knowledge, Rev. Bras. Geoc., vol. 16, no. 1, pp. 54-72.
- Souza, Z.S. et al. (1986): Geologia e controle de mineralizacao aurifera entre Lages e Sao Tome, Regiao Serido/RN Topicos Preliminares, in XII Simposio de Geologia do Nordeste Joao Pessoa PB de 01 a 04 de maio de 1986, pp.169-182.
- Strong, D.F.(1988): A Review and Model for Granite-related Mineral Deposits, in Recent Advances in the Geology of Granite-Related Mineral Deposits, pp.424-445, CIM Special Vol.39, edited by R.P.Taylor and D.F.Strong.
- Takahashi, M. et al.(1980): Magnetite-series/Ilmenite-series vs. I-Type/S-Type granitoides, Mining Geology Special Issue, No.8, pp.13-28, The Society of Mining Geologists of Japan.
- Torres, H.F. et al. (1973): Projeto Tungstenio/Molibdenio, Recife, DNPM (Relat. Final).
- Torres, H.F. et al. (1988): Mapas Metalogeneticos e de Previsao de Recursos Minerais (1:250,000), DNPM.

- Tsuchiya, A.(1990): Hypertropic growth of trees of the Caatinga plant community and water balance, Latin American Studies, 11, 51-70.
- Valenti, I. et al. (1986): Biogeochemical Exploration for Gold at a Site in the Cordillera Cantabrica, Spain, Journal fo Geochemical Exploration, 26, 249-258.
- White, A.J.R. and Chapel, B.W.(1977): Ultrametamorphism and granitoid genesis, Tectonophysics, vol.43, pp.7-22.
- Whitten, E.H.T.(1966): Structural Geology of Folded Rocks, 678p., Rand Mc.Nally & Co.
- Willig, C.D.(1986): Geologia do Tungstenio, in Principais depositos minerais do Brasil, vol.2, DNPM, pp.387-391.

(2) MAPS

- Amaral, C.A. (1987): Areia Branca/Mossoro, Falhas SB.24-X-B/D Regiao Nordeste, Carta metalogenetica, Cartade previsao de recursos minerais, Carta de previsao de acoes governamentais, escala 1:250,000, DNPM Brasilia.
- CNEN/CPRM (1975): Mapa geologico, Projeto NE/203 Currais Novos, escala 1:100,000.
- CNEN/CPRM (1975): Mapa geologico, Projeto NE/204 Jardim do Serido, escala 1:100,000.
- CNEN/CPRM (1975): Mapa geologico, Projeto NE/205 Picui, escala 1:100,000.
- CPRM (1980): Mapa previsional do ouro supergenetico, detritico e quimico, 1:1,000,000.
- CPRM (1980): Mapa previsional do ouro primario, 1:1,000,000.
- CPRM (1980): Mapa tectono geologico, 1:1,000,000.
- CPRM (1980): Mapa metalogenetico do ouro, supergenetico detritico, Caico SB.24-Z-B-I, 1:100,000.
- CPRM (1980): Mapa metalogenetico do ouro, supergenetico detritico, Pianco/Itaporanga, SB.24-Z-D-I, SB.24-Z-C-II, 1:100,000.
- CPRM (1980): Mapa metalogenetico do ouro, supergenetico, Natal(SB.25), Jaguaribe(SB.24), Recife(SC.25), Aracaju(SC.24), 1:1,000,000.
- CPRM (1980): Mapa metalogenetico do ouro, jazimentos primarios e secundarios, Natal(SB.25), Jaguaribe(SB.24), Recife(SC.25), Aracaju(SC.24), 1:1,000,000.
- CPRM (1980): Mapa metalogenetico do ouro, jazimentos primarios e secundarios, Caico SB.24-Z-B-I, 1:100,000.
- CPRM (1982): Projeto mapa metalogeneticos e de previsao de recursos minerais, Mapa Geocronologico, 1:250,000.
- CPRM (1983): Projeto mapa metalogeneticos e de previsao de recursos auriferos, Carta metalogenetica dos recursos auriferos, Jaguaribe/Natal SB.24/SB.25, 1:1,000,000.
- DNPM/CPRM (1980): Projeto scheelita do Serido, Mapa geologico integrado, 1:250,000.
- DNPM/CPRM (1982): Projeto mapas metalogeneticos e de previsao de recursos minerais, Carta de previsao de recursos minerais, Areia Branca/Mossoro, Folha SB.24-X-B/SB.24-X-D, 1:250,000.
- DNPM/CPRM (1982): Projeto mapas metalogeneticos e de previsao de recursos minerais, Carts de previsao de recursos minerais, Caico, Folha SB.24-Z-B, 1:250,000.
- DNPM/CPRM (1982): Projeto mapas metalogeneticos e de previsao de recursos minerais, Mapa geo-

fisico, Caico, Folha SB.24-Z-B, 1:250,000.

DNPM/CPRM (1982): Projeto mapas metalogeneticos e de previsao de recursos minerais, Carts metalogenetica, Natal, Folha SB.25-V-C, 1:250,000.

MME/DNPM: Areas protocoliz, ate 30/09/88, Rotina CS 0636 0000 overlay 37 de 88/12/27.

MME/DNPM: Areas protocoliz. ate 30/09/88, Rotina CS 0636 0030 overlay 38 de 88/12/27.

MME/DNPM: Areas protocoliz. ate 31/07/88, Rotina CS 0636 0030 overlay 9 de 88/09/09.

MME/DNPM: Areas protocoliz. ate 31/07/88, Rotina CS 0536 3000 overlay 37 de 88/09/09.

MME/DNPM: Areas protocoliz. ate 31/07/88, Rotina 0636 3030 overlay 35 de 88/09/09.

UFRN (1986): Mapa geologico da Faixa Aurifera Sao Francisco, Currais Novos - RN, 1:10,000.

(3) DATA

Listagem das ocorrencias minerais.

MME-DNPM prosig sistema codigo de mineracao data 98/02/02. Listagem de dados essenciais, classificada por: ano/numero do processo referente a todo Brasil, Nordeste, NT - Inativo (Morto).

MME-DNPM prosig sistema codigo de mineracao data 98/02/02. Listagem de dadosessenciais, classificada por: ano/numero do processo referente a todo Brasil, Currais Novos - Inativo (Morto).

CPRM (1980): Comite de ouro, Relatorio Final vol.2.

図表一覧

FIGURES

Figure 1 Location of the survey area (1)
Figure 2 Location of the survey area (2)
Figure 3 Compilation of the survey in area A-II
Figure 4 Compilation of the survey in area B-I
Figure 5 Compilation of the survey in area C
Figure I-2-1 Drainage system in the survey area C
Figure I-3-1 Principal geologic elements (a) and geologic domains (b) in the Borborema Province
Figure I-3-2 General geology and known mineral deposits in the project area
Figure II-1-1 IP survey area
Figure II-1-2 Apparent Resistivity section
Figure II-1-3 Percent Frequency Effect section
Figure II-1-4 Percent Frequency Effect block diagram (Plate II-1-2)
Figure II-1-5 Apparent Resistivity plane, n=1
Figure II-1-6 Apparent Resistivity plane, n=2
Figure II-1-7 Apparent Resistivity plane, n=3
Figure II-1-8 Percent Frequency Effect plane, n=1
Figure II-1-9 Percent Frequency Effect plane, n=2
Figure II-1-10 Percent Frequency Effect plane, n=3
Figure II-1-11 Compilation of geochemical and geophysical surveys
Figure II-2-1 Soil geochemical anomalies and trench locations in area A-I
Figure II-3-1 Soil sample location in area B-I
Figure II-3-2 Histograms and EDA boxplots for Au and As in soil
Figure II-3-3 Au and As anomalies in soil
Figure II-3-4 Compilation of Au anomalies in area B-I
Figure II-4-1 Geologic map of area C
Figure II-4-2 Generalized columnar section of area C
Figure II-4-3 Location of samples for laboratory tests in area C
Figure II-4-4 ACF diagram drawn from the analytical data of rock samples in area C
Figure II-4-5 Location of mines and mineral showings in area C
Figure II-5-1 Location of stream sediments and pan concentrates
Figure II-5-2(1) Histograms and EDA boxplots for Au, Ag and Fe in stream sediments
Figure II-5-2(2) Histograms and EDA boxplots for Mn, Mo and W in stream sediments
Figure II-5-2(3) Histograms and EDA boxplots for Sn, Nb and Ta in stream sediments
Figure II-5-2(4) Histograms and EDA boxplots for Be, Li and As in stream sediments
Figure II-5-3(1) Au and As anomalies in stream sediments
Figure II-5-3(2) Fe and Mn anomalies in stream sediments
Figure II-5-3(3) Mo and W anomalies in stream sediments
Figure II-5-3(4) Nb and Ta anomalies in stream sediments
Figure II-5-3(5) Be, Li and Sn anomalies in stream sediments

Figure II-5-4(1) Location of high factor score; Factor 1, Fe-Mn Figure II-5-4(2) Location of high factor score; Factor 2, Nb-Ta Figure II-5-4(3) Location of high factor score; Factor 3, Be-Li Figure II-5-4(4) Location of high factor score; Factor 4, Au Figure II-5-5(1) Au concentration in pan concentrates Figure II-5-5(2) W, Sn and Mo concentration in pan concentrates Figure II-5-5(3) Nb and Ta concentration in pan concentrates Figure II-5-6 Compilation of the survey results in area C

Table II-5-4 Factor analysis of stream sediment analytical data

TABLES

Table II-1-1 Summary of field works and laboratory tests

Table II-1-1 AR, PFE values and sulfur contents of rock samples in area A-I

Table II-3-1 Methods and detection limits of chemical analyses

Table II-3-2 Statistical studies of soil analytical data

Table II-3-3 EDA analysis of soil analytical data

Table II-4-1 Analytical data of rock samples in area C

Table II-4-1 Analytical data of rock samples in area C (continued)

Table II-4-2 Mineral assemblages of rock samples determined by thin section observation

Table II-4-3 Mineral assemblages of samples determined by X ray diffraction

Table II-5-1 Summary of statistical studies of stream sediment analytical data

Table II-5-2 Correlation coefficient among thirteen elements in stream sediments

Table II-5-3 EDA analysis of stream sediment analytical data

PLATES

- Plate II-1-1 Apparent Resistivity section

 Plate II-1-2 Percent Frequency Effect section (Figure II-1-4)

 Plate II-2-1 Trench A-I-1

 Plate II-2-2 Trench A-I-2

 Plate II-2-3 Trench A-I-3

 Plate II-2-4 Trench A-I-4

 Plate II-2-5 Trench A-I-5

 Plate II-2-6 Trench A-I-6

 Plate II-2-7 Trench A-II-1

 Plate II-2-8 Trench A-II-2

 Plate II-2-9 Trench A-II-3
- Plate II-2-10 Trench A-II-4
- Plate II-2-10 Trench A-II-4
- Plate II-2-11 Trench A-II-5
- Plate II-4-1 Geologic map of the survey area C
- Plate II-5-2 Location of samples; stream sediments and pan concentrates

APPENDICES

- Appendix 1 Analytical Data of Soil
- Appendix 2 Analytical Data of Stream Sediments
- Appendix 3 Analytical Data of Pan Concentrates
- Appendix 4 Observations of Pan Concentrates
- Appendix 5 Analytical Data of Trenches

付 録

1

Appendix 1

Analytical data of soil samples.

=	
_	
Sis	
Anal	
is	
Chem	
Š	
ō	
ķ	

	8	g R	ល់ ស	ឃុំ		ຸຸ່	υ'n	'n	ري ا	ភេ ភេ	. r.	ان	ស្ម	. r.	ល់ក	ບໍ່ ຕຸ້	ហេ រ	ດທຸດ	ស្ត	ຸພຸ	ເກັແ	ъщ	ល់ក	വ വ	ເດ ເ	ភ ពេ	ហ	ເບັ ແ	ຸດ	ري ا	ល្ក ៤	າ ທ	ហេ	ຸນຸດ	ហ់ហ់ក	
	As	12.0	id	ර ග්	00	12.0	ာ င ကို ဇ	, i	0 0	တင် က်မ		2.0		. r.	ະນຸດ	ວ ດ - ເດ	တ က •		- 0		~) -	4,0)) ()	ហ	ر د د	ഗ	¢	. ני	1.0	ເບ່ ແ	ຸນ	ល (0.0	2 0 0 0	:
\$(_2)	3	.500	4.	2	7.5		'nς	. ~	7.	2.0	. ~.	7.	~ ~		4	7 2	~ .	115.0 0	~	4.63	i.	. · ·	~	7.0	.5	~ ~	4.0	ဖ်	, .,		ci c	20	676	4.0	<u>બ</u> ં બં બ	
al Analysis(on (km)	7-coord 285, 800	285. 800 285. 800	285. 800	285.800 285.800	285. 800	285. 800 285. 800	285.800	285. 800	285. 800 285. 800	285.800	285. 800	285,800	285.800	285.800	285, 800	285, 800	285. 800 285. 800	285.800	285. 800	285.800	285.800	285, 800	285, 600	3285, 600	285 600 285 600	37.85, 600	285. 600 2285. 600	285. 600 3285. 600	3285, 600	3285. 600 3285. 600	3285, 600 3285, 600	3285, 600	9285, 600 9285, 600	3285. 600 3285. 600 3285. 500	
f Geochemical	Location (km	ဥင္ဟ	86	8	88	ន្ល	38	88	ន	88	88	ദ	26	38	88	3 &	8	28	සුදු	38	88	38	ន្ត្រ	38	ള	5 5 5 5	8	က္ကန္	200	8	ខ្លួន	38	စ္တန္	88	778, 950	3
List of		 	22	S	88	(8)	2 2		8:	25	88	ි ක	8 8	38	88	38	88	38	88	88	စ္တင္က	38	88	38	စ္တန္	38	8	8 8	88	ි ස	မ္တန္	88	န္တန	38	888	3
	88	4213	4213	4213	4213	42	227	4213	4213	4213	4213	42	421	424	4213	42.13	4213	4213	4213	424	421	4213	4210	424	421	421	421	42	424	421	421	421	421	421	42130 42130	į
	Sample	NO. B2506	B2507	B2509	82510 82511	B2512	B2513	B2515	82516	82517 82518	B2519	82520	82521	B2523	B2524	B2526	B2527	52526 52529	B2530	B2532	B2533 B2534	B2535	B2536	82538	B2539	82540 82541	B2542	B2543	82545	B2546	B2547	82549	B2550	6255 B2552	82553 82554 82554	}
	is s	ည်	3 2	25	ន្ត្រដ	22	38	88	9	82	88	တ္သ	3 G	8	9 6	25	21	5 5	75	212	ည	38	æ 6	88	8 c	တ္တတ္သ	87	888	6 6	5	88	88	8	9.6	885	3
1	1 8	1																							o .c					· O 1/			0.10	uoie	21010	
	တ္တင်္	R. I		io n		n, n			o n		i.			uo u		491	c) u;	H) L			,		, ,						•	,						
	As		∮	ស		ຊຸ້	10.0	4,1 O 0	٥ د د د	် ဖြ	တ (က် •	ວ c ' σ	25.0	ល់ក		9	- 4	က်ပ) () ()	4.0	4.00		. 7.	ල ල	5 - i			ာမ တေ	7.0	0 -		ល់ព	ខណ	មេក	500	
is(1)	A go	2.0	i	i.	27.0	બંલ	. ~	4	i, c	. ~	o,	ui c	. ~	~!	7.0	લં	4	107.0	12.0	ci c		4	7.0	2.	40		~ ~	1 (2)	~	α ε		~ 6	ည္ 4 ၁ င		400	
cal Analys	Location(km) cord Y-coord	9286. 000	9286. 000 9286. 000	9286, 000	9286. 000	9286. 000 9286. 000	9286.000	9286. 000	9286.000	9286. 000	9286,000	9286.000	9286.000	9286. 000	9286, 000 9286, 000	9286, 000	9286. 000 9286. 000	9286, 000	9285. 000 9285. 000	9286.000	9286.000	9286, 000	9286, 000 9286, 000	9286, 000	9286. 000 9286. 000	9286. 000	9286.000	9286. 000	9286, 000	9286.000	9285. 800	9285, 800	9285, 800 9285, 800	9285, 800	9285. 800 9285. 800 9285. 800	
œ.	8 2	<u>, </u>	3 C3	00	00																															
f Geoch	Log-X	777.300	4.77	777. 45	777. 55	777 60	777.	777, 75	777	777.90	777. 95	778.00	778 10	778. 15	778.27	778.30	778.35	778, 45	7.78	778.60	778.70	778.75	7,00	778.90	778.95	779.050	779, 10	779.20	779.25	779.30	777. 35	777. 40	777.50	777. 55		
List of Geochemical Analy	×	777	777	777	777																									:		٠.			-	
List of Geoch	×	777	777	777	777																									:		٠.			42130 777. 68 42130 777. 777. 777. 777. 777. 777. 777. 77	
List of Geoch	Geoi Unit	42130 777	777	42130 777	42130 777	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130 42130	42130	42130 42130	42130	42130 42130	42130	42130	42130	42130 42130	42130	42130	42130	42130	42130	42130	42130	1450	42130	42130	42130	-	

	88			147		1, u	•			Δ.		•			,				•:	•	•	•:-				•	•	•	•	•	•		•	•	•••	:		-:	-; -	•		•	•	
	As	0.1	2 40	ហ	ر. ب	- - -	, u		÷.	6. 0	37.0	ာ ၁ ၁	ວ ແ ກໍ	, r) tr	ın.			ເດ	'n.	50	2.	2 II) K	ល	ĸ	ഹ	0	ပေး က်	ກຸ) C	5.0	1.0	າ 1	⊃ i¢	. r.	0	ĸ,	ب. دن) 	2.0	O 6	4 n 2 O	
S (4)		2.5	? ^	.5	~	4.0	10	10	8	. 2	2.	Ņ	76	ic	,	٥	8		8	.5	٠.	0,0	йc	10	2	9	2.0	2		йc	,,		8	oi c	si c	10		10.0	4	210) က တ	2	બું બું	
cal Analysi	Location(km) ord Y-coord	9285, 400 9285, 400	9285, 400	9285, 400	9285, 400	9285, 400 9285, 400	9285 400	9285. 400	9285, 400	9285. 400	9285. 400	9285, 400	9285, 400 9285, 900	5 10	3 10	9285, 200	9285, 200	9285, 200		9285, 200	9285, 200	9285, 200	9265, 200	9285, 200	9285, 200	9285, 200	9285, 200	9285, 200	9285, 200	9285, 200 0005, 200	9285, 200	9285, 200	9285, 200	-:-		9285, 200		9285, 200	9285, 200	9285, 200 9285, 200	9285, 200	9285, 200	9285, 200 9285, 200	
ist of Geochemical Analysis(Locat X-coord	778, 650	778, 750	778.800	778.850	7.000	279 000		779, 100		779, 200	779. 230	77.5	777 250	777 400			777, 550	777. 600	777, 650	777. 700	777. 750	777.000	777.900	777, 950	778,000	778.050	778, 100	778, 150	770 250	778,300	778, 350	778, 400	778, 450	778.500	778, 600	778,650	778. 700	778, 750	27.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	778.900	778.950	779.050	
List	Geol Unit	42130	42130	42130	42130	42130 02130	25.52	42130	42130	42130	42130	42130	421.50 521.50 521.50	45130	42130	42130	42 130	42130	42130	42130	42130	42130	92130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	11400	42130	42130	42130	42130	42130	42130 42130	
	Sample No.	82606 82607	82608	82609	B2610	62611 82611	82613	B2614		82616		8722			R2522		B2624		82626		B2528			B2632																			62654 82655	
	ģ. 2	151	3 53	72	155	S [2	ii.	130	₹	161	22.5	23	<u>ያ</u> ሺ	3 4	15	88	169	15	171	172	5 5	47.	 	172	178	179	180	181	182	<u>5</u>	2 E	85	187	₩	20.5	19.5	152	8	8 6	2 2 &	197	8	208	
	as a	ហេម	ם ני	, ro	ហុ	ស្ម	, r	 	rů.	٠. س	ن ا بی	ຄຸເ	ກຸດ) L	າແ	, r.			ഗ	س	က်၊	ហុធ	កុ	្រំ		េះ	ro.	ស្រ	ເດັເ	សួធ	, u	, , ,	ស.	ហុ	ភ្. ស	ຸນ	ល	ល	សុ	ກຸແ	, w	ហ្គ		
	As	ιν̈́n	, ru	r.	ທຸ	ပ် π		. 7:	<u>.</u>	ĸ.	IO I	ກຸເ	ဂ္ဖ	? u		, LC	20	0	-0	7.0	<u>.</u> .	ស្នេ	បួធ	ים כ	ı.	ស	٠. س	က်၊) c	-	വ	س	ស ម	ດ c	o 0 - ෆ	17.0	-0	س	ນ ແ		O :	က် ဝဝ	
s (3)	⊋g	α.	,	2			ic	ရ	10.0	7.	4.	i,	, it.) C	i i	. ~		<u>.</u>	7	2.0	4	Ņ,	ic	10	?	7			બં	7.0	10	ς.	6.	4	, c			۲.	ä	io		7.	üü	
cal Analysis (Location(km) coord Y-coord	9285, 600	9285, 600	9285, 600	9285. 600	9285, 500 9285, 500	9285, 500	9285, 600	9285, 600	9285, 600	9285, 600	9285. 500	9265. 500 9285. 600	9202. COU	9285. 500 9285. 600	9285. 600	9285, 600	9285, 600	9285, 600	9285. 600	9285. 600	9285. 400 000F 400	9200. 400 0085 400	9285. 400	9285, 400	9285, 400	9285, 400	9285, 400	9285. 400	9285, 400 9385, 400	9285, 400	9285, 400	9285, 400	9285, 400	9285, 400 9285, 400	9285, 400	9285, 400	9285. 400	9285, 400	9285, 400 9285, 400	9285, 400	9285. 400	9285, 400 9285, 400	
List of Geochemical	Locat X-coord	778, 200	778,300	778, 350	778. 400	778 450	778 550	778.600	778,650	778, 700	778, 750	200	77 × 030	270.027	275 000 000	779, 050	779, 100	779, 150	779, 200	779, 250	779.300	777, 300	77.	777, 450	777, 500	777, 550	777. 600	777, 650	777. 700	27.77	777, 850	777, 900	777, 950	778,000	778.050	778.150	778, 200	778, 250	778.300	778 400	778, 450	778, 500	778, 550	
List	Geol Unit	42130	42.48 35.58	42130	42130	42130	42130	42130	42130	42130	42130	8:55	4218	25.55	42130	42130	42130	42130	42130	42130	42130	42130	25150	42130	42130	42130	42130	42130	42130	42.30	42130	42130	42130	42130	42130	42130	42130	42130	42130	42 LSU 12	42130	42130	42130 42130	
• .	Sample No.	B2556	82558	B2559	B2560	5256 R2550	P2563	B2564	82565	82566	82567	200	82508 82570	B2571	R2572	82573	B2574	B2575	B2576	B2577	B2578	625/9	2000	82582	B2583	B2584	82585	82586 82586	2528	52363 52563	82590	B2591	82592	82593	82234 82594 82594	82596 B2596	82597	82586	B2599	888 888 888 888 888 888 888 888 888 88	62602	B2603	82504 82605	
	s S	<u> </u>	103	104	<u>8</u>	2 5	8	8	2	Ξ	2;	2:	- <u>-</u> -		17.	18	5	8	121	22	23	22.5	27.	27	128	139	<u>න</u>	<u></u>	25	35	32	38	37	8 8	3 5	4	142	143	4 :	4 to 0.00	147	8	<u> </u>	

of Geochemical Analysis (5)			
of Geochemical Analysi	ί	3	2
		•	27777
	•		7
	•	Š	į
+4			

	8	ğ.	ប់ព	ຸນຕຸ	. ເຄ	ĸ.	ĸ.	ю.	ı.	<u>س</u>	ហ	ເດ	ເດ	ŭ,	rv	ശ	٠. س	س	٠. س	ښ س	ហ	ĸ.	ហ	<u>د</u> .	ເດ	٠. س	ທີ່	.ດ ເ	ប ព	ກຸ	o n	n u	א מ	א ני	ហ	ເດ	ı.	ις.	ເກ	ю.	<u>س</u>	ທຸ	ഹ	ເດ	ις	ις.	ın ı	ا	ດີແ	?
	As	E .	ស្ន	9 0	-	0.	1.0	დ ე	<u>-</u> -	ſΩ	٠. س	დ.	<u>ب</u>	ر ا	ເກ	က်		4.0	တ တ	-	ιņ	ი.	٠. س	ن	ი.	0 -	က ((ဂ	n i	n u	ក	r, u	o n	o u	00	(C)	8		យ	'n	٠ س	w.	ഗ	r.	ທີ	ហ	ភេ !	ın ı	ភូម	ດີແ	?
(9)	₹.	8	40	. ~		۲.	۲.	۲.	ς.		2	2	0	N		7.	œ,	۲.	۲.	.5	?	2	?	2	7.	7.	?	7.	: :	,	Ņ	'nc	ic			2	۲.	۲.	7.	۲,	۲.	?	۲.	.5		~	7.	, S		
mical Analysis(ocation (km)	Y-coord	9284.800	9284, 800	9284. 800	9284.	9284	9284	9284	9284	9284	928	928	9284.	9284	928	9284.	9284	9284	9284	9284	9284	3284	9284	9284	9284.	9284.	5204	7 000 000 000 000 000 000 000 000 000 00	3 6 0 8 0 8	920	000	888	984	9284	9284.	9284.	9284.	9284	9284	9284 84	9284	88 88	828	287	9284	9284.	25 S	9284.600	5
t of Geochemical		X-000-7	777 550	777, 600	777, 650	777. 700	777. 750	777. 800	777. 850	777. 900	777. 950	778.000	778.050	778, 100	778, 150	778. 200	778. 250	778.300	778.350	778, 400	778, 450	778, 500	778. 550	778. 600	778.650	778. 700	7 (8. 75	7,000	770.00	770	0, - 0, - 0, -	770	77.9	779	779, 200	779, 250	779.300	777. 300	777. 350	777. 400	777. 450	777, 500	777. 550	777. 600	777.65	777. 700	77.75	777 950	777 900	:
List	Geo.	COLLA	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	11400	42130	42130	42130	42130	42 130	42130	42130	42 130 45 130	42130	25.50	212	120	42130	42130	42 130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130 20120	42130	
	Sample	0200	82707	82708	B2709	82710	B2711	B2712	B2713	B2714	B2715	B2716	B2717	8779	67/39	62/20	62721	B2722	82723	B2724	B2725	B2726	B2727	B2728	P2 729	62730	162.60	20,70	25.00	2 C C C C C C C C C C C C C C C C C C C	26.75	55.52	22.2	82739	82740	82741	82742	B2743	82744	B2745	82746	B2747	82748	82749	82750	82751	25/25	527.00	82755	}
	<u>ج</u> و	S C	250	253	254	255	226	257	528	259	260	261	262	703	264	Ç07	202	267	588 588	569	270	271	272	273	2/4	2/2	12	- 02.0	2 6	2 6	2 6	200	283	284	285	286	287	288 788	283	8	291	292	293	294	295	296	2 8	800	808	}
	ક્ર	E u	Մա	ķ	ъ.	ທ	ĸ,	ιύ	ហ	رما	សុ	ហ	ان	ស	۵.	٠. د	<u>ه</u> .	س	ທຸ	س	ហុ	ហ	٠. س	ıςι	က်၊	س	Ωı	ល ម		? u	, G	n u	, u	, . ,	, D	ი.	ъ.	٠ س	ന	ស	დ.	<u>ر</u>	ທຸ	ر م	ស	က (ນຸເ	សុក	ກຸດ	
	As	6 0	G	. v.	ις:	ເດ	<u>-</u> -	ට i ග්	ហ	ម្ចា			o (٥ ر -	ດເ	ប់រ	٠ ١	Ω.	ر. ا		ا	ស !	ا	د	5.0	o •	- - -	ų.	i) c	o co	; -	5	0 %	-: 0:	2.0	o o	റ്	ဝ တ	0.0	4.0	0	ဝ (က် (6 6 6	0.0	⊃ u 	ព្រ	
(9) 51	₹	000	, « 4 C		٥.	۲,	ů.	?	8	7	લં	. 5	4	7.	7.	7.	7	7	7	7.	7	oj.	7	બં.	7	ú.		ņ		4.0	ic	ic			7.	.2	۲.	4	۲.	10.0	۲,		7.	7	.5	જું લ	i,	, vi c	70	:
ical Analysis	Location (km)	1-000rd	9285, 200	9285, 200	9285, 200	9285, 200	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285, 000	9205 9205 9205 9205 9205	9265.000	9200.000	9285,000	9262, 000	9285, 000	9285, 000	9285, 000	9285, 000	9285.000	9285, 000	9285.000	9285.000	9285, 000	9285.000	9285, 000	9285, 000	9285, 000	9285, 000	9284, 800	9284. 800	9284, 800	
t of Geochemical	207	770 JOS	779.150	779, 200	779, 250	779, 300	777.300	777. 350	777, 400	777, 450	777, 500	777. 550	777. 500	77.000	777, 700	77. 750	17.800	777.850	777. 900	777. 950	778, 000	778, 050	778. 100	778, 150	//8,200	7.8.250	778, 300	770, 530	778 450	27.0	778 550	778 800	778,650	778, 700	778, 750	778.800	778,850	778.900	778, 950	779, 000	779, 050	779, 100	779, 150	779. 200	779.250	779.300	777.350	777 450	777, 450	} :
List	(Seo)	Unit 42120	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	82.39	42130	42130	42130	42130	42130	42130	42130	11400	11400	42130	42130	42130	82.8	42130	25.100	25.55	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42136 92136	42130	42130	
	Sample	Docto	82657	B2658	82659	B2660	B2661	B2662	82663	B2664	B2665	82666	82667	97029	82969	82670	1,029	82572	B2673	B2674	B2675	B2676	82677	82678	62679	82680	8229 8229	70070	2000	10000 10000	8268 82686	82587 72587	8268	B2689	82690	82691	B2692	B2693	B2694	82695	8269 6	B2697	82698	82699	82700	82701	20/29	82.70S	82.705 82.705	
	Ser.	2 6	202	203	204	202	500	201	208	208	510	211	212	213	7.7	212	216	217	218	219	220	221	222	223	224	522	977	77	220	030	3 2	23.5	333	88	235	53 9	237	33	239	549	241	242	243	244	245	246) 57	9 0	250	i

A.S.A

ţ			មេ	ıç, ı	ກຸເ	Ω L	ຸດ	Ω.		ເບ	ທຸ	<u>ب</u>	C.			O U	? u	, ,	ຸ	n ı	ų.	U	លួ	ບົດ	ត្ ៤	ט ח	· u	, IL	, re	ıΩ	ഹ	ი.	ທຸ	ທີ່		un 1	SO I	ω,			4,	•	3,71	e, u	សូម		ហ
8 g	លល	. v.	លំ	ທຸເ	ກຸ	ດເ	ດີເ	ņ	ų,	ហ	ഹ.		0	: :	, u	, ,	ņ u		Ωι	٠,	2.0	<u>.</u>	ប់ក	o, u	ŗ.	กับ		, K	ı.		10	1.0	٠. س	ທ່າ	v.	C (.: :-	ເກ	2.0	 O	សុ	ຕຸ	ų,	- <u>û</u>	⊃ c oʻ -	<u>.</u>	មេ
. 4g	2.0	! ?!	7	2.5	CY C	7.	7.	.5	7	?	۲.	.5	•		i c	, (ų	4.	N. C	Ņ	.5	710	, N		7.	N C	, ,	, .			2	.5		2,0	7	2	. 5	. 5	8	.5	?	. 5	7.			,	
.ocation(km) ord Y-coord	3284, 400 3284, 400	3284, 400	9284, 400	9284, 400	3284, 400 300, 400	5284, 400	9284, 400	3284. 400	3284, 400																_	_		9284 200										9284, 200	9284, 200	9284, 200	5284, 200	9284. 200	9284, 200	9284, 200	9284. 200 9284. 200	9264, 200	9284. 200
Locat X-coord	778.400	778, 500	778, 550	778, 600	778, 650	1.00	00.	78.800	778,850	778, 900	778, 950	779, 000	779, 050	770 100	170	9 6	770 200	36.23	7.6.300	300	777.350	7.7. 400	34.5	17.20	11.00	777	202	77.	777 800	777, 850	777. 900	777, 950	778, 000	778, 050	778, 100	778, 150	778, 200	778. 250	778, 300	778.350	778. 400	778.450	778.500	776, 550	778 850	77.00	778. 750
Geol Unit	42130 42130	42130	42130	42130	42130	42130	42.30	42130	42130	42130	42130	42130	42130	133	50.00	1420	36	0041	1400	42130	42130	42130	52130	42130	00124	42130	13.0	42130	42130	42130	42130	42130	42130	42130	11400	11400	11400	11400	11400	42130	42130	11400	1400	11400	42130	42130	42130
Sample No.	82806 82807	B2808	B2809	B2810	82811	62812	52813	62814	82815	82816	82817	B2818	B2819	RORON	RORO 1	00000	0,000	07070	62824	62825	82826	82827	82828	82828	0000	10000	R0833	R2834	82835	82836	B2837	B2838	B2839	B2840	B2841	82842	82843	B2844	B2845	B2846	B2847	B2848	82849	62850	82851 80880	82853	82854
<u>ģ</u> 2	351	353	354	322	329	200	8	323	မ္တ	361	362	363	364	900	988	300	200	9 8	900	3/2	371	3/2	0/3	9 14	0 (0 6	27.0	27.0	80.0	88	382	383 383	384	388	မ္တာ	387	88	980	390	391	392	393	394	9 6 8	200	<u> </u>	88
ds de	wκ	ຸນຸ	<u>.</u>	ເດ ເ	ហ	ស្	ດ ເ	ı,	ري ري	დ.	υ.	ហ	LC.	· u		o u	O W	ņ	ប់ព	ប់រ	ا ن	ນ໌ເ	ກຸ່	ų.	ດເ	ប ព		, u	С		ທ	დ.	დ.	ا	ഗ	٠. ا	٠. س	ĸ,	<u>س</u>	ن	ហ	س	س	້	ກຸນ		. r.
SA pag	w. r.	, ru	4.0	ပ - 1	0.5	0.0	0 %	8.0	٠ س	ι.	ഗ	w.	G.			o u	O II	n.	ບຸ	ភ .	ທີ່	ກຸ	ភូ	o c) (-	·	15.	'n		٠ س		1.0	. .	4.		'n.	ស	വ	٠. س	ഹ	 	 	ស្រ	ស. ៤	יי ני	
₹ 62	2,0	. ~	67	0.0	~ .	Ņ		. 2	5	ς.	α.	Ċ.	3	١٥	٢	, c		,	Ä	7.	Ņ	Ņ	Ņ	Ņ	i		ic	! c				7.		Ċ,	2.	2.	2		2	~!	81.		2.6	Ņ	йc	, 4	2.
Location(km) ord Y-coord	9284, 500 9284, 500	9284, 600	9284. 600	9284, 600	9284, 500	9284. 500	9284. 600	9284, 600	9284. 600	9284, 600	9284, 600	9284, 600	9284, 600	9284 600	9284 600	0004 600	9204. 600	9204	9284. 500	9284. 500	9284. 500	9284. 500	9284. 600	9284. 600	9204. 000	9294. 900	9284 600	9284. 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284, 400	9284. 400	9284. 400	9284.400	9284, 400
Local	777. 950	778, 050	778. 100	778, 150	778. 200	7.8250	7.8.300	78.320	7.78. 400	778, 450	778, 500	778, 550	778, 600	778 650	77 A77	97.7	120	140	7.00	7.85.800	7 (8. 950	770,000	7.50.050	179, 100	110	770.250	779 300	777, 300	777, 350	777, 400	777, 450	777, 500	777. 550	777. 600	77.650	777, 700	77. (30	777. 800	777.850	777, 900	777, 950	7/8.000	7.8.050	7,000	778 500	778 250	778, 300
Geol Unit	42130	42130	42130	42130	42130	05.24	92.30	42130	42130	42130	42130	42130	42130	42130	45130	25.50	12130	200100	42130	42130	42130	42 130	92.30	42130	200	42130 00104	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	11400	42130	42130	42130	42130	42130	42130	42130	42130 02130	42130	42130
Į .		. ~	თ :	ຼີ :	<u> </u>	Y S	2:	X.	ດ	ဖွ	67	88	9	35		- 6	7.5	3 5	47	2	9	- C	9.0	200	3 9	- 6 - 6	8	3 2	785	88	787	88	28 183	8	2	32	3	8	795	8	797	38	3 3 3	35	2 S	18	B2804
Sample No.	B2756 R2757																																														349 B2

	As	E E	တ္လ	<u>ා</u> ල) c) d	0	10	ເດ : '	ıc	, rc	ır	· «) C	:	. u	? u) II	? 13		ກຸ		٠. س	o n	ກຸເ	o n	nц	,	יו כ	יי	, LC		ĸ	21	ю.	ເກຸເ	ΩL	ក្	? u	, u) LC	, , c	2.0	2.0	0	2.0	. <u>.</u>	ດູແ	
is (10)	₹	QQC	ų.	й¢		٥,	0	8	2,0	ì	! ^	10					ic	40	4.0	•	Ņ	. ·	,	4.0		ic	, u		10	١٥			2.	?	?	ν, c	Ņ	ic	, ,		. ~		2.	8	7	<u>د</u> .	si e	70	! ??
cal Analysis (Location (km)	7-000rd	9283. 800 8686. 888	9253. OUG	9265, 800 9282, 800	9283 800	9283, 800	9283, 800	9283, 800	9283, 800	9283, 800	9283.800	9283, 800	9283, 800	9283 ROD	9283 800	0083 800	9263.000	9262	9200.000	9200.000	9200.000	9203. 000	9200.000	9283 800	9263, 900	9283, 800	9283, 800	9283.800	9283, 800	9283,800	9283, 800	9283, 800	9283, 800	9283, 800	9283, 800	0000000	9263, 900	9283 800	9283, 800	9283, 800	9283, 600	9283, 600	9283, 600	9283, 600	9283, 600	9283. 500	9283. 500	9283. 600
of Geochemical	ocat		8	35	3 5	8	000	8	93	200	8	S	2	8	ဋ	٤	Ę	3 5	3 5	3 5	3 6	3 8	2 5	38	38	3 5	3 5	88	200	8	123	8	တ္ထ	န္တ	ရွ	8	3 5	3 2	3 5	38	8	် မွ	930	60	8	် ငွေး	3 8	2 G	777. 700
List	(Seo)	Chic	42130 45130	35.55	42130	42130	42130	42130	42130	42130	42130	11400	42130	42130	42130	42130	42130	42130	42130	42130	45130	42130	42130	42 130	42130	42130	42130	42130	42130	11400	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	11400	42130	42130	42130	42130	42130	42130	42130	42130
	Sample	200	2000	82900 82900	82910	82911	82912	82913	82914	82915	82916	82917	82918	82919	B2920	82921	B2922	82923	R2924	8292E	2000	R2027	80008	B2020	B2930	B2931	B2932	B2933	B2934	B2935	B2936	B2937	B2938	B2939	B2940	62347	B2042	B2944	B2945	B2946	B2947	B2948	B2949	B2950	B2951	B2952	62353 62064	B2955	B2956
	.	<u>.</u>	65 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.	452	454	455	456	457	458	459	460	461	462	463	464	465	466	467	488	460	470	471	475	473	474	475	476	477	478	479	480	184	482	83	484	2 2 2 3 4	ο ς Ο ς	88	489	490	491	492	493	484	495	496	- 600	0.05 0.05	200
	3	EI.	. ព	, u	, ru	ເດ	٠,	ທ.	ī.	ທຸ	ۍ.	<u>س</u>	ۍ. د	დ.	ທຸ	ហ	C.			, LC	, L			ហ	, .		 . m	വ	ហ	س	2	r.	ហ	ល់៖	ກຸເ	ດ ແ			· ·		ហ	'n,	տ.	ທຸ	សុ	សួធ	កុ	ຸເຄ	ιΩ
	Są į			, ,	0	س	س	π		დ.	س	ი.	ω.	ທ	<u>.</u>	ro.	ເດ		ហ	ıs	<u>ب</u>) ic		С	<u>ب</u>	ហ	ល	т.	г.	٠. س	យ	ю.	ល	ស្ចា	ທີ່ເ		, ,			ຸເກ	ī,	ī.	'n,	សុ	ښ. ا	ស្ន	ក ផ	, w	٠. س
is (9)	₹		йc	10	! S!	ά	ς.	18.0	۲.	2	~!		۲.	ς.	ς.	۲,	7				10	, c,			2			۲.	۲.	۲,	α.	8.		2,	9,0	ic				2	4	?	6.	9	~		ic	10	7.
cal Analysis (tion (km)	2007	9284, 200	9284, 200	9284, 200	9284, 200	9284, 200	9284. 200	9284, 200	9284, 200	9284, 200	9284, 000	9284, 000	9284, 000	9284, 000	9284,000	9284, 000	9284, 000						_	_		_	9284.000	_		9284, 000	9284, 000	_		_ `	9284,000												9284. 000	
0 (Se	Locatio	0.000	000 000 000 000	778 950	779, 000	779, 050	779, 100	779, 150	779, 200	779, 250	779, 300	777, 300	777, 350	777 400	777, 450	777, 500	777, 550	777, 600	777, 650	777, 700	777, 750	777 800	777, 850	777, 900	777, 950	778,000	778,050	778, 150	778, 200	778, 250	778, 300	778, 350	778, 400	78.450	778, 500	778 600	778,650	778, 700	778. 750	778.800	778,850	778. 900	778, 950	779,000	79.050	779, 150	275	779, 250	779.300
List	[] - -	40100	42130 00131	42130	42130	42130	42130	42130	42130	1400	11400	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	11400	11400	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130 02130	42130	11400	42130
	Sample No	DVOCE	2000 2000 2007 7007	B2858	B2859	B2860	B2861	B2862	B2863	B2864	B2865	B2866	82867	B2868	82869	B2870	82871	82872	B2873	82874	82875	82876	B2877	B2878	B2879	B2880	B2881	82883	82884	82885	B2886	B2887	B2888	82888 82888	02000	B2892	82893	82894	82895	B2896	B2897	82898	82899	82900	8280 E	82802 82803 82803	82904	82905	B2906.
ļ	ģ. <u>2</u>	į	3 £	9	404	405	4 06	40	2	409	410	41	412	413	414	415	416	417	418	419	420	42	422	423	424	425	426	427	428	429	8	43	432	35	4 6	438	437	88	439	440	441	442	443	444	0 0 0	440	84	449	450

8 8	ß	, u	ņ	ņ	٠ ب	ທ	Ę,) LI	•	'n.	ĸ	? I	Ω.	u.	L	o.	ı,	ĸ) L	r,	ທ		٠ ا	ი.	ď) I	Ω.	Ľ) t	n	ព	u	n i	'n	ιc		'n	س	ч	•	o.	ď) u	ņ	ស	L¢	۱ (Ω	ro.	ιĊ) L	0	٠ س	ď) l	٥.	ហ	ĸ) ti	n	w	u		Ω.	ĸ,	, R		т.	
AS Pom	ıc		0.1	?	٠. د	ı.	ហ			'n	ư	? 1	n.	LC.	t	o.	ഗ	Ľ	•	ი.	ເດ	· u	? !	ი.	ď	•	Ω.	ur) i	<u>د</u>	ĸ		<u>.</u>	ഗ	ĸ	•	<u>-</u> :	0	:	? !	Ω.	ĸ) L	0	ហ	ĸ	? L	ņ	<u>ښ</u>	Ľ	<u>.</u>	n.	ທຸ	ıc		ი.	'n	ď		ဂ	ហ	ĸ	? L	<u>،</u>	ر د	ı LC	ņ	ъ.	
₹8	6		7	7.	7.	.2	6		7.	?	c	1 4	7.	^	ç	2	۲.	·		7.	. 2		7 (۲.	c		7.	c		7	٠,		7	۲.	c		7.	7.		7	. 2	6		7.	7	c	1	. 2	7	c		7.	7.		•	7	2			7.	~	c			. 2	, ç	ر ا	?	
ocation (km)	9283 ANN	2007	2005. 400	1283. 400	283.400	3283, 400	283, 400	2002 400	2000 400	3283, 400	2223 400	1000	5283. 400	2283, 400		5253, 400	3283, 400	2002 400			3283, 400	000	2500.400	3283, 400	2283 400	200	3283, 400	2223 400	200	5283. 400	1283, 400	000 0000		3283, 200		200, 200	5263. 20G	3283, 200	0000	2500.500	3283.200	2283, 200		3253, 200	3283, 200	000 000	2200.200	5283.200	9283, 200	2283 200	0000	5283, 200	3283, 200	000 500	2000	5283, 200	9283, 200	2283 200	2000	5265. 200	3283, 200	000 000	200.000	9283, 200	9283, 200	000 000	2203. 200	9283, 200	
Locati X-coord	ı	007.024	207.011	200.00	778,350	778, 400	778, 450	770 500	000	778, 550	779 800	200	78. 650	778, 700	0 0 0	? 2 2 2	778,800	778 950	000	-	_												000	777. 350	007 777	1 - 1	7. 430	777, 500	CDB	2000	777. 500	777, 650	11.	30.5	777, 750	777 000	200	777.850	777	777 950	1 - 1	000.00/	778, 050	001 877	200	7.6. 200	778, 250	778 200	250	(0.00)	778, 400	770 /50	200	7.85.500	778, 550	778 800	20.0	778.650	
Geol Unit	40130	250	200	42.30	42130	42130	42130	00107	44.00	42130	40190	2014	42130	42130	000	42130	42130	45120	2010	42130	42130	40100	2	42130	65135	20.00	42130	42130	000	42130	11400	0000	42130	42130	42130	9 6	42130	42130	0000	42.30	42130	42130	000	42130	42130	40100	00131	11400	42130	42130	200	42130	42130	45120	200	42130	42130	42130		25.130	42130	A9130	000	42130	42130	4519D	00174	42130	
Sample No.	R3007	0000	00000	2000	83010	83011	83012	000	2	B3014	R2015	200	830.16	B3017		200	83019	CCCCR	200	2052	B3022	80000	2000	53024	83025	0 0	B3056	R3027	000	93059	R3029	0000	0000	83031	RADAS	1000	55055	83034	10000	2	53036	R3037		3	B3039	07000	2 .	63041	83042	R3043	2	83044	83045	B2046	000	85.45	B3049	R2050	2000	2020	83052	RACES	200	53054	B3055	020EB	00000	83057	
કું છું	55.1	3 6	700	0	554	555	556	200	3	228	OR C) (3	561	u	700	203	784	2 5	ဂ္ဂ	556	557	Š	S S S	569	9 6	0.0	7.7	ָ ו ו	200	573	1	4	575	778	2 1	200	578	0.0	2	33	8	3 6	8	93 283 283	d	3 5	S	586	587	38	8	တ္ထင္တ	, G		ñ	592	500	Č	30	595	n n	100	PC C	598	o o	000	900	
8 8	ı) L	ល្	<u>د</u>	w.	ιΩ	L.		0:	n,	Ľ	?!	Ω.	Ľ.		ი.	'n	Ľ) I	٥.	Ľ,			ص	Ľ		'n.	LC	? :	v.	ur.) L	Ω.	'n	Ľ	? 1	ņ	T.	·			ĸ) L	٥.	ហ	·	? !	n	ഹ	ĸ	? !	ი.	ທຸ	ı LE	? ι	ი.	ម្ន	ı CC) L	<u>ڊ</u>	ហ	ß	? t	ų.	<u>ر</u>	ı,	ဂ	٠ س	
S g) i4	٠,	<u>.</u>	<u>-</u>		1.0	• u	9.1	س	Ľ	? .	0.1	LC.		<u>→</u>	س	Œ	•	<u>-</u>	ភ		• ,	 	C	:	٠.	c +-	۱ <u>د</u>	٠.	LC.		?	0	Ľ	٠.	ņ	Ľ,		?	ιO.	<u>ر</u> ي	•	0	o si	-	• ·	<u>.</u>	<u>.</u>	o) 	ဂ	က	· C	:,	-	<u>س</u>	ır) L	o.	<u>.</u>	-		<u>.</u>	2.0	i i	۰.	ø.	
₹	,	7.0	7	7	~	2.	6	! C	7.	ς.	c		7.		. (7.	?	·		7.	. 2		4	7	•			ç		7.	c.	c	7.	?	c		7.	ς.	·	7.	. 2	٠,		7	۲.	c		7.	~!	٥		7	۲.	0	10	ν.	۲.			7	۲.	·	. 4	4,	16.0	•	7.	8.	
Location(Am) ord Y-coord	9283 600	2500,000	9203.000	3283. 500	9283. 600	9283, 600	9283, 600	0000 0000	2500.000	9283, 600	2282 600	300	3283. 500	9283, 600	000	3200.000	9283, 600	9283 600	0000	3283. 500	9283, 600	0080 800	200.000	9285. 500	9283, 600	000	9283. 600	9283 600		2283, 500	9283, 600	0000	3200.000	9283. 600	9283 600	0000	3283. 500	9283. 600	000 0000	2500.000	9283, 600	9283, 600	000	3203.000	9283, 400	9282 ARD	0000	9283. 400	9283, 400	9283, 400	2000	2225. 400	9283, 400	9283 AND	0000	200, 400	9283, 400	9283 400	000	2202, 400	9283. 400	9283 400	200	5253. 400	9283.400	OUV PACO	2205. 400	9283. 400	
Locat X-coord																																																																					
Geol Uhit	42130	100	200	3 7	42130	42130	42130	10100	200	42130	42130	000	42130	42130	40100	37	42130	49130	000	25	42130	49130	20.25	42130	42130	200	42130	42130	000	1400	42130	1,400		42130	42130	7 7 7	25.1.20	42130	00100	20,34	47.130	42130	00108	42.00	42130	42130		42130	42130	42130	000	25.50	42130	42130	000	200	42130	42130	40100	95139	42130	40130	200	42130	42130	45190	25.24	42130	
Sample No.	92957	2000	0000	66670	9239	82361	82962	R0083	36	5235	R206F	000	00,70	B2967	00000	00000	222	82970	1000	7670	82972	82072	2000	67870	82975	100	9/679	82977	0200	07070	B2979	2000	2000	2238	82982	00000	2000	82384	ROCE	200	22320	B2987	00000	200	82383	2000	0	2220	B2992	B2993	2000	10070	82995	82995	0000	200	B2998	82999	00000	2000	B3001	83002	10000	55005	B3004	RADOR	0000	63006	
		5 6	3 5	3	33	9 9 9	200	F07	3 8	8	Ç.	i c	200	51.	n c	2 1	5	514	L	0	516	517	- C	c Ö	519	C	320	22	CCL	770	523	127	1 (222	526	101	7	228	C C) (2	83 53	200	2 6	533	23.4	U	0 1	536	537	000	9	536	540	, r	3	8	543	7.4	1	545	546	1	ğ	<u>X</u>	540	3 1	200	

_
<u>@</u>
ysis (
Aral
Geochemical
4
ist of

	As	in a	. י	0	- r	0	٠. س	O (<u>.</u>															٠																			
(s (14)	A do	2.5		~	~! ~	. ~	.5	4	7.																																		
Geochemical Analysis(Location(km) ord Y-coord	9283, 000	9283,000	9283, 000	9284, 800 9284, 800	9284. 800	9284, 600	9284, 600																																			
ŏ	Locat X-coord	779, 150	779, 250	779, 300	778 675	778, 725	778, 725	778. 775	16.625									. *																									
List	Geol Unit	42130	42130	42130	42130 42130	42130	42130	42130	42135																																	ŧ	
	Sample No.	(C) (I																								٠		-															
	ģ. <u>2</u>	651 651	659		ວິດ ວິດ ວິດ	657	829	200	8																													٠					
	မှ နို	ပ်က ဖ	, LO	ທຸ	က်က	, . w	ις.	ψ.	ກຸທ	ຸນ	ະເດ	ທຸ	ו לא	ກຸ	ភ ម		າ ທ	 	. ი	ູເດ	ທ໌	ശ	ស	សុធ	n u	e re	, rc	w.	ı.	ក ធ	ຸທຸ	ເນ	က္ပ	ស្ច	សួស	, , , u	. r.	S.	Ę,	rio r	ស្ច		г. Го
	SA go	ı, ı	າ ເດ	 0.	%- 0 C		τύ.	ល់ ក	ប. ៤	. ເ	ស	0.	<u>.</u>	- -) c) c	2	 	ຸເກ	1.0	ις.	សុ	ហ	i.) (d	ت	<u>.</u> س	ស៊	ប្ច	. ເກ	ഹ.		ស្ន				ഹ	٠. س	ស់ ព	បួយ		ت
s (13)	₹ 8	4.0	! 6	લં	oj ec	2 %	7.	~; <	ie		4.0	φ.	4.	N II						~	7	7	9	o, c	, .	40		4	ú	, c	10	.2	i,		, 0			~	64	~ •	70		
nical Analysis (9283, 200			62 62 62 62 63 62 63 62 63 62 63 62 63 62 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 6	9283, 200	9283.	3283 3283	0 00 0 00 0 00 0 00 0 00	9283	9283	9283	888	200	2000	0 0 0 0 0 0 0 0	988	9283.	9283.	9283.	9283.	9283	9283	828	0 0 0 0 0 0 0	383	9283	9283	888 888	6 6 6 6 6 6	928	9283	9283	9 9 8 8 8 8 8	888	9283	883	9283	9283	888	200		9283
of Geochen	Local X-coord	778. 700	778.800	778.850	778, 950	779, 000	779, 050	770 150	779.500	779, 250	779, 300	777. 300	777, 350	777 450	777 500	777 550	777, 600	777, 650	777, 700	777, 750	777, 800	777.850	777, 900	777, 950	770,000	778, 100	778, 150	778. 200	778.250	770.500	778, 400	778, 450	778.500	778 500	778, 650	778, 700	778, 750	778.800	778.850	7.8.900	779 930	779, 050	779, 100
List	Geol Unit	11400	42130	42130	42130 42130	42130	42130	42130	42130	42138 42138	11400	42130	42130	42130 08164	42130	44.50	42130	42130	42130	42130	42130	11400	42130	42130 42130	25.50	42130	11400	11400	11400	45150	42130	42130	42130	421.50 051.61	42130	42130	42130	42130	42130	42130	42130	42130	42130
	Sample No.	B3058	B3060	B3061	83062 83063	83064	83065	83066	83068	830g 830g 830g	83070	B3071	83072	55073	9000	83078	83077	83078	B3079	83080	B3081	B3082	83083	B3084	98088	B3087	83088	83089	83030	200	B3093	B3094	83032	83090 83097	808	83089	83100	83101	83.02	2 2 2 3 3 3 3	200	83106	B3107
	કું <u>કું</u>			604	90°	607	8	S 6	2 5	612	613	614	615	010	- 0	2 4	620	621	622	623	624	625	626	627	070	630	631	832	633	# 150 W	836 836	637	88	200	9.5	642	643	544	83	82	548	649	650

Appendix 2

Analytical data of stream sediment samples.

g 8	្ត្រាស់ ស្រុស ស្រុស ស្រុស សុស សុស សុស សុស សុស សុស សុស សុស សុស
As	
Li	- 48888666866666666666666666666666666666
8 8	######################################
Ta	ស្ត្រាស់ ស្ត្រាស់ សេសសេសសេសសេសសេសសេសសេសសេសសេសសេសសេសសេសសេស
98	
u _S	- wnn
#CC	ធានាធានាធានាធានាធានាធានាធានាធានាធានាធាន
2 €	
u _M	988 988 988 988 988 988 989 989 989 989
£ %	
Aga	
₹ <u>8</u>	-
on (km) Y-coord	503 9282. 846 338 9282. 251 374 9282. 251 374 9282. 251 374 9282. 251 927 9282. 442 620 9282. 442 620 9282. 442 620 9282. 442 621 9281. 458 917 9281. 458 917 9281. 659 918 9281. 650 918 9282. 436 928 9282. 436 928 9282. 637 928 9282. 9281. 658 928 9282. 9281. 628 928 9282. 9281.
Locati	777.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
Geol Unit	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ľ	\$2355 \$2355
နွဲ S	-694000000000000000000000000000000000000

€	
of Geochemical Analysis (
Listo	

្តិ	ການເຄີນການການການການການການການການການການການການການ
A g - 0 - 44444 & 444444 & 444444 & 444444 & 444444	00000000000000000000000000000000000000
1 4 1 8 8 8 8 1 8 2 8 8 8 8 8 8 8 8 8 8 8 8	247.4888 2.2842848488
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.24.88.82.22.82.2.1.6.1.1.6.1.2.2.2.2.2.2.2.2.2.1.1.6.1.1.1.6.1.1.1.6.1.1.1.6.1.1.1.6.1
<u>ค</u> ชู ชุดพพพพพ ^ผ รีชพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพ	ຉຎຆຑ຺ຑຎຑຆຆຆຆຆ <mark>ຆຆຆຆ</mark> ຆຆຑ ຑ
€ n 224-5557-n n 8888 m 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2455455245554558553
20 C C C C C C C C C C C C C C C C C C C	. M 4 M 4 W W 4 &
พอนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนน	വ ഗ വ വ വ വ വ വ വ വ വ വ വ വ വ വ വ വ വ
2	
1003 1003 1003 1003 1003 1003 1003 1003	1183 781 1326 1326 1326 1143 1004 1004 1004 1004 1036 1138 11396 11396
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
88	
₹ guadadadadadadadadadadadadadadadadadadad	वंतवंतवंतवंतवंतवंतवंतवं
Location (4m) ord Y-coord 189 9280, 596 189 9280, 596 182 9280, 077 976 9282, 459 9282, 459 9282, 459 9282, 459 9282, 359 9281, 654 9281, 354 9281, 354 9281, 354 9281, 354 9280, 9281, 335 9280, 9281, 335 9281, 335 9281, 3280, 331 9280, 738 9280, 738 9280, 738 9280, 738 9280, 738 9280, 738 9280, 738 9280, 738 9280, 738 9280, 738 9280, 738 9280, 738 9280, 738 9280, 738	9282, 026 9281, 932 9281, 587 9281, 587 9281, 687 9280, 607 9281, 642 9281, 648 9281, 688 9282, 898 9282, 898 9282, 935 9282, 935 9282, 935
X-coat Locat 176. 189 176. 189 1776. 189 1780. 512 180. 512 180. 512 180. 513 180. 513 180. 513 180. 513 180. 513 180. 513 180. 513 181. 52 181. 52 183. 513 183. 513	
000000000000000000000000000000000000000	0000000000000000
8-1 6-1 6-1 6-1 7-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8	44444444444444444444444444444444444444
Sample No. 2016 No. 2	\$2438 \$2438 \$2440 \$2441 \$2441 \$2441 \$2441 \$2441 \$2441 \$2441 \$2441 \$2441 \$2441 \$2441 \$2441 \$2450 \$2450 \$2450 \$2450
\$\$ □ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	\$

දු දි	က <u>၊</u>	ນ໌ ແ	. ເ	ις.	ល័	ກຸ	. ៤	s LC	, N	က်	ស់	ស	ក ៤	បំក	ເດ	ις. •	بن	ហុ	ທ່າ	۱۹	ນ. ແ	, L	, u			დ.		ກຸແ) IC	က်	សុ	ស	ი _ს	, rc		ហ	ហ	က်	ب ب	ប់ ក	ຸ່ດຸ	ښ. اښ	'n.
As	ı,	, i	ာက က	2.0	2.0) - -	- c	0	9	2.0	5.0	4,0) c	000	0	4,0	တ တ	0	0 6	o 6	0 0	,		0	0 i %	20	 ,	o c	3 6	5	2.0	0 0	> c	10	, o	2.0	2.0	۰ بئر	0 6 6 6	5 c	0 0 0 0 0	2.0	6
= 6	23	to	ස	\$ 2	4 :	ច ខ្	3 €	888	4 ش	73	82	88	3.5	8	42	33	24	ក	ж 8	3 3	4 ç	4 ¢	38	17	<u>5</u>	36	င် င	ភ ជ	3 FC	7	8	7.	ភូទ	7	82	8	100	2	გ:	- 0	3 8	33	2
& g	18.3	7.70		39.8	28.1	5,55 20,50 2	3 <u>0</u>	- 8-	8,8	14.0	 	သ ည်း	ე ი ი ი	25.55 25.55	86.7	22.3	16.5 5	12.8	3 1.5	7.7.	က် ကို ဖွဲ့ – စ	0,4 0,4		9.4	16.0	18.4	2. i	- c	, 65 4 4	40.8	ထ တွင်	٠- c	က ကို ထို	4 4 5 0	32.6	50.5	27.6	35. 8	თ. ლ	o 5 2 0 2 0	8,0 4 m	28.0	25. B
E mad	ហេ	ນ ທ	വ വ	ເດ	ເດເ	ល ប	O IC	o ro	n.	ស	ហ ម	ا ما	ល ៤	വം	വ	ហ	ഗ	വ	ın ı	ភ	លផ	n u	വര	ະເດ	8	ហ	ល រ	nα	່າເຕ	ιΩ	210	សនុ	§ r	, <u>r</u> .	വ	ហ	8	ഹ	ເດ ເ	ស្ត	ດ ເກ	រ ល	ກ
2	23	۲ ۲	, 4	21	25	- 6 - 6	ئ أ	, <u>r</u>	5	ഹ	Ξ'	ω <u>ς</u>	7 -	<u>-</u> <u></u>	8	ហ	വ	<u>თ</u> :	8,	n;	ç	ກູແ	. 5	17	4	8	မ္တ :	2 5	2 55	8	88	ភ ខ្	<u> </u>	<u>-</u> -	24	37	<u>ন</u>	35	տ:	C	88	<u>ب</u>	5
S mod		40	14	-	. .	•	·• •					•	··· •	- •-		-	-	-	•	 ,			- m	· -	. .	-	•	- u	> খ	က	₽.	, ,	- •	- •-	. _	-	7	ო	• (י מ	1 (· •	-
#oc	ഹ	លល	വ	ហ	ភ រ	ט ה	o u	ง เก) ເຄ	വ	ល 1	ເດີເ	ΩU	വെ	ശ	ហ	ល	ហ	ເດະ	n a	மெ	υç	<u>-</u> ແ	വ	വ	ഗ	ហ	oυ	o un	വ	മ	ស្ន	5 u	ນ ເ	ഗ	ı.	5	ro i	ഗ പ	ດ ເ	7 5	ا کیا۔	ഹ
Q.W.	r.	٠. ت د	2 157	цэ	ហ	ភាព	. ៤	, rc		w,	ഹ	0	សម	០ មា	ເດ	٠. س	ທ.	ທ.	ហេដ	က်၊	មេ ព	្ ព	ກຸ່ນເ			ω.	٠. س	<u>د</u> د	o rc	ß	ស	ស	٠. د	- ^ - C	; .	വ	<u>ر</u>	٠. ا	ល់ក	ກຸ	ດທຸ	សុ	٠.
u <u>V</u>	2478	1226	974	1356	1223	1655	2007	679	1271	750	675	873 873	3 5 5	202 746	1748	854	826	926	200 200 200 200 200 200 200 200 200 20	863	888	2462	1308	662	2911	1151	1909	2) % 20 00	2 6 2 6 2 6	1159	4706	920	200	1814	1126	98	3785	1107	223	50 C	480	223	477
₽.%	4.98	3.5 2.5	, rg 196	6. 19	4, 55	4, 0	2 C 2 C	67	<u>ග</u> පේ	3.04	3.34	မှ ရှိ	ა ი გ ი	0 0 0 0 0 0 0	6.70	3.20	3. 72	2.83	<u>က</u> က (2,82	3.32 8.32 8.32	6 c	0 4 0 4 0 4	2.27	6.46	4. 72	4, 6 5, 6	38	5 % 5 %	88	.30	6; 1;	= = =	. 4 . 8	2, 26	8.8	7. 28	4, 54	2.07	4. 4 20.00	4 6. 0.00	8	2. 74
Ag	-			-	-	•		. ,	; -			•			-		-	-	•	<u> </u>	- •				-	-				-					: -:	-	-	-	- -			-	- .
A. God	27.	٠ <u>.</u> د	. ~	8	2	ာ c	, c	10		۲۶.	~	~;	7.0	7 6	2	.2	۲.	~	~;	~.	2.0	чc	10	. 2	! ~!		o, o	7.0	. ~	٥	က (၁	oj o	7.0	10		0.	7	0	٥, ٥	N 0		7	. 7
Location(km)	9280, 916	9280. 751	9280, 311	9280, 620	9280. 960	9280, 855	9280, 585	9281, 739	9281, 034	9281, 744	9281, 629	9281, 539	9280.074	9280, 024 9280, 599	9280, 144	9279, 974	9282, 931	9282. 941	9282, 952	9282.837	9282, 692	9262, 552	9281.861	9281, 191	9280, 592	9280, 602	9280, 652	9280, 292 9280, 848	9282, 718	9282, 925	9282, 379	9282, 308	9251. 913	9281.459	9281, 169	9280, 629	9280, 354	9280, 226	9279. 962	5279, 427	9279, 057	9279.967	9278.488
l in	789.683																																										
Geol Unit	42130	42130	42130	42130	42130	42130	11400	42 30	42130	42130	42130	42130	42130	42130 42130	42130	42130	42130	42130	42130	42130	42130	05150	42130	42130	42130	42130	42130	42130	11400	42130	42130	42130	1110	2	11110	11110	11110	11110	42130	42400	42400	42400	42400
Sample No.	\$2454	\$2455 \$2455	\$2457	\$2458	\$2459	S2460	52461	S2463	\$2464	\$2465	S2466	S2467	82468	S2409	\$2471	\$2472	S2473	S2474	\$2475	S2476	S2477	02470	S2480	\$2481	\$2483	\$2484	\$2485	02400	27488 27488	\$2489	\$2490	\$2491	22492	S2494	\$2495	\$2496	S2497	\$2498	\$2499	22500	\$2501 \$2502	\$2503	S2504
j. 2	101	202	3 2	105	106	107	2 2	35	Ξ	112	= 3	4 1	<u> </u>	2 2	18	13	120	<u>5</u>	122	123	124	625	127	128	129	8	133	720	3 %	135	136	137	8 6	2 5	141	142	143	144	145	9 ;	₹ ₩	149	<u> </u>

A-13

S 8	ιņ	ю.	ທຸ	ນ໌ເ	ų.	សុ	ប់ក	ຸ່	v.	m	٠.	ທຸ	ιά	ហ	rc) u	ή L	Ċ.	ų.	w.	<u>س</u>	'n	LC.) L	តុរ	ın.	س	ហ	ď		o rc) t		, G) u) ti		Ω. E	<u>.</u> ا	٠.	٠.	m	ш.	ۍ. •	ທຸ	ic)	<u>ښ</u>	 	ഹ	ທ.	ເກ	ហ	
SA CO	0.	, 0	0; 1;	0 0	96) N	(() (5.0	0	20	200	o i d	io	ic) c	31	6 6		0	5.0	6) C	: .	÷ ;	50	5.0	2.0	6	i ~	ر د د	10) c	ာ င ၁ လ	o c	ic	o c) () ()		- -	0 0	20	20		20.	o o	2	2	2.0	5.0	
ij g	72	8	88	 	88	20	3 8	829	œ:	4	6	စ္တ	45	28	i Z	ទ	3 8	\$ 8	န္တ	8	58	2	õ	8	3 6	88	53	4	56	27.0	œ	(r)	. %	8 %	25	1 6	5 6	18	- c	7	77	Ω	42	ଚ୍ଚ	52	52	55	56	50	23	ଚ	42	37	
æ 8	30.0	30.0	24. 7	ტ ფ ტ ფ	4 1 4	- 1	- c	5 c	50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5	31.5	20.4	17.6	34.5	21.8	8	9	9 0 0 0	91	27.0	20°.	24. 4	22.2	34.	0.70	i u	0 I	24. (28.0	31.2	23,4	, ,	7 7) (-) (-) (-) (-) (-) (-) (-) (-	- c	7 6) 14 - - - - - - - - - - - - - - - - - - -) 	- H	: c	o,	4 	39.8	36.0	25.0	36.0	300	28.9	21. 1	8	37.5	41.8	45.4	
-Ta ppm	ഹ	27	ın ı	ດເຸ	ჲ :	- '	o ;	 4 r	ភ រ	Ω	ഗ	ഗ	ເດ	č	ינר	• и	O 14	o t	ا ہ	Ω.	ഹ	ഗ	ហ	ıc	> Ա	ρL	Ω	ស	33	ហ	ហ	ır) K) K) L) u) (I	9 u	n ç	j l	ΩΙ	د	വ	വ	വ	ഗ	ഹ	ທ	ເດ	ໝ	ഹ	ம்	ល	
2 0	24	ගු	စ္	77	3:	3	25	32	4	24	7	9	31	88	70	- G	9:	- ;	35	43	9	ю Ю	8	8	5 6	- G	23	5 6	200	Į,	2	E	2.5	- 1-	- 6	3 5	† <u>C</u>	t	88	3	8	3	85 84	55	89	ξī	ဖွ	58	<u>0</u>	מו	വ്	ଜ	4	
S mad	-		₹ .	- •	4,	-,	- (, ,	1	ო	ო	ო	m	e co	**	rc	n •	4 (ю·	_	8	•	•	۰.	1 -	- •	4	8	8	۰		· च	9) (f	9 6	40	1 (1	o é) L	ο.	1	Ω	4	ហ	က	8	4	ഗ	~	1 ex	ന	വ	ო	
₩ cc	ഹ	ហៈ	ហ	ΩL	Ωι	ດ ເ	ດ ເ	ភ ប	s i	ıO	ഹ	ഹ	ţ.	ı.	ъп	ם כ	nı	n	വ	വ	<u>ب</u>	'n	u.) K) L	ស ម	ഹ	ъ	ĸ	ı.	ហ	o ur) W) II	ט ער) u	ט כ	o u	D LI	nı	ဂ ၊	ഹ	ശ	ហ	w	ເດັ	гU	ហ	5	വ	ß	ഹ	വ	
Q d	Į.	ū.	ທ່	ນ.	ທຸ	Ω, I	ΩI	ດ (ທຸ	ĸ.	ហ	L.		v v			۰,	ເກ	ເກ	<u>دې</u>	K.	-		? 1	ត.	٠.	<u>დ</u>	1.0	۱. :	·	. r.) ц	,	e n		٠.	ų.	س	დ.	ι,	٠ س	2.0	ហ	и 7	, n	0.	ເດ	ល	
AM mad	1685	2423	929	689	1713	22.16	5/2/3	85.3	100	848 848	731	871	1365	1906	123	- 6	797	3	1046	904	88	984	18	7.	7	103	182 182	2020	3451	000	, r 27 20 20 20	, (%)	5 6	o d	0.00	350	0 5	200	200	9	13/3	964	935	821	7017	678	514	698	767	999	9	914	515	
ቈ%	5.06	4.25	5. 94	6 6	ر ا تا	⊂ † % •	χί κα	, , ,		ور ن	9. 12	3.43	3.40	8	g G	2 S	4 c	8	3, 24	3, 42	2.67	2.01	4 20	30	36	36	2.83	4.06	3,56	3	; € }	9 63	7 f c	, r	3 6	, c	- F	กับ	9 4 9 6	4 ·	9.	4.83	ы 94	4.01	3. 12	4.01	1, 75	5. 13	2,62	2.56	4, 02	4.44	2. 75	
Ag	-			·-•	•	- '		-,	-	-	-	-	-				- •				•		•	•	· •	-,		٠.				•	•	•	- •-		. •	•	•	- ,	-	۲.			-	-		-		-			-	
₽ da	.2	N.	24.0	ú	N	N) -	2	9		.2						7.		~	٥.	-5	•			7.0	. 5	۲.	4.0	in C	4	:	, 0		40		, с		,	7	7.	N	. 2	٥.	۲.		2		~	8	2	7	۲.	
ocation(km)	9276.982	276.942	277.697	277.732	277. 793	260.032	57.7.523	277.233	7277. 184	276. 783	276. 708	275. 442	275, 653	275, 563	075 483	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27.000	077 077	279, 903	1279, 839	1279, 824	1279, 903	278 014	079 630		27.0.97.0	72 /8. 880	1278, 360	278,010	277, 550	277, 320	276 965	276 615	27.5	275 115	27.27.27.2	0,00	27.00.007.00	270 606	22.13.020	72.5.0.0	12.79.45	279,366	278. 741	278, 716	3278, 351	277, 531	277, 611	276.511	3276.301	3276. 336	3276. 132	3276. 142	
2 0	777.070	2	374	20 6	25	8 ;	4 6	n (2	93	සූ	တ္ထ	940	090	5	3 6	3 6	יות מו	22	_	775	351	517	g	}	2 6	g	5	8	9	7	6	3 6	3	2 6	8	38	3 6	- 6	7	2 !	ດີ	247	6	874	33	35	339	536	44	205	365	615	
Geol Unit	42130	42130	42130	42130	42130	42130	42130	92130	42130	42130	42130	42130	42130	42130	45130		00.74	25.24	42130	42130	42130	42130	42130	40130	200	42130	42130	42130	42130	42130	42130	42130	42130	25.00	11400	42120	200	2000	2000	00124	92 30	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	42130	
Sample No.	\$2555																																																					
કે કે	201	202	203	204	202	202	707	88	503	210	5	212	0	2.4	, c	, (2 7 0	7	238	238	220	221	929	100	3 6	577	225	226	227	200	Š	18	3 6	3 6	200	36	1 0	3 6	9 6	3	8	23 73	2 8	241	242	243	244	245	246	247	248	249	220	